1 /* Rtl-level induction variable analysis.
2 Copyright (C) 2004-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is a simple analysis of induction variables of the loop. The major use
21 is for determining the number of iterations of a loop for loop unrolling,
22 doloop optimization and branch prediction. The iv information is computed
25 Induction variables are analyzed by walking the use-def chains. When
26 a basic induction variable (biv) is found, it is cached in the bivs
27 hash table. When register is proved to be a biv, its description
28 is stored to DF_REF_DATA of the def reference.
30 The analysis works always with one loop -- you must call
31 iv_analysis_loop_init (loop) for it. All the other functions then work with
32 this loop. When you need to work with another loop, just call
33 iv_analysis_loop_init for it. When you no longer need iv analysis, call
34 iv_analysis_done () to clean up the memory.
36 The available functions are:
38 iv_analyze (insn, reg, iv): Stores the description of the induction variable
39 corresponding to the use of register REG in INSN to IV. Returns true if
40 REG is an induction variable in INSN. false otherwise.
41 If use of REG is not found in INSN, following insns are scanned (so that
42 we may call this function on insn returned by get_condition).
43 iv_analyze_result (insn, def, iv): Stores to IV the description of the iv
44 corresponding to DEF, which is a register defined in INSN.
45 iv_analyze_expr (insn, rhs, mode, iv): Stores to IV the description of iv
46 corresponding to expression EXPR evaluated at INSN. All registers used bu
47 EXPR must also be used in INSN.
52 #include "coretypes.h"
55 #include "hard-reg-set.h"
57 #include "basic-block.h"
61 #include "diagnostic-core.h"
63 #include "hash-table.h"
67 /* Possible return values of iv_get_reaching_def. */
71 /* More than one reaching def, or reaching def that does not
75 /* The use is trivial invariant of the loop, i.e. is not changed
79 /* The use is reached by initial value and a value from the
80 previous iteration. */
83 /* The use has single dominating def. */
87 /* Information about a biv. */
91 unsigned regno
; /* The register of the biv. */
92 struct rtx_iv iv
; /* Value of the biv. */
95 static bool clean_slate
= true;
97 static unsigned int iv_ref_table_size
= 0;
99 /* Table of rtx_ivs indexed by the df_ref uid field. */
100 static struct rtx_iv
** iv_ref_table
;
102 /* Induction variable stored at the reference. */
103 #define DF_REF_IV(REF) iv_ref_table[DF_REF_ID (REF)]
104 #define DF_REF_IV_SET(REF, IV) iv_ref_table[DF_REF_ID (REF)] = (IV)
106 /* The current loop. */
108 static struct loop
*current_loop
;
110 /* Hashtable helper. */
112 struct biv_entry_hasher
: typed_free_remove
<biv_entry
>
114 typedef biv_entry value_type
;
115 typedef rtx_def compare_type
;
116 static inline hashval_t
hash (const value_type
*);
117 static inline bool equal (const value_type
*, const compare_type
*);
120 /* Returns hash value for biv B. */
123 biv_entry_hasher::hash (const value_type
*b
)
128 /* Compares biv B and register R. */
131 biv_entry_hasher::equal (const value_type
*b
, const compare_type
*r
)
133 return b
->regno
== REGNO (r
);
136 /* Bivs of the current loop. */
138 static hash_table
<biv_entry_hasher
> *bivs
;
140 static bool iv_analyze_op (rtx_insn
*, rtx
, struct rtx_iv
*);
142 /* Return the RTX code corresponding to the IV extend code EXTEND. */
143 static inline enum rtx_code
144 iv_extend_to_rtx_code (enum iv_extend_code extend
)
152 case IV_UNKNOWN_EXTEND
:
158 /* Dumps information about IV to FILE. */
160 extern void dump_iv_info (FILE *, struct rtx_iv
*);
162 dump_iv_info (FILE *file
, struct rtx_iv
*iv
)
166 fprintf (file
, "not simple");
170 if (iv
->step
== const0_rtx
171 && !iv
->first_special
)
172 fprintf (file
, "invariant ");
174 print_rtl (file
, iv
->base
);
175 if (iv
->step
!= const0_rtx
)
177 fprintf (file
, " + ");
178 print_rtl (file
, iv
->step
);
179 fprintf (file
, " * iteration");
181 fprintf (file
, " (in %s)", GET_MODE_NAME (iv
->mode
));
183 if (iv
->mode
!= iv
->extend_mode
)
184 fprintf (file
, " %s to %s",
185 rtx_name
[iv_extend_to_rtx_code (iv
->extend
)],
186 GET_MODE_NAME (iv
->extend_mode
));
188 if (iv
->mult
!= const1_rtx
)
190 fprintf (file
, " * ");
191 print_rtl (file
, iv
->mult
);
193 if (iv
->delta
!= const0_rtx
)
195 fprintf (file
, " + ");
196 print_rtl (file
, iv
->delta
);
198 if (iv
->first_special
)
199 fprintf (file
, " (first special)");
202 /* Generates a subreg to get the least significant part of EXPR (in mode
203 INNER_MODE) to OUTER_MODE. */
206 lowpart_subreg (enum machine_mode outer_mode
, rtx expr
,
207 enum machine_mode inner_mode
)
209 return simplify_gen_subreg (outer_mode
, expr
, inner_mode
,
210 subreg_lowpart_offset (outer_mode
, inner_mode
));
214 check_iv_ref_table_size (void)
216 if (iv_ref_table_size
< DF_DEFS_TABLE_SIZE ())
218 unsigned int new_size
= DF_DEFS_TABLE_SIZE () + (DF_DEFS_TABLE_SIZE () / 4);
219 iv_ref_table
= XRESIZEVEC (struct rtx_iv
*, iv_ref_table
, new_size
);
220 memset (&iv_ref_table
[iv_ref_table_size
], 0,
221 (new_size
- iv_ref_table_size
) * sizeof (struct rtx_iv
*));
222 iv_ref_table_size
= new_size
;
227 /* Checks whether REG is a well-behaved register. */
230 simple_reg_p (rtx reg
)
234 if (GET_CODE (reg
) == SUBREG
)
236 if (!subreg_lowpart_p (reg
))
238 reg
= SUBREG_REG (reg
);
245 if (HARD_REGISTER_NUM_P (r
))
248 if (GET_MODE_CLASS (GET_MODE (reg
)) != MODE_INT
)
254 /* Clears the information about ivs stored in df. */
259 unsigned i
, n_defs
= DF_DEFS_TABLE_SIZE ();
262 check_iv_ref_table_size ();
263 for (i
= 0; i
< n_defs
; i
++)
265 iv
= iv_ref_table
[i
];
269 iv_ref_table
[i
] = NULL
;
277 /* Prepare the data for an induction variable analysis of a LOOP. */
280 iv_analysis_loop_init (struct loop
*loop
)
284 /* Clear the information from the analysis of the previous loop. */
287 df_set_flags (DF_EQ_NOTES
+ DF_DEFER_INSN_RESCAN
);
288 bivs
= new hash_table
<biv_entry_hasher
> (10);
294 /* Get rid of the ud chains before processing the rescans. Then add
296 df_remove_problem (df_chain
);
297 df_process_deferred_rescans ();
298 df_set_flags (DF_RD_PRUNE_DEAD_DEFS
);
299 df_chain_add_problem (DF_UD_CHAIN
);
300 df_note_add_problem ();
301 df_analyze_loop (loop
);
303 df_dump_region (dump_file
);
305 check_iv_ref_table_size ();
308 /* Finds the definition of REG that dominates loop latch and stores
309 it to DEF. Returns false if there is not a single definition
310 dominating the latch. If REG has no definition in loop, DEF
311 is set to NULL and true is returned. */
314 latch_dominating_def (rtx reg
, df_ref
*def
)
316 df_ref single_rd
= NULL
, adef
;
317 unsigned regno
= REGNO (reg
);
318 struct df_rd_bb_info
*bb_info
= DF_RD_BB_INFO (current_loop
->latch
);
320 for (adef
= DF_REG_DEF_CHAIN (regno
); adef
; adef
= DF_REF_NEXT_REG (adef
))
322 if (!bitmap_bit_p (df
->blocks_to_analyze
, DF_REF_BBNO (adef
))
323 || !bitmap_bit_p (&bb_info
->out
, DF_REF_ID (adef
)))
326 /* More than one reaching definition. */
330 if (!just_once_each_iteration_p (current_loop
, DF_REF_BB (adef
)))
340 /* Gets definition of REG reaching its use in INSN and stores it to DEF. */
342 static enum iv_grd_result
343 iv_get_reaching_def (rtx_insn
*insn
, rtx reg
, df_ref
*def
)
346 basic_block def_bb
, use_bb
;
351 if (!simple_reg_p (reg
))
353 if (GET_CODE (reg
) == SUBREG
)
354 reg
= SUBREG_REG (reg
);
355 gcc_assert (REG_P (reg
));
357 use
= df_find_use (insn
, reg
);
358 gcc_assert (use
!= NULL
);
360 if (!DF_REF_CHAIN (use
))
361 return GRD_INVARIANT
;
363 /* More than one reaching def. */
364 if (DF_REF_CHAIN (use
)->next
)
367 adef
= DF_REF_CHAIN (use
)->ref
;
369 /* We do not handle setting only part of the register. */
370 if (DF_REF_FLAGS (adef
) & DF_REF_READ_WRITE
)
373 def_insn
= DF_REF_INSN (adef
);
374 def_bb
= DF_REF_BB (adef
);
375 use_bb
= BLOCK_FOR_INSN (insn
);
377 if (use_bb
== def_bb
)
378 dom_p
= (DF_INSN_LUID (def_insn
) < DF_INSN_LUID (insn
));
380 dom_p
= dominated_by_p (CDI_DOMINATORS
, use_bb
, def_bb
);
385 return GRD_SINGLE_DOM
;
