1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Debug
; use Debug
;
30 with Einfo
; use Einfo
;
31 with Elists
; use Elists
;
32 with Errout
; use Errout
;
33 with Expander
; use Expander
;
34 with Exp_Ch6
; use Exp_Ch6
;
35 with Exp_Ch7
; use Exp_Ch7
;
36 with Exp_Ch9
; use Exp_Ch9
;
37 with Exp_Dbug
; use Exp_Dbug
;
38 with Exp_Disp
; use Exp_Disp
;
39 with Exp_Tss
; use Exp_Tss
;
40 with Exp_Util
; use Exp_Util
;
41 with Fname
; use Fname
;
42 with Freeze
; use Freeze
;
43 with Inline
; use Inline
;
44 with Itypes
; use Itypes
;
45 with Lib
.Xref
; use Lib
.Xref
;
46 with Layout
; use Layout
;
47 with Namet
; use Namet
;
49 with Nlists
; use Nlists
;
50 with Nmake
; use Nmake
;
52 with Output
; use Output
;
53 with Restrict
; use Restrict
;
54 with Rident
; use Rident
;
55 with Rtsfind
; use Rtsfind
;
57 with Sem_Aux
; use Sem_Aux
;
58 with Sem_Cat
; use Sem_Cat
;
59 with Sem_Ch3
; use Sem_Ch3
;
60 with Sem_Ch4
; use Sem_Ch4
;
61 with Sem_Ch5
; use Sem_Ch5
;
62 with Sem_Ch8
; use Sem_Ch8
;
63 with Sem_Ch10
; use Sem_Ch10
;
64 with Sem_Ch12
; use Sem_Ch12
;
65 with Sem_Ch13
; use Sem_Ch13
;
66 with Sem_Dim
; use Sem_Dim
;
67 with Sem_Disp
; use Sem_Disp
;
68 with Sem_Dist
; use Sem_Dist
;
69 with Sem_Elim
; use Sem_Elim
;
70 with Sem_Eval
; use Sem_Eval
;
71 with Sem_Mech
; use Sem_Mech
;
72 with Sem_Prag
; use Sem_Prag
;
73 with Sem_Res
; use Sem_Res
;
74 with Sem_Util
; use Sem_Util
;
75 with Sem_Type
; use Sem_Type
;
76 with Sem_Warn
; use Sem_Warn
;
77 with Sinput
; use Sinput
;
78 with Stand
; use Stand
;
79 with Sinfo
; use Sinfo
;
80 with Sinfo
.CN
; use Sinfo
.CN
;
81 with Snames
; use Snames
;
82 with Stringt
; use Stringt
;
84 with Stylesw
; use Stylesw
;
85 with Targparm
; use Targparm
;
86 with Tbuild
; use Tbuild
;
87 with Uintp
; use Uintp
;
88 with Urealp
; use Urealp
;
89 with Validsw
; use Validsw
;
91 package body Sem_Ch6
is
93 May_Hide_Profile
: Boolean := False;
94 -- This flag is used to indicate that two formals in two subprograms being
95 -- checked for conformance differ only in that one is an access parameter
96 -- while the other is of a general access type with the same designated
97 -- type. In this case, if the rest of the signatures match, a call to
98 -- either subprogram may be ambiguous, which is worth a warning. The flag
99 -- is set in Compatible_Types, and the warning emitted in
100 -- New_Overloaded_Entity.
102 -----------------------
103 -- Local Subprograms --
104 -----------------------
106 procedure Analyze_Null_Procedure
108 Is_Completion
: out Boolean);
109 -- A null procedure can be a declaration or (Ada 2012) a completion
111 procedure Analyze_Return_Statement
(N
: Node_Id
);
112 -- Common processing for simple and extended return statements
114 procedure Analyze_Function_Return
(N
: Node_Id
);
115 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
116 -- applies to a [generic] function.
118 procedure Analyze_Return_Type
(N
: Node_Id
);
119 -- Subsidiary to Process_Formals: analyze subtype mark in function
120 -- specification in a context where the formals are visible and hide
123 procedure Analyze_Subprogram_Body_Helper
(N
: Node_Id
);
124 -- Does all the real work of Analyze_Subprogram_Body. This is split out so
125 -- that we can use RETURN but not skip the debug output at the end.
127 procedure Analyze_Generic_Subprogram_Body
(N
: Node_Id
; Gen_Id
: Entity_Id
);
128 -- Analyze a generic subprogram body. N is the body to be analyzed, and
129 -- Gen_Id is the defining entity Id for the corresponding spec.
131 function Can_Override_Operator
(Subp
: Entity_Id
) return Boolean;
132 -- Returns true if Subp can override a predefined operator.
134 procedure Check_Conformance
137 Ctype
: Conformance_Type
;
139 Conforms
: out Boolean;
140 Err_Loc
: Node_Id
:= Empty
;
141 Get_Inst
: Boolean := False;
142 Skip_Controlling_Formals
: Boolean := False);
143 -- Given two entities, this procedure checks that the profiles associated
144 -- with these entities meet the conformance criterion given by the third
145 -- parameter. If they conform, Conforms is set True and control returns
146 -- to the caller. If they do not conform, Conforms is set to False, and
147 -- in addition, if Errmsg is True on the call, proper messages are output
148 -- to complain about the conformance failure. If Err_Loc is non_Empty
149 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
150 -- error messages are placed on the appropriate part of the construct
151 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
152 -- against a formal access-to-subprogram type so Get_Instance_Of must
155 procedure Check_Subprogram_Order
(N
: Node_Id
);
156 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
157 -- the alpha ordering rule for N if this ordering requirement applicable.
159 procedure Check_Returns
163 Proc
: Entity_Id
:= Empty
);
164 -- Called to check for missing return statements in a function body, or for
165 -- returns present in a procedure body which has No_Return set. HSS is the
166 -- handled statement sequence for the subprogram body. This procedure
167 -- checks all flow paths to make sure they either have return (Mode = 'F',
168 -- used for functions) or do not have a return (Mode = 'P', used for
169 -- No_Return procedures). The flag Err is set if there are any control
170 -- paths not explicitly terminated by a return in the function case, and is
171 -- True otherwise. Proc is the entity for the procedure case and is used
172 -- in posting the warning message.
174 procedure Check_Untagged_Equality
(Eq_Op
: Entity_Id
);
175 -- In Ada 2012, a primitive equality operator on an untagged record type
176 -- must appear before the type is frozen, and have the same visibility as
177 -- that of the type. This procedure checks that this rule is met, and
178 -- otherwise emits an error on the subprogram declaration and a warning
179 -- on the earlier freeze point if it is easy to locate. In Ada 2012 mode,
180 -- this routine outputs errors (or warnings if -gnatd.E is set). In earlier
181 -- versions of Ada, warnings are output if Warn_On_Ada_2012_Incompatibility
182 -- is set, otherwise the call has no effect.
184 procedure Enter_Overloaded_Entity
(S
: Entity_Id
);
185 -- This procedure makes S, a new overloaded entity, into the first visible
186 -- entity with that name.
188 function Is_Non_Overriding_Operation
190 New_E
: Entity_Id
) return Boolean;
191 -- Enforce the rule given in 12.3(18): a private operation in an instance
192 -- overrides an inherited operation only if the corresponding operation
193 -- was overriding in the generic. This needs to be checked for primitive
194 -- operations of types derived (in the generic unit) from formal private
195 -- or formal derived types.
197 procedure Make_Inequality_Operator
(S
: Entity_Id
);
198 -- Create the declaration for an inequality operator that is implicitly
199 -- created by a user-defined equality operator that yields a boolean.
201 procedure Set_Formal_Validity
(Formal_Id
: Entity_Id
);
202 -- Formal_Id is an formal parameter entity. This procedure deals with
203 -- setting the proper validity status for this entity, which depends on
204 -- the kind of parameter and the validity checking mode.
206 ---------------------------------------------
207 -- Analyze_Abstract_Subprogram_Declaration --
208 ---------------------------------------------
210 procedure Analyze_Abstract_Subprogram_Declaration
(N
: Node_Id
) is
211 Designator
: constant Entity_Id
:=
212 Analyze_Subprogram_Specification
(Specification
(N
));
213 Scop
: constant Entity_Id
:= Current_Scope
;
216 Check_SPARK_05_Restriction
("abstract subprogram is not allowed", N
);
218 Generate_Definition
(Designator
);
219 Set_Contract
(Designator
, Make_Contract
(Sloc
(Designator
)));
220 Set_Is_Abstract_Subprogram
(Designator
);
221 New_Overloaded_Entity
(Designator
);
222 Check_Delayed_Subprogram
(Designator
);
224 Set_Categorization_From_Scope
(Designator
, Scop
);
226 -- An abstract subprogram declared within a Ghost scope is automatically
227 -- Ghost (SPARK RM 6.9(2)).
229 if Comes_From_Source
(Designator
) and then Within_Ghost_Scope
then
230 Set_Is_Ghost_Entity
(Designator
);
233 if Ekind
(Scope
(Designator
)) = E_Protected_Type
then
235 ("abstract subprogram not allowed in protected type", N
);
237 -- Issue a warning if the abstract subprogram is neither a dispatching
238 -- operation nor an operation that overrides an inherited subprogram or
239 -- predefined operator, since this most likely indicates a mistake.
241 elsif Warn_On_Redundant_Constructs
242 and then not Is_Dispatching_Operation
(Designator
)
243 and then not Present
(Overridden_Operation
(Designator
))
244 and then (not Is_Operator_Symbol_Name
(Chars
(Designator
))
245 or else Scop
/= Scope
(Etype
(First_Formal
(Designator
))))
248 ("abstract subprogram is not dispatching or overriding?r?", N
);
251 Generate_Reference_To_Formals
(Designator
);
252 Check_Eliminated
(Designator
);
254 if Has_Aspects
(N
) then
255 Analyze_Aspect_Specifications
(N
, Designator
);
257 end Analyze_Abstract_Subprogram_Declaration
;
259 ---------------------------------
260 -- Analyze_Expression_Function --
261 ---------------------------------
263 procedure Analyze_Expression_Function
(N
: Node_Id
) is
264 Loc
: constant Source_Ptr
:= Sloc
(N
);
265 LocX
: constant Source_Ptr
:= Sloc
(Expression
(N
));
266 Expr
: constant Node_Id
:= Expression
(N
);
267 Spec
: constant Node_Id
:= Specification
(N
);
272 -- If the expression is a completion, Prev is the entity whose
273 -- declaration is completed. Def_Id is needed to analyze the spec.
280 -- This is one of the occasions on which we transform the tree during
281 -- semantic analysis. If this is a completion, transform the expression
282 -- function into an equivalent subprogram body, and analyze it.
284 -- Expression functions are inlined unconditionally. The back-end will
285 -- determine whether this is possible.
287 Inline_Processing_Required
:= True;
289 -- Create a specification for the generated body. Types and defauts in
290 -- the profile are copies of the spec, but new entities must be created
291 -- for the unit name and the formals.
293 New_Spec
:= New_Copy_Tree
(Spec
);
294 Set_Defining_Unit_Name
(New_Spec
,
295 Make_Defining_Identifier
(Sloc
(Defining_Unit_Name
(Spec
)),
296 Chars
(Defining_Unit_Name
(Spec
))));
298 if Present
(Parameter_Specifications
(New_Spec
)) then
300 Formal_Spec
: Node_Id
;
304 Formal_Spec
:= First
(Parameter_Specifications
(New_Spec
));
306 -- Create a new formal parameter at the same source position
308 while Present
(Formal_Spec
) loop
309 Def
:= Defining_Identifier
(Formal_Spec
);
310 Set_Defining_Identifier
(Formal_Spec
,
311 Make_Defining_Identifier
(Sloc
(Def
),
312 Chars
=> Chars
(Def
)));
318 Prev
:= Current_Entity_In_Scope
(Defining_Entity
(Spec
));
320 -- If there are previous overloadable entities with the same name,
321 -- check whether any of them is completed by the expression function.
322 -- In a generic context a formal subprogram has no completion.
325 and then Is_Overloadable
(Prev
)
326 and then not Is_Formal_Subprogram
(Prev
)
328 Def_Id
:= Analyze_Subprogram_Specification
(Spec
);
329 Prev
:= Find_Corresponding_Spec
(N
);
331 -- The previous entity may be an expression function as well, in
332 -- which case the redeclaration is illegal.
