2 /* @(#)k_rem_pio2.c 1.3 95/01/18 */
4 * ====================================================
5 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
7 * Developed at SunSoft, a Sun Microsystems, Inc. business.
8 * Permission to use, copy, modify, and distribute this
9 * software is freely granted, provided that this notice
11 * ====================================================
15 * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
16 * double x[],y[]; int e0,nx,prec; int ipio2[];
18 * __kernel_rem_pio2 return the last three digits of N with
22 * The method is to compute the integer (mod 8) and fraction parts of
23 * (2/pi)*x without doing the full multiplication. In general we
24 * skip the part of the product that are known to be a huge integer (
25 * more accurately, = 0 mod 8 ). Thus the number of operations are
26 * independent of the exponent of the input.
28 * (2/pi) is represented by an array of 24-bit integers in ipio2[].
31 * x[] The input value (must be positive) is broken into nx
32 * pieces of 24-bit integers in double precision format.
33 * x[i] will be the i-th 24 bit of x. The scaled exponent
34 * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
35 * match x's up to 24 bits.
37 * Example of breaking a double positive z into x[0]+x[1]+x[2]:
45 * y[] ouput result in an array of double precision numbers.
46 * The dimension of y[] is:
51 * The actual value is the sum of them. Thus for 113-bit
52 * precison, one may have to do something like:
54 * long double t,w,r_head, r_tail;
55 * t = (long double)y[2] + (long double)y[1];
56 * w = (long double)y[0];
58 * r_tail = w - (r_head - t);
60 * e0 The exponent of x[0]
64 * prec an integer indicating the precision:
67 * 2 64 bits (extended)
71 * integer array, contains the (24*i)-th to (24*i+23)-th
72 * bit of 2/pi after binary point. The corresponding
75 * ipio2[i] * 2^(-24(i+1)).
78 * double scalbn(), floor();
81 * Here is the description of some local variables:
83 * jk jk+1 is the initial number of terms of ipio2[] needed
84 * in the computation. The recommended value is 2,3,4,
85 * 6 for single, double, extended,and quad.
87 * jz local integer variable indicating the number of
88 * terms of ipio2[] used.
92 * jv index for pointing to the suitable ipio2[] for the
93 * computation. In general, we want
94 * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
96 * e0-3-24*jv >= 0 or (e0-3)/24 >= jv
97 * Hence jv = max(0,(e0-3)/24).
99 * jp jp+1 is the number of terms in PIo2[] needed, jp = jk.
101 * q[] double array with integral value, representing the
102 * 24-bits chunk of the product of x and 2/pi.
104 * q0 the corresponding exponent of q[0]. Note that the
105 * exponent for q[i] would be q0-24*i.
107 * PIo2[] double precision array, obtained by cutting pi/2
108 * into 24 bits chunks.
110 * f[] ipio2[] in floating point
112 * iq[] integer array by breaking up q[] in 24-bits chunk.
114 * fq[] final product of x*(2/pi) in fq[0],..,fq[jk]
116 * ih integer. If >0 it indicates q[] is >= 0.5, hence
117 * it also indicates the *sign* of the result.
124 * The hexadecimal values are the intended ones for the following
125 * constants. The decimal values may be used, provided that the
126 * compiler will convert from decimal to binary accurately enough
127 * to produce the hexadecimal values shown.
