1 /* Emit RTL for the GNU C-Compiler expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 /* Middle-to-low level generation of rtx code and insns.
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
48 #include "hard-reg-set.h"
50 #include "insn-config.h"
55 #include "basic-block.h"
58 /* Commonly used modes. */
60 enum machine_mode byte_mode
; /* Mode whose width is BITS_PER_UNIT. */
61 enum machine_mode word_mode
; /* Mode whose width is BITS_PER_WORD. */
62 enum machine_mode double_mode
; /* Mode whose width is DOUBLE_TYPE_SIZE. */
63 enum machine_mode ptr_mode
; /* Mode whose width is POINTER_SIZE. */
66 /* This is *not* reset after each function. It gives each CODE_LABEL
67 in the entire compilation a unique label number. */
69 static int label_num
= 1;
71 /* Highest label number in current function.
72 Zero means use the value of label_num instead.
73 This is nonzero only when belatedly compiling an inline function. */
75 static int last_label_num
;
77 /* Value label_num had when set_new_first_and_last_label_number was called.
78 If label_num has not changed since then, last_label_num is valid. */
80 static int base_label_num
;
82 /* Nonzero means do not generate NOTEs for source line numbers. */
84 static int no_line_numbers
;
86 /* Commonly used rtx's, so that we only need space for one copy.
87 These are initialized once for the entire compilation.
88 All of these except perhaps the floating-point CONST_DOUBLEs
89 are unique; no other rtx-object will be equal to any of these. */
91 rtx global_rtl
[GR_MAX
];
93 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
94 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
95 record a copy of const[012]_rtx. */
97 rtx const_tiny_rtx
[3][(int) MAX_MACHINE_MODE
];
101 REAL_VALUE_TYPE dconst0
;
102 REAL_VALUE_TYPE dconst1
;
103 REAL_VALUE_TYPE dconst2
;
104 REAL_VALUE_TYPE dconstm1
;
106 /* All references to the following fixed hard registers go through
107 these unique rtl objects. On machines where the frame-pointer and
108 arg-pointer are the same register, they use the same unique object.
110 After register allocation, other rtl objects which used to be pseudo-regs
111 may be clobbered to refer to the frame-pointer register.
112 But references that were originally to the frame-pointer can be
113 distinguished from the others because they contain frame_pointer_rtx.
115 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
116 tricky: until register elimination has taken place hard_frame_pointer_rtx
117 should be used if it is being set, and frame_pointer_rtx otherwise. After
118 register elimination hard_frame_pointer_rtx should always be used.
119 On machines where the two registers are same (most) then these are the
122 In an inline procedure, the stack and frame pointer rtxs may not be
123 used for anything else. */
124 rtx struct_value_rtx
; /* (REG:Pmode STRUCT_VALUE_REGNUM) */
125 rtx struct_value_incoming_rtx
; /* (REG:Pmode STRUCT_VALUE_INCOMING_REGNUM) */
126 rtx static_chain_rtx
; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
127 rtx static_chain_incoming_rtx
; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
128 rtx pic_offset_table_rtx
; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
130 /* This is used to implement __builtin_return_address for some machines.
131 See for instance the MIPS port. */
132 rtx return_address_pointer_rtx
; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
134 /* We make one copy of (const_int C) where C is in
135 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
136 to save space during the compilation and simplify comparisons of
139 rtx const_int_rtx
[MAX_SAVED_CONST_INT
* 2 + 1];
141 /* A hash table storing CONST_INTs whose absolute value is greater
142 than MAX_SAVED_CONST_INT. */
144 static htab_t const_int_htab
;
146 /* start_sequence and gen_sequence can make a lot of rtx expressions which are
147 shortly thrown away. We use two mechanisms to prevent this waste:
149 For sizes up to 5 elements, we keep a SEQUENCE and its associated
150 rtvec for use by gen_sequence. One entry for each size is
151 sufficient because most cases are calls to gen_sequence followed by
152 immediately emitting the SEQUENCE. Reuse is safe since emitting a
153 sequence is destructive on the insn in it anyway and hence can't be
156 We do not bother to save this cached data over nested function calls.
157 Instead, we just reinitialize them. */
159 #define SEQUENCE_RESULT_SIZE 5
161 static rtx sequence_result
[SEQUENCE_RESULT_SIZE
];
163 /* During RTL generation, we also keep a list of free INSN rtl codes. */
164 static rtx free_insn
;
166 #define first_insn (cfun->emit->x_first_insn)
167 #define last_insn (cfun->emit->x_last_insn)
168 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
169 #define last_linenum (cfun->emit->x_last_linenum)
170 #define last_filename (cfun->emit->x_last_filename)
171 #define first_label_num (cfun->emit->x_first_label_num)
173 static rtx make_jump_insn_raw
PARAMS ((rtx
));
174 static rtx make_call_insn_raw
PARAMS ((rtx
));
175 static rtx find_line_note
PARAMS ((rtx
));
176 static void mark_sequence_stack
PARAMS ((struct sequence_stack
*));
177 static void unshare_all_rtl_1
PARAMS ((rtx
));
178 static void unshare_all_decls
PARAMS ((tree
));
179 static void reset_used_decls
PARAMS ((tree
));
180 static void mark_label_nuses
PARAMS ((rtx
));
181 static hashval_t const_int_htab_hash
PARAMS ((const void *));
182 static int const_int_htab_eq
PARAMS ((const void *,
184 static int rtx_htab_mark_1
PARAMS ((void **, void *));
185 static void rtx_htab_mark
PARAMS ((void *));
188 /* Returns a hash code for X (which is a really a CONST_INT). */
191 const_int_htab_hash (x
)
194 return (hashval_t
) INTVAL ((const struct rtx_def
*) x
);
197 /* Returns non-zero if the value represented by X (which is really a
198 CONST_INT) is the same as that given by Y (which is really a
202 const_int_htab_eq (x
, y
)
206 return (INTVAL ((const struct rtx_def
*) x
) == *((const HOST_WIDE_INT
*) y
));
209 /* Mark the hash-table element X (which is really a pointer to an
213 rtx_htab_mark_1 (x
, data
)
215 void *data ATTRIBUTE_UNUSED
;
221 /* Mark all the elements of HTAB (which is really an htab_t full of
228 htab_traverse (*((htab_t
*) htab
), rtx_htab_mark_1
, NULL
);
231 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
232 don't attempt to share with the various global pieces of rtl (such as
233 frame_pointer_rtx). */
236 gen_raw_REG (mode
, regno
)
237 enum machine_mode mode
;
240 rtx x
= gen_rtx_raw_REG (mode
, regno
);
241 ORIGINAL_REGNO (x
) = regno
;
245 /* There are some RTL codes that require special attention; the generation
246 functions do the raw handling. If you add to this list, modify
247 special_rtx in gengenrtl.c as well. */
250 gen_rtx_CONST_INT (mode
, arg
)
251 enum machine_mode mode ATTRIBUTE_UNUSED
;
256 if (arg
>= - MAX_SAVED_CONST_INT
&& arg
<= MAX_SAVED_CONST_INT
)
257 return const_int_rtx
[arg
+ MAX_SAVED_CONST_INT
];
259 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
260 if (const_true_rtx
&& arg
== STORE_FLAG_VALUE
)
261 return const_true_rtx
;
264 /* Look up the CONST_INT in the hash table. */
265 slot
= htab_find_slot_with_hash (const_int_htab
, &arg
,
266 (hashval_t
) arg
, INSERT
);
268 *slot
= gen_rtx_raw_CONST_INT (VOIDmode
, arg
);
273 /* CONST_DOUBLEs needs special handling because their length is known
277 gen_rtx_CONST_DOUBLE (mode
, arg0
, arg1
, arg2
)
278 enum machine_mode mode
;
280 HOST_WIDE_INT arg1
, arg2
;
282 rtx r
= rtx_alloc (CONST_DOUBLE
);
287 X0EXP (r
, 1) = NULL_RTX
;
291 for (i
= GET_RTX_LENGTH (CONST_DOUBLE
) - 1; i
> 3; --i
)
298 gen_rtx_REG (mode
, regno
)
299 enum machine_mode mode
;
302 /* In case the MD file explicitly references the frame pointer, have
303 all such references point to the same frame pointer. This is
304 used during frame pointer elimination to distinguish the explicit
305 references to these registers from pseudos that happened to be
308 If we have eliminated the frame pointer or arg pointer, we will
309 be using it as a normal register, for example as a spill
310 register. In such cases, we might be accessing it in a mode that
311 is not Pmode and therefore cannot use the pre-allocated rtx.
313 Also don't do this when we are making new REGs in reload, since
314 we don't want to get confused with the real pointers. */
316 if (mode
== Pmode
&& !reload_in_progress
)
318 if (regno
== FRAME_POINTER_REGNUM
)
319 return frame_pointer_rtx
;
320 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
321 if (regno
== HARD_FRAME_POINTER_REGNUM
)
322 return hard_frame_pointer_rtx
;
324 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
325 if (regno
== ARG_POINTER_REGNUM
)
326 return arg_pointer_rtx
;
328 #ifdef RETURN_ADDRESS_POINTER_REGNUM
329 if (regno
== RETURN_ADDRESS_POINTER_REGNUM
)
330 return return_address_pointer_rtx
;
332 if (regno
== STACK_POINTER_REGNUM
)
333 return stack_pointer_rtx
;
336 return gen_raw_REG (mode
, regno
);
340 gen_rtx_MEM (mode
, addr
)
341 enum machine_mode mode
;
344 rtx rt
= gen_rtx_raw_MEM (mode
, addr
);
346 /* This field is not cleared by the mere allocation of the rtx, so
348 MEM_ALIAS_SET (rt
) = 0;
353 /* rtx gen_rtx (code, mode, [element1, ..., elementn])
355 ** This routine generates an RTX of the size specified by
356 ** <code>, which is an RTX code. The RTX structure is initialized
357 ** from the arguments <element1> through <elementn>, which are
358 ** interpreted according to the specific RTX type's format. The
359 ** special machine mode associated with the rtx (if any) is specified
362 ** gen_rtx can be invoked in a way which resembles the lisp-like
363 ** rtx it will generate. For example, the following rtx structure:
365 ** (plus:QI (mem:QI (reg:SI 1))
366 ** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
368 ** ...would be generated by the following C code:
370 ** gen_rtx (PLUS, QImode,
371 ** gen_rtx (MEM, QImode,
372 ** gen_rtx (REG, SImode, 1)),
373 ** gen_rtx (MEM, QImode,
374 ** gen_rtx (PLUS, SImode,
375 ** gen_rtx (REG, SImode, 2),
376 ** gen_rtx (REG, SImode, 3)))),
381 gen_rtx
VPARAMS ((enum rtx_code code
, enum machine_mode mode
, ...))
383 #ifndef ANSI_PROTOTYPES
385 enum machine_mode mode
;
388 register int i
; /* Array indices... */
389 register const char *fmt
; /* Current rtx's format... */
390 register rtx rt_val
; /* RTX to return to caller... */
394 #ifndef ANSI_PROTOTYPES
395 code
= va_arg (p
, enum rtx_code
);
396 mode
= va_arg (p
, enum machine_mode
);
402 rt_val
= gen_rtx_CONST_INT (mode
, va_arg (p
, HOST_WIDE_INT
));
407 rtx arg0
= va_arg (p
, rtx
);
408 HOST_WIDE_INT arg1
= va_arg (p
, HOST_WIDE_INT
);
409 HOST_WIDE_INT arg2
= va_arg (p
, HOST_WIDE_INT
);
410 rt_val
= gen_rtx_CONST_DOUBLE (mode
, arg0
, arg1
, arg2
);
415 rt_val
= gen_rtx_REG (mode
, va_arg (p
, int));
419 rt_val
= gen_rtx_MEM (mode
, va_arg (p
, rtx
));
423 rt_val
= rtx_alloc (code
); /* Allocate the storage space. */
424 rt_val
->mode
= mode
; /* Store the machine mode... */
426 fmt
= GET_RTX_FORMAT (code
); /* Find the right format... */
427 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
431 case '0': /* Unused field. */
434 case 'i': /* An integer? */
435 XINT (rt_val
, i
) = va_arg (p
, int);
438 case 'w': /* A wide integer? */
439 XWINT (rt_val
, i
) = va_arg (p
, HOST_WIDE_INT
);
442 case 's': /* A string? */
443 XSTR (rt_val
, i
) = va_arg (p
, char *);
446 case 'e': /* An expression? */
447 case 'u': /* An insn? Same except when printing. */
448 XEXP (rt_val
, i
) = va_arg (p
, rtx
);
451 case 'E': /* An RTX vector? */
452 XVEC (rt_val
, i
) = va_arg (p
, rtvec
);
455 case 'b': /* A bitmap? */
456 XBITMAP (rt_val
, i
) = va_arg (p
, bitmap
);
459 case 't': /* A tree? */
460 XTREE (rt_val
, i
) = va_arg (p
, tree
);
474 /* gen_rtvec (n, [rt1, ..., rtn])
476 ** This routine creates an rtvec and stores within it the
477 ** pointers to rtx's which are its arguments.
482 gen_rtvec
VPARAMS ((int n
, ...))
484 #ifndef ANSI_PROTOTYPES
493 #ifndef ANSI_PROTOTYPES
498 return NULL_RTVEC
; /* Don't allocate an empty rtvec... */
500 vector
= (rtx
*) alloca (n
* sizeof (rtx
));
502 for (i
= 0; i
< n
; i
++)
503 vector
[i
] = va_arg (p
, rtx
);
506 return gen_rtvec_v (n
, vector
);
510 gen_rtvec_v (n
, argp
)
515 register rtvec rt_val
;
518 return NULL_RTVEC
; /* Don't allocate an empty rtvec... */
520 rt_val
= rtvec_alloc (n
); /* Allocate an rtvec... */
522 for (i
= 0; i
< n
; i
++)
523 rt_val
->elem
[i
] = *argp
++;
529 /* Generate a REG rtx for a new pseudo register of mode MODE.
530 This pseudo is assigned the next sequential register number. */
534 enum machine_mode mode
;
536 struct function
*f
= cfun
;
539 /* Don't let anything called after initial flow analysis create new
544 if (generating_concat_p
545 && (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
546 || GET_MODE_CLASS (mode
) == MODE_COMPLEX_INT
))
548 /* For complex modes, don't make a single pseudo.
