2015-05-05 Yvan Roux <yvan.roux@linaro.org>
[official-gcc.git] / gcc / tree-ssa-coalesce.c
blobeeac5a46ab99a03d92bad40b794436234744d9e2
1 /* Coalesce SSA_NAMES together for the out-of-ssa pass.
2 Copyright (C) 2004-2015 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "hash-set.h"
26 #include "machmode.h"
27 #include "vec.h"
28 #include "double-int.h"
29 #include "input.h"
30 #include "alias.h"
31 #include "symtab.h"
32 #include "wide-int.h"
33 #include "inchash.h"
34 #include "tree.h"
35 #include "fold-const.h"
36 #include "flags.h"
37 #include "tree-pretty-print.h"
38 #include "bitmap.h"
39 #include "dumpfile.h"
40 #include "hash-table.h"
41 #include "predict.h"
42 #include "hard-reg-set.h"
43 #include "input.h"
44 #include "function.h"
45 #include "dominance.h"
46 #include "cfg.h"
47 #include "basic-block.h"
48 #include "tree-ssa-alias.h"
49 #include "internal-fn.h"
50 #include "gimple-expr.h"
51 #include "is-a.h"
52 #include "gimple.h"
53 #include "gimple-iterator.h"
54 #include "gimple-ssa.h"
55 #include "tree-phinodes.h"
56 #include "ssa-iterators.h"
57 #include "stringpool.h"
58 #include "tree-ssanames.h"
59 #include "tree-ssa-live.h"
60 #include "tree-ssa-coalesce.h"
61 #include "diagnostic-core.h"
64 /* This set of routines implements a coalesce_list. This is an object which
65 is used to track pairs of ssa_names which are desirable to coalesce
66 together to avoid copies. Costs are associated with each pair, and when
67 all desired information has been collected, the object can be used to
68 order the pairs for processing. */
70 /* This structure defines a pair entry. */
72 typedef struct coalesce_pair
74 int first_element;
75 int second_element;
76 int cost;
77 } * coalesce_pair_p;
78 typedef const struct coalesce_pair *const_coalesce_pair_p;
80 /* Coalesce pair hashtable helpers. */
82 struct coalesce_pair_hasher : typed_noop_remove <coalesce_pair>
84 typedef coalesce_pair *value_type;
85 typedef coalesce_pair *compare_type;
86 static inline hashval_t hash (const coalesce_pair *);
87 static inline bool equal (const coalesce_pair *, const coalesce_pair *);
90 /* Hash function for coalesce list. Calculate hash for PAIR. */
92 inline hashval_t
93 coalesce_pair_hasher::hash (const coalesce_pair *pair)
95 hashval_t a = (hashval_t)(pair->first_element);
96 hashval_t b = (hashval_t)(pair->second_element);
98 return b * (b - 1) / 2 + a;
101 /* Equality function for coalesce list hash table. Compare PAIR1 and PAIR2,
102 returning TRUE if the two pairs are equivalent. */
104 inline bool
105 coalesce_pair_hasher::equal (const coalesce_pair *p1, const coalesce_pair *p2)
107 return (p1->first_element == p2->first_element
108 && p1->second_element == p2->second_element);
111 typedef hash_table<coalesce_pair_hasher> coalesce_table_type;
112 typedef coalesce_table_type::iterator coalesce_iterator_type;
115 typedef struct cost_one_pair_d
117 int first_element;
118 int second_element;
119 struct cost_one_pair_d *next;
120 } * cost_one_pair_p;
122 /* This structure maintains the list of coalesce pairs. */
124 typedef struct coalesce_list_d
126 coalesce_table_type *list; /* Hash table. */
127 coalesce_pair_p *sorted; /* List when sorted. */
128 int num_sorted; /* Number in the sorted list. */
129 cost_one_pair_p cost_one_list;/* Single use coalesces with cost 1. */
130 } *coalesce_list_p;
132 #define NO_BEST_COALESCE -1
133 #define MUST_COALESCE_COST INT_MAX
136 /* Return cost of execution of copy instruction with FREQUENCY. */
138 static inline int
139 coalesce_cost (int frequency, bool optimize_for_size)
141 /* Base costs on BB frequencies bounded by 1. */
142 int cost = frequency;
144 if (!cost)
145 cost = 1;
147 if (optimize_for_size)
148 cost = 1;
150 return cost;
154 /* Return the cost of executing a copy instruction in basic block BB. */
156 static inline int
157 coalesce_cost_bb (basic_block bb)
159 return coalesce_cost (bb->frequency, optimize_bb_for_size_p (bb));
163 /* Return the cost of executing a copy instruction on edge E. */
165 static inline int
166 coalesce_cost_edge (edge e)
168 int mult = 1;
170 /* Inserting copy on critical edge costs more than inserting it elsewhere. */
171 if (EDGE_CRITICAL_P (e))
172 mult = 2;
173 if (e->flags & EDGE_ABNORMAL)
174 return MUST_COALESCE_COST;
175 if (e->flags & EDGE_EH)
177 edge e2;
178 edge_iterator ei;
179 FOR_EACH_EDGE (e2, ei, e->dest->preds)
180 if (e2 != e)
182 /* Putting code on EH edge that leads to BB
183 with multiple predecestors imply splitting of
184 edge too. */
185 if (mult < 2)
186 mult = 2;
187 /* If there are multiple EH predecestors, we
188 also copy EH regions and produce separate
189 landing pad. This is expensive. */
190 if (e2->flags & EDGE_EH)
192 mult = 5;
193 break;
198 return coalesce_cost (EDGE_FREQUENCY (e),
199 optimize_edge_for_size_p (e)) * mult;
203 /* Retrieve a pair to coalesce from the cost_one_list in CL. Returns the
204 2 elements via P1 and P2. 1 is returned by the function if there is a pair,
205 NO_BEST_COALESCE is returned if there aren't any. */
207 static inline int
208 pop_cost_one_pair (coalesce_list_p cl, int *p1, int *p2)
210 cost_one_pair_p ptr;
212 ptr = cl->cost_one_list;
213 if (!ptr)
214 return NO_BEST_COALESCE;
216 *p1 = ptr->first_element;
217 *p2 = ptr->second_element;
218 cl->cost_one_list = ptr->next;
220 free (ptr);
222 return 1;
225 /* Retrieve the most expensive remaining pair to coalesce from CL. Returns the
226 2 elements via P1 and P2. Their calculated cost is returned by the function.