335 and then Nkind
(Original_Node
(Unit_Declaration_Node
(Prev
))) =
336 N_Expression_Function
338 Error_Msg_Sloc
:= Sloc
(Prev
);
339 Error_Msg_N
("& conflicts with declaration#", Def_Id
);
344 Ret
:= Make_Simple_Return_Statement
(LocX
, Expression
(N
));
347 Make_Subprogram_Body
(Loc
,
348 Specification
=> New_Spec
,
349 Declarations
=> Empty_List
,
350 Handled_Statement_Sequence
=>
351 Make_Handled_Sequence_Of_Statements
(LocX
,
352 Statements
=> New_List
(Ret
)));
354 -- If the expression completes a generic subprogram, we must create a
355 -- separate node for the body, because at instantiation the original
356 -- node of the generic copy must be a generic subprogram body, and
357 -- cannot be a expression function. Otherwise we just rewrite the
358 -- expression with the non-generic body.
360 if Present
(Prev
) and then Ekind
(Prev
) = E_Generic_Function
then
361 Insert_After
(N
, New_Body
);
363 -- Propagate any aspects or pragmas that apply to the expression
364 -- function to the proper body when the expression function acts
367 if Has_Aspects
(N
) then
368 Move_Aspects
(N
, To
=> New_Body
);
371 Relocate_Pragmas_To_Body
(New_Body
);
373 Rewrite
(N
, Make_Null_Statement
(Loc
));
374 Set_Has_Completion
(Prev
, False);
377 Set_Is_Inlined
(Prev
);
379 -- If the expression function is a completion, the previous declaration
380 -- must come from source. We know already that appears in the current
381 -- scope. The entity itself may be internally created if within a body
385 and then Comes_From_Source
(Parent
(Prev
))
386 and then not Is_Formal_Subprogram
(Prev
)
388 Set_Has_Completion
(Prev
, False);
390 -- An expression function that is a completion freezes the
391 -- expression. This means freezing the return type, and if it is
392 -- an access type, freezing its designated type as well.
394 -- Note that we cannot defer this freezing to the analysis of the
395 -- expression itself, because a freeze node might appear in a nested
396 -- scope, leading to an elaboration order issue in gigi.
398 Freeze_Before
(N
, Etype
(Prev
));
400 if Is_Access_Type
(Etype
(Prev
)) then
401 Freeze_Before
(N
, Designated_Type
(Etype
(Prev
)));
404 -- For navigation purposes, indicate that the function is a body
406 Generate_Reference
(Prev
, Defining_Entity
(N
), 'b', Force
=> True);
407 Rewrite
(N
, New_Body
);
409 -- Correct the parent pointer of the aspect specification list to
410 -- reference the rewritten node.
412 if Has_Aspects
(N
) then
413 Set_Parent
(Aspect_Specifications
(N
), N
);
416 -- Propagate any pragmas that apply to the expression function to the
417 -- proper body when the expression function acts as a completion.
418 -- Aspects are automatically transfered because of node rewriting.
420 Relocate_Pragmas_To_Body
(N
);
423 -- Prev is the previous entity with the same name, but it is can
424 -- be an unrelated spec that is not completed by the expression
425 -- function. In that case the relevant entity is the one in the body.
426 -- Not clear that the backend can inline it in this case ???
428 if Has_Completion
(Prev
) then
429 Set_Is_Inlined
(Prev
);
431 -- The formals of the expression function are body formals,
432 -- and do not appear in the ali file, which will only contain
433 -- references to the formals of the original subprogram spec.
440 F1
:= First_Formal
(Def_Id
);
441 F2
:= First_Formal
(Prev
);
443 while Present
(F1
) loop
444 Set_Spec_Entity
(F1
, F2
);
451 Set_Is_Inlined
(Defining_Entity
(New_Body
));
454 -- If this is not a completion, create both a declaration and a body, so
455 -- that the expression can be inlined whenever possible.
458 -- An expression function that is not a completion is not a
459 -- subprogram declaration, and thus cannot appear in a protected
462 if Nkind
(Parent
(N
)) = N_Protected_Definition
then
464 ("an expression function is not a legal protected operation", N
);
467 Rewrite
(N
, Make_Subprogram_Declaration
(Loc
, Specification
=> Spec
));
469 -- Correct the parent pointer of the aspect specification list to
470 -- reference the rewritten node.
472 if Has_Aspects
(N
) then
473 Set_Parent
(Aspect_Specifications
(N
), N
);
478 -- Within a generic pre-analyze the original expression for name
479 -- capture. The body is also generated but plays no role in
480 -- this because it is not part of the original source.
482 if Inside_A_Generic
then
484 Id
: constant Entity_Id
:= Defining_Entity
(N
);
487 Set_Has_Completion
(Id
);
489 Install_Formals
(Id
);
490 Preanalyze_Spec_Expression
(Expr
, Etype
(Id
));
495 Set_Is_Inlined
(Defining_Entity
(N
));
497 -- Establish the linkages between the spec and the body. These are
498 -- used when the expression function acts as the prefix of attribute
499 -- 'Access in order to freeze the original expression which has been
500 -- moved to the generated body.
502 Set_Corresponding_Body
(N
, Defining_Entity
(New_Body
));
503 Set_Corresponding_Spec
(New_Body
, Defining_Entity
(N
));
505 -- To prevent premature freeze action, insert the new body at the end
506 -- of the current declarations, or at the end of the package spec.
507 -- However, resolve usage names now, to prevent spurious visibility
508 -- on later entities. Note that the function can now be called in
509 -- the current declarative part, which will appear to be prior to
510 -- the presence of the body in the code. There are nevertheless no
511 -- order of elaboration issues because all name resolution has taken
512 -- place at the point of declaration.
515 Decls
: List_Id
:= List_Containing
(N
);
516 Par
: constant Node_Id
:= Parent
(Decls
);
517 Id
: constant Entity_Id
:= Defining_Entity
(N
);
520 -- If this is a wrapper created for in an instance for a formal
521 -- subprogram, insert body after declaration, to be analyzed when
522 -- the enclosing instance is analyzed.
525 and then Is_Generic_Actual_Subprogram
(Defining_Entity
(N
))
527 Insert_After
(N
, New_Body
);
530 if Nkind
(Par
) = N_Package_Specification
531 and then Decls
= Visible_Declarations
(Par
)
532 and then Present
(Private_Declarations
(Par
))
533 and then not Is_Empty_List
(Private_Declarations
(Par
))
535 Decls
:= Private_Declarations
(Par
);
538 Insert_After
(Last
(Decls
), New_Body
);
540 Install_Formals
(Id
);
542 -- Preanalyze the expression for name capture, except in an
543 -- instance, where this has been done during generic analysis,
544 -- and will be redone when analyzing the body.
547 Expr
: constant Node_Id
:= Expression
(Ret
);
550 Set_Parent
(Expr
, Ret
);
552 if not In_Instance
then
553 Preanalyze_Spec_Expression
(Expr
, Etype
(Id
));
562 -- If the return expression is a static constant, we suppress warning
563 -- messages on unused formals, which in most cases will be noise.
565 Set_Is_Trivial_Subprogram
(Defining_Entity
(New_Body
),
566 Is_OK_Static_Expression
(Expr
));
567 end Analyze_Expression_Function
;
569 ----------------------------------------
570 -- Analyze_Extended_Return_Statement --
571 ----------------------------------------
573 procedure Analyze_Extended_Return_Statement
(N
: Node_Id
) is
575 Check_Compiler_Unit
("extended return statement", N
);
576 Analyze_Return_Statement
(N
);
577 end Analyze_Extended_Return_Statement
;
579 ----------------------------
580 -- Analyze_Function_Call --
581 ----------------------------
583 procedure Analyze_Function_Call
(N
: Node_Id
) is
584 Actuals
: constant List_Id
:= Parameter_Associations
(N
);
585 Func_Nam
: constant Node_Id
:= Name
(N
);
591 -- A call of the form A.B (X) may be an Ada 2005 call, which is
592 -- rewritten as B (A, X). If the rewriting is successful, the call
593 -- has been analyzed and we just return.
595 if Nkind
(Func_Nam
) = N_Selected_Component
596 and then Name
(N
) /= Func_Nam
597 and then Is_Rewrite_Substitution
(N
)
598 and then Present
(Etype
(N
))
603 -- If error analyzing name, then set Any_Type as result type and return
605 if Etype
(Func_Nam
) = Any_Type
then
606 Set_Etype
(N
, Any_Type
);
610 -- Otherwise analyze the parameters
612 if Present
(Actuals
) then
613 Actual
:= First
(Actuals
);
614 while Present
(Actual
) loop
616 Check_Parameterless_Call
(Actual
);
622 end Analyze_Function_Call
;
624 -----------------------------
625 -- Analyze_Function_Return --
626 -----------------------------
628 procedure Analyze_Function_Return
(N
: Node_Id
) is
629 Loc
: constant Source_Ptr
:= Sloc
(N
);
630 Stm_Entity
: constant Entity_Id
:= Return_Statement_Entity
(N
);
631 Scope_Id
: constant Entity_Id
:= Return_Applies_To
(Stm_Entity
);
633 R_Type
: constant Entity_Id
:= Etype
(Scope_Id
);
634 -- Function result subtype
636 procedure Check_Limited_Return
(Expr
: Node_Id
);
637 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning
638 -- limited types. Used only for simple return statements.
639 -- Expr is the expression returned.
641 procedure Check_Return_Subtype_Indication
(Obj_Decl
: Node_Id
);
642 -- Check that the return_subtype_indication properly matches the result
643 -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
645 --------------------------
646 -- Check_Limited_Return --
647 --------------------------
649 procedure Check_Limited_Return
(Expr
: Node_Id
) is
651 -- Ada 2005 (AI-318-02): Return-by-reference types have been
652 -- removed and replaced by anonymous access results. This is an
653 -- incompatibility with Ada 95. Not clear whether this should be
654 -- enforced yet or perhaps controllable with special switch. ???
656 -- A limited interface that is not immutably limited is OK.
658 if Is_Limited_Interface
(R_Type
)
660 not (Is_Task_Interface
(R_Type
)
661 or else Is_Protected_Interface
(R_Type
)
662 or else Is_Synchronized_Interface
(R_Type
))
666 elsif Is_Limited_Type
(R_Type
)
667 and then not Is_Interface
(R_Type
)
668 and then Comes_From_Source
(N
)
669 and then not In_Instance_Body
670 and then not OK_For_Limited_Init_In_05
(R_Type
, Expr
)
674 if Ada_Version
>= Ada_2005
675 and then not Debug_Flag_Dot_L
676 and then not GNAT_Mode
679 ("(Ada 2005) cannot copy object of a limited type "
680 & "(RM-2005 6.5(5.5/2))", Expr
);
682 if Is_Limited_View
(R_Type
) then
684 ("\return by reference not permitted in Ada 2005", Expr
);
687 -- Warn in Ada 95 mode, to give folks a heads up about this
690 -- In GNAT mode, this is just a warning, to allow it to be
691 -- evilly turned off. Otherwise it is a real error.
693 -- In a generic context, simplify the warning because it makes
694 -- no sense to discuss pass-by-reference or copy.
696 elsif Warn_On_Ada_2005_Compatibility
or GNAT_Mode
then
697 if Inside_A_Generic
then
699 ("return of limited object not permitted in Ada 2005 "
700 & "(RM-2005 6.5(5.5/2))?y?", Expr
);
702 elsif Is_Limited_View
(R_Type
) then
704 ("return by reference not permitted in Ada 2005 "
705 & "(RM-2005 6.5(5.5/2))?y?", Expr
);
708 ("cannot copy object of a limited type in Ada 2005 "
709 & "(RM-2005 6.5(5.5/2))?y?", Expr
);
712 -- Ada 95 mode, compatibility warnings disabled
715 return; -- skip continuation messages below
718 if not Inside_A_Generic
then
720 ("\consider switching to return of access type", Expr
);
721 Explain_Limited_Type
(R_Type
, Expr
);
724 end Check_Limited_Return
;
726 -------------------------------------
727 -- Check_Return_Subtype_Indication --
728 -------------------------------------
730 procedure Check_Return_Subtype_Indication
(Obj_Decl
: Node_Id
) is
731 Return_Obj
: constant Node_Id
:= Defining_Identifier
(Obj_Decl
);
733 R_Stm_Type
: constant Entity_Id
:= Etype
(Return_Obj
);
734 -- Subtype given in the extended return statement (must match R_Type)
736 Subtype_Ind
: constant Node_Id
:=
737 Object_Definition
(Original_Node
(Obj_Decl
));
739 R_Type_Is_Anon_Access
: constant Boolean :=
741 E_Anonymous_Access_Subprogram_Type
,
742 E_Anonymous_Access_Protected_Subprogram_Type
,
743 E_Anonymous_Access_Type
);
744 -- True if return type of the function is an anonymous access type
745 -- Can't we make Is_Anonymous_Access_Type in einfo ???