388 /* The definition does not dominate the use. This is still OK if
389 this may be a use of a biv, i.e. if the def_bb dominates loop
391 if (just_once_each_iteration_p (current_loop
, def_bb
))
392 return GRD_MAYBE_BIV
;
397 /* Sets IV to invariant CST in MODE. Always returns true (just for
398 consistency with other iv manipulation functions that may fail). */
401 iv_constant (struct rtx_iv
*iv
, rtx cst
, enum machine_mode mode
)
403 if (mode
== VOIDmode
)
404 mode
= GET_MODE (cst
);
408 iv
->step
= const0_rtx
;
409 iv
->first_special
= false;
410 iv
->extend
= IV_UNKNOWN_EXTEND
;
411 iv
->extend_mode
= iv
->mode
;
412 iv
->delta
= const0_rtx
;
413 iv
->mult
= const1_rtx
;
418 /* Evaluates application of subreg to MODE on IV. */
421 iv_subreg (struct rtx_iv
*iv
, enum machine_mode mode
)
423 /* If iv is invariant, just calculate the new value. */
424 if (iv
->step
== const0_rtx
425 && !iv
->first_special
)
427 rtx val
= get_iv_value (iv
, const0_rtx
);
428 val
= lowpart_subreg (mode
, val
,
429 iv
->extend
== IV_UNKNOWN_EXTEND
430 ? iv
->mode
: iv
->extend_mode
);
433 iv
->extend
= IV_UNKNOWN_EXTEND
;
434 iv
->mode
= iv
->extend_mode
= mode
;
435 iv
->delta
= const0_rtx
;
436 iv
->mult
= const1_rtx
;
440 if (iv
->extend_mode
== mode
)
443 if (GET_MODE_BITSIZE (mode
) > GET_MODE_BITSIZE (iv
->mode
))
446 iv
->extend
= IV_UNKNOWN_EXTEND
;
449 iv
->base
= simplify_gen_binary (PLUS
, iv
->extend_mode
, iv
->delta
,
450 simplify_gen_binary (MULT
, iv
->extend_mode
,
451 iv
->base
, iv
->mult
));
452 iv
->step
= simplify_gen_binary (MULT
, iv
->extend_mode
, iv
->step
, iv
->mult
);
453 iv
->mult
= const1_rtx
;
454 iv
->delta
= const0_rtx
;
455 iv
->first_special
= false;
460 /* Evaluates application of EXTEND to MODE on IV. */
463 iv_extend (struct rtx_iv
*iv
, enum iv_extend_code extend
, enum machine_mode mode
)
465 /* If iv is invariant, just calculate the new value. */
466 if (iv
->step
== const0_rtx
467 && !iv
->first_special
)
469 rtx val
= get_iv_value (iv
, const0_rtx
);
470 if (iv
->extend_mode
!= iv
->mode
471 && iv
->extend
!= IV_UNKNOWN_EXTEND
472 && iv
->extend
!= extend
)
473 val
= lowpart_subreg (iv
->mode
, val
, iv
->extend_mode
);
474 val
= simplify_gen_unary (iv_extend_to_rtx_code (extend
), mode
,
477 ? iv
->extend_mode
: iv
->mode
);
479 iv
->extend
= IV_UNKNOWN_EXTEND
;
480 iv
->mode
= iv
->extend_mode
= mode
;
481 iv
->delta
= const0_rtx
;
482 iv
->mult
= const1_rtx
;
486 if (mode
!= iv
->extend_mode
)
489 if (iv
->extend
!= IV_UNKNOWN_EXTEND
490 && iv
->extend
!= extend
)
498 /* Evaluates negation of IV. */
501 iv_neg (struct rtx_iv
*iv
)
503 if (iv
->extend
== IV_UNKNOWN_EXTEND
)
505 iv
->base
= simplify_gen_unary (NEG
, iv
->extend_mode
,
506 iv
->base
, iv
->extend_mode
);
507 iv
->step
= simplify_gen_unary (NEG
, iv
->extend_mode
,
508 iv
->step
, iv
->extend_mode
);
512 iv
->delta
= simplify_gen_unary (NEG
, iv
->extend_mode
,
513 iv
->delta
, iv
->extend_mode
);
514 iv
->mult
= simplify_gen_unary (NEG
, iv
->extend_mode
,
515 iv
->mult
, iv
->extend_mode
);
521 /* Evaluates addition or subtraction (according to OP) of IV1 to IV0. */
524 iv_add (struct rtx_iv
*iv0
, struct rtx_iv
*iv1
, enum rtx_code op
)
526 enum machine_mode mode
;
529 /* Extend the constant to extend_mode of the other operand if necessary. */
530 if (iv0
->extend
== IV_UNKNOWN_EXTEND
531 && iv0
->mode
== iv0
->extend_mode
532 && iv0
->step
== const0_rtx
533 && GET_MODE_SIZE (iv0
->extend_mode
) < GET_MODE_SIZE (iv1
->extend_mode
))
535 iv0
->extend_mode
= iv1
->extend_mode
;
536 iv0
->base
= simplify_gen_unary (ZERO_EXTEND
, iv0
->extend_mode
,
537 iv0
->base
, iv0
->mode
);
539 if (iv1
->extend
== IV_UNKNOWN_EXTEND
540 && iv1
->mode
== iv1
->extend_mode
541 && iv1
->step
== const0_rtx
542 && GET_MODE_SIZE (iv1
->extend_mode
) < GET_MODE_SIZE (iv0
->extend_mode
))
544 iv1
->extend_mode
= iv0
->extend_mode
;
545 iv1
->base
= simplify_gen_unary (ZERO_EXTEND
, iv1
->extend_mode
,
546 iv1
->base
, iv1
->mode
);
549 mode
= iv0
->extend_mode
;
550 if (mode
!= iv1
->extend_mode
)
553 if (iv0
->extend
== IV_UNKNOWN_EXTEND
554 && iv1
->extend
== IV_UNKNOWN_EXTEND
)
556 if (iv0
->mode
!= iv1
->mode
)
559 iv0
->base
= simplify_gen_binary (op
, mode
, iv0
->base
, iv1
->base
);
560 iv0
->step
= simplify_gen_binary (op
, mode
, iv0
->step
, iv1
->step
);
565 /* Handle addition of constant. */
566 if (iv1
->extend
== IV_UNKNOWN_EXTEND
568 && iv1
->step
== const0_rtx
)
570 iv0
->delta
= simplify_gen_binary (op
, mode
, iv0
->delta
, iv1
->base
);
574 if (iv0
->extend
== IV_UNKNOWN_EXTEND
576 && iv0
->step
== const0_rtx
)
584 iv0
->delta
= simplify_gen_binary (PLUS
, mode
, iv0
->delta
, arg
);
591 /* Evaluates multiplication of IV by constant CST. */
594 iv_mult (struct rtx_iv
*iv
, rtx mby
)
596 enum machine_mode mode
= iv
->extend_mode
;
598 if (GET_MODE (mby
) != VOIDmode
599 && GET_MODE (mby
) != mode
)
602 if (iv
->extend
== IV_UNKNOWN_EXTEND
)
604 iv
->base
= simplify_gen_binary (MULT
, mode
, iv
->base
, mby
);
605 iv
->step
= simplify_gen_binary (MULT
, mode
, iv
->step
, mby
);
609 iv
->delta
= simplify_gen_binary (MULT
, mode
, iv
->delta
, mby
);
610 iv
->mult
= simplify_gen_binary (MULT
, mode
, iv
->mult
, mby
);
616 /* Evaluates shift of IV by constant CST. */
619 iv_shift (struct rtx_iv
*iv
, rtx mby
)
621 enum machine_mode mode
= iv
->extend_mode
;
623 if (GET_MODE (mby
) != VOIDmode
624 && GET_MODE (mby
) != mode
)
627 if (iv
->extend
== IV_UNKNOWN_EXTEND
)
629 iv
->base
= simplify_gen_binary (ASHIFT
, mode
, iv
->base
, mby
);
630 iv
->step
= simplify_gen_binary (ASHIFT
, mode
, iv
->step
, mby
);
634 iv
->delta
= simplify_gen_binary (ASHIFT
, mode
, iv
->delta
, mby
);
635 iv
->mult
= simplify_gen_binary (ASHIFT
, mode
, iv
->mult
, mby
);
641 /* The recursive part of get_biv_step. Gets the value of the single value
642 defined by DEF wrto initial value of REG inside loop, in shape described
646 get_biv_step_1 (df_ref def
, rtx reg
,
647 rtx
*inner_step
, enum machine_mode
*inner_mode
,
648 enum iv_extend_code
*extend
, enum machine_mode outer_mode
,
651 rtx set
, rhs
, op0
= NULL_RTX
, op1
= NULL_RTX
;
652 rtx next
, nextr
, tmp
;
654 rtx_insn
*insn
= DF_REF_INSN (def
);
656 enum iv_grd_result res
;
658 set
= single_set (insn
);
662 rhs
= find_reg_equal_equiv_note (insn
);
668 code
= GET_CODE (rhs
);
681 if (code
== PLUS
&& CONSTANT_P (op0
))
683 tmp
= op0
; op0
= op1
; op1
= tmp
;
686 if (!simple_reg_p (op0
)
687 || !CONSTANT_P (op1
))
690 if (GET_MODE (rhs
) != outer_mode
)
692 /* ppc64 uses expressions like
694 (set x:SI (plus:SI (subreg:SI y:DI) 1)).
696 this is equivalent to
698 (set x':DI (plus:DI y:DI 1))
699 (set x:SI (subreg:SI (x':DI)). */
700 if (GET_CODE (op0
) != SUBREG
)
702 if (GET_MODE (SUBREG_REG (op0
)) != outer_mode
)
711 if (GET_MODE (rhs
) != outer_mode
)
715 if (!simple_reg_p (op0
))
725 if (GET_CODE (next
) == SUBREG
)
727 if (!subreg_lowpart_p (next
))
730 nextr
= SUBREG_REG (next
);
731 if (GET_MODE (nextr
) != outer_mode
)
737 res
= iv_get_reaching_def (insn
, nextr
, &next_def
);
739 if (res
== GRD_INVALID
|| res
== GRD_INVARIANT
)
742 if (res
== GRD_MAYBE_BIV
)
744 if (!rtx_equal_p (nextr
, reg
))
747 *inner_step
= const0_rtx
;
748 *extend
= IV_UNKNOWN_EXTEND
;
749 *inner_mode
= outer_mode
;
750 *outer_step
= const0_rtx
;
752 else if (!get_biv_step_1 (next_def
, reg
,
753 inner_step
, inner_mode
, extend
, outer_mode
,
757 if (GET_CODE (next
) == SUBREG
)
759 enum machine_mode amode
= GET_MODE (next
);
761 if (GET_MODE_SIZE (amode
) > GET_MODE_SIZE (*inner_mode
))
765 *inner_step
= simplify_gen_binary (PLUS
, outer_mode
,
766 *inner_step
, *outer_step
);
767 *outer_step
= const0_rtx
;
768 *extend
= IV_UNKNOWN_EXTEND
;
779 if (*inner_mode
== outer_mode
780 /* See comment in previous switch. */
781 || GET_MODE (rhs
) != outer_mode
)
782 *inner_step
= simplify_gen_binary (code
, outer_mode
,
785 *outer_step
= simplify_gen_binary (code
, outer_mode
,
791 gcc_assert (GET_MODE (op0
) == *inner_mode
792 && *extend
== IV_UNKNOWN_EXTEND
793 && *outer_step
== const0_rtx
);
795 *extend
= (code
== SIGN_EXTEND
) ? IV_SIGN_EXTEND
: IV_ZERO_EXTEND
;
