2015-05-05 Yvan Roux <yvan.roux@linaro.org>
[official-gcc.git] / libjava / classpath / native / fdlibm / e_log.c
blobdede84d0969a58c6019192807c79807d216db6b3
2 /* @(#)e_log.c 1.4 96/03/07 */
3 /*
4 * ====================================================
5 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
7 * Developed at SunSoft, a Sun Microsystems, Inc. business.
8 * Permission to use, copy, modify, and distribute this
9 * software is freely granted, provided that this notice
10 * is preserved.
11 * ====================================================
14 /* __ieee754_log(x)
15 * Return the logrithm of x
17 * Method :
18 * 1. Argument Reduction: find k and f such that
19 * x = 2^k * (1+f),
20 * where sqrt(2)/2 < 1+f < sqrt(2) .
22 * 2. Approximation of log(1+f).
23 * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
24 * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
25 * = 2s + s*R
26 * We use a special Remes algorithm on [0,0.1716] to generate
27 * a polynomial of degree 14 to approximate R The maximum error
28 * of this polynomial approximation is bounded by 2**-58.45. In
29 * other words,
30 * 2 4 6 8 10 12 14
31 * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
32 * (the values of Lg1 to Lg7 are listed in the program)
33 * and
34 * | 2 14 | -58.45
35 * | Lg1*s +...+Lg7*s - R(z) | <= 2
36 * | |
37 * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
38 * In order to guarantee error in log below 1ulp, we compute log
39 * by
40 * log(1+f) = f - s*(f - R) (if f is not too large)
41 * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
43 * 3. Finally, log(x) = k*ln2 + log(1+f).
44 * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
45 * Here ln2 is split into two floating point number:
46 * ln2_hi + ln2_lo,
47 * where n*ln2_hi is always exact for |n| < 2000.
49 * Special cases:
50 * log(x) is NaN with signal if x < 0 (including -INF) ;
51 * log(+INF) is +INF; log(0) is -INF with signal;
52 * log(NaN) is that NaN with no signal.
54 * Accuracy:
55 * according to an error analysis, the error is always less than
56 * 1 ulp (unit in the last place).
58 * Constants:
59 * The hexadecimal values are the intended ones for the following
60 * constants. The decimal values may be used, provided that the
61 * compiler will convert from decimal to binary accurately enough
62 * to produce the hexadecimal values shown.
65 #include "fdlibm.h"
67 #ifndef _DOUBLE_IS_32BITS
69 #ifdef __STDC__
70 static const double
71 #else
72 static double
73 #endif
74 ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
75 ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
76 two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
77 Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
78 Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
79 Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
80 Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
81 Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
82 Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
83 Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
85 #ifdef __STDC__
86 static const double zero = 0.0;
87 #else
88 static double zero = 0.0;
89 #endif
91 #ifdef __STDC__
92 double __ieee754_log(double x)
93 #else
94 double __ieee754_log(x)
95 double x;
96 #endif
98 double hfsq,f,s,z,R,w,t1,t2,dk;
99 int32_t k,hx,i,j;
100 uint32_t lx;
102 EXTRACT_WORDS(hx,lx,x);
104 k=0;
105 if (hx < 0x00100000) { /* x < 2**-1022 */
106 if (((hx&0x7fffffff)|lx)==0)
107 return -two54/zero; /* log(+-0)=-inf */
108 if (hx<0) return (x-x)/zero; /* log(-#) = NaN */
109 k -= 54; x *= two54; /* subnormal number, scale up x */
110 GET_HIGH_WORD(hx,x); /* high word of x */
112 if (hx >= 0x7ff00000) return x+x;
113 k += (hx>>20)-1023;
114 hx &= 0x000fffff;
115 i = (hx+0x95f64)&0x100000;
116 SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */
117 k += (i>>20);
118 f = x-1.0;
119 if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */
120 if(f==zero) {
121 if(k==0)
122 return zero;
123 else {
124 dk=(double)k;
125 return dk*ln2_hi+dk*ln2_lo;
128 R = f*f*(0.5-0.33333333333333333*f);
129 if(k==0) return f-R; else {dk=(double)k;
130 return dk*ln2_hi-((R-dk*ln2_lo)-f);}
132 s = f/(2.0+f);
133 dk = (double)k;
134 z = s*s;
135 i = hx-0x6147a;
136 w = z*z;
137 j = 0x6b851-hx;
138 t1= w*(Lg2+w*(Lg4+w*Lg6));
139 t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
140 i |= j;
141 R = t2+t1;
142 if(i>0) {
143 hfsq=0.5*f*f;
144 if(k==0) return f-(hfsq-s*(hfsq+R)); else
145 return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
146 } else {
147 if(k==0) return f-s*(f-R); else
148 return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
151 #endif /* defined(_DOUBLE_IS_32BITS) */