747 R_Stm_Type_Is_Anon_Access
: constant Boolean :=
748 Ekind_In
(R_Stm_Type
,
749 E_Anonymous_Access_Subprogram_Type
,
750 E_Anonymous_Access_Protected_Subprogram_Type
,
751 E_Anonymous_Access_Type
);
752 -- True if type of the return object is an anonymous access type
754 procedure Error_No_Match
(N
: Node_Id
);
755 -- Output error messages for case where types do not statically
756 -- match. N is the location for the messages.
762 procedure Error_No_Match
(N
: Node_Id
) is
765 ("subtype must statically match function result subtype", N
);
767 if not Predicates_Match
(R_Stm_Type
, R_Type
) then
768 Error_Msg_Node_2
:= R_Type
;
770 ("\predicate of& does not match predicate of&",
775 -- Start of processing for Check_Return_Subtype_Indication
778 -- First, avoid cascaded errors
780 if Error_Posted
(Obj_Decl
) or else Error_Posted
(Subtype_Ind
) then
784 -- "return access T" case; check that the return statement also has
785 -- "access T", and that the subtypes statically match:
786 -- if this is an access to subprogram the signatures must match.
788 if R_Type_Is_Anon_Access
then
789 if R_Stm_Type_Is_Anon_Access
then
791 Ekind
(Designated_Type
(R_Stm_Type
)) /= E_Subprogram_Type
793 if Base_Type
(Designated_Type
(R_Stm_Type
)) /=
794 Base_Type
(Designated_Type
(R_Type
))
795 or else not Subtypes_Statically_Match
(R_Stm_Type
, R_Type
)
797 Error_No_Match
(Subtype_Mark
(Subtype_Ind
));
801 -- For two anonymous access to subprogram types, the
802 -- types themselves must be type conformant.
804 if not Conforming_Types
805 (R_Stm_Type
, R_Type
, Fully_Conformant
)
807 Error_No_Match
(Subtype_Ind
);
812 Error_Msg_N
("must use anonymous access type", Subtype_Ind
);
815 -- If the return object is of an anonymous access type, then report
816 -- an error if the function's result type is not also anonymous.
818 elsif R_Stm_Type_Is_Anon_Access
819 and then not R_Type_Is_Anon_Access
821 Error_Msg_N
("anonymous access not allowed for function with "
822 & "named access result", Subtype_Ind
);
824 -- Subtype indication case: check that the return object's type is
825 -- covered by the result type, and that the subtypes statically match
826 -- when the result subtype is constrained. Also handle record types
827 -- with unknown discriminants for which we have built the underlying
828 -- record view. Coverage is needed to allow specific-type return
829 -- objects when the result type is class-wide (see AI05-32).
831 elsif Covers
(Base_Type
(R_Type
), Base_Type
(R_Stm_Type
))
832 or else (Is_Underlying_Record_View
(Base_Type
(R_Stm_Type
))
836 Underlying_Record_View
(Base_Type
(R_Stm_Type
))))
838 -- A null exclusion may be present on the return type, on the
839 -- function specification, on the object declaration or on the
842 if Is_Access_Type
(R_Type
)
844 (Can_Never_Be_Null
(R_Type
)
845 or else Null_Exclusion_Present
(Parent
(Scope_Id
))) /=
846 Can_Never_Be_Null
(R_Stm_Type
)
848 Error_No_Match
(Subtype_Ind
);
851 -- AI05-103: for elementary types, subtypes must statically match
853 if Is_Constrained
(R_Type
)
854 or else Is_Access_Type
(R_Type
)
856 if not Subtypes_Statically_Match
(R_Stm_Type
, R_Type
) then
857 Error_No_Match
(Subtype_Ind
);
861 -- All remaining cases are illegal
863 -- Note: previous versions of this subprogram allowed the return
864 -- value to be the ancestor of the return type if the return type
865 -- was a null extension. This was plainly incorrect.
869 ("wrong type for return_subtype_indication", Subtype_Ind
);
871 end Check_Return_Subtype_Indication
;
873 ---------------------
874 -- Local Variables --
875 ---------------------
879 -- Start of processing for Analyze_Function_Return
882 Set_Return_Present
(Scope_Id
);
884 if Nkind
(N
) = N_Simple_Return_Statement
then
885 Expr
:= Expression
(N
);
887 -- Guard against a malformed expression. The parser may have tried to
888 -- recover but the node is not analyzable.
890 if Nkind
(Expr
) = N_Error
then
891 Set_Etype
(Expr
, Any_Type
);
892 Expander_Mode_Save_And_Set
(False);
896 -- The resolution of a controlled [extension] aggregate associated
897 -- with a return statement creates a temporary which needs to be
898 -- finalized on function exit. Wrap the return statement inside a
899 -- block so that the finalization machinery can detect this case.
900 -- This early expansion is done only when the return statement is
901 -- not part of a handled sequence of statements.
903 if Nkind_In
(Expr
, N_Aggregate
,
904 N_Extension_Aggregate
)
905 and then Needs_Finalization
(R_Type
)
906 and then Nkind
(Parent
(N
)) /= N_Handled_Sequence_Of_Statements
909 Make_Block_Statement
(Loc
,
910 Handled_Statement_Sequence
=>
911 Make_Handled_Sequence_Of_Statements
(Loc
,
912 Statements
=> New_List
(Relocate_Node
(N
)))));
920 -- Ada 2005 (AI-251): If the type of the returned object is
921 -- an access to an interface type then we add an implicit type
922 -- conversion to force the displacement of the "this" pointer to
923 -- reference the secondary dispatch table. We cannot delay the
924 -- generation of this implicit conversion until the expansion
925 -- because in this case the type resolution changes the decoration
926 -- of the expression node to match R_Type; by contrast, if the
927 -- returned object is a class-wide interface type then it is too
928 -- early to generate here the implicit conversion since the return
929 -- statement may be rewritten by the expander into an extended
930 -- return statement whose expansion takes care of adding the
931 -- implicit type conversion to displace the pointer to the object.
934 and then Serious_Errors_Detected
= 0
935 and then Is_Access_Type
(R_Type
)
936 and then Nkind
(Expr
) /= N_Null
937 and then Is_Interface
(Designated_Type
(R_Type
))
938 and then Is_Progenitor
(Designated_Type
(R_Type
),
939 Designated_Type
(Etype
(Expr
)))
941 Rewrite
(Expr
, Convert_To
(R_Type
, Relocate_Node
(Expr
)));
945 Resolve
(Expr
, R_Type
);
946 Check_Limited_Return
(Expr
);
949 -- RETURN only allowed in SPARK as the last statement in function
951 if Nkind
(Parent
(N
)) /= N_Handled_Sequence_Of_Statements
953 (Nkind
(Parent
(Parent
(N
))) /= N_Subprogram_Body
954 or else Present
(Next
(N
)))
956 Check_SPARK_05_Restriction
957 ("RETURN should be the last statement in function", N
);
961 Check_SPARK_05_Restriction
("extended RETURN is not allowed", N
);
963 -- Analyze parts specific to extended_return_statement:
966 Obj_Decl
: constant Node_Id
:=
967 Last
(Return_Object_Declarations
(N
));
968 Has_Aliased
: constant Boolean := Aliased_Present
(Obj_Decl
);
969 HSS
: constant Node_Id
:= Handled_Statement_Sequence
(N
);
972 Expr
:= Expression
(Obj_Decl
);
974 -- Note: The check for OK_For_Limited_Init will happen in
975 -- Analyze_Object_Declaration; we treat it as a normal
976 -- object declaration.
978 Set_Is_Return_Object
(Defining_Identifier
(Obj_Decl
));
981 Check_Return_Subtype_Indication
(Obj_Decl
);
983 if Present
(HSS
) then
986 if Present
(Exception_Handlers
(HSS
)) then
988 -- ???Has_Nested_Block_With_Handler needs to be set.
989 -- Probably by creating an actual N_Block_Statement.
990 -- Probably in Expand.
996 -- Mark the return object as referenced, since the return is an
997 -- implicit reference of the object.
999 Set_Referenced
(Defining_Identifier
(Obj_Decl
));
1001 Check_References
(Stm_Entity
);
1003 -- Check RM 6.5 (5.9/3)
1006 if Ada_Version
< Ada_2012
then
1008 -- Shouldn't this test Warn_On_Ada_2012_Compatibility ???
1009 -- Can it really happen (extended return???)
1012 ("aliased only allowed for limited return objects "
1013 & "in Ada 2012??", N
);
1015 elsif not Is_Limited_View
(R_Type
) then
1017 ("aliased only allowed for limited return objects", N
);
1023 -- Case of Expr present
1027 -- Defend against previous errors
1029 and then Nkind
(Expr
) /= N_Empty
1030 and then Present
(Etype
(Expr
))
1032 -- Apply constraint check. Note that this is done before the implicit
1033 -- conversion of the expression done for anonymous access types to
1034 -- ensure correct generation of the null-excluding check associated
1035 -- with null-excluding expressions found in return statements.
1037 Apply_Constraint_Check
(Expr
, R_Type
);
1039 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
1040 -- type, apply an implicit conversion of the expression to that type
1041 -- to force appropriate static and run-time accessibility checks.
1043 if Ada_Version
>= Ada_2005
1044 and then Ekind
(R_Type
) = E_Anonymous_Access_Type
1046 Rewrite
(Expr
, Convert_To
(R_Type
, Relocate_Node
(Expr
)));
1047 Analyze_And_Resolve
(Expr
, R_Type
);
1049 -- If this is a local anonymous access to subprogram, the
1050 -- accessibility check can be applied statically. The return is
1051 -- illegal if the access type of the return expression is declared
1052 -- inside of the subprogram (except if it is the subtype indication
1053 -- of an extended return statement).
1055 elsif Ekind
(R_Type
) = E_Anonymous_Access_Subprogram_Type
then
1056 if not Comes_From_Source
(Current_Scope
)
1057 or else Ekind
(Current_Scope
) = E_Return_Statement
1062 Scope_Depth
(Scope
(Etype
(Expr
))) >= Scope_Depth
(Scope_Id
)
1064 Error_Msg_N
("cannot return local access to subprogram", N
);
1067 -- The expression cannot be of a formal incomplete type
1069 elsif Ekind
(Etype
(Expr
)) = E_Incomplete_Type
1070 and then Is_Generic_Type
(Etype
(Expr
))
1073 ("cannot return expression of a formal incomplete type", N
);
1076 -- If the result type is class-wide, then check that the return
1077 -- expression's type is not declared at a deeper level than the
1078 -- function (RM05-6.5(5.6/2)).
1080 if Ada_Version
>= Ada_2005
1081 and then Is_Class_Wide_Type
(R_Type
)
1083 if Type_Access_Level
(Etype
(Expr
)) >
1084 Subprogram_Access_Level
(Scope_Id
)
1087 ("level of return expression type is deeper than "
1088 & "class-wide function!", Expr
);
1092 -- Check incorrect use of dynamically tagged expression
1094 if Is_Tagged_Type
(R_Type
) then
1095 Check_Dynamically_Tagged_Expression
1101 -- ??? A real run-time accessibility check is needed in cases
1102 -- involving dereferences of access parameters. For now we just
1103 -- check the static cases.