805 /* Gets the operation on register REG inside loop, in shape
807 OUTER_STEP + EXTEND_{OUTER_MODE} (SUBREG_{INNER_MODE} (REG + INNER_STEP))
809 If the operation cannot be described in this shape, return false.
810 LAST_DEF is the definition of REG that dominates loop latch. */
813 get_biv_step (df_ref last_def
, rtx reg
, rtx
*inner_step
,
814 enum machine_mode
*inner_mode
, enum iv_extend_code
*extend
,
815 enum machine_mode
*outer_mode
, rtx
*outer_step
)
817 *outer_mode
= GET_MODE (reg
);
819 if (!get_biv_step_1 (last_def
, reg
,
820 inner_step
, inner_mode
, extend
, *outer_mode
,
824 gcc_assert ((*inner_mode
== *outer_mode
) != (*extend
!= IV_UNKNOWN_EXTEND
));
825 gcc_assert (*inner_mode
!= *outer_mode
|| *outer_step
== const0_rtx
);
830 /* Records information that DEF is induction variable IV. */
833 record_iv (df_ref def
, struct rtx_iv
*iv
)
835 struct rtx_iv
*recorded_iv
= XNEW (struct rtx_iv
);
838 check_iv_ref_table_size ();
839 DF_REF_IV_SET (def
, recorded_iv
);
842 /* If DEF was already analyzed for bivness, store the description of the biv to
843 IV and return true. Otherwise return false. */
846 analyzed_for_bivness_p (rtx def
, struct rtx_iv
*iv
)
848 struct biv_entry
*biv
= bivs
->find_with_hash (def
, REGNO (def
));
858 record_biv (rtx def
, struct rtx_iv
*iv
)
860 struct biv_entry
*biv
= XNEW (struct biv_entry
);
861 biv_entry
**slot
= bivs
->find_slot_with_hash (def
, REGNO (def
), INSERT
);
863 biv
->regno
= REGNO (def
);
869 /* Determines whether DEF is a biv and if so, stores its description
873 iv_analyze_biv (rtx def
, struct rtx_iv
*iv
)
875 rtx inner_step
, outer_step
;
876 enum machine_mode inner_mode
, outer_mode
;
877 enum iv_extend_code extend
;
882 fprintf (dump_file
, "Analyzing ");
883 print_rtl (dump_file
, def
);
884 fprintf (dump_file
, " for bivness.\n");
889 if (!CONSTANT_P (def
))
892 return iv_constant (iv
, def
, VOIDmode
);
895 if (!latch_dominating_def (def
, &last_def
))
898 fprintf (dump_file
, " not simple.\n");
903 return iv_constant (iv
, def
, VOIDmode
);
905 if (analyzed_for_bivness_p (def
, iv
))
908 fprintf (dump_file
, " already analysed.\n");
909 return iv
->base
!= NULL_RTX
;
912 if (!get_biv_step (last_def
, def
, &inner_step
, &inner_mode
, &extend
,
913 &outer_mode
, &outer_step
))
919 /* Loop transforms base to es (base + inner_step) + outer_step,
920 where es means extend of subreg between inner_mode and outer_mode.
921 The corresponding induction variable is
923 es ((base - outer_step) + i * (inner_step + outer_step)) + outer_step */
925 iv
->base
= simplify_gen_binary (MINUS
, outer_mode
, def
, outer_step
);
926 iv
->step
= simplify_gen_binary (PLUS
, outer_mode
, inner_step
, outer_step
);
927 iv
->mode
= inner_mode
;
928 iv
->extend_mode
= outer_mode
;
930 iv
->mult
= const1_rtx
;
931 iv
->delta
= outer_step
;
932 iv
->first_special
= inner_mode
!= outer_mode
;
937 fprintf (dump_file
, " ");
938 dump_iv_info (dump_file
, iv
);
939 fprintf (dump_file
, "\n");
942 record_biv (def
, iv
);
943 return iv
->base
!= NULL_RTX
;
946 /* Analyzes expression RHS used at INSN and stores the result to *IV.
947 The mode of the induction variable is MODE. */
950 iv_analyze_expr (rtx_insn
*insn
, rtx rhs
, enum machine_mode mode
,
953 rtx mby
= NULL_RTX
, tmp
;
954 rtx op0
= NULL_RTX
, op1
= NULL_RTX
;
955 struct rtx_iv iv0
, iv1
;
956 enum rtx_code code
= GET_CODE (rhs
);
957 enum machine_mode omode
= mode
;
963 gcc_assert (GET_MODE (rhs
) == mode
|| GET_MODE (rhs
) == VOIDmode
);
969 if (!iv_analyze_op (insn
, rhs
, iv
))
972 if (iv
->mode
== VOIDmode
)
975 iv
->extend_mode
= mode
;
991 omode
= GET_MODE (op0
);
1001 op0
= XEXP (rhs
, 0);
1002 mby
= XEXP (rhs
, 1);
1003 if (!CONSTANT_P (mby
))
1009 if (!CONSTANT_P (mby
))
1014 op0
= XEXP (rhs
, 0);
1015 mby
= XEXP (rhs
, 1);
1016 if (!CONSTANT_P (mby
))
1025 && !iv_analyze_expr (insn
, op0
, omode
, &iv0
))
1029 && !iv_analyze_expr (insn
, op1
, omode
, &iv1
))
1035 if (!iv_extend (&iv0
, IV_SIGN_EXTEND
, mode
))
1040 if (!iv_extend (&iv0
, IV_ZERO_EXTEND
, mode
))
1051 if (!iv_add (&iv0
, &iv1
, code
))
1056 if (!iv_mult (&iv0
, mby
))
1061 if (!iv_shift (&iv0
, mby
))
1070 return iv
->base
!= NULL_RTX
;
1073 /* Analyzes iv DEF and stores the result to *IV. */
1076 iv_analyze_def (df_ref def
, struct rtx_iv
*iv
)
1078 rtx_insn
*insn
= DF_REF_INSN (def
);
1079 rtx reg
= DF_REF_REG (def
);
1084 fprintf (dump_file
, "Analyzing def of ");
1085 print_rtl (dump_file
, reg
);
1086 fprintf (dump_file
, " in insn ");
1087 print_rtl_single (dump_file
, insn
);
1090 check_iv_ref_table_size ();
1091 if (DF_REF_IV (def
))
1094 fprintf (dump_file
, " already analysed.\n");
1095 *iv
= *DF_REF_IV (def
);
1096 return iv
->base
!= NULL_RTX
;
1099 iv
->mode
= VOIDmode
;
1100 iv
->base
= NULL_RTX
;
1101 iv
->step
= NULL_RTX
;
1106 set
= single_set (insn
);
1110 if (!REG_P (SET_DEST (set
)))
1113 gcc_assert (SET_DEST (set
) == reg
);
1114 rhs
= find_reg_equal_equiv_note (insn
);
1116 rhs
= XEXP (rhs
, 0);
1118 rhs
= SET_SRC (set
);
1120 iv_analyze_expr (insn
, rhs
, GET_MODE (reg
), iv
);
1121 record_iv (def
, iv
);
1125 print_rtl (dump_file
, reg
);
1126 fprintf (dump_file
, " in insn ");
1127 print_rtl_single (dump_file
, insn
);
1128 fprintf (dump_file
, " is ");
1129 dump_iv_info (dump_file
, iv
);
1130 fprintf (dump_file
, "\n");
1133 return iv
->base
!= NULL_RTX
;
1136 /* Analyzes operand OP of INSN and stores the result to *IV. */
1139 iv_analyze_op (rtx_insn
*insn
, rtx op
, struct rtx_iv
*iv
)
1142 enum iv_grd_result res
;
1146 fprintf (dump_file
, "Analyzing operand ");
1147 print_rtl (dump_file
, op
);
1148 fprintf (dump_file
, " of insn ");
1149 print_rtl_single (dump_file
, insn
);
1152 if (function_invariant_p (op
))
1153 res
= GRD_INVARIANT
;
1154 else if (GET_CODE (op
) == SUBREG
)
1156 if (!subreg_lowpart_p (op
))
1159 if (!iv_analyze_op (insn
, SUBREG_REG (op
), iv
))
1162 return iv_subreg (iv
, GET_MODE (op
));
1166 res
= iv_get_reaching_def (insn
, op
, &def
);
1167 if (res
== GRD_INVALID
)
1170 fprintf (dump_file
, " not simple.\n");
1175 if (res
== GRD_INVARIANT
)
1177 iv_constant (iv
, op
, VOIDmode
);
1181 fprintf (dump_file
, " ");
1182 dump_iv_info (dump_file
, iv
);
1183 fprintf (dump_file
, "\n");
1188 if (res
== GRD_MAYBE_BIV
)
1189 return iv_analyze_biv (op
, iv
);
1191 return iv_analyze_def (def
, iv
);
1194 /* Analyzes value VAL at INSN and stores the result to *IV. */
1197 iv_analyze (rtx_insn
*insn
, rtx val
, struct rtx_iv
*iv
)
1201 /* We must find the insn in that val is used, so that we get to UD chains.
