* extend.texi: Improve documentation of volatile asms.
[official-gcc.git] / gcc / genrecog.c
blob2856fe67d8abbf646ecb8acd508bcde2d3bee0bf
1 /* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 /* This program is used to produce insn-recog.c, which contains a
24 function called `recog' plus its subroutines. These functions
25 contain a decision tree that recognizes whether an rtx, the
26 argument given to recog, is a valid instruction.
28 recog returns -1 if the rtx is not valid. If the rtx is valid,
29 recog returns a nonnegative number which is the insn code number
30 for the pattern that matched. This is the same as the order in the
31 machine description of the entry that matched. This number can be
32 used as an index into various insn_* tables, such as insn_template,
33 insn_outfun, and insn_n_operands (found in insn-output.c).
35 The third argument to recog is an optional pointer to an int. If
36 present, recog will accept a pattern if it matches except for
37 missing CLOBBER expressions at the end. In that case, the value
38 pointed to by the optional pointer will be set to the number of
39 CLOBBERs that need to be added (it should be initialized to zero by
40 the caller). If it is set nonzero, the caller should allocate a
41 PARALLEL of the appropriate size, copy the initial entries, and
42 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
44 This program also generates the function `split_insns', which
45 returns 0 if the rtl could not be split, or it returns the split
46 rtl in a SEQUENCE.
48 This program also generates the function `peephole2_insns', which
49 returns 0 if the rtl could not be matched. If there was a match,
50 the new rtl is returned in a SEQUENCE, and LAST_INSN will point
51 to the last recognized insn in the old sequence. */
53 #include "hconfig.h"
54 #include "system.h"
55 #include "rtl.h"
56 #include "errors.h"
57 #include "gensupport.h"
60 #define OUTPUT_LABEL(INDENT_STRING, LABEL_NUMBER) \
61 printf("%sL%d: ATTRIBUTE_UNUSED_LABEL\n", (INDENT_STRING), (LABEL_NUMBER))
63 /* Holds an array of names indexed by insn_code_number. */
64 static char **insn_name_ptr = 0;
65 static int insn_name_ptr_size = 0;
67 /* A listhead of decision trees. The alternatives to a node are kept
68 in a doublely-linked list so we can easily add nodes to the proper
69 place when merging. */
71 struct decision_head
73 struct decision *first;
74 struct decision *last;
77 /* A single test. The two accept types aren't tests per-se, but
78 their equality (or lack thereof) does affect tree merging so
79 it is convenient to keep them here. */
81 struct decision_test
83 /* A linked list through the tests attached to a node. */
84 struct decision_test *next;
86 /* These types are roughly in the order in which we'd like to test them. */
87 enum decision_type {
88 DT_mode, DT_code, DT_veclen,
89 DT_elt_zero_int, DT_elt_one_int, DT_elt_zero_wide,
90 DT_veclen_ge, DT_dup, DT_pred, DT_c_test,
91 DT_accept_op, DT_accept_insn
92 } type;
94 union
96 enum machine_mode mode; /* Machine mode of node. */
97 RTX_CODE code; /* Code to test. */
99 struct
101 const char *name; /* Predicate to call. */
102 int index; /* Index into `preds' or -1. */
103 enum machine_mode mode; /* Machine mode for node. */
104 } pred;
106 const char *c_test; /* Additional test to perform. */
107 int veclen; /* Length of vector. */
108 int dup; /* Number of operand to compare against. */
109 HOST_WIDE_INT intval; /* Value for XINT for XWINT. */
110 int opno; /* Operand number matched. */
112 struct {
113 int code_number; /* Insn number matched. */
114 int lineno; /* Line number of the insn. */
115 int num_clobbers_to_add; /* Number of CLOBBERs to be added. */
116 } insn;
117 } u;
120 /* Data structure for decision tree for recognizing legitimate insns. */
122 struct decision
124 struct decision_head success; /* Nodes to test on success. */
125 struct decision *next; /* Node to test on failure. */
126 struct decision *prev; /* Node whose failure tests us. */
127 struct decision *afterward; /* Node to test on success,
128 but failure of successor nodes. */
130 const char *position; /* String denoting position in pattern. */
132 struct decision_test *tests; /* The tests for this node. */
134 int number; /* Node number, used for labels */
135 int subroutine_number; /* Number of subroutine this node starts */
136 int need_label; /* Label needs to be output. */
139 #define SUBROUTINE_THRESHOLD 100
141 static int next_subroutine_number;
143 /* We can write three types of subroutines: One for insn recognition,
144 one to split insns, and one for peephole-type optimizations. This
145 defines which type is being written. */
147 enum routine_type {
148 RECOG, SPLIT, PEEPHOLE2
151 #define IS_SPLIT(X) ((X) != RECOG)
153 /* Next available node number for tree nodes. */
155 static int next_number;
157 /* Next number to use as an insn_code. */
159 static int next_insn_code;
161 /* Similar, but counts all expressions in the MD file; used for
162 error messages. */
164 static int next_index;
166 /* Record the highest depth we ever have so we know how many variables to
167 allocate in each subroutine we make. */
169 static int max_depth;
171 /* The line number of the start of the pattern currently being processed. */
172 static int pattern_lineno;
174 /* Count of errors. */
175 static int error_count;
177 /* This table contains a list of the rtl codes that can possibly match a
178 predicate defined in recog.c. The function `maybe_both_true' uses it to
179 deduce that there are no expressions that can be matches by certain pairs
180 of tree nodes. Also, if a predicate can match only one code, we can
181 hardwire that code into the node testing the predicate. */
183 static struct pred_table
185 const char *name;
186 RTX_CODE codes[NUM_RTX_CODE];
187 } preds[] = {
188 {"general_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
189 LABEL_REF, SUBREG, REG, MEM}},
190 #ifdef PREDICATE_CODES
191 PREDICATE_CODES
192 #endif
193 {"address_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
194 LABEL_REF, SUBREG, REG, MEM, PLUS, MINUS, MULT}},
195 {"register_operand", {SUBREG, REG}},
196 {"pmode_register_operand", {SUBREG, REG}},
197 {"scratch_operand", {SCRATCH, REG}},
198 {"immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
199 LABEL_REF}},
200 {"const_int_operand", {CONST_INT}},
201 {"const_double_operand", {CONST_INT, CONST_DOUBLE}},
202 {"nonimmediate_operand", {SUBREG, REG, MEM}},
203 {"nonmemory_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
204 LABEL_REF, SUBREG, REG}},
205 {"push_operand", {MEM}},
206 {"pop_operand", {MEM}},
207 {"memory_operand", {SUBREG, MEM}},
208 {"indirect_operand", {SUBREG, MEM}},
209 {"comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, GTU,
210 UNORDERED, ORDERED, UNEQ, UNGE, UNGT, UNLE,
211 UNLT, LTGT}},
212 {"mode_independent_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
213 LABEL_REF, SUBREG, REG, MEM}}
216 #define NUM_KNOWN_PREDS ARRAY_SIZE (preds)
218 static const char * special_mode_pred_table[] = {
219 #ifdef SPECIAL_MODE_PREDICATES
220 SPECIAL_MODE_PREDICATES
221 #endif
222 "pmode_register_operand"
225 #define NUM_SPECIAL_MODE_PREDS ARRAY_SIZE (special_mode_pred_table)
227 static struct decision *new_decision
228 PARAMS ((const char *, struct decision_head *));
229 static struct decision_test *new_decision_test
230 PARAMS ((enum decision_type, struct decision_test ***));
231 static rtx find_operand
232 PARAMS ((rtx, int));
233 static rtx find_matching_operand
234 PARAMS ((rtx, int));
235 static void validate_pattern
236 PARAMS ((rtx, rtx, rtx, int));
237 static struct decision *add_to_sequence
238 PARAMS ((rtx, struct decision_head *, const char *, enum routine_type, int));
240 static int maybe_both_true_2
241 PARAMS ((struct decision_test *, struct decision_test *));
242 static int maybe_both_true_1
243 PARAMS ((struct decision_test *, struct decision_test *));
244 static int maybe_both_true
245 PARAMS ((struct decision *, struct decision *, int));
247 static int nodes_identical_1
248 PARAMS ((struct decision_test *, struct decision_test *));
249 static int nodes_identical
250 PARAMS ((struct decision *, struct decision *));
251 static void merge_accept_insn
252 PARAMS ((struct decision *, struct decision *));
253 static void merge_trees
254 PARAMS ((struct decision_head *, struct decision_head *));
256 static void factor_tests
257 PARAMS ((struct decision_head *));
258 static void simplify_tests
259 PARAMS ((struct decision_head *));
260 static int break_out_subroutines
261 PARAMS ((struct decision_head *, int));
262 static void find_afterward
263 PARAMS ((struct decision_head *, struct decision *));
265 static void change_state
266 PARAMS ((const char *, const char *, struct decision *, const char *));
267 static void print_code
268 PARAMS ((enum rtx_code));
269 static void write_afterward
270 PARAMS ((struct decision *, struct decision *, const char *));
271 static struct decision *write_switch
272 PARAMS ((struct decision *, int));
273 static void write_cond
274 PARAMS ((struct decision_test *, int, enum routine_type));
275 static void write_action
276 PARAMS ((struct decision *, struct decision_test *, int, int,
277 struct decision *, enum routine_type));
278 static int is_unconditional
279 PARAMS ((struct decision_test *, enum routine_type));
280 static int write_node
281 PARAMS ((struct decision *, int, enum routine_type));
282 static void write_tree_1
283 PARAMS ((struct decision_head *, int, enum routine_type));
284 static void write_tree
285 PARAMS ((struct decision_head *, const char *, enum routine_type, int));
286 static void write_subroutine
287 PARAMS ((struct decision_head *, enum routine_type));
288 static void write_subroutines
289 PARAMS ((struct decision_head *, enum routine_type));
290 static void write_header
291 PARAMS ((void));
293 static struct decision_head make_insn_sequence
294 PARAMS ((rtx, enum routine_type));
295 static void process_tree
296 PARAMS ((struct decision_head *, enum routine_type));
298 static void record_insn_name
299 PARAMS ((int, const char *));
301 static void debug_decision_0
302 PARAMS ((struct decision *, int, int));
