2017-01-23 Hristian Kirtchev <kirtchev@adacore.com>
[official-gcc.git] / gcc / ada / sem_ch6.adb
blob2591aafbb850e063017ac6364da32996055327b1
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Einfo; use Einfo;
32 with Elists; use Elists;
33 with Errout; use Errout;
34 with Expander; use Expander;
35 with Exp_Ch6; use Exp_Ch6;
36 with Exp_Ch7; use Exp_Ch7;
37 with Exp_Ch9; use Exp_Ch9;
38 with Exp_Dbug; use Exp_Dbug;
39 with Exp_Disp; use Exp_Disp;
40 with Exp_Tss; use Exp_Tss;
41 with Exp_Util; use Exp_Util;
42 with Fname; use Fname;
43 with Freeze; use Freeze;
44 with Ghost; use Ghost;
45 with Inline; use Inline;
46 with Itypes; use Itypes;
47 with Lib.Xref; use Lib.Xref;
48 with Layout; use Layout;
49 with Namet; use Namet;
50 with Lib; use Lib;
51 with Nlists; use Nlists;
52 with Nmake; use Nmake;
53 with Opt; use Opt;
54 with Output; use Output;
55 with Restrict; use Restrict;
56 with Rident; use Rident;
57 with Rtsfind; use Rtsfind;
58 with Sem; use Sem;
59 with Sem_Aux; use Sem_Aux;
60 with Sem_Cat; use Sem_Cat;
61 with Sem_Ch3; use Sem_Ch3;
62 with Sem_Ch4; use Sem_Ch4;
63 with Sem_Ch5; use Sem_Ch5;
64 with Sem_Ch8; use Sem_Ch8;
65 with Sem_Ch9; use Sem_Ch9;
66 with Sem_Ch10; use Sem_Ch10;
67 with Sem_Ch12; use Sem_Ch12;
68 with Sem_Ch13; use Sem_Ch13;
69 with Sem_Dim; use Sem_Dim;
70 with Sem_Disp; use Sem_Disp;
71 with Sem_Dist; use Sem_Dist;
72 with Sem_Elim; use Sem_Elim;
73 with Sem_Eval; use Sem_Eval;
74 with Sem_Mech; use Sem_Mech;
75 with Sem_Prag; use Sem_Prag;
76 with Sem_Res; use Sem_Res;
77 with Sem_Util; use Sem_Util;
78 with Sem_Type; use Sem_Type;
79 with Sem_Warn; use Sem_Warn;
80 with Sinput; use Sinput;
81 with Stand; use Stand;
82 with Sinfo; use Sinfo;
83 with Sinfo.CN; use Sinfo.CN;
84 with Snames; use Snames;
85 with Stringt; use Stringt;
86 with Style;
87 with Stylesw; use Stylesw;
88 with Tbuild; use Tbuild;
89 with Uintp; use Uintp;
90 with Urealp; use Urealp;
91 with Validsw; use Validsw;
93 package body Sem_Ch6 is
95 May_Hide_Profile : Boolean := False;
96 -- This flag is used to indicate that two formals in two subprograms being
97 -- checked for conformance differ only in that one is an access parameter
98 -- while the other is of a general access type with the same designated
99 -- type. In this case, if the rest of the signatures match, a call to
100 -- either subprogram may be ambiguous, which is worth a warning. The flag
101 -- is set in Compatible_Types, and the warning emitted in
102 -- New_Overloaded_Entity.
104 -----------------------
105 -- Local Subprograms --
106 -----------------------
108 procedure Analyze_Function_Return (N : Node_Id);
109 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
110 -- applies to a [generic] function.
112 procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
113 -- Analyze a generic subprogram body. N is the body to be analyzed, and
114 -- Gen_Id is the defining entity Id for the corresponding spec.
116 procedure Analyze_Null_Procedure
117 (N : Node_Id;
118 Is_Completion : out Boolean);
119 -- A null procedure can be a declaration or (Ada 2012) a completion
121 procedure Analyze_Return_Statement (N : Node_Id);
122 -- Common processing for simple and extended return statements
124 procedure Analyze_Return_Type (N : Node_Id);
125 -- Subsidiary to Process_Formals: analyze subtype mark in function
126 -- specification in a context where the formals are visible and hide
127 -- outer homographs.
129 procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
130 -- Does all the real work of Analyze_Subprogram_Body. This is split out so
131 -- that we can use RETURN but not skip the debug output at the end.
133 function Can_Override_Operator (Subp : Entity_Id) return Boolean;
134 -- Returns true if Subp can override a predefined operator.
136 procedure Check_Conformance
137 (New_Id : Entity_Id;
138 Old_Id : Entity_Id;
139 Ctype : Conformance_Type;
140 Errmsg : Boolean;
141 Conforms : out Boolean;
142 Err_Loc : Node_Id := Empty;
143 Get_Inst : Boolean := False;
144 Skip_Controlling_Formals : Boolean := False);
145 -- Given two entities, this procedure checks that the profiles associated
146 -- with these entities meet the conformance criterion given by the third
147 -- parameter. If they conform, Conforms is set True and control returns
148 -- to the caller. If they do not conform, Conforms is set to False, and
149 -- in addition, if Errmsg is True on the call, proper messages are output
150 -- to complain about the conformance failure. If Err_Loc is non_Empty
151 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
152 -- error messages are placed on the appropriate part of the construct
153 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
154 -- against a formal access-to-subprogram type so Get_Instance_Of must
155 -- be called.
157 procedure Check_Limited_Return
158 (N : Node_Id;
159 Expr : Node_Id;
160 R_Type : Entity_Id);
161 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning limited
162 -- types. Used only for simple return statements. Expr is the expression
163 -- returned.
165 procedure Check_Subprogram_Order (N : Node_Id);
166 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
167 -- the alpha ordering rule for N if this ordering requirement applicable.
169 procedure Check_Returns
170 (HSS : Node_Id;
171 Mode : Character;
172 Err : out Boolean;
173 Proc : Entity_Id := Empty);
174 -- Called to check for missing return statements in a function body, or for
175 -- returns present in a procedure body which has No_Return set. HSS is the
176 -- handled statement sequence for the subprogram body. This procedure
177 -- checks all flow paths to make sure they either have return (Mode = 'F',
178 -- used for functions) or do not have a return (Mode = 'P', used for
179 -- No_Return procedures). The flag Err is set if there are any control
180 -- paths not explicitly terminated by a return in the function case, and is
181 -- True otherwise. Proc is the entity for the procedure case and is used
182 -- in posting the warning message.
184 procedure Check_Untagged_Equality (Eq_Op : Entity_Id);
185 -- In Ada 2012, a primitive equality operator on an untagged record type
186 -- must appear before the type is frozen, and have the same visibility as
187 -- that of the type. This procedure checks that this rule is met, and
188 -- otherwise emits an error on the subprogram declaration and a warning
189 -- on the earlier freeze point if it is easy to locate. In Ada 2012 mode,
190 -- this routine outputs errors (or warnings if -gnatd.E is set). In earlier
191 -- versions of Ada, warnings are output if Warn_On_Ada_2012_Incompatibility
192 -- is set, otherwise the call has no effect.
194 procedure Enter_Overloaded_Entity (S : Entity_Id);
195 -- This procedure makes S, a new overloaded entity, into the first visible
196 -- entity with that name.
198 function Is_Non_Overriding_Operation
199 (Prev_E : Entity_Id;
200 New_E : Entity_Id) return Boolean;
201 -- Enforce the rule given in 12.3(18): a private operation in an instance
202 -- overrides an inherited operation only if the corresponding operation
203 -- was overriding in the generic. This needs to be checked for primitive
204 -- operations of types derived (in the generic unit) from formal private
205 -- or formal derived types.
207 procedure Make_Inequality_Operator (S : Entity_Id);
208 -- Create the declaration for an inequality operator that is implicitly
209 -- created by a user-defined equality operator that yields a boolean.
211 procedure Set_Formal_Validity (Formal_Id : Entity_Id);
212 -- Formal_Id is an formal parameter entity. This procedure deals with
213 -- setting the proper validity status for this entity, which depends on
214 -- the kind of parameter and the validity checking mode.
216 ---------------------------------------------
217 -- Analyze_Abstract_Subprogram_Declaration --
218 ---------------------------------------------
220 procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
221 Scop : constant Entity_Id := Current_Scope;
222 Subp_Id : constant Entity_Id :=
223 Analyze_Subprogram_Specification (Specification (N));
225 begin
226 Check_SPARK_05_Restriction ("abstract subprogram is not allowed", N);
228 Generate_Definition (Subp_Id);
230 Set_Is_Abstract_Subprogram (Subp_Id);
231 New_Overloaded_Entity (Subp_Id);
232 Check_Delayed_Subprogram (Subp_Id);
234 Set_Categorization_From_Scope (Subp_Id, Scop);
236 if Ekind (Scope (Subp_Id)) = E_Protected_Type then
237 Error_Msg_N ("abstract subprogram not allowed in protected type", N);
239 -- Issue a warning if the abstract subprogram is neither a dispatching
240 -- operation nor an operation that overrides an inherited subprogram or
241 -- predefined operator, since this most likely indicates a mistake.
243 elsif Warn_On_Redundant_Constructs
244 and then not Is_Dispatching_Operation (Subp_Id)
245 and then not Present (Overridden_Operation (Subp_Id))
246 and then (not Is_Operator_Symbol_Name (Chars (Subp_Id))
247 or else Scop /= Scope (Etype (First_Formal (Subp_Id))))
248 then
249 Error_Msg_N
250 ("abstract subprogram is not dispatching or overriding?r?", N);
251 end if;
253 Generate_Reference_To_Formals (Subp_Id);
254 Check_Eliminated (Subp_Id);
256 if Has_Aspects (N) then
257 Analyze_Aspect_Specifications (N, Subp_Id);
258 end if;
259 end Analyze_Abstract_Subprogram_Declaration;
261 ---------------------------------
262 -- Analyze_Expression_Function --
263 ---------------------------------
265 procedure Analyze_Expression_Function (N : Node_Id) is
266 Expr : constant Node_Id := Expression (N);
267 Loc : constant Source_Ptr := Sloc (N);
268 LocX : constant Source_Ptr := Sloc (Expr);
269 Spec : constant Node_Id := Specification (N);
271 Asp : Node_Id;
272 Def_Id : Entity_Id;
273 New_Body : Node_Id;
274 New_Spec : Node_Id;
275 Orig_N : Node_Id;
276 Ret : Node_Id;
277 Ret_Type : Entity_Id;
279 Prev : Entity_Id;
280 -- If the expression is a completion, Prev is the entity whose
281 -- declaration is completed. Def_Id is needed to analyze the spec.
283 begin
284 -- This is one of the occasions on which we transform the tree during
285 -- semantic analysis. If this is a completion, transform the expression
286 -- function into an equivalent subprogram body, and analyze it.
288 -- Expression functions are inlined unconditionally. The back-end will
289 -- determine whether this is possible.
291 Inline_Processing_Required := True;
293 -- Create a specification for the generated body. This must be done
294 -- prior to the analysis of the initial declaration.
296 New_Spec := Copy_Subprogram_Spec (Spec);
297 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
299 -- If there are previous overloadable entities with the same name,
300 -- check whether any of them is completed by the expression function.
301 -- In a generic context a formal subprogram has no completion.
303 if Present (Prev)
304 and then Is_Overloadable (Prev)
305 and then not Is_Formal_Subprogram (Prev)
306 then
307 Def_Id := Analyze_Subprogram_Specification (Spec);
308 Prev := Find_Corresponding_Spec (N);
310 -- The previous entity may be an expression function as well, in
311 -- which case the redeclaration is illegal.
313 if Present (Prev)
314 and then Nkind (Original_Node (Unit_Declaration_Node (Prev))) =
315 N_Expression_Function
316 then
317 Error_Msg_Sloc := Sloc (Prev);
318 Error_Msg_N ("& conflicts with declaration#", Def_Id);
319 return;
320 end if;
321 end if;
323 Ret := Make_Simple_Return_Statement (LocX, Expression (N));
325 New_Body :=
326 Make_Subprogram_Body (Loc,
327 Specification => New_Spec,
328 Declarations => Empty_List,
329 Handled_Statement_Sequence =>
330 Make_Handled_Sequence_Of_Statements (LocX,
331 Statements => New_List (Ret)));
332 Set_Was_Expression_Function (New_Body);
334 -- If the expression completes a generic subprogram, we must create a
335 -- separate node for the body, because at instantiation the original
336 -- node of the generic copy must be a generic subprogram body, and
337 -- cannot be a expression function. Otherwise we just rewrite the
338 -- expression with the non-generic body.
340 if Present (Prev) and then Ekind (Prev) = E_Generic_Function then
341 Insert_After (N, New_Body);
343 -- Propagate any aspects or pragmas that apply to the expression
344 -- function to the proper body when the expression function acts
345 -- as a completion.
347 if Has_Aspects (N) then
348 Move_Aspects (N, To => New_Body);
349 end if;
351 Relocate_Pragmas_To_Body (New_Body);
353 Rewrite (N, Make_Null_Statement (Loc));
354 Set_Has_Completion (Prev, False);
355 Analyze (N);
356 Analyze (New_Body);
357 Set_Is_Inlined (Prev);
359 -- If the expression function is a completion, the previous declaration
360 -- must come from source. We know already that it appears in the current
361 -- scope. The entity itself may be internally created if within a body
362 -- to be inlined.
364 elsif Present (Prev)
365 and then Comes_From_Source (Parent (Prev))
366 and then not Is_Formal_Subprogram (Prev)
367 then
368 Set_Has_Completion (Prev, False);
369 Set_Is_Inlined (Prev);
370 Ret_Type := Etype (Prev);
372 -- An expression function which acts as a completion freezes the
373 -- expression. This means freezing the return type, and if it is
374 -- an access type, freezing its designated type as well.
376 -- Note that we cannot defer this freezing to the analysis of the
377 -- expression itself, because a freeze node might appear in a nested
378 -- scope, leading to an elaboration order issue in gigi.
380 Freeze_Before (N, Ret_Type);
382 -- An entity can only be frozen if it is complete, so if the type
383 -- is still unfrozen it must still be incomplete in some way, e.g.
384 -- a privte type without a full view, or a type derived from such
385 -- in an enclosing scope. Except in a generic context, such an
386 -- incomplete type is an error.
388 if not Is_Frozen (Ret_Type)
389 and then not Is_Generic_Type (Ret_Type)
390 and then not Inside_A_Generic
391 then
392 Error_Msg_NE
393 ("premature use of private type&",
394 Result_Definition (Specification (N)), Ret_Type);
395 end if;
397 if Is_Access_Type (Etype (Prev)) then
398 Freeze_Before (N, Designated_Type (Etype (Prev)));
399 end if;
401 -- For navigation purposes, indicate that the function is a body
403 Generate_Reference (Prev, Defining_Entity (N), 'b', Force => True);
404 Rewrite (N, New_Body);
406 -- Remove any existing aspects from the original node because the act
407 -- of rewriting causes the list to be shared between the two nodes.
409 Orig_N := Original_Node (N);
410 Remove_Aspects (Orig_N);
412 -- Propagate any pragmas that apply to the expression function to the
413 -- proper body when the expression function acts as a completion.
414 -- Aspects are automatically transfered because of node rewriting.
416 Relocate_Pragmas_To_Body (N);
417 Analyze (N);
419 -- Once the aspects of the generated body have been analyzed, create
420 -- a copy for ASIS purposes and associate it with the original node.
422 if Has_Aspects (N) then
423 Set_Aspect_Specifications (Orig_N,
424 New_Copy_List_Tree (Aspect_Specifications (N)));
425 end if;
427 -- Prev is the previous entity with the same name, but it is can
428 -- be an unrelated spec that is not completed by the expression
429 -- function. In that case the relevant entity is the one in the body.
430 -- Not clear that the backend can inline it in this case ???
432 if Has_Completion (Prev) then
434 -- The formals of the expression function are body formals,
435 -- and do not appear in the ali file, which will only contain
436 -- references to the formals of the original subprogram spec.
438 declare
439 F1 : Entity_Id;
440 F2 : Entity_Id;
442 begin
443 F1 := First_Formal (Def_Id);
444 F2 := First_Formal (Prev);
446 while Present (F1) loop
447 Set_Spec_Entity (F1, F2);
448 Next_Formal (F1);
449 Next_Formal (F2);
450 end loop;
451 end;
453 else
454 Set_Is_Inlined (Defining_Entity (New_Body));
455 end if;
457 -- If this is not a completion, create both a declaration and a body, so
458 -- that the expression can be inlined whenever possible.
460 else
461 -- An expression function that is not a completion is not a
462 -- subprogram declaration, and thus cannot appear in a protected
463 -- definition.
465 if Nkind (Parent (N)) = N_Protected_Definition then
466 Error_Msg_N
467 ("an expression function is not a legal protected operation", N);
468 end if;
470 Rewrite (N, Make_Subprogram_Declaration (Loc, Specification => Spec));
472 -- Remove any existing aspects from the original node because the act
473 -- of rewriting causes the list to be shared between the two nodes.
475 Orig_N := Original_Node (N);
476 Remove_Aspects (Orig_N);
478 Analyze (N);
480 -- Once the aspects of the generated spec have been analyzed, create
481 -- a copy for ASIS purposes and associate it with the original node.
483 if Has_Aspects (N) then
484 Set_Aspect_Specifications (Orig_N,
485 New_Copy_List_Tree (Aspect_Specifications (N)));
486 end if;
488 -- If aspect SPARK_Mode was specified on the body, it needs to be
489 -- repeated both on the generated spec and the body.
491 Asp := Find_Aspect (Defining_Unit_Name (Spec), Aspect_SPARK_Mode);
493 if Present (Asp) then
494 Asp := New_Copy_Tree (Asp);
495 Set_Analyzed (Asp, False);
496 Set_Aspect_Specifications (New_Body, New_List (Asp));
497 end if;
499 Def_Id := Defining_Entity (N);
501 -- Within a generic pre-analyze the original expression for name
502 -- capture. The body is also generated but plays no role in
503 -- this because it is not part of the original source.
505 if Inside_A_Generic then
506 Set_Has_Completion (Def_Id);
507 Push_Scope (Def_Id);
508 Install_Formals (Def_Id);
509 Preanalyze_Spec_Expression (Expr, Etype (Def_Id));
510 End_Scope;
511 end if;
513 Set_Is_Inlined (Defining_Entity (N));
515 -- Establish the linkages between the spec and the body. These are
516 -- used when the expression function acts as the prefix of attribute
517 -- 'Access in order to freeze the original expression which has been
518 -- moved to the generated body.
520 Set_Corresponding_Body (N, Defining_Entity (New_Body));
521 Set_Corresponding_Spec (New_Body, Defining_Entity (N));
523 -- To prevent premature freeze action, insert the new body at the end
524 -- of the current declarations, or at the end of the package spec.
525 -- However, resolve usage names now, to prevent spurious visibility
526 -- on later entities. Note that the function can now be called in
527 -- the current declarative part, which will appear to be prior to
528 -- the presence of the body in the code. There are nevertheless no
529 -- order of elaboration issues because all name resolution has taken
530 -- place at the point of declaration.
532 declare
533 Decls : List_Id := List_Containing (N);
534 Expr : constant Node_Id := Expression (Ret);
535 Par : constant Node_Id := Parent (Decls);
536 Typ : constant Entity_Id := Etype (Def_Id);
538 begin
539 -- If this is a wrapper created for in an instance for a formal
540 -- subprogram, insert body after declaration, to be analyzed when
541 -- the enclosing instance is analyzed.
543 if GNATprove_Mode
544 and then Is_Generic_Actual_Subprogram (Defining_Entity (N))
545 then
546 Insert_After (N, New_Body);
548 else
549 if Nkind (Par) = N_Package_Specification
550 and then Decls = Visible_Declarations (Par)
551 and then Present (Private_Declarations (Par))
552 and then not Is_Empty_List (Private_Declarations (Par))
553 then
554 Decls := Private_Declarations (Par);
555 end if;
557 Insert_After (Last (Decls), New_Body);
559 -- Preanalyze the expression for name capture, except in an
560 -- instance, where this has been done during generic analysis,
561 -- and will be redone when analyzing the body.
563 Set_Parent (Expr, Ret);
564 Push_Scope (Def_Id);
565 Install_Formals (Def_Id);
567 if not In_Instance then
568 Preanalyze_Spec_Expression (Expr, Typ);
569 Check_Limited_Return (Original_Node (N), Expr, Typ);
570 end if;
572 End_Scope;
573 end if;
574 end;
575 end if;
577 -- If the return expression is a static constant, we suppress warning
578 -- messages on unused formals, which in most cases will be noise.
580 Set_Is_Trivial_Subprogram
581 (Defining_Entity (New_Body), Is_OK_Static_Expression (Expr));
582 end Analyze_Expression_Function;
584 ----------------------------------------
585 -- Analyze_Extended_Return_Statement --
586 ----------------------------------------
588 procedure Analyze_Extended_Return_Statement (N : Node_Id) is
589 begin
590 Check_Compiler_Unit ("extended return statement", N);
591 Analyze_Return_Statement (N);
592 end Analyze_Extended_Return_Statement;
594 ----------------------------
595 -- Analyze_Function_Call --
596 ----------------------------
598 procedure Analyze_Function_Call (N : Node_Id) is
599 Actuals : constant List_Id := Parameter_Associations (N);
600 Func_Nam : constant Node_Id := Name (N);
601 Actual : Node_Id;
603 begin
604 Analyze (Func_Nam);
606 -- A call of the form A.B (X) may be an Ada 2005 call, which is
607 -- rewritten as B (A, X). If the rewriting is successful, the call
608 -- has been analyzed and we just return.
610 if Nkind (Func_Nam) = N_Selected_Component
611 and then Name (N) /= Func_Nam
612 and then Is_Rewrite_Substitution (N)
613 and then Present (Etype (N))
614 then
615 return;
616 end if;
618 -- If error analyzing name, then set Any_Type as result type and return
620 if Etype (Func_Nam) = Any_Type then
621 Set_Etype (N, Any_Type);
622 return;
623 end if;
625 -- Otherwise analyze the parameters
627 if Present (Actuals) then
628 Actual := First (Actuals);
629 while Present (Actual) loop
630 Analyze (Actual);
631 Check_Parameterless_Call (Actual);
632 Next (Actual);
633 end loop;
634 end if;
636 Analyze_Call (N);
637 end Analyze_Function_Call;
639 -----------------------------
640 -- Analyze_Function_Return --
641 -----------------------------
643 procedure Analyze_Function_Return (N : Node_Id) is
644 Loc : constant Source_Ptr := Sloc (N);
645 Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
646 Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
648 R_Type : constant Entity_Id := Etype (Scope_Id);
649 -- Function result subtype
651 procedure Check_Aggregate_Accessibility (Aggr : Node_Id);
652 -- Apply legality rule of 6.5 (5.8) to the access discriminants of an
653 -- aggregate in a return statement.
655 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
656 -- Check that the return_subtype_indication properly matches the result
657 -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
659 -----------------------------------
660 -- Check_Aggregate_Accessibility --
661 -----------------------------------
663 procedure Check_Aggregate_Accessibility (Aggr : Node_Id) is
664 Typ : constant Entity_Id := Etype (Aggr);
665 Assoc : Node_Id;
666 Discr : Entity_Id;
667 Expr : Node_Id;
668 Obj : Node_Id;
670 begin
671 if Is_Record_Type (Typ) and then Has_Discriminants (Typ) then
672 Discr := First_Discriminant (Typ);
673 Assoc := First (Component_Associations (Aggr));
674 while Present (Discr) loop
675 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type then
676 Expr := Expression (Assoc);
678 if Nkind (Expr) = N_Attribute_Reference
679 and then Attribute_Name (Expr) /= Name_Unrestricted_Access
680 then
681 Obj := Prefix (Expr);
682 while Nkind_In (Obj, N_Indexed_Component,
683 N_Selected_Component)
684 loop
685 Obj := Prefix (Obj);
686 end loop;
688 -- Do not check aliased formals or function calls. A
689 -- run-time check may still be needed ???
691 if Is_Entity_Name (Obj)
692 and then Comes_From_Source (Obj)
693 then
694 if Is_Formal (Entity (Obj))
695 and then Is_Aliased (Entity (Obj))
696 then
697 null;
699 elsif Object_Access_Level (Obj) >
700 Scope_Depth (Scope (Scope_Id))
701 then
702 Error_Msg_N
703 ("access discriminant in return aggregate would "
704 & "be a dangling reference", Obj);
705 end if;
706 end if;
707 end if;
708 end if;
710 Next_Discriminant (Discr);
711 end loop;
712 end if;
713 end Check_Aggregate_Accessibility;
715 -------------------------------------
716 -- Check_Return_Subtype_Indication --
717 -------------------------------------
719 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
720 Return_Obj : constant Node_Id := Defining_Identifier (Obj_Decl);
722 R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
723 -- Subtype given in the extended return statement (must match R_Type)
725 Subtype_Ind : constant Node_Id :=
726 Object_Definition (Original_Node (Obj_Decl));
728 R_Type_Is_Anon_Access : constant Boolean :=
729 Ekind_In (R_Type,
730 E_Anonymous_Access_Subprogram_Type,
731 E_Anonymous_Access_Protected_Subprogram_Type,
732 E_Anonymous_Access_Type);
733 -- True if return type of the function is an anonymous access type
734 -- Can't we make Is_Anonymous_Access_Type in einfo ???
736 R_Stm_Type_Is_Anon_Access : constant Boolean :=
737 Ekind_In (R_Stm_Type,
738 E_Anonymous_Access_Subprogram_Type,
739 E_Anonymous_Access_Protected_Subprogram_Type,
740 E_Anonymous_Access_Type);
741 -- True if type of the return object is an anonymous access type
743 procedure Error_No_Match (N : Node_Id);
744 -- Output error messages for case where types do not statically
745 -- match. N is the location for the messages.
747 --------------------
748 -- Error_No_Match --
749 --------------------
751 procedure Error_No_Match (N : Node_Id) is
752 begin
753 Error_Msg_N
754 ("subtype must statically match function result subtype", N);
756 if not Predicates_Match (R_Stm_Type, R_Type) then
757 Error_Msg_Node_2 := R_Type;
758 Error_Msg_NE
759 ("\predicate of& does not match predicate of&",
760 N, R_Stm_Type);
761 end if;
762 end Error_No_Match;
764 -- Start of processing for Check_Return_Subtype_Indication
766 begin
767 -- First, avoid cascaded errors
769 if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
770 return;
771 end if;
773 -- "return access T" case; check that the return statement also has
774 -- "access T", and that the subtypes statically match:
775 -- if this is an access to subprogram the signatures must match.
777 if R_Type_Is_Anon_Access then
778 if R_Stm_Type_Is_Anon_Access then
780 Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
781 then
782 if Base_Type (Designated_Type (R_Stm_Type)) /=
783 Base_Type (Designated_Type (R_Type))
784 or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
785 then
786 Error_No_Match (Subtype_Mark (Subtype_Ind));
787 end if;
789 else
790 -- For two anonymous access to subprogram types, the
791 -- types themselves must be type conformant.
793 if not Conforming_Types
794 (R_Stm_Type, R_Type, Fully_Conformant)
795 then
796 Error_No_Match (Subtype_Ind);
797 end if;
798 end if;
800 else
801 Error_Msg_N ("must use anonymous access type", Subtype_Ind);
802 end if;
804 -- If the return object is of an anonymous access type, then report
805 -- an error if the function's result type is not also anonymous.
807 elsif R_Stm_Type_Is_Anon_Access then
808 pragma Assert (not R_Type_Is_Anon_Access);
809 Error_Msg_N ("anonymous access not allowed for function with "
810 & "named access result", Subtype_Ind);
812 -- Subtype indication case: check that the return object's type is
813 -- covered by the result type, and that the subtypes statically match
814 -- when the result subtype is constrained. Also handle record types
815 -- with unknown discriminants for which we have built the underlying
816 -- record view. Coverage is needed to allow specific-type return
817 -- objects when the result type is class-wide (see AI05-32).
819 elsif Covers (Base_Type (R_Type), Base_Type (R_Stm_Type))
820 or else (Is_Underlying_Record_View (Base_Type (R_Stm_Type))
821 and then
822 Covers
823 (Base_Type (R_Type),
824 Underlying_Record_View (Base_Type (R_Stm_Type))))
825 then
826 -- A null exclusion may be present on the return type, on the
827 -- function specification, on the object declaration or on the
828 -- subtype itself.
830 if Is_Access_Type (R_Type)
831 and then
832 (Can_Never_Be_Null (R_Type)
833 or else Null_Exclusion_Present (Parent (Scope_Id))) /=
834 Can_Never_Be_Null (R_Stm_Type)
835 then
836 Error_No_Match (Subtype_Ind);
837 end if;
839 -- AI05-103: for elementary types, subtypes must statically match
841 if Is_Constrained (R_Type)
842 or else Is_Access_Type (R_Type)
843 then
844 if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
845 Error_No_Match (Subtype_Ind);
846 end if;
847 end if;
849 -- All remaining cases are illegal
851 -- Note: previous versions of this subprogram allowed the return
852 -- value to be the ancestor of the return type if the return type
853 -- was a null extension. This was plainly incorrect.
855 else
856 Error_Msg_N
857 ("wrong type for return_subtype_indication", Subtype_Ind);
858 end if;
859 end Check_Return_Subtype_Indication;
861 ---------------------
862 -- Local Variables --
863 ---------------------
865 Expr : Node_Id;
866 Obj_Decl : Node_Id;
868 -- Start of processing for Analyze_Function_Return
870 begin
871 Set_Return_Present (Scope_Id);
873 if Nkind (N) = N_Simple_Return_Statement then
874 Expr := Expression (N);
876 -- Guard against a malformed expression. The parser may have tried to
877 -- recover but the node is not analyzable.
879 if Nkind (Expr) = N_Error then
880 Set_Etype (Expr, Any_Type);
881 Expander_Mode_Save_And_Set (False);
882 return;
884 else
885 -- The resolution of a controlled [extension] aggregate associated
886 -- with a return statement creates a temporary which needs to be
887 -- finalized on function exit. Wrap the return statement inside a
888 -- block so that the finalization machinery can detect this case.
889 -- This early expansion is done only when the return statement is
890 -- not part of a handled sequence of statements.
892 if Nkind_In (Expr, N_Aggregate,
893 N_Extension_Aggregate)
894 and then Needs_Finalization (R_Type)
895 and then Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
896 then
897 Rewrite (N,
898 Make_Block_Statement (Loc,
899 Handled_Statement_Sequence =>
900 Make_Handled_Sequence_Of_Statements (Loc,
901 Statements => New_List (Relocate_Node (N)))));
903 Analyze (N);
904 return;
905 end if;
907 Analyze (Expr);
909 -- Ada 2005 (AI-251): If the type of the returned object is
910 -- an access to an interface type then we add an implicit type
911 -- conversion to force the displacement of the "this" pointer to
912 -- reference the secondary dispatch table. We cannot delay the
913 -- generation of this implicit conversion until the expansion
914 -- because in this case the type resolution changes the decoration
915 -- of the expression node to match R_Type; by contrast, if the
916 -- returned object is a class-wide interface type then it is too
917 -- early to generate here the implicit conversion since the return
918 -- statement may be rewritten by the expander into an extended
919 -- return statement whose expansion takes care of adding the
920 -- implicit type conversion to displace the pointer to the object.
922 if Expander_Active
923 and then Serious_Errors_Detected = 0
924 and then Is_Access_Type (R_Type)
925 and then Nkind (Expr) /= N_Null
926 and then Is_Interface (Designated_Type (R_Type))
927 and then Is_Progenitor (Designated_Type (R_Type),
928 Designated_Type (Etype (Expr)))
929 then
930 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
931 Analyze (Expr);
932 end if;
934 Resolve (Expr, R_Type);
935 Check_Limited_Return (N, Expr, R_Type);
937 if Present (Expr) and then Nkind (Expr) = N_Aggregate then
938 Check_Aggregate_Accessibility (Expr);
939 end if;
940 end if;
942 -- RETURN only allowed in SPARK as the last statement in function
944 if Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
945 and then
946 (Nkind (Parent (Parent (N))) /= N_Subprogram_Body
947 or else Present (Next (N)))
948 then
949 Check_SPARK_05_Restriction
950 ("RETURN should be the last statement in function", N);
951 end if;
953 else
954 Check_SPARK_05_Restriction ("extended RETURN is not allowed", N);
955 Obj_Decl := Last (Return_Object_Declarations (N));
957 -- Analyze parts specific to extended_return_statement:
959 declare
960 Has_Aliased : constant Boolean := Aliased_Present (Obj_Decl);
961 HSS : constant Node_Id := Handled_Statement_Sequence (N);
963 begin
964 Expr := Expression (Obj_Decl);
966 -- Note: The check for OK_For_Limited_Init will happen in
967 -- Analyze_Object_Declaration; we treat it as a normal
968 -- object declaration.
970 Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
971 Analyze (Obj_Decl);
973 Check_Return_Subtype_Indication (Obj_Decl);
975 if Present (HSS) then
976 Analyze (HSS);
978 if Present (Exception_Handlers (HSS)) then
980 -- ???Has_Nested_Block_With_Handler needs to be set.
981 -- Probably by creating an actual N_Block_Statement.
982 -- Probably in Expand.
984 null;
985 end if;
986 end if;
988 -- Mark the return object as referenced, since the return is an
989 -- implicit reference of the object.
991 Set_Referenced (Defining_Identifier (Obj_Decl));
993 Check_References (Stm_Entity);
995 -- Check RM 6.5 (5.9/3)
997 if Has_Aliased then
998 if Ada_Version < Ada_2012 then
1000 -- Shouldn't this test Warn_On_Ada_2012_Compatibility ???
1001 -- Can it really happen (extended return???)
1003 Error_Msg_N
1004 ("aliased only allowed for limited return objects "
1005 & "in Ada 2012??", N);
1007 elsif not Is_Limited_View (R_Type) then
1008 Error_Msg_N
1009 ("aliased only allowed for limited return objects", N);
1010 end if;
1011 end if;
1012 end;
1013 end if;
1015 -- Case of Expr present
1017 if Present (Expr)
1019 -- Defend against previous errors
1021 and then Nkind (Expr) /= N_Empty
1022 and then Present (Etype (Expr))
1023 then
1024 -- Apply constraint check. Note that this is done before the implicit
1025 -- conversion of the expression done for anonymous access types to
1026 -- ensure correct generation of the null-excluding check associated
1027 -- with null-excluding expressions found in return statements.
1029 Apply_Constraint_Check (Expr, R_Type);
1031 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
1032 -- type, apply an implicit conversion of the expression to that type
1033 -- to force appropriate static and run-time accessibility checks.
1035 if Ada_Version >= Ada_2005
1036 and then Ekind (R_Type) = E_Anonymous_Access_Type
1037 then
1038 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
1039 Analyze_And_Resolve (Expr, R_Type);
1041 -- If this is a local anonymous access to subprogram, the
1042 -- accessibility check can be applied statically. The return is
1043 -- illegal if the access type of the return expression is declared
1044 -- inside of the subprogram (except if it is the subtype indication
1045 -- of an extended return statement).
1047 elsif Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type then
1048 if not Comes_From_Source (Current_Scope)
1049 or else Ekind (Current_Scope) = E_Return_Statement
1050 then
1051 null;
1053 elsif
1054 Scope_Depth (Scope (Etype (Expr))) >= Scope_Depth (Scope_Id)
1055 then
1056 Error_Msg_N ("cannot return local access to subprogram", N);
1057 end if;
1059 -- The expression cannot be of a formal incomplete type
1061 elsif Ekind (Etype (Expr)) = E_Incomplete_Type
1062 and then Is_Generic_Type (Etype (Expr))
1063 then
1064 Error_Msg_N
1065 ("cannot return expression of a formal incomplete type", N);
1066 end if;
1068 -- If the result type is class-wide, then check that the return
1069 -- expression's type is not declared at a deeper level than the
1070 -- function (RM05-6.5(5.6/2)).
1072 if Ada_Version >= Ada_2005
1073 and then Is_Class_Wide_Type (R_Type)
1074 then
1075 if Type_Access_Level (Etype (Expr)) >
1076 Subprogram_Access_Level (Scope_Id)
1077 then
1078 Error_Msg_N
1079 ("level of return expression type is deeper than "
1080 & "class-wide function!", Expr);
1081 end if;
1082 end if;
1084 -- Check incorrect use of dynamically tagged expression
1086 if Is_Tagged_Type (R_Type) then
1087 Check_Dynamically_Tagged_Expression
1088 (Expr => Expr,
1089 Typ => R_Type,
1090 Related_Nod => N);
1091 end if;
1093 -- ??? A real run-time accessibility check is needed in cases
1094 -- involving dereferences of access parameters. For now we just
1095 -- check the static cases.
1097 if (Ada_Version < Ada_2005 or else Debug_Flag_Dot_L)
1098 and then Is_Limited_View (Etype (Scope_Id))
1099 and then Object_Access_Level (Expr) >
1100 Subprogram_Access_Level (Scope_Id)
1101 then
1102 -- Suppress the message in a generic, where the rewriting
1103 -- is irrelevant.
1105 if Inside_A_Generic then
1106 null;
1108 else
1109 Rewrite (N,
1110 Make_Raise_Program_Error (Loc,
1111 Reason => PE_Accessibility_Check_Failed));
1112 Analyze (N);
1114 Error_Msg_Warn := SPARK_Mode /= On;
1115 Error_Msg_N ("cannot return a local value by reference<<", N);
1116 Error_Msg_NE ("\& [<<", N, Standard_Program_Error);
1117 end if;
1118 end if;
1120 if Known_Null (Expr)
1121 and then Nkind (Parent (Scope_Id)) = N_Function_Specification
1122 and then Null_Exclusion_Present (Parent (Scope_Id))
1123 then
1124 Apply_Compile_Time_Constraint_Error
1125 (N => Expr,
1126 Msg => "(Ada 2005) null not allowed for "
1127 & "null-excluding return??",
1128 Reason => CE_Null_Not_Allowed);
1129 end if;
1131 -- RM 6.5 (5.4/3): accessibility checks also apply if the return object
1132 -- has no initializing expression.
1134 elsif Ada_Version > Ada_2005 and then Is_Class_Wide_Type (R_Type) then
1135 if Type_Access_Level (Etype (Defining_Identifier (Obj_Decl))) >
1136 Subprogram_Access_Level (Scope_Id)
1137 then
1138 Error_Msg_N
1139 ("level of return expression type is deeper than "
1140 & "class-wide function!", Obj_Decl);
1141 end if;
1142 end if;
1143 end Analyze_Function_Return;
1145 -------------------------------------
1146 -- Analyze_Generic_Subprogram_Body --
1147 -------------------------------------
1149 procedure Analyze_Generic_Subprogram_Body
1150 (N : Node_Id;
1151 Gen_Id : Entity_Id)
1153 Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
1154 Kind : constant Entity_Kind := Ekind (Gen_Id);
1155 Body_Id : Entity_Id;
1156 New_N : Node_Id;
1157 Spec : Node_Id;
1159 begin
1160 -- Copy body and disable expansion while analyzing the generic For a
1161 -- stub, do not copy the stub (which would load the proper body), this
1162 -- will be done when the proper body is analyzed.
1164 if Nkind (N) /= N_Subprogram_Body_Stub then
1165 New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
1166 Rewrite (N, New_N);
1168 -- Once the contents of the generic copy and the template are
1169 -- swapped, do the same for their respective aspect specifications.
1171 Exchange_Aspects (N, New_N);
1173 -- Collect all contract-related source pragmas found within the
1174 -- template and attach them to the contract of the subprogram body.
1175 -- This contract is used in the capture of global references within
1176 -- annotations.
1178 Create_Generic_Contract (N);
1180 Start_Generic;
1181 end if;
1183 Spec := Specification (N);
1185 -- Within the body of the generic, the subprogram is callable, and
1186 -- behaves like the corresponding non-generic unit.
1188 Body_Id := Defining_Entity (Spec);
1190 if Kind = E_Generic_Procedure
1191 and then Nkind (Spec) /= N_Procedure_Specification
1192 then
1193 Error_Msg_N ("invalid body for generic procedure ", Body_Id);
1194 return;
1196 elsif Kind = E_Generic_Function
1197 and then Nkind (Spec) /= N_Function_Specification
1198 then
1199 Error_Msg_N ("invalid body for generic function ", Body_Id);
1200 return;
1201 end if;
1203 Set_Corresponding_Body (Gen_Decl, Body_Id);
1205 if Has_Completion (Gen_Id)
1206 and then Nkind (Parent (N)) /= N_Subunit
1207 then
1208 Error_Msg_N ("duplicate generic body", N);
1209 return;
1210 else
1211 Set_Has_Completion (Gen_Id);
1212 end if;
1214 if Nkind (N) = N_Subprogram_Body_Stub then
1215 Set_Ekind (Defining_Entity (Specification (N)), Kind);
1216 else
1217 Set_Corresponding_Spec (N, Gen_Id);
1218 end if;
1220 if Nkind (Parent (N)) = N_Compilation_Unit then
1221 Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
1222 end if;
1224 -- Make generic parameters immediately visible in the body. They are
1225 -- needed to process the formals declarations. Then make the formals
1226 -- visible in a separate step.
1228 Push_Scope (Gen_Id);
1230 declare
1231 E : Entity_Id;
1232 First_Ent : Entity_Id;
1234 begin
1235 First_Ent := First_Entity (Gen_Id);
1237 E := First_Ent;
1238 while Present (E) and then not Is_Formal (E) loop
1239 Install_Entity (E);
1240 Next_Entity (E);
1241 end loop;
1243 Set_Use (Generic_Formal_Declarations (Gen_Decl));
1245 -- Now generic formals are visible, and the specification can be
1246 -- analyzed, for subsequent conformance check.
1248 Body_Id := Analyze_Subprogram_Specification (Spec);
1250 -- Make formal parameters visible
1252 if Present (E) then
1254 -- E is the first formal parameter, we loop through the formals
1255 -- installing them so that they will be visible.
1257 Set_First_Entity (Gen_Id, E);
1258 while Present (E) loop
1259 Install_Entity (E);
1260 Next_Formal (E);
1261 end loop;
1262 end if;
1264 -- Visible generic entity is callable within its own body
1266 Set_Ekind (Gen_Id, Ekind (Body_Id));
1267 Set_Ekind (Body_Id, E_Subprogram_Body);
1268 Set_Convention (Body_Id, Convention (Gen_Id));
1269 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
1270 Set_Scope (Body_Id, Scope (Gen_Id));
1272 Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
1274 if Nkind (N) = N_Subprogram_Body_Stub then
1276 -- No body to analyze, so restore state of generic unit
1278 Set_Ekind (Gen_Id, Kind);
1279 Set_Ekind (Body_Id, Kind);
1281 if Present (First_Ent) then
1282 Set_First_Entity (Gen_Id, First_Ent);
1283 end if;
1285 End_Scope;
1286 return;
1287 end if;
1289 -- If this is a compilation unit, it must be made visible explicitly,
1290 -- because the compilation of the declaration, unlike other library
1291 -- unit declarations, does not. If it is not a unit, the following
1292 -- is redundant but harmless.
1294 Set_Is_Immediately_Visible (Gen_Id);
1295 Reference_Body_Formals (Gen_Id, Body_Id);
1297 if Is_Child_Unit (Gen_Id) then
1298 Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
1299 end if;
1301 Set_Actual_Subtypes (N, Current_Scope);
1303 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
1304 Set_SPARK_Pragma_Inherited (Body_Id);
1306 -- Analyze any aspect specifications that appear on the generic
1307 -- subprogram body.
1309 if Has_Aspects (N) then
1310 Analyze_Aspect_Specifications_On_Body_Or_Stub (N);
1311 end if;
1313 Analyze_Declarations (Declarations (N));
1314 Check_Completion;
1316 -- Process the contract of the subprogram body after all declarations
1317 -- have been analyzed. This ensures that any contract-related pragmas
1318 -- are available through the N_Contract node of the body.
1320 Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
1322 Analyze (Handled_Statement_Sequence (N));
1323 Save_Global_References (Original_Node (N));
1325 -- Prior to exiting the scope, include generic formals again (if any
1326 -- are present) in the set of local entities.
1328 if Present (First_Ent) then
1329 Set_First_Entity (Gen_Id, First_Ent);
1330 end if;
1332 Check_References (Gen_Id);
1333 end;
1335 Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
1336 End_Scope;
1337 Check_Subprogram_Order (N);
1339 -- Outside of its body, unit is generic again
1341 Set_Ekind (Gen_Id, Kind);
1342 Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
1344 if Style_Check then
1345 Style.Check_Identifier (Body_Id, Gen_Id);
1346 end if;
1348 End_Generic;
1349 end Analyze_Generic_Subprogram_Body;
1351 ----------------------------
1352 -- Analyze_Null_Procedure --
1353 ----------------------------
1355 procedure Analyze_Null_Procedure
1356 (N : Node_Id;
1357 Is_Completion : out Boolean)
1359 Loc : constant Source_Ptr := Sloc (N);
1360 Spec : constant Node_Id := Specification (N);
1361 Designator : Entity_Id;
1362 Form : Node_Id;
1363 Null_Body : Node_Id := Empty;
1364 Prev : Entity_Id;
1366 begin
1367 -- Capture the profile of the null procedure before analysis, for
1368 -- expansion at the freeze point and at each point of call. The body is
1369 -- used if the procedure has preconditions, or if it is a completion. In
1370 -- the first case the body is analyzed at the freeze point, in the other
1371 -- it replaces the null procedure declaration.
1373 Null_Body :=
1374 Make_Subprogram_Body (Loc,
1375 Specification => New_Copy_Tree (Spec),
1376 Declarations => New_List,
1377 Handled_Statement_Sequence =>
1378 Make_Handled_Sequence_Of_Statements (Loc,
1379 Statements => New_List (Make_Null_Statement (Loc))));
1381 -- Create new entities for body and formals
1383 Set_Defining_Unit_Name (Specification (Null_Body),
1384 Make_Defining_Identifier
1385 (Sloc (Defining_Entity (N)),
1386 Chars (Defining_Entity (N))));
1388 Form := First (Parameter_Specifications (Specification (Null_Body)));
1389 while Present (Form) loop
1390 Set_Defining_Identifier (Form,
1391 Make_Defining_Identifier
1392 (Sloc (Defining_Identifier (Form)),
1393 Chars (Defining_Identifier (Form))));
1394 Next (Form);
1395 end loop;
1397 -- Determine whether the null procedure may be a completion of a generic
1398 -- suprogram, in which case we use the new null body as the completion
1399 -- and set minimal semantic information on the original declaration,
1400 -- which is rewritten as a null statement.
1402 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
1404 if Present (Prev) and then Is_Generic_Subprogram (Prev) then
1405 Insert_Before (N, Null_Body);
1406 Set_Ekind (Defining_Entity (N), Ekind (Prev));
1408 Rewrite (N, Make_Null_Statement (Loc));
1409 Analyze_Generic_Subprogram_Body (Null_Body, Prev);
1410 Is_Completion := True;
1411 return;
1413 else
1414 -- Resolve the types of the formals now, because the freeze point
1415 -- may appear in a different context, e.g. an instantiation.
1417 Form := First (Parameter_Specifications (Specification (Null_Body)));
1418 while Present (Form) loop
1419 if Nkind (Parameter_Type (Form)) /= N_Access_Definition then
1420 Find_Type (Parameter_Type (Form));
1422 elsif
1423 No (Access_To_Subprogram_Definition (Parameter_Type (Form)))
1424 then
1425 Find_Type (Subtype_Mark (Parameter_Type (Form)));
1427 else
1428 -- The case of a null procedure with a formal that is an
1429 -- access_to_subprogram type, and that is used as an actual
1430 -- in an instantiation is left to the enthusiastic reader.
1432 null;
1433 end if;
1435 Next (Form);
1436 end loop;
1437 end if;
1439 -- If there are previous overloadable entities with the same name,
1440 -- check whether any of them is completed by the null procedure.
1442 if Present (Prev) and then Is_Overloadable (Prev) then
1443 Designator := Analyze_Subprogram_Specification (Spec);
1444 Prev := Find_Corresponding_Spec (N);
1445 end if;
1447 if No (Prev) or else not Comes_From_Source (Prev) then
1448 Designator := Analyze_Subprogram_Specification (Spec);
1449 Set_Has_Completion (Designator);
1451 -- Signal to caller that this is a procedure declaration
1453 Is_Completion := False;
1455 -- Null procedures are always inlined, but generic formal subprograms
1456 -- which appear as such in the internal instance of formal packages,
1457 -- need no completion and are not marked Inline.
1459 if Expander_Active
1460 and then Nkind (N) /= N_Formal_Concrete_Subprogram_Declaration
1461 then
1462 Set_Corresponding_Body (N, Defining_Entity (Null_Body));
1463 Set_Body_To_Inline (N, Null_Body);
1464 Set_Is_Inlined (Designator);
1465 end if;
1467 else
1468 -- The null procedure is a completion. We unconditionally rewrite
1469 -- this as a null body (even if expansion is not active), because
1470 -- there are various error checks that are applied on this body
1471 -- when it is analyzed (e.g. correct aspect placement).
