2015-01-06 Robert Dewar <dewar@adacore.com>
[official-gcc.git] / gcc / ada / sem_ch6.adb
blob946f217ce3b05e246a4880ba33fd972ab896f65e
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Elists; use Elists;
32 with Errout; use Errout;
33 with Expander; use Expander;
34 with Exp_Ch6; use Exp_Ch6;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Ch9; use Exp_Ch9;
37 with Exp_Dbug; use Exp_Dbug;
38 with Exp_Disp; use Exp_Disp;
39 with Exp_Tss; use Exp_Tss;
40 with Exp_Util; use Exp_Util;
41 with Fname; use Fname;
42 with Freeze; use Freeze;
43 with Inline; use Inline;
44 with Itypes; use Itypes;
45 with Lib.Xref; use Lib.Xref;
46 with Layout; use Layout;
47 with Namet; use Namet;
48 with Lib; use Lib;
49 with Nlists; use Nlists;
50 with Nmake; use Nmake;
51 with Opt; use Opt;
52 with Output; use Output;
53 with Restrict; use Restrict;
54 with Rident; use Rident;
55 with Rtsfind; use Rtsfind;
56 with Sem; use Sem;
57 with Sem_Aux; use Sem_Aux;
58 with Sem_Cat; use Sem_Cat;
59 with Sem_Ch3; use Sem_Ch3;
60 with Sem_Ch4; use Sem_Ch4;
61 with Sem_Ch5; use Sem_Ch5;
62 with Sem_Ch8; use Sem_Ch8;
63 with Sem_Ch10; use Sem_Ch10;
64 with Sem_Ch12; use Sem_Ch12;
65 with Sem_Ch13; use Sem_Ch13;
66 with Sem_Dim; use Sem_Dim;
67 with Sem_Disp; use Sem_Disp;
68 with Sem_Dist; use Sem_Dist;
69 with Sem_Elim; use Sem_Elim;
70 with Sem_Eval; use Sem_Eval;
71 with Sem_Mech; use Sem_Mech;
72 with Sem_Prag; use Sem_Prag;
73 with Sem_Res; use Sem_Res;
74 with Sem_Util; use Sem_Util;
75 with Sem_Type; use Sem_Type;
76 with Sem_Warn; use Sem_Warn;
77 with Sinput; use Sinput;
78 with Stand; use Stand;
79 with Sinfo; use Sinfo;
80 with Sinfo.CN; use Sinfo.CN;
81 with Snames; use Snames;
82 with Stringt; use Stringt;
83 with Style;
84 with Stylesw; use Stylesw;
85 with Targparm; use Targparm;
86 with Tbuild; use Tbuild;
87 with Uintp; use Uintp;
88 with Urealp; use Urealp;
89 with Validsw; use Validsw;
91 package body Sem_Ch6 is
93 May_Hide_Profile : Boolean := False;
94 -- This flag is used to indicate that two formals in two subprograms being
95 -- checked for conformance differ only in that one is an access parameter
96 -- while the other is of a general access type with the same designated
97 -- type. In this case, if the rest of the signatures match, a call to
98 -- either subprogram may be ambiguous, which is worth a warning. The flag
99 -- is set in Compatible_Types, and the warning emitted in
100 -- New_Overloaded_Entity.
102 -----------------------
103 -- Local Subprograms --
104 -----------------------
106 procedure Analyze_Null_Procedure
107 (N : Node_Id;
108 Is_Completion : out Boolean);
109 -- A null procedure can be a declaration or (Ada 2012) a completion
111 procedure Analyze_Return_Statement (N : Node_Id);
112 -- Common processing for simple and extended return statements
114 procedure Analyze_Function_Return (N : Node_Id);
115 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
116 -- applies to a [generic] function.
118 procedure Analyze_Return_Type (N : Node_Id);
119 -- Subsidiary to Process_Formals: analyze subtype mark in function
120 -- specification in a context where the formals are visible and hide
121 -- outer homographs.
123 procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
124 -- Does all the real work of Analyze_Subprogram_Body. This is split out so
125 -- that we can use RETURN but not skip the debug output at the end.
127 procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
128 -- Analyze a generic subprogram body. N is the body to be analyzed, and
129 -- Gen_Id is the defining entity Id for the corresponding spec.
131 function Can_Override_Operator (Subp : Entity_Id) return Boolean;
132 -- Returns true if Subp can override a predefined operator.
134 procedure Check_Conformance
135 (New_Id : Entity_Id;
136 Old_Id : Entity_Id;
137 Ctype : Conformance_Type;
138 Errmsg : Boolean;
139 Conforms : out Boolean;
140 Err_Loc : Node_Id := Empty;
141 Get_Inst : Boolean := False;
142 Skip_Controlling_Formals : Boolean := False);
143 -- Given two entities, this procedure checks that the profiles associated
144 -- with these entities meet the conformance criterion given by the third
145 -- parameter. If they conform, Conforms is set True and control returns
146 -- to the caller. If they do not conform, Conforms is set to False, and
147 -- in addition, if Errmsg is True on the call, proper messages are output
148 -- to complain about the conformance failure. If Err_Loc is non_Empty
149 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
150 -- error messages are placed on the appropriate part of the construct
151 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
152 -- against a formal access-to-subprogram type so Get_Instance_Of must
153 -- be called.
155 procedure Check_Subprogram_Order (N : Node_Id);
156 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
157 -- the alpha ordering rule for N if this ordering requirement applicable.
159 procedure Check_Returns
160 (HSS : Node_Id;
161 Mode : Character;
162 Err : out Boolean;
163 Proc : Entity_Id := Empty);
164 -- Called to check for missing return statements in a function body, or for
165 -- returns present in a procedure body which has No_Return set. HSS is the
166 -- handled statement sequence for the subprogram body. This procedure
167 -- checks all flow paths to make sure they either have return (Mode = 'F',
168 -- used for functions) or do not have a return (Mode = 'P', used for
169 -- No_Return procedures). The flag Err is set if there are any control
170 -- paths not explicitly terminated by a return in the function case, and is
171 -- True otherwise. Proc is the entity for the procedure case and is used
172 -- in posting the warning message.
174 procedure Check_Untagged_Equality (Eq_Op : Entity_Id);
175 -- In Ada 2012, a primitive equality operator on an untagged record type
176 -- must appear before the type is frozen, and have the same visibility as
177 -- that of the type. This procedure checks that this rule is met, and
178 -- otherwise emits an error on the subprogram declaration and a warning
179 -- on the earlier freeze point if it is easy to locate. In Ada 2012 mode,
180 -- this routine outputs errors (or warnings if -gnatd.E is set). In earlier
181 -- versions of Ada, warnings are output if Warn_On_Ada_2012_Incompatibility
182 -- is set, otherwise the call has no effect.
184 procedure Enter_Overloaded_Entity (S : Entity_Id);
185 -- This procedure makes S, a new overloaded entity, into the first visible
186 -- entity with that name.
188 function Is_Non_Overriding_Operation
189 (Prev_E : Entity_Id;
190 New_E : Entity_Id) return Boolean;
191 -- Enforce the rule given in 12.3(18): a private operation in an instance
192 -- overrides an inherited operation only if the corresponding operation
193 -- was overriding in the generic. This needs to be checked for primitive
194 -- operations of types derived (in the generic unit) from formal private
195 -- or formal derived types.
197 procedure Make_Inequality_Operator (S : Entity_Id);
198 -- Create the declaration for an inequality operator that is implicitly
199 -- created by a user-defined equality operator that yields a boolean.
201 procedure Set_Formal_Validity (Formal_Id : Entity_Id);
202 -- Formal_Id is an formal parameter entity. This procedure deals with
203 -- setting the proper validity status for this entity, which depends on
204 -- the kind of parameter and the validity checking mode.
206 ---------------------------------------------
207 -- Analyze_Abstract_Subprogram_Declaration --
208 ---------------------------------------------
210 procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
211 Designator : constant Entity_Id :=
212 Analyze_Subprogram_Specification (Specification (N));
213 Scop : constant Entity_Id := Current_Scope;
215 begin
216 Check_SPARK_05_Restriction ("abstract subprogram is not allowed", N);
218 Generate_Definition (Designator);
219 Set_Contract (Designator, Make_Contract (Sloc (Designator)));
220 Set_Is_Abstract_Subprogram (Designator);
221 New_Overloaded_Entity (Designator);
222 Check_Delayed_Subprogram (Designator);
224 Set_Categorization_From_Scope (Designator, Scop);
226 -- An abstract subprogram declared within a Ghost scope is automatically
227 -- Ghost (SPARK RM 6.9(2)).
229 if Comes_From_Source (Designator) and then Within_Ghost_Scope then
230 Set_Is_Ghost_Entity (Designator);
231 end if;
233 if Ekind (Scope (Designator)) = E_Protected_Type then
234 Error_Msg_N
235 ("abstract subprogram not allowed in protected type", N);
237 -- Issue a warning if the abstract subprogram is neither a dispatching
238 -- operation nor an operation that overrides an inherited subprogram or
239 -- predefined operator, since this most likely indicates a mistake.
241 elsif Warn_On_Redundant_Constructs
242 and then not Is_Dispatching_Operation (Designator)
243 and then not Present (Overridden_Operation (Designator))
244 and then (not Is_Operator_Symbol_Name (Chars (Designator))
245 or else Scop /= Scope (Etype (First_Formal (Designator))))
246 then
247 Error_Msg_N
248 ("abstract subprogram is not dispatching or overriding?r?", N);
249 end if;
251 Generate_Reference_To_Formals (Designator);
252 Check_Eliminated (Designator);
254 if Has_Aspects (N) then
255 Analyze_Aspect_Specifications (N, Designator);
256 end if;
257 end Analyze_Abstract_Subprogram_Declaration;
259 ---------------------------------
260 -- Analyze_Expression_Function --
261 ---------------------------------
263 procedure Analyze_Expression_Function (N : Node_Id) is
264 Loc : constant Source_Ptr := Sloc (N);
265 LocX : constant Source_Ptr := Sloc (Expression (N));
266 Expr : constant Node_Id := Expression (N);
267 Spec : constant Node_Id := Specification (N);
269 Def_Id : Entity_Id;
271 Prev : Entity_Id;
272 -- If the expression is a completion, Prev is the entity whose
273 -- declaration is completed. Def_Id is needed to analyze the spec.
275 New_Body : Node_Id;
276 New_Spec : Node_Id;
277 Ret : Node_Id;
279 begin
280 -- This is one of the occasions on which we transform the tree during
281 -- semantic analysis. If this is a completion, transform the expression
282 -- function into an equivalent subprogram body, and analyze it.
284 -- Expression functions are inlined unconditionally. The back-end will
285 -- determine whether this is possible.
287 Inline_Processing_Required := True;
289 -- Create a specification for the generated body. Types and defauts in
290 -- the profile are copies of the spec, but new entities must be created
291 -- for the unit name and the formals.
293 New_Spec := New_Copy_Tree (Spec);
294 Set_Defining_Unit_Name (New_Spec,
295 Make_Defining_Identifier (Sloc (Defining_Unit_Name (Spec)),
296 Chars (Defining_Unit_Name (Spec))));
298 if Present (Parameter_Specifications (New_Spec)) then
299 declare
300 Formal_Spec : Node_Id;
301 Def : Entity_Id;
303 begin
304 Formal_Spec := First (Parameter_Specifications (New_Spec));
306 -- Create a new formal parameter at the same source position
308 while Present (Formal_Spec) loop
309 Def := Defining_Identifier (Formal_Spec);
310 Set_Defining_Identifier (Formal_Spec,
311 Make_Defining_Identifier (Sloc (Def),
312 Chars => Chars (Def)));
313 Next (Formal_Spec);
314 end loop;
315 end;
316 end if;
318 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
320 -- If there are previous overloadable entities with the same name,
321 -- check whether any of them is completed by the expression function.
322 -- In a generic context a formal subprogram has no completion.
324 if Present (Prev)
325 and then Is_Overloadable (Prev)
326 and then not Is_Formal_Subprogram (Prev)
327 then
328 Def_Id := Analyze_Subprogram_Specification (Spec);
329 Prev := Find_Corresponding_Spec (N);
331 -- The previous entity may be an expression function as well, in
332 -- which case the redeclaration is illegal.
334 if Present (Prev)
335 and then Nkind (Original_Node (Unit_Declaration_Node (Prev))) =
336 N_Expression_Function
337 then
338 Error_Msg_Sloc := Sloc (Prev);
339 Error_Msg_N ("& conflicts with declaration#", Def_Id);
340 return;
341 end if;
342 end if;
344 Ret := Make_Simple_Return_Statement (LocX, Expression (N));
346 New_Body :=
347 Make_Subprogram_Body (Loc,
348 Specification => New_Spec,
349 Declarations => Empty_List,
350 Handled_Statement_Sequence =>
351 Make_Handled_Sequence_Of_Statements (LocX,
352 Statements => New_List (Ret)));
354 -- If the expression completes a generic subprogram, we must create a
355 -- separate node for the body, because at instantiation the original
356 -- node of the generic copy must be a generic subprogram body, and
357 -- cannot be a expression function. Otherwise we just rewrite the
358 -- expression with the non-generic body.
360 if Present (Prev) and then Ekind (Prev) = E_Generic_Function then
361 Insert_After (N, New_Body);
363 -- Propagate any aspects or pragmas that apply to the expression
364 -- function to the proper body when the expression function acts
365 -- as a completion.
367 if Has_Aspects (N) then
368 Move_Aspects (N, To => New_Body);
369 end if;
371 Relocate_Pragmas_To_Body (New_Body);
373 Rewrite (N, Make_Null_Statement (Loc));
374 Set_Has_Completion (Prev, False);
375 Analyze (N);
376 Analyze (New_Body);
377 Set_Is_Inlined (Prev);
379 -- If the expression function is a completion, the previous declaration
380 -- must come from source. We know already that appears in the current
381 -- scope. The entity itself may be internally created if within a body
382 -- to be inlined.
384 elsif Present (Prev)
385 and then Comes_From_Source (Parent (Prev))
386 and then not Is_Formal_Subprogram (Prev)
387 then
388 Set_Has_Completion (Prev, False);
390 -- An expression function that is a completion freezes the
391 -- expression. This means freezing the return type, and if it is
392 -- an access type, freezing its designated type as well.
394 -- Note that we cannot defer this freezing to the analysis of the
395 -- expression itself, because a freeze node might appear in a nested
396 -- scope, leading to an elaboration order issue in gigi.
398 Freeze_Before (N, Etype (Prev));
400 if Is_Access_Type (Etype (Prev)) then
401 Freeze_Before (N, Designated_Type (Etype (Prev)));
402 end if;
404 -- For navigation purposes, indicate that the function is a body
406 Generate_Reference (Prev, Defining_Entity (N), 'b', Force => True);
407 Rewrite (N, New_Body);
409 -- Correct the parent pointer of the aspect specification list to
410 -- reference the rewritten node.
412 if Has_Aspects (N) then
413 Set_Parent (Aspect_Specifications (N), N);
414 end if;
416 -- Propagate any pragmas that apply to the expression function to the
417 -- proper body when the expression function acts as a completion.
418 -- Aspects are automatically transfered because of node rewriting.
420 Relocate_Pragmas_To_Body (N);
421 Analyze (N);
423 -- Prev is the previous entity with the same name, but it is can
424 -- be an unrelated spec that is not completed by the expression
425 -- function. In that case the relevant entity is the one in the body.
426 -- Not clear that the backend can inline it in this case ???
428 if Has_Completion (Prev) then
429 Set_Is_Inlined (Prev);
431 -- The formals of the expression function are body formals,
432 -- and do not appear in the ali file, which will only contain
433 -- references to the formals of the original subprogram spec.
435 declare
436 F1 : Entity_Id;
437 F2 : Entity_Id;
439 begin
440 F1 := First_Formal (Def_Id);
441 F2 := First_Formal (Prev);
443 while Present (F1) loop
444 Set_Spec_Entity (F1, F2);
445 Next_Formal (F1);
446 Next_Formal (F2);
447 end loop;
448 end;
450 else
451 Set_Is_Inlined (Defining_Entity (New_Body));
452 end if;
454 -- If this is not a completion, create both a declaration and a body, so
455 -- that the expression can be inlined whenever possible.
457 else
458 -- An expression function that is not a completion is not a
459 -- subprogram declaration, and thus cannot appear in a protected
460 -- definition.
462 if Nkind (Parent (N)) = N_Protected_Definition then
463 Error_Msg_N
464 ("an expression function is not a legal protected operation", N);
465 end if;
467 Rewrite (N, Make_Subprogram_Declaration (Loc, Specification => Spec));
469 -- Correct the parent pointer of the aspect specification list to
470 -- reference the rewritten node.
472 if Has_Aspects (N) then
473 Set_Parent (Aspect_Specifications (N), N);
474 end if;
476 Analyze (N);
478 -- Within a generic pre-analyze the original expression for name
479 -- capture. The body is also generated but plays no role in
480 -- this because it is not part of the original source.
482 if Inside_A_Generic then
483 declare
484 Id : constant Entity_Id := Defining_Entity (N);
486 begin
487 Set_Has_Completion (Id);
488 Push_Scope (Id);
489 Install_Formals (Id);
490 Preanalyze_Spec_Expression (Expr, Etype (Id));
491 End_Scope;
492 end;
493 end if;
495 Set_Is_Inlined (Defining_Entity (N));
497 -- Establish the linkages between the spec and the body. These are
498 -- used when the expression function acts as the prefix of attribute
499 -- 'Access in order to freeze the original expression which has been
500 -- moved to the generated body.
502 Set_Corresponding_Body (N, Defining_Entity (New_Body));
503 Set_Corresponding_Spec (New_Body, Defining_Entity (N));
505 -- To prevent premature freeze action, insert the new body at the end
506 -- of the current declarations, or at the end of the package spec.
507 -- However, resolve usage names now, to prevent spurious visibility
508 -- on later entities. Note that the function can now be called in
509 -- the current declarative part, which will appear to be prior to
510 -- the presence of the body in the code. There are nevertheless no
511 -- order of elaboration issues because all name resolution has taken
512 -- place at the point of declaration.
514 declare
515 Decls : List_Id := List_Containing (N);
516 Par : constant Node_Id := Parent (Decls);
517 Id : constant Entity_Id := Defining_Entity (N);
519 begin
520 -- If this is a wrapper created for in an instance for a formal
521 -- subprogram, insert body after declaration, to be analyzed when
522 -- the enclosing instance is analyzed.
524 if GNATprove_Mode
525 and then Is_Generic_Actual_Subprogram (Defining_Entity (N))
526 then
527 Insert_After (N, New_Body);
529 else
530 if Nkind (Par) = N_Package_Specification
531 and then Decls = Visible_Declarations (Par)
532 and then Present (Private_Declarations (Par))
533 and then not Is_Empty_List (Private_Declarations (Par))
534 then
535 Decls := Private_Declarations (Par);
536 end if;
538 Insert_After (Last (Decls), New_Body);
539 Push_Scope (Id);
540 Install_Formals (Id);
542 -- Preanalyze the expression for name capture, except in an
543 -- instance, where this has been done during generic analysis,
544 -- and will be redone when analyzing the body.
546 declare
547 Expr : constant Node_Id := Expression (Ret);
549 begin
550 Set_Parent (Expr, Ret);
552 if not In_Instance then
553 Preanalyze_Spec_Expression (Expr, Etype (Id));
554 end if;
555 end;
557 End_Scope;
558 end if;
559 end;
560 end if;
562 -- If the return expression is a static constant, we suppress warning
563 -- messages on unused formals, which in most cases will be noise.
565 Set_Is_Trivial_Subprogram (Defining_Entity (New_Body),
566 Is_OK_Static_Expression (Expr));
567 end Analyze_Expression_Function;
569 ----------------------------------------
570 -- Analyze_Extended_Return_Statement --
571 ----------------------------------------
573 procedure Analyze_Extended_Return_Statement (N : Node_Id) is
574 begin
575 Check_Compiler_Unit ("extended return statement", N);
576 Analyze_Return_Statement (N);
577 end Analyze_Extended_Return_Statement;
579 ----------------------------
580 -- Analyze_Function_Call --
581 ----------------------------
583 procedure Analyze_Function_Call (N : Node_Id) is
584 Actuals : constant List_Id := Parameter_Associations (N);
585 Func_Nam : constant Node_Id := Name (N);
586 Actual : Node_Id;
588 begin
589 Analyze (Func_Nam);
591 -- A call of the form A.B (X) may be an Ada 2005 call, which is
592 -- rewritten as B (A, X). If the rewriting is successful, the call
593 -- has been analyzed and we just return.
595 if Nkind (Func_Nam) = N_Selected_Component
596 and then Name (N) /= Func_Nam
597 and then Is_Rewrite_Substitution (N)
598 and then Present (Etype (N))
599 then
600 return;
601 end if;
603 -- If error analyzing name, then set Any_Type as result type and return
605 if Etype (Func_Nam) = Any_Type then
606 Set_Etype (N, Any_Type);
607 return;
608 end if;
610 -- Otherwise analyze the parameters
612 if Present (Actuals) then
613 Actual := First (Actuals);
614 while Present (Actual) loop
615 Analyze (Actual);
616 Check_Parameterless_Call (Actual);
617 Next (Actual);
618 end loop;
619 end if;
621 Analyze_Call (N);
622 end Analyze_Function_Call;
624 -----------------------------
625 -- Analyze_Function_Return --
626 -----------------------------
628 procedure Analyze_Function_Return (N : Node_Id) is
629 Loc : constant Source_Ptr := Sloc (N);
630 Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
631 Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
633 R_Type : constant Entity_Id := Etype (Scope_Id);
634 -- Function result subtype
636 procedure Check_Limited_Return (Expr : Node_Id);
637 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning
638 -- limited types. Used only for simple return statements.
639 -- Expr is the expression returned.
641 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
642 -- Check that the return_subtype_indication properly matches the result
643 -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
645 --------------------------
646 -- Check_Limited_Return --
647 --------------------------
649 procedure Check_Limited_Return (Expr : Node_Id) is
650 begin
651 -- Ada 2005 (AI-318-02): Return-by-reference types have been
652 -- removed and replaced by anonymous access results. This is an
653 -- incompatibility with Ada 95. Not clear whether this should be
654 -- enforced yet or perhaps controllable with special switch. ???
656 -- A limited interface that is not immutably limited is OK.
658 if Is_Limited_Interface (R_Type)
659 and then
660 not (Is_Task_Interface (R_Type)
661 or else Is_Protected_Interface (R_Type)
662 or else Is_Synchronized_Interface (R_Type))
663 then
664 null;
666 elsif Is_Limited_Type (R_Type)
667 and then not Is_Interface (R_Type)
668 and then Comes_From_Source (N)
669 and then not In_Instance_Body
670 and then not OK_For_Limited_Init_In_05 (R_Type, Expr)
671 then
672 -- Error in Ada 2005
674 if Ada_Version >= Ada_2005
675 and then not Debug_Flag_Dot_L
676 and then not GNAT_Mode
677 then
678 Error_Msg_N
679 ("(Ada 2005) cannot copy object of a limited type "
680 & "(RM-2005 6.5(5.5/2))", Expr);
682 if Is_Limited_View (R_Type) then
683 Error_Msg_N
684 ("\return by reference not permitted in Ada 2005", Expr);
685 end if;
687 -- Warn in Ada 95 mode, to give folks a heads up about this
688 -- incompatibility.
690 -- In GNAT mode, this is just a warning, to allow it to be
691 -- evilly turned off. Otherwise it is a real error.
693 -- In a generic context, simplify the warning because it makes
694 -- no sense to discuss pass-by-reference or copy.
696 elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
697 if Inside_A_Generic then
698 Error_Msg_N
699 ("return of limited object not permitted in Ada 2005 "
700 & "(RM-2005 6.5(5.5/2))?y?", Expr);
702 elsif Is_Limited_View (R_Type) then
703 Error_Msg_N
704 ("return by reference not permitted in Ada 2005 "
705 & "(RM-2005 6.5(5.5/2))?y?", Expr);
706 else
707 Error_Msg_N
708 ("cannot copy object of a limited type in Ada 2005 "
709 & "(RM-2005 6.5(5.5/2))?y?", Expr);
710 end if;
712 -- Ada 95 mode, compatibility warnings disabled
714 else
715 return; -- skip continuation messages below
716 end if;
718 if not Inside_A_Generic then
719 Error_Msg_N
720 ("\consider switching to return of access type", Expr);
721 Explain_Limited_Type (R_Type, Expr);
722 end if;
723 end if;
724 end Check_Limited_Return;
726 -------------------------------------
727 -- Check_Return_Subtype_Indication --
728 -------------------------------------
730 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
731 Return_Obj : constant Node_Id := Defining_Identifier (Obj_Decl);
733 R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
734 -- Subtype given in the extended return statement (must match R_Type)
736 Subtype_Ind : constant Node_Id :=
737 Object_Definition (Original_Node (Obj_Decl));
739 R_Type_Is_Anon_Access : constant Boolean :=
740 Ekind_In (R_Type,
741 E_Anonymous_Access_Subprogram_Type,
742 E_Anonymous_Access_Protected_Subprogram_Type,
743 E_Anonymous_Access_Type);
744 -- True if return type of the function is an anonymous access type
745 -- Can't we make Is_Anonymous_Access_Type in einfo ???
747 R_Stm_Type_Is_Anon_Access : constant Boolean :=
748 Ekind_In (R_Stm_Type,
749 E_Anonymous_Access_Subprogram_Type,
750 E_Anonymous_Access_Protected_Subprogram_Type,
751 E_Anonymous_Access_Type);
752 -- True if type of the return object is an anonymous access type
754 procedure Error_No_Match (N : Node_Id);
755 -- Output error messages for case where types do not statically
756 -- match. N is the location for the messages.
758 --------------------
759 -- Error_No_Match --
760 --------------------
762 procedure Error_No_Match (N : Node_Id) is
763 begin
764 Error_Msg_N
765 ("subtype must statically match function result subtype", N);
767 if not Predicates_Match (R_Stm_Type, R_Type) then
768 Error_Msg_Node_2 := R_Type;
769 Error_Msg_NE
770 ("\predicate of& does not match predicate of&",
771 N, R_Stm_Type);
772 end if;
773 end Error_No_Match;
775 -- Start of processing for Check_Return_Subtype_Indication
777 begin
778 -- First, avoid cascaded errors
780 if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
781 return;
782 end if;
784 -- "return access T" case; check that the return statement also has
785 -- "access T", and that the subtypes statically match:
786 -- if this is an access to subprogram the signatures must match.
788 if R_Type_Is_Anon_Access then
789 if R_Stm_Type_Is_Anon_Access then
791 Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
792 then
793 if Base_Type (Designated_Type (R_Stm_Type)) /=
794 Base_Type (Designated_Type (R_Type))
795 or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
796 then
797 Error_No_Match (Subtype_Mark (Subtype_Ind));
798 end if;
800 else
801 -- For two anonymous access to subprogram types, the
802 -- types themselves must be type conformant.
804 if not Conforming_Types
805 (R_Stm_Type, R_Type, Fully_Conformant)
806 then
807 Error_No_Match (Subtype_Ind);
808 end if;
809 end if;
811 else
812 Error_Msg_N ("must use anonymous access type", Subtype_Ind);
813 end if;
815 -- If the return object is of an anonymous access type, then report
816 -- an error if the function's result type is not also anonymous.
818 elsif R_Stm_Type_Is_Anon_Access
819 and then not R_Type_Is_Anon_Access
820 then
821 Error_Msg_N ("anonymous access not allowed for function with "
822 & "named access result", Subtype_Ind);
824 -- Subtype indication case: check that the return object's type is
825 -- covered by the result type, and that the subtypes statically match
826 -- when the result subtype is constrained. Also handle record types
827 -- with unknown discriminants for which we have built the underlying
828 -- record view. Coverage is needed to allow specific-type return
829 -- objects when the result type is class-wide (see AI05-32).
831 elsif Covers (Base_Type (R_Type), Base_Type (R_Stm_Type))
832 or else (Is_Underlying_Record_View (Base_Type (R_Stm_Type))
833 and then
834 Covers
835 (Base_Type (R_Type),
836 Underlying_Record_View (Base_Type (R_Stm_Type))))
837 then
838 -- A null exclusion may be present on the return type, on the
839 -- function specification, on the object declaration or on the
840 -- subtype itself.
842 if Is_Access_Type (R_Type)
843 and then
844 (Can_Never_Be_Null (R_Type)
845 or else Null_Exclusion_Present (Parent (Scope_Id))) /=
846 Can_Never_Be_Null (R_Stm_Type)
847 then
848 Error_No_Match (Subtype_Ind);
849 end if;
851 -- AI05-103: for elementary types, subtypes must statically match
853 if Is_Constrained (R_Type)
854 or else Is_Access_Type (R_Type)
855 then
856 if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
857 Error_No_Match (Subtype_Ind);
858 end if;
859 end if;
861 -- All remaining cases are illegal
863 -- Note: previous versions of this subprogram allowed the return
864 -- value to be the ancestor of the return type if the return type
865 -- was a null extension. This was plainly incorrect.
867 else
868 Error_Msg_N
869 ("wrong type for return_subtype_indication", Subtype_Ind);
870 end if;
871 end Check_Return_Subtype_Indication;
873 ---------------------
874 -- Local Variables --
875 ---------------------
877 Expr : Node_Id;
879 -- Start of processing for Analyze_Function_Return
881 begin
882 Set_Return_Present (Scope_Id);
884 if Nkind (N) = N_Simple_Return_Statement then
885 Expr := Expression (N);
887 -- Guard against a malformed expression. The parser may have tried to
888 -- recover but the node is not analyzable.
890 if Nkind (Expr) = N_Error then
891 Set_Etype (Expr, Any_Type);
892 Expander_Mode_Save_And_Set (False);
893 return;
895 else
896 -- The resolution of a controlled [extension] aggregate associated
897 -- with a return statement creates a temporary which needs to be
898 -- finalized on function exit. Wrap the return statement inside a
899 -- block so that the finalization machinery can detect this case.
900 -- This early expansion is done only when the return statement is
901 -- not part of a handled sequence of statements.
903 if Nkind_In (Expr, N_Aggregate,
904 N_Extension_Aggregate)
905 and then Needs_Finalization (R_Type)
906 and then Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
907 then
908 Rewrite (N,
909 Make_Block_Statement (Loc,
910 Handled_Statement_Sequence =>
911 Make_Handled_Sequence_Of_Statements (Loc,
912 Statements => New_List (Relocate_Node (N)))));
914 Analyze (N);
915 return;
916 end if;
918 Analyze (Expr);
920 -- Ada 2005 (AI-251): If the type of the returned object is
921 -- an access to an interface type then we add an implicit type
922 -- conversion to force the displacement of the "this" pointer to
923 -- reference the secondary dispatch table. We cannot delay the
924 -- generation of this implicit conversion until the expansion
925 -- because in this case the type resolution changes the decoration
926 -- of the expression node to match R_Type; by contrast, if the
927 -- returned object is a class-wide interface type then it is too
928 -- early to generate here the implicit conversion since the return
929 -- statement may be rewritten by the expander into an extended
930 -- return statement whose expansion takes care of adding the
931 -- implicit type conversion to displace the pointer to the object.
933 if Expander_Active
934 and then Serious_Errors_Detected = 0
935 and then Is_Access_Type (R_Type)
936 and then Nkind (Expr) /= N_Null
937 and then Is_Interface (Designated_Type (R_Type))
938 and then Is_Progenitor (Designated_Type (R_Type),
939 Designated_Type (Etype (Expr)))
940 then
941 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
942 Analyze (Expr);
943 end if;
945 Resolve (Expr, R_Type);
946 Check_Limited_Return (Expr);
947 end if;
949 -- RETURN only allowed in SPARK as the last statement in function
951 if Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
952 and then
953 (Nkind (Parent (Parent (N))) /= N_Subprogram_Body
954 or else Present (Next (N)))
955 then
956 Check_SPARK_05_Restriction
957 ("RETURN should be the last statement in function", N);
958 end if;
960 else
961 Check_SPARK_05_Restriction ("extended RETURN is not allowed", N);
963 -- Analyze parts specific to extended_return_statement:
965 declare
966 Obj_Decl : constant Node_Id :=
967 Last (Return_Object_Declarations (N));
968 Has_Aliased : constant Boolean := Aliased_Present (Obj_Decl);
969 HSS : constant Node_Id := Handled_Statement_Sequence (N);
971 begin
972 Expr := Expression (Obj_Decl);
974 -- Note: The check for OK_For_Limited_Init will happen in
975 -- Analyze_Object_Declaration; we treat it as a normal
976 -- object declaration.
978 Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
979 Analyze (Obj_Decl);
981 Check_Return_Subtype_Indication (Obj_Decl);
983 if Present (HSS) then
984 Analyze (HSS);
986 if Present (Exception_Handlers (HSS)) then
988 -- ???Has_Nested_Block_With_Handler needs to be set.
989 -- Probably by creating an actual N_Block_Statement.
990 -- Probably in Expand.
992 null;
993 end if;
994 end if;
996 -- Mark the return object as referenced, since the return is an
997 -- implicit reference of the object.
999 Set_Referenced (Defining_Identifier (Obj_Decl));
1001 Check_References (Stm_Entity);
1003 -- Check RM 6.5 (5.9/3)
1005 if Has_Aliased then
1006 if Ada_Version < Ada_2012 then
1008 -- Shouldn't this test Warn_On_Ada_2012_Compatibility ???
1009 -- Can it really happen (extended return???)
1011 Error_Msg_N
1012 ("aliased only allowed for limited return objects "
1013 & "in Ada 2012??", N);
1015 elsif not Is_Limited_View (R_Type) then
1016 Error_Msg_N
1017 ("aliased only allowed for limited return objects", N);
1018 end if;
1019 end if;
1020 end;
1021 end if;
1023 -- Case of Expr present
1025 if Present (Expr)
1027 -- Defend against previous errors
1029 and then Nkind (Expr) /= N_Empty
1030 and then Present (Etype (Expr))
1031 then
1032 -- Apply constraint check. Note that this is done before the implicit
1033 -- conversion of the expression done for anonymous access types to
1034 -- ensure correct generation of the null-excluding check associated
1035 -- with null-excluding expressions found in return statements.
1037 Apply_Constraint_Check (Expr, R_Type);
1039 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
1040 -- type, apply an implicit conversion of the expression to that type
1041 -- to force appropriate static and run-time accessibility checks.
1043 if Ada_Version >= Ada_2005
1044 and then Ekind (R_Type) = E_Anonymous_Access_Type
1045 then
1046 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
1047 Analyze_And_Resolve (Expr, R_Type);
1049 -- If this is a local anonymous access to subprogram, the
1050 -- accessibility check can be applied statically. The return is
1051 -- illegal if the access type of the return expression is declared
1052 -- inside of the subprogram (except if it is the subtype indication
1053 -- of an extended return statement).
1055 elsif Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type then
1056 if not Comes_From_Source (Current_Scope)
1057 or else Ekind (Current_Scope) = E_Return_Statement
1058 then
1059 null;
1061 elsif
1062 Scope_Depth (Scope (Etype (Expr))) >= Scope_Depth (Scope_Id)
1063 then
1064 Error_Msg_N ("cannot return local access to subprogram", N);
1065 end if;
1067 -- The expression cannot be of a formal incomplete type
1069 elsif Ekind (Etype (Expr)) = E_Incomplete_Type
1070 and then Is_Generic_Type (Etype (Expr))
1071 then
1072 Error_Msg_N
1073 ("cannot return expression of a formal incomplete type", N);
1074 end if;
1076 -- If the result type is class-wide, then check that the return
1077 -- expression's type is not declared at a deeper level than the
1078 -- function (RM05-6.5(5.6/2)).
1080 if Ada_Version >= Ada_2005
1081 and then Is_Class_Wide_Type (R_Type)
1082 then
1083 if Type_Access_Level (Etype (Expr)) >
1084 Subprogram_Access_Level (Scope_Id)
1085 then
1086 Error_Msg_N
1087 ("level of return expression type is deeper than "
1088 & "class-wide function!", Expr);
1089 end if;
1090 end if;
1092 -- Check incorrect use of dynamically tagged expression
1094 if Is_Tagged_Type (R_Type) then
1095 Check_Dynamically_Tagged_Expression
1096 (Expr => Expr,
1097 Typ => R_Type,
1098 Related_Nod => N);
1099 end if;
1101 -- ??? A real run-time accessibility check is needed in cases
1102 -- involving dereferences of access parameters. For now we just
1103 -- check the static cases.
1105 if (Ada_Version < Ada_2005 or else Debug_Flag_Dot_L)
1106 and then Is_Limited_View (Etype (Scope_Id))
1107 and then Object_Access_Level (Expr) >
1108 Subprogram_Access_Level (Scope_Id)
1109 then
1110 -- Suppress the message in a generic, where the rewriting
1111 -- is irrelevant.
1113 if Inside_A_Generic then
1114 null;
1116 else
1117 Rewrite (N,
1118 Make_Raise_Program_Error (Loc,
1119 Reason => PE_Accessibility_Check_Failed));
1120 Analyze (N);
1122 Error_Msg_Warn := SPARK_Mode /= On;
1123 Error_Msg_N ("cannot return a local value by reference<<", N);
1124 Error_Msg_NE ("\& [<<", N, Standard_Program_Error);
1125 end if;
1126 end if;
1128 if Known_Null (Expr)
1129 and then Nkind (Parent (Scope_Id)) = N_Function_Specification
1130 and then Null_Exclusion_Present (Parent (Scope_Id))
1131 then
1132 Apply_Compile_Time_Constraint_Error
1133 (N => Expr,
1134 Msg => "(Ada 2005) null not allowed for "
1135 & "null-excluding return??",
1136 Reason => CE_Null_Not_Allowed);
1137 end if;
1138 end if;
1139 end Analyze_Function_Return;
1141 -------------------------------------
1142 -- Analyze_Generic_Subprogram_Body --
1143 -------------------------------------
1145 procedure Analyze_Generic_Subprogram_Body
1146 (N : Node_Id;
1147 Gen_Id : Entity_Id)
1149 Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
1150 Kind : constant Entity_Kind := Ekind (Gen_Id);
1151 Body_Id : Entity_Id;
1152 New_N : Node_Id;
1153 Spec : Node_Id;
1155 begin
1156 -- Copy body and disable expansion while analyzing the generic For a
1157 -- stub, do not copy the stub (which would load the proper body), this
1158 -- will be done when the proper body is analyzed.
1160 if Nkind (N) /= N_Subprogram_Body_Stub then
1161 New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
1162 Rewrite (N, New_N);
1163 Start_Generic;
1164 end if;
1166 Spec := Specification (N);
1168 -- Within the body of the generic, the subprogram is callable, and
1169 -- behaves like the corresponding non-generic unit.
1171 Body_Id := Defining_Entity (Spec);
1173 if Kind = E_Generic_Procedure
1174 and then Nkind (Spec) /= N_Procedure_Specification
1175 then
1176 Error_Msg_N ("invalid body for generic procedure ", Body_Id);
1177 return;
1179 elsif Kind = E_Generic_Function
1180 and then Nkind (Spec) /= N_Function_Specification
1181 then
1182 Error_Msg_N ("invalid body for generic function ", Body_Id);
1183 return;
1184 end if;
1186 Set_Corresponding_Body (Gen_Decl, Body_Id);
1188 if Has_Completion (Gen_Id)
1189 and then Nkind (Parent (N)) /= N_Subunit
1190 then
1191 Error_Msg_N ("duplicate generic body", N);
1192 return;
1193 else
1194 Set_Has_Completion (Gen_Id);
1195 end if;
1197 if Nkind (N) = N_Subprogram_Body_Stub then
1198 Set_Ekind (Defining_Entity (Specification (N)), Kind);
1199 else
1200 Set_Corresponding_Spec (N, Gen_Id);
1201 end if;
1203 if Nkind (Parent (N)) = N_Compilation_Unit then
1204 Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
1205 end if;
1207 -- Make generic parameters immediately visible in the body. They are
1208 -- needed to process the formals declarations. Then make the formals
1209 -- visible in a separate step.
1211 Push_Scope (Gen_Id);
1213 declare
1214 E : Entity_Id;
1215 First_Ent : Entity_Id;
1217 begin
1218 First_Ent := First_Entity (Gen_Id);
1220 E := First_Ent;
1221 while Present (E) and then not Is_Formal (E) loop
1222 Install_Entity (E);
1223 Next_Entity (E);
1224 end loop;
1226 Set_Use (Generic_Formal_Declarations (Gen_Decl));
1228 -- Now generic formals are visible, and the specification can be
1229 -- analyzed, for subsequent conformance check.
1231 Body_Id := Analyze_Subprogram_Specification (Spec);
1233 -- Make formal parameters visible
1235 if Present (E) then
1237 -- E is the first formal parameter, we loop through the formals
1238 -- installing them so that they will be visible.
1240 Set_First_Entity (Gen_Id, E);
1241 while Present (E) loop
1242 Install_Entity (E);
1243 Next_Formal (E);
1244 end loop;
1245 end if;
1247 -- Visible generic entity is callable within its own body
1249 Set_Ekind (Gen_Id, Ekind (Body_Id));
1250 Set_Contract (Body_Id, Make_Contract (Sloc (Body_Id)));
1251 Set_Ekind (Body_Id, E_Subprogram_Body);
1252 Set_Convention (Body_Id, Convention (Gen_Id));
1253 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
1254 Set_Scope (Body_Id, Scope (Gen_Id));
1256 -- Inherit the "ghostness" of the generic spec. Note that this
1257 -- property is not directly inherited as the body may be subject
1258 -- to a different Ghost assertion policy.
1260 if Is_Ghost_Entity (Gen_Id) or else Within_Ghost_Scope then
1261 Set_Is_Ghost_Entity (Body_Id);
1263 -- The Ghost policy in effect at the point of declaration and at
1264 -- the point of completion must match (SPARK RM 6.9(15)).
1266 Check_Ghost_Completion (Gen_Id, Body_Id);
1267 end if;
1269 Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
1271 if Nkind (N) = N_Subprogram_Body_Stub then
1273 -- No body to analyze, so restore state of generic unit
1275 Set_Ekind (Gen_Id, Kind);
1276 Set_Ekind (Body_Id, Kind);
1278 if Present (First_Ent) then
1279 Set_First_Entity (Gen_Id, First_Ent);
1280 end if;
1282 End_Scope;
1283 return;
1284 end if;
1286 -- If this is a compilation unit, it must be made visible explicitly,
1287 -- because the compilation of the declaration, unlike other library
1288 -- unit declarations, does not. If it is not a unit, the following
1289 -- is redundant but harmless.
1291 Set_Is_Immediately_Visible (Gen_Id);
1292 Reference_Body_Formals (Gen_Id, Body_Id);
1294 if Is_Child_Unit (Gen_Id) then
1295 Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
1296 end if;
1298 Set_Actual_Subtypes (N, Current_Scope);
1300 -- Deal with [refined] preconditions, postconditions, Contract_Cases,
1301 -- invariants and predicates associated with the body and its spec.
1302 -- Note that this is not pure expansion as Expand_Subprogram_Contract
1303 -- prepares the contract assertions for generic subprograms or for
1304 -- ASIS. Do not generate contract checks in SPARK mode.
1306 if not GNATprove_Mode then
1307 Expand_Subprogram_Contract (N, Gen_Id, Body_Id);
1308 end if;
1310 -- If the generic unit carries pre- or post-conditions, copy them
1311 -- to the original generic tree, so that they are properly added
1312 -- to any instantiation.
1314 declare
1315 Orig : constant Node_Id := Original_Node (N);
1316 Cond : Node_Id;
1318 begin
1319 Cond := First (Declarations (N));
1320 while Present (Cond) loop
1321 if Nkind (Cond) = N_Pragma
1322 and then Pragma_Name (Cond) = Name_Check
1323 then
1324 Prepend (New_Copy_Tree (Cond), Declarations (Orig));
1326 elsif Nkind (Cond) = N_Pragma
1327 and then Pragma_Name (Cond) = Name_Postcondition
1328 then
1329 Set_Ekind (Defining_Entity (Orig), Ekind (Gen_Id));
1330 Prepend (New_Copy_Tree (Cond), Declarations (Orig));
1331 else
1332 exit;
1333 end if;
1335 Next (Cond);
1336 end loop;
1337 end;
1339 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
1340 Set_SPARK_Pragma_Inherited (Body_Id, True);
1342 Analyze_Declarations (Declarations (N));
1343 Check_Completion;
1344 Analyze (Handled_Statement_Sequence (N));
1346 Save_Global_References (Original_Node (N));
1348 -- Prior to exiting the scope, include generic formals again (if any
1349 -- are present) in the set of local entities.