303 static void debug_decision_1
304 PARAMS ((struct decision *, int));
305 static void debug_decision_2
306 PARAMS ((struct decision_test *));
307 extern void debug_decision
308 PARAMS ((struct decision *));
309 extern void debug_decision_list
310 PARAMS ((struct decision *));
312 /* Create a new node in sequence after LAST. */
314 static struct decision *
315 new_decision (position, last)
316 const char *position;
317 struct decision_head *last;
319 register struct decision *new
320 = (struct decision *) xmalloc (sizeof (struct decision));
322 memset (new, 0, sizeof (*new));
323 new->success = *last;
324 new->position = xstrdup (position);
325 new->number = next_number++;
327 last->first = last->last = new;
328 return new;
331 /* Create a new test and link it in at PLACE. */
333 static struct decision_test *
334 new_decision_test (type, pplace)
335 enum decision_type type;
336 struct decision_test ***pplace;
338 struct decision_test **place = *pplace;
339 struct decision_test *test;
341 test = (struct decision_test *) xmalloc (sizeof (*test));
342 test->next = *place;
343 test->type = type;
344 *place = test;
346 place = &test->next;
347 *pplace = place;
349 return test;
352 /* Search for and return operand N. */
354 static rtx
355 find_operand (pattern, n)
356 rtx pattern;
357 int n;
359 const char *fmt;
360 RTX_CODE code;
361 int i, j, len;
362 rtx r;
364 code = GET_CODE (pattern);
365 if ((code == MATCH_SCRATCH
366 || code == MATCH_INSN
367 || code == MATCH_OPERAND
368 || code == MATCH_OPERATOR
369 || code == MATCH_PARALLEL)
370 && XINT (pattern, 0) == n)
371 return pattern;
373 fmt = GET_RTX_FORMAT (code);
374 len = GET_RTX_LENGTH (code);
375 for (i = 0; i < len; i++)
377 switch (fmt[i])
379 case 'e': case 'u':
380 if ((r = find_operand (XEXP (pattern, i), n)) != NULL_RTX)
381 return r;
382 break;
384 case 'V':
385 if (! XVEC (pattern, i))
386 break;
387 /* FALLTHRU */
389 case 'E':
390 for (j = 0; j < XVECLEN (pattern, i); j++)
391 if ((r = find_operand (XVECEXP (pattern, i, j), n)) != NULL_RTX)
392 return r;
393 break;
395 case 'i': case 'w': case '0': case 's':
396 break;
398 default:
399 abort ();
403 return NULL;
406 /* Search for and return operand M, such that it has a matching
407 constraint for operand N. */
409 static rtx
410 find_matching_operand (pattern, n)
411 rtx pattern;
412 int n;
414 const char *fmt;
415 RTX_CODE code;
416 int i, j, len;
417 rtx r;
419 code = GET_CODE (pattern);
420 if (code == MATCH_OPERAND
421 && (XSTR (pattern, 2)[0] == '0' + n
422 || (XSTR (pattern, 2)[0] == '%'
423 && XSTR (pattern, 2)[1] == '0' + n)))
424 return pattern;
426 fmt = GET_RTX_FORMAT (code);
427 len = GET_RTX_LENGTH (code);
428 for (i = 0; i < len; i++)
430 switch (fmt[i])
432 case 'e': case 'u':
433 if ((r = find_matching_operand (XEXP (pattern, i), n)))
434 return r;
435 break;
437 case 'V':
438 if (! XVEC (pattern, i))
439 break;
440 /* FALLTHRU */
442 case 'E':
443 for (j = 0; j < XVECLEN (pattern, i); j++)
444 if ((r = find_matching_operand (XVECEXP (pattern, i, j), n)))
445 return r;
446 break;
448 case 'i': case 'w': case '0': case 's':
449 break;
451 default:
452 abort ();
456 return NULL;
460 /* Check for various errors in patterns. SET is nonnull for a destination,
461 and is the complete set pattern. SET_CODE is '=' for normal sets, and
462 '+' within a context that requires in-out constraints. */
464 static void
465 validate_pattern (pattern, insn, set, set_code)
466 rtx pattern;
467 rtx insn;
468 rtx set;
469 int set_code;
471 const char *fmt;
472 RTX_CODE code;
473 size_t i, len;
474 int j;
476 code = GET_CODE (pattern);
477 switch (code)
479 case MATCH_SCRATCH:
480 return;
482 case MATCH_INSN:
483 case MATCH_OPERAND:
484 case MATCH_OPERATOR:
486 const char *pred_name = XSTR (pattern, 1);
487 int allows_non_lvalue = 1, allows_non_const = 1;
488 int special_mode_pred = 0;
489 const char *c_test;
491 if (GET_CODE (insn) == DEFINE_INSN)
492 c_test = XSTR (insn, 2);
493 else
494 c_test = XSTR (insn, 1);
496 if (pred_name[0] != 0)
498 for (i = 0; i < NUM_KNOWN_PREDS; i++)
499 if (! strcmp (preds[i].name, pred_name))
500 break;
502 if (i < NUM_KNOWN_PREDS)
504 int j;
506 allows_non_lvalue = allows_non_const = 0;
507 for (j = 0; preds[i].codes[j] != 0; j++)
509 RTX_CODE c = preds[i].codes[j];
510 if (c != LABEL_REF
511 && c != SYMBOL_REF
512 && c != CONST_INT
513 && c != CONST_DOUBLE
514 && c != CONST
515 && c != HIGH
516 && c != CONSTANT_P_RTX)
517 allows_non_const = 1;
519 if (c != REG
520 && c != SUBREG
521 && c != MEM
522 && c != CONCAT
523 && c != PARALLEL
524 && c != STRICT_LOW_PART)
525 allows_non_lvalue = 1;
528 else
530 #ifdef PREDICATE_CODES
531 /* If the port has a list of the predicates it uses but
532 omits one, warn. */
533 message_with_line (pattern_lineno,
534 "warning: `%s' not in PREDICATE_CODES",
535 pred_name);
536 #endif
539 for (i = 0; i < NUM_SPECIAL_MODE_PREDS; ++i)
540 if (strcmp (pred_name, special_mode_pred_table[i]) == 0)
542 special_mode_pred = 1;
543 break;
547 /* A MATCH_OPERAND that is a SET should have an output reload. */
548 if (set && code == MATCH_OPERAND
549 && XSTR (pattern, 2)[0] != '\0')
551 if (set_code == '+')
553 if (XSTR (pattern, 2)[0] == '+')
555 /* If we've only got an output reload for this operand,
556 we'd better have a matching input operand. */
557 else if (XSTR (pattern, 2)[0] == '='
558 && find_matching_operand (insn, XINT (pattern, 0)))
560 else
562 message_with_line (pattern_lineno,
563 "operand %d missing in-out reload",
564 XINT (pattern, 0));
565 error_count++;
568 else if (XSTR (pattern, 2)[0] != '='
569 && XSTR (pattern, 2)[0] != '+')
571 message_with_line (pattern_lineno,
572 "operand %d missing output reload",
573 XINT (pattern, 0));
574 error_count++;
578 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
579 while not likely to occur at runtime, results in less efficient
580 code from insn-recog.c. */
581 if (set
582 && pred_name[0] != '\0'
583 && allows_non_lvalue)
585 message_with_line (pattern_lineno,
586 "warning: destination operand %d allows non-lvalue",
587 XINT (pattern, 0));
590 /* A modeless MATCH_OPERAND can be handy when we can
591 check for multiple modes in the c_test. In most other cases,
592 it is a mistake. Only DEFINE_INSN is eligible, since SPLIT
593 and PEEP2 can FAIL within the output pattern. Exclude
594 address_operand, since its mode is related to the mode of
595 the memory not the operand. Exclude the SET_DEST of a call
596 instruction, as that is a common idiom. */
598 if (GET_MODE (pattern) == VOIDmode
599 && code == MATCH_OPERAND
600 && GET_CODE (insn) == DEFINE_INSN
601 && allows_non_const
602 && ! special_mode_pred
603 && pred_name[0] != '\0'
604 && strcmp (pred_name, "address_operand") != 0
605 && strstr (c_test, "operands") == NULL
606 && ! (set
607 && GET_CODE (set) == SET
608 && GET_CODE (SET_SRC (set)) == CALL))
610 message_with_line (pattern_lineno,
611 "warning: operand %d missing mode?",
612 XINT (pattern, 0));
614 return;
617 case SET:
619 enum machine_mode dmode, smode;
620 rtx dest, src;
622 dest = SET_DEST (pattern);
623 src = SET_SRC (pattern);
625 /* Find the referant for a DUP. */
627 if (GET_CODE (dest) == MATCH_DUP
628 || GET_CODE (dest) == MATCH_OP_DUP
629 || GET_CODE (dest) == MATCH_PAR_DUP)
630 dest = find_operand (insn, XINT (dest, 0));
632 if (GET_CODE (src) == MATCH_DUP
633 || GET_CODE (src) == MATCH_OP_DUP
634 || GET_CODE (src) == MATCH_PAR_DUP)
635 src = find_operand (insn, XINT (src, 0));
637 /* STRICT_LOW_PART is a wrapper. Its argument is the real
638 destination, and it's mode should match the source. */
639 if (GET_CODE (dest) == STRICT_LOW_PART)
640 dest = XEXP (dest, 0);
642 dmode = GET_MODE (dest);
643 smode = GET_MODE (src);
645 /* The mode of an ADDRESS_OPERAND is the mode of the memory
646 reference, not the mode of the address. */
647 if (GET_CODE (src) == MATCH_OPERAND
648 && ! strcmp (XSTR (src, 1), "address_operand"))
651 /* The operands of a SET must have the same mode unless one
652 is VOIDmode. */
653 else if (dmode != VOIDmode && smode != VOIDmode && dmode != smode)
655 message_with_line (pattern_lineno,
656 "mode mismatch in set: %smode vs %smode",
657 GET_MODE_NAME (dmode), GET_MODE_NAME (smode));
658 error_count++;
661 /* If only one of the operands is VOIDmode, and PC or CC0 is
662 not involved, it's probably a mistake. */
663 else if (dmode != smode
664 && GET_CODE (dest) != PC
665 && GET_CODE (dest) != CC0
666 && GET_CODE (src) != PC
667 && GET_CODE (src) != CC0
668 && GET_CODE (src) != CONST_INT)
670 const char *which;
671 which = (dmode == VOIDmode ? "destination" : "source");
672 message_with_line (pattern_lineno,
673 "warning: %s missing a mode?", which);
676 if (dest != SET_DEST (pattern))
677 validate_pattern (dest, insn, pattern, '=');
678 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
679 validate_pattern (SET_SRC (pattern), insn, NULL_RTX, 0);
680 return;
683 case CLOBBER:
684 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
685 return;
687 case ZERO_EXTRACT:
688 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
689 validate_pattern (XEXP (pattern, 1), insn, NULL_RTX, 0);
690 validate_pattern (XEXP (pattern, 2), insn, NULL_RTX, 0);
691 return;
693 case STRICT_LOW_PART:
694 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
695 return;
697 case LABEL_REF:
698 if (GET_MODE (XEXP (pattern, 0)) != VOIDmode)
700 message_with_line (pattern_lineno,
701 "operand to label_ref %smode not VOIDmode",
702 GET_MODE_NAME (GET_MODE (XEXP (pattern, 0))));
703 error_count++;
705 break;
707 default:
708 break;
711 fmt = GET_RTX_FORMAT (code);
712 len = GET_RTX_LENGTH (code);
713 for (i = 0; i < len; i++)
715 switch (fmt[i])
717 case 'e': case 'u':
718 validate_pattern (XEXP (pattern, i), insn, NULL_RTX, 0);
719 break;
721 case 'E':
722 for (j = 0; j < XVECLEN (pattern, i); j++)
723 validate_pattern (XVECEXP (pattern, i, j), insn, NULL_RTX, 0);
724 break;
726 case 'i': case 'w': case '0': case 's':
727 break;
729 default:
730 abort ();
735 /* Create a chain of nodes to verify that an rtl expression matches
736 PATTERN.
738 LAST is a pointer to the listhead in the previous node in the chain (or
739 in the calling function, for the first node).