227 NO_BEST_COALESCE is returned if the coalesce list is empty. */
229 static inline int
230 pop_best_coalesce (coalesce_list_p cl, int *p1, int *p2)
232 coalesce_pair_p node;
233 int ret;
235 if (cl->sorted == NULL)
236 return pop_cost_one_pair (cl, p1, p2);
238 if (cl->num_sorted == 0)
239 return pop_cost_one_pair (cl, p1, p2);
241 node = cl->sorted[--(cl->num_sorted)];
242 *p1 = node->first_element;
243 *p2 = node->second_element;
244 ret = node->cost;
245 free (node);
247 return ret;
251 /* Create a new empty coalesce list object and return it. */
253 static inline coalesce_list_p
254 create_coalesce_list (void)
256 coalesce_list_p list;
257 unsigned size = num_ssa_names * 3;
259 if (size < 40)
260 size = 40;
262 list = (coalesce_list_p) xmalloc (sizeof (struct coalesce_list_d));
263 list->list = new coalesce_table_type (size);
264 list->sorted = NULL;
265 list->num_sorted = 0;
266 list->cost_one_list = NULL;
267 return list;
271 /* Delete coalesce list CL. */
273 static inline void
274 delete_coalesce_list (coalesce_list_p cl)
276 gcc_assert (cl->cost_one_list == NULL);
277 delete cl->list;
278 cl->list = NULL;
279 free (cl->sorted);
280 gcc_assert (cl->num_sorted == 0);
281 free (cl);
285 /* Find a matching coalesce pair object in CL for the pair P1 and P2. If
286 one isn't found, return NULL if CREATE is false, otherwise create a new
287 coalesce pair object and return it. */
289 static coalesce_pair_p
290 find_coalesce_pair (coalesce_list_p cl, int p1, int p2, bool create)
292 struct coalesce_pair p;
293 coalesce_pair **slot;
294 unsigned int hash;
296 /* Normalize so that p1 is the smaller value. */
297 if (p2 < p1)
299 p.first_element = p2;
300 p.second_element = p1;
302 else
304 p.first_element = p1;
305 p.second_element = p2;
308 hash = coalesce_pair_hasher::hash (&p);
309 slot = cl->list->find_slot_with_hash (&p, hash, create ? INSERT : NO_INSERT);
310 if (!slot)
311 return NULL;
313 if (!*slot)
315 struct coalesce_pair * pair = XNEW (struct coalesce_pair);
316 gcc_assert (cl->sorted == NULL);
317 pair->first_element = p.first_element;
318 pair->second_element = p.second_element;
319 pair->cost = 0;
320 *slot = pair;
323 return (struct coalesce_pair *) *slot;
326 static inline void
327 add_cost_one_coalesce (coalesce_list_p cl, int p1, int p2)
329 cost_one_pair_p pair;
331 pair = XNEW (struct cost_one_pair_d);
332 pair->first_element = p1;
333 pair->second_element = p2;
334 pair->next = cl->cost_one_list;
335 cl->cost_one_list = pair;
339 /* Add a coalesce between P1 and P2 in list CL with a cost of VALUE. */
341 static inline void
342 add_coalesce (coalesce_list_p cl, int p1, int p2, int value)
344 coalesce_pair_p node;
346 gcc_assert (cl->sorted == NULL);
347 if (p1 == p2)
348 return;
350 node = find_coalesce_pair (cl, p1, p2, true);
352 /* Once the value is at least MUST_COALESCE_COST - 1, leave it that way. */
353 if (node->cost < MUST_COALESCE_COST - 1)
355 if (value < MUST_COALESCE_COST - 1)
356 node->cost += value;
357 else
358 node->cost = value;
363 /* Comparison function to allow qsort to sort P1 and P2 in Ascending order. */
365 static int
366 compare_pairs (const void *p1, const void *p2)
368 const_coalesce_pair_p const *const pp1 = (const_coalesce_pair_p const *) p1;
369 const_coalesce_pair_p const *const pp2 = (const_coalesce_pair_p const *) p2;
370 int result;
372 result = (* pp1)->cost - (* pp2)->cost;
373 /* Since qsort does not guarantee stability we use the elements
374 as a secondary key. This provides us with independence from
375 the host's implementation of the sorting algorithm. */
376 if (result == 0)
378 result = (* pp2)->first_element - (* pp1)->first_element;
379 if (result == 0)
380 result = (* pp2)->second_element - (* pp1)->second_element;
383 return result;
387 /* Return the number of unique coalesce pairs in CL. */
389 static inline int
390 num_coalesce_pairs (coalesce_list_p cl)
392 return cl->list->elements ();
396 /* Iterate over CL using ITER, returning values in PAIR. */
398 #define FOR_EACH_PARTITION_PAIR(PAIR, ITER, CL) \
399 FOR_EACH_HASH_TABLE_ELEMENT (*(CL)->list, (PAIR), coalesce_pair_p, (ITER))
402 /* Prepare CL for removal of preferred pairs. When finished they are sorted