1351 if Present (First_Ent) then
1352 Set_First_Entity (Gen_Id, First_Ent);
1353 end if;
1355 Check_References (Gen_Id);
1356 end;
1358 Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
1359 End_Scope;
1360 Check_Subprogram_Order (N);
1362 -- Outside of its body, unit is generic again
1364 Set_Ekind (Gen_Id, Kind);
1365 Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
1367 if Style_Check then
1368 Style.Check_Identifier (Body_Id, Gen_Id);
1369 end if;
1371 End_Generic;
1372 end Analyze_Generic_Subprogram_Body;
1374 ----------------------------
1375 -- Analyze_Null_Procedure --
1376 ----------------------------
1378 procedure Analyze_Null_Procedure
1379 (N : Node_Id;
1380 Is_Completion : out Boolean)
1382 Loc : constant Source_Ptr := Sloc (N);
1383 Spec : constant Node_Id := Specification (N);
1384 Designator : Entity_Id;
1385 Form : Node_Id;
1386 Null_Body : Node_Id := Empty;
1387 Prev : Entity_Id;
1389 begin
1390 -- Capture the profile of the null procedure before analysis, for
1391 -- expansion at the freeze point and at each point of call. The body is
1392 -- used if the procedure has preconditions, or if it is a completion. In
1393 -- the first case the body is analyzed at the freeze point, in the other
1394 -- it replaces the null procedure declaration.
1396 Null_Body :=
1397 Make_Subprogram_Body (Loc,
1398 Specification => New_Copy_Tree (Spec),
1399 Declarations => New_List,
1400 Handled_Statement_Sequence =>
1401 Make_Handled_Sequence_Of_Statements (Loc,
1402 Statements => New_List (Make_Null_Statement (Loc))));
1404 -- Create new entities for body and formals
1406 Set_Defining_Unit_Name (Specification (Null_Body),
1407 Make_Defining_Identifier
1408 (Sloc (Defining_Entity (N)),
1409 Chars (Defining_Entity (N))));
1411 Form := First (Parameter_Specifications (Specification (Null_Body)));
1412 while Present (Form) loop
1413 Set_Defining_Identifier (Form,
1414 Make_Defining_Identifier
1415 (Sloc (Defining_Identifier (Form)),
1416 Chars (Defining_Identifier (Form))));
1417 Next (Form);
1418 end loop;
1420 -- Determine whether the null procedure may be a completion of a generic
1421 -- suprogram, in which case we use the new null body as the completion
1422 -- and set minimal semantic information on the original declaration,
1423 -- which is rewritten as a null statement.
1425 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
1427 if Present (Prev) and then Is_Generic_Subprogram (Prev) then
1428 Insert_Before (N, Null_Body);
1429 Set_Ekind (Defining_Entity (N), Ekind (Prev));
1430 Set_Contract (Defining_Entity (N), Make_Contract (Loc));
1432 Rewrite (N, Make_Null_Statement (Loc));
1433 Analyze_Generic_Subprogram_Body (Null_Body, Prev);
1434 Is_Completion := True;
1435 return;
1437 else
1438 -- Resolve the types of the formals now, because the freeze point
1439 -- may appear in a different context, e.g. an instantiation.
1441 Form := First (Parameter_Specifications (Specification (Null_Body)));
1442 while Present (Form) loop
1443 if Nkind (Parameter_Type (Form)) /= N_Access_Definition then
1444 Find_Type (Parameter_Type (Form));
1446 elsif
1447 No (Access_To_Subprogram_Definition (Parameter_Type (Form)))
1448 then
1449 Find_Type (Subtype_Mark (Parameter_Type (Form)));
1451 else
1452 -- The case of a null procedure with a formal that is an
1453 -- access_to_subprogram type, and that is used as an actual
1454 -- in an instantiation is left to the enthusiastic reader.
1456 null;
1457 end if;
1459 Next (Form);
1460 end loop;
1461 end if;
1463 -- If there are previous overloadable entities with the same name,
1464 -- check whether any of them is completed by the null procedure.
1466 if Present (Prev) and then Is_Overloadable (Prev) then
1467 Designator := Analyze_Subprogram_Specification (Spec);
1468 Prev := Find_Corresponding_Spec (N);
1469 end if;
1471 if No (Prev) or else not Comes_From_Source (Prev) then
1472 Designator := Analyze_Subprogram_Specification (Spec);
1473 Set_Has_Completion (Designator);
1475 -- Signal to caller that this is a procedure declaration
1477 Is_Completion := False;
1479 -- Null procedures are always inlined, but generic formal subprograms
1480 -- which appear as such in the internal instance of formal packages,
1481 -- need no completion and are not marked Inline.
1483 if Expander_Active
1484 and then Nkind (N) /= N_Formal_Concrete_Subprogram_Declaration
1485 then
1486 Set_Corresponding_Body (N, Defining_Entity (Null_Body));
1487 Set_Body_To_Inline (N, Null_Body);
1488 Set_Is_Inlined (Designator);
1489 end if;
1491 else
1492 -- The null procedure is a completion. We unconditionally rewrite
1493 -- this as a null body (even if expansion is not active), because
1494 -- there are various error checks that are applied on this body
1495 -- when it is analyzed (e.g. correct aspect placement).
1497 if Has_Completion (Prev) then
1498 Error_Msg_Sloc := Sloc (Prev);
1499 Error_Msg_NE ("duplicate body for & declared#", N, Prev);
1500 end if;
1502 Is_Completion := True;
1503 Rewrite (N, Null_Body);
1504 Analyze (N);
1505 end if;
1506 end Analyze_Null_Procedure;
1508 -----------------------------
1509 -- Analyze_Operator_Symbol --
1510 -----------------------------
1512 -- An operator symbol such as "+" or "and" may appear in context where the
1513 -- literal denotes an entity name, such as "+"(x, y) or in context when it
1514 -- is just a string, as in (conjunction = "or"). In these cases the parser
1515 -- generates this node, and the semantics does the disambiguation. Other
1516 -- such case are actuals in an instantiation, the generic unit in an
1517 -- instantiation, and pragma arguments.
1519 procedure Analyze_Operator_Symbol (N : Node_Id) is
1520 Par : constant Node_Id := Parent (N);
1522 begin
1523 if (Nkind (Par) = N_Function_Call and then N = Name (Par))
1524 or else Nkind (Par) = N_Function_Instantiation
1525 or else (Nkind (Par) = N_Indexed_Component and then N = Prefix (Par))
1526 or else (Nkind (Par) = N_Pragma_Argument_Association
1527 and then not Is_Pragma_String_Literal (Par))
1528 or else Nkind (Par) = N_Subprogram_Renaming_Declaration
1529 or else (Nkind (Par) = N_Attribute_Reference
1530 and then Attribute_Name (Par) /= Name_Value)
1531 then
1532 Find_Direct_Name (N);
1534 else
1535 Change_Operator_Symbol_To_String_Literal (N);
1536 Analyze (N);
1537 end if;
1538 end Analyze_Operator_Symbol;
1540 -----------------------------------
1541 -- Analyze_Parameter_Association --
1542 -----------------------------------
1544 procedure Analyze_Parameter_Association (N : Node_Id) is
1545 begin
1546 Analyze (Explicit_Actual_Parameter (N));
1547 end Analyze_Parameter_Association;
1549 ----------------------------
1550 -- Analyze_Procedure_Call --
1551 ----------------------------
1553 procedure Analyze_Procedure_Call (N : Node_Id) is
1554 Loc : constant Source_Ptr := Sloc (N);
1555 P : constant Node_Id := Name (N);
1556 Actuals : constant List_Id := Parameter_Associations (N);
1557 Actual : Node_Id;
1558 New_N : Node_Id;
1560 procedure Analyze_Call_And_Resolve;
1561 -- Do Analyze and Resolve calls for procedure call
1562 -- At end, check illegal order dependence.
1564 ------------------------------
1565 -- Analyze_Call_And_Resolve --
1566 ------------------------------
1568 procedure Analyze_Call_And_Resolve is
1569 begin
1570 if Nkind (N) = N_Procedure_Call_Statement then
1571 Analyze_Call (N);
1572 Resolve (N, Standard_Void_Type);
1573 else
1574 Analyze (N);
1575 end if;
1576 end Analyze_Call_And_Resolve;
1578 -- Start of processing for Analyze_Procedure_Call
1580 begin
1581 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1582 -- a procedure call or an entry call. The prefix may denote an access
1583 -- to subprogram type, in which case an implicit dereference applies.
1584 -- If the prefix is an indexed component (without implicit dereference)
1585 -- then the construct denotes a call to a member of an entire family.
1586 -- If the prefix is a simple name, it may still denote a call to a
1587 -- parameterless member of an entry family. Resolution of these various
1588 -- interpretations is delicate.
1590 Analyze (P);
1592 -- If this is a call of the form Obj.Op, the call may have been
1593 -- analyzed and possibly rewritten into a block, in which case
1594 -- we are done.
1596 if Analyzed (N) then
1597 return;
1598 end if;
1600 -- If there is an error analyzing the name (which may have been
1601 -- rewritten if the original call was in prefix notation) then error
1602 -- has been emitted already, mark node and return.
1604 if Error_Posted (N) or else Etype (Name (N)) = Any_Type then
1605 Set_Etype (N, Any_Type);
1606 return;
1607 end if;
1609 -- Otherwise analyze the parameters
1611 if Present (Actuals) then
1612 Actual := First (Actuals);
1614 while Present (Actual) loop
1615 Analyze (Actual);
1616 Check_Parameterless_Call (Actual);
1617 Next (Actual);
1618 end loop;
1619 end if;
1621 -- Special processing for Elab_Spec, Elab_Body and Elab_Subp_Body calls
1623 if Nkind (P) = N_Attribute_Reference
1624 and then Nam_In (Attribute_Name (P), Name_Elab_Spec,
1625 Name_Elab_Body,
1626 Name_Elab_Subp_Body)
1627 then
1628 if Present (Actuals) then
1629 Error_Msg_N
1630 ("no parameters allowed for this call", First (Actuals));
1631 return;
1632 end if;
1634 Set_Etype (N, Standard_Void_Type);
1635 Set_Analyzed (N);
1637 elsif Is_Entity_Name (P)
1638 and then Is_Record_Type (Etype (Entity (P)))
1639 and then Remote_AST_I_Dereference (P)
1640 then
1641 return;
1643 elsif Is_Entity_Name (P)
1644 and then Ekind (Entity (P)) /= E_Entry_Family
1645 then
1646 if Is_Access_Type (Etype (P))
1647 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1648 and then No (Actuals)
1649 and then Comes_From_Source (N)
1650 then
1651 Error_Msg_N ("missing explicit dereference in call", N);
1652 end if;
1654 Analyze_Call_And_Resolve;
1656 -- If the prefix is the simple name of an entry family, this is
1657 -- a parameterless call from within the task body itself.
1659 elsif Is_Entity_Name (P)
1660 and then Nkind (P) = N_Identifier
1661 and then Ekind (Entity (P)) = E_Entry_Family
1662 and then Present (Actuals)
1663 and then No (Next (First (Actuals)))
1664 then
1665 -- Can be call to parameterless entry family. What appears to be the
1666 -- sole argument is in fact the entry index. Rewrite prefix of node
1667 -- accordingly. Source representation is unchanged by this
1668 -- transformation.
1670 New_N :=
1671 Make_Indexed_Component (Loc,
1672 Prefix =>
1673 Make_Selected_Component (Loc,
1674 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
1675 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
1676 Expressions => Actuals);
1677 Set_Name (N, New_N);
1678 Set_Etype (New_N, Standard_Void_Type);
1679 Set_Parameter_Associations (N, No_List);
1680 Analyze_Call_And_Resolve;
1682 elsif Nkind (P) = N_Explicit_Dereference then
1683 if Ekind (Etype (P)) = E_Subprogram_Type then
1684 Analyze_Call_And_Resolve;
1685 else
1686 Error_Msg_N ("expect access to procedure in call", P);
1687 end if;
1689 -- The name can be a selected component or an indexed component that
1690 -- yields an access to subprogram. Such a prefix is legal if the call
1691 -- has parameter associations.
1693 elsif Is_Access_Type (Etype (P))
1694 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1695 then
1696 if Present (Actuals) then
1697 Analyze_Call_And_Resolve;
1698 else
1699 Error_Msg_N ("missing explicit dereference in call ", N);
1700 end if;
1702 -- If not an access to subprogram, then the prefix must resolve to the
1703 -- name of an entry, entry family, or protected operation.
1705 -- For the case of a simple entry call, P is a selected component where
1706 -- the prefix is the task and the selector name is the entry. A call to
1707 -- a protected procedure will have the same syntax. If the protected
1708 -- object contains overloaded operations, the entity may appear as a
1709 -- function, the context will select the operation whose type is Void.
1711 elsif Nkind (P) = N_Selected_Component
1712 and then Ekind_In (Entity (Selector_Name (P)), E_Entry,
1713 E_Procedure,
1714 E_Function)
1715 then
1716 Analyze_Call_And_Resolve;
1718 elsif Nkind (P) = N_Selected_Component
1719 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
1720 and then Present (Actuals)
1721 and then No (Next (First (Actuals)))
1722 then
1723 -- Can be call to parameterless entry family. What appears to be the
1724 -- sole argument is in fact the entry index. Rewrite prefix of node
1725 -- accordingly. Source representation is unchanged by this
1726 -- transformation.
1728 New_N :=
1729 Make_Indexed_Component (Loc,
1730 Prefix => New_Copy (P),
1731 Expressions => Actuals);
1732 Set_Name (N, New_N);
1733 Set_Etype (New_N, Standard_Void_Type);
1734 Set_Parameter_Associations (N, No_List);
1735 Analyze_Call_And_Resolve;
1737 -- For the case of a reference to an element of an entry family, P is
1738 -- an indexed component whose prefix is a selected component (task and
1739 -- entry family), and whose index is the entry family index.
1741 elsif Nkind (P) = N_Indexed_Component
1742 and then Nkind (Prefix (P)) = N_Selected_Component
1743 and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
1744 then
1745 Analyze_Call_And_Resolve;
1747 -- If the prefix is the name of an entry family, it is a call from
1748 -- within the task body itself.
1750 elsif Nkind (P) = N_Indexed_Component
1751 and then Nkind (Prefix (P)) = N_Identifier
1752 and then Ekind (Entity (Prefix (P))) = E_Entry_Family
1753 then
1754 New_N :=
1755 Make_Selected_Component (Loc,
1756 Prefix => New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
1757 Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
1758 Rewrite (Prefix (P), New_N);
1759 Analyze (P);
1760 Analyze_Call_And_Resolve;
1762 -- In Ada 2012. a qualified expression is a name, but it cannot be a
1763 -- procedure name, so the construct can only be a qualified expression.
1765 elsif Nkind (P) = N_Qualified_Expression
1766 and then Ada_Version >= Ada_2012
1767 then
1768 Rewrite (N, Make_Code_Statement (Loc, Expression => P));
1769 Analyze (N);
1771 -- Anything else is an error
1773 else
1774 Error_Msg_N ("invalid procedure or entry call", N);
1775 end if;
1776 end Analyze_Procedure_Call;
1778 ------------------------------
1779 -- Analyze_Return_Statement --
1780 ------------------------------
1782 procedure Analyze_Return_Statement (N : Node_Id) is
1784 pragma Assert (Nkind_In (N, N_Simple_Return_Statement,
1785 N_Extended_Return_Statement));
1787 Returns_Object : constant Boolean :=
1788 Nkind (N) = N_Extended_Return_Statement
1789 or else
1790 (Nkind (N) = N_Simple_Return_Statement
1791 and then Present (Expression (N)));
1792 -- True if we're returning something; that is, "return <expression>;"
1793 -- or "return Result : T [:= ...]". False for "return;". Used for error
1794 -- checking: If Returns_Object is True, N should apply to a function
1795 -- body; otherwise N should apply to a procedure body, entry body,
1796 -- accept statement, or extended return statement.
1798 function Find_What_It_Applies_To return Entity_Id;
1799 -- Find the entity representing the innermost enclosing body, accept
1800 -- statement, or extended return statement. If the result is a callable
1801 -- construct or extended return statement, then this will be the value
1802 -- of the Return_Applies_To attribute. Otherwise, the program is
1803 -- illegal. See RM-6.5(4/2).
1805 -----------------------------
1806 -- Find_What_It_Applies_To --
1807 -----------------------------
1809 function Find_What_It_Applies_To return Entity_Id is
1810 Result : Entity_Id := Empty;
1812 begin
1813 -- Loop outward through the Scope_Stack, skipping blocks, loops,
1814 -- and postconditions.
1816 for J in reverse 0 .. Scope_Stack.Last loop
1817 Result := Scope_Stack.Table (J).Entity;
1818 exit when not Ekind_In (Result, E_Block, E_Loop)
1819 and then Chars (Result) /= Name_uPostconditions;
1820 end loop;
1822 pragma Assert (Present (Result));
1823 return Result;
1824 end Find_What_It_Applies_To;
1826 -- Local declarations
1828 Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
1829 Kind : constant Entity_Kind := Ekind (Scope_Id);
1830 Loc : constant Source_Ptr := Sloc (N);
1831 Stm_Entity : constant Entity_Id :=
1832 New_Internal_Entity
1833 (E_Return_Statement, Current_Scope, Loc, 'R');
1835 -- Start of processing for Analyze_Return_Statement
1837 begin
1838 Set_Return_Statement_Entity (N, Stm_Entity);
1840 Set_Etype (Stm_Entity, Standard_Void_Type);
1841 Set_Return_Applies_To (Stm_Entity, Scope_Id);
1843 -- Place Return entity on scope stack, to simplify enforcement of 6.5
1844 -- (4/2): an inner return statement will apply to this extended return.
1846 if Nkind (N) = N_Extended_Return_Statement then
1847 Push_Scope (Stm_Entity);
1848 end if;
1850 -- Check that pragma No_Return is obeyed. Don't complain about the
1851 -- implicitly-generated return that is placed at the end.
1853 if No_Return (Scope_Id) and then Comes_From_Source (N) then
1854 Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
1855 end if;
1857 -- Warn on any unassigned OUT parameters if in procedure
1859 if Ekind (Scope_Id) = E_Procedure then
1860 Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
1861 end if;
1863 -- Check that functions return objects, and other things do not
1865 if Kind = E_Function or else Kind = E_Generic_Function then
1866 if not Returns_Object then
1867 Error_Msg_N ("missing expression in return from function", N);
1868 end if;
1870 elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
1871 if Returns_Object then
1872 Error_Msg_N ("procedure cannot return value (use function)", N);
1873 end if;
1875 elsif Kind = E_Entry or else Kind = E_Entry_Family then
1876 if Returns_Object then
1877 if Is_Protected_Type (Scope (Scope_Id)) then
1878 Error_Msg_N ("entry body cannot return value", N);
1879 else
1880 Error_Msg_N ("accept statement cannot return value", N);
1881 end if;
1882 end if;
1884 elsif Kind = E_Return_Statement then
1886 -- We are nested within another return statement, which must be an
1887 -- extended_return_statement.
1889 if Returns_Object then
1890 if Nkind (N) = N_Extended_Return_Statement then
1891 Error_Msg_N
1892 ("extended return statement cannot be nested (use `RETURN;`)",
1895 -- Case of a simple return statement with a value inside extended
1896 -- return statement.
1898 else
1899 Error_Msg_N
1900 ("return nested in extended return statement cannot return "
1901 & "value (use `RETURN;`)", N);
1902 end if;
1903 end if;
1905 else
1906 Error_Msg_N ("illegal context for return statement", N);
1907 end if;
1909 if Ekind_In (Kind, E_Function, E_Generic_Function) then
1910 Analyze_Function_Return (N);
1912 elsif Ekind_In (Kind, E_Procedure, E_Generic_Procedure) then
1913 Set_Return_Present (Scope_Id);
1914 end if;
1916 if Nkind (N) = N_Extended_Return_Statement then
1917 End_Scope;
1918 end if;
1920 Kill_Current_Values (Last_Assignment_Only => True);
1921 Check_Unreachable_Code (N);
1923 Analyze_Dimension (N);
1924 end Analyze_Return_Statement;
1926 -------------------------------------
1927 -- Analyze_Simple_Return_Statement --
1928 -------------------------------------
1930 procedure Analyze_Simple_Return_Statement (N : Node_Id) is
1931 begin
1932 if Present (Expression (N)) then
1933 Mark_Coextensions (N, Expression (N));
1934 end if;
1936 Analyze_Return_Statement (N);
1937 end Analyze_Simple_Return_Statement;
1939 -------------------------
1940 -- Analyze_Return_Type --
1941 -------------------------
1943 procedure Analyze_Return_Type (N : Node_Id) is
1944 Designator : constant Entity_Id := Defining_Entity (N);
1945 Typ : Entity_Id := Empty;
1947 begin
1948 -- Normal case where result definition does not indicate an error
1950 if Result_Definition (N) /= Error then
1951 if Nkind (Result_Definition (N)) = N_Access_Definition then
1952 Check_SPARK_05_Restriction
1953 ("access result is not allowed", Result_Definition (N));
1955 -- Ada 2005 (AI-254): Handle anonymous access to subprograms
1957 declare
1958 AD : constant Node_Id :=
1959 Access_To_Subprogram_Definition (Result_Definition (N));
1960 begin
1961 if Present (AD) and then Protected_Present (AD) then
1962 Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1963 else
1964 Typ := Access_Definition (N, Result_Definition (N));
1965 end if;
1966 end;
1968 Set_Parent (Typ, Result_Definition (N));
1969 Set_Is_Local_Anonymous_Access (Typ);
1970 Set_Etype (Designator, Typ);
1972 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1974 Null_Exclusion_Static_Checks (N);
1976 -- Subtype_Mark case
1978 else
1979 Find_Type (Result_Definition (N));
1980 Typ := Entity (Result_Definition (N));
1981 Set_Etype (Designator, Typ);
1983 -- Unconstrained array as result is not allowed in SPARK
1985 if Is_Array_Type (Typ) and then not Is_Constrained (Typ) then
1986 Check_SPARK_05_Restriction
1987 ("returning an unconstrained array is not allowed",
1988 Result_Definition (N));
1989 end if;
1991 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1993 Null_Exclusion_Static_Checks (N);
1995 -- If a null exclusion is imposed on the result type, then create
1996 -- a null-excluding itype (an access subtype) and use it as the
1997 -- function's Etype. Note that the null exclusion checks are done
1998 -- right before this, because they don't get applied to types that
1999 -- do not come from source.
2001 if Is_Access_Type (Typ) and then Null_Exclusion_Present (N) then
2002 Set_Etype (Designator,
2003 Create_Null_Excluding_Itype
2004 (T => Typ,
2005 Related_Nod => N,
2006 Scope_Id => Scope (Current_Scope)));
2008 -- The new subtype must be elaborated before use because
2009 -- it is visible outside of the function. However its base
2010 -- type may not be frozen yet, so the reference that will
2011 -- force elaboration must be attached to the freezing of
2012 -- the base type.
2014 -- If the return specification appears on a proper body,
2015 -- the subtype will have been created already on the spec.
2017 if Is_Frozen (Typ) then
2018 if Nkind (Parent (N)) = N_Subprogram_Body
2019 and then Nkind (Parent (Parent (N))) = N_Subunit
2020 then
2021 null;
2022 else
2023 Build_Itype_Reference (Etype (Designator), Parent (N));
2024 end if;
2026 else
2027 Ensure_Freeze_Node (Typ);
2029 declare
2030 IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
2031 begin
2032 Set_Itype (IR, Etype (Designator));
2033 Append_Freeze_Actions (Typ, New_List (IR));
2034 end;
2035 end if;
2037 else
2038 Set_Etype (Designator, Typ);
2039 end if;
2041 if Ekind (Typ) = E_Incomplete_Type
2042 and then Is_Value_Type (Typ)
2043 then
2044 null;
2046 elsif Ekind (Typ) = E_Incomplete_Type
2047 or else (Is_Class_Wide_Type (Typ)
2048 and then Ekind (Root_Type (Typ)) = E_Incomplete_Type)
2049 then
2050 -- AI05-0151: Tagged incomplete types are allowed in all formal
2051 -- parts. Untagged incomplete types are not allowed in bodies.
2052 -- As a consequence, limited views cannot appear in a basic
2053 -- declaration that is itself within a body, because there is
2054 -- no point at which the non-limited view will become visible.
2056 if Ada_Version >= Ada_2012 then
2057 if From_Limited_With (Typ) and then In_Package_Body then
2058 Error_Msg_NE
2059 ("invalid use of incomplete type&",
2060 Result_Definition (N), Typ);
2062 -- The return type of a subprogram body cannot be of a
2063 -- formal incomplete type.
2065 elsif Is_Generic_Type (Typ)
2066 and then Nkind (Parent (N)) = N_Subprogram_Body
2067 then
2068 Error_Msg_N
2069 ("return type cannot be a formal incomplete type",
2070 Result_Definition (N));
2072 elsif Is_Class_Wide_Type (Typ)
2073 and then Is_Generic_Type (Root_Type (Typ))
2074 and then Nkind (Parent (N)) = N_Subprogram_Body
2075 then
2076 Error_Msg_N
2077 ("return type cannot be a formal incomplete type",
2078 Result_Definition (N));
2080 elsif Is_Tagged_Type (Typ) then
2081 null;
2083 elsif Nkind (Parent (N)) = N_Subprogram_Body
2084 or else Nkind_In (Parent (Parent (N)), N_Accept_Statement,
2085 N_Entry_Body)
2086 then
2087 Error_Msg_NE
2088 ("invalid use of untagged incomplete type&",
2089 Designator, Typ);
2090 end if;
2092 -- The type must be completed in the current package. This
2093 -- is checked at the end of the package declaration when
2094 -- Taft-amendment types are identified. If the return type
2095 -- is class-wide, there is no required check, the type can
2096 -- be a bona fide TAT.
2098 if Ekind (Scope (Current_Scope)) = E_Package
2099 and then In_Private_Part (Scope (Current_Scope))
2100 and then not Is_Class_Wide_Type (Typ)
2101 then
2102 Append_Elmt (Designator, Private_Dependents (Typ));
2103 end if;
2105 else
2106 Error_Msg_NE
2107 ("invalid use of incomplete type&", Designator, Typ);
2108 end if;
2109 end if;
2110 end if;
2112 -- Case where result definition does indicate an error
2114 else
2115 Set_Etype (Designator, Any_Type);
2116 end if;
2117 end Analyze_Return_Type;
2119 -----------------------------
2120 -- Analyze_Subprogram_Body --
2121 -----------------------------
2123 procedure Analyze_Subprogram_Body (N : Node_Id) is
2124 Loc : constant Source_Ptr := Sloc (N);
2125 Body_Spec : constant Node_Id := Specification (N);
2126 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2128 begin
2129 if Debug_Flag_C then
2130 Write_Str ("==> subprogram body ");
2131 Write_Name (Chars (Body_Id));
2132 Write_Str (" from ");
2133 Write_Location (Loc);
2134 Write_Eol;
2135 Indent;
2136 end if;
2138 Trace_Scope (N, Body_Id, " Analyze subprogram: ");
2140 -- The real work is split out into the helper, so it can do "return;"
2141 -- without skipping the debug output:
2143 Analyze_Subprogram_Body_Helper (N);
2145 if Debug_Flag_C then
2146 Outdent;
2147 Write_Str ("<== subprogram body ");
2148 Write_Name (Chars (Body_Id));
2149 Write_Str (" from ");
2150 Write_Location (Loc);
2151 Write_Eol;
2152 end if;
2153 end Analyze_Subprogram_Body;
2155 --------------------------------------
2156 -- Analyze_Subprogram_Body_Contract --
2157 --------------------------------------
2159 procedure Analyze_Subprogram_Body_Contract (Body_Id : Entity_Id) is
2160 Body_Decl : constant Node_Id := Parent (Parent (Body_Id));
2161 Mode : SPARK_Mode_Type;
2162 Prag : Node_Id;
2163 Ref_Depends : Node_Id := Empty;
2164 Ref_Global : Node_Id := Empty;
2165 Spec_Id : Entity_Id;
2167 begin
2168 -- Due to the timing of contract analysis, delayed pragmas may be
2169 -- subject to the wrong SPARK_Mode, usually that of the enclosing
2170 -- context. To remedy this, restore the original SPARK_Mode of the
2171 -- related subprogram body.
2173 Save_SPARK_Mode_And_Set (Body_Id, Mode);
2175 -- When a subprogram body declaration is illegal, its defining entity is
2176 -- left unanalyzed. There is nothing left to do in this case because the
2177 -- body lacks a contract, or even a proper Ekind.
2179 if Ekind (Body_Id) = E_Void then
2180 return;
2181 end if;
2183 if Nkind (Body_Decl) = N_Subprogram_Body_Stub then
2184 Spec_Id := Corresponding_Spec_Of_Stub (Body_Decl);
2185 else
2186 Spec_Id := Corresponding_Spec (Body_Decl);
2187 end if;
2189 -- Locate and store pragmas Refined_Depends and Refined_Global since
2190 -- their order of analysis matters.
2192 Prag := Classifications (Contract (Body_Id));
2193 while Present (Prag) loop
2194 if Pragma_Name (Prag) = Name_Refined_Depends then
2195 Ref_Depends := Prag;
2196 elsif Pragma_Name (Prag) = Name_Refined_Global then
2197 Ref_Global := Prag;
2198 end if;
2200 Prag := Next_Pragma (Prag);
2201 end loop;
2203 -- Analyze Refined_Global first as Refined_Depends may mention items
2204 -- classified in the global refinement.
2206 if Present (Ref_Global) then
2207 Analyze_Refined_Global_In_Decl_Part (Ref_Global);
2209 -- When the corresponding Global aspect/pragma references a state with
2210 -- visible refinement, the body requires Refined_Global. Refinement is
2211 -- not required when SPARK checks are suppressed.
2213 elsif Present (Spec_Id) then
2214 Prag := Get_Pragma (Spec_Id, Pragma_Global);
2216 if SPARK_Mode /= Off
2217 and then Present (Prag)
2218 and then Contains_Refined_State (Prag)
2219 then
2220 Error_Msg_NE
2221 ("body of subprogram& requires global refinement",
2222 Body_Decl, Spec_Id);
2223 end if;
2224 end if;
2226 -- Refined_Depends must be analyzed after Refined_Global in order to see
2227 -- the modes of all global refinements.
2229 if Present (Ref_Depends) then
2230 Analyze_Refined_Depends_In_Decl_Part (Ref_Depends);
2232 -- When the corresponding Depends aspect/pragma references a state with
2233 -- visible refinement, the body requires Refined_Depends. Refinement is
2234 -- not required when SPARK checks are suppressed.
2236 elsif Present (Spec_Id) then
2237 Prag := Get_Pragma (Spec_Id, Pragma_Depends);
2239 if SPARK_Mode /= Off
2240 and then Present (Prag)
2241 and then Contains_Refined_State (Prag)
2242 then
2243 Error_Msg_NE
2244 ("body of subprogram& requires dependance refinement",
2245 Body_Decl, Spec_Id);
2246 end if;
2247 end if;
2249 -- Restore the SPARK_Mode of the enclosing context after all delayed
2250 -- pragmas have been analyzed.
2252 Restore_SPARK_Mode (Mode);
2253 end Analyze_Subprogram_Body_Contract;
2255 ------------------------------------
2256 -- Analyze_Subprogram_Body_Helper --
2257 ------------------------------------
2259 -- This procedure is called for regular subprogram bodies, generic bodies,
2260 -- and for subprogram stubs of both kinds. In the case of stubs, only the
2261 -- specification matters, and is used to create a proper declaration for
2262 -- the subprogram, or to perform conformance checks.
2264 procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
2265 Loc : constant Source_Ptr := Sloc (N);
2266 Body_Spec : constant Node_Id := Specification (N);
2267 Body_Id : Entity_Id := Defining_Entity (Body_Spec);
2268 Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
2269 Conformant : Boolean;
2270 HSS : Node_Id;
2271 Prot_Typ : Entity_Id := Empty;
2272 Spec_Id : Entity_Id;
2273 Spec_Decl : Node_Id := Empty;
2275 Last_Real_Spec_Entity : Entity_Id := Empty;
2276 -- When we analyze a separate spec, the entity chain ends up containing
2277 -- the formals, as well as any itypes generated during analysis of the
2278 -- default expressions for parameters, or the arguments of associated
2279 -- precondition/postcondition pragmas (which are analyzed in the context
2280 -- of the spec since they have visibility on formals).
2282 -- These entities belong with the spec and not the body. However we do
2283 -- the analysis of the body in the context of the spec (again to obtain
2284 -- visibility to the formals), and all the entities generated during
2285 -- this analysis end up also chained to the entity chain of the spec.
2286 -- But they really belong to the body, and there is circuitry to move
2287 -- them from the spec to the body.
2289 -- However, when we do this move, we don't want to move the real spec
2290 -- entities (first para above) to the body. The Last_Real_Spec_Entity
2291 -- variable points to the last real spec entity, so we only move those
2292 -- chained beyond that point. It is initialized to Empty to deal with
2293 -- the case where there is no separate spec.
2295 procedure Analyze_Aspects_On_Body_Or_Stub;
2296 -- Analyze the aspect specifications of a subprogram body [stub]. It is
2297 -- assumed that N has aspects.
2299 function Body_Has_Contract return Boolean;
2300 -- Check whether unanalyzed body has an aspect or pragma that may
2301 -- generate a SPARK contract.
2303 procedure Check_Anonymous_Return;
2304 -- Ada 2005: if a function returns an access type that denotes a task,
2305 -- or a type that contains tasks, we must create a master entity for
2306 -- the anonymous type, which typically will be used in an allocator
2307 -- in the body of the function.
2309 procedure Check_Inline_Pragma (Spec : in out Node_Id);
2310 -- Look ahead to recognize a pragma that may appear after the body.
2311 -- If there is a previous spec, check that it appears in the same
2312 -- declarative part. If the pragma is Inline_Always, perform inlining
2313 -- unconditionally, otherwise only if Front_End_Inlining is requested.
2314 -- If the body acts as a spec, and inlining is required, we create a
2315 -- subprogram declaration for it, in order to attach the body to inline.
2316 -- If pragma does not appear after the body, check whether there is
2317 -- an inline pragma before any local declarations.
2319 procedure Check_Missing_Return;
2320 -- Checks for a function with a no return statements, and also performs
2321 -- the warning checks implemented by Check_Returns. In formal mode, also
2322 -- verify that a function ends with a RETURN and that a procedure does
2323 -- not contain any RETURN.
2325 function Disambiguate_Spec return Entity_Id;
2326 -- When a primitive is declared between the private view and the full
2327 -- view of a concurrent type which implements an interface, a special
2328 -- mechanism is used to find the corresponding spec of the primitive
2329 -- body.
2331 procedure Exchange_Limited_Views (Subp_Id : Entity_Id);
2332 -- Ada 2012 (AI05-0151): Detect whether the profile of Subp_Id contains
2333 -- incomplete types coming from a limited context and swap their limited
2334 -- views with the non-limited ones.
2336 function Is_Private_Concurrent_Primitive
2337 (Subp_Id : Entity_Id) return Boolean;
2338 -- Determine whether subprogram Subp_Id is a primitive of a concurrent
2339 -- type that implements an interface and has a private view.
2341 procedure Set_Trivial_Subprogram (N : Node_Id);
2342 -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
2343 -- subprogram whose body is being analyzed. N is the statement node
2344 -- causing the flag to be set, if the following statement is a return
2345 -- of an entity, we mark the entity as set in source to suppress any
2346 -- warning on the stylized use of function stubs with a dummy return.
2348 procedure Verify_Overriding_Indicator;
2349 -- If there was a previous spec, the entity has been entered in the
2350 -- current scope previously. If the body itself carries an overriding
2351 -- indicator, check that it is consistent with the known status of the
2352 -- entity.
2354 -------------------------------------
2355 -- Analyze_Aspects_On_Body_Or_Stub --
2356 -------------------------------------
2358 procedure Analyze_Aspects_On_Body_Or_Stub is
2359 procedure Diagnose_Misplaced_Aspects;
2360 -- Subprogram body [stub] N has aspects, but they are not properly
2361 -- placed. Provide precise diagnostics depending on the aspects
2362 -- involved.
2364 --------------------------------
2365 -- Diagnose_Misplaced_Aspects --
2366 --------------------------------
2368 procedure Diagnose_Misplaced_Aspects is
2369 Asp : Node_Id;
2370 Asp_Nam : Name_Id;
2371 Asp_Id : Aspect_Id;
2372 -- The current aspect along with its name and id
2374 procedure SPARK_Aspect_Error (Ref_Nam : Name_Id);
2375 -- Emit an error message concerning SPARK aspect Asp. Ref_Nam is
2376 -- the name of the refined version of the aspect.
2378 ------------------------
2379 -- SPARK_Aspect_Error --
2380 ------------------------
2382 procedure SPARK_Aspect_Error (Ref_Nam : Name_Id) is
2383 begin
2384 -- The corresponding spec already contains the aspect in
2385 -- question and the one appearing on the body must be the
2386 -- refined form:
2388 -- procedure P with Global ...;
2389 -- procedure P with Global ... is ... end P;
2390 -- ^
2391 -- Refined_Global
2393 if Has_Aspect (Spec_Id, Asp_Id) then
2394 Error_Msg_Name_1 := Asp_Nam;
2396 -- Subunits cannot carry aspects that apply to a subprogram
2397 -- declaration.
2399 if Nkind (Parent (N)) = N_Subunit then
2400 Error_Msg_N ("aspect % cannot apply to a subunit", Asp);
2402 else
2403 Error_Msg_Name_2 := Ref_Nam;
2404 Error_Msg_N ("aspect % should be %", Asp);
2405 end if;
2407 -- Otherwise the aspect must appear in the spec, not in the
2408 -- body:
2410 -- procedure P;
2411 -- procedure P with Global ... is ... end P;
2413 else
2414 Error_Msg_N
2415 ("aspect specification must appear in subprogram "
2416 & "declaration", Asp);
2417 end if;
2418 end SPARK_Aspect_Error;
2420 -- Start of processing for Diagnose_Misplaced_Aspects
2422 begin
2423 -- Iterate over the aspect specifications and emit specific errors
2424 -- where applicable.
2426 Asp := First (Aspect_Specifications (N));
2427 while Present (Asp) loop
2428 Asp_Nam := Chars (Identifier (Asp));
2429 Asp_Id := Get_Aspect_Id (Asp_Nam);
2431 -- Do not emit errors on aspects that can appear on a
2432 -- subprogram body. This scenario occurs when the aspect
2433 -- specification list contains both misplaced and properly
2434 -- placed aspects.
2436 if Aspect_On_Body_Or_Stub_OK (Asp_Id) then
2437 null;
2439 -- Special diagnostics for SPARK aspects
2441 elsif Asp_Nam = Name_Depends then
2442 SPARK_Aspect_Error (Name_Refined_Depends);
2444 elsif Asp_Nam = Name_Global then
2445 SPARK_Aspect_Error (Name_Refined_Global);
2447 elsif Asp_Nam = Name_Post then
2448 SPARK_Aspect_Error (Name_Refined_Post);
2450 else
2451 Error_Msg_N
2452 ("aspect specification must appear in subprogram "
2453 & "declaration", Asp);
2454 end if;
2456 Next (Asp);
2457 end loop;
2458 end Diagnose_Misplaced_Aspects;
2460 -- Start of processing for Analyze_Aspects_On_Body_Or_Stub
2462 begin
2463 -- Language-defined aspects cannot be associated with a subprogram
2464 -- body [stub] if the subprogram has a spec. Certain implementation
2465 -- defined aspects are allowed to break this rule (for list, see
2466 -- table Aspect_On_Body_Or_Stub_OK).
2468 if Present (Spec_Id) and then not Aspects_On_Body_Or_Stub_OK (N) then
2469 Diagnose_Misplaced_Aspects;
2470 else
2471 Analyze_Aspect_Specifications (N, Body_Id);
2472 end if;
2473 end Analyze_Aspects_On_Body_Or_Stub;
2475 -----------------------
2476 -- Body_Has_Contract --
2477 -----------------------
2479 function Body_Has_Contract return Boolean is
2480 Decls : constant List_Id := Declarations (N);
2481 A_Spec : Node_Id;
2482 A : Aspect_Id;
2483 Decl : Node_Id;
2484 P_Id : Pragma_Id;
2486 begin
2487 -- Check for unanalyzed aspects in the body that will
2488 -- generate a contract.
2490 if Present (Aspect_Specifications (N)) then
2491 A_Spec := First (Aspect_Specifications (N));
2492 while Present (A_Spec) loop
2493 A := Get_Aspect_Id (Chars (Identifier (A_Spec)));
2495 if A = Aspect_Contract_Cases or else
2496 A = Aspect_Depends or else
2497 A = Aspect_Global or else
2498 A = Aspect_Pre or else
2499 A = Aspect_Precondition or else
2500 A = Aspect_Post or else
2501 A = Aspect_Postcondition
2502 then
2503 return True;
2504 end if;
2506 Next (A_Spec);
2507 end loop;
2508 end if;
2510 -- Check for pragmas that may generate a contract
2512 if Present (Decls) then
2513 Decl := First (Decls);
2514 while Present (Decl) loop
2515 if Nkind (Decl) = N_Pragma then
2516 P_Id := Get_Pragma_Id (Pragma_Name (Decl));
2518 if P_Id = Pragma_Contract_Cases or else
2519 P_Id = Pragma_Depends or else
2520 P_Id = Pragma_Global or else
2521 P_Id = Pragma_Pre or else
2522 P_Id = Pragma_Precondition or else
2523 P_Id = Pragma_Post or else
2524 P_Id = Pragma_Postcondition
2525 then
2526 return True;
2527 end if;
2528 end if;
2530 Next (Decl);
2531 end loop;
2532 end if;
2534 return False;
2535 end Body_Has_Contract;
2537 ----------------------------
2538 -- Check_Anonymous_Return --
2539 ----------------------------
2541 procedure Check_Anonymous_Return is
2542 Decl : Node_Id;
2543 Par : Node_Id;
2544 Scop : Entity_Id;
2546 begin
2547 if Present (Spec_Id) then
2548 Scop := Spec_Id;
2549 else
2550 Scop := Body_Id;
2551 end if;
2553 if Ekind (Scop) = E_Function
2554 and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
2555 and then not Is_Thunk (Scop)
2557 -- Skip internally built functions which handle the case of
2558 -- a null access (see Expand_Interface_Conversion)
2560 and then not (Is_Interface (Designated_Type (Etype (Scop)))
2561 and then not Comes_From_Source (Parent (Scop)))
2563 and then (Has_Task (Designated_Type (Etype (Scop)))
2564 or else
2565 (Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
2566 and then
2567 Is_Limited_Record (Designated_Type (Etype (Scop)))))
2568 and then Expander_Active
2570 -- Avoid cases with no tasking support
2572 and then RTE_Available (RE_Current_Master)
2573 and then not Restriction_Active (No_Task_Hierarchy)
2574 then
2575 Decl :=
2576 Make_Object_Declaration (Loc,
2577 Defining_Identifier =>
2578 Make_Defining_Identifier (Loc, Name_uMaster),
2579 Constant_Present => True,
2580 Object_Definition =>
2581 New_Occurrence_Of (RTE (RE_Master_Id), Loc),
2582 Expression =>
2583 Make_Explicit_Dereference (Loc,
2584 New_Occurrence_Of (RTE (RE_Current_Master), Loc)));
2586 if Present (Declarations (N)) then
2587 Prepend (Decl, Declarations (N));
2588 else
2589 Set_Declarations (N, New_List (Decl));
2590 end if;
2592 Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
2593 Set_Has_Master_Entity (Scop);
2595 -- Now mark the containing scope as a task master
2597 Par := N;
2598 while Nkind (Par) /= N_Compilation_Unit loop
2599 Par := Parent (Par);
2600 pragma Assert (Present (Par));
2602 -- If we fall off the top, we are at the outer level, and
2603 -- the environment task is our effective master, so nothing
2604 -- to mark.
2606 if Nkind_In
2607 (Par, N_Task_Body, N_Block_Statement, N_Subprogram_Body)
2608 then
2609 Set_Is_Task_Master (Par, True);
2610 exit;
2611 end if;
2612 end loop;
2613 end if;
2614 end Check_Anonymous_Return;
2616 -------------------------
2617 -- Check_Inline_Pragma --
2618 -------------------------
2620 procedure Check_Inline_Pragma (Spec : in out Node_Id) is
2621 Prag : Node_Id;
2622 Plist : List_Id;
2624 function Is_Inline_Pragma (N : Node_Id) return Boolean;
2625 -- True when N is a pragma Inline or Inline_Always that applies
2626 -- to this subprogram.