1473 if Has_Completion (Prev) then
1474 Error_Msg_Sloc := Sloc (Prev);
1475 Error_Msg_NE ("duplicate body for & declared#", N, Prev);
1476 end if;
1478 Is_Completion := True;
1479 Rewrite (N, Null_Body);
1480 Analyze (N);
1481 end if;
1482 end Analyze_Null_Procedure;
1484 -----------------------------
1485 -- Analyze_Operator_Symbol --
1486 -----------------------------
1488 -- An operator symbol such as "+" or "and" may appear in context where the
1489 -- literal denotes an entity name, such as "+"(x, y) or in context when it
1490 -- is just a string, as in (conjunction = "or"). In these cases the parser
1491 -- generates this node, and the semantics does the disambiguation. Other
1492 -- such case are actuals in an instantiation, the generic unit in an
1493 -- instantiation, and pragma arguments.
1495 procedure Analyze_Operator_Symbol (N : Node_Id) is
1496 Par : constant Node_Id := Parent (N);
1498 begin
1499 if (Nkind (Par) = N_Function_Call and then N = Name (Par))
1500 or else Nkind (Par) = N_Function_Instantiation
1501 or else (Nkind (Par) = N_Indexed_Component and then N = Prefix (Par))
1502 or else (Nkind (Par) = N_Pragma_Argument_Association
1503 and then not Is_Pragma_String_Literal (Par))
1504 or else Nkind (Par) = N_Subprogram_Renaming_Declaration
1505 or else (Nkind (Par) = N_Attribute_Reference
1506 and then Attribute_Name (Par) /= Name_Value)
1507 then
1508 Find_Direct_Name (N);
1510 else
1511 Change_Operator_Symbol_To_String_Literal (N);
1512 Analyze (N);
1513 end if;
1514 end Analyze_Operator_Symbol;
1516 -----------------------------------
1517 -- Analyze_Parameter_Association --
1518 -----------------------------------
1520 procedure Analyze_Parameter_Association (N : Node_Id) is
1521 begin
1522 Analyze (Explicit_Actual_Parameter (N));
1523 end Analyze_Parameter_Association;
1525 ----------------------------
1526 -- Analyze_Procedure_Call --
1527 ----------------------------
1529 -- WARNING: This routine manages Ghost regions. Return statements must be
1530 -- replaced by gotos which jump to the end of the routine and restore the
1531 -- Ghost mode.
1533 procedure Analyze_Procedure_Call (N : Node_Id) is
1534 procedure Analyze_Call_And_Resolve;
1535 -- Do Analyze and Resolve calls for procedure call. At the end, check
1536 -- for illegal order dependence.
1537 -- ??? where is the check for illegal order dependencies?
1539 ------------------------------
1540 -- Analyze_Call_And_Resolve --
1541 ------------------------------
1543 procedure Analyze_Call_And_Resolve is
1544 begin
1545 if Nkind (N) = N_Procedure_Call_Statement then
1546 Analyze_Call (N);
1547 Resolve (N, Standard_Void_Type);
1548 else
1549 Analyze (N);
1550 end if;
1551 end Analyze_Call_And_Resolve;
1553 -- Local variables
1555 Actuals : constant List_Id := Parameter_Associations (N);
1556 Loc : constant Source_Ptr := Sloc (N);
1557 P : constant Node_Id := Name (N);
1558 Actual : Node_Id;
1559 Mode : Ghost_Mode_Type;
1560 New_N : Node_Id;
1562 -- Start of processing for Analyze_Procedure_Call
1564 begin
1565 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1566 -- a procedure call or an entry call. The prefix may denote an access
1567 -- to subprogram type, in which case an implicit dereference applies.
1568 -- If the prefix is an indexed component (without implicit dereference)
1569 -- then the construct denotes a call to a member of an entire family.
1570 -- If the prefix is a simple name, it may still denote a call to a
1571 -- parameterless member of an entry family. Resolution of these various
1572 -- interpretations is delicate.
1574 -- Do not analyze machine code statements to avoid rejecting them in
1575 -- CodePeer mode.
1577 if CodePeer_Mode and then Nkind (P) = N_Qualified_Expression then
1578 Set_Etype (P, Standard_Void_Type);
1579 else
1580 Analyze (P);
1581 end if;
1583 -- If this is a call of the form Obj.Op, the call may have been analyzed
1584 -- and possibly rewritten into a block, in which case we are done.
1586 if Analyzed (N) then
1587 return;
1588 end if;
1590 -- If there is an error analyzing the name (which may have been
1591 -- rewritten if the original call was in prefix notation) then error
1592 -- has been emitted already, mark node and return.
1594 if Error_Posted (N) or else Etype (Name (N)) = Any_Type then
1595 Set_Etype (N, Any_Type);
1596 return;
1597 end if;
1599 -- A procedure call is Ghost when its name denotes a Ghost procedure.
1600 -- Set the mode now to ensure that any nodes generated during analysis
1601 -- and expansion are properly marked as Ghost.
1603 Mark_And_Set_Ghost_Procedure_Call (N, Mode);
1605 -- Otherwise analyze the parameters
1607 if Present (Actuals) then
1608 Actual := First (Actuals);
1610 while Present (Actual) loop
1611 Analyze (Actual);
1612 Check_Parameterless_Call (Actual);
1613 Next (Actual);
1614 end loop;
1615 end if;
1617 -- Special processing for Elab_Spec, Elab_Body and Elab_Subp_Body calls
1619 if Nkind (P) = N_Attribute_Reference
1620 and then Nam_In (Attribute_Name (P), Name_Elab_Spec,
1621 Name_Elab_Body,
1622 Name_Elab_Subp_Body)
1623 then
1624 if Present (Actuals) then
1625 Error_Msg_N
1626 ("no parameters allowed for this call", First (Actuals));
1627 goto Leave;
1628 end if;
1630 Set_Etype (N, Standard_Void_Type);
1631 Set_Analyzed (N);
1633 elsif Is_Entity_Name (P)
1634 and then Is_Record_Type (Etype (Entity (P)))
1635 and then Remote_AST_I_Dereference (P)
1636 then
1637 goto Leave;
1639 elsif Is_Entity_Name (P)
1640 and then Ekind (Entity (P)) /= E_Entry_Family
1641 then
1642 if Is_Access_Type (Etype (P))
1643 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1644 and then No (Actuals)
1645 and then Comes_From_Source (N)
1646 then
1647 Error_Msg_N ("missing explicit dereference in call", N);
1648 end if;
1650 Analyze_Call_And_Resolve;
1652 -- If the prefix is the simple name of an entry family, this is a
1653 -- parameterless call from within the task body itself.
1655 elsif Is_Entity_Name (P)
1656 and then Nkind (P) = N_Identifier
1657 and then Ekind (Entity (P)) = E_Entry_Family
1658 and then Present (Actuals)
1659 and then No (Next (First (Actuals)))
1660 then
1661 -- Can be call to parameterless entry family. What appears to be the
1662 -- sole argument is in fact the entry index. Rewrite prefix of node
1663 -- accordingly. Source representation is unchanged by this
1664 -- transformation.
1666 New_N :=
1667 Make_Indexed_Component (Loc,
1668 Prefix =>
1669 Make_Selected_Component (Loc,
1670 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
1671 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
1672 Expressions => Actuals);
1673 Set_Name (N, New_N);
1674 Set_Etype (New_N, Standard_Void_Type);
1675 Set_Parameter_Associations (N, No_List);
1676 Analyze_Call_And_Resolve;
1678 elsif Nkind (P) = N_Explicit_Dereference then
1679 if Ekind (Etype (P)) = E_Subprogram_Type then
1680 Analyze_Call_And_Resolve;
1681 else
1682 Error_Msg_N ("expect access to procedure in call", P);
1683 end if;
1685 -- The name can be a selected component or an indexed component that
1686 -- yields an access to subprogram. Such a prefix is legal if the call
1687 -- has parameter associations.
1689 elsif Is_Access_Type (Etype (P))
1690 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1691 then
1692 if Present (Actuals) then
1693 Analyze_Call_And_Resolve;
1694 else
1695 Error_Msg_N ("missing explicit dereference in call ", N);
1696 end if;
1698 -- If not an access to subprogram, then the prefix must resolve to the
1699 -- name of an entry, entry family, or protected operation.
1701 -- For the case of a simple entry call, P is a selected component where
1702 -- the prefix is the task and the selector name is the entry. A call to
1703 -- a protected procedure will have the same syntax. If the protected
1704 -- object contains overloaded operations, the entity may appear as a
1705 -- function, the context will select the operation whose type is Void.
1707 elsif Nkind (P) = N_Selected_Component
1708 and then Ekind_In (Entity (Selector_Name (P)), E_Entry,
1709 E_Function,
1710 E_Procedure)
1711 then
1712 -- When front-end inlining is enabled, as with SPARK_Mode, a call
1713 -- in prefix notation may still be missing its controlling argument,
1714 -- so perform the transformation now.
1716 if SPARK_Mode = On and then In_Inlined_Body then
1717 declare
1718 Subp : constant Entity_Id := Entity (Selector_Name (P));
1719 Typ : constant Entity_Id := Etype (Prefix (P));
1721 begin
1722 if Is_Tagged_Type (Typ)
1723 and then Present (First_Formal (Subp))
1724 and then Etype (First_Formal (Subp)) = Typ
1725 and then Try_Object_Operation (P)
1726 then
1727 return;
1729 else
1730 Analyze_Call_And_Resolve;
1731 end if;
1732 end;
1734 else
1735 Analyze_Call_And_Resolve;
1736 end if;
1738 elsif Nkind (P) = N_Selected_Component
1739 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
1740 and then Present (Actuals)
1741 and then No (Next (First (Actuals)))
1742 then
1743 -- Can be call to parameterless entry family. What appears to be the
1744 -- sole argument is in fact the entry index. Rewrite prefix of node
1745 -- accordingly. Source representation is unchanged by this
1746 -- transformation.
1748 New_N :=
1749 Make_Indexed_Component (Loc,
1750 Prefix => New_Copy (P),
1751 Expressions => Actuals);
1752 Set_Name (N, New_N);
1753 Set_Etype (New_N, Standard_Void_Type);
1754 Set_Parameter_Associations (N, No_List);
1755 Analyze_Call_And_Resolve;
1757 -- For the case of a reference to an element of an entry family, P is
1758 -- an indexed component whose prefix is a selected component (task and
1759 -- entry family), and whose index is the entry family index.
1761 elsif Nkind (P) = N_Indexed_Component
1762 and then Nkind (Prefix (P)) = N_Selected_Component
1763 and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
1764 then
1765 Analyze_Call_And_Resolve;
1767 -- If the prefix is the name of an entry family, it is a call from
1768 -- within the task body itself.
1770 elsif Nkind (P) = N_Indexed_Component
1771 and then Nkind (Prefix (P)) = N_Identifier
1772 and then Ekind (Entity (Prefix (P))) = E_Entry_Family
1773 then
1774 New_N :=
1775 Make_Selected_Component (Loc,
1776 Prefix => New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
1777 Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
1778 Rewrite (Prefix (P), New_N);
1779 Analyze (P);
1780 Analyze_Call_And_Resolve;
1782 -- In Ada 2012. a qualified expression is a name, but it cannot be a
1783 -- procedure name, so the construct can only be a qualified expression.
1785 elsif Nkind (P) = N_Qualified_Expression
1786 and then Ada_Version >= Ada_2012
1787 then
1788 Rewrite (N, Make_Code_Statement (Loc, Expression => P));
1789 Analyze (N);
1791 -- Anything else is an error
1793 else
1794 Error_Msg_N ("invalid procedure or entry call", N);
1795 end if;
1797 <<Leave>>
1798 Restore_Ghost_Mode (Mode);
1799 end Analyze_Procedure_Call;
1801 ------------------------------
1802 -- Analyze_Return_Statement --
1803 ------------------------------
1805 procedure Analyze_Return_Statement (N : Node_Id) is
1806 pragma Assert (Nkind_In (N, N_Extended_Return_Statement,
1807 N_Simple_Return_Statement));
1809 Returns_Object : constant Boolean :=
1810 Nkind (N) = N_Extended_Return_Statement
1811 or else
1812 (Nkind (N) = N_Simple_Return_Statement
1813 and then Present (Expression (N)));
1814 -- True if we're returning something; that is, "return <expression>;"
1815 -- or "return Result : T [:= ...]". False for "return;". Used for error
1816 -- checking: If Returns_Object is True, N should apply to a function
1817 -- body; otherwise N should apply to a procedure body, entry body,
1818 -- accept statement, or extended return statement.
1820 function Find_What_It_Applies_To return Entity_Id;
1821 -- Find the entity representing the innermost enclosing body, accept
1822 -- statement, or extended return statement. If the result is a callable
1823 -- construct or extended return statement, then this will be the value
1824 -- of the Return_Applies_To attribute. Otherwise, the program is
1825 -- illegal. See RM-6.5(4/2).
1827 -----------------------------
1828 -- Find_What_It_Applies_To --
1829 -----------------------------
1831 function Find_What_It_Applies_To return Entity_Id is
1832 Result : Entity_Id := Empty;
1834 begin
1835 -- Loop outward through the Scope_Stack, skipping blocks, loops,
1836 -- and postconditions.
1838 for J in reverse 0 .. Scope_Stack.Last loop
1839 Result := Scope_Stack.Table (J).Entity;
1840 exit when not Ekind_In (Result, E_Block, E_Loop)
1841 and then Chars (Result) /= Name_uPostconditions;
1842 end loop;
1844 pragma Assert (Present (Result));
1845 return Result;
1846 end Find_What_It_Applies_To;
1848 -- Local declarations
1850 Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
1851 Kind : constant Entity_Kind := Ekind (Scope_Id);
1852 Loc : constant Source_Ptr := Sloc (N);
1853 Stm_Entity : constant Entity_Id :=
1854 New_Internal_Entity
1855 (E_Return_Statement, Current_Scope, Loc, 'R');
1857 -- Start of processing for Analyze_Return_Statement
1859 begin
1860 Set_Return_Statement_Entity (N, Stm_Entity);
1862 Set_Etype (Stm_Entity, Standard_Void_Type);
1863 Set_Return_Applies_To (Stm_Entity, Scope_Id);
1865 -- Place Return entity on scope stack, to simplify enforcement of 6.5
1866 -- (4/2): an inner return statement will apply to this extended return.
1868 if Nkind (N) = N_Extended_Return_Statement then
1869 Push_Scope (Stm_Entity);
1870 end if;
1872 -- Check that pragma No_Return is obeyed. Don't complain about the
1873 -- implicitly-generated return that is placed at the end.
1875 if No_Return (Scope_Id) and then Comes_From_Source (N) then
1876 Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
1877 end if;
1879 -- Warn on any unassigned OUT parameters if in procedure
1881 if Ekind (Scope_Id) = E_Procedure then
1882 Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
1883 end if;
1885 -- Check that functions return objects, and other things do not
1887 if Kind = E_Function or else Kind = E_Generic_Function then
1888 if not Returns_Object then
1889 Error_Msg_N ("missing expression in return from function", N);
1890 end if;
1892 elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
1893 if Returns_Object then
1894 Error_Msg_N ("procedure cannot return value (use function)", N);
1895 end if;
1897 elsif Kind = E_Entry or else Kind = E_Entry_Family then
1898 if Returns_Object then
1899 if Is_Protected_Type (Scope (Scope_Id)) then
1900 Error_Msg_N ("entry body cannot return value", N);
1901 else
1902 Error_Msg_N ("accept statement cannot return value", N);
1903 end if;
1904 end if;
1906 elsif Kind = E_Return_Statement then
1908 -- We are nested within another return statement, which must be an
1909 -- extended_return_statement.
1911 if Returns_Object then
1912 if Nkind (N) = N_Extended_Return_Statement then
1913 Error_Msg_N
1914 ("extended return statement cannot be nested (use `RETURN;`)",
1917 -- Case of a simple return statement with a value inside extended
1918 -- return statement.
1920 else
1921 Error_Msg_N
1922 ("return nested in extended return statement cannot return "
1923 & "value (use `RETURN;`)", N);
1924 end if;
1925 end if;
1927 else
1928 Error_Msg_N ("illegal context for return statement", N);
1929 end if;
1931 if Ekind_In (Kind, E_Function, E_Generic_Function) then
1932 Analyze_Function_Return (N);
1934 elsif Ekind_In (Kind, E_Procedure, E_Generic_Procedure) then
1935 Set_Return_Present (Scope_Id);
1936 end if;
1938 if Nkind (N) = N_Extended_Return_Statement then
1939 End_Scope;
1940 end if;
1942 Kill_Current_Values (Last_Assignment_Only => True);
1943 Check_Unreachable_Code (N);
1945 Analyze_Dimension (N);
1946 end Analyze_Return_Statement;
1948 -------------------------------------
1949 -- Analyze_Simple_Return_Statement --
1950 -------------------------------------
1952 procedure Analyze_Simple_Return_Statement (N : Node_Id) is
1953 begin
1954 if Present (Expression (N)) then
1955 Mark_Coextensions (N, Expression (N));
1956 end if;
1958 Analyze_Return_Statement (N);
1959 end Analyze_Simple_Return_Statement;
1961 -------------------------
1962 -- Analyze_Return_Type --
1963 -------------------------
1965 procedure Analyze_Return_Type (N : Node_Id) is
1966 Designator : constant Entity_Id := Defining_Entity (N);
1967 Typ : Entity_Id := Empty;
1969 begin
1970 -- Normal case where result definition does not indicate an error
1972 if Result_Definition (N) /= Error then
1973 if Nkind (Result_Definition (N)) = N_Access_Definition then
1974 Check_SPARK_05_Restriction
1975 ("access result is not allowed", Result_Definition (N));
1977 -- Ada 2005 (AI-254): Handle anonymous access to subprograms
1979 declare
1980 AD : constant Node_Id :=
1981 Access_To_Subprogram_Definition (Result_Definition (N));
1982 begin
1983 if Present (AD) and then Protected_Present (AD) then
1984 Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1985 else
1986 Typ := Access_Definition (N, Result_Definition (N));
1987 end if;
1988 end;
1990 Set_Parent (Typ, Result_Definition (N));
1991 Set_Is_Local_Anonymous_Access (Typ);
1992 Set_Etype (Designator, Typ);
1994 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1996 Null_Exclusion_Static_Checks (N);
1998 -- Subtype_Mark case
2000 else
2001 Find_Type (Result_Definition (N));
2002 Typ := Entity (Result_Definition (N));
2003 Set_Etype (Designator, Typ);
2005 -- Unconstrained array as result is not allowed in SPARK
2007 if Is_Array_Type (Typ) and then not Is_Constrained (Typ) then
2008 Check_SPARK_05_Restriction
2009 ("returning an unconstrained array is not allowed",
2010 Result_Definition (N));
2011 end if;
2013 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
2015 Null_Exclusion_Static_Checks (N);
2017 -- If a null exclusion is imposed on the result type, then create
2018 -- a null-excluding itype (an access subtype) and use it as the
2019 -- function's Etype. Note that the null exclusion checks are done
2020 -- right before this, because they don't get applied to types that
2021 -- do not come from source.
2023 if Is_Access_Type (Typ) and then Null_Exclusion_Present (N) then
2024 Set_Etype (Designator,
2025 Create_Null_Excluding_Itype
2026 (T => Typ,
2027 Related_Nod => N,
2028 Scope_Id => Scope (Current_Scope)));
2030 -- The new subtype must be elaborated before use because
2031 -- it is visible outside of the function. However its base
2032 -- type may not be frozen yet, so the reference that will
2033 -- force elaboration must be attached to the freezing of
2034 -- the base type.
2036 -- If the return specification appears on a proper body,
2037 -- the subtype will have been created already on the spec.
2039 if Is_Frozen (Typ) then
2040 if Nkind (Parent (N)) = N_Subprogram_Body
2041 and then Nkind (Parent (Parent (N))) = N_Subunit
2042 then
2043 null;
2044 else
2045 Build_Itype_Reference (Etype (Designator), Parent (N));
2046 end if;
2048 else
2049 Ensure_Freeze_Node (Typ);
2051 declare
2052 IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
2053 begin
2054 Set_Itype (IR, Etype (Designator));
2055 Append_Freeze_Actions (Typ, New_List (IR));
2056 end;
2057 end if;
2059 else
2060 Set_Etype (Designator, Typ);
2061 end if;
2063 if Ekind (Typ) = E_Incomplete_Type
2064 or else (Is_Class_Wide_Type (Typ)
2065 and then Ekind (Root_Type (Typ)) = E_Incomplete_Type)
2066 then
2067 -- AI05-0151: Tagged incomplete types are allowed in all formal
2068 -- parts. Untagged incomplete types are not allowed in bodies.
2069 -- As a consequence, limited views cannot appear in a basic
2070 -- declaration that is itself within a body, because there is
2071 -- no point at which the non-limited view will become visible.
2073 if Ada_Version >= Ada_2012 then
2074 if From_Limited_With (Typ) and then In_Package_Body then
2075 Error_Msg_NE
2076 ("invalid use of incomplete type&",
2077 Result_Definition (N), Typ);
2079 -- The return type of a subprogram body cannot be of a
2080 -- formal incomplete type.
2082 elsif Is_Generic_Type (Typ)
2083 and then Nkind (Parent (N)) = N_Subprogram_Body
2084 then
2085 Error_Msg_N
2086 ("return type cannot be a formal incomplete type",
2087 Result_Definition (N));
2089 elsif Is_Class_Wide_Type (Typ)
2090 and then Is_Generic_Type (Root_Type (Typ))
2091 and then Nkind (Parent (N)) = N_Subprogram_Body
2092 then
2093 Error_Msg_N
2094 ("return type cannot be a formal incomplete type",
2095 Result_Definition (N));
2097 elsif Is_Tagged_Type (Typ) then
2098 null;
2100 -- Use is legal in a thunk generated for an operation
2101 -- inherited from a progenitor.
2103 elsif Is_Thunk (Designator)
2104 and then Present (Non_Limited_View (Typ))
2105 then
2106 null;
2108 elsif Nkind (Parent (N)) = N_Subprogram_Body
2109 or else Nkind_In (Parent (Parent (N)), N_Accept_Statement,
2110 N_Entry_Body)
2111 then
2112 Error_Msg_NE
2113 ("invalid use of untagged incomplete type&",
2114 Designator, Typ);
2115 end if;
2117 -- The type must be completed in the current package. This
2118 -- is checked at the end of the package declaration when
2119 -- Taft-amendment types are identified. If the return type
2120 -- is class-wide, there is no required check, the type can
2121 -- be a bona fide TAT.
2123 if Ekind (Scope (Current_Scope)) = E_Package
2124 and then In_Private_Part (Scope (Current_Scope))
2125 and then not Is_Class_Wide_Type (Typ)
2126 then
2127 Append_Elmt (Designator, Private_Dependents (Typ));
2128 end if;
2130 else
2131 Error_Msg_NE
2132 ("invalid use of incomplete type&", Designator, Typ);
2133 end if;
2134 end if;
2135 end if;
2137 -- Case where result definition does indicate an error
2139 else
2140 Set_Etype (Designator, Any_Type);
2141 end if;
2142 end Analyze_Return_Type;
2144 -----------------------------
2145 -- Analyze_Subprogram_Body --
2146 -----------------------------
2148 procedure Analyze_Subprogram_Body (N : Node_Id) is
2149 Loc : constant Source_Ptr := Sloc (N);
2150 Body_Spec : constant Node_Id := Specification (N);
2151 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2153 begin
2154 if Debug_Flag_C then
2155 Write_Str ("==> subprogram body ");
2156 Write_Name (Chars (Body_Id));
2157 Write_Str (" from ");
2158 Write_Location (Loc);
2159 Write_Eol;
2160 Indent;
2161 end if;
2163 Trace_Scope (N, Body_Id, " Analyze subprogram: ");
2165 -- The real work is split out into the helper, so it can do "return;"
2166 -- without skipping the debug output:
2168 Analyze_Subprogram_Body_Helper (N);
2170 if Debug_Flag_C then
2171 Outdent;
2172 Write_Str ("<== subprogram body ");
2173 Write_Name (Chars (Body_Id));
2174 Write_Str (" from ");
2175 Write_Location (Loc);
2176 Write_Eol;
2177 end if;
2178 end Analyze_Subprogram_Body;
2180 ------------------------------------
2181 -- Analyze_Subprogram_Body_Helper --
2182 ------------------------------------
2184 -- This procedure is called for regular subprogram bodies, generic bodies,
2185 -- and for subprogram stubs of both kinds. In the case of stubs, only the
2186 -- specification matters, and is used to create a proper declaration for
2187 -- the subprogram, or to perform conformance checks.
2189 -- WARNING: This routine manages Ghost regions. Return statements must be
2190 -- replaced by gotos which jump to the end of the routine and restore the
2191 -- Ghost mode.
2193 procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
2194 Body_Spec : Node_Id := Specification (N);
2195 Body_Id : Entity_Id := Defining_Entity (Body_Spec);
2196 Loc : constant Source_Ptr := Sloc (N);
2197 Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
2199 Conformant : Boolean;
2200 Desig_View : Entity_Id := Empty;
2201 Exch_Views : Elist_Id := No_Elist;
2202 HSS : Node_Id;
2203 Prot_Typ : Entity_Id := Empty;
2204 Spec_Decl : Node_Id := Empty;
2205 Spec_Id : Entity_Id;
2207 Last_Real_Spec_Entity : Entity_Id := Empty;
2208 -- When we analyze a separate spec, the entity chain ends up containing
2209 -- the formals, as well as any itypes generated during analysis of the
2210 -- default expressions for parameters, or the arguments of associated
2211 -- precondition/postcondition pragmas (which are analyzed in the context
2212 -- of the spec since they have visibility on formals).
2214 -- These entities belong with the spec and not the body. However we do
2215 -- the analysis of the body in the context of the spec (again to obtain
2216 -- visibility to the formals), and all the entities generated during
2217 -- this analysis end up also chained to the entity chain of the spec.
2218 -- But they really belong to the body, and there is circuitry to move
2219 -- them from the spec to the body.
2221 -- However, when we do this move, we don't want to move the real spec
2222 -- entities (first para above) to the body. The Last_Real_Spec_Entity
2223 -- variable points to the last real spec entity, so we only move those
2224 -- chained beyond that point. It is initialized to Empty to deal with
2225 -- the case where there is no separate spec.
2227 function Body_Has_Contract return Boolean;
2228 -- Check whether unanalyzed body has an aspect or pragma that may
2229 -- generate a SPARK contract.
2231 function Body_Has_SPARK_Mode_On return Boolean;
2232 -- Check whether SPARK_Mode On applies to the subprogram body, either
2233 -- because it is specified directly on the body, or because it is
2234 -- inherited from the enclosing subprogram or package.
2236 procedure Build_Subprogram_Declaration;
2237 -- Create a matching subprogram declaration for subprogram body N
2239 procedure Check_Anonymous_Return;
2240 -- Ada 2005: if a function returns an access type that denotes a task,
2241 -- or a type that contains tasks, we must create a master entity for
2242 -- the anonymous type, which typically will be used in an allocator
2243 -- in the body of the function.
2245 procedure Check_Inline_Pragma (Spec : in out Node_Id);
2246 -- Look ahead to recognize a pragma that may appear after the body.
2247 -- If there is a previous spec, check that it appears in the same
2248 -- declarative part. If the pragma is Inline_Always, perform inlining
2249 -- unconditionally, otherwise only if Front_End_Inlining is requested.
2250 -- If the body acts as a spec, and inlining is required, we create a
2251 -- subprogram declaration for it, in order to attach the body to inline.
2252 -- If pragma does not appear after the body, check whether there is
2253 -- an inline pragma before any local declarations.
2255 procedure Check_Missing_Return;
2256 -- Checks for a function with a no return statements, and also performs
2257 -- the warning checks implemented by Check_Returns. In formal mode, also
2258 -- verify that a function ends with a RETURN and that a procedure does
2259 -- not contain any RETURN.
2261 function Disambiguate_Spec return Entity_Id;
2262 -- When a primitive is declared between the private view and the full
2263 -- view of a concurrent type which implements an interface, a special
2264 -- mechanism is used to find the corresponding spec of the primitive
2265 -- body.
2267 function Exchange_Limited_Views (Subp_Id : Entity_Id) return Elist_Id;
2268 -- Ada 2012 (AI05-0151): Detect whether the profile of Subp_Id contains
2269 -- incomplete types coming from a limited context and replace their
2270 -- limited views with the non-limited ones. Return the list of changes
2271 -- to be used to undo the transformation.
2273 procedure Freeze_Expr_Types (Spec_Id : Entity_Id);
2274 -- AI12-0103: N is the body associated with an expression function that
2275 -- is a completion, and Spec_Id is its defining entity. Freeze before N
2276 -- all the types referenced by the expression of the function.
2278 function Is_Private_Concurrent_Primitive
2279 (Subp_Id : Entity_Id) return Boolean;
2280 -- Determine whether subprogram Subp_Id is a primitive of a concurrent
2281 -- type that implements an interface and has a private view.
2283 procedure Restore_Limited_Views (Restore_List : Elist_Id);
2284 -- Undo the transformation done by Exchange_Limited_Views.
2286 procedure Set_Trivial_Subprogram (N : Node_Id);
2287 -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
2288 -- subprogram whose body is being analyzed. N is the statement node
2289 -- causing the flag to be set, if the following statement is a return
2290 -- of an entity, we mark the entity as set in source to suppress any
2291 -- warning on the stylized use of function stubs with a dummy return.
2293 procedure Verify_Overriding_Indicator;
2294 -- If there was a previous spec, the entity has been entered in the
2295 -- current scope previously. If the body itself carries an overriding
2296 -- indicator, check that it is consistent with the known status of the
2297 -- entity.
2299 -----------------------
2300 -- Body_Has_Contract --
2301 -----------------------
2303 function Body_Has_Contract return Boolean is
2304 Decls : constant List_Id := Declarations (N);
2305 Item : Node_Id;
2307 begin
2308 -- Check for aspects that may generate a contract
2310 if Present (Aspect_Specifications (N)) then
2311 Item := First (Aspect_Specifications (N));
2312 while Present (Item) loop
2313 if Is_Subprogram_Contract_Annotation (Item) then
2314 return True;
2315 end if;
2317 Next (Item);
2318 end loop;
2319 end if;
2321 -- Check for pragmas that may generate a contract
2323 if Present (Decls) then
2324 Item := First (Decls);
2325 while Present (Item) loop
2326 if Nkind (Item) = N_Pragma
2327 and then Is_Subprogram_Contract_Annotation (Item)
2328 then
2329 return True;
2330 end if;
2332 Next (Item);
2333 end loop;
2334 end if;
2336 return False;
2337 end Body_Has_Contract;
2339 ----------------------------
2340 -- Body_Has_SPARK_Mode_On --
2341 ----------------------------
2343 function Body_Has_SPARK_Mode_On return Boolean is
2344 Decls : constant List_Id := Declarations (N);
2345 Item : Node_Id;
2347 begin
2348 -- Check for SPARK_Mode aspect
2350 if Present (Aspect_Specifications (N)) then
2351 Item := First (Aspect_Specifications (N));
2352 while Present (Item) loop
2353 if Get_Aspect_Id (Item) = Aspect_SPARK_Mode then
2354 return Get_SPARK_Mode_From_Annotation (Item) = On;
2355 end if;
2357 Next (Item);
2358 end loop;
2359 end if;
2361 -- Check for SPARK_Mode pragma
2363 if Present (Decls) then
2364 Item := First (Decls);
2365 while Present (Item) loop
2367 -- Pragmas that apply to a subprogram body are usually grouped
2368 -- together. Look for a potential pragma SPARK_Mode among them.
2370 if Nkind (Item) = N_Pragma then
2371 if Get_Pragma_Id (Item) = Pragma_SPARK_Mode then
2372 return Get_SPARK_Mode_From_Annotation (Item) = On;
2373 end if;
2375 -- Otherwise the first non-pragma declarative item terminates
2376 -- the region where pragma SPARK_Mode may appear.
2378 else
2379 exit;
2380 end if;
2382 Next (Item);
2383 end loop;
2384 end if;
2386 -- Otherwise, the applicable SPARK_Mode is inherited from the
2387 -- enclosing subprogram or package.
2389 return SPARK_Mode = On;
2390 end Body_Has_SPARK_Mode_On;
2392 ----------------------------------
2393 -- Build_Subprogram_Declaration --
2394 ----------------------------------
2396 procedure Build_Subprogram_Declaration is
2397 procedure Move_Pragmas (From : Node_Id; To : Node_Id);
2398 -- Relocate certain categorization pragmas from the declarative list
2399 -- of subprogram body From and insert them after node To. The pragmas
2400 -- in question are:
2401 -- Ghost
2402 -- Volatile_Function
2403 -- Also copy pragma SPARK_Mode if present in the declarative list
2404 -- of subprogram body From and insert it after node To. This pragma
2405 -- should not be moved, as it applies to the body too.
2407 ------------------
2408 -- Move_Pragmas --
2409 ------------------
2411 procedure Move_Pragmas (From : Node_Id; To : Node_Id) is
2412 Decl : Node_Id;
2413 Next_Decl : Node_Id;
2415 begin
2416 pragma Assert (Nkind (From) = N_Subprogram_Body);
2418 -- The destination node must be part of a list, as the pragmas are
2419 -- inserted after it.
2421 pragma Assert (Is_List_Member (To));
2423 -- Inspect the declarations of the subprogram body looking for
2424 -- specific pragmas.
2426 Decl := First (Declarations (N));
2427 while Present (Decl) loop
2428 Next_Decl := Next (Decl);
2430 if Nkind (Decl) = N_Pragma then
2431 if Pragma_Name_Unmapped (Decl) = Name_SPARK_Mode then
2432 Insert_After (To, New_Copy_Tree (Decl));
2434 elsif Nam_In (Pragma_Name_Unmapped (Decl),
2435 Name_Ghost,
2436 Name_Volatile_Function)
2437 then
2438 Remove (Decl);
2439 Insert_After (To, Decl);
2440 end if;
2441 end if;
2443 Decl := Next_Decl;
2444 end loop;
2445 end Move_Pragmas;
2447 -- Local variables
2449 Decl : Node_Id;
2450 Subp_Decl : Node_Id;
2452 -- Start of processing for Build_Subprogram_Declaration
2454 begin
2455 -- Create a matching subprogram spec using the profile of the body.
2456 -- The structure of the tree is identical, but has new entities for
2457 -- the defining unit name and formal parameters.
2459 Subp_Decl :=
2460 Make_Subprogram_Declaration (Loc,
2461 Specification => Copy_Subprogram_Spec (Body_Spec));
2462 Set_Comes_From_Source (Subp_Decl, True);
2464 -- Relocate the aspects and relevant pragmas from the subprogram body
2465 -- to the generated spec because it acts as the initial declaration.
2467 Insert_Before (N, Subp_Decl);
2468 Move_Aspects (N, To => Subp_Decl);
2469 Move_Pragmas (N, To => Subp_Decl);
2471 -- Ensure that the generated corresponding spec and original body
2472 -- share the same SPARK_Mode pragma or aspect. As a result, both have
2473 -- the same SPARK_Mode attributes, and the global SPARK_Mode value is
2474 -- correctly set for local subprograms.
2476 Copy_SPARK_Mode_Aspect (Subp_Decl, To => N);
2478 Analyze (Subp_Decl);
2480 -- Propagate the attributes Rewritten_For_C and Corresponding_Proc to
2481 -- the body since the expander may generate calls using that entity.
2482 -- Required to ensure that Expand_Call rewrites calls to this
2483 -- function by calls to the built procedure.
2485 if Modify_Tree_For_C
2486 and then Nkind (Body_Spec) = N_Function_Specification
2487 and then
2488 Rewritten_For_C (Defining_Entity (Specification (Subp_Decl)))
2489 then
2490 Set_Rewritten_For_C (Defining_Entity (Body_Spec));
2491 Set_Corresponding_Procedure (Defining_Entity (Body_Spec),
2492 Corresponding_Procedure
2493 (Defining_Entity (Specification (Subp_Decl))));
2494 end if;
2496 -- Analyze any relocated source pragmas or pragmas created for aspect
2497 -- specifications.
2499 Decl := Next (Subp_Decl);
2500 while Present (Decl) loop
2502 -- Stop the search for pragmas once the body has been reached as
2503 -- this terminates the region where pragmas may appear.
2505 if Decl = N then
2506 exit;
2508 elsif Nkind (Decl) = N_Pragma then
2509 Analyze (Decl);
2510 end if;
2512 Next (Decl);
2513 end loop;
2515 Spec_Id := Defining_Entity (Subp_Decl);
2516 Set_Corresponding_Spec (N, Spec_Id);
2518 -- Mark the generated spec as a source construct to ensure that all
2519 -- calls to it are properly registered in ALI files for GNATprove.
2521 Set_Comes_From_Source (Spec_Id, True);
2523 -- Ensure that the specs of the subprogram declaration and its body
2524 -- are identical, otherwise they will appear non-conformant due to
2525 -- rewritings in the default values of formal parameters.
2527 Body_Spec := Copy_Subprogram_Spec (Body_Spec);
2528 Set_Specification (N, Body_Spec);
2529 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
2530 end Build_Subprogram_Declaration;
2532 ----------------------------
2533 -- Check_Anonymous_Return --
2534 ----------------------------
2536 procedure Check_Anonymous_Return is
2537 Decl : Node_Id;
2538 Par : Node_Id;
2539 Scop : Entity_Id;
2541 begin
2542 if Present (Spec_Id) then
2543 Scop := Spec_Id;
2544 else
2545 Scop := Body_Id;
2546 end if;
2548 if Ekind (Scop) = E_Function
2549 and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
2550 and then not Is_Thunk (Scop)
2552 -- Skip internally built functions which handle the case of
2553 -- a null access (see Expand_Interface_Conversion)
2555 and then not (Is_Interface (Designated_Type (Etype (Scop)))
2556 and then not Comes_From_Source (Parent (Scop)))
2558 and then (Has_Task (Designated_Type (Etype (Scop)))
2559 or else
2560 (Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
2561 and then
2562 Is_Limited_Record (Designated_Type (Etype (Scop)))))
2563 and then Expander_Active
2565 -- Avoid cases with no tasking support
2567 and then RTE_Available (RE_Current_Master)
2568 and then not Restriction_Active (No_Task_Hierarchy)
2569 then
2570 Decl :=
2571 Make_Object_Declaration (Loc,
2572 Defining_Identifier =>
2573 Make_Defining_Identifier (Loc, Name_uMaster),
2574 Constant_Present => True,
2575 Object_Definition =>
2576 New_Occurrence_Of (RTE (RE_Master_Id), Loc),
2577 Expression =>
2578 Make_Explicit_Dereference (Loc,
2579 New_Occurrence_Of (RTE (RE_Current_Master), Loc)));
2581 if Present (Declarations (N)) then
2582 Prepend (Decl, Declarations (N));
2583 else
2584 Set_Declarations (N, New_List (Decl));
2585 end if;
2587 Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
2588 Set_Has_Master_Entity (Scop);
2590 -- Now mark the containing scope as a task master
2592 Par := N;
2593 while Nkind (Par) /= N_Compilation_Unit loop
2594 Par := Parent (Par);
2595 pragma Assert (Present (Par));
2597 -- If we fall off the top, we are at the outer level, and
2598 -- the environment task is our effective master, so nothing
2599 -- to mark.
2601 if Nkind_In
2602 (Par, N_Task_Body, N_Block_Statement, N_Subprogram_Body)
2603 then
2604 Set_Is_Task_Master (Par, True);
2605 exit;
2606 end if;
2607 end loop;
2608 end if;
2609 end Check_Anonymous_Return;
2611 -------------------------
2612 -- Check_Inline_Pragma --
2613 -------------------------
2615 procedure Check_Inline_Pragma (Spec : in out Node_Id) is
2616 Prag : Node_Id;
2617 Plist : List_Id;
2619 function Is_Inline_Pragma (N : Node_Id) return Boolean;
2620 -- True when N is a pragma Inline or Inline_Always that applies
2621 -- to this subprogram.
2623 -----------------------
2624 -- Is_Inline_Pragma --
2625 -----------------------
2627 function Is_Inline_Pragma (N : Node_Id) return Boolean is
2628 begin
2629 if Nkind (N) = N_Pragma
2630 and then
2631 (Pragma_Name_Unmapped (N) = Name_Inline_Always
2632 or else (Pragma_Name_Unmapped (N) = Name_Inline
2633 and then
2634 (Front_End_Inlining or else Optimization_Level > 0)))
2635 and then Present (Pragma_Argument_Associations (N))
2636 then
2637 declare
2638 Pragma_Arg : Node_Id :=
2639 Expression (First (Pragma_Argument_Associations (N)));
2640 begin
2641 if Nkind (Pragma_Arg) = N_Selected_Component then
2642 Pragma_Arg := Selector_Name (Pragma_Arg);
2643 end if;
2645 return Chars (Pragma_Arg) = Chars (Body_Id);
2646 end;
2648 else
2649 return False;
2650 end if;
2651 end Is_Inline_Pragma;
2653 -- Start of processing for Check_Inline_Pragma
2655 begin
2656 if not Expander_Active then
2657 return;
2658 end if;
2660 if Is_List_Member (N)
2661 and then Present (Next (N))
2662 and then Is_Inline_Pragma (Next (N))
2663 then
2664 Prag := Next (N);
2666 elsif Nkind (N) /= N_Subprogram_Body_Stub
2667 and then Present (Declarations (N))
2668 and then Is_Inline_Pragma (First (Declarations (N)))
2669 then
2670 Prag := First (Declarations (N));
2672 else
2673 Prag := Empty;
2674 end if;
2676 if Present (Prag) then
2677 if Present (Spec_Id) then
2678 if Is_List_Member (N)
2679 and then Is_List_Member (Unit_Declaration_Node (Spec_Id))
2680 and then In_Same_List (N, Unit_Declaration_Node (Spec_Id))
2681 then
2682 Analyze (Prag);
2683 end if;
2685 else
2686 -- Create a subprogram declaration, to make treatment uniform.
2687 -- Make the sloc of the subprogram name that of the entity in
2688 -- the body, so that style checks find identical strings.
2690 declare
2691 Subp : constant Entity_Id :=
2692 Make_Defining_Identifier
2693 (Sloc (Body_Id), Chars (Body_Id));
2694 Decl : constant Node_Id :=
2695 Make_Subprogram_Declaration (Loc,
2696 Specification =>
2697 New_Copy_Tree (Specification (N)));
2699 begin
2700 Set_Defining_Unit_Name (Specification (Decl), Subp);
2702 -- To ensure proper coverage when body is inlined, indicate
2703 -- whether the subprogram comes from source.
2705 Set_Comes_From_Source (Subp, Comes_From_Source (N));
2707 if Present (First_Formal (Body_Id)) then
2708 Plist := Copy_Parameter_List (Body_Id);
2709 Set_Parameter_Specifications
2710 (Specification (Decl), Plist);
2711 end if;
2713 -- Move aspects to the new spec
2715 if Has_Aspects (N) then
2716 Move_Aspects (N, To => Decl);
2717 end if;
2719 Insert_Before (N, Decl);
2720 Analyze (Decl);
2721 Analyze (Prag);
2722 Set_Has_Pragma_Inline (Subp);
2724 if Pragma_Name (Prag) = Name_Inline_Always then
2725 Set_Is_Inlined (Subp);
2726 Set_Has_Pragma_Inline_Always (Subp);
2727 end if;
2729 -- Prior to copying the subprogram body to create a template
2730 -- for it for subsequent inlining, remove the pragma from
2731 -- the current body so that the copy that will produce the
2732 -- new body will start from a completely unanalyzed tree.
2734 if Nkind (Parent (Prag)) = N_Subprogram_Body then
2735 Rewrite (Prag, Make_Null_Statement (Sloc (Prag)));
2736 end if;
2738 Spec := Subp;
2739 end;
2740 end if;
2741 end if;
2742 end Check_Inline_Pragma;
2744 --------------------------
2745 -- Check_Missing_Return --
2746 --------------------------
2748 procedure Check_Missing_Return is
2749 Id : Entity_Id;
2750 Missing_Ret : Boolean;
2752 begin
2753 if Nkind (Body_Spec) = N_Function_Specification then
2754 if Present (Spec_Id) then
2755 Id := Spec_Id;
2756 else
2757 Id := Body_Id;
2758 end if;
2760 if Return_Present (Id) then
2761 Check_Returns (HSS, 'F', Missing_Ret);
2763 if Missing_Ret then
2764 Set_Has_Missing_Return (Id);
2765 end if;
2767 -- Within a premature instantiation of a package with no body, we
2768 -- build completions of the functions therein, with a Raise
2769 -- statement. No point in complaining about a missing return in
2770 -- this case.
2772 elsif Ekind (Id) = E_Function
2773 and then In_Instance
2774 and then Present (Statements (HSS))
2775 and then Nkind (First (Statements (HSS))) = N_Raise_Program_Error
2776 then
2777 null;
2779 elsif Is_Generic_Subprogram (Id)
2780 or else not Is_Machine_Code_Subprogram (Id)
2781 then
2782 Error_Msg_N ("missing RETURN statement in function body", N);
2783 end if;
2785 -- If procedure with No_Return, check returns
2787 elsif Nkind (Body_Spec) = N_Procedure_Specification
2788 and then Present (Spec_Id)
2789 and then No_Return (Spec_Id)
2790 then
2791 Check_Returns (HSS, 'P', Missing_Ret, Spec_Id);
2792 end if;
2794 -- Special checks in SPARK mode
2796 if Nkind (Body_Spec) = N_Function_Specification then
2798 -- In SPARK mode, last statement of a function should be a return
2800 declare
2801 Stat : constant Node_Id := Last_Source_Statement (HSS);
2802 begin
2803 if Present (Stat)
2804 and then not Nkind_In (Stat, N_Simple_Return_Statement,
2805 N_Extended_Return_Statement)
2806 then
2807 Check_SPARK_05_Restriction
2808 ("last statement in function should be RETURN", Stat);
2809 end if;
2810 end;
2812 -- In SPARK mode, verify that a procedure has no return
2814 elsif Nkind (Body_Spec) = N_Procedure_Specification then
2815 if Present (Spec_Id) then
2816 Id := Spec_Id;
2817 else
2818 Id := Body_Id;
2819 end if;
2821 -- Would be nice to point to return statement here, can we
2822 -- borrow the Check_Returns procedure here ???
2824 if Return_Present (Id) then
2825 Check_SPARK_05_Restriction
2826 ("procedure should not have RETURN", N);
2827 end if;
2828 end if;
2829 end Check_Missing_Return;
2831 -----------------------
2832 -- Disambiguate_Spec --
2833 -----------------------
2835 function Disambiguate_Spec return Entity_Id is
2836 Priv_Spec : Entity_Id;
2837 Spec_N : Entity_Id;
2839 procedure Replace_Types (To_Corresponding : Boolean);
2840 -- Depending on the flag, replace the type of formal parameters of
2841 -- Body_Id if it is a concurrent type implementing interfaces with
2842 -- the corresponding record type or the other way around.
2844 procedure Replace_Types (To_Corresponding : Boolean) is
2845 Formal : Entity_Id;
2846 Formal_Typ : Entity_Id;
2848 begin
2849 Formal := First_Formal (Body_Id);
2850 while Present (Formal) loop
2851 Formal_Typ := Etype (Formal);
2853 if Is_Class_Wide_Type (Formal_Typ) then
2854 Formal_Typ := Root_Type (Formal_Typ);
2855 end if;
2857 -- From concurrent type to corresponding record
2859 if To_Corresponding then
2860 if Is_Concurrent_Type (Formal_Typ)
2861 and then Present (Corresponding_Record_Type (Formal_Typ))
2862 and then
2863 Present (Interfaces
2864 (Corresponding_Record_Type (Formal_Typ)))
2865 then
2866 Set_Etype (Formal,
2867 Corresponding_Record_Type (Formal_Typ));
2868 end if;
2870 -- From corresponding record to concurrent type
2872 else
2873 if Is_Concurrent_Record_Type (Formal_Typ)
2874 and then Present (Interfaces (Formal_Typ))
2875 then
2876 Set_Etype (Formal,
2877 Corresponding_Concurrent_Type (Formal_Typ));
2878 end if;
2879 end if;
2881 Next_Formal (Formal);
2882 end loop;
2883 end Replace_Types;
2885 -- Start of processing for Disambiguate_Spec
2887 begin
2888 -- Try to retrieve the specification of the body as is. All error
2889 -- messages are suppressed because the body may not have a spec in
2890 -- its current state.
2892 Spec_N := Find_Corresponding_Spec (N, False);
2894 -- It is possible that this is the body of a primitive declared
2895 -- between a private and a full view of a concurrent type. The
2896 -- controlling parameter of the spec carries the concurrent type,
2897 -- not the corresponding record type as transformed by Analyze_
2898 -- Subprogram_Specification. In such cases, we undo the change
2899 -- made by the analysis of the specification and try to find the
2900 -- spec again.
2902 -- Note that wrappers already have their corresponding specs and
2903 -- bodies set during their creation, so if the candidate spec is
2904 -- a wrapper, then we definitely need to swap all types to their
2905 -- original concurrent status.