1202 Since the function is sometimes called on result of get_condition,
1203 this does not necessarily have to be directly INSN; scan also the
1205 if (simple_reg_p (val
))
1207 if (GET_CODE (val
) == SUBREG
)
1208 reg
= SUBREG_REG (val
);
1212 while (!df_find_use (insn
, reg
))
1213 insn
= NEXT_INSN (insn
);
1216 return iv_analyze_op (insn
, val
, iv
);
1219 /* Analyzes definition of DEF in INSN and stores the result to IV. */
1222 iv_analyze_result (rtx_insn
*insn
, rtx def
, struct rtx_iv
*iv
)
1226 adef
= df_find_def (insn
, def
);
1230 return iv_analyze_def (adef
, iv
);
1233 /* Checks whether definition of register REG in INSN is a basic induction
1234 variable. IV analysis must have been initialized (via a call to
1235 iv_analysis_loop_init) for this function to produce a result. */
1238 biv_p (rtx_insn
*insn
, rtx reg
)
1241 df_ref def
, last_def
;
1243 if (!simple_reg_p (reg
))
1246 def
= df_find_def (insn
, reg
);
1247 gcc_assert (def
!= NULL
);
1248 if (!latch_dominating_def (reg
, &last_def
))
1250 if (last_def
!= def
)
1253 if (!iv_analyze_biv (reg
, &iv
))
1256 return iv
.step
!= const0_rtx
;
1259 /* Calculates value of IV at ITERATION-th iteration. */
1262 get_iv_value (struct rtx_iv
*iv
, rtx iteration
)
1266 /* We would need to generate some if_then_else patterns, and so far
1267 it is not needed anywhere. */
1268 gcc_assert (!iv
->first_special
);
1270 if (iv
->step
!= const0_rtx
&& iteration
!= const0_rtx
)
1271 val
= simplify_gen_binary (PLUS
, iv
->extend_mode
, iv
->base
,
1272 simplify_gen_binary (MULT
, iv
->extend_mode
,
1273 iv
->step
, iteration
));
1277 if (iv
->extend_mode
== iv
->mode
)
1280 val
= lowpart_subreg (iv
->mode
, val
, iv
->extend_mode
);
1282 if (iv
->extend
== IV_UNKNOWN_EXTEND
)
1285 val
= simplify_gen_unary (iv_extend_to_rtx_code (iv
->extend
),
1286 iv
->extend_mode
, val
, iv
->mode
);
1287 val
= simplify_gen_binary (PLUS
, iv
->extend_mode
, iv
->delta
,
1288 simplify_gen_binary (MULT
, iv
->extend_mode
,
1294 /* Free the data for an induction variable analysis. */
1297 iv_analysis_done (void)
1303 df_finish_pass (true);
1306 free (iv_ref_table
);
1307 iv_ref_table
= NULL
;
1308 iv_ref_table_size
= 0;
1312 /* Computes inverse to X modulo (1 << MOD). */
1315 inverse (uint64_t x
, int mod
)
1318 ((uint64_t) 1 << (mod
- 1) << 1) - 1;
1322 for (i
= 0; i
< mod
- 1; i
++)
1324 rslt
= (rslt
* x
) & mask
;
1331 /* Checks whether any register in X is in set ALT. */
1334 altered_reg_used (const_rtx x
, bitmap alt
)
1336 subrtx_iterator::array_type array
;
1337 FOR_EACH_SUBRTX (iter
, array
, x
, NONCONST
)
1339 const_rtx x
= *iter
;
1340 if (REG_P (x
) && REGNO_REG_SET_P (alt
, REGNO (x
)))
1346 /* Marks registers altered by EXPR in set ALT. */
1349 mark_altered (rtx expr
, const_rtx by ATTRIBUTE_UNUSED
, void *alt
)
1351 if (GET_CODE (expr
) == SUBREG
)
1352 expr
= SUBREG_REG (expr
);
1356 SET_REGNO_REG_SET ((bitmap
) alt
, REGNO (expr
));
1359 /* Checks whether RHS is simple enough to process. */
1362 simple_rhs_p (rtx rhs
)
1366 if (function_invariant_p (rhs
)
1367 || (REG_P (rhs
) && !HARD_REGISTER_P (rhs
)))
1370 switch (GET_CODE (rhs
))
1375 op0
= XEXP (rhs
, 0);
1376 op1
= XEXP (rhs
, 1);
1377 /* Allow reg OP const and reg OP reg. */
1378 if (!(REG_P (op0
) && !HARD_REGISTER_P (op0
))
1379 && !function_invariant_p (op0
))
1381 if (!(REG_P (op1
) && !HARD_REGISTER_P (op1
))
1382 && !function_invariant_p (op1
))
1391 op0
= XEXP (rhs
, 0);
1392 op1
= XEXP (rhs
, 1);
1393 /* Allow reg OP const. */
1394 if (!(REG_P (op0
) && !HARD_REGISTER_P (op0
)))
1396 if (!function_invariant_p (op1
))
1406 /* If REGNO has a single definition, return its known value, otherwise return
1410 find_single_def_src (unsigned int regno
)
1418 adef
= DF_REG_DEF_CHAIN (regno
);
1419 if (adef
== NULL
|| DF_REF_NEXT_REG (adef
) != NULL
1420 || DF_REF_IS_ARTIFICIAL (adef
))
1423 set
= single_set (DF_REF_INSN (adef
));
1424 if (set
== NULL
|| !REG_P (SET_DEST (set
))
1425 || REGNO (SET_DEST (set
)) != regno
)
1428 note
= find_reg_equal_equiv_note (DF_REF_INSN (adef
));
1430 if (note
&& function_invariant_p (XEXP (note
, 0)))
1432 src
= XEXP (note
, 0);
1435 src
= SET_SRC (set
);
1439 regno
= REGNO (src
);
1444 if (!function_invariant_p (src
))
1450 /* If any registers in *EXPR that have a single definition, try to replace
1451 them with the known-equivalent values. */
1454 replace_single_def_regs (rtx
*expr
)
1456 subrtx_var_iterator::array_type array
;
1458 FOR_EACH_SUBRTX_VAR (iter
, array
, *expr
, NONCONST
)
1462 if (rtx new_x
= find_single_def_src (REGNO (x
)))
1464 *expr
= simplify_replace_rtx (*expr
, x
, new_x
);
1470 /* A subroutine of simplify_using_initial_values, this function examines INSN
1471 to see if it contains a suitable set that we can use to make a replacement.
1472 If it is suitable, return true and set DEST and SRC to the lhs and rhs of
1473 the set; return false otherwise. */
1476 suitable_set_for_replacement (rtx_insn
*insn
, rtx
*dest
, rtx
*src
)
1478 rtx set
= single_set (insn
);
1479 rtx lhs
= NULL_RTX
, rhs
;
1484 lhs
= SET_DEST (set
);
1488 rhs
= find_reg_equal_equiv_note (insn
);
1490 rhs
= XEXP (rhs
, 0);
1492 rhs
= SET_SRC (set
);
1494 if (!simple_rhs_p (rhs
))
1502 /* Using the data returned by suitable_set_for_replacement, replace DEST
1503 with SRC in *EXPR and return the new expression. Also call
1504 replace_single_def_regs if the replacement changed something. */
1506 replace_in_expr (rtx
*expr
, rtx dest
, rtx src
)
1509 *expr
= simplify_replace_rtx (*expr
, dest
, src
);
1512 replace_single_def_regs (expr
);
1515 /* Checks whether A implies B. */
1518 implies_p (rtx a
, rtx b
)
1520 rtx op0
, op1
, opb0
, opb1
, r
;
1521 enum machine_mode mode
;
1523 if (rtx_equal_p (a
, b
))
1526 if (GET_CODE (a
) == EQ
)
1532 || (GET_CODE (op0
) == SUBREG
1533 && REG_P (SUBREG_REG (op0
))))
1535 r
= simplify_replace_rtx (b
, op0
, op1
);
1536 if (r
== const_true_rtx
)
1541 || (GET_CODE (op1
) == SUBREG
1542 && REG_P (SUBREG_REG (op1
))))
1544 r
= simplify_replace_rtx (b
, op1
, op0
);
1545 if (r
== const_true_rtx
)
1550 if (b
== const_true_rtx
)
1553 if ((GET_RTX_CLASS (GET_CODE (a
)) != RTX_COMM_COMPARE
1554 && GET_RTX_CLASS (GET_CODE (a
)) != RTX_COMPARE
)
1555 || (GET_RTX_CLASS (GET_CODE (b
)) != RTX_COMM_COMPARE
1556 && GET_RTX_CLASS (GET_CODE (b
)) != RTX_COMPARE
))
1564 mode
= GET_MODE (op0
);
1565 if (mode
!= GET_MODE (opb0
))
1567 else if (mode
== VOIDmode
)
1569 mode
= GET_MODE (op1
);
1570 if (mode
!= GET_MODE (opb1
))
1574 /* A < B implies A + 1 <= B. */
1575 if ((GET_CODE (a
) == GT
|| GET_CODE (a
) == LT
)
1576 && (GET_CODE (b
) == GE
|| GET_CODE (b
) == LE
))
1579 if (GET_CODE (a
) == GT
)
1586 if (GET_CODE (b
) == GE
)
1593 if (SCALAR_INT_MODE_P (mode
)
1594 && rtx_equal_p (op1
, opb1
)
1595 && simplify_gen_binary (MINUS
, mode
, opb0
, op0
) == const1_rtx
)
1600 /* A < B or A > B imply A != B. TODO: Likewise
1601 A + n < B implies A != B + n if neither wraps. */
1602 if (GET_CODE (b
) == NE
1603 && (GET_CODE (a
) == GT
|| GET_CODE (a
) == GTU
1604 || GET_CODE (a
) == LT
|| GET_CODE (a
) == LTU
))
1606 if (rtx_equal_p (op0
, opb0
)
1607 && rtx_equal_p (op1
, opb1
))
1611 /* For unsigned comparisons, A != 0 implies A > 0 and A >= 1. */
1612 if (GET_CODE (a
) == NE
1613 && op1
== const0_rtx
)
1615 if ((GET_CODE (b
) == GTU
1616 && opb1
== const0_rtx
)
1617 || (GET_CODE (b
) == GEU
1618 && opb1
== const1_rtx
))
1619 return rtx_equal_p (op0
, opb0
);
1622 /* A != N is equivalent to A - (N + 1) <u -1. */
1623 if (GET_CODE (a
) == NE
1624 && CONST_INT_P (op1
)
1625 && GET_CODE (b
) == LTU
1626 && opb1
== constm1_rtx
1627 && GET_CODE (opb0
) == PLUS
1628 && CONST_INT_P (XEXP (opb0
, 1))
1629 /* Avoid overflows. */
1630 && ((unsigned HOST_WIDE_INT
) INTVAL (XEXP (opb0
, 1))
1631 != ((unsigned HOST_WIDE_INT
)1
1632 << (HOST_BITS_PER_WIDE_INT
- 1)) - 1)
1633 && INTVAL (XEXP (opb0
, 1)) + 1 == -INTVAL (op1
))
1634 return rtx_equal_p (op0
, XEXP (opb0
, 0));
1636 /* Likewise, A != N implies A - N > 0. */
1637 if (GET_CODE (a
) == NE
1638 && CONST_INT_P (op1
))
1640 if (GET_CODE (b
) == GTU
1641 && GET_CODE (opb0
) == PLUS
1642 && opb1
== const0_rtx
1643 && CONST_INT_P (XEXP (opb0
, 1))
1644 /* Avoid overflows. */
1645 && ((unsigned HOST_WIDE_INT
) INTVAL (XEXP (opb0
, 1))
1646 != ((unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1)))
1647 && rtx_equal_p (XEXP (opb0
, 0), op0
))
1648 return INTVAL (op1
) == -INTVAL (XEXP (opb0
, 1));
1649 if (GET_CODE (b
) == GEU
1650 && GET_CODE (opb0
) == PLUS
1651 && opb1
== const1_rtx
1652 && CONST_INT_P (XEXP (opb0
, 1))
1653 /* Avoid overflows. */
1654 && ((unsigned HOST_WIDE_INT
) INTVAL (XEXP (opb0
, 1))
1655 != ((unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1)))
1656 && rtx_equal_p (XEXP (opb0
, 0), op0
))
1657 return INTVAL (op1
) == -INTVAL (XEXP (opb0
, 1));
1660 /* A >s X, where X is positive, implies A <u Y, if Y is negative. */
1661 if ((GET_CODE (a
) == GT
|| GET_CODE (a
) == GE
)
1662 && CONST_INT_P (op1
)
1663 && ((GET_CODE (a
) == GT
&& op1
== constm1_rtx
)
1664 || INTVAL (op1
) >= 0)
1665 && GET_CODE (b
) == LTU
1666 && CONST_INT_P (opb1
)
1667 && rtx_equal_p (op0
, opb0
))
1668 return INTVAL (opb1
) < 0;
1673 /* Canonicalizes COND so that
1675 (1) Ensure that operands are ordered according to
1676 swap_commutative_operands_p.