2628 -----------------------
2629 -- Is_Inline_Pragma --
2630 -----------------------
2632 function Is_Inline_Pragma (N : Node_Id) return Boolean is
2633 begin
2634 return
2635 Nkind (N) = N_Pragma
2636 and then
2637 (Pragma_Name (N) = Name_Inline_Always
2638 or else (Front_End_Inlining
2639 and then Pragma_Name (N) = Name_Inline))
2640 and then
2641 Chars
2642 (Expression (First (Pragma_Argument_Associations (N)))) =
2643 Chars (Body_Id);
2644 end Is_Inline_Pragma;
2646 -- Start of processing for Check_Inline_Pragma
2648 begin
2649 if not Expander_Active then
2650 return;
2651 end if;
2653 if Is_List_Member (N)
2654 and then Present (Next (N))
2655 and then Is_Inline_Pragma (Next (N))
2656 then
2657 Prag := Next (N);
2659 elsif Nkind (N) /= N_Subprogram_Body_Stub
2660 and then Present (Declarations (N))
2661 and then Is_Inline_Pragma (First (Declarations (N)))
2662 then
2663 Prag := First (Declarations (N));
2665 else
2666 Prag := Empty;
2667 end if;
2669 if Present (Prag) then
2670 if Present (Spec_Id) then
2671 if In_Same_List (N, Unit_Declaration_Node (Spec_Id)) then
2672 Analyze (Prag);
2673 end if;
2675 else
2676 -- Create a subprogram declaration, to make treatment uniform
2678 declare
2679 Subp : constant Entity_Id :=
2680 Make_Defining_Identifier (Loc, Chars (Body_Id));
2681 Decl : constant Node_Id :=
2682 Make_Subprogram_Declaration (Loc,
2683 Specification =>
2684 New_Copy_Tree (Specification (N)));
2686 begin
2687 Set_Defining_Unit_Name (Specification (Decl), Subp);
2689 if Present (First_Formal (Body_Id)) then
2690 Plist := Copy_Parameter_List (Body_Id);
2691 Set_Parameter_Specifications
2692 (Specification (Decl), Plist);
2693 end if;
2695 Insert_Before (N, Decl);
2696 Analyze (Decl);
2697 Analyze (Prag);
2698 Set_Has_Pragma_Inline (Subp);
2700 if Pragma_Name (Prag) = Name_Inline_Always then
2701 Set_Is_Inlined (Subp);
2702 Set_Has_Pragma_Inline_Always (Subp);
2703 end if;
2705 -- Prior to copying the subprogram body to create a template
2706 -- for it for subsequent inlining, remove the pragma from
2707 -- the current body so that the copy that will produce the
2708 -- new body will start from a completely unanalyzed tree.
2710 if Nkind (Parent (Prag)) = N_Subprogram_Body then
2711 Rewrite (Prag, Make_Null_Statement (Sloc (Prag)));
2712 end if;
2714 Spec := Subp;
2715 end;
2716 end if;
2717 end if;
2718 end Check_Inline_Pragma;
2720 --------------------------
2721 -- Check_Missing_Return --
2722 --------------------------
2724 procedure Check_Missing_Return is
2725 Id : Entity_Id;
2726 Missing_Ret : Boolean;
2728 begin
2729 if Nkind (Body_Spec) = N_Function_Specification then
2730 if Present (Spec_Id) then
2731 Id := Spec_Id;
2732 else
2733 Id := Body_Id;
2734 end if;
2736 if Return_Present (Id) then
2737 Check_Returns (HSS, 'F', Missing_Ret);
2739 if Missing_Ret then
2740 Set_Has_Missing_Return (Id);
2741 end if;
2743 elsif Is_Generic_Subprogram (Id)
2744 or else not Is_Machine_Code_Subprogram (Id)
2745 then
2746 Error_Msg_N ("missing RETURN statement in function body", N);
2747 end if;
2749 -- If procedure with No_Return, check returns
2751 elsif Nkind (Body_Spec) = N_Procedure_Specification
2752 and then Present (Spec_Id)
2753 and then No_Return (Spec_Id)
2754 then
2755 Check_Returns (HSS, 'P', Missing_Ret, Spec_Id);
2756 end if;
2758 -- Special checks in SPARK mode
2760 if Nkind (Body_Spec) = N_Function_Specification then
2762 -- In SPARK mode, last statement of a function should be a return
2764 declare
2765 Stat : constant Node_Id := Last_Source_Statement (HSS);
2766 begin
2767 if Present (Stat)
2768 and then not Nkind_In (Stat, N_Simple_Return_Statement,
2769 N_Extended_Return_Statement)
2770 then
2771 Check_SPARK_05_Restriction
2772 ("last statement in function should be RETURN", Stat);
2773 end if;
2774 end;
2776 -- In SPARK mode, verify that a procedure has no return
2778 elsif Nkind (Body_Spec) = N_Procedure_Specification then
2779 if Present (Spec_Id) then
2780 Id := Spec_Id;
2781 else
2782 Id := Body_Id;
2783 end if;
2785 -- Would be nice to point to return statement here, can we
2786 -- borrow the Check_Returns procedure here ???
2788 if Return_Present (Id) then
2789 Check_SPARK_05_Restriction
2790 ("procedure should not have RETURN", N);
2791 end if;
2792 end if;
2793 end Check_Missing_Return;
2795 -----------------------
2796 -- Disambiguate_Spec --
2797 -----------------------
2799 function Disambiguate_Spec return Entity_Id is
2800 Priv_Spec : Entity_Id;
2801 Spec_N : Entity_Id;
2803 procedure Replace_Types (To_Corresponding : Boolean);
2804 -- Depending on the flag, replace the type of formal parameters of
2805 -- Body_Id if it is a concurrent type implementing interfaces with
2806 -- the corresponding record type or the other way around.
2808 procedure Replace_Types (To_Corresponding : Boolean) is
2809 Formal : Entity_Id;
2810 Formal_Typ : Entity_Id;
2812 begin
2813 Formal := First_Formal (Body_Id);
2814 while Present (Formal) loop
2815 Formal_Typ := Etype (Formal);
2817 if Is_Class_Wide_Type (Formal_Typ) then
2818 Formal_Typ := Root_Type (Formal_Typ);
2819 end if;
2821 -- From concurrent type to corresponding record
2823 if To_Corresponding then
2824 if Is_Concurrent_Type (Formal_Typ)
2825 and then Present (Corresponding_Record_Type (Formal_Typ))
2826 and then
2827 Present (Interfaces
2828 (Corresponding_Record_Type (Formal_Typ)))
2829 then
2830 Set_Etype (Formal,
2831 Corresponding_Record_Type (Formal_Typ));
2832 end if;
2834 -- From corresponding record to concurrent type
2836 else
2837 if Is_Concurrent_Record_Type (Formal_Typ)
2838 and then Present (Interfaces (Formal_Typ))
2839 then
2840 Set_Etype (Formal,
2841 Corresponding_Concurrent_Type (Formal_Typ));
2842 end if;
2843 end if;
2845 Next_Formal (Formal);
2846 end loop;
2847 end Replace_Types;
2849 -- Start of processing for Disambiguate_Spec
2851 begin
2852 -- Try to retrieve the specification of the body as is. All error
2853 -- messages are suppressed because the body may not have a spec in
2854 -- its current state.
2856 Spec_N := Find_Corresponding_Spec (N, False);
2858 -- It is possible that this is the body of a primitive declared
2859 -- between a private and a full view of a concurrent type. The
2860 -- controlling parameter of the spec carries the concurrent type,
2861 -- not the corresponding record type as transformed by Analyze_
2862 -- Subprogram_Specification. In such cases, we undo the change
2863 -- made by the analysis of the specification and try to find the
2864 -- spec again.
2866 -- Note that wrappers already have their corresponding specs and
2867 -- bodies set during their creation, so if the candidate spec is
2868 -- a wrapper, then we definitely need to swap all types to their
2869 -- original concurrent status.
2871 if No (Spec_N)
2872 or else Is_Primitive_Wrapper (Spec_N)
2873 then
2874 -- Restore all references of corresponding record types to the
2875 -- original concurrent types.
2877 Replace_Types (To_Corresponding => False);
2878 Priv_Spec := Find_Corresponding_Spec (N, False);
2880 -- The current body truly belongs to a primitive declared between
2881 -- a private and a full view. We leave the modified body as is,
2882 -- and return the true spec.
2884 if Present (Priv_Spec)
2885 and then Is_Private_Primitive (Priv_Spec)
2886 then
2887 return Priv_Spec;
2888 end if;
2890 -- In case that this is some sort of error, restore the original
2891 -- state of the body.
2893 Replace_Types (To_Corresponding => True);
2894 end if;
2896 return Spec_N;
2897 end Disambiguate_Spec;
2899 ----------------------------
2900 -- Exchange_Limited_Views --
2901 ----------------------------
2903 procedure Exchange_Limited_Views (Subp_Id : Entity_Id) is
2904 procedure Detect_And_Exchange (Id : Entity_Id);
2905 -- Determine whether Id's type denotes an incomplete type associated
2906 -- with a limited with clause and exchange the limited view with the
2907 -- non-limited one.
2909 -------------------------
2910 -- Detect_And_Exchange --
2911 -------------------------
2913 procedure Detect_And_Exchange (Id : Entity_Id) is
2914 Typ : constant Entity_Id := Etype (Id);
2916 begin
2917 if Ekind (Typ) = E_Incomplete_Type
2918 and then From_Limited_With (Typ)
2919 and then Present (Non_Limited_View (Typ))
2920 then
2921 Set_Etype (Id, Non_Limited_View (Typ));
2922 end if;
2923 end Detect_And_Exchange;
2925 -- Local variables
2927 Formal : Entity_Id;
2929 -- Start of processing for Exchange_Limited_Views
2931 begin
2932 if No (Subp_Id) then
2933 return;
2935 -- Do not process subprogram bodies as they already use the non-
2936 -- limited view of types.
2938 elsif not Ekind_In (Subp_Id, E_Function, E_Procedure) then
2939 return;
2940 end if;
2942 -- Examine all formals and swap views when applicable
2944 Formal := First_Formal (Subp_Id);
2945 while Present (Formal) loop
2946 Detect_And_Exchange (Formal);
2948 Next_Formal (Formal);
2949 end loop;
2951 -- Process the return type of a function
2953 if Ekind (Subp_Id) = E_Function then
2954 Detect_And_Exchange (Subp_Id);
2955 end if;
2956 end Exchange_Limited_Views;
2958 -------------------------------------
2959 -- Is_Private_Concurrent_Primitive --
2960 -------------------------------------
2962 function Is_Private_Concurrent_Primitive
2963 (Subp_Id : Entity_Id) return Boolean
2965 Formal_Typ : Entity_Id;
2967 begin
2968 if Present (First_Formal (Subp_Id)) then
2969 Formal_Typ := Etype (First_Formal (Subp_Id));
2971 if Is_Concurrent_Record_Type (Formal_Typ) then
2972 if Is_Class_Wide_Type (Formal_Typ) then
2973 Formal_Typ := Root_Type (Formal_Typ);
2974 end if;
2976 Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
2977 end if;
2979 -- The type of the first formal is a concurrent tagged type with
2980 -- a private view.
2982 return
2983 Is_Concurrent_Type (Formal_Typ)
2984 and then Is_Tagged_Type (Formal_Typ)
2985 and then Has_Private_Declaration (Formal_Typ);
2986 end if;
2988 return False;
2989 end Is_Private_Concurrent_Primitive;
2991 ----------------------------
2992 -- Set_Trivial_Subprogram --
2993 ----------------------------
2995 procedure Set_Trivial_Subprogram (N : Node_Id) is
2996 Nxt : constant Node_Id := Next (N);
2998 begin
2999 Set_Is_Trivial_Subprogram (Body_Id);
3001 if Present (Spec_Id) then
3002 Set_Is_Trivial_Subprogram (Spec_Id);
3003 end if;
3005 if Present (Nxt)
3006 and then Nkind (Nxt) = N_Simple_Return_Statement
3007 and then No (Next (Nxt))
3008 and then Present (Expression (Nxt))
3009 and then Is_Entity_Name (Expression (Nxt))
3010 then
3011 Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
3012 end if;
3013 end Set_Trivial_Subprogram;
3015 ---------------------------------
3016 -- Verify_Overriding_Indicator --
3017 ---------------------------------
3019 procedure Verify_Overriding_Indicator is
3020 begin
3021 if Must_Override (Body_Spec) then
3022 if Nkind (Spec_Id) = N_Defining_Operator_Symbol
3023 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
3024 then
3025 null;
3027 elsif not Present (Overridden_Operation (Spec_Id)) then
3028 Error_Msg_NE
3029 ("subprogram& is not overriding", Body_Spec, Spec_Id);
3031 -- Overriding indicators aren't allowed for protected subprogram
3032 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3033 -- this to a warning if -gnatd.E is enabled.
3035 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3036 Error_Msg_Warn := Error_To_Warning;
3037 Error_Msg_N
3038 ("<<overriding indicator not allowed for protected "
3039 & "subprogram body", Body_Spec);
3040 end if;
3042 elsif Must_Not_Override (Body_Spec) then
3043 if Present (Overridden_Operation (Spec_Id)) then
3044 Error_Msg_NE
3045 ("subprogram& overrides inherited operation",
3046 Body_Spec, Spec_Id);
3048 elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
3049 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
3050 then
3051 Error_Msg_NE
3052 ("subprogram& overrides predefined operator ",
3053 Body_Spec, Spec_Id);
3055 -- Overriding indicators aren't allowed for protected subprogram
3056 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3057 -- this to a warning if -gnatd.E is enabled.
3059 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3060 Error_Msg_Warn := Error_To_Warning;
3062 Error_Msg_N
3063 ("<<overriding indicator not allowed "
3064 & "for protected subprogram body", Body_Spec);
3066 -- If this is not a primitive operation, then the overriding
3067 -- indicator is altogether illegal.
3069 elsif not Is_Primitive (Spec_Id) then
3070 Error_Msg_N
3071 ("overriding indicator only allowed "
3072 & "if subprogram is primitive", Body_Spec);
3073 end if;
3075 -- If checking the style rule and the operation overrides, then
3076 -- issue a warning about a missing overriding_indicator. Protected
3077 -- subprogram bodies are excluded from this style checking, since
3078 -- they aren't primitives (even though their declarations can
3079 -- override) and aren't allowed to have an overriding_indicator.
3081 elsif Style_Check
3082 and then Present (Overridden_Operation (Spec_Id))
3083 and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
3084 then
3085 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3086 Style.Missing_Overriding (N, Body_Id);
3088 elsif Style_Check
3089 and then Can_Override_Operator (Spec_Id)
3090 and then not Is_Predefined_File_Name
3091 (Unit_File_Name (Get_Source_Unit (Spec_Id)))
3092 then
3093 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3094 Style.Missing_Overriding (N, Body_Id);
3095 end if;
3096 end Verify_Overriding_Indicator;
3098 -- Start of processing for Analyze_Subprogram_Body_Helper
3100 begin
3101 -- Generic subprograms are handled separately. They always have a
3102 -- generic specification. Determine whether current scope has a
3103 -- previous declaration.
3105 -- If the subprogram body is defined within an instance of the same
3106 -- name, the instance appears as a package renaming, and will be hidden
3107 -- within the subprogram.
3109 if Present (Prev_Id)
3110 and then not Is_Overloadable (Prev_Id)
3111 and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
3112 or else Comes_From_Source (Prev_Id))
3113 then
3114 if Is_Generic_Subprogram (Prev_Id) then
3115 Spec_Id := Prev_Id;
3116 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3117 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3119 Analyze_Generic_Subprogram_Body (N, Spec_Id);
3121 if Nkind (N) = N_Subprogram_Body then
3122 HSS := Handled_Statement_Sequence (N);
3123 Check_Missing_Return;
3124 end if;
3126 return;
3128 else
3129 -- Previous entity conflicts with subprogram name. Attempting to
3130 -- enter name will post error.
3132 Enter_Name (Body_Id);
3133 return;
3134 end if;
3136 -- Non-generic case, find the subprogram declaration, if one was seen,
3137 -- or enter new overloaded entity in the current scope. If the
3138 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
3139 -- part of the context of one of its subunits. No need to redo the
3140 -- analysis.
3142 elsif Prev_Id = Body_Id and then Has_Completion (Body_Id) then
3143 return;
3145 else
3146 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
3148 if Nkind (N) = N_Subprogram_Body_Stub
3149 or else No (Corresponding_Spec (N))
3150 then
3151 if Is_Private_Concurrent_Primitive (Body_Id) then
3152 Spec_Id := Disambiguate_Spec;
3153 else
3154 Spec_Id := Find_Corresponding_Spec (N);
3156 -- In GNATprove mode, if the body has no previous spec, create
3157 -- one so that the inlining machinery can operate properly.
3158 -- Transfer aspects, if any, to the new spec, so that they
3159 -- are legal and can be processed ahead of the body.
3160 -- We make two copies of the given spec, one for the new
3161 -- declaration, and one for the body.
3163 if No (Spec_Id)
3164 and then GNATprove_Mode
3166 -- Inlining does not apply during pre-analysis of code
3168 and then Full_Analysis
3170 -- Inlining only applies to full bodies, not stubs
3172 and then Nkind (N) /= N_Subprogram_Body_Stub
3174 -- Inlining only applies to bodies in the source code, not to
3175 -- those generated by the compiler. In particular, expression
3176 -- functions, whose body is generated by the compiler, are
3177 -- treated specially by GNATprove.
3179 and then Comes_From_Source (Body_Id)
3181 -- This cannot be done for a compilation unit, which is not
3182 -- in a context where we can insert a new spec.
3184 and then Is_List_Member (N)
3186 -- Inlining only applies to subprograms without contracts,
3187 -- as a contract is a sign that GNATprove should perform a
3188 -- modular analysis of the subprogram instead of a contextual
3189 -- analysis at each call site. The same test is performed in
3190 -- Inline.Can_Be_Inlined_In_GNATprove_Mode. It is repeated
3191 -- here in another form (because the contract has not
3192 -- been attached to the body) to avoid frontend errors in
3193 -- case pragmas are used instead of aspects, because the
3194 -- corresponding pragmas in the body would not be transferred
3195 -- to the spec, leading to legality errors.
3197 and then not Body_Has_Contract
3198 then
3199 declare
3200 Body_Spec : constant Node_Id :=
3201 Copy_Separate_Tree (Specification (N));
3202 New_Decl : constant Node_Id :=
3203 Make_Subprogram_Declaration (Loc,
3204 Copy_Separate_Tree (Specification (N)));
3206 SPARK_Mode_Aspect : Node_Id;
3207 Aspects : List_Id;
3208 Prag, Aspect : Node_Id;
3210 begin
3211 Insert_Before (N, New_Decl);
3212 Move_Aspects (From => N, To => New_Decl);
3214 -- Mark the newly moved aspects as not analyzed, so that
3215 -- their effect on New_Decl is properly analyzed.
3217 Aspect := First (Aspect_Specifications (New_Decl));
3218 while Present (Aspect) loop
3219 Set_Analyzed (Aspect, False);
3220 Next (Aspect);
3221 end loop;
3223 Analyze (New_Decl);
3225 -- The analysis of the generated subprogram declaration
3226 -- may have introduced pragmas that need to be analyzed.
3228 Prag := Next (New_Decl);
3229 while Prag /= N loop
3230 Analyze (Prag);
3231 Next (Prag);
3232 end loop;
3234 Spec_Id := Defining_Entity (New_Decl);
3236 -- As Body_Id originally comes from source, mark the new
3237 -- Spec_Id as such, which is required so that calls to
3238 -- this subprogram are registered in the local effects
3239 -- stored in ALI files for GNATprove.
3241 Set_Comes_From_Source (Spec_Id, True);
3243 -- If aspect SPARK_Mode was specified on the body, it
3244 -- needs to be repeated on the generated decl and the
3245 -- body. Since the original aspect was moved to the
3246 -- generated decl, copy it for the body.
3248 if Has_Aspect (Spec_Id, Aspect_SPARK_Mode) then
3249 SPARK_Mode_Aspect :=
3250 New_Copy (Find_Aspect (Spec_Id, Aspect_SPARK_Mode));
3251 Set_Analyzed (SPARK_Mode_Aspect, False);
3252 Aspects := New_List (SPARK_Mode_Aspect);
3253 Set_Aspect_Specifications (N, Aspects);
3254 end if;
3256 Set_Specification (N, Body_Spec);
3257 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
3258 Set_Corresponding_Spec (N, Spec_Id);
3259 end;
3260 end if;
3261 end if;
3263 -- If this is a duplicate body, no point in analyzing it
3265 if Error_Posted (N) then
3266 return;
3267 end if;
3269 -- A subprogram body should cause freezing of its own declaration,
3270 -- but if there was no previous explicit declaration, then the
3271 -- subprogram will get frozen too late (there may be code within
3272 -- the body that depends on the subprogram having been frozen,
3273 -- such as uses of extra formals), so we force it to be frozen
3274 -- here. Same holds if the body and spec are compilation units.
3275 -- Finally, if the return type is an anonymous access to protected
3276 -- subprogram, it must be frozen before the body because its
3277 -- expansion has generated an equivalent type that is used when
3278 -- elaborating the body.
3280 -- An exception in the case of Ada 2012, AI05-177: The bodies
3281 -- created for expression functions do not freeze.
3283 if No (Spec_Id)
3284 and then Nkind (Original_Node (N)) /= N_Expression_Function
3285 then
3286 Freeze_Before (N, Body_Id);
3288 elsif Nkind (Parent (N)) = N_Compilation_Unit then
3289 Freeze_Before (N, Spec_Id);
3291 elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
3292 Freeze_Before (N, Etype (Body_Id));
3293 end if;
3295 else
3296 Spec_Id := Corresponding_Spec (N);
3297 end if;
3298 end if;
3300 -- Previously we scanned the body to look for nested subprograms, and
3301 -- rejected an inline directive if nested subprograms were present,
3302 -- because the back-end would generate conflicting symbols for the
3303 -- nested bodies. This is now unnecessary.
3305 -- Look ahead to recognize a pragma Inline that appears after the body
3307 Check_Inline_Pragma (Spec_Id);
3309 -- Deal with special case of a fully private operation in the body of
3310 -- the protected type. We must create a declaration for the subprogram,
3311 -- in order to attach the protected subprogram that will be used in
3312 -- internal calls. We exclude compiler generated bodies from the
3313 -- expander since the issue does not arise for those cases.
3315 if No (Spec_Id)
3316 and then Comes_From_Source (N)
3317 and then Is_Protected_Type (Current_Scope)
3318 then
3319 Spec_Id := Build_Private_Protected_Declaration (N);
3320 end if;
3322 -- If a separate spec is present, then deal with freezing issues
3324 if Present (Spec_Id) then
3325 Spec_Decl := Unit_Declaration_Node (Spec_Id);
3326 Verify_Overriding_Indicator;
3328 -- In general, the spec will be frozen when we start analyzing the
3329 -- body. However, for internally generated operations, such as
3330 -- wrapper functions for inherited operations with controlling
3331 -- results, the spec may not have been frozen by the time we expand
3332 -- the freeze actions that include the bodies. In particular, extra
3333 -- formals for accessibility or for return-in-place may need to be
3334 -- generated. Freeze nodes, if any, are inserted before the current
3335 -- body. These freeze actions are also needed in ASIS mode to enable
3336 -- the proper back-annotations.
3338 if not Is_Frozen (Spec_Id)
3339 and then (Expander_Active or ASIS_Mode)
3340 then
3341 -- Force the generation of its freezing node to ensure proper
3342 -- management of access types in the backend.
3344 -- This is definitely needed for some cases, but it is not clear
3345 -- why, to be investigated further???
3347 Set_Has_Delayed_Freeze (Spec_Id);
3348 Freeze_Before (N, Spec_Id);
3349 end if;
3350 end if;
3352 -- Mark presence of postcondition procedure in current scope and mark
3353 -- the procedure itself as needing debug info. The latter is important
3354 -- when analyzing decision coverage (for example, for MC/DC coverage).
3356 if Chars (Body_Id) = Name_uPostconditions then
3357 Set_Has_Postconditions (Current_Scope);
3358 Set_Debug_Info_Needed (Body_Id);
3359 end if;
3361 -- Place subprogram on scope stack, and make formals visible. If there
3362 -- is a spec, the visible entity remains that of the spec.
3364 if Present (Spec_Id) then
3365 Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
3367 if Is_Child_Unit (Spec_Id) then
3368 Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
3369 end if;
3371 if Style_Check then
3372 Style.Check_Identifier (Body_Id, Spec_Id);
3373 end if;
3375 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3376 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3378 if Is_Abstract_Subprogram (Spec_Id) then
3379 Error_Msg_N ("an abstract subprogram cannot have a body", N);
3380 return;
3382 else
3383 Set_Convention (Body_Id, Convention (Spec_Id));
3384 Set_Has_Completion (Spec_Id);
3386 -- Inherit the "ghostness" of the subprogram spec. Note that this
3387 -- property is not directly inherited as the body may be subject
3388 -- to a different Ghost assertion policy.
3390 if Is_Ghost_Entity (Spec_Id) or else Within_Ghost_Scope then
3391 Set_Is_Ghost_Entity (Body_Id);
3393 -- The Ghost policy in effect at the point of declaration and
3394 -- at the point of completion must match (SPARK RM 6.9(15)).
3396 Check_Ghost_Completion (Spec_Id, Body_Id);
3397 end if;
3399 if Is_Protected_Type (Scope (Spec_Id)) then
3400 Prot_Typ := Scope (Spec_Id);
3401 end if;
3403 -- If this is a body generated for a renaming, do not check for
3404 -- full conformance. The check is redundant, because the spec of
3405 -- the body is a copy of the spec in the renaming declaration,
3406 -- and the test can lead to spurious errors on nested defaults.
3408 if Present (Spec_Decl)
3409 and then not Comes_From_Source (N)
3410 and then
3411 (Nkind (Original_Node (Spec_Decl)) =
3412 N_Subprogram_Renaming_Declaration
3413 or else (Present (Corresponding_Body (Spec_Decl))
3414 and then
3415 Nkind (Unit_Declaration_Node
3416 (Corresponding_Body (Spec_Decl))) =
3417 N_Subprogram_Renaming_Declaration))
3418 then
3419 Conformant := True;
3421 -- Conversely, the spec may have been generated for specless body
3422 -- with an inline pragma.
3424 elsif Comes_From_Source (N)
3425 and then not Comes_From_Source (Spec_Id)
3426 and then Has_Pragma_Inline (Spec_Id)
3427 then
3428 Conformant := True;
3430 else
3431 Check_Conformance
3432 (Body_Id, Spec_Id,
3433 Fully_Conformant, True, Conformant, Body_Id);
3434 end if;
3436 -- If the body is not fully conformant, we have to decide if we
3437 -- should analyze it or not. If it has a really messed up profile
3438 -- then we probably should not analyze it, since we will get too
3439 -- many bogus messages.
3441 -- Our decision is to go ahead in the non-fully conformant case
3442 -- only if it is at least mode conformant with the spec. Note
3443 -- that the call to Check_Fully_Conformant has issued the proper
3444 -- error messages to complain about the lack of conformance.
3446 if not Conformant
3447 and then not Mode_Conformant (Body_Id, Spec_Id)
3448 then
3449 return;
3450 end if;
3451 end if;
3453 if Spec_Id /= Body_Id then
3454 Reference_Body_Formals (Spec_Id, Body_Id);
3455 end if;
3457 Set_Ekind (Body_Id, E_Subprogram_Body);
3459 if Nkind (N) = N_Subprogram_Body_Stub then
3460 Set_Corresponding_Spec_Of_Stub (N, Spec_Id);
3462 -- Regular body
3464 else
3465 Set_Corresponding_Spec (N, Spec_Id);
3467 -- Ada 2005 (AI-345): If the operation is a primitive operation
3468 -- of a concurrent type, the type of the first parameter has been
3469 -- replaced with the corresponding record, which is the proper
3470 -- run-time structure to use. However, within the body there may
3471 -- be uses of the formals that depend on primitive operations
3472 -- of the type (in particular calls in prefixed form) for which
3473 -- we need the original concurrent type. The operation may have
3474 -- several controlling formals, so the replacement must be done
3475 -- for all of them.
3477 if Comes_From_Source (Spec_Id)
3478 and then Present (First_Entity (Spec_Id))
3479 and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
3480 and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
3481 and then Present (Interfaces (Etype (First_Entity (Spec_Id))))
3482 and then Present (Corresponding_Concurrent_Type
3483 (Etype (First_Entity (Spec_Id))))
3484 then
3485 declare
3486 Typ : constant Entity_Id := Etype (First_Entity (Spec_Id));
3487 Form : Entity_Id;
3489 begin
3490 Form := First_Formal (Spec_Id);
3491 while Present (Form) loop
3492 if Etype (Form) = Typ then
3493 Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
3494 end if;
3496 Next_Formal (Form);
3497 end loop;
3498 end;
3499 end if;
3501 -- Make the formals visible, and place subprogram on scope stack.
3502 -- This is also the point at which we set Last_Real_Spec_Entity
3503 -- to mark the entities which will not be moved to the body.
3505 Install_Formals (Spec_Id);
3506 Last_Real_Spec_Entity := Last_Entity (Spec_Id);
3508 -- Within an instance, add local renaming declarations so that
3509 -- gdb can retrieve the values of actuals more easily. This is
3510 -- only relevant if generating code (and indeed we definitely
3511 -- do not want these definitions -gnatc mode, because that would
3512 -- confuse ASIS).
3514 if Is_Generic_Instance (Spec_Id)
3515 and then Is_Wrapper_Package (Current_Scope)
3516 and then Expander_Active
3517 then
3518 Build_Subprogram_Instance_Renamings (N, Current_Scope);
3519 end if;
3521 Push_Scope (Spec_Id);
3523 -- Make sure that the subprogram is immediately visible. For
3524 -- child units that have no separate spec this is indispensable.
3525 -- Otherwise it is safe albeit redundant.
3527 Set_Is_Immediately_Visible (Spec_Id);
3528 end if;
3530 Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
3531 Set_Contract (Body_Id, Make_Contract (Sloc (Body_Id)));
3532 Set_Scope (Body_Id, Scope (Spec_Id));
3533 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
3535 -- Case of subprogram body with no previous spec
3537 else
3538 -- Check for style warning required
3540 if Style_Check
3542 -- Only apply check for source level subprograms for which checks
3543 -- have not been suppressed.
3545 and then Comes_From_Source (Body_Id)
3546 and then not Suppress_Style_Checks (Body_Id)
3548 -- No warnings within an instance
3550 and then not In_Instance
3552 -- No warnings for expression functions
3554 and then Nkind (Original_Node (N)) /= N_Expression_Function
3555 then
3556 Style.Body_With_No_Spec (N);
3557 end if;
3559 New_Overloaded_Entity (Body_Id);
3561 if Nkind (N) /= N_Subprogram_Body_Stub then
3562 Set_Acts_As_Spec (N);
3563 Generate_Definition (Body_Id);
3564 Set_Contract (Body_Id, Make_Contract (Sloc (Body_Id)));
3565 Generate_Reference
3566 (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
3567 Install_Formals (Body_Id);
3569 Push_Scope (Body_Id);
3570 end if;
3572 -- For stubs and bodies with no previous spec, generate references to
3573 -- formals.
3575 Generate_Reference_To_Formals (Body_Id);
3576 end if;
3578 -- Set SPARK_Mode from context
3580 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
3581 Set_SPARK_Pragma_Inherited (Body_Id, True);
3583 -- If the return type is an anonymous access type whose designated type
3584 -- is the limited view of a class-wide type and the non-limited view is
3585 -- available, update the return type accordingly.
3587 if Ada_Version >= Ada_2005 and then Comes_From_Source (N) then
3588 declare
3589 Etyp : Entity_Id;
3590 Rtyp : Entity_Id;
3592 begin
3593 Rtyp := Etype (Current_Scope);
3595 if Ekind (Rtyp) = E_Anonymous_Access_Type then
3596 Etyp := Directly_Designated_Type (Rtyp);
3598 if Is_Class_Wide_Type (Etyp)
3599 and then From_Limited_With (Etyp)
3600 then
3601 Set_Directly_Designated_Type
3602 (Etype (Current_Scope), Available_View (Etyp));
3603 end if;
3604 end if;
3605 end;
3606 end if;
3608 -- If this is the proper body of a stub, we must verify that the stub
3609 -- conforms to the body, and to the previous spec if one was present.
3610 -- We know already that the body conforms to that spec. This test is
3611 -- only required for subprograms that come from source.
3613 if Nkind (Parent (N)) = N_Subunit
3614 and then Comes_From_Source (N)
3615 and then not Error_Posted (Body_Id)
3616 and then Nkind (Corresponding_Stub (Parent (N))) =
3617 N_Subprogram_Body_Stub
3618 then
3619 declare
3620 Old_Id : constant Entity_Id :=
3621 Defining_Entity
3622 (Specification (Corresponding_Stub (Parent (N))));
3624 Conformant : Boolean := False;
3626 begin
3627 if No (Spec_Id) then
3628 Check_Fully_Conformant (Body_Id, Old_Id);
3630 else
3631 Check_Conformance
3632 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
3634 if not Conformant then
3636 -- The stub was taken to be a new declaration. Indicate that
3637 -- it lacks a body.
3639 Set_Has_Completion (Old_Id, False);
3640 end if;
3641 end if;
3642 end;
3643 end if;
3645 Set_Has_Completion (Body_Id);
3646 Check_Eliminated (Body_Id);
3648 if Nkind (N) = N_Subprogram_Body_Stub then
3650 -- Analyze any aspect specifications that appear on the subprogram
3651 -- body stub.
3653 if Has_Aspects (N) then
3654 Analyze_Aspects_On_Body_Or_Stub;
3655 end if;
3657 -- Stop the analysis now as the stub cannot be inlined, plus it does
3658 -- not have declarative or statement lists.
3660 return;
3661 end if;
3663 -- Handle frontend inlining
3665 -- Note: Normally we don't do any inlining if expansion is off, since
3666 -- we won't generate code in any case. An exception arises in GNATprove
3667 -- mode where we want to expand some calls in place, even with expansion
3668 -- disabled, since the inlining eases formal verification.
3670 if not GNATprove_Mode
3671 and then Expander_Active
3672 and then Serious_Errors_Detected = 0
3673 and then Present (Spec_Id)
3674 and then Has_Pragma_Inline (Spec_Id)
3675 then
3676 -- Legacy implementation (relying on frontend inlining)
3678 if not Back_End_Inlining then
3679 if Has_Pragma_Inline_Always (Spec_Id)
3680 or else (Has_Pragma_Inline (Spec_Id) and Front_End_Inlining)
3681 then
3682 Build_Body_To_Inline (N, Spec_Id);
3683 end if;
3685 -- New implementation (relying on backend inlining)
3687 else
3688 if Has_Pragma_Inline_Always (Spec_Id)
3689 or else Optimization_Level > 0
3690 then
3691 -- Handle function returning an unconstrained type
3693 if Comes_From_Source (Body_Id)
3694 and then Ekind (Spec_Id) = E_Function
3695 and then Returns_Unconstrained_Type (Spec_Id)
3697 -- If function builds in place, i.e. returns a limited type,
3698 -- inlining cannot be done.
3700 and then not Is_Limited_Type (Etype (Spec_Id))
3701 then
3702 Check_And_Split_Unconstrained_Function (N, Spec_Id, Body_Id);
3704 else
3705 declare
3706 Subp_Body : constant Node_Id :=
3707 Unit_Declaration_Node (Body_Id);
3708 Subp_Decl : constant List_Id := Declarations (Subp_Body);
3710 begin
3711 -- Do not pass inlining to the backend if the subprogram
3712 -- has declarations or statements which cannot be inlined
3713 -- by the backend. This check is done here to emit an
3714 -- error instead of the generic warning message reported
3715 -- by the GCC backend (ie. "function might not be
3716 -- inlinable").
3718 if Present (Subp_Decl)
3719 and then Has_Excluded_Declaration (Spec_Id, Subp_Decl)
3720 then
3721 null;
3723 elsif Has_Excluded_Statement
3724 (Spec_Id,
3725 Statements
3726 (Handled_Statement_Sequence (Subp_Body)))
3727 then
3728 null;
3730 -- If the backend inlining is available then at this
3731 -- stage we only have to mark the subprogram as inlined.
3732 -- The expander will take care of registering it in the
3733 -- table of subprograms inlined by the backend a part of
3734 -- processing calls to it (cf. Expand_Call)
3736 else
3737 Set_Is_Inlined (Spec_Id);
3738 end if;
3739 end;
3740 end if;
3741 end if;
3742 end if;
3744 -- In GNATprove mode, inline only when there is a separate subprogram
3745 -- declaration for now, as inlining of subprogram bodies acting as
3746 -- declarations, or subprogram stubs, are not supported by frontend
3747 -- inlining. This inlining should occur after analysis of the body, so
3748 -- that it is known whether the value of SPARK_Mode applicable to the
3749 -- body, which can be defined by a pragma inside the body.
3751 elsif GNATprove_Mode
3752 and then Full_Analysis
3753 and then not Inside_A_Generic
3754 and then Present (Spec_Id)
3755 and then Nkind (Parent (Parent (Spec_Id))) = N_Subprogram_Declaration
3756 and then Can_Be_Inlined_In_GNATprove_Mode (Spec_Id, Body_Id)
3757 and then not Body_Has_Contract
3758 then
3759 Build_Body_To_Inline (N, Spec_Id);
3760 end if;
3762 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
3763 -- of the specification we have to install the private withed units.
3764 -- This holds for child units as well.
3766 if Is_Compilation_Unit (Body_Id)
3767 or else Nkind (Parent (N)) = N_Compilation_Unit
3768 then
3769 Install_Private_With_Clauses (Body_Id);
3770 end if;
3772 Check_Anonymous_Return;
3774 -- Set the Protected_Formal field of each extra formal of the protected
3775 -- subprogram to reference the corresponding extra formal of the
3776 -- subprogram that implements it. For regular formals this occurs when
3777 -- the protected subprogram's declaration is expanded, but the extra
3778 -- formals don't get created until the subprogram is frozen. We need to
3779 -- do this before analyzing the protected subprogram's body so that any
3780 -- references to the original subprogram's extra formals will be changed
3781 -- refer to the implementing subprogram's formals (see Expand_Formal).
3783 if Present (Spec_Id)
3784 and then Is_Protected_Type (Scope (Spec_Id))
3785 and then Present (Protected_Body_Subprogram (Spec_Id))
3786 then
3787 declare
3788 Impl_Subp : constant Entity_Id :=
3789 Protected_Body_Subprogram (Spec_Id);
3790 Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
3791 Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
3792 begin
3793 while Present (Prot_Ext_Formal) loop
3794 pragma Assert (Present (Impl_Ext_Formal));
3795 Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
3796 Next_Formal_With_Extras (Prot_Ext_Formal);
3797 Next_Formal_With_Extras (Impl_Ext_Formal);
3798 end loop;
3799 end;
3800 end if;
3802 -- Now we can go on to analyze the body
3804 HSS := Handled_Statement_Sequence (N);
3805 Set_Actual_Subtypes (N, Current_Scope);
3807 -- Add a declaration for the Protection object, renaming declarations
3808 -- for discriminals and privals and finally a declaration for the entry
3809 -- family index (if applicable). This form of early expansion is done
3810 -- when the Expander is active because Install_Private_Data_Declarations
3811 -- references entities which were created during regular expansion. The
3812 -- subprogram entity must come from source, and not be an internally
3813 -- generated subprogram.
3815 if Expander_Active
3816 and then Present (Prot_Typ)
3817 and then Present (Spec_Id)
3818 and then Comes_From_Source (Spec_Id)
3819 and then not Is_Eliminated (Spec_Id)
3820 then
3821 Install_Private_Data_Declarations
3822 (Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
3823 end if;
3825 -- Ada 2012 (AI05-0151): Incomplete types coming from a limited context
3826 -- may now appear in parameter and result profiles. Since the analysis
3827 -- of a subprogram body may use the parameter and result profile of the
3828 -- spec, swap any limited views with their non-limited counterpart.
3830 if Ada_Version >= Ada_2012 then
3831 Exchange_Limited_Views (Spec_Id);
3832 end if;
3834 -- Analyze any aspect specifications that appear on the subprogram body
3836 if Has_Aspects (N) then
3837 Analyze_Aspects_On_Body_Or_Stub;
3838 end if;
3840 -- Deal with [refined] preconditions, postconditions, Contract_Cases,
3841 -- invariants and predicates associated with the body and its spec.
3842 -- Note that this is not pure expansion as Expand_Subprogram_Contract
3843 -- prepares the contract assertions for generic subprograms or for ASIS.
3844 -- Do not generate contract checks in SPARK mode.
3846 if not GNATprove_Mode then
3847 Expand_Subprogram_Contract (N, Spec_Id, Body_Id);
3848 end if;
3850 -- Analyze the declarations (this call will analyze the precondition
3851 -- Check pragmas we prepended to the list, as well as the declaration
3852 -- of the _Postconditions procedure).
3854 Analyze_Declarations (Declarations (N));
3856 -- Verify that the SPARK_Mode of the body agrees with that of its spec
3858 if Present (Spec_Id) and then Present (SPARK_Pragma (Body_Id)) then
3859 if Present (SPARK_Pragma (Spec_Id)) then
3860 if Get_SPARK_Mode_From_Pragma (SPARK_Pragma (Spec_Id)) = Off
3861 and then
3862 Get_SPARK_Mode_From_Pragma (SPARK_Pragma (Body_Id)) = On
3863 then
3864 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
3865 Error_Msg_N ("incorrect application of SPARK_Mode#", N);
3866 Error_Msg_Sloc := Sloc (SPARK_Pragma (Spec_Id));
3867 Error_Msg_NE
3868 ("\value Off was set for SPARK_Mode on & #", N, Spec_Id);
3869 end if;
3871 elsif Nkind (Parent (Parent (Spec_Id))) = N_Subprogram_Body_Stub then
3872 null;
3874 else
3875 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
3876 Error_Msg_N ("incorrect application of SPARK_Mode #", N);
3877 Error_Msg_Sloc := Sloc (Spec_Id);
3878 Error_Msg_NE
3879 ("\no value was set for SPARK_Mode on & #", N, Spec_Id);
3880 end if;
3881 end if;
3883 -- If SPARK_Mode for body is not On, disable frontend inlining for this
3884 -- subprogram in GNATprove mode, as its body should not be analyzed.
3886 if SPARK_Mode /= On
3887 and then GNATprove_Mode
3888 and then Present (Spec_Id)
3889 and then Nkind (Parent (Parent (Spec_Id))) = N_Subprogram_Declaration
3890 then
3891 Set_Body_To_Inline (Parent (Parent (Spec_Id)), Empty);
3892 Set_Is_Inlined_Always (Spec_Id, False);
3893 end if;
3895 -- Check completion, and analyze the statements
3897 Check_Completion;
3898 Inspect_Deferred_Constant_Completion (Declarations (N));
3899 Analyze (HSS);
3901 -- Deal with end of scope processing for the body
3903 Process_End_Label (HSS, 't', Current_Scope);
3904 End_Scope;
3905 Check_Subprogram_Order (N);
3906 Set_Analyzed (Body_Id);
3908 -- If we have a separate spec, then the analysis of the declarations
3909 -- caused the entities in the body to be chained to the spec id, but
3910 -- we want them chained to the body id. Only the formal parameters
3911 -- end up chained to the spec id in this case.
3913 if Present (Spec_Id) then
3915 -- We must conform to the categorization of our spec
3917 Validate_Categorization_Dependency (N, Spec_Id);
3919 -- And if this is a child unit, the parent units must conform
3921 if Is_Child_Unit (Spec_Id) then
3922 Validate_Categorization_Dependency
3923 (Unit_Declaration_Node (Spec_Id), Spec_Id);
3924 end if;
3926 -- Here is where we move entities from the spec to the body
3928 -- Case where there are entities that stay with the spec
3930 if Present (Last_Real_Spec_Entity) then
3932 -- No body entities (happens when the only real spec entities come
3933 -- from precondition and postcondition pragmas).
3935 if No (Last_Entity (Body_Id)) then
3936 Set_First_Entity
3937 (Body_Id, Next_Entity (Last_Real_Spec_Entity));
3939 -- Body entities present (formals), so chain stuff past them
3941 else
3942 Set_Next_Entity
3943 (Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
3944 end if;
3946 Set_Next_Entity (Last_Real_Spec_Entity, Empty);
3947 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
3948 Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);
3950 -- Case where there are no spec entities, in this case there can be
3951 -- no body entities either, so just move everything.