2907 if No (Spec_N)
2908 or else Is_Primitive_Wrapper (Spec_N)
2909 then
2910 -- Restore all references of corresponding record types to the
2911 -- original concurrent types.
2913 Replace_Types (To_Corresponding => False);
2914 Priv_Spec := Find_Corresponding_Spec (N, False);
2916 -- The current body truly belongs to a primitive declared between
2917 -- a private and a full view. We leave the modified body as is,
2918 -- and return the true spec.
2920 if Present (Priv_Spec)
2921 and then Is_Private_Primitive (Priv_Spec)
2922 then
2923 return Priv_Spec;
2924 end if;
2926 -- In case that this is some sort of error, restore the original
2927 -- state of the body.
2929 Replace_Types (To_Corresponding => True);
2930 end if;
2932 return Spec_N;
2933 end Disambiguate_Spec;
2935 ----------------------------
2936 -- Exchange_Limited_Views --
2937 ----------------------------
2939 function Exchange_Limited_Views (Subp_Id : Entity_Id) return Elist_Id is
2940 Result : Elist_Id := No_Elist;
2942 procedure Detect_And_Exchange (Id : Entity_Id);
2943 -- Determine whether Id's type denotes an incomplete type associated
2944 -- with a limited with clause and exchange the limited view with the
2945 -- non-limited one when available. Note that the non-limited view
2946 -- may exist because of a with_clause in another unit in the context,
2947 -- but cannot be used because the current view of the enclosing unit
2948 -- is still a limited view.
2950 -------------------------
2951 -- Detect_And_Exchange --
2952 -------------------------
2954 procedure Detect_And_Exchange (Id : Entity_Id) is
2955 Typ : constant Entity_Id := Etype (Id);
2956 begin
2957 if From_Limited_With (Typ)
2958 and then Has_Non_Limited_View (Typ)
2959 and then not From_Limited_With (Scope (Typ))
2960 then
2961 if No (Result) then
2962 Result := New_Elmt_List;
2963 end if;
2965 Prepend_Elmt (Typ, Result);
2966 Prepend_Elmt (Id, Result);
2967 Set_Etype (Id, Non_Limited_View (Typ));
2968 end if;
2969 end Detect_And_Exchange;
2971 -- Local variables
2973 Formal : Entity_Id;
2975 -- Start of processing for Exchange_Limited_Views
2977 begin
2978 -- Do not process subprogram bodies as they already use the non-
2979 -- limited view of types.
2981 if not Ekind_In (Subp_Id, E_Function, E_Procedure) then
2982 return No_Elist;
2983 end if;
2985 -- Examine all formals and swap views when applicable
2987 Formal := First_Formal (Subp_Id);
2988 while Present (Formal) loop
2989 Detect_And_Exchange (Formal);
2991 Next_Formal (Formal);
2992 end loop;
2994 -- Process the return type of a function
2996 if Ekind (Subp_Id) = E_Function then
2997 Detect_And_Exchange (Subp_Id);
2998 end if;
3000 return Result;
3001 end Exchange_Limited_Views;
3003 -----------------------
3004 -- Freeze_Expr_Types --
3005 -----------------------
3007 procedure Freeze_Expr_Types (Spec_Id : Entity_Id) is
3008 function Cloned_Expression return Node_Id;
3009 -- Build a duplicate of the expression of the return statement that
3010 -- has no defining entities shared with the original expression.
3012 function Freeze_Type_Refs (Node : Node_Id) return Traverse_Result;
3013 -- Freeze all types referenced in the subtree rooted at Node
3015 -----------------------
3016 -- Cloned_Expression --
3017 -----------------------
3019 function Cloned_Expression return Node_Id is
3020 function Clone_Id (Node : Node_Id) return Traverse_Result;
3021 -- Tree traversal routine that clones the defining identifier of
3022 -- iterator and loop parameter specification nodes.
3024 ----------------
3025 -- Check_Node --
3026 ----------------
3028 function Clone_Id (Node : Node_Id) return Traverse_Result is
3029 begin
3030 if Nkind_In (Node, N_Iterator_Specification,
3031 N_Loop_Parameter_Specification)
3032 then
3033 Set_Defining_Identifier (Node,
3034 New_Copy (Defining_Identifier (Node)));
3035 end if;
3037 return OK;
3038 end Clone_Id;
3040 -------------------
3041 -- Clone_Def_Ids --
3042 -------------------
3044 procedure Clone_Def_Ids is new Traverse_Proc (Clone_Id);
3046 -- Local variables
3048 Return_Stmt : constant Node_Id :=
3049 First
3050 (Statements (Handled_Statement_Sequence (N)));
3051 Dup_Expr : Node_Id;
3053 -- Start of processing for Cloned_Expression
3055 begin
3056 pragma Assert (Nkind (Return_Stmt) = N_Simple_Return_Statement);
3058 -- We must duplicate the expression with semantic information to
3059 -- inherit the decoration of global entities in generic instances.
3061 Dup_Expr := New_Copy_Tree (Expression (Return_Stmt));
3063 -- Replace the defining identifier of iterators and loop param
3064 -- specifications by a clone to ensure that the cloned expression
3065 -- and the original expression don't have shared identifiers;
3066 -- otherwise, as part of the preanalysis of the expression, these
3067 -- shared identifiers may be left decorated with itypes which
3068 -- will not be available in the tree passed to the backend.
3070 Clone_Def_Ids (Dup_Expr);
3072 return Dup_Expr;
3073 end Cloned_Expression;
3075 ----------------------
3076 -- Freeze_Type_Refs --
3077 ----------------------
3079 function Freeze_Type_Refs (Node : Node_Id) return Traverse_Result is
3080 begin
3081 if Nkind (Node) = N_Identifier
3082 and then Present (Entity (Node))
3083 then
3084 if Is_Type (Entity (Node)) then
3085 Freeze_Before (N, Entity (Node));
3087 elsif Ekind_In (Entity (Node), E_Component,
3088 E_Discriminant)
3089 then
3090 Freeze_Before (N, Scope (Entity (Node)));
3091 end if;
3092 end if;
3094 return OK;
3095 end Freeze_Type_Refs;
3097 procedure Freeze_References is new Traverse_Proc (Freeze_Type_Refs);
3099 -- Local variables
3101 Saved_First_Entity : constant Entity_Id := First_Entity (Spec_Id);
3102 Saved_Last_Entity : constant Entity_Id := Last_Entity (Spec_Id);
3103 Dup_Expr : constant Node_Id := Cloned_Expression;
3105 -- Start of processing for Freeze_Expr_Types
3107 begin
3108 -- Preanalyze a duplicate of the expression to have available the
3109 -- minimum decoration needed to locate referenced unfrozen types
3110 -- without adding any decoration to the function expression. This
3111 -- preanalysis is performed with errors disabled to avoid reporting
3112 -- spurious errors on Ghost entities (since the expression is not
3113 -- fully analyzed).
3115 Push_Scope (Spec_Id);
3116 Install_Formals (Spec_Id);
3117 Ignore_Errors_Enable := Ignore_Errors_Enable + 1;
3119 Preanalyze_Spec_Expression (Dup_Expr, Etype (Spec_Id));
3121 Ignore_Errors_Enable := Ignore_Errors_Enable - 1;
3122 End_Scope;
3124 -- Restore certain attributes of Spec_Id since the preanalysis may
3125 -- have introduced itypes to this scope, thus modifying attributes
3126 -- First_Entity and Last_Entity.
3128 Set_First_Entity (Spec_Id, Saved_First_Entity);
3129 Set_Last_Entity (Spec_Id, Saved_Last_Entity);
3131 if Present (Last_Entity (Spec_Id)) then
3132 Set_Next_Entity (Last_Entity (Spec_Id), Empty);
3133 end if;
3135 -- Freeze all types referenced in the expression
3137 Freeze_References (Dup_Expr);
3138 end Freeze_Expr_Types;
3140 -------------------------------------
3141 -- Is_Private_Concurrent_Primitive --
3142 -------------------------------------
3144 function Is_Private_Concurrent_Primitive
3145 (Subp_Id : Entity_Id) return Boolean
3147 Formal_Typ : Entity_Id;
3149 begin
3150 if Present (First_Formal (Subp_Id)) then
3151 Formal_Typ := Etype (First_Formal (Subp_Id));
3153 if Is_Concurrent_Record_Type (Formal_Typ) then
3154 if Is_Class_Wide_Type (Formal_Typ) then
3155 Formal_Typ := Root_Type (Formal_Typ);
3156 end if;
3158 Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
3159 end if;
3161 -- The type of the first formal is a concurrent tagged type with
3162 -- a private view.
3164 return
3165 Is_Concurrent_Type (Formal_Typ)
3166 and then Is_Tagged_Type (Formal_Typ)
3167 and then Has_Private_Declaration (Formal_Typ);
3168 end if;
3170 return False;
3171 end Is_Private_Concurrent_Primitive;
3173 ---------------------------
3174 -- Restore_Limited_Views --
3175 ---------------------------
3177 procedure Restore_Limited_Views (Restore_List : Elist_Id) is
3178 Elmt : Elmt_Id := First_Elmt (Restore_List);
3179 Id : Entity_Id;
3181 begin
3182 while Present (Elmt) loop
3183 Id := Node (Elmt);
3184 Next_Elmt (Elmt);
3185 Set_Etype (Id, Node (Elmt));
3186 Next_Elmt (Elmt);
3187 end loop;
3188 end Restore_Limited_Views;
3190 ----------------------------
3191 -- Set_Trivial_Subprogram --
3192 ----------------------------
3194 procedure Set_Trivial_Subprogram (N : Node_Id) is
3195 Nxt : constant Node_Id := Next (N);
3197 begin
3198 Set_Is_Trivial_Subprogram (Body_Id);
3200 if Present (Spec_Id) then
3201 Set_Is_Trivial_Subprogram (Spec_Id);
3202 end if;
3204 if Present (Nxt)
3205 and then Nkind (Nxt) = N_Simple_Return_Statement
3206 and then No (Next (Nxt))
3207 and then Present (Expression (Nxt))
3208 and then Is_Entity_Name (Expression (Nxt))
3209 then
3210 Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
3211 end if;
3212 end Set_Trivial_Subprogram;
3214 ---------------------------------
3215 -- Verify_Overriding_Indicator --
3216 ---------------------------------
3218 procedure Verify_Overriding_Indicator is
3219 begin
3220 if Must_Override (Body_Spec) then
3221 if Nkind (Spec_Id) = N_Defining_Operator_Symbol
3222 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
3223 then
3224 null;
3226 elsif not Present (Overridden_Operation (Spec_Id)) then
3227 Error_Msg_NE
3228 ("subprogram& is not overriding", Body_Spec, Spec_Id);
3230 -- Overriding indicators aren't allowed for protected subprogram
3231 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3232 -- this to a warning if -gnatd.E is enabled.
3234 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3235 Error_Msg_Warn := Error_To_Warning;
3236 Error_Msg_N
3237 ("<<overriding indicator not allowed for protected "
3238 & "subprogram body", Body_Spec);
3239 end if;
3241 elsif Must_Not_Override (Body_Spec) then
3242 if Present (Overridden_Operation (Spec_Id)) then
3243 Error_Msg_NE
3244 ("subprogram& overrides inherited operation",
3245 Body_Spec, Spec_Id);
3247 elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
3248 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
3249 then
3250 Error_Msg_NE
3251 ("subprogram& overrides predefined operator ",
3252 Body_Spec, Spec_Id);
3254 -- Overriding indicators aren't allowed for protected subprogram
3255 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3256 -- this to a warning if -gnatd.E is enabled.
3258 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3259 Error_Msg_Warn := Error_To_Warning;
3261 Error_Msg_N
3262 ("<<overriding indicator not allowed "
3263 & "for protected subprogram body", Body_Spec);
3265 -- If this is not a primitive operation, then the overriding
3266 -- indicator is altogether illegal.
3268 elsif not Is_Primitive (Spec_Id) then
3269 Error_Msg_N
3270 ("overriding indicator only allowed "
3271 & "if subprogram is primitive", Body_Spec);
3272 end if;
3274 -- If checking the style rule and the operation overrides, then
3275 -- issue a warning about a missing overriding_indicator. Protected
3276 -- subprogram bodies are excluded from this style checking, since
3277 -- they aren't primitives (even though their declarations can
3278 -- override) and aren't allowed to have an overriding_indicator.
3280 elsif Style_Check
3281 and then Present (Overridden_Operation (Spec_Id))
3282 and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
3283 then
3284 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3285 Style.Missing_Overriding (N, Body_Id);
3287 elsif Style_Check
3288 and then Can_Override_Operator (Spec_Id)
3289 and then not Is_Predefined_File_Name
3290 (Unit_File_Name (Get_Source_Unit (Spec_Id)))
3291 then
3292 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3293 Style.Missing_Overriding (N, Body_Id);
3294 end if;
3295 end Verify_Overriding_Indicator;
3297 -- Local variables
3299 Mode : Ghost_Mode_Type;
3300 Mode_Set : Boolean := False;
3302 -- Start of processing for Analyze_Subprogram_Body_Helper
3304 begin
3305 -- A [generic] subprogram body "freezes" the contract of the nearest
3306 -- enclosing package body and all other contracts encountered in the
3307 -- same declarative part up to and excluding the subprogram body:
3309 -- package body Nearest_Enclosing_Package
3310 -- with Refined_State => (State => Constit)
3311 -- is
3312 -- Constit : ...;
3314 -- procedure Freezes_Enclosing_Package_Body
3315 -- with Refined_Depends => (Input => Constit) ...
3317 -- This ensures that any annotations referenced by the contract of the
3318 -- [generic] subprogram body are available. This form of "freezing" is
3319 -- decoupled from the usual Freeze_xxx mechanism because it must also
3320 -- work in the context of generics where normal freezing is disabled.
3322 -- Only bodies coming from source should cause this type of "freezing".
3323 -- Expression functions that act as bodies and complete an initial
3324 -- declaration must be included in this category, hence the use of
3325 -- Original_Node.
3327 if Comes_From_Source (Original_Node (N)) then
3328 Analyze_Previous_Contracts (N);
3329 end if;
3331 -- Generic subprograms are handled separately. They always have a
3332 -- generic specification. Determine whether current scope has a
3333 -- previous declaration.
3335 -- If the subprogram body is defined within an instance of the same
3336 -- name, the instance appears as a package renaming, and will be hidden
3337 -- within the subprogram.
3339 if Present (Prev_Id)
3340 and then not Is_Overloadable (Prev_Id)
3341 and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
3342 or else Comes_From_Source (Prev_Id))
3343 then
3344 if Is_Generic_Subprogram (Prev_Id) then
3345 Spec_Id := Prev_Id;
3347 -- A subprogram body is Ghost when it is stand alone and subject
3348 -- to pragma Ghost or when the corresponding spec is Ghost. Set
3349 -- the mode now to ensure that any nodes generated during analysis
3350 -- and expansion are properly marked as Ghost.
3352 Mark_And_Set_Ghost_Body (N, Spec_Id, Mode);
3353 Mode_Set := True;
3355 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3356 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3358 Analyze_Generic_Subprogram_Body (N, Spec_Id);
3360 if Nkind (N) = N_Subprogram_Body then
3361 HSS := Handled_Statement_Sequence (N);
3362 Check_Missing_Return;
3363 end if;
3365 goto Leave;
3367 -- Otherwise a previous entity conflicts with the subprogram name.
3368 -- Attempting to enter name will post error.
3370 else
3371 Enter_Name (Body_Id);
3372 return;
3373 end if;
3375 -- Non-generic case, find the subprogram declaration, if one was seen,
3376 -- or enter new overloaded entity in the current scope. If the
3377 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
3378 -- part of the context of one of its subunits. No need to redo the
3379 -- analysis.
3381 elsif Prev_Id = Body_Id and then Has_Completion (Body_Id) then
3382 return;
3384 else
3385 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
3387 if Nkind (N) = N_Subprogram_Body_Stub
3388 or else No (Corresponding_Spec (N))
3389 then
3390 if Is_Private_Concurrent_Primitive (Body_Id) then
3391 Spec_Id := Disambiguate_Spec;
3393 -- A subprogram body is Ghost when it is stand alone and
3394 -- subject to pragma Ghost or when the corresponding spec is
3395 -- Ghost. Set the mode now to ensure that any nodes generated
3396 -- during analysis and expansion are properly marked as Ghost.
3398 Mark_And_Set_Ghost_Body (N, Spec_Id, Mode);
3399 Mode_Set := True;
3401 else
3402 Spec_Id := Find_Corresponding_Spec (N);
3404 -- A subprogram body is Ghost when it is stand alone and
3405 -- subject to pragma Ghost or when the corresponding spec is
3406 -- Ghost. Set the mode now to ensure that any nodes generated
3407 -- during analysis and expansion are properly marked as Ghost.
3409 Mark_And_Set_Ghost_Body (N, Spec_Id, Mode);
3410 Mode_Set := True;
3412 -- In GNATprove mode, if the body has no previous spec, create
3413 -- one so that the inlining machinery can operate properly.
3414 -- Transfer aspects, if any, to the new spec, so that they
3415 -- are legal and can be processed ahead of the body.
3416 -- We make two copies of the given spec, one for the new
3417 -- declaration, and one for the body.
3419 if No (Spec_Id) and then GNATprove_Mode
3421 -- Inlining does not apply during pre-analysis of code
3423 and then Full_Analysis
3425 -- Inlining only applies to full bodies, not stubs
3427 and then Nkind (N) /= N_Subprogram_Body_Stub
3429 -- Inlining only applies to bodies in the source code, not to
3430 -- those generated by the compiler. In particular, expression
3431 -- functions, whose body is generated by the compiler, are
3432 -- treated specially by GNATprove.
3434 and then Comes_From_Source (Body_Id)
3436 -- This cannot be done for a compilation unit, which is not
3437 -- in a context where we can insert a new spec.
3439 and then Is_List_Member (N)
3441 -- Inlining only applies to subprograms without contracts,
3442 -- as a contract is a sign that GNATprove should perform a
3443 -- modular analysis of the subprogram instead of a contextual
3444 -- analysis at each call site. The same test is performed in
3445 -- Inline.Can_Be_Inlined_In_GNATprove_Mode. It is repeated
3446 -- here in another form (because the contract has not been
3447 -- attached to the body) to avoid front-end errors in case
3448 -- pragmas are used instead of aspects, because the
3449 -- corresponding pragmas in the body would not be transferred
3450 -- to the spec, leading to legality errors.
3452 and then not Body_Has_Contract
3453 and then not Inside_A_Generic
3454 then
3455 Build_Subprogram_Declaration;
3457 -- If this is a function that returns a constrained array, and
3458 -- we are generating SPARK_For_C, create subprogram declaration
3459 -- to simplify subsequent C generation.
3461 elsif No (Spec_Id)
3462 and then Modify_Tree_For_C
3463 and then Nkind (Body_Spec) = N_Function_Specification
3464 and then Is_Array_Type (Etype (Body_Id))
3465 and then Is_Constrained (Etype (Body_Id))
3466 then
3467 Build_Subprogram_Declaration;
3468 end if;
3469 end if;
3471 -- If this is a duplicate body, no point in analyzing it
3473 if Error_Posted (N) then
3474 goto Leave;
3475 end if;
3477 -- A subprogram body should cause freezing of its own declaration,
3478 -- but if there was no previous explicit declaration, then the
3479 -- subprogram will get frozen too late (there may be code within
3480 -- the body that depends on the subprogram having been frozen,
3481 -- such as uses of extra formals), so we force it to be frozen
3482 -- here. Same holds if the body and spec are compilation units.
3483 -- Finally, if the return type is an anonymous access to protected
3484 -- subprogram, it must be frozen before the body because its
3485 -- expansion has generated an equivalent type that is used when
3486 -- elaborating the body.
3488 -- An exception in the case of Ada 2012, AI05-177: The bodies
3489 -- created for expression functions do not freeze.
3491 if No (Spec_Id)
3492 and then Nkind (Original_Node (N)) /= N_Expression_Function
3493 then
3494 Freeze_Before (N, Body_Id);
3496 elsif Nkind (Parent (N)) = N_Compilation_Unit then
3497 Freeze_Before (N, Spec_Id);
3499 elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
3500 Freeze_Before (N, Etype (Body_Id));
3501 end if;
3503 else
3504 Spec_Id := Corresponding_Spec (N);
3506 -- A subprogram body is Ghost when it is stand alone and subject
3507 -- to pragma Ghost or when the corresponding spec is Ghost. Set
3508 -- the mode now to ensure that any nodes generated during analysis
3509 -- and expansion are properly marked as Ghost.
3511 Mark_And_Set_Ghost_Body (N, Spec_Id, Mode);
3512 Mode_Set := True;
3513 end if;
3514 end if;
3516 -- Previously we scanned the body to look for nested subprograms, and
3517 -- rejected an inline directive if nested subprograms were present,
3518 -- because the back-end would generate conflicting symbols for the
3519 -- nested bodies. This is now unnecessary.
3521 -- Look ahead to recognize a pragma Inline that appears after the body
3523 Check_Inline_Pragma (Spec_Id);
3525 -- Deal with special case of a fully private operation in the body of
3526 -- the protected type. We must create a declaration for the subprogram,
3527 -- in order to attach the protected subprogram that will be used in
3528 -- internal calls. We exclude compiler generated bodies from the
3529 -- expander since the issue does not arise for those cases.
3531 if No (Spec_Id)
3532 and then Comes_From_Source (N)
3533 and then Is_Protected_Type (Current_Scope)
3534 then
3535 Spec_Id := Build_Private_Protected_Declaration (N);
3536 end if;
3538 -- If we are generating C and this is a function returning a constrained
3539 -- array type for which we must create a procedure with an extra out
3540 -- parameter, build and analyze the body now. The procedure declaration
3541 -- has already been created. We reuse the source body of the function,
3542 -- because in an instance it may contain global references that cannot
3543 -- be reanalyzed. The source function itself is not used any further,
3544 -- so we mark it as having a completion. If the subprogram is a stub the
3545 -- transformation is done later, when the proper body is analyzed.
3547 if Expander_Active
3548 and then Modify_Tree_For_C
3549 and then Present (Spec_Id)
3550 and then Ekind (Spec_Id) = E_Function
3551 and then Nkind (N) /= N_Subprogram_Body_Stub
3552 and then Rewritten_For_C (Spec_Id)
3553 then
3554 Set_Has_Completion (Spec_Id);
3556 Rewrite (N, Build_Procedure_Body_Form (Spec_Id, N));
3557 Analyze (N);
3559 -- The entity for the created procedure must remain invisible, so it
3560 -- does not participate in resolution of subsequent references to the
3561 -- function.
3563 Set_Is_Immediately_Visible (Corresponding_Spec (N), False);
3564 goto Leave;
3565 end if;
3567 -- If a separate spec is present, then deal with freezing issues
3569 if Present (Spec_Id) then
3570 Spec_Decl := Unit_Declaration_Node (Spec_Id);
3571 Verify_Overriding_Indicator;
3573 -- In general, the spec will be frozen when we start analyzing the
3574 -- body. However, for internally generated operations, such as
3575 -- wrapper functions for inherited operations with controlling
3576 -- results, the spec may not have been frozen by the time we expand
3577 -- the freeze actions that include the bodies. In particular, extra
3578 -- formals for accessibility or for return-in-place may need to be
3579 -- generated. Freeze nodes, if any, are inserted before the current
3580 -- body. These freeze actions are also needed in ASIS mode and in
3581 -- Compile_Only mode to enable the proper back-end type annotations.
3582 -- They are necessary in any case to insure order of elaboration
3583 -- in gigi.
3585 if not Is_Frozen (Spec_Id)
3586 and then (Expander_Active
3587 or else ASIS_Mode
3588 or else (Operating_Mode = Check_Semantics
3589 and then Serious_Errors_Detected = 0))
3590 then
3591 Set_Has_Delayed_Freeze (Spec_Id);
3592 Freeze_Before (N, Spec_Id);
3594 -- AI12-0103: At the occurrence of an expression function
3595 -- declaration that is a completion, its expression causes
3596 -- freezing.
3598 if Has_Completion (Spec_Id)
3599 and then Nkind (N) = N_Subprogram_Body
3600 and then Was_Expression_Function (N)
3601 then
3602 Freeze_Expr_Types (Spec_Id);
3603 end if;
3604 end if;
3605 end if;
3607 -- Place subprogram on scope stack, and make formals visible. If there
3608 -- is a spec, the visible entity remains that of the spec.
3610 if Present (Spec_Id) then
3611 Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
3613 if Is_Child_Unit (Spec_Id) then
3614 Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
3615 end if;
3617 if Style_Check then
3618 Style.Check_Identifier (Body_Id, Spec_Id);
3619 end if;
3621 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3622 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3624 if Is_Abstract_Subprogram (Spec_Id) then
3625 Error_Msg_N ("an abstract subprogram cannot have a body", N);
3626 goto Leave;
3628 else
3629 Set_Convention (Body_Id, Convention (Spec_Id));
3630 Set_Has_Completion (Spec_Id);
3632 if Is_Protected_Type (Scope (Spec_Id)) then
3633 Prot_Typ := Scope (Spec_Id);
3634 end if;
3636 -- If this is a body generated for a renaming, do not check for
3637 -- full conformance. The check is redundant, because the spec of
3638 -- the body is a copy of the spec in the renaming declaration,
3639 -- and the test can lead to spurious errors on nested defaults.
3641 if Present (Spec_Decl)
3642 and then not Comes_From_Source (N)
3643 and then
3644 (Nkind (Original_Node (Spec_Decl)) =
3645 N_Subprogram_Renaming_Declaration
3646 or else (Present (Corresponding_Body (Spec_Decl))
3647 and then
3648 Nkind (Unit_Declaration_Node
3649 (Corresponding_Body (Spec_Decl))) =
3650 N_Subprogram_Renaming_Declaration))
3651 then
3652 Conformant := True;
3654 -- Conversely, the spec may have been generated for specless body
3655 -- with an inline pragma. The entity comes from source, which is
3656 -- both semantically correct and necessary for proper inlining.
3657 -- The subprogram declaration itself is not in the source.
3659 elsif Comes_From_Source (N)
3660 and then Present (Spec_Decl)
3661 and then not Comes_From_Source (Spec_Decl)
3662 and then Has_Pragma_Inline (Spec_Id)
3663 then
3664 Conformant := True;
3666 else
3667 Check_Conformance
3668 (Body_Id, Spec_Id,
3669 Fully_Conformant, True, Conformant, Body_Id);
3670 end if;
3672 -- If the body is not fully conformant, we have to decide if we
3673 -- should analyze it or not. If it has a really messed up profile
3674 -- then we probably should not analyze it, since we will get too
3675 -- many bogus messages.
3677 -- Our decision is to go ahead in the non-fully conformant case
3678 -- only if it is at least mode conformant with the spec. Note
3679 -- that the call to Check_Fully_Conformant has issued the proper
3680 -- error messages to complain about the lack of conformance.
3682 if not Conformant
3683 and then not Mode_Conformant (Body_Id, Spec_Id)
3684 then
3685 goto Leave;
3686 end if;
3687 end if;
3689 if Spec_Id /= Body_Id then
3690 Reference_Body_Formals (Spec_Id, Body_Id);
3691 end if;
3693 Set_Ekind (Body_Id, E_Subprogram_Body);
3695 if Nkind (N) = N_Subprogram_Body_Stub then
3696 Set_Corresponding_Spec_Of_Stub (N, Spec_Id);
3698 -- Regular body
3700 else
3701 Set_Corresponding_Spec (N, Spec_Id);
3703 -- Ada 2005 (AI-345): If the operation is a primitive operation
3704 -- of a concurrent type, the type of the first parameter has been
3705 -- replaced with the corresponding record, which is the proper
3706 -- run-time structure to use. However, within the body there may
3707 -- be uses of the formals that depend on primitive operations
3708 -- of the type (in particular calls in prefixed form) for which
3709 -- we need the original concurrent type. The operation may have
3710 -- several controlling formals, so the replacement must be done
3711 -- for all of them.
3713 if Comes_From_Source (Spec_Id)
3714 and then Present (First_Entity (Spec_Id))
3715 and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
3716 and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
3717 and then Present (Interfaces (Etype (First_Entity (Spec_Id))))
3718 and then Present (Corresponding_Concurrent_Type
3719 (Etype (First_Entity (Spec_Id))))
3720 then
3721 declare
3722 Typ : constant Entity_Id := Etype (First_Entity (Spec_Id));
3723 Form : Entity_Id;
3725 begin
3726 Form := First_Formal (Spec_Id);
3727 while Present (Form) loop
3728 if Etype (Form) = Typ then
3729 Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
3730 end if;
3732 Next_Formal (Form);
3733 end loop;
3734 end;
3735 end if;
3737 -- Make the formals visible, and place subprogram on scope stack.
3738 -- This is also the point at which we set Last_Real_Spec_Entity
3739 -- to mark the entities which will not be moved to the body.
3741 Install_Formals (Spec_Id);
3742 Last_Real_Spec_Entity := Last_Entity (Spec_Id);
3744 -- Within an instance, add local renaming declarations so that
3745 -- gdb can retrieve the values of actuals more easily. This is
3746 -- only relevant if generating code (and indeed we definitely
3747 -- do not want these definitions -gnatc mode, because that would
3748 -- confuse ASIS).
3750 if Is_Generic_Instance (Spec_Id)
3751 and then Is_Wrapper_Package (Current_Scope)
3752 and then Expander_Active
3753 then
3754 Build_Subprogram_Instance_Renamings (N, Current_Scope);
3755 end if;
3757 Push_Scope (Spec_Id);
3759 -- Make sure that the subprogram is immediately visible. For
3760 -- child units that have no separate spec this is indispensable.
3761 -- Otherwise it is safe albeit redundant.
3763 Set_Is_Immediately_Visible (Spec_Id);
3764 end if;
3766 Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
3767 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
3768 Set_Scope (Body_Id, Scope (Spec_Id));
3770 -- Case of subprogram body with no previous spec
3772 else
3773 -- Check for style warning required
3775 if Style_Check
3777 -- Only apply check for source level subprograms for which checks
3778 -- have not been suppressed.
3780 and then Comes_From_Source (Body_Id)
3781 and then not Suppress_Style_Checks (Body_Id)
3783 -- No warnings within an instance
3785 and then not In_Instance
3787 -- No warnings for expression functions
3789 and then Nkind (Original_Node (N)) /= N_Expression_Function
3790 then
3791 Style.Body_With_No_Spec (N);
3792 end if;
3794 New_Overloaded_Entity (Body_Id);
3796 if Nkind (N) /= N_Subprogram_Body_Stub then
3797 Set_Acts_As_Spec (N);
3798 Generate_Definition (Body_Id);
3799 Generate_Reference
3800 (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
3802 -- If the body is an entry wrapper created for an entry with
3803 -- preconditions, it must be compiled in the context of the
3804 -- enclosing synchronized object, because it may mention other
3805 -- operations of the type.
3807 if Is_Entry_Wrapper (Body_Id) then
3808 declare
3809 Prot : constant Entity_Id := Etype (First_Entity (Body_Id));
3810 begin
3811 Push_Scope (Prot);
3812 Install_Declarations (Prot);
3813 end;
3814 end if;
3816 Install_Formals (Body_Id);
3818 Push_Scope (Body_Id);
3819 end if;
3821 -- For stubs and bodies with no previous spec, generate references to
3822 -- formals.
3824 Generate_Reference_To_Formals (Body_Id);
3825 end if;
3827 -- Entry barrier functions are generated outside the protected type and
3828 -- should not carry the SPARK_Mode of the enclosing context.
3830 if Nkind (N) = N_Subprogram_Body
3831 and then Is_Entry_Barrier_Function (N)
3832 then
3833 null;
3835 -- The body is generated as part of expression function expansion. When
3836 -- the expression function appears in the visible declarations of a
3837 -- package, the body is added to the private declarations. Since both
3838 -- declarative lists may be subject to a different SPARK_Mode, inherit
3839 -- the mode of the spec.
3841 -- package P with SPARK_Mode is
3842 -- function Expr_Func ... is (...); -- original
3843 -- [function Expr_Func ...;] -- generated spec
3844 -- -- mode is ON
3845 -- private
3846 -- pragma SPARK_Mode (Off);
3847 -- [function Expr_Func ... is return ...;] -- generated body
3848 -- end P; -- mode is ON
3850 elsif not Comes_From_Source (N)
3851 and then Present (Spec_Id)
3852 and then Is_Expression_Function (Spec_Id)
3853 then
3854 Set_SPARK_Pragma (Body_Id, SPARK_Pragma (Spec_Id));
3855 Set_SPARK_Pragma_Inherited
3856 (Body_Id, SPARK_Pragma_Inherited (Spec_Id));
3858 -- Set the SPARK_Mode from the current context (may be overwritten later
3859 -- with explicit pragma). Exclude the case where the SPARK_Mode appears
3860 -- initially on a stand-alone subprogram body, but is then relocated to
3861 -- a generated corresponding spec. In this scenario the mode is shared
3862 -- between the spec and body.
3864 elsif No (SPARK_Pragma (Body_Id)) then
3865 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
3866 Set_SPARK_Pragma_Inherited (Body_Id);
3867 end if;
3869 -- If this is the proper body of a stub, we must verify that the stub
3870 -- conforms to the body, and to the previous spec if one was present.
3871 -- We know already that the body conforms to that spec. This test is
3872 -- only required for subprograms that come from source.
3874 if Nkind (Parent (N)) = N_Subunit
3875 and then Comes_From_Source (N)
3876 and then not Error_Posted (Body_Id)
3877 and then Nkind (Corresponding_Stub (Parent (N))) =
3878 N_Subprogram_Body_Stub
3879 then
3880 declare
3881 Old_Id : constant Entity_Id :=
3882 Defining_Entity
3883 (Specification (Corresponding_Stub (Parent (N))));
3885 Conformant : Boolean := False;
3887 begin
3888 if No (Spec_Id) then
3889 Check_Fully_Conformant (Body_Id, Old_Id);
3891 else
3892 Check_Conformance
3893 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
3895 if not Conformant then
3897 -- The stub was taken to be a new declaration. Indicate that
3898 -- it lacks a body.
3900 Set_Has_Completion (Old_Id, False);
3901 end if;
3902 end if;
3903 end;
3904 end if;
3906 Set_Has_Completion (Body_Id);
3907 Check_Eliminated (Body_Id);
3909 -- Analyze any aspect specifications that appear on the subprogram body
3910 -- stub. Stop the analysis now as the stub does not have a declarative
3911 -- or a statement part, and it cannot be inlined.
3913 if Nkind (N) = N_Subprogram_Body_Stub then
3914 if Has_Aspects (N) then
3915 Analyze_Aspect_Specifications_On_Body_Or_Stub (N);
3916 end if;
3918 goto Leave;
3919 end if;
3921 -- Handle inlining
3923 -- Note: Normally we don't do any inlining if expansion is off, since
3924 -- we won't generate code in any case. An exception arises in GNATprove
3925 -- mode where we want to expand some calls in place, even with expansion
3926 -- disabled, since the inlining eases formal verification.
3928 if not GNATprove_Mode
3929 and then Expander_Active
3930 and then Serious_Errors_Detected = 0
3931 and then Present (Spec_Id)
3932 and then Has_Pragma_Inline (Spec_Id)
3933 then
3934 -- Legacy implementation (relying on front-end inlining)
3936 if not Back_End_Inlining then
3937 if (Has_Pragma_Inline_Always (Spec_Id)
3938 and then not Opt.Disable_FE_Inline_Always)
3939 or else (Front_End_Inlining
3940 and then not Opt.Disable_FE_Inline)
3941 then
3942 Build_Body_To_Inline (N, Spec_Id);
3943 end if;
3945 -- New implementation (relying on back-end inlining)
3947 else
3948 if Has_Pragma_Inline_Always (Spec_Id)
3949 or else Optimization_Level > 0
3950 then
3951 -- Handle function returning an unconstrained type
3953 if Comes_From_Source (Body_Id)
3954 and then Ekind (Spec_Id) = E_Function
3955 and then Returns_Unconstrained_Type (Spec_Id)
3957 -- If function builds in place, i.e. returns a limited type,
3958 -- inlining cannot be done.
3960 and then not Is_Limited_Type (Etype (Spec_Id))
3961 then
3962 Check_And_Split_Unconstrained_Function (N, Spec_Id, Body_Id);
3964 else
3965 declare
3966 Subp_Body : constant Node_Id :=
3967 Unit_Declaration_Node (Body_Id);
3968 Subp_Decl : constant List_Id := Declarations (Subp_Body);
3970 begin
3971 -- Do not pass inlining to the backend if the subprogram
3972 -- has declarations or statements which cannot be inlined
3973 -- by the backend. This check is done here to emit an
3974 -- error instead of the generic warning message reported
3975 -- by the GCC backend (ie. "function might not be
3976 -- inlinable").
3978 if Present (Subp_Decl)
3979 and then Has_Excluded_Declaration (Spec_Id, Subp_Decl)
3980 then
3981 null;
3983 elsif Has_Excluded_Statement
3984 (Spec_Id,
3985 Statements
3986 (Handled_Statement_Sequence (Subp_Body)))
3987 then
3988 null;
3990 -- If the backend inlining is available then at this
3991 -- stage we only have to mark the subprogram as inlined.
3992 -- The expander will take care of registering it in the
3993 -- table of subprograms inlined by the backend a part of
3994 -- processing calls to it (cf. Expand_Call)
3996 else
3997 Set_Is_Inlined (Spec_Id);
3998 end if;
3999 end;
4000 end if;
4001 end if;
4002 end if;
4004 -- In GNATprove mode, inline only when there is a separate subprogram
4005 -- declaration for now, as inlining of subprogram bodies acting as
4006 -- declarations, or subprogram stubs, are not supported by front-end
4007 -- inlining. This inlining should occur after analysis of the body, so
4008 -- that it is known whether the value of SPARK_Mode, which can be
4009 -- defined by a pragma inside the body, is applicable to the body.
4011 elsif GNATprove_Mode
4012 and then Full_Analysis
4013 and then not Inside_A_Generic
4014 and then Present (Spec_Id)
4015 and then
4016 Nkind (Unit_Declaration_Node (Spec_Id)) = N_Subprogram_Declaration
4017 and then Body_Has_SPARK_Mode_On
4018 and then Can_Be_Inlined_In_GNATprove_Mode (Spec_Id, Body_Id)
4019 and then not Body_Has_Contract
4020 then
4021 Build_Body_To_Inline (N, Spec_Id);
4022 end if;
4024 -- When generating code, inherited pre/postconditions are handled when
4025 -- expanding the corresponding contract.
4027 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
4028 -- of the specification we have to install the private withed units.
4029 -- This holds for child units as well.
4031 if Is_Compilation_Unit (Body_Id)
4032 or else Nkind (Parent (N)) = N_Compilation_Unit
4033 then
4034 Install_Private_With_Clauses (Body_Id);
4035 end if;
4037 Check_Anonymous_Return;
4039 -- Set the Protected_Formal field of each extra formal of the protected
4040 -- subprogram to reference the corresponding extra formal of the
4041 -- subprogram that implements it. For regular formals this occurs when
4042 -- the protected subprogram's declaration is expanded, but the extra
4043 -- formals don't get created until the subprogram is frozen. We need to
4044 -- do this before analyzing the protected subprogram's body so that any
4045 -- references to the original subprogram's extra formals will be changed
4046 -- refer to the implementing subprogram's formals (see Expand_Formal).
4048 if Present (Spec_Id)
4049 and then Is_Protected_Type (Scope (Spec_Id))
4050 and then Present (Protected_Body_Subprogram (Spec_Id))
4051 then
4052 declare
4053 Impl_Subp : constant Entity_Id :=
4054 Protected_Body_Subprogram (Spec_Id);
4055 Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
4056 Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
4057 begin
4058 while Present (Prot_Ext_Formal) loop
4059 pragma Assert (Present (Impl_Ext_Formal));
4060 Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
4061 Next_Formal_With_Extras (Prot_Ext_Formal);
4062 Next_Formal_With_Extras (Impl_Ext_Formal);
4063 end loop;
4064 end;
4065 end if;
4067 -- Now we can go on to analyze the body
4069 HSS := Handled_Statement_Sequence (N);
4070 Set_Actual_Subtypes (N, Current_Scope);
4072 -- Add a declaration for the Protection object, renaming declarations
4073 -- for discriminals and privals and finally a declaration for the entry
4074 -- family index (if applicable). This form of early expansion is done
4075 -- when the Expander is active because Install_Private_Data_Declarations
4076 -- references entities which were created during regular expansion. The
4077 -- subprogram entity must come from source, and not be an internally
4078 -- generated subprogram.
4080 if Expander_Active
4081 and then Present (Prot_Typ)
4082 and then Present (Spec_Id)
4083 and then Comes_From_Source (Spec_Id)
4084 and then not Is_Eliminated (Spec_Id)
4085 then
4086 Install_Private_Data_Declarations
4087 (Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
4088 end if;
4090 -- Ada 2012 (AI05-0151): Incomplete types coming from a limited context
4091 -- may now appear in parameter and result profiles. Since the analysis
4092 -- of a subprogram body may use the parameter and result profile of the
4093 -- spec, swap any limited views with their non-limited counterpart.
4095 if Ada_Version >= Ada_2012 and then Present (Spec_Id) then
4096 Exch_Views := Exchange_Limited_Views (Spec_Id);
4097 end if;
4099 -- If the return type is an anonymous access type whose designated type
4100 -- is the limited view of a class-wide type and the non-limited view is
4101 -- available, update the return type accordingly.
4103 if Ada_Version >= Ada_2005 and then Present (Spec_Id) then
4104 declare
4105 Etyp : Entity_Id;
4106 Rtyp : Entity_Id;
4108 begin
4109 Rtyp := Etype (Spec_Id);
4111 if Ekind (Rtyp) = E_Anonymous_Access_Type then
4112 Etyp := Directly_Designated_Type (Rtyp);
4114 if Is_Class_Wide_Type (Etyp)
4115 and then From_Limited_With (Etyp)
4116 then
4117 Desig_View := Etyp;
4118 Set_Directly_Designated_Type (Rtyp, Available_View (Etyp));
4119 end if;
4120 end if;
4121 end;
4122 end if;
4124 -- Analyze any aspect specifications that appear on the subprogram body
4126 if Has_Aspects (N) then
4127 Analyze_Aspect_Specifications_On_Body_Or_Stub (N);
4128 end if;
4130 Analyze_Declarations (Declarations (N));
4132 -- Verify that the SPARK_Mode of the body agrees with that of its spec
4134 if Present (Spec_Id) and then Present (SPARK_Pragma (Body_Id)) then
4135 if Present (SPARK_Pragma (Spec_Id)) then
4136 if Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Spec_Id)) = Off
4137 and then
4138 Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Body_Id)) = On
4139 then
4140 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
4141 Error_Msg_N ("incorrect application of SPARK_Mode#", N);
4142 Error_Msg_Sloc := Sloc (SPARK_Pragma (Spec_Id));
4143 Error_Msg_NE
4144 ("\value Off was set for SPARK_Mode on & #", N, Spec_Id);
4145 end if;
4147 elsif Nkind (Parent (Parent (Spec_Id))) = N_Subprogram_Body_Stub then
4148 null;
4150 else
4151 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
4152 Error_Msg_N ("incorrect application of SPARK_Mode #", N);
4153 Error_Msg_Sloc := Sloc (Spec_Id);
4154 Error_Msg_NE
4155 ("\no value was set for SPARK_Mode on & #", N, Spec_Id);
4156 end if;
4157 end if;
4159 -- A subprogram body "freezes" its own contract. Analyze the contract
4160 -- after the declarations of the body have been processed as pragmas
4161 -- are now chained on the contract of the subprogram body.
4163 Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
4165 -- Check completion, and analyze the statements
4167 Check_Completion;
4168 Inspect_Deferred_Constant_Completion (Declarations (N));
4169 Analyze (HSS);
4171 -- Deal with end of scope processing for the body
4173 Process_End_Label (HSS, 't', Current_Scope);
4174 End_Scope;
4176 -- If we are compiling an entry wrapper, remove the enclosing
4177 -- synchronized object from the stack.
4179 if Is_Entry_Wrapper (Body_Id) then
4180 End_Scope;
4181 end if;
4183 Check_Subprogram_Order (N);
4184 Set_Analyzed (Body_Id);
4186 -- If we have a separate spec, then the analysis of the declarations
4187 -- caused the entities in the body to be chained to the spec id, but
4188 -- we want them chained to the body id. Only the formal parameters
4189 -- end up chained to the spec id in this case.
4191 if Present (Spec_Id) then
4193 -- We must conform to the categorization of our spec
4195 Validate_Categorization_Dependency (N, Spec_Id);
4197 -- And if this is a child unit, the parent units must conform
4199 if Is_Child_Unit (Spec_Id) then
4200 Validate_Categorization_Dependency
4201 (Unit_Declaration_Node (Spec_Id), Spec_Id);
4202 end if;
4204 -- Here is where we move entities from the spec to the body
4206 -- Case where there are entities that stay with the spec
4208 if Present (Last_Real_Spec_Entity) then
4210 -- No body entities (happens when the only real spec entities come
4211 -- from precondition and postcondition pragmas).
4213 if No (Last_Entity (Body_Id)) then
4214 Set_First_Entity (Body_Id, Next_Entity (Last_Real_Spec_Entity));
4216 -- Body entities present (formals), so chain stuff past them
4218 else
4219 Set_Next_Entity
4220 (Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
4221 end if;
4223 Set_Next_Entity (Last_Real_Spec_Entity, Empty);
4224 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
4225 Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);
4227 -- Case where there are no spec entities, in this case there can be
4228 -- no body entities either, so just move everything.
4230 -- If the body is generated for an expression function, it may have
4231 -- been preanalyzed already, if 'access was applied to it.
4233 else
4234 if Nkind (Original_Node (Unit_Declaration_Node (Spec_Id))) /=
4235 N_Expression_Function
4236 then
4237 pragma Assert (No (Last_Entity (Body_Id)));
4238 null;
4239 end if;
4241 Set_First_Entity (Body_Id, First_Entity (Spec_Id));
4242 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
4243 Set_First_Entity (Spec_Id, Empty);
4244 Set_Last_Entity (Spec_Id, Empty);
4245 end if;
4246 end if;
4248 Check_Missing_Return;
4250 -- Now we are going to check for variables that are never modified in
4251 -- the body of the procedure. But first we deal with a special case
4252 -- where we want to modify this check. If the body of the subprogram
4253 -- starts with a raise statement or its equivalent, or if the body
4254 -- consists entirely of a null statement, then it is pretty obvious that
4255 -- it is OK to not reference the parameters. For example, this might be
4256 -- the following common idiom for a stubbed function: statement of the
4257 -- procedure raises an exception. In particular this deals with the
4258 -- common idiom of a stubbed function, which appears something like:
4260 -- function F (A : Integer) return Some_Type;
4261 -- X : Some_Type;
4262 -- begin
4263 -- raise Program_Error;
4264 -- return X;
4265 -- end F;
4267 -- Here the purpose of X is simply to satisfy the annoying requirement
4268 -- in Ada that there be at least one return, and we certainly do not
4269 -- want to go posting warnings on X that it is not initialized. On
4270 -- the other hand, if X is entirely unreferenced that should still
4271 -- get a warning.
4273 -- What we do is to detect these cases, and if we find them, flag the
4274 -- subprogram as being Is_Trivial_Subprogram and then use that flag to
4275 -- suppress unwanted warnings. For the case of the function stub above
4276 -- we have a special test to set X as apparently assigned to suppress
4277 -- the warning.
4279 declare
4280 Stm : Node_Id;
4282 begin
4283 -- Skip initial labels (for one thing this occurs when we are in
4284 -- front-end ZCX mode, but in any case it is irrelevant), and also
4285 -- initial Push_xxx_Error_Label nodes, which are also irrelevant.
4287 Stm := First (Statements (HSS));
4288 while Nkind (Stm) = N_Label
4289 or else Nkind (Stm) in N_Push_xxx_Label
4290 loop
4291 Next (Stm);
4292 end loop;
4294 -- Do the test on the original statement before expansion
4296 declare
4297 Ostm : constant Node_Id := Original_Node (Stm);
4299 begin
4300 -- If explicit raise statement, turn on flag
4302 if Nkind (Ostm) = N_Raise_Statement then
4303 Set_Trivial_Subprogram (Stm);
4305 -- If null statement, and no following statements, turn on flag
4307 elsif Nkind (Stm) = N_Null_Statement
4308 and then Comes_From_Source (Stm)
4309 and then No (Next (Stm))
4310 then
4311 Set_Trivial_Subprogram (Stm);
4313 -- Check for explicit call cases which likely raise an exception
4315 elsif Nkind (Ostm) = N_Procedure_Call_Statement then
4316 if Is_Entity_Name (Name (Ostm)) then
4317 declare
4318 Ent : constant Entity_Id := Entity (Name (Ostm));
4320 begin
4321 -- If the procedure is marked No_Return, then likely it
4322 -- raises an exception, but in any case it is not coming
4323 -- back here, so turn on the flag.
