2015-05-05 Yvan Roux <yvan.roux@linaro.org>
[official-gcc.git] / libjava / classpath / native / fdlibm / k_tan.c
blob975d238dabf0a1903a4d8848fb60d115f19be0c2
1 #pragma ident "@(#)k_tan.c 1.5 04/04/22 SMI"
3 /*
4 * ====================================================
5 * Copyright 2004 Sun Microsystems, Inc. All Rights Reserved.
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
9 * is preserved.
10 * ====================================================
13 /* INDENT OFF */
14 /* __kernel_tan( x, y, k )
15 * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
16 * Input x is assumed to be bounded by ~pi/4 in magnitude.
17 * Input y is the tail of x.
18 * Input k indicates whether tan (if k = 1) or -1/tan (if k = -1) is returned.
20 * Algorithm
21 * 1. Since tan(-x) = -tan(x), we need only to consider positive x.
22 * 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
23 * 3. tan(x) is approximated by a odd polynomial of degree 27 on
24 * [0,0.67434]
25 * 3 27
26 * tan(x) ~ x + T1*x + ... + T13*x
27 * where
29 * |tan(x) 2 4 26 | -59.2
30 * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
31 * | x |
33 * Note: tan(x+y) = tan(x) + tan'(x)*y
34 * ~ tan(x) + (1+x*x)*y
35 * Therefore, for better accuracy in computing tan(x+y), let
36 * 3 2 2 2 2
37 * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
38 * then
39 * 3 2
40 * tan(x+y) = x + (T1*x + (x *(r+y)+y))
42 * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
43 * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
44 * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
47 #include "fdlibm.h"
49 #ifndef _DOUBLE_IS_32BITS
51 static const double xxx[] = {
52 3.33333333333334091986e-01, /* 3FD55555, 55555563 */
53 1.33333333333201242699e-01, /* 3FC11111, 1110FE7A */
54 5.39682539762260521377e-02, /* 3FABA1BA, 1BB341FE */
55 2.18694882948595424599e-02, /* 3F9664F4, 8406D637 */
56 8.86323982359930005737e-03, /* 3F8226E3, E96E8493 */
57 3.59207910759131235356e-03, /* 3F6D6D22, C9560328 */
58 1.45620945432529025516e-03, /* 3F57DBC8, FEE08315 */
59 5.88041240820264096874e-04, /* 3F4344D8, F2F26501 */
60 2.46463134818469906812e-04, /* 3F3026F7, 1A8D1068 */
61 7.81794442939557092300e-05, /* 3F147E88, A03792A6 */
62 7.14072491382608190305e-05, /* 3F12B80F, 32F0A7E9 */
63 -1.85586374855275456654e-05, /* BEF375CB, DB605373 */
64 2.59073051863633712884e-05, /* 3EFB2A70, 74BF7AD4 */
65 /* one */ 1.00000000000000000000e+00, /* 3FF00000, 00000000 */
66 /* pio4 */ 7.85398163397448278999e-01, /* 3FE921FB, 54442D18 */
67 /* pio4lo */ 3.06161699786838301793e-17 /* 3C81A626, 33145C07 */
69 #define one xxx[13]
70 #define pio4 xxx[14]
71 #define pio4lo xxx[15]
72 #define T xxx
73 /* INDENT ON */
75 double
76 __kernel_tan(double x, double y, int iy) {
77 double z, r, v, w, s;
78 int32_t ix, hx;
80 GET_HIGH_WORD(hx,x); /* high word of x */
81 ix = hx & 0x7fffffff; /* high word of |x| */
82 if (ix < 0x3e300000) { /* x < 2**-28 */
83 if ((int) x == 0) { /* generate inexact */
84 uint32_t low;
85 GET_LOW_WORD(low,x);
86 if (((ix | low) | (iy + 1)) == 0)
87 return one / fabs(x);
88 else {
89 if (iy == 1)
90 return x;
91 else { /* compute -1 / (x+y) carefully */
92 double a, t;
94 z = w = x + y;
95 SET_LOW_WORD(z,0);
96 v = y - (z - x);
97 t = a = -one / w;
98 SET_LOW_WORD(t,0);
99 s = one + t * z;
100 return t + a * (s + t * v);
105 if (ix >= 0x3FE59428) { /* |x| >= 0.6744 */
106 if (hx < 0) {
107 x = -x;
108 y = -y;
110 z = pio4 - x;
111 w = pio4lo - y;
112 x = z + w;
113 y = 0.0;
115 z = x * x;
116 w = z * z;
118 * Break x^5*(T[1]+x^2*T[2]+...) into
119 * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
120 * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
122 r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] +
123 w * T[11]))));
124 v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] +
125 w * T[12])))));
126 s = z * x;
127 r = y + z * (s * (r + v) + y);
128 r += T[0] * s;
129 w = x + r;
130 if (ix >= 0x3FE59428) {
131 v = (double) iy;
132 return (double) (1 - ((hx >> 30) & 2)) *
133 (v - 2.0 * (x - (w * w / (w + v) - r)));
135 if (iy == 1)
136 return w;
137 else {
139 * if allow error up to 2 ulp, simply return
140 * -1.0 / (x+r) here
142 /* compute -1.0 / (x+r) accurately */
143 double a, t;
144 z = w;
145 SET_LOW_WORD(z,0);
146 v = r - (z - x); /* z+v = r+x */
147 t = a = -1.0 / w; /* a = -1.0/w */
148 SET_LOW_WORD(t,0);
149 s = 1.0 + t * z;
150 return t + a * (s + t * v);
153 #endif /* defined(_DOUBLE_IS_32BITS) */