741 POSITION is the string representing the current position in the insn.
743 INSN_TYPE is the type of insn for which we are emitting code.
745 A pointer to the final node in the chain is returned. */
747 static struct decision *
748 add_to_sequence (pattern, last, position, insn_type, top)
749 rtx pattern;
750 struct decision_head *last;
751 const char *position;
752 enum routine_type insn_type;
753 int top;
755 RTX_CODE code;
756 struct decision *this, *sub;
757 struct decision_test *test;
758 struct decision_test **place;
759 char *subpos;
760 register size_t i;
761 register const char *fmt;
762 int depth = strlen (position);
763 int len;
764 enum machine_mode mode;
766 if (depth > max_depth)
767 max_depth = depth;
769 subpos = (char *) alloca (depth + 2);
770 strcpy (subpos, position);
771 subpos[depth + 1] = 0;
773 sub = this = new_decision (position, last);
774 place = &this->tests;
776 restart:
777 mode = GET_MODE (pattern);
778 code = GET_CODE (pattern);
780 switch (code)
782 case PARALLEL:
783 /* Toplevel peephole pattern. */
784 if (insn_type == PEEPHOLE2 && top)
786 /* We don't need the node we just created -- unlink it. */
787 last->first = last->last = NULL;
789 for (i = 0; i < (size_t) XVECLEN (pattern, 0); i++)
791 /* Which insn we're looking at is represented by A-Z. We don't
792 ever use 'A', however; it is always implied. */
794 subpos[depth] = (i > 0 ? 'A' + i : 0);
795 sub = add_to_sequence (XVECEXP (pattern, 0, i),
796 last, subpos, insn_type, 0);
797 last = &sub->success;
799 return sub;
802 /* Else nothing special. */
803 break;
805 case MATCH_PARALLEL:
806 /* The explicit patterns within a match_parallel enforce a minimum
807 length on the vector. The match_parallel predicate may allow
808 for more elements. We do need to check for this minimum here
809 or the code generated to match the internals may reference data
810 beyond the end of the vector. */
811 test = new_decision_test (DT_veclen_ge, &place);
812 test->u.veclen = XVECLEN (pattern, 2);
813 /* FALLTHRU */
815 case MATCH_OPERAND:
816 case MATCH_SCRATCH:
817 case MATCH_OPERATOR:
818 case MATCH_INSN:
820 const char *pred_name;
821 RTX_CODE was_code = code;
822 int allows_const_int = 1;
824 if (code == MATCH_SCRATCH)
826 pred_name = "scratch_operand";
827 code = UNKNOWN;
829 else
831 pred_name = XSTR (pattern, 1);
832 if (code == MATCH_PARALLEL)
833 code = PARALLEL;
834 else
835 code = UNKNOWN;
838 if (pred_name[0] != 0)
840 test = new_decision_test (DT_pred, &place);
841 test->u.pred.name = pred_name;
842 test->u.pred.mode = mode;
844 /* See if we know about this predicate and save its number. If
845 we do, and it only accepts one code, note that fact. The
846 predicate `const_int_operand' only tests for a CONST_INT, so
847 if we do so we can avoid calling it at all.
849 Finally, if we know that the predicate does not allow
850 CONST_INT, we know that the only way the predicate can match
851 is if the modes match (here we use the kludge of relying on
852 the fact that "address_operand" accepts CONST_INT; otherwise,
853 it would have to be a special case), so we can test the mode
854 (but we need not). This fact should considerably simplify the
855 generated code. */
857 for (i = 0; i < NUM_KNOWN_PREDS; i++)
858 if (! strcmp (preds[i].name, pred_name))
859 break;
861 if (i < NUM_KNOWN_PREDS)
863 int j;
865 test->u.pred.index = i;
867 if (preds[i].codes[1] == 0 && code == UNKNOWN)
868 code = preds[i].codes[0];
870 allows_const_int = 0;
871 for (j = 0; preds[i].codes[j] != 0; j++)
872 if (preds[i].codes[j] == CONST_INT)
874 allows_const_int = 1;
875 break;
878 else
879 test->u.pred.index = -1;
882 /* Can't enforce a mode if we allow const_int. */
883 if (allows_const_int)
884 mode = VOIDmode;
886 /* Accept the operand, ie. record it in `operands'. */
887 test = new_decision_test (DT_accept_op, &place);
888 test->u.opno = XINT (pattern, 0);
890 if (was_code == MATCH_OPERATOR || was_code == MATCH_PARALLEL)
892 char base = (was_code == MATCH_OPERATOR ? '0' : 'a');
893 for (i = 0; i < (size_t) XVECLEN (pattern, 2); i++)
895 subpos[depth] = i + base;
896 sub = add_to_sequence (XVECEXP (pattern, 2, i),
897 &sub->success, subpos, insn_type, 0);
900 goto fini;
903 case MATCH_OP_DUP:
904 code = UNKNOWN;
906 test = new_decision_test (DT_dup, &place);
907 test->u.dup = XINT (pattern, 0);
909 test = new_decision_test (DT_accept_op, &place);
910 test->u.opno = XINT (pattern, 0);
912 for (i = 0; i < (size_t) XVECLEN (pattern, 1); i++)
914 subpos[depth] = i + '0';
915 sub = add_to_sequence (XVECEXP (pattern, 1, i),
916 &sub->success, subpos, insn_type, 0);
918 goto fini;
920 case MATCH_DUP:
921 case MATCH_PAR_DUP:
922 code = UNKNOWN;
924 test = new_decision_test (DT_dup, &place);
925 test->u.dup = XINT (pattern, 0);
926 goto fini;
928 case ADDRESS:
929 pattern = XEXP (pattern, 0);
930 goto restart;
932 default:
933 break;
936 fmt = GET_RTX_FORMAT (code);
937 len = GET_RTX_LENGTH (code);
939 /* Do tests against the current node first. */
940 for (i = 0; i < (size_t) len; i++)
942 if (fmt[i] == 'i')
944 if (i == 0)
946 test = new_decision_test (DT_elt_zero_int, &place);
947 test->u.intval = XINT (pattern, i);
949 else if (i == 1)
951 test = new_decision_test (DT_elt_one_int, &place);
952 test->u.intval = XINT (pattern, i);
954 else
955 abort ();
957 else if (fmt[i] == 'w')
959 if (i != 0)
960 abort ();
962 test = new_decision_test (DT_elt_zero_wide, &place);
963 test->u.intval = XWINT (pattern, i);
965 else if (fmt[i] == 'E')
967 if (i != 0)
968 abort ();
970 test = new_decision_test (DT_veclen, &place);
971 test->u.veclen = XVECLEN (pattern, i);
975 /* Now test our sub-patterns. */
976 for (i = 0; i < (size_t) len; i++)
978 switch (fmt[i])
980 case 'e': case 'u':
981 subpos[depth] = '0' + i;
982 sub = add_to_sequence (XEXP (pattern, i), &sub->success,
983 subpos, insn_type, 0);
984 break;
986 case 'E':
988 register int j;
989 for (j = 0; j < XVECLEN (pattern, i); j++)
991 subpos[depth] = 'a' + j;
992 sub = add_to_sequence (XVECEXP (pattern, i, j),
993 &sub->success, subpos, insn_type, 0);
995 break;
998 case 'i': case 'w':
999 /* Handled above. */
1000 break;
1001 case '0':
1002 break;
1004 default:
1005 abort ();
1009 fini:
1010 /* Insert nodes testing mode and code, if they're still relevant,
1011 before any of the nodes we may have added above. */
1012 if (code != UNKNOWN)
1014 place = &this->tests;
1015 test = new_decision_test (DT_code, &place);
1016 test->u.code = code;
1019 if (mode != VOIDmode)
1021 place = &this->tests;
1022 test = new_decision_test (DT_mode, &place);
1023 test->u.mode = mode;
1026 /* If we didn't insert any tests or accept nodes, hork. */
1027 if (this->tests == NULL)
1028 abort ();
1030 return sub;
1033 /* A subroutine of maybe_both_true; examines only one test.