4325 if Present (Ent)
4326 and then Ekind (Ent) = E_Procedure
4327 and then No_Return (Ent)
4328 then
4329 Set_Trivial_Subprogram (Stm);
4330 end if;
4331 end;
4332 end if;
4333 end if;
4334 end;
4335 end;
4337 -- Check for variables that are never modified
4339 declare
4340 E1 : Entity_Id;
4341 E2 : Entity_Id;
4343 begin
4344 -- If there is a separate spec, then transfer Never_Set_In_Source
4345 -- flags from out parameters to the corresponding entities in the
4346 -- body. The reason we do that is we want to post error flags on
4347 -- the body entities, not the spec entities.
4349 if Present (Spec_Id) then
4350 E1 := First_Entity (Spec_Id);
4351 while Present (E1) loop
4352 if Ekind (E1) = E_Out_Parameter then
4353 E2 := First_Entity (Body_Id);
4354 while Present (E2) loop
4355 exit when Chars (E1) = Chars (E2);
4356 Next_Entity (E2);
4357 end loop;
4359 if Present (E2) then
4360 Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
4361 end if;
4362 end if;
4364 Next_Entity (E1);
4365 end loop;
4366 end if;
4368 -- Check references in body
4370 Check_References (Body_Id);
4371 end;
4373 -- Check for nested subprogram, and mark outer level subprogram if so
4375 declare
4376 Ent : Entity_Id;
4378 begin
4379 if Present (Spec_Id) then
4380 Ent := Spec_Id;
4381 else
4382 Ent := Body_Id;
4383 end if;
4385 loop
4386 Ent := Enclosing_Subprogram (Ent);
4387 exit when No (Ent) or else Is_Subprogram (Ent);
4388 end loop;
4390 if Present (Ent) then
4391 Set_Has_Nested_Subprogram (Ent);
4392 end if;
4393 end;
4395 -- Restore the limited views in the spec, if any, to let the back end
4396 -- process it without running into circularities.
4398 if Exch_Views /= No_Elist then
4399 Restore_Limited_Views (Exch_Views);
4400 end if;
4402 if Present (Desig_View) then
4403 Set_Directly_Designated_Type (Etype (Spec_Id), Desig_View);
4404 end if;
4406 <<Leave>>
4407 if Mode_Set then
4408 Restore_Ghost_Mode (Mode);
4409 end if;
4410 end Analyze_Subprogram_Body_Helper;
4412 ------------------------------------
4413 -- Analyze_Subprogram_Declaration --
4414 ------------------------------------
4416 procedure Analyze_Subprogram_Declaration (N : Node_Id) is
4417 Scop : constant Entity_Id := Current_Scope;
4418 Designator : Entity_Id;
4420 Is_Completion : Boolean;
4421 -- Indicates whether a null procedure declaration is a completion
4423 begin
4424 -- Null procedures are not allowed in SPARK
4426 if Nkind (Specification (N)) = N_Procedure_Specification
4427 and then Null_Present (Specification (N))
4428 then
4429 Check_SPARK_05_Restriction ("null procedure is not allowed", N);
4431 -- Null procedures are allowed in protected types, following the
4432 -- recent AI12-0147.
4434 if Is_Protected_Type (Current_Scope)
4435 and then Ada_Version < Ada_2012
4436 then
4437 Error_Msg_N ("protected operation cannot be a null procedure", N);
4438 end if;
4440 Analyze_Null_Procedure (N, Is_Completion);
4442 -- The null procedure acts as a body, nothing further is needed
4444 if Is_Completion then
4445 return;
4446 end if;
4447 end if;
4449 Designator := Analyze_Subprogram_Specification (Specification (N));
4451 -- A reference may already have been generated for the unit name, in
4452 -- which case the following call is redundant. However it is needed for
4453 -- declarations that are the rewriting of an expression function.
4455 Generate_Definition (Designator);
4457 -- Set the SPARK mode from the current context (may be overwritten later
4458 -- with explicit pragma). This is not done for entry barrier functions
4459 -- because they are generated outside the protected type and should not
4460 -- carry the mode of the enclosing context.
4462 if Nkind (N) = N_Subprogram_Declaration
4463 and then Is_Entry_Barrier_Function (N)
4464 then
4465 null;
4466 else
4467 Set_SPARK_Pragma (Designator, SPARK_Mode_Pragma);
4468 Set_SPARK_Pragma_Inherited (Designator);
4469 end if;
4471 if Debug_Flag_C then
4472 Write_Str ("==> subprogram spec ");
4473 Write_Name (Chars (Designator));
4474 Write_Str (" from ");
4475 Write_Location (Sloc (N));
4476 Write_Eol;
4477 Indent;
4478 end if;
4480 Validate_RCI_Subprogram_Declaration (N);
4481 New_Overloaded_Entity (Designator);
4482 Check_Delayed_Subprogram (Designator);
4484 -- If the type of the first formal of the current subprogram is a non-
4485 -- generic tagged private type, mark the subprogram as being a private
4486 -- primitive. Ditto if this is a function with controlling result, and
4487 -- the return type is currently private. In both cases, the type of the
4488 -- controlling argument or result must be in the current scope for the
4489 -- operation to be primitive.
4491 if Has_Controlling_Result (Designator)
4492 and then Is_Private_Type (Etype (Designator))
4493 and then Scope (Etype (Designator)) = Current_Scope
4494 and then not Is_Generic_Actual_Type (Etype (Designator))
4495 then
4496 Set_Is_Private_Primitive (Designator);
4498 elsif Present (First_Formal (Designator)) then
4499 declare
4500 Formal_Typ : constant Entity_Id :=
4501 Etype (First_Formal (Designator));
4502 begin
4503 Set_Is_Private_Primitive (Designator,
4504 Is_Tagged_Type (Formal_Typ)
4505 and then Scope (Formal_Typ) = Current_Scope
4506 and then Is_Private_Type (Formal_Typ)
4507 and then not Is_Generic_Actual_Type (Formal_Typ));
4508 end;
4509 end if;
4511 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
4512 -- or null.
4514 if Ada_Version >= Ada_2005
4515 and then Comes_From_Source (N)
4516 and then Is_Dispatching_Operation (Designator)
4517 then
4518 declare
4519 E : Entity_Id;
4520 Etyp : Entity_Id;
4522 begin
4523 if Has_Controlling_Result (Designator) then
4524 Etyp := Etype (Designator);
4526 else
4527 E := First_Entity (Designator);
4528 while Present (E)
4529 and then Is_Formal (E)
4530 and then not Is_Controlling_Formal (E)
4531 loop
4532 Next_Entity (E);
4533 end loop;
4535 Etyp := Etype (E);
4536 end if;
4538 if Is_Access_Type (Etyp) then
4539 Etyp := Directly_Designated_Type (Etyp);
4540 end if;
4542 if Is_Interface (Etyp)
4543 and then not Is_Abstract_Subprogram (Designator)
4544 and then not (Ekind (Designator) = E_Procedure
4545 and then Null_Present (Specification (N)))
4546 then
4547 Error_Msg_Name_1 := Chars (Defining_Entity (N));
4549 -- Specialize error message based on procedures vs. functions,
4550 -- since functions can't be null subprograms.
4552 if Ekind (Designator) = E_Procedure then
4553 Error_Msg_N
4554 ("interface procedure % must be abstract or null", N);
4555 else
4556 Error_Msg_N
4557 ("interface function % must be abstract", N);
4558 end if;
4559 end if;
4560 end;
4561 end if;
4563 -- What is the following code for, it used to be
4565 -- ??? Set_Suppress_Elaboration_Checks
4566 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
4568 -- The following seems equivalent, but a bit dubious
4570 if Elaboration_Checks_Suppressed (Designator) then
4571 Set_Kill_Elaboration_Checks (Designator);
4572 end if;
4574 if Scop /= Standard_Standard and then not Is_Child_Unit (Designator) then
4575 Set_Categorization_From_Scope (Designator, Scop);
4577 else
4578 -- For a compilation unit, check for library-unit pragmas
4580 Push_Scope (Designator);
4581 Set_Categorization_From_Pragmas (N);
4582 Validate_Categorization_Dependency (N, Designator);
4583 Pop_Scope;
4584 end if;
4586 -- For a compilation unit, set body required. This flag will only be
4587 -- reset if a valid Import or Interface pragma is processed later on.
4589 if Nkind (Parent (N)) = N_Compilation_Unit then
4590 Set_Body_Required (Parent (N), True);
4592 if Ada_Version >= Ada_2005
4593 and then Nkind (Specification (N)) = N_Procedure_Specification
4594 and then Null_Present (Specification (N))
4595 then
4596 Error_Msg_N
4597 ("null procedure cannot be declared at library level", N);
4598 end if;
4599 end if;
4601 Generate_Reference_To_Formals (Designator);
4602 Check_Eliminated (Designator);
4604 if Debug_Flag_C then
4605 Outdent;
4606 Write_Str ("<== subprogram spec ");
4607 Write_Name (Chars (Designator));
4608 Write_Str (" from ");
4609 Write_Location (Sloc (N));
4610 Write_Eol;
4611 end if;
4613 if Is_Protected_Type (Current_Scope) then
4615 -- Indicate that this is a protected operation, because it may be
4616 -- used in subsequent declarations within the protected type.
4618 Set_Convention (Designator, Convention_Protected);
4619 end if;
4621 List_Inherited_Pre_Post_Aspects (Designator);
4623 if Has_Aspects (N) then
4624 Analyze_Aspect_Specifications (N, Designator);
4625 end if;
4626 end Analyze_Subprogram_Declaration;
4628 --------------------------------------
4629 -- Analyze_Subprogram_Specification --
4630 --------------------------------------
4632 -- Reminder: N here really is a subprogram specification (not a subprogram
4633 -- declaration). This procedure is called to analyze the specification in
4634 -- both subprogram bodies and subprogram declarations (specs).
4636 function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
4637 function Is_Invariant_Procedure_Or_Body (E : Entity_Id) return Boolean;
4638 -- Determine whether entity E denotes the spec or body of an invariant
4639 -- procedure.
4641 ------------------------------------
4642 -- Is_Invariant_Procedure_Or_Body --
4643 ------------------------------------
4645 function Is_Invariant_Procedure_Or_Body (E : Entity_Id) return Boolean is
4646 Decl : constant Node_Id := Unit_Declaration_Node (E);
4647 Spec : Entity_Id;
4649 begin
4650 if Nkind (Decl) = N_Subprogram_Body then
4651 Spec := Corresponding_Spec (Decl);
4652 else
4653 Spec := E;
4654 end if;
4656 return
4657 Present (Spec)
4658 and then Ekind (Spec) = E_Procedure
4659 and then (Is_Partial_Invariant_Procedure (Spec)
4660 or else Is_Invariant_Procedure (Spec));
4661 end Is_Invariant_Procedure_Or_Body;
4663 -- Local variables
4665 Designator : constant Entity_Id := Defining_Entity (N);
4666 Formals : constant List_Id := Parameter_Specifications (N);
4668 -- Start of processing for Analyze_Subprogram_Specification
4670 begin
4671 -- User-defined operator is not allowed in SPARK, except as a renaming
4673 if Nkind (Defining_Unit_Name (N)) = N_Defining_Operator_Symbol
4674 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
4675 then
4676 Check_SPARK_05_Restriction
4677 ("user-defined operator is not allowed", N);
4678 end if;
4680 -- Proceed with analysis. Do not emit a cross-reference entry if the
4681 -- specification comes from an expression function, because it may be
4682 -- the completion of a previous declaration. It is not, the cross-
4683 -- reference entry will be emitted for the new subprogram declaration.
4685 if Nkind (Parent (N)) /= N_Expression_Function then
4686 Generate_Definition (Designator);
4687 end if;
4689 if Nkind (N) = N_Function_Specification then
4690 Set_Ekind (Designator, E_Function);
4691 Set_Mechanism (Designator, Default_Mechanism);
4692 else
4693 Set_Ekind (Designator, E_Procedure);
4694 Set_Etype (Designator, Standard_Void_Type);
4695 end if;
4697 -- Flag Is_Inlined_Always is True by default, and reversed to False for
4698 -- those subprograms which could be inlined in GNATprove mode (because
4699 -- Body_To_Inline is non-Empty) but should not be inlined.
4701 if GNATprove_Mode then
4702 Set_Is_Inlined_Always (Designator);
4703 end if;
4705 -- Introduce new scope for analysis of the formals and the return type
4707 Set_Scope (Designator, Current_Scope);
4709 if Present (Formals) then
4710 Push_Scope (Designator);
4711 Process_Formals (Formals, N);
4713 -- Check dimensions in N for formals with default expression
4715 Analyze_Dimension_Formals (N, Formals);
4717 -- Ada 2005 (AI-345): If this is an overriding operation of an
4718 -- inherited interface operation, and the controlling type is
4719 -- a synchronized type, replace the type with its corresponding
4720 -- record, to match the proper signature of an overriding operation.
4721 -- Same processing for an access parameter whose designated type is
4722 -- derived from a synchronized interface.
4724 -- This modification is not done for invariant procedures because
4725 -- the corresponding record may not necessarely be visible when the
4726 -- concurrent type acts as the full view of a private type.
4728 -- package Pack is
4729 -- type Prot is private with Type_Invariant => ...;
4730 -- procedure ConcInvariant (Obj : Prot);
4731 -- private
4732 -- protected type Prot is ...;
4733 -- type Concurrent_Record_Prot is record ...;
4734 -- procedure ConcInvariant (Obj : Prot) is
4735 -- ...
4736 -- end ConcInvariant;
4737 -- end Pack;
4739 -- In the example above, both the spec and body of the invariant
4740 -- procedure must utilize the private type as the controlling type.
4742 if Ada_Version >= Ada_2005
4743 and then not Is_Invariant_Procedure_Or_Body (Designator)
4744 then
4745 declare
4746 Formal : Entity_Id;
4747 Formal_Typ : Entity_Id;
4748 Rec_Typ : Entity_Id;
4749 Desig_Typ : Entity_Id;
4751 begin
4752 Formal := First_Formal (Designator);
4753 while Present (Formal) loop
4754 Formal_Typ := Etype (Formal);
4756 if Is_Concurrent_Type (Formal_Typ)
4757 and then Present (Corresponding_Record_Type (Formal_Typ))
4758 then
4759 Rec_Typ := Corresponding_Record_Type (Formal_Typ);
4761 if Present (Interfaces (Rec_Typ)) then
4762 Set_Etype (Formal, Rec_Typ);
4763 end if;
4765 elsif Ekind (Formal_Typ) = E_Anonymous_Access_Type then
4766 Desig_Typ := Designated_Type (Formal_Typ);
4768 if Is_Concurrent_Type (Desig_Typ)
4769 and then Present (Corresponding_Record_Type (Desig_Typ))
4770 then
4771 Rec_Typ := Corresponding_Record_Type (Desig_Typ);
4773 if Present (Interfaces (Rec_Typ)) then
4774 Set_Directly_Designated_Type (Formal_Typ, Rec_Typ);
4775 end if;
4776 end if;
4777 end if;
4779 Next_Formal (Formal);
4780 end loop;
4781 end;
4782 end if;
4784 End_Scope;
4786 -- The subprogram scope is pushed and popped around the processing of
4787 -- the return type for consistency with call above to Process_Formals
4788 -- (which itself can call Analyze_Return_Type), and to ensure that any
4789 -- itype created for the return type will be associated with the proper
4790 -- scope.
4792 elsif Nkind (N) = N_Function_Specification then
4793 Push_Scope (Designator);
4794 Analyze_Return_Type (N);
4795 End_Scope;
4796 end if;
4798 -- Function case
4800 if Nkind (N) = N_Function_Specification then
4802 -- Deal with operator symbol case
4804 if Nkind (Designator) = N_Defining_Operator_Symbol then
4805 Valid_Operator_Definition (Designator);
4806 end if;
4808 May_Need_Actuals (Designator);
4810 -- Ada 2005 (AI-251): If the return type is abstract, verify that
4811 -- the subprogram is abstract also. This does not apply to renaming
4812 -- declarations, where abstractness is inherited, and to subprogram
4813 -- bodies generated for stream operations, which become renamings as
4814 -- bodies.
4816 -- In case of primitives associated with abstract interface types
4817 -- the check is applied later (see Analyze_Subprogram_Declaration).
4819 if not Nkind_In (Original_Node (Parent (N)),
4820 N_Abstract_Subprogram_Declaration,
4821 N_Formal_Abstract_Subprogram_Declaration,
4822 N_Subprogram_Renaming_Declaration)
4823 then
4824 if Is_Abstract_Type (Etype (Designator))
4825 and then not Is_Interface (Etype (Designator))
4826 then
4827 Error_Msg_N
4828 ("function that returns abstract type must be abstract", N);
4830 -- Ada 2012 (AI-0073): Extend this test to subprograms with an
4831 -- access result whose designated type is abstract.
4833 elsif Ada_Version >= Ada_2012
4834 and then Nkind (Result_Definition (N)) = N_Access_Definition
4835 and then
4836 not Is_Class_Wide_Type (Designated_Type (Etype (Designator)))
4837 and then Is_Abstract_Type (Designated_Type (Etype (Designator)))
4838 then
4839 Error_Msg_N
4840 ("function whose access result designates abstract type "
4841 & "must be abstract", N);
4842 end if;
4843 end if;
4844 end if;
4846 return Designator;
4847 end Analyze_Subprogram_Specification;
4849 -----------------------
4850 -- Check_Conformance --
4851 -----------------------
4853 procedure Check_Conformance
4854 (New_Id : Entity_Id;
4855 Old_Id : Entity_Id;
4856 Ctype : Conformance_Type;
4857 Errmsg : Boolean;
4858 Conforms : out Boolean;
4859 Err_Loc : Node_Id := Empty;
4860 Get_Inst : Boolean := False;
4861 Skip_Controlling_Formals : Boolean := False)
4863 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
4864 -- Sets Conforms to False. If Errmsg is False, then that's all it does.
4865 -- If Errmsg is True, then processing continues to post an error message
4866 -- for conformance error on given node. Two messages are output. The
4867 -- first message points to the previous declaration with a general "no
4868 -- conformance" message. The second is the detailed reason, supplied as
4869 -- Msg. The parameter N provide information for a possible & insertion
4870 -- in the message, and also provides the location for posting the
4871 -- message in the absence of a specified Err_Loc location.
4873 function Conventions_Match
4874 (Id1 : Entity_Id;
4875 Id2 : Entity_Id) return Boolean;
4876 -- Determine whether the conventions of arbitrary entities Id1 and Id2
4877 -- match.
4879 -----------------------
4880 -- Conformance_Error --
4881 -----------------------
4883 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
4884 Enode : Node_Id;
4886 begin
4887 Conforms := False;
4889 if Errmsg then
4890 if No (Err_Loc) then
4891 Enode := N;
4892 else
4893 Enode := Err_Loc;
4894 end if;
4896 Error_Msg_Sloc := Sloc (Old_Id);
4898 case Ctype is
4899 when Type_Conformant =>
4900 Error_Msg_N -- CODEFIX
4901 ("not type conformant with declaration#!", Enode);
4903 when Mode_Conformant =>
4904 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
4905 Error_Msg_N
4906 ("not mode conformant with operation inherited#!",
4907 Enode);
4908 else
4909 Error_Msg_N
4910 ("not mode conformant with declaration#!", Enode);
4911 end if;
4913 when Subtype_Conformant =>
4914 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
4915 Error_Msg_N
4916 ("not subtype conformant with operation inherited#!",
4917 Enode);
4918 else
4919 Error_Msg_N
4920 ("not subtype conformant with declaration#!", Enode);
4921 end if;
4923 when Fully_Conformant =>
4924 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
4925 Error_Msg_N -- CODEFIX
4926 ("not fully conformant with operation inherited#!",
4927 Enode);
4928 else
4929 Error_Msg_N -- CODEFIX
4930 ("not fully conformant with declaration#!", Enode);
4931 end if;
4932 end case;
4934 Error_Msg_NE (Msg, Enode, N);
4935 end if;
4936 end Conformance_Error;
4938 -----------------------
4939 -- Conventions_Match --
4940 -----------------------
4942 function Conventions_Match
4943 (Id1 : Entity_Id;
4944 Id2 : Entity_Id) return Boolean
4946 begin
4947 -- Ignore the conventions of anonymous access-to-subprogram types
4948 -- and subprogram types because these are internally generated and
4949 -- the only way these may receive a convention is if they inherit
4950 -- the convention of a related subprogram.
4952 if Ekind_In (Id1, E_Anonymous_Access_Subprogram_Type,
4953 E_Subprogram_Type)
4954 or else
4955 Ekind_In (Id2, E_Anonymous_Access_Subprogram_Type,
4956 E_Subprogram_Type)
4957 then
4958 return True;
4960 -- Otherwise compare the conventions directly
4962 else
4963 return Convention (Id1) = Convention (Id2);
4964 end if;
4965 end Conventions_Match;
4967 -- Local Variables
4969 Old_Type : constant Entity_Id := Etype (Old_Id);
4970 New_Type : constant Entity_Id := Etype (New_Id);
4971 Old_Formal : Entity_Id;
4972 New_Formal : Entity_Id;
4973 Access_Types_Match : Boolean;
4974 Old_Formal_Base : Entity_Id;
4975 New_Formal_Base : Entity_Id;
4977 -- Start of processing for Check_Conformance
4979 begin
4980 Conforms := True;
4982 -- We need a special case for operators, since they don't appear
4983 -- explicitly.
4985 if Ctype = Type_Conformant then
4986 if Ekind (New_Id) = E_Operator
4987 and then Operator_Matches_Spec (New_Id, Old_Id)
4988 then
4989 return;
4990 end if;
4991 end if;
4993 -- If both are functions/operators, check return types conform
4995 if Old_Type /= Standard_Void_Type
4996 and then
4997 New_Type /= Standard_Void_Type
4998 then
4999 -- If we are checking interface conformance we omit controlling
5000 -- arguments and result, because we are only checking the conformance
5001 -- of the remaining parameters.
5003 if Has_Controlling_Result (Old_Id)
5004 and then Has_Controlling_Result (New_Id)
5005 and then Skip_Controlling_Formals
5006 then
5007 null;
5009 elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
5010 if Ctype >= Subtype_Conformant
5011 and then not Predicates_Match (Old_Type, New_Type)
5012 then
5013 Conformance_Error
5014 ("\predicate of return type does not match!", New_Id);
5015 else
5016 Conformance_Error
5017 ("\return type does not match!", New_Id);
5018 end if;
5020 return;
5021 end if;
5023 -- Ada 2005 (AI-231): In case of anonymous access types check the
5024 -- null-exclusion and access-to-constant attributes match.
5026 if Ada_Version >= Ada_2005
5027 and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
5028 and then
5029 (Can_Never_Be_Null (Old_Type) /= Can_Never_Be_Null (New_Type)
5030 or else Is_Access_Constant (Etype (Old_Type)) /=
5031 Is_Access_Constant (Etype (New_Type)))
5032 then
5033 Conformance_Error ("\return type does not match!", New_Id);
5034 return;
5035 end if;
5037 -- If either is a function/operator and the other isn't, error
5039 elsif Old_Type /= Standard_Void_Type
5040 or else New_Type /= Standard_Void_Type
5041 then
5042 Conformance_Error ("\functions can only match functions!", New_Id);
5043 return;
5044 end if;
5046 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
5047 -- If this is a renaming as body, refine error message to indicate that
5048 -- the conflict is with the original declaration. If the entity is not
5049 -- frozen, the conventions don't have to match, the one of the renamed
5050 -- entity is inherited.
5052 if Ctype >= Subtype_Conformant then
5053 if not Conventions_Match (Old_Id, New_Id) then
5054 if not Is_Frozen (New_Id) then
5055 null;
5057 elsif Present (Err_Loc)
5058 and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
5059 and then Present (Corresponding_Spec (Err_Loc))
5060 then
5061 Error_Msg_Name_1 := Chars (New_Id);
5062 Error_Msg_Name_2 :=
5063 Name_Ada + Convention_Id'Pos (Convention (New_Id));
5064 Conformance_Error ("\prior declaration for% has convention %!");
5066 else
5067 Conformance_Error ("\calling conventions do not match!");
5068 end if;
5070 return;
5072 elsif Is_Formal_Subprogram (Old_Id)
5073 or else Is_Formal_Subprogram (New_Id)
5074 then
5075 Conformance_Error ("\formal subprograms not allowed!");
5076 return;
5077 end if;
5078 end if;
5080 -- Deal with parameters
5082 -- Note: we use the entity information, rather than going directly
5083 -- to the specification in the tree. This is not only simpler, but
5084 -- absolutely necessary for some cases of conformance tests between
5085 -- operators, where the declaration tree simply does not exist.
5087 Old_Formal := First_Formal (Old_Id);
5088 New_Formal := First_Formal (New_Id);
5089 while Present (Old_Formal) and then Present (New_Formal) loop
5090 if Is_Controlling_Formal (Old_Formal)
5091 and then Is_Controlling_Formal (New_Formal)
5092 and then Skip_Controlling_Formals
5093 then
5094 -- The controlling formals will have different types when
5095 -- comparing an interface operation with its match, but both
5096 -- or neither must be access parameters.
5098 if Is_Access_Type (Etype (Old_Formal))
5100 Is_Access_Type (Etype (New_Formal))
5101 then
5102 goto Skip_Controlling_Formal;
5103 else
5104 Conformance_Error
5105 ("\access parameter does not match!", New_Formal);
5106 end if;
5107 end if;
5109 -- Ada 2012: Mode conformance also requires that formal parameters
5110 -- be both aliased, or neither.
5112 if Ctype >= Mode_Conformant and then Ada_Version >= Ada_2012 then
5113 if Is_Aliased (Old_Formal) /= Is_Aliased (New_Formal) then
5114 Conformance_Error
5115 ("\aliased parameter mismatch!", New_Formal);
5116 end if;
5117 end if;
5119 if Ctype = Fully_Conformant then
5121 -- Names must match. Error message is more accurate if we do
5122 -- this before checking that the types of the formals match.
5124 if Chars (Old_Formal) /= Chars (New_Formal) then
5125 Conformance_Error ("\name& does not match!", New_Formal);
5127 -- Set error posted flag on new formal as well to stop
5128 -- junk cascaded messages in some cases.
5130 Set_Error_Posted (New_Formal);
5131 return;
5132 end if;
5134 -- Null exclusion must match
5136 if Null_Exclusion_Present (Parent (Old_Formal))
5138 Null_Exclusion_Present (Parent (New_Formal))
5139 then
5140 -- Only give error if both come from source. This should be
5141 -- investigated some time, since it should not be needed ???
5143 if Comes_From_Source (Old_Formal)
5144 and then
5145 Comes_From_Source (New_Formal)
5146 then
5147 Conformance_Error
5148 ("\null exclusion for& does not match", New_Formal);
5150 -- Mark error posted on the new formal to avoid duplicated
5151 -- complaint about types not matching.
5153 Set_Error_Posted (New_Formal);
5154 end if;
5155 end if;
5156 end if;
5158 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
5159 -- case occurs whenever a subprogram is being renamed and one of its
5160 -- parameters imposes a null exclusion. For example:
5162 -- type T is null record;
5163 -- type Acc_T is access T;
5164 -- subtype Acc_T_Sub is Acc_T;
5166 -- procedure P (Obj : not null Acc_T_Sub); -- itype
5167 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
5168 -- renames P;
5170 Old_Formal_Base := Etype (Old_Formal);
5171 New_Formal_Base := Etype (New_Formal);
5173 if Get_Inst then
5174 Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
5175 New_Formal_Base := Get_Instance_Of (New_Formal_Base);
5176 end if;
5178 Access_Types_Match := Ada_Version >= Ada_2005
5180 -- Ensure that this rule is only applied when New_Id is a
5181 -- renaming of Old_Id.
5183 and then Nkind (Parent (Parent (New_Id))) =
5184 N_Subprogram_Renaming_Declaration
5185 and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
5186 and then Present (Entity (Name (Parent (Parent (New_Id)))))
5187 and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
5189 -- Now handle the allowed access-type case
5191 and then Is_Access_Type (Old_Formal_Base)
5192 and then Is_Access_Type (New_Formal_Base)
5194 -- The type kinds must match. The only exception occurs with
5195 -- multiple generics of the form:
5197 -- generic generic
5198 -- type F is private; type A is private;
5199 -- type F_Ptr is access F; type A_Ptr is access A;
5200 -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
5201 -- package F_Pack is ... package A_Pack is
5202 -- package F_Inst is
5203 -- new F_Pack (A, A_Ptr, A_P);
5205 -- When checking for conformance between the parameters of A_P
5206 -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
5207 -- because the compiler has transformed A_Ptr into a subtype of
5208 -- F_Ptr. We catch this case in the code below.
5210 and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
5211 or else
5212 (Is_Generic_Type (Old_Formal_Base)
5213 and then Is_Generic_Type (New_Formal_Base)
5214 and then Is_Internal (New_Formal_Base)
5215 and then Etype (Etype (New_Formal_Base)) =
5216 Old_Formal_Base))
5217 and then Directly_Designated_Type (Old_Formal_Base) =
5218 Directly_Designated_Type (New_Formal_Base)
5219 and then ((Is_Itype (Old_Formal_Base)
5220 and then Can_Never_Be_Null (Old_Formal_Base))
5221 or else
5222 (Is_Itype (New_Formal_Base)
5223 and then Can_Never_Be_Null (New_Formal_Base)));
5225 -- Types must always match. In the visible part of an instance,
5226 -- usual overloading rules for dispatching operations apply, and
5227 -- we check base types (not the actual subtypes).
5229 if In_Instance_Visible_Part
5230 and then Is_Dispatching_Operation (New_Id)
5231 then
5232 if not Conforming_Types
5233 (T1 => Base_Type (Etype (Old_Formal)),
5234 T2 => Base_Type (Etype (New_Formal)),
5235 Ctype => Ctype,
5236 Get_Inst => Get_Inst)
5237 and then not Access_Types_Match
5238 then
5239 Conformance_Error ("\type of & does not match!", New_Formal);
5240 return;
5241 end if;
5243 elsif not Conforming_Types
5244 (T1 => Old_Formal_Base,
5245 T2 => New_Formal_Base,
5246 Ctype => Ctype,
5247 Get_Inst => Get_Inst)
5248 and then not Access_Types_Match
5249 then
5250 -- Don't give error message if old type is Any_Type. This test
5251 -- avoids some cascaded errors, e.g. in case of a bad spec.
5253 if Errmsg and then Old_Formal_Base = Any_Type then
5254 Conforms := False;
5255 else
5256 if Ctype >= Subtype_Conformant
5257 and then
5258 not Predicates_Match (Old_Formal_Base, New_Formal_Base)
5259 then
5260 Conformance_Error
5261 ("\predicate of & does not match!", New_Formal);
5262 else
5263 Conformance_Error
5264 ("\type of & does not match!", New_Formal);
5265 end if;
5266 end if;
5268 return;
5269 end if;
5271 -- For mode conformance, mode must match
5273 if Ctype >= Mode_Conformant then
5274 if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
5275 if not Ekind_In (New_Id, E_Function, E_Procedure)
5276 or else not Is_Primitive_Wrapper (New_Id)
5277 then
5278 Conformance_Error ("\mode of & does not match!", New_Formal);
5280 else
5281 declare
5282 T : constant Entity_Id := Find_Dispatching_Type (New_Id);
5283 begin
5284 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
5285 then
5286 Error_Msg_PT (New_Id, Ultimate_Alias (Old_Id));
5287 else
5288 Conformance_Error
5289 ("\mode of & does not match!", New_Formal);
5290 end if;
5291 end;
5292 end if;
5294 return;
5296 -- Part of mode conformance for access types is having the same
5297 -- constant modifier.
5299 elsif Access_Types_Match
5300 and then Is_Access_Constant (Old_Formal_Base) /=
5301 Is_Access_Constant (New_Formal_Base)
5302 then
5303 Conformance_Error
5304 ("\constant modifier does not match!", New_Formal);
5305 return;
5306 end if;
5307 end if;
5309 if Ctype >= Subtype_Conformant then
5311 -- Ada 2005 (AI-231): In case of anonymous access types check
5312 -- the null-exclusion and access-to-constant attributes must
5313 -- match. For null exclusion, we test the types rather than the
5314 -- formals themselves, since the attribute is only set reliably
5315 -- on the formals in the Ada 95 case, and we exclude the case
5316 -- where Old_Formal is marked as controlling, to avoid errors
5317 -- when matching completing bodies with dispatching declarations
5318 -- (access formals in the bodies aren't marked Can_Never_Be_Null).
5320 if Ada_Version >= Ada_2005
5321 and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
5322 and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
5323 and then
5324 ((Can_Never_Be_Null (Etype (Old_Formal)) /=
5325 Can_Never_Be_Null (Etype (New_Formal))
5326 and then
5327 not Is_Controlling_Formal (Old_Formal))
5328 or else
5329 Is_Access_Constant (Etype (Old_Formal)) /=
5330 Is_Access_Constant (Etype (New_Formal)))
5332 -- Do not complain if error already posted on New_Formal. This
5333 -- avoids some redundant error messages.
5335 and then not Error_Posted (New_Formal)
5336 then
5337 -- It is allowed to omit the null-exclusion in case of stream
5338 -- attribute subprograms. We recognize stream subprograms
5339 -- through their TSS-generated suffix.
5341 declare
5342 TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
5344 begin
5345 if TSS_Name /= TSS_Stream_Read
5346 and then TSS_Name /= TSS_Stream_Write
5347 and then TSS_Name /= TSS_Stream_Input
5348 and then TSS_Name /= TSS_Stream_Output
5349 then
5350 -- Here we have a definite conformance error. It is worth
5351 -- special casing the error message for the case of a
5352 -- controlling formal (which excludes null).
5354 if Is_Controlling_Formal (New_Formal) then
5355 Error_Msg_Node_2 := Scope (New_Formal);
5356 Conformance_Error
5357 ("\controlling formal & of & excludes null, "
5358 & "declaration must exclude null as well",
5359 New_Formal);
5361 -- Normal case (couldn't we give more detail here???)
5363 else
5364 Conformance_Error
5365 ("\type of & does not match!", New_Formal);
5366 end if;
5368 return;
5369 end if;
5370 end;
5371 end if;
5372 end if;
5374 -- Full conformance checks
5376 if Ctype = Fully_Conformant then
5378 -- We have checked already that names match
5380 if Parameter_Mode (Old_Formal) = E_In_Parameter then
5382 -- Check default expressions for in parameters
5384 declare
5385 NewD : constant Boolean :=
5386 Present (Default_Value (New_Formal));
5387 OldD : constant Boolean :=
5388 Present (Default_Value (Old_Formal));
5389 begin
5390 if NewD or OldD then
5392 -- The old default value has been analyzed because the
5393 -- current full declaration will have frozen everything
5394 -- before. The new default value has not been analyzed,
5395 -- so analyze it now before we check for conformance.
5397 if NewD then
5398 Push_Scope (New_Id);
5399 Preanalyze_Spec_Expression
5400 (Default_Value (New_Formal), Etype (New_Formal));
5401 End_Scope;
5402 end if;
5404 if not (NewD and OldD)
5405 or else not Fully_Conformant_Expressions
5406 (Default_Value (Old_Formal),
5407 Default_Value (New_Formal))
5408 then
5409 Conformance_Error
5410 ("\default expression for & does not match!",
5411 New_Formal);
5412 return;
5413 end if;
5414 end if;
5415 end;
5416 end if;
5417 end if;
5419 -- A couple of special checks for Ada 83 mode. These checks are
5420 -- skipped if either entity is an operator in package Standard,
5421 -- or if either old or new instance is not from the source program.
5423 if Ada_Version = Ada_83
5424 and then Sloc (Old_Id) > Standard_Location
5425 and then Sloc (New_Id) > Standard_Location
5426 and then Comes_From_Source (Old_Id)
5427 and then Comes_From_Source (New_Id)
5428 then
5429 declare
5430 Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
5431 New_Param : constant Node_Id := Declaration_Node (New_Formal);
5433 begin
5434 -- Explicit IN must be present or absent in both cases. This
5435 -- test is required only in the full conformance case.
5437 if In_Present (Old_Param) /= In_Present (New_Param)
5438 and then Ctype = Fully_Conformant
5439 then
5440 Conformance_Error
5441 ("\(Ada 83) IN must appear in both declarations",
5442 New_Formal);
5443 return;
5444 end if;
5446 -- Grouping (use of comma in param lists) must be the same
5447 -- This is where we catch a misconformance like:
5449 -- A, B : Integer
5450 -- A : Integer; B : Integer
5452 -- which are represented identically in the tree except
5453 -- for the setting of the flags More_Ids and Prev_Ids.
5455 if More_Ids (Old_Param) /= More_Ids (New_Param)
5456 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
5457 then
5458 Conformance_Error
5459 ("\grouping of & does not match!", New_Formal);
5460 return;
5461 end if;
5462 end;
5463 end if;
5465 -- This label is required when skipping controlling formals
5467 <<Skip_Controlling_Formal>>
5469 Next_Formal (Old_Formal);
5470 Next_Formal (New_Formal);
5471 end loop;
5473 if Present (Old_Formal) then
5474 Conformance_Error ("\too few parameters!");
5475 return;
5477 elsif Present (New_Formal) then
5478 Conformance_Error ("\too many parameters!", New_Formal);
5479 return;
5480 end if;
5481 end Check_Conformance;
5483 -----------------------
5484 -- Check_Conventions --
5485 -----------------------
5487 procedure Check_Conventions (Typ : Entity_Id) is
5488 Ifaces_List : Elist_Id;
5490 procedure Check_Convention (Op : Entity_Id);
5491 -- Verify that the convention of inherited dispatching operation Op is
5492 -- consistent among all subprograms it overrides. In order to minimize
5493 -- the search, Search_From is utilized to designate a specific point in
5494 -- the list rather than iterating over the whole list once more.
5496 ----------------------
5497 -- Check_Convention --
5498 ----------------------
5500 procedure Check_Convention (Op : Entity_Id) is
5501 Op_Conv : constant Convention_Id := Convention (Op);
5502 Iface_Conv : Convention_Id;
5503 Iface_Elmt : Elmt_Id;
5504 Iface_Prim_Elmt : Elmt_Id;
5505 Iface_Prim : Entity_Id;
5507 begin
5508 Iface_Elmt := First_Elmt (Ifaces_List);
5509 while Present (Iface_Elmt) loop
5510 Iface_Prim_Elmt :=
5511 First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
5512 while Present (Iface_Prim_Elmt) loop
5513 Iface_Prim := Node (Iface_Prim_Elmt);
5514 Iface_Conv := Convention (Iface_Prim);
5516 if Is_Interface_Conformant (Typ, Iface_Prim, Op)
5517 and then Iface_Conv /= Op_Conv
5518 then
5519 Error_Msg_N
5520 ("inconsistent conventions in primitive operations", Typ);
5522 Error_Msg_Name_1 := Chars (Op);
5523 Error_Msg_Name_2 := Get_Convention_Name (Op_Conv);
5524 Error_Msg_Sloc := Sloc (Op);
5526 if Comes_From_Source (Op) or else No (Alias (Op)) then
5527 if not Present (Overridden_Operation (Op)) then
5528 Error_Msg_N ("\\primitive % defined #", Typ);
5529 else
5530 Error_Msg_N
5531 ("\\overriding operation % with "
5532 & "convention % defined #", Typ);
5533 end if;
5535 else pragma Assert (Present (Alias (Op)));
5536 Error_Msg_Sloc := Sloc (Alias (Op));
5537 Error_Msg_N ("\\inherited operation % with "
5538 & "convention % defined #", Typ);
5539 end if;
5541 Error_Msg_Name_1 := Chars (Op);
5542 Error_Msg_Name_2 := Get_Convention_Name (Iface_Conv);
5543 Error_Msg_Sloc := Sloc (Iface_Prim);
5544 Error_Msg_N ("\\overridden operation % with "
5545 & "convention % defined #", Typ);
5547 -- Avoid cascading errors
5549 return;
5550 end if;
5552 Next_Elmt (Iface_Prim_Elmt);
5553 end loop;
5555 Next_Elmt (Iface_Elmt);
5556 end loop;
5557 end Check_Convention;
5559 -- Local variables
5561 Prim_Op : Entity_Id;
5562 Prim_Op_Elmt : Elmt_Id;
5564 -- Start of processing for Check_Conventions
5566 begin
5567 if not Has_Interfaces (Typ) then
5568 return;
5569 end if;
5571 Collect_Interfaces (Typ, Ifaces_List);
5573 -- The algorithm checks every overriding dispatching operation against
5574 -- all the corresponding overridden dispatching operations, detecting
5575 -- differences in conventions.
5577 Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
5578 while Present (Prim_Op_Elmt) loop
5579 Prim_Op := Node (Prim_Op_Elmt);
5581 -- A small optimization: skip the predefined dispatching operations
5582 -- since they always have the same convention.
5584 if not Is_Predefined_Dispatching_Operation (Prim_Op) then
5585 Check_Convention (Prim_Op);
5586 end if;
5588 Next_Elmt (Prim_Op_Elmt);
5589 end loop;
5590 end Check_Conventions;
5592 ------------------------------
5593 -- Check_Delayed_Subprogram --
5594 ------------------------------
5596 procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
5597 F : Entity_Id;
5599 procedure Possible_Freeze (T : Entity_Id);
5600 -- T is the type of either a formal parameter or of the return type.
5601 -- If T is not yet frozen and needs a delayed freeze, then the
5602 -- subprogram itself must be delayed.
5604 ---------------------
5605 -- Possible_Freeze --
5606 ---------------------
5608 procedure Possible_Freeze (T : Entity_Id) is
5609 begin
5610 if Has_Delayed_Freeze (T) and then not Is_Frozen (T) then
5611 Set_Has_Delayed_Freeze (Designator);
5613 elsif Is_Access_Type (T)
5614 and then Has_Delayed_Freeze (Designated_Type (T))
5615 and then not Is_Frozen (Designated_Type (T))
5616 then
5617 Set_Has_Delayed_Freeze (Designator);
5618 end if;
5620 end Possible_Freeze;
5622 -- Start of processing for Check_Delayed_Subprogram
5624 begin
5625 -- All subprograms, including abstract subprograms, may need a freeze
5626 -- node if some formal type or the return type needs one.
5628 Possible_Freeze (Etype (Designator));
5629 Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
5631 -- Need delayed freeze if any of the formal types themselves need
5632 -- a delayed freeze and are not yet frozen.
5634 F := First_Formal (Designator);
5635 while Present (F) loop
5636 Possible_Freeze (Etype (F));
5637 Possible_Freeze (Base_Type (Etype (F))); -- needed ???
5638 Next_Formal (F);
5639 end loop;
5641 -- Mark functions that return by reference. Note that it cannot be
5642 -- done for delayed_freeze subprograms because the underlying
5643 -- returned type may not be known yet (for private types)
5645 if not Has_Delayed_Freeze (Designator) and then Expander_Active then
5646 declare
5647 Typ : constant Entity_Id := Etype (Designator);
5648 Utyp : constant Entity_Id := Underlying_Type (Typ);
5649 begin
5650 if Is_Limited_View (Typ) then
5651 Set_Returns_By_Ref (Designator);
5652 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
5653 Set_Returns_By_Ref (Designator);
5654 end if;
5655 end;
5656 end if;
5657 end Check_Delayed_Subprogram;
5659 ------------------------------------
5660 -- Check_Discriminant_Conformance --
5661 ------------------------------------
5663 procedure Check_Discriminant_Conformance
5664 (N : Node_Id;
5665 Prev : Entity_Id;
5666 Prev_Loc : Node_Id)
5668 Old_Discr : Entity_Id := First_Discriminant (Prev);
5669 New_Discr : Node_Id := First (Discriminant_Specifications (N));
5670 New_Discr_Id : Entity_Id;
5671 New_Discr_Type : Entity_Id;
5673 procedure Conformance_Error (Msg : String; N : Node_Id);
5674 -- Post error message for conformance error on given node. Two messages
5675 -- are output. The first points to the previous declaration with a
5676 -- general "no conformance" message. The second is the detailed reason,
5677 -- supplied as Msg. The parameter N provide information for a possible
5678 -- & insertion in the message.
5680 -----------------------
5681 -- Conformance_Error --
5682 -----------------------
5684 procedure Conformance_Error (Msg : String; N : Node_Id) is
5685 begin
5686 Error_Msg_Sloc := Sloc (Prev_Loc);
5687 Error_Msg_N -- CODEFIX
5688 ("not fully conformant with declaration#!", N);
5689 Error_Msg_NE (Msg, N, N);
5690 end Conformance_Error;
5692 -- Start of processing for Check_Discriminant_Conformance
5694 begin
5695 while Present (Old_Discr) and then Present (New_Discr) loop
5696 New_Discr_Id := Defining_Identifier (New_Discr);
5698 -- The subtype mark of the discriminant on the full type has not
5699 -- been analyzed so we do it here. For an access discriminant a new
5700 -- type is created.
5702 if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
5703 New_Discr_Type :=
5704 Access_Definition (N, Discriminant_Type (New_Discr));
5706 else
5707 Analyze (Discriminant_Type (New_Discr));
5708 New_Discr_Type := Etype (Discriminant_Type (New_Discr));
5710 -- Ada 2005: if the discriminant definition carries a null
5711 -- exclusion, create an itype to check properly for consistency
5712 -- with partial declaration.
5714 if Is_Access_Type (New_Discr_Type)
5715 and then Null_Exclusion_Present (New_Discr)
5716 then
5717 New_Discr_Type :=
5718 Create_Null_Excluding_Itype
5719 (T => New_Discr_Type,
5720 Related_Nod => New_Discr,
5721 Scope_Id => Current_Scope);
5722 end if;
5723 end if;
5725 if not Conforming_Types
5726 (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
5727 then
5728 Conformance_Error ("type of & does not match!", New_Discr_Id);
5729 return;
5730 else
5731 -- Treat the new discriminant as an occurrence of the old one,
5732 -- for navigation purposes, and fill in some semantic
5733 -- information, for completeness.
5735 Generate_Reference (Old_Discr, New_Discr_Id, 'r');
5736 Set_Etype (New_Discr_Id, Etype (Old_Discr));
5737 Set_Scope (New_Discr_Id, Scope (Old_Discr));
5738 end if;
5740 -- Names must match
5742 if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
5743 Conformance_Error ("name & does not match!", New_Discr_Id);
5744 return;
5745 end if;
5747 -- Default expressions must match
5749 declare
5750 NewD : constant Boolean :=
5751 Present (Expression (New_Discr));
5752 OldD : constant Boolean :=
5753 Present (Expression (Parent (Old_Discr)));
5755 begin
5756 if NewD or OldD then
5758 -- The old default value has been analyzed and expanded,
5759 -- because the current full declaration will have frozen
5760 -- everything before. The new default values have not been
5761 -- expanded, so expand now to check conformance.
5763 if NewD then
5764 Preanalyze_Spec_Expression
5765 (Expression (New_Discr), New_Discr_Type);
5766 end if;
5768 if not (NewD and OldD)
5769 or else not Fully_Conformant_Expressions
5770 (Expression (Parent (Old_Discr)),
5771 Expression (New_Discr))
5773 then
5774 Conformance_Error
5775 ("default expression for & does not match!",
5776 New_Discr_Id);
5777 return;
5778 end if;
5779 end if;
5780 end;
5782 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
5784 if Ada_Version = Ada_83 then
5785 declare
5786 Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
5788 begin
5789 -- Grouping (use of comma in param lists) must be the same
5790 -- This is where we catch a misconformance like:
5792 -- A, B : Integer
5793 -- A : Integer; B : Integer
5795 -- which are represented identically in the tree except
5796 -- for the setting of the flags More_Ids and Prev_Ids.
5798 if More_Ids (Old_Disc) /= More_Ids (New_Discr)
5799 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
5800 then
5801 Conformance_Error
5802 ("grouping of & does not match!", New_Discr_Id);
5803 return;
5804 end if;
5805 end;
5806 end if;
5808 Next_Discriminant (Old_Discr);
5809 Next (New_Discr);
5810 end loop;
5812 if Present (Old_Discr) then
5813 Conformance_Error ("too few discriminants!", Defining_Identifier (N));
5814 return;
5816 elsif Present (New_Discr) then
5817 Conformance_Error
5818 ("too many discriminants!", Defining_Identifier (New_Discr));
5819 return;
5820 end if;
5821 end Check_Discriminant_Conformance;
5823 ----------------------------
5824 -- Check_Fully_Conformant --
5825 ----------------------------
5827 procedure Check_Fully_Conformant
5828 (New_Id : Entity_Id;
5829 Old_Id : Entity_Id;
5830 Err_Loc : Node_Id := Empty)
5832 Result : Boolean;
5833 pragma Warnings (Off, Result);
5834 begin
5835 Check_Conformance
5836 (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
5837 end Check_Fully_Conformant;
5839 --------------------------
5840 -- Check_Limited_Return --
5841 --------------------------
5843 procedure Check_Limited_Return
5844 (N : Node_Id;
5845 Expr : Node_Id;
5846 R_Type : Entity_Id)
5848 begin
5849 -- Ada 2005 (AI-318-02): Return-by-reference types have been removed and
5850 -- replaced by anonymous access results. This is an incompatibility with
5851 -- Ada 95. Not clear whether this should be enforced yet or perhaps
5852 -- controllable with special switch. ???