403 in order from most important coalesce to least important. */
405 static void
406 sort_coalesce_list (coalesce_list_p cl)
408 unsigned x, num;
409 coalesce_pair_p p;
410 coalesce_iterator_type ppi;
412 gcc_assert (cl->sorted == NULL);
414 num = num_coalesce_pairs (cl);
415 cl->num_sorted = num;
416 if (num == 0)
417 return;
419 /* Allocate a vector for the pair pointers. */
420 cl->sorted = XNEWVEC (coalesce_pair_p, num);
422 /* Populate the vector with pointers to the pairs. */
423 x = 0;
424 FOR_EACH_PARTITION_PAIR (p, ppi, cl)
425 cl->sorted[x++] = p;
426 gcc_assert (x == num);
428 /* Already sorted. */
429 if (num == 1)
430 return;
432 /* If there are only 2, just pick swap them if the order isn't correct. */
433 if (num == 2)
435 if (cl->sorted[0]->cost > cl->sorted[1]->cost)
437 p = cl->sorted[0];
438 cl->sorted[0] = cl->sorted[1];
439 cl->sorted[1] = p;
441 return;
444 /* Only call qsort if there are more than 2 items. */
445 if (num > 2)
446 qsort (cl->sorted, num, sizeof (coalesce_pair_p), compare_pairs);
450 /* Send debug info for coalesce list CL to file F. */
452 static void
453 dump_coalesce_list (FILE *f, coalesce_list_p cl)
455 coalesce_pair_p node;
456 coalesce_iterator_type ppi;
458 int x;
459 tree var;
461 if (cl->sorted == NULL)
463 fprintf (f, "Coalesce List:\n");
464 FOR_EACH_PARTITION_PAIR (node, ppi, cl)
466 tree var1 = ssa_name (node->first_element);
467 tree var2 = ssa_name (node->second_element);
468 print_generic_expr (f, var1, TDF_SLIM);
469 fprintf (f, " <-> ");
470 print_generic_expr (f, var2, TDF_SLIM);
471 fprintf (f, " (%1d), ", node->cost);
472 fprintf (f, "\n");
475 else
477 fprintf (f, "Sorted Coalesce list:\n");
478 for (x = cl->num_sorted - 1 ; x >=0; x--)
480 node = cl->sorted[x];
481 fprintf (f, "(%d) ", node->cost);
482 var = ssa_name (node->first_element);
483 print_generic_expr (f, var, TDF_SLIM);
484 fprintf (f, " <-> ");
485 var = ssa_name (node->second_element);
486 print_generic_expr (f, var, TDF_SLIM);
487 fprintf (f, "\n");
493 /* This represents a conflict graph. Implemented as an array of bitmaps.
494 A full matrix is used for conflicts rather than just upper triangular form.
495 this make sit much simpler and faster to perform conflict merges. */
497 typedef struct ssa_conflicts_d
499 bitmap_obstack obstack; /* A place to allocate our bitmaps. */
500 vec<bitmap> conflicts;
501 } * ssa_conflicts_p;
503 /* Return an empty new conflict graph for SIZE elements. */
505 static inline ssa_conflicts_p
506 ssa_conflicts_new (unsigned size)
508 ssa_conflicts_p ptr;
510 ptr = XNEW (struct ssa_conflicts_d);
511 bitmap_obstack_initialize (&ptr->obstack);
512 ptr->conflicts.create (size);
513 ptr->conflicts.safe_grow_cleared (size);
514 return ptr;
518 /* Free storage for conflict graph PTR. */
520 static inline void
521 ssa_conflicts_delete (ssa_conflicts_p ptr)
523 bitmap_obstack_release (&ptr->obstack);
524 ptr->conflicts.release ();
525 free (ptr);
529 /* Test if elements X and Y conflict in graph PTR. */
531 static inline bool
532 ssa_conflicts_test_p (ssa_conflicts_p ptr, unsigned x, unsigned y)
534 bitmap bx = ptr->conflicts[x];
535 bitmap by = ptr->conflicts[y];
537 gcc_checking_assert (x != y);
539 if (bx)
540 /* Avoid the lookup if Y has no conflicts. */
541 return by ? bitmap_bit_p (bx, y) : false;
542 else
543 return false;
547 /* Add a conflict with Y to the bitmap for X in graph PTR. */
549 static inline void
550 ssa_conflicts_add_one (ssa_conflicts_p ptr, unsigned x, unsigned y)
552 bitmap bx = ptr->conflicts[x];
553 /* If there are no conflicts yet, allocate the bitmap and set bit. */
554 if (! bx)
555 bx = ptr->conflicts[x] = BITMAP_ALLOC (&ptr->obstack);
556 bitmap_set_bit (bx, y);
560 /* Add conflicts between X and Y in graph PTR. */
562 static inline void
563 ssa_conflicts_add (ssa_conflicts_p ptr, unsigned x, unsigned y)
565 gcc_checking_assert (x != y);
566 ssa_conflicts_add_one (ptr, x, y);
567 ssa_conflicts_add_one (ptr, y, x);
571 /* Merge all Y's conflict into X in graph PTR. */
573 static inline void
574 ssa_conflicts_merge (ssa_conflicts_p ptr, unsigned x, unsigned y)
576 unsigned z;