133 static const int init_jk
[] = {2,3,4,6}; /* initial value for jk */
135 static int init_jk
[] = {2,3,4,6};
139 static const double PIo2
[] = {
141 static double PIo2
[] = {
143 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
144 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
145 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
146 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
147 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
148 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
149 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
150 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
160 two24
= 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
161 twon24
= 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
164 int __kernel_rem_pio2(double *x
, double *y
, int e0
, int nx
, int prec
, const int *ipio2
)
166 int __kernel_rem_pio2(x
,y
,e0
,nx
,prec
,ipio2
)
167 double x
[], y
[]; int e0
,nx
,prec
; int ipio2
[];
170 int jz
,jx
,jv
,jp
,jk
,carry
,n
,iq
[20],i
,j
,k
,m
,q0
,ih
;
171 double z
,fw
,f
[20],fq
[20],q
[20];
177 /* determine jx,jv,q0, note that 3>q0 */
179 jv
= (e0
-3)/24; if(jv
<0) jv
=0;
182 /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
183 j
= jv
-jx
; m
= jx
+jk
;
184 for(i
=0;i
<=m
;i
++,j
++) f
[i
] = (j
<0)? zero
: (double) ipio2
[j
];
186 /* compute q[0],q[1],...q[jk] */
187 for (i
=0;i
<=jk
;i
++) {
188 for(j
=0,fw
=0.0;j
<=jx
;j
++) fw
+= x
[j
]*f
[jx
+i
-j
]; q
[i
] = fw
;
193 /* distill q[] into iq[] reversingly */
194 for(i
=0,j
=jz
,z
=q
[jz
];j
>0;i
++,j
--) {
195 fw
= (double)((int)(twon24
* z
));
196 iq
[i
] = (int)(z
-two24
*fw
);
201 z
= scalbn(z
,q0
); /* actual value of z */
202 z
-= 8.0*floor(z
*0.125); /* trim off integer >= 8 */
206 if(q0
>0) { /* need iq[jz-1] to determine n */
207 i
= (iq
[jz
-1]>>(24-q0
)); n
+= i
;
208 iq
[jz
-1] -= i
<<(24-q0
);
209 ih
= iq
[jz
-1]>>(23-q0
);
211 else if(q0
==0) ih
= iq
[jz
-1]>>23;
212 else if(z
>=0.5) ih
=2;
214 if(ih
>0) { /* q > 0.5 */
216 for(i
=0;i
<jz
;i
++) { /* compute 1-q */
220 carry
= 1; iq
[i
] = 0x1000000- j
;
222 } else iq
[i
] = 0xffffff - j
;
224 if(q0
>0) { /* rare case: chance is 1 in 12 */
227 iq
[jz
-1] &= 0x7fffff; break;
229 iq
[jz
-1] &= 0x3fffff; break;
234 if(carry
!=0) z
-= scalbn(one
,q0
);
238 /* check if recomputation is needed */
241 for (i
=jz
-1;i
>=jk
;i
--) j
|= iq
[i
];
242 if(j
==0) { /* need recomputation */
243 for(k
=1;iq
[jk
-k
]==0;k
++); /* k = no. of terms needed */
245 for(i
=jz
+1;i
<=jz
+k
;i
++) { /* add q[jz+1] to q[jz+k] */
246 f
[jx
+i
] = (double) ipio2
[jv
+i
];
247 for(j
=0,fw
=0.0;j
<=jx
;j
++) fw
+= x
[j
]*f
[jx
+i
-j
];
255 /* chop off zero terms */
258 while(iq
[jz
]==0) { jz
--; q0
-=24;}
259 } else { /* break z into 24-bit if necessary */
262 fw
= (double)((int)(twon24
*z
));
263 iq
[jz
] = (int)(z
-two24
*fw
);
266 } else iq
[jz
] = (int) z
;
269 /* convert integer "bit" chunk to floating-point value */
272 q
[i
] = fw
*(double)iq
[i
]; fw
*=twon24
;
275 /* compute PIo2[0,...,jp]*q[jz,...,0] */
277 for(fw
=0.0,k
=0;k
<=jp
&&k
<=jz
-i
;k
++) fw
+= PIo2
[k
]*q
[i
+k
];
281 /* compress fq[] into y[] */
285 for (i
=jz
;i
>=0;i
--) fw
+= fq
[i
];
286 y
[0] = (ih
==0)? fw
: -fw
;
291 for (i
=jz
;i
>=0;i
--) fw
+= fq
[i
];
292 y
[0] = (ih
==0)? fw
: -fw
;
294 for (i
=1;i
<=jz
;i
++) fw
+= fq
[i
];
295 y
[1] = (ih
==0)? fw
: -fw
;
297 case 3: /* painful */
308 for (fw
=0.0,i
=jz
;i
>=2;i
--) fw
+= fq
[i
];
310 y
[0] = fq
[0]; y
[1] = fq
[1]; y
[2] = fw
;
312 y
[0] = -fq
[0]; y
[1] = -fq
[1]; y
[2] = -fw
;