549 Instead, make a CONCAT of two pseudos.
550 This allows noncontiguous allocation of the real and imaginary parts,
551 which makes much better code. Besides, allocating DCmode
552 pseudos overstrains reload on some machines like the 386. */
553 rtx realpart
, imagpart
;
554 int size
= GET_MODE_UNIT_SIZE (mode
);
555 enum machine_mode partmode
556 = mode_for_size (size
* BITS_PER_UNIT
,
557 (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
558 ? MODE_FLOAT
: MODE_INT
),
561 realpart
= gen_reg_rtx (partmode
);
562 imagpart
= gen_reg_rtx (partmode
);
563 return gen_rtx_CONCAT (mode
, realpart
, imagpart
);
566 /* Make sure regno_pointer_align and regno_reg_rtx are large enough
567 to have an element for this pseudo reg number. */
569 if (reg_rtx_no
== f
->emit
->regno_pointer_align_length
)
571 int old_size
= f
->emit
->regno_pointer_align_length
;
574 new = xrealloc (f
->emit
->regno_pointer_align
, old_size
* 2);
575 memset (new + old_size
, 0, old_size
);
576 f
->emit
->regno_pointer_align
= (unsigned char *) new;
578 new1
= (rtx
*) xrealloc (f
->emit
->x_regno_reg_rtx
,
579 old_size
* 2 * sizeof (rtx
));
580 memset (new1
+ old_size
, 0, old_size
* sizeof (rtx
));
581 regno_reg_rtx
= new1
;
583 f
->emit
->regno_pointer_align_length
= old_size
* 2;
586 val
= gen_raw_REG (mode
, reg_rtx_no
);
587 regno_reg_rtx
[reg_rtx_no
++] = val
;
591 /* Identify REG (which may be a CONCAT) as a user register. */
597 if (GET_CODE (reg
) == CONCAT
)
599 REG_USERVAR_P (XEXP (reg
, 0)) = 1;
600 REG_USERVAR_P (XEXP (reg
, 1)) = 1;
602 else if (GET_CODE (reg
) == REG
)
603 REG_USERVAR_P (reg
) = 1;
608 /* Identify REG as a probable pointer register and show its alignment
609 as ALIGN, if nonzero. */
612 mark_reg_pointer (reg
, align
)
616 if (! REG_POINTER (reg
))
618 REG_POINTER (reg
) = 1;
621 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
623 else if (align
&& align
< REGNO_POINTER_ALIGN (REGNO (reg
)))
624 /* We can no-longer be sure just how aligned this pointer is */
625 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
628 /* Return 1 plus largest pseudo reg number used in the current function. */
636 /* Return 1 + the largest label number used so far in the current function. */
641 if (last_label_num
&& label_num
== base_label_num
)
642 return last_label_num
;
646 /* Return first label number used in this function (if any were used). */
649 get_first_label_num ()
651 return first_label_num
;
654 /* Return a value representing some low-order bits of X, where the number
655 of low-order bits is given by MODE. Note that no conversion is done
656 between floating-point and fixed-point values, rather, the bit
657 representation is returned.
659 This function handles the cases in common between gen_lowpart, below,
660 and two variants in cse.c and combine.c. These are the cases that can
661 be safely handled at all points in the compilation.
663 If this is not a case we can handle, return 0. */
666 gen_lowpart_common (mode
, x
)
667 enum machine_mode mode
;
672 if (GET_MODE (x
) == mode
)
675 /* MODE must occupy no more words than the mode of X. */
676 if (GET_MODE (x
) != VOIDmode
677 && ((GET_MODE_SIZE (mode
) + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
678 > ((GET_MODE_SIZE (GET_MODE (x
)) + (UNITS_PER_WORD
- 1))
682 if (WORDS_BIG_ENDIAN
&& GET_MODE_SIZE (GET_MODE (x
)) > UNITS_PER_WORD
)
683 word
= ((GET_MODE_SIZE (GET_MODE (x
))
684 - MAX (GET_MODE_SIZE (mode
), UNITS_PER_WORD
))
687 if ((GET_CODE (x
) == ZERO_EXTEND
|| GET_CODE (x
) == SIGN_EXTEND
)
688 && (GET_MODE_CLASS (mode
) == MODE_INT
689 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
))
691 /* If we are getting the low-order part of something that has been
692 sign- or zero-extended, we can either just use the object being
693 extended or make a narrower extension. If we want an even smaller
694 piece than the size of the object being extended, call ourselves
697 This case is used mostly by combine and cse. */
699 if (GET_MODE (XEXP (x
, 0)) == mode
)
701 else if (GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))))
702 return gen_lowpart_common (mode
, XEXP (x
, 0));
703 else if (GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (x
)))
704 return gen_rtx_fmt_e (GET_CODE (x
), mode
, XEXP (x
, 0));
706 else if (GET_CODE (x
) == SUBREG
707 && (GET_MODE_SIZE (mode
) <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
)))
708 || GET_MODE_SIZE (mode
) <= UNITS_PER_WORD
709 || GET_MODE_SIZE (mode
) == GET_MODE_UNIT_SIZE (GET_MODE (x
))))
710 return (GET_MODE (SUBREG_REG (x
)) == mode
&& SUBREG_WORD (x
) == 0
712 : gen_rtx_SUBREG (mode
, SUBREG_REG (x
), SUBREG_WORD (x
) + word
));
713 else if (GET_CODE (x
) == REG
)
715 /* Let the backend decide how many registers to skip. This is needed
716 in particular for Sparc64 where fp regs are smaller than a word. */
717 /* ??? Note that subregs are now ambiguous, in that those against
718 pseudos are sized by the Word Size, while those against hard
719 regs are sized by the underlying register size. Better would be
720 to always interpret the subreg offset parameter as bytes or bits. */
722 if (WORDS_BIG_ENDIAN
&& REGNO (x
) < FIRST_PSEUDO_REGISTER
723 && GET_MODE_SIZE (GET_MODE (x
)) > GET_MODE_SIZE (mode
))
724 word
= (HARD_REGNO_NREGS (REGNO (x
), GET_MODE (x
))
725 - HARD_REGNO_NREGS (REGNO (x
), mode
));
727 /* If the register is not valid for MODE, return 0. If we don't
728 do this, there is no way to fix up the resulting REG later.
729 But we do do this if the current REG is not valid for its
730 mode. This latter is a kludge, but is required due to the
731 way that parameters are passed on some machines, most
733 if (REGNO (x
) < FIRST_PSEUDO_REGISTER
734 && ! HARD_REGNO_MODE_OK (REGNO (x
) + word
, mode
)
735 && HARD_REGNO_MODE_OK (REGNO (x
), GET_MODE (x
)))
737 else if (REGNO (x
) < FIRST_PSEUDO_REGISTER
738 /* integrate.c can't handle parts of a return value register. */
739 && (! REG_FUNCTION_VALUE_P (x
)
740 || ! rtx_equal_function_value_matters
)
741 #ifdef CLASS_CANNOT_CHANGE_MODE
742 && ! (CLASS_CANNOT_CHANGE_MODE_P (mode
, GET_MODE (x
))
743 && GET_MODE_CLASS (GET_MODE (x
)) != MODE_COMPLEX_INT
744 && GET_MODE_CLASS (GET_MODE (x
)) != MODE_COMPLEX_FLOAT
745 && (TEST_HARD_REG_BIT
746 (reg_class_contents
[(int) CLASS_CANNOT_CHANGE_MODE
],
749 /* We want to keep the stack, frame, and arg pointers
751 && x
!= frame_pointer_rtx
752 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
753 && x
!= arg_pointer_rtx
755 && x
!= stack_pointer_rtx
)
756 return gen_rtx_REG (mode
, REGNO (x
) + word
);
758 return gen_rtx_SUBREG (mode
, x
, word
);
760 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
761 from the low-order part of the constant. */
762 else if ((GET_MODE_CLASS (mode
) == MODE_INT
763 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
764 && GET_MODE (x
) == VOIDmode
765 && (GET_CODE (x
) == CONST_INT
|| GET_CODE (x
) == CONST_DOUBLE
))
767 /* If MODE is twice the host word size, X is already the desired
768 representation. Otherwise, if MODE is wider than a word, we can't
769 do this. If MODE is exactly a word, return just one CONST_INT. */
771 if (GET_MODE_BITSIZE (mode
) >= 2 * HOST_BITS_PER_WIDE_INT
)
773 else if (GET_MODE_BITSIZE (mode
) > HOST_BITS_PER_WIDE_INT
)
775 else if (GET_MODE_BITSIZE (mode
) == HOST_BITS_PER_WIDE_INT
)
776 return (GET_CODE (x
) == CONST_INT
? x
777 : GEN_INT (CONST_DOUBLE_LOW (x
)));
780 /* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
781 HOST_WIDE_INT val
= (GET_CODE (x
) == CONST_INT
? INTVAL (x
)
782 : CONST_DOUBLE_LOW (x
));
784 /* Sign extend to HOST_WIDE_INT. */
785 val
= trunc_int_for_mode (val
, mode
);
787 return (GET_CODE (x
) == CONST_INT
&& INTVAL (x
) == val
? x
792 #ifndef REAL_ARITHMETIC
793 /* If X is an integral constant but we want it in floating-point, it
794 must be the case that we have a union of an integer and a floating-point
795 value. If the machine-parameters allow it, simulate that union here
796 and return the result. The two-word and single-word cases are
799 else if (((HOST_FLOAT_FORMAT
== TARGET_FLOAT_FORMAT
800 && HOST_BITS_PER_WIDE_INT
== BITS_PER_WORD
)
801 || flag_pretend_float
)
802 && GET_MODE_CLASS (mode
) == MODE_FLOAT
803 && GET_MODE_SIZE (mode
) == UNITS_PER_WORD
804 && GET_CODE (x
) == CONST_INT
805 && sizeof (float) * HOST_BITS_PER_CHAR
== HOST_BITS_PER_WIDE_INT
)
807 union {HOST_WIDE_INT i
; float d
; } u
;
810 return CONST_DOUBLE_FROM_REAL_VALUE (u
.d
, mode
);
812 else if (((HOST_FLOAT_FORMAT
== TARGET_FLOAT_FORMAT
813 && HOST_BITS_PER_WIDE_INT
== BITS_PER_WORD
)
814 || flag_pretend_float
)
815 && GET_MODE_CLASS (mode
) == MODE_FLOAT
816 && GET_MODE_SIZE (mode
) == 2 * UNITS_PER_WORD
817 && (GET_CODE (x
) == CONST_INT
|| GET_CODE (x
) == CONST_DOUBLE
)
818 && GET_MODE (x
) == VOIDmode
819 && (sizeof (double) * HOST_BITS_PER_CHAR
820 == 2 * HOST_BITS_PER_WIDE_INT
))
822 union {HOST_WIDE_INT i
[2]; double d
; } u
;
823 HOST_WIDE_INT low
, high
;
825 if (GET_CODE (x
) == CONST_INT
)
826 low
= INTVAL (x
), high
= low
>> (HOST_BITS_PER_WIDE_INT
-1);
828 low
= CONST_DOUBLE_LOW (x
), high
= CONST_DOUBLE_HIGH (x
);
830 #ifdef HOST_WORDS_BIG_ENDIAN
831 u
.i
[0] = high
, u
.i
[1] = low
;
833 u
.i
[0] = low
, u
.i
[1] = high
;
836 return CONST_DOUBLE_FROM_REAL_VALUE (u
.d
, mode
);
839 /* Similarly, if this is converting a floating-point value into a
840 single-word integer. Only do this is the host and target parameters are
843 else if (((HOST_FLOAT_FORMAT
== TARGET_FLOAT_FORMAT
844 && HOST_BITS_PER_WIDE_INT
== BITS_PER_WORD
)
845 || flag_pretend_float
)
846 && (GET_MODE_CLASS (mode
) == MODE_INT
847 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
848 && GET_CODE (x
) == CONST_DOUBLE
849 && GET_MODE_CLASS (GET_MODE (x
)) == MODE_FLOAT
850 && GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
)
851 return operand_subword (x
, word
, 0, GET_MODE (x
));
853 /* Similarly, if this is converting a floating-point value into a
854 two-word integer, we can do this one word at a time and make an
855 integer. Only do this is the host and target parameters are
858 else if (((HOST_FLOAT_FORMAT
== TARGET_FLOAT_FORMAT
859 && HOST_BITS_PER_WIDE_INT
== BITS_PER_WORD
)
860 || flag_pretend_float
)
861 && (GET_MODE_CLASS (mode
) == MODE_INT
862 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
863 && GET_CODE (x
) == CONST_DOUBLE
864 && GET_MODE_CLASS (GET_MODE (x
)) == MODE_FLOAT
865 && GET_MODE_BITSIZE (mode
) == 2 * BITS_PER_WORD
)
868 = operand_subword (x
, word
+ WORDS_BIG_ENDIAN
, 0, GET_MODE (x
));
870 = operand_subword (x
, word
+ ! WORDS_BIG_ENDIAN
, 0, GET_MODE (x
));
872 if (lowpart
&& GET_CODE (lowpart
) == CONST_INT
873 && highpart
&& GET_CODE (highpart
) == CONST_INT
)
874 return immed_double_const (INTVAL (lowpart
), INTVAL (highpart
), mode
);
876 #else /* ifndef REAL_ARITHMETIC */
878 /* When we have a FP emulator, we can handle all conversions between
879 FP and integer operands. This simplifies reload because it
880 doesn't have to deal with constructs like (subreg:DI
881 (const_double:SF ...)) or (subreg:DF (const_int ...)). */
883 else if (mode
== SFmode
884 && GET_CODE (x
) == CONST_INT
)
890 r
= REAL_VALUE_FROM_TARGET_SINGLE (i
);
891 return CONST_DOUBLE_FROM_REAL_VALUE (r
, mode
);
893 else if (mode
== DFmode
894 && (GET_CODE (x
) == CONST_INT
|| GET_CODE (x
) == CONST_DOUBLE
)
895 && GET_MODE (x
) == VOIDmode
)
899 HOST_WIDE_INT low
, high
;
901 if (GET_CODE (x
) == CONST_INT
)
904 high
= low
>> (HOST_BITS_PER_WIDE_INT
- 1);
908 low
= CONST_DOUBLE_LOW (x
);
909 high
= CONST_DOUBLE_HIGH (x
);
912 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
914 if (WORDS_BIG_ENDIAN
)
915 i
[0] = high
, i
[1] = low
;
917 i
[0] = low
, i
[1] = high
;
919 r
= REAL_VALUE_FROM_TARGET_DOUBLE (i
);
920 return CONST_DOUBLE_FROM_REAL_VALUE (r
, mode
);
922 else if ((GET_MODE_CLASS (mode
) == MODE_INT
923 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
924 && GET_CODE (x
) == CONST_DOUBLE
925 && GET_MODE_CLASS (GET_MODE (x
)) == MODE_FLOAT
)
928 long i
[4]; /* Only the low 32 bits of each 'long' are used. */
929 int endian
= WORDS_BIG_ENDIAN
? 1 : 0;
931 REAL_VALUE_FROM_CONST_DOUBLE (r
, x
);
932 switch (GET_MODE (x
))
935 REAL_VALUE_TO_TARGET_SINGLE (r
, i
[endian
]);
939 REAL_VALUE_TO_TARGET_DOUBLE (r
, i
);
941 #if LONG_DOUBLE_TYPE_SIZE == 96
943 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r
, i
+ endian
);
947 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r
, i
);
954 /* Now, pack the 32-bit elements of the array into a CONST_DOUBLE
956 #if HOST_BITS_PER_WIDE_INT == 32
957 return immed_double_const (i
[endian
], i
[1 - endian
], mode
);
962 if (HOST_BITS_PER_WIDE_INT
!= 64)
965 for (c
= 0; c
< 4; c
++)
968 switch (GET_MODE (x
))
972 return immed_double_const (((unsigned long) i
[endian
]) |
973 (((HOST_WIDE_INT
) i
[1-endian
]) << 32),
976 return immed_double_const (((unsigned long) i
[endian
*3]) |
977 (((HOST_WIDE_INT
) i
[1+endian
]) << 32),
978 ((unsigned long) i
[2-endian
]) |
979 (((HOST_WIDE_INT
) i
[3-endian
*3]) << 32),
985 #endif /* ifndef REAL_ARITHMETIC */
987 /* Otherwise, we can't do this. */
991 /* Return the real part (which has mode MODE) of a complex value X.