577 bitmap_iterator bi;
578 bitmap bx = ptr->conflicts[x];
579 bitmap by = ptr->conflicts[y];
581 gcc_checking_assert (x != y);
582 if (! by)
583 return;
585 /* Add a conflict between X and every one Y has. If the bitmap doesn't
586 exist, then it has already been coalesced, and we don't need to add a
587 conflict. */
588 EXECUTE_IF_SET_IN_BITMAP (by, 0, z, bi)
590 bitmap bz = ptr->conflicts[z];
591 if (bz)
592 bitmap_set_bit (bz, x);
595 if (bx)
597 /* If X has conflicts, add Y's to X. */
598 bitmap_ior_into (bx, by);
599 BITMAP_FREE (by);
600 ptr->conflicts[y] = NULL;
602 else
604 /* If X has no conflicts, simply use Y's. */
605 ptr->conflicts[x] = by;
606 ptr->conflicts[y] = NULL;
611 /* Dump a conflicts graph. */
613 static void
614 ssa_conflicts_dump (FILE *file, ssa_conflicts_p ptr)
616 unsigned x;
617 bitmap b;
619 fprintf (file, "\nConflict graph:\n");
621 FOR_EACH_VEC_ELT (ptr->conflicts, x, b)
622 if (b)
624 fprintf (file, "%d: ", x);
625 dump_bitmap (file, b);
630 /* This structure is used to efficiently record the current status of live
631 SSA_NAMES when building a conflict graph.
632 LIVE_BASE_VAR has a bit set for each base variable which has at least one
633 ssa version live.
634 LIVE_BASE_PARTITIONS is an array of bitmaps using the basevar table as an
635 index, and is used to track what partitions of each base variable are
636 live. This makes it easy to add conflicts between just live partitions
637 with the same base variable.
638 The values in LIVE_BASE_PARTITIONS are only valid if the base variable is
639 marked as being live. This delays clearing of these bitmaps until
640 they are actually needed again. */
642 typedef struct live_track_d
644 bitmap_obstack obstack; /* A place to allocate our bitmaps. */
645 bitmap live_base_var; /* Indicates if a basevar is live. */
646 bitmap *live_base_partitions; /* Live partitions for each basevar. */
647 var_map map; /* Var_map being used for partition mapping. */
648 } * live_track_p;
651 /* This routine will create a new live track structure based on the partitions
652 in MAP. */
654 static live_track_p
655 new_live_track (var_map map)
657 live_track_p ptr;
658 int lim, x;
660 /* Make sure there is a partition view in place. */
661 gcc_assert (map->partition_to_base_index != NULL);
663 ptr = (live_track_p) xmalloc (sizeof (struct live_track_d));
664 ptr->map = map;
665 lim = num_basevars (map);
666 bitmap_obstack_initialize (&ptr->obstack);
667 ptr->live_base_partitions = (bitmap *) xmalloc (sizeof (bitmap *) * lim);
668 ptr->live_base_var = BITMAP_ALLOC (&ptr->obstack);
669 for (x = 0; x < lim; x++)
670 ptr->live_base_partitions[x] = BITMAP_ALLOC (&ptr->obstack);
671 return ptr;
675 /* This routine will free the memory associated with PTR. */
677 static void
678 delete_live_track (live_track_p ptr)
680 bitmap_obstack_release (&ptr->obstack);
681 free (ptr->live_base_partitions);
682 free (ptr);
686 /* This function will remove PARTITION from the live list in PTR. */
688 static inline void
689 live_track_remove_partition (live_track_p ptr, int partition)
691 int root;
693 root = basevar_index (ptr->map, partition);
694 bitmap_clear_bit (ptr->live_base_partitions[root], partition);
695 /* If the element list is empty, make the base variable not live either. */
696 if (bitmap_empty_p (ptr->live_base_partitions[root]))
697 bitmap_clear_bit (ptr->live_base_var, root);
701 /* This function will adds PARTITION to the live list in PTR. */
703 static inline void
704 live_track_add_partition (live_track_p ptr, int partition)
706 int root;
708 root = basevar_index (ptr->map, partition);
709 /* If this base var wasn't live before, it is now. Clear the element list
710 since it was delayed until needed. */
711 if (bitmap_set_bit (ptr->live_base_var, root))
712 bitmap_clear (ptr->live_base_partitions[root]);
713 bitmap_set_bit (ptr->live_base_partitions[root], partition);
718 /* Clear the live bit for VAR in PTR. */
720 static inline void
721 live_track_clear_var (live_track_p ptr, tree var)
723 int p;
725 p = var_to_partition (ptr->map, var);
726 if (p != NO_PARTITION)
727 live_track_remove_partition (ptr, p);
731 /* Return TRUE if VAR is live in PTR. */