3953 else
3954 pragma Assert (No (Last_Entity (Body_Id)));
3955 Set_First_Entity (Body_Id, First_Entity (Spec_Id));
3956 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
3957 Set_First_Entity (Spec_Id, Empty);
3958 Set_Last_Entity (Spec_Id, Empty);
3959 end if;
3960 end if;
3962 Check_Missing_Return;
3964 -- Now we are going to check for variables that are never modified in
3965 -- the body of the procedure. But first we deal with a special case
3966 -- where we want to modify this check. If the body of the subprogram
3967 -- starts with a raise statement or its equivalent, or if the body
3968 -- consists entirely of a null statement, then it is pretty obvious that
3969 -- it is OK to not reference the parameters. For example, this might be
3970 -- the following common idiom for a stubbed function: statement of the
3971 -- procedure raises an exception. In particular this deals with the
3972 -- common idiom of a stubbed function, which appears something like:
3974 -- function F (A : Integer) return Some_Type;
3975 -- X : Some_Type;
3976 -- begin
3977 -- raise Program_Error;
3978 -- return X;
3979 -- end F;
3981 -- Here the purpose of X is simply to satisfy the annoying requirement
3982 -- in Ada that there be at least one return, and we certainly do not
3983 -- want to go posting warnings on X that it is not initialized. On
3984 -- the other hand, if X is entirely unreferenced that should still
3985 -- get a warning.
3987 -- What we do is to detect these cases, and if we find them, flag the
3988 -- subprogram as being Is_Trivial_Subprogram and then use that flag to
3989 -- suppress unwanted warnings. For the case of the function stub above
3990 -- we have a special test to set X as apparently assigned to suppress
3991 -- the warning.
3993 declare
3994 Stm : Node_Id;
3996 begin
3997 -- Skip initial labels (for one thing this occurs when we are in
3998 -- front end ZCX mode, but in any case it is irrelevant), and also
3999 -- initial Push_xxx_Error_Label nodes, which are also irrelevant.
4001 Stm := First (Statements (HSS));
4002 while Nkind (Stm) = N_Label
4003 or else Nkind (Stm) in N_Push_xxx_Label
4004 loop
4005 Next (Stm);
4006 end loop;
4008 -- Do the test on the original statement before expansion
4010 declare
4011 Ostm : constant Node_Id := Original_Node (Stm);
4013 begin
4014 -- If explicit raise statement, turn on flag
4016 if Nkind (Ostm) = N_Raise_Statement then
4017 Set_Trivial_Subprogram (Stm);
4019 -- If null statement, and no following statements, turn on flag
4021 elsif Nkind (Stm) = N_Null_Statement
4022 and then Comes_From_Source (Stm)
4023 and then No (Next (Stm))
4024 then
4025 Set_Trivial_Subprogram (Stm);
4027 -- Check for explicit call cases which likely raise an exception
4029 elsif Nkind (Ostm) = N_Procedure_Call_Statement then
4030 if Is_Entity_Name (Name (Ostm)) then
4031 declare
4032 Ent : constant Entity_Id := Entity (Name (Ostm));
4034 begin
4035 -- If the procedure is marked No_Return, then likely it
4036 -- raises an exception, but in any case it is not coming
4037 -- back here, so turn on the flag.
4039 if Present (Ent)
4040 and then Ekind (Ent) = E_Procedure
4041 and then No_Return (Ent)
4042 then
4043 Set_Trivial_Subprogram (Stm);
4044 end if;
4045 end;
4046 end if;
4047 end if;
4048 end;
4049 end;
4051 -- Check for variables that are never modified
4053 declare
4054 E1, E2 : Entity_Id;
4056 begin
4057 -- If there is a separate spec, then transfer Never_Set_In_Source
4058 -- flags from out parameters to the corresponding entities in the
4059 -- body. The reason we do that is we want to post error flags on
4060 -- the body entities, not the spec entities.
4062 if Present (Spec_Id) then
4063 E1 := First_Entity (Spec_Id);
4064 while Present (E1) loop
4065 if Ekind (E1) = E_Out_Parameter then
4066 E2 := First_Entity (Body_Id);
4067 while Present (E2) loop
4068 exit when Chars (E1) = Chars (E2);
4069 Next_Entity (E2);
4070 end loop;
4072 if Present (E2) then
4073 Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
4074 end if;
4075 end if;
4077 Next_Entity (E1);
4078 end loop;
4079 end if;
4081 -- Check references in body
4083 Check_References (Body_Id);
4084 end;
4085 end Analyze_Subprogram_Body_Helper;
4087 ---------------------------------
4088 -- Analyze_Subprogram_Contract --
4089 ---------------------------------
4091 procedure Analyze_Subprogram_Contract (Subp : Entity_Id) is
4092 Items : constant Node_Id := Contract (Subp);
4093 Case_Prag : Node_Id := Empty;
4094 Depends : Node_Id := Empty;
4095 Global : Node_Id := Empty;
4096 Mode : SPARK_Mode_Type;
4097 Nam : Name_Id;
4098 Post_Prag : Node_Id := Empty;
4099 Prag : Node_Id;
4100 Seen_In_Case : Boolean := False;
4101 Seen_In_Post : Boolean := False;
4103 begin
4104 -- Due to the timing of contract analysis, delayed pragmas may be
4105 -- subject to the wrong SPARK_Mode, usually that of the enclosing
4106 -- context. To remedy this, restore the original SPARK_Mode of the
4107 -- related subprogram body.
4109 Save_SPARK_Mode_And_Set (Subp, Mode);
4111 if Present (Items) then
4113 -- Analyze pre- and postconditions
4115 Prag := Pre_Post_Conditions (Items);
4116 while Present (Prag) loop
4117 Analyze_Pre_Post_Condition_In_Decl_Part (Prag, Subp);
4119 -- Verify whether a postcondition mentions attribute 'Result and
4120 -- its expression introduces a post-state.
4122 if Warn_On_Suspicious_Contract
4123 and then Pragma_Name (Prag) = Name_Postcondition
4124 then
4125 Post_Prag := Prag;
4126 Check_Result_And_Post_State (Prag, Seen_In_Post);
4127 end if;
4129 Prag := Next_Pragma (Prag);
4130 end loop;
4132 -- Analyze contract-cases and test-cases
4134 Prag := Contract_Test_Cases (Items);
4135 while Present (Prag) loop
4136 Nam := Pragma_Name (Prag);
4138 if Nam = Name_Contract_Cases then
4139 Analyze_Contract_Cases_In_Decl_Part (Prag);
4141 -- Verify whether contract-cases mention attribute 'Result and
4142 -- its expression introduces a post-state. Perform the check
4143 -- only when the pragma is legal.
4145 if Warn_On_Suspicious_Contract
4146 and then not Error_Posted (Prag)
4147 then
4148 Case_Prag := Prag;
4149 Check_Result_And_Post_State (Prag, Seen_In_Case);
4150 end if;
4152 else
4153 pragma Assert (Nam = Name_Test_Case);
4154 Analyze_Test_Case_In_Decl_Part (Prag, Subp);
4155 end if;
4157 Prag := Next_Pragma (Prag);
4158 end loop;
4160 -- Analyze classification pragmas
4162 Prag := Classifications (Items);
4163 while Present (Prag) loop
4164 Nam := Pragma_Name (Prag);
4166 if Nam = Name_Depends then
4167 Depends := Prag;
4169 elsif Nam = Name_Global then
4170 Global := Prag;
4172 -- Note that pragma Extensions_Visible has already been analyzed
4174 end if;
4176 Prag := Next_Pragma (Prag);
4177 end loop;
4179 -- Analyze Global first as Depends may mention items classified in
4180 -- the global categorization.
4182 if Present (Global) then
4183 Analyze_Global_In_Decl_Part (Global);
4184 end if;
4186 -- Depends must be analyzed after Global in order to see the modes of
4187 -- all global items.
4189 if Present (Depends) then
4190 Analyze_Depends_In_Decl_Part (Depends);
4191 end if;
4192 end if;
4194 -- Emit an error when neither the postconditions nor the contract-cases
4195 -- mention attribute 'Result in the context of a function.
4197 if Warn_On_Suspicious_Contract
4198 and then Ekind_In (Subp, E_Function, E_Generic_Function)
4199 then
4200 if Present (Case_Prag)
4201 and then not Seen_In_Case
4202 and then Present (Post_Prag)
4203 and then not Seen_In_Post
4204 then
4205 Error_Msg_N
4206 ("neither function postcondition nor contract cases mention "
4207 & "result?T?", Post_Prag);
4209 elsif Present (Case_Prag) and then not Seen_In_Case then
4210 Error_Msg_N
4211 ("contract cases do not mention result?T?", Case_Prag);
4213 -- OK if we have at least one IN OUT parameter
4215 elsif Present (Post_Prag) and then not Seen_In_Post then
4216 declare
4217 F : Entity_Id;
4218 begin
4219 F := First_Formal (Subp);
4220 while Present (F) loop
4221 if Ekind (F) = E_In_Out_Parameter then
4222 return;
4223 else
4224 Next_Formal (F);
4225 end if;
4226 end loop;
4227 end;
4229 -- If no in-out parameters and no mention of Result, the contract
4230 -- is certainly suspicious.
4232 Error_Msg_N
4233 ("function postcondition does not mention result?T?", Post_Prag);
4234 end if;
4235 end if;
4237 -- Restore the SPARK_Mode of the enclosing context after all delayed
4238 -- pragmas have been analyzed.
4240 Restore_SPARK_Mode (Mode);
4241 end Analyze_Subprogram_Contract;
4243 ------------------------------------
4244 -- Analyze_Subprogram_Declaration --
4245 ------------------------------------
4247 procedure Analyze_Subprogram_Declaration (N : Node_Id) is
4248 Scop : constant Entity_Id := Current_Scope;
4249 Designator : Entity_Id;
4251 Is_Completion : Boolean;
4252 -- Indicates whether a null procedure declaration is a completion
4254 begin
4255 -- Null procedures are not allowed in SPARK
4257 if Nkind (Specification (N)) = N_Procedure_Specification
4258 and then Null_Present (Specification (N))
4259 then
4260 Check_SPARK_05_Restriction ("null procedure is not allowed", N);
4262 if Is_Protected_Type (Current_Scope) then
4263 Error_Msg_N ("protected operation cannot be a null procedure", N);
4264 end if;
4266 Analyze_Null_Procedure (N, Is_Completion);
4268 if Is_Completion then
4270 -- The null procedure acts as a body, nothing further is needed.
4272 return;
4273 end if;
4274 end if;
4276 Designator := Analyze_Subprogram_Specification (Specification (N));
4278 -- A reference may already have been generated for the unit name, in
4279 -- which case the following call is redundant. However it is needed for
4280 -- declarations that are the rewriting of an expression function.
4282 Generate_Definition (Designator);
4284 -- Set SPARK mode from current context (may be overwritten later with
4285 -- explicit pragma).
4287 Set_SPARK_Pragma (Designator, SPARK_Mode_Pragma);
4288 Set_SPARK_Pragma_Inherited (Designator, True);
4290 -- A subprogram declared within a Ghost scope is automatically Ghost
4291 -- (SPARK RM 6.9(2)).
4293 if Comes_From_Source (Designator) and then Within_Ghost_Scope then
4294 Set_Is_Ghost_Entity (Designator);
4295 end if;
4297 if Debug_Flag_C then
4298 Write_Str ("==> subprogram spec ");
4299 Write_Name (Chars (Designator));
4300 Write_Str (" from ");
4301 Write_Location (Sloc (N));
4302 Write_Eol;
4303 Indent;
4304 end if;
4306 Validate_RCI_Subprogram_Declaration (N);
4307 New_Overloaded_Entity (Designator);
4308 Check_Delayed_Subprogram (Designator);
4310 -- If the type of the first formal of the current subprogram is a non-
4311 -- generic tagged private type, mark the subprogram as being a private
4312 -- primitive. Ditto if this is a function with controlling result, and
4313 -- the return type is currently private. In both cases, the type of the
4314 -- controlling argument or result must be in the current scope for the
4315 -- operation to be primitive.
4317 if Has_Controlling_Result (Designator)
4318 and then Is_Private_Type (Etype (Designator))
4319 and then Scope (Etype (Designator)) = Current_Scope
4320 and then not Is_Generic_Actual_Type (Etype (Designator))
4321 then
4322 Set_Is_Private_Primitive (Designator);
4324 elsif Present (First_Formal (Designator)) then
4325 declare
4326 Formal_Typ : constant Entity_Id :=
4327 Etype (First_Formal (Designator));
4328 begin
4329 Set_Is_Private_Primitive (Designator,
4330 Is_Tagged_Type (Formal_Typ)
4331 and then Scope (Formal_Typ) = Current_Scope
4332 and then Is_Private_Type (Formal_Typ)
4333 and then not Is_Generic_Actual_Type (Formal_Typ));
4334 end;
4335 end if;
4337 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
4338 -- or null.
4340 if Ada_Version >= Ada_2005
4341 and then Comes_From_Source (N)
4342 and then Is_Dispatching_Operation (Designator)
4343 then
4344 declare
4345 E : Entity_Id;
4346 Etyp : Entity_Id;
4348 begin
4349 if Has_Controlling_Result (Designator) then
4350 Etyp := Etype (Designator);
4352 else
4353 E := First_Entity (Designator);
4354 while Present (E)
4355 and then Is_Formal (E)
4356 and then not Is_Controlling_Formal (E)
4357 loop
4358 Next_Entity (E);
4359 end loop;
4361 Etyp := Etype (E);
4362 end if;
4364 if Is_Access_Type (Etyp) then
4365 Etyp := Directly_Designated_Type (Etyp);
4366 end if;
4368 if Is_Interface (Etyp)
4369 and then not Is_Abstract_Subprogram (Designator)
4370 and then not (Ekind (Designator) = E_Procedure
4371 and then Null_Present (Specification (N)))
4372 then
4373 Error_Msg_Name_1 := Chars (Defining_Entity (N));
4375 -- Specialize error message based on procedures vs. functions,
4376 -- since functions can't be null subprograms.
4378 if Ekind (Designator) = E_Procedure then
4379 Error_Msg_N
4380 ("interface procedure % must be abstract or null", N);
4381 else
4382 Error_Msg_N
4383 ("interface function % must be abstract", N);
4384 end if;
4385 end if;
4386 end;
4387 end if;
4389 -- What is the following code for, it used to be
4391 -- ??? Set_Suppress_Elaboration_Checks
4392 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
4394 -- The following seems equivalent, but a bit dubious
4396 if Elaboration_Checks_Suppressed (Designator) then
4397 Set_Kill_Elaboration_Checks (Designator);
4398 end if;
4400 if Scop /= Standard_Standard and then not Is_Child_Unit (Designator) then
4401 Set_Categorization_From_Scope (Designator, Scop);
4403 else
4404 -- For a compilation unit, check for library-unit pragmas
4406 Push_Scope (Designator);
4407 Set_Categorization_From_Pragmas (N);
4408 Validate_Categorization_Dependency (N, Designator);
4409 Pop_Scope;
4410 end if;
4412 -- For a compilation unit, set body required. This flag will only be
4413 -- reset if a valid Import or Interface pragma is processed later on.
4415 if Nkind (Parent (N)) = N_Compilation_Unit then
4416 Set_Body_Required (Parent (N), True);
4418 if Ada_Version >= Ada_2005
4419 and then Nkind (Specification (N)) = N_Procedure_Specification
4420 and then Null_Present (Specification (N))
4421 then
4422 Error_Msg_N
4423 ("null procedure cannot be declared at library level", N);
4424 end if;
4425 end if;
4427 Generate_Reference_To_Formals (Designator);
4428 Check_Eliminated (Designator);
4430 if Debug_Flag_C then
4431 Outdent;
4432 Write_Str ("<== subprogram spec ");
4433 Write_Name (Chars (Designator));
4434 Write_Str (" from ");
4435 Write_Location (Sloc (N));
4436 Write_Eol;
4437 end if;
4439 if Is_Protected_Type (Current_Scope) then
4441 -- Indicate that this is a protected operation, because it may be
4442 -- used in subsequent declarations within the protected type.
4444 Set_Convention (Designator, Convention_Protected);
4445 end if;
4447 List_Inherited_Pre_Post_Aspects (Designator);
4449 if Has_Aspects (N) then
4450 Analyze_Aspect_Specifications (N, Designator);
4451 end if;
4452 end Analyze_Subprogram_Declaration;
4454 --------------------------------------
4455 -- Analyze_Subprogram_Specification --
4456 --------------------------------------
4458 -- Reminder: N here really is a subprogram specification (not a subprogram
4459 -- declaration). This procedure is called to analyze the specification in
4460 -- both subprogram bodies and subprogram declarations (specs).
4462 function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
4463 Designator : constant Entity_Id := Defining_Entity (N);
4464 Formals : constant List_Id := Parameter_Specifications (N);
4466 -- Start of processing for Analyze_Subprogram_Specification
4468 begin
4469 -- User-defined operator is not allowed in SPARK, except as a renaming
4471 if Nkind (Defining_Unit_Name (N)) = N_Defining_Operator_Symbol
4472 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
4473 then
4474 Check_SPARK_05_Restriction
4475 ("user-defined operator is not allowed", N);
4476 end if;
4478 -- Proceed with analysis. Do not emit a cross-reference entry if the
4479 -- specification comes from an expression function, because it may be
4480 -- the completion of a previous declaration. It is is not, the cross-
4481 -- reference entry will be emitted for the new subprogram declaration.
4483 if Nkind (Parent (N)) /= N_Expression_Function then
4484 Generate_Definition (Designator);
4485 end if;
4487 Set_Contract (Designator, Make_Contract (Sloc (Designator)));
4489 if Nkind (N) = N_Function_Specification then
4490 Set_Ekind (Designator, E_Function);
4491 Set_Mechanism (Designator, Default_Mechanism);
4492 else
4493 Set_Ekind (Designator, E_Procedure);
4494 Set_Etype (Designator, Standard_Void_Type);
4495 end if;
4497 -- Flag Is_Inlined_Always is True by default, and reversed to False for
4498 -- those subprograms which could be inlined in GNATprove mode (because
4499 -- Body_To_Inline is non-Empty) but cannot be inlined.
4501 if GNATprove_Mode then
4502 Set_Is_Inlined_Always (Designator);
4503 end if;
4505 -- Introduce new scope for analysis of the formals and the return type
4507 Set_Scope (Designator, Current_Scope);
4509 if Present (Formals) then
4510 Push_Scope (Designator);
4511 Process_Formals (Formals, N);
4513 -- Check dimensions in N for formals with default expression
4515 Analyze_Dimension_Formals (N, Formals);
4517 -- Ada 2005 (AI-345): If this is an overriding operation of an
4518 -- inherited interface operation, and the controlling type is
4519 -- a synchronized type, replace the type with its corresponding
4520 -- record, to match the proper signature of an overriding operation.
4521 -- Same processing for an access parameter whose designated type is
4522 -- derived from a synchronized interface.
4524 if Ada_Version >= Ada_2005 then
4525 declare
4526 Formal : Entity_Id;
4527 Formal_Typ : Entity_Id;
4528 Rec_Typ : Entity_Id;
4529 Desig_Typ : Entity_Id;
4531 begin
4532 Formal := First_Formal (Designator);
4533 while Present (Formal) loop
4534 Formal_Typ := Etype (Formal);
4536 if Is_Concurrent_Type (Formal_Typ)
4537 and then Present (Corresponding_Record_Type (Formal_Typ))
4538 then
4539 Rec_Typ := Corresponding_Record_Type (Formal_Typ);
4541 if Present (Interfaces (Rec_Typ)) then
4542 Set_Etype (Formal, Rec_Typ);
4543 end if;
4545 elsif Ekind (Formal_Typ) = E_Anonymous_Access_Type then
4546 Desig_Typ := Designated_Type (Formal_Typ);
4548 if Is_Concurrent_Type (Desig_Typ)
4549 and then Present (Corresponding_Record_Type (Desig_Typ))
4550 then
4551 Rec_Typ := Corresponding_Record_Type (Desig_Typ);
4553 if Present (Interfaces (Rec_Typ)) then
4554 Set_Directly_Designated_Type (Formal_Typ, Rec_Typ);
4555 end if;
4556 end if;
4557 end if;
4559 Next_Formal (Formal);
4560 end loop;
4561 end;
4562 end if;
4564 End_Scope;
4566 -- The subprogram scope is pushed and popped around the processing of
4567 -- the return type for consistency with call above to Process_Formals
4568 -- (which itself can call Analyze_Return_Type), and to ensure that any
4569 -- itype created for the return type will be associated with the proper
4570 -- scope.
4572 elsif Nkind (N) = N_Function_Specification then
4573 Push_Scope (Designator);
4574 Analyze_Return_Type (N);
4575 End_Scope;
4576 end if;
4578 -- Function case
4580 if Nkind (N) = N_Function_Specification then
4582 -- Deal with operator symbol case
4584 if Nkind (Designator) = N_Defining_Operator_Symbol then
4585 Valid_Operator_Definition (Designator);
4586 end if;
4588 May_Need_Actuals (Designator);
4590 -- Ada 2005 (AI-251): If the return type is abstract, verify that
4591 -- the subprogram is abstract also. This does not apply to renaming
4592 -- declarations, where abstractness is inherited, and to subprogram
4593 -- bodies generated for stream operations, which become renamings as
4594 -- bodies.
4596 -- In case of primitives associated with abstract interface types
4597 -- the check is applied later (see Analyze_Subprogram_Declaration).
4599 if not Nkind_In (Original_Node (Parent (N)),
4600 N_Subprogram_Renaming_Declaration,
4601 N_Abstract_Subprogram_Declaration,
4602 N_Formal_Abstract_Subprogram_Declaration)
4603 then
4604 if Is_Abstract_Type (Etype (Designator))
4605 and then not Is_Interface (Etype (Designator))
4606 then
4607 Error_Msg_N
4608 ("function that returns abstract type must be abstract", N);
4610 -- Ada 2012 (AI-0073): Extend this test to subprograms with an
4611 -- access result whose designated type is abstract.
4613 elsif Nkind (Result_Definition (N)) = N_Access_Definition
4614 and then
4615 not Is_Class_Wide_Type (Designated_Type (Etype (Designator)))
4616 and then Is_Abstract_Type (Designated_Type (Etype (Designator)))
4617 and then Ada_Version >= Ada_2012
4618 then
4619 Error_Msg_N ("function whose access result designates "
4620 & "abstract type must be abstract", N);
4621 end if;
4622 end if;
4623 end if;
4625 return Designator;
4626 end Analyze_Subprogram_Specification;
4628 -----------------------
4629 -- Check_Conformance --
4630 -----------------------
4632 procedure Check_Conformance
4633 (New_Id : Entity_Id;
4634 Old_Id : Entity_Id;
4635 Ctype : Conformance_Type;
4636 Errmsg : Boolean;
4637 Conforms : out Boolean;
4638 Err_Loc : Node_Id := Empty;
4639 Get_Inst : Boolean := False;
4640 Skip_Controlling_Formals : Boolean := False)
4642 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
4643 -- Sets Conforms to False. If Errmsg is False, then that's all it does.
4644 -- If Errmsg is True, then processing continues to post an error message
4645 -- for conformance error on given node. Two messages are output. The
4646 -- first message points to the previous declaration with a general "no
4647 -- conformance" message. The second is the detailed reason, supplied as
4648 -- Msg. The parameter N provide information for a possible & insertion
4649 -- in the message, and also provides the location for posting the
4650 -- message in the absence of a specified Err_Loc location.
4652 -----------------------
4653 -- Conformance_Error --
4654 -----------------------
4656 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
4657 Enode : Node_Id;
4659 begin
4660 Conforms := False;
4662 if Errmsg then
4663 if No (Err_Loc) then
4664 Enode := N;
4665 else
4666 Enode := Err_Loc;
4667 end if;
4669 Error_Msg_Sloc := Sloc (Old_Id);
4671 case Ctype is
4672 when Type_Conformant =>
4673 Error_Msg_N -- CODEFIX
4674 ("not type conformant with declaration#!", Enode);
4676 when Mode_Conformant =>
4677 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
4678 Error_Msg_N
4679 ("not mode conformant with operation inherited#!",
4680 Enode);
4681 else
4682 Error_Msg_N
4683 ("not mode conformant with declaration#!", Enode);
4684 end if;
4686 when Subtype_Conformant =>
4687 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
4688 Error_Msg_N
4689 ("not subtype conformant with operation inherited#!",
4690 Enode);
4691 else
4692 Error_Msg_N
4693 ("not subtype conformant with declaration#!", Enode);
4694 end if;
4696 when Fully_Conformant =>
4697 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
4698 Error_Msg_N -- CODEFIX
4699 ("not fully conformant with operation inherited#!",
4700 Enode);
4701 else
4702 Error_Msg_N -- CODEFIX
4703 ("not fully conformant with declaration#!", Enode);
4704 end if;
4705 end case;
4707 Error_Msg_NE (Msg, Enode, N);
4708 end if;
4709 end Conformance_Error;
4711 -- Local Variables
4713 Old_Type : constant Entity_Id := Etype (Old_Id);
4714 New_Type : constant Entity_Id := Etype (New_Id);
4715 Old_Formal : Entity_Id;
4716 New_Formal : Entity_Id;
4717 Access_Types_Match : Boolean;
4718 Old_Formal_Base : Entity_Id;
4719 New_Formal_Base : Entity_Id;
4721 -- Start of processing for Check_Conformance
4723 begin
4724 Conforms := True;
4726 -- We need a special case for operators, since they don't appear
4727 -- explicitly.
4729 if Ctype = Type_Conformant then
4730 if Ekind (New_Id) = E_Operator
4731 and then Operator_Matches_Spec (New_Id, Old_Id)
4732 then
4733 return;
4734 end if;
4735 end if;
4737 -- If both are functions/operators, check return types conform
4739 if Old_Type /= Standard_Void_Type
4740 and then
4741 New_Type /= Standard_Void_Type
4742 then
4743 -- If we are checking interface conformance we omit controlling
4744 -- arguments and result, because we are only checking the conformance
4745 -- of the remaining parameters.
4747 if Has_Controlling_Result (Old_Id)
4748 and then Has_Controlling_Result (New_Id)
4749 and then Skip_Controlling_Formals
4750 then
4751 null;
4753 elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
4754 if Ctype >= Subtype_Conformant
4755 and then not Predicates_Match (Old_Type, New_Type)
4756 then
4757 Conformance_Error
4758 ("\predicate of return type does not match!", New_Id);
4759 else
4760 Conformance_Error
4761 ("\return type does not match!", New_Id);
4762 end if;
4764 return;
4765 end if;
4767 -- Ada 2005 (AI-231): In case of anonymous access types check the
4768 -- null-exclusion and access-to-constant attributes match.
4770 if Ada_Version >= Ada_2005
4771 and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
4772 and then
4773 (Can_Never_Be_Null (Old_Type) /= Can_Never_Be_Null (New_Type)
4774 or else Is_Access_Constant (Etype (Old_Type)) /=
4775 Is_Access_Constant (Etype (New_Type)))
4776 then
4777 Conformance_Error ("\return type does not match!", New_Id);
4778 return;
4779 end if;
4781 -- If either is a function/operator and the other isn't, error
4783 elsif Old_Type /= Standard_Void_Type
4784 or else New_Type /= Standard_Void_Type
4785 then
4786 Conformance_Error ("\functions can only match functions!", New_Id);
4787 return;
4788 end if;
4790 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
4791 -- If this is a renaming as body, refine error message to indicate that
4792 -- the conflict is with the original declaration. If the entity is not
4793 -- frozen, the conventions don't have to match, the one of the renamed
4794 -- entity is inherited.
4796 if Ctype >= Subtype_Conformant then
4797 if Convention (Old_Id) /= Convention (New_Id) then
4798 if not Is_Frozen (New_Id) then
4799 null;
4801 elsif Present (Err_Loc)
4802 and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
4803 and then Present (Corresponding_Spec (Err_Loc))
4804 then
4805 Error_Msg_Name_1 := Chars (New_Id);
4806 Error_Msg_Name_2 :=
4807 Name_Ada + Convention_Id'Pos (Convention (New_Id));
4808 Conformance_Error ("\prior declaration for% has convention %!");
4810 else
4811 Conformance_Error ("\calling conventions do not match!");
4812 end if;
4814 return;
4816 elsif Is_Formal_Subprogram (Old_Id)
4817 or else Is_Formal_Subprogram (New_Id)
4818 then
4819 Conformance_Error ("\formal subprograms not allowed!");
4820 return;
4822 -- Pragma Ghost behaves as a convention in the context of subtype
4823 -- conformance (SPARK RM 6.9(5)). Do not check internally generated
4824 -- subprograms as their spec may reside in a Ghost region and their
4825 -- body not, or vice versa.
4827 elsif Comes_From_Source (Old_Id)
4828 and then Comes_From_Source (New_Id)
4829 and then Is_Ghost_Entity (Old_Id) /= Is_Ghost_Entity (New_Id)
4830 then
4831 Conformance_Error ("\ghost modes do not match!");
4832 return;
4833 end if;
4834 end if;
4836 -- Deal with parameters
4838 -- Note: we use the entity information, rather than going directly
4839 -- to the specification in the tree. This is not only simpler, but
4840 -- absolutely necessary for some cases of conformance tests between
4841 -- operators, where the declaration tree simply does not exist.
4843 Old_Formal := First_Formal (Old_Id);
4844 New_Formal := First_Formal (New_Id);
4845 while Present (Old_Formal) and then Present (New_Formal) loop
4846 if Is_Controlling_Formal (Old_Formal)
4847 and then Is_Controlling_Formal (New_Formal)
4848 and then Skip_Controlling_Formals
4849 then
4850 -- The controlling formals will have different types when
4851 -- comparing an interface operation with its match, but both
4852 -- or neither must be access parameters.
4854 if Is_Access_Type (Etype (Old_Formal))
4856 Is_Access_Type (Etype (New_Formal))
4857 then
4858 goto Skip_Controlling_Formal;
4859 else
4860 Conformance_Error
4861 ("\access parameter does not match!", New_Formal);
4862 end if;
4863 end if;
4865 -- Ada 2012: Mode conformance also requires that formal parameters
4866 -- be both aliased, or neither.
4868 if Ctype >= Mode_Conformant and then Ada_Version >= Ada_2012 then
4869 if Is_Aliased (Old_Formal) /= Is_Aliased (New_Formal) then
4870 Conformance_Error
4871 ("\aliased parameter mismatch!", New_Formal);
4872 end if;
4873 end if;
4875 if Ctype = Fully_Conformant then
4877 -- Names must match. Error message is more accurate if we do
4878 -- this before checking that the types of the formals match.
4880 if Chars (Old_Formal) /= Chars (New_Formal) then
4881 Conformance_Error ("\name& does not match!", New_Formal);
4883 -- Set error posted flag on new formal as well to stop
4884 -- junk cascaded messages in some cases.
4886 Set_Error_Posted (New_Formal);
4887 return;
4888 end if;
4890 -- Null exclusion must match
4892 if Null_Exclusion_Present (Parent (Old_Formal))
4894 Null_Exclusion_Present (Parent (New_Formal))
4895 then
4896 -- Only give error if both come from source. This should be
4897 -- investigated some time, since it should not be needed ???
4899 if Comes_From_Source (Old_Formal)
4900 and then
4901 Comes_From_Source (New_Formal)
4902 then
4903 Conformance_Error
4904 ("\null exclusion for& does not match", New_Formal);
4906 -- Mark error posted on the new formal to avoid duplicated
4907 -- complaint about types not matching.
4909 Set_Error_Posted (New_Formal);
4910 end if;
4911 end if;
4912 end if;
4914 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
4915 -- case occurs whenever a subprogram is being renamed and one of its
4916 -- parameters imposes a null exclusion. For example:
4918 -- type T is null record;
4919 -- type Acc_T is access T;
4920 -- subtype Acc_T_Sub is Acc_T;
4922 -- procedure P (Obj : not null Acc_T_Sub); -- itype
4923 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
4924 -- renames P;
4926 Old_Formal_Base := Etype (Old_Formal);
4927 New_Formal_Base := Etype (New_Formal);
4929 if Get_Inst then
4930 Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
4931 New_Formal_Base := Get_Instance_Of (New_Formal_Base);
4932 end if;
4934 Access_Types_Match := Ada_Version >= Ada_2005
4936 -- Ensure that this rule is only applied when New_Id is a
4937 -- renaming of Old_Id.
4939 and then Nkind (Parent (Parent (New_Id))) =
4940 N_Subprogram_Renaming_Declaration
4941 and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
4942 and then Present (Entity (Name (Parent (Parent (New_Id)))))
4943 and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
4945 -- Now handle the allowed access-type case
4947 and then Is_Access_Type (Old_Formal_Base)
4948 and then Is_Access_Type (New_Formal_Base)
4950 -- The type kinds must match. The only exception occurs with
4951 -- multiple generics of the form:
4953 -- generic generic
4954 -- type F is private; type A is private;
4955 -- type F_Ptr is access F; type A_Ptr is access A;
4956 -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
4957 -- package F_Pack is ... package A_Pack is
4958 -- package F_Inst is
4959 -- new F_Pack (A, A_Ptr, A_P);
4961 -- When checking for conformance between the parameters of A_P
4962 -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
4963 -- because the compiler has transformed A_Ptr into a subtype of
4964 -- F_Ptr. We catch this case in the code below.
4966 and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
4967 or else
4968 (Is_Generic_Type (Old_Formal_Base)
4969 and then Is_Generic_Type (New_Formal_Base)
4970 and then Is_Internal (New_Formal_Base)
4971 and then Etype (Etype (New_Formal_Base)) =
4972 Old_Formal_Base))
4973 and then Directly_Designated_Type (Old_Formal_Base) =
4974 Directly_Designated_Type (New_Formal_Base)
4975 and then ((Is_Itype (Old_Formal_Base)
4976 and then Can_Never_Be_Null (Old_Formal_Base))
4977 or else
4978 (Is_Itype (New_Formal_Base)
4979 and then Can_Never_Be_Null (New_Formal_Base)));
4981 -- Types must always match. In the visible part of an instance,
4982 -- usual overloading rules for dispatching operations apply, and
4983 -- we check base types (not the actual subtypes).
4985 if In_Instance_Visible_Part
4986 and then Is_Dispatching_Operation (New_Id)
4987 then
4988 if not Conforming_Types
4989 (T1 => Base_Type (Etype (Old_Formal)),
4990 T2 => Base_Type (Etype (New_Formal)),
4991 Ctype => Ctype,
4992 Get_Inst => Get_Inst)
4993 and then not Access_Types_Match
4994 then
4995 Conformance_Error ("\type of & does not match!", New_Formal);
4996 return;
4997 end if;
4999 elsif not Conforming_Types
5000 (T1 => Old_Formal_Base,
5001 T2 => New_Formal_Base,
5002 Ctype => Ctype,
5003 Get_Inst => Get_Inst)
5004 and then not Access_Types_Match
5005 then
5006 -- Don't give error message if old type is Any_Type. This test
5007 -- avoids some cascaded errors, e.g. in case of a bad spec.
5009 if Errmsg and then Old_Formal_Base = Any_Type then
5010 Conforms := False;
5011 else
5012 if Ctype >= Subtype_Conformant
5013 and then
5014 not Predicates_Match (Old_Formal_Base, New_Formal_Base)
5015 then
5016 Conformance_Error
5017 ("\predicate of & does not match!", New_Formal);
5018 else
5019 Conformance_Error
5020 ("\type of & does not match!", New_Formal);
5021 end if;
5022 end if;
5024 return;
5025 end if;
5027 -- For mode conformance, mode must match
5029 if Ctype >= Mode_Conformant then
5030 if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
5031 if not Ekind_In (New_Id, E_Function, E_Procedure)
5032 or else not Is_Primitive_Wrapper (New_Id)
5033 then
5034 Conformance_Error ("\mode of & does not match!", New_Formal);
5036 else
5037 declare
5038 T : constant Entity_Id := Find_Dispatching_Type (New_Id);
5039 begin
5040 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
5041 then
5042 Error_Msg_PT (T, New_Id);
5043 else
5044 Conformance_Error
5045 ("\mode of & does not match!", New_Formal);
5046 end if;
5047 end;
5048 end if;
5050 return;
5052 -- Part of mode conformance for access types is having the same
5053 -- constant modifier.
5055 elsif Access_Types_Match
5056 and then Is_Access_Constant (Old_Formal_Base) /=
5057 Is_Access_Constant (New_Formal_Base)
5058 then
5059 Conformance_Error
5060 ("\constant modifier does not match!", New_Formal);
5061 return;
5062 end if;
5063 end if;
5065 if Ctype >= Subtype_Conformant then
5067 -- Ada 2005 (AI-231): In case of anonymous access types check
5068 -- the null-exclusion and access-to-constant attributes must
5069 -- match. For null exclusion, we test the types rather than the
5070 -- formals themselves, since the attribute is only set reliably
5071 -- on the formals in the Ada 95 case, and we exclude the case
5072 -- where Old_Formal is marked as controlling, to avoid errors
5073 -- when matching completing bodies with dispatching declarations
5074 -- (access formals in the bodies aren't marked Can_Never_Be_Null).
5076 if Ada_Version >= Ada_2005
5077 and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
5078 and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
5079 and then
5080 ((Can_Never_Be_Null (Etype (Old_Formal)) /=
5081 Can_Never_Be_Null (Etype (New_Formal))
5082 and then
5083 not Is_Controlling_Formal (Old_Formal))
5084 or else
5085 Is_Access_Constant (Etype (Old_Formal)) /=
5086 Is_Access_Constant (Etype (New_Formal)))
5088 -- Do not complain if error already posted on New_Formal. This
5089 -- avoids some redundant error messages.
5091 and then not Error_Posted (New_Formal)
5092 then
5093 -- It is allowed to omit the null-exclusion in case of stream
5094 -- attribute subprograms. We recognize stream subprograms
5095 -- through their TSS-generated suffix.
5097 declare
5098 TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
5100 begin
5101 if TSS_Name /= TSS_Stream_Read
5102 and then TSS_Name /= TSS_Stream_Write
5103 and then TSS_Name /= TSS_Stream_Input
5104 and then TSS_Name /= TSS_Stream_Output
5105 then
5106 -- Here we have a definite conformance error. It is worth
5107 -- special casing the error message for the case of a
5108 -- controlling formal (which excludes null).
5110 if Is_Controlling_Formal (New_Formal) then
5111 Error_Msg_Node_2 := Scope (New_Formal);
5112 Conformance_Error
5113 ("\controlling formal & of & excludes null, "
5114 & "declaration must exclude null as well",
5115 New_Formal);
5117 -- Normal case (couldn't we give more detail here???)
5119 else
5120 Conformance_Error
5121 ("\type of & does not match!", New_Formal);
5122 end if;
5124 return;
5125 end if;
5126 end;
5127 end if;
5128 end if;
5130 -- Full conformance checks
5132 if Ctype = Fully_Conformant then
5134 -- We have checked already that names match
5136 if Parameter_Mode (Old_Formal) = E_In_Parameter then
5138 -- Check default expressions for in parameters
5140 declare
5141 NewD : constant Boolean :=
5142 Present (Default_Value (New_Formal));
5143 OldD : constant Boolean :=
5144 Present (Default_Value (Old_Formal));
5145 begin
5146 if NewD or OldD then
5148 -- The old default value has been analyzed because the
5149 -- current full declaration will have frozen everything
5150 -- before. The new default value has not been analyzed,
5151 -- so analyze it now before we check for conformance.
5153 if NewD then
5154 Push_Scope (New_Id);
5155 Preanalyze_Spec_Expression
5156 (Default_Value (New_Formal), Etype (New_Formal));
5157 End_Scope;
5158 end if;
5160 if not (NewD and OldD)
5161 or else not Fully_Conformant_Expressions
5162 (Default_Value (Old_Formal),
5163 Default_Value (New_Formal))
5164 then
5165 Conformance_Error
5166 ("\default expression for & does not match!",
5167 New_Formal);
5168 return;
5169 end if;
5170 end if;
5171 end;
5172 end if;
5173 end if;
5175 -- A couple of special checks for Ada 83 mode. These checks are
5176 -- skipped if either entity is an operator in package Standard,
5177 -- or if either old or new instance is not from the source program.
5179 if Ada_Version = Ada_83
5180 and then Sloc (Old_Id) > Standard_Location
5181 and then Sloc (New_Id) > Standard_Location
5182 and then Comes_From_Source (Old_Id)
5183 and then Comes_From_Source (New_Id)
5184 then
5185 declare
5186 Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
5187 New_Param : constant Node_Id := Declaration_Node (New_Formal);
5189 begin
5190 -- Explicit IN must be present or absent in both cases. This
5191 -- test is required only in the full conformance case.
5193 if In_Present (Old_Param) /= In_Present (New_Param)
5194 and then Ctype = Fully_Conformant
5195 then
5196 Conformance_Error
5197 ("\(Ada 83) IN must appear in both declarations",
5198 New_Formal);
5199 return;
5200 end if;
5202 -- Grouping (use of comma in param lists) must be the same
5203 -- This is where we catch a misconformance like:
5205 -- A, B : Integer
5206 -- A : Integer; B : Integer
5208 -- which are represented identically in the tree except
5209 -- for the setting of the flags More_Ids and Prev_Ids.
5211 if More_Ids (Old_Param) /= More_Ids (New_Param)
5212 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
5213 then
5214 Conformance_Error
5215 ("\grouping of & does not match!", New_Formal);
5216 return;
5217 end if;
5218 end;
5219 end if;
5221 -- This label is required when skipping controlling formals
5223 <<Skip_Controlling_Formal>>
5225 Next_Formal (Old_Formal);
5226 Next_Formal (New_Formal);
5227 end loop;
5229 if Present (Old_Formal) then
5230 Conformance_Error ("\too few parameters!");
5231 return;
5233 elsif Present (New_Formal) then
5234 Conformance_Error ("\too many parameters!", New_Formal);
5235 return;
5236 end if;
5237 end Check_Conformance;
5239 -----------------------
5240 -- Check_Conventions --
5241 -----------------------
5243 procedure Check_Conventions (Typ : Entity_Id) is
5244 Ifaces_List : Elist_Id;
5246 procedure Check_Convention (Op : Entity_Id);
5247 -- Verify that the convention of inherited dispatching operation Op is
5248 -- consistent among all subprograms it overrides. In order to minimize
5249 -- the search, Search_From is utilized to designate a specific point in
5250 -- the list rather than iterating over the whole list once more.
5252 ----------------------
5253 -- Check_Convention --
5254 ----------------------
5256 procedure Check_Convention (Op : Entity_Id) is
5257 Op_Conv : constant Convention_Id := Convention (Op);
5258 Iface_Conv : Convention_Id;
5259 Iface_Elmt : Elmt_Id;
5260 Iface_Prim_Elmt : Elmt_Id;
5261 Iface_Prim : Entity_Id;
5263 begin
5264 Iface_Elmt := First_Elmt (Ifaces_List);
5265 while Present (Iface_Elmt) loop
5266 Iface_Prim_Elmt :=
5267 First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
5268 while Present (Iface_Prim_Elmt) loop
5269 Iface_Prim := Node (Iface_Prim_Elmt);
5270 Iface_Conv := Convention (Iface_Prim);
5272 if Is_Interface_Conformant (Typ, Iface_Prim, Op)
5273 and then Iface_Conv /= Op_Conv
5274 then
5275 Error_Msg_N
5276 ("inconsistent conventions in primitive operations", Typ);
5278 Error_Msg_Name_1 := Chars (Op);
5279 Error_Msg_Name_2 := Get_Convention_Name (Op_Conv);
5280 Error_Msg_Sloc := Sloc (Op);
5282 if Comes_From_Source (Op) or else No (Alias (Op)) then
5283 if not Present (Overridden_Operation (Op)) then
5284 Error_Msg_N ("\\primitive % defined #", Typ);
5285 else
5286 Error_Msg_N
5287 ("\\overriding operation % with "
5288 & "convention % defined #", Typ);
5289 end if;
5291 else pragma Assert (Present (Alias (Op)));
5292 Error_Msg_Sloc := Sloc (Alias (Op));
5293 Error_Msg_N ("\\inherited operation % with "
5294 & "convention % defined #", Typ);
5295 end if;
5297 Error_Msg_Name_1 := Chars (Op);
5298 Error_Msg_Name_2 := Get_Convention_Name (Iface_Conv);
5299 Error_Msg_Sloc := Sloc (Iface_Prim);
5300 Error_Msg_N ("\\overridden operation % with "
5301 & "convention % defined #", Typ);
5303 -- Avoid cascading errors
5305 return;
5306 end if;
5308 Next_Elmt (Iface_Prim_Elmt);
5309 end loop;
5311 Next_Elmt (Iface_Elmt);
5312 end loop;
5313 end Check_Convention;
5315 -- Local variables
5317 Prim_Op : Entity_Id;
5318 Prim_Op_Elmt : Elmt_Id;
5320 -- Start of processing for Check_Conventions
5322 begin
5323 if not Has_Interfaces (Typ) then
5324 return;
5325 end if;
5327 Collect_Interfaces (Typ, Ifaces_List);
5329 -- The algorithm checks every overriding dispatching operation against
5330 -- all the corresponding overridden dispatching operations, detecting
5331 -- differences in conventions.