1034 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1036 static int
1037 maybe_both_true_2 (d1, d2)
1038 struct decision_test *d1, *d2;
1040 if (d1->type == d2->type)
1042 switch (d1->type)
1044 case DT_mode:
1045 return d1->u.mode == d2->u.mode;
1047 case DT_code:
1048 return d1->u.code == d2->u.code;
1050 case DT_veclen:
1051 return d1->u.veclen == d2->u.veclen;
1053 case DT_elt_zero_int:
1054 case DT_elt_one_int:
1055 case DT_elt_zero_wide:
1056 return d1->u.intval == d2->u.intval;
1058 default:
1059 break;
1063 /* If either has a predicate that we know something about, set
1064 things up so that D1 is the one that always has a known
1065 predicate. Then see if they have any codes in common. */
1067 if (d1->type == DT_pred || d2->type == DT_pred)
1069 if (d2->type == DT_pred)
1071 struct decision_test *tmp;
1072 tmp = d1, d1 = d2, d2 = tmp;
1075 /* If D2 tests a mode, see if it matches D1. */
1076 if (d1->u.pred.mode != VOIDmode)
1078 if (d2->type == DT_mode)
1080 if (d1->u.pred.mode != d2->u.mode
1081 /* The mode of an address_operand predicate is the
1082 mode of the memory, not the operand. It can only
1083 be used for testing the predicate, so we must
1084 ignore it here. */
1085 && strcmp (d1->u.pred.name, "address_operand") != 0)
1086 return 0;
1088 /* Don't check two predicate modes here, because if both predicates
1089 accept CONST_INT, then both can still be true even if the modes
1090 are different. If they don't accept CONST_INT, there will be a
1091 separate DT_mode that will make maybe_both_true_1 return 0. */
1094 if (d1->u.pred.index >= 0)
1096 /* If D2 tests a code, see if it is in the list of valid
1097 codes for D1's predicate. */
1098 if (d2->type == DT_code)
1100 const RTX_CODE *c = &preds[d1->u.pred.index].codes[0];
1101 while (*c != 0)
1103 if (*c == d2->u.code)
1104 break;
1105 ++c;
1107 if (*c == 0)
1108 return 0;
1111 /* Otherwise see if the predicates have any codes in common. */
1112 else if (d2->type == DT_pred && d2->u.pred.index >= 0)
1114 const RTX_CODE *c1 = &preds[d1->u.pred.index].codes[0];
1115 int common = 0;
1117 while (*c1 != 0 && !common)
1119 const RTX_CODE *c2 = &preds[d2->u.pred.index].codes[0];
1120 while (*c2 != 0 && !common)
1122 common = (*c1 == *c2);
1123 ++c2;
1125 ++c1;
1128 if (!common)
1129 return 0;
1134 /* Tests vs veclen may be known when strict equality is involved. */
1135 if (d1->type == DT_veclen && d2->type == DT_veclen_ge)
1136 return d1->u.veclen >= d2->u.veclen;
1137 if (d1->type == DT_veclen_ge && d2->type == DT_veclen)
1138 return d2->u.veclen >= d1->u.veclen;
1140 return -1;
1143 /* A subroutine of maybe_both_true; examines all the tests for a given node.
1144 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1146 static int
1147 maybe_both_true_1 (d1, d2)
1148 struct decision_test *d1, *d2;
1150 struct decision_test *t1, *t2;
1152 /* A match_operand with no predicate can match anything. Recognize
1153 this by the existance of a lone DT_accept_op test. */
1154 if (d1->type == DT_accept_op || d2->type == DT_accept_op)
1155 return 1;
1157 /* Eliminate pairs of tests while they can exactly match. */
1158 while (d1 && d2 && d1->type == d2->type)
1160 if (maybe_both_true_2 (d1, d2) == 0)
1161 return 0;
1162 d1 = d1->next, d2 = d2->next;
1165 /* After that, consider all pairs. */
1166 for (t1 = d1; t1 ; t1 = t1->next)
1167 for (t2 = d2; t2 ; t2 = t2->next)
1168 if (maybe_both_true_2 (t1, t2) == 0)
1169 return 0;
1171 return -1;
1174 /* Return 0 if we can prove that there is no RTL that can match both
1175 D1 and D2. Otherwise, return 1 (it may be that there is an RTL that
1176 can match both or just that we couldn't prove there wasn't such an RTL).
1178 TOPLEVEL is non-zero if we are to only look at the top level and not
1179 recursively descend. */
1181 static int
1182 maybe_both_true (d1, d2, toplevel)
1183 struct decision *d1, *d2;
1184 int toplevel;
1186 struct decision *p1, *p2;
1187 int cmp;
1189 /* Don't compare strings on the different positions in insn. Doing so
1190 is incorrect and results in false matches from constructs like
1192 [(set (subreg:HI (match_operand:SI "register_operand" "r") 0)
1193 (subreg:HI (match_operand:SI "register_operand" "r") 0))]
1195 [(set (match_operand:HI "register_operand" "r")
1196 (match_operand:HI "register_operand" "r"))]
1198 If we are presented with such, we are recursing through the remainder
1199 of a node's success nodes (from the loop at the end of this function).
1200 Skip forward until we come to a position that matches.
1202 Due to the way position strings are constructed, we know that iterating
1203 forward from the lexically lower position (e.g. "00") will run into
1204 the lexically higher position (e.g. "1") and not the other way around.
1205 This saves a bit of effort. */
1207 cmp = strcmp (d1->position, d2->position);
1208 if (cmp != 0)
1210 if (toplevel)
1211 abort();
1213 /* If the d2->position was lexically lower, swap. */
1214 if (cmp > 0)
1215 p1 = d1, d1 = d2, d2 = p1;
1217 if (d1->success.first == 0)
1218 return 1;
1219 for (p1 = d1->success.first; p1; p1 = p1->next)
1220 if (maybe_both_true (p1, d2, 0))
1221 return 1;
1223 return 0;
1226 /* Test the current level. */
1227 cmp = maybe_both_true_1 (d1->tests, d2->tests);
1228 if (cmp >= 0)
1229 return cmp;
1231 /* We can't prove that D1 and D2 cannot both be true. If we are only
1232 to check the top level, return 1. Otherwise, see if we can prove
1233 that all choices in both successors are mutually exclusive. If
1234 either does not have any successors, we can't prove they can't both
1235 be true. */
1237 if (toplevel || d1->success.first == 0 || d2->success.first == 0)
1238 return 1;
1240 for (p1 = d1->success.first; p1; p1 = p1->next)
1241 for (p2 = d2->success.first; p2; p2 = p2->next)
1242 if (maybe_both_true (p1, p2, 0))
1243 return 1;
1245 return 0;
1248 /* A subroutine of nodes_identical. Examine two tests for equivalence. */
1250 static int
1251 nodes_identical_1 (d1, d2)
1252 struct decision_test *d1, *d2;
1254 switch (d1->type)
1256 case DT_mode:
1257 return d1->u.mode == d2->u.mode;
1259 case DT_code:
1260 return d1->u.code == d2->u.code;
1262 case DT_pred:
1263 return (d1->u.pred.mode == d2->u.pred.mode
1264 && strcmp (d1->u.pred.name, d2->u.pred.name) == 0);
1266 case DT_c_test:
1267 return strcmp (d1->u.c_test, d2->u.c_test) == 0;
1269 case DT_veclen:
1270 case DT_veclen_ge:
1271 return d1->u.veclen == d2->u.veclen;
1273 case DT_dup:
1274 return d1->u.dup == d2->u.dup;
1276 case DT_elt_zero_int:
1277 case DT_elt_one_int:
1278 case DT_elt_zero_wide:
1279 return d1->u.intval == d2->u.intval;
1281 case DT_accept_op:
1282 return d1->u.opno == d2->u.opno;
1284 case DT_accept_insn:
1285 /* Differences will be handled in merge_accept_insn. */
1286 return 1;
1288 default:
1289 abort ();
1293 /* True iff the two nodes are identical (on one level only). Due
1294 to the way these lists are constructed, we shouldn't have to
1295 consider different orderings on the tests. */
1297 static int
1298 nodes_identical (d1, d2)
1299 struct decision *d1, *d2;
1301 struct decision_test *t1, *t2;
1303 for (t1 = d1->tests, t2 = d2->tests; t1 && t2; t1 = t1->next, t2 = t2->next)
1305 if (t1->type != t2->type)
1306 return 0;
1307 if (! nodes_identical_1 (t1, t2))
1308 return 0;
1311 /* For success, they should now both be null. */
1312 if (t1 != t2)
1313 return 0;
1315 /* Check that their subnodes are at the same position, as any one set
1316 of sibling decisions must be at the same position. Allowing this
1317 requires complications to find_afterward and when change_state is
1318 invoked. */
1319 if (d1->success.first
1320 && d2->success.first
1321 && strcmp (d1->success.first->position, d2->success.first->position))
1322 return 0;
1324 return 1;
1327 /* A subroutine of merge_trees; given two nodes that have been declared
1328 identical, cope with two insn accept states. If they differ in the
1329 number of clobbers, then the conflict was created by make_insn_sequence
1330 and we can drop the with-clobbers version on the floor. If both
1331 nodes have no additional clobbers, we have found an ambiguity in the
1332 source machine description. */
1334 static void
1335 merge_accept_insn (oldd, addd)
1336 struct decision *oldd, *addd;
1338 struct decision_test *old, *add;
1340 for (old = oldd->tests; old; old = old->next)
1341 if (old->type == DT_accept_insn)
1342 break;
1343 if (old == NULL)
1344 return;
1346 for (add = addd->tests; add; add = add->next)
1347 if (add->type == DT_accept_insn)
1348 break;
1349 if (add == NULL)
1350 return;
1352 /* If one node is for a normal insn and the second is for the base
1353 insn with clobbers stripped off, the second node should be ignored. */
1355 if (old->u.insn.num_clobbers_to_add == 0
1356 && add->u.insn.num_clobbers_to_add > 0)
1358 /* Nothing to do here. */
1360 else if (old->u.insn.num_clobbers_to_add > 0
1361 && add->u.insn.num_clobbers_to_add == 0)
1363 /* In this case, replace OLD with ADD. */
1364 old->u.insn = add->u.insn;
1366 else
1368 message_with_line (add->u.insn.lineno, "`%s' matches `%s'",
1369 get_insn_name (add->u.insn.code_number),
1370 get_insn_name (old->u.insn.code_number));
1371 message_with_line (old->u.insn.lineno, "previous definition of `%s'",
1372 get_insn_name (old->u.insn.code_number));
1373 error_count++;
1377 /* Merge two decision trees OLDH and ADDH, modifying OLDH destructively. */
1379 static void
1380 merge_trees (oldh, addh)
1381 struct decision_head *oldh, *addh;
1383 struct decision *next, *add;
1385 if (addh->first == 0)
1386 return;
1387 if (oldh->first == 0)
1389 *oldh = *addh;
1390 return;
1393 /* Trying to merge bits at different positions isn't possible. */
1394 if (strcmp (oldh->first->position, addh->first->position))
1395 abort ();
1397 for (add = addh->first; add ; add = next)
1399 struct decision *old, *insert_before = NULL;
1401 next = add->next;
1403 /* The semantics of pattern matching state that the tests are
1404 done in the order given in the MD file so that if an insn
1405 matches two patterns, the first one will be used. However,
1406 in practice, most, if not all, patterns are unambiguous so
1407 that their order is independent. In that case, we can merge
1408 identical tests and group all similar modes and codes together.
1410 Scan starting from the end of OLDH until we reach a point
1411 where we reach the head of the list or where we pass a
1412 pattern that could also be true if NEW is true. If we find
1413 an identical pattern, we can merge them. Also, record the
1414 last node that tests the same code and mode and the last one
1415 that tests just the same mode.