992 This always comes at the low address in memory. */
995 gen_realpart (mode
, x
)
996 enum machine_mode mode
;
999 if (GET_CODE (x
) == CONCAT
&& GET_MODE (XEXP (x
, 0)) == mode
)
1001 else if (WORDS_BIG_ENDIAN
1002 && GET_MODE_BITSIZE (mode
) < BITS_PER_WORD
1004 && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
1006 ("Can't access real part of complex value in hard register");
1007 else if (WORDS_BIG_ENDIAN
)
1008 return gen_highpart (mode
, x
);
1010 return gen_lowpart (mode
, x
);
1013 /* Return the imaginary part (which has mode MODE) of a complex value X.
1014 This always comes at the high address in memory. */
1017 gen_imagpart (mode
, x
)
1018 enum machine_mode mode
;
1021 if (GET_CODE (x
) == CONCAT
&& GET_MODE (XEXP (x
, 0)) == mode
)
1023 else if (WORDS_BIG_ENDIAN
)
1024 return gen_lowpart (mode
, x
);
1025 else if (!WORDS_BIG_ENDIAN
1026 && GET_MODE_BITSIZE (mode
) < BITS_PER_WORD
1028 && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
1030 ("can't access imaginary part of complex value in hard register");
1032 return gen_highpart (mode
, x
);
1035 /* Return 1 iff X, assumed to be a SUBREG,
1036 refers to the real part of the complex value in its containing reg.
1037 Complex values are always stored with the real part in the first word,
1038 regardless of WORDS_BIG_ENDIAN. */
1041 subreg_realpart_p (x
)
1044 if (GET_CODE (x
) != SUBREG
)
1047 return ((unsigned int) SUBREG_WORD (x
) * UNITS_PER_WORD
1048 < GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x
))));
1051 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1052 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1053 least-significant part of X.
1054 MODE specifies how big a part of X to return;
1055 it usually should not be larger than a word.
1056 If X is a MEM whose address is a QUEUED, the value may be so also. */
1059 gen_lowpart (mode
, x
)
1060 enum machine_mode mode
;
1063 rtx result
= gen_lowpart_common (mode
, x
);
1067 else if (GET_CODE (x
) == REG
)
1069 /* Must be a hard reg that's not valid in MODE. */
1070 result
= gen_lowpart_common (mode
, copy_to_reg (x
));
1075 else if (GET_CODE (x
) == MEM
)
1077 /* The only additional case we can do is MEM. */
1078 register int offset
= 0;
1079 if (WORDS_BIG_ENDIAN
)
1080 offset
= (MAX (GET_MODE_SIZE (GET_MODE (x
)), UNITS_PER_WORD
)
1081 - MAX (GET_MODE_SIZE (mode
), UNITS_PER_WORD
));
1083 if (BYTES_BIG_ENDIAN
)
1084 /* Adjust the address so that the address-after-the-data
1086 offset
-= (MIN (UNITS_PER_WORD
, GET_MODE_SIZE (mode
))
1087 - MIN (UNITS_PER_WORD
, GET_MODE_SIZE (GET_MODE (x
))));
1089 return change_address (x
, mode
, plus_constant (XEXP (x
, 0), offset
));
1091 else if (GET_CODE (x
) == ADDRESSOF
)
1092 return gen_lowpart (mode
, force_reg (GET_MODE (x
), x
));
1097 /* Like `gen_lowpart', but refer to the most significant part.
1098 This is used to access the imaginary part of a complex number. */
1101 gen_highpart (mode
, x
)
1102 enum machine_mode mode
;
1105 /* This case loses if X is a subreg. To catch bugs early,
1106 complain if an invalid MODE is used even in other cases. */
1107 if (GET_MODE_SIZE (mode
) > UNITS_PER_WORD
1108 && GET_MODE_SIZE (mode
) != GET_MODE_UNIT_SIZE (GET_MODE (x
)))
1110 if (GET_CODE (x
) == CONST_DOUBLE
1111 #if !(TARGET_FLOAT_FORMAT != HOST_FLOAT_FORMAT || defined (REAL_IS_NOT_DOUBLE))
1112 && GET_MODE_CLASS (GET_MODE (x
)) != MODE_FLOAT
1115 return GEN_INT (CONST_DOUBLE_HIGH (x
) & GET_MODE_MASK (mode
));
1116 else if (GET_CODE (x
) == CONST_INT
)
1118 if (HOST_BITS_PER_WIDE_INT
<= BITS_PER_WORD
)
1120 return GEN_INT (INTVAL (x
) >> (HOST_BITS_PER_WIDE_INT
- BITS_PER_WORD
));
1122 else if (GET_CODE (x
) == MEM
)
1124 register int offset
= 0;
1125 if (! WORDS_BIG_ENDIAN
)
1126 offset
= (MAX (GET_MODE_SIZE (GET_MODE (x
)), UNITS_PER_WORD
)
1127 - MAX (GET_MODE_SIZE (mode
), UNITS_PER_WORD
));
1129 if (! BYTES_BIG_ENDIAN
1130 && GET_MODE_SIZE (mode
) < UNITS_PER_WORD
)
1131 offset
-= (GET_MODE_SIZE (mode
)
1132 - MIN (UNITS_PER_WORD
,
1133 GET_MODE_SIZE (GET_MODE (x
))));
1135 return change_address (x
, mode
, plus_constant (XEXP (x
, 0), offset
));
1137 else if (GET_CODE (x
) == SUBREG
)
1139 /* The only time this should occur is when we are looking at a
1140 multi-word item with a SUBREG whose mode is the same as that of the
1141 item. It isn't clear what we would do if it wasn't. */
1142 if (SUBREG_WORD (x
) != 0)
1144 return gen_highpart (mode
, SUBREG_REG (x
));
1146 else if (GET_CODE (x
) == REG
)
1150 /* Let the backend decide how many registers to skip. This is needed
1151 in particular for sparc64 where fp regs are smaller than a word. */
1152 /* ??? Note that subregs are now ambiguous, in that those against
1153 pseudos are sized by the word size, while those against hard
1154 regs are sized by the underlying register size. Better would be
1155 to always interpret the subreg offset parameter as bytes or bits. */
1157 if (GET_MODE_SIZE (GET_MODE (x
)) < GET_MODE_SIZE (mode
))
1159 else if (WORDS_BIG_ENDIAN
)
1161 else if (REGNO (x
) < FIRST_PSEUDO_REGISTER
)
1162 word
= (HARD_REGNO_NREGS (REGNO (x
), GET_MODE (x
))
1163 - HARD_REGNO_NREGS (REGNO (x
), mode
));
1165 word
= ((GET_MODE_SIZE (GET_MODE (x
))
1166 - MAX (GET_MODE_SIZE (mode
), UNITS_PER_WORD
))
1169 if (REGNO (x
) < FIRST_PSEUDO_REGISTER
1170 /* integrate.c can't handle parts of a return value register. */
1171 && (! REG_FUNCTION_VALUE_P (x
)
1172 || ! rtx_equal_function_value_matters
)
1173 /* We want to keep the stack, frame, and arg pointers special. */
1174 && x
!= frame_pointer_rtx
1175 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1176 && x
!= arg_pointer_rtx
1178 && x
!= stack_pointer_rtx
)
1179 return gen_rtx_REG (mode
, REGNO (x
) + word
);
1181 return gen_rtx_SUBREG (mode
, x
, word
);
1187 /* Return 1 iff X, assumed to be a SUBREG,
1188 refers to the least significant part of its containing reg.
1189 If X is not a SUBREG, always return 1 (it is its own low part!). */
1192 subreg_lowpart_p (x
)
1195 if (GET_CODE (x
) != SUBREG
)
1197 else if (GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
1200 if (WORDS_BIG_ENDIAN
1201 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))) > UNITS_PER_WORD
)
1202 return (SUBREG_WORD (x
)
1203 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
)))
1204 - MAX (GET_MODE_SIZE (GET_MODE (x
)), UNITS_PER_WORD
))
1207 return SUBREG_WORD (x
) == 0;
1210 /* Return subword I of operand OP.
1211 The word number, I, is interpreted as the word number starting at the
1212 low-order address. Word 0 is the low-order word if not WORDS_BIG_ENDIAN,
1213 otherwise it is the high-order word.
1215 If we cannot extract the required word, we return zero. Otherwise, an
1216 rtx corresponding to the requested word will be returned.
1218 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1219 reload has completed, a valid address will always be returned. After
1220 reload, if a valid address cannot be returned, we return zero.
1222 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1223 it is the responsibility of the caller.
1225 MODE is the mode of OP in case it is a CONST_INT. */
1228 operand_subword (op
, i
, validate_address
, mode
)
1231 int validate_address
;
1232 enum machine_mode mode
;
1235 int size_ratio
= HOST_BITS_PER_WIDE_INT
/ BITS_PER_WORD
;
1237 if (mode
== VOIDmode
)
1238 mode
= GET_MODE (op
);
1240 if (mode
== VOIDmode
)
1243 /* If OP is narrower than a word, fail. */
1245 && (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
))
1248 /* If we want a word outside OP, return zero. */
1250 && (i
+ 1) * UNITS_PER_WORD
> GET_MODE_SIZE (mode
))
1253 /* If OP is already an integer word, return it. */
1254 if (GET_MODE_CLASS (mode
) == MODE_INT
1255 && GET_MODE_SIZE (mode
) == UNITS_PER_WORD
)
1258 /* If OP is a REG or SUBREG, we can handle it very simply. */
1259 if (GET_CODE (op
) == REG
)
1261 /* ??? There is a potential problem with this code. It does not
1262 properly handle extractions of a subword from a hard register
1263 that is larger than word_mode. Presumably the check for
1264 HARD_REGNO_MODE_OK catches these most of these cases. */
1266 /* If OP is a hard register, but OP + I is not a hard register,
1267 then extracting a subword is impossible.
1269 For example, consider if OP is the last hard register and it is
1270 larger than word_mode. If we wanted word N (for N > 0) because a
1271 part of that hard register was known to contain a useful value,
1272 then OP + I would refer to a pseudo, not the hard register we
1274 if (REGNO (op
) < FIRST_PSEUDO_REGISTER
1275 && REGNO (op
) + i
>= FIRST_PSEUDO_REGISTER
)
1278 /* If the register is not valid for MODE, return 0. Note we
1279 have to check both OP and OP + I since they may refer to
1280 different parts of the register file.
1282 Consider if OP refers to the last 96bit FP register and we want
1283 subword 3 because that subword is known to contain a value we
1285 if (REGNO (op
) < FIRST_PSEUDO_REGISTER
1286 && (! HARD_REGNO_MODE_OK (REGNO (op
), word_mode
)
1287 || ! HARD_REGNO_MODE_OK (REGNO (op
) + i
, word_mode
)))
1289 else if (REGNO (op
) >= FIRST_PSEUDO_REGISTER
1290 || (REG_FUNCTION_VALUE_P (op
)
1291 && rtx_equal_function_value_matters
)
1292 /* We want to keep the stack, frame, and arg pointers
1294 || op
== frame_pointer_rtx
1295 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1296 || op
== arg_pointer_rtx
1298 || op
== stack_pointer_rtx
)
1299 return gen_rtx_SUBREG (word_mode
, op
, i
);
1301 return gen_rtx_REG (word_mode
, REGNO (op
) + i
);
1303 else if (GET_CODE (op
) == SUBREG
)
1304 return gen_rtx_SUBREG (word_mode
, SUBREG_REG (op
), i
+ SUBREG_WORD (op
));
1305 else if (GET_CODE (op
) == CONCAT
)
1307 unsigned int partwords
1308 = GET_MODE_UNIT_SIZE (GET_MODE (op
)) / UNITS_PER_WORD
;
1311 return operand_subword (XEXP (op
, 0), i
, validate_address
, mode
);
1312 return operand_subword (XEXP (op
, 1), i
- partwords
,
1313 validate_address
, mode
);
1316 /* Form a new MEM at the requested address. */
1317 if (GET_CODE (op
) == MEM
)
1319 rtx addr
= plus_constant (XEXP (op
, 0), i
* UNITS_PER_WORD
);
1322 if (validate_address
)
1324 if (reload_completed
)
1326 if (! strict_memory_address_p (word_mode
, addr
))
1330 addr
= memory_address (word_mode
, addr
);
1333 new = gen_rtx_MEM (word_mode
, addr
);
1334 MEM_COPY_ATTRIBUTES (new, op
);
1338 /* The only remaining cases are when OP is a constant. If the host and
1339 target floating formats are the same, handling two-word floating
1340 constants are easy. Note that REAL_VALUE_TO_TARGET_{SINGLE,DOUBLE}
1341 are defined as returning one or two 32 bit values, respectively,
1342 and not values of BITS_PER_WORD bits. */
1343 #ifdef REAL_ARITHMETIC
1344 /* The output is some bits, the width of the target machine's word.
1345 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1347 if (HOST_BITS_PER_WIDE_INT
>= BITS_PER_WORD
1348 && GET_MODE_CLASS (mode
) == MODE_FLOAT
1349 && GET_MODE_BITSIZE (mode
) == 64
1350 && GET_CODE (op
) == CONST_DOUBLE
)
1355 REAL_VALUE_FROM_CONST_DOUBLE (rv
, op
);
1356 REAL_VALUE_TO_TARGET_DOUBLE (rv
, k
);
1358 /* We handle 32-bit and >= 64-bit words here. Note that the order in
1359 which the words are written depends on the word endianness.
1360 ??? This is a potential portability problem and should
1361 be fixed at some point.