5333 Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
5334 while Present (Prim_Op_Elmt) loop
5335 Prim_Op := Node (Prim_Op_Elmt);
5337 -- A small optimization: skip the predefined dispatching operations
5338 -- since they always have the same convention.
5340 if not Is_Predefined_Dispatching_Operation (Prim_Op) then
5341 Check_Convention (Prim_Op);
5342 end if;
5344 Next_Elmt (Prim_Op_Elmt);
5345 end loop;
5346 end Check_Conventions;
5348 ------------------------------
5349 -- Check_Delayed_Subprogram --
5350 ------------------------------
5352 procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
5353 F : Entity_Id;
5355 procedure Possible_Freeze (T : Entity_Id);
5356 -- T is the type of either a formal parameter or of the return type.
5357 -- If T is not yet frozen and needs a delayed freeze, then the
5358 -- subprogram itself must be delayed. If T is the limited view of an
5359 -- incomplete type the subprogram must be frozen as well, because
5360 -- T may depend on local types that have not been frozen yet.
5362 ---------------------
5363 -- Possible_Freeze --
5364 ---------------------
5366 procedure Possible_Freeze (T : Entity_Id) is
5367 begin
5368 if Has_Delayed_Freeze (T) and then not Is_Frozen (T) then
5369 Set_Has_Delayed_Freeze (Designator);
5371 elsif Is_Access_Type (T)
5372 and then Has_Delayed_Freeze (Designated_Type (T))
5373 and then not Is_Frozen (Designated_Type (T))
5374 then
5375 Set_Has_Delayed_Freeze (Designator);
5377 elsif Ekind (T) = E_Incomplete_Type
5378 and then From_Limited_With (T)
5379 then
5380 Set_Has_Delayed_Freeze (Designator);
5382 -- AI05-0151: In Ada 2012, Incomplete types can appear in the profile
5383 -- of a subprogram or entry declaration.
5385 elsif Ekind (T) = E_Incomplete_Type
5386 and then Ada_Version >= Ada_2012
5387 then
5388 Set_Has_Delayed_Freeze (Designator);
5389 end if;
5391 end Possible_Freeze;
5393 -- Start of processing for Check_Delayed_Subprogram
5395 begin
5396 -- All subprograms, including abstract subprograms, may need a freeze
5397 -- node if some formal type or the return type needs one.
5399 Possible_Freeze (Etype (Designator));
5400 Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
5402 -- Need delayed freeze if any of the formal types themselves need
5403 -- a delayed freeze and are not yet frozen.
5405 F := First_Formal (Designator);
5406 while Present (F) loop
5407 Possible_Freeze (Etype (F));
5408 Possible_Freeze (Base_Type (Etype (F))); -- needed ???
5409 Next_Formal (F);
5410 end loop;
5412 -- Mark functions that return by reference. Note that it cannot be
5413 -- done for delayed_freeze subprograms because the underlying
5414 -- returned type may not be known yet (for private types)
5416 if not Has_Delayed_Freeze (Designator) and then Expander_Active then
5417 declare
5418 Typ : constant Entity_Id := Etype (Designator);
5419 Utyp : constant Entity_Id := Underlying_Type (Typ);
5420 begin
5421 if Is_Limited_View (Typ) then
5422 Set_Returns_By_Ref (Designator);
5423 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
5424 Set_Returns_By_Ref (Designator);
5425 end if;
5426 end;
5427 end if;
5428 end Check_Delayed_Subprogram;
5430 ------------------------------------
5431 -- Check_Discriminant_Conformance --
5432 ------------------------------------
5434 procedure Check_Discriminant_Conformance
5435 (N : Node_Id;
5436 Prev : Entity_Id;
5437 Prev_Loc : Node_Id)
5439 Old_Discr : Entity_Id := First_Discriminant (Prev);
5440 New_Discr : Node_Id := First (Discriminant_Specifications (N));
5441 New_Discr_Id : Entity_Id;
5442 New_Discr_Type : Entity_Id;
5444 procedure Conformance_Error (Msg : String; N : Node_Id);
5445 -- Post error message for conformance error on given node. Two messages
5446 -- are output. The first points to the previous declaration with a
5447 -- general "no conformance" message. The second is the detailed reason,
5448 -- supplied as Msg. The parameter N provide information for a possible
5449 -- & insertion in the message.
5451 -----------------------
5452 -- Conformance_Error --
5453 -----------------------
5455 procedure Conformance_Error (Msg : String; N : Node_Id) is
5456 begin
5457 Error_Msg_Sloc := Sloc (Prev_Loc);
5458 Error_Msg_N -- CODEFIX
5459 ("not fully conformant with declaration#!", N);
5460 Error_Msg_NE (Msg, N, N);
5461 end Conformance_Error;
5463 -- Start of processing for Check_Discriminant_Conformance
5465 begin
5466 while Present (Old_Discr) and then Present (New_Discr) loop
5467 New_Discr_Id := Defining_Identifier (New_Discr);
5469 -- The subtype mark of the discriminant on the full type has not
5470 -- been analyzed so we do it here. For an access discriminant a new
5471 -- type is created.
5473 if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
5474 New_Discr_Type :=
5475 Access_Definition (N, Discriminant_Type (New_Discr));
5477 else
5478 Analyze (Discriminant_Type (New_Discr));
5479 New_Discr_Type := Etype (Discriminant_Type (New_Discr));
5481 -- Ada 2005: if the discriminant definition carries a null
5482 -- exclusion, create an itype to check properly for consistency
5483 -- with partial declaration.
5485 if Is_Access_Type (New_Discr_Type)
5486 and then Null_Exclusion_Present (New_Discr)
5487 then
5488 New_Discr_Type :=
5489 Create_Null_Excluding_Itype
5490 (T => New_Discr_Type,
5491 Related_Nod => New_Discr,
5492 Scope_Id => Current_Scope);
5493 end if;
5494 end if;
5496 if not Conforming_Types
5497 (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
5498 then
5499 Conformance_Error ("type of & does not match!", New_Discr_Id);
5500 return;
5501 else
5502 -- Treat the new discriminant as an occurrence of the old one,
5503 -- for navigation purposes, and fill in some semantic
5504 -- information, for completeness.
5506 Generate_Reference (Old_Discr, New_Discr_Id, 'r');
5507 Set_Etype (New_Discr_Id, Etype (Old_Discr));
5508 Set_Scope (New_Discr_Id, Scope (Old_Discr));
5509 end if;
5511 -- Names must match
5513 if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
5514 Conformance_Error ("name & does not match!", New_Discr_Id);
5515 return;
5516 end if;
5518 -- Default expressions must match
5520 declare
5521 NewD : constant Boolean :=
5522 Present (Expression (New_Discr));
5523 OldD : constant Boolean :=
5524 Present (Expression (Parent (Old_Discr)));
5526 begin
5527 if NewD or OldD then
5529 -- The old default value has been analyzed and expanded,
5530 -- because the current full declaration will have frozen
5531 -- everything before. The new default values have not been
5532 -- expanded, so expand now to check conformance.
5534 if NewD then
5535 Preanalyze_Spec_Expression
5536 (Expression (New_Discr), New_Discr_Type);
5537 end if;
5539 if not (NewD and OldD)
5540 or else not Fully_Conformant_Expressions
5541 (Expression (Parent (Old_Discr)),
5542 Expression (New_Discr))
5544 then
5545 Conformance_Error
5546 ("default expression for & does not match!",
5547 New_Discr_Id);
5548 return;
5549 end if;
5550 end if;
5551 end;
5553 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
5555 if Ada_Version = Ada_83 then
5556 declare
5557 Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
5559 begin
5560 -- Grouping (use of comma in param lists) must be the same
5561 -- This is where we catch a misconformance like:
5563 -- A, B : Integer
5564 -- A : Integer; B : Integer
5566 -- which are represented identically in the tree except
5567 -- for the setting of the flags More_Ids and Prev_Ids.
5569 if More_Ids (Old_Disc) /= More_Ids (New_Discr)
5570 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
5571 then
5572 Conformance_Error
5573 ("grouping of & does not match!", New_Discr_Id);
5574 return;
5575 end if;
5576 end;
5577 end if;
5579 Next_Discriminant (Old_Discr);
5580 Next (New_Discr);
5581 end loop;
5583 if Present (Old_Discr) then
5584 Conformance_Error ("too few discriminants!", Defining_Identifier (N));
5585 return;
5587 elsif Present (New_Discr) then
5588 Conformance_Error
5589 ("too many discriminants!", Defining_Identifier (New_Discr));
5590 return;
5591 end if;
5592 end Check_Discriminant_Conformance;
5594 ----------------------------
5595 -- Check_Fully_Conformant --
5596 ----------------------------
5598 procedure Check_Fully_Conformant
5599 (New_Id : Entity_Id;
5600 Old_Id : Entity_Id;
5601 Err_Loc : Node_Id := Empty)
5603 Result : Boolean;
5604 pragma Warnings (Off, Result);
5605 begin
5606 Check_Conformance
5607 (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
5608 end Check_Fully_Conformant;
5610 ---------------------------
5611 -- Check_Mode_Conformant --
5612 ---------------------------
5614 procedure Check_Mode_Conformant
5615 (New_Id : Entity_Id;
5616 Old_Id : Entity_Id;
5617 Err_Loc : Node_Id := Empty;
5618 Get_Inst : Boolean := False)
5620 Result : Boolean;
5621 pragma Warnings (Off, Result);
5622 begin
5623 Check_Conformance
5624 (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
5625 end Check_Mode_Conformant;
5627 --------------------------------
5628 -- Check_Overriding_Indicator --
5629 --------------------------------
5631 procedure Check_Overriding_Indicator
5632 (Subp : Entity_Id;
5633 Overridden_Subp : Entity_Id;
5634 Is_Primitive : Boolean)
5636 Decl : Node_Id;
5637 Spec : Node_Id;
5639 begin
5640 -- No overriding indicator for literals
5642 if Ekind (Subp) = E_Enumeration_Literal then
5643 return;
5645 elsif Ekind (Subp) = E_Entry then
5646 Decl := Parent (Subp);
5648 -- No point in analyzing a malformed operator
5650 elsif Nkind (Subp) = N_Defining_Operator_Symbol
5651 and then Error_Posted (Subp)
5652 then
5653 return;
5655 else
5656 Decl := Unit_Declaration_Node (Subp);
5657 end if;
5659 if Nkind_In (Decl, N_Subprogram_Body,
5660 N_Subprogram_Body_Stub,
5661 N_Subprogram_Declaration,
5662 N_Abstract_Subprogram_Declaration,
5663 N_Subprogram_Renaming_Declaration)
5664 then
5665 Spec := Specification (Decl);
5667 elsif Nkind (Decl) = N_Entry_Declaration then
5668 Spec := Decl;
5670 else
5671 return;
5672 end if;
5674 -- The overriding operation is type conformant with the overridden one,
5675 -- but the names of the formals are not required to match. If the names
5676 -- appear permuted in the overriding operation, this is a possible
5677 -- source of confusion that is worth diagnosing. Controlling formals
5678 -- often carry names that reflect the type, and it is not worthwhile
5679 -- requiring that their names match.
5681 if Present (Overridden_Subp)
5682 and then Nkind (Subp) /= N_Defining_Operator_Symbol
5683 then
5684 declare
5685 Form1 : Entity_Id;
5686 Form2 : Entity_Id;
5688 begin
5689 Form1 := First_Formal (Subp);
5690 Form2 := First_Formal (Overridden_Subp);
5692 -- If the overriding operation is a synchronized operation, skip
5693 -- the first parameter of the overridden operation, which is
5694 -- implicit in the new one. If the operation is declared in the
5695 -- body it is not primitive and all formals must match.
5697 if Is_Concurrent_Type (Scope (Subp))
5698 and then Is_Tagged_Type (Scope (Subp))
5699 and then not Has_Completion (Scope (Subp))
5700 then
5701 Form2 := Next_Formal (Form2);
5702 end if;
5704 if Present (Form1) then
5705 Form1 := Next_Formal (Form1);
5706 Form2 := Next_Formal (Form2);
5707 end if;
5709 while Present (Form1) loop
5710 if not Is_Controlling_Formal (Form1)
5711 and then Present (Next_Formal (Form2))
5712 and then Chars (Form1) = Chars (Next_Formal (Form2))
5713 then
5714 Error_Msg_Node_2 := Alias (Overridden_Subp);
5715 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
5716 Error_Msg_NE
5717 ("& does not match corresponding formal of&#",
5718 Form1, Form1);
5719 exit;
5720 end if;
5722 Next_Formal (Form1);
5723 Next_Formal (Form2);
5724 end loop;
5725 end;
5726 end if;
5728 -- If there is an overridden subprogram, then check that there is no
5729 -- "not overriding" indicator, and mark the subprogram as overriding.
5730 -- This is not done if the overridden subprogram is marked as hidden,
5731 -- which can occur for the case of inherited controlled operations
5732 -- (see Derive_Subprogram), unless the inherited subprogram's parent
5733 -- subprogram is not itself hidden. (Note: This condition could probably
5734 -- be simplified, leaving out the testing for the specific controlled
5735 -- cases, but it seems safer and clearer this way, and echoes similar
5736 -- special-case tests of this kind in other places.)
5738 if Present (Overridden_Subp)
5739 and then (not Is_Hidden (Overridden_Subp)
5740 or else
5741 (Nam_In (Chars (Overridden_Subp), Name_Initialize,
5742 Name_Adjust,
5743 Name_Finalize)
5744 and then Present (Alias (Overridden_Subp))
5745 and then not Is_Hidden (Alias (Overridden_Subp))))
5746 then
5747 if Must_Not_Override (Spec) then
5748 Error_Msg_Sloc := Sloc (Overridden_Subp);
5750 if Ekind (Subp) = E_Entry then
5751 Error_Msg_NE
5752 ("entry & overrides inherited operation #", Spec, Subp);
5753 else
5754 Error_Msg_NE
5755 ("subprogram & overrides inherited operation #", Spec, Subp);
5756 end if;
5758 -- Special-case to fix a GNAT oddity: Limited_Controlled is declared
5759 -- as an extension of Root_Controlled, and thus has a useless Adjust
5760 -- operation. This operation should not be inherited by other limited
5761 -- controlled types. An explicit Adjust for them is not overriding.
5763 elsif Must_Override (Spec)
5764 and then Chars (Overridden_Subp) = Name_Adjust
5765 and then Is_Limited_Type (Etype (First_Formal (Subp)))
5766 and then Present (Alias (Overridden_Subp))
5767 and then
5768 Is_Predefined_File_Name
5769 (Unit_File_Name (Get_Source_Unit (Alias (Overridden_Subp))))
5770 then
5771 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
5773 elsif Is_Subprogram (Subp) then
5774 if Is_Init_Proc (Subp) then
5775 null;
5777 elsif No (Overridden_Operation (Subp)) then
5779 -- For entities generated by Derive_Subprograms the overridden
5780 -- operation is the inherited primitive (which is available
5781 -- through the attribute alias)
5783 if (Is_Dispatching_Operation (Subp)
5784 or else Is_Dispatching_Operation (Overridden_Subp))
5785 and then not Comes_From_Source (Overridden_Subp)
5786 and then Find_Dispatching_Type (Overridden_Subp) =
5787 Find_Dispatching_Type (Subp)
5788 and then Present (Alias (Overridden_Subp))
5789 and then Comes_From_Source (Alias (Overridden_Subp))
5790 then
5791 Set_Overridden_Operation (Subp, Alias (Overridden_Subp));
5792 Inherit_Subprogram_Contract (Subp, Alias (Overridden_Subp));
5794 else
5795 Set_Overridden_Operation (Subp, Overridden_Subp);
5796 Inherit_Subprogram_Contract (Subp, Overridden_Subp);
5797 end if;
5798 end if;
5799 end if;
5801 -- If primitive flag is set or this is a protected operation, then
5802 -- the operation is overriding at the point of its declaration, so
5803 -- warn if necessary. Otherwise it may have been declared before the
5804 -- operation it overrides and no check is required.
5806 if Style_Check
5807 and then not Must_Override (Spec)
5808 and then (Is_Primitive
5809 or else Ekind (Scope (Subp)) = E_Protected_Type)
5810 then
5811 Style.Missing_Overriding (Decl, Subp);
5812 end if;
5814 -- If Subp is an operator, it may override a predefined operation, if
5815 -- it is defined in the same scope as the type to which it applies.
5816 -- In that case Overridden_Subp is empty because of our implicit
5817 -- representation for predefined operators. We have to check whether the
5818 -- signature of Subp matches that of a predefined operator. Note that
5819 -- first argument provides the name of the operator, and the second
5820 -- argument the signature that may match that of a standard operation.
5821 -- If the indicator is overriding, then the operator must match a
5822 -- predefined signature, because we know already that there is no
5823 -- explicit overridden operation.
5825 elsif Nkind (Subp) = N_Defining_Operator_Symbol then
5826 if Must_Not_Override (Spec) then
5828 -- If this is not a primitive or a protected subprogram, then
5829 -- "not overriding" is illegal.
5831 if not Is_Primitive
5832 and then Ekind (Scope (Subp)) /= E_Protected_Type
5833 then
5834 Error_Msg_N ("overriding indicator only allowed "
5835 & "if subprogram is primitive", Subp);
5837 elsif Can_Override_Operator (Subp) then
5838 Error_Msg_NE
5839 ("subprogram& overrides predefined operator ", Spec, Subp);
5840 end if;
5842 elsif Must_Override (Spec) then
5843 if No (Overridden_Operation (Subp))
5844 and then not Can_Override_Operator (Subp)
5845 then
5846 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
5847 end if;
5849 elsif not Error_Posted (Subp)
5850 and then Style_Check
5851 and then Can_Override_Operator (Subp)
5852 and then
5853 not Is_Predefined_File_Name
5854 (Unit_File_Name (Get_Source_Unit (Subp)))
5855 then
5856 -- If style checks are enabled, indicate that the indicator is
5857 -- missing. However, at the point of declaration, the type of
5858 -- which this is a primitive operation may be private, in which
5859 -- case the indicator would be premature.
5861 if Has_Private_Declaration (Etype (Subp))
5862 or else Has_Private_Declaration (Etype (First_Formal (Subp)))
5863 then
5864 null;
5865 else
5866 Style.Missing_Overriding (Decl, Subp);
5867 end if;
5868 end if;
5870 elsif Must_Override (Spec) then
5871 if Ekind (Subp) = E_Entry then
5872 Error_Msg_NE ("entry & is not overriding", Spec, Subp);
5873 else
5874 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
5875 end if;
5877 -- If the operation is marked "not overriding" and it's not primitive
5878 -- then an error is issued, unless this is an operation of a task or
5879 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
5880 -- has been specified have already been checked above.
5882 elsif Must_Not_Override (Spec)
5883 and then not Is_Primitive
5884 and then Ekind (Subp) /= E_Entry
5885 and then Ekind (Scope (Subp)) /= E_Protected_Type
5886 then
5887 Error_Msg_N
5888 ("overriding indicator only allowed if subprogram is primitive",
5889 Subp);
5890 return;
5891 end if;
5892 end Check_Overriding_Indicator;
5894 -------------------
5895 -- Check_Returns --
5896 -------------------
5898 -- Note: this procedure needs to know far too much about how the expander
5899 -- messes with exceptions. The use of the flag Exception_Junk and the
5900 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
5901 -- works, but is not very clean. It would be better if the expansion
5902 -- routines would leave Original_Node working nicely, and we could use
5903 -- Original_Node here to ignore all the peculiar expander messing ???
5905 procedure Check_Returns
5906 (HSS : Node_Id;
5907 Mode : Character;
5908 Err : out Boolean;
5909 Proc : Entity_Id := Empty)
5911 Handler : Node_Id;
5913 procedure Check_Statement_Sequence (L : List_Id);
5914 -- Internal recursive procedure to check a list of statements for proper
5915 -- termination by a return statement (or a transfer of control or a
5916 -- compound statement that is itself internally properly terminated).
5918 ------------------------------
5919 -- Check_Statement_Sequence --
5920 ------------------------------
5922 procedure Check_Statement_Sequence (L : List_Id) is
5923 Last_Stm : Node_Id;
5924 Stm : Node_Id;
5925 Kind : Node_Kind;
5927 function Assert_False return Boolean;
5928 -- Returns True if Last_Stm is a pragma Assert (False) that has been
5929 -- rewritten as a null statement when assertions are off. The assert
5930 -- is not active, but it is still enough to kill the warning.
5932 ------------------
5933 -- Assert_False --
5934 ------------------
5936 function Assert_False return Boolean is
5937 Orig : constant Node_Id := Original_Node (Last_Stm);
5939 begin
5940 if Nkind (Orig) = N_Pragma
5941 and then Pragma_Name (Orig) = Name_Assert
5942 and then not Error_Posted (Orig)
5943 then
5944 declare
5945 Arg : constant Node_Id :=
5946 First (Pragma_Argument_Associations (Orig));
5947 Exp : constant Node_Id := Expression (Arg);
5948 begin
5949 return Nkind (Exp) = N_Identifier
5950 and then Chars (Exp) = Name_False;
5951 end;
5953 else
5954 return False;
5955 end if;
5956 end Assert_False;
5958 -- Local variables
5960 Raise_Exception_Call : Boolean;
5961 -- Set True if statement sequence terminated by Raise_Exception call
5962 -- or a Reraise_Occurrence call.
5964 -- Start of processing for Check_Statement_Sequence
5966 begin
5967 Raise_Exception_Call := False;
5969 -- Get last real statement
5971 Last_Stm := Last (L);
5973 -- Deal with digging out exception handler statement sequences that
5974 -- have been transformed by the local raise to goto optimization.
5975 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
5976 -- optimization has occurred, we are looking at something like:
5978 -- begin
5979 -- original stmts in block
5981 -- exception \
5982 -- when excep1 => |
5983 -- goto L1; | omitted if No_Exception_Propagation
5984 -- when excep2 => |
5985 -- goto L2; /
5986 -- end;
5988 -- goto L3; -- skip handler when exception not raised
5990 -- <<L1>> -- target label for local exception
5991 -- begin
5992 -- estmts1
5993 -- end;
5995 -- goto L3;
5997 -- <<L2>>
5998 -- begin
5999 -- estmts2
6000 -- end;
6002 -- <<L3>>
6004 -- and what we have to do is to dig out the estmts1 and estmts2
6005 -- sequences (which were the original sequences of statements in
6006 -- the exception handlers) and check them.
6008 if Nkind (Last_Stm) = N_Label and then Exception_Junk (Last_Stm) then
6009 Stm := Last_Stm;
6010 loop
6011 Prev (Stm);
6012 exit when No (Stm);
6013 exit when Nkind (Stm) /= N_Block_Statement;
6014 exit when not Exception_Junk (Stm);
6015 Prev (Stm);
6016 exit when No (Stm);
6017 exit when Nkind (Stm) /= N_Label;
6018 exit when not Exception_Junk (Stm);
6019 Check_Statement_Sequence
6020 (Statements (Handled_Statement_Sequence (Next (Stm))));
6022 Prev (Stm);
6023 Last_Stm := Stm;
6024 exit when No (Stm);
6025 exit when Nkind (Stm) /= N_Goto_Statement;
6026 exit when not Exception_Junk (Stm);
6027 end loop;
6028 end if;
6030 -- Don't count pragmas
6032 while Nkind (Last_Stm) = N_Pragma
6034 -- Don't count call to SS_Release (can happen after Raise_Exception)
6036 or else
6037 (Nkind (Last_Stm) = N_Procedure_Call_Statement
6038 and then
6039 Nkind (Name (Last_Stm)) = N_Identifier
6040 and then
6041 Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
6043 -- Don't count exception junk
6045 or else
6046 (Nkind_In (Last_Stm, N_Goto_Statement,
6047 N_Label,
6048 N_Object_Declaration)
6049 and then Exception_Junk (Last_Stm))
6050 or else Nkind (Last_Stm) in N_Push_xxx_Label
6051 or else Nkind (Last_Stm) in N_Pop_xxx_Label
6053 -- Inserted code, such as finalization calls, is irrelevant: we only
6054 -- need to check original source.
6056 or else Is_Rewrite_Insertion (Last_Stm)
6057 loop
6058 Prev (Last_Stm);
6059 end loop;
6061 -- Here we have the "real" last statement
6063 Kind := Nkind (Last_Stm);
6065 -- Transfer of control, OK. Note that in the No_Return procedure
6066 -- case, we already diagnosed any explicit return statements, so
6067 -- we can treat them as OK in this context.
6069 if Is_Transfer (Last_Stm) then
6070 return;
6072 -- Check cases of explicit non-indirect procedure calls
6074 elsif Kind = N_Procedure_Call_Statement
6075 and then Is_Entity_Name (Name (Last_Stm))
6076 then
6077 -- Check call to Raise_Exception procedure which is treated
6078 -- specially, as is a call to Reraise_Occurrence.
6080 -- We suppress the warning in these cases since it is likely that
6081 -- the programmer really does not expect to deal with the case
6082 -- of Null_Occurrence, and thus would find a warning about a
6083 -- missing return curious, and raising Program_Error does not
6084 -- seem such a bad behavior if this does occur.
6086 -- Note that in the Ada 2005 case for Raise_Exception, the actual
6087 -- behavior will be to raise Constraint_Error (see AI-329).
6089 if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
6090 or else
6091 Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
6092 then
6093 Raise_Exception_Call := True;
6095 -- For Raise_Exception call, test first argument, if it is
6096 -- an attribute reference for a 'Identity call, then we know
6097 -- that the call cannot possibly return.
6099 declare
6100 Arg : constant Node_Id :=
6101 Original_Node (First_Actual (Last_Stm));
6102 begin
6103 if Nkind (Arg) = N_Attribute_Reference
6104 and then Attribute_Name (Arg) = Name_Identity
6105 then
6106 return;
6107 end if;
6108 end;
6109 end if;
6111 -- If statement, need to look inside if there is an else and check
6112 -- each constituent statement sequence for proper termination.
6114 elsif Kind = N_If_Statement
6115 and then Present (Else_Statements (Last_Stm))
6116 then
6117 Check_Statement_Sequence (Then_Statements (Last_Stm));
6118 Check_Statement_Sequence (Else_Statements (Last_Stm));
6120 if Present (Elsif_Parts (Last_Stm)) then
6121 declare
6122 Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
6124 begin
6125 while Present (Elsif_Part) loop
6126 Check_Statement_Sequence (Then_Statements (Elsif_Part));
6127 Next (Elsif_Part);
6128 end loop;
6129 end;
6130 end if;
6132 return;
6134 -- Case statement, check each case for proper termination
6136 elsif Kind = N_Case_Statement then
6137 declare
6138 Case_Alt : Node_Id;
6139 begin
6140 Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
6141 while Present (Case_Alt) loop
6142 Check_Statement_Sequence (Statements (Case_Alt));
6143 Next_Non_Pragma (Case_Alt);
6144 end loop;
6145 end;
6147 return;
6149 -- Block statement, check its handled sequence of statements
6151 elsif Kind = N_Block_Statement then
6152 declare
6153 Err1 : Boolean;
6155 begin
6156 Check_Returns
6157 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
6159 if Err1 then
6160 Err := True;
6161 end if;
6163 return;
6164 end;
6166 -- Loop statement. If there is an iteration scheme, we can definitely
6167 -- fall out of the loop. Similarly if there is an exit statement, we
6168 -- can fall out. In either case we need a following return.
6170 elsif Kind = N_Loop_Statement then
6171 if Present (Iteration_Scheme (Last_Stm))
6172 or else Has_Exit (Entity (Identifier (Last_Stm)))
6173 then
6174 null;
6176 -- A loop with no exit statement or iteration scheme is either
6177 -- an infinite loop, or it has some other exit (raise/return).
6178 -- In either case, no warning is required.
6180 else
6181 return;
6182 end if;
6184 -- Timed entry call, check entry call and delay alternatives
6186 -- Note: in expanded code, the timed entry call has been converted
6187 -- to a set of expanded statements on which the check will work
6188 -- correctly in any case.
6190 elsif Kind = N_Timed_Entry_Call then
6191 declare
6192 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6193 DCA : constant Node_Id := Delay_Alternative (Last_Stm);
6195 begin
6196 -- If statement sequence of entry call alternative is missing,
6197 -- then we can definitely fall through, and we post the error
6198 -- message on the entry call alternative itself.
6200 if No (Statements (ECA)) then
6201 Last_Stm := ECA;
6203 -- If statement sequence of delay alternative is missing, then
6204 -- we can definitely fall through, and we post the error
6205 -- message on the delay alternative itself.
6207 -- Note: if both ECA and DCA are missing the return, then we
6208 -- post only one message, should be enough to fix the bugs.
6209 -- If not we will get a message next time on the DCA when the
6210 -- ECA is fixed.
6212 elsif No (Statements (DCA)) then
6213 Last_Stm := DCA;
6215 -- Else check both statement sequences
6217 else
6218 Check_Statement_Sequence (Statements (ECA));
6219 Check_Statement_Sequence (Statements (DCA));
6220 return;
6221 end if;
6222 end;
6224 -- Conditional entry call, check entry call and else part
6226 -- Note: in expanded code, the conditional entry call has been
6227 -- converted to a set of expanded statements on which the check
6228 -- will work correctly in any case.
6230 elsif Kind = N_Conditional_Entry_Call then
6231 declare
6232 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6234 begin
6235 -- If statement sequence of entry call alternative is missing,
6236 -- then we can definitely fall through, and we post the error
6237 -- message on the entry call alternative itself.
6239 if No (Statements (ECA)) then
6240 Last_Stm := ECA;
6242 -- Else check statement sequence and else part
6244 else
6245 Check_Statement_Sequence (Statements (ECA));
6246 Check_Statement_Sequence (Else_Statements (Last_Stm));
6247 return;
6248 end if;
6249 end;
6250 end if;
6252 -- If we fall through, issue appropriate message
6254 if Mode = 'F' then
6256 -- Kill warning if last statement is a raise exception call,
6257 -- or a pragma Assert (False). Note that with assertions enabled,
6258 -- such a pragma has been converted into a raise exception call
6259 -- already, so the Assert_False is for the assertions off case.
6261 if not Raise_Exception_Call and then not Assert_False then
6263 -- In GNATprove mode, it is an error to have a missing return
6265 Error_Msg_Warn := SPARK_Mode /= On;
6267 -- Issue error message or warning
6269 Error_Msg_N
6270 ("RETURN statement missing following this statement<<!",
6271 Last_Stm);
6272 Error_Msg_N
6273 ("\Program_Error ]<<!", Last_Stm);
6274 end if;
6276 -- Note: we set Err even though we have not issued a warning
6277 -- because we still have a case of a missing return. This is
6278 -- an extremely marginal case, probably will never be noticed
6279 -- but we might as well get it right.
6281 Err := True;
6283 -- Otherwise we have the case of a procedure marked No_Return
6285 else
6286 if not Raise_Exception_Call then
6287 if GNATprove_Mode then
6288 Error_Msg_N
6289 ("implied return after this statement "
6290 & "would have raised Program_Error", Last_Stm);
6291 else
6292 Error_Msg_N
6293 ("implied return after this statement "
6294 & "will raise Program_Error??", Last_Stm);
6295 end if;
6297 Error_Msg_Warn := SPARK_Mode /= On;
6298 Error_Msg_NE
6299 ("\procedure & is marked as No_Return<<!", Last_Stm, Proc);
6300 end if;
6302 declare
6303 RE : constant Node_Id :=
6304 Make_Raise_Program_Error (Sloc (Last_Stm),
6305 Reason => PE_Implicit_Return);
6306 begin
6307 Insert_After (Last_Stm, RE);
6308 Analyze (RE);
6309 end;
6310 end if;
6311 end Check_Statement_Sequence;
6313 -- Start of processing for Check_Returns
6315 begin
6316 Err := False;
6317 Check_Statement_Sequence (Statements (HSS));
6319 if Present (Exception_Handlers (HSS)) then
6320 Handler := First_Non_Pragma (Exception_Handlers (HSS));
6321 while Present (Handler) loop
6322 Check_Statement_Sequence (Statements (Handler));
6323 Next_Non_Pragma (Handler);
6324 end loop;
6325 end if;
6326 end Check_Returns;
6328 ----------------------------
6329 -- Check_Subprogram_Order --
6330 ----------------------------
6332 procedure Check_Subprogram_Order (N : Node_Id) is
6334 function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
6335 -- This is used to check if S1 > S2 in the sense required by this test,
6336 -- for example nameab < namec, but name2 < name10.
6338 -----------------------------
6339 -- Subprogram_Name_Greater --
6340 -----------------------------
6342 function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
6343 L1, L2 : Positive;
6344 N1, N2 : Natural;
6346 begin
6347 -- Deal with special case where names are identical except for a
6348 -- numerical suffix. These are handled specially, taking the numeric
6349 -- ordering from the suffix into account.
6351 L1 := S1'Last;
6352 while S1 (L1) in '0' .. '9' loop
6353 L1 := L1 - 1;
6354 end loop;
6356 L2 := S2'Last;
6357 while S2 (L2) in '0' .. '9' loop
6358 L2 := L2 - 1;
6359 end loop;
6361 -- If non-numeric parts non-equal, do straight compare
6363 if S1 (S1'First .. L1) /= S2 (S2'First .. L2) then
6364 return S1 > S2;
6366 -- If non-numeric parts equal, compare suffixed numeric parts. Note
6367 -- that a missing suffix is treated as numeric zero in this test.
6369 else
6370 N1 := 0;
6371 while L1 < S1'Last loop
6372 L1 := L1 + 1;
6373 N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
6374 end loop;
6376 N2 := 0;
6377 while L2 < S2'Last loop
6378 L2 := L2 + 1;
6379 N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
6380 end loop;
6382 return N1 > N2;
6383 end if;
6384 end Subprogram_Name_Greater;
6386 -- Start of processing for Check_Subprogram_Order
6388 begin
6389 -- Check body in alpha order if this is option
6391 if Style_Check
6392 and then Style_Check_Order_Subprograms
6393 and then Nkind (N) = N_Subprogram_Body
6394 and then Comes_From_Source (N)
6395 and then In_Extended_Main_Source_Unit (N)
6396 then
6397 declare
6398 LSN : String_Ptr
6399 renames Scope_Stack.Table
6400 (Scope_Stack.Last).Last_Subprogram_Name;
6402 Body_Id : constant Entity_Id :=
6403 Defining_Entity (Specification (N));
6405 begin
6406 Get_Decoded_Name_String (Chars (Body_Id));
6408 if LSN /= null then
6409 if Subprogram_Name_Greater
6410 (LSN.all, Name_Buffer (1 .. Name_Len))
6411 then
6412 Style.Subprogram_Not_In_Alpha_Order (Body_Id);
6413 end if;
6415 Free (LSN);
6416 end if;
6418 LSN := new String'(Name_Buffer (1 .. Name_Len));
6419 end;
6420 end if;
6421 end Check_Subprogram_Order;
6423 ------------------------------
6424 -- Check_Subtype_Conformant --
6425 ------------------------------
6427 procedure Check_Subtype_Conformant
6428 (New_Id : Entity_Id;
6429 Old_Id : Entity_Id;
6430 Err_Loc : Node_Id := Empty;
6431 Skip_Controlling_Formals : Boolean := False;
6432 Get_Inst : Boolean := False)
6434 Result : Boolean;
6435 pragma Warnings (Off, Result);
6436 begin
6437 Check_Conformance
6438 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
6439 Skip_Controlling_Formals => Skip_Controlling_Formals,
6440 Get_Inst => Get_Inst);
6441 end Check_Subtype_Conformant;
6443 ---------------------------
6444 -- Check_Type_Conformant --
6445 ---------------------------
6447 procedure Check_Type_Conformant
6448 (New_Id : Entity_Id;
6449 Old_Id : Entity_Id;
6450 Err_Loc : Node_Id := Empty)
6452 Result : Boolean;
6453 pragma Warnings (Off, Result);
6454 begin
6455 Check_Conformance
6456 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
6457 end Check_Type_Conformant;
6459 ---------------------------
6460 -- Can_Override_Operator --
6461 ---------------------------
6463 function Can_Override_Operator (Subp : Entity_Id) return Boolean is
6464 Typ : Entity_Id;
6466 begin
6467 if Nkind (Subp) /= N_Defining_Operator_Symbol then
6468 return False;
6470 else
6471 Typ := Base_Type (Etype (First_Formal (Subp)));
6473 -- Check explicitly that the operation is a primitive of the type
6475 return Operator_Matches_Spec (Subp, Subp)
6476 and then not Is_Generic_Type (Typ)
6477 and then Scope (Subp) = Scope (Typ)
6478 and then not Is_Class_Wide_Type (Typ);
6479 end if;
6480 end Can_Override_Operator;
6482 ----------------------
6483 -- Conforming_Types --
6484 ----------------------
6486 function Conforming_Types
6487 (T1 : Entity_Id;
6488 T2 : Entity_Id;
6489 Ctype : Conformance_Type;
6490 Get_Inst : Boolean := False) return Boolean
6492 Type_1 : Entity_Id := T1;
6493 Type_2 : Entity_Id := T2;
6494 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
6496 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean;
6497 -- If neither T1 nor T2 are generic actual types, or if they are in
6498 -- different scopes (e.g. parent and child instances), then verify that
6499 -- the base types are equal. Otherwise T1 and T2 must be on the same
6500 -- subtype chain. The whole purpose of this procedure is to prevent
6501 -- spurious ambiguities in an instantiation that may arise if two
6502 -- distinct generic types are instantiated with the same actual.
6504 function Find_Designated_Type (T : Entity_Id) return Entity_Id;
6505 -- An access parameter can designate an incomplete type. If the
6506 -- incomplete type is the limited view of a type from a limited_
6507 -- with_clause, check whether the non-limited view is available. If
6508 -- it is a (non-limited) incomplete type, get the full view.
6510 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean;
6511 -- Returns True if and only if either T1 denotes a limited view of T2
6512 -- or T2 denotes a limited view of T1. This can arise when the limited
6513 -- with view of a type is used in a subprogram declaration and the
6514 -- subprogram body is in the scope of a regular with clause for the
6515 -- same unit. In such a case, the two type entities can be considered
6516 -- identical for purposes of conformance checking.
6518 ----------------------
6519 -- Base_Types_Match --
6520 ----------------------
6522 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean is
6523 BT1 : constant Entity_Id := Base_Type (T1);
6524 BT2 : constant Entity_Id := Base_Type (T2);
6526 begin
6527 if T1 = T2 then
6528 return True;
6530 elsif BT1 = BT2 then
6532 -- The following is too permissive. A more precise test should
6533 -- check that the generic actual is an ancestor subtype of the
6534 -- other ???.
6536 -- See code in Find_Corresponding_Spec that applies an additional
6537 -- filter to handle accidental amiguities in instances.
6539 return not Is_Generic_Actual_Type (T1)
6540 or else not Is_Generic_Actual_Type (T2)
6541 or else Scope (T1) /= Scope (T2);
6543 -- If T2 is a generic actual type it is declared as the subtype of
6544 -- the actual. If that actual is itself a subtype we need to use its
6545 -- own base type to check for compatibility.
6547 elsif Ekind (BT2) = Ekind (T2) and then BT1 = Base_Type (BT2) then
6548 return True;
6550 elsif Ekind (BT1) = Ekind (T1) and then BT2 = Base_Type (BT1) then
6551 return True;
6553 else
6554 return False;
6555 end if;
6556 end Base_Types_Match;
6558 --------------------------
6559 -- Find_Designated_Type --
6560 --------------------------
6562 function Find_Designated_Type (T : Entity_Id) return Entity_Id is
6563 Desig : Entity_Id;
6565 begin
6566 Desig := Directly_Designated_Type (T);
6568 if Ekind (Desig) = E_Incomplete_Type then
6570 -- If regular incomplete type, get full view if available
6572 if Present (Full_View (Desig)) then
6573 Desig := Full_View (Desig);
6575 -- If limited view of a type, get non-limited view if available,
6576 -- and check again for a regular incomplete type.
6578 elsif Present (Non_Limited_View (Desig)) then
6579 Desig := Get_Full_View (Non_Limited_View (Desig));
6580 end if;
6581 end if;
6583 return Desig;
6584 end Find_Designated_Type;
6586 -------------------------------
6587 -- Matches_Limited_With_View --
6588 -------------------------------
6590 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean is
6591 begin
6592 -- In some cases a type imported through a limited_with clause, and
6593 -- its nonlimited view are both visible, for example in an anonymous
6594 -- access-to-class-wide type in a formal. Both entities designate the
6595 -- same type.
6597 if From_Limited_With (T1) and then T2 = Available_View (T1) then
6598 return True;
6600 elsif From_Limited_With (T2) and then T1 = Available_View (T2) then
6601 return True;
6603 elsif From_Limited_With (T1)
6604 and then From_Limited_With (T2)
6605 and then Available_View (T1) = Available_View (T2)
6606 then
6607 return True;
6609 else
6610 return False;
6611 end if;
6612 end Matches_Limited_With_View;
6614 -- Start of processing for Conforming_Types
6616 begin
6617 -- The context is an instance association for a formal access-to-
6618 -- subprogram type; the formal parameter types require mapping because
6619 -- they may denote other formal parameters of the generic unit.
6621 if Get_Inst then
6622 Type_1 := Get_Instance_Of (T1);
6623 Type_2 := Get_Instance_Of (T2);
6624 end if;
6626 -- If one of the types is a view of the other introduced by a limited
6627 -- with clause, treat these as conforming for all purposes.
6629 if Matches_Limited_With_View (T1, T2) then
6630 return True;
6632 elsif Base_Types_Match (Type_1, Type_2) then
6633 return Ctype <= Mode_Conformant
6634 or else Subtypes_Statically_Match (Type_1, Type_2);
6636 elsif Is_Incomplete_Or_Private_Type (Type_1)
6637 and then Present (Full_View (Type_1))
6638 and then Base_Types_Match (Full_View (Type_1), Type_2)
6639 then
6640 return Ctype <= Mode_Conformant
6641 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
6643 elsif Ekind (Type_2) = E_Incomplete_Type
6644 and then Present (Full_View (Type_2))
6645 and then Base_Types_Match (Type_1, Full_View (Type_2))
6646 then
6647 return Ctype <= Mode_Conformant
6648 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
6650 elsif Is_Private_Type (Type_2)
6651 and then In_Instance
6652 and then Present (Full_View (Type_2))
6653 and then Base_Types_Match (Type_1, Full_View (Type_2))
6654 then
6655 return Ctype <= Mode_Conformant
6656 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
6657 end if;
6659 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
6660 -- treated recursively because they carry a signature. As far as
6661 -- conformance is concerned, convention plays no role, and either
6662 -- or both could be access to protected subprograms.
6664 Are_Anonymous_Access_To_Subprogram_Types :=
6665 Ekind_In (Type_1, E_Anonymous_Access_Subprogram_Type,
6666 E_Anonymous_Access_Protected_Subprogram_Type)
6667 and then
6668 Ekind_In (Type_2, E_Anonymous_Access_Subprogram_Type,
6669 E_Anonymous_Access_Protected_Subprogram_Type);
6671 -- Test anonymous access type case. For this case, static subtype
6672 -- matching is required for mode conformance (RM 6.3.1(15)). We check
6673 -- the base types because we may have built internal subtype entities
6674 -- to handle null-excluding types (see Process_Formals).
6676 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
6677 and then
6678 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
6680 -- Ada 2005 (AI-254)
6682 or else Are_Anonymous_Access_To_Subprogram_Types
6683 then
6684 declare
6685 Desig_1 : Entity_Id;
6686 Desig_2 : Entity_Id;
6688 begin
6689 -- In Ada 2005, access constant indicators must match for
6690 -- subtype conformance.
6692 if Ada_Version >= Ada_2005
6693 and then Ctype >= Subtype_Conformant
6694 and then
6695 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
6696 then
6697 return False;
6698 end if;
6700 Desig_1 := Find_Designated_Type (Type_1);
6701 Desig_2 := Find_Designated_Type (Type_2);
6703 -- If the context is an instance association for a formal
6704 -- access-to-subprogram type; formal access parameter designated
6705 -- types require mapping because they may denote other formal
6706 -- parameters of the generic unit.