733 static inline bool
734 live_track_live_p (live_track_p ptr, tree var)
736 int p, root;
738 p = var_to_partition (ptr->map, var);
739 if (p != NO_PARTITION)
741 root = basevar_index (ptr->map, p);
742 if (bitmap_bit_p (ptr->live_base_var, root))
743 return bitmap_bit_p (ptr->live_base_partitions[root], p);
745 return false;
749 /* This routine will add USE to PTR. USE will be marked as live in both the
750 ssa live map and the live bitmap for the root of USE. */
752 static inline void
753 live_track_process_use (live_track_p ptr, tree use)
755 int p;
757 p = var_to_partition (ptr->map, use);
758 if (p == NO_PARTITION)
759 return;
761 /* Mark as live in the appropriate live list. */
762 live_track_add_partition (ptr, p);
766 /* This routine will process a DEF in PTR. DEF will be removed from the live
767 lists, and if there are any other live partitions with the same base
768 variable, conflicts will be added to GRAPH. */
770 static inline void
771 live_track_process_def (live_track_p ptr, tree def, ssa_conflicts_p graph)
773 int p, root;
774 bitmap b;
775 unsigned x;
776 bitmap_iterator bi;
778 p = var_to_partition (ptr->map, def);
779 if (p == NO_PARTITION)
780 return;
782 /* Clear the liveness bit. */
783 live_track_remove_partition (ptr, p);
785 /* If the bitmap isn't empty now, conflicts need to be added. */
786 root = basevar_index (ptr->map, p);
787 if (bitmap_bit_p (ptr->live_base_var, root))
789 b = ptr->live_base_partitions[root];
790 EXECUTE_IF_SET_IN_BITMAP (b, 0, x, bi)
791 ssa_conflicts_add (graph, p, x);
796 /* Initialize PTR with the partitions set in INIT. */
798 static inline void
799 live_track_init (live_track_p ptr, bitmap init)
801 unsigned p;
802 bitmap_iterator bi;
804 /* Mark all live on exit partitions. */
805 EXECUTE_IF_SET_IN_BITMAP (init, 0, p, bi)
806 live_track_add_partition (ptr, p);
810 /* This routine will clear all live partitions in PTR. */
812 static inline void
813 live_track_clear_base_vars (live_track_p ptr)
815 /* Simply clear the live base list. Anything marked as live in the element
816 lists will be cleared later if/when the base variable ever comes alive
817 again. */
818 bitmap_clear (ptr->live_base_var);
822 /* Build a conflict graph based on LIVEINFO. Any partitions which are in the
823 partition view of the var_map liveinfo is based on get entries in the
824 conflict graph. Only conflicts between ssa_name partitions with the same
825 base variable are added. */
827 static ssa_conflicts_p
828 build_ssa_conflict_graph (tree_live_info_p liveinfo)
830 ssa_conflicts_p graph;
831 var_map map;
832 basic_block bb;
833 ssa_op_iter iter;
834 live_track_p live;
836 map = live_var_map (liveinfo);
837 graph = ssa_conflicts_new (num_var_partitions (map));
839 live = new_live_track (map);
841 FOR_EACH_BB_FN (bb, cfun)
843 /* Start with live on exit temporaries. */
844 live_track_init (live, live_on_exit (liveinfo, bb));
846 for (gimple_stmt_iterator gsi = gsi_last_bb (bb); !gsi_end_p (gsi);
847 gsi_prev (&gsi))
849 tree var;
850 gimple stmt = gsi_stmt (gsi);
852 /* A copy between 2 partitions does not introduce an interference
853 by itself. If they did, you would never be able to coalesce
854 two things which are copied. If the two variables really do
855 conflict, they will conflict elsewhere in the program.
857 This is handled by simply removing the SRC of the copy from the
858 live list, and processing the stmt normally. */
859 if (is_gimple_assign (stmt))
861 tree lhs = gimple_assign_lhs (stmt);
862 tree rhs1 = gimple_assign_rhs1 (stmt);
863 if (gimple_assign_copy_p (stmt)
864 && TREE_CODE (lhs) == SSA_NAME
865 && TREE_CODE (rhs1) == SSA_NAME)
866 live_track_clear_var (live, rhs1);
868 else if (is_gimple_debug (stmt))
869 continue;
871 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_DEF)
872 live_track_process_def (live, var, graph);
874 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_USE)
875 live_track_process_use (live, var);
878 /* If result of a PHI is unused, looping over the statements will not
879 record any conflicts since the def was never live. Since the PHI node
880 is going to be translated out of SSA form, it will insert a copy.