1417 If we have no match, place NEW after the closest match we found. */
1419 for (old = oldh->last; old; old = old->prev)
1421 if (nodes_identical (old, add))
1423 merge_accept_insn (old, add);
1424 merge_trees (&old->success, &add->success);
1425 goto merged_nodes;
1428 if (maybe_both_true (old, add, 0))
1429 break;
1431 /* Insert the nodes in DT test type order, which is roughly
1432 how expensive/important the test is. Given that the tests
1433 are also ordered within the list, examining the first is
1434 sufficient. */
1435 if ((int) add->tests->type < (int) old->tests->type)
1436 insert_before = old;
1439 if (insert_before == NULL)
1441 add->next = NULL;
1442 add->prev = oldh->last;
1443 oldh->last->next = add;
1444 oldh->last = add;
1446 else
1448 if ((add->prev = insert_before->prev) != NULL)
1449 add->prev->next = add;
1450 else
1451 oldh->first = add;
1452 add->next = insert_before;
1453 insert_before->prev = add;
1456 merged_nodes:;
1460 /* Walk the tree looking for sub-nodes that perform common tests.
1461 Factor out the common test into a new node. This enables us
1462 (depending on the test type) to emit switch statements later. */
1464 static void
1465 factor_tests (head)
1466 struct decision_head *head;
1468 struct decision *first, *next;
1470 for (first = head->first; first && first->next; first = next)
1472 enum decision_type type;
1473 struct decision *new, *old_last;
1475 type = first->tests->type;
1476 next = first->next;
1478 /* Want at least two compatible sequential nodes. */
1479 if (next->tests->type != type)
1480 continue;
1482 /* Don't want all node types, just those we can turn into
1483 switch statements. */
1484 if (type != DT_mode
1485 && type != DT_code
1486 && type != DT_veclen
1487 && type != DT_elt_zero_int
1488 && type != DT_elt_one_int
1489 && type != DT_elt_zero_wide)
1490 continue;
1492 /* If we'd been performing more than one test, create a new node
1493 below our first test. */
1494 if (first->tests->next != NULL)
1496 new = new_decision (first->position, &first->success);
1497 new->tests = first->tests->next;
1498 first->tests->next = NULL;
1501 /* Crop the node tree off after our first test. */
1502 first->next = NULL;
1503 old_last = head->last;
1504 head->last = first;
1506 /* For each compatible test, adjust to perform only one test in
1507 the top level node, then merge the node back into the tree. */
1510 struct decision_head h;
1512 if (next->tests->next != NULL)
1514 new = new_decision (next->position, &next->success);
1515 new->tests = next->tests->next;
1516 next->tests->next = NULL;
1518 new = next;
1519 next = next->next;
1520 new->next = NULL;
1521 h.first = h.last = new;
1523 merge_trees (head, &h);
1525 while (next && next->tests->type == type);
1527 /* After we run out of compatible tests, graft the remaining nodes
1528 back onto the tree. */
1529 if (next)
1531 next->prev = head->last;
1532 head->last->next = next;
1533 head->last = old_last;
1537 /* Recurse. */
1538 for (first = head->first; first; first = first->next)
1539 factor_tests (&first->success);
1542 /* After factoring, try to simplify the tests on any one node.
1543 Tests that are useful for switch statements are recognizable
1544 by having only a single test on a node -- we'll be manipulating
1545 nodes with multiple tests:
1547 If we have mode tests or code tests that are redundant with
1548 predicates, remove them. */
1550 static void
1551 simplify_tests (head)
1552 struct decision_head *head;
1554 struct decision *tree;
1556 for (tree = head->first; tree; tree = tree->next)
1558 struct decision_test *a, *b;
1560 a = tree->tests;
1561 b = a->next;
1562 if (b == NULL)
1563 continue;
1565 /* Find a predicate node. */
1566 while (b && b->type != DT_pred)
1567 b = b->next;
1568 if (b)
1570 /* Due to how these tests are constructed, we don't even need
1571 to check that the mode and code are compatible -- they were
1572 generated from the predicate in the first place. */
1573 while (a->type == DT_mode || a->type == DT_code)
1574 a = a->next;
1575 tree->tests = a;
1579 /* Recurse. */
1580 for (tree = head->first; tree; tree = tree->next)
1581 simplify_tests (&tree->success);
1584 /* Count the number of subnodes of HEAD. If the number is high enough,
1585 make the first node in HEAD start a separate subroutine in the C code
1586 that is generated. */
1588 static int
1589 break_out_subroutines (head, initial)
1590 struct decision_head *head;
1591 int initial;
1593 int size = 0;
1594 struct decision *sub;
1596 for (sub = head->first; sub; sub = sub->next)
1597 size += 1 + break_out_subroutines (&sub->success, 0);
1599 if (size > SUBROUTINE_THRESHOLD && ! initial)
1601 head->first->subroutine_number = ++next_subroutine_number;
1602 size = 1;
1604 return size;
1607 /* For each node p, find the next alternative that might be true
1608 when p is true. */
1610 static void
1611 find_afterward (head, real_afterward)
1612 struct decision_head *head;
1613 struct decision *real_afterward;
1615 struct decision *p, *q, *afterward;
1617 /* We can't propogate alternatives across subroutine boundaries.
1618 This is not incorrect, merely a minor optimization loss. */
1620 p = head->first;
1621 afterward = (p->subroutine_number > 0 ? NULL : real_afterward);
1623 for ( ; p ; p = p->next)
1625 /* Find the next node that might be true if this one fails. */
1626 for (q = p->next; q ; q = q->next)
1627 if (maybe_both_true (p, q, 1))
1628 break;
1630 /* If we reached the end of the list without finding one,
1631 use the incoming afterward position. */
1632 if (!q)
1633 q = afterward;
1634 p->afterward = q;
1635 if (q)
1636 q->need_label = 1;
1639 /* Recurse. */
1640 for (p = head->first; p ; p = p->next)
1641 if (p->success.first)
1642 find_afterward (&p->success, p->afterward);
1644 /* When we are generating a subroutine, record the real afterward
1645 position in the first node where write_tree can find it, and we
1646 can do the right thing at the subroutine call site. */
1647 p = head->first;
1648 if (p->subroutine_number > 0)
1649 p->afterward = real_afterward;
1652 /* Assuming that the state of argument is denoted by OLDPOS, take whatever
1653 actions are necessary to move to NEWPOS. If we fail to move to the
1654 new state, branch to node AFTERWARD if non-zero, otherwise return.
1656 Failure to move to the new state can only occur if we are trying to
1657 match multiple insns and we try to step past the end of the stream. */
1659 static void
1660 change_state (oldpos, newpos, afterward, indent)
1661 const char *oldpos;
1662 const char *newpos;
1663 struct decision *afterward;
1664 const char *indent;
1666 int odepth = strlen (oldpos);
1667 int ndepth = strlen (newpos);
1668 int depth;
1669 int old_has_insn, new_has_insn;
1671 /* Pop up as many levels as necessary. */
1672 for (depth = odepth; strncmp (oldpos, newpos, depth) != 0; --depth)
1673 continue;
1675 /* Hunt for the last [A-Z] in both strings. */
1676 for (old_has_insn = odepth - 1; old_has_insn >= 0; --old_has_insn)
1677 if (oldpos[old_has_insn] >= 'A' && oldpos[old_has_insn] <= 'Z')
1678 break;
1679 for (new_has_insn = ndepth - 1; new_has_insn >= 0; --new_has_insn)
1680 if (newpos[new_has_insn] >= 'A' && newpos[new_has_insn] <= 'Z')
1681 break;
1683 /* Go down to desired level. */
1684 while (depth < ndepth)
1686 /* It's a different insn from the first one. */
1687 if (newpos[depth] >= 'A' && newpos[depth] <= 'Z')
1689 /* We can only fail if we're moving down the tree. */
1690 if (old_has_insn >= 0 && oldpos[old_has_insn] >= newpos[depth])
1692 printf ("%stem = peep2_next_insn (%d);\n",
1693 indent, newpos[depth] - 'A');
1695 else
1697 printf ("%stem = peep2_next_insn (%d);\n",
1698 indent, newpos[depth] - 'A');
1699 printf ("%sif (tem == NULL_RTX)\n", indent);
1700 if (afterward)
1701 printf ("%s goto L%d;\n", indent, afterward->number);
1702 else
1703 printf ("%s goto ret0;\n", indent);
1705 printf ("%sx%d = PATTERN (tem);\n", indent, depth + 1);
1707 else if (newpos[depth] >= 'a' && newpos[depth] <= 'z')
1708 printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
1709 indent, depth + 1, depth, newpos[depth] - 'a');
1710 else
1711 printf ("%sx%d = XEXP (x%d, %c);\n",
1712 indent, depth + 1, depth, newpos[depth]);
1713 ++depth;
1717 /* Print the enumerator constant for CODE -- the upcase version of
1718 the name. */
1720 static void
1721 print_code (code)
1722 enum rtx_code code;
1724 register const char *p;
1725 for (p = GET_RTX_NAME (code); *p; p++)
1726 putchar (TOUPPER (*p));
1729 /* Emit code to cross an afterward link -- change state and branch. */
1731 static void
1732 write_afterward (start, afterward, indent)
1733 struct decision *start;
1734 struct decision *afterward;
1735 const char *indent;
1737 if (!afterward || start->subroutine_number > 0)
1738 printf("%sgoto ret0;\n", indent);
1739 else
1741 change_state (start->position, afterward->position, NULL, indent);
1742 printf ("%sgoto L%d;\n", indent, afterward->number);
1746 /* Emit a switch statement, if possible, for an initial sequence of
1747 nodes at START. Return the first node yet untested. */
1749 static struct decision *
1750 write_switch (start, depth)
1751 struct decision *start;
1752 int depth;
1754 struct decision *p = start;
1755 enum decision_type type = p->tests->type;
1756 struct decision *needs_label = NULL;
1758 /* If we have two or more nodes in sequence that test the same one
1759 thing, we may be able to use a switch statement. */
1761 if (!p->next
1762 || p->tests->next
1763 || p->next->tests->type != type
1764 || p->next->tests->next
1765 || nodes_identical_1 (p->tests, p->next->tests))
1766 return p;
1768 /* DT_code is special in that we can do interesting things with
1769 known predicates at the same time. */
1770 if (type == DT_code)
1772 char codemap[NUM_RTX_CODE];
1773 struct decision *ret;
1774 RTX_CODE code;
1776 memset (codemap, 0, sizeof(codemap));
1778 printf (" switch (GET_CODE (x%d))\n {\n", depth);
1779 code = p->tests->u.code;
1782 if (p != start && p->need_label && needs_label == NULL)
1783 needs_label = p;
1785 printf (" case ");
1786 print_code (code);
1787 printf (":\n goto L%d;\n", p->success.first->number);
1788 p->success.first->need_label = 1;
1790 codemap[code] = 1;
1791 p = p->next;
1793 while (p
1794 && ! p->tests->next
1795 && p->tests->type == DT_code
1796 && ! codemap[code = p->tests->u.code]);
1798 /* If P is testing a predicate that we know about and we haven't
1799 seen any of the codes that are valid for the predicate, we can
1800 write a series of "case" statement, one for each possible code.