6708 if Get_Inst then
6709 Desig_1 := Get_Instance_Of (Desig_1);
6710 Desig_2 := Get_Instance_Of (Desig_2);
6711 end if;
6713 -- It is possible for a Class_Wide_Type to be introduced for an
6714 -- incomplete type, in which case there is a separate class_ wide
6715 -- type for the full view. The types conform if their Etypes
6716 -- conform, i.e. one may be the full view of the other. This can
6717 -- only happen in the context of an access parameter, other uses
6718 -- of an incomplete Class_Wide_Type are illegal.
6720 if Is_Class_Wide_Type (Desig_1)
6721 and then
6722 Is_Class_Wide_Type (Desig_2)
6723 then
6724 return
6725 Conforming_Types
6726 (Etype (Base_Type (Desig_1)),
6727 Etype (Base_Type (Desig_2)), Ctype);
6729 elsif Are_Anonymous_Access_To_Subprogram_Types then
6730 if Ada_Version < Ada_2005 then
6731 return Ctype = Type_Conformant
6732 or else
6733 Subtypes_Statically_Match (Desig_1, Desig_2);
6735 -- We must check the conformance of the signatures themselves
6737 else
6738 declare
6739 Conformant : Boolean;
6740 begin
6741 Check_Conformance
6742 (Desig_1, Desig_2, Ctype, False, Conformant);
6743 return Conformant;
6744 end;
6745 end if;
6747 else
6748 return Base_Type (Desig_1) = Base_Type (Desig_2)
6749 and then (Ctype = Type_Conformant
6750 or else
6751 Subtypes_Statically_Match (Desig_1, Desig_2));
6752 end if;
6753 end;
6755 -- Otherwise definitely no match
6757 else
6758 if ((Ekind (Type_1) = E_Anonymous_Access_Type
6759 and then Is_Access_Type (Type_2))
6760 or else (Ekind (Type_2) = E_Anonymous_Access_Type
6761 and then Is_Access_Type (Type_1)))
6762 and then
6763 Conforming_Types
6764 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
6765 then
6766 May_Hide_Profile := True;
6767 end if;
6769 return False;
6770 end if;
6771 end Conforming_Types;
6773 --------------------------
6774 -- Create_Extra_Formals --
6775 --------------------------
6777 procedure Create_Extra_Formals (E : Entity_Id) is
6778 Formal : Entity_Id;
6779 First_Extra : Entity_Id := Empty;
6780 Last_Extra : Entity_Id;
6781 Formal_Type : Entity_Id;
6782 P_Formal : Entity_Id := Empty;
6784 function Add_Extra_Formal
6785 (Assoc_Entity : Entity_Id;
6786 Typ : Entity_Id;
6787 Scope : Entity_Id;
6788 Suffix : String) return Entity_Id;
6789 -- Add an extra formal to the current list of formals and extra formals.
6790 -- The extra formal is added to the end of the list of extra formals,
6791 -- and also returned as the result. These formals are always of mode IN.
6792 -- The new formal has the type Typ, is declared in Scope, and its name
6793 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
6794 -- The following suffixes are currently used. They should not be changed
6795 -- without coordinating with CodePeer, which makes use of these to
6796 -- provide better messages.
6798 -- O denotes the Constrained bit.
6799 -- L denotes the accessibility level.
6800 -- BIP_xxx denotes an extra formal for a build-in-place function. See
6801 -- the full list in exp_ch6.BIP_Formal_Kind.
6803 ----------------------
6804 -- Add_Extra_Formal --
6805 ----------------------
6807 function Add_Extra_Formal
6808 (Assoc_Entity : Entity_Id;
6809 Typ : Entity_Id;
6810 Scope : Entity_Id;
6811 Suffix : String) return Entity_Id
6813 EF : constant Entity_Id :=
6814 Make_Defining_Identifier (Sloc (Assoc_Entity),
6815 Chars => New_External_Name (Chars (Assoc_Entity),
6816 Suffix => Suffix));
6818 begin
6819 -- A little optimization. Never generate an extra formal for the
6820 -- _init operand of an initialization procedure, since it could
6821 -- never be used.
6823 if Chars (Formal) = Name_uInit then
6824 return Empty;
6825 end if;
6827 Set_Ekind (EF, E_In_Parameter);
6828 Set_Actual_Subtype (EF, Typ);
6829 Set_Etype (EF, Typ);
6830 Set_Scope (EF, Scope);
6831 Set_Mechanism (EF, Default_Mechanism);
6832 Set_Formal_Validity (EF);
6834 if No (First_Extra) then
6835 First_Extra := EF;
6836 Set_Extra_Formals (Scope, First_Extra);
6837 end if;
6839 if Present (Last_Extra) then
6840 Set_Extra_Formal (Last_Extra, EF);
6841 end if;
6843 Last_Extra := EF;
6845 return EF;
6846 end Add_Extra_Formal;
6848 -- Start of processing for Create_Extra_Formals
6850 begin
6851 -- We never generate extra formals if expansion is not active because we
6852 -- don't need them unless we are generating code.
6854 if not Expander_Active then
6855 return;
6856 end if;
6858 -- No need to generate extra formals in interface thunks whose target
6859 -- primitive has no extra formals.
6861 if Is_Thunk (E) and then No (Extra_Formals (Thunk_Entity (E))) then
6862 return;
6863 end if;
6865 -- If this is a derived subprogram then the subtypes of the parent
6866 -- subprogram's formal parameters will be used to determine the need
6867 -- for extra formals.
6869 if Is_Overloadable (E) and then Present (Alias (E)) then
6870 P_Formal := First_Formal (Alias (E));
6871 end if;
6873 Last_Extra := Empty;
6874 Formal := First_Formal (E);
6875 while Present (Formal) loop
6876 Last_Extra := Formal;
6877 Next_Formal (Formal);
6878 end loop;
6880 -- If Extra_formals were already created, don't do it again. This
6881 -- situation may arise for subprogram types created as part of
6882 -- dispatching calls (see Expand_Dispatching_Call)
6884 if Present (Last_Extra) and then Present (Extra_Formal (Last_Extra)) then
6885 return;
6886 end if;
6888 -- If the subprogram is a predefined dispatching subprogram then don't
6889 -- generate any extra constrained or accessibility level formals. In
6890 -- general we suppress these for internal subprograms (by not calling
6891 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
6892 -- generated stream attributes do get passed through because extra
6893 -- build-in-place formals are needed in some cases (limited 'Input).
6895 if Is_Predefined_Internal_Operation (E) then
6896 goto Test_For_Func_Result_Extras;
6897 end if;
6899 Formal := First_Formal (E);
6900 while Present (Formal) loop
6902 -- Create extra formal for supporting the attribute 'Constrained.
6903 -- The case of a private type view without discriminants also
6904 -- requires the extra formal if the underlying type has defaulted
6905 -- discriminants.
6907 if Ekind (Formal) /= E_In_Parameter then
6908 if Present (P_Formal) then
6909 Formal_Type := Etype (P_Formal);
6910 else
6911 Formal_Type := Etype (Formal);
6912 end if;
6914 -- Do not produce extra formals for Unchecked_Union parameters.
6915 -- Jump directly to the end of the loop.
6917 if Is_Unchecked_Union (Base_Type (Formal_Type)) then
6918 goto Skip_Extra_Formal_Generation;
6919 end if;
6921 if not Has_Discriminants (Formal_Type)
6922 and then Ekind (Formal_Type) in Private_Kind
6923 and then Present (Underlying_Type (Formal_Type))
6924 then
6925 Formal_Type := Underlying_Type (Formal_Type);
6926 end if;
6928 -- Suppress the extra formal if formal's subtype is constrained or
6929 -- indefinite, or we're compiling for Ada 2012 and the underlying
6930 -- type is tagged and limited. In Ada 2012, a limited tagged type
6931 -- can have defaulted discriminants, but 'Constrained is required
6932 -- to return True, so the formal is never needed (see AI05-0214).
6933 -- Note that this ensures consistency of calling sequences for
6934 -- dispatching operations when some types in a class have defaults
6935 -- on discriminants and others do not (and requiring the extra
6936 -- formal would introduce distributed overhead).
6938 -- If the type does not have a completion yet, treat as prior to
6939 -- Ada 2012 for consistency.
6941 if Has_Discriminants (Formal_Type)
6942 and then not Is_Constrained (Formal_Type)
6943 and then not Is_Indefinite_Subtype (Formal_Type)
6944 and then (Ada_Version < Ada_2012
6945 or else No (Underlying_Type (Formal_Type))
6946 or else not
6947 (Is_Limited_Type (Formal_Type)
6948 and then
6949 (Is_Tagged_Type
6950 (Underlying_Type (Formal_Type)))))
6951 then
6952 Set_Extra_Constrained
6953 (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "O"));
6954 end if;
6955 end if;
6957 -- Create extra formal for supporting accessibility checking. This
6958 -- is done for both anonymous access formals and formals of named
6959 -- access types that are marked as controlling formals. The latter
6960 -- case can occur when Expand_Dispatching_Call creates a subprogram
6961 -- type and substitutes the types of access-to-class-wide actuals
6962 -- for the anonymous access-to-specific-type of controlling formals.
6963 -- Base_Type is applied because in cases where there is a null
6964 -- exclusion the formal may have an access subtype.
6966 -- This is suppressed if we specifically suppress accessibility
6967 -- checks at the package level for either the subprogram, or the
6968 -- package in which it resides. However, we do not suppress it
6969 -- simply if the scope has accessibility checks suppressed, since
6970 -- this could cause trouble when clients are compiled with a
6971 -- different suppression setting. The explicit checks at the
6972 -- package level are safe from this point of view.
6974 if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
6975 or else (Is_Controlling_Formal (Formal)
6976 and then Is_Access_Type (Base_Type (Etype (Formal)))))
6977 and then not
6978 (Explicit_Suppress (E, Accessibility_Check)
6979 or else
6980 Explicit_Suppress (Scope (E), Accessibility_Check))
6981 and then
6982 (No (P_Formal)
6983 or else Present (Extra_Accessibility (P_Formal)))
6984 then
6985 Set_Extra_Accessibility
6986 (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "L"));
6987 end if;
6989 -- This label is required when skipping extra formal generation for
6990 -- Unchecked_Union parameters.
6992 <<Skip_Extra_Formal_Generation>>
6994 if Present (P_Formal) then
6995 Next_Formal (P_Formal);
6996 end if;
6998 Next_Formal (Formal);
6999 end loop;
7001 <<Test_For_Func_Result_Extras>>
7003 -- Ada 2012 (AI05-234): "the accessibility level of the result of a
7004 -- function call is ... determined by the point of call ...".
7006 if Needs_Result_Accessibility_Level (E) then
7007 Set_Extra_Accessibility_Of_Result
7008 (E, Add_Extra_Formal (E, Standard_Natural, E, "L"));
7009 end if;
7011 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
7012 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
7014 if Ada_Version >= Ada_2005 and then Is_Build_In_Place_Function (E) then
7015 declare
7016 Result_Subt : constant Entity_Id := Etype (E);
7017 Full_Subt : constant Entity_Id := Available_View (Result_Subt);
7018 Formal_Typ : Entity_Id;
7020 Discard : Entity_Id;
7021 pragma Warnings (Off, Discard);
7023 begin
7024 -- In the case of functions with unconstrained result subtypes,
7025 -- add a 4-state formal indicating whether the return object is
7026 -- allocated by the caller (1), or should be allocated by the
7027 -- callee on the secondary stack (2), in the global heap (3), or
7028 -- in a user-defined storage pool (4). For the moment we just use
7029 -- Natural for the type of this formal. Note that this formal
7030 -- isn't usually needed in the case where the result subtype is
7031 -- constrained, but it is needed when the function has a tagged
7032 -- result, because generally such functions can be called in a
7033 -- dispatching context and such calls must be handled like calls
7034 -- to a class-wide function.
7036 if Needs_BIP_Alloc_Form (E) then
7037 Discard :=
7038 Add_Extra_Formal
7039 (E, Standard_Natural,
7040 E, BIP_Formal_Suffix (BIP_Alloc_Form));
7042 -- Add BIP_Storage_Pool, in case BIP_Alloc_Form indicates to
7043 -- use a user-defined pool. This formal is not added on
7044 -- .NET/JVM/ZFP as those targets do not support pools.
7046 if VM_Target = No_VM
7047 and then RTE_Available (RE_Root_Storage_Pool_Ptr)
7048 then
7049 Discard :=
7050 Add_Extra_Formal
7051 (E, RTE (RE_Root_Storage_Pool_Ptr),
7052 E, BIP_Formal_Suffix (BIP_Storage_Pool));
7053 end if;
7054 end if;
7056 -- In the case of functions whose result type needs finalization,
7057 -- add an extra formal which represents the finalization master.
7059 if Needs_BIP_Finalization_Master (E) then
7060 Discard :=
7061 Add_Extra_Formal
7062 (E, RTE (RE_Finalization_Master_Ptr),
7063 E, BIP_Formal_Suffix (BIP_Finalization_Master));
7064 end if;
7066 -- When the result type contains tasks, add two extra formals: the
7067 -- master of the tasks to be created, and the caller's activation
7068 -- chain.
7070 if Has_Task (Full_Subt) then
7071 Discard :=
7072 Add_Extra_Formal
7073 (E, RTE (RE_Master_Id),
7074 E, BIP_Formal_Suffix (BIP_Task_Master));
7075 Discard :=
7076 Add_Extra_Formal
7077 (E, RTE (RE_Activation_Chain_Access),
7078 E, BIP_Formal_Suffix (BIP_Activation_Chain));
7079 end if;
7081 -- All build-in-place functions get an extra formal that will be
7082 -- passed the address of the return object within the caller.
7084 Formal_Typ :=
7085 Create_Itype (E_Anonymous_Access_Type, E, Scope_Id => Scope (E));
7087 Set_Directly_Designated_Type (Formal_Typ, Result_Subt);
7088 Set_Etype (Formal_Typ, Formal_Typ);
7089 Set_Depends_On_Private
7090 (Formal_Typ, Has_Private_Component (Formal_Typ));
7091 Set_Is_Public (Formal_Typ, Is_Public (Scope (Formal_Typ)));
7092 Set_Is_Access_Constant (Formal_Typ, False);
7094 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
7095 -- the designated type comes from the limited view (for back-end
7096 -- purposes).
7098 Set_From_Limited_With
7099 (Formal_Typ, From_Limited_With (Result_Subt));
7101 Layout_Type (Formal_Typ);
7103 Discard :=
7104 Add_Extra_Formal
7105 (E, Formal_Typ, E, BIP_Formal_Suffix (BIP_Object_Access));
7106 end;
7107 end if;
7108 end Create_Extra_Formals;
7110 -----------------------------
7111 -- Enter_Overloaded_Entity --
7112 -----------------------------
7114 procedure Enter_Overloaded_Entity (S : Entity_Id) is
7115 E : Entity_Id := Current_Entity_In_Scope (S);
7116 C_E : Entity_Id := Current_Entity (S);
7118 begin
7119 if Present (E) then
7120 Set_Has_Homonym (E);
7121 Set_Has_Homonym (S);
7122 end if;
7124 Set_Is_Immediately_Visible (S);
7125 Set_Scope (S, Current_Scope);
7127 -- Chain new entity if front of homonym in current scope, so that
7128 -- homonyms are contiguous.
7130 if Present (E) and then E /= C_E then
7131 while Homonym (C_E) /= E loop
7132 C_E := Homonym (C_E);
7133 end loop;
7135 Set_Homonym (C_E, S);
7137 else
7138 E := C_E;
7139 Set_Current_Entity (S);
7140 end if;
7142 Set_Homonym (S, E);
7144 if Is_Inherited_Operation (S) then
7145 Append_Inherited_Subprogram (S);
7146 else
7147 Append_Entity (S, Current_Scope);
7148 end if;
7150 Set_Public_Status (S);
7152 if Debug_Flag_E then
7153 Write_Str ("New overloaded entity chain: ");
7154 Write_Name (Chars (S));
7156 E := S;
7157 while Present (E) loop
7158 Write_Str (" "); Write_Int (Int (E));
7159 E := Homonym (E);
7160 end loop;
7162 Write_Eol;
7163 end if;
7165 -- Generate warning for hiding
7167 if Warn_On_Hiding
7168 and then Comes_From_Source (S)
7169 and then In_Extended_Main_Source_Unit (S)
7170 then
7171 E := S;
7172 loop
7173 E := Homonym (E);
7174 exit when No (E);
7176 -- Warn unless genuine overloading. Do not emit warning on
7177 -- hiding predefined operators in Standard (these are either an
7178 -- (artifact of our implicit declarations, or simple noise) but
7179 -- keep warning on a operator defined on a local subtype, because
7180 -- of the real danger that different operators may be applied in
7181 -- various parts of the program.
7183 -- Note that if E and S have the same scope, there is never any
7184 -- hiding. Either the two conflict, and the program is illegal,
7185 -- or S is overriding an implicit inherited subprogram.
7187 if Scope (E) /= Scope (S)
7188 and then (not Is_Overloadable (E)
7189 or else Subtype_Conformant (E, S))
7190 and then (Is_Immediately_Visible (E)
7191 or else
7192 Is_Potentially_Use_Visible (S))
7193 then
7194 if Scope (E) /= Standard_Standard then
7195 Error_Msg_Sloc := Sloc (E);
7196 Error_Msg_N ("declaration of & hides one #?h?", S);
7198 elsif Nkind (S) = N_Defining_Operator_Symbol
7199 and then
7200 Scope (Base_Type (Etype (First_Formal (S)))) /= Scope (S)
7201 then
7202 Error_Msg_N
7203 ("declaration of & hides predefined operator?h?", S);
7204 end if;
7205 end if;
7206 end loop;
7207 end if;
7208 end Enter_Overloaded_Entity;
7210 -----------------------------
7211 -- Check_Untagged_Equality --
7212 -----------------------------
7214 procedure Check_Untagged_Equality (Eq_Op : Entity_Id) is
7215 Typ : constant Entity_Id := Etype (First_Formal (Eq_Op));
7216 Decl : constant Node_Id := Unit_Declaration_Node (Eq_Op);
7217 Obj_Decl : Node_Id;
7219 begin
7220 -- This check applies only if we have a subprogram declaration with an
7221 -- untagged record type.
7223 if Nkind (Decl) /= N_Subprogram_Declaration
7224 or else not Is_Record_Type (Typ)
7225 or else Is_Tagged_Type (Typ)
7226 then
7227 return;
7228 end if;
7230 -- In Ada 2012 case, we will output errors or warnings depending on
7231 -- the setting of debug flag -gnatd.E.
7233 if Ada_Version >= Ada_2012 then
7234 Error_Msg_Warn := Debug_Flag_Dot_EE;
7236 -- In earlier versions of Ada, nothing to do unless we are warning on
7237 -- Ada 2012 incompatibilities (Warn_On_Ada_2012_Incompatibility set).
7239 else
7240 if not Warn_On_Ada_2012_Compatibility then
7241 return;
7242 end if;
7243 end if;
7245 -- Cases where the type has already been frozen
7247 if Is_Frozen (Typ) then
7249 -- If the type is not declared in a package, or if we are in the body
7250 -- of the package or in some other scope, the new operation is not
7251 -- primitive, and therefore legal, though suspicious. Should we
7252 -- generate a warning in this case ???
7254 if Ekind (Scope (Typ)) /= E_Package
7255 or else Scope (Typ) /= Current_Scope
7256 then
7257 return;
7259 -- If the type is a generic actual (sub)type, the operation is not
7260 -- primitive either because the base type is declared elsewhere.
7262 elsif Is_Generic_Actual_Type (Typ) then
7263 return;
7265 -- Here we have a definite error of declaration after freezing
7267 else
7268 if Ada_Version >= Ada_2012 then
7269 Error_Msg_NE
7270 ("equality operator must be declared before type & is "
7271 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)<<", Eq_Op, Typ);
7273 -- In Ada 2012 mode with error turned to warning, output one
7274 -- more warning to warn that the equality operation may not
7275 -- compose. This is the consequence of ignoring the error.
7277 if Error_Msg_Warn then
7278 Error_Msg_N ("\equality operation may not compose??", Eq_Op);
7279 end if;
7281 else
7282 Error_Msg_NE
7283 ("equality operator must be declared before type& is "
7284 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)?y?", Eq_Op, Typ);
7285 end if;
7287 -- If we are in the package body, we could just move the
7288 -- declaration to the package spec, so add a message saying that.
7290 if In_Package_Body (Scope (Typ)) then
7291 if Ada_Version >= Ada_2012 then
7292 Error_Msg_N
7293 ("\move declaration to package spec<<", Eq_Op);
7294 else
7295 Error_Msg_N
7296 ("\move declaration to package spec (Ada 2012)?y?", Eq_Op);
7297 end if;
7299 -- Otherwise try to find the freezing point
7301 else
7302 Obj_Decl := Next (Parent (Typ));
7303 while Present (Obj_Decl) and then Obj_Decl /= Decl loop
7304 if Nkind (Obj_Decl) = N_Object_Declaration
7305 and then Etype (Defining_Identifier (Obj_Decl)) = Typ
7306 then
7307 -- Freezing point, output warnings
7309 if Ada_Version >= Ada_2012 then
7310 Error_Msg_NE
7311 ("type& is frozen by declaration??", Obj_Decl, Typ);
7312 Error_Msg_N
7313 ("\an equality operator cannot be declared after "
7314 & "this point??",
7315 Obj_Decl);
7316 else
7317 Error_Msg_NE
7318 ("type& is frozen by declaration (Ada 2012)?y?",
7319 Obj_Decl, Typ);
7320 Error_Msg_N
7321 ("\an equality operator cannot be declared after "
7322 & "this point (Ada 2012)?y?",
7323 Obj_Decl);
7324 end if;
7326 exit;
7327 end if;
7329 Next (Obj_Decl);
7330 end loop;
7331 end if;
7332 end if;
7334 -- Here if type is not frozen yet. It is illegal to have a primitive
7335 -- equality declared in the private part if the type is visible.
7337 elsif not In_Same_List (Parent (Typ), Decl)
7338 and then not Is_Limited_Type (Typ)
7339 then
7340 -- Shouldn't we give an RM reference here???
7342 if Ada_Version >= Ada_2012 then
7343 Error_Msg_N
7344 ("equality operator appears too late<<", Eq_Op);
7345 else
7346 Error_Msg_N
7347 ("equality operator appears too late (Ada 2012)?y?", Eq_Op);
7348 end if;
7350 -- No error detected
7352 else
7353 return;
7354 end if;
7355 end Check_Untagged_Equality;
7357 -----------------------------
7358 -- Find_Corresponding_Spec --
7359 -----------------------------
7361 function Find_Corresponding_Spec
7362 (N : Node_Id;
7363 Post_Error : Boolean := True) return Entity_Id
7365 Spec : constant Node_Id := Specification (N);
7366 Designator : constant Entity_Id := Defining_Entity (Spec);
7368 E : Entity_Id;
7370 function Different_Generic_Profile (E : Entity_Id) return Boolean;
7371 -- Even if fully conformant, a body may depend on a generic actual when
7372 -- the spec does not, or vice versa, in which case they were distinct
7373 -- entities in the generic.
7375 -------------------------------
7376 -- Different_Generic_Profile --
7377 -------------------------------
7379 function Different_Generic_Profile (E : Entity_Id) return Boolean is
7380 F1, F2 : Entity_Id;
7382 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean;
7383 -- Check that the types of corresponding formals have the same
7384 -- generic actual if any. We have to account for subtypes of a
7385 -- generic formal, declared between a spec and a body, which may
7386 -- appear distinct in an instance but matched in the generic, and
7387 -- the subtype may be used either in the spec or the body of the
7388 -- subprogram being checked.
7390 -------------------------
7391 -- Same_Generic_Actual --
7392 -------------------------
7394 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean is
7396 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean;
7397 -- Predicate to check whether S1 is a subtype of S2 in the source
7398 -- of the instance.
7400 -------------------------
7401 -- Is_Declared_Subtype --
7402 -------------------------
7404 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean is
7405 begin
7406 return Comes_From_Source (Parent (S1))
7407 and then Nkind (Parent (S1)) = N_Subtype_Declaration
7408 and then Is_Entity_Name (Subtype_Indication (Parent (S1)))
7409 and then Entity (Subtype_Indication (Parent (S1))) = S2;
7410 end Is_Declared_Subtype;
7412 -- Start of processing for Same_Generic_Actual
7414 begin
7415 return Is_Generic_Actual_Type (T1) = Is_Generic_Actual_Type (T2)
7416 or else Is_Declared_Subtype (T1, T2)
7417 or else Is_Declared_Subtype (T2, T1);
7418 end Same_Generic_Actual;
7420 -- Start of processing for Different_Generic_Profile
7422 begin
7423 if not In_Instance then
7424 return False;
7426 elsif Ekind (E) = E_Function
7427 and then not Same_Generic_Actual (Etype (E), Etype (Designator))
7428 then
7429 return True;
7430 end if;
7432 F1 := First_Formal (Designator);
7433 F2 := First_Formal (E);
7434 while Present (F1) loop
7435 if not Same_Generic_Actual (Etype (F1), Etype (F2)) then
7436 return True;
7437 end if;
7439 Next_Formal (F1);
7440 Next_Formal (F2);
7441 end loop;
7443 return False;
7444 end Different_Generic_Profile;
7446 -- Start of processing for Find_Corresponding_Spec
7448 begin
7449 E := Current_Entity (Designator);
7450 while Present (E) loop
7452 -- We are looking for a matching spec. It must have the same scope,
7453 -- and the same name, and either be type conformant, or be the case
7454 -- of a library procedure spec and its body (which belong to one
7455 -- another regardless of whether they are type conformant or not).
7457 if Scope (E) = Current_Scope then
7458 if Current_Scope = Standard_Standard
7459 or else (Ekind (E) = Ekind (Designator)
7460 and then Type_Conformant (E, Designator))
7461 then
7462 -- Within an instantiation, we know that spec and body are
7463 -- subtype conformant, because they were subtype conformant in
7464 -- the generic. We choose the subtype-conformant entity here as
7465 -- well, to resolve spurious ambiguities in the instance that
7466 -- were not present in the generic (i.e. when two different
7467 -- types are given the same actual). If we are looking for a
7468 -- spec to match a body, full conformance is expected.
7470 if In_Instance then
7472 -- Inherit the convention and "ghostness" of the matching
7473 -- spec to ensure proper full and subtype conformance.
7475 Set_Convention (Designator, Convention (E));
7477 if Is_Ghost_Entity (E) then
7478 Set_Is_Ghost_Entity (Designator);
7479 end if;
7481 -- Skip past subprogram bodies and subprogram renamings that
7482 -- may appear to have a matching spec, but that aren't fully
7483 -- conformant with it. That can occur in cases where an
7484 -- actual type causes unrelated homographs in the instance.
7486 if Nkind_In (N, N_Subprogram_Body,
7487 N_Subprogram_Renaming_Declaration)
7488 and then Present (Homonym (E))
7489 and then not Fully_Conformant (Designator, E)
7490 then
7491 goto Next_Entity;
7493 elsif not Subtype_Conformant (Designator, E) then
7494 goto Next_Entity;
7496 elsif Different_Generic_Profile (E) then
7497 goto Next_Entity;
7498 end if;
7499 end if;
7501 -- Ada 2012 (AI05-0165): For internally generated bodies of
7502 -- null procedures locate the internally generated spec. We
7503 -- enforce mode conformance since a tagged type may inherit
7504 -- from interfaces several null primitives which differ only
7505 -- in the mode of the formals.
7507 if not (Comes_From_Source (E))
7508 and then Is_Null_Procedure (E)
7509 and then not Mode_Conformant (Designator, E)
7510 then
7511 null;
7513 -- For null procedures coming from source that are completions,
7514 -- analysis of the generated body will establish the link.
7516 elsif Comes_From_Source (E)
7517 and then Nkind (Spec) = N_Procedure_Specification
7518 and then Null_Present (Spec)
7519 then
7520 return E;
7522 elsif not Has_Completion (E) then
7523 if Nkind (N) /= N_Subprogram_Body_Stub then
7524 Set_Corresponding_Spec (N, E);
7525 end if;
7527 Set_Has_Completion (E);
7528 return E;
7530 elsif Nkind (Parent (N)) = N_Subunit then
7532 -- If this is the proper body of a subunit, the completion
7533 -- flag is set when analyzing the stub.
7535 return E;
7537 -- If E is an internal function with a controlling result that
7538 -- was created for an operation inherited by a null extension,
7539 -- it may be overridden by a body without a previous spec (one
7540 -- more reason why these should be shunned). In that case we
7541 -- remove the generated body if present, because the current
7542 -- one is the explicit overriding.
7544 elsif Ekind (E) = E_Function
7545 and then Ada_Version >= Ada_2005
7546 and then not Comes_From_Source (E)
7547 and then Has_Controlling_Result (E)
7548 and then Is_Null_Extension (Etype (E))
7549 and then Comes_From_Source (Spec)
7550 then
7551 Set_Has_Completion (E, False);
7553 if Expander_Active
7554 and then Nkind (Parent (E)) = N_Function_Specification
7555 then
7556 Remove
7557 (Unit_Declaration_Node
7558 (Corresponding_Body (Unit_Declaration_Node (E))));
7560 return E;
7562 -- If expansion is disabled, or if the wrapper function has
7563 -- not been generated yet, this a late body overriding an
7564 -- inherited operation, or it is an overriding by some other
7565 -- declaration before the controlling result is frozen. In
7566 -- either case this is a declaration of a new entity.
7568 else
7569 return Empty;
7570 end if;
7572 -- If the body already exists, then this is an error unless
7573 -- the previous declaration is the implicit declaration of a
7574 -- derived subprogram. It is also legal for an instance to
7575 -- contain type conformant overloadable declarations (but the
7576 -- generic declaration may not), per 8.3(26/2).
7578 elsif No (Alias (E))
7579 and then not Is_Intrinsic_Subprogram (E)
7580 and then not In_Instance
7581 and then Post_Error
7582 then
7583 Error_Msg_Sloc := Sloc (E);
7585 if Is_Imported (E) then
7586 Error_Msg_NE
7587 ("body not allowed for imported subprogram & declared#",
7588 N, E);
7589 else
7590 Error_Msg_NE ("duplicate body for & declared#", N, E);
7591 end if;
7592 end if;
7594 -- Child units cannot be overloaded, so a conformance mismatch
7595 -- between body and a previous spec is an error.
7597 elsif Is_Child_Unit (E)
7598 and then
7599 Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
7600 and then
7601 Nkind (Parent (Unit_Declaration_Node (Designator))) =
7602 N_Compilation_Unit
7603 and then Post_Error
7604 then
7605 Error_Msg_N
7606 ("body of child unit does not match previous declaration", N);
7607 end if;
7608 end if;
7610 <<Next_Entity>>
7611 E := Homonym (E);
7612 end loop;
7614 -- On exit, we know that no previous declaration of subprogram exists
7616 return Empty;
7617 end Find_Corresponding_Spec;
7619 ----------------------
7620 -- Fully_Conformant --
7621 ----------------------
7623 function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
7624 Result : Boolean;
7625 begin
7626 Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
7627 return Result;
7628 end Fully_Conformant;
7630 ----------------------------------
7631 -- Fully_Conformant_Expressions --
7632 ----------------------------------
7634 function Fully_Conformant_Expressions
7635 (Given_E1 : Node_Id;
7636 Given_E2 : Node_Id) return Boolean
7638 E1 : constant Node_Id := Original_Node (Given_E1);
7639 E2 : constant Node_Id := Original_Node (Given_E2);
7640 -- We always test conformance on original nodes, since it is possible
7641 -- for analysis and/or expansion to make things look as though they
7642 -- conform when they do not, e.g. by converting 1+2 into 3.
7644 function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
7645 renames Fully_Conformant_Expressions;
7647 function FCL (L1, L2 : List_Id) return Boolean;
7648 -- Compare elements of two lists for conformance. Elements have to be
7649 -- conformant, and actuals inserted as default parameters do not match
7650 -- explicit actuals with the same value.
7652 function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
7653 -- Compare an operator node with a function call
7655 ---------
7656 -- FCL --
7657 ---------
7659 function FCL (L1, L2 : List_Id) return Boolean is
7660 N1, N2 : Node_Id;
7662 begin
7663 if L1 = No_List then
7664 N1 := Empty;
7665 else
7666 N1 := First (L1);
7667 end if;
7669 if L2 = No_List then
7670 N2 := Empty;
7671 else
7672 N2 := First (L2);
7673 end if;
7675 -- Compare two lists, skipping rewrite insertions (we want to compare
7676 -- the original trees, not the expanded versions).
7678 loop
7679 if Is_Rewrite_Insertion (N1) then
7680 Next (N1);
7681 elsif Is_Rewrite_Insertion (N2) then
7682 Next (N2);
7683 elsif No (N1) then
7684 return No (N2);
7685 elsif No (N2) then
7686 return False;
7687 elsif not FCE (N1, N2) then
7688 return False;
7689 else
7690 Next (N1);
7691 Next (N2);
7692 end if;
7693 end loop;
7694 end FCL;
7696 ---------
7697 -- FCO --
7698 ---------
7700 function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
7701 Actuals : constant List_Id := Parameter_Associations (Call_Node);
7702 Act : Node_Id;
7704 begin
7705 if No (Actuals)
7706 or else Entity (Op_Node) /= Entity (Name (Call_Node))
7707 then
7708 return False;
7710 else
7711 Act := First (Actuals);
7713 if Nkind (Op_Node) in N_Binary_Op then
7714 if not FCE (Left_Opnd (Op_Node), Act) then
7715 return False;
7716 end if;
7718 Next (Act);
7719 end if;
7721 return Present (Act)
7722 and then FCE (Right_Opnd (Op_Node), Act)
7723 and then No (Next (Act));
7724 end if;
7725 end FCO;
7727 -- Start of processing for Fully_Conformant_Expressions
7729 begin
7730 -- Non-conformant if paren count does not match. Note: if some idiot
7731 -- complains that we don't do this right for more than 3 levels of
7732 -- parentheses, they will be treated with the respect they deserve.
7734 if Paren_Count (E1) /= Paren_Count (E2) then
7735 return False;
7737 -- If same entities are referenced, then they are conformant even if
7738 -- they have different forms (RM 8.3.1(19-20)).
7740 elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
7741 if Present (Entity (E1)) then
7742 return Entity (E1) = Entity (E2)
7743 or else (Chars (Entity (E1)) = Chars (Entity (E2))
7744 and then Ekind (Entity (E1)) = E_Discriminant
7745 and then Ekind (Entity (E2)) = E_In_Parameter);
7747 elsif Nkind (E1) = N_Expanded_Name
7748 and then Nkind (E2) = N_Expanded_Name
7749 and then Nkind (Selector_Name (E1)) = N_Character_Literal
7750 and then Nkind (Selector_Name (E2)) = N_Character_Literal
7751 then
7752 return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
7754 else
7755 -- Identifiers in component associations don't always have
7756 -- entities, but their names must conform.
7758 return Nkind (E1) = N_Identifier
7759 and then Nkind (E2) = N_Identifier
7760 and then Chars (E1) = Chars (E2);
7761 end if;
7763 elsif Nkind (E1) = N_Character_Literal
7764 and then Nkind (E2) = N_Expanded_Name
7765 then
7766 return Nkind (Selector_Name (E2)) = N_Character_Literal
7767 and then Chars (E1) = Chars (Selector_Name (E2));
7769 elsif Nkind (E2) = N_Character_Literal
7770 and then Nkind (E1) = N_Expanded_Name
7771 then
7772 return Nkind (Selector_Name (E1)) = N_Character_Literal
7773 and then Chars (E2) = Chars (Selector_Name (E1));
7775 elsif Nkind (E1) in N_Op and then Nkind (E2) = N_Function_Call then
7776 return FCO (E1, E2);
7778 elsif Nkind (E2) in N_Op and then Nkind (E1) = N_Function_Call then
7779 return FCO (E2, E1);
7781 -- Otherwise we must have the same syntactic entity
7783 elsif Nkind (E1) /= Nkind (E2) then
7784 return False;
7786 -- At this point, we specialize by node type
7788 else
7789 case Nkind (E1) is
7791 when N_Aggregate =>
7792 return
7793 FCL (Expressions (E1), Expressions (E2))
7794 and then
7795 FCL (Component_Associations (E1),
7796 Component_Associations (E2));
7798 when N_Allocator =>
7799 if Nkind (Expression (E1)) = N_Qualified_Expression
7800 or else
7801 Nkind (Expression (E2)) = N_Qualified_Expression
7802 then
7803 return FCE (Expression (E1), Expression (E2));
7805 -- Check that the subtype marks and any constraints
7806 -- are conformant
7808 else
7809 declare
7810 Indic1 : constant Node_Id := Expression (E1);
7811 Indic2 : constant Node_Id := Expression (E2);
7812 Elt1 : Node_Id;
7813 Elt2 : Node_Id;
7815 begin
7816 if Nkind (Indic1) /= N_Subtype_Indication then
7817 return
7818 Nkind (Indic2) /= N_Subtype_Indication
7819 and then Entity (Indic1) = Entity (Indic2);
7821 elsif Nkind (Indic2) /= N_Subtype_Indication then
7822 return
7823 Nkind (Indic1) /= N_Subtype_Indication
7824 and then Entity (Indic1) = Entity (Indic2);
7826 else
7827 if Entity (Subtype_Mark (Indic1)) /=
7828 Entity (Subtype_Mark (Indic2))
7829 then
7830 return False;
7831 end if;
7833 Elt1 := First (Constraints (Constraint (Indic1)));
7834 Elt2 := First (Constraints (Constraint (Indic2)));
7835 while Present (Elt1) and then Present (Elt2) loop
7836 if not FCE (Elt1, Elt2) then
7837 return False;
7838 end if;
7840 Next (Elt1);
7841 Next (Elt2);
7842 end loop;
7844 return True;
7845 end if;
7846 end;
7847 end if;
7849 when N_Attribute_Reference =>
7850 return
7851 Attribute_Name (E1) = Attribute_Name (E2)
7852 and then FCL (Expressions (E1), Expressions (E2));
7854 when N_Binary_Op =>
7855 return
7856 Entity (E1) = Entity (E2)
7857 and then FCE (Left_Opnd (E1), Left_Opnd (E2))
7858 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
7860 when N_Short_Circuit | N_Membership_Test =>
7861 return
7862 FCE (Left_Opnd (E1), Left_Opnd (E2))
7863 and then
7864 FCE (Right_Opnd (E1), Right_Opnd (E2));
7866 when N_Case_Expression =>
7867 declare
7868 Alt1 : Node_Id;
7869 Alt2 : Node_Id;
7871 begin
7872 if not FCE (Expression (E1), Expression (E2)) then
7873 return False;
7875 else
7876 Alt1 := First (Alternatives (E1));
7877 Alt2 := First (Alternatives (E2));
7878 loop
7879 if Present (Alt1) /= Present (Alt2) then
7880 return False;
7881 elsif No (Alt1) then
7882 return True;
7883 end if;
7885 if not FCE (Expression (Alt1), Expression (Alt2))
7886 or else not FCL (Discrete_Choices (Alt1),
7887 Discrete_Choices (Alt2))
7888 then
7889 return False;
7890 end if;
7892 Next (Alt1);
7893 Next (Alt2);
7894 end loop;
7895 end if;
7896 end;
7898 when N_Character_Literal =>
7899 return
7900 Char_Literal_Value (E1) = Char_Literal_Value (E2);
7902 when N_Component_Association =>
7903 return
7904 FCL (Choices (E1), Choices (E2))
7905 and then
7906 FCE (Expression (E1), Expression (E2));
7908 when N_Explicit_Dereference =>
7909 return
7910 FCE (Prefix (E1), Prefix (E2));
7912 when N_Extension_Aggregate =>
7913 return
7914 FCL (Expressions (E1), Expressions (E2))
7915 and then Null_Record_Present (E1) =
7916 Null_Record_Present (E2)
7917 and then FCL (Component_Associations (E1),
7918 Component_Associations (E2));
7920 when N_Function_Call =>
7921 return
7922 FCE (Name (E1), Name (E2))
7923 and then
7924 FCL (Parameter_Associations (E1),
7925 Parameter_Associations (E2));
7927 when N_If_Expression =>
7928 return
7929 FCL (Expressions (E1), Expressions (E2));
7931 when N_Indexed_Component =>
7932 return
7933 FCE (Prefix (E1), Prefix (E2))
7934 and then
7935 FCL (Expressions (E1), Expressions (E2));
7937 when N_Integer_Literal =>
7938 return (Intval (E1) = Intval (E2));
7940 when N_Null =>
7941 return True;
7943 when N_Operator_Symbol =>
7944 return
7945 Chars (E1) = Chars (E2);
7947 when N_Others_Choice =>
7948 return True;
7950 when N_Parameter_Association =>
7951 return
7952 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
7953 and then FCE (Explicit_Actual_Parameter (E1),
7954 Explicit_Actual_Parameter (E2));
7956 when N_Qualified_Expression =>
7957 return
7958 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
7959 and then
7960 FCE (Expression (E1), Expression (E2));
7962 when N_Quantified_Expression =>
7963 if not FCE (Condition (E1), Condition (E2)) then
7964 return False;
7965 end if;
7967 if Present (Loop_Parameter_Specification (E1))
7968 and then Present (Loop_Parameter_Specification (E2))
7969 then
7970 declare
7971 L1 : constant Node_Id :=
7972 Loop_Parameter_Specification (E1);
7973 L2 : constant Node_Id :=
7974 Loop_Parameter_Specification (E2);
7976 begin
7977 return
7978 Reverse_Present (L1) = Reverse_Present (L2)
7979 and then
7980 FCE (Defining_Identifier (L1),
7981 Defining_Identifier (L2))
7982 and then
7983 FCE (Discrete_Subtype_Definition (L1),
7984 Discrete_Subtype_Definition (L2));
7985 end;
7987 elsif Present (Iterator_Specification (E1))
7988 and then Present (Iterator_Specification (E2))
7989 then
7990 declare
7991 I1 : constant Node_Id := Iterator_Specification (E1);
7992 I2 : constant Node_Id := Iterator_Specification (E2);
7994 begin
7995 return
7996 FCE (Defining_Identifier (I1),
7997 Defining_Identifier (I2))
7998 and then
7999 Of_Present (I1) = Of_Present (I2)
8000 and then
8001 Reverse_Present (I1) = Reverse_Present (I2)
8002 and then FCE (Name (I1), Name (I2))
8003 and then FCE (Subtype_Indication (I1),
8004 Subtype_Indication (I2));
8005 end;
8007 -- The quantified expressions used different specifications to
8008 -- walk their respective ranges.
8010 else
8011 return False;
8012 end if;
8014 when N_Range =>
8015 return
8016 FCE (Low_Bound (E1), Low_Bound (E2))
8017 and then
8018 FCE (High_Bound (E1), High_Bound (E2));
8020 when N_Real_Literal =>
8021 return (Realval (E1) = Realval (E2));
8023 when N_Selected_Component =>
8024 return
8025 FCE (Prefix (E1), Prefix (E2))
8026 and then
8027 FCE (Selector_Name (E1), Selector_Name (E2));
8029 when N_Slice =>
8030 return
8031 FCE (Prefix (E1), Prefix (E2))
8032 and then
8033 FCE (Discrete_Range (E1), Discrete_Range (E2));
8035 when N_String_Literal =>
8036 declare
8037 S1 : constant String_Id := Strval (E1);
8038 S2 : constant String_Id := Strval (E2);
8039 L1 : constant Nat := String_Length (S1);
8040 L2 : constant Nat := String_Length (S2);
8042 begin
8043 if L1 /= L2 then
8044 return False;
8046 else
8047 for J in 1 .. L1 loop
8048 if Get_String_Char (S1, J) /=
8049 Get_String_Char (S2, J)
8050 then
8051 return False;
8052 end if;
8053 end loop;
8055 return True;
8056 end if;
8057 end;
8059 when N_Type_Conversion =>
8060 return
8061 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
8062 and then
8063 FCE (Expression (E1), Expression (E2));
8065 when N_Unary_Op =>
8066 return
8067 Entity (E1) = Entity (E2)
8068 and then
8069 FCE (Right_Opnd (E1), Right_Opnd (E2));
8071 when N_Unchecked_Type_Conversion =>
8072 return
8073 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
8074 and then
8075 FCE (Expression (E1), Expression (E2));
8077 -- All other node types cannot appear in this context. Strictly
8078 -- we should raise a fatal internal error. Instead we just ignore
8079 -- the nodes. This means that if anyone makes a mistake in the
8080 -- expander and mucks an expression tree irretrievably, the result
8081 -- will be a failure to detect a (probably very obscure) case
8082 -- of non-conformance, which is better than bombing on some
8083 -- case where two expressions do in fact conform.