1105 if (Ada_Version
< Ada_2005
or else Debug_Flag_Dot_L
)
1106 and then Is_Limited_View
(Etype
(Scope_Id
))
1107 and then Object_Access_Level
(Expr
) >
1108 Subprogram_Access_Level
(Scope_Id
)
1110 -- Suppress the message in a generic, where the rewriting
1113 if Inside_A_Generic
then
1118 Make_Raise_Program_Error
(Loc
,
1119 Reason
=> PE_Accessibility_Check_Failed
));
1122 Error_Msg_Warn
:= SPARK_Mode
/= On
;
1123 Error_Msg_N
("cannot return a local value by reference<<", N
);
1124 Error_Msg_NE
("\& [<<", N
, Standard_Program_Error
);
1128 if Known_Null
(Expr
)
1129 and then Nkind
(Parent
(Scope_Id
)) = N_Function_Specification
1130 and then Null_Exclusion_Present
(Parent
(Scope_Id
))
1132 Apply_Compile_Time_Constraint_Error
1134 Msg
=> "(Ada 2005) null not allowed for "
1135 & "null-excluding return??",
1136 Reason
=> CE_Null_Not_Allowed
);
1139 end Analyze_Function_Return
;
1141 -------------------------------------
1142 -- Analyze_Generic_Subprogram_Body --
1143 -------------------------------------
1145 procedure Analyze_Generic_Subprogram_Body
1149 Gen_Decl
: constant Node_Id
:= Unit_Declaration_Node
(Gen_Id
);
1150 Kind
: constant Entity_Kind
:= Ekind
(Gen_Id
);
1151 Body_Id
: Entity_Id
;
1156 -- Copy body and disable expansion while analyzing the generic For a
1157 -- stub, do not copy the stub (which would load the proper body), this
1158 -- will be done when the proper body is analyzed.
1160 if Nkind
(N
) /= N_Subprogram_Body_Stub
then
1161 New_N
:= Copy_Generic_Node
(N
, Empty
, Instantiating
=> False);
1166 Spec
:= Specification
(N
);
1168 -- Within the body of the generic, the subprogram is callable, and
1169 -- behaves like the corresponding non-generic unit.
1171 Body_Id
:= Defining_Entity
(Spec
);
1173 if Kind
= E_Generic_Procedure
1174 and then Nkind
(Spec
) /= N_Procedure_Specification
1176 Error_Msg_N
("invalid body for generic procedure ", Body_Id
);
1179 elsif Kind
= E_Generic_Function
1180 and then Nkind
(Spec
) /= N_Function_Specification
1182 Error_Msg_N
("invalid body for generic function ", Body_Id
);
1186 Set_Corresponding_Body
(Gen_Decl
, Body_Id
);
1188 if Has_Completion
(Gen_Id
)
1189 and then Nkind
(Parent
(N
)) /= N_Subunit
1191 Error_Msg_N
("duplicate generic body", N
);
1194 Set_Has_Completion
(Gen_Id
);
1197 if Nkind
(N
) = N_Subprogram_Body_Stub
then
1198 Set_Ekind
(Defining_Entity
(Specification
(N
)), Kind
);
1200 Set_Corresponding_Spec
(N
, Gen_Id
);
1203 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
1204 Set_Cunit_Entity
(Current_Sem_Unit
, Defining_Entity
(N
));
1207 -- Make generic parameters immediately visible in the body. They are
1208 -- needed to process the formals declarations. Then make the formals
1209 -- visible in a separate step.
1211 Push_Scope
(Gen_Id
);
1215 First_Ent
: Entity_Id
;
1218 First_Ent
:= First_Entity
(Gen_Id
);
1221 while Present
(E
) and then not Is_Formal
(E
) loop
1226 Set_Use
(Generic_Formal_Declarations
(Gen_Decl
));
1228 -- Now generic formals are visible, and the specification can be
1229 -- analyzed, for subsequent conformance check.
1231 Body_Id
:= Analyze_Subprogram_Specification
(Spec
);
1233 -- Make formal parameters visible
1237 -- E is the first formal parameter, we loop through the formals
1238 -- installing them so that they will be visible.
1240 Set_First_Entity
(Gen_Id
, E
);
1241 while Present
(E
) loop
1247 -- Visible generic entity is callable within its own body
1249 Set_Ekind
(Gen_Id
, Ekind
(Body_Id
));
1250 Set_Contract
(Body_Id
, Make_Contract
(Sloc
(Body_Id
)));
1251 Set_Ekind
(Body_Id
, E_Subprogram_Body
);
1252 Set_Convention
(Body_Id
, Convention
(Gen_Id
));
1253 Set_Is_Obsolescent
(Body_Id
, Is_Obsolescent
(Gen_Id
));
1254 Set_Scope
(Body_Id
, Scope
(Gen_Id
));
1256 -- Inherit the "ghostness" of the generic spec. Note that this
1257 -- property is not directly inherited as the body may be subject
1258 -- to a different Ghost assertion policy.
1260 if Is_Ghost_Entity
(Gen_Id
) or else Within_Ghost_Scope
then
1261 Set_Is_Ghost_Entity
(Body_Id
);
1263 -- The Ghost policy in effect at the point of declaration and at
1264 -- the point of completion must match (SPARK RM 6.9(15)).
1266 Check_Ghost_Completion
(Gen_Id
, Body_Id
);
1269 Check_Fully_Conformant
(Body_Id
, Gen_Id
, Body_Id
);
1271 if Nkind
(N
) = N_Subprogram_Body_Stub
then
1273 -- No body to analyze, so restore state of generic unit
1275 Set_Ekind
(Gen_Id
, Kind
);
1276 Set_Ekind
(Body_Id
, Kind
);
1278 if Present
(First_Ent
) then
1279 Set_First_Entity
(Gen_Id
, First_Ent
);
1286 -- If this is a compilation unit, it must be made visible explicitly,
1287 -- because the compilation of the declaration, unlike other library
1288 -- unit declarations, does not. If it is not a unit, the following
1289 -- is redundant but harmless.
1291 Set_Is_Immediately_Visible
(Gen_Id
);
1292 Reference_Body_Formals
(Gen_Id
, Body_Id
);
1294 if Is_Child_Unit
(Gen_Id
) then
1295 Generate_Reference
(Gen_Id
, Scope
(Gen_Id
), 'k', False);
1298 Set_Actual_Subtypes
(N
, Current_Scope
);
1300 -- Deal with [refined] preconditions, postconditions, Contract_Cases,
1301 -- invariants and predicates associated with the body and its spec.
1302 -- Note that this is not pure expansion as Expand_Subprogram_Contract
1303 -- prepares the contract assertions for generic subprograms or for
1304 -- ASIS. Do not generate contract checks in SPARK mode.
1306 if not GNATprove_Mode
then
1307 Expand_Subprogram_Contract
(N
, Gen_Id
, Body_Id
);
1310 -- If the generic unit carries pre- or post-conditions, copy them
1311 -- to the original generic tree, so that they are properly added
1312 -- to any instantiation.
1315 Orig
: constant Node_Id
:= Original_Node
(N
);
1319 Cond
:= First
(Declarations
(N
));
1320 while Present
(Cond
) loop
1321 if Nkind
(Cond
) = N_Pragma
1322 and then Pragma_Name
(Cond
) = Name_Check
1324 Prepend
(New_Copy_Tree
(Cond
), Declarations
(Orig
));
1326 elsif Nkind
(Cond
) = N_Pragma
1327 and then Pragma_Name
(Cond
) = Name_Postcondition
1329 Set_Ekind
(Defining_Entity
(Orig
), Ekind
(Gen_Id
));
1330 Prepend
(New_Copy_Tree
(Cond
), Declarations
(Orig
));
1339 Set_SPARK_Pragma
(Body_Id
, SPARK_Mode_Pragma
);
1340 Set_SPARK_Pragma_Inherited
(Body_Id
, True);
1342 Analyze_Declarations
(Declarations
(N
));
1344 Analyze
(Handled_Statement_Sequence
(N
));
1346 Save_Global_References
(Original_Node
(N
));
1348 -- Prior to exiting the scope, include generic formals again (if any
1349 -- are present) in the set of local entities.
1351 if Present
(First_Ent
) then
1352 Set_First_Entity
(Gen_Id
, First_Ent
);
1355 Check_References
(Gen_Id
);
1358 Process_End_Label
(Handled_Statement_Sequence
(N
), 't', Current_Scope
);
1360 Check_Subprogram_Order
(N
);
1362 -- Outside of its body, unit is generic again
1364 Set_Ekind
(Gen_Id
, Kind
);
1365 Generate_Reference
(Gen_Id
, Body_Id
, 'b', Set_Ref
=> False);
1368 Style
.Check_Identifier
(Body_Id
, Gen_Id
);
1372 end Analyze_Generic_Subprogram_Body
;
1374 ----------------------------
1375 -- Analyze_Null_Procedure --
1376 ----------------------------
1378 procedure Analyze_Null_Procedure
1380 Is_Completion
: out Boolean)
1382 Loc
: constant Source_Ptr
:= Sloc
(N
);
1383 Spec
: constant Node_Id
:= Specification
(N
);
1384 Designator
: Entity_Id
;
1386 Null_Body
: Node_Id
:= Empty
;
1390 -- Capture the profile of the null procedure before analysis, for
1391 -- expansion at the freeze point and at each point of call. The body is
1392 -- used if the procedure has preconditions, or if it is a completion. In
1393 -- the first case the body is analyzed at the freeze point, in the other
1394 -- it replaces the null procedure declaration.
1397 Make_Subprogram_Body
(Loc
,
1398 Specification
=> New_Copy_Tree
(Spec
),
1399 Declarations
=> New_List
,
1400 Handled_Statement_Sequence
=>
1401 Make_Handled_Sequence_Of_Statements
(Loc
,
1402 Statements
=> New_List
(Make_Null_Statement
(Loc
))));
1404 -- Create new entities for body and formals
1406 Set_Defining_Unit_Name
(Specification
(Null_Body
),
1407 Make_Defining_Identifier
1408 (Sloc
(Defining_Entity
(N
)),
1409 Chars
(Defining_Entity
(N
))));
1411 Form
:= First
(Parameter_Specifications
(Specification
(Null_Body
)));
1412 while Present
(Form
) loop
1413 Set_Defining_Identifier
(Form
,
1414 Make_Defining_Identifier
1415 (Sloc
(Defining_Identifier
(Form
)),
1416 Chars
(Defining_Identifier
(Form
))));
1420 -- Determine whether the null procedure may be a completion of a generic
1421 -- suprogram, in which case we use the new null body as the completion
1422 -- and set minimal semantic information on the original declaration,
1423 -- which is rewritten as a null statement.
1425 Prev
:= Current_Entity_In_Scope
(Defining_Entity
(Spec
));
1427 if Present
(Prev
) and then Is_Generic_Subprogram
(Prev
) then
1428 Insert_Before
(N
, Null_Body
);
1429 Set_Ekind
(Defining_Entity
(N
), Ekind
(Prev
));
1430 Set_Contract
(Defining_Entity
(N
), Make_Contract
(Loc
));
1432 Rewrite
(N
, Make_Null_Statement
(Loc
));
1433 Analyze_Generic_Subprogram_Body
(Null_Body
, Prev
);
1434 Is_Completion
:= True;
1438 -- Resolve the types of the formals now, because the freeze point
1439 -- may appear in a different context, e.g. an instantiation.
1441 Form
:= First
(Parameter_Specifications
(Specification
(Null_Body
)));
1442 while Present
(Form
) loop
1443 if Nkind
(Parameter_Type
(Form
)) /= N_Access_Definition
then
1444 Find_Type
(Parameter_Type
(Form
));
1447 No
(Access_To_Subprogram_Definition
(Parameter_Type
(Form
)))
1449 Find_Type
(Subtype_Mark
(Parameter_Type
(Form
)));
1452 -- The case of a null procedure with a formal that is an
1453 -- access_to_subprogram type, and that is used as an actual
1454 -- in an instantiation is left to the enthusiastic reader.
1463 -- If there are previous overloadable entities with the same name,
1464 -- check whether any of them is completed by the null procedure.