5854 -- A limited interface that is not immutably limited is OK
5856 if Is_Limited_Interface (R_Type)
5857 and then
5858 not (Is_Task_Interface (R_Type)
5859 or else Is_Protected_Interface (R_Type)
5860 or else Is_Synchronized_Interface (R_Type))
5861 then
5862 null;
5864 elsif Is_Limited_Type (R_Type)
5865 and then not Is_Interface (R_Type)
5866 and then Comes_From_Source (N)
5867 and then not In_Instance_Body
5868 and then not OK_For_Limited_Init_In_05 (R_Type, Expr)
5869 then
5870 -- Error in Ada 2005
5872 if Ada_Version >= Ada_2005
5873 and then not Debug_Flag_Dot_L
5874 and then not GNAT_Mode
5875 then
5876 Error_Msg_N
5877 ("(Ada 2005) cannot copy object of a limited type "
5878 & "(RM-2005 6.5(5.5/2))", Expr);
5880 if Is_Limited_View (R_Type) then
5881 Error_Msg_N
5882 ("\return by reference not permitted in Ada 2005", Expr);
5883 end if;
5885 -- Warn in Ada 95 mode, to give folks a heads up about this
5886 -- incompatibility.
5888 -- In GNAT mode, this is just a warning, to allow it to be evilly
5889 -- turned off. Otherwise it is a real error.
5891 -- In a generic context, simplify the warning because it makes no
5892 -- sense to discuss pass-by-reference or copy.
5894 elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
5895 if Inside_A_Generic then
5896 Error_Msg_N
5897 ("return of limited object not permitted in Ada 2005 "
5898 & "(RM-2005 6.5(5.5/2))?y?", Expr);
5900 elsif Is_Limited_View (R_Type) then
5901 Error_Msg_N
5902 ("return by reference not permitted in Ada 2005 "
5903 & "(RM-2005 6.5(5.5/2))?y?", Expr);
5904 else
5905 Error_Msg_N
5906 ("cannot copy object of a limited type in Ada 2005 "
5907 & "(RM-2005 6.5(5.5/2))?y?", Expr);
5908 end if;
5910 -- Ada 95 mode, compatibility warnings disabled
5912 else
5913 return; -- skip continuation messages below
5914 end if;
5916 if not Inside_A_Generic then
5917 Error_Msg_N
5918 ("\consider switching to return of access type", Expr);
5919 Explain_Limited_Type (R_Type, Expr);
5920 end if;
5921 end if;
5922 end Check_Limited_Return;
5924 ---------------------------
5925 -- Check_Mode_Conformant --
5926 ---------------------------
5928 procedure Check_Mode_Conformant
5929 (New_Id : Entity_Id;
5930 Old_Id : Entity_Id;
5931 Err_Loc : Node_Id := Empty;
5932 Get_Inst : Boolean := False)
5934 Result : Boolean;
5935 pragma Warnings (Off, Result);
5936 begin
5937 Check_Conformance
5938 (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
5939 end Check_Mode_Conformant;
5941 --------------------------------
5942 -- Check_Overriding_Indicator --
5943 --------------------------------
5945 procedure Check_Overriding_Indicator
5946 (Subp : Entity_Id;
5947 Overridden_Subp : Entity_Id;
5948 Is_Primitive : Boolean)
5950 Decl : Node_Id;
5951 Spec : Node_Id;
5953 begin
5954 -- No overriding indicator for literals
5956 if Ekind (Subp) = E_Enumeration_Literal then
5957 return;
5959 elsif Ekind (Subp) = E_Entry then
5960 Decl := Parent (Subp);
5962 -- No point in analyzing a malformed operator
5964 elsif Nkind (Subp) = N_Defining_Operator_Symbol
5965 and then Error_Posted (Subp)
5966 then
5967 return;
5969 else
5970 Decl := Unit_Declaration_Node (Subp);
5971 end if;
5973 if Nkind_In (Decl, N_Subprogram_Body,
5974 N_Subprogram_Body_Stub,
5975 N_Subprogram_Declaration,
5976 N_Abstract_Subprogram_Declaration,
5977 N_Subprogram_Renaming_Declaration)
5978 then
5979 Spec := Specification (Decl);
5981 elsif Nkind (Decl) = N_Entry_Declaration then
5982 Spec := Decl;
5984 else
5985 return;
5986 end if;
5988 -- The overriding operation is type conformant with the overridden one,
5989 -- but the names of the formals are not required to match. If the names
5990 -- appear permuted in the overriding operation, this is a possible
5991 -- source of confusion that is worth diagnosing. Controlling formals
5992 -- often carry names that reflect the type, and it is not worthwhile
5993 -- requiring that their names match.
5995 if Present (Overridden_Subp)
5996 and then Nkind (Subp) /= N_Defining_Operator_Symbol
5997 then
5998 declare
5999 Form1 : Entity_Id;
6000 Form2 : Entity_Id;
6002 begin
6003 Form1 := First_Formal (Subp);
6004 Form2 := First_Formal (Overridden_Subp);
6006 -- If the overriding operation is a synchronized operation, skip
6007 -- the first parameter of the overridden operation, which is
6008 -- implicit in the new one. If the operation is declared in the
6009 -- body it is not primitive and all formals must match.
6011 if Is_Concurrent_Type (Scope (Subp))
6012 and then Is_Tagged_Type (Scope (Subp))
6013 and then not Has_Completion (Scope (Subp))
6014 then
6015 Form2 := Next_Formal (Form2);
6016 end if;
6018 if Present (Form1) then
6019 Form1 := Next_Formal (Form1);
6020 Form2 := Next_Formal (Form2);
6021 end if;
6023 while Present (Form1) loop
6024 if not Is_Controlling_Formal (Form1)
6025 and then Present (Next_Formal (Form2))
6026 and then Chars (Form1) = Chars (Next_Formal (Form2))
6027 then
6028 Error_Msg_Node_2 := Alias (Overridden_Subp);
6029 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
6030 Error_Msg_NE
6031 ("& does not match corresponding formal of&#",
6032 Form1, Form1);
6033 exit;
6034 end if;
6036 Next_Formal (Form1);
6037 Next_Formal (Form2);
6038 end loop;
6039 end;
6040 end if;
6042 -- If there is an overridden subprogram, then check that there is no
6043 -- "not overriding" indicator, and mark the subprogram as overriding.
6044 -- This is not done if the overridden subprogram is marked as hidden,
6045 -- which can occur for the case of inherited controlled operations
6046 -- (see Derive_Subprogram), unless the inherited subprogram's parent
6047 -- subprogram is not itself hidden. (Note: This condition could probably
6048 -- be simplified, leaving out the testing for the specific controlled
6049 -- cases, but it seems safer and clearer this way, and echoes similar
6050 -- special-case tests of this kind in other places.)
6052 if Present (Overridden_Subp)
6053 and then (not Is_Hidden (Overridden_Subp)
6054 or else
6055 (Nam_In (Chars (Overridden_Subp), Name_Initialize,
6056 Name_Adjust,
6057 Name_Finalize)
6058 and then Present (Alias (Overridden_Subp))
6059 and then not Is_Hidden (Alias (Overridden_Subp))))
6060 then
6061 if Must_Not_Override (Spec) then
6062 Error_Msg_Sloc := Sloc (Overridden_Subp);
6064 if Ekind (Subp) = E_Entry then
6065 Error_Msg_NE
6066 ("entry & overrides inherited operation #", Spec, Subp);
6067 else
6068 Error_Msg_NE
6069 ("subprogram & overrides inherited operation #", Spec, Subp);
6070 end if;
6072 -- Special-case to fix a GNAT oddity: Limited_Controlled is declared
6073 -- as an extension of Root_Controlled, and thus has a useless Adjust
6074 -- operation. This operation should not be inherited by other limited
6075 -- controlled types. An explicit Adjust for them is not overriding.
6077 elsif Must_Override (Spec)
6078 and then Chars (Overridden_Subp) = Name_Adjust
6079 and then Is_Limited_Type (Etype (First_Formal (Subp)))
6080 and then Present (Alias (Overridden_Subp))
6081 and then
6082 Is_Predefined_File_Name
6083 (Unit_File_Name (Get_Source_Unit (Alias (Overridden_Subp))))
6084 then
6085 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6087 elsif Is_Subprogram (Subp) then
6088 if Is_Init_Proc (Subp) then
6089 null;
6091 elsif No (Overridden_Operation (Subp)) then
6093 -- For entities generated by Derive_Subprograms the overridden
6094 -- operation is the inherited primitive (which is available
6095 -- through the attribute alias)
6097 if (Is_Dispatching_Operation (Subp)
6098 or else Is_Dispatching_Operation (Overridden_Subp))
6099 and then not Comes_From_Source (Overridden_Subp)
6100 and then Find_Dispatching_Type (Overridden_Subp) =
6101 Find_Dispatching_Type (Subp)
6102 and then Present (Alias (Overridden_Subp))
6103 and then Comes_From_Source (Alias (Overridden_Subp))
6104 then
6105 Set_Overridden_Operation (Subp, Alias (Overridden_Subp));
6106 Inherit_Subprogram_Contract (Subp, Alias (Overridden_Subp));
6108 else
6109 Set_Overridden_Operation (Subp, Overridden_Subp);
6110 Inherit_Subprogram_Contract (Subp, Overridden_Subp);
6111 end if;
6112 end if;
6113 end if;
6115 -- If primitive flag is set or this is a protected operation, then
6116 -- the operation is overriding at the point of its declaration, so
6117 -- warn if necessary. Otherwise it may have been declared before the
6118 -- operation it overrides and no check is required.
6120 if Style_Check
6121 and then not Must_Override (Spec)
6122 and then (Is_Primitive
6123 or else Ekind (Scope (Subp)) = E_Protected_Type)
6124 then
6125 Style.Missing_Overriding (Decl, Subp);
6126 end if;
6128 -- If Subp is an operator, it may override a predefined operation, if
6129 -- it is defined in the same scope as the type to which it applies.
6130 -- In that case Overridden_Subp is empty because of our implicit
6131 -- representation for predefined operators. We have to check whether the
6132 -- signature of Subp matches that of a predefined operator. Note that
6133 -- first argument provides the name of the operator, and the second
6134 -- argument the signature that may match that of a standard operation.
6135 -- If the indicator is overriding, then the operator must match a
6136 -- predefined signature, because we know already that there is no
6137 -- explicit overridden operation.
6139 elsif Nkind (Subp) = N_Defining_Operator_Symbol then
6140 if Must_Not_Override (Spec) then
6142 -- If this is not a primitive or a protected subprogram, then
6143 -- "not overriding" is illegal.
6145 if not Is_Primitive
6146 and then Ekind (Scope (Subp)) /= E_Protected_Type
6147 then
6148 Error_Msg_N ("overriding indicator only allowed "
6149 & "if subprogram is primitive", Subp);
6151 elsif Can_Override_Operator (Subp) then
6152 Error_Msg_NE
6153 ("subprogram& overrides predefined operator ", Spec, Subp);
6154 end if;
6156 elsif Must_Override (Spec) then
6157 if No (Overridden_Operation (Subp))
6158 and then not Can_Override_Operator (Subp)
6159 then
6160 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6161 end if;
6163 elsif not Error_Posted (Subp)
6164 and then Style_Check
6165 and then Can_Override_Operator (Subp)
6166 and then
6167 not Is_Predefined_File_Name
6168 (Unit_File_Name (Get_Source_Unit (Subp)))
6169 then
6170 -- If style checks are enabled, indicate that the indicator is
6171 -- missing. However, at the point of declaration, the type of
6172 -- which this is a primitive operation may be private, in which
6173 -- case the indicator would be premature.
6175 if Has_Private_Declaration (Etype (Subp))
6176 or else Has_Private_Declaration (Etype (First_Formal (Subp)))
6177 then
6178 null;
6179 else
6180 Style.Missing_Overriding (Decl, Subp);
6181 end if;
6182 end if;
6184 elsif Must_Override (Spec) then
6185 if Ekind (Subp) = E_Entry then
6186 Error_Msg_NE ("entry & is not overriding", Spec, Subp);
6187 else
6188 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6189 end if;
6191 -- If the operation is marked "not overriding" and it's not primitive
6192 -- then an error is issued, unless this is an operation of a task or
6193 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
6194 -- has been specified have already been checked above.
6196 elsif Must_Not_Override (Spec)
6197 and then not Is_Primitive
6198 and then Ekind (Subp) /= E_Entry
6199 and then Ekind (Scope (Subp)) /= E_Protected_Type
6200 then
6201 Error_Msg_N
6202 ("overriding indicator only allowed if subprogram is primitive",
6203 Subp);
6204 return;
6205 end if;
6206 end Check_Overriding_Indicator;
6208 -------------------
6209 -- Check_Returns --
6210 -------------------
6212 -- Note: this procedure needs to know far too much about how the expander
6213 -- messes with exceptions. The use of the flag Exception_Junk and the
6214 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
6215 -- works, but is not very clean. It would be better if the expansion
6216 -- routines would leave Original_Node working nicely, and we could use
6217 -- Original_Node here to ignore all the peculiar expander messing ???
6219 procedure Check_Returns
6220 (HSS : Node_Id;
6221 Mode : Character;
6222 Err : out Boolean;
6223 Proc : Entity_Id := Empty)
6225 Handler : Node_Id;
6227 procedure Check_Statement_Sequence (L : List_Id);
6228 -- Internal recursive procedure to check a list of statements for proper
6229 -- termination by a return statement (or a transfer of control or a
6230 -- compound statement that is itself internally properly terminated).
6232 ------------------------------
6233 -- Check_Statement_Sequence --
6234 ------------------------------
6236 procedure Check_Statement_Sequence (L : List_Id) is
6237 Last_Stm : Node_Id;
6238 Stm : Node_Id;
6239 Kind : Node_Kind;
6241 function Assert_False return Boolean;
6242 -- Returns True if Last_Stm is a pragma Assert (False) that has been
6243 -- rewritten as a null statement when assertions are off. The assert
6244 -- is not active, but it is still enough to kill the warning.
6246 ------------------
6247 -- Assert_False --
6248 ------------------
6250 function Assert_False return Boolean is
6251 Orig : constant Node_Id := Original_Node (Last_Stm);
6253 begin
6254 if Nkind (Orig) = N_Pragma
6255 and then Pragma_Name (Orig) = Name_Assert
6256 and then not Error_Posted (Orig)
6257 then
6258 declare
6259 Arg : constant Node_Id :=
6260 First (Pragma_Argument_Associations (Orig));
6261 Exp : constant Node_Id := Expression (Arg);
6262 begin
6263 return Nkind (Exp) = N_Identifier
6264 and then Chars (Exp) = Name_False;
6265 end;
6267 else
6268 return False;
6269 end if;
6270 end Assert_False;
6272 -- Local variables
6274 Raise_Exception_Call : Boolean;
6275 -- Set True if statement sequence terminated by Raise_Exception call
6276 -- or a Reraise_Occurrence call.
6278 -- Start of processing for Check_Statement_Sequence
6280 begin
6281 Raise_Exception_Call := False;
6283 -- Get last real statement
6285 Last_Stm := Last (L);
6287 -- Deal with digging out exception handler statement sequences that
6288 -- have been transformed by the local raise to goto optimization.
6289 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
6290 -- optimization has occurred, we are looking at something like:
6292 -- begin
6293 -- original stmts in block
6295 -- exception \
6296 -- when excep1 => |
6297 -- goto L1; | omitted if No_Exception_Propagation
6298 -- when excep2 => |
6299 -- goto L2; /
6300 -- end;
6302 -- goto L3; -- skip handler when exception not raised
6304 -- <<L1>> -- target label for local exception
6305 -- begin
6306 -- estmts1
6307 -- end;
6309 -- goto L3;
6311 -- <<L2>>
6312 -- begin
6313 -- estmts2
6314 -- end;
6316 -- <<L3>>
6318 -- and what we have to do is to dig out the estmts1 and estmts2
6319 -- sequences (which were the original sequences of statements in
6320 -- the exception handlers) and check them.
6322 if Nkind (Last_Stm) = N_Label and then Exception_Junk (Last_Stm) then
6323 Stm := Last_Stm;
6324 loop
6325 Prev (Stm);
6326 exit when No (Stm);
6327 exit when Nkind (Stm) /= N_Block_Statement;
6328 exit when not Exception_Junk (Stm);
6329 Prev (Stm);
6330 exit when No (Stm);
6331 exit when Nkind (Stm) /= N_Label;
6332 exit when not Exception_Junk (Stm);
6333 Check_Statement_Sequence
6334 (Statements (Handled_Statement_Sequence (Next (Stm))));
6336 Prev (Stm);
6337 Last_Stm := Stm;
6338 exit when No (Stm);
6339 exit when Nkind (Stm) /= N_Goto_Statement;
6340 exit when not Exception_Junk (Stm);
6341 end loop;
6342 end if;
6344 -- Don't count pragmas
6346 while Nkind (Last_Stm) = N_Pragma
6348 -- Don't count call to SS_Release (can happen after Raise_Exception)
6350 or else
6351 (Nkind (Last_Stm) = N_Procedure_Call_Statement
6352 and then
6353 Nkind (Name (Last_Stm)) = N_Identifier
6354 and then
6355 Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
6357 -- Don't count exception junk
6359 or else
6360 (Nkind_In (Last_Stm, N_Goto_Statement,
6361 N_Label,
6362 N_Object_Declaration)
6363 and then Exception_Junk (Last_Stm))
6364 or else Nkind (Last_Stm) in N_Push_xxx_Label
6365 or else Nkind (Last_Stm) in N_Pop_xxx_Label
6367 -- Inserted code, such as finalization calls, is irrelevant: we only
6368 -- need to check original source.
6370 or else Is_Rewrite_Insertion (Last_Stm)
6371 loop
6372 Prev (Last_Stm);
6373 end loop;
6375 -- Here we have the "real" last statement
6377 Kind := Nkind (Last_Stm);
6379 -- Transfer of control, OK. Note that in the No_Return procedure
6380 -- case, we already diagnosed any explicit return statements, so
6381 -- we can treat them as OK in this context.
6383 if Is_Transfer (Last_Stm) then
6384 return;
6386 -- Check cases of explicit non-indirect procedure calls
6388 elsif Kind = N_Procedure_Call_Statement
6389 and then Is_Entity_Name (Name (Last_Stm))
6390 then
6391 -- Check call to Raise_Exception procedure which is treated
6392 -- specially, as is a call to Reraise_Occurrence.
6394 -- We suppress the warning in these cases since it is likely that
6395 -- the programmer really does not expect to deal with the case
6396 -- of Null_Occurrence, and thus would find a warning about a
6397 -- missing return curious, and raising Program_Error does not
6398 -- seem such a bad behavior if this does occur.
6400 -- Note that in the Ada 2005 case for Raise_Exception, the actual
6401 -- behavior will be to raise Constraint_Error (see AI-329).
6403 if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
6404 or else
6405 Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
6406 then
6407 Raise_Exception_Call := True;
6409 -- For Raise_Exception call, test first argument, if it is
6410 -- an attribute reference for a 'Identity call, then we know
6411 -- that the call cannot possibly return.
6413 declare
6414 Arg : constant Node_Id :=
6415 Original_Node (First_Actual (Last_Stm));
6416 begin
6417 if Nkind (Arg) = N_Attribute_Reference
6418 and then Attribute_Name (Arg) = Name_Identity
6419 then
6420 return;
6421 end if;
6422 end;
6423 end if;
6425 -- If statement, need to look inside if there is an else and check
6426 -- each constituent statement sequence for proper termination.
6428 elsif Kind = N_If_Statement
6429 and then Present (Else_Statements (Last_Stm))
6430 then
6431 Check_Statement_Sequence (Then_Statements (Last_Stm));
6432 Check_Statement_Sequence (Else_Statements (Last_Stm));
6434 if Present (Elsif_Parts (Last_Stm)) then
6435 declare
6436 Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
6438 begin
6439 while Present (Elsif_Part) loop
6440 Check_Statement_Sequence (Then_Statements (Elsif_Part));
6441 Next (Elsif_Part);
6442 end loop;
6443 end;
6444 end if;
6446 return;
6448 -- Case statement, check each case for proper termination
6450 elsif Kind = N_Case_Statement then
6451 declare
6452 Case_Alt : Node_Id;
6453 begin
6454 Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
6455 while Present (Case_Alt) loop
6456 Check_Statement_Sequence (Statements (Case_Alt));
6457 Next_Non_Pragma (Case_Alt);
6458 end loop;
6459 end;
6461 return;
6463 -- Block statement, check its handled sequence of statements
6465 elsif Kind = N_Block_Statement then
6466 declare
6467 Err1 : Boolean;
6469 begin
6470 Check_Returns
6471 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
6473 if Err1 then
6474 Err := True;
6475 end if;
6477 return;
6478 end;
6480 -- Loop statement. If there is an iteration scheme, we can definitely
6481 -- fall out of the loop. Similarly if there is an exit statement, we
6482 -- can fall out. In either case we need a following return.
6484 elsif Kind = N_Loop_Statement then
6485 if Present (Iteration_Scheme (Last_Stm))
6486 or else Has_Exit (Entity (Identifier (Last_Stm)))
6487 then
6488 null;
6490 -- A loop with no exit statement or iteration scheme is either
6491 -- an infinite loop, or it has some other exit (raise/return).
6492 -- In either case, no warning is required.
6494 else
6495 return;
6496 end if;
6498 -- Timed entry call, check entry call and delay alternatives
6500 -- Note: in expanded code, the timed entry call has been converted
6501 -- to a set of expanded statements on which the check will work
6502 -- correctly in any case.
6504 elsif Kind = N_Timed_Entry_Call then
6505 declare
6506 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6507 DCA : constant Node_Id := Delay_Alternative (Last_Stm);
6509 begin
6510 -- If statement sequence of entry call alternative is missing,
6511 -- then we can definitely fall through, and we post the error
6512 -- message on the entry call alternative itself.
6514 if No (Statements (ECA)) then
6515 Last_Stm := ECA;
6517 -- If statement sequence of delay alternative is missing, then
6518 -- we can definitely fall through, and we post the error
6519 -- message on the delay alternative itself.
6521 -- Note: if both ECA and DCA are missing the return, then we
6522 -- post only one message, should be enough to fix the bugs.
6523 -- If not we will get a message next time on the DCA when the
6524 -- ECA is fixed.
6526 elsif No (Statements (DCA)) then
6527 Last_Stm := DCA;
6529 -- Else check both statement sequences
6531 else
6532 Check_Statement_Sequence (Statements (ECA));
6533 Check_Statement_Sequence (Statements (DCA));
6534 return;
6535 end if;
6536 end;
6538 -- Conditional entry call, check entry call and else part
6540 -- Note: in expanded code, the conditional entry call has been
6541 -- converted to a set of expanded statements on which the check
6542 -- will work correctly in any case.
6544 elsif Kind = N_Conditional_Entry_Call then
6545 declare
6546 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6548 begin
6549 -- If statement sequence of entry call alternative is missing,
6550 -- then we can definitely fall through, and we post the error
6551 -- message on the entry call alternative itself.
6553 if No (Statements (ECA)) then
6554 Last_Stm := ECA;
6556 -- Else check statement sequence and else part
6558 else
6559 Check_Statement_Sequence (Statements (ECA));
6560 Check_Statement_Sequence (Else_Statements (Last_Stm));
6561 return;
6562 end if;
6563 end;
6564 end if;
6566 -- If we fall through, issue appropriate message
6568 if Mode = 'F' then
6570 -- Kill warning if last statement is a raise exception call,
6571 -- or a pragma Assert (False). Note that with assertions enabled,
6572 -- such a pragma has been converted into a raise exception call
6573 -- already, so the Assert_False is for the assertions off case.
6575 if not Raise_Exception_Call and then not Assert_False then
6577 -- In GNATprove mode, it is an error to have a missing return
6579 Error_Msg_Warn := SPARK_Mode /= On;
6581 -- Issue error message or warning
6583 Error_Msg_N
6584 ("RETURN statement missing following this statement<<!",
6585 Last_Stm);
6586 Error_Msg_N
6587 ("\Program_Error ]<<!", Last_Stm);
6588 end if;
6590 -- Note: we set Err even though we have not issued a warning
6591 -- because we still have a case of a missing return. This is
6592 -- an extremely marginal case, probably will never be noticed
6593 -- but we might as well get it right.
6595 Err := True;
6597 -- Otherwise we have the case of a procedure marked No_Return
6599 else
6600 if not Raise_Exception_Call then
6601 if GNATprove_Mode then
6602 Error_Msg_N
6603 ("implied return after this statement "
6604 & "would have raised Program_Error", Last_Stm);
6605 else
6606 Error_Msg_N
6607 ("implied return after this statement "
6608 & "will raise Program_Error??", Last_Stm);
6609 end if;
6611 Error_Msg_Warn := SPARK_Mode /= On;
6612 Error_Msg_NE
6613 ("\procedure & is marked as No_Return<<!", Last_Stm, Proc);
6614 end if;
6616 declare
6617 RE : constant Node_Id :=
6618 Make_Raise_Program_Error (Sloc (Last_Stm),
6619 Reason => PE_Implicit_Return);
6620 begin
6621 Insert_After (Last_Stm, RE);
6622 Analyze (RE);
6623 end;
6624 end if;
6625 end Check_Statement_Sequence;
6627 -- Start of processing for Check_Returns
6629 begin
6630 Err := False;
6631 Check_Statement_Sequence (Statements (HSS));
6633 if Present (Exception_Handlers (HSS)) then
6634 Handler := First_Non_Pragma (Exception_Handlers (HSS));
6635 while Present (Handler) loop
6636 Check_Statement_Sequence (Statements (Handler));
6637 Next_Non_Pragma (Handler);
6638 end loop;
6639 end if;
6640 end Check_Returns;
6642 ----------------------------
6643 -- Check_Subprogram_Order --
6644 ----------------------------
6646 procedure Check_Subprogram_Order (N : Node_Id) is
6648 function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
6649 -- This is used to check if S1 > S2 in the sense required by this test,
6650 -- for example nameab < namec, but name2 < name10.
6652 -----------------------------
6653 -- Subprogram_Name_Greater --
6654 -----------------------------
6656 function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
6657 L1, L2 : Positive;
6658 N1, N2 : Natural;
6660 begin
6661 -- Deal with special case where names are identical except for a
6662 -- numerical suffix. These are handled specially, taking the numeric
6663 -- ordering from the suffix into account.
6665 L1 := S1'Last;
6666 while S1 (L1) in '0' .. '9' loop
6667 L1 := L1 - 1;
6668 end loop;
6670 L2 := S2'Last;
6671 while S2 (L2) in '0' .. '9' loop
6672 L2 := L2 - 1;
6673 end loop;
6675 -- If non-numeric parts non-equal, do straight compare
6677 if S1 (S1'First .. L1) /= S2 (S2'First .. L2) then
6678 return S1 > S2;
6680 -- If non-numeric parts equal, compare suffixed numeric parts. Note
6681 -- that a missing suffix is treated as numeric zero in this test.
6683 else
6684 N1 := 0;
6685 while L1 < S1'Last loop
6686 L1 := L1 + 1;
6687 N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
6688 end loop;
6690 N2 := 0;
6691 while L2 < S2'Last loop
6692 L2 := L2 + 1;
6693 N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
6694 end loop;
6696 return N1 > N2;
6697 end if;
6698 end Subprogram_Name_Greater;
6700 -- Start of processing for Check_Subprogram_Order
6702 begin
6703 -- Check body in alpha order if this is option
6705 if Style_Check
6706 and then Style_Check_Order_Subprograms
6707 and then Nkind (N) = N_Subprogram_Body
6708 and then Comes_From_Source (N)
6709 and then In_Extended_Main_Source_Unit (N)
6710 then
6711 declare
6712 LSN : String_Ptr
6713 renames Scope_Stack.Table
6714 (Scope_Stack.Last).Last_Subprogram_Name;
6716 Body_Id : constant Entity_Id :=
6717 Defining_Entity (Specification (N));
6719 begin
6720 Get_Decoded_Name_String (Chars (Body_Id));
6722 if LSN /= null then
6723 if Subprogram_Name_Greater
6724 (LSN.all, Name_Buffer (1 .. Name_Len))
6725 then
6726 Style.Subprogram_Not_In_Alpha_Order (Body_Id);
6727 end if;
6729 Free (LSN);
6730 end if;
6732 LSN := new String'(Name_Buffer (1 .. Name_Len));
6733 end;
6734 end if;
6735 end Check_Subprogram_Order;
6737 ------------------------------
6738 -- Check_Subtype_Conformant --
6739 ------------------------------
6741 procedure Check_Subtype_Conformant
6742 (New_Id : Entity_Id;
6743 Old_Id : Entity_Id;
6744 Err_Loc : Node_Id := Empty;
6745 Skip_Controlling_Formals : Boolean := False;
6746 Get_Inst : Boolean := False)
6748 Result : Boolean;
6749 pragma Warnings (Off, Result);
6750 begin
6751 Check_Conformance
6752 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
6753 Skip_Controlling_Formals => Skip_Controlling_Formals,
6754 Get_Inst => Get_Inst);
6755 end Check_Subtype_Conformant;
6757 -----------------------------------
6758 -- Check_Synchronized_Overriding --
6759 -----------------------------------
6761 procedure Check_Synchronized_Overriding
6762 (Def_Id : Entity_Id;
6763 Overridden_Subp : out Entity_Id)
6765 Ifaces_List : Elist_Id;
6766 In_Scope : Boolean;
6767 Typ : Entity_Id;
6769 function Matches_Prefixed_View_Profile
6770 (Prim_Params : List_Id;
6771 Iface_Params : List_Id) return Boolean;
6772 -- Determine whether a subprogram's parameter profile Prim_Params
6773 -- matches that of a potentially overridden interface subprogram
6774 -- Iface_Params. Also determine if the type of first parameter of
6775 -- Iface_Params is an implemented interface.
6777 -----------------------------------
6778 -- Matches_Prefixed_View_Profile --
6779 -----------------------------------
6781 function Matches_Prefixed_View_Profile
6782 (Prim_Params : List_Id;
6783 Iface_Params : List_Id) return Boolean
6785 function Is_Implemented
6786 (Ifaces_List : Elist_Id;
6787 Iface : Entity_Id) return Boolean;
6788 -- Determine if Iface is implemented by the current task or
6789 -- protected type.
6791 --------------------
6792 -- Is_Implemented --
6793 --------------------
6795 function Is_Implemented
6796 (Ifaces_List : Elist_Id;
6797 Iface : Entity_Id) return Boolean
6799 Iface_Elmt : Elmt_Id;
6801 begin
6802 Iface_Elmt := First_Elmt (Ifaces_List);
6803 while Present (Iface_Elmt) loop
6804 if Node (Iface_Elmt) = Iface then
6805 return True;
6806 end if;
6808 Next_Elmt (Iface_Elmt);
6809 end loop;
6811 return False;
6812 end Is_Implemented;
6814 -- Local variables
6816 Iface_Id : Entity_Id;
6817 Iface_Param : Node_Id;
6818 Iface_Typ : Entity_Id;
6819 Prim_Id : Entity_Id;
6820 Prim_Param : Node_Id;
6821 Prim_Typ : Entity_Id;
6823 -- Start of processing for Matches_Prefixed_View_Profile
6825 begin
6826 Iface_Param := First (Iface_Params);
6827 Iface_Typ := Etype (Defining_Identifier (Iface_Param));
6829 if Is_Access_Type (Iface_Typ) then
6830 Iface_Typ := Designated_Type (Iface_Typ);
6831 end if;
6833 Prim_Param := First (Prim_Params);
6835 -- The first parameter of the potentially overridden subprogram must
6836 -- be an interface implemented by Prim.
6838 if not Is_Interface (Iface_Typ)
6839 or else not Is_Implemented (Ifaces_List, Iface_Typ)
6840 then
6841 return False;
6842 end if;
6844 -- The checks on the object parameters are done, so move on to the
6845 -- rest of the parameters.
6847 if not In_Scope then
6848 Prim_Param := Next (Prim_Param);
6849 end if;
6851 Iface_Param := Next (Iface_Param);
6852 while Present (Iface_Param) and then Present (Prim_Param) loop
6853 Iface_Id := Defining_Identifier (Iface_Param);
6854 Iface_Typ := Find_Parameter_Type (Iface_Param);
6856 Prim_Id := Defining_Identifier (Prim_Param);
6857 Prim_Typ := Find_Parameter_Type (Prim_Param);
6859 if Ekind (Iface_Typ) = E_Anonymous_Access_Type
6860 and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
6861 and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
6862 then
6863 Iface_Typ := Designated_Type (Iface_Typ);
6864 Prim_Typ := Designated_Type (Prim_Typ);
6865 end if;
6867 -- Case of multiple interface types inside a parameter profile
6869 -- (Obj_Param : in out Iface; ...; Param : Iface)
6871 -- If the interface type is implemented, then the matching type in
6872 -- the primitive should be the implementing record type.
6874 if Ekind (Iface_Typ) = E_Record_Type
6875 and then Is_Interface (Iface_Typ)
6876 and then Is_Implemented (Ifaces_List, Iface_Typ)
6877 then
6878 if Prim_Typ /= Typ then
6879 return False;
6880 end if;
6882 -- The two parameters must be both mode and subtype conformant
6884 elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
6885 or else not
6886 Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
6887 then
6888 return False;
6889 end if;
6891 Next (Iface_Param);
6892 Next (Prim_Param);
6893 end loop;
6895 -- One of the two lists contains more parameters than the other
6897 if Present (Iface_Param) or else Present (Prim_Param) then
6898 return False;
6899 end if;
6901 return True;
6902 end Matches_Prefixed_View_Profile;
6904 -- Start of processing for Check_Synchronized_Overriding
6906 begin
6907 Overridden_Subp := Empty;
6909 -- Def_Id must be an entry or a subprogram. We should skip predefined
6910 -- primitives internally generated by the front end; however at this
6911 -- stage predefined primitives are still not fully decorated. As a
6912 -- minor optimization we skip here internally generated subprograms.
6914 if (Ekind (Def_Id) /= E_Entry
6915 and then Ekind (Def_Id) /= E_Function
6916 and then Ekind (Def_Id) /= E_Procedure)
6917 or else not Comes_From_Source (Def_Id)
6918 then
6919 return;
6920 end if;
6922 -- Search for the concurrent declaration since it contains the list of
6923 -- all implemented interfaces. In this case, the subprogram is declared
6924 -- within the scope of a protected or a task type.
6926 if Present (Scope (Def_Id))
6927 and then Is_Concurrent_Type (Scope (Def_Id))
6928 and then not Is_Generic_Actual_Type (Scope (Def_Id))
6929 then
6930 Typ := Scope (Def_Id);
6931 In_Scope := True;
6933 -- The enclosing scope is not a synchronized type and the subprogram
6934 -- has no formals.
6936 elsif No (First_Formal (Def_Id)) then
6937 return;
6939 -- The subprogram has formals and hence it may be a primitive of a
6940 -- concurrent type.
6942 else
6943 Typ := Etype (First_Formal (Def_Id));
6945 if Is_Access_Type (Typ) then
6946 Typ := Directly_Designated_Type (Typ);
6947 end if;
6949 if Is_Concurrent_Type (Typ)
6950 and then not Is_Generic_Actual_Type (Typ)
6951 then
6952 In_Scope := False;
6954 -- This case occurs when the concurrent type is declared within a
6955 -- generic unit. As a result the corresponding record has been built
6956 -- and used as the type of the first formal, we just have to retrieve
6957 -- the corresponding concurrent type.
6959 elsif Is_Concurrent_Record_Type (Typ)
6960 and then not Is_Class_Wide_Type (Typ)
6961 and then Present (Corresponding_Concurrent_Type (Typ))
6962 then
6963 Typ := Corresponding_Concurrent_Type (Typ);
6964 In_Scope := False;
6966 else
6967 return;
6968 end if;
6969 end if;
6971 -- There is no overriding to check if this is an inherited operation in
6972 -- a type derivation for a generic actual.
6974 Collect_Interfaces (Typ, Ifaces_List);
6976 if Is_Empty_Elmt_List (Ifaces_List) then
6977 return;
6978 end if;
6980 -- Determine whether entry or subprogram Def_Id overrides a primitive
6981 -- operation that belongs to one of the interfaces in Ifaces_List.
6983 declare
6984 Candidate : Entity_Id := Empty;
6985 Hom : Entity_Id := Empty;
6986 Subp : Entity_Id := Empty;
6988 begin
6989 -- Traverse the homonym chain, looking for a potentially overridden
6990 -- subprogram that belongs to an implemented interface.
6992 Hom := Current_Entity_In_Scope (Def_Id);
6993 while Present (Hom) loop
6994 Subp := Hom;
6996 if Subp = Def_Id
6997 or else not Is_Overloadable (Subp)
6998 or else not Is_Primitive (Subp)
6999 or else not Is_Dispatching_Operation (Subp)
7000 or else not Present (Find_Dispatching_Type (Subp))
7001 or else not Is_Interface (Find_Dispatching_Type (Subp))
7002 then
7003 null;
7005 -- Entries and procedures can override abstract or null interface
7006 -- procedures.
7008 elsif Ekind_In (Def_Id, E_Entry, E_Procedure)
7009 and then Ekind (Subp) = E_Procedure
7010 and then Matches_Prefixed_View_Profile
7011 (Parameter_Specifications (Parent (Def_Id)),
7012 Parameter_Specifications (Parent (Subp)))
7013 then
7014 Candidate := Subp;
7016 -- For an overridden subprogram Subp, check whether the mode
7017 -- of its first parameter is correct depending on the kind of
7018 -- synchronized type.
7020 declare
7021 Formal : constant Node_Id := First_Formal (Candidate);
7023 begin
7024 -- In order for an entry or a protected procedure to
7025 -- override, the first parameter of the overridden routine
7026 -- must be of mode "out", "in out", or access-to-variable.
7028 if Ekind_In (Candidate, E_Entry, E_Procedure)
7029 and then Is_Protected_Type (Typ)
7030 and then Ekind (Formal) /= E_In_Out_Parameter
7031 and then Ekind (Formal) /= E_Out_Parameter
7032 and then Nkind (Parameter_Type (Parent (Formal))) /=
7033 N_Access_Definition
7034 then
7035 null;
7037 -- All other cases are OK since a task entry or routine does
7038 -- not have a restriction on the mode of the first parameter
7039 -- of the overridden interface routine.
7041 else
7042 Overridden_Subp := Candidate;
7043 return;
7044 end if;
7045 end;
7047 -- Functions can override abstract interface functions
7049 elsif Ekind (Def_Id) = E_Function
7050 and then Ekind (Subp) = E_Function
7051 and then Matches_Prefixed_View_Profile
7052 (Parameter_Specifications (Parent (Def_Id)),
7053 Parameter_Specifications (Parent (Subp)))
7054 and then Etype (Def_Id) = Etype (Subp)
7055 then
7056 Candidate := Subp;
7058 -- If an inherited subprogram is implemented by a protected
7059 -- function, then the first parameter of the inherited
7060 -- subprogram shall be of mode in, but not an access-to-
7061 -- variable parameter (RM 9.4(11/9)).
7063 if Present (First_Formal (Subp))
7064 and then Ekind (First_Formal (Subp)) = E_In_Parameter
7065 and then
7066 (not Is_Access_Type (Etype (First_Formal (Subp)))
7067 or else
7068 Is_Access_Constant (Etype (First_Formal (Subp))))
7069 then
7070 Overridden_Subp := Subp;
7071 return;
7072 end if;
7073 end if;
7075 Hom := Homonym (Hom);
7076 end loop;
7078 -- After examining all candidates for overriding, we are left with
7079 -- the best match, which is a mode-incompatible interface routine.
7081 if In_Scope and then Present (Candidate) then
7082 Error_Msg_PT (Def_Id, Candidate);
7083 end if;
7085 Overridden_Subp := Candidate;
7086 return;
7087 end;
7088 end Check_Synchronized_Overriding;
7090 ---------------------------
7091 -- Check_Type_Conformant --
7092 ---------------------------
7094 procedure Check_Type_Conformant
7095 (New_Id : Entity_Id;
7096 Old_Id : Entity_Id;
7097 Err_Loc : Node_Id := Empty)
7099 Result : Boolean;
7100 pragma Warnings (Off, Result);
7101 begin
7102 Check_Conformance
7103 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
7104 end Check_Type_Conformant;
7106 ---------------------------
7107 -- Can_Override_Operator --
7108 ---------------------------
7110 function Can_Override_Operator (Subp : Entity_Id) return Boolean is
7111 Typ : Entity_Id;
7113 begin
7114 if Nkind (Subp) /= N_Defining_Operator_Symbol then
7115 return False;
7117 else
7118 Typ := Base_Type (Etype (First_Formal (Subp)));
7120 -- Check explicitly that the operation is a primitive of the type
7122 return Operator_Matches_Spec (Subp, Subp)
7123 and then not Is_Generic_Type (Typ)
7124 and then Scope (Subp) = Scope (Typ)
7125 and then not Is_Class_Wide_Type (Typ);
7126 end if;
7127 end Can_Override_Operator;
7129 ----------------------
7130 -- Conforming_Types --
7131 ----------------------
7133 function Conforming_Types
7134 (T1 : Entity_Id;
7135 T2 : Entity_Id;
7136 Ctype : Conformance_Type;
7137 Get_Inst : Boolean := False) return Boolean
7139 function Base_Types_Match
7140 (Typ_1 : Entity_Id;
7141 Typ_2 : Entity_Id) return Boolean;
7142 -- If neither Typ_1 nor Typ_2 are generic actual types, or if they are
7143 -- in different scopes (e.g. parent and child instances), then verify
7144 -- that the base types are equal. Otherwise Typ_1 and Typ_2 must be on
7145 -- the same subtype chain. The whole purpose of this procedure is to
7146 -- prevent spurious ambiguities in an instantiation that may arise if
7147 -- two distinct generic types are instantiated with the same actual.
7149 function Find_Designated_Type (Typ : Entity_Id) return Entity_Id;
7150 -- An access parameter can designate an incomplete type. If the
7151 -- incomplete type is the limited view of a type from a limited_
7152 -- with_clause, check whether the non-limited view is available.
7153 -- If it is a (non-limited) incomplete type, get the full view.
7155 function Matches_Limited_With_View
7156 (Typ_1 : Entity_Id;
7157 Typ_2 : Entity_Id) return Boolean;
7158 -- Returns True if and only if either Typ_1 denotes a limited view of
7159 -- Typ_2 or Typ_2 denotes a limited view of Typ_1. This can arise when
7160 -- the limited with view of a type is used in a subprogram declaration
7161 -- and the subprogram body is in the scope of a regular with clause for
7162 -- the same unit. In such a case, the two type entities are considered
7163 -- identical for purposes of conformance checking.
7165 ----------------------
7166 -- Base_Types_Match --
7167 ----------------------
7169 function Base_Types_Match
7170 (Typ_1 : Entity_Id;
7171 Typ_2 : Entity_Id) return Boolean
7173 Base_1 : constant Entity_Id := Base_Type (Typ_1);
7174 Base_2 : constant Entity_Id := Base_Type (Typ_2);
7176 begin
7177 if Typ_1 = Typ_2 then
7178 return True;
7180 elsif Base_1 = Base_2 then
7182 -- The following is too permissive. A more precise test should
7183 -- check that the generic actual is an ancestor subtype of the
7184 -- other ???.
7186 -- See code in Find_Corresponding_Spec that applies an additional
7187 -- filter to handle accidental amiguities in instances.
7189 return
7190 not Is_Generic_Actual_Type (Typ_1)
7191 or else not Is_Generic_Actual_Type (Typ_2)
7192 or else Scope (Typ_1) /= Scope (Typ_2);
7194 -- If Typ_2 is a generic actual type it is declared as the subtype of
7195 -- the actual. If that actual is itself a subtype we need to use its
7196 -- own base type to check for compatibility.
7198 elsif Ekind (Base_2) = Ekind (Typ_2)
7199 and then Base_1 = Base_Type (Base_2)
7200 then
7201 return True;
7203 elsif Ekind (Base_1) = Ekind (Typ_1)
7204 and then Base_2 = Base_Type (Base_1)
7205 then
7206 return True;
7208 else
7209 return False;
7210 end if;
7211 end Base_Types_Match;
7213 --------------------------
7214 -- Find_Designated_Type --
7215 --------------------------
7217 function Find_Designated_Type (Typ : Entity_Id) return Entity_Id is
7218 Desig : Entity_Id;
7220 begin
7221 Desig := Directly_Designated_Type (Typ);
7223 if Ekind (Desig) = E_Incomplete_Type then
7225 -- If regular incomplete type, get full view if available
7227 if Present (Full_View (Desig)) then
7228 Desig := Full_View (Desig);
7230 -- If limited view of a type, get non-limited view if available,
7231 -- and check again for a regular incomplete type.
7233 elsif Present (Non_Limited_View (Desig)) then
7234 Desig := Get_Full_View (Non_Limited_View (Desig));
7235 end if;
7236 end if;
7238 return Desig;
7239 end Find_Designated_Type;
7241 -------------------------------
7242 -- Matches_Limited_With_View --
7243 -------------------------------
7245 function Matches_Limited_With_View
7246 (Typ_1 : Entity_Id;
7247 Typ_2 : Entity_Id) return Boolean
7249 function Is_Matching_Limited_View
7250 (Typ : Entity_Id;
7251 View : Entity_Id) return Boolean;
7252 -- Determine whether non-limited view View denotes type Typ in some
7253 -- conformant fashion.
7255 ------------------------------
7256 -- Is_Matching_Limited_View --
7257 ------------------------------
7259 function Is_Matching_Limited_View
7260 (Typ : Entity_Id;
7261 View : Entity_Id) return Boolean
7263 Root_Typ : Entity_Id;
7264 Root_View : Entity_Id;
7266 begin
7267 -- The non-limited view directly denotes the type
7269 if Typ = View then
7270 return True;
7272 -- The type is a subtype of the non-limited view
7274 elsif Is_Subtype_Of (Typ, View) then
7275 return True;
7277 -- Both the non-limited view and the type denote class-wide types
7279 elsif Is_Class_Wide_Type (Typ)
7280 and then Is_Class_Wide_Type (View)
7281 then
7282 Root_Typ := Root_Type (Typ);
7283 Root_View := Root_Type (View);
7285 if Root_Typ = Root_View then
7286 return True;
7288 -- An incomplete tagged type and its full view may receive two
7289 -- distinct class-wide types when the related package has not
7290 -- been analyzed yet.
7292 -- package Pack is
7293 -- type T is tagged; -- CW_1
7294 -- type T is tagged null record; -- CW_2
7295 -- end Pack;
7297 -- This is because the package lacks any semantic information
7298 -- that may eventually link both views of T. As a consequence,
7299 -- a client of the limited view of Pack will see CW_2 while a
7300 -- client of the non-limited view of Pack will see CW_1.
7302 elsif Is_Incomplete_Type (Root_Typ)
7303 and then Present (Full_View (Root_Typ))
7304 and then Full_View (Root_Typ) = Root_View
7305 then
7306 return True;
7308 elsif Is_Incomplete_Type (Root_View)
7309 and then Present (Full_View (Root_View))
7310 and then Full_View (Root_View) = Root_Typ
7311 then
7312 return True;
7313 end if;
7314 end if;
7316 return False;
7317 end Is_Matching_Limited_View;
7319 -- Start of processing for Matches_Limited_With_View
7321 begin
7322 -- In some cases a type imported through a limited_with clause, and
7323 -- its non-limited view are both visible, for example in an anonymous
7324 -- access-to-class-wide type in a formal, or when building the body
7325 -- for a subprogram renaming after the subprogram has been frozen.
7326 -- In these cases both entities designate the same type. In addition,
7327 -- if one of them is an actual in an instance, it may be a subtype of
7328 -- the non-limited view of the other.
7330 if From_Limited_With (Typ_1)
7331 and then From_Limited_With (Typ_2)
7332 and then Available_View (Typ_1) = Available_View (Typ_2)
7333 then
7334 return True;
7336 elsif From_Limited_With (Typ_1) then
7337 return Is_Matching_Limited_View (Typ_2, Available_View (Typ_1));
7339 elsif From_Limited_With (Typ_2) then
7340 return Is_Matching_Limited_View (Typ_1, Available_View (Typ_2));
7342 else
7343 return False;
7344 end if;
7345 end Matches_Limited_With_View;
7347 -- Local variables
7349 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
7351 Type_1 : Entity_Id := T1;
7352 Type_2 : Entity_Id := T2;
7354 -- Start of processing for Conforming_Types
7356 begin
7357 -- The context is an instance association for a formal access-to-
7358 -- subprogram type; the formal parameter types require mapping because
7359 -- they may denote other formal parameters of the generic unit.
7361 if Get_Inst then
7362 Type_1 := Get_Instance_Of (T1);
7363 Type_2 := Get_Instance_Of (T2);
7364 end if;
7366 -- If one of the types is a view of the other introduced by a limited
7367 -- with clause, treat these as conforming for all purposes.