1363 We must excercise caution with the sign bit. By definition there
1364 are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
1365 Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
1366 So we explicitly mask and sign-extend as necessary. */
1367 if (BITS_PER_WORD
== 32)
1370 val
= ((val
& 0xffffffff) ^ 0x80000000) - 0x80000000;
1371 return GEN_INT (val
);
1373 #if HOST_BITS_PER_WIDE_INT >= 64
1374 else if (BITS_PER_WORD
>= 64 && i
== 0)
1376 val
= k
[! WORDS_BIG_ENDIAN
];
1377 val
= (((val
& 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1378 val
|= (HOST_WIDE_INT
) k
[WORDS_BIG_ENDIAN
] & 0xffffffff;
1379 return GEN_INT (val
);
1382 else if (BITS_PER_WORD
== 16)
1385 if ((i
& 1) == !WORDS_BIG_ENDIAN
)
1388 return GEN_INT (val
);
1393 else if (HOST_BITS_PER_WIDE_INT
>= BITS_PER_WORD
1394 && GET_MODE_CLASS (mode
) == MODE_FLOAT
1395 && GET_MODE_BITSIZE (mode
) > 64
1396 && GET_CODE (op
) == CONST_DOUBLE
)
1401 REAL_VALUE_FROM_CONST_DOUBLE (rv
, op
);
1402 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv
, k
);
1404 if (BITS_PER_WORD
== 32)
1407 val
= ((val
& 0xffffffff) ^ 0x80000000) - 0x80000000;
1408 return GEN_INT (val
);
1410 #if HOST_BITS_PER_WIDE_INT >= 64
1411 else if (BITS_PER_WORD
>= 64 && i
<= 1)
1413 val
= k
[i
*2 + ! WORDS_BIG_ENDIAN
];
1414 val
= (((val
& 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1415 val
|= (HOST_WIDE_INT
) k
[i
*2 + WORDS_BIG_ENDIAN
] & 0xffffffff;
1416 return GEN_INT (val
);
1422 #else /* no REAL_ARITHMETIC */
1423 if (((HOST_FLOAT_FORMAT
== TARGET_FLOAT_FORMAT
1424 && HOST_BITS_PER_WIDE_INT
== BITS_PER_WORD
)
1425 || flag_pretend_float
)
1426 && GET_MODE_CLASS (mode
) == MODE_FLOAT
1427 && GET_MODE_SIZE (mode
) == 2 * UNITS_PER_WORD
1428 && GET_CODE (op
) == CONST_DOUBLE
)
1430 /* The constant is stored in the host's word-ordering,
1431 but we want to access it in the target's word-ordering. Some
1432 compilers don't like a conditional inside macro args, so we have two
1433 copies of the return. */
1434 #ifdef HOST_WORDS_BIG_ENDIAN
1435 return GEN_INT (i
== WORDS_BIG_ENDIAN
1436 ? CONST_DOUBLE_HIGH (op
) : CONST_DOUBLE_LOW (op
));
1438 return GEN_INT (i
!= WORDS_BIG_ENDIAN
1439 ? CONST_DOUBLE_HIGH (op
) : CONST_DOUBLE_LOW (op
));
1442 #endif /* no REAL_ARITHMETIC */
1444 /* Single word float is a little harder, since single- and double-word
1445 values often do not have the same high-order bits. We have already
1446 verified that we want the only defined word of the single-word value. */
1447 #ifdef REAL_ARITHMETIC
1448 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
1449 && GET_MODE_BITSIZE (mode
) == 32
1450 && GET_CODE (op
) == CONST_DOUBLE
)
1455 REAL_VALUE_FROM_CONST_DOUBLE (rv
, op
);
1456 REAL_VALUE_TO_TARGET_SINGLE (rv
, l
);
1458 /* Sign extend from known 32-bit value to HOST_WIDE_INT. */
1460 val
= ((val
& 0xffffffff) ^ 0x80000000) - 0x80000000;
1462 if (BITS_PER_WORD
== 16)
1464 if ((i
& 1) == !WORDS_BIG_ENDIAN
)
1469 return GEN_INT (val
);
1472 if (((HOST_FLOAT_FORMAT
== TARGET_FLOAT_FORMAT
1473 && HOST_BITS_PER_WIDE_INT
== BITS_PER_WORD
)
1474 || flag_pretend_float
)
1475 && sizeof (float) * 8 == HOST_BITS_PER_WIDE_INT
1476 && GET_MODE_CLASS (mode
) == MODE_FLOAT
1477 && GET_MODE_SIZE (mode
) == UNITS_PER_WORD
1478 && GET_CODE (op
) == CONST_DOUBLE
)
1481 union {float f
; HOST_WIDE_INT i
; } u
;
1483 REAL_VALUE_FROM_CONST_DOUBLE (d
, op
);
1486 return GEN_INT (u
.i
);
1488 if (((HOST_FLOAT_FORMAT
== TARGET_FLOAT_FORMAT
1489 && HOST_BITS_PER_WIDE_INT
== BITS_PER_WORD
)
1490 || flag_pretend_float
)
1491 && sizeof (double) * 8 == HOST_BITS_PER_WIDE_INT
1492 && GET_MODE_CLASS (mode
) == MODE_FLOAT
1493 && GET_MODE_SIZE (mode
) == UNITS_PER_WORD
1494 && GET_CODE (op
) == CONST_DOUBLE
)
1497 union {double d
; HOST_WIDE_INT i
; } u
;
1499 REAL_VALUE_FROM_CONST_DOUBLE (d
, op
);
1502 return GEN_INT (u
.i
);
1504 #endif /* no REAL_ARITHMETIC */
1506 /* The only remaining cases that we can handle are integers.
1507 Convert to proper endianness now since these cases need it.
1508 At this point, i == 0 means the low-order word.
1510 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1511 in general. However, if OP is (const_int 0), we can just return
1514 if (op
== const0_rtx
)
1517 if (GET_MODE_CLASS (mode
) != MODE_INT
1518 || (GET_CODE (op
) != CONST_INT
&& GET_CODE (op
) != CONST_DOUBLE
)
1519 || BITS_PER_WORD
> HOST_BITS_PER_WIDE_INT
)
1522 if (WORDS_BIG_ENDIAN
)
1523 i
= GET_MODE_SIZE (mode
) / UNITS_PER_WORD
- 1 - i
;
1525 /* Find out which word on the host machine this value is in and get
1526 it from the constant. */
1527 val
= (i
/ size_ratio
== 0
1528 ? (GET_CODE (op
) == CONST_INT
? INTVAL (op
) : CONST_DOUBLE_LOW (op
))
1529 : (GET_CODE (op
) == CONST_INT
1530 ? (INTVAL (op
) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op
)));
1532 /* Get the value we want into the low bits of val. */
1533 if (BITS_PER_WORD
< HOST_BITS_PER_WIDE_INT
)
1534 val
= ((val
>> ((i
% size_ratio
) * BITS_PER_WORD
)));
1536 val
= trunc_int_for_mode (val
, word_mode
);
1538 return GEN_INT (val
);
1541 /* Similar to `operand_subword', but never return 0. If we can't extract
1542 the required subword, put OP into a register and try again. If that fails,
1543 abort. We always validate the address in this case. It is not valid
1544 to call this function after reload; it is mostly meant for RTL
1547 MODE is the mode of OP, in case it is CONST_INT. */
1550 operand_subword_force (op
, i
, mode
)
1553 enum machine_mode mode
;
1555 rtx result
= operand_subword (op
, i
, 1, mode
);
1560 if (mode
!= BLKmode
&& mode
!= VOIDmode
)
1562 /* If this is a register which can not be accessed by words, copy it
1563 to a pseudo register. */
1564 if (GET_CODE (op
) == REG
)
1565 op
= copy_to_reg (op
);
1567 op
= force_reg (mode
, op
);
1570 result
= operand_subword (op
, i
, 1, mode
);
1577 /* Given a compare instruction, swap the operands.
1578 A test instruction is changed into a compare of 0 against the operand. */
1581 reverse_comparison (insn
)
1584 rtx body
= PATTERN (insn
);
1587 if (GET_CODE (body
) == SET
)
1588 comp
= SET_SRC (body
);
1590 comp
= SET_SRC (XVECEXP (body
, 0, 0));
1592 if (GET_CODE (comp
) == COMPARE
)
1594 rtx op0
= XEXP (comp
, 0);
1595 rtx op1
= XEXP (comp
, 1);
1596 XEXP (comp
, 0) = op1
;
1597 XEXP (comp
, 1) = op0
;
1601 rtx
new = gen_rtx_COMPARE (VOIDmode
,
1602 CONST0_RTX (GET_MODE (comp
)), comp
);
1603 if (GET_CODE (body
) == SET
)
1604 SET_SRC (body
) = new;
1606 SET_SRC (XVECEXP (body
, 0, 0)) = new;
1610 /* Return a memory reference like MEMREF, but with its mode changed
1611 to MODE and its address changed to ADDR.
1612 (VOIDmode means don't change the mode.
1613 NULL for ADDR means don't change the address.) */
1616 change_address (memref
, mode
, addr
)
1618 enum machine_mode mode
;
1623 if (GET_CODE (memref
) != MEM
)
1625 if (mode
== VOIDmode
)
1626 mode
= GET_MODE (memref
);
1628 addr
= XEXP (memref
, 0);
1630 /* If reload is in progress or has completed, ADDR must be valid.
1631 Otherwise, we can call memory_address to make it valid. */
1632 if (reload_completed
|| reload_in_progress
)
1634 if (! memory_address_p (mode
, addr
))
1638 addr
= memory_address (mode
, addr
);
1640 if (rtx_equal_p (addr
, XEXP (memref
, 0)) && mode
== GET_MODE (memref
))
1643 new = gen_rtx_MEM (mode
, addr
);
1644 MEM_COPY_ATTRIBUTES (new, memref
);
1648 /* Return a newly created CODE_LABEL rtx with a unique label number. */
1655 label
= gen_rtx_CODE_LABEL (VOIDmode
, 0, NULL_RTX
,
1656 NULL_RTX
, label_num
++, NULL_PTR
, NULL_PTR
);
1658 LABEL_NUSES (label
) = 0;
1659 LABEL_ALTERNATE_NAME (label
) = NULL
;
1663 /* For procedure integration. */
1665 /* Install new pointers to the first and last insns in the chain.
1666 Also, set cur_insn_uid to one higher than the last in use.
1667 Used for an inline-procedure after copying the insn chain. */
1670 set_new_first_and_last_insn (first
, last
)
1679 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1680 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
1685 /* Set the range of label numbers found in the current function.
1686 This is used when belatedly compiling an inline function. */
1689 set_new_first_and_last_label_num (first
, last
)
1692 base_label_num
= label_num
;
1693 first_label_num
= first
;
1694 last_label_num
= last
;
1697 /* Set the last label number found in the current function.
1698 This is used when belatedly compiling an inline function. */
1701 set_new_last_label_num (last
)
1704 base_label_num
= label_num
;
1705 last_label_num
= last
;
1708 /* Restore all variables describing the current status from the structure *P.
1709 This is used after a nested function. */
1712 restore_emit_status (p
)
1713 struct function
*p ATTRIBUTE_UNUSED
;
1716 clear_emit_caches ();
1719 /* Clear out all parts of the state in F that can safely be discarded
1720 after the function has been compiled, to let garbage collection
1721 reclaim the memory. */
1724 free_emit_status (f
)
1727 free (f
->emit
->x_regno_reg_rtx
);
1728 free (f
->emit
->regno_pointer_align
);
1733 /* Go through all the RTL insn bodies and copy any invalid shared
1734 structure. This routine should only be called once. */
1737 unshare_all_rtl (fndecl
, insn
)
1743 /* Make sure that virtual parameters are not shared. */
1744 for (decl
= DECL_ARGUMENTS (fndecl
); decl
; decl
= TREE_CHAIN (decl
))
1745 SET_DECL_RTL (decl
, copy_rtx_if_shared (DECL_RTL (decl
)));
1747 /* Make sure that virtual stack slots are not shared. */
1748 unshare_all_decls (DECL_INITIAL (fndecl
));
1750 /* Unshare just about everything else. */
1751 unshare_all_rtl_1 (insn
);
1753 /* Make sure the addresses of stack slots found outside the insn chain
1754 (such as, in DECL_RTL of a variable) are not shared
1755 with the insn chain.
1757 This special care is necessary when the stack slot MEM does not
1758 actually appear in the insn chain. If it does appear, its address
1759 is unshared from all else at that point. */
1760 stack_slot_list
= copy_rtx_if_shared (stack_slot_list
);
1763 /* Go through all the RTL insn bodies and copy any invalid shared
1764 structure, again. This is a fairly expensive thing to do so it
1765 should be done sparingly. */
1768 unshare_all_rtl_again (insn
)
1774 for (p
= insn
; p
; p
= NEXT_INSN (p
))
1777 reset_used_flags (PATTERN (p
));
1778 reset_used_flags (REG_NOTES (p
));
1779 reset_used_flags (LOG_LINKS (p
));
1782 /* Make sure that virtual stack slots are not shared. */
1783 reset_used_decls (DECL_INITIAL (cfun
->decl
));
1785 /* Make sure that virtual parameters are not shared. */
1786 for (decl
= DECL_ARGUMENTS (cfun
->decl
); decl
; decl
= TREE_CHAIN (decl
))
1787 reset_used_flags (DECL_RTL (decl
));
1789 reset_used_flags (stack_slot_list
);
1791 unshare_all_rtl (cfun
->decl
, insn
);
1794 /* Go through all the RTL insn bodies and copy any invalid shared structure.
1795 Assumes the mark bits are cleared at entry. */
1798 unshare_all_rtl_1 (insn
)
1801 for (; insn
; insn
= NEXT_INSN (insn
))
1804 PATTERN (insn
) = copy_rtx_if_shared (PATTERN (insn
));
1805 REG_NOTES (insn
) = copy_rtx_if_shared (REG_NOTES (insn
));
1806 LOG_LINKS (insn
) = copy_rtx_if_shared (LOG_LINKS (insn
));
1810 /* Go through all virtual stack slots of a function and copy any
1811 shared structure. */
1813 unshare_all_decls (blk
)
1818 /* Copy shared decls. */
1819 for (t
= BLOCK_VARS (blk
); t
; t
= TREE_CHAIN (t
))
1820 if (DECL_RTL_SET_P (t
))
1821 SET_DECL_RTL (t
, copy_rtx_if_shared (DECL_RTL (t
)));
1823 /* Now process sub-blocks. */
1824 for (t
= BLOCK_SUBBLOCKS (blk
); t
; t
= TREE_CHAIN (t
))
1825 unshare_all_decls (t
);
1828 /* Go through all virtual stack slots of a function and mark them as
1831 reset_used_decls (blk
)
1837 for (t
= BLOCK_VARS (blk
); t
; t
= TREE_CHAIN (t
))
1838 if (DECL_RTL_SET_P (t
))
1839 reset_used_flags (DECL_RTL (t
));
1841 /* Now process sub-blocks. */
1842 for (t
= BLOCK_SUBBLOCKS (blk
); t
; t
= TREE_CHAIN (t
))
1843 reset_used_decls (t
);
1846 /* Mark ORIG as in use, and return a copy of it if it was already in use.