1677 (2) (LE x const) will be replaced with (LT x <const+1>) and similarly
1678 for GE, GEU, and LEU. */
1681 canon_condition (rtx cond
)
1686 enum machine_mode mode
;
1688 code
= GET_CODE (cond
);
1689 op0
= XEXP (cond
, 0);
1690 op1
= XEXP (cond
, 1);
1692 if (swap_commutative_operands_p (op0
, op1
))
1694 code
= swap_condition (code
);
1700 mode
= GET_MODE (op0
);
1701 if (mode
== VOIDmode
)
1702 mode
= GET_MODE (op1
);
1703 gcc_assert (mode
!= VOIDmode
);
1705 if (CONST_INT_P (op1
)
1706 && GET_MODE_CLASS (mode
) != MODE_CC
1707 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
1709 HOST_WIDE_INT const_val
= INTVAL (op1
);
1710 unsigned HOST_WIDE_INT uconst_val
= const_val
;
1711 unsigned HOST_WIDE_INT max_val
1712 = (unsigned HOST_WIDE_INT
) GET_MODE_MASK (mode
);
1717 if ((unsigned HOST_WIDE_INT
) const_val
!= max_val
>> 1)
1718 code
= LT
, op1
= gen_int_mode (const_val
+ 1, GET_MODE (op0
));
1721 /* When cross-compiling, const_val might be sign-extended from
1722 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
1724 if ((HOST_WIDE_INT
) (const_val
& max_val
)
1725 != (((HOST_WIDE_INT
) 1
1726 << (GET_MODE_BITSIZE (GET_MODE (op0
)) - 1))))
1727 code
= GT
, op1
= gen_int_mode (const_val
- 1, mode
);
1731 if (uconst_val
< max_val
)
1732 code
= LTU
, op1
= gen_int_mode (uconst_val
+ 1, mode
);
1736 if (uconst_val
!= 0)
1737 code
= GTU
, op1
= gen_int_mode (uconst_val
- 1, mode
);
1745 if (op0
!= XEXP (cond
, 0)
1746 || op1
!= XEXP (cond
, 1)
1747 || code
!= GET_CODE (cond
)
1748 || GET_MODE (cond
) != SImode
)
1749 cond
= gen_rtx_fmt_ee (code
, SImode
, op0
, op1
);
1754 /* Reverses CONDition; returns NULL if we cannot. */
1757 reversed_condition (rtx cond
)
1759 enum rtx_code reversed
;
1760 reversed
= reversed_comparison_code (cond
, NULL
);
1761 if (reversed
== UNKNOWN
)
1764 return gen_rtx_fmt_ee (reversed
,
1765 GET_MODE (cond
), XEXP (cond
, 0),
1769 /* Tries to use the fact that COND holds to simplify EXPR. ALTERED is the
1770 set of altered regs. */
1773 simplify_using_condition (rtx cond
, rtx
*expr
, regset altered
)
1775 rtx rev
, reve
, exp
= *expr
;
1777 /* If some register gets altered later, we do not really speak about its
1778 value at the time of comparison. */
1779 if (altered
&& altered_reg_used (cond
, altered
))
1782 if (GET_CODE (cond
) == EQ
1783 && REG_P (XEXP (cond
, 0)) && CONSTANT_P (XEXP (cond
, 1)))
1785 *expr
= simplify_replace_rtx (*expr
, XEXP (cond
, 0), XEXP (cond
, 1));
1789 if (!COMPARISON_P (exp
))
1792 rev
= reversed_condition (cond
);
1793 reve
= reversed_condition (exp
);
1795 cond
= canon_condition (cond
);
1796 exp
= canon_condition (exp
);
1798 rev
= canon_condition (rev
);
1800 reve
= canon_condition (reve
);
1802 if (rtx_equal_p (exp
, cond
))
1804 *expr
= const_true_rtx
;
1808 if (rev
&& rtx_equal_p (exp
, rev
))
1814 if (implies_p (cond
, exp
))
1816 *expr
= const_true_rtx
;
1820 if (reve
&& implies_p (cond
, reve
))
1826 /* A proof by contradiction. If *EXPR implies (not cond), *EXPR must
1828 if (rev
&& implies_p (exp
, rev
))
1834 /* Similarly, If (not *EXPR) implies (not cond), *EXPR must be true. */
1835 if (rev
&& reve
&& implies_p (reve
, rev
))
1837 *expr
= const_true_rtx
;
1841 /* We would like to have some other tests here. TODO. */
1846 /* Use relationship between A and *B to eventually eliminate *B.
1847 OP is the operation we consider. */
1850 eliminate_implied_condition (enum rtx_code op
, rtx a
, rtx
*b
)
1855 /* If A implies *B, we may replace *B by true. */
1856 if (implies_p (a
, *b
))
1857 *b
= const_true_rtx
;
1861 /* If *B implies A, we may replace *B by false. */
1862 if (implies_p (*b
, a
))
1871 /* Eliminates the conditions in TAIL that are implied by HEAD. OP is the
1872 operation we consider. */
1875 eliminate_implied_conditions (enum rtx_code op
, rtx
*head
, rtx tail
)
1879 for (elt
= tail
; elt
; elt
= XEXP (elt
, 1))
1880 eliminate_implied_condition (op
, *head
, &XEXP (elt
, 0));
1881 for (elt
= tail
; elt
; elt
= XEXP (elt
, 1))
1882 eliminate_implied_condition (op
, XEXP (elt
, 0), head
);
1885 /* Simplifies *EXPR using initial values at the start of the LOOP. If *EXPR
1886 is a list, its elements are assumed to be combined using OP. */
1889 simplify_using_initial_values (struct loop
*loop
, enum rtx_code op
, rtx
*expr
)
1891 bool expression_valid
;
1892 rtx head
, tail
, last_valid_expr
;
1893 rtx_expr_list
*cond_list
;
1896 regset altered
, this_altered
;
1902 if (CONSTANT_P (*expr
))
1905 if (GET_CODE (*expr
) == EXPR_LIST
)
1907 head
= XEXP (*expr
, 0);
1908 tail
= XEXP (*expr
, 1);
1910 eliminate_implied_conditions (op
, &head
, tail
);
1915 neutral
= const_true_rtx
;
1920 neutral
= const0_rtx
;
1921 aggr
= const_true_rtx
;
1928 simplify_using_initial_values (loop
, UNKNOWN
, &head
);
1931 XEXP (*expr
, 0) = aggr
;
1932 XEXP (*expr
, 1) = NULL_RTX
;
1935 else if (head
== neutral
)
1938 simplify_using_initial_values (loop
, op
, expr
);
1941 simplify_using_initial_values (loop
, op
, &tail
);
1943 if (tail
&& XEXP (tail
, 0) == aggr
)
1949 XEXP (*expr
, 0) = head
;
1950 XEXP (*expr
, 1) = tail
;
1954 gcc_assert (op
== UNKNOWN
);
1956 replace_single_def_regs (expr
);
1957 if (CONSTANT_P (*expr
))
1960 e
= loop_preheader_edge (loop
);
1961 if (e
->src
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
1964 altered
= ALLOC_REG_SET (®_obstack
);
1965 this_altered
= ALLOC_REG_SET (®_obstack
);
1967 expression_valid
= true;
1968 last_valid_expr
= *expr
;
1972 insn
= BB_END (e
->src
);
1973 if (any_condjump_p (insn
))
1975 rtx cond
= get_condition (BB_END (e
->src
), NULL
, false, true);
1977 if (cond
&& (e
->flags
& EDGE_FALLTHRU
))
1978 cond
= reversed_condition (cond
);
1982 simplify_using_condition (cond
, expr
, altered
);
1986 if (CONSTANT_P (*expr
))
1988 for (note
= cond_list
; note
; note
= XEXP (note
, 1))
1990 simplify_using_condition (XEXP (note
, 0), expr
, altered
);
1991 if (CONSTANT_P (*expr
))
1995 cond_list
= alloc_EXPR_LIST (0, cond
, cond_list
);
1999 FOR_BB_INSNS_REVERSE (e
->src
, insn
)
2007 CLEAR_REG_SET (this_altered
);
2008 note_stores (PATTERN (insn
), mark_altered
, this_altered
);
2011 /* Kill all call clobbered registers. */
2013 hard_reg_set_iterator hrsi
;
2014 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call
,
2016 SET_REGNO_REG_SET (this_altered
, i
);
2019 if (suitable_set_for_replacement (insn
, &dest
, &src
))
2021 rtx_expr_list
**pnote
, **pnote_next
;
2023 replace_in_expr (expr
, dest
, src
);
2024 if (CONSTANT_P (*expr
))
2027 for (pnote
= &cond_list
; *pnote
; pnote
= pnote_next
)
2030 rtx old_cond
= XEXP (note
, 0);
2032 pnote_next
= (rtx_expr_list
**)&XEXP (note
, 1);
2033 replace_in_expr (&XEXP (note
, 0), dest
, src
);
2035 /* We can no longer use a condition that has been simplified
2036 to a constant, and simplify_using_condition will abort if
2038 if (CONSTANT_P (XEXP (note
, 0)))
2040 *pnote
= *pnote_next
;
2042 free_EXPR_LIST_node (note
);
2044 /* Retry simplifications with this condition if either the
2045 expression or the condition changed. */
2046 else if (old_cond
!= XEXP (note
, 0) || old
!= *expr
)
2047 simplify_using_condition (XEXP (note
, 0), expr
, altered
);
2052 rtx_expr_list
**pnote
, **pnote_next
;
2054 /* If we did not use this insn to make a replacement, any overlap
2055 between stores in this insn and our expression will cause the
2056 expression to become invalid. */
2057 if (altered_reg_used (*expr
, this_altered
))
2060 /* Likewise for the conditions. */
2061 for (pnote
= &cond_list
; *pnote
; pnote
= pnote_next
)
2064 rtx old_cond
= XEXP (note
, 0);
2066 pnote_next
= (rtx_expr_list
**)&XEXP (note
, 1);
2067 if (altered_reg_used (old_cond
, this_altered
))
2069 *pnote
= *pnote_next
;
2071 free_EXPR_LIST_node (note
);
2076 if (CONSTANT_P (*expr
))
2079 IOR_REG_SET (altered
, this_altered
);
2081 /* If the expression now contains regs that have been altered, we
2082 can't return it to the caller. However, it is still valid for
2083 further simplification, so keep searching to see if we can
2084 eventually turn it into a constant. */
2085 if (altered_reg_used (*expr
, altered
))
2086 expression_valid
= false;
2087 if (expression_valid
)
2088 last_valid_expr
= *expr
;
2091 if (!single_pred_p (e
->src
)
2092 || single_pred (e
->src
) == ENTRY_BLOCK_PTR_FOR_FN (cfun
))
2094 e
= single_pred_edge (e
->src
);
2098 free_EXPR_LIST_list (&cond_list
);
2099 if (!CONSTANT_P (*expr
))
2100 *expr
= last_valid_expr
;
2101 FREE_REG_SET (altered
);
2102 FREE_REG_SET (this_altered
);
2105 /* Transforms invariant IV into MODE. Adds assumptions based on the fact
2106 that IV occurs as left operands of comparison COND and its signedness
2107 is SIGNED_P to DESC. */
2110 shorten_into_mode (struct rtx_iv
*iv
, enum machine_mode mode
,
2111 enum rtx_code cond
, bool signed_p
, struct niter_desc
*desc
)
2113 rtx mmin
, mmax
, cond_over
, cond_under
;
2115 get_mode_bounds (mode
, signed_p
, iv
->extend_mode
, &mmin
, &mmax
);
2116 cond_under
= simplify_gen_relational (LT
, SImode
, iv
->extend_mode
,
2118 cond_over
= simplify_gen_relational (GT
, SImode
, iv
->extend_mode
,
2127 if (cond_under
!= const0_rtx
)
2129 alloc_EXPR_LIST (0, cond_under
, desc
->infinite
);
2130 if (cond_over
!= const0_rtx
)
2131 desc
->noloop_assumptions
=
2132 alloc_EXPR_LIST (0, cond_over
, desc
->noloop_assumptions
);
2139 if (cond_over
!= const0_rtx
)
2141 alloc_EXPR_LIST (0, cond_over
, desc
->infinite
);
2142 if (cond_under
!= const0_rtx
)
2143 desc
->noloop_assumptions
=
2144 alloc_EXPR_LIST (0, cond_under
, desc
->noloop_assumptions
);
2148 if (cond_over
!= const0_rtx
)
2150 alloc_EXPR_LIST (0, cond_over
, desc
->infinite
);
2151 if (cond_under
!= const0_rtx
)
2153 alloc_EXPR_LIST (0, cond_under
, desc
->infinite
);
2161 iv
->extend
= signed_p
? IV_SIGN_EXTEND
: IV_ZERO_EXTEND
;
2164 /* Transforms IV0 and IV1 compared by COND so that they are both compared as
2165 subregs of the same mode if possible (sometimes it is necessary to add
2166 some assumptions to DESC). */
2169 canonicalize_iv_subregs (struct rtx_iv
*iv0
, struct rtx_iv
*iv1
,
2170 enum rtx_code cond
, struct niter_desc
*desc
)
2172 enum machine_mode comp_mode
;
2175 /* If the ivs behave specially in the first iteration, or are
2176 added/multiplied after extending, we ignore them. */
2177 if (iv0
->first_special
|| iv0
->mult
!= const1_rtx
|| iv0
->delta
!= const0_rtx
)
2179 if (iv1
->first_special
|| iv1
->mult
!= const1_rtx
|| iv1
->delta
!= const0_rtx
)
2182 /* If there is some extend, it must match signedness of the comparison. */
2187 if (iv0
->extend
== IV_ZERO_EXTEND
2188 || iv1
->extend
== IV_ZERO_EXTEND
)
2195 if (iv0
->extend
== IV_SIGN_EXTEND
2196 || iv1
->extend
== IV_SIGN_EXTEND
)
2202 if (iv0
->extend
!= IV_UNKNOWN_EXTEND
2203 && iv1
->extend
!= IV_UNKNOWN_EXTEND
2204 && iv0
->extend
!= iv1
->extend
)
2208 if (iv0
->extend
!= IV_UNKNOWN_EXTEND
)
2209 signed_p
= iv0
->extend
== IV_SIGN_EXTEND
;
2210 if (iv1
->extend
!= IV_UNKNOWN_EXTEND
)
2211 signed_p
= iv1
->extend
== IV_SIGN_EXTEND
;
2218 /* Values of both variables should be computed in the same mode. These
2219 might indeed be different, if we have comparison like
2221 (compare (subreg:SI (iv0)) (subreg:SI (iv1)))
2223 and iv0 and iv1 are both ivs iterating in SI mode, but calculated
2224 in different modes. This does not seem impossible to handle, but
2225 it hardly ever occurs in practice.