1466 if Present
(Prev
) and then Is_Overloadable
(Prev
) then
1467 Designator
:= Analyze_Subprogram_Specification
(Spec
);
1468 Prev
:= Find_Corresponding_Spec
(N
);
1471 if No
(Prev
) or else not Comes_From_Source
(Prev
) then
1472 Designator
:= Analyze_Subprogram_Specification
(Spec
);
1473 Set_Has_Completion
(Designator
);
1475 -- Signal to caller that this is a procedure declaration
1477 Is_Completion
:= False;
1479 -- Null procedures are always inlined, but generic formal subprograms
1480 -- which appear as such in the internal instance of formal packages,
1481 -- need no completion and are not marked Inline.
1484 and then Nkind
(N
) /= N_Formal_Concrete_Subprogram_Declaration
1486 Set_Corresponding_Body
(N
, Defining_Entity
(Null_Body
));
1487 Set_Body_To_Inline
(N
, Null_Body
);
1488 Set_Is_Inlined
(Designator
);
1492 -- The null procedure is a completion. We unconditionally rewrite
1493 -- this as a null body (even if expansion is not active), because
1494 -- there are various error checks that are applied on this body
1495 -- when it is analyzed (e.g. correct aspect placement).
1497 if Has_Completion
(Prev
) then
1498 Error_Msg_Sloc
:= Sloc
(Prev
);
1499 Error_Msg_NE
("duplicate body for & declared#", N
, Prev
);
1502 Is_Completion
:= True;
1503 Rewrite
(N
, Null_Body
);
1506 end Analyze_Null_Procedure
;
1508 -----------------------------
1509 -- Analyze_Operator_Symbol --
1510 -----------------------------
1512 -- An operator symbol such as "+" or "and" may appear in context where the
1513 -- literal denotes an entity name, such as "+"(x, y) or in context when it
1514 -- is just a string, as in (conjunction = "or"). In these cases the parser
1515 -- generates this node, and the semantics does the disambiguation. Other
1516 -- such case are actuals in an instantiation, the generic unit in an
1517 -- instantiation, and pragma arguments.
1519 procedure Analyze_Operator_Symbol
(N
: Node_Id
) is
1520 Par
: constant Node_Id
:= Parent
(N
);
1523 if (Nkind
(Par
) = N_Function_Call
and then N
= Name
(Par
))
1524 or else Nkind
(Par
) = N_Function_Instantiation
1525 or else (Nkind
(Par
) = N_Indexed_Component
and then N
= Prefix
(Par
))
1526 or else (Nkind
(Par
) = N_Pragma_Argument_Association
1527 and then not Is_Pragma_String_Literal
(Par
))
1528 or else Nkind
(Par
) = N_Subprogram_Renaming_Declaration
1529 or else (Nkind
(Par
) = N_Attribute_Reference
1530 and then Attribute_Name
(Par
) /= Name_Value
)
1532 Find_Direct_Name
(N
);
1535 Change_Operator_Symbol_To_String_Literal
(N
);
1538 end Analyze_Operator_Symbol
;
1540 -----------------------------------
1541 -- Analyze_Parameter_Association --
1542 -----------------------------------
1544 procedure Analyze_Parameter_Association
(N
: Node_Id
) is
1546 Analyze
(Explicit_Actual_Parameter
(N
));
1547 end Analyze_Parameter_Association
;
1549 ----------------------------
1550 -- Analyze_Procedure_Call --
1551 ----------------------------
1553 procedure Analyze_Procedure_Call
(N
: Node_Id
) is
1554 Loc
: constant Source_Ptr
:= Sloc
(N
);
1555 P
: constant Node_Id
:= Name
(N
);
1556 Actuals
: constant List_Id
:= Parameter_Associations
(N
);
1560 procedure Analyze_Call_And_Resolve
;
1561 -- Do Analyze and Resolve calls for procedure call
1562 -- At end, check illegal order dependence.
1564 ------------------------------
1565 -- Analyze_Call_And_Resolve --
1566 ------------------------------
1568 procedure Analyze_Call_And_Resolve
is
1570 if Nkind
(N
) = N_Procedure_Call_Statement
then
1572 Resolve
(N
, Standard_Void_Type
);
1576 end Analyze_Call_And_Resolve
;
1578 -- Start of processing for Analyze_Procedure_Call
1581 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1582 -- a procedure call or an entry call. The prefix may denote an access
1583 -- to subprogram type, in which case an implicit dereference applies.
1584 -- If the prefix is an indexed component (without implicit dereference)
1585 -- then the construct denotes a call to a member of an entire family.
1586 -- If the prefix is a simple name, it may still denote a call to a
1587 -- parameterless member of an entry family. Resolution of these various
1588 -- interpretations is delicate.
1592 -- If this is a call of the form Obj.Op, the call may have been
1593 -- analyzed and possibly rewritten into a block, in which case
1596 if Analyzed
(N
) then
1600 -- If there is an error analyzing the name (which may have been
1601 -- rewritten if the original call was in prefix notation) then error
1602 -- has been emitted already, mark node and return.
1604 if Error_Posted
(N
) or else Etype
(Name
(N
)) = Any_Type
then
1605 Set_Etype
(N
, Any_Type
);
1609 -- Otherwise analyze the parameters
1611 if Present
(Actuals
) then
1612 Actual
:= First
(Actuals
);
1614 while Present
(Actual
) loop
1616 Check_Parameterless_Call
(Actual
);
1621 -- Special processing for Elab_Spec, Elab_Body and Elab_Subp_Body calls
1623 if Nkind
(P
) = N_Attribute_Reference
1624 and then Nam_In
(Attribute_Name
(P
), Name_Elab_Spec
,
1626 Name_Elab_Subp_Body
)
1628 if Present
(Actuals
) then
1630 ("no parameters allowed for this call", First
(Actuals
));
1634 Set_Etype
(N
, Standard_Void_Type
);
1637 elsif Is_Entity_Name
(P
)
1638 and then Is_Record_Type
(Etype
(Entity
(P
)))
1639 and then Remote_AST_I_Dereference
(P
)
1643 elsif Is_Entity_Name
(P
)
1644 and then Ekind
(Entity
(P
)) /= E_Entry_Family
1646 if Is_Access_Type
(Etype
(P
))
1647 and then Ekind
(Designated_Type
(Etype
(P
))) = E_Subprogram_Type
1648 and then No
(Actuals
)
1649 and then Comes_From_Source
(N
)
1651 Error_Msg_N
("missing explicit dereference in call", N
);
1654 Analyze_Call_And_Resolve
;
1656 -- If the prefix is the simple name of an entry family, this is
1657 -- a parameterless call from within the task body itself.
1659 elsif Is_Entity_Name
(P
)
1660 and then Nkind
(P
) = N_Identifier
1661 and then Ekind
(Entity
(P
)) = E_Entry_Family
1662 and then Present
(Actuals
)
1663 and then No
(Next
(First
(Actuals
)))
1665 -- Can be call to parameterless entry family. What appears to be the
1666 -- sole argument is in fact the entry index. Rewrite prefix of node
1667 -- accordingly. Source representation is unchanged by this
1671 Make_Indexed_Component
(Loc
,
1673 Make_Selected_Component
(Loc
,
1674 Prefix
=> New_Occurrence_Of
(Scope
(Entity
(P
)), Loc
),
1675 Selector_Name
=> New_Occurrence_Of
(Entity
(P
), Loc
)),
1676 Expressions
=> Actuals
);
1677 Set_Name
(N
, New_N
);
1678 Set_Etype
(New_N
, Standard_Void_Type
);
1679 Set_Parameter_Associations
(N
, No_List
);
1680 Analyze_Call_And_Resolve
;
1682 elsif Nkind
(P
) = N_Explicit_Dereference
then
1683 if Ekind
(Etype
(P
)) = E_Subprogram_Type
then
1684 Analyze_Call_And_Resolve
;
1686 Error_Msg_N
("expect access to procedure in call", P
);
1689 -- The name can be a selected component or an indexed component that
1690 -- yields an access to subprogram. Such a prefix is legal if the call
1691 -- has parameter associations.
1693 elsif Is_Access_Type
(Etype
(P
))
1694 and then Ekind
(Designated_Type
(Etype
(P
))) = E_Subprogram_Type
1696 if Present
(Actuals
) then
1697 Analyze_Call_And_Resolve
;
1699 Error_Msg_N
("missing explicit dereference in call ", N
);
1702 -- If not an access to subprogram, then the prefix must resolve to the
1703 -- name of an entry, entry family, or protected operation.
1705 -- For the case of a simple entry call, P is a selected component where
1706 -- the prefix is the task and the selector name is the entry. A call to
1707 -- a protected procedure will have the same syntax. If the protected
1708 -- object contains overloaded operations, the entity may appear as a
1709 -- function, the context will select the operation whose type is Void.
1711 elsif Nkind
(P
) = N_Selected_Component
1712 and then Ekind_In
(Entity
(Selector_Name
(P
)), E_Entry
,
1716 Analyze_Call_And_Resolve
;
1718 elsif Nkind
(P
) = N_Selected_Component
1719 and then Ekind
(Entity
(Selector_Name
(P
))) = E_Entry_Family
1720 and then Present
(Actuals
)
1721 and then No
(Next
(First
(Actuals
)))
1723 -- Can be call to parameterless entry family. What appears to be the
1724 -- sole argument is in fact the entry index. Rewrite prefix of node
1725 -- accordingly. Source representation is unchanged by this
1729 Make_Indexed_Component
(Loc
,
1730 Prefix
=> New_Copy
(P
),
1731 Expressions
=> Actuals
);
1732 Set_Name
(N
, New_N
);
1733 Set_Etype
(New_N
, Standard_Void_Type
);
1734 Set_Parameter_Associations
(N
, No_List
);
1735 Analyze_Call_And_Resolve
;
1737 -- For the case of a reference to an element of an entry family, P is
1738 -- an indexed component whose prefix is a selected component (task and
1739 -- entry family), and whose index is the entry family index.
1741 elsif Nkind
(P
) = N_Indexed_Component
1742 and then Nkind
(Prefix
(P
)) = N_Selected_Component
1743 and then Ekind
(Entity
(Selector_Name
(Prefix
(P
)))) = E_Entry_Family
1745 Analyze_Call_And_Resolve
;
1747 -- If the prefix is the name of an entry family, it is a call from
1748 -- within the task body itself.
1750 elsif Nkind
(P
) = N_Indexed_Component
1751 and then Nkind
(Prefix
(P
)) = N_Identifier
1752 and then Ekind
(Entity
(Prefix
(P
))) = E_Entry_Family
1755 Make_Selected_Component
(Loc
,
1756 Prefix
=> New_Occurrence_Of
(Scope
(Entity
(Prefix
(P
))), Loc
),
1757 Selector_Name
=> New_Occurrence_Of
(Entity
(Prefix
(P
)), Loc
));
1758 Rewrite
(Prefix
(P
), New_N
);
1760 Analyze_Call_And_Resolve
;
1762 -- In Ada 2012. a qualified expression is a name, but it cannot be a
1763 -- procedure name, so the construct can only be a qualified expression.
1765 elsif Nkind
(P
) = N_Qualified_Expression
1766 and then Ada_Version
>= Ada_2012
1768 Rewrite
(N
, Make_Code_Statement
(Loc
, Expression
=> P
));
1771 -- Anything else is an error
1774 Error_Msg_N
("invalid procedure or entry call", N
);
1776 end Analyze_Procedure_Call
;
1778 ------------------------------
1779 -- Analyze_Return_Statement --
1780 ------------------------------
1782 procedure Analyze_Return_Statement
(N
: Node_Id
) is
1784 pragma Assert
(Nkind_In
(N
, N_Simple_Return_Statement
,
1785 N_Extended_Return_Statement
));
1787 Returns_Object
: constant Boolean :=
1788 Nkind
(N
) = N_Extended_Return_Statement
1790 (Nkind
(N
) = N_Simple_Return_Statement
1791 and then Present
(Expression
(N
)));
1792 -- True if we're returning something; that is, "return <expression>;"
1793 -- or "return Result : T [:= ...]". False for "return;". Used for error
1794 -- checking: If Returns_Object is True, N should apply to a function
1795 -- body; otherwise N should apply to a procedure body, entry body,
1796 -- accept statement, or extended return statement.
1798 function Find_What_It_Applies_To
return Entity_Id
;
1799 -- Find the entity representing the innermost enclosing body, accept
1800 -- statement, or extended return statement. If the result is a callable
1801 -- construct or extended return statement, then this will be the value
1802 -- of the Return_Applies_To attribute. Otherwise, the program is
1803 -- illegal. See RM-6.5(4/2).