881 There must be a conflict recorded between the result of the PHI and
882 any variables that are live. Otherwise the out-of-ssa translation
883 may create incorrect code. */
884 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
885 gsi_next (&gsi))
887 gphi *phi = gsi.phi ();
888 tree result = PHI_RESULT (phi);
889 if (live_track_live_p (live, result))
890 live_track_process_def (live, result, graph);
893 live_track_clear_base_vars (live);
896 delete_live_track (live);
897 return graph;
901 /* Shortcut routine to print messages to file F of the form:
902 "STR1 EXPR1 STR2 EXPR2 STR3." */
904 static inline void
905 print_exprs (FILE *f, const char *str1, tree expr1, const char *str2,
906 tree expr2, const char *str3)
908 fprintf (f, "%s", str1);
909 print_generic_expr (f, expr1, TDF_SLIM);
910 fprintf (f, "%s", str2);
911 print_generic_expr (f, expr2, TDF_SLIM);
912 fprintf (f, "%s", str3);
916 /* Print a failure to coalesce a MUST_COALESCE pair X and Y. */
918 static inline void
919 fail_abnormal_edge_coalesce (int x, int y)
921 fprintf (stderr, "\nUnable to coalesce ssa_names %d and %d",x, y);
922 fprintf (stderr, " which are marked as MUST COALESCE.\n");
923 print_generic_expr (stderr, ssa_name (x), TDF_SLIM);
924 fprintf (stderr, " and ");
925 print_generic_stmt (stderr, ssa_name (y), TDF_SLIM);
927 internal_error ("SSA corruption");
931 /* This function creates a var_map for the current function as well as creating
932 a coalesce list for use later in the out of ssa process. */
934 static var_map
935 create_outofssa_var_map (coalesce_list_p cl, bitmap used_in_copy)
937 gimple_stmt_iterator gsi;
938 basic_block bb;
939 tree var;
940 gimple stmt;
941 tree first;
942 var_map map;
943 ssa_op_iter iter;
944 int v1, v2, cost;
945 unsigned i;
947 map = init_var_map (num_ssa_names);
949 FOR_EACH_BB_FN (bb, cfun)
951 tree arg;
953 for (gphi_iterator gpi = gsi_start_phis (bb);
954 !gsi_end_p (gpi);
955 gsi_next (&gpi))
957 gphi *phi = gpi.phi ();
958 size_t i;
959 int ver;
960 tree res;
961 bool saw_copy = false;
963 res = gimple_phi_result (phi);
964 ver = SSA_NAME_VERSION (res);
965 register_ssa_partition (map, res);
967 /* Register ssa_names and coalesces between the args and the result
968 of all PHI. */
969 for (i = 0; i < gimple_phi_num_args (phi); i++)
971 edge e = gimple_phi_arg_edge (phi, i);
972 arg = PHI_ARG_DEF (phi, i);
973 if (TREE_CODE (arg) != SSA_NAME)
974 continue;
976 register_ssa_partition (map, arg);
977 if (gimple_can_coalesce_p (arg, res)
978 || (e->flags & EDGE_ABNORMAL))
980 saw_copy = true;
981 bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (arg));
982 if ((e->flags & EDGE_ABNORMAL) == 0)
984 int cost = coalesce_cost_edge (e);
985 if (cost == 1 && has_single_use (arg))
986 add_cost_one_coalesce (cl, ver, SSA_NAME_VERSION (arg));
987 else
988 add_coalesce (cl, ver, SSA_NAME_VERSION (arg), cost);
992 if (saw_copy)
993 bitmap_set_bit (used_in_copy, ver);
996 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
998 stmt = gsi_stmt (gsi);
1000 if (is_gimple_debug (stmt))
1001 continue;
1003 /* Register USE and DEF operands in each statement. */
1004 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, (SSA_OP_DEF|SSA_OP_USE))
1005 register_ssa_partition (map, var);
1007 /* Check for copy coalesces. */
1008 switch (gimple_code (stmt))
1010 case GIMPLE_ASSIGN:
1012 tree lhs = gimple_assign_lhs (stmt);
1013 tree rhs1 = gimple_assign_rhs1 (stmt);
1014 if (gimple_assign_ssa_name_copy_p (stmt)
1015 && gimple_can_coalesce_p (lhs, rhs1))
1017 v1 = SSA_NAME_VERSION (lhs);
1018 v2 = SSA_NAME_VERSION (rhs1);
1019 cost = coalesce_cost_bb (bb);
1020 add_coalesce (cl, v1, v2, cost);
1021 bitmap_set_bit (used_in_copy, v1);
1022 bitmap_set_bit (used_in_copy, v2);
1025 break;
1027 case GIMPLE_ASM:
1029 gasm *asm_stmt = as_a <gasm *> (stmt);
1030 unsigned long noutputs, i;
1031 unsigned long ninputs;
1032 tree *outputs, link;
1033 noutputs = gimple_asm_noutputs (asm_stmt);
1034 ninputs = gimple_asm_ninputs (asm_stmt);
1035 outputs = (tree *) alloca (noutputs * sizeof (tree));
1036 for (i = 0; i < noutputs; ++i)
1038 link = gimple_asm_output_op (asm_stmt, i);
1039 outputs[i] = TREE_VALUE (link);
1042 for (i = 0; i < ninputs; ++i)
1044 const char *constraint;
1045 tree input;
1046 char *end;
1047 unsigned long match;
1049 link = gimple_asm_input_op (asm_stmt, i);
1050 constraint
1051 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