1847 Recursively does the same for subexpressions. */
1850 copy_rtx_if_shared (orig
)
1853 register rtx x
= orig
;
1855 register enum rtx_code code
;
1856 register const char *format_ptr
;
1862 code
= GET_CODE (x
);
1864 /* These types may be freely shared. */
1877 /* SCRATCH must be shared because they represent distinct values. */
1881 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
1882 a LABEL_REF, it isn't sharable. */
1883 if (GET_CODE (XEXP (x
, 0)) == PLUS
1884 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == SYMBOL_REF
1885 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
)
1894 /* The chain of insns is not being copied. */
1898 /* A MEM is allowed to be shared if its address is constant.
1900 We used to allow sharing of MEMs which referenced
1901 virtual_stack_vars_rtx or virtual_incoming_args_rtx, but
1902 that can lose. instantiate_virtual_regs will not unshare
1903 the MEMs, and combine may change the structure of the address
1904 because it looks safe and profitable in one context, but
1905 in some other context it creates unrecognizable RTL. */
1906 if (CONSTANT_ADDRESS_P (XEXP (x
, 0)))
1915 /* This rtx may not be shared. If it has already been seen,
1916 replace it with a copy of itself. */
1922 copy
= rtx_alloc (code
);
1924 (sizeof (*copy
) - sizeof (copy
->fld
)
1925 + sizeof (copy
->fld
[0]) * GET_RTX_LENGTH (code
)));
1931 /* Now scan the subexpressions recursively.
1932 We can store any replaced subexpressions directly into X
1933 since we know X is not shared! Any vectors in X
1934 must be copied if X was copied. */
1936 format_ptr
= GET_RTX_FORMAT (code
);
1938 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
1940 switch (*format_ptr
++)
1943 XEXP (x
, i
) = copy_rtx_if_shared (XEXP (x
, i
));
1947 if (XVEC (x
, i
) != NULL
)
1950 int len
= XVECLEN (x
, i
);
1952 if (copied
&& len
> 0)
1953 XVEC (x
, i
) = gen_rtvec_v (len
, XVEC (x
, i
)->elem
);
1954 for (j
= 0; j
< len
; j
++)
1955 XVECEXP (x
, i
, j
) = copy_rtx_if_shared (XVECEXP (x
, i
, j
));
1963 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
1964 to look for shared sub-parts. */
1967 reset_used_flags (x
)
1971 register enum rtx_code code
;
1972 register const char *format_ptr
;
1977 code
= GET_CODE (x
);
1979 /* These types may be freely shared so we needn't do any resetting
2000 /* The chain of insns is not being copied. */
2009 format_ptr
= GET_RTX_FORMAT (code
);
2010 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2012 switch (*format_ptr
++)
2015 reset_used_flags (XEXP (x
, i
));
2019 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2020 reset_used_flags (XVECEXP (x
, i
, j
));
2026 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2027 Return X or the rtx for the pseudo reg the value of X was copied into.
2028 OTHER must be valid as a SET_DEST. */
2031 make_safe_from (x
, other
)
2035 switch (GET_CODE (other
))
2038 other
= SUBREG_REG (other
);
2040 case STRICT_LOW_PART
:
2043 other
= XEXP (other
, 0);
2049 if ((GET_CODE (other
) == MEM
2051 && GET_CODE (x
) != REG
2052 && GET_CODE (x
) != SUBREG
)
2053 || (GET_CODE (other
) == REG
2054 && (REGNO (other
) < FIRST_PSEUDO_REGISTER
2055 || reg_mentioned_p (other
, x
))))
2057 rtx temp
= gen_reg_rtx (GET_MODE (x
));
2058 emit_move_insn (temp
, x
);
2064 /* Emission of insns (adding them to the doubly-linked list). */
2066 /* Return the first insn of the current sequence or current function. */
2074 /* Return the last insn emitted in current sequence or current function. */
2082 /* Specify a new insn as the last in the chain. */
2085 set_last_insn (insn
)
2088 if (NEXT_INSN (insn
) != 0)
2093 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2096 get_last_insn_anywhere ()
2098 struct sequence_stack
*stack
;
2101 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
2102 if (stack
->last
!= 0)
2107 /* Return a number larger than any instruction's uid in this function. */
2112 return cur_insn_uid
;
2115 /* Renumber instructions so that no instruction UIDs are wasted. */
2118 renumber_insns (stream
)
2123 /* If we're not supposed to renumber instructions, don't. */
2124 if (!flag_renumber_insns
)
2127 /* If there aren't that many instructions, then it's not really
2128 worth renumbering them. */
2129 if (flag_renumber_insns
== 1 && get_max_uid () < 25000)
2134 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
2137 fprintf (stream
, "Renumbering insn %d to %d\n",
2138 INSN_UID (insn
), cur_insn_uid
);
2139 INSN_UID (insn
) = cur_insn_uid
++;
2143 /* Return the next insn. If it is a SEQUENCE, return the first insn
2152 insn
= NEXT_INSN (insn
);
2153 if (insn
&& GET_CODE (insn
) == INSN
2154 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2155 insn
= XVECEXP (PATTERN (insn
), 0, 0);
2161 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2165 previous_insn (insn
)
2170 insn
= PREV_INSN (insn
);
2171 if (insn
&& GET_CODE (insn
) == INSN
2172 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2173 insn
= XVECEXP (PATTERN (insn
), 0, XVECLEN (PATTERN (insn
), 0) - 1);
2179 /* Return the next insn after INSN that is not a NOTE. This routine does not
2180 look inside SEQUENCEs. */
2183 next_nonnote_insn (insn
)
2188 insn
= NEXT_INSN (insn
);
2189 if (insn
== 0 || GET_CODE (insn
) != NOTE
)
2196 /* Return the previous insn before INSN that is not a NOTE. This routine does
2197 not look inside SEQUENCEs. */
2200 prev_nonnote_insn (insn
)
2205 insn
= PREV_INSN (insn
);
2206 if (insn
== 0 || GET_CODE (insn
) != NOTE
)
2213 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2214 or 0, if there is none. This routine does not look inside
2218 next_real_insn (insn
)
2223 insn
= NEXT_INSN (insn
);
2224 if (insn
== 0 || GET_CODE (insn
) == INSN
2225 || GET_CODE (insn
) == CALL_INSN
|| GET_CODE (insn
) == JUMP_INSN
)
2232 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2233 or 0, if there is none. This routine does not look inside
2237 prev_real_insn (insn
)
2242 insn
= PREV_INSN (insn
);
2243 if (insn
== 0 || GET_CODE (insn
) == INSN
|| GET_CODE (insn
) == CALL_INSN
2244 || GET_CODE (insn
) == JUMP_INSN
)
2251 /* Find the next insn after INSN that really does something. This routine
2252 does not look inside SEQUENCEs. Until reload has completed, this is the
2253 same as next_real_insn. */
2256 active_insn_p (insn
)
2259 return (GET_CODE (insn
) == CALL_INSN
|| GET_CODE (insn
) == JUMP_INSN
2260 || (GET_CODE (insn
) == INSN
2261 && (! reload_completed
2262 || (GET_CODE (PATTERN (insn
)) != USE
2263 && GET_CODE (PATTERN (insn
)) != CLOBBER
))));
2267 next_active_insn (insn
)
2272 insn
= NEXT_INSN (insn
);
2273 if (insn
== 0 || active_insn_p (insn
))
2280 /* Find the last insn before INSN that really does something. This routine
2281 does not look inside SEQUENCEs. Until reload has completed, this is the
2282 same as prev_real_insn. */
2285 prev_active_insn (insn
)
2290 insn
= PREV_INSN (insn
);
2291 if (insn
== 0 || active_insn_p (insn
))
2298 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2306 insn
= NEXT_INSN (insn
);
2307 if (insn
== 0 || GET_CODE (insn
) == CODE_LABEL
)
2314 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
2322 insn
= PREV_INSN (insn
);
2323 if (insn
== 0 || GET_CODE (insn
) == CODE_LABEL
)
2331 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
2332 and REG_CC_USER notes so we can find it. */
2335 link_cc0_insns (insn
)
2338 rtx user
= next_nonnote_insn (insn
);
2340 if (GET_CODE (user
) == INSN
&& GET_CODE (PATTERN (user
)) == SEQUENCE
)
2341 user
= XVECEXP (PATTERN (user
), 0, 0);
2343 REG_NOTES (user
) = gen_rtx_INSN_LIST (REG_CC_SETTER
, insn
,
2345 REG_NOTES (insn
) = gen_rtx_INSN_LIST (REG_CC_USER
, user
, REG_NOTES (insn
));
2348 /* Return the next insn that uses CC0 after INSN, which is assumed to
2349 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
2350 applied to the result of this function should yield INSN).
2352 Normally, this is simply the next insn. However, if a REG_CC_USER note
2353 is present, it contains the insn that uses CC0.
2355 Return 0 if we can't find the insn. */
2358 next_cc0_user (insn
)
2361 rtx note
= find_reg_note (insn
, REG_CC_USER
, NULL_RTX
);
2364 return XEXP (note
, 0);
2366 insn
= next_nonnote_insn (insn
);
2367 if (insn
&& GET_CODE (insn
) == INSN
&& GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2368 insn
= XVECEXP (PATTERN (insn
), 0, 0);
2370 if (insn
&& INSN_P (insn
) && reg_mentioned_p (cc0_rtx
, PATTERN (insn
)))
2376 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
2377 note, it is the previous insn. */
2380 prev_cc0_setter (insn
)
2383 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
2386 return XEXP (note
, 0);
2388 insn
= prev_nonnote_insn (insn
);
2389 if (! sets_cc0_p (PATTERN (insn
)))
2396 /* Increment the label uses for all labels present in rtx. */
2399 mark_label_nuses (x
)
2402 register enum rtx_code code
;
2404 register const char *fmt
;
2406 code
= GET_CODE (x
);
2407 if (code
== LABEL_REF
)
2408 LABEL_NUSES (XEXP (x
, 0))++;
2410 fmt
= GET_RTX_FORMAT (code
);
2411 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2414 mark_label_nuses (XEXP (x
, i
));
2415 else if (fmt
[i
] == 'E')
2416 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2417 mark_label_nuses (XVECEXP (x
, i
, j
));
2422 /* Try splitting insns that can be split for better scheduling.
2423 PAT is the pattern which might split.
2424 TRIAL is the insn providing PAT.
2425 LAST is non-zero if we should return the last insn of the sequence produced.
2427 If this routine succeeds in splitting, it returns the first or last
2428 replacement insn depending on the value of LAST. Otherwise, it
2429 returns TRIAL. If the insn to be returned can be split, it will be. */
2432 try_split (pat
, trial
, last
)
2436 rtx before
= PREV_INSN (trial
);
2437 rtx after
= NEXT_INSN (trial
);
2438 rtx seq
= split_insns (pat
, trial
);
2439 int has_barrier
= 0;
2442 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
2443 We may need to handle this specially. */
2444 if (after
&& GET_CODE (after
) == BARRIER
)
2447 after
= NEXT_INSN (after
);
2452 /* SEQ can either be a SEQUENCE or the pattern of a single insn.
2453 The latter case will normally arise only when being done so that
2454 it, in turn, will be split (SFmode on the 29k is an example). */
2455 if (GET_CODE (seq
) == SEQUENCE
)
2459 /* Avoid infinite loop if any insn of the result matches
2460 the original pattern. */
2461 for (i
= 0; i
< XVECLEN (seq
, 0); i
++)
2462 if (GET_CODE (XVECEXP (seq
, 0, i
)) == INSN
2463 && rtx_equal_p (PATTERN (XVECEXP (seq
, 0, i
)), pat
))
2467 for (i
= XVECLEN (seq
, 0) - 1; i
>= 0; i
--)
2468 if (GET_CODE (XVECEXP (seq
, 0, i
)) == JUMP_INSN
)
2469 mark_jump_label (PATTERN (XVECEXP (seq
, 0, i
)),
2470 XVECEXP (seq
, 0, i
), 0, 0);
2472 /* If we are splitting a CALL_INSN, look for the CALL_INSN
2473 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
2474 if (GET_CODE (trial
) == CALL_INSN
)
2475 for (i
= XVECLEN (seq
, 0) - 1; i
>= 0; i
--)
2476 if (GET_CODE (XVECEXP (seq
, 0, i
)) == CALL_INSN
)
2477 CALL_INSN_FUNCTION_USAGE (XVECEXP (seq
, 0, i
))
2478 = CALL_INSN_FUNCTION_USAGE (trial
);
2480 /* If there are LABELS inside the split insns increment the
2481 usage count so we don't delete the label. */
2482 if (GET_CODE (trial
) == INSN
)
2483 for (i
= XVECLEN (seq
, 0) - 1; i
>= 0; i
--)
2484 if (GET_CODE (XVECEXP (seq
, 0, i
)) == INSN
)
2485 mark_label_nuses (PATTERN (XVECEXP (seq
, 0, i
)));
2487 tem
= emit_insn_after (seq
, before
);
2489 delete_insn (trial
);
2491 emit_barrier_after (tem
);
2493 /* Recursively call try_split for each new insn created; by the
2494 time control returns here that insn will be fully split, so
2495 set LAST and continue from the insn after the one returned.
2496 We can't use next_active_insn here since AFTER may be a note.
2497 Ignore deleted insns, which can be occur if not optimizing. */
2498 for (tem
= NEXT_INSN (before
); tem
!= after
; tem
= NEXT_INSN (tem
))
2499 if (! INSN_DELETED_P (tem
) && INSN_P (tem
))
2500 tem
= try_split (PATTERN (tem
), tem
, 1);
2502 /* Avoid infinite loop if the result matches the original pattern. */
2503 else if (rtx_equal_p (seq
, pat
))
2507 PATTERN (trial
) = seq
;
2508 INSN_CODE (trial
) = -1;
2509 try_split (seq
, trial
, last
);
2512 /* Return either the first or the last insn, depending on which was
2515 ? (after
? prev_active_insn (after
) : last_insn
)
2516 : next_active_insn (before
);
2522 /* Make and return an INSN rtx, initializing all its slots.
2523 Store PATTERN in the pattern slots. */
2526 make_insn_raw (pattern
)
2531 insn
= rtx_alloc (INSN
);
2533 INSN_UID (insn
) = cur_insn_uid
++;
2534 PATTERN (insn
) = pattern
;
2535 INSN_CODE (insn
) = -1;
2536 LOG_LINKS (insn
) = NULL
;
2537 REG_NOTES (insn
) = NULL
;
2539 #ifdef ENABLE_RTL_CHECKING
2542 && (returnjump_p (insn
)
2543 || (GET_CODE (insn
) == SET
2544 && SET_DEST (insn
) == pc_rtx
)))
2546 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
2554 /* Like `make_insn' but make a JUMP_INSN instead of an insn. */
2557 make_jump_insn_raw (pattern
)
2562 insn
= rtx_alloc (JUMP_INSN
);
2563 INSN_UID (insn
) = cur_insn_uid
++;
2565 PATTERN (insn
) = pattern
;
2566 INSN_CODE (insn
) = -1;
2567 LOG_LINKS (insn
) = NULL
;
2568 REG_NOTES (insn
) = NULL
;
2569 JUMP_LABEL (insn
) = NULL
;
2574 /* Like `make_insn' but make a CALL_INSN instead of an insn. */
2577 make_call_insn_raw (pattern
)
2582 insn
= rtx_alloc (CALL_INSN
);
2583 INSN_UID (insn
) = cur_insn_uid
++;
2585 PATTERN (insn
) = pattern
;
2586 INSN_CODE (insn
) = -1;
2587 LOG_LINKS (insn
) = NULL
;
2588 REG_NOTES (insn
) = NULL
;
2589 CALL_INSN_FUNCTION_USAGE (insn
) = NULL
;
2594 /* Add INSN to the end of the doubly-linked list.