1801 Since we are already in a switch, these redundant tests are very
1802 cheap and will reduce the number of predicates called. */
1804 /* Note that while we write out cases for these predicates here,
1805 we don't actually write the test here, as it gets kinda messy.
1806 It is trivial to leave this to later by telling our caller that
1807 we only processed the CODE tests. */
1808 if (needs_label != NULL)
1809 ret = needs_label;
1810 else
1811 ret = p;
1813 while (p && p->tests->type == DT_pred
1814 && p->tests->u.pred.index >= 0)
1816 const RTX_CODE *c;
1818 for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c)
1819 if (codemap[(int) *c] != 0)
1820 goto pred_done;
1822 for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c)
1824 printf (" case ");
1825 print_code (*c);
1826 printf (":\n");
1827 codemap[(int) *c] = 1;
1830 printf (" goto L%d;\n", p->number);
1831 p->need_label = 1;
1832 p = p->next;
1835 pred_done:
1836 /* Make the default case skip the predicates we managed to match. */
1838 printf (" default:\n");
1839 if (p != ret)
1841 if (p)
1843 printf (" goto L%d;\n", p->number);
1844 p->need_label = 1;
1846 else
1847 write_afterward (start, start->afterward, " ");
1849 else
1850 printf (" break;\n");
1851 printf (" }\n");
1853 return ret;
1855 else if (type == DT_mode
1856 || type == DT_veclen
1857 || type == DT_elt_zero_int
1858 || type == DT_elt_one_int
1859 || type == DT_elt_zero_wide)
1861 printf (" switch (");
1862 switch (type)
1864 case DT_mode:
1865 printf ("GET_MODE (x%d)", depth);
1866 break;
1867 case DT_veclen:
1868 printf ("XVECLEN (x%d, 0)", depth);
1869 break;
1870 case DT_elt_zero_int:
1871 printf ("XINT (x%d, 0)", depth);
1872 break;
1873 case DT_elt_one_int:
1874 printf ("XINT (x%d, 1)", depth);
1875 break;
1876 case DT_elt_zero_wide:
1877 /* Convert result of XWINT to int for portability since some C
1878 compilers won't do it and some will. */
1879 printf ("(int) XWINT (x%d, 0)", depth);
1880 break;
1881 default:
1882 abort ();
1884 printf (")\n {\n");
1888 /* Merge trees will not unify identical nodes if their
1889 sub-nodes are at different levels. Thus we must check
1890 for duplicate cases. */
1891 struct decision *q;
1892 for (q = start; q != p; q = q->next)
1893 if (nodes_identical_1 (p->tests, q->tests))
1894 goto case_done;
1896 if (p != start && p->need_label && needs_label == NULL)
1897 needs_label = p;
1899 printf (" case ");
1900 switch (type)
1902 case DT_mode:
1903 printf ("%smode", GET_MODE_NAME (p->tests->u.mode));
1904 break;
1905 case DT_veclen:
1906 printf ("%d", p->tests->u.veclen);
1907 break;
1908 case DT_elt_zero_int:
1909 case DT_elt_one_int:
1910 case DT_elt_zero_wide:
1911 printf (HOST_WIDE_INT_PRINT_DEC, p->tests->u.intval);
1912 break;
1913 default:
1914 abort ();
1916 printf (":\n goto L%d;\n", p->success.first->number);
1917 p->success.first->need_label = 1;
1919 p = p->next;
1921 while (p && p->tests->type == type && !p->tests->next);
1923 case_done:
1924 printf (" default:\n break;\n }\n");
1926 return needs_label != NULL ? needs_label : p;
1928 else
1930 /* None of the other tests are ameanable. */
1931 return p;
1935 /* Emit code for one test. */
1937 static void
1938 write_cond (p, depth, subroutine_type)
1939 struct decision_test *p;
1940 int depth;
1941 enum routine_type subroutine_type;
1943 switch (p->type)
1945 case DT_mode:
1946 printf ("GET_MODE (x%d) == %smode", depth, GET_MODE_NAME (p->u.mode));
1947 break;
1949 case DT_code:
1950 printf ("GET_CODE (x%d) == ", depth);
1951 print_code (p->u.code);
1952 break;
1954 case DT_veclen:
1955 printf ("XVECLEN (x%d, 0) == %d", depth, p->u.veclen);
1956 break;
1958 case DT_elt_zero_int:
1959 printf ("XINT (x%d, 0) == %d", depth, (int) p->u.intval);
1960 break;
1962 case DT_elt_one_int:
1963 printf ("XINT (x%d, 1) == %d", depth, (int) p->u.intval);
1964 break;
1966 case DT_elt_zero_wide:
1967 printf ("XWINT (x%d, 0) == ", depth);
1968 printf (HOST_WIDE_INT_PRINT_DEC, p->u.intval);
1969 break;
1971 case DT_veclen_ge:
1972 printf ("XVECLEN (x%d, 0) >= %d", depth, p->u.veclen);
1973 break;
1975 case DT_dup:
1976 printf ("rtx_equal_p (x%d, operands[%d])", depth, p->u.dup);
1977 break;
1979 case DT_pred:
1980 printf ("%s (x%d, %smode)", p->u.pred.name, depth,
1981 GET_MODE_NAME (p->u.pred.mode));
1982 break;
1984 case DT_c_test:
1985 printf ("(%s)", p->u.c_test);
1986 break;
1988 case DT_accept_insn:
1989 switch (subroutine_type)
1991 case RECOG:
1992 if (p->u.insn.num_clobbers_to_add == 0)
1993 abort ();
1994 printf ("pnum_clobbers != NULL");
1995 break;
1997 default:
1998 abort ();
2000 break;
2002 default:
2003 abort ();
2007 /* Emit code for one action. The previous tests have succeeded;
2008 TEST is the last of the chain. In the normal case we simply
2009 perform a state change. For the `accept' tests we must do more work. */
2011 static void
2012 write_action (p, test, depth, uncond, success, subroutine_type)
2013 struct decision *p;
2014 struct decision_test *test;
2015 int depth, uncond;
2016 struct decision *success;
2017 enum routine_type subroutine_type;
2019 const char *indent;
2020 int want_close = 0;
2022 if (uncond)
2023 indent = " ";
2024 else if (test->type == DT_accept_op || test->type == DT_accept_insn)
2026 fputs (" {\n", stdout);
2027 indent = " ";
2028 want_close = 1;
2030 else
2031 indent = " ";
2033 if (test->type == DT_accept_op)
2035 printf("%soperands[%d] = x%d;\n", indent, test->u.opno, depth);
2037 /* Only allow DT_accept_insn to follow. */
2038 if (test->next)
2040 test = test->next;
2041 if (test->type != DT_accept_insn)
2042 abort ();
2046 /* Sanity check that we're now at the end of the list of tests. */
2047 if (test->next)
2048 abort ();
2050 if (test->type == DT_accept_insn)
2052 switch (subroutine_type)
2054 case RECOG:
2055 if (test->u.insn.num_clobbers_to_add != 0)
2056 printf ("%s*pnum_clobbers = %d;\n",
2057 indent, test->u.insn.num_clobbers_to_add);
2058 printf ("%sreturn %d;\n", indent, test->u.insn.code_number);
2059 break;
2061 case SPLIT:
2062 printf ("%sreturn gen_split_%d (operands);\n",
2063 indent, test->u.insn.code_number);
2064 break;
2066 case PEEPHOLE2:
2068 int match_len = 0, i;
2070 for (i = strlen (p->position) - 1; i >= 0; --i)
2071 if (p->position[i] >= 'A' && p->position[i] <= 'Z')
2073 match_len = p->position[i] - 'A';
2074 break;
2076 printf ("%s*_pmatch_len = %d;\n", indent, match_len);
2077 printf ("%stem = gen_peephole2_%d (insn, operands);\n",
2078 indent, test->u.insn.code_number);
2079 printf ("%sif (tem != 0)\n%s return tem;\n", indent, indent);
2081 break;
2083 default:
2084 abort ();
2087 else
2089 printf("%sgoto L%d;\n", indent, success->number);
2090 success->need_label = 1;
2093 if (want_close)
2094 fputs (" }\n", stdout);
2097 /* Return 1 if the test is always true and has no fallthru path. Return -1
2098 if the test does have a fallthru path, but requires that the condition be
2099 terminated. Otherwise return 0 for a normal test. */
2100 /* ??? is_unconditional is a stupid name for a tri-state function. */
2102 static int
2103 is_unconditional (t, subroutine_type)
2104 struct decision_test *t;
2105 enum routine_type subroutine_type;
2107 if (t->type == DT_accept_op)
2108 return 1;
2110 if (t->type == DT_accept_insn)
2112 switch (subroutine_type)
2114 case RECOG:
2115 return (t->u.insn.num_clobbers_to_add == 0);
2116 case SPLIT:
2117 return 1;
2118 case PEEPHOLE2:
2119 return -1;
2120 default:
2121 abort ();
2125 return 0;
2128 /* Emit code for one node -- the conditional and the accompanying action.