8085 when others =>
8086 return True;
8088 end case;
8089 end if;
8090 end Fully_Conformant_Expressions;
8092 ----------------------------------------
8093 -- Fully_Conformant_Discrete_Subtypes --
8094 ----------------------------------------
8096 function Fully_Conformant_Discrete_Subtypes
8097 (Given_S1 : Node_Id;
8098 Given_S2 : Node_Id) return Boolean
8100 S1 : constant Node_Id := Original_Node (Given_S1);
8101 S2 : constant Node_Id := Original_Node (Given_S2);
8103 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
8104 -- Special-case for a bound given by a discriminant, which in the body
8105 -- is replaced with the discriminal of the enclosing type.
8107 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
8108 -- Check both bounds
8110 -----------------------
8111 -- Conforming_Bounds --
8112 -----------------------
8114 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
8115 begin
8116 if Is_Entity_Name (B1)
8117 and then Is_Entity_Name (B2)
8118 and then Ekind (Entity (B1)) = E_Discriminant
8119 then
8120 return Chars (B1) = Chars (B2);
8122 else
8123 return Fully_Conformant_Expressions (B1, B2);
8124 end if;
8125 end Conforming_Bounds;
8127 -----------------------
8128 -- Conforming_Ranges --
8129 -----------------------
8131 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
8132 begin
8133 return
8134 Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
8135 and then
8136 Conforming_Bounds (High_Bound (R1), High_Bound (R2));
8137 end Conforming_Ranges;
8139 -- Start of processing for Fully_Conformant_Discrete_Subtypes
8141 begin
8142 if Nkind (S1) /= Nkind (S2) then
8143 return False;
8145 elsif Is_Entity_Name (S1) then
8146 return Entity (S1) = Entity (S2);
8148 elsif Nkind (S1) = N_Range then
8149 return Conforming_Ranges (S1, S2);
8151 elsif Nkind (S1) = N_Subtype_Indication then
8152 return
8153 Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
8154 and then
8155 Conforming_Ranges
8156 (Range_Expression (Constraint (S1)),
8157 Range_Expression (Constraint (S2)));
8158 else
8159 return True;
8160 end if;
8161 end Fully_Conformant_Discrete_Subtypes;
8163 --------------------
8164 -- Install_Entity --
8165 --------------------
8167 procedure Install_Entity (E : Entity_Id) is
8168 Prev : constant Entity_Id := Current_Entity (E);
8169 begin
8170 Set_Is_Immediately_Visible (E);
8171 Set_Current_Entity (E);
8172 Set_Homonym (E, Prev);
8173 end Install_Entity;
8175 ---------------------
8176 -- Install_Formals --
8177 ---------------------
8179 procedure Install_Formals (Id : Entity_Id) is
8180 F : Entity_Id;
8181 begin
8182 F := First_Formal (Id);
8183 while Present (F) loop
8184 Install_Entity (F);
8185 Next_Formal (F);
8186 end loop;
8187 end Install_Formals;
8189 -----------------------------
8190 -- Is_Interface_Conformant --
8191 -----------------------------
8193 function Is_Interface_Conformant
8194 (Tagged_Type : Entity_Id;
8195 Iface_Prim : Entity_Id;
8196 Prim : Entity_Id) return Boolean
8198 -- The operation may in fact be an inherited (implicit) operation
8199 -- rather than the original interface primitive, so retrieve the
8200 -- ultimate ancestor.
8202 Iface : constant Entity_Id :=
8203 Find_Dispatching_Type (Ultimate_Alias (Iface_Prim));
8204 Typ : constant Entity_Id := Find_Dispatching_Type (Prim);
8206 function Controlling_Formal (Prim : Entity_Id) return Entity_Id;
8207 -- Return the controlling formal of Prim
8209 ------------------------
8210 -- Controlling_Formal --
8211 ------------------------
8213 function Controlling_Formal (Prim : Entity_Id) return Entity_Id is
8214 E : Entity_Id;
8216 begin
8217 E := First_Entity (Prim);
8218 while Present (E) loop
8219 if Is_Formal (E) and then Is_Controlling_Formal (E) then
8220 return E;
8221 end if;
8223 Next_Entity (E);
8224 end loop;
8226 return Empty;
8227 end Controlling_Formal;
8229 -- Local variables
8231 Iface_Ctrl_F : constant Entity_Id := Controlling_Formal (Iface_Prim);
8232 Prim_Ctrl_F : constant Entity_Id := Controlling_Formal (Prim);
8234 -- Start of processing for Is_Interface_Conformant
8236 begin
8237 pragma Assert (Is_Subprogram (Iface_Prim)
8238 and then Is_Subprogram (Prim)
8239 and then Is_Dispatching_Operation (Iface_Prim)
8240 and then Is_Dispatching_Operation (Prim));
8242 pragma Assert (Is_Interface (Iface)
8243 or else (Present (Alias (Iface_Prim))
8244 and then
8245 Is_Interface
8246 (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
8248 if Prim = Iface_Prim
8249 or else not Is_Subprogram (Prim)
8250 or else Ekind (Prim) /= Ekind (Iface_Prim)
8251 or else not Is_Dispatching_Operation (Prim)
8252 or else Scope (Prim) /= Scope (Tagged_Type)
8253 or else No (Typ)
8254 or else Base_Type (Typ) /= Base_Type (Tagged_Type)
8255 or else not Primitive_Names_Match (Iface_Prim, Prim)
8256 then
8257 return False;
8259 -- The mode of the controlling formals must match
8261 elsif Present (Iface_Ctrl_F)
8262 and then Present (Prim_Ctrl_F)
8263 and then Ekind (Iface_Ctrl_F) /= Ekind (Prim_Ctrl_F)
8264 then
8265 return False;
8267 -- Case of a procedure, or a function whose result type matches the
8268 -- result type of the interface primitive, or a function that has no
8269 -- controlling result (I or access I).
8271 elsif Ekind (Iface_Prim) = E_Procedure
8272 or else Etype (Prim) = Etype (Iface_Prim)
8273 or else not Has_Controlling_Result (Prim)
8274 then
8275 return Type_Conformant
8276 (Iface_Prim, Prim, Skip_Controlling_Formals => True);
8278 -- Case of a function returning an interface, or an access to one. Check
8279 -- that the return types correspond.
8281 elsif Implements_Interface (Typ, Iface) then
8282 if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
8284 (Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
8285 then
8286 return False;
8287 else
8288 return
8289 Type_Conformant (Prim, Ultimate_Alias (Iface_Prim),
8290 Skip_Controlling_Formals => True);
8291 end if;
8293 else
8294 return False;
8295 end if;
8296 end Is_Interface_Conformant;
8298 ---------------------------------
8299 -- Is_Non_Overriding_Operation --
8300 ---------------------------------
8302 function Is_Non_Overriding_Operation
8303 (Prev_E : Entity_Id;
8304 New_E : Entity_Id) return Boolean
8306 Formal : Entity_Id;
8307 F_Typ : Entity_Id;
8308 G_Typ : Entity_Id := Empty;
8310 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
8311 -- If F_Type is a derived type associated with a generic actual subtype,
8312 -- then return its Generic_Parent_Type attribute, else return Empty.
8314 function Types_Correspond
8315 (P_Type : Entity_Id;
8316 N_Type : Entity_Id) return Boolean;
8317 -- Returns true if and only if the types (or designated types in the
8318 -- case of anonymous access types) are the same or N_Type is derived
8319 -- directly or indirectly from P_Type.
8321 -----------------------------
8322 -- Get_Generic_Parent_Type --
8323 -----------------------------
8325 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
8326 G_Typ : Entity_Id;
8327 Defn : Node_Id;
8328 Indic : Node_Id;
8330 begin
8331 if Is_Derived_Type (F_Typ)
8332 and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
8333 then
8334 -- The tree must be traversed to determine the parent subtype in
8335 -- the generic unit, which unfortunately isn't always available
8336 -- via semantic attributes. ??? (Note: The use of Original_Node
8337 -- is needed for cases where a full derived type has been
8338 -- rewritten.)
8340 Defn := Type_Definition (Original_Node (Parent (F_Typ)));
8341 if Nkind (Defn) = N_Derived_Type_Definition then
8342 Indic := Subtype_Indication (Defn);
8344 if Nkind (Indic) = N_Subtype_Indication then
8345 G_Typ := Entity (Subtype_Mark (Indic));
8346 else
8347 G_Typ := Entity (Indic);
8348 end if;
8350 if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
8351 and then Present (Generic_Parent_Type (Parent (G_Typ)))
8352 then
8353 return Generic_Parent_Type (Parent (G_Typ));
8354 end if;
8355 end if;
8356 end if;
8358 return Empty;
8359 end Get_Generic_Parent_Type;
8361 ----------------------
8362 -- Types_Correspond --
8363 ----------------------
8365 function Types_Correspond
8366 (P_Type : Entity_Id;
8367 N_Type : Entity_Id) return Boolean
8369 Prev_Type : Entity_Id := Base_Type (P_Type);
8370 New_Type : Entity_Id := Base_Type (N_Type);
8372 begin
8373 if Ekind (Prev_Type) = E_Anonymous_Access_Type then
8374 Prev_Type := Designated_Type (Prev_Type);
8375 end if;
8377 if Ekind (New_Type) = E_Anonymous_Access_Type then
8378 New_Type := Designated_Type (New_Type);
8379 end if;
8381 if Prev_Type = New_Type then
8382 return True;
8384 elsif not Is_Class_Wide_Type (New_Type) then
8385 while Etype (New_Type) /= New_Type loop
8386 New_Type := Etype (New_Type);
8387 if New_Type = Prev_Type then
8388 return True;
8389 end if;
8390 end loop;
8391 end if;
8392 return False;
8393 end Types_Correspond;
8395 -- Start of processing for Is_Non_Overriding_Operation
8397 begin
8398 -- In the case where both operations are implicit derived subprograms
8399 -- then neither overrides the other. This can only occur in certain
8400 -- obscure cases (e.g., derivation from homographs created in a generic
8401 -- instantiation).
8403 if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
8404 return True;
8406 elsif Ekind (Current_Scope) = E_Package
8407 and then Is_Generic_Instance (Current_Scope)
8408 and then In_Private_Part (Current_Scope)
8409 and then Comes_From_Source (New_E)
8410 then
8411 -- We examine the formals and result type of the inherited operation,
8412 -- to determine whether their type is derived from (the instance of)
8413 -- a generic type. The first such formal or result type is the one
8414 -- tested.
8416 Formal := First_Formal (Prev_E);
8417 while Present (Formal) loop
8418 F_Typ := Base_Type (Etype (Formal));
8420 if Ekind (F_Typ) = E_Anonymous_Access_Type then
8421 F_Typ := Designated_Type (F_Typ);
8422 end if;
8424 G_Typ := Get_Generic_Parent_Type (F_Typ);
8425 exit when Present (G_Typ);
8427 Next_Formal (Formal);
8428 end loop;
8430 if No (G_Typ) and then Ekind (Prev_E) = E_Function then
8431 G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
8432 end if;
8434 if No (G_Typ) then
8435 return False;
8436 end if;
8438 -- If the generic type is a private type, then the original operation
8439 -- was not overriding in the generic, because there was no primitive
8440 -- operation to override.
8442 if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
8443 and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
8444 N_Formal_Private_Type_Definition
8445 then
8446 return True;
8448 -- The generic parent type is the ancestor of a formal derived
8449 -- type declaration. We need to check whether it has a primitive
8450 -- operation that should be overridden by New_E in the generic.
8452 else
8453 declare
8454 P_Formal : Entity_Id;
8455 N_Formal : Entity_Id;
8456 P_Typ : Entity_Id;
8457 N_Typ : Entity_Id;
8458 P_Prim : Entity_Id;
8459 Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
8461 begin
8462 while Present (Prim_Elt) loop
8463 P_Prim := Node (Prim_Elt);
8465 if Chars (P_Prim) = Chars (New_E)
8466 and then Ekind (P_Prim) = Ekind (New_E)
8467 then
8468 P_Formal := First_Formal (P_Prim);
8469 N_Formal := First_Formal (New_E);
8470 while Present (P_Formal) and then Present (N_Formal) loop
8471 P_Typ := Etype (P_Formal);
8472 N_Typ := Etype (N_Formal);
8474 if not Types_Correspond (P_Typ, N_Typ) then
8475 exit;
8476 end if;
8478 Next_Entity (P_Formal);
8479 Next_Entity (N_Formal);
8480 end loop;
8482 -- Found a matching primitive operation belonging to the
8483 -- formal ancestor type, so the new subprogram is
8484 -- overriding.
8486 if No (P_Formal)
8487 and then No (N_Formal)
8488 and then (Ekind (New_E) /= E_Function
8489 or else
8490 Types_Correspond
8491 (Etype (P_Prim), Etype (New_E)))
8492 then
8493 return False;
8494 end if;
8495 end if;
8497 Next_Elmt (Prim_Elt);
8498 end loop;
8500 -- If no match found, then the new subprogram does not override
8501 -- in the generic (nor in the instance).
8503 -- If the type in question is not abstract, and the subprogram
8504 -- is, this will be an error if the new operation is in the
8505 -- private part of the instance. Emit a warning now, which will
8506 -- make the subsequent error message easier to understand.
8508 if not Is_Abstract_Type (F_Typ)
8509 and then Is_Abstract_Subprogram (Prev_E)
8510 and then In_Private_Part (Current_Scope)
8511 then
8512 Error_Msg_Node_2 := F_Typ;
8513 Error_Msg_NE
8514 ("private operation& in generic unit does not override "
8515 & "any primitive operation of& (RM 12.3 (18))??",
8516 New_E, New_E);
8517 end if;
8519 return True;
8520 end;
8521 end if;
8522 else
8523 return False;
8524 end if;
8525 end Is_Non_Overriding_Operation;
8527 -------------------------------------
8528 -- List_Inherited_Pre_Post_Aspects --
8529 -------------------------------------
8531 procedure List_Inherited_Pre_Post_Aspects (E : Entity_Id) is
8532 begin
8533 if Opt.List_Inherited_Aspects
8534 and then Is_Subprogram_Or_Generic_Subprogram (E)
8535 then
8536 declare
8537 Inherited : constant Subprogram_List := Inherited_Subprograms (E);
8538 P : Node_Id;
8540 begin
8541 for J in Inherited'Range loop
8542 P := Pre_Post_Conditions (Contract (Inherited (J)));
8543 while Present (P) loop
8544 Error_Msg_Sloc := Sloc (P);
8546 if Class_Present (P) and then not Split_PPC (P) then
8547 if Pragma_Name (P) = Name_Precondition then
8548 Error_Msg_N ("info: & inherits `Pre''Class` aspect "
8549 & "from #?L?", E);
8550 else
8551 Error_Msg_N ("info: & inherits `Post''Class` aspect "
8552 & "from #?L?", E);
8553 end if;
8554 end if;
8556 P := Next_Pragma (P);
8557 end loop;
8558 end loop;
8559 end;
8560 end if;
8561 end List_Inherited_Pre_Post_Aspects;
8563 ------------------------------
8564 -- Make_Inequality_Operator --
8565 ------------------------------
8567 -- S is the defining identifier of an equality operator. We build a
8568 -- subprogram declaration with the right signature. This operation is
8569 -- intrinsic, because it is always expanded as the negation of the
8570 -- call to the equality function.
8572 procedure Make_Inequality_Operator (S : Entity_Id) is
8573 Loc : constant Source_Ptr := Sloc (S);
8574 Decl : Node_Id;
8575 Formals : List_Id;
8576 Op_Name : Entity_Id;
8578 FF : constant Entity_Id := First_Formal (S);
8579 NF : constant Entity_Id := Next_Formal (FF);
8581 begin
8582 -- Check that equality was properly defined, ignore call if not
8584 if No (NF) then
8585 return;
8586 end if;
8588 declare
8589 A : constant Entity_Id :=
8590 Make_Defining_Identifier (Sloc (FF),
8591 Chars => Chars (FF));
8593 B : constant Entity_Id :=
8594 Make_Defining_Identifier (Sloc (NF),
8595 Chars => Chars (NF));
8597 begin
8598 Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
8600 Formals := New_List (
8601 Make_Parameter_Specification (Loc,
8602 Defining_Identifier => A,
8603 Parameter_Type =>
8604 New_Occurrence_Of (Etype (First_Formal (S)),
8605 Sloc (Etype (First_Formal (S))))),
8607 Make_Parameter_Specification (Loc,
8608 Defining_Identifier => B,
8609 Parameter_Type =>
8610 New_Occurrence_Of (Etype (Next_Formal (First_Formal (S))),
8611 Sloc (Etype (Next_Formal (First_Formal (S)))))));
8613 Decl :=
8614 Make_Subprogram_Declaration (Loc,
8615 Specification =>
8616 Make_Function_Specification (Loc,
8617 Defining_Unit_Name => Op_Name,
8618 Parameter_Specifications => Formals,
8619 Result_Definition =>
8620 New_Occurrence_Of (Standard_Boolean, Loc)));
8622 -- Insert inequality right after equality if it is explicit or after
8623 -- the derived type when implicit. These entities are created only
8624 -- for visibility purposes, and eventually replaced in the course
8625 -- of expansion, so they do not need to be attached to the tree and
8626 -- seen by the back-end. Keeping them internal also avoids spurious
8627 -- freezing problems. The declaration is inserted in the tree for
8628 -- analysis, and removed afterwards. If the equality operator comes
8629 -- from an explicit declaration, attach the inequality immediately
8630 -- after. Else the equality is inherited from a derived type
8631 -- declaration, so insert inequality after that declaration.
8633 if No (Alias (S)) then
8634 Insert_After (Unit_Declaration_Node (S), Decl);
8635 elsif Is_List_Member (Parent (S)) then
8636 Insert_After (Parent (S), Decl);
8637 else
8638 Insert_After (Parent (Etype (First_Formal (S))), Decl);
8639 end if;
8641 Mark_Rewrite_Insertion (Decl);
8642 Set_Is_Intrinsic_Subprogram (Op_Name);
8643 Analyze (Decl);
8644 Remove (Decl);
8645 Set_Has_Completion (Op_Name);
8646 Set_Corresponding_Equality (Op_Name, S);
8647 Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
8648 end;
8649 end Make_Inequality_Operator;
8651 ----------------------
8652 -- May_Need_Actuals --
8653 ----------------------
8655 procedure May_Need_Actuals (Fun : Entity_Id) is
8656 F : Entity_Id;
8657 B : Boolean;
8659 begin
8660 F := First_Formal (Fun);
8661 B := True;
8662 while Present (F) loop
8663 if No (Default_Value (F)) then
8664 B := False;
8665 exit;
8666 end if;
8668 Next_Formal (F);
8669 end loop;
8671 Set_Needs_No_Actuals (Fun, B);
8672 end May_Need_Actuals;
8674 ---------------------
8675 -- Mode_Conformant --
8676 ---------------------
8678 function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
8679 Result : Boolean;
8680 begin
8681 Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
8682 return Result;
8683 end Mode_Conformant;
8685 ---------------------------
8686 -- New_Overloaded_Entity --
8687 ---------------------------
8689 procedure New_Overloaded_Entity
8690 (S : Entity_Id;
8691 Derived_Type : Entity_Id := Empty)
8693 Overridden_Subp : Entity_Id := Empty;
8694 -- Set if the current scope has an operation that is type-conformant
8695 -- with S, and becomes hidden by S.
8697 Is_Primitive_Subp : Boolean;
8698 -- Set to True if the new subprogram is primitive
8700 E : Entity_Id;
8701 -- Entity that S overrides
8703 Prev_Vis : Entity_Id := Empty;
8704 -- Predecessor of E in Homonym chain
8706 procedure Check_For_Primitive_Subprogram
8707 (Is_Primitive : out Boolean;
8708 Is_Overriding : Boolean := False);
8709 -- If the subprogram being analyzed is a primitive operation of the type
8710 -- of a formal or result, set the Has_Primitive_Operations flag on the
8711 -- type, and set Is_Primitive to True (otherwise set to False). Set the
8712 -- corresponding flag on the entity itself for later use.
8714 procedure Check_Synchronized_Overriding
8715 (Def_Id : Entity_Id;
8716 Overridden_Subp : out Entity_Id);
8717 -- First determine if Def_Id is an entry or a subprogram either defined
8718 -- in the scope of a task or protected type, or is a primitive of such
8719 -- a type. Check whether Def_Id overrides a subprogram of an interface
8720 -- implemented by the synchronized type, return the overridden entity
8721 -- or Empty.
8723 function Is_Private_Declaration (E : Entity_Id) return Boolean;
8724 -- Check that E is declared in the private part of the current package,
8725 -- or in the package body, where it may hide a previous declaration.
8726 -- We can't use In_Private_Part by itself because this flag is also
8727 -- set when freezing entities, so we must examine the place of the
8728 -- declaration in the tree, and recognize wrapper packages as well.
8730 function Is_Overriding_Alias
8731 (Old_E : Entity_Id;
8732 New_E : Entity_Id) return Boolean;
8733 -- Check whether new subprogram and old subprogram are both inherited
8734 -- from subprograms that have distinct dispatch table entries. This can
8735 -- occur with derivations from instances with accidental homonyms. The
8736 -- function is conservative given that the converse is only true within
8737 -- instances that contain accidental overloadings.
8739 ------------------------------------
8740 -- Check_For_Primitive_Subprogram --
8741 ------------------------------------
8743 procedure Check_For_Primitive_Subprogram
8744 (Is_Primitive : out Boolean;
8745 Is_Overriding : Boolean := False)
8747 Formal : Entity_Id;
8748 F_Typ : Entity_Id;
8749 B_Typ : Entity_Id;
8751 function Visible_Part_Type (T : Entity_Id) return Boolean;
8752 -- Returns true if T is declared in the visible part of the current
8753 -- package scope; otherwise returns false. Assumes that T is declared
8754 -- in a package.
8756 procedure Check_Private_Overriding (T : Entity_Id);
8757 -- Checks that if a primitive abstract subprogram of a visible
8758 -- abstract type is declared in a private part, then it must override
8759 -- an abstract subprogram declared in the visible part. Also checks
8760 -- that if a primitive function with a controlling result is declared
8761 -- in a private part, then it must override a function declared in
8762 -- the visible part.
8764 ------------------------------
8765 -- Check_Private_Overriding --
8766 ------------------------------
8768 procedure Check_Private_Overriding (T : Entity_Id) is
8769 begin
8770 if Is_Package_Or_Generic_Package (Current_Scope)
8771 and then In_Private_Part (Current_Scope)
8772 and then Visible_Part_Type (T)
8773 and then not In_Instance
8774 then
8775 if Is_Abstract_Type (T)
8776 and then Is_Abstract_Subprogram (S)
8777 and then (not Is_Overriding
8778 or else not Is_Abstract_Subprogram (E))
8779 then
8780 Error_Msg_N ("abstract subprograms must be visible "
8781 & "(RM 3.9.3(10))!", S);
8783 elsif Ekind (S) = E_Function and then not Is_Overriding then
8784 if Is_Tagged_Type (T) and then T = Base_Type (Etype (S)) then
8785 Error_Msg_N ("private function with tagged result must"
8786 & " override visible-part function", S);
8787 Error_Msg_N ("\move subprogram to the visible part"
8788 & " (RM 3.9.3(10))", S);
8790 -- AI05-0073: extend this test to the case of a function
8791 -- with a controlling access result.
8793 elsif Ekind (Etype (S)) = E_Anonymous_Access_Type
8794 and then Is_Tagged_Type (Designated_Type (Etype (S)))
8795 and then
8796 not Is_Class_Wide_Type (Designated_Type (Etype (S)))
8797 and then Ada_Version >= Ada_2012
8798 then
8799 Error_Msg_N
8800 ("private function with controlling access result "
8801 & "must override visible-part function", S);
8802 Error_Msg_N
8803 ("\move subprogram to the visible part"
8804 & " (RM 3.9.3(10))", S);
8805 end if;
8806 end if;
8807 end if;
8808 end Check_Private_Overriding;
8810 -----------------------
8811 -- Visible_Part_Type --
8812 -----------------------
8814 function Visible_Part_Type (T : Entity_Id) return Boolean is
8815 P : constant Node_Id := Unit_Declaration_Node (Scope (T));
8816 N : Node_Id;
8818 begin
8819 -- If the entity is a private type, then it must be declared in a
8820 -- visible part.
8822 if Ekind (T) in Private_Kind then
8823 return True;
8824 end if;
8826 -- Otherwise, we traverse the visible part looking for its
8827 -- corresponding declaration. We cannot use the declaration
8828 -- node directly because in the private part the entity of a
8829 -- private type is the one in the full view, which does not
8830 -- indicate that it is the completion of something visible.
8832 N := First (Visible_Declarations (Specification (P)));
8833 while Present (N) loop
8834 if Nkind (N) = N_Full_Type_Declaration
8835 and then Present (Defining_Identifier (N))
8836 and then T = Defining_Identifier (N)
8837 then
8838 return True;
8840 elsif Nkind_In (N, N_Private_Type_Declaration,
8841 N_Private_Extension_Declaration)
8842 and then Present (Defining_Identifier (N))
8843 and then T = Full_View (Defining_Identifier (N))
8844 then
8845 return True;
8846 end if;
8848 Next (N);
8849 end loop;
8851 return False;
8852 end Visible_Part_Type;
8854 -- Start of processing for Check_For_Primitive_Subprogram
8856 begin
8857 Is_Primitive := False;
8859 if not Comes_From_Source (S) then
8860 null;
8862 -- If subprogram is at library level, it is not primitive operation
8864 elsif Current_Scope = Standard_Standard then
8865 null;
8867 elsif (Is_Package_Or_Generic_Package (Current_Scope)
8868 and then not In_Package_Body (Current_Scope))
8869 or else Is_Overriding
8870 then
8871 -- For function, check return type
8873 if Ekind (S) = E_Function then
8874 if Ekind (Etype (S)) = E_Anonymous_Access_Type then
8875 F_Typ := Designated_Type (Etype (S));
8876 else
8877 F_Typ := Etype (S);
8878 end if;
8880 B_Typ := Base_Type (F_Typ);
8882 if Scope (B_Typ) = Current_Scope
8883 and then not Is_Class_Wide_Type (B_Typ)
8884 and then not Is_Generic_Type (B_Typ)
8885 then
8886 Is_Primitive := True;
8887 Set_Has_Primitive_Operations (B_Typ);
8888 Set_Is_Primitive (S);
8889 Check_Private_Overriding (B_Typ);
8890 end if;
8891 end if;
8893 -- For all subprograms, check formals
8895 Formal := First_Formal (S);
8896 while Present (Formal) loop
8897 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
8898 F_Typ := Designated_Type (Etype (Formal));
8899 else
8900 F_Typ := Etype (Formal);
8901 end if;
8903 B_Typ := Base_Type (F_Typ);
8905 if Ekind (B_Typ) = E_Access_Subtype then
8906 B_Typ := Base_Type (B_Typ);
8907 end if;
8909 if Scope (B_Typ) = Current_Scope
8910 and then not Is_Class_Wide_Type (B_Typ)
8911 and then not Is_Generic_Type (B_Typ)
8912 then
8913 Is_Primitive := True;
8914 Set_Is_Primitive (S);
8915 Set_Has_Primitive_Operations (B_Typ);
8916 Check_Private_Overriding (B_Typ);
8917 end if;
8919 Next_Formal (Formal);
8920 end loop;
8922 -- Special case: An equality function can be redefined for a type
8923 -- occurring in a declarative part, and won't otherwise be treated as
8924 -- a primitive because it doesn't occur in a package spec and doesn't
8925 -- override an inherited subprogram. It's important that we mark it
8926 -- primitive so it can be returned by Collect_Primitive_Operations
8927 -- and be used in composing the equality operation of later types
8928 -- that have a component of the type.
8930 elsif Chars (S) = Name_Op_Eq
8931 and then Etype (S) = Standard_Boolean
8932 then
8933 B_Typ := Base_Type (Etype (First_Formal (S)));
8935 if Scope (B_Typ) = Current_Scope
8936 and then
8937 Base_Type (Etype (Next_Formal (First_Formal (S)))) = B_Typ
8938 and then not Is_Limited_Type (B_Typ)
8939 then
8940 Is_Primitive := True;
8941 Set_Is_Primitive (S);
8942 Set_Has_Primitive_Operations (B_Typ);
8943 Check_Private_Overriding (B_Typ);
8944 end if;
8945 end if;
8946 end Check_For_Primitive_Subprogram;
8948 -----------------------------------
8949 -- Check_Synchronized_Overriding --
8950 -----------------------------------
8952 procedure Check_Synchronized_Overriding
8953 (Def_Id : Entity_Id;
8954 Overridden_Subp : out Entity_Id)
8956 Ifaces_List : Elist_Id;
8957 In_Scope : Boolean;
8958 Typ : Entity_Id;
8960 function Matches_Prefixed_View_Profile
8961 (Prim_Params : List_Id;
8962 Iface_Params : List_Id) return Boolean;
8963 -- Determine whether a subprogram's parameter profile Prim_Params
8964 -- matches that of a potentially overridden interface subprogram
8965 -- Iface_Params. Also determine if the type of first parameter of
8966 -- Iface_Params is an implemented interface.
8968 -----------------------------------
8969 -- Matches_Prefixed_View_Profile --
8970 -----------------------------------
8972 function Matches_Prefixed_View_Profile
8973 (Prim_Params : List_Id;
8974 Iface_Params : List_Id) return Boolean
8976 Iface_Id : Entity_Id;
8977 Iface_Param : Node_Id;
8978 Iface_Typ : Entity_Id;
8979 Prim_Id : Entity_Id;
8980 Prim_Param : Node_Id;
8981 Prim_Typ : Entity_Id;
8983 function Is_Implemented
8984 (Ifaces_List : Elist_Id;
8985 Iface : Entity_Id) return Boolean;
8986 -- Determine if Iface is implemented by the current task or
8987 -- protected type.
8989 --------------------
8990 -- Is_Implemented --
8991 --------------------
8993 function Is_Implemented
8994 (Ifaces_List : Elist_Id;
8995 Iface : Entity_Id) return Boolean
8997 Iface_Elmt : Elmt_Id;
8999 begin
9000 Iface_Elmt := First_Elmt (Ifaces_List);
9001 while Present (Iface_Elmt) loop
9002 if Node (Iface_Elmt) = Iface then
9003 return True;
9004 end if;
9006 Next_Elmt (Iface_Elmt);
9007 end loop;
9009 return False;
9010 end Is_Implemented;
9012 -- Start of processing for Matches_Prefixed_View_Profile
9014 begin
9015 Iface_Param := First (Iface_Params);
9016 Iface_Typ := Etype (Defining_Identifier (Iface_Param));
9018 if Is_Access_Type (Iface_Typ) then
9019 Iface_Typ := Designated_Type (Iface_Typ);
9020 end if;
9022 Prim_Param := First (Prim_Params);
9024 -- The first parameter of the potentially overridden subprogram
9025 -- must be an interface implemented by Prim.
9027 if not Is_Interface (Iface_Typ)
9028 or else not Is_Implemented (Ifaces_List, Iface_Typ)
9029 then
9030 return False;
9031 end if;
9033 -- The checks on the object parameters are done, move onto the
9034 -- rest of the parameters.
9036 if not In_Scope then
9037 Prim_Param := Next (Prim_Param);
9038 end if;
9040 Iface_Param := Next (Iface_Param);
9041 while Present (Iface_Param) and then Present (Prim_Param) loop
9042 Iface_Id := Defining_Identifier (Iface_Param);
9043 Iface_Typ := Find_Parameter_Type (Iface_Param);
9045 Prim_Id := Defining_Identifier (Prim_Param);
9046 Prim_Typ := Find_Parameter_Type (Prim_Param);
9048 if Ekind (Iface_Typ) = E_Anonymous_Access_Type
9049 and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
9050 and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
9051 then
9052 Iface_Typ := Designated_Type (Iface_Typ);
9053 Prim_Typ := Designated_Type (Prim_Typ);
9054 end if;
9056 -- Case of multiple interface types inside a parameter profile
9058 -- (Obj_Param : in out Iface; ...; Param : Iface)
9060 -- If the interface type is implemented, then the matching type
9061 -- in the primitive should be the implementing record type.
9063 if Ekind (Iface_Typ) = E_Record_Type
9064 and then Is_Interface (Iface_Typ)
9065 and then Is_Implemented (Ifaces_List, Iface_Typ)
9066 then
9067 if Prim_Typ /= Typ then
9068 return False;
9069 end if;
9071 -- The two parameters must be both mode and subtype conformant
9073 elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
9074 or else not
9075 Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
9076 then
9077 return False;
9078 end if;
9080 Next (Iface_Param);
9081 Next (Prim_Param);
9082 end loop;
9084 -- One of the two lists contains more parameters than the other
9086 if Present (Iface_Param) or else Present (Prim_Param) then
9087 return False;
9088 end if;
9090 return True;
9091 end Matches_Prefixed_View_Profile;
9093 -- Start of processing for Check_Synchronized_Overriding
9095 begin
9096 Overridden_Subp := Empty;
9098 -- Def_Id must be an entry or a subprogram. We should skip predefined
9099 -- primitives internally generated by the frontend; however at this
9100 -- stage predefined primitives are still not fully decorated. As a
9101 -- minor optimization we skip here internally generated subprograms.
9103 if (Ekind (Def_Id) /= E_Entry
9104 and then Ekind (Def_Id) /= E_Function
9105 and then Ekind (Def_Id) /= E_Procedure)
9106 or else not Comes_From_Source (Def_Id)
9107 then
9108 return;
9109 end if;
9111 -- Search for the concurrent declaration since it contains the list
9112 -- of all implemented interfaces. In this case, the subprogram is
9113 -- declared within the scope of a protected or a task type.
9115 if Present (Scope (Def_Id))
9116 and then Is_Concurrent_Type (Scope (Def_Id))
9117 and then not Is_Generic_Actual_Type (Scope (Def_Id))
9118 then
9119 Typ := Scope (Def_Id);
9120 In_Scope := True;
9122 -- The enclosing scope is not a synchronized type and the subprogram
9123 -- has no formals.
9125 elsif No (First_Formal (Def_Id)) then
9126 return;
9128 -- The subprogram has formals and hence it may be a primitive of a
9129 -- concurrent type.
9131 else
9132 Typ := Etype (First_Formal (Def_Id));
9134 if Is_Access_Type (Typ) then
9135 Typ := Directly_Designated_Type (Typ);
9136 end if;
9138 if Is_Concurrent_Type (Typ)
9139 and then not Is_Generic_Actual_Type (Typ)
9140 then
9141 In_Scope := False;
9143 -- This case occurs when the concurrent type is declared within
9144 -- a generic unit. As a result the corresponding record has been
9145 -- built and used as the type of the first formal, we just have
9146 -- to retrieve the corresponding concurrent type.
9148 elsif Is_Concurrent_Record_Type (Typ)
9149 and then not Is_Class_Wide_Type (Typ)
9150 and then Present (Corresponding_Concurrent_Type (Typ))
9151 then
9152 Typ := Corresponding_Concurrent_Type (Typ);
9153 In_Scope := False;
9155 else
9156 return;
9157 end if;
9158 end if;
9160 -- There is no overriding to check if is an inherited operation in a
9161 -- type derivation on for a generic actual.
9163 Collect_Interfaces (Typ, Ifaces_List);
9165 if Is_Empty_Elmt_List (Ifaces_List) then
9166 return;
9167 end if;
9169 -- Determine whether entry or subprogram Def_Id overrides a primitive
9170 -- operation that belongs to one of the interfaces in Ifaces_List.
9172 declare
9173 Candidate : Entity_Id := Empty;
9174 Hom : Entity_Id := Empty;
9175 Iface_Typ : Entity_Id;
9176 Subp : Entity_Id := Empty;
9178 begin
9179 -- Traverse the homonym chain, looking for a potentially
9180 -- overridden subprogram that belongs to an implemented
9181 -- interface.
9183 Hom := Current_Entity_In_Scope (Def_Id);
9184 while Present (Hom) loop
9185 Subp := Hom;
9187 if Subp = Def_Id
9188 or else not Is_Overloadable (Subp)
9189 or else not Is_Primitive (Subp)
9190 or else not Is_Dispatching_Operation (Subp)
9191 or else not Present (Find_Dispatching_Type (Subp))
9192 or else not Is_Interface (Find_Dispatching_Type (Subp))
9193 then
9194 null;
9196 -- Entries and procedures can override abstract or null
9197 -- interface procedures.
9199 elsif (Ekind (Def_Id) = E_Procedure
9200 or else Ekind (Def_Id) = E_Entry)
9201 and then Ekind (Subp) = E_Procedure
9202 and then Matches_Prefixed_View_Profile
9203 (Parameter_Specifications (Parent (Def_Id)),
9204 Parameter_Specifications (Parent (Subp)))
9205 then
9206 Candidate := Subp;
9208 -- For an overridden subprogram Subp, check whether the mode
9209 -- of its first parameter is correct depending on the kind
9210 -- of synchronized type.
9212 declare
9213 Formal : constant Node_Id := First_Formal (Candidate);
9215 begin
9216 -- In order for an entry or a protected procedure to
9217 -- override, the first parameter of the overridden
9218 -- routine must be of mode "out", "in out" or
9219 -- access-to-variable.
9221 if Ekind_In (Candidate, E_Entry, E_Procedure)
9222 and then Is_Protected_Type (Typ)
9223 and then Ekind (Formal) /= E_In_Out_Parameter
9224 and then Ekind (Formal) /= E_Out_Parameter
9225 and then Nkind (Parameter_Type (Parent (Formal))) /=
9226 N_Access_Definition
9227 then
9228 null;
9230 -- All other cases are OK since a task entry or routine
9231 -- does not have a restriction on the mode of the first
9232 -- parameter of the overridden interface routine.
9234 else
9235 Overridden_Subp := Candidate;
9236 return;
9237 end if;
9238 end;
9240 -- Functions can override abstract interface functions
9242 elsif Ekind (Def_Id) = E_Function
9243 and then Ekind (Subp) = E_Function
9244 and then Matches_Prefixed_View_Profile
9245 (Parameter_Specifications (Parent (Def_Id)),
9246 Parameter_Specifications (Parent (Subp)))
9247 and then Etype (Result_Definition (Parent (Def_Id))) =
9248 Etype (Result_Definition (Parent (Subp)))
9249 then
9250 Overridden_Subp := Subp;
9251 return;
9252 end if;
9254 Hom := Homonym (Hom);
9255 end loop;
9257 -- After examining all candidates for overriding, we are left with
9258 -- the best match which is a mode incompatible interface routine.
9259 -- Do not emit an error if the Expander is active since this error
9260 -- will be detected later on after all concurrent types are
9261 -- expanded and all wrappers are built. This check is meant for
9262 -- spec-only compilations.
9264 if Present (Candidate) and then not Expander_Active then
9265 Iface_Typ :=
9266 Find_Parameter_Type (Parent (First_Formal (Candidate)));
9268 -- Def_Id is primitive of a protected type, declared inside the
9269 -- type, and the candidate is primitive of a limited or
9270 -- synchronized interface.
9272 if In_Scope
9273 and then Is_Protected_Type (Typ)
9274 and then
9275 (Is_Limited_Interface (Iface_Typ)
9276 or else Is_Protected_Interface (Iface_Typ)
9277 or else Is_Synchronized_Interface (Iface_Typ)
9278 or else Is_Task_Interface (Iface_Typ))
9279 then
9280 Error_Msg_PT (Parent (Typ), Candidate);
9281 end if;
9282 end if;
9284 Overridden_Subp := Candidate;
9285 return;
9286 end;
9287 end Check_Synchronized_Overriding;
9289 ----------------------------
9290 -- Is_Private_Declaration --
9291 ----------------------------
9293 function Is_Private_Declaration (E : Entity_Id) return Boolean is
9294 Priv_Decls : List_Id;
9295 Decl : constant Node_Id := Unit_Declaration_Node (E);
9297 begin
9298 if Is_Package_Or_Generic_Package (Current_Scope)
9299 and then In_Private_Part (Current_Scope)
9300 then
9301 Priv_Decls :=
9302 Private_Declarations (Package_Specification (Current_Scope));
9304 return In_Package_Body (Current_Scope)
9305 or else
9306 (Is_List_Member (Decl)
9307 and then List_Containing (Decl) = Priv_Decls)
9308 or else (Nkind (Parent (Decl)) = N_Package_Specification
9309 and then not
9310 Is_Compilation_Unit
9311 (Defining_Entity (Parent (Decl)))
9312 and then List_Containing (Parent (Parent (Decl))) =
9313 Priv_Decls);
9314 else
9315 return False;
9316 end if;
9317 end Is_Private_Declaration;
9319 --------------------------
9320 -- Is_Overriding_Alias --
9321 --------------------------
9323 function Is_Overriding_Alias
9324 (Old_E : Entity_Id;
9325 New_E : Entity_Id) return Boolean
9327 AO : constant Entity_Id := Alias (Old_E);
9328 AN : constant Entity_Id := Alias (New_E);
9329 begin
9330 return Scope (AO) /= Scope (AN)
9331 or else No (DTC_Entity (AO))
9332 or else No (DTC_Entity (AN))
9333 or else DT_Position (AO) = DT_Position (AN);
9334 end Is_Overriding_Alias;
9336 -- Start of processing for New_Overloaded_Entity
9338 begin
9339 -- We need to look for an entity that S may override. This must be a
9340 -- homonym in the current scope, so we look for the first homonym of
9341 -- S in the current scope as the starting point for the search.
9343 E := Current_Entity_In_Scope (S);
9345 -- Ada 2005 (AI-251): Derivation of abstract interface primitives.
9346 -- They are directly added to the list of primitive operations of
9347 -- Derived_Type, unless this is a rederivation in the private part
9348 -- of an operation that was already derived in the visible part of
9349 -- the current package.
9351 if Ada_Version >= Ada_2005
9352 and then Present (Derived_Type)
9353 and then Present (Alias (S))
9354 and then Is_Dispatching_Operation (Alias (S))
9355 and then Present (Find_Dispatching_Type (Alias (S)))
9356 and then Is_Interface (Find_Dispatching_Type (Alias (S)))
9357 then
9358 -- For private types, when the full-view is processed we propagate to
9359 -- the full view the non-overridden entities whose attribute "alias"
9360 -- references an interface primitive. These entities were added by
9361 -- Derive_Subprograms to ensure that interface primitives are
9362 -- covered.
9364 -- Inside_Freeze_Actions is non zero when S corresponds with an
9365 -- internal entity that links an interface primitive with its
9366 -- covering primitive through attribute Interface_Alias (see
9367 -- Add_Internal_Interface_Entities).
9369 if Inside_Freezing_Actions = 0
9370 and then Is_Package_Or_Generic_Package (Current_Scope)
9371 and then In_Private_Part (Current_Scope)
9372 and then Nkind (Parent (E)) = N_Private_Extension_Declaration
9373 and then Nkind (Parent (S)) = N_Full_Type_Declaration
9374 and then Full_View (Defining_Identifier (Parent (E)))
9375 = Defining_Identifier (Parent (S))
9376 and then Alias (E) = Alias (S)
9377 then
9378 Check_Operation_From_Private_View (S, E);
9379 Set_Is_Dispatching_Operation (S);
9381 -- Common case
9383 else
9384 Enter_Overloaded_Entity (S);
9385 Check_Dispatching_Operation (S, Empty);
9386 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
9387 end if;
9389 return;
9390 end if;
9392 -- If there is no homonym then this is definitely not overriding
9394 if No (E) then
9395 Enter_Overloaded_Entity (S);
9396 Check_Dispatching_Operation (S, Empty);
9397 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
9399 -- If subprogram has an explicit declaration, check whether it has an
9400 -- overriding indicator.
9402 if Comes_From_Source (S) then
9403 Check_Synchronized_Overriding (S, Overridden_Subp);
9405 -- (Ada 2012: AI05-0125-1): If S is a dispatching operation then
9406 -- it may have overridden some hidden inherited primitive. Update
9407 -- Overridden_Subp to avoid spurious errors when checking the
9408 -- overriding indicator.
9410 if Ada_Version >= Ada_2012
9411 and then No (Overridden_Subp)
9412 and then Is_Dispatching_Operation (S)
9413 and then Present (Overridden_Operation (S))
9414 then
9415 Overridden_Subp := Overridden_Operation (S);
9416 end if;
9418 Check_Overriding_Indicator
9419 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
9420 end if;
9422 -- If there is a homonym that is not overloadable, then we have an
9423 -- error, except for the special cases checked explicitly below.
9425 elsif not Is_Overloadable (E) then
9427 -- Check for spurious conflict produced by a subprogram that has the
9428 -- same name as that of the enclosing generic package. The conflict
9429 -- occurs within an instance, between the subprogram and the renaming
9430 -- declaration for the package. After the subprogram, the package
9431 -- renaming declaration becomes hidden.