1052 input = TREE_VALUE (link);
1054 if (TREE_CODE (input) != SSA_NAME)
1055 continue;
1057 match = strtoul (constraint, &end, 10);
1058 if (match >= noutputs || end == constraint)
1059 continue;
1061 if (TREE_CODE (outputs[match]) != SSA_NAME)
1062 continue;
1064 v1 = SSA_NAME_VERSION (outputs[match]);
1065 v2 = SSA_NAME_VERSION (input);
1067 if (gimple_can_coalesce_p (outputs[match], input))
1069 cost = coalesce_cost (REG_BR_PROB_BASE,
1070 optimize_bb_for_size_p (bb));
1071 add_coalesce (cl, v1, v2, cost);
1072 bitmap_set_bit (used_in_copy, v1);
1073 bitmap_set_bit (used_in_copy, v2);
1076 break;
1079 default:
1080 break;
1085 /* Now process result decls and live on entry variables for entry into
1086 the coalesce list. */
1087 first = NULL_TREE;
1088 for (i = 1; i < num_ssa_names; i++)
1090 var = ssa_name (i);
1091 if (var != NULL_TREE && !virtual_operand_p (var))
1093 /* Add coalesces between all the result decls. */
1094 if (SSA_NAME_VAR (var)
1095 && TREE_CODE (SSA_NAME_VAR (var)) == RESULT_DECL)
1097 if (first == NULL_TREE)
1098 first = var;
1099 else
1101 gcc_assert (gimple_can_coalesce_p (var, first));
1102 v1 = SSA_NAME_VERSION (first);
1103 v2 = SSA_NAME_VERSION (var);
1104 bitmap_set_bit (used_in_copy, v1);
1105 bitmap_set_bit (used_in_copy, v2);
1106 cost = coalesce_cost_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
1107 add_coalesce (cl, v1, v2, cost);
1110 /* Mark any default_def variables as being in the coalesce list
1111 since they will have to be coalesced with the base variable. If
1112 not marked as present, they won't be in the coalesce view. */
1113 if (SSA_NAME_IS_DEFAULT_DEF (var)
1114 && !has_zero_uses (var))
1115 bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (var));
1119 return map;
1123 /* Attempt to coalesce ssa versions X and Y together using the partition
1124 mapping in MAP and checking conflicts in GRAPH. Output any debug info to
1125 DEBUG, if it is nun-NULL. */
1127 static inline bool
1128 attempt_coalesce (var_map map, ssa_conflicts_p graph, int x, int y,
1129 FILE *debug)
1131 int z;
1132 tree var1, var2;
1133 int p1, p2;
1135 p1 = var_to_partition (map, ssa_name (x));
1136 p2 = var_to_partition (map, ssa_name (y));
1138 if (debug)
1140 fprintf (debug, "(%d)", x);
1141 print_generic_expr (debug, partition_to_var (map, p1), TDF_SLIM);
1142 fprintf (debug, " & (%d)", y);
1143 print_generic_expr (debug, partition_to_var (map, p2), TDF_SLIM);
1146 if (p1 == p2)
1148 if (debug)
1149 fprintf (debug, ": Already Coalesced.\n");
1150 return true;
1153 if (debug)
1154 fprintf (debug, " [map: %d, %d] ", p1, p2);
1157 if (!ssa_conflicts_test_p (graph, p1, p2))
1159 var1 = partition_to_var (map, p1);
1160 var2 = partition_to_var (map, p2);
1161 z = var_union (map, var1, var2);
1162 if (z == NO_PARTITION)
1164 if (debug)
1165 fprintf (debug, ": Unable to perform partition union.\n");
1166 return false;
1169 /* z is the new combined partition. Remove the other partition from
1170 the list, and merge the conflicts. */
1171 if (z == p1)
1172 ssa_conflicts_merge (graph, p1, p2);
1173 else
1174 ssa_conflicts_merge (graph, p2, p1);
1176 if (debug)
1177 fprintf (debug, ": Success -> %d\n", z);
1178 return true;
1181 if (debug)
1182 fprintf (debug, ": Fail due to conflict\n");
1184 return false;
1188 /* Attempt to Coalesce partitions in MAP which occur in the list CL using
1189 GRAPH. Debug output is sent to DEBUG if it is non-NULL. */
1191 static void
1192 coalesce_partitions (var_map map, ssa_conflicts_p graph, coalesce_list_p cl,
1193 FILE *debug)
1195 int x = 0, y = 0;
1196 tree var1, var2;
1197 int cost;
1198 basic_block bb;
1199 edge e;
1200 edge_iterator ei;
1202 /* First, coalesce all the copies across abnormal edges. These are not placed
1203 in the coalesce list because they do not need to be sorted, and simply
1204 consume extra memory/compilation time in large programs. */
1206 FOR_EACH_BB_FN (bb, cfun)
1208 FOR_EACH_EDGE (e, ei, bb->preds)
1209 if (e->flags & EDGE_ABNORMAL)
1211 gphi_iterator gsi;
1212 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
1213 gsi_next (&gsi))
1215 gphi *phi = gsi.phi ();
1216 tree arg = PHI_ARG_DEF (phi, e->dest_idx);
1217 if (SSA_NAME_IS_DEFAULT_DEF (arg)
1218 && (!SSA_NAME_VAR (arg)
1219 || TREE_CODE (SSA_NAME_VAR (arg)) != PARM_DECL))
1220 continue;
1222 tree res = PHI_RESULT (phi);
1223 int v1 = SSA_NAME_VERSION (res);