2595 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
2601 PREV_INSN (insn
) = last_insn
;
2602 NEXT_INSN (insn
) = 0;
2604 if (NULL
!= last_insn
)
2605 NEXT_INSN (last_insn
) = insn
;
2607 if (NULL
== first_insn
)
2613 /* Add INSN into the doubly-linked list after insn AFTER. This and
2614 the next should be the only functions called to insert an insn once
2615 delay slots have been filled since only they know how to update a
2619 add_insn_after (insn
, after
)
2622 rtx next
= NEXT_INSN (after
);
2624 if (optimize
&& INSN_DELETED_P (after
))
2627 NEXT_INSN (insn
) = next
;
2628 PREV_INSN (insn
) = after
;
2632 PREV_INSN (next
) = insn
;
2633 if (GET_CODE (next
) == INSN
&& GET_CODE (PATTERN (next
)) == SEQUENCE
)
2634 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = insn
;
2636 else if (last_insn
== after
)
2640 struct sequence_stack
*stack
= seq_stack
;
2641 /* Scan all pending sequences too. */
2642 for (; stack
; stack
= stack
->next
)
2643 if (after
== stack
->last
)
2653 NEXT_INSN (after
) = insn
;
2654 if (GET_CODE (after
) == INSN
&& GET_CODE (PATTERN (after
)) == SEQUENCE
)
2656 rtx sequence
= PATTERN (after
);
2657 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
2661 /* Add INSN into the doubly-linked list before insn BEFORE. This and
2662 the previous should be the only functions called to insert an insn once
2663 delay slots have been filled since only they know how to update a
2667 add_insn_before (insn
, before
)
2670 rtx prev
= PREV_INSN (before
);
2672 if (optimize
&& INSN_DELETED_P (before
))
2675 PREV_INSN (insn
) = prev
;
2676 NEXT_INSN (insn
) = before
;
2680 NEXT_INSN (prev
) = insn
;
2681 if (GET_CODE (prev
) == INSN
&& GET_CODE (PATTERN (prev
)) == SEQUENCE
)
2683 rtx sequence
= PATTERN (prev
);
2684 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
2687 else if (first_insn
== before
)
2691 struct sequence_stack
*stack
= seq_stack
;
2692 /* Scan all pending sequences too. */
2693 for (; stack
; stack
= stack
->next
)
2694 if (before
== stack
->first
)
2696 stack
->first
= insn
;
2704 PREV_INSN (before
) = insn
;
2705 if (GET_CODE (before
) == INSN
&& GET_CODE (PATTERN (before
)) == SEQUENCE
)
2706 PREV_INSN (XVECEXP (PATTERN (before
), 0, 0)) = insn
;
2709 /* Remove an insn from its doubly-linked list. This function knows how
2710 to handle sequences. */
2715 rtx next
= NEXT_INSN (insn
);
2716 rtx prev
= PREV_INSN (insn
);
2719 NEXT_INSN (prev
) = next
;
2720 if (GET_CODE (prev
) == INSN
&& GET_CODE (PATTERN (prev
)) == SEQUENCE
)
2722 rtx sequence
= PATTERN (prev
);
2723 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = next
;
2726 else if (first_insn
== insn
)
2730 struct sequence_stack
*stack
= seq_stack
;
2731 /* Scan all pending sequences too. */
2732 for (; stack
; stack
= stack
->next
)
2733 if (insn
== stack
->first
)
2735 stack
->first
= next
;
2745 PREV_INSN (next
) = prev
;
2746 if (GET_CODE (next
) == INSN
&& GET_CODE (PATTERN (next
)) == SEQUENCE
)
2747 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = prev
;
2749 else if (last_insn
== insn
)
2753 struct sequence_stack
*stack
= seq_stack
;
2754 /* Scan all pending sequences too. */
2755 for (; stack
; stack
= stack
->next
)
2756 if (insn
== stack
->last
)
2767 /* Delete all insns made since FROM.
2768 FROM becomes the new last instruction. */
2771 delete_insns_since (from
)
2777 NEXT_INSN (from
) = 0;
2781 /* This function is deprecated, please use sequences instead.
2783 Move a consecutive bunch of insns to a different place in the chain.
2784 The insns to be moved are those between FROM and TO.
2785 They are moved to a new position after the insn AFTER.
2786 AFTER must not be FROM or TO or any insn in between.
2788 This function does not know about SEQUENCEs and hence should not be
2789 called after delay-slot filling has been done. */
2792 reorder_insns (from
, to
, after
)
2793 rtx from
, to
, after
;
2795 /* Splice this bunch out of where it is now. */
2796 if (PREV_INSN (from
))
2797 NEXT_INSN (PREV_INSN (from
)) = NEXT_INSN (to
);
2799 PREV_INSN (NEXT_INSN (to
)) = PREV_INSN (from
);
2800 if (last_insn
== to
)
2801 last_insn
= PREV_INSN (from
);
2802 if (first_insn
== from
)
2803 first_insn
= NEXT_INSN (to
);
2805 /* Make the new neighbors point to it and it to them. */
2806 if (NEXT_INSN (after
))
2807 PREV_INSN (NEXT_INSN (after
)) = to
;
2809 NEXT_INSN (to
) = NEXT_INSN (after
);
2810 PREV_INSN (from
) = after
;
2811 NEXT_INSN (after
) = from
;
2812 if (after
== last_insn
)
2816 /* Return the line note insn preceding INSN. */
2819 find_line_note (insn
)
2822 if (no_line_numbers
)
2825 for (; insn
; insn
= PREV_INSN (insn
))
2826 if (GET_CODE (insn
) == NOTE
2827 && NOTE_LINE_NUMBER (insn
) >= 0)
2833 /* Like reorder_insns, but inserts line notes to preserve the line numbers
2834 of the moved insns when debugging. This may insert a note between AFTER
2835 and FROM, and another one after TO. */
2838 reorder_insns_with_line_notes (from
, to
, after
)
2839 rtx from
, to
, after
;
2841 rtx from_line
= find_line_note (from
);
2842 rtx after_line
= find_line_note (after
);
2844 reorder_insns (from
, to
, after
);
2846 if (from_line
== after_line
)
2850 emit_line_note_after (NOTE_SOURCE_FILE (from_line
),
2851 NOTE_LINE_NUMBER (from_line
),
2854 emit_line_note_after (NOTE_SOURCE_FILE (after_line
),
2855 NOTE_LINE_NUMBER (after_line
),
2859 /* Remove unnecessary notes from the instruction stream. */
2862 remove_unnecessary_notes ()
2867 /* We must not remove the first instruction in the function because
2868 the compiler depends on the first instruction being a note. */
2869 for (insn
= NEXT_INSN (get_insns ()); insn
; insn
= next
)
2871 /* Remember what's next. */
2872 next
= NEXT_INSN (insn
);
2874 /* We're only interested in notes. */
2875 if (GET_CODE (insn
) != NOTE
)
2878 /* By now, all notes indicating lexical blocks should have
2879 NOTE_BLOCK filled in. */
2880 if ((NOTE_LINE_NUMBER (insn
) == NOTE_INSN_BLOCK_BEG
2881 || NOTE_LINE_NUMBER (insn
) == NOTE_INSN_BLOCK_END
)
2882 && NOTE_BLOCK (insn
) == NULL_TREE
)
2885 /* Remove NOTE_INSN_DELETED notes. */
2886 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_DELETED
)
2888 else if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_BLOCK_END
)
2890 /* Scan back to see if there are any non-note instructions
2891 between INSN and the beginning of this block. If not,
2892 then there is no PC range in the generated code that will
2893 actually be in this block, so there's no point in
2894 remembering the existence of the block. */
2897 for (prev
= PREV_INSN (insn
); prev
; prev
= PREV_INSN (prev
))
2899 /* This block contains a real instruction. Note that we
2900 don't include labels; if the only thing in the block
2901 is a label, then there are still no PC values that
2902 lie within the block. */
2906 /* We're only interested in NOTEs. */
2907 if (GET_CODE (prev
) != NOTE
)
2910 if (NOTE_LINE_NUMBER (prev
) == NOTE_INSN_BLOCK_BEG
)
2912 /* If the BLOCKs referred to by these notes don't
2913 match, then something is wrong with our BLOCK
2914 nesting structure. */
2915 if (NOTE_BLOCK (prev
) != NOTE_BLOCK (insn
))
2918 if (debug_ignore_block (NOTE_BLOCK (insn
)))
2925 else if (NOTE_LINE_NUMBER (prev
) == NOTE_INSN_BLOCK_END
)
2926 /* There's a nested block. We need to leave the
2927 current block in place since otherwise the debugger
2928 wouldn't be able to show symbols from our block in
2929 the nested block. */
2937 /* Emit an insn of given code and pattern
2938 at a specified place within the doubly-linked list. */
2940 /* Make an instruction with body PATTERN
2941 and output it before the instruction BEFORE. */
2944 emit_insn_before (pattern
, before
)
2945 register rtx pattern
, before
;
2947 register rtx insn
= before
;
2949 if (GET_CODE (pattern
) == SEQUENCE
)
2953 for (i
= 0; i
< XVECLEN (pattern
, 0); i
++)
2955 insn
= XVECEXP (pattern
, 0, i
);
2956 add_insn_before (insn
, before
);
2961 insn
= make_insn_raw (pattern
);
2962 add_insn_before (insn
, before
);
2968 /* Similar to emit_insn_before, but update basic block boundaries as well. */
2971 emit_block_insn_before (pattern
, before
, block
)
2972 rtx pattern
, before
;
2975 rtx prev
= PREV_INSN (before
);
2976 rtx r
= emit_insn_before (pattern
, before
);
2977 if (block
&& block
->head
== before
)
2978 block
->head
= NEXT_INSN (prev
);
2982 /* Make an instruction with body PATTERN and code JUMP_INSN
2983 and output it before the instruction BEFORE. */
2986 emit_jump_insn_before (pattern
, before
)
2987 register rtx pattern
, before
;
2991 if (GET_CODE (pattern
) == SEQUENCE
)
2992 insn
= emit_insn_before (pattern
, before
);
2995 insn
= make_jump_insn_raw (pattern
);
2996 add_insn_before (insn
, before
);
3002 /* Make an instruction with body PATTERN and code CALL_INSN
3003 and output it before the instruction BEFORE. */
3006 emit_call_insn_before (pattern
, before
)
3007 register rtx pattern
, before
;
3011 if (GET_CODE (pattern
) == SEQUENCE
)
3012 insn
= emit_insn_before (pattern
, before
);
3015 insn
= make_call_insn_raw (pattern
);
3016 add_insn_before (insn
, before
);
3017 PUT_CODE (insn
, CALL_INSN
);
3023 /* Make an insn of code BARRIER
3024 and output it before the insn BEFORE. */
3027 emit_barrier_before (before
)
3028 register rtx before
;
3030 register rtx insn
= rtx_alloc (BARRIER
);
3032 INSN_UID (insn
) = cur_insn_uid
++;
3034 add_insn_before (insn
, before
);
3038 /* Emit the label LABEL before the insn BEFORE. */
3041 emit_label_before (label
, before
)
3044 /* This can be called twice for the same label as a result of the
3045 confusion that follows a syntax error! So make it harmless. */
3046 if (INSN_UID (label
) == 0)
3048 INSN_UID (label
) = cur_insn_uid
++;
3049 add_insn_before (label
, before
);
3055 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3058 emit_note_before (subtype
, before
)
3062 register rtx note
= rtx_alloc (NOTE
);
3063 INSN_UID (note
) = cur_insn_uid
++;
3064 NOTE_SOURCE_FILE (note
) = 0;
3065 NOTE_LINE_NUMBER (note
) = subtype
;
3067 add_insn_before (note
, before
);
3071 /* Make an insn of code INSN with body PATTERN
3072 and output it after the insn AFTER. */
3075 emit_insn_after (pattern
, after
)
3076 register rtx pattern
, after
;
3078 register rtx insn
= after
;
3080 if (GET_CODE (pattern
) == SEQUENCE
)
3084 for (i
= 0; i
< XVECLEN (pattern
, 0); i
++)
3086 insn
= XVECEXP (pattern
, 0, i
);
3087 add_insn_after (insn
, after
);
3093 insn
= make_insn_raw (pattern
);
3094 add_insn_after (insn
, after
);
3100 /* Similar to emit_insn_after, except that line notes are to be inserted so
3101 as to act as if this insn were at FROM. */
3104 emit_insn_after_with_line_notes (pattern
, after
, from
)
3105 rtx pattern
, after
, from
;
3107 rtx from_line
= find_line_note (from
);
3108 rtx after_line
= find_line_note (after
);
3109 rtx insn
= emit_insn_after (pattern
, after
);
3112 emit_line_note_after (NOTE_SOURCE_FILE (from_line
),
3113 NOTE_LINE_NUMBER (from_line
),
3117 emit_line_note_after (NOTE_SOURCE_FILE (after_line
),
3118 NOTE_LINE_NUMBER (after_line
),
3122 /* Similar to emit_insn_after, but update basic block boundaries as well. */
3125 emit_block_insn_after (pattern
, after
, block
)
3129 rtx r
= emit_insn_after (pattern
, after
);
3130 if (block
&& block
->end
== after
)
3135 /* Make an insn of code JUMP_INSN with body PATTERN
3136 and output it after the insn AFTER. */
3139 emit_jump_insn_after (pattern
, after
)
3140 register rtx pattern
, after
;
3144 if (GET_CODE (pattern
) == SEQUENCE
)
3145 insn
= emit_insn_after (pattern
, after
);
3148 insn
= make_jump_insn_raw (pattern
);
3149 add_insn_after (insn
, after
);
3155 /* Make an insn of code BARRIER
3156 and output it after the insn AFTER. */
3159 emit_barrier_after (after
)
3162 register rtx insn
= rtx_alloc (BARRIER
);
3164 INSN_UID (insn
) = cur_insn_uid
++;
3166 add_insn_after (insn
, after
);
3170 /* Emit the label LABEL after the insn AFTER. */
3173 emit_label_after (label
, after
)
3176 /* This can be called twice for the same label
3177 as a result of the confusion that follows a syntax error!