9433 if Ekind (E) = E_Package
9434 and then Present (Renamed_Object (E))
9435 and then Renamed_Object (E) = Current_Scope
9436 and then Nkind (Parent (Renamed_Object (E))) =
9437 N_Package_Specification
9438 and then Present (Generic_Parent (Parent (Renamed_Object (E))))
9439 then
9440 Set_Is_Hidden (E);
9441 Set_Is_Immediately_Visible (E, False);
9442 Enter_Overloaded_Entity (S);
9443 Set_Homonym (S, Homonym (E));
9444 Check_Dispatching_Operation (S, Empty);
9445 Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
9447 -- If the subprogram is implicit it is hidden by the previous
9448 -- declaration. However if it is dispatching, it must appear in the
9449 -- dispatch table anyway, because it can be dispatched to even if it
9450 -- cannot be called directly.
9452 elsif Present (Alias (S)) and then not Comes_From_Source (S) then
9453 Set_Scope (S, Current_Scope);
9455 if Is_Dispatching_Operation (Alias (S)) then
9456 Check_Dispatching_Operation (S, Empty);
9457 end if;
9459 return;
9461 else
9462 Error_Msg_Sloc := Sloc (E);
9464 -- Generate message, with useful additional warning if in generic
9466 if Is_Generic_Unit (E) then
9467 Error_Msg_N ("previous generic unit cannot be overloaded", S);
9468 Error_Msg_N ("\& conflicts with declaration#", S);
9469 else
9470 Error_Msg_N ("& conflicts with declaration#", S);
9471 end if;
9473 return;
9474 end if;
9476 -- E exists and is overloadable
9478 else
9479 Check_Synchronized_Overriding (S, Overridden_Subp);
9481 -- Loop through E and its homonyms to determine if any of them is
9482 -- the candidate for overriding by S.
9484 while Present (E) loop
9486 -- Definitely not interesting if not in the current scope
9488 if Scope (E) /= Current_Scope then
9489 null;
9491 -- A function can overload the name of an abstract state. The
9492 -- state can be viewed as a function with a profile that cannot
9493 -- be matched by anything.
9495 elsif Ekind (S) = E_Function
9496 and then Ekind (E) = E_Abstract_State
9497 then
9498 Enter_Overloaded_Entity (S);
9499 return;
9501 -- Ada 2012 (AI05-0165): For internally generated bodies of null
9502 -- procedures locate the internally generated spec. We enforce
9503 -- mode conformance since a tagged type may inherit from
9504 -- interfaces several null primitives which differ only in
9505 -- the mode of the formals.
9507 elsif not Comes_From_Source (S)
9508 and then Is_Null_Procedure (S)
9509 and then not Mode_Conformant (E, S)
9510 then
9511 null;
9513 -- Check if we have type conformance
9515 elsif Type_Conformant (E, S) then
9517 -- If the old and new entities have the same profile and one
9518 -- is not the body of the other, then this is an error, unless
9519 -- one of them is implicitly declared.
9521 -- There are some cases when both can be implicit, for example
9522 -- when both a literal and a function that overrides it are
9523 -- inherited in a derivation, or when an inherited operation
9524 -- of a tagged full type overrides the inherited operation of
9525 -- a private extension. Ada 83 had a special rule for the
9526 -- literal case. In Ada 95, the later implicit operation hides
9527 -- the former, and the literal is always the former. In the
9528 -- odd case where both are derived operations declared at the
9529 -- same point, both operations should be declared, and in that
9530 -- case we bypass the following test and proceed to the next
9531 -- part. This can only occur for certain obscure cases in
9532 -- instances, when an operation on a type derived from a formal
9533 -- private type does not override a homograph inherited from
9534 -- the actual. In subsequent derivations of such a type, the
9535 -- DT positions of these operations remain distinct, if they
9536 -- have been set.
9538 if Present (Alias (S))
9539 and then (No (Alias (E))
9540 or else Comes_From_Source (E)
9541 or else Is_Abstract_Subprogram (S)
9542 or else
9543 (Is_Dispatching_Operation (E)
9544 and then Is_Overriding_Alias (E, S)))
9545 and then Ekind (E) /= E_Enumeration_Literal
9546 then
9547 -- When an derived operation is overloaded it may be due to
9548 -- the fact that the full view of a private extension
9549 -- re-inherits. It has to be dealt with.
9551 if Is_Package_Or_Generic_Package (Current_Scope)
9552 and then In_Private_Part (Current_Scope)
9553 then
9554 Check_Operation_From_Private_View (S, E);
9555 end if;
9557 -- In any case the implicit operation remains hidden by the
9558 -- existing declaration, which is overriding. Indicate that
9559 -- E overrides the operation from which S is inherited.
9561 if Present (Alias (S)) then
9562 Set_Overridden_Operation (E, Alias (S));
9563 Inherit_Subprogram_Contract (E, Alias (S));
9565 else
9566 Set_Overridden_Operation (E, S);
9567 Inherit_Subprogram_Contract (E, S);
9568 end if;
9570 if Comes_From_Source (E) then
9571 Check_Overriding_Indicator (E, S, Is_Primitive => False);
9572 end if;
9574 return;
9576 -- Within an instance, the renaming declarations for actual
9577 -- subprograms may become ambiguous, but they do not hide each
9578 -- other.
9580 elsif Ekind (E) /= E_Entry
9581 and then not Comes_From_Source (E)
9582 and then not Is_Generic_Instance (E)
9583 and then (Present (Alias (E))
9584 or else Is_Intrinsic_Subprogram (E))
9585 and then (not In_Instance
9586 or else No (Parent (E))
9587 or else Nkind (Unit_Declaration_Node (E)) /=
9588 N_Subprogram_Renaming_Declaration)
9589 then
9590 -- A subprogram child unit is not allowed to override an
9591 -- inherited subprogram (10.1.1(20)).
9593 if Is_Child_Unit (S) then
9594 Error_Msg_N
9595 ("child unit overrides inherited subprogram in parent",
9597 return;
9598 end if;
9600 if Is_Non_Overriding_Operation (E, S) then
9601 Enter_Overloaded_Entity (S);
9603 if No (Derived_Type)
9604 or else Is_Tagged_Type (Derived_Type)
9605 then
9606 Check_Dispatching_Operation (S, Empty);
9607 end if;
9609 return;
9610 end if;
9612 -- E is a derived operation or an internal operator which
9613 -- is being overridden. Remove E from further visibility.
9614 -- Furthermore, if E is a dispatching operation, it must be
9615 -- replaced in the list of primitive operations of its type
9616 -- (see Override_Dispatching_Operation).
9618 Overridden_Subp := E;
9620 declare
9621 Prev : Entity_Id;
9623 begin
9624 Prev := First_Entity (Current_Scope);
9625 while Present (Prev) and then Next_Entity (Prev) /= E loop
9626 Next_Entity (Prev);
9627 end loop;
9629 -- It is possible for E to be in the current scope and
9630 -- yet not in the entity chain. This can only occur in a
9631 -- generic context where E is an implicit concatenation
9632 -- in the formal part, because in a generic body the
9633 -- entity chain starts with the formals.
9635 pragma Assert
9636 (Present (Prev) or else Chars (E) = Name_Op_Concat);
9638 -- E must be removed both from the entity_list of the
9639 -- current scope, and from the visibility chain
9641 if Debug_Flag_E then
9642 Write_Str ("Override implicit operation ");
9643 Write_Int (Int (E));
9644 Write_Eol;
9645 end if;
9647 -- If E is a predefined concatenation, it stands for four
9648 -- different operations. As a result, a single explicit
9649 -- declaration does not hide it. In a possible ambiguous
9650 -- situation, Disambiguate chooses the user-defined op,
9651 -- so it is correct to retain the previous internal one.
9653 if Chars (E) /= Name_Op_Concat
9654 or else Ekind (E) /= E_Operator
9655 then
9656 -- For nondispatching derived operations that are
9657 -- overridden by a subprogram declared in the private
9658 -- part of a package, we retain the derived subprogram
9659 -- but mark it as not immediately visible. If the
9660 -- derived operation was declared in the visible part
9661 -- then this ensures that it will still be visible
9662 -- outside the package with the proper signature
9663 -- (calls from outside must also be directed to this
9664 -- version rather than the overriding one, unlike the
9665 -- dispatching case). Calls from inside the package
9666 -- will still resolve to the overriding subprogram
9667 -- since the derived one is marked as not visible
9668 -- within the package.
9670 -- If the private operation is dispatching, we achieve
9671 -- the overriding by keeping the implicit operation
9672 -- but setting its alias to be the overriding one. In
9673 -- this fashion the proper body is executed in all
9674 -- cases, but the original signature is used outside
9675 -- of the package.
9677 -- If the overriding is not in the private part, we
9678 -- remove the implicit operation altogether.
9680 if Is_Private_Declaration (S) then
9681 if not Is_Dispatching_Operation (E) then
9682 Set_Is_Immediately_Visible (E, False);
9683 else
9684 -- Work done in Override_Dispatching_Operation,
9685 -- so nothing else needs to be done here.
9687 null;
9688 end if;
9690 else
9691 -- Find predecessor of E in Homonym chain
9693 if E = Current_Entity (E) then
9694 Prev_Vis := Empty;
9695 else
9696 Prev_Vis := Current_Entity (E);
9697 while Homonym (Prev_Vis) /= E loop
9698 Prev_Vis := Homonym (Prev_Vis);
9699 end loop;
9700 end if;
9702 if Prev_Vis /= Empty then
9704 -- Skip E in the visibility chain
9706 Set_Homonym (Prev_Vis, Homonym (E));
9708 else
9709 Set_Name_Entity_Id (Chars (E), Homonym (E));
9710 end if;
9712 Set_Next_Entity (Prev, Next_Entity (E));
9714 if No (Next_Entity (Prev)) then
9715 Set_Last_Entity (Current_Scope, Prev);
9716 end if;
9717 end if;
9718 end if;
9720 Enter_Overloaded_Entity (S);
9722 -- For entities generated by Derive_Subprograms the
9723 -- overridden operation is the inherited primitive
9724 -- (which is available through the attribute alias).
9726 if not (Comes_From_Source (E))
9727 and then Is_Dispatching_Operation (E)
9728 and then Find_Dispatching_Type (E) =
9729 Find_Dispatching_Type (S)
9730 and then Present (Alias (E))
9731 and then Comes_From_Source (Alias (E))
9732 then
9733 Set_Overridden_Operation (S, Alias (E));
9734 Inherit_Subprogram_Contract (S, Alias (E));
9736 -- Normal case of setting entity as overridden
9738 -- Note: Static_Initialization and Overridden_Operation
9739 -- attributes use the same field in subprogram entities.
9740 -- Static_Initialization is only defined for internal
9741 -- initialization procedures, where Overridden_Operation
9742 -- is irrelevant. Therefore the setting of this attribute
9743 -- must check whether the target is an init_proc.
9745 elsif not Is_Init_Proc (S) then
9746 Set_Overridden_Operation (S, E);
9747 Inherit_Subprogram_Contract (S, E);
9748 end if;
9750 Check_Overriding_Indicator (S, E, Is_Primitive => True);
9752 -- If S is a user-defined subprogram or a null procedure
9753 -- expanded to override an inherited null procedure, or a
9754 -- predefined dispatching primitive then indicate that E
9755 -- overrides the operation from which S is inherited.
9757 if Comes_From_Source (S)
9758 or else
9759 (Present (Parent (S))
9760 and then
9761 Nkind (Parent (S)) = N_Procedure_Specification
9762 and then
9763 Null_Present (Parent (S)))
9764 or else
9765 (Present (Alias (E))
9766 and then
9767 Is_Predefined_Dispatching_Operation (Alias (E)))
9768 then
9769 if Present (Alias (E)) then
9770 Set_Overridden_Operation (S, Alias (E));
9771 Inherit_Subprogram_Contract (S, Alias (E));
9772 end if;
9773 end if;
9775 if Is_Dispatching_Operation (E) then
9777 -- An overriding dispatching subprogram inherits the
9778 -- convention of the overridden subprogram (AI-117).
9780 Set_Convention (S, Convention (E));
9781 Check_Dispatching_Operation (S, E);
9783 else
9784 Check_Dispatching_Operation (S, Empty);
9785 end if;
9787 Check_For_Primitive_Subprogram
9788 (Is_Primitive_Subp, Is_Overriding => True);
9789 goto Check_Inequality;
9790 end;
9792 -- Apparent redeclarations in instances can occur when two
9793 -- formal types get the same actual type. The subprograms in
9794 -- in the instance are legal, even if not callable from the
9795 -- outside. Calls from within are disambiguated elsewhere.
9796 -- For dispatching operations in the visible part, the usual
9797 -- rules apply, and operations with the same profile are not
9798 -- legal (B830001).
9800 elsif (In_Instance_Visible_Part
9801 and then not Is_Dispatching_Operation (E))
9802 or else In_Instance_Not_Visible
9803 then
9804 null;
9806 -- Here we have a real error (identical profile)
9808 else
9809 Error_Msg_Sloc := Sloc (E);
9811 -- Avoid cascaded errors if the entity appears in
9812 -- subsequent calls.
9814 Set_Scope (S, Current_Scope);
9816 -- Generate error, with extra useful warning for the case
9817 -- of a generic instance with no completion.
9819 if Is_Generic_Instance (S)
9820 and then not Has_Completion (E)
9821 then
9822 Error_Msg_N
9823 ("instantiation cannot provide body for&", S);
9824 Error_Msg_N ("\& conflicts with declaration#", S);
9825 else
9826 Error_Msg_N ("& conflicts with declaration#", S);
9827 end if;
9829 return;
9830 end if;
9832 else
9833 -- If one subprogram has an access parameter and the other
9834 -- a parameter of an access type, calls to either might be
9835 -- ambiguous. Verify that parameters match except for the
9836 -- access parameter.
9838 if May_Hide_Profile then
9839 declare
9840 F1 : Entity_Id;
9841 F2 : Entity_Id;
9843 begin
9844 F1 := First_Formal (S);
9845 F2 := First_Formal (E);
9846 while Present (F1) and then Present (F2) loop
9847 if Is_Access_Type (Etype (F1)) then
9848 if not Is_Access_Type (Etype (F2))
9849 or else not Conforming_Types
9850 (Designated_Type (Etype (F1)),
9851 Designated_Type (Etype (F2)),
9852 Type_Conformant)
9853 then
9854 May_Hide_Profile := False;
9855 end if;
9857 elsif
9858 not Conforming_Types
9859 (Etype (F1), Etype (F2), Type_Conformant)
9860 then
9861 May_Hide_Profile := False;
9862 end if;
9864 Next_Formal (F1);
9865 Next_Formal (F2);
9866 end loop;
9868 if May_Hide_Profile
9869 and then No (F1)
9870 and then No (F2)
9871 then
9872 Error_Msg_NE ("calls to& may be ambiguous??", S, S);
9873 end if;
9874 end;
9875 end if;
9876 end if;
9878 E := Homonym (E);
9879 end loop;
9881 -- On exit, we know that S is a new entity
9883 Enter_Overloaded_Entity (S);
9884 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
9885 Check_Overriding_Indicator
9886 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
9888 -- Overloading is not allowed in SPARK, except for operators
9890 if Nkind (S) /= N_Defining_Operator_Symbol then
9891 Error_Msg_Sloc := Sloc (Homonym (S));
9892 Check_SPARK_05_Restriction
9893 ("overloading not allowed with entity#", S);
9894 end if;
9896 -- If S is a derived operation for an untagged type then by
9897 -- definition it's not a dispatching operation (even if the parent
9898 -- operation was dispatching), so Check_Dispatching_Operation is not
9899 -- called in that case.
9901 if No (Derived_Type)
9902 or else Is_Tagged_Type (Derived_Type)
9903 then
9904 Check_Dispatching_Operation (S, Empty);
9905 end if;
9906 end if;
9908 -- If this is a user-defined equality operator that is not a derived
9909 -- subprogram, create the corresponding inequality. If the operation is
9910 -- dispatching, the expansion is done elsewhere, and we do not create
9911 -- an explicit inequality operation.
9913 <<Check_Inequality>>
9914 if Chars (S) = Name_Op_Eq
9915 and then Etype (S) = Standard_Boolean
9916 and then Present (Parent (S))
9917 and then not Is_Dispatching_Operation (S)
9918 then
9919 Make_Inequality_Operator (S);
9920 Check_Untagged_Equality (S);
9921 end if;
9922 end New_Overloaded_Entity;
9924 ---------------------
9925 -- Process_Formals --
9926 ---------------------
9928 procedure Process_Formals
9929 (T : List_Id;
9930 Related_Nod : Node_Id)
9932 Param_Spec : Node_Id;
9933 Formal : Entity_Id;
9934 Formal_Type : Entity_Id;
9935 Default : Node_Id;
9936 Ptype : Entity_Id;
9938 Num_Out_Params : Nat := 0;
9939 First_Out_Param : Entity_Id := Empty;
9940 -- Used for setting Is_Only_Out_Parameter
9942 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean;
9943 -- Determine whether an access type designates a type coming from a
9944 -- limited view.
9946 function Is_Class_Wide_Default (D : Node_Id) return Boolean;
9947 -- Check whether the default has a class-wide type. After analysis the
9948 -- default has the type of the formal, so we must also check explicitly
9949 -- for an access attribute.
9951 ----------------------------------
9952 -- Designates_From_Limited_With --
9953 ----------------------------------
9955 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean is
9956 Desig : Entity_Id := Typ;
9958 begin
9959 if Is_Access_Type (Desig) then
9960 Desig := Directly_Designated_Type (Desig);
9961 end if;
9963 if Is_Class_Wide_Type (Desig) then
9964 Desig := Root_Type (Desig);
9965 end if;
9967 return
9968 Ekind (Desig) = E_Incomplete_Type
9969 and then From_Limited_With (Desig);
9970 end Designates_From_Limited_With;
9972 ---------------------------
9973 -- Is_Class_Wide_Default --
9974 ---------------------------
9976 function Is_Class_Wide_Default (D : Node_Id) return Boolean is
9977 begin
9978 return Is_Class_Wide_Type (Designated_Type (Etype (D)))
9979 or else (Nkind (D) = N_Attribute_Reference
9980 and then Attribute_Name (D) = Name_Access
9981 and then Is_Class_Wide_Type (Etype (Prefix (D))));
9982 end Is_Class_Wide_Default;
9984 -- Start of processing for Process_Formals
9986 begin
9987 -- In order to prevent premature use of the formals in the same formal
9988 -- part, the Ekind is left undefined until all default expressions are
9989 -- analyzed. The Ekind is established in a separate loop at the end.
9991 Param_Spec := First (T);
9992 while Present (Param_Spec) loop
9993 Formal := Defining_Identifier (Param_Spec);
9994 Set_Never_Set_In_Source (Formal, True);
9995 Enter_Name (Formal);
9997 -- Case of ordinary parameters
9999 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
10000 Find_Type (Parameter_Type (Param_Spec));
10001 Ptype := Parameter_Type (Param_Spec);
10003 if Ptype = Error then
10004 goto Continue;
10005 end if;
10007 Formal_Type := Entity (Ptype);
10009 if Is_Incomplete_Type (Formal_Type)
10010 or else
10011 (Is_Class_Wide_Type (Formal_Type)
10012 and then Is_Incomplete_Type (Root_Type (Formal_Type)))
10013 then
10014 -- Ada 2005 (AI-326): Tagged incomplete types allowed in
10015 -- primitive operations, as long as their completion is
10016 -- in the same declarative part. If in the private part
10017 -- this means that the type cannot be a Taft-amendment type.
10018 -- Check is done on package exit. For access to subprograms,
10019 -- the use is legal for Taft-amendment types.
10021 -- Ada 2012: tagged incomplete types are allowed as generic
10022 -- formal types. They do not introduce dependencies and the
10023 -- corresponding generic subprogram does not have a delayed
10024 -- freeze, because it does not need a freeze node. However,
10025 -- it is still the case that untagged incomplete types cannot
10026 -- be Taft-amendment types and must be completed in private
10027 -- part, so the subprogram must appear in the list of private
10028 -- dependents of the type.
10030 if Is_Tagged_Type (Formal_Type)
10031 or else (Ada_Version >= Ada_2012
10032 and then not From_Limited_With (Formal_Type)
10033 and then not Is_Generic_Type (Formal_Type))
10034 then
10035 if Ekind (Scope (Current_Scope)) = E_Package
10036 and then not Is_Generic_Type (Formal_Type)
10037 and then not Is_Class_Wide_Type (Formal_Type)
10038 then
10039 if not Nkind_In
10040 (Parent (T), N_Access_Function_Definition,
10041 N_Access_Procedure_Definition)
10042 then
10043 Append_Elmt
10044 (Current_Scope,
10045 To => Private_Dependents (Base_Type (Formal_Type)));
10047 -- Freezing is delayed to ensure that Register_Prim
10048 -- will get called for this operation, which is needed
10049 -- in cases where static dispatch tables aren't built.
10050 -- (Note that the same is done for controlling access
10051 -- parameter cases in function Access_Definition.)
10053 if not Is_Thunk (Current_Scope) then
10054 Set_Has_Delayed_Freeze (Current_Scope);
10055 end if;
10056 end if;
10057 end if;
10059 -- Special handling of Value_Type for CIL case
10061 elsif Is_Value_Type (Formal_Type) then
10062 null;
10064 elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
10065 N_Access_Procedure_Definition)
10066 then
10067 -- AI05-0151: Tagged incomplete types are allowed in all
10068 -- formal parts. Untagged incomplete types are not allowed
10069 -- in bodies. Limited views of either kind are not allowed
10070 -- if there is no place at which the non-limited view can
10071 -- become available.
10073 -- Incomplete formal untagged types are not allowed in
10074 -- subprogram bodies (but are legal in their declarations).
10076 if Is_Generic_Type (Formal_Type)
10077 and then not Is_Tagged_Type (Formal_Type)
10078 and then Nkind (Parent (Related_Nod)) = N_Subprogram_Body
10079 then
10080 Error_Msg_N
10081 ("invalid use of formal incomplete type", Param_Spec);
10083 elsif Ada_Version >= Ada_2012 then
10084 if Is_Tagged_Type (Formal_Type)
10085 and then (not From_Limited_With (Formal_Type)
10086 or else not In_Package_Body)
10087 then
10088 null;
10090 elsif Nkind_In (Parent (Parent (T)), N_Accept_Statement,
10091 N_Accept_Alternative,
10092 N_Entry_Body,
10093 N_Subprogram_Body)
10094 then
10095 Error_Msg_NE
10096 ("invalid use of untagged incomplete type&",
10097 Ptype, Formal_Type);
10098 end if;
10100 else
10101 Error_Msg_NE
10102 ("invalid use of incomplete type&",
10103 Param_Spec, Formal_Type);
10105 -- Further checks on the legality of incomplete types
10106 -- in formal parts are delayed until the freeze point
10107 -- of the enclosing subprogram or access to subprogram.
10108 end if;
10109 end if;
10111 elsif Ekind (Formal_Type) = E_Void then
10112 Error_Msg_NE
10113 ("premature use of&",
10114 Parameter_Type (Param_Spec), Formal_Type);
10115 end if;
10117 -- Ada 2012 (AI-142): Handle aliased parameters
10119 if Ada_Version >= Ada_2012
10120 and then Aliased_Present (Param_Spec)
10121 then
10122 Set_Is_Aliased (Formal);
10123 end if;
10125 -- Ada 2005 (AI-231): Create and decorate an internal subtype
10126 -- declaration corresponding to the null-excluding type of the
10127 -- formal in the enclosing scope. Finally, replace the parameter
10128 -- type of the formal with the internal subtype.
10130 if Ada_Version >= Ada_2005
10131 and then Null_Exclusion_Present (Param_Spec)
10132 then
10133 if not Is_Access_Type (Formal_Type) then
10134 Error_Msg_N
10135 ("`NOT NULL` allowed only for an access type", Param_Spec);
10137 else
10138 if Can_Never_Be_Null (Formal_Type)
10139 and then Comes_From_Source (Related_Nod)
10140 then
10141 Error_Msg_NE
10142 ("`NOT NULL` not allowed (& already excludes null)",
10143 Param_Spec, Formal_Type);
10144 end if;
10146 Formal_Type :=
10147 Create_Null_Excluding_Itype
10148 (T => Formal_Type,
10149 Related_Nod => Related_Nod,
10150 Scope_Id => Scope (Current_Scope));
10152 -- If the designated type of the itype is an itype that is
10153 -- not frozen yet, we set the Has_Delayed_Freeze attribute
10154 -- on the access subtype, to prevent order-of-elaboration
10155 -- issues in the backend.
10157 -- Example:
10158 -- type T is access procedure;
10159 -- procedure Op (O : not null T);
10161 if Is_Itype (Directly_Designated_Type (Formal_Type))
10162 and then
10163 not Is_Frozen (Directly_Designated_Type (Formal_Type))
10164 then
10165 Set_Has_Delayed_Freeze (Formal_Type);
10166 end if;
10167 end if;
10168 end if;
10170 -- An access formal type
10172 else
10173 Formal_Type :=
10174 Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
10176 -- No need to continue if we already notified errors
10178 if not Present (Formal_Type) then
10179 return;
10180 end if;
10182 -- Ada 2005 (AI-254)
10184 declare
10185 AD : constant Node_Id :=
10186 Access_To_Subprogram_Definition
10187 (Parameter_Type (Param_Spec));
10188 begin
10189 if Present (AD) and then Protected_Present (AD) then
10190 Formal_Type :=
10191 Replace_Anonymous_Access_To_Protected_Subprogram
10192 (Param_Spec);
10193 end if;
10194 end;
10195 end if;
10197 Set_Etype (Formal, Formal_Type);
10199 -- Deal with default expression if present
10201 Default := Expression (Param_Spec);
10203 if Present (Default) then
10204 Check_SPARK_05_Restriction
10205 ("default expression is not allowed", Default);
10207 if Out_Present (Param_Spec) then
10208 Error_Msg_N
10209 ("default initialization only allowed for IN parameters",
10210 Param_Spec);
10211 end if;
10213 -- Do the special preanalysis of the expression (see section on
10214 -- "Handling of Default Expressions" in the spec of package Sem).
10216 Preanalyze_Spec_Expression (Default, Formal_Type);
10218 -- An access to constant cannot be the default for
10219 -- an access parameter that is an access to variable.
10221 if Ekind (Formal_Type) = E_Anonymous_Access_Type
10222 and then not Is_Access_Constant (Formal_Type)
10223 and then Is_Access_Type (Etype (Default))
10224 and then Is_Access_Constant (Etype (Default))
10225 then
10226 Error_Msg_N
10227 ("formal that is access to variable cannot be initialized "
10228 & "with an access-to-constant expression", Default);
10229 end if;
10231 -- Check that the designated type of an access parameter's default
10232 -- is not a class-wide type unless the parameter's designated type
10233 -- is also class-wide.
10235 if Ekind (Formal_Type) = E_Anonymous_Access_Type
10236 and then not Designates_From_Limited_With (Formal_Type)
10237 and then Is_Class_Wide_Default (Default)
10238 and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
10239 then
10240 Error_Msg_N
10241 ("access to class-wide expression not allowed here", Default);
10242 end if;
10244 -- Check incorrect use of dynamically tagged expressions
10246 if Is_Tagged_Type (Formal_Type) then
10247 Check_Dynamically_Tagged_Expression
10248 (Expr => Default,
10249 Typ => Formal_Type,
10250 Related_Nod => Default);
10251 end if;
10252 end if;
10254 -- Ada 2005 (AI-231): Static checks
10256 if Ada_Version >= Ada_2005
10257 and then Is_Access_Type (Etype (Formal))
10258 and then Can_Never_Be_Null (Etype (Formal))
10259 then
10260 Null_Exclusion_Static_Checks (Param_Spec);
10261 end if;
10263 -- The following checks are relevant when SPARK_Mode is on as these
10264 -- are not standard Ada legality rules.
10266 if SPARK_Mode = On then
10267 if Ekind_In (Scope (Formal), E_Function, E_Generic_Function) then
10269 -- A function cannot have a parameter of mode IN OUT or OUT
10270 -- (SPARK RM 6.1).
10272 if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
10273 Error_Msg_N
10274 ("function cannot have parameter of mode `OUT` or "
10275 & "`IN OUT`", Formal);
10277 -- A function cannot have an effectively volatile formal
10278 -- parameter (SPARK RM 7.1.3(10)).
10280 elsif Is_Effectively_Volatile (Formal) then
10281 Error_Msg_N
10282 ("function cannot have a volatile formal parameter",
10283 Formal);
10284 end if;
10286 -- A procedure cannot have an effectively volatile formal
10287 -- parameter of mode IN because it behaves as a constant
10288 -- (SPARK RM 7.1.3(6)).
10290 elsif Ekind (Scope (Formal)) = E_Procedure
10291 and then Ekind (Formal) = E_In_Parameter
10292 and then Is_Effectively_Volatile (Formal)
10293 then
10294 Error_Msg_N
10295 ("formal parameter of mode `IN` cannot be volatile", Formal);
10296 end if;
10297 end if;
10299 <<Continue>>
10300 Next (Param_Spec);
10301 end loop;
10303 -- If this is the formal part of a function specification, analyze the
10304 -- subtype mark in the context where the formals are visible but not
10305 -- yet usable, and may hide outer homographs.
10307 if Nkind (Related_Nod) = N_Function_Specification then
10308 Analyze_Return_Type (Related_Nod);
10309 end if;
10311 -- Now set the kind (mode) of each formal
10313 Param_Spec := First (T);
10314 while Present (Param_Spec) loop
10315 Formal := Defining_Identifier (Param_Spec);
10316 Set_Formal_Mode (Formal);
10318 if Ekind (Formal) = E_In_Parameter then
10319 Set_Default_Value (Formal, Expression (Param_Spec));
10321 if Present (Expression (Param_Spec)) then
10322 Default := Expression (Param_Spec);
10324 if Is_Scalar_Type (Etype (Default)) then
10325 if Nkind (Parameter_Type (Param_Spec)) /=
10326 N_Access_Definition
10327 then
10328 Formal_Type := Entity (Parameter_Type (Param_Spec));
10329 else
10330 Formal_Type :=
10331 Access_Definition
10332 (Related_Nod, Parameter_Type (Param_Spec));
10333 end if;
10335 Apply_Scalar_Range_Check (Default, Formal_Type);
10336 end if;
10337 end if;
10339 elsif Ekind (Formal) = E_Out_Parameter then
10340 Num_Out_Params := Num_Out_Params + 1;
10342 if Num_Out_Params = 1 then
10343 First_Out_Param := Formal;
10344 end if;
10346 elsif Ekind (Formal) = E_In_Out_Parameter then
10347 Num_Out_Params := Num_Out_Params + 1;
10348 end if;
10350 -- Skip remaining processing if formal type was in error
10352 if Etype (Formal) = Any_Type or else Error_Posted (Formal) then
10353 goto Next_Parameter;
10354 end if;
10356 -- Force call by reference if aliased
10358 if Is_Aliased (Formal) then
10359 Set_Mechanism (Formal, By_Reference);
10361 -- Warn if user asked this to be passed by copy
10363 if Convention (Formal_Type) = Convention_Ada_Pass_By_Copy then
10364 Error_Msg_N
10365 ("cannot pass aliased parameter & by copy??", Formal);
10366 end if;
10368 -- Force mechanism if type has Convention Ada_Pass_By_Ref/Copy
10370 elsif Convention (Formal_Type) = Convention_Ada_Pass_By_Copy then
10371 Set_Mechanism (Formal, By_Copy);
10373 elsif Convention (Formal_Type) = Convention_Ada_Pass_By_Reference then
10374 Set_Mechanism (Formal, By_Reference);
10375 end if;
10377 <<Next_Parameter>>
10378 Next (Param_Spec);
10379 end loop;
10381 if Present (First_Out_Param) and then Num_Out_Params = 1 then
10382 Set_Is_Only_Out_Parameter (First_Out_Param);
10383 end if;
10384 end Process_Formals;
10386 ----------------------------
10387 -- Reference_Body_Formals --
10388 ----------------------------
10390 procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
10391 Fs : Entity_Id;
10392 Fb : Entity_Id;
10394 begin
10395 if Error_Posted (Spec) then
10396 return;
10397 end if;
10399 -- Iterate over both lists. They may be of different lengths if the two
10400 -- specs are not conformant.
10402 Fs := First_Formal (Spec);
10403 Fb := First_Formal (Bod);
10404 while Present (Fs) and then Present (Fb) loop
10405 Generate_Reference (Fs, Fb, 'b');
10407 if Style_Check then
10408 Style.Check_Identifier (Fb, Fs);
10409 end if;
10411 Set_Spec_Entity (Fb, Fs);
10412 Set_Referenced (Fs, False);
10413 Next_Formal (Fs);
10414 Next_Formal (Fb);
10415 end loop;
10416 end Reference_Body_Formals;
10418 -------------------------
10419 -- Set_Actual_Subtypes --
10420 -------------------------
10422 procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
10423 Decl : Node_Id;
10424 Formal : Entity_Id;
10425 T : Entity_Id;
10426 First_Stmt : Node_Id := Empty;
10427 AS_Needed : Boolean;
10429 begin
10430 -- If this is an empty initialization procedure, no need to create
10431 -- actual subtypes (small optimization).
10433 if Ekind (Subp) = E_Procedure and then Is_Null_Init_Proc (Subp) then
10434 return;
10435 end if;
10437 Formal := First_Formal (Subp);
10438 while Present (Formal) loop
10439 T := Etype (Formal);
10441 -- We never need an actual subtype for a constrained formal
10443 if Is_Constrained (T) then
10444 AS_Needed := False;
10446 -- If we have unknown discriminants, then we do not need an actual
10447 -- subtype, or more accurately we cannot figure it out. Note that
10448 -- all class-wide types have unknown discriminants.
10450 elsif Has_Unknown_Discriminants (T) then
10451 AS_Needed := False;
10453 -- At this stage we have an unconstrained type that may need an
10454 -- actual subtype. For sure the actual subtype is needed if we have
10455 -- an unconstrained array type.
10457 elsif Is_Array_Type (T) then
10458 AS_Needed := True;
10460 -- The only other case needing an actual subtype is an unconstrained
10461 -- record type which is an IN parameter (we cannot generate actual
10462 -- subtypes for the OUT or IN OUT case, since an assignment can
10463 -- change the discriminant values. However we exclude the case of
10464 -- initialization procedures, since discriminants are handled very
10465 -- specially in this context, see the section entitled "Handling of
10466 -- Discriminants" in Einfo.
10468 -- We also exclude the case of Discrim_SO_Functions (functions used
10469 -- in front end layout mode for size/offset values), since in such
10470 -- functions only discriminants are referenced, and not only are such
10471 -- subtypes not needed, but they cannot always be generated, because
10472 -- of order of elaboration issues.
10474 elsif Is_Record_Type (T)
10475 and then Ekind (Formal) = E_In_Parameter
10476 and then Chars (Formal) /= Name_uInit
10477 and then not Is_Unchecked_Union (T)
10478 and then not Is_Discrim_SO_Function (Subp)
10479 then
10480 AS_Needed := True;
10482 -- All other cases do not need an actual subtype
10484 else
10485 AS_Needed := False;
10486 end if;
10488 -- Generate actual subtypes for unconstrained arrays and
10489 -- unconstrained discriminated records.
10491 if AS_Needed then
10492 if Nkind (N) = N_Accept_Statement then
10494 -- If expansion is active, the formal is replaced by a local
10495 -- variable that renames the corresponding entry of the
10496 -- parameter block, and it is this local variable that may
10497 -- require an actual subtype.
10499 if Expander_Active then
10500 Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
10501 else
10502 Decl := Build_Actual_Subtype (T, Formal);
10503 end if;
10505 if Present (Handled_Statement_Sequence (N)) then
10506 First_Stmt :=
10507 First (Statements (Handled_Statement_Sequence (N)));
10508 Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
10509 Mark_Rewrite_Insertion (Decl);
10510 else
10511 -- If the accept statement has no body, there will be no
10512 -- reference to the actuals, so no need to compute actual
10513 -- subtypes.
10515 return;
10516 end if;
10518 else
10519 Decl := Build_Actual_Subtype (T, Formal);
10520 Prepend (Decl, Declarations (N));
10521 Mark_Rewrite_Insertion (Decl);
10522 end if;
10524 -- The declaration uses the bounds of an existing object, and
10525 -- therefore needs no constraint checks.
10527 Analyze (Decl, Suppress => All_Checks);
10529 -- We need to freeze manually the generated type when it is
10530 -- inserted anywhere else than in a declarative part.
10532 if Present (First_Stmt) then
10533 Insert_List_Before_And_Analyze (First_Stmt,
10534 Freeze_Entity (Defining_Identifier (Decl), N));
10536 -- Ditto if the type has a dynamic predicate, because the
10537 -- generated function will mention the actual subtype.
10539 elsif Has_Dynamic_Predicate_Aspect (T) then
10540 Insert_List_Before_And_Analyze (Decl,
10541 Freeze_Entity (Defining_Identifier (Decl), N));
10542 end if;
10544 if Nkind (N) = N_Accept_Statement
10545 and then Expander_Active
10546 then
10547 Set_Actual_Subtype (Renamed_Object (Formal),
10548 Defining_Identifier (Decl));
10549 else
10550 Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
10551 end if;
10552 end if;
10554 Next_Formal (Formal);
10555 end loop;
10556 end Set_Actual_Subtypes;
10558 ---------------------
10559 -- Set_Formal_Mode --
10560 ---------------------
10562 procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
10563 Spec : constant Node_Id := Parent (Formal_Id);
10565 begin
10566 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
10567 -- since we ensure that corresponding actuals are always valid at the
10568 -- point of the call.
10570 if Out_Present (Spec) then
10571 if Ekind_In (Scope (Formal_Id), E_Function, E_Generic_Function) then
10573 -- [IN] OUT parameters allowed for functions in Ada 2012
10575 if Ada_Version >= Ada_2012 then
10577 -- Even in Ada 2012 operators can only have IN parameters
10579 if Is_Operator_Symbol_Name (Chars (Scope (Formal_Id))) then
10580 Error_Msg_N ("operators can only have IN parameters", Spec);
10581 end if;
10583 if In_Present (Spec) then
10584 Set_Ekind (Formal_Id, E_In_Out_Parameter);
10585 else
10586 Set_Ekind (Formal_Id, E_Out_Parameter);
10587 end if;
10589 Set_Has_Out_Or_In_Out_Parameter (Scope (Formal_Id), True);
10591 -- But not in earlier versions of Ada
10593 else
10594 Error_Msg_N ("functions can only have IN parameters", Spec);
10595 Set_Ekind (Formal_Id, E_In_Parameter);
10596 end if;
10598 elsif In_Present (Spec) then
10599 Set_Ekind (Formal_Id, E_In_Out_Parameter);
10601 else
10602 Set_Ekind (Formal_Id, E_Out_Parameter);
10603 Set_Never_Set_In_Source (Formal_Id, True);
10604 Set_Is_True_Constant (Formal_Id, False);
10605 Set_Current_Value (Formal_Id, Empty);
10606 end if;
10608 else
10609 Set_Ekind (Formal_Id, E_In_Parameter);
10610 end if;
10612 -- Set Is_Known_Non_Null for access parameters since the language
10613 -- guarantees that access parameters are always non-null. We also set
10614 -- Can_Never_Be_Null, since there is no way to change the value.
10616 if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
10618 -- Ada 2005 (AI-231): In Ada 95, access parameters are always non-
10619 -- null; In Ada 2005, only if then null_exclusion is explicit.
10621 if Ada_Version < Ada_2005
10622 or else Can_Never_Be_Null (Etype (Formal_Id))
10623 then
10624 Set_Is_Known_Non_Null (Formal_Id);
10625 Set_Can_Never_Be_Null (Formal_Id);
10626 end if;
10628 -- Ada 2005 (AI-231): Null-exclusion access subtype
10630 elsif Is_Access_Type (Etype (Formal_Id))
10631 and then Can_Never_Be_Null (Etype (Formal_Id))
10632 then
10633 Set_Is_Known_Non_Null (Formal_Id);
10635 -- We can also set Can_Never_Be_Null (thus preventing some junk
10636 -- access checks) for the case of an IN parameter, which cannot
10637 -- be changed, or for an IN OUT parameter, which can be changed but
10638 -- not to a null value. But for an OUT parameter, the initial value
10639 -- passed in can be null, so we can't set this flag in that case.
10641 if Ekind (Formal_Id) /= E_Out_Parameter then
10642 Set_Can_Never_Be_Null (Formal_Id);
10643 end if;
10644 end if;
10646 Set_Mechanism (Formal_Id, Default_Mechanism);
10647 Set_Formal_Validity (Formal_Id);
10648 end Set_Formal_Mode;
10650 -------------------------
10651 -- Set_Formal_Validity --
10652 -------------------------
10654 procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
10655 begin
10656 -- If no validity checking, then we cannot assume anything about the
10657 -- validity of parameters, since we do not know there is any checking
10658 -- of the validity on the call side.
10660 if not Validity_Checks_On then
10661 return;
10663 -- If validity checking for parameters is enabled, this means we are
10664 -- not supposed to make any assumptions about argument values.
10666 elsif Validity_Check_Parameters then
10667 return;
10669 -- If we are checking in parameters, we will assume that the caller is
10670 -- also checking parameters, so we can assume the parameter is valid.
10672 elsif Ekind (Formal_Id) = E_In_Parameter
10673 and then Validity_Check_In_Params
10674 then
10675 Set_Is_Known_Valid (Formal_Id, True);
10677 -- Similar treatment for IN OUT parameters
10679 elsif Ekind (Formal_Id) = E_In_Out_Parameter
10680 and then Validity_Check_In_Out_Params
10681 then
10682 Set_Is_Known_Valid (Formal_Id, True);
10683 end if;
10684 end Set_Formal_Validity;
10686 ------------------------
10687 -- Subtype_Conformant --
10688 ------------------------
10690 function Subtype_Conformant
10691 (New_Id : Entity_Id;
10692 Old_Id : Entity_Id;
10693 Skip_Controlling_Formals : Boolean := False) return Boolean
10695 Result : Boolean;
10696 begin
10697 Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
10698 Skip_Controlling_Formals => Skip_Controlling_Formals);
10699 return Result;
10700 end Subtype_Conformant;
10702 ---------------------
10703 -- Type_Conformant --
10704 ---------------------
10706 function Type_Conformant
10707 (New_Id : Entity_Id;
10708 Old_Id : Entity_Id;
10709 Skip_Controlling_Formals : Boolean := False) return Boolean
10711 Result : Boolean;
10712 begin
10713 May_Hide_Profile := False;
10714 Check_Conformance
10715 (New_Id, Old_Id, Type_Conformant, False, Result,
10716 Skip_Controlling_Formals => Skip_Controlling_Formals);
10717 return Result;
10718 end Type_Conformant;
10720 -------------------------------
10721 -- Valid_Operator_Definition --
10722 -------------------------------
10724 procedure Valid_Operator_Definition (Designator : Entity_Id) is
10725 N : Integer := 0;
10726 F : Entity_Id;
10727 Id : constant Name_Id := Chars (Designator);
10728 N_OK : Boolean;
10730 begin
10731 F := First_Formal (Designator);
10732 while Present (F) loop
10733 N := N + 1;
10735 if Present (Default_Value (F)) then
10736 Error_Msg_N
10737 ("default values not allowed for operator parameters",
10738 Parent (F));
10740 -- For function instantiations that are operators, we must check
10741 -- separately that the corresponding generic only has in-parameters.
10742 -- For subprogram declarations this is done in Set_Formal_Mode. Such
10743 -- an error could not arise in earlier versions of the language.
10745 elsif Ekind (F) /= E_In_Parameter then
10746 Error_Msg_N ("operators can only have IN parameters", F);
10747 end if;
10749 Next_Formal (F);
10750 end loop;
10752 -- Verify that user-defined operators have proper number of arguments
10753 -- First case of operators which can only be unary
10755 if Nam_In (Id, Name_Op_Not, Name_Op_Abs) then
10756 N_OK := (N = 1);
10758 -- Case of operators which can be unary or binary
10760 elsif Nam_In (Id, Name_Op_Add, Name_Op_Subtract) then
10761 N_OK := (N in 1 .. 2);
10763 -- All other operators can only be binary
10765 else
10766 N_OK := (N = 2);
10767 end if;
10769 if not N_OK then
10770 Error_Msg_N
10771 ("incorrect number of arguments for operator", Designator);
10772 end if;
10774 if Id = Name_Op_Ne
10775 and then Base_Type (Etype (Designator)) = Standard_Boolean
10776 and then not Is_Intrinsic_Subprogram (Designator)
10777 then
10778 Error_Msg_N
10779 ("explicit definition of inequality not allowed", Designator);
10780 end if;
10781 end Valid_Operator_Definition;
10783 end Sem_Ch6;