1805 -----------------------------
1806 -- Find_What_It_Applies_To --
1807 -----------------------------
1809 function Find_What_It_Applies_To
return Entity_Id
is
1810 Result
: Entity_Id
:= Empty
;
1813 -- Loop outward through the Scope_Stack, skipping blocks, loops,
1814 -- and postconditions.
1816 for J
in reverse 0 .. Scope_Stack
.Last
loop
1817 Result
:= Scope_Stack
.Table
(J
).Entity
;
1818 exit when not Ekind_In
(Result
, E_Block
, E_Loop
)
1819 and then Chars
(Result
) /= Name_uPostconditions
;
1822 pragma Assert
(Present
(Result
));
1824 end Find_What_It_Applies_To
;
1826 -- Local declarations
1828 Scope_Id
: constant Entity_Id
:= Find_What_It_Applies_To
;
1829 Kind
: constant Entity_Kind
:= Ekind
(Scope_Id
);
1830 Loc
: constant Source_Ptr
:= Sloc
(N
);
1831 Stm_Entity
: constant Entity_Id
:=
1833 (E_Return_Statement
, Current_Scope
, Loc
, 'R');
1835 -- Start of processing for Analyze_Return_Statement
1838 Set_Return_Statement_Entity
(N
, Stm_Entity
);
1840 Set_Etype
(Stm_Entity
, Standard_Void_Type
);
1841 Set_Return_Applies_To
(Stm_Entity
, Scope_Id
);
1843 -- Place Return entity on scope stack, to simplify enforcement of 6.5
1844 -- (4/2): an inner return statement will apply to this extended return.
1846 if Nkind
(N
) = N_Extended_Return_Statement
then
1847 Push_Scope
(Stm_Entity
);
1850 -- Check that pragma No_Return is obeyed. Don't complain about the
1851 -- implicitly-generated return that is placed at the end.
1853 if No_Return
(Scope_Id
) and then Comes_From_Source
(N
) then
1854 Error_Msg_N
("RETURN statement not allowed (No_Return)", N
);
1857 -- Warn on any unassigned OUT parameters if in procedure
1859 if Ekind
(Scope_Id
) = E_Procedure
then
1860 Warn_On_Unassigned_Out_Parameter
(N
, Scope_Id
);
1863 -- Check that functions return objects, and other things do not
1865 if Kind
= E_Function
or else Kind
= E_Generic_Function
then
1866 if not Returns_Object
then
1867 Error_Msg_N
("missing expression in return from function", N
);
1870 elsif Kind
= E_Procedure
or else Kind
= E_Generic_Procedure
then
1871 if Returns_Object
then
1872 Error_Msg_N
("procedure cannot return value (use function)", N
);
1875 elsif Kind
= E_Entry
or else Kind
= E_Entry_Family
then
1876 if Returns_Object
then
1877 if Is_Protected_Type
(Scope
(Scope_Id
)) then
1878 Error_Msg_N
("entry body cannot return value", N
);
1880 Error_Msg_N
("accept statement cannot return value", N
);
1884 elsif Kind
= E_Return_Statement
then
1886 -- We are nested within another return statement, which must be an
1887 -- extended_return_statement.
1889 if Returns_Object
then
1890 if Nkind
(N
) = N_Extended_Return_Statement
then
1892 ("extended return statement cannot be nested (use `RETURN;`)",
1895 -- Case of a simple return statement with a value inside extended
1896 -- return statement.
1900 ("return nested in extended return statement cannot return "
1901 & "value (use `RETURN;`)", N
);
1906 Error_Msg_N
("illegal context for return statement", N
);
1909 if Ekind_In
(Kind
, E_Function
, E_Generic_Function
) then
1910 Analyze_Function_Return
(N
);
1912 elsif Ekind_In
(Kind
, E_Procedure
, E_Generic_Procedure
) then
1913 Set_Return_Present
(Scope_Id
);
1916 if Nkind
(N
) = N_Extended_Return_Statement
then
1920 Kill_Current_Values
(Last_Assignment_Only
=> True);
1921 Check_Unreachable_Code
(N
);
1923 Analyze_Dimension
(N
);
1924 end Analyze_Return_Statement
;
1926 -------------------------------------
1927 -- Analyze_Simple_Return_Statement --
1928 -------------------------------------
1930 procedure Analyze_Simple_Return_Statement
(N
: Node_Id
) is
1932 if Present
(Expression
(N
)) then
1933 Mark_Coextensions
(N
, Expression
(N
));
1936 Analyze_Return_Statement
(N
);
1937 end Analyze_Simple_Return_Statement
;
1939 -------------------------
1940 -- Analyze_Return_Type --
1941 -------------------------
1943 procedure Analyze_Return_Type
(N
: Node_Id
) is
1944 Designator
: constant Entity_Id
:= Defining_Entity
(N
);
1945 Typ
: Entity_Id
:= Empty
;
1948 -- Normal case where result definition does not indicate an error
1950 if Result_Definition
(N
) /= Error
then
1951 if Nkind
(Result_Definition
(N
)) = N_Access_Definition
then
1952 Check_SPARK_05_Restriction
1953 ("access result is not allowed", Result_Definition
(N
));
1955 -- Ada 2005 (AI-254): Handle anonymous access to subprograms
1958 AD
: constant Node_Id
:=
1959 Access_To_Subprogram_Definition
(Result_Definition
(N
));
1961 if Present
(AD
) and then Protected_Present
(AD
) then
1962 Typ
:= Replace_Anonymous_Access_To_Protected_Subprogram
(N
);
1964 Typ
:= Access_Definition
(N
, Result_Definition
(N
));
1968 Set_Parent
(Typ
, Result_Definition
(N
));
1969 Set_Is_Local_Anonymous_Access
(Typ
);
1970 Set_Etype
(Designator
, Typ
);
1972 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1974 Null_Exclusion_Static_Checks
(N
);
1976 -- Subtype_Mark case
1979 Find_Type
(Result_Definition
(N
));
1980 Typ
:= Entity
(Result_Definition
(N
));
1981 Set_Etype
(Designator
, Typ
);
1983 -- Unconstrained array as result is not allowed in SPARK
1985 if Is_Array_Type
(Typ
) and then not Is_Constrained
(Typ
) then
1986 Check_SPARK_05_Restriction
1987 ("returning an unconstrained array is not allowed",
1988 Result_Definition
(N
));
1991 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1993 Null_Exclusion_Static_Checks
(N
);
1995 -- If a null exclusion is imposed on the result type, then create
1996 -- a null-excluding itype (an access subtype) and use it as the
1997 -- function's Etype. Note that the null exclusion checks are done
1998 -- right before this, because they don't get applied to types that
1999 -- do not come from source.
2001 if Is_Access_Type
(Typ
) and then Null_Exclusion_Present
(N
) then
2002 Set_Etype
(Designator
,
2003 Create_Null_Excluding_Itype
2006 Scope_Id
=> Scope
(Current_Scope
)));
2008 -- The new subtype must be elaborated before use because
2009 -- it is visible outside of the function. However its base
2010 -- type may not be frozen yet, so the reference that will
2011 -- force elaboration must be attached to the freezing of
2014 -- If the return specification appears on a proper body,
2015 -- the subtype will have been created already on the spec.
2017 if Is_Frozen
(Typ
) then
2018 if Nkind
(Parent
(N
)) = N_Subprogram_Body
2019 and then Nkind
(Parent
(Parent
(N
))) = N_Subunit
2023 Build_Itype_Reference
(Etype
(Designator
), Parent
(N
));
2027 Ensure_Freeze_Node
(Typ
);
2030 IR
: constant Node_Id
:= Make_Itype_Reference
(Sloc
(N
));
2032 Set_Itype
(IR
, Etype
(Designator
));
2033 Append_Freeze_Actions
(Typ
, New_List
(IR
));
2038 Set_Etype
(Designator
, Typ
);
2041 if Ekind
(Typ
) = E_Incomplete_Type
2042 and then Is_Value_Type
(Typ
)
2046 elsif Ekind
(Typ
) = E_Incomplete_Type
2047 or else (Is_Class_Wide_Type
(Typ
)
2048 and then Ekind
(Root_Type
(Typ
)) = E_Incomplete_Type
)
2050 -- AI05-0151: Tagged incomplete types are allowed in all formal
2051 -- parts. Untagged incomplete types are not allowed in bodies.
2052 -- As a consequence, limited views cannot appear in a basic
2053 -- declaration that is itself within a body, because there is
2054 -- no point at which the non-limited view will become visible.
2056 if Ada_Version
>= Ada_2012
then
2057 if From_Limited_With
(Typ
) and then In_Package_Body
then
2059 ("invalid use of incomplete type&",
2060 Result_Definition
(N
), Typ
);
2062 -- The return type of a subprogram body cannot be of a
2063 -- formal incomplete type.
2065 elsif Is_Generic_Type
(Typ
)
2066 and then Nkind
(Parent
(N
)) = N_Subprogram_Body
2069 ("return type cannot be a formal incomplete type",
2070 Result_Definition
(N
));
2072 elsif Is_Class_Wide_Type
(Typ
)
2073 and then Is_Generic_Type
(Root_Type
(Typ
))
2074 and then Nkind
(Parent
(N
)) = N_Subprogram_Body
2077 ("return type cannot be a formal incomplete type",
2078 Result_Definition
(N
));
2080 elsif Is_Tagged_Type
(Typ
) then
2083 elsif Nkind
(Parent
(N
)) = N_Subprogram_Body
2084 or else Nkind_In
(Parent
(Parent
(N
)), N_Accept_Statement
,
2088 ("invalid use of untagged incomplete type&",
2092 -- The type must be completed in the current package. This
2093 -- is checked at the end of the package declaration when
2094 -- Taft-amendment types are identified. If the return type
2095 -- is class-wide, there is no required check, the type can
2096 -- be a bona fide TAT.
2098 if Ekind
(Scope
(Current_Scope
)) = E_Package
2099 and then In_Private_Part
(Scope
(Current_Scope
))
2100 and then not Is_Class_Wide_Type
(Typ
)
2102 Append_Elmt
(Designator
, Private_Dependents
(Typ
));
2107 ("invalid use of incomplete type&", Designator
, Typ
);
2112 -- Case where result definition does indicate an error
2115 Set_Etype
(Designator
, Any_Type
);
2117 end Analyze_Return_Type
;
2119 -----------------------------
2120 -- Analyze_Subprogram_Body --
2121 -----------------------------
2123 procedure Analyze_Subprogram_Body
(N
: Node_Id
) is
2124 Loc
: constant Source_Ptr
:= Sloc
(N
);
2125 Body_Spec
: constant Node_Id
:= Specification
(N
);
2126 Body_Id
: constant Entity_Id
:= Defining_Entity
(Body_Spec
);
2129 if Debug_Flag_C
then
2130 Write_Str
("==> subprogram body ");
2131 Write_Name
(Chars
(Body_Id
));
2132 Write_Str
(" from ");
2133 Write_Location
(Loc
);
2138 Trace_Scope
(N
, Body_Id
, " Analyze subprogram: ");
2140 -- The real work is split out into the helper, so it can do "return;"
2141 -- without skipping the debug output:
2143 Analyze_Subprogram_Body_Helper
(N
);
2145 if Debug_Flag_C
then
2147 Write_Str
("<== subprogram body ");
2148 Write_Name
(Chars
(Body_Id
));
2149 Write_Str
(" from ");
2150 Write_Location
(Loc
);
2153 end Analyze_Subprogram_Body
;
2155 --------------------------------------
2156 -- Analyze_Subprogram_Body_Contract --
2157 --------------------------------------
2159 procedure Analyze_Subprogram_Body_Contract
(Body_Id
: Entity_Id
) is
2160 Body_Decl
: constant Node_Id
:= Parent
(Parent
(Body_Id
));
2161 Mode
: SPARK_Mode_Type
;
2163 Ref_Depends
: Node_Id
:= Empty
;
2164 Ref_Global
: Node_Id
:= Empty
;
2165 Spec_Id
: Entity_Id
;
2168 -- Due to the timing of contract analysis, delayed pragmas may be
2169 -- subject to the wrong SPARK_Mode, usually that of the enclosing
2170 -- context. To remedy this, restore the original SPARK_Mode of the
2171 -- related subprogram body.