2129 Return true if there is no fallthru path. */
2131 static int
2132 write_node (p, depth, subroutine_type)
2133 struct decision *p;
2134 int depth;
2135 enum routine_type subroutine_type;
2137 struct decision_test *test, *last_test;
2138 int uncond;
2140 last_test = test = p->tests;
2141 uncond = is_unconditional (test, subroutine_type);
2142 if (uncond == 0)
2144 printf (" if (");
2145 write_cond (test, depth, subroutine_type);
2147 while ((test = test->next) != NULL)
2149 int uncond2;
2151 last_test = test;
2152 uncond2 = is_unconditional (test, subroutine_type);
2153 if (uncond2 != 0)
2154 break;
2156 printf ("\n && ");
2157 write_cond (test, depth, subroutine_type);
2160 printf (")\n");
2163 write_action (p, last_test, depth, uncond, p->success.first, subroutine_type);
2165 return uncond > 0;
2168 /* Emit code for all of the sibling nodes of HEAD. */
2170 static void
2171 write_tree_1 (head, depth, subroutine_type)
2172 struct decision_head *head;
2173 int depth;
2174 enum routine_type subroutine_type;
2176 struct decision *p, *next;
2177 int uncond = 0;
2179 for (p = head->first; p ; p = next)
2181 /* The label for the first element was printed in write_tree. */
2182 if (p != head->first && p->need_label)
2183 OUTPUT_LABEL (" ", p->number);
2185 /* Attempt to write a switch statement for a whole sequence. */
2186 next = write_switch (p, depth);
2187 if (p != next)
2188 uncond = 0;
2189 else
2191 /* Failed -- fall back and write one node. */
2192 uncond = write_node (p, depth, subroutine_type);
2193 next = p->next;
2197 /* Finished with this chain. Close a fallthru path by branching
2198 to the afterward node. */
2199 if (! uncond)
2200 write_afterward (head->last, head->last->afterward, " ");
2203 /* Write out the decision tree starting at HEAD. PREVPOS is the
2204 position at the node that branched to this node. */
2206 static void
2207 write_tree (head, prevpos, type, initial)
2208 struct decision_head *head;
2209 const char *prevpos;
2210 enum routine_type type;
2211 int initial;
2213 register struct decision *p = head->first;
2215 putchar ('\n');
2216 if (p->need_label)
2217 OUTPUT_LABEL (" ", p->number);
2219 if (! initial && p->subroutine_number > 0)
2221 static const char * const name_prefix[] = {
2222 "recog", "split", "peephole2"
2225 static const char * const call_suffix[] = {
2226 ", pnum_clobbers", "", ", _pmatch_len"
2229 /* This node has been broken out into a separate subroutine.
2230 Call it, test the result, and branch accordingly. */
2232 if (p->afterward)
2234 printf (" tem = %s_%d (x0, insn%s);\n",
2235 name_prefix[type], p->subroutine_number, call_suffix[type]);
2236 if (IS_SPLIT (type))
2237 printf (" if (tem != 0)\n return tem;\n");
2238 else
2239 printf (" if (tem >= 0)\n return tem;\n");
2241 change_state (p->position, p->afterward->position, NULL, " ");
2242 printf (" goto L%d;\n", p->afterward->number);
2244 else
2246 printf (" return %s_%d (x0, insn%s);\n",
2247 name_prefix[type], p->subroutine_number, call_suffix[type]);
2250 else
2252 int depth = strlen (p->position);
2254 change_state (prevpos, p->position, head->last->afterward, " ");
2255 write_tree_1 (head, depth, type);
2257 for (p = head->first; p; p = p->next)
2258 if (p->success.first)
2259 write_tree (&p->success, p->position, type, 0);
2263 /* Write out a subroutine of type TYPE to do comparisons starting at
2264 node TREE. */
2266 static void
2267 write_subroutine (head, type)
2268 struct decision_head *head;
2269 enum routine_type type;
2271 int subfunction = head->first ? head->first->subroutine_number : 0;
2272 const char *s_or_e;
2273 char extension[32];
2274 int i;
2276 s_or_e = subfunction ? "static " : "";
2278 if (subfunction)
2279 sprintf (extension, "_%d", subfunction);
2280 else if (type == RECOG)
2281 extension[0] = '\0';
2282 else
2283 strcpy (extension, "_insns");
2285 switch (type)
2287 case RECOG:
2288 printf ("%sint recog%s PARAMS ((rtx, rtx, int *));\n", s_or_e, extension);
2289 printf ("%sint\n\
2290 recog%s (x0, insn, pnum_clobbers)\n\
2291 register rtx x0;\n\
2292 rtx insn ATTRIBUTE_UNUSED;\n\
2293 int *pnum_clobbers ATTRIBUTE_UNUSED;\n", s_or_e, extension);
2294 break;
2295 case SPLIT:
2296 printf ("%srtx split%s PARAMS ((rtx, rtx));\n", s_or_e, extension);
2297 printf ("%srtx\n\
2298 split%s (x0, insn)\n\
2299 register rtx x0;\n\
2300 rtx insn ATTRIBUTE_UNUSED;\n", s_or_e, extension);
2301 break;
2302 case PEEPHOLE2:
2303 printf ("%srtx peephole2%s PARAMS ((rtx, rtx, int *));\n",
2304 s_or_e, extension);
2305 printf ("%srtx\n\
2306 peephole2%s (x0, insn, _pmatch_len)\n\
2307 register rtx x0;\n\
2308 rtx insn ATTRIBUTE_UNUSED;\n\
2309 int *_pmatch_len ATTRIBUTE_UNUSED;\n", s_or_e, extension);
2310 break;
2313 printf ("{\n register rtx * const operands ATTRIBUTE_UNUSED = &recog_data.operand[0];\n");
2314 for (i = 1; i <= max_depth; i++)
2315 printf (" register rtx x%d ATTRIBUTE_UNUSED;\n", i);
2317 printf (" %s tem ATTRIBUTE_UNUSED;\n", IS_SPLIT (type) ? "rtx" : "int");
2319 if (!subfunction)
2320 printf (" recog_data.insn = NULL_RTX;\n");
2322 if (head->first)
2323 write_tree (head, "", type, 1);
2324 else
2325 printf (" goto ret0;\n");
2327 printf (" ret0:\n return %d;\n}\n\n", IS_SPLIT (type) ? 0 : -1);
2330 /* In break_out_subroutines, we discovered the boundaries for the
2331 subroutines, but did not write them out. Do so now. */
2333 static void
2334 write_subroutines (head, type)
2335 struct decision_head *head;
2336 enum routine_type type;
2338 struct decision *p;
2340 for (p = head->first; p ; p = p->next)
2341 if (p->success.first)
2342 write_subroutines (&p->success, type);
2344 if (head->first->subroutine_number > 0)
2345 write_subroutine (head, type);
2348 /* Begin the output file. */
2350 static void
2351 write_header ()
2353 puts ("\
2354 /* Generated automatically by the program `genrecog' from the target\n\
2355 machine description file. */\n\
2357 #include \"config.h\"\n\
2358 #include \"system.h\"\n\
2359 #include \"rtl.h\"\n\
2360 #include \"tm_p.h\"\n\
2361 #include \"function.h\"\n\
2362 #include \"insn-config.h\"\n\
2363 #include \"recog.h\"\n\
2364 #include \"real.h\"\n\
2365 #include \"output.h\"\n\
2366 #include \"flags.h\"\n\
2367 #include \"hard-reg-set.h\"\n\
2368 #include \"resource.h\"\n\
2369 \n");
2371 puts ("\n\
2372 /* `recog' contains a decision tree that recognizes whether the rtx\n\
2373 X0 is a valid instruction.\n\
2375 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
2376 returns a nonnegative number which is the insn code number for the\n\
2377 pattern that matched. This is the same as the order in the machine\n\
2378 description of the entry that matched. This number can be used as an\n\
2379 index into `insn_data' and other tables.\n");
2380 puts ("\
2381 The third argument to recog is an optional pointer to an int. If\n\
2382 present, recog will accept a pattern if it matches except for missing\n\
2383 CLOBBER expressions at the end. In that case, the value pointed to by\n\
2384 the optional pointer will be set to the number of CLOBBERs that need\n\
2385 to be added (it should be initialized to zero by the caller). If it");
2386 puts ("\
2387 is set nonzero, the caller should allocate a PARALLEL of the\n\
2388 appropriate size, copy the initial entries, and call add_clobbers\n\
2389 (found in insn-emit.c) to fill in the CLOBBERs.\n\
2392 puts ("\n\
2393 The function split_insns returns 0 if the rtl could not\n\
2394 be split or the split rtl in a SEQUENCE if it can be.\n\
2396 The function peephole2_insns returns 0 if the rtl could not\n\
2397 be matched. If there was a match, the new rtl is returned in a SEQUENCE,\n\
2398 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
2399 */\n\n");
2403 /* Construct and return a sequence of decisions
2404 that will recognize INSN.
2406 TYPE says what type of routine we are recognizing (RECOG or SPLIT). */
2408 static struct decision_head
2409 make_insn_sequence (insn, type)
2410 rtx insn;
2411 enum routine_type type;
2413 rtx x;
2414 const char *c_test = XSTR (insn, type == RECOG ? 2 : 1);
2415 struct decision *last;
2416 struct decision_test *test, **place;
2417 struct decision_head head;
2418 char c_test_pos[2];
2420 record_insn_name (next_insn_code, (type == RECOG ? XSTR (insn, 0) : NULL));
2422 c_test_pos[0] = '\0';
2423 if (type == PEEPHOLE2)
2425 int i, j;
2427 /* peephole2 gets special treatment:
2428 - X always gets an outer parallel even if it's only one entry
2429 - we remove all traces of outer-level match_scratch and match_dup
2430 expressions here. */
2431 x = rtx_alloc (PARALLEL);
2432 PUT_MODE (x, VOIDmode);
2433 XVEC (x, 0) = rtvec_alloc (XVECLEN (insn, 0));
2434 for (i = j = 0; i < XVECLEN (insn, 0); i++)
2436 rtx tmp = XVECEXP (insn, 0, i);
2437 if (GET_CODE (tmp) != MATCH_SCRATCH && GET_CODE (tmp) != MATCH_DUP)
2439 XVECEXP (x, 0, j) = tmp;
2440 j++;
2443 XVECLEN (x, 0) = j;
2445 c_test_pos[0] = 'A' + j - 1;
2446 c_test_pos[1] = '\0';
2448 else if (XVECLEN (insn, type == RECOG) == 1)
2449 x = XVECEXP (insn, type == RECOG, 0);
2450 else
2452 x = rtx_alloc (PARALLEL);
2453 XVEC (x, 0) = XVEC (insn, type == RECOG);
2454 PUT_MODE (x, VOIDmode);
2457 validate_pattern (x, insn, NULL_RTX, 0);
2459 memset(&head, 0, sizeof(head));
2460 last = add_to_sequence (x, &head, "", type, 1);
2462 /* Find the end of the test chain on the last node. */
2463 for (test = last->tests; test->next; test = test->next)
2464 continue;
2465 place = &test->next;
2467 if (c_test[0])
2469 /* Need a new node if we have another test to add. */
2470 if (test->type == DT_accept_op)
2472 last = new_decision (c_test_pos, &last->success);
2473 place = &last->tests;
2475 test = new_decision_test (DT_c_test, &place);
2476 test->u.c_test = c_test;
2479 test = new_decision_test (DT_accept_insn, &place);
2480 test->u.insn.code_number = next_insn_code;
2481 test->u.insn.lineno = pattern_lineno;
2482 test->u.insn.num_clobbers_to_add = 0;
2484 switch (type)
2486 case RECOG:
2487 /* If this is an DEFINE_INSN and X is a PARALLEL, see if it ends
2488 with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes.