2227 The only exception is the case when one of operands is invariant.
2228 For example pentium 3 generates comparisons like
2229 (lt (subreg:HI (reg:SI)) 100). Here we assign HImode to 100, but we
2230 definitely do not want this prevent the optimization. */
2231 comp_mode
= iv0
->extend_mode
;
2232 if (GET_MODE_BITSIZE (comp_mode
) < GET_MODE_BITSIZE (iv1
->extend_mode
))
2233 comp_mode
= iv1
->extend_mode
;
2235 if (iv0
->extend_mode
!= comp_mode
)
2237 if (iv0
->mode
!= iv0
->extend_mode
2238 || iv0
->step
!= const0_rtx
)
2241 iv0
->base
= simplify_gen_unary (signed_p
? SIGN_EXTEND
: ZERO_EXTEND
,
2242 comp_mode
, iv0
->base
, iv0
->mode
);
2243 iv0
->extend_mode
= comp_mode
;
2246 if (iv1
->extend_mode
!= comp_mode
)
2248 if (iv1
->mode
!= iv1
->extend_mode
2249 || iv1
->step
!= const0_rtx
)
2252 iv1
->base
= simplify_gen_unary (signed_p
? SIGN_EXTEND
: ZERO_EXTEND
,
2253 comp_mode
, iv1
->base
, iv1
->mode
);
2254 iv1
->extend_mode
= comp_mode
;
2257 /* Check that both ivs belong to a range of a single mode. If one of the
2258 operands is an invariant, we may need to shorten it into the common
2260 if (iv0
->mode
== iv0
->extend_mode
2261 && iv0
->step
== const0_rtx
2262 && iv0
->mode
!= iv1
->mode
)
2263 shorten_into_mode (iv0
, iv1
->mode
, cond
, signed_p
, desc
);
2265 if (iv1
->mode
== iv1
->extend_mode
2266 && iv1
->step
== const0_rtx
2267 && iv0
->mode
!= iv1
->mode
)
2268 shorten_into_mode (iv1
, iv0
->mode
, swap_condition (cond
), signed_p
, desc
);
2270 if (iv0
->mode
!= iv1
->mode
)
2273 desc
->mode
= iv0
->mode
;
2274 desc
->signed_p
= signed_p
;
2279 /* Tries to estimate the maximum number of iterations in LOOP, and return the
2280 result. This function is called from iv_number_of_iterations with
2281 a number of fields in DESC already filled in. OLD_NITER is the original
2282 expression for the number of iterations, before we tried to simplify it. */
2285 determine_max_iter (struct loop
*loop
, struct niter_desc
*desc
, rtx old_niter
)
2287 rtx niter
= desc
->niter_expr
;
2288 rtx mmin
, mmax
, cmp
;
2290 uint64_t andmax
= 0;
2292 /* We used to look for constant operand 0 of AND,
2293 but canonicalization should always make this impossible. */
2294 gcc_checking_assert (GET_CODE (niter
) != AND
2295 || !CONST_INT_P (XEXP (niter
, 0)));
2297 if (GET_CODE (niter
) == AND
2298 && CONST_INT_P (XEXP (niter
, 1)))
2300 andmax
= UINTVAL (XEXP (niter
, 1));
2301 niter
= XEXP (niter
, 0);
2304 get_mode_bounds (desc
->mode
, desc
->signed_p
, desc
->mode
, &mmin
, &mmax
);
2305 nmax
= INTVAL (mmax
) - INTVAL (mmin
);
2307 if (GET_CODE (niter
) == UDIV
)
2309 if (!CONST_INT_P (XEXP (niter
, 1)))
2311 inc
= INTVAL (XEXP (niter
, 1));
2312 niter
= XEXP (niter
, 0);
2317 /* We could use a binary search here, but for now improving the upper
2318 bound by just one eliminates one important corner case. */
2319 cmp
= simplify_gen_relational (desc
->signed_p
? LT
: LTU
, VOIDmode
,
2320 desc
->mode
, old_niter
, mmax
);
2321 simplify_using_initial_values (loop
, UNKNOWN
, &cmp
);
2322 if (cmp
== const_true_rtx
)
2327 fprintf (dump_file
, ";; improved upper bound by one.\n");
2331 nmax
= MIN (nmax
, andmax
);
2333 fprintf (dump_file
, ";; Determined upper bound %"PRId64
".\n",
2338 /* Computes number of iterations of the CONDITION in INSN in LOOP and stores
2339 the result into DESC. Very similar to determine_number_of_iterations
2340 (basically its rtl version), complicated by things like subregs. */
2343 iv_number_of_iterations (struct loop
*loop
, rtx_insn
*insn
, rtx condition
,
2344 struct niter_desc
*desc
)
2346 rtx op0
, op1
, delta
, step
, bound
, may_xform
, tmp
, tmp0
, tmp1
;
2347 struct rtx_iv iv0
, iv1
, tmp_iv
;
2348 rtx assumption
, may_not_xform
;
2350 enum machine_mode mode
, comp_mode
;
2351 rtx mmin
, mmax
, mode_mmin
, mode_mmax
;
2352 uint64_t s
, size
, d
, inv
, max
;
2353 int64_t up
, down
, inc
, step_val
;
2354 int was_sharp
= false;
2358 /* The meaning of these assumptions is this:
2360 then the rest of information does not have to be valid
2361 if noloop_assumptions then the loop does not roll
2362 if infinite then this exit is never used */
2364 desc
->assumptions
= NULL_RTX
;
2365 desc
->noloop_assumptions
= NULL_RTX
;
2366 desc
->infinite
= NULL_RTX
;
2367 desc
->simple_p
= true;
2369 desc
->const_iter
= false;
2370 desc
->niter_expr
= NULL_RTX
;
2372 cond
= GET_CODE (condition
);
2373 gcc_assert (COMPARISON_P (condition
));
2375 mode
= GET_MODE (XEXP (condition
, 0));
2376 if (mode
== VOIDmode
)
2377 mode
= GET_MODE (XEXP (condition
, 1));
2378 /* The constant comparisons should be folded. */
2379 gcc_assert (mode
!= VOIDmode
);
2381 /* We only handle integers or pointers. */
2382 if (GET_MODE_CLASS (mode
) != MODE_INT
2383 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
2386 op0
= XEXP (condition
, 0);
2387 if (!iv_analyze (insn
, op0
, &iv0
))
2389 if (iv0
.extend_mode
== VOIDmode
)
2390 iv0
.mode
= iv0
.extend_mode
= mode
;
2392 op1
= XEXP (condition
, 1);
2393 if (!iv_analyze (insn
, op1
, &iv1
))
2395 if (iv1
.extend_mode
== VOIDmode
)
2396 iv1
.mode
= iv1
.extend_mode
= mode
;
2398 if (GET_MODE_BITSIZE (iv0
.extend_mode
) > HOST_BITS_PER_WIDE_INT
2399 || GET_MODE_BITSIZE (iv1
.extend_mode
) > HOST_BITS_PER_WIDE_INT
)
2402 /* Check condition and normalize it. */
2410 tmp_iv
= iv0
; iv0
= iv1
; iv1
= tmp_iv
;
2411 cond
= swap_condition (cond
);
2423 /* Handle extends. This is relatively nontrivial, so we only try in some
2424 easy cases, when we can canonicalize the ivs (possibly by adding some
2425 assumptions) to shape subreg (base + i * step). This function also fills
2426 in desc->mode and desc->signed_p. */
2428 if (!canonicalize_iv_subregs (&iv0
, &iv1
, cond
, desc
))
2431 comp_mode
= iv0
.extend_mode
;
2433 size
= GET_MODE_PRECISION (mode
);
2434 get_mode_bounds (mode
, (cond
== LE
|| cond
== LT
), comp_mode
, &mmin
, &mmax
);
2435 mode_mmin
= lowpart_subreg (mode
, mmin
, comp_mode
);
2436 mode_mmax
= lowpart_subreg (mode
, mmax
, comp_mode
);
2438 if (!CONST_INT_P (iv0
.step
) || !CONST_INT_P (iv1
.step
))
2441 /* We can take care of the case of two induction variables chasing each other
2442 if the test is NE. I have never seen a loop using it, but still it is
2444 if (iv0
.step
!= const0_rtx
&& iv1
.step
!= const0_rtx
)
2449 iv0
.step
= simplify_gen_binary (MINUS
, comp_mode
, iv0
.step
, iv1
.step
);
2450 iv1
.step
= const0_rtx
;
2453 iv0
.step
= lowpart_subreg (mode
, iv0
.step
, comp_mode
);
2454 iv1
.step
= lowpart_subreg (mode
, iv1
.step
, comp_mode
);
2456 /* This is either infinite loop or the one that ends immediately, depending
2457 on initial values. Unswitching should remove this kind of conditions. */
2458 if (iv0
.step
== const0_rtx
&& iv1
.step
== const0_rtx
)
2463 if (iv0
.step
== const0_rtx
)
2464 step_val
= -INTVAL (iv1
.step
);
2466 step_val
= INTVAL (iv0
.step
);
2468 /* Ignore loops of while (i-- < 10) type. */
2472 step_is_pow2
= !(step_val
& (step_val
- 1));
2476 /* We do not care about whether the step is power of two in this
2478 step_is_pow2
= false;
2482 /* Some more condition normalization. We must record some assumptions
2483 due to overflows. */
2488 /* We want to take care only of non-sharp relationals; this is easy,
2489 as in cases the overflow would make the transformation unsafe
2490 the loop does not roll. Seemingly it would make more sense to want
2491 to take care of sharp relationals instead, as NE is more similar to
2492 them, but the problem is that here the transformation would be more
2493 difficult due to possibly infinite loops. */
2494 if (iv0
.step
== const0_rtx
)
2496 tmp
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2497 assumption
= simplify_gen_relational (EQ
, SImode
, mode
, tmp
,
2499 if (assumption
== const_true_rtx
)
2500 goto zero_iter_simplify
;
2501 iv0
.base
= simplify_gen_binary (PLUS
, comp_mode
,
2502 iv0
.base
, const1_rtx
);
2506 tmp
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2507 assumption
= simplify_gen_relational (EQ
, SImode
, mode
, tmp
,
2509 if (assumption
== const_true_rtx
)
2510 goto zero_iter_simplify
;
2511 iv1
.base
= simplify_gen_binary (PLUS
, comp_mode
,
2512 iv1
.base
, constm1_rtx
);
2515 if (assumption
!= const0_rtx
)
2516 desc
->noloop_assumptions
=