7369 if Matches_Limited_With_View (T1, T2) then
7370 return True;
7372 elsif Base_Types_Match (Type_1, Type_2) then
7373 return Ctype <= Mode_Conformant
7374 or else Subtypes_Statically_Match (Type_1, Type_2);
7376 elsif Is_Incomplete_Or_Private_Type (Type_1)
7377 and then Present (Full_View (Type_1))
7378 and then Base_Types_Match (Full_View (Type_1), Type_2)
7379 then
7380 return Ctype <= Mode_Conformant
7381 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
7383 elsif Ekind (Type_2) = E_Incomplete_Type
7384 and then Present (Full_View (Type_2))
7385 and then Base_Types_Match (Type_1, Full_View (Type_2))
7386 then
7387 return Ctype <= Mode_Conformant
7388 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
7390 elsif Is_Private_Type (Type_2)
7391 and then In_Instance
7392 and then Present (Full_View (Type_2))
7393 and then Base_Types_Match (Type_1, Full_View (Type_2))
7394 then
7395 return Ctype <= Mode_Conformant
7396 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
7398 -- Another confusion between views in a nested instance with an
7399 -- actual private type whose full view is not in scope.
7401 elsif Ekind (Type_2) = E_Private_Subtype
7402 and then In_Instance
7403 and then Etype (Type_2) = Type_1
7404 then
7405 return True;
7407 -- In Ada 2012, incomplete types (including limited views) can appear
7408 -- as actuals in instantiations.
7410 elsif Is_Incomplete_Type (Type_1)
7411 and then Is_Incomplete_Type (Type_2)
7412 and then (Used_As_Generic_Actual (Type_1)
7413 or else Used_As_Generic_Actual (Type_2))
7414 then
7415 return True;
7416 end if;
7418 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
7419 -- treated recursively because they carry a signature. As far as
7420 -- conformance is concerned, convention plays no role, and either
7421 -- or both could be access to protected subprograms.
7423 Are_Anonymous_Access_To_Subprogram_Types :=
7424 Ekind_In (Type_1, E_Anonymous_Access_Subprogram_Type,
7425 E_Anonymous_Access_Protected_Subprogram_Type)
7426 and then
7427 Ekind_In (Type_2, E_Anonymous_Access_Subprogram_Type,
7428 E_Anonymous_Access_Protected_Subprogram_Type);
7430 -- Test anonymous access type case. For this case, static subtype
7431 -- matching is required for mode conformance (RM 6.3.1(15)). We check
7432 -- the base types because we may have built internal subtype entities
7433 -- to handle null-excluding types (see Process_Formals).
7435 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
7436 and then
7437 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
7439 -- Ada 2005 (AI-254)
7441 or else Are_Anonymous_Access_To_Subprogram_Types
7442 then
7443 declare
7444 Desig_1 : Entity_Id;
7445 Desig_2 : Entity_Id;
7447 begin
7448 -- In Ada 2005, access constant indicators must match for
7449 -- subtype conformance.
7451 if Ada_Version >= Ada_2005
7452 and then Ctype >= Subtype_Conformant
7453 and then
7454 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
7455 then
7456 return False;
7457 end if;
7459 Desig_1 := Find_Designated_Type (Type_1);
7460 Desig_2 := Find_Designated_Type (Type_2);
7462 -- If the context is an instance association for a formal
7463 -- access-to-subprogram type; formal access parameter designated
7464 -- types require mapping because they may denote other formal
7465 -- parameters of the generic unit.
7467 if Get_Inst then
7468 Desig_1 := Get_Instance_Of (Desig_1);
7469 Desig_2 := Get_Instance_Of (Desig_2);
7470 end if;
7472 -- It is possible for a Class_Wide_Type to be introduced for an
7473 -- incomplete type, in which case there is a separate class_ wide
7474 -- type for the full view. The types conform if their Etypes
7475 -- conform, i.e. one may be the full view of the other. This can
7476 -- only happen in the context of an access parameter, other uses
7477 -- of an incomplete Class_Wide_Type are illegal.
7479 if Is_Class_Wide_Type (Desig_1)
7480 and then
7481 Is_Class_Wide_Type (Desig_2)
7482 then
7483 return
7484 Conforming_Types
7485 (Etype (Base_Type (Desig_1)),
7486 Etype (Base_Type (Desig_2)), Ctype);
7488 elsif Are_Anonymous_Access_To_Subprogram_Types then
7489 if Ada_Version < Ada_2005 then
7490 return Ctype = Type_Conformant
7491 or else
7492 Subtypes_Statically_Match (Desig_1, Desig_2);
7494 -- We must check the conformance of the signatures themselves
7496 else
7497 declare
7498 Conformant : Boolean;
7499 begin
7500 Check_Conformance
7501 (Desig_1, Desig_2, Ctype, False, Conformant);
7502 return Conformant;
7503 end;
7504 end if;
7506 -- A limited view of an actual matches the corresponding
7507 -- incomplete formal.
7509 elsif Ekind (Desig_2) = E_Incomplete_Subtype
7510 and then From_Limited_With (Desig_2)
7511 and then Used_As_Generic_Actual (Etype (Desig_2))
7512 then
7513 return True;
7515 else
7516 return Base_Type (Desig_1) = Base_Type (Desig_2)
7517 and then (Ctype = Type_Conformant
7518 or else
7519 Subtypes_Statically_Match (Desig_1, Desig_2));
7520 end if;
7521 end;
7523 -- Otherwise definitely no match
7525 else
7526 if ((Ekind (Type_1) = E_Anonymous_Access_Type
7527 and then Is_Access_Type (Type_2))
7528 or else (Ekind (Type_2) = E_Anonymous_Access_Type
7529 and then Is_Access_Type (Type_1)))
7530 and then
7531 Conforming_Types
7532 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
7533 then
7534 May_Hide_Profile := True;
7535 end if;
7537 return False;
7538 end if;
7539 end Conforming_Types;
7541 --------------------------
7542 -- Create_Extra_Formals --
7543 --------------------------
7545 procedure Create_Extra_Formals (E : Entity_Id) is
7546 First_Extra : Entity_Id := Empty;
7547 Formal : Entity_Id;
7548 Last_Extra : Entity_Id := Empty;
7550 function Add_Extra_Formal
7551 (Assoc_Entity : Entity_Id;
7552 Typ : Entity_Id;
7553 Scope : Entity_Id;
7554 Suffix : String) return Entity_Id;
7555 -- Add an extra formal to the current list of formals and extra formals.
7556 -- The extra formal is added to the end of the list of extra formals,
7557 -- and also returned as the result. These formals are always of mode IN.
7558 -- The new formal has the type Typ, is declared in Scope, and its name
7559 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
7560 -- The following suffixes are currently used. They should not be changed
7561 -- without coordinating with CodePeer, which makes use of these to
7562 -- provide better messages.
7564 -- O denotes the Constrained bit.
7565 -- L denotes the accessibility level.
7566 -- BIP_xxx denotes an extra formal for a build-in-place function. See
7567 -- the full list in exp_ch6.BIP_Formal_Kind.
7569 ----------------------
7570 -- Add_Extra_Formal --
7571 ----------------------
7573 function Add_Extra_Formal
7574 (Assoc_Entity : Entity_Id;
7575 Typ : Entity_Id;
7576 Scope : Entity_Id;
7577 Suffix : String) return Entity_Id
7579 EF : constant Entity_Id :=
7580 Make_Defining_Identifier (Sloc (Assoc_Entity),
7581 Chars => New_External_Name (Chars (Assoc_Entity),
7582 Suffix => Suffix));
7584 begin
7585 -- A little optimization. Never generate an extra formal for the
7586 -- _init operand of an initialization procedure, since it could
7587 -- never be used.
7589 if Chars (Formal) = Name_uInit then
7590 return Empty;
7591 end if;
7593 Set_Ekind (EF, E_In_Parameter);
7594 Set_Actual_Subtype (EF, Typ);
7595 Set_Etype (EF, Typ);
7596 Set_Scope (EF, Scope);
7597 Set_Mechanism (EF, Default_Mechanism);
7598 Set_Formal_Validity (EF);
7600 if No (First_Extra) then
7601 First_Extra := EF;
7602 Set_Extra_Formals (Scope, First_Extra);
7603 end if;
7605 if Present (Last_Extra) then
7606 Set_Extra_Formal (Last_Extra, EF);
7607 end if;
7609 Last_Extra := EF;
7611 return EF;
7612 end Add_Extra_Formal;
7614 -- Local variables
7616 Formal_Type : Entity_Id;
7617 P_Formal : Entity_Id := Empty;
7619 -- Start of processing for Create_Extra_Formals
7621 begin
7622 -- We never generate extra formals if expansion is not active because we
7623 -- don't need them unless we are generating code.
7625 if not Expander_Active then
7626 return;
7627 end if;
7629 -- No need to generate extra formals in interface thunks whose target
7630 -- primitive has no extra formals.
7632 if Is_Thunk (E) and then No (Extra_Formals (Thunk_Entity (E))) then
7633 return;
7634 end if;
7636 -- If this is a derived subprogram then the subtypes of the parent
7637 -- subprogram's formal parameters will be used to determine the need
7638 -- for extra formals.
7640 if Is_Overloadable (E) and then Present (Alias (E)) then
7641 P_Formal := First_Formal (Alias (E));
7642 end if;
7644 Formal := First_Formal (E);
7645 while Present (Formal) loop
7646 Last_Extra := Formal;
7647 Next_Formal (Formal);
7648 end loop;
7650 -- If Extra_Formals were already created, don't do it again. This
7651 -- situation may arise for subprogram types created as part of
7652 -- dispatching calls (see Expand_Dispatching_Call)
7654 if Present (Last_Extra) and then Present (Extra_Formal (Last_Extra)) then
7655 return;
7656 end if;
7658 -- If the subprogram is a predefined dispatching subprogram then don't
7659 -- generate any extra constrained or accessibility level formals. In
7660 -- general we suppress these for internal subprograms (by not calling
7661 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
7662 -- generated stream attributes do get passed through because extra
7663 -- build-in-place formals are needed in some cases (limited 'Input).
7665 if Is_Predefined_Internal_Operation (E) then
7666 goto Test_For_Func_Result_Extras;
7667 end if;
7669 Formal := First_Formal (E);
7670 while Present (Formal) loop
7672 -- Create extra formal for supporting the attribute 'Constrained.
7673 -- The case of a private type view without discriminants also
7674 -- requires the extra formal if the underlying type has defaulted
7675 -- discriminants.
7677 if Ekind (Formal) /= E_In_Parameter then
7678 if Present (P_Formal) then
7679 Formal_Type := Etype (P_Formal);
7680 else
7681 Formal_Type := Etype (Formal);
7682 end if;
7684 -- Do not produce extra formals for Unchecked_Union parameters.
7685 -- Jump directly to the end of the loop.
7687 if Is_Unchecked_Union (Base_Type (Formal_Type)) then
7688 goto Skip_Extra_Formal_Generation;
7689 end if;
7691 if not Has_Discriminants (Formal_Type)
7692 and then Ekind (Formal_Type) in Private_Kind
7693 and then Present (Underlying_Type (Formal_Type))
7694 then
7695 Formal_Type := Underlying_Type (Formal_Type);
7696 end if;
7698 -- Suppress the extra formal if formal's subtype is constrained or
7699 -- indefinite, or we're compiling for Ada 2012 and the underlying
7700 -- type is tagged and limited. In Ada 2012, a limited tagged type
7701 -- can have defaulted discriminants, but 'Constrained is required
7702 -- to return True, so the formal is never needed (see AI05-0214).
7703 -- Note that this ensures consistency of calling sequences for
7704 -- dispatching operations when some types in a class have defaults
7705 -- on discriminants and others do not (and requiring the extra
7706 -- formal would introduce distributed overhead).
7708 -- If the type does not have a completion yet, treat as prior to
7709 -- Ada 2012 for consistency.
7711 if Has_Discriminants (Formal_Type)
7712 and then not Is_Constrained (Formal_Type)
7713 and then Is_Definite_Subtype (Formal_Type)
7714 and then (Ada_Version < Ada_2012
7715 or else No (Underlying_Type (Formal_Type))
7716 or else not
7717 (Is_Limited_Type (Formal_Type)
7718 and then
7719 (Is_Tagged_Type
7720 (Underlying_Type (Formal_Type)))))
7721 then
7722 Set_Extra_Constrained
7723 (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "O"));
7724 end if;
7725 end if;
7727 -- Create extra formal for supporting accessibility checking. This
7728 -- is done for both anonymous access formals and formals of named
7729 -- access types that are marked as controlling formals. The latter
7730 -- case can occur when Expand_Dispatching_Call creates a subprogram
7731 -- type and substitutes the types of access-to-class-wide actuals
7732 -- for the anonymous access-to-specific-type of controlling formals.
7733 -- Base_Type is applied because in cases where there is a null
7734 -- exclusion the formal may have an access subtype.
7736 -- This is suppressed if we specifically suppress accessibility
7737 -- checks at the package level for either the subprogram, or the
7738 -- package in which it resides. However, we do not suppress it
7739 -- simply if the scope has accessibility checks suppressed, since
7740 -- this could cause trouble when clients are compiled with a
7741 -- different suppression setting. The explicit checks at the
7742 -- package level are safe from this point of view.
7744 if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
7745 or else (Is_Controlling_Formal (Formal)
7746 and then Is_Access_Type (Base_Type (Etype (Formal)))))
7747 and then not
7748 (Explicit_Suppress (E, Accessibility_Check)
7749 or else
7750 Explicit_Suppress (Scope (E), Accessibility_Check))
7751 and then
7752 (No (P_Formal)
7753 or else Present (Extra_Accessibility (P_Formal)))
7754 then
7755 Set_Extra_Accessibility
7756 (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "L"));
7757 end if;
7759 -- This label is required when skipping extra formal generation for
7760 -- Unchecked_Union parameters.
7762 <<Skip_Extra_Formal_Generation>>
7764 if Present (P_Formal) then
7765 Next_Formal (P_Formal);
7766 end if;
7768 Next_Formal (Formal);
7769 end loop;
7771 <<Test_For_Func_Result_Extras>>
7773 -- Ada 2012 (AI05-234): "the accessibility level of the result of a
7774 -- function call is ... determined by the point of call ...".
7776 if Needs_Result_Accessibility_Level (E) then
7777 Set_Extra_Accessibility_Of_Result
7778 (E, Add_Extra_Formal (E, Standard_Natural, E, "L"));
7779 end if;
7781 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
7782 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
7784 if Ada_Version >= Ada_2005 and then Is_Build_In_Place_Function (E) then
7785 declare
7786 Result_Subt : constant Entity_Id := Etype (E);
7787 Full_Subt : constant Entity_Id := Available_View (Result_Subt);
7788 Formal_Typ : Entity_Id;
7789 Subp_Decl : Node_Id;
7791 Discard : Entity_Id;
7792 pragma Warnings (Off, Discard);
7794 begin
7795 -- In the case of functions with unconstrained result subtypes,
7796 -- add a 4-state formal indicating whether the return object is
7797 -- allocated by the caller (1), or should be allocated by the
7798 -- callee on the secondary stack (2), in the global heap (3), or
7799 -- in a user-defined storage pool (4). For the moment we just use
7800 -- Natural for the type of this formal. Note that this formal
7801 -- isn't usually needed in the case where the result subtype is
7802 -- constrained, but it is needed when the function has a tagged
7803 -- result, because generally such functions can be called in a
7804 -- dispatching context and such calls must be handled like calls
7805 -- to a class-wide function.
7807 if Needs_BIP_Alloc_Form (E) then
7808 Discard :=
7809 Add_Extra_Formal
7810 (E, Standard_Natural,
7811 E, BIP_Formal_Suffix (BIP_Alloc_Form));
7813 -- Add BIP_Storage_Pool, in case BIP_Alloc_Form indicates to
7814 -- use a user-defined pool. This formal is not added on
7815 -- ZFP as those targets do not support pools.
7817 if RTE_Available (RE_Root_Storage_Pool_Ptr) then
7818 Discard :=
7819 Add_Extra_Formal
7820 (E, RTE (RE_Root_Storage_Pool_Ptr),
7821 E, BIP_Formal_Suffix (BIP_Storage_Pool));
7822 end if;
7823 end if;
7825 -- In the case of functions whose result type needs finalization,
7826 -- add an extra formal which represents the finalization master.
7828 if Needs_BIP_Finalization_Master (E) then
7829 Discard :=
7830 Add_Extra_Formal
7831 (E, RTE (RE_Finalization_Master_Ptr),
7832 E, BIP_Formal_Suffix (BIP_Finalization_Master));
7833 end if;
7835 -- When the result type contains tasks, add two extra formals: the
7836 -- master of the tasks to be created, and the caller's activation
7837 -- chain.
7839 if Has_Task (Full_Subt) then
7840 Discard :=
7841 Add_Extra_Formal
7842 (E, RTE (RE_Master_Id),
7843 E, BIP_Formal_Suffix (BIP_Task_Master));
7844 Discard :=
7845 Add_Extra_Formal
7846 (E, RTE (RE_Activation_Chain_Access),
7847 E, BIP_Formal_Suffix (BIP_Activation_Chain));
7848 end if;
7850 -- All build-in-place functions get an extra formal that will be
7851 -- passed the address of the return object within the caller.
7853 Formal_Typ :=
7854 Create_Itype (E_Anonymous_Access_Type, E, Scope_Id => Scope (E));
7856 Set_Directly_Designated_Type (Formal_Typ, Result_Subt);
7857 Set_Etype (Formal_Typ, Formal_Typ);
7858 Set_Depends_On_Private
7859 (Formal_Typ, Has_Private_Component (Formal_Typ));
7860 Set_Is_Public (Formal_Typ, Is_Public (Scope (Formal_Typ)));
7861 Set_Is_Access_Constant (Formal_Typ, False);
7863 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
7864 -- the designated type comes from the limited view (for back-end
7865 -- purposes).
7867 Set_From_Limited_With
7868 (Formal_Typ, From_Limited_With (Result_Subt));
7870 Layout_Type (Formal_Typ);
7872 -- Force the definition of the Itype in case of internal function
7873 -- calls within the same or nested scope.
7875 if Is_Subprogram_Or_Generic_Subprogram (E) then
7876 Subp_Decl := Parent (E);
7878 -- The insertion point for an Itype reference should be after
7879 -- the unit declaration node of the subprogram. An exception
7880 -- to this are inherited operations from a parent type in which
7881 -- case the derived type acts as their parent.
7883 if Nkind_In (Subp_Decl, N_Function_Specification,
7884 N_Procedure_Specification)
7885 then
7886 Subp_Decl := Parent (Subp_Decl);
7887 end if;
7889 Build_Itype_Reference (Formal_Typ, Subp_Decl);
7890 end if;
7892 Discard :=
7893 Add_Extra_Formal
7894 (E, Formal_Typ, E, BIP_Formal_Suffix (BIP_Object_Access));
7895 end;
7896 end if;
7897 end Create_Extra_Formals;
7899 -----------------------------
7900 -- Enter_Overloaded_Entity --
7901 -----------------------------
7903 procedure Enter_Overloaded_Entity (S : Entity_Id) is
7904 function Matches_Predefined_Op return Boolean;
7905 -- This returns an approximation of whether S matches a predefined
7906 -- operator, based on the operator symbol, and the parameter and result
7907 -- types. The rules are scattered throughout chapter 4 of the Ada RM.
7909 ---------------------------
7910 -- Matches_Predefined_Op --
7911 ---------------------------
7913 function Matches_Predefined_Op return Boolean is
7914 Formal_1 : constant Entity_Id := First_Formal (S);
7915 Formal_2 : constant Entity_Id := Next_Formal (Formal_1);
7916 Op : constant Name_Id := Chars (S);
7917 Result_Type : constant Entity_Id := Base_Type (Etype (S));
7918 Type_1 : constant Entity_Id := Base_Type (Etype (Formal_1));
7920 begin
7921 -- Binary operator
7923 if Present (Formal_2) then
7924 declare
7925 Type_2 : constant Entity_Id := Base_Type (Etype (Formal_2));
7927 begin
7928 -- All but "&" and "**" have same-types parameters
7930 case Op is
7931 when Name_Op_Concat
7932 | Name_Op_Expon
7934 null;
7936 when others =>
7937 if Type_1 /= Type_2 then
7938 return False;
7939 end if;
7940 end case;
7942 -- Check parameter and result types
7944 case Op is
7945 when Name_Op_And
7946 | Name_Op_Or
7947 | Name_Op_Xor
7949 return
7950 Is_Boolean_Type (Result_Type)
7951 and then Result_Type = Type_1;
7953 when Name_Op_Mod
7954 | Name_Op_Rem
7956 return
7957 Is_Integer_Type (Result_Type)
7958 and then Result_Type = Type_1;
7960 when Name_Op_Add
7961 | Name_Op_Divide
7962 | Name_Op_Multiply
7963 | Name_Op_Subtract
7965 return
7966 Is_Numeric_Type (Result_Type)
7967 and then Result_Type = Type_1;
7969 when Name_Op_Eq
7970 | Name_Op_Ne
7972 return
7973 Is_Boolean_Type (Result_Type)
7974 and then not Is_Limited_Type (Type_1);
7976 when Name_Op_Ge
7977 | Name_Op_Gt
7978 | Name_Op_Le
7979 | Name_Op_Lt
7981 return
7982 Is_Boolean_Type (Result_Type)
7983 and then (Is_Array_Type (Type_1)
7984 or else Is_Scalar_Type (Type_1));
7986 when Name_Op_Concat =>
7987 return Is_Array_Type (Result_Type);
7989 when Name_Op_Expon =>
7990 return
7991 (Is_Integer_Type (Result_Type)
7992 or else Is_Floating_Point_Type (Result_Type))
7993 and then Result_Type = Type_1
7994 and then Type_2 = Standard_Integer;
7996 when others =>
7997 raise Program_Error;
7998 end case;
7999 end;
8001 -- Unary operator
8003 else
8004 case Op is
8005 when Name_Op_Abs
8006 | Name_Op_Add
8007 | Name_Op_Subtract
8009 return
8010 Is_Numeric_Type (Result_Type)
8011 and then Result_Type = Type_1;
8013 when Name_Op_Not =>
8014 return
8015 Is_Boolean_Type (Result_Type)
8016 and then Result_Type = Type_1;
8018 when others =>
8019 raise Program_Error;
8020 end case;
8021 end if;
8022 end Matches_Predefined_Op;
8024 -- Local variables
8026 E : Entity_Id := Current_Entity_In_Scope (S);
8027 C_E : Entity_Id := Current_Entity (S);
8029 -- Start of processing for Enter_Overloaded_Entity
8031 begin
8032 if Present (E) then
8033 Set_Has_Homonym (E);
8034 Set_Has_Homonym (S);
8035 end if;
8037 Set_Is_Immediately_Visible (S);
8038 Set_Scope (S, Current_Scope);
8040 -- Chain new entity if front of homonym in current scope, so that
8041 -- homonyms are contiguous.
8043 if Present (E) and then E /= C_E then
8044 while Homonym (C_E) /= E loop
8045 C_E := Homonym (C_E);
8046 end loop;
8048 Set_Homonym (C_E, S);
8050 else
8051 E := C_E;
8052 Set_Current_Entity (S);
8053 end if;
8055 Set_Homonym (S, E);
8057 if Is_Inherited_Operation (S) then
8058 Append_Inherited_Subprogram (S);
8059 else
8060 Append_Entity (S, Current_Scope);
8061 end if;
8063 Set_Public_Status (S);
8065 if Debug_Flag_E then
8066 Write_Str ("New overloaded entity chain: ");
8067 Write_Name (Chars (S));
8069 E := S;
8070 while Present (E) loop
8071 Write_Str (" "); Write_Int (Int (E));
8072 E := Homonym (E);
8073 end loop;
8075 Write_Eol;
8076 end if;
8078 -- Generate warning for hiding
8080 if Warn_On_Hiding
8081 and then Comes_From_Source (S)
8082 and then In_Extended_Main_Source_Unit (S)
8083 then
8084 E := S;
8085 loop
8086 E := Homonym (E);
8087 exit when No (E);
8089 -- Warn unless genuine overloading. Do not emit warning on
8090 -- hiding predefined operators in Standard (these are either an
8091 -- (artifact of our implicit declarations, or simple noise) but
8092 -- keep warning on a operator defined on a local subtype, because
8093 -- of the real danger that different operators may be applied in
8094 -- various parts of the program.
8096 -- Note that if E and S have the same scope, there is never any
8097 -- hiding. Either the two conflict, and the program is illegal,
8098 -- or S is overriding an implicit inherited subprogram.
8100 if Scope (E) /= Scope (S)
8101 and then (not Is_Overloadable (E)
8102 or else Subtype_Conformant (E, S))
8103 and then (Is_Immediately_Visible (E)
8104 or else Is_Potentially_Use_Visible (S))
8105 then
8106 if Scope (E) = Standard_Standard then
8107 if Nkind (S) = N_Defining_Operator_Symbol
8108 and then Scope (Base_Type (Etype (First_Formal (S)))) /=
8109 Scope (S)
8110 and then Matches_Predefined_Op
8111 then
8112 Error_Msg_N
8113 ("declaration of & hides predefined operator?h?", S);
8114 end if;
8116 -- E not immediately within Standard
8118 else
8119 Error_Msg_Sloc := Sloc (E);
8120 Error_Msg_N ("declaration of & hides one #?h?", S);
8121 end if;
8122 end if;
8123 end loop;
8124 end if;
8125 end Enter_Overloaded_Entity;
8127 -----------------------------
8128 -- Check_Untagged_Equality --
8129 -----------------------------
8131 procedure Check_Untagged_Equality (Eq_Op : Entity_Id) is
8132 Typ : constant Entity_Id := Etype (First_Formal (Eq_Op));
8133 Decl : constant Node_Id := Unit_Declaration_Node (Eq_Op);
8134 Obj_Decl : Node_Id;
8136 begin
8137 -- This check applies only if we have a subprogram declaration with an
8138 -- untagged record type.
8140 if Nkind (Decl) /= N_Subprogram_Declaration
8141 or else not Is_Record_Type (Typ)
8142 or else Is_Tagged_Type (Typ)
8143 then
8144 return;
8145 end if;
8147 -- In Ada 2012 case, we will output errors or warnings depending on
8148 -- the setting of debug flag -gnatd.E.
8150 if Ada_Version >= Ada_2012 then
8151 Error_Msg_Warn := Debug_Flag_Dot_EE;
8153 -- In earlier versions of Ada, nothing to do unless we are warning on
8154 -- Ada 2012 incompatibilities (Warn_On_Ada_2012_Incompatibility set).
8156 else
8157 if not Warn_On_Ada_2012_Compatibility then
8158 return;
8159 end if;
8160 end if;
8162 -- Cases where the type has already been frozen
8164 if Is_Frozen (Typ) then
8166 -- If the type is not declared in a package, or if we are in the body
8167 -- of the package or in some other scope, the new operation is not
8168 -- primitive, and therefore legal, though suspicious. Should we
8169 -- generate a warning in this case ???
8171 if Ekind (Scope (Typ)) /= E_Package
8172 or else Scope (Typ) /= Current_Scope
8173 then
8174 return;
8176 -- If the type is a generic actual (sub)type, the operation is not
8177 -- primitive either because the base type is declared elsewhere.
8179 elsif Is_Generic_Actual_Type (Typ) then
8180 return;
8182 -- Here we have a definite error of declaration after freezing
8184 else
8185 if Ada_Version >= Ada_2012 then
8186 Error_Msg_NE
8187 ("equality operator must be declared before type & is "
8188 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)<<", Eq_Op, Typ);
8190 -- In Ada 2012 mode with error turned to warning, output one
8191 -- more warning to warn that the equality operation may not
8192 -- compose. This is the consequence of ignoring the error.
8194 if Error_Msg_Warn then
8195 Error_Msg_N ("\equality operation may not compose??", Eq_Op);
8196 end if;
8198 else
8199 Error_Msg_NE
8200 ("equality operator must be declared before type& is "
8201 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)?y?", Eq_Op, Typ);
8202 end if;
8204 -- If we are in the package body, we could just move the
8205 -- declaration to the package spec, so add a message saying that.
8207 if In_Package_Body (Scope (Typ)) then
8208 if Ada_Version >= Ada_2012 then
8209 Error_Msg_N
8210 ("\move declaration to package spec<<", Eq_Op);
8211 else
8212 Error_Msg_N
8213 ("\move declaration to package spec (Ada 2012)?y?", Eq_Op);
8214 end if;
8216 -- Otherwise try to find the freezing point
8218 else
8219 Obj_Decl := Next (Parent (Typ));
8220 while Present (Obj_Decl) and then Obj_Decl /= Decl loop
8221 if Nkind (Obj_Decl) = N_Object_Declaration
8222 and then Etype (Defining_Identifier (Obj_Decl)) = Typ
8223 then
8224 -- Freezing point, output warnings
8226 if Ada_Version >= Ada_2012 then
8227 Error_Msg_NE
8228 ("type& is frozen by declaration??", Obj_Decl, Typ);
8229 Error_Msg_N
8230 ("\an equality operator cannot be declared after "
8231 & "this point??",
8232 Obj_Decl);
8233 else
8234 Error_Msg_NE
8235 ("type& is frozen by declaration (Ada 2012)?y?",
8236 Obj_Decl, Typ);
8237 Error_Msg_N
8238 ("\an equality operator cannot be declared after "
8239 & "this point (Ada 2012)?y?",
8240 Obj_Decl);
8241 end if;
8243 exit;
8244 end if;
8246 Next (Obj_Decl);
8247 end loop;
8248 end if;
8249 end if;
8251 -- Here if type is not frozen yet. It is illegal to have a primitive
8252 -- equality declared in the private part if the type is visible.
8254 elsif not In_Same_List (Parent (Typ), Decl)
8255 and then not Is_Limited_Type (Typ)
8256 then
8257 -- Shouldn't we give an RM reference here???
8259 if Ada_Version >= Ada_2012 then
8260 Error_Msg_N
8261 ("equality operator appears too late<<", Eq_Op);
8262 else
8263 Error_Msg_N
8264 ("equality operator appears too late (Ada 2012)?y?", Eq_Op);
8265 end if;
8267 -- No error detected
8269 else
8270 return;
8271 end if;
8272 end Check_Untagged_Equality;
8274 -----------------------------
8275 -- Find_Corresponding_Spec --
8276 -----------------------------
8278 function Find_Corresponding_Spec
8279 (N : Node_Id;
8280 Post_Error : Boolean := True) return Entity_Id
8282 Spec : constant Node_Id := Specification (N);
8283 Designator : constant Entity_Id := Defining_Entity (Spec);
8285 E : Entity_Id;
8287 function Different_Generic_Profile (E : Entity_Id) return Boolean;
8288 -- Even if fully conformant, a body may depend on a generic actual when
8289 -- the spec does not, or vice versa, in which case they were distinct
8290 -- entities in the generic.
8292 -------------------------------
8293 -- Different_Generic_Profile --
8294 -------------------------------
8296 function Different_Generic_Profile (E : Entity_Id) return Boolean is
8297 F1, F2 : Entity_Id;
8299 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean;
8300 -- Check that the types of corresponding formals have the same
8301 -- generic actual if any. We have to account for subtypes of a
8302 -- generic formal, declared between a spec and a body, which may
8303 -- appear distinct in an instance but matched in the generic, and
8304 -- the subtype may be used either in the spec or the body of the
8305 -- subprogram being checked.
8307 -------------------------
8308 -- Same_Generic_Actual --
8309 -------------------------
8311 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean is
8313 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean;
8314 -- Predicate to check whether S1 is a subtype of S2 in the source
8315 -- of the instance.
8317 -------------------------
8318 -- Is_Declared_Subtype --
8319 -------------------------
8321 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean is
8322 begin
8323 return Comes_From_Source (Parent (S1))
8324 and then Nkind (Parent (S1)) = N_Subtype_Declaration
8325 and then Is_Entity_Name (Subtype_Indication (Parent (S1)))
8326 and then Entity (Subtype_Indication (Parent (S1))) = S2;
8327 end Is_Declared_Subtype;
8329 -- Start of processing for Same_Generic_Actual
8331 begin
8332 return Is_Generic_Actual_Type (T1) = Is_Generic_Actual_Type (T2)
8333 or else Is_Declared_Subtype (T1, T2)
8334 or else Is_Declared_Subtype (T2, T1);
8335 end Same_Generic_Actual;
8337 -- Start of processing for Different_Generic_Profile
8339 begin
8340 if not In_Instance then
8341 return False;
8343 elsif Ekind (E) = E_Function
8344 and then not Same_Generic_Actual (Etype (E), Etype (Designator))
8345 then
8346 return True;
8347 end if;
8349 F1 := First_Formal (Designator);
8350 F2 := First_Formal (E);
8351 while Present (F1) loop
8352 if not Same_Generic_Actual (Etype (F1), Etype (F2)) then
8353 return True;
8354 end if;
8356 Next_Formal (F1);
8357 Next_Formal (F2);
8358 end loop;
8360 return False;
8361 end Different_Generic_Profile;
8363 -- Start of processing for Find_Corresponding_Spec
8365 begin
8366 E := Current_Entity (Designator);
8367 while Present (E) loop
8369 -- We are looking for a matching spec. It must have the same scope,
8370 -- and the same name, and either be type conformant, or be the case
8371 -- of a library procedure spec and its body (which belong to one
8372 -- another regardless of whether they are type conformant or not).
8374 if Scope (E) = Current_Scope then
8375 if Current_Scope = Standard_Standard
8376 or else (Ekind (E) = Ekind (Designator)
8377 and then Type_Conformant (E, Designator))
8378 then
8379 -- Within an instantiation, we know that spec and body are
8380 -- subtype conformant, because they were subtype conformant in
8381 -- the generic. We choose the subtype-conformant entity here as
8382 -- well, to resolve spurious ambiguities in the instance that
8383 -- were not present in the generic (i.e. when two different
8384 -- types are given the same actual). If we are looking for a
8385 -- spec to match a body, full conformance is expected.
8387 if In_Instance then
8389 -- Inherit the convention and "ghostness" of the matching
8390 -- spec to ensure proper full and subtype conformance.
8392 Set_Convention (Designator, Convention (E));
8394 -- Skip past subprogram bodies and subprogram renamings that
8395 -- may appear to have a matching spec, but that aren't fully
8396 -- conformant with it. That can occur in cases where an
8397 -- actual type causes unrelated homographs in the instance.
8399 if Nkind_In (N, N_Subprogram_Body,
8400 N_Subprogram_Renaming_Declaration)
8401 and then Present (Homonym (E))
8402 and then not Fully_Conformant (Designator, E)
8403 then
8404 goto Next_Entity;
8406 elsif not Subtype_Conformant (Designator, E) then
8407 goto Next_Entity;
8409 elsif Different_Generic_Profile (E) then
8410 goto Next_Entity;
8411 end if;
8412 end if;
8414 -- Ada 2012 (AI05-0165): For internally generated bodies of
8415 -- null procedures locate the internally generated spec. We
8416 -- enforce mode conformance since a tagged type may inherit
8417 -- from interfaces several null primitives which differ only
8418 -- in the mode of the formals.
8420 if not (Comes_From_Source (E))
8421 and then Is_Null_Procedure (E)
8422 and then not Mode_Conformant (Designator, E)
8423 then
8424 null;
8426 -- For null procedures coming from source that are completions,
8427 -- analysis of the generated body will establish the link.
8429 elsif Comes_From_Source (E)
8430 and then Nkind (Spec) = N_Procedure_Specification
8431 and then Null_Present (Spec)
8432 then
8433 return E;
8435 -- Expression functions can be completions, but cannot be
8436 -- completed by an explicit body.
8438 elsif Comes_From_Source (E)
8439 and then Comes_From_Source (N)
8440 and then Nkind (N) = N_Subprogram_Body
8441 and then Nkind (Original_Node (Unit_Declaration_Node (E))) =
8442 N_Expression_Function
8443 then
8444 Error_Msg_Sloc := Sloc (E);
8445 Error_Msg_N ("body conflicts with expression function#", N);
8446 return Empty;
8448 elsif not Has_Completion (E) then
8449 if Nkind (N) /= N_Subprogram_Body_Stub then
8450 Set_Corresponding_Spec (N, E);
8451 end if;
8453 Set_Has_Completion (E);
8454 return E;
8456 elsif Nkind (Parent (N)) = N_Subunit then
8458 -- If this is the proper body of a subunit, the completion
8459 -- flag is set when analyzing the stub.
8461 return E;
8463 -- If E is an internal function with a controlling result that
8464 -- was created for an operation inherited by a null extension,
8465 -- it may be overridden by a body without a previous spec (one
8466 -- more reason why these should be shunned). In that case we
8467 -- remove the generated body if present, because the current
8468 -- one is the explicit overriding.
8470 elsif Ekind (E) = E_Function
8471 and then Ada_Version >= Ada_2005
8472 and then not Comes_From_Source (E)
8473 and then Has_Controlling_Result (E)
8474 and then Is_Null_Extension (Etype (E))
8475 and then Comes_From_Source (Spec)
8476 then
8477 Set_Has_Completion (E, False);
8479 if Expander_Active
8480 and then Nkind (Parent (E)) = N_Function_Specification
8481 then
8482 Remove
8483 (Unit_Declaration_Node
8484 (Corresponding_Body (Unit_Declaration_Node (E))));
8486 return E;
8488 -- If expansion is disabled, or if the wrapper function has
8489 -- not been generated yet, this a late body overriding an
8490 -- inherited operation, or it is an overriding by some other
8491 -- declaration before the controlling result is frozen. In
8492 -- either case this is a declaration of a new entity.
8494 else
8495 return Empty;
8496 end if;
8498 -- If the body already exists, then this is an error unless
8499 -- the previous declaration is the implicit declaration of a
8500 -- derived subprogram. It is also legal for an instance to
8501 -- contain type conformant overloadable declarations (but the
8502 -- generic declaration may not), per 8.3(26/2).
8504 elsif No (Alias (E))
8505 and then not Is_Intrinsic_Subprogram (E)
8506 and then not In_Instance
8507 and then Post_Error
8508 then
8509 Error_Msg_Sloc := Sloc (E);
8511 if Is_Imported (E) then
8512 Error_Msg_NE
8513 ("body not allowed for imported subprogram & declared#",
8514 N, E);
8515 else
8516 Error_Msg_NE ("duplicate body for & declared#", N, E);
8517 end if;
8518 end if;
8520 -- Child units cannot be overloaded, so a conformance mismatch
8521 -- between body and a previous spec is an error.
8523 elsif Is_Child_Unit (E)
8524 and then
8525 Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
8526 and then
8527 Nkind (Parent (Unit_Declaration_Node (Designator))) =
8528 N_Compilation_Unit
8529 and then Post_Error
8530 then
8531 Error_Msg_N
8532 ("body of child unit does not match previous declaration", N);
8533 end if;
8534 end if;
8536 <<Next_Entity>>
8537 E := Homonym (E);
8538 end loop;
8540 -- On exit, we know that no previous declaration of subprogram exists
8542 return Empty;
8543 end Find_Corresponding_Spec;
8545 ----------------------
8546 -- Fully_Conformant --
8547 ----------------------
8549 function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
8550 Result : Boolean;
8551 begin
8552 Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
8553 return Result;
8554 end Fully_Conformant;
8556 ----------------------------------
8557 -- Fully_Conformant_Expressions --
8558 ----------------------------------
8560 function Fully_Conformant_Expressions
8561 (Given_E1 : Node_Id;
8562 Given_E2 : Node_Id) return Boolean
8564 E1 : constant Node_Id := Original_Node (Given_E1);
8565 E2 : constant Node_Id := Original_Node (Given_E2);
8566 -- We always test conformance on original nodes, since it is possible
8567 -- for analysis and/or expansion to make things look as though they
8568 -- conform when they do not, e.g. by converting 1+2 into 3.
8570 function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
8571 renames Fully_Conformant_Expressions;
8573 function FCL (L1, L2 : List_Id) return Boolean;
8574 -- Compare elements of two lists for conformance. Elements have to be
8575 -- conformant, and actuals inserted as default parameters do not match
8576 -- explicit actuals with the same value.
8578 function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
8579 -- Compare an operator node with a function call
8581 ---------
8582 -- FCL --
8583 ---------
8585 function FCL (L1, L2 : List_Id) return Boolean is
8586 N1, N2 : Node_Id;
8588 begin
8589 if L1 = No_List then
8590 N1 := Empty;
8591 else
8592 N1 := First (L1);
8593 end if;
8595 if L2 = No_List then
8596 N2 := Empty;
8597 else
8598 N2 := First (L2);
8599 end if;
8601 -- Compare two lists, skipping rewrite insertions (we want to compare
8602 -- the original trees, not the expanded versions).
8604 loop
8605 if Is_Rewrite_Insertion (N1) then
8606 Next (N1);
8607 elsif Is_Rewrite_Insertion (N2) then
8608 Next (N2);
8609 elsif No (N1) then
8610 return No (N2);
8611 elsif No (N2) then
8612 return False;
8613 elsif not FCE (N1, N2) then
8614 return False;
8615 else
8616 Next (N1);
8617 Next (N2);
8618 end if;
8619 end loop;
8620 end FCL;
8622 ---------
8623 -- FCO --
8624 ---------
8626 function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
8627 Actuals : constant List_Id := Parameter_Associations (Call_Node);
8628 Act : Node_Id;
8630 begin
8631 if No (Actuals)
8632 or else Entity (Op_Node) /= Entity (Name (Call_Node))
8633 then
8634 return False;
8636 else
8637 Act := First (Actuals);
8639 if Nkind (Op_Node) in N_Binary_Op then
8640 if not FCE (Left_Opnd (Op_Node), Act) then
8641 return False;
8642 end if;
8644 Next (Act);
8645 end if;
8647 return Present (Act)
8648 and then FCE (Right_Opnd (Op_Node), Act)
8649 and then No (Next (Act));
8650 end if;
8651 end FCO;
8653 -- Start of processing for Fully_Conformant_Expressions
8655 begin
8656 -- Nonconformant if paren count does not match. Note: if some idiot
8657 -- complains that we don't do this right for more than 3 levels of
8658 -- parentheses, they will be treated with the respect they deserve.
8660 if Paren_Count (E1) /= Paren_Count (E2) then
8661 return False;
8663 -- If same entities are referenced, then they are conformant even if
8664 -- they have different forms (RM 8.3.1(19-20)).
8666 elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
8667 if Present (Entity (E1)) then
8668 return Entity (E1) = Entity (E2)
8670 -- One may be a discriminant that has been replaced by
8671 -- the corresponding discriminal.
8673 or else (Chars (Entity (E1)) = Chars (Entity (E2))
8674 and then Ekind (Entity (E1)) = E_Discriminant
8675 and then Ekind (Entity (E2)) = E_In_Parameter)
8677 -- AI12-050: The loop variables of quantified expressions
8678 -- match if they have the same identifier, even though they
8679 -- are different entities.
8681 or else (Chars (Entity (E1)) = Chars (Entity (E2))
8682 and then Ekind (Entity (E1)) = E_Loop_Parameter
8683 and then Ekind (Entity (E2)) = E_Loop_Parameter);
8685 elsif Nkind (E1) = N_Expanded_Name
8686 and then Nkind (E2) = N_Expanded_Name
8687 and then Nkind (Selector_Name (E1)) = N_Character_Literal
8688 and then Nkind (Selector_Name (E2)) = N_Character_Literal
8689 then
8690 return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
8692 else
8693 -- Identifiers in component associations don't always have
8694 -- entities, but their names must conform.
8696 return Nkind (E1) = N_Identifier
8697 and then Nkind (E2) = N_Identifier
8698 and then Chars (E1) = Chars (E2);
8699 end if;
8701 elsif Nkind (E1) = N_Character_Literal
8702 and then Nkind (E2) = N_Expanded_Name
8703 then
8704 return Nkind (Selector_Name (E2)) = N_Character_Literal
8705 and then Chars (E1) = Chars (Selector_Name (E2));
8707 elsif Nkind (E2) = N_Character_Literal
8708 and then Nkind (E1) = N_Expanded_Name
8709 then
8710 return Nkind (Selector_Name (E1)) = N_Character_Literal
8711 and then Chars (E2) = Chars (Selector_Name (E1));
8713 elsif Nkind (E1) in N_Op and then Nkind (E2) = N_Function_Call then
8714 return FCO (E1, E2);
8716 elsif Nkind (E2) in N_Op and then Nkind (E1) = N_Function_Call then
8717 return FCO (E2, E1);
8719 -- Otherwise we must have the same syntactic entity
8721 elsif Nkind (E1) /= Nkind (E2) then
8722 return False;
8724 -- At this point, we specialize by node type
8726 else
8727 case Nkind (E1) is
8728 when N_Aggregate =>
8729 return
8730 FCL (Expressions (E1), Expressions (E2))
8731 and then
8732 FCL (Component_Associations (E1),
8733 Component_Associations (E2));
8735 when N_Allocator =>
8736 if Nkind (Expression (E1)) = N_Qualified_Expression
8737 or else
8738 Nkind (Expression (E2)) = N_Qualified_Expression
8739 then
8740 return FCE (Expression (E1), Expression (E2));
8742 -- Check that the subtype marks and any constraints
8743 -- are conformant
8745 else
8746 declare
8747 Indic1 : constant Node_Id := Expression (E1);
8748 Indic2 : constant Node_Id := Expression (E2);
8749 Elt1 : Node_Id;
8750 Elt2 : Node_Id;
8752 begin
8753 if Nkind (Indic1) /= N_Subtype_Indication then
8754 return
8755 Nkind (Indic2) /= N_Subtype_Indication
8756 and then Entity (Indic1) = Entity (Indic2);
8758 elsif Nkind (Indic2) /= N_Subtype_Indication then
8759 return
8760 Nkind (Indic1) /= N_Subtype_Indication
8761 and then Entity (Indic1) = Entity (Indic2);
8763 else
8764 if Entity (Subtype_Mark (Indic1)) /=
8765 Entity (Subtype_Mark (Indic2))
8766 then
8767 return False;
8768 end if;
8770 Elt1 := First (Constraints (Constraint (Indic1)));
8771 Elt2 := First (Constraints (Constraint (Indic2)));
8772 while Present (Elt1) and then Present (Elt2) loop
8773 if not FCE (Elt1, Elt2) then
8774 return False;
8775 end if;
8777 Next (Elt1);
8778 Next (Elt2);
8779 end loop;
8781 return True;
8782 end if;
8783 end;
8784 end if;
8786 when N_Attribute_Reference =>
8787 return
8788 Attribute_Name (E1) = Attribute_Name (E2)
8789 and then FCL (Expressions (E1), Expressions (E2));
8791 when N_Binary_Op =>
8792 return
8793 Entity (E1) = Entity (E2)
8794 and then FCE (Left_Opnd (E1), Left_Opnd (E2))
8795 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
8797 when N_Membership_Test
8798 | N_Short_Circuit
8800 return
8801 FCE (Left_Opnd (E1), Left_Opnd (E2))
8802 and then
8803 FCE (Right_Opnd (E1), Right_Opnd (E2));
8805 when N_Case_Expression =>
8806 declare
8807 Alt1 : Node_Id;
8808 Alt2 : Node_Id;
8810 begin
8811 if not FCE (Expression (E1), Expression (E2)) then
8812 return False;
8814 else
8815 Alt1 := First (Alternatives (E1));
8816 Alt2 := First (Alternatives (E2));
8817 loop
8818 if Present (Alt1) /= Present (Alt2) then
8819 return False;
8820 elsif No (Alt1) then
8821 return True;
8822 end if;
8824 if not FCE (Expression (Alt1), Expression (Alt2))
8825 or else not FCL (Discrete_Choices (Alt1),
8826 Discrete_Choices (Alt2))
8827 then
8828 return False;
8829 end if;
8831 Next (Alt1);
8832 Next (Alt2);
8833 end loop;
8834 end if;
8835 end;
8837 when N_Character_Literal =>
8838 return
8839 Char_Literal_Value (E1) = Char_Literal_Value (E2);
8841 when N_Component_Association =>
8842 return
8843 FCL (Choices (E1), Choices (E2))
8844 and then
8845 FCE (Expression (E1), Expression (E2));
8847 when N_Explicit_Dereference =>
8848 return
8849 FCE (Prefix (E1), Prefix (E2));
8851 when N_Extension_Aggregate =>
8852 return
8853 FCL (Expressions (E1), Expressions (E2))
8854 and then Null_Record_Present (E1) =
8855 Null_Record_Present (E2)
8856 and then FCL (Component_Associations (E1),
8857 Component_Associations (E2));
8859 when N_Function_Call =>
8860 return
8861 FCE (Name (E1), Name (E2))
8862 and then
8863 FCL (Parameter_Associations (E1),
8864 Parameter_Associations (E2));
8866 when N_If_Expression =>
8867 return
8868 FCL (Expressions (E1), Expressions (E2));
8870 when N_Indexed_Component =>
8871 return
8872 FCE (Prefix (E1), Prefix (E2))
8873 and then
8874 FCL (Expressions (E1), Expressions (E2));
8876 when N_Integer_Literal =>
8877 return (Intval (E1) = Intval (E2));
8879 when N_Null =>
8880 return True;
8882 when N_Operator_Symbol =>
8883 return
8884 Chars (E1) = Chars (E2);
8886 when N_Others_Choice =>
8887 return True;
8889 when N_Parameter_Association =>
8890 return
8891 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
8892 and then FCE (Explicit_Actual_Parameter (E1),
8893 Explicit_Actual_Parameter (E2));
8895 when N_Qualified_Expression =>
8896 return
8897 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
8898 and then
8899 FCE (Expression (E1), Expression (E2));
8901 when N_Quantified_Expression =>
8902 if not FCE (Condition (E1), Condition (E2)) then
8903 return False;
8904 end if;
8906 if Present (Loop_Parameter_Specification (E1))
8907 and then Present (Loop_Parameter_Specification (E2))
8908 then
8909 declare
8910 L1 : constant Node_Id :=
8911 Loop_Parameter_Specification (E1);
8912 L2 : constant Node_Id :=
8913 Loop_Parameter_Specification (E2);
8915 begin
8916 return
8917 Reverse_Present (L1) = Reverse_Present (L2)
8918 and then
8919 FCE (Defining_Identifier (L1),
8920 Defining_Identifier (L2))
8921 and then
8922 FCE (Discrete_Subtype_Definition (L1),
8923 Discrete_Subtype_Definition (L2));
8924 end;
8926 elsif Present (Iterator_Specification (E1))
8927 and then Present (Iterator_Specification (E2))
8928 then
8929 declare
8930 I1 : constant Node_Id := Iterator_Specification (E1);
8931 I2 : constant Node_Id := Iterator_Specification (E2);
8933 begin
8934 return
8935 FCE (Defining_Identifier (I1),
8936 Defining_Identifier (I2))
8937 and then
8938 Of_Present (I1) = Of_Present (I2)
8939 and then
8940 Reverse_Present (I1) = Reverse_Present (I2)
8941 and then FCE (Name (I1), Name (I2))
8942 and then FCE (Subtype_Indication (I1),
8943 Subtype_Indication (I2));
8944 end;
8946 -- The quantified expressions used different specifications to
8947 -- walk their respective ranges.