1224 int v2 = SSA_NAME_VERSION (arg);
1226 if (debug)
1227 fprintf (debug, "Abnormal coalesce: ");
1229 if (!attempt_coalesce (map, graph, v1, v2, debug))
1230 fail_abnormal_edge_coalesce (v1, v2);
1235 /* Now process the items in the coalesce list. */
1237 while ((cost = pop_best_coalesce (cl, &x, &y)) != NO_BEST_COALESCE)
1239 var1 = ssa_name (x);
1240 var2 = ssa_name (y);
1242 /* Assert the coalesces have the same base variable. */
1243 gcc_assert (gimple_can_coalesce_p (var1, var2));
1245 if (debug)
1246 fprintf (debug, "Coalesce list: ");
1247 attempt_coalesce (map, graph, x, y, debug);
1252 /* Hashtable support for storing SSA names hashed by their SSA_NAME_VAR. */
1254 struct ssa_name_var_hash : typed_noop_remove <tree_node>
1256 typedef union tree_node *value_type;
1257 typedef union tree_node *compare_type;
1258 static inline hashval_t hash (const tree_node *);
1259 static inline int equal (const tree_node *, const tree_node *);
1262 inline hashval_t
1263 ssa_name_var_hash::hash (const_tree n)
1265 return DECL_UID (SSA_NAME_VAR (n));
1268 inline int
1269 ssa_name_var_hash::equal (const tree_node *n1, const tree_node *n2)
1271 return SSA_NAME_VAR (n1) == SSA_NAME_VAR (n2);
1275 /* Reduce the number of copies by coalescing variables in the function. Return
1276 a partition map with the resulting coalesces. */
1278 extern var_map
1279 coalesce_ssa_name (void)
1281 tree_live_info_p liveinfo;
1282 ssa_conflicts_p graph;
1283 coalesce_list_p cl;
1284 bitmap used_in_copies = BITMAP_ALLOC (NULL);
1285 var_map map;
1286 unsigned int i;
1288 cl = create_coalesce_list ();
1289 map = create_outofssa_var_map (cl, used_in_copies);
1291 /* If optimization is disabled, we need to coalesce all the names originating
1292 from the same SSA_NAME_VAR so debug info remains undisturbed. */
1293 if (!optimize)
1295 hash_table<ssa_name_var_hash> ssa_name_hash (10);
1297 for (i = 1; i < num_ssa_names; i++)
1299 tree a = ssa_name (i);
1301 if (a
1302 && SSA_NAME_VAR (a)
1303 && !DECL_IGNORED_P (SSA_NAME_VAR (a))
1304 && (!has_zero_uses (a) || !SSA_NAME_IS_DEFAULT_DEF (a)))
1306 tree *slot = ssa_name_hash.find_slot (a, INSERT);
1308 if (!*slot)
1309 *slot = a;
1310 else
1312 /* If the variable is a PARM_DECL or a RESULT_DECL, we
1313 _require_ that all the names originating from it be
1314 coalesced, because there must be a single partition
1315 containing all the names so that it can be assigned
1316 the canonical RTL location of the DECL safely.
1317 If in_lto_p, a function could have been compiled
1318 originally with optimizations and only the link
1319 performed at -O0, so we can't actually require it. */
1320 const int cost
1321 = (TREE_CODE (SSA_NAME_VAR (a)) == VAR_DECL || in_lto_p)
1322 ? MUST_COALESCE_COST - 1 : MUST_COALESCE_COST;
1323 add_coalesce (cl, SSA_NAME_VERSION (a),
1324 SSA_NAME_VERSION (*slot), cost);
1325 bitmap_set_bit (used_in_copies, SSA_NAME_VERSION (a));
1326 bitmap_set_bit (used_in_copies, SSA_NAME_VERSION (*slot));
1331 if (dump_file && (dump_flags & TDF_DETAILS))
1332 dump_var_map (dump_file, map);
1334 /* Don't calculate live ranges for variables not in the coalesce list. */
1335 partition_view_bitmap (map, used_in_copies, true);
1336 BITMAP_FREE (used_in_copies);
1338 if (num_var_partitions (map) < 1)
1340 delete_coalesce_list (cl);
1341 return map;
1344 if (dump_file && (dump_flags & TDF_DETAILS))
1345 dump_var_map (dump_file, map);
1347 liveinfo = calculate_live_ranges (map, false);
1349 if (dump_file && (dump_flags & TDF_DETAILS))
1350 dump_live_info (dump_file, liveinfo, LIVEDUMP_ENTRY);
1352 /* Build a conflict graph. */
1353 graph = build_ssa_conflict_graph (liveinfo);
1354 delete_tree_live_info (liveinfo);
1355 if (dump_file && (dump_flags & TDF_DETAILS))
1356 ssa_conflicts_dump (dump_file, graph);
1358 sort_coalesce_list (cl);
1360 if (dump_file && (dump_flags & TDF_DETAILS))
1362 fprintf (dump_file, "\nAfter sorting:\n");
1363 dump_coalesce_list (dump_file, cl);
1366 /* First, coalesce all live on entry variables to their base variable.
1367 This will ensure the first use is coming from the correct location. */
1369 if (dump_file && (dump_flags & TDF_DETAILS))
1370 dump_var_map (dump_file, map);
1372 /* Now coalesce everything in the list. */
1373 coalesce_partitions (map, graph, cl,
1374 ((dump_flags & TDF_DETAILS) ? dump_file
1375 : NULL));
1377 delete_coalesce_list (cl);
1378 ssa_conflicts_delete (graph);
1380 return map;