2489 If so, set up to recognize the pattern without these CLOBBERs. */
2491 if (GET_CODE (x) == PARALLEL)
2493 int i;
2495 /* Find the last non-clobber in the parallel. */
2496 for (i = XVECLEN (x, 0); i > 0; i--)
2498 rtx y = XVECEXP (x, 0, i - 1);
2499 if (GET_CODE (y) != CLOBBER
2500 || (GET_CODE (XEXP (y, 0)) != REG
2501 && GET_CODE (XEXP (y, 0)) != MATCH_SCRATCH))
2502 break;
2505 if (i != XVECLEN (x, 0))
2507 rtx new;
2508 struct decision_head clobber_head;
2510 /* Build a similar insn without the clobbers. */
2511 if (i == 1)
2512 new = XVECEXP (x, 0, 0);
2513 else
2515 int j;
2517 new = rtx_alloc (PARALLEL);
2518 XVEC (new, 0) = rtvec_alloc (i);
2519 for (j = i - 1; j >= 0; j--)
2520 XVECEXP (new, 0, j) = XVECEXP (x, 0, j);
2523 /* Recognize it. */
2524 memset (&clobber_head, 0, sizeof(clobber_head));
2525 last = add_to_sequence (new, &clobber_head, "", type, 1);
2527 /* Find the end of the test chain on the last node. */
2528 for (test = last->tests; test->next; test = test->next)
2529 continue;
2531 /* We definitely have a new test to add -- create a new
2532 node if needed. */
2533 place = &test->next;
2534 if (test->type == DT_accept_op)
2536 last = new_decision ("", &last->success);
2537 place = &last->tests;
2540 if (c_test[0])
2542 test = new_decision_test (DT_c_test, &place);
2543 test->u.c_test = c_test;
2546 test = new_decision_test (DT_accept_insn, &place);
2547 test->u.insn.code_number = next_insn_code;
2548 test->u.insn.lineno = pattern_lineno;
2549 test->u.insn.num_clobbers_to_add = XVECLEN (x, 0) - i;
2551 merge_trees (&head, &clobber_head);
2554 break;
2556 case SPLIT:
2557 /* Define the subroutine we will call below and emit in genemit. */
2558 printf ("extern rtx gen_split_%d PARAMS ((rtx *));\n", next_insn_code);
2559 break;
2561 case PEEPHOLE2:
2562 /* Define the subroutine we will call below and emit in genemit. */
2563 printf ("extern rtx gen_peephole2_%d PARAMS ((rtx, rtx *));\n",
2564 next_insn_code);
2565 break;
2568 return head;
2571 static void
2572 process_tree (head, subroutine_type)
2573 struct decision_head *head;
2574 enum routine_type subroutine_type;
2576 if (head->first == NULL)
2578 /* We can elide peephole2_insns, but not recog or split_insns. */
2579 if (subroutine_type == PEEPHOLE2)
2580 return;
2582 else
2584 factor_tests (head);
2586 next_subroutine_number = 0;
2587 break_out_subroutines (head, 1);
2588 find_afterward (head, NULL);
2590 /* We run this after find_afterward, because find_afterward needs
2591 the redundant DT_mode tests on predicates to determine whether
2592 two tests can both be true or not. */
2593 simplify_tests(head);
2595 write_subroutines (head, subroutine_type);
2598 write_subroutine (head, subroutine_type);
2601 extern int main PARAMS ((int, char **));
2604 main (argc, argv)
2605 int argc;
2606 char **argv;
2608 rtx desc;
2609 struct decision_head recog_tree, split_tree, peephole2_tree, h;
2611 progname = "genrecog";
2613 memset (&recog_tree, 0, sizeof recog_tree);
2614 memset (&split_tree, 0, sizeof split_tree);
2615 memset (&peephole2_tree, 0, sizeof peephole2_tree);
2617 if (argc <= 1)
2618 fatal ("No input file name.");
2620 if (init_md_reader (argv[1]) != SUCCESS_EXIT_CODE)
2621 return (FATAL_EXIT_CODE);
2623 next_insn_code = 0;
2624 next_index = 0;
2626 write_header ();
2628 /* Read the machine description. */
2630 while (1)
2632 desc = read_md_rtx (&pattern_lineno, &next_insn_code);
2633 if (desc == NULL)
2634 break;
2636 if (GET_CODE (desc) == DEFINE_INSN)
2638 h = make_insn_sequence (desc, RECOG);
2639 merge_trees (&recog_tree, &h);
2641 else if (GET_CODE (desc) == DEFINE_SPLIT)
2643 h = make_insn_sequence (desc, SPLIT);
2644 merge_trees (&split_tree, &h);
2646 else if (GET_CODE (desc) == DEFINE_PEEPHOLE2)
2648 h = make_insn_sequence (desc, PEEPHOLE2);
2649 merge_trees (&peephole2_tree, &h);
2652 next_index++;
2655 if (error_count)
2656 return FATAL_EXIT_CODE;
2658 puts ("\n\n");
2660 process_tree (&recog_tree, RECOG);
2661 process_tree (&split_tree, SPLIT);
2662 process_tree (&peephole2_tree, PEEPHOLE2);
2664 fflush (stdout);
2665 return (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
2668 /* Define this so we can link with print-rtl.o to get debug_rtx function. */
2669 const char *
2670 get_insn_name (code)
2671 int code;
2673 if (code < insn_name_ptr_size)
2674 return insn_name_ptr[code];
2675 else
2676 return NULL;
2679 static void
2680 record_insn_name (code, name)
2681 int code;
2682 const char *name;
2684 static const char *last_real_name = "insn";
2685 static int last_real_code = 0;
2686 char *new;
2688 if (insn_name_ptr_size <= code)
2690 int new_size;
2691 new_size = (insn_name_ptr_size ? insn_name_ptr_size * 2 : 512);
2692 insn_name_ptr =
2693 (char **) xrealloc (insn_name_ptr, sizeof(char *) * new_size);
2694 memset (insn_name_ptr + insn_name_ptr_size, 0,
2695 sizeof(char *) * (new_size - insn_name_ptr_size));
2696 insn_name_ptr_size = new_size;
2699 if (!name || name[0] == '\0')
2701 new = xmalloc (strlen (last_real_name) + 10);
2702 sprintf (new, "%s+%d", last_real_name, code - last_real_code);
2704 else
2706 last_real_name = new = xstrdup (name);
2707 last_real_code = code;
2710 insn_name_ptr[code] = new;
2713 static void
2714 debug_decision_2 (test)
2715 struct decision_test *test;
2717 switch (test->type)
2719 case DT_mode:
2720 fprintf (stderr, "mode=%s", GET_MODE_NAME (test->u.mode));
2721 break;
2722 case DT_code:
2723 fprintf (stderr, "code=%s", GET_RTX_NAME (test->u.code));
2724 break;
2725 case DT_veclen:
2726 fprintf (stderr, "veclen=%d", test->u.veclen);
2727 break;
2728 case DT_elt_zero_int:
2729 fprintf (stderr, "elt0_i=%d", (int) test->u.intval);
2730 break;
2731 case DT_elt_one_int:
2732 fprintf (stderr, "elt1_i=%d", (int) test->u.intval);
2733 break;
2734 case DT_elt_zero_wide:
2735 fprintf (stderr, "elt0_w=");
2736 fprintf (stderr, HOST_WIDE_INT_PRINT_DEC, test->u.intval);
2737 break;
2738 case DT_veclen_ge:
2739 fprintf (stderr, "veclen>=%d", test->u.veclen);
2740 break;
2741 case DT_dup:
2742 fprintf (stderr, "dup=%d", test->u.dup);
2743 break;
2744 case DT_pred:
2745 fprintf (stderr, "pred=(%s,%s)",
2746 test->u.pred.name, GET_MODE_NAME(test->u.pred.mode));
2747 break;
2748 case DT_c_test:
2750 char sub[16+4];
2751 strncpy (sub, test->u.c_test, sizeof(sub));
2752 memcpy (sub+16, "...", 4);
2753 fprintf (stderr, "c_test=\"%s\"", sub);
2755 break;
2756 case DT_accept_op:
2757 fprintf (stderr, "A_op=%d", test->u.opno);
2758 break;
2759 case DT_accept_insn:
2760 fprintf (stderr, "A_insn=(%d,%d)",
2761 test->u.insn.code_number, test->u.insn.num_clobbers_to_add);
2762 break;
2764 default:
2765 abort ();
2769 static void
2770 debug_decision_1 (d, indent)
2771 struct decision *d;
2772 int indent;
2774 int i;
2775 struct decision_test *test;
2777 if (d == NULL)
2779 for (i = 0; i < indent; ++i)
2780 putc (' ', stderr);
2781 fputs ("(nil)\n", stderr);
2782 return;
2785 for (i = 0; i < indent; ++i)
2786 putc (' ', stderr);
2788 putc ('{', stderr);
2789 test = d->tests;
2790 if (test)
2792 debug_decision_2 (test);
2793 while ((test = test->next) != NULL)
2795 fputs (" + ", stderr);
2796 debug_decision_2 (test);
2799 fprintf (stderr, "} %d n %d a %d\n", d->number,
2800 (d->next ? d->next->number : -1),
2801 (d->afterward ? d->afterward->number : -1));
2804 static void
2805 debug_decision_0 (d, indent, maxdepth)
2806 struct decision *d;
2807 int indent, maxdepth;
2809 struct decision *n;
2810 int i;
2812 if (maxdepth < 0)
2813 return;
2814 if (d == NULL)
2816 for (i = 0; i < indent; ++i)
2817 putc (' ', stderr);
2818 fputs ("(nil)\n", stderr);
2819 return;
2822 debug_decision_1 (d, indent);
2823 for (n = d->success.first; n ; n = n->next)
2824 debug_decision_0 (n, indent + 2, maxdepth - 1);
2827 void
2828 debug_decision (d)
2829 struct decision *d;
2831 debug_decision_0 (d, 0, 1000000);
2834 void
2835 debug_decision_list (d)
2836 struct decision *d;
2838 while (d)
2840 debug_decision_0 (d, 0, 0);
2841 d = d->next;