8949 else
8950 return False;
8951 end if;
8953 when N_Range =>
8954 return
8955 FCE (Low_Bound (E1), Low_Bound (E2))
8956 and then
8957 FCE (High_Bound (E1), High_Bound (E2));
8959 when N_Real_Literal =>
8960 return (Realval (E1) = Realval (E2));
8962 when N_Selected_Component =>
8963 return
8964 FCE (Prefix (E1), Prefix (E2))
8965 and then
8966 FCE (Selector_Name (E1), Selector_Name (E2));
8968 when N_Slice =>
8969 return
8970 FCE (Prefix (E1), Prefix (E2))
8971 and then
8972 FCE (Discrete_Range (E1), Discrete_Range (E2));
8974 when N_String_Literal =>
8975 declare
8976 S1 : constant String_Id := Strval (E1);
8977 S2 : constant String_Id := Strval (E2);
8978 L1 : constant Nat := String_Length (S1);
8979 L2 : constant Nat := String_Length (S2);
8981 begin
8982 if L1 /= L2 then
8983 return False;
8985 else
8986 for J in 1 .. L1 loop
8987 if Get_String_Char (S1, J) /=
8988 Get_String_Char (S2, J)
8989 then
8990 return False;
8991 end if;
8992 end loop;
8994 return True;
8995 end if;
8996 end;
8998 when N_Type_Conversion =>
8999 return
9000 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
9001 and then
9002 FCE (Expression (E1), Expression (E2));
9004 when N_Unary_Op =>
9005 return
9006 Entity (E1) = Entity (E2)
9007 and then
9008 FCE (Right_Opnd (E1), Right_Opnd (E2));
9010 when N_Unchecked_Type_Conversion =>
9011 return
9012 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
9013 and then
9014 FCE (Expression (E1), Expression (E2));
9016 -- All other node types cannot appear in this context. Strictly
9017 -- we should raise a fatal internal error. Instead we just ignore
9018 -- the nodes. This means that if anyone makes a mistake in the
9019 -- expander and mucks an expression tree irretrievably, the result
9020 -- will be a failure to detect a (probably very obscure) case
9021 -- of non-conformance, which is better than bombing on some
9022 -- case where two expressions do in fact conform.
9024 when others =>
9025 return True;
9026 end case;
9027 end if;
9028 end Fully_Conformant_Expressions;
9030 ----------------------------------------
9031 -- Fully_Conformant_Discrete_Subtypes --
9032 ----------------------------------------
9034 function Fully_Conformant_Discrete_Subtypes
9035 (Given_S1 : Node_Id;
9036 Given_S2 : Node_Id) return Boolean
9038 S1 : constant Node_Id := Original_Node (Given_S1);
9039 S2 : constant Node_Id := Original_Node (Given_S2);
9041 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
9042 -- Special-case for a bound given by a discriminant, which in the body
9043 -- is replaced with the discriminal of the enclosing type.
9045 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
9046 -- Check both bounds
9048 -----------------------
9049 -- Conforming_Bounds --
9050 -----------------------
9052 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
9053 begin
9054 if Is_Entity_Name (B1)
9055 and then Is_Entity_Name (B2)
9056 and then Ekind (Entity (B1)) = E_Discriminant
9057 then
9058 return Chars (B1) = Chars (B2);
9060 else
9061 return Fully_Conformant_Expressions (B1, B2);
9062 end if;
9063 end Conforming_Bounds;
9065 -----------------------
9066 -- Conforming_Ranges --
9067 -----------------------
9069 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
9070 begin
9071 return
9072 Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
9073 and then
9074 Conforming_Bounds (High_Bound (R1), High_Bound (R2));
9075 end Conforming_Ranges;
9077 -- Start of processing for Fully_Conformant_Discrete_Subtypes
9079 begin
9080 if Nkind (S1) /= Nkind (S2) then
9081 return False;
9083 elsif Is_Entity_Name (S1) then
9084 return Entity (S1) = Entity (S2);
9086 elsif Nkind (S1) = N_Range then
9087 return Conforming_Ranges (S1, S2);
9089 elsif Nkind (S1) = N_Subtype_Indication then
9090 return
9091 Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
9092 and then
9093 Conforming_Ranges
9094 (Range_Expression (Constraint (S1)),
9095 Range_Expression (Constraint (S2)));
9096 else
9097 return True;
9098 end if;
9099 end Fully_Conformant_Discrete_Subtypes;
9101 --------------------
9102 -- Install_Entity --
9103 --------------------
9105 procedure Install_Entity (E : Entity_Id) is
9106 Prev : constant Entity_Id := Current_Entity (E);
9107 begin
9108 Set_Is_Immediately_Visible (E);
9109 Set_Current_Entity (E);
9110 Set_Homonym (E, Prev);
9111 end Install_Entity;
9113 ---------------------
9114 -- Install_Formals --
9115 ---------------------
9117 procedure Install_Formals (Id : Entity_Id) is
9118 F : Entity_Id;
9119 begin
9120 F := First_Formal (Id);
9121 while Present (F) loop
9122 Install_Entity (F);
9123 Next_Formal (F);
9124 end loop;
9125 end Install_Formals;
9127 -----------------------------
9128 -- Is_Interface_Conformant --
9129 -----------------------------
9131 function Is_Interface_Conformant
9132 (Tagged_Type : Entity_Id;
9133 Iface_Prim : Entity_Id;
9134 Prim : Entity_Id) return Boolean
9136 -- The operation may in fact be an inherited (implicit) operation
9137 -- rather than the original interface primitive, so retrieve the
9138 -- ultimate ancestor.
9140 Iface : constant Entity_Id :=
9141 Find_Dispatching_Type (Ultimate_Alias (Iface_Prim));
9142 Typ : constant Entity_Id := Find_Dispatching_Type (Prim);
9144 function Controlling_Formal (Prim : Entity_Id) return Entity_Id;
9145 -- Return the controlling formal of Prim
9147 ------------------------
9148 -- Controlling_Formal --
9149 ------------------------
9151 function Controlling_Formal (Prim : Entity_Id) return Entity_Id is
9152 E : Entity_Id;
9154 begin
9155 E := First_Entity (Prim);
9156 while Present (E) loop
9157 if Is_Formal (E) and then Is_Controlling_Formal (E) then
9158 return E;
9159 end if;
9161 Next_Entity (E);
9162 end loop;
9164 return Empty;
9165 end Controlling_Formal;
9167 -- Local variables
9169 Iface_Ctrl_F : constant Entity_Id := Controlling_Formal (Iface_Prim);
9170 Prim_Ctrl_F : constant Entity_Id := Controlling_Formal (Prim);
9172 -- Start of processing for Is_Interface_Conformant
9174 begin
9175 pragma Assert (Is_Subprogram (Iface_Prim)
9176 and then Is_Subprogram (Prim)
9177 and then Is_Dispatching_Operation (Iface_Prim)
9178 and then Is_Dispatching_Operation (Prim));
9180 pragma Assert (Is_Interface (Iface)
9181 or else (Present (Alias (Iface_Prim))
9182 and then
9183 Is_Interface
9184 (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
9186 if Prim = Iface_Prim
9187 or else not Is_Subprogram (Prim)
9188 or else Ekind (Prim) /= Ekind (Iface_Prim)
9189 or else not Is_Dispatching_Operation (Prim)
9190 or else Scope (Prim) /= Scope (Tagged_Type)
9191 or else No (Typ)
9192 or else Base_Type (Typ) /= Base_Type (Tagged_Type)
9193 or else not Primitive_Names_Match (Iface_Prim, Prim)
9194 then
9195 return False;
9197 -- The mode of the controlling formals must match
9199 elsif Present (Iface_Ctrl_F)
9200 and then Present (Prim_Ctrl_F)
9201 and then Ekind (Iface_Ctrl_F) /= Ekind (Prim_Ctrl_F)
9202 then
9203 return False;
9205 -- Case of a procedure, or a function whose result type matches the
9206 -- result type of the interface primitive, or a function that has no
9207 -- controlling result (I or access I).
9209 elsif Ekind (Iface_Prim) = E_Procedure
9210 or else Etype (Prim) = Etype (Iface_Prim)
9211 or else not Has_Controlling_Result (Prim)
9212 then
9213 return Type_Conformant
9214 (Iface_Prim, Prim, Skip_Controlling_Formals => True);
9216 -- Case of a function returning an interface, or an access to one. Check
9217 -- that the return types correspond.
9219 elsif Implements_Interface (Typ, Iface) then
9220 if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
9222 (Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
9223 then
9224 return False;
9225 else
9226 return
9227 Type_Conformant (Prim, Ultimate_Alias (Iface_Prim),
9228 Skip_Controlling_Formals => True);
9229 end if;
9231 else
9232 return False;
9233 end if;
9234 end Is_Interface_Conformant;
9236 ---------------------------------
9237 -- Is_Non_Overriding_Operation --
9238 ---------------------------------
9240 function Is_Non_Overriding_Operation
9241 (Prev_E : Entity_Id;
9242 New_E : Entity_Id) return Boolean
9244 Formal : Entity_Id;
9245 F_Typ : Entity_Id;
9246 G_Typ : Entity_Id := Empty;
9248 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
9249 -- If F_Type is a derived type associated with a generic actual subtype,
9250 -- then return its Generic_Parent_Type attribute, else return Empty.
9252 function Types_Correspond
9253 (P_Type : Entity_Id;
9254 N_Type : Entity_Id) return Boolean;
9255 -- Returns true if and only if the types (or designated types in the
9256 -- case of anonymous access types) are the same or N_Type is derived
9257 -- directly or indirectly from P_Type.
9259 -----------------------------
9260 -- Get_Generic_Parent_Type --
9261 -----------------------------
9263 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
9264 G_Typ : Entity_Id;
9265 Defn : Node_Id;
9266 Indic : Node_Id;
9268 begin
9269 if Is_Derived_Type (F_Typ)
9270 and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
9271 then
9272 -- The tree must be traversed to determine the parent subtype in
9273 -- the generic unit, which unfortunately isn't always available
9274 -- via semantic attributes. ??? (Note: The use of Original_Node
9275 -- is needed for cases where a full derived type has been
9276 -- rewritten.)
9278 -- If the parent type is a scalar type, the derivation creates
9279 -- an anonymous base type for it, and the source type is its
9280 -- first subtype.
9282 if Is_Scalar_Type (F_Typ)
9283 and then not Comes_From_Source (F_Typ)
9284 then
9285 Defn :=
9286 Type_Definition
9287 (Original_Node (Parent (First_Subtype (F_Typ))));
9288 else
9289 Defn := Type_Definition (Original_Node (Parent (F_Typ)));
9290 end if;
9291 if Nkind (Defn) = N_Derived_Type_Definition then
9292 Indic := Subtype_Indication (Defn);
9294 if Nkind (Indic) = N_Subtype_Indication then
9295 G_Typ := Entity (Subtype_Mark (Indic));
9296 else
9297 G_Typ := Entity (Indic);
9298 end if;
9300 if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
9301 and then Present (Generic_Parent_Type (Parent (G_Typ)))
9302 then
9303 return Generic_Parent_Type (Parent (G_Typ));
9304 end if;
9305 end if;
9306 end if;
9308 return Empty;
9309 end Get_Generic_Parent_Type;
9311 ----------------------
9312 -- Types_Correspond --
9313 ----------------------
9315 function Types_Correspond
9316 (P_Type : Entity_Id;
9317 N_Type : Entity_Id) return Boolean
9319 Prev_Type : Entity_Id := Base_Type (P_Type);
9320 New_Type : Entity_Id := Base_Type (N_Type);
9322 begin
9323 if Ekind (Prev_Type) = E_Anonymous_Access_Type then
9324 Prev_Type := Designated_Type (Prev_Type);
9325 end if;
9327 if Ekind (New_Type) = E_Anonymous_Access_Type then
9328 New_Type := Designated_Type (New_Type);
9329 end if;
9331 if Prev_Type = New_Type then
9332 return True;
9334 elsif not Is_Class_Wide_Type (New_Type) then
9335 while Etype (New_Type) /= New_Type loop
9336 New_Type := Etype (New_Type);
9338 if New_Type = Prev_Type then
9339 return True;
9340 end if;
9341 end loop;
9342 end if;
9343 return False;
9344 end Types_Correspond;
9346 -- Start of processing for Is_Non_Overriding_Operation
9348 begin
9349 -- In the case where both operations are implicit derived subprograms
9350 -- then neither overrides the other. This can only occur in certain
9351 -- obscure cases (e.g., derivation from homographs created in a generic
9352 -- instantiation).
9354 if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
9355 return True;
9357 elsif Ekind (Current_Scope) = E_Package
9358 and then Is_Generic_Instance (Current_Scope)
9359 and then In_Private_Part (Current_Scope)
9360 and then Comes_From_Source (New_E)
9361 then
9362 -- We examine the formals and result type of the inherited operation,
9363 -- to determine whether their type is derived from (the instance of)
9364 -- a generic type. The first such formal or result type is the one
9365 -- tested.
9367 Formal := First_Formal (Prev_E);
9368 F_Typ := Empty;
9369 while Present (Formal) loop
9370 F_Typ := Base_Type (Etype (Formal));
9372 if Ekind (F_Typ) = E_Anonymous_Access_Type then
9373 F_Typ := Designated_Type (F_Typ);
9374 end if;
9376 G_Typ := Get_Generic_Parent_Type (F_Typ);
9377 exit when Present (G_Typ);
9379 Next_Formal (Formal);
9380 end loop;
9382 -- If the function dispatches on result check the result type
9384 if No (G_Typ) and then Ekind (Prev_E) = E_Function then
9385 G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
9386 end if;
9388 if No (G_Typ) then
9389 return False;
9390 end if;
9392 -- If the generic type is a private type, then the original operation
9393 -- was not overriding in the generic, because there was no primitive
9394 -- operation to override.
9396 if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
9397 and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
9398 N_Formal_Private_Type_Definition
9399 then
9400 return True;
9402 -- The generic parent type is the ancestor of a formal derived
9403 -- type declaration. We need to check whether it has a primitive
9404 -- operation that should be overridden by New_E in the generic.
9406 else
9407 declare
9408 P_Formal : Entity_Id;
9409 N_Formal : Entity_Id;
9410 P_Typ : Entity_Id;
9411 N_Typ : Entity_Id;
9412 P_Prim : Entity_Id;
9413 Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
9415 begin
9416 while Present (Prim_Elt) loop
9417 P_Prim := Node (Prim_Elt);
9419 if Chars (P_Prim) = Chars (New_E)
9420 and then Ekind (P_Prim) = Ekind (New_E)
9421 then
9422 P_Formal := First_Formal (P_Prim);
9423 N_Formal := First_Formal (New_E);
9424 while Present (P_Formal) and then Present (N_Formal) loop
9425 P_Typ := Etype (P_Formal);
9426 N_Typ := Etype (N_Formal);
9428 if not Types_Correspond (P_Typ, N_Typ) then
9429 exit;
9430 end if;
9432 Next_Entity (P_Formal);
9433 Next_Entity (N_Formal);
9434 end loop;
9436 -- Found a matching primitive operation belonging to the
9437 -- formal ancestor type, so the new subprogram is
9438 -- overriding.
9440 if No (P_Formal)
9441 and then No (N_Formal)
9442 and then (Ekind (New_E) /= E_Function
9443 or else
9444 Types_Correspond
9445 (Etype (P_Prim), Etype (New_E)))
9446 then
9447 return False;
9448 end if;
9449 end if;
9451 Next_Elmt (Prim_Elt);
9452 end loop;
9454 -- If no match found, then the new subprogram does not override
9455 -- in the generic (nor in the instance).
9457 -- If the type in question is not abstract, and the subprogram
9458 -- is, this will be an error if the new operation is in the
9459 -- private part of the instance. Emit a warning now, which will
9460 -- make the subsequent error message easier to understand.
9462 if Present (F_Typ) and then not Is_Abstract_Type (F_Typ)
9463 and then Is_Abstract_Subprogram (Prev_E)
9464 and then In_Private_Part (Current_Scope)
9465 then
9466 Error_Msg_Node_2 := F_Typ;
9467 Error_Msg_NE
9468 ("private operation& in generic unit does not override "
9469 & "any primitive operation of& (RM 12.3 (18))??",
9470 New_E, New_E);
9471 end if;
9473 return True;
9474 end;
9475 end if;
9476 else
9477 return False;
9478 end if;
9479 end Is_Non_Overriding_Operation;
9481 -------------------------------------
9482 -- List_Inherited_Pre_Post_Aspects --
9483 -------------------------------------
9485 procedure List_Inherited_Pre_Post_Aspects (E : Entity_Id) is
9486 begin
9487 if Opt.List_Inherited_Aspects
9488 and then Is_Subprogram_Or_Generic_Subprogram (E)
9489 then
9490 declare
9491 Subps : constant Subprogram_List := Inherited_Subprograms (E);
9492 Items : Node_Id;
9493 Prag : Node_Id;
9495 begin
9496 for Index in Subps'Range loop
9497 Items := Contract (Subps (Index));
9499 if Present (Items) then
9500 Prag := Pre_Post_Conditions (Items);
9501 while Present (Prag) loop
9502 Error_Msg_Sloc := Sloc (Prag);
9504 if Class_Present (Prag)
9505 and then not Split_PPC (Prag)
9506 then
9507 if Pragma_Name (Prag) = Name_Precondition then
9508 Error_Msg_N
9509 ("info: & inherits `Pre''Class` aspect from "
9510 & "#?L?", E);
9511 else
9512 Error_Msg_N
9513 ("info: & inherits `Post''Class` aspect from "
9514 & "#?L?", E);
9515 end if;
9516 end if;
9518 Prag := Next_Pragma (Prag);
9519 end loop;
9520 end if;
9521 end loop;
9522 end;
9523 end if;
9524 end List_Inherited_Pre_Post_Aspects;
9526 ------------------------------
9527 -- Make_Inequality_Operator --
9528 ------------------------------
9530 -- S is the defining identifier of an equality operator. We build a
9531 -- subprogram declaration with the right signature. This operation is
9532 -- intrinsic, because it is always expanded as the negation of the
9533 -- call to the equality function.
9535 procedure Make_Inequality_Operator (S : Entity_Id) is
9536 Loc : constant Source_Ptr := Sloc (S);
9537 Decl : Node_Id;
9538 Formals : List_Id;
9539 Op_Name : Entity_Id;
9541 FF : constant Entity_Id := First_Formal (S);
9542 NF : constant Entity_Id := Next_Formal (FF);
9544 begin
9545 -- Check that equality was properly defined, ignore call if not
9547 if No (NF) then
9548 return;
9549 end if;
9551 declare
9552 A : constant Entity_Id :=
9553 Make_Defining_Identifier (Sloc (FF),
9554 Chars => Chars (FF));
9556 B : constant Entity_Id :=
9557 Make_Defining_Identifier (Sloc (NF),
9558 Chars => Chars (NF));
9560 begin
9561 Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
9563 Formals := New_List (
9564 Make_Parameter_Specification (Loc,
9565 Defining_Identifier => A,
9566 Parameter_Type =>
9567 New_Occurrence_Of (Etype (First_Formal (S)),
9568 Sloc (Etype (First_Formal (S))))),
9570 Make_Parameter_Specification (Loc,
9571 Defining_Identifier => B,
9572 Parameter_Type =>
9573 New_Occurrence_Of (Etype (Next_Formal (First_Formal (S))),
9574 Sloc (Etype (Next_Formal (First_Formal (S)))))));
9576 Decl :=
9577 Make_Subprogram_Declaration (Loc,
9578 Specification =>
9579 Make_Function_Specification (Loc,
9580 Defining_Unit_Name => Op_Name,
9581 Parameter_Specifications => Formals,
9582 Result_Definition =>
9583 New_Occurrence_Of (Standard_Boolean, Loc)));
9585 -- Insert inequality right after equality if it is explicit or after
9586 -- the derived type when implicit. These entities are created only
9587 -- for visibility purposes, and eventually replaced in the course
9588 -- of expansion, so they do not need to be attached to the tree and
9589 -- seen by the back-end. Keeping them internal also avoids spurious
9590 -- freezing problems. The declaration is inserted in the tree for
9591 -- analysis, and removed afterwards. If the equality operator comes
9592 -- from an explicit declaration, attach the inequality immediately
9593 -- after. Else the equality is inherited from a derived type
9594 -- declaration, so insert inequality after that declaration.
9596 if No (Alias (S)) then
9597 Insert_After (Unit_Declaration_Node (S), Decl);
9598 elsif Is_List_Member (Parent (S)) then
9599 Insert_After (Parent (S), Decl);
9600 else
9601 Insert_After (Parent (Etype (First_Formal (S))), Decl);
9602 end if;
9604 Mark_Rewrite_Insertion (Decl);
9605 Set_Is_Intrinsic_Subprogram (Op_Name);
9606 Analyze (Decl);
9607 Remove (Decl);
9608 Set_Has_Completion (Op_Name);
9609 Set_Corresponding_Equality (Op_Name, S);
9610 Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
9611 end;
9612 end Make_Inequality_Operator;
9614 ----------------------
9615 -- May_Need_Actuals --
9616 ----------------------
9618 procedure May_Need_Actuals (Fun : Entity_Id) is
9619 F : Entity_Id;
9620 B : Boolean;
9622 begin
9623 F := First_Formal (Fun);
9624 B := True;
9625 while Present (F) loop
9626 if No (Default_Value (F)) then
9627 B := False;
9628 exit;
9629 end if;
9631 Next_Formal (F);
9632 end loop;
9634 Set_Needs_No_Actuals (Fun, B);
9635 end May_Need_Actuals;
9637 ---------------------
9638 -- Mode_Conformant --
9639 ---------------------
9641 function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
9642 Result : Boolean;
9643 begin
9644 Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
9645 return Result;
9646 end Mode_Conformant;
9648 ---------------------------
9649 -- New_Overloaded_Entity --
9650 ---------------------------
9652 procedure New_Overloaded_Entity
9653 (S : Entity_Id;
9654 Derived_Type : Entity_Id := Empty)
9656 Overridden_Subp : Entity_Id := Empty;
9657 -- Set if the current scope has an operation that is type-conformant
9658 -- with S, and becomes hidden by S.
9660 Is_Primitive_Subp : Boolean;
9661 -- Set to True if the new subprogram is primitive
9663 E : Entity_Id;
9664 -- Entity that S overrides
9666 Prev_Vis : Entity_Id := Empty;
9667 -- Predecessor of E in Homonym chain
9669 procedure Check_For_Primitive_Subprogram
9670 (Is_Primitive : out Boolean;
9671 Is_Overriding : Boolean := False);
9672 -- If the subprogram being analyzed is a primitive operation of the type
9673 -- of a formal or result, set the Has_Primitive_Operations flag on the
9674 -- type, and set Is_Primitive to True (otherwise set to False). Set the
9675 -- corresponding flag on the entity itself for later use.
9677 function Has_Matching_Entry_Or_Subprogram (E : Entity_Id) return Boolean;
9678 -- True if a) E is a subprogram whose first formal is a concurrent type
9679 -- defined in the scope of E that has some entry or subprogram whose
9680 -- profile matches E, or b) E is an internally built dispatching
9681 -- subprogram of a protected type and there is a matching subprogram
9682 -- defined in the enclosing scope of the protected type, or c) E is
9683 -- an entry of a synchronized type and a matching procedure has been
9684 -- previously defined in the enclosing scope of the synchronized type.
9686 function Is_Private_Declaration (E : Entity_Id) return Boolean;
9687 -- Check that E is declared in the private part of the current package,
9688 -- or in the package body, where it may hide a previous declaration.
9689 -- We can't use In_Private_Part by itself because this flag is also
9690 -- set when freezing entities, so we must examine the place of the
9691 -- declaration in the tree, and recognize wrapper packages as well.
9693 function Is_Overriding_Alias
9694 (Old_E : Entity_Id;
9695 New_E : Entity_Id) return Boolean;
9696 -- Check whether new subprogram and old subprogram are both inherited
9697 -- from subprograms that have distinct dispatch table entries. This can
9698 -- occur with derivations from instances with accidental homonyms. The
9699 -- function is conservative given that the converse is only true within
9700 -- instances that contain accidental overloadings.
9702 procedure Report_Conflict (S : Entity_Id; E : Entity_Id);
9703 -- Report conflict between entities S and E
9705 ------------------------------------
9706 -- Check_For_Primitive_Subprogram --
9707 ------------------------------------
9709 procedure Check_For_Primitive_Subprogram
9710 (Is_Primitive : out Boolean;
9711 Is_Overriding : Boolean := False)
9713 Formal : Entity_Id;
9714 F_Typ : Entity_Id;
9715 B_Typ : Entity_Id;
9717 function Visible_Part_Type (T : Entity_Id) return Boolean;
9718 -- Returns true if T is declared in the visible part of the current
9719 -- package scope; otherwise returns false. Assumes that T is declared
9720 -- in a package.
9722 procedure Check_Private_Overriding (T : Entity_Id);
9723 -- Checks that if a primitive abstract subprogram of a visible
9724 -- abstract type is declared in a private part, then it must override
9725 -- an abstract subprogram declared in the visible part. Also checks
9726 -- that if a primitive function with a controlling result is declared
9727 -- in a private part, then it must override a function declared in
9728 -- the visible part.
9730 ------------------------------
9731 -- Check_Private_Overriding --
9732 ------------------------------
9734 procedure Check_Private_Overriding (T : Entity_Id) is
9735 function Overrides_Private_Part_Op return Boolean;
9736 -- This detects the special case where the overriding subprogram
9737 -- is overriding a subprogram that was declared in the same
9738 -- private part. That case is illegal by 3.9.3(10).
9740 function Overrides_Visible_Function
9741 (Partial_View : Entity_Id) return Boolean;
9742 -- True if S overrides a function in the visible part. The
9743 -- overridden function could be explicitly or implicitly declared.
9745 -------------------------------
9746 -- Overrides_Private_Part_Op --
9747 -------------------------------
9749 function Overrides_Private_Part_Op return Boolean is
9750 Over_Decl : constant Node_Id :=
9751 Unit_Declaration_Node (Overridden_Operation (S));
9752 Subp_Decl : constant Node_Id := Unit_Declaration_Node (S);
9754 begin
9755 pragma Assert (Is_Overriding);
9756 pragma Assert
9757 (Nkind (Over_Decl) = N_Abstract_Subprogram_Declaration);
9758 pragma Assert
9759 (Nkind (Subp_Decl) = N_Abstract_Subprogram_Declaration);
9761 return In_Same_List (Over_Decl, Subp_Decl);
9762 end Overrides_Private_Part_Op;
9764 --------------------------------
9765 -- Overrides_Visible_Function --
9766 --------------------------------
9768 function Overrides_Visible_Function
9769 (Partial_View : Entity_Id) return Boolean
9771 begin
9772 if not Is_Overriding or else not Has_Homonym (S) then
9773 return False;
9774 end if;
9776 if not Present (Partial_View) then
9777 return True;
9778 end if;
9780 -- Search through all the homonyms H of S in the current
9781 -- package spec, and return True if we find one that matches.
9782 -- Note that Parent (H) will be the declaration of the
9783 -- partial view of T for a match.
9785 declare
9786 H : Entity_Id := S;
9787 begin
9788 loop
9789 H := Homonym (H);
9790 exit when not Present (H) or else Scope (H) /= Scope (S);
9792 if Nkind_In
9793 (Parent (H),
9794 N_Private_Extension_Declaration,
9795 N_Private_Type_Declaration)
9796 and then Defining_Identifier (Parent (H)) = Partial_View
9797 then
9798 return True;
9799 end if;
9800 end loop;
9801 end;
9803 return False;
9804 end Overrides_Visible_Function;
9806 -- Start of processing for Check_Private_Overriding
9808 begin
9809 if Is_Package_Or_Generic_Package (Current_Scope)
9810 and then In_Private_Part (Current_Scope)
9811 and then Visible_Part_Type (T)
9812 and then not In_Instance
9813 then
9814 if Is_Abstract_Type (T)
9815 and then Is_Abstract_Subprogram (S)
9816 and then (not Is_Overriding
9817 or else not Is_Abstract_Subprogram (E)
9818 or else Overrides_Private_Part_Op)
9819 then
9820 Error_Msg_N
9821 ("abstract subprograms must be visible (RM 3.9.3(10))!",
9824 elsif Ekind (S) = E_Function then
9825 declare
9826 Partial_View : constant Entity_Id :=
9827 Incomplete_Or_Partial_View (T);
9829 begin
9830 if not Overrides_Visible_Function (Partial_View) then
9832 -- Here, S is "function ... return T;" declared in
9833 -- the private part, not overriding some visible
9834 -- operation. That's illegal in the tagged case
9835 -- (but not if the private type is untagged).
9837 if ((Present (Partial_View)
9838 and then Is_Tagged_Type (Partial_View))
9839 or else (not Present (Partial_View)
9840 and then Is_Tagged_Type (T)))
9841 and then T = Base_Type (Etype (S))
9842 then
9843 Error_Msg_N
9844 ("private function with tagged result must"
9845 & " override visible-part function", S);
9846 Error_Msg_N
9847 ("\move subprogram to the visible part"
9848 & " (RM 3.9.3(10))", S);
9850 -- AI05-0073: extend this test to the case of a
9851 -- function with a controlling access result.
9853 elsif Ekind (Etype (S)) = E_Anonymous_Access_Type
9854 and then Is_Tagged_Type (Designated_Type (Etype (S)))
9855 and then
9856 not Is_Class_Wide_Type
9857 (Designated_Type (Etype (S)))
9858 and then Ada_Version >= Ada_2012
9859 then
9860 Error_Msg_N
9861 ("private function with controlling access "
9862 & "result must override visible-part function",
9864 Error_Msg_N
9865 ("\move subprogram to the visible part"
9866 & " (RM 3.9.3(10))", S);
9867 end if;
9868 end if;
9869 end;
9870 end if;
9871 end if;
9872 end Check_Private_Overriding;
9874 -----------------------
9875 -- Visible_Part_Type --
9876 -----------------------
9878 function Visible_Part_Type (T : Entity_Id) return Boolean is
9879 P : constant Node_Id := Unit_Declaration_Node (Scope (T));
9880 N : Node_Id;
9882 begin
9883 -- If the entity is a private type, then it must be declared in a
9884 -- visible part.
9886 if Ekind (T) in Private_Kind then
9887 return True;
9888 end if;
9890 -- Otherwise, we traverse the visible part looking for its
9891 -- corresponding declaration. We cannot use the declaration
9892 -- node directly because in the private part the entity of a
9893 -- private type is the one in the full view, which does not
9894 -- indicate that it is the completion of something visible.
9896 N := First (Visible_Declarations (Specification (P)));
9897 while Present (N) loop
9898 if Nkind (N) = N_Full_Type_Declaration
9899 and then Present (Defining_Identifier (N))
9900 and then T = Defining_Identifier (N)
9901 then
9902 return True;
9904 elsif Nkind_In (N, N_Private_Type_Declaration,
9905 N_Private_Extension_Declaration)
9906 and then Present (Defining_Identifier (N))
9907 and then T = Full_View (Defining_Identifier (N))
9908 then
9909 return True;
9910 end if;
9912 Next (N);
9913 end loop;
9915 return False;
9916 end Visible_Part_Type;
9918 -- Start of processing for Check_For_Primitive_Subprogram
9920 begin
9921 Is_Primitive := False;
9923 if not Comes_From_Source (S) then
9924 null;
9926 -- If subprogram is at library level, it is not primitive operation
9928 elsif Current_Scope = Standard_Standard then
9929 null;
9931 elsif (Is_Package_Or_Generic_Package (Current_Scope)
9932 and then not In_Package_Body (Current_Scope))
9933 or else Is_Overriding
9934 then
9935 -- For function, check return type
9937 if Ekind (S) = E_Function then
9938 if Ekind (Etype (S)) = E_Anonymous_Access_Type then
9939 F_Typ := Designated_Type (Etype (S));
9940 else
9941 F_Typ := Etype (S);
9942 end if;
9944 B_Typ := Base_Type (F_Typ);
9946 if Scope (B_Typ) = Current_Scope
9947 and then not Is_Class_Wide_Type (B_Typ)
9948 and then not Is_Generic_Type (B_Typ)
9949 then
9950 Is_Primitive := True;
9951 Set_Has_Primitive_Operations (B_Typ);
9952 Set_Is_Primitive (S);
9953 Check_Private_Overriding (B_Typ);
9955 -- The Ghost policy in effect at the point of declaration
9956 -- or a tagged type and a primitive operation must match
9957 -- (SPARK RM 6.9(16)).
9959 Check_Ghost_Primitive (S, B_Typ);
9960 end if;
9961 end if;
9963 -- For all subprograms, check formals
9965 Formal := First_Formal (S);
9966 while Present (Formal) loop
9967 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
9968 F_Typ := Designated_Type (Etype (Formal));
9969 else
9970 F_Typ := Etype (Formal);
9971 end if;
9973 B_Typ := Base_Type (F_Typ);
9975 if Ekind (B_Typ) = E_Access_Subtype then
9976 B_Typ := Base_Type (B_Typ);
9977 end if;
9979 if Scope (B_Typ) = Current_Scope
9980 and then not Is_Class_Wide_Type (B_Typ)
9981 and then not Is_Generic_Type (B_Typ)
9982 then
9983 Is_Primitive := True;
9984 Set_Is_Primitive (S);
9985 Set_Has_Primitive_Operations (B_Typ);
9986 Check_Private_Overriding (B_Typ);
9988 -- The Ghost policy in effect at the point of declaration
9989 -- of a tagged type and a primitive operation must match
9990 -- (SPARK RM 6.9(16)).
9992 Check_Ghost_Primitive (S, B_Typ);
9993 end if;
9995 Next_Formal (Formal);
9996 end loop;
9998 -- Special case: An equality function can be redefined for a type
9999 -- occurring in a declarative part, and won't otherwise be treated as
10000 -- a primitive because it doesn't occur in a package spec and doesn't
10001 -- override an inherited subprogram. It's important that we mark it
10002 -- primitive so it can be returned by Collect_Primitive_Operations
10003 -- and be used in composing the equality operation of later types
10004 -- that have a component of the type.
10006 elsif Chars (S) = Name_Op_Eq
10007 and then Etype (S) = Standard_Boolean
10008 then
10009 B_Typ := Base_Type (Etype (First_Formal (S)));
10011 if Scope (B_Typ) = Current_Scope
10012 and then
10013 Base_Type (Etype (Next_Formal (First_Formal (S)))) = B_Typ
10014 and then not Is_Limited_Type (B_Typ)
10015 then
10016 Is_Primitive := True;
10017 Set_Is_Primitive (S);
10018 Set_Has_Primitive_Operations (B_Typ);
10019 Check_Private_Overriding (B_Typ);
10021 -- The Ghost policy in effect at the point of declaration of a
10022 -- tagged type and a primitive operation must match
10023 -- (SPARK RM 6.9(16)).
10025 Check_Ghost_Primitive (S, B_Typ);
10026 end if;
10027 end if;
10028 end Check_For_Primitive_Subprogram;
10030 --------------------------------------
10031 -- Has_Matching_Entry_Or_Subprogram --
10032 --------------------------------------
10034 function Has_Matching_Entry_Or_Subprogram
10035 (E : Entity_Id) return Boolean
10037 function Check_Conforming_Parameters
10038 (E1_Param : Node_Id;
10039 E2_Param : Node_Id) return Boolean;
10040 -- Starting from the given parameters, check that all the parameters
10041 -- of two entries or subprograms are subtype conformant. Used to skip
10042 -- the check on the controlling argument.
10044 function Matching_Entry_Or_Subprogram
10045 (Conc_Typ : Entity_Id;
10046 Subp : Entity_Id) return Entity_Id;
10047 -- Return the first entry or subprogram of the given concurrent type
10048 -- whose name matches the name of Subp and has a profile conformant
10049 -- with Subp; return Empty if not found.
10051 function Matching_Dispatching_Subprogram
10052 (Conc_Typ : Entity_Id;
10053 Ent : Entity_Id) return Entity_Id;
10054 -- Return the first dispatching primitive of Conc_Type defined in the
10055 -- enclosing scope of Conc_Type (i.e. before the full definition of
10056 -- this concurrent type) whose name matches the entry Ent and has a
10057 -- profile conformant with the profile of the corresponding (not yet
10058 -- built) dispatching primitive of Ent; return Empty if not found.
10060 function Matching_Original_Protected_Subprogram
10061 (Prot_Typ : Entity_Id;
10062 Subp : Entity_Id) return Entity_Id;
10063 -- Return the first subprogram defined in the enclosing scope of
10064 -- Prot_Typ (before the full definition of this protected type)
10065 -- whose name matches the original name of Subp and has a profile
10066 -- conformant with the profile of Subp; return Empty if not found.
10068 ---------------------------------
10069 -- Check_Confirming_Parameters --
10070 ---------------------------------
10072 function Check_Conforming_Parameters
10073 (E1_Param : Node_Id;
10074 E2_Param : Node_Id) return Boolean
10076 Param_E1 : Node_Id := E1_Param;
10077 Param_E2 : Node_Id := E2_Param;
10079 begin
10080 while Present (Param_E1) and then Present (Param_E2) loop
10081 if Ekind (Defining_Identifier (Param_E1)) /=
10082 Ekind (Defining_Identifier (Param_E2))
10083 or else not
10084 Conforming_Types
10085 (Find_Parameter_Type (Param_E1),
10086 Find_Parameter_Type (Param_E2),
10087 Subtype_Conformant)
10088 then
10089 return False;
10090 end if;
10092 Next (Param_E1);
10093 Next (Param_E2);
10094 end loop;
10096 -- The candidate is not valid if one of the two lists contains
10097 -- more parameters than the other
10099 return No (Param_E1) and then No (Param_E2);
10100 end Check_Conforming_Parameters;
10102 ----------------------------------
10103 -- Matching_Entry_Or_Subprogram --
10104 ----------------------------------
10106 function Matching_Entry_Or_Subprogram
10107 (Conc_Typ : Entity_Id;
10108 Subp : Entity_Id) return Entity_Id
10110 E : Entity_Id;
10112 begin
10113 E := First_Entity (Conc_Typ);
10114 while Present (E) loop
10115 if Chars (Subp) = Chars (E)
10116 and then (Ekind (E) = E_Entry or else Is_Subprogram (E))
10117 and then
10118 Check_Conforming_Parameters
10119 (First (Parameter_Specifications (Parent (E))),
10120 Next (First (Parameter_Specifications (Parent (Subp)))))
10121 then
10122 return E;
10123 end if;
10125 Next_Entity (E);
10126 end loop;
10128 return Empty;
10129 end Matching_Entry_Or_Subprogram;
10131 -------------------------------------
10132 -- Matching_Dispatching_Subprogram --
10133 -------------------------------------
10135 function Matching_Dispatching_Subprogram
10136 (Conc_Typ : Entity_Id;
10137 Ent : Entity_Id) return Entity_Id
10139 E : Entity_Id;
10141 begin
10142 -- Search for entities in the enclosing scope of this synchonized
10143 -- type.
10145 pragma Assert (Is_Concurrent_Type (Conc_Typ));
10146 Push_Scope (Scope (Conc_Typ));
10147 E := Current_Entity_In_Scope (Ent);
10148 Pop_Scope;
10150 while Present (E) loop
10151 if Scope (E) = Scope (Conc_Typ)
10152 and then Comes_From_Source (E)
10153 and then Ekind (E) = E_Procedure
10154 and then Present (First_Entity (E))
10155 and then Is_Controlling_Formal (First_Entity (E))
10156 and then Etype (First_Entity (E)) = Conc_Typ
10157 and then
10158 Check_Conforming_Parameters
10159 (First (Parameter_Specifications (Parent (Ent))),
10160 Next (First (Parameter_Specifications (Parent (E)))))
10161 then
10162 return E;
10163 end if;
10165 E := Homonym (E);
10166 end loop;
10168 return Empty;
10169 end Matching_Dispatching_Subprogram;
10171 --------------------------------------------
10172 -- Matching_Original_Protected_Subprogram --
10173 --------------------------------------------
10175 function Matching_Original_Protected_Subprogram
10176 (Prot_Typ : Entity_Id;
10177 Subp : Entity_Id) return Entity_Id
10179 ICF : constant Boolean :=
10180 Is_Controlling_Formal (First_Entity (Subp));
10181 E : Entity_Id;
10183 begin
10184 -- Temporarily decorate the first parameter of Subp as controlling
10185 -- formal, required to invoke Subtype_Conformant.
10187 Set_Is_Controlling_Formal (First_Entity (Subp));
10189 E :=
10190 Current_Entity_In_Scope (Original_Protected_Subprogram (Subp));
10192 while Present (E) loop
10193 if Scope (E) = Scope (Prot_Typ)
10194 and then Comes_From_Source (E)
10195 and then Ekind (Subp) = Ekind (E)
10196 and then Present (First_Entity (E))
10197 and then Is_Controlling_Formal (First_Entity (E))
10198 and then Etype (First_Entity (E)) = Prot_Typ
10199 and then Subtype_Conformant (Subp, E,
10200 Skip_Controlling_Formals => True)
10201 then
10202 Set_Is_Controlling_Formal (First_Entity (Subp), ICF);
10203 return E;
10204 end if;
10206 E := Homonym (E);
10207 end loop;
10209 Set_Is_Controlling_Formal (First_Entity (Subp), ICF);
10211 return Empty;
10212 end Matching_Original_Protected_Subprogram;
10214 -- Start of processing for Has_Matching_Entry_Or_Subprogram
10216 begin
10217 -- Case 1: E is a subprogram whose first formal is a concurrent type
10218 -- defined in the scope of E that has an entry or subprogram whose
10219 -- profile matches E.
10221 if Comes_From_Source (E)
10222 and then Is_Subprogram (E)
10223 and then Present (First_Entity (E))
10224 and then Is_Concurrent_Record_Type (Etype (First_Entity (E)))
10225 then
10226 if Scope (E) =
10227 Scope (Corresponding_Concurrent_Type
10228 (Etype (First_Entity (E))))
10229 and then
10230 Present
10231 (Matching_Entry_Or_Subprogram
10232 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10233 Subp => E))
10234 then
10235 Report_Conflict (E,
10236 Matching_Entry_Or_Subprogram
10237 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10238 Subp => E));
10239 return True;
10240 end if;
10242 -- Case 2: E is an internally built dispatching subprogram of a
10243 -- protected type and there is a subprogram defined in the enclosing
10244 -- scope of the protected type that has the original name of E and
10245 -- its profile is conformant with the profile of E. We check the
10246 -- name of the original protected subprogram associated with E since
10247 -- the expander builds dispatching primitives of protected functions
10248 -- and procedures with other names (see Exp_Ch9.Build_Selected_Name).
10250 elsif not Comes_From_Source (E)
10251 and then Is_Subprogram (E)
10252 and then Present (First_Entity (E))
10253 and then Is_Concurrent_Record_Type (Etype (First_Entity (E)))
10254 and then Present (Original_Protected_Subprogram (E))
10255 and then
10256 Present
10257 (Matching_Original_Protected_Subprogram
10258 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10259 Subp => E))
10260 then
10261 Report_Conflict (E,
10262 Matching_Original_Protected_Subprogram
10263 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10264 Subp => E));
10265 return True;
10267 -- Case 3: E is an entry of a synchronized type and a matching
10268 -- procedure has been previously defined in the enclosing scope
10269 -- of the synchronized type.
10271 elsif Comes_From_Source (E)
10272 and then Ekind (E) = E_Entry
10273 and then
10274 Present (Matching_Dispatching_Subprogram (Current_Scope, E))
10275 then
10276 Report_Conflict (E,
10277 Matching_Dispatching_Subprogram (Current_Scope, E));
10278 return True;
10279 end if;
10281 return False;
10282 end Has_Matching_Entry_Or_Subprogram;
10284 ----------------------------
10285 -- Is_Private_Declaration --
10286 ----------------------------
10288 function Is_Private_Declaration (E : Entity_Id) return Boolean is
10289 Decl : constant Node_Id := Unit_Declaration_Node (E);
10290 Priv_Decls : List_Id;
10292 begin
10293 if Is_Package_Or_Generic_Package (Current_Scope)
10294 and then In_Private_Part (Current_Scope)
10295 then
10296 Priv_Decls :=
10297 Private_Declarations (Package_Specification (Current_Scope));
10299 return In_Package_Body (Current_Scope)
10300 or else
10301 (Is_List_Member (Decl)
10302 and then List_Containing (Decl) = Priv_Decls)
10303 or else (Nkind (Parent (Decl)) = N_Package_Specification
10304 and then not
10305 Is_Compilation_Unit
10306 (Defining_Entity (Parent (Decl)))
10307 and then List_Containing (Parent (Parent (Decl))) =
10308 Priv_Decls);
10309 else
10310 return False;
10311 end if;
10312 end Is_Private_Declaration;
10314 --------------------------
10315 -- Is_Overriding_Alias --
10316 --------------------------
10318 function Is_Overriding_Alias
10319 (Old_E : Entity_Id;
10320 New_E : Entity_Id) return Boolean
10322 AO : constant Entity_Id := Alias (Old_E);
10323 AN : constant Entity_Id := Alias (New_E);
10325 begin
10326 return Scope (AO) /= Scope (AN)
10327 or else No (DTC_Entity (AO))
10328 or else No (DTC_Entity (AN))
10329 or else DT_Position (AO) = DT_Position (AN);
10330 end Is_Overriding_Alias;
10332 ---------------------
10333 -- Report_Conflict --
10334 ---------------------
10336 procedure Report_Conflict (S : Entity_Id; E : Entity_Id) is
10337 begin
10338 Error_Msg_Sloc := Sloc (E);
10340 -- Generate message, with useful additional warning if in generic
10342 if Is_Generic_Unit (E) then
10343 Error_Msg_N ("previous generic unit cannot be overloaded", S);
10344 Error_Msg_N ("\& conflicts with declaration#", S);
10345 else
10346 Error_Msg_N ("& conflicts with declaration#", S);
10347 end if;
10348 end Report_Conflict;
10350 -- Start of processing for New_Overloaded_Entity
10352 begin
10353 -- We need to look for an entity that S may override. This must be a
10354 -- homonym in the current scope, so we look for the first homonym of
10355 -- S in the current scope as the starting point for the search.
10357 E := Current_Entity_In_Scope (S);
10359 -- Ada 2005 (AI-251): Derivation of abstract interface primitives.
10360 -- They are directly added to the list of primitive operations of
10361 -- Derived_Type, unless this is a rederivation in the private part
10362 -- of an operation that was already derived in the visible part of
10363 -- the current package.
10365 if Ada_Version >= Ada_2005
10366 and then Present (Derived_Type)
10367 and then Present (Alias (S))
10368 and then Is_Dispatching_Operation (Alias (S))
10369 and then Present (Find_Dispatching_Type (Alias (S)))
10370 and then Is_Interface (Find_Dispatching_Type (Alias (S)))
10371 then
10372 -- For private types, when the full-view is processed we propagate to
10373 -- the full view the non-overridden entities whose attribute "alias"
10374 -- references an interface primitive. These entities were added by
10375 -- Derive_Subprograms to ensure that interface primitives are
10376 -- covered.