3178 So make it harmless. */
3179 if (INSN_UID (label
) == 0)
3181 INSN_UID (label
) = cur_insn_uid
++;
3182 add_insn_after (label
, after
);
3188 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
3191 emit_note_after (subtype
, after
)
3195 register rtx note
= rtx_alloc (NOTE
);
3196 INSN_UID (note
) = cur_insn_uid
++;
3197 NOTE_SOURCE_FILE (note
) = 0;
3198 NOTE_LINE_NUMBER (note
) = subtype
;
3199 add_insn_after (note
, after
);
3203 /* Emit a line note for FILE and LINE after the insn AFTER. */
3206 emit_line_note_after (file
, line
, after
)
3213 if (no_line_numbers
&& line
> 0)
3219 note
= rtx_alloc (NOTE
);
3220 INSN_UID (note
) = cur_insn_uid
++;
3221 NOTE_SOURCE_FILE (note
) = file
;
3222 NOTE_LINE_NUMBER (note
) = line
;
3223 add_insn_after (note
, after
);
3227 /* Make an insn of code INSN with pattern PATTERN
3228 and add it to the end of the doubly-linked list.
3229 If PATTERN is a SEQUENCE, take the elements of it
3230 and emit an insn for each element.
3232 Returns the last insn emitted. */
3238 rtx insn
= last_insn
;
3240 if (GET_CODE (pattern
) == SEQUENCE
)
3244 for (i
= 0; i
< XVECLEN (pattern
, 0); i
++)
3246 insn
= XVECEXP (pattern
, 0, i
);
3252 insn
= make_insn_raw (pattern
);
3259 /* Emit the insns in a chain starting with INSN.
3260 Return the last insn emitted. */
3270 rtx next
= NEXT_INSN (insn
);
3279 /* Emit the insns in a chain starting with INSN and place them in front of
3280 the insn BEFORE. Return the last insn emitted. */
3283 emit_insns_before (insn
, before
)
3291 rtx next
= NEXT_INSN (insn
);
3292 add_insn_before (insn
, before
);
3300 /* Emit the insns in a chain starting with FIRST and place them in back of
3301 the insn AFTER. Return the last insn emitted. */
3304 emit_insns_after (first
, after
)
3309 register rtx after_after
;
3317 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
3320 after_after
= NEXT_INSN (after
);
3322 NEXT_INSN (after
) = first
;
3323 PREV_INSN (first
) = after
;
3324 NEXT_INSN (last
) = after_after
;
3326 PREV_INSN (after_after
) = last
;
3328 if (after
== last_insn
)
3333 /* Make an insn of code JUMP_INSN with pattern PATTERN
3334 and add it to the end of the doubly-linked list. */
3337 emit_jump_insn (pattern
)
3340 if (GET_CODE (pattern
) == SEQUENCE
)
3341 return emit_insn (pattern
);
3344 register rtx insn
= make_jump_insn_raw (pattern
);
3350 /* Make an insn of code CALL_INSN with pattern PATTERN
3351 and add it to the end of the doubly-linked list. */
3354 emit_call_insn (pattern
)
3357 if (GET_CODE (pattern
) == SEQUENCE
)
3358 return emit_insn (pattern
);
3361 register rtx insn
= make_call_insn_raw (pattern
);
3363 PUT_CODE (insn
, CALL_INSN
);
3368 /* Add the label LABEL to the end of the doubly-linked list. */
3374 /* This can be called twice for the same label
3375 as a result of the confusion that follows a syntax error!
3376 So make it harmless. */
3377 if (INSN_UID (label
) == 0)
3379 INSN_UID (label
) = cur_insn_uid
++;
3385 /* Make an insn of code BARRIER
3386 and add it to the end of the doubly-linked list. */
3391 register rtx barrier
= rtx_alloc (BARRIER
);
3392 INSN_UID (barrier
) = cur_insn_uid
++;
3397 /* Make an insn of code NOTE
3398 with data-fields specified by FILE and LINE
3399 and add it to the end of the doubly-linked list,
3400 but only if line-numbers are desired for debugging info. */
3403 emit_line_note (file
, line
)
3407 set_file_and_line_for_stmt (file
, line
);
3410 if (no_line_numbers
)
3414 return emit_note (file
, line
);
3417 /* Make an insn of code NOTE
3418 with data-fields specified by FILE and LINE
3419 and add it to the end of the doubly-linked list.
3420 If it is a line-number NOTE, omit it if it matches the previous one. */
3423 emit_note (file
, line
)
3431 if (file
&& last_filename
&& !strcmp (file
, last_filename
)
3432 && line
== last_linenum
)
3434 last_filename
= file
;
3435 last_linenum
= line
;
3438 if (no_line_numbers
&& line
> 0)
3444 note
= rtx_alloc (NOTE
);
3445 INSN_UID (note
) = cur_insn_uid
++;
3446 NOTE_SOURCE_FILE (note
) = file
;
3447 NOTE_LINE_NUMBER (note
) = line
;
3452 /* Emit a NOTE, and don't omit it even if LINE is the previous note. */
3455 emit_line_note_force (file
, line
)
3460 return emit_line_note (file
, line
);
3463 /* Cause next statement to emit a line note even if the line number
3464 has not changed. This is used at the beginning of a function. */
3467 force_next_line_note ()
3472 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
3473 note of this type already exists, remove it first. */
3476 set_unique_reg_note (insn
, kind
, datum
)
3481 rtx note
= find_reg_note (insn
, kind
, NULL_RTX
);
3483 /* First remove the note if there already is one. */
3485 remove_note (insn
, note
);
3487 REG_NOTES (insn
) = gen_rtx_EXPR_LIST (kind
, datum
, REG_NOTES (insn
));
3490 /* Return an indication of which type of insn should have X as a body.
3491 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
3497 if (GET_CODE (x
) == CODE_LABEL
)
3499 if (GET_CODE (x
) == CALL
)
3501 if (GET_CODE (x
) == RETURN
)
3503 if (GET_CODE (x
) == SET
)
3505 if (SET_DEST (x
) == pc_rtx
)
3507 else if (GET_CODE (SET_SRC (x
)) == CALL
)
3512 if (GET_CODE (x
) == PARALLEL
)
3515 for (j
= XVECLEN (x
, 0) - 1; j
>= 0; j
--)
3516 if (GET_CODE (XVECEXP (x
, 0, j
)) == CALL
)
3518 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
3519 && SET_DEST (XVECEXP (x
, 0, j
)) == pc_rtx
)
3521 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
3522 && GET_CODE (SET_SRC (XVECEXP (x
, 0, j
))) == CALL
)
3528 /* Emit the rtl pattern X as an appropriate kind of insn.
3529 If X is a label, it is simply added into the insn chain. */
3535 enum rtx_code code
= classify_insn (x
);
3537 if (code
== CODE_LABEL
)
3538 return emit_label (x
);
3539 else if (code
== INSN
)
3540 return emit_insn (x
);
3541 else if (code
== JUMP_INSN
)
3543 register rtx insn
= emit_jump_insn (x
);
3544 if (any_uncondjump_p (insn
) || GET_CODE (x
) == RETURN
)
3545 return emit_barrier ();
3548 else if (code
== CALL_INSN
)
3549 return emit_call_insn (x
);
3554 /* Begin emitting insns to a sequence which can be packaged in an
3555 RTL_EXPR. If this sequence will contain something that might cause
3556 the compiler to pop arguments to function calls (because those
3557 pops have previously been deferred; see INHIBIT_DEFER_POP for more
3558 details), use do_pending_stack_adjust before calling this function.
3559 That will ensure that the deferred pops are not accidentally
3560 emitted in the middle of this sequence. */
3565 struct sequence_stack
*tem
;
3567 tem
= (struct sequence_stack
*) xmalloc (sizeof (struct sequence_stack
));
3569 tem
->next
= seq_stack
;
3570 tem
->first
= first_insn
;
3571 tem
->last
= last_insn
;
3572 tem
->sequence_rtl_expr
= seq_rtl_expr
;
3580 /* Similarly, but indicate that this sequence will be placed in T, an
3581 RTL_EXPR. See the documentation for start_sequence for more
3582 information about how to use this function. */
3585 start_sequence_for_rtl_expr (t
)
3593 /* Set up the insn chain starting with FIRST as the current sequence,
3594 saving the previously current one. See the documentation for
3595 start_sequence for more information about how to use this function. */
3598 push_to_sequence (first
)
3605 for (last
= first
; last
&& NEXT_INSN (last
); last
= NEXT_INSN (last
));
3611 /* Set up the insn chain from a chain stort in FIRST to LAST. */
3614 push_to_full_sequence (first
, last
)
3620 /* We really should have the end of the insn chain here. */
3621 if (last
&& NEXT_INSN (last
))
3625 /* Set up the outer-level insn chain
3626 as the current sequence, saving the previously current one. */
3629 push_topmost_sequence ()
3631 struct sequence_stack
*stack
, *top
= NULL
;
3635 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
3638 first_insn
= top
->first
;
3639 last_insn
= top
->last
;
3640 seq_rtl_expr
= top
->sequence_rtl_expr
;
3643 /* After emitting to the outer-level insn chain, update the outer-level
3644 insn chain, and restore the previous saved state. */
3647 pop_topmost_sequence ()
3649 struct sequence_stack
*stack
, *top
= NULL
;
3651 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
3654 top
->first
= first_insn
;
3655 top
->last
= last_insn
;
3656 /* ??? Why don't we save seq_rtl_expr here? */
3661 /* After emitting to a sequence, restore previous saved state.
3663 To get the contents of the sequence just made, you must call
3664 `gen_sequence' *before* calling here.
3666 If the compiler might have deferred popping arguments while
3667 generating this sequence, and this sequence will not be immediately
3668 inserted into the instruction stream, use do_pending_stack_adjust
3669 before calling gen_sequence. That will ensure that the deferred
3670 pops are inserted into this sequence, and not into some random
3671 location in the instruction stream. See INHIBIT_DEFER_POP for more
3672 information about deferred popping of arguments. */
3677 struct sequence_stack
*tem
= seq_stack
;
3679 first_insn
= tem
->first
;
3680 last_insn
= tem
->last
;
3681 seq_rtl_expr
= tem
->sequence_rtl_expr
;
3682 seq_stack
= tem
->next
;
3687 /* This works like end_sequence, but records the old sequence in FIRST
3691 end_full_sequence (first
, last
)
3694 *first
= first_insn
;
3699 /* Return 1 if currently emitting into a sequence. */
3704 return seq_stack
!= 0;
3707 /* Generate a SEQUENCE rtx containing the insns already emitted
3708 to the current sequence.
3710 This is how the gen_... function from a DEFINE_EXPAND
3711 constructs the SEQUENCE that it returns. */
3721 /* Count the insns in the chain. */
3723 for (tem
= first_insn
; tem
; tem
= NEXT_INSN (tem
))
3726 /* If only one insn, return it rather than a SEQUENCE.
3727 (Now that we cache SEQUENCE expressions, it isn't worth special-casing
3728 the case of an empty list.)
3729 We only return the pattern of an insn if its code is INSN and it
3730 has no notes. This ensures that no information gets lost. */
3732 && ! RTX_FRAME_RELATED_P (first_insn
)
3733 && GET_CODE (first_insn
) == INSN
3734 /* Don't throw away any reg notes. */
3735 && REG_NOTES (first_insn
) == 0)
3736 return PATTERN (first_insn
);
3738 result
= gen_rtx_SEQUENCE (VOIDmode
, rtvec_alloc (len
));
3740 for (i
= 0, tem
= first_insn
; tem
; tem
= NEXT_INSN (tem
), i
++)
3741 XVECEXP (result
, 0, i
) = tem
;
3746 /* Put the various virtual registers into REGNO_REG_RTX. */
3749 init_virtual_regs (es
)
3750 struct emit_status
*es
;
3752 rtx
*ptr
= es
->x_regno_reg_rtx
;
3753 ptr
[VIRTUAL_INCOMING_ARGS_REGNUM
] = virtual_incoming_args_rtx
;
3754 ptr
[VIRTUAL_STACK_VARS_REGNUM
] = virtual_stack_vars_rtx
;
3755 ptr
[VIRTUAL_STACK_DYNAMIC_REGNUM
] = virtual_stack_dynamic_rtx
;
3756 ptr
[VIRTUAL_OUTGOING_ARGS_REGNUM
] = virtual_outgoing_args_rtx
;
3757 ptr
[VIRTUAL_CFA_REGNUM
] = virtual_cfa_rtx
;
3761 clear_emit_caches ()
3765 /* Clear the start_sequence/gen_sequence cache. */
3766 for (i
= 0; i
< SEQUENCE_RESULT_SIZE
; i
++)
3767 sequence_result
[i
] = 0;
3771 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
3772 static rtx copy_insn_scratch_in
[MAX_RECOG_OPERANDS
];
3773 static rtx copy_insn_scratch_out
[MAX_RECOG_OPERANDS
];
3774 static int copy_insn_n_scratches
;
3776 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
3777 copied an ASM_OPERANDS.
3778 In that case, it is the original input-operand vector. */
3779 static rtvec orig_asm_operands_vector
;
3781 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
3782 copied an ASM_OPERANDS.
3783 In that case, it is the copied input-operand vector. */
3784 static rtvec copy_asm_operands_vector
;
3786 /* Likewise for the constraints vector. */
3787 static rtvec orig_asm_constraints_vector
;
3788 static rtvec copy_asm_constraints_vector
;
3790 /* Recursively create a new copy of an rtx for copy_insn.