2173 Save_SPARK_Mode_And_Set
(Body_Id
, Mode
);
2175 -- When a subprogram body declaration is illegal, its defining entity is
2176 -- left unanalyzed. There is nothing left to do in this case because the
2177 -- body lacks a contract, or even a proper Ekind.
2179 if Ekind
(Body_Id
) = E_Void
then
2183 if Nkind
(Body_Decl
) = N_Subprogram_Body_Stub
then
2184 Spec_Id
:= Corresponding_Spec_Of_Stub
(Body_Decl
);
2186 Spec_Id
:= Corresponding_Spec
(Body_Decl
);
2189 -- Locate and store pragmas Refined_Depends and Refined_Global since
2190 -- their order of analysis matters.
2192 Prag
:= Classifications
(Contract
(Body_Id
));
2193 while Present
(Prag
) loop
2194 if Pragma_Name
(Prag
) = Name_Refined_Depends
then
2195 Ref_Depends
:= Prag
;
2196 elsif Pragma_Name
(Prag
) = Name_Refined_Global
then
2200 Prag
:= Next_Pragma
(Prag
);
2203 -- Analyze Refined_Global first as Refined_Depends may mention items
2204 -- classified in the global refinement.
2206 if Present
(Ref_Global
) then
2207 Analyze_Refined_Global_In_Decl_Part
(Ref_Global
);
2209 -- When the corresponding Global aspect/pragma references a state with
2210 -- visible refinement, the body requires Refined_Global. Refinement is
2211 -- not required when SPARK checks are suppressed.
2213 elsif Present
(Spec_Id
) then
2214 Prag
:= Get_Pragma
(Spec_Id
, Pragma_Global
);
2216 if SPARK_Mode
/= Off
2217 and then Present
(Prag
)
2218 and then Contains_Refined_State
(Prag
)
2221 ("body of subprogram& requires global refinement",
2222 Body_Decl
, Spec_Id
);
2226 -- Refined_Depends must be analyzed after Refined_Global in order to see
2227 -- the modes of all global refinements.
2229 if Present
(Ref_Depends
) then
2230 Analyze_Refined_Depends_In_Decl_Part
(Ref_Depends
);
2232 -- When the corresponding Depends aspect/pragma references a state with
2233 -- visible refinement, the body requires Refined_Depends. Refinement is
2234 -- not required when SPARK checks are suppressed.
2236 elsif Present
(Spec_Id
) then
2237 Prag
:= Get_Pragma
(Spec_Id
, Pragma_Depends
);
2239 if SPARK_Mode
/= Off
2240 and then Present
(Prag
)
2241 and then Contains_Refined_State
(Prag
)
2244 ("body of subprogram& requires dependance refinement",
2245 Body_Decl
, Spec_Id
);
2249 -- Restore the SPARK_Mode of the enclosing context after all delayed
2250 -- pragmas have been analyzed.
2252 Restore_SPARK_Mode
(Mode
);
2253 end Analyze_Subprogram_Body_Contract
;
2255 ------------------------------------
2256 -- Analyze_Subprogram_Body_Helper --
2257 ------------------------------------
2259 -- This procedure is called for regular subprogram bodies, generic bodies,
2260 -- and for subprogram stubs of both kinds. In the case of stubs, only the
2261 -- specification matters, and is used to create a proper declaration for
2262 -- the subprogram, or to perform conformance checks.
2264 procedure Analyze_Subprogram_Body_Helper
(N
: Node_Id
) is
2265 Loc
: constant Source_Ptr
:= Sloc
(N
);
2266 Body_Spec
: constant Node_Id
:= Specification
(N
);
2267 Body_Id
: Entity_Id
:= Defining_Entity
(Body_Spec
);
2268 Prev_Id
: constant Entity_Id
:= Current_Entity_In_Scope
(Body_Id
);
2269 Conformant
: Boolean;
2271 Prot_Typ
: Entity_Id
:= Empty
;
2272 Spec_Id
: Entity_Id
;
2273 Spec_Decl
: Node_Id
:= Empty
;
2275 Last_Real_Spec_Entity
: Entity_Id
:= Empty
;
2276 -- When we analyze a separate spec, the entity chain ends up containing
2277 -- the formals, as well as any itypes generated during analysis of the
2278 -- default expressions for parameters, or the arguments of associated
2279 -- precondition/postcondition pragmas (which are analyzed in the context
2280 -- of the spec since they have visibility on formals).
2282 -- These entities belong with the spec and not the body. However we do
2283 -- the analysis of the body in the context of the spec (again to obtain
2284 -- visibility to the formals), and all the entities generated during
2285 -- this analysis end up also chained to the entity chain of the spec.
2286 -- But they really belong to the body, and there is circuitry to move
2287 -- them from the spec to the body.
2289 -- However, when we do this move, we don't want to move the real spec
2290 -- entities (first para above) to the body. The Last_Real_Spec_Entity
2291 -- variable points to the last real spec entity, so we only move those
2292 -- chained beyond that point. It is initialized to Empty to deal with
2293 -- the case where there is no separate spec.
2295 procedure Analyze_Aspects_On_Body_Or_Stub
;
2296 -- Analyze the aspect specifications of a subprogram body [stub]. It is
2297 -- assumed that N has aspects.
2299 function Body_Has_Contract
return Boolean;
2300 -- Check whether unanalyzed body has an aspect or pragma that may
2301 -- generate a SPARK contract.
2303 procedure Check_Anonymous_Return
;
2304 -- Ada 2005: if a function returns an access type that denotes a task,
2305 -- or a type that contains tasks, we must create a master entity for
2306 -- the anonymous type, which typically will be used in an allocator
2307 -- in the body of the function.
2309 procedure Check_Inline_Pragma
(Spec
: in out Node_Id
);
2310 -- Look ahead to recognize a pragma that may appear after the body.
2311 -- If there is a previous spec, check that it appears in the same
2312 -- declarative part. If the pragma is Inline_Always, perform inlining
2313 -- unconditionally, otherwise only if Front_End_Inlining is requested.
2314 -- If the body acts as a spec, and inlining is required, we create a
2315 -- subprogram declaration for it, in order to attach the body to inline.
2316 -- If pragma does not appear after the body, check whether there is
2317 -- an inline pragma before any local declarations.
2319 procedure Check_Missing_Return
;
2320 -- Checks for a function with a no return statements, and also performs
2321 -- the warning checks implemented by Check_Returns. In formal mode, also
2322 -- verify that a function ends with a RETURN and that a procedure does
2323 -- not contain any RETURN.
2325 function Disambiguate_Spec
return Entity_Id
;
2326 -- When a primitive is declared between the private view and the full
2327 -- view of a concurrent type which implements an interface, a special
2328 -- mechanism is used to find the corresponding spec of the primitive
2331 procedure Exchange_Limited_Views
(Subp_Id
: Entity_Id
);
2332 -- Ada 2012 (AI05-0151): Detect whether the profile of Subp_Id contains
2333 -- incomplete types coming from a limited context and swap their limited
2334 -- views with the non-limited ones.
2336 function Is_Private_Concurrent_Primitive
2337 (Subp_Id
: Entity_Id
) return Boolean;
2338 -- Determine whether subprogram Subp_Id is a primitive of a concurrent
2339 -- type that implements an interface and has a private view.
2341 procedure Set_Trivial_Subprogram
(N
: Node_Id
);
2342 -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
2343 -- subprogram whose body is being analyzed. N is the statement node
2344 -- causing the flag to be set, if the following statement is a return
2345 -- of an entity, we mark the entity as set in source to suppress any
2346 -- warning on the stylized use of function stubs with a dummy return.
2348 procedure Verify_Overriding_Indicator
;
2349 -- If there was a previous spec, the entity has been entered in the
2350 -- current scope previously. If the body itself carries an overriding
2351 -- indicator, check that it is consistent with the known status of the
2354 -------------------------------------
2355 -- Analyze_Aspects_On_Body_Or_Stub --
2356 -------------------------------------
2358 procedure Analyze_Aspects_On_Body_Or_Stub
is
2359 procedure Diagnose_Misplaced_Aspects
;
2360 -- Subprogram body [stub] N has aspects, but they are not properly
2361 -- placed. Provide precise diagnostics depending on the aspects
2364 --------------------------------
2365 -- Diagnose_Misplaced_Aspects --
2366 --------------------------------
2368 procedure Diagnose_Misplaced_Aspects
is
2372 -- The current aspect along with its name and id
2374 procedure SPARK_Aspect_Error
(Ref_Nam
: Name_Id
);
2375 -- Emit an error message concerning SPARK aspect Asp. Ref_Nam is
2376 -- the name of the refined version of the aspect.
2378 ------------------------
2379 -- SPARK_Aspect_Error --
2380 ------------------------
2382 procedure SPARK_Aspect_Error
(Ref_Nam
: Name_Id
) is
2384 -- The corresponding spec already contains the aspect in
2385 -- question and the one appearing on the body must be the
2388 -- procedure P with Global ...;
2389 -- procedure P with Global ... is ... end P;
2393 if Has_Aspect
(Spec_Id
, Asp_Id
) then
2394 Error_Msg_Name_1
:= Asp_Nam
;
2396 -- Subunits cannot carry aspects that apply to a subprogram
2399 if Nkind
(Parent
(N
)) = N_Subunit
then
2400 Error_Msg_N
("aspect % cannot apply to a subunit", Asp
);
2403 Error_Msg_Name_2
:= Ref_Nam
;
2404 Error_Msg_N
("aspect % should be %", Asp
);
2407 -- Otherwise the aspect must appear in the spec, not in the
2411 -- procedure P with Global ... is ... end P;
2415 ("aspect specification must appear in subprogram "
2416 & "declaration", Asp
);
2418 end SPARK_Aspect_Error
;
2420 -- Start of processing for Diagnose_Misplaced_Aspects
2423 -- Iterate over the aspect specifications and emit specific errors
2424 -- where applicable.
2426 Asp
:= First
(Aspect_Specifications
(N
));
2427 while Present
(Asp
) loop
2428 Asp_Nam
:= Chars
(Identifier
(Asp
));
2429 Asp_Id
:= Get_Aspect_Id
(Asp_Nam
);
2431 -- Do not emit errors on aspects that can appear on a
2432 -- subprogram body. This scenario occurs when the aspect
2433 -- specification list contains both misplaced and properly
2436 if Aspect_On_Body_Or_Stub_OK
(Asp_Id
) then
2439 -- Special diagnostics for SPARK aspects
2441 elsif Asp_Nam
= Name_Depends
then
2442 SPARK_Aspect_Error
(Name_Refined_Depends
);
2444 elsif Asp_Nam
= Name_Global
then
2445 SPARK_Aspect_Error
(Name_Refined_Global
);
2447 elsif Asp_Nam
= Name_Post
then
2448 SPARK_Aspect_Error
(Name_Refined_Post
);
2452 ("aspect specification must appear in subprogram "
2453 & "declaration", Asp
);
2458 end Diagnose_Misplaced_Aspects
;
2460 -- Start of processing for Analyze_Aspects_On_Body_Or_Stub
2463 -- Language-defined aspects cannot be associated with a subprogram
2464 -- body [stub] if the subprogram has a spec. Certain implementation
2465 -- defined aspects are allowed to break this rule (for list, see
2466 -- table Aspect_On_Body_Or_Stub_OK).
2468 if Present
(Spec_Id
) and then not Aspects_On_Body_Or_Stub_OK
(N
) then
2469 Diagnose_Misplaced_Aspects
;
2471 Analyze_Aspect_Specifications
(N
, Body_Id
);
2473 end Analyze_Aspects_On_Body_Or_Stub
;
2475 -----------------------
2476 -- Body_Has_Contract --
2477 -----------------------
2479 function Body_Has_Contract
return Boolean is
2480 Decls
: constant List_Id
:= Declarations
(N
);
2487 -- Check for unanalyzed aspects in the body that will
2488 -- generate a contract.