2517 alloc_EXPR_LIST (0, assumption
, desc
->noloop_assumptions
);
2518 cond
= (cond
== LT
) ? LE
: LEU
;
2520 /* It will be useful to be able to tell the difference once more in
2521 LE -> NE reduction. */
2527 /* Take care of trivially infinite loops. */
2530 if (iv0
.step
== const0_rtx
)
2532 tmp
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2533 if (rtx_equal_p (tmp
, mode_mmin
))
2536 alloc_EXPR_LIST (0, const_true_rtx
, NULL_RTX
);
2537 /* Fill in the remaining fields somehow. */
2538 goto zero_iter_simplify
;
2543 tmp
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2544 if (rtx_equal_p (tmp
, mode_mmax
))
2547 alloc_EXPR_LIST (0, const_true_rtx
, NULL_RTX
);
2548 /* Fill in the remaining fields somehow. */
2549 goto zero_iter_simplify
;
2554 /* If we can we want to take care of NE conditions instead of size
2555 comparisons, as they are much more friendly (most importantly
2556 this takes care of special handling of loops with step 1). We can
2557 do it if we first check that upper bound is greater or equal to
2558 lower bound, their difference is constant c modulo step and that
2559 there is not an overflow. */
2562 if (iv0
.step
== const0_rtx
)
2563 step
= simplify_gen_unary (NEG
, comp_mode
, iv1
.step
, comp_mode
);
2566 step
= lowpart_subreg (mode
, step
, comp_mode
);
2567 delta
= simplify_gen_binary (MINUS
, comp_mode
, iv1
.base
, iv0
.base
);
2568 delta
= lowpart_subreg (mode
, delta
, comp_mode
);
2569 delta
= simplify_gen_binary (UMOD
, mode
, delta
, step
);
2570 may_xform
= const0_rtx
;
2571 may_not_xform
= const_true_rtx
;
2573 if (CONST_INT_P (delta
))
2575 if (was_sharp
&& INTVAL (delta
) == INTVAL (step
) - 1)
2577 /* A special case. We have transformed condition of type
2578 for (i = 0; i < 4; i += 4)
2580 for (i = 0; i <= 3; i += 4)
2581 obviously if the test for overflow during that transformation
2582 passed, we cannot overflow here. Most importantly any
2583 loop with sharp end condition and step 1 falls into this
2584 category, so handling this case specially is definitely
2585 worth the troubles. */
2586 may_xform
= const_true_rtx
;
2588 else if (iv0
.step
== const0_rtx
)
2590 bound
= simplify_gen_binary (PLUS
, comp_mode
, mmin
, step
);
2591 bound
= simplify_gen_binary (MINUS
, comp_mode
, bound
, delta
);
2592 bound
= lowpart_subreg (mode
, bound
, comp_mode
);
2593 tmp
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2594 may_xform
= simplify_gen_relational (cond
, SImode
, mode
,
2596 may_not_xform
= simplify_gen_relational (reverse_condition (cond
),
2602 bound
= simplify_gen_binary (MINUS
, comp_mode
, mmax
, step
);
2603 bound
= simplify_gen_binary (PLUS
, comp_mode
, bound
, delta
);
2604 bound
= lowpart_subreg (mode
, bound
, comp_mode
);
2605 tmp
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2606 may_xform
= simplify_gen_relational (cond
, SImode
, mode
,
2608 may_not_xform
= simplify_gen_relational (reverse_condition (cond
),
2614 if (may_xform
!= const0_rtx
)
2616 /* We perform the transformation always provided that it is not
2617 completely senseless. This is OK, as we would need this assumption
2618 to determine the number of iterations anyway. */
2619 if (may_xform
!= const_true_rtx
)
2621 /* If the step is a power of two and the final value we have
2622 computed overflows, the cycle is infinite. Otherwise it
2623 is nontrivial to compute the number of iterations. */
2625 desc
->infinite
= alloc_EXPR_LIST (0, may_not_xform
,
2628 desc
->assumptions
= alloc_EXPR_LIST (0, may_xform
,
2632 /* We are going to lose some information about upper bound on
2633 number of iterations in this step, so record the information
2635 inc
= INTVAL (iv0
.step
) - INTVAL (iv1
.step
);
2636 if (CONST_INT_P (iv1
.base
))
2637 up
= INTVAL (iv1
.base
);
2639 up
= INTVAL (mode_mmax
) - inc
;
2640 down
= INTVAL (CONST_INT_P (iv0
.base
)
2643 max
= (up
- down
) / inc
+ 1;
2645 && !desc
->assumptions
)
2646 record_niter_bound (loop
, max
, false, true);
2648 if (iv0
.step
== const0_rtx
)
2650 iv0
.base
= simplify_gen_binary (PLUS
, comp_mode
, iv0
.base
, delta
);
2651 iv0
.base
= simplify_gen_binary (MINUS
, comp_mode
, iv0
.base
, step
);
2655 iv1
.base
= simplify_gen_binary (MINUS
, comp_mode
, iv1
.base
, delta
);
2656 iv1
.base
= simplify_gen_binary (PLUS
, comp_mode
, iv1
.base
, step
);
2659 tmp0
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2660 tmp1
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2661 assumption
= simplify_gen_relational (reverse_condition (cond
),
2662 SImode
, mode
, tmp0
, tmp1
);
2663 if (assumption
== const_true_rtx
)
2664 goto zero_iter_simplify
;
2665 else if (assumption
!= const0_rtx
)
2666 desc
->noloop_assumptions
=
2667 alloc_EXPR_LIST (0, assumption
, desc
->noloop_assumptions
);
2672 /* Count the number of iterations. */
2675 /* Everything we do here is just arithmetics modulo size of mode. This
2676 makes us able to do more involved computations of number of iterations
2677 than in other cases. First transform the condition into shape
2678 s * i <> c, with s positive. */
2679 iv1
.base
= simplify_gen_binary (MINUS
, comp_mode
, iv1
.base
, iv0
.base
);
2680 iv0
.base
= const0_rtx
;
2681 iv0
.step
= simplify_gen_binary (MINUS
, comp_mode
, iv0
.step
, iv1
.step
);
2682 iv1
.step
= const0_rtx
;
2683 if (INTVAL (iv0
.step
) < 0)
2685 iv0
.step
= simplify_gen_unary (NEG
, comp_mode
, iv0
.step
, comp_mode
);
2686 iv1
.base
= simplify_gen_unary (NEG
, comp_mode
, iv1
.base
, comp_mode
);
2688 iv0
.step
= lowpart_subreg (mode
, iv0
.step
, comp_mode
);
2690 /* Let nsd (s, size of mode) = d. If d does not divide c, the loop
2691 is infinite. Otherwise, the number of iterations is
2692 (inverse(s/d) * (c/d)) mod (size of mode/d). */
2693 s
= INTVAL (iv0
.step
); d
= 1;
2700 bound
= GEN_INT (((uint64_t) 1 << (size
- 1 ) << 1) - 1);
2702 tmp1
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2703 tmp
= simplify_gen_binary (UMOD
, mode
, tmp1
, gen_int_mode (d
, mode
));
2704 assumption
= simplify_gen_relational (NE
, SImode
, mode
, tmp
, const0_rtx
);
2705 desc
->infinite
= alloc_EXPR_LIST (0, assumption
, desc
->infinite
);
2707 tmp
= simplify_gen_binary (UDIV
, mode
, tmp1
, gen_int_mode (d
, mode
));
2708 inv
= inverse (s
, size
);
2709 tmp
= simplify_gen_binary (MULT
, mode
, tmp
, gen_int_mode (inv
, mode
));
2710 desc
->niter_expr
= simplify_gen_binary (AND
, mode
, tmp
, bound
);
2714 if (iv1
.step
== const0_rtx
)
2715 /* Condition in shape a + s * i <= b
2716 We must know that b + s does not overflow and a <= b + s and then we
2717 can compute number of iterations as (b + s - a) / s. (It might
2718 seem that we in fact could be more clever about testing the b + s
2719 overflow condition using some information about b - a mod s,
2720 but it was already taken into account during LE -> NE transform). */
2723 tmp0
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2724 tmp1
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2726 bound
= simplify_gen_binary (MINUS
, mode
, mode_mmax
,
2727 lowpart_subreg (mode
, step
,
2733 /* If s is power of 2, we know that the loop is infinite if
2734 a % s <= b % s and b + s overflows. */
2735 assumption
= simplify_gen_relational (reverse_condition (cond
),
2739 t0
= simplify_gen_binary (UMOD
, mode
, copy_rtx (tmp0
), step
);
2740 t1
= simplify_gen_binary (UMOD
, mode
, copy_rtx (tmp1
), step
);
2741 tmp
= simplify_gen_relational (cond
, SImode
, mode
, t0
, t1
);
2742 assumption
= simplify_gen_binary (AND
, SImode
, assumption
, tmp
);
2744 alloc_EXPR_LIST (0, assumption
, desc
->infinite
);
2748 assumption
= simplify_gen_relational (cond
, SImode
, mode
,
2751 alloc_EXPR_LIST (0, assumption
, desc
->assumptions
);
2754 tmp
= simplify_gen_binary (PLUS
, comp_mode
, iv1
.base
, iv0
.step
);
2755 tmp
= lowpart_subreg (mode
, tmp
, comp_mode
);
2756 assumption
= simplify_gen_relational (reverse_condition (cond
),
2757 SImode
, mode
, tmp0
, tmp
);
2759 delta
= simplify_gen_binary (PLUS
, mode
, tmp1
, step
);
2760 delta
= simplify_gen_binary (MINUS
, mode
, delta
, tmp0
);
2764 /* Condition in shape a <= b - s * i
2765 We must know that a - s does not overflow and a - s <= b and then
2766 we can again compute number of iterations as (b - (a - s)) / s. */
2767 step
= simplify_gen_unary (NEG