3791 This function differs from copy_rtx in that it handles SCRATCHes and
3792 ASM_OPERANDs properly.
3793 Normally, this function is not used directly; use copy_insn as front end.
3794 However, you could first copy an insn pattern with copy_insn and then use
3795 this function afterwards to properly copy any REG_NOTEs containing
3804 register RTX_CODE code
;
3805 register const char *format_ptr
;
3807 code
= GET_CODE (orig
);
3823 for (i
= 0; i
< copy_insn_n_scratches
; i
++)
3824 if (copy_insn_scratch_in
[i
] == orig
)
3825 return copy_insn_scratch_out
[i
];
3829 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
3830 a LABEL_REF, it isn't sharable. */
3831 if (GET_CODE (XEXP (orig
, 0)) == PLUS
3832 && GET_CODE (XEXP (XEXP (orig
, 0), 0)) == SYMBOL_REF
3833 && GET_CODE (XEXP (XEXP (orig
, 0), 1)) == CONST_INT
)
3837 /* A MEM with a constant address is not sharable. The problem is that
3838 the constant address may need to be reloaded. If the mem is shared,
3839 then reloading one copy of this mem will cause all copies to appear
3840 to have been reloaded. */
3846 copy
= rtx_alloc (code
);
3848 /* Copy the various flags, and other information. We assume that
3849 all fields need copying, and then clear the fields that should
3850 not be copied. That is the sensible default behavior, and forces
3851 us to explicitly document why we are *not* copying a flag. */
3852 memcpy (copy
, orig
, sizeof (struct rtx_def
) - sizeof (rtunion
));
3854 /* We do not copy the USED flag, which is used as a mark bit during
3855 walks over the RTL. */
3858 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
3859 if (GET_RTX_CLASS (code
) == 'i')
3863 copy
->frame_related
= 0;
3866 format_ptr
= GET_RTX_FORMAT (GET_CODE (copy
));
3868 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (copy
)); i
++)
3870 copy
->fld
[i
] = orig
->fld
[i
];
3871 switch (*format_ptr
++)
3874 if (XEXP (orig
, i
) != NULL
)
3875 XEXP (copy
, i
) = copy_insn_1 (XEXP (orig
, i
));
3880 if (XVEC (orig
, i
) == orig_asm_constraints_vector
)
3881 XVEC (copy
, i
) = copy_asm_constraints_vector
;
3882 else if (XVEC (orig
, i
) == orig_asm_operands_vector
)
3883 XVEC (copy
, i
) = copy_asm_operands_vector
;
3884 else if (XVEC (orig
, i
) != NULL
)
3886 XVEC (copy
, i
) = rtvec_alloc (XVECLEN (orig
, i
));
3887 for (j
= 0; j
< XVECLEN (copy
, i
); j
++)
3888 XVECEXP (copy
, i
, j
) = copy_insn_1 (XVECEXP (orig
, i
, j
));
3899 /* These are left unchanged. */
3907 if (code
== SCRATCH
)
3909 i
= copy_insn_n_scratches
++;
3910 if (i
>= MAX_RECOG_OPERANDS
)
3912 copy_insn_scratch_in
[i
] = orig
;
3913 copy_insn_scratch_out
[i
] = copy
;
3915 else if (code
== ASM_OPERANDS
)
3917 orig_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (orig
);
3918 copy_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (copy
);
3919 orig_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig
);
3920 copy_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy
);
3926 /* Create a new copy of an rtx.
3927 This function differs from copy_rtx in that it handles SCRATCHes and
3928 ASM_OPERANDs properly.
3929 INSN doesn't really have to be a full INSN; it could be just the
3935 copy_insn_n_scratches
= 0;
3936 orig_asm_operands_vector
= 0;
3937 orig_asm_constraints_vector
= 0;
3938 copy_asm_operands_vector
= 0;
3939 copy_asm_constraints_vector
= 0;
3940 return copy_insn_1 (insn
);
3943 /* Initialize data structures and variables in this file
3944 before generating rtl for each function. */
3949 struct function
*f
= cfun
;
3951 f
->emit
= (struct emit_status
*) xmalloc (sizeof (struct emit_status
));
3954 seq_rtl_expr
= NULL
;
3956 reg_rtx_no
= LAST_VIRTUAL_REGISTER
+ 1;
3959 first_label_num
= label_num
;
3963 clear_emit_caches ();
3965 /* Init the tables that describe all the pseudo regs. */
3967 f
->emit
->regno_pointer_align_length
= LAST_VIRTUAL_REGISTER
+ 101;
3969 f
->emit
->regno_pointer_align
3970 = (unsigned char *) xcalloc (f
->emit
->regno_pointer_align_length
,
3971 sizeof (unsigned char));
3974 = (rtx
*) xcalloc (f
->emit
->regno_pointer_align_length
* sizeof (rtx
),
3977 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
3978 init_virtual_regs (f
->emit
);
3980 /* Indicate that the virtual registers and stack locations are
3982 REG_POINTER (stack_pointer_rtx
) = 1;
3983 REG_POINTER (frame_pointer_rtx
) = 1;
3984 REG_POINTER (hard_frame_pointer_rtx
) = 1;
3985 REG_POINTER (arg_pointer_rtx
) = 1;
3987 REG_POINTER (virtual_incoming_args_rtx
) = 1;
3988 REG_POINTER (virtual_stack_vars_rtx
) = 1;
3989 REG_POINTER (virtual_stack_dynamic_rtx
) = 1;
3990 REG_POINTER (virtual_outgoing_args_rtx
) = 1;
3991 REG_POINTER (virtual_cfa_rtx
) = 1;
3993 #ifdef STACK_BOUNDARY
3994 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM
) = STACK_BOUNDARY
;
3995 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
3996 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
3997 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM
) = STACK_BOUNDARY
;
3999 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM
) = STACK_BOUNDARY
;
4000 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM
) = STACK_BOUNDARY
;
4001 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM
) = STACK_BOUNDARY
;
4002 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM
) = STACK_BOUNDARY
;
4003 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM
) = BITS_PER_WORD
;
4006 #ifdef INIT_EXPANDERS
4011 /* Mark SS for GC. */
4014 mark_sequence_stack (ss
)
4015 struct sequence_stack
*ss
;
4019 ggc_mark_rtx (ss
->first
);
4020 ggc_mark_tree (ss
->sequence_rtl_expr
);
4025 /* Mark ES for GC. */
4028 mark_emit_status (es
)
4029 struct emit_status
*es
;
4037 for (i
= es
->regno_pointer_align_length
, r
= es
->x_regno_reg_rtx
;
4041 mark_sequence_stack (es
->sequence_stack
);
4042 ggc_mark_tree (es
->sequence_rtl_expr
);
4043 ggc_mark_rtx (es
->x_first_insn
);
4046 /* Create some permanent unique rtl objects shared between all functions.
4047 LINE_NUMBERS is nonzero if line numbers are to be generated. */
4050 init_emit_once (line_numbers
)
4054 enum machine_mode mode
;
4055 enum machine_mode double_mode
;
4057 /* Initialize the CONST_INT hash table. */
4058 const_int_htab
= htab_create (37, const_int_htab_hash
,
4059 const_int_htab_eq
, NULL
);
4060 ggc_add_root (&const_int_htab
, 1, sizeof (const_int_htab
),
4063 no_line_numbers
= ! line_numbers
;
4065 /* Compute the word and byte modes. */
4067 byte_mode
= VOIDmode
;
4068 word_mode
= VOIDmode
;
4069 double_mode
= VOIDmode
;
4071 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
4072 mode
= GET_MODE_WIDER_MODE (mode
))
4074 if (GET_MODE_BITSIZE (mode
) == BITS_PER_UNIT
4075 && byte_mode
== VOIDmode
)
4078 if (GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
4079 && word_mode
== VOIDmode
)
4083 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
4084 mode
= GET_MODE_WIDER_MODE (mode
))
4086 if (GET_MODE_BITSIZE (mode
) == DOUBLE_TYPE_SIZE
4087 && double_mode
== VOIDmode
)
4091 ptr_mode
= mode_for_size (POINTER_SIZE
, GET_MODE_CLASS (Pmode
), 0);
4093 /* Assign register numbers to the globally defined register rtx.
4094 This must be done at runtime because the register number field
4095 is in a union and some compilers can't initialize unions. */
4097 pc_rtx
= gen_rtx (PC
, VOIDmode
);
4098 cc0_rtx
= gen_rtx (CC0
, VOIDmode
);
4099 stack_pointer_rtx
= gen_raw_REG (Pmode
, STACK_POINTER_REGNUM
);
4100 frame_pointer_rtx
= gen_raw_REG (Pmode
, FRAME_POINTER_REGNUM
);
4101 if (hard_frame_pointer_rtx
== 0)
4102 hard_frame_pointer_rtx
= gen_raw_REG (Pmode
,
4103 HARD_FRAME_POINTER_REGNUM
);
4104 if (arg_pointer_rtx
== 0)
4105 arg_pointer_rtx
= gen_raw_REG (Pmode
, ARG_POINTER_REGNUM
);
4106 virtual_incoming_args_rtx
=
4107 gen_raw_REG (Pmode
, VIRTUAL_INCOMING_ARGS_REGNUM
);
4108 virtual_stack_vars_rtx
=
4109 gen_raw_REG (Pmode
, VIRTUAL_STACK_VARS_REGNUM
);
4110 virtual_stack_dynamic_rtx
=
4111 gen_raw_REG (Pmode
, VIRTUAL_STACK_DYNAMIC_REGNUM
);
4112 virtual_outgoing_args_rtx
=
4113 gen_raw_REG (Pmode
, VIRTUAL_OUTGOING_ARGS_REGNUM
);
4114 virtual_cfa_rtx
= gen_raw_REG (Pmode
, VIRTUAL_CFA_REGNUM
);
4116 /* These rtx must be roots if GC is enabled. */
4117 ggc_add_rtx_root (global_rtl
, GR_MAX
);
4119 #ifdef INIT_EXPANDERS
4120 /* This is to initialize {init|mark|free}_machine_status before the first
4121 call to push_function_context_to. This is needed by the Chill front
4122 end which calls push_function_context_to before the first cal to
4123 init_function_start. */
4127 /* Create the unique rtx's for certain rtx codes and operand values. */
4129 /* Don't use gen_rtx here since gen_rtx in this case
4130 tries to use these variables. */
4131 for (i
= - MAX_SAVED_CONST_INT
; i
<= MAX_SAVED_CONST_INT
; i
++)
4132 const_int_rtx
[i
+ MAX_SAVED_CONST_INT
] =
4133 gen_rtx_raw_CONST_INT (VOIDmode
, i
);
4134 ggc_add_rtx_root (const_int_rtx
, 2 * MAX_SAVED_CONST_INT
+ 1);
4136 if (STORE_FLAG_VALUE
>= - MAX_SAVED_CONST_INT
4137 && STORE_FLAG_VALUE
<= MAX_SAVED_CONST_INT
)
4138 const_true_rtx
= const_int_rtx
[STORE_FLAG_VALUE
+ MAX_SAVED_CONST_INT
];
4140 const_true_rtx
= gen_rtx_CONST_INT (VOIDmode
, STORE_FLAG_VALUE
);
4142 dconst0
= REAL_VALUE_ATOF ("0", double_mode
);
4143 dconst1
= REAL_VALUE_ATOF ("1", double_mode
);
4144 dconst2
= REAL_VALUE_ATOF ("2", double_mode
);
4145 dconstm1
= REAL_VALUE_ATOF ("-1", double_mode
);
4147 for (i
= 0; i
<= 2; i
++)
4149 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
4150 mode
= GET_MODE_WIDER_MODE (mode
))
4152 rtx tem
= rtx_alloc (CONST_DOUBLE
);
4153 union real_extract u
;
4155 memset ((char *) &u
, 0, sizeof u
); /* Zero any holes in a structure. */
4156 u
.d
= i
== 0 ? dconst0
: i
== 1 ? dconst1
: dconst2
;
4158 memcpy (&CONST_DOUBLE_LOW (tem
), &u
, sizeof u
);
4159 CONST_DOUBLE_MEM (tem
) = cc0_rtx
;
4160 CONST_DOUBLE_CHAIN (tem
) = NULL_RTX
;
4161 PUT_MODE (tem
, mode
);
4163 const_tiny_rtx
[i
][(int) mode
] = tem
;
4166 const_tiny_rtx
[i
][(int) VOIDmode
] = GEN_INT (i
);
4168 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
4169 mode
= GET_MODE_WIDER_MODE (mode
))
4170 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
4172 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT
);
4174 mode
= GET_MODE_WIDER_MODE (mode
))
4175 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
4178 for (i
= (int) CCmode
; i
< (int) MAX_MACHINE_MODE
; ++i
)
4179 if (GET_MODE_CLASS ((enum machine_mode
) i
) == MODE_CC
)
4180 const_tiny_rtx
[0][i
] = const0_rtx
;
4182 const_tiny_rtx
[0][(int) BImode
] = const0_rtx
;
4183 if (STORE_FLAG_VALUE
== 1)
4184 const_tiny_rtx
[1][(int) BImode
] = const1_rtx
;
4186 /* For bounded pointers, `&const_tiny_rtx[0][0]' is not the same as
4187 `(rtx *) const_tiny_rtx'. The former has bounds that only cover
4188 `const_tiny_rtx[0]', whereas the latter has bounds that cover all. */
4189 ggc_add_rtx_root ((rtx
*) const_tiny_rtx
, sizeof const_tiny_rtx
/ sizeof (rtx
));
4190 ggc_add_rtx_root (&const_true_rtx
, 1);
4192 #ifdef RETURN_ADDRESS_POINTER_REGNUM
4193 return_address_pointer_rtx
4194 = gen_raw_REG (Pmode
, RETURN_ADDRESS_POINTER_REGNUM
);
4198 struct_value_rtx
= STRUCT_VALUE
;
4200 struct_value_rtx
= gen_rtx_REG (Pmode
, STRUCT_VALUE_REGNUM
);
4203 #ifdef STRUCT_VALUE_INCOMING
4204 struct_value_incoming_rtx
= STRUCT_VALUE_INCOMING
;
4206 #ifdef STRUCT_VALUE_INCOMING_REGNUM
4207 struct_value_incoming_rtx
4208 = gen_rtx_REG (Pmode
, STRUCT_VALUE_INCOMING_REGNUM
);
4210 struct_value_incoming_rtx
= struct_value_rtx
;
4214 #ifdef STATIC_CHAIN_REGNUM
4215 static_chain_rtx
= gen_rtx_REG (Pmode
, STATIC_CHAIN_REGNUM
);
4217 #ifdef STATIC_CHAIN_INCOMING_REGNUM
4218 if (STATIC_CHAIN_INCOMING_REGNUM
!= STATIC_CHAIN_REGNUM
)
4219 static_chain_incoming_rtx
4220 = gen_rtx_REG (Pmode
, STATIC_CHAIN_INCOMING_REGNUM
);
4223 static_chain_incoming_rtx
= static_chain_rtx
;
4227 static_chain_rtx
= STATIC_CHAIN
;
4229 #ifdef STATIC_CHAIN_INCOMING
4230 static_chain_incoming_rtx
= STATIC_CHAIN_INCOMING
;
4232 static_chain_incoming_rtx
= static_chain_rtx
;
4236 #ifdef PIC_OFFSET_TABLE_REGNUM
4237 pic_offset_table_rtx
= gen_rtx_REG (Pmode
, PIC_OFFSET_TABLE_REGNUM
);
4240 ggc_add_rtx_root (&pic_offset_table_rtx
, 1);
4241 ggc_add_rtx_root (&struct_value_rtx
, 1);
4242 ggc_add_rtx_root (&struct_value_incoming_rtx
, 1);
4243 ggc_add_rtx_root (&static_chain_rtx
, 1);
4244 ggc_add_rtx_root (&static_chain_incoming_rtx
, 1);
4245 ggc_add_rtx_root (&return_address_pointer_rtx
, 1);
4248 /* Query and clear/ restore no_line_numbers. This is used by the
4249 switch / case handling in stmt.c to give proper line numbers in
4250 warnings about unreachable code. */
4253 force_line_numbers ()
4255 int old
= no_line_numbers
;
4257 no_line_numbers
= 0;
4259 force_next_line_note ();
4264 restore_line_number_status (old_value
)
4267 no_line_numbers
= old_value
;