10378 -- Inside_Freeze_Actions is non zero when S corresponds with an
10379 -- internal entity that links an interface primitive with its
10380 -- covering primitive through attribute Interface_Alias (see
10381 -- Add_Internal_Interface_Entities).
10383 if Inside_Freezing_Actions = 0
10384 and then Is_Package_Or_Generic_Package (Current_Scope)
10385 and then In_Private_Part (Current_Scope)
10386 and then Nkind (Parent (E)) = N_Private_Extension_Declaration
10387 and then Nkind (Parent (S)) = N_Full_Type_Declaration
10388 and then Full_View (Defining_Identifier (Parent (E)))
10389 = Defining_Identifier (Parent (S))
10390 and then Alias (E) = Alias (S)
10391 then
10392 Check_Operation_From_Private_View (S, E);
10393 Set_Is_Dispatching_Operation (S);
10395 -- Common case
10397 else
10398 Enter_Overloaded_Entity (S);
10399 Check_Dispatching_Operation (S, Empty);
10400 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
10401 end if;
10403 return;
10404 end if;
10406 -- For synchronized types check conflicts of this entity with previously
10407 -- defined entities.
10409 if Ada_Version >= Ada_2005
10410 and then Has_Matching_Entry_Or_Subprogram (S)
10411 then
10412 return;
10413 end if;
10415 -- If there is no homonym then this is definitely not overriding
10417 if No (E) then
10418 Enter_Overloaded_Entity (S);
10419 Check_Dispatching_Operation (S, Empty);
10420 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
10422 -- If subprogram has an explicit declaration, check whether it has an
10423 -- overriding indicator.
10425 if Comes_From_Source (S) then
10426 Check_Synchronized_Overriding (S, Overridden_Subp);
10428 -- (Ada 2012: AI05-0125-1): If S is a dispatching operation then
10429 -- it may have overridden some hidden inherited primitive. Update
10430 -- Overridden_Subp to avoid spurious errors when checking the
10431 -- overriding indicator.
10433 if Ada_Version >= Ada_2012
10434 and then No (Overridden_Subp)
10435 and then Is_Dispatching_Operation (S)
10436 and then Present (Overridden_Operation (S))
10437 then
10438 Overridden_Subp := Overridden_Operation (S);
10439 end if;
10441 Check_Overriding_Indicator
10442 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
10444 -- The Ghost policy in effect at the point of declaration of a
10445 -- parent subprogram and an overriding subprogram must match
10446 -- (SPARK RM 6.9(17)).
10448 Check_Ghost_Overriding (S, Overridden_Subp);
10449 end if;
10451 -- If there is a homonym that is not overloadable, then we have an
10452 -- error, except for the special cases checked explicitly below.
10454 elsif not Is_Overloadable (E) then
10456 -- Check for spurious conflict produced by a subprogram that has the
10457 -- same name as that of the enclosing generic package. The conflict
10458 -- occurs within an instance, between the subprogram and the renaming
10459 -- declaration for the package. After the subprogram, the package
10460 -- renaming declaration becomes hidden.
10462 if Ekind (E) = E_Package
10463 and then Present (Renamed_Object (E))
10464 and then Renamed_Object (E) = Current_Scope
10465 and then Nkind (Parent (Renamed_Object (E))) =
10466 N_Package_Specification
10467 and then Present (Generic_Parent (Parent (Renamed_Object (E))))
10468 then
10469 Set_Is_Hidden (E);
10470 Set_Is_Immediately_Visible (E, False);
10471 Enter_Overloaded_Entity (S);
10472 Set_Homonym (S, Homonym (E));
10473 Check_Dispatching_Operation (S, Empty);
10474 Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
10476 -- If the subprogram is implicit it is hidden by the previous
10477 -- declaration. However if it is dispatching, it must appear in the
10478 -- dispatch table anyway, because it can be dispatched to even if it
10479 -- cannot be called directly.
10481 elsif Present (Alias (S)) and then not Comes_From_Source (S) then
10482 Set_Scope (S, Current_Scope);
10484 if Is_Dispatching_Operation (Alias (S)) then
10485 Check_Dispatching_Operation (S, Empty);
10486 end if;
10488 return;
10490 else
10491 Report_Conflict (S, E);
10492 return;
10493 end if;
10495 -- E exists and is overloadable
10497 else
10498 Check_Synchronized_Overriding (S, Overridden_Subp);
10500 -- Loop through E and its homonyms to determine if any of them is
10501 -- the candidate for overriding by S.
10503 while Present (E) loop
10505 -- Definitely not interesting if not in the current scope
10507 if Scope (E) /= Current_Scope then
10508 null;
10510 -- A function can overload the name of an abstract state. The
10511 -- state can be viewed as a function with a profile that cannot
10512 -- be matched by anything.
10514 elsif Ekind (S) = E_Function
10515 and then Ekind (E) = E_Abstract_State
10516 then
10517 Enter_Overloaded_Entity (S);
10518 return;
10520 -- Ada 2012 (AI05-0165): For internally generated bodies of null
10521 -- procedures locate the internally generated spec. We enforce
10522 -- mode conformance since a tagged type may inherit from
10523 -- interfaces several null primitives which differ only in
10524 -- the mode of the formals.
10526 elsif not Comes_From_Source (S)
10527 and then Is_Null_Procedure (S)
10528 and then not Mode_Conformant (E, S)
10529 then
10530 null;
10532 -- Check if we have type conformance
10534 elsif Type_Conformant (E, S) then
10536 -- If the old and new entities have the same profile and one
10537 -- is not the body of the other, then this is an error, unless
10538 -- one of them is implicitly declared.
10540 -- There are some cases when both can be implicit, for example
10541 -- when both a literal and a function that overrides it are
10542 -- inherited in a derivation, or when an inherited operation
10543 -- of a tagged full type overrides the inherited operation of
10544 -- a private extension. Ada 83 had a special rule for the
10545 -- literal case. In Ada 95, the later implicit operation hides
10546 -- the former, and the literal is always the former. In the
10547 -- odd case where both are derived operations declared at the
10548 -- same point, both operations should be declared, and in that
10549 -- case we bypass the following test and proceed to the next
10550 -- part. This can only occur for certain obscure cases in
10551 -- instances, when an operation on a type derived from a formal
10552 -- private type does not override a homograph inherited from
10553 -- the actual. In subsequent derivations of such a type, the
10554 -- DT positions of these operations remain distinct, if they
10555 -- have been set.
10557 if Present (Alias (S))
10558 and then (No (Alias (E))
10559 or else Comes_From_Source (E)
10560 or else Is_Abstract_Subprogram (S)
10561 or else
10562 (Is_Dispatching_Operation (E)
10563 and then Is_Overriding_Alias (E, S)))
10564 and then Ekind (E) /= E_Enumeration_Literal
10565 then
10566 -- When an derived operation is overloaded it may be due to
10567 -- the fact that the full view of a private extension
10568 -- re-inherits. It has to be dealt with.
10570 if Is_Package_Or_Generic_Package (Current_Scope)
10571 and then In_Private_Part (Current_Scope)
10572 then
10573 Check_Operation_From_Private_View (S, E);
10574 end if;
10576 -- In any case the implicit operation remains hidden by the
10577 -- existing declaration, which is overriding. Indicate that
10578 -- E overrides the operation from which S is inherited.
10580 if Present (Alias (S)) then
10581 Set_Overridden_Operation (E, Alias (S));
10582 Inherit_Subprogram_Contract (E, Alias (S));
10584 else
10585 Set_Overridden_Operation (E, S);
10586 Inherit_Subprogram_Contract (E, S);
10587 end if;
10589 if Comes_From_Source (E) then
10590 Check_Overriding_Indicator (E, S, Is_Primitive => False);
10592 -- The Ghost policy in effect at the point of declaration
10593 -- of a parent subprogram and an overriding subprogram
10594 -- must match (SPARK RM 6.9(17)).
10596 Check_Ghost_Overriding (E, S);
10597 end if;
10599 return;
10601 -- Within an instance, the renaming declarations for actual
10602 -- subprograms may become ambiguous, but they do not hide each
10603 -- other.
10605 elsif Ekind (E) /= E_Entry
10606 and then not Comes_From_Source (E)
10607 and then not Is_Generic_Instance (E)
10608 and then (Present (Alias (E))
10609 or else Is_Intrinsic_Subprogram (E))
10610 and then (not In_Instance
10611 or else No (Parent (E))
10612 or else Nkind (Unit_Declaration_Node (E)) /=
10613 N_Subprogram_Renaming_Declaration)
10614 then
10615 -- A subprogram child unit is not allowed to override an
10616 -- inherited subprogram (10.1.1(20)).
10618 if Is_Child_Unit (S) then
10619 Error_Msg_N
10620 ("child unit overrides inherited subprogram in parent",
10622 return;
10623 end if;
10625 if Is_Non_Overriding_Operation (E, S) then
10626 Enter_Overloaded_Entity (S);
10628 if No (Derived_Type)
10629 or else Is_Tagged_Type (Derived_Type)
10630 then
10631 Check_Dispatching_Operation (S, Empty);
10632 end if;
10634 return;
10635 end if;
10637 -- E is a derived operation or an internal operator which
10638 -- is being overridden. Remove E from further visibility.
10639 -- Furthermore, if E is a dispatching operation, it must be
10640 -- replaced in the list of primitive operations of its type
10641 -- (see Override_Dispatching_Operation).
10643 Overridden_Subp := E;
10645 declare
10646 Prev : Entity_Id;
10648 begin
10649 Prev := First_Entity (Current_Scope);
10650 while Present (Prev) and then Next_Entity (Prev) /= E loop
10651 Next_Entity (Prev);
10652 end loop;
10654 -- It is possible for E to be in the current scope and
10655 -- yet not in the entity chain. This can only occur in a
10656 -- generic context where E is an implicit concatenation
10657 -- in the formal part, because in a generic body the
10658 -- entity chain starts with the formals.
10660 -- In GNATprove mode, a wrapper for an operation with
10661 -- axiomatization may be a homonym of another declaration
10662 -- for an actual subprogram (needs refinement ???).
10664 if No (Prev) then
10665 if In_Instance
10666 and then GNATprove_Mode
10667 and then
10668 Nkind (Original_Node (Unit_Declaration_Node (S))) =
10669 N_Subprogram_Renaming_Declaration
10670 then
10671 return;
10672 else
10673 pragma Assert (Chars (E) = Name_Op_Concat);
10674 null;
10675 end if;
10676 end if;
10678 -- E must be removed both from the entity_list of the
10679 -- current scope, and from the visibility chain.
10681 if Debug_Flag_E then
10682 Write_Str ("Override implicit operation ");
10683 Write_Int (Int (E));
10684 Write_Eol;
10685 end if;
10687 -- If E is a predefined concatenation, it stands for four
10688 -- different operations. As a result, a single explicit
10689 -- declaration does not hide it. In a possible ambiguous
10690 -- situation, Disambiguate chooses the user-defined op,
10691 -- so it is correct to retain the previous internal one.
10693 if Chars (E) /= Name_Op_Concat
10694 or else Ekind (E) /= E_Operator
10695 then
10696 -- For nondispatching derived operations that are
10697 -- overridden by a subprogram declared in the private
10698 -- part of a package, we retain the derived subprogram
10699 -- but mark it as not immediately visible. If the
10700 -- derived operation was declared in the visible part
10701 -- then this ensures that it will still be visible
10702 -- outside the package with the proper signature
10703 -- (calls from outside must also be directed to this
10704 -- version rather than the overriding one, unlike the
10705 -- dispatching case). Calls from inside the package
10706 -- will still resolve to the overriding subprogram
10707 -- since the derived one is marked as not visible
10708 -- within the package.
10710 -- If the private operation is dispatching, we achieve
10711 -- the overriding by keeping the implicit operation
10712 -- but setting its alias to be the overriding one. In
10713 -- this fashion the proper body is executed in all
10714 -- cases, but the original signature is used outside
10715 -- of the package.
10717 -- If the overriding is not in the private part, we
10718 -- remove the implicit operation altogether.
10720 if Is_Private_Declaration (S) then
10721 if not Is_Dispatching_Operation (E) then
10722 Set_Is_Immediately_Visible (E, False);
10723 else
10724 -- Work done in Override_Dispatching_Operation,
10725 -- so nothing else needs to be done here.
10727 null;
10728 end if;
10730 else
10731 -- Find predecessor of E in Homonym chain
10733 if E = Current_Entity (E) then
10734 Prev_Vis := Empty;
10735 else
10736 Prev_Vis := Current_Entity (E);
10737 while Homonym (Prev_Vis) /= E loop
10738 Prev_Vis := Homonym (Prev_Vis);
10739 end loop;
10740 end if;
10742 if Prev_Vis /= Empty then
10744 -- Skip E in the visibility chain
10746 Set_Homonym (Prev_Vis, Homonym (E));
10748 else
10749 Set_Name_Entity_Id (Chars (E), Homonym (E));
10750 end if;
10752 Set_Next_Entity (Prev, Next_Entity (E));
10754 if No (Next_Entity (Prev)) then
10755 Set_Last_Entity (Current_Scope, Prev);
10756 end if;
10757 end if;
10758 end if;
10760 Enter_Overloaded_Entity (S);
10762 -- For entities generated by Derive_Subprograms the
10763 -- overridden operation is the inherited primitive
10764 -- (which is available through the attribute alias).
10766 if not (Comes_From_Source (E))
10767 and then Is_Dispatching_Operation (E)
10768 and then Find_Dispatching_Type (E) =
10769 Find_Dispatching_Type (S)
10770 and then Present (Alias (E))
10771 and then Comes_From_Source (Alias (E))
10772 then
10773 Set_Overridden_Operation (S, Alias (E));
10774 Inherit_Subprogram_Contract (S, Alias (E));
10776 -- Normal case of setting entity as overridden
10778 -- Note: Static_Initialization and Overridden_Operation
10779 -- attributes use the same field in subprogram entities.
10780 -- Static_Initialization is only defined for internal
10781 -- initialization procedures, where Overridden_Operation
10782 -- is irrelevant. Therefore the setting of this attribute
10783 -- must check whether the target is an init_proc.
10785 elsif not Is_Init_Proc (S) then
10786 Set_Overridden_Operation (S, E);
10787 Inherit_Subprogram_Contract (S, E);
10788 end if;
10790 Check_Overriding_Indicator (S, E, Is_Primitive => True);
10792 -- The Ghost policy in effect at the point of declaration
10793 -- of a parent subprogram and an overriding subprogram
10794 -- must match (SPARK RM 6.9(17)).
10796 Check_Ghost_Overriding (S, E);
10798 -- If S is a user-defined subprogram or a null procedure
10799 -- expanded to override an inherited null procedure, or a
10800 -- predefined dispatching primitive then indicate that E
10801 -- overrides the operation from which S is inherited.
10803 if Comes_From_Source (S)
10804 or else
10805 (Present (Parent (S))
10806 and then
10807 Nkind (Parent (S)) = N_Procedure_Specification
10808 and then
10809 Null_Present (Parent (S)))
10810 or else
10811 (Present (Alias (E))
10812 and then
10813 Is_Predefined_Dispatching_Operation (Alias (E)))
10814 then
10815 if Present (Alias (E)) then
10816 Set_Overridden_Operation (S, Alias (E));
10817 Inherit_Subprogram_Contract (S, Alias (E));
10818 end if;
10819 end if;
10821 if Is_Dispatching_Operation (E) then
10823 -- An overriding dispatching subprogram inherits the
10824 -- convention of the overridden subprogram (AI-117).
10826 Set_Convention (S, Convention (E));
10827 Check_Dispatching_Operation (S, E);
10829 else
10830 Check_Dispatching_Operation (S, Empty);
10831 end if;
10833 Check_For_Primitive_Subprogram
10834 (Is_Primitive_Subp, Is_Overriding => True);
10835 goto Check_Inequality;
10836 end;
10838 -- Apparent redeclarations in instances can occur when two
10839 -- formal types get the same actual type. The subprograms in
10840 -- in the instance are legal, even if not callable from the
10841 -- outside. Calls from within are disambiguated elsewhere.
10842 -- For dispatching operations in the visible part, the usual
10843 -- rules apply, and operations with the same profile are not
10844 -- legal (B830001).
10846 elsif (In_Instance_Visible_Part
10847 and then not Is_Dispatching_Operation (E))
10848 or else In_Instance_Not_Visible
10849 then
10850 null;
10852 -- Here we have a real error (identical profile)
10854 else
10855 Error_Msg_Sloc := Sloc (E);
10857 -- Avoid cascaded errors if the entity appears in
10858 -- subsequent calls.
10860 Set_Scope (S, Current_Scope);
10862 -- Generate error, with extra useful warning for the case
10863 -- of a generic instance with no completion.
10865 if Is_Generic_Instance (S)
10866 and then not Has_Completion (E)
10867 then
10868 Error_Msg_N
10869 ("instantiation cannot provide body for&", S);
10870 Error_Msg_N ("\& conflicts with declaration#", S);
10871 else
10872 Error_Msg_N ("& conflicts with declaration#", S);
10873 end if;
10875 return;
10876 end if;
10878 else
10879 -- If one subprogram has an access parameter and the other
10880 -- a parameter of an access type, calls to either might be
10881 -- ambiguous. Verify that parameters match except for the
10882 -- access parameter.
10884 if May_Hide_Profile then
10885 declare
10886 F1 : Entity_Id;
10887 F2 : Entity_Id;
10889 begin
10890 F1 := First_Formal (S);
10891 F2 := First_Formal (E);
10892 while Present (F1) and then Present (F2) loop
10893 if Is_Access_Type (Etype (F1)) then
10894 if not Is_Access_Type (Etype (F2))
10895 or else not Conforming_Types
10896 (Designated_Type (Etype (F1)),
10897 Designated_Type (Etype (F2)),
10898 Type_Conformant)
10899 then
10900 May_Hide_Profile := False;
10901 end if;
10903 elsif
10904 not Conforming_Types
10905 (Etype (F1), Etype (F2), Type_Conformant)
10906 then
10907 May_Hide_Profile := False;
10908 end if;
10910 Next_Formal (F1);
10911 Next_Formal (F2);
10912 end loop;
10914 if May_Hide_Profile
10915 and then No (F1)
10916 and then No (F2)
10917 then
10918 Error_Msg_NE ("calls to& may be ambiguous??", S, S);
10919 end if;
10920 end;
10921 end if;
10922 end if;
10924 E := Homonym (E);
10925 end loop;
10927 -- On exit, we know that S is a new entity
10929 Enter_Overloaded_Entity (S);
10930 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
10931 Check_Overriding_Indicator
10932 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
10934 -- The Ghost policy in effect at the point of declaration of a parent
10935 -- subprogram and an overriding subprogram must match
10936 -- (SPARK RM 6.9(17)).
10938 Check_Ghost_Overriding (S, Overridden_Subp);
10940 -- Overloading is not allowed in SPARK, except for operators
10942 if Nkind (S) /= N_Defining_Operator_Symbol then
10943 Error_Msg_Sloc := Sloc (Homonym (S));
10944 Check_SPARK_05_Restriction
10945 ("overloading not allowed with entity#", S);
10946 end if;
10948 -- If S is a derived operation for an untagged type then by
10949 -- definition it's not a dispatching operation (even if the parent
10950 -- operation was dispatching), so Check_Dispatching_Operation is not
10951 -- called in that case.
10953 if No (Derived_Type)
10954 or else Is_Tagged_Type (Derived_Type)
10955 then
10956 Check_Dispatching_Operation (S, Empty);
10957 end if;
10958 end if;
10960 -- If this is a user-defined equality operator that is not a derived
10961 -- subprogram, create the corresponding inequality. If the operation is
10962 -- dispatching, the expansion is done elsewhere, and we do not create
10963 -- an explicit inequality operation.
10965 <<Check_Inequality>>
10966 if Chars (S) = Name_Op_Eq
10967 and then Etype (S) = Standard_Boolean
10968 and then Present (Parent (S))
10969 and then not Is_Dispatching_Operation (S)
10970 then
10971 Make_Inequality_Operator (S);
10972 Check_Untagged_Equality (S);
10973 end if;
10974 end New_Overloaded_Entity;
10976 ---------------------
10977 -- Process_Formals --
10978 ---------------------
10980 procedure Process_Formals
10981 (T : List_Id;
10982 Related_Nod : Node_Id)
10984 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean;
10985 -- Determine whether an access type designates a type coming from a
10986 -- limited view.
10988 function Is_Class_Wide_Default (D : Node_Id) return Boolean;
10989 -- Check whether the default has a class-wide type. After analysis the
10990 -- default has the type of the formal, so we must also check explicitly
10991 -- for an access attribute.
10993 ----------------------------------
10994 -- Designates_From_Limited_With --
10995 ----------------------------------
10997 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean is
10998 Desig : Entity_Id := Typ;
11000 begin
11001 if Is_Access_Type (Desig) then
11002 Desig := Directly_Designated_Type (Desig);
11003 end if;
11005 if Is_Class_Wide_Type (Desig) then
11006 Desig := Root_Type (Desig);
11007 end if;
11009 return
11010 Ekind (Desig) = E_Incomplete_Type
11011 and then From_Limited_With (Desig);
11012 end Designates_From_Limited_With;
11014 ---------------------------
11015 -- Is_Class_Wide_Default --
11016 ---------------------------
11018 function Is_Class_Wide_Default (D : Node_Id) return Boolean is
11019 begin
11020 return Is_Class_Wide_Type (Designated_Type (Etype (D)))
11021 or else (Nkind (D) = N_Attribute_Reference
11022 and then Attribute_Name (D) = Name_Access
11023 and then Is_Class_Wide_Type (Etype (Prefix (D))));
11024 end Is_Class_Wide_Default;
11026 -- Local variables
11028 Context : constant Node_Id := Parent (Parent (T));
11029 Default : Node_Id;
11030 Formal : Entity_Id;
11031 Formal_Type : Entity_Id;
11032 Param_Spec : Node_Id;
11033 Ptype : Entity_Id;
11035 Num_Out_Params : Nat := 0;
11036 First_Out_Param : Entity_Id := Empty;
11037 -- Used for setting Is_Only_Out_Parameter
11039 -- Start of processing for Process_Formals
11041 begin
11042 -- In order to prevent premature use of the formals in the same formal
11043 -- part, the Ekind is left undefined until all default expressions are
11044 -- analyzed. The Ekind is established in a separate loop at the end.
11046 Param_Spec := First (T);
11047 while Present (Param_Spec) loop
11048 Formal := Defining_Identifier (Param_Spec);
11049 Set_Never_Set_In_Source (Formal, True);
11050 Enter_Name (Formal);
11052 -- Case of ordinary parameters
11054 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
11055 Find_Type (Parameter_Type (Param_Spec));
11056 Ptype := Parameter_Type (Param_Spec);
11058 if Ptype = Error then
11059 goto Continue;
11060 end if;
11062 Formal_Type := Entity (Ptype);
11064 if Is_Incomplete_Type (Formal_Type)
11065 or else
11066 (Is_Class_Wide_Type (Formal_Type)
11067 and then Is_Incomplete_Type (Root_Type (Formal_Type)))
11068 then
11069 -- Ada 2005 (AI-326): Tagged incomplete types allowed in
11070 -- primitive operations, as long as their completion is
11071 -- in the same declarative part. If in the private part
11072 -- this means that the type cannot be a Taft-amendment type.
11073 -- Check is done on package exit. For access to subprograms,
11074 -- the use is legal for Taft-amendment types.
11076 -- Ada 2012: tagged incomplete types are allowed as generic
11077 -- formal types. They do not introduce dependencies and the
11078 -- corresponding generic subprogram does not have a delayed
11079 -- freeze, because it does not need a freeze node. However,
11080 -- it is still the case that untagged incomplete types cannot
11081 -- be Taft-amendment types and must be completed in private
11082 -- part, so the subprogram must appear in the list of private
11083 -- dependents of the type.
11085 if Is_Tagged_Type (Formal_Type)
11086 or else (Ada_Version >= Ada_2012
11087 and then not From_Limited_With (Formal_Type)
11088 and then not Is_Generic_Type (Formal_Type))
11089 then
11090 if Ekind (Scope (Current_Scope)) = E_Package
11091 and then not Is_Generic_Type (Formal_Type)
11092 and then not Is_Class_Wide_Type (Formal_Type)
11093 then
11094 if not Nkind_In
11095 (Parent (T), N_Access_Function_Definition,
11096 N_Access_Procedure_Definition)
11097 then
11098 Append_Elmt (Current_Scope,
11099 Private_Dependents (Base_Type (Formal_Type)));
11101 -- Freezing is delayed to ensure that Register_Prim
11102 -- will get called for this operation, which is needed
11103 -- in cases where static dispatch tables aren't built.
11104 -- (Note that the same is done for controlling access
11105 -- parameter cases in function Access_Definition.)
11107 if not Is_Thunk (Current_Scope) then
11108 Set_Has_Delayed_Freeze (Current_Scope);
11109 end if;
11110 end if;
11111 end if;
11113 elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
11114 N_Access_Procedure_Definition)
11115 then
11116 -- AI05-0151: Tagged incomplete types are allowed in all
11117 -- formal parts. Untagged incomplete types are not allowed
11118 -- in bodies. Limited views of either kind are not allowed
11119 -- if there is no place at which the non-limited view can
11120 -- become available.
11122 -- Incomplete formal untagged types are not allowed in
11123 -- subprogram bodies (but are legal in their declarations).
11124 -- This excludes bodies created for null procedures, which
11125 -- are basic declarations.
11127 if Is_Generic_Type (Formal_Type)
11128 and then not Is_Tagged_Type (Formal_Type)
11129 and then Nkind (Parent (Related_Nod)) = N_Subprogram_Body
11130 then
11131 Error_Msg_N
11132 ("invalid use of formal incomplete type", Param_Spec);
11134 elsif Ada_Version >= Ada_2012 then
11135 if Is_Tagged_Type (Formal_Type)
11136 and then (not From_Limited_With (Formal_Type)
11137 or else not In_Package_Body)
11138 then
11139 null;
11141 elsif Nkind_In (Context, N_Accept_Statement,
11142 N_Accept_Alternative,
11143 N_Entry_Body)
11144 or else (Nkind (Context) = N_Subprogram_Body
11145 and then Comes_From_Source (Context))
11146 then
11147 Error_Msg_NE
11148 ("invalid use of untagged incomplete type &",
11149 Ptype, Formal_Type);
11150 end if;
11152 else
11153 Error_Msg_NE
11154 ("invalid use of incomplete type&",
11155 Param_Spec, Formal_Type);
11157 -- Further checks on the legality of incomplete types
11158 -- in formal parts are delayed until the freeze point
11159 -- of the enclosing subprogram or access to subprogram.
11160 end if;
11161 end if;
11163 elsif Ekind (Formal_Type) = E_Void then
11164 Error_Msg_NE
11165 ("premature use of&",
11166 Parameter_Type (Param_Spec), Formal_Type);
11167 end if;
11169 -- Ada 2012 (AI-142): Handle aliased parameters
11171 if Ada_Version >= Ada_2012
11172 and then Aliased_Present (Param_Spec)
11173 then
11174 Set_Is_Aliased (Formal);
11175 end if;
11177 -- Ada 2005 (AI-231): Create and decorate an internal subtype
11178 -- declaration corresponding to the null-excluding type of the
11179 -- formal in the enclosing scope. Finally, replace the parameter
11180 -- type of the formal with the internal subtype.
11182 if Ada_Version >= Ada_2005
11183 and then Null_Exclusion_Present (Param_Spec)
11184 then
11185 if not Is_Access_Type (Formal_Type) then
11186 Error_Msg_N
11187 ("`NOT NULL` allowed only for an access type", Param_Spec);
11189 else
11190 if Can_Never_Be_Null (Formal_Type)
11191 and then Comes_From_Source (Related_Nod)
11192 then
11193 Error_Msg_NE
11194 ("`NOT NULL` not allowed (& already excludes null)",
11195 Param_Spec, Formal_Type);
11196 end if;
11198 Formal_Type :=
11199 Create_Null_Excluding_Itype
11200 (T => Formal_Type,
11201 Related_Nod => Related_Nod,
11202 Scope_Id => Scope (Current_Scope));
11204 -- If the designated type of the itype is an itype that is
11205 -- not frozen yet, we set the Has_Delayed_Freeze attribute
11206 -- on the access subtype, to prevent order-of-elaboration
11207 -- issues in the backend.
11209 -- Example:
11210 -- type T is access procedure;
11211 -- procedure Op (O : not null T);
11213 if Is_Itype (Directly_Designated_Type (Formal_Type))
11214 and then
11215 not Is_Frozen (Directly_Designated_Type (Formal_Type))
11216 then
11217 Set_Has_Delayed_Freeze (Formal_Type);
11218 end if;
11219 end if;
11220 end if;
11222 -- An access formal type
11224 else
11225 Formal_Type :=
11226 Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
11228 -- No need to continue if we already notified errors
11230 if not Present (Formal_Type) then
11231 return;
11232 end if;
11234 -- Ada 2005 (AI-254)
11236 declare
11237 AD : constant Node_Id :=
11238 Access_To_Subprogram_Definition
11239 (Parameter_Type (Param_Spec));
11240 begin
11241 if Present (AD) and then Protected_Present (AD) then
11242 Formal_Type :=
11243 Replace_Anonymous_Access_To_Protected_Subprogram
11244 (Param_Spec);
11245 end if;
11246 end;
11247 end if;
11249 Set_Etype (Formal, Formal_Type);
11251 -- Deal with default expression if present
11253 Default := Expression (Param_Spec);
11255 if Present (Default) then
11256 Check_SPARK_05_Restriction
11257 ("default expression is not allowed", Default);
11259 if Out_Present (Param_Spec) then
11260 Error_Msg_N
11261 ("default initialization only allowed for IN parameters",
11262 Param_Spec);
11263 end if;
11265 -- Do the special preanalysis of the expression (see section on
11266 -- "Handling of Default Expressions" in the spec of package Sem).
11268 Preanalyze_Spec_Expression (Default, Formal_Type);
11270 -- An access to constant cannot be the default for
11271 -- an access parameter that is an access to variable.
11273 if Ekind (Formal_Type) = E_Anonymous_Access_Type
11274 and then not Is_Access_Constant (Formal_Type)
11275 and then Is_Access_Type (Etype (Default))
11276 and then Is_Access_Constant (Etype (Default))
11277 then
11278 Error_Msg_N
11279 ("formal that is access to variable cannot be initialized "
11280 & "with an access-to-constant expression", Default);
11281 end if;
11283 -- Check that the designated type of an access parameter's default
11284 -- is not a class-wide type unless the parameter's designated type
11285 -- is also class-wide.
11287 if Ekind (Formal_Type) = E_Anonymous_Access_Type
11288 and then not Designates_From_Limited_With (Formal_Type)
11289 and then Is_Class_Wide_Default (Default)
11290 and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
11291 then
11292 Error_Msg_N
11293 ("access to class-wide expression not allowed here", Default);
11294 end if;
11296 -- Check incorrect use of dynamically tagged expressions
11298 if Is_Tagged_Type (Formal_Type) then
11299 Check_Dynamically_Tagged_Expression
11300 (Expr => Default,
11301 Typ => Formal_Type,
11302 Related_Nod => Default);
11303 end if;
11304 end if;
11306 -- Ada 2005 (AI-231): Static checks
11308 if Ada_Version >= Ada_2005
11309 and then Is_Access_Type (Etype (Formal))
11310 and then Can_Never_Be_Null (Etype (Formal))
11311 then
11312 Null_Exclusion_Static_Checks (Param_Spec);
11313 end if;
11315 -- The following checks are relevant only when SPARK_Mode is on as
11316 -- these are not standard Ada legality rules.
11318 if SPARK_Mode = On then
11319 if Ekind_In (Scope (Formal), E_Function, E_Generic_Function) then
11321 -- A function cannot have a parameter of mode IN OUT or OUT
11322 -- (SPARK RM 6.1).
11324 if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
11325 Error_Msg_N
11326 ("function cannot have parameter of mode `OUT` or "
11327 & "`IN OUT`", Formal);
11328 end if;
11330 -- A procedure cannot have an effectively volatile formal
11331 -- parameter of mode IN because it behaves as a constant
11332 -- (SPARK RM 7.1.3(6)). -- ??? maybe 7.1.3(4)
11334 elsif Ekind (Scope (Formal)) = E_Procedure
11335 and then Ekind (Formal) = E_In_Parameter
11336 and then Is_Effectively_Volatile (Formal)
11337 then
11338 Error_Msg_N
11339 ("formal parameter of mode `IN` cannot be volatile", Formal);
11340 end if;
11341 end if;
11343 <<Continue>>
11344 Next (Param_Spec);
11345 end loop;
11347 -- If this is the formal part of a function specification, analyze the
11348 -- subtype mark in the context where the formals are visible but not
11349 -- yet usable, and may hide outer homographs.
11351 if Nkind (Related_Nod) = N_Function_Specification then
11352 Analyze_Return_Type (Related_Nod);
11353 end if;
11355 -- Now set the kind (mode) of each formal
11357 Param_Spec := First (T);
11358 while Present (Param_Spec) loop
11359 Formal := Defining_Identifier (Param_Spec);
11360 Set_Formal_Mode (Formal);
11362 if Ekind (Formal) = E_In_Parameter then
11363 Set_Default_Value (Formal, Expression (Param_Spec));
11365 if Present (Expression (Param_Spec)) then
11366 Default := Expression (Param_Spec);
11368 if Is_Scalar_Type (Etype (Default)) then
11369 if Nkind (Parameter_Type (Param_Spec)) /=
11370 N_Access_Definition
11371 then
11372 Formal_Type := Entity (Parameter_Type (Param_Spec));
11373 else
11374 Formal_Type :=
11375 Access_Definition
11376 (Related_Nod, Parameter_Type (Param_Spec));
11377 end if;
11379 Apply_Scalar_Range_Check (Default, Formal_Type);
11380 end if;
11381 end if;
11383 elsif Ekind (Formal) = E_Out_Parameter then
11384 Num_Out_Params := Num_Out_Params + 1;
11386 if Num_Out_Params = 1 then
11387 First_Out_Param := Formal;
11388 end if;
11390 elsif Ekind (Formal) = E_In_Out_Parameter then
11391 Num_Out_Params := Num_Out_Params + 1;
11392 end if;
11394 -- Skip remaining processing if formal type was in error
11396 if Etype (Formal) = Any_Type or else Error_Posted (Formal) then
11397 goto Next_Parameter;
11398 end if;
11400 -- Force call by reference if aliased
11402 declare
11403 Conv : constant Convention_Id := Convention (Etype (Formal));
11404 begin
11405 if Is_Aliased (Formal) then
11406 Set_Mechanism (Formal, By_Reference);
11408 -- Warn if user asked this to be passed by copy
11410 if Conv = Convention_Ada_Pass_By_Copy then
11411 Error_Msg_N
11412 ("cannot pass aliased parameter & by copy??", Formal);
11413 end if;
11415 -- Force mechanism if type has Convention Ada_Pass_By_Ref/Copy
11417 elsif Conv = Convention_Ada_Pass_By_Copy then
11418 Set_Mechanism (Formal, By_Copy);
11420 elsif Conv = Convention_Ada_Pass_By_Reference then
11421 Set_Mechanism (Formal, By_Reference);
11422 end if;
11423 end;
11425 <<Next_Parameter>>
11426 Next (Param_Spec);
11427 end loop;
11429 if Present (First_Out_Param) and then Num_Out_Params = 1 then
11430 Set_Is_Only_Out_Parameter (First_Out_Param);
11431 end if;
11432 end Process_Formals;
11434 ----------------------------
11435 -- Reference_Body_Formals --
11436 ----------------------------
11438 procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
11439 Fs : Entity_Id;
11440 Fb : Entity_Id;
11442 begin
11443 if Error_Posted (Spec) then
11444 return;
11445 end if;
11447 -- Iterate over both lists. They may be of different lengths if the two
11448 -- specs are not conformant.
11450 Fs := First_Formal (Spec);
11451 Fb := First_Formal (Bod);
11452 while Present (Fs) and then Present (Fb) loop
11453 Generate_Reference (Fs, Fb, 'b');
11455 if Style_Check then
11456 Style.Check_Identifier (Fb, Fs);
11457 end if;
11459 Set_Spec_Entity (Fb, Fs);
11460 Set_Referenced (Fs, False);
11461 Next_Formal (Fs);
11462 Next_Formal (Fb);
11463 end loop;
11464 end Reference_Body_Formals;
11466 -------------------------
11467 -- Set_Actual_Subtypes --
11468 -------------------------
11470 procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
11471 Decl : Node_Id;
11472 Formal : Entity_Id;
11473 T : Entity_Id;
11474 First_Stmt : Node_Id := Empty;
11475 AS_Needed : Boolean;
11477 begin
11478 -- If this is an empty initialization procedure, no need to create
11479 -- actual subtypes (small optimization).
11481 if Ekind (Subp) = E_Procedure and then Is_Null_Init_Proc (Subp) then
11482 return;
11483 end if;
11485 -- The subtype declarations may freeze the formals. The body generated
11486 -- for an expression function is not a freeze point, so do not emit
11487 -- these declarations (small loss of efficiency in rare cases).
11489 if Nkind (N) = N_Subprogram_Body
11490 and then Was_Expression_Function (N)
11491 then
11492 return;
11493 end if;
11495 Formal := First_Formal (Subp);
11496 while Present (Formal) loop
11497 T := Etype (Formal);
11499 -- We never need an actual subtype for a constrained formal
11501 if Is_Constrained (T) then
11502 AS_Needed := False;
11504 -- If we have unknown discriminants, then we do not need an actual
11505 -- subtype, or more accurately we cannot figure it out. Note that
11506 -- all class-wide types have unknown discriminants.
11508 elsif Has_Unknown_Discriminants (T) then
11509 AS_Needed := False;
11511 -- At this stage we have an unconstrained type that may need an
11512 -- actual subtype. For sure the actual subtype is needed if we have
11513 -- an unconstrained array type. However, in an instance, the type
11514 -- may appear as a subtype of the full view, while the actual is
11515 -- in fact private (in which case no actual subtype is needed) so
11516 -- check the kind of the base type.
11518 elsif Is_Array_Type (Base_Type (T)) then
11519 AS_Needed := True;
11521 -- The only other case needing an actual subtype is an unconstrained
11522 -- record type which is an IN parameter (we cannot generate actual
11523 -- subtypes for the OUT or IN OUT case, since an assignment can
11524 -- change the discriminant values. However we exclude the case of
11525 -- initialization procedures, since discriminants are handled very
11526 -- specially in this context, see the section entitled "Handling of
11527 -- Discriminants" in Einfo.
11529 -- We also exclude the case of Discrim_SO_Functions (functions used
11530 -- in front-end layout mode for size/offset values), since in such
11531 -- functions only discriminants are referenced, and not only are such
11532 -- subtypes not needed, but they cannot always be generated, because
11533 -- of order of elaboration issues.
11535 elsif Is_Record_Type (T)
11536 and then Ekind (Formal) = E_In_Parameter
11537 and then Chars (Formal) /= Name_uInit
11538 and then not Is_Unchecked_Union (T)
11539 and then not Is_Discrim_SO_Function (Subp)
11540 then
11541 AS_Needed := True;
11543 -- All other cases do not need an actual subtype
11545 else
11546 AS_Needed := False;
11547 end if;
11549 -- Generate actual subtypes for unconstrained arrays and
11550 -- unconstrained discriminated records.
11552 if AS_Needed then
11553 if Nkind (N) = N_Accept_Statement then
11555 -- If expansion is active, the formal is replaced by a local
11556 -- variable that renames the corresponding entry of the
11557 -- parameter block, and it is this local variable that may
11558 -- require an actual subtype.
11560 if Expander_Active then
11561 Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
11562 else
11563 Decl := Build_Actual_Subtype (T, Formal);
11564 end if;
11566 if Present (Handled_Statement_Sequence (N)) then
11567 First_Stmt :=
11568 First (Statements (Handled_Statement_Sequence (N)));
11569 Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
11570 Mark_Rewrite_Insertion (Decl);
11571 else
11572 -- If the accept statement has no body, there will be no
11573 -- reference to the actuals, so no need to compute actual
11574 -- subtypes.
11576 return;
11577 end if;
11579 else
11580 Decl := Build_Actual_Subtype (T, Formal);
11581 Prepend (Decl, Declarations (N));
11582 Mark_Rewrite_Insertion (Decl);
11583 end if;
11585 -- The declaration uses the bounds of an existing object, and
11586 -- therefore needs no constraint checks.
11588 Analyze (Decl, Suppress => All_Checks);
11589 Set_Is_Actual_Subtype (Defining_Identifier (Decl));
11591 -- We need to freeze manually the generated type when it is
11592 -- inserted anywhere else than in a declarative part.
11594 if Present (First_Stmt) then
11595 Insert_List_Before_And_Analyze (First_Stmt,
11596 Freeze_Entity (Defining_Identifier (Decl), N));
11598 -- Ditto if the type has a dynamic predicate, because the
11599 -- generated function will mention the actual subtype. The
11600 -- predicate may come from an explicit aspect of be inherited.
11602 elsif Has_Predicates (T) then
11603 Insert_List_Before_And_Analyze (Decl,
11604 Freeze_Entity (Defining_Identifier (Decl), N));
11605 end if;
11607 if Nkind (N) = N_Accept_Statement
11608 and then Expander_Active
11609 then
11610 Set_Actual_Subtype (Renamed_Object (Formal),
11611 Defining_Identifier (Decl));
11612 else
11613 Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
11614 end if;
11615 end if;
11617 Next_Formal (Formal);
11618 end loop;
11619 end Set_Actual_Subtypes;
11621 ---------------------
11622 -- Set_Formal_Mode --
11623 ---------------------
11625 procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
11626 Spec : constant Node_Id := Parent (Formal_Id);
11627 Id : constant Entity_Id := Scope (Formal_Id);
11629 begin
11630 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
11631 -- since we ensure that corresponding actuals are always valid at the
11632 -- point of the call.
11634 if Out_Present (Spec) then
11635 if Ekind_In (Id, E_Entry, E_Entry_Family)
11636 or else Is_Subprogram_Or_Generic_Subprogram (Id)
11637 then
11638 Set_Has_Out_Or_In_Out_Parameter (Id, True);
11639 end if;
11641 if Ekind_In (Id, E_Function, E_Generic_Function) then
11643 -- [IN] OUT parameters allowed for functions in Ada 2012
11645 if Ada_Version >= Ada_2012 then
11647 -- Even in Ada 2012 operators can only have IN parameters
11649 if Is_Operator_Symbol_Name (Chars (Scope (Formal_Id))) then
11650 Error_Msg_N ("operators can only have IN parameters", Spec);
11651 end if;
11653 if In_Present (Spec) then
11654 Set_Ekind (Formal_Id, E_In_Out_Parameter);
11655 else
11656 Set_Ekind (Formal_Id, E_Out_Parameter);
11657 end if;
11659 -- But not in earlier versions of Ada
11661 else
11662 Error_Msg_N ("functions can only have IN parameters", Spec);
11663 Set_Ekind (Formal_Id, E_In_Parameter);
11664 end if;
11666 elsif In_Present (Spec) then
11667 Set_Ekind (Formal_Id, E_In_Out_Parameter);
11669 else
11670 Set_Ekind (Formal_Id, E_Out_Parameter);
11671 Set_Never_Set_In_Source (Formal_Id, True);
11672 Set_Is_True_Constant (Formal_Id, False);
11673 Set_Current_Value (Formal_Id, Empty);
11674 end if;
11676 else
11677 Set_Ekind (Formal_Id, E_In_Parameter);
11678 end if;
11680 -- Set Is_Known_Non_Null for access parameters since the language
11681 -- guarantees that access parameters are always non-null. We also set
11682 -- Can_Never_Be_Null, since there is no way to change the value.
11684 if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
11686 -- Ada 2005 (AI-231): In Ada 95, access parameters are always non-
11687 -- null; In Ada 2005, only if then null_exclusion is explicit.
11689 if Ada_Version < Ada_2005
11690 or else Can_Never_Be_Null (Etype (Formal_Id))
11691 then
11692 Set_Is_Known_Non_Null (Formal_Id);
11693 Set_Can_Never_Be_Null (Formal_Id);
11694 end if;
11696 -- Ada 2005 (AI-231): Null-exclusion access subtype
11698 elsif Is_Access_Type (Etype (Formal_Id))
11699 and then Can_Never_Be_Null (Etype (Formal_Id))
11700 then
11701 Set_Is_Known_Non_Null (Formal_Id);
11703 -- We can also set Can_Never_Be_Null (thus preventing some junk
11704 -- access checks) for the case of an IN parameter, which cannot
11705 -- be changed, or for an IN OUT parameter, which can be changed but
11706 -- not to a null value. But for an OUT parameter, the initial value
11707 -- passed in can be null, so we can't set this flag in that case.
11709 if Ekind (Formal_Id) /= E_Out_Parameter then
11710 Set_Can_Never_Be_Null (Formal_Id);
11711 end if;
11712 end if;
11714 Set_Mechanism (Formal_Id, Default_Mechanism);
11715 Set_Formal_Validity (Formal_Id);
11716 end Set_Formal_Mode;
11718 -------------------------
11719 -- Set_Formal_Validity --
11720 -------------------------
11722 procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
11723 begin
11724 -- If no validity checking, then we cannot assume anything about the
11725 -- validity of parameters, since we do not know there is any checking
11726 -- of the validity on the call side.
11728 if not Validity_Checks_On then
11729 return;
11731 -- If validity checking for parameters is enabled, this means we are
11732 -- not supposed to make any assumptions about argument values.
11734 elsif Validity_Check_Parameters then
11735 return;
11737 -- If we are checking in parameters, we will assume that the caller is
11738 -- also checking parameters, so we can assume the parameter is valid.
11740 elsif Ekind (Formal_Id) = E_In_Parameter
11741 and then Validity_Check_In_Params
11742 then
11743 Set_Is_Known_Valid (Formal_Id, True);
11745 -- Similar treatment for IN OUT parameters
11747 elsif Ekind (Formal_Id) = E_In_Out_Parameter
11748 and then Validity_Check_In_Out_Params
11749 then
11750 Set_Is_Known_Valid (Formal_Id, True);
11751 end if;
11752 end Set_Formal_Validity;
11754 ------------------------
11755 -- Subtype_Conformant --
11756 ------------------------
11758 function Subtype_Conformant
11759 (New_Id : Entity_Id;
11760 Old_Id : Entity_Id;
11761 Skip_Controlling_Formals : Boolean := False) return Boolean
11763 Result : Boolean;
11764 begin
11765 Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
11766 Skip_Controlling_Formals => Skip_Controlling_Formals);
11767 return Result;
11768 end Subtype_Conformant;
11770 ---------------------
11771 -- Type_Conformant --
11772 ---------------------
11774 function Type_Conformant
11775 (New_Id : Entity_Id;
11776 Old_Id : Entity_Id;
11777 Skip_Controlling_Formals : Boolean := False) return Boolean
11779 Result : Boolean;
11780 begin
11781 May_Hide_Profile := False;
11782 Check_Conformance
11783 (New_Id, Old_Id, Type_Conformant, False, Result,
11784 Skip_Controlling_Formals => Skip_Controlling_Formals);
11785 return Result;
11786 end Type_Conformant;
11788 -------------------------------
11789 -- Valid_Operator_Definition --
11790 -------------------------------
11792 procedure Valid_Operator_Definition (Designator : Entity_Id) is
11793 N : Integer := 0;
11794 F : Entity_Id;
11795 Id : constant Name_Id := Chars (Designator);
11796 N_OK : Boolean;
11798 begin
11799 F := First_Formal (Designator);
11800 while Present (F) loop
11801 N := N + 1;
11803 if Present (Default_Value (F)) then
11804 Error_Msg_N
11805 ("default values not allowed for operator parameters",
11806 Parent (F));
11808 -- For function instantiations that are operators, we must check
11809 -- separately that the corresponding generic only has in-parameters.
11810 -- For subprogram declarations this is done in Set_Formal_Mode. Such
11811 -- an error could not arise in earlier versions of the language.
11813 elsif Ekind (F) /= E_In_Parameter then
11814 Error_Msg_N ("operators can only have IN parameters", F);
11815 end if;
11817 Next_Formal (F);
11818 end loop;
11820 -- Verify that user-defined operators have proper number of arguments
11821 -- First case of operators which can only be unary
11823 if Nam_In (Id, Name_Op_Not, Name_Op_Abs) then
11824 N_OK := (N = 1);
11826 -- Case of operators which can be unary or binary
11828 elsif Nam_In (Id, Name_Op_Add, Name_Op_Subtract) then
11829 N_OK := (N in 1 .. 2);
11831 -- All other operators can only be binary
11833 else
11834 N_OK := (N = 2);
11835 end if;
11837 if not N_OK then
11838 Error_Msg_N
11839 ("incorrect number of arguments for operator", Designator);
11840 end if;
11842 if Id = Name_Op_Ne
11843 and then Base_Type (Etype (Designator)) = Standard_Boolean
11844 and then not Is_Intrinsic_Subprogram (Designator)
11845 then
11846 Error_Msg_N
11847 ("explicit definition of inequality not allowed", Designator);
11848 end if;
11849 end Valid_Operator_Definition;
11851 end Sem_Ch6;