, mode
, iv1
.step
, mode
);
2768 tmp0
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2769 tmp1
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2771 bound
= simplify_gen_binary (PLUS
, mode
, mode_mmin
,
2772 lowpart_subreg (mode
, step
, comp_mode
));
2777 /* If s is power of 2, we know that the loop is infinite if
2778 a % s <= b % s and a - s overflows. */
2779 assumption
= simplify_gen_relational (reverse_condition (cond
),
2783 t0
= simplify_gen_binary (UMOD
, mode
, copy_rtx (tmp0
), step
);
2784 t1
= simplify_gen_binary (UMOD
, mode
, copy_rtx (tmp1
), step
);
2785 tmp
= simplify_gen_relational (cond
, SImode
, mode
, t0
, t1
);
2786 assumption
= simplify_gen_binary (AND
, SImode
, assumption
, tmp
);
2788 alloc_EXPR_LIST (0, assumption
, desc
->infinite
);
2792 assumption
= simplify_gen_relational (cond
, SImode
, mode
,
2795 alloc_EXPR_LIST (0, assumption
, desc
->assumptions
);
2798 tmp
= simplify_gen_binary (PLUS
, comp_mode
, iv0
.base
, iv1
.step
);
2799 tmp
= lowpart_subreg (mode
, tmp
, comp_mode
);
2800 assumption
= simplify_gen_relational (reverse_condition (cond
),
2803 delta
= simplify_gen_binary (MINUS
, mode
, tmp0
, step
);
2804 delta
= simplify_gen_binary (MINUS
, mode
, tmp1
, delta
);
2806 if (assumption
== const_true_rtx
)
2807 goto zero_iter_simplify
;
2808 else if (assumption
!= const0_rtx
)
2809 desc
->noloop_assumptions
=
2810 alloc_EXPR_LIST (0, assumption
, desc
->noloop_assumptions
);
2811 delta
= simplify_gen_binary (UDIV
, mode
, delta
, step
);
2812 desc
->niter_expr
= delta
;
2815 old_niter
= desc
->niter_expr
;
2817 simplify_using_initial_values (loop
, AND
, &desc
->assumptions
);
2818 if (desc
->assumptions
2819 && XEXP (desc
->assumptions
, 0) == const0_rtx
)
2821 simplify_using_initial_values (loop
, IOR
, &desc
->noloop_assumptions
);
2822 simplify_using_initial_values (loop
, IOR
, &desc
->infinite
);
2823 simplify_using_initial_values (loop
, UNKNOWN
, &desc
->niter_expr
);
2825 /* Rerun the simplification. Consider code (created by copying loop headers)
2837 The first pass determines that i = 0, the second pass uses it to eliminate
2838 noloop assumption. */
2840 simplify_using_initial_values (loop
, AND
, &desc
->assumptions
);
2841 if (desc
->assumptions
2842 && XEXP (desc
->assumptions
, 0) == const0_rtx
)
2844 simplify_using_initial_values (loop
, IOR
, &desc
->noloop_assumptions
);
2845 simplify_using_initial_values (loop
, IOR
, &desc
->infinite
);
2846 simplify_using_initial_values (loop
, UNKNOWN
, &desc
->niter_expr
);
2848 if (desc
->noloop_assumptions
2849 && XEXP (desc
->noloop_assumptions
, 0) == const_true_rtx
)
2852 if (CONST_INT_P (desc
->niter_expr
))
2854 uint64_t val
= INTVAL (desc
->niter_expr
);
2856 desc
->const_iter
= true;
2857 desc
->niter
= val
& GET_MODE_MASK (desc
->mode
);
2859 && !desc
->assumptions
)
2860 record_niter_bound (loop
, desc
->niter
, false, true);
2864 max
= determine_max_iter (loop
, desc
, old_niter
);
2866 goto zero_iter_simplify
;
2868 && !desc
->assumptions
)
2869 record_niter_bound (loop
, max
, false, true);
2871 /* simplify_using_initial_values does a copy propagation on the registers
2872 in the expression for the number of iterations. This prolongs life
2873 ranges of registers and increases register pressure, and usually
2874 brings no gain (and if it happens to do, the cse pass will take care
2875 of it anyway). So prevent this behavior, unless it enabled us to
2876 derive that the number of iterations is a constant. */
2877 desc
->niter_expr
= old_niter
;
2883 /* Simplify the assumptions. */
2884 simplify_using_initial_values (loop
, AND
, &desc
->assumptions
);
2885 if (desc
->assumptions
2886 && XEXP (desc
->assumptions
, 0) == const0_rtx
)
2888 simplify_using_initial_values (loop
, IOR
, &desc
->infinite
);
2892 desc
->const_iter
= true;
2894 record_niter_bound (loop
, 0, true, true);
2895 desc
->noloop_assumptions
= NULL_RTX
;
2896 desc
->niter_expr
= const0_rtx
;
2900 desc
->simple_p
= false;
2904 /* Checks whether E is a simple exit from LOOP and stores its description
2908 check_simple_exit (struct loop
*loop
, edge e
, struct niter_desc
*desc
)
2910 basic_block exit_bb
;
2916 desc
->simple_p
= false;
2918 /* It must belong directly to the loop. */
2919 if (exit_bb
->loop_father
!= loop
)
2922 /* It must be tested (at least) once during any iteration. */
2923 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, exit_bb
))
2926 /* It must end in a simple conditional jump. */
2927 if (!any_condjump_p (BB_END (exit_bb
)))
2930 ein
= EDGE_SUCC (exit_bb
, 0);
2932 ein
= EDGE_SUCC (exit_bb
, 1);
2935 desc
->in_edge
= ein
;
2937 /* Test whether the condition is suitable. */
2938 if (!(condition
= get_condition (BB_END (ein
->src
), &at
, false, false)))
2941 if (ein
->flags
& EDGE_FALLTHRU
)
2943 condition
= reversed_condition (condition
);
2948 /* Check that we are able to determine number of iterations and fill
2949 in information about it. */
2950 iv_number_of_iterations (loop
, at
, condition
, desc
);
2953 /* Finds a simple exit of LOOP and stores its description into DESC. */
2956 find_simple_exit (struct loop
*loop
, struct niter_desc
*desc
)
2961 struct niter_desc act
;
2965 desc
->simple_p
= false;
2966 body
= get_loop_body (loop
);
2968 for (i
= 0; i
< loop
->num_nodes
; i
++)
2970 FOR_EACH_EDGE (e
, ei
, body
[i
]->succs
)
2972 if (flow_bb_inside_loop_p (loop
, e
->dest
))
2975 check_simple_exit (loop
, e
, &act
);
2983 /* Prefer constant iterations; the less the better. */
2985 || (desc
->const_iter
&& act
.niter
>= desc
->niter
))
2988 /* Also if the actual exit may be infinite, while the old one
2989 not, prefer the old one. */
2990 if (act
.infinite
&& !desc
->infinite
)
3002 fprintf (dump_file
, "Loop %d is simple:\n", loop
->num
);
3003 fprintf (dump_file
, " simple exit %d -> %d\n",
3004 desc
->out_edge
->src
->index
,
3005 desc
->out_edge
->dest
->index
);
3006 if (desc
->assumptions
)
3008 fprintf (dump_file
, " assumptions: ");
3009 print_rtl (dump_file
, desc
->assumptions
);
3010 fprintf (dump_file
, "\n");
3012 if (desc
->noloop_assumptions
)
3014 fprintf (dump_file
, " does not roll if: ");
3015 print_rtl (dump_file
, desc
->noloop_assumptions
);
3016 fprintf (dump_file
, "\n");
3020 fprintf (dump_file
, " infinite if: ");
3021 print_rtl (dump_file
, desc
->infinite
);
3022 fprintf (dump_file
, "\n");
3025 fprintf (dump_file
, " number of iterations: ");
3026 print_rtl (dump_file
, desc
->niter_expr
);
3027 fprintf (dump_file
, "\n");
3029 fprintf (dump_file
, " upper bound: %li\n",
3030 (long)get_max_loop_iterations_int (loop
));
3031 fprintf (dump_file
, " realistic bound: %li\n",
3032 (long)get_estimated_loop_iterations_int (loop
));
3035 fprintf (dump_file
, "Loop %d is not simple.\n", loop
->num
);
3041 /* Creates a simple loop description of LOOP if it was not computed
3045 get_simple_loop_desc (struct loop
*loop
)
3047 struct niter_desc
*desc
= simple_loop_desc (loop
);
3052 /* At least desc->infinite is not always initialized by
3053 find_simple_loop_exit. */
3054 desc
= ggc_cleared_alloc
<niter_desc
> ();
3055 iv_analysis_loop_init (loop
);
3056 find_simple_exit (loop
, desc
);
3057 loop
->simple_loop_desc
= desc
;
3059 if (desc
->simple_p
&& (desc
->assumptions
|| desc
->infinite
))
3061 const char *wording
;
3063 /* Assume that no overflow happens and that the loop is finite.
3064 We already warned at the tree level if we ran optimizations there. */
3065 if (!flag_tree_loop_optimize
&& warn_unsafe_loop_optimizations
)
3070 flag_unsafe_loop_optimizations
3071 ? N_("assuming that the loop is not infinite")
3072 : N_("cannot optimize possibly infinite loops");
3073 warning (OPT_Wunsafe_loop_optimizations
, "%s",
3076 if (desc
->assumptions
)
3079 flag_unsafe_loop_optimizations
3080 ? N_("assuming that the loop counter does not overflow")
3081 : N_("cannot optimize loop, the loop counter may overflow");
3082 warning (OPT_Wunsafe_loop_optimizations
, "%s",
3087 if (flag_unsafe_loop_optimizations
)
3089 desc
->assumptions
= NULL_RTX
;
3090 desc
->infinite
= NULL_RTX
;
3097 /* Releases simple loop description for LOOP. */
3100 free_simple_loop_desc (struct loop
*loop
)
3102 struct niter_desc
*desc
= simple_loop_desc (loop
);
3108 loop
->simple_loop_desc
= NULL
;