2490 if Present
(Aspect_Specifications
(N
)) then
2491 A_Spec
:= First
(Aspect_Specifications
(N
));
2492 while Present
(A_Spec
) loop
2493 A
:= Get_Aspect_Id
(Chars
(Identifier
(A_Spec
)));
2495 if A
= Aspect_Contract_Cases
or else
2496 A
= Aspect_Depends
or else
2497 A
= Aspect_Global
or else
2498 A
= Aspect_Pre
or else
2499 A
= Aspect_Precondition
or else
2500 A
= Aspect_Post
or else
2501 A
= Aspect_Postcondition
2510 -- Check for pragmas that may generate a contract
2512 if Present
(Decls
) then
2513 Decl
:= First
(Decls
);
2514 while Present
(Decl
) loop
2515 if Nkind
(Decl
) = N_Pragma
then
2516 P_Id
:= Get_Pragma_Id
(Pragma_Name
(Decl
));
2518 if P_Id
= Pragma_Contract_Cases
or else
2519 P_Id
= Pragma_Depends
or else
2520 P_Id
= Pragma_Global
or else
2521 P_Id
= Pragma_Pre
or else
2522 P_Id
= Pragma_Precondition
or else
2523 P_Id
= Pragma_Post
or else
2524 P_Id
= Pragma_Postcondition
2535 end Body_Has_Contract
;
2537 ----------------------------
2538 -- Check_Anonymous_Return --
2539 ----------------------------
2541 procedure Check_Anonymous_Return
is
2547 if Present
(Spec_Id
) then
2553 if Ekind
(Scop
) = E_Function
2554 and then Ekind
(Etype
(Scop
)) = E_Anonymous_Access_Type
2555 and then not Is_Thunk
(Scop
)
2557 -- Skip internally built functions which handle the case of
2558 -- a null access (see Expand_Interface_Conversion)
2560 and then not (Is_Interface
(Designated_Type
(Etype
(Scop
)))
2561 and then not Comes_From_Source
(Parent
(Scop
)))
2563 and then (Has_Task
(Designated_Type
(Etype
(Scop
)))
2565 (Is_Class_Wide_Type
(Designated_Type
(Etype
(Scop
)))
2567 Is_Limited_Record
(Designated_Type
(Etype
(Scop
)))))
2568 and then Expander_Active
2570 -- Avoid cases with no tasking support
2572 and then RTE_Available
(RE_Current_Master
)
2573 and then not Restriction_Active
(No_Task_Hierarchy
)
2576 Make_Object_Declaration
(Loc
,
2577 Defining_Identifier
=>
2578 Make_Defining_Identifier
(Loc
, Name_uMaster
),
2579 Constant_Present
=> True,
2580 Object_Definition
=>
2581 New_Occurrence_Of
(RTE
(RE_Master_Id
), Loc
),
2583 Make_Explicit_Dereference
(Loc
,
2584 New_Occurrence_Of
(RTE
(RE_Current_Master
), Loc
)));
2586 if Present
(Declarations
(N
)) then
2587 Prepend
(Decl
, Declarations
(N
));
2589 Set_Declarations
(N
, New_List
(Decl
));
2592 Set_Master_Id
(Etype
(Scop
), Defining_Identifier
(Decl
));
2593 Set_Has_Master_Entity
(Scop
);
2595 -- Now mark the containing scope as a task master
2598 while Nkind
(Par
) /= N_Compilation_Unit
loop
2599 Par
:= Parent
(Par
);
2600 pragma Assert
(Present
(Par
));
2602 -- If we fall off the top, we are at the outer level, and
2603 -- the environment task is our effective master, so nothing
2607 (Par
, N_Task_Body
, N_Block_Statement
, N_Subprogram_Body
)
2609 Set_Is_Task_Master
(Par
, True);
2614 end Check_Anonymous_Return
;
2616 -------------------------
2617 -- Check_Inline_Pragma --
2618 -------------------------
2620 procedure Check_Inline_Pragma
(Spec
: in out Node_Id
) is
2624 function Is_Inline_Pragma
(N
: Node_Id
) return Boolean;
2625 -- True when N is a pragma Inline or Inline_Always that applies
2626 -- to this subprogram.
2628 -----------------------
2629 -- Is_Inline_Pragma --
2630 -----------------------
2632 function Is_Inline_Pragma
(N
: Node_Id
) return Boolean is
2635 Nkind
(N
) = N_Pragma
2637 (Pragma_Name
(N
) = Name_Inline_Always
2638 or else (Front_End_Inlining
2639 and then Pragma_Name
(N
) = Name_Inline
))
2642 (Expression
(First
(Pragma_Argument_Associations
(N
)))) =
2644 end Is_Inline_Pragma
;
2646 -- Start of processing for Check_Inline_Pragma
2649 if not Expander_Active
then
2653 if Is_List_Member
(N
)
2654 and then Present
(Next
(N
))
2655 and then Is_Inline_Pragma
(Next
(N
))
2659 elsif Nkind
(N
) /= N_Subprogram_Body_Stub
2660 and then Present
(Declarations
(N
))
2661 and then Is_Inline_Pragma
(First
(Declarations
(N
)))
2663 Prag
:= First
(Declarations
(N
));
2669 if Present
(Prag
) then
2670 if Present
(Spec_Id
) then
2671 if In_Same_List
(N
, Unit_Declaration_Node
(Spec_Id
)) then
2676 -- Create a subprogram declaration, to make treatment uniform
2679 Subp
: constant Entity_Id
:=
2680 Make_Defining_Identifier
(Loc
, Chars
(Body_Id
));
2681 Decl
: constant Node_Id
:=
2682 Make_Subprogram_Declaration
(Loc
,
2684 New_Copy_Tree
(Specification
(N
)));
2687 Set_Defining_Unit_Name
(Specification
(Decl
), Subp
);
2689 if Present
(First_Formal
(Body_Id
)) then
2690 Plist
:= Copy_Parameter_List
(Body_Id
);
2691 Set_Parameter_Specifications
2692 (Specification
(Decl
), Plist
);
2695 Insert_Before
(N
, Decl
);
2698 Set_Has_Pragma_Inline
(Subp
);
2700 if Pragma_Name
(Prag
) = Name_Inline_Always
then
2701 Set_Is_Inlined
(Subp
);
2702 Set_Has_Pragma_Inline_Always
(Subp
);
2705 -- Prior to copying the subprogram body to create a template
2706 -- for it for subsequent inlining, remove the pragma from
2707 -- the current body so that the copy that will produce the
2708 -- new body will start from a completely unanalyzed tree.
2710 if Nkind
(Parent
(Prag
)) = N_Subprogram_Body
then
2711 Rewrite
(Prag
, Make_Null_Statement
(Sloc
(Prag
)));
2718 end Check_Inline_Pragma
;
2720 --------------------------
2721 -- Check_Missing_Return --
2722 --------------------------
2724 procedure Check_Missing_Return
is
2726 Missing_Ret
: Boolean;
2729 if Nkind
(Body_Spec
) = N_Function_Specification
then
2730 if Present
(Spec_Id
) then
2736 if Return_Present
(Id
) then
2737 Check_Returns
(HSS
, 'F', Missing_Ret
);
2740 Set_Has_Missing_Return
(Id
);
2743 elsif Is_Generic_Subprogram
(Id
)
2744 or else not Is_Machine_Code_Subprogram
(Id
)
2746 Error_Msg_N
("missing RETURN statement in function body", N
);
2749 -- If procedure with No_Return, check returns
2751 elsif Nkind
(Body_Spec
) = N_Procedure_Specification
2752 and then Present
(Spec_Id
)
2753 and then No_Return
(Spec_Id
)
2755 Check_Returns
(HSS
, 'P', Missing_Ret
, Spec_Id
);
2758 -- Special checks in SPARK mode
2760 if Nkind
(Body_Spec
) = N_Function_Specification
then
2762 -- In SPARK mode, last statement of a function should be a return
2765 Stat
: constant Node_Id
:= Last_Source_Statement
(HSS
);
2768 and then not Nkind_In
(Stat
, N_Simple_Return_Statement
,
2769 N_Extended_Return_Statement
)
2771 Check_SPARK_05_Restriction
2772 ("last statement in function should be RETURN", Stat
);
2776 -- In SPARK mode, verify that a procedure has no return
2778 elsif Nkind
(Body_Spec
) = N_Procedure_Specification
then
2779 if Present
(Spec_Id
) then
2785 -- Would be nice to point to return statement here, can we
2786 -- borrow the Check_Returns procedure here ???
2788 if Return_Present
(Id
) then
2789 Check_SPARK_05_Restriction
2790 ("procedure should not have RETURN", N
);
2793 end Check_Missing_Return
;
2795 -----------------------
2796 -- Disambiguate_Spec --
2797 -----------------------
2799 function Disambiguate_Spec
return Entity_Id
is
2800 Priv_Spec
: Entity_Id
;
2803 procedure Replace_Types
(To_Corresponding
: Boolean);
2804 -- Depending on the flag, replace the type of formal parameters of
2805 -- Body_Id if it is a concurrent type implementing interfaces with
2806 -- the corresponding record type or the other way around.
2808 procedure Replace_Types
(To_Corresponding
: Boolean) is
2810 Formal_Typ
: Entity_Id
;
2813 Formal
:= First_Formal
(Body_Id
);
2814 while Present
(Formal
) loop
2815 Formal_Typ
:= Etype
(Formal
);
2817 if Is_Class_Wide_Type
(Formal_Typ
) then
2818 Formal_Typ
:= Root_Type
(Formal_Typ
);
2821 -- From concurrent type to corresponding record
2823 if To_Corresponding
then
2824 if Is_Concurrent_Type
(Formal_Typ
)
2825 and then Present
(Corresponding_Record_Type
(Formal_Typ
))
2828 (Corresponding_Record_Type
(Formal_Typ
)))
2831 Corresponding_Record_Type
(Formal_Typ
));
2834 -- From corresponding record to concurrent type
2837 if Is_Concurrent_Record_Type
(Formal_Typ
)
2838 and then Present
(Interfaces
(Formal_Typ
))
2841 Corresponding_Concurrent_Type
(Formal_Typ
));
2845 Next_Formal
(Formal
);
2849 -- Start of processing for Disambiguate_Spec
2852 -- Try to retrieve the specification of the body as is. All error
2853 -- messages are suppressed because the body may not have a spec in
2854 -- its current state.
2856 Spec_N
:= Find_Corresponding_Spec
(N
, False);
2858 -- It is possible that this is the body of a primitive declared
2859 -- between a private and a full view of a concurrent type. The
2860 -- controlling parameter of the spec carries the concurrent type,
2861 -- not the corresponding record type as transformed by Analyze_
2862 -- Subprogram_Specification. In such cases, we undo the change
2863 -- made by the analysis of the specification and try to find the
2866 -- Note that wrappers already have their corresponding specs and
2867 -- bodies set during their creation, so if the candidate spec is
2868 -- a wrapper, then we definitely need to swap all types to their
2869 -- original concurrent status.
2872 or else Is_Primitive_Wrapper
(Spec_N
)
2874 -- Restore all references of corresponding record types to the
2875 -- original concurrent types.
2877 Replace_Types
(To_Corresponding
=> False);
2878 Priv_Spec
:= Find_Corresponding_Spec
(N
, False);
2880 -- The current body truly belongs to a primitive declared between
2881 -- a private and a full view. We leave the modified body as is,
2882 -- and return the true spec.
2884 if Present
(Priv_Spec
)
2885 and then Is_Private_Primitive
(Priv_Spec
)
2890 -- In case that this is some sort of error, restore the original
2891 -- state of the body.
2893 Replace_Types
(To_Corresponding
=> True);
2897 end Disambiguate_Spec
;
2899 ----------------------------
2900 -- Exchange_Limited_Views --
2901 ----------------------------
2903 procedure Exchange_Limited_Views
(Subp_Id
: Entity_Id
) is
2904 procedure Detect_And_Exchange
(Id
: Entity_Id
);
2905 -- Determine whether Id's type denotes an incomplete type associated
2906 -- with a limited with clause and exchange the limited view with the
2909 -------------------------
2910 -- Detect_And_Exchange --
2911 -------------------------
2913 procedure Detect_And_Exchange
(Id
: Entity_Id
) is
2914 Typ
: constant Entity_Id
:= Etype
(Id
);
2917 if Ekind
(Typ
) = E_Incomplete_Type
2918 and then From_Limited_With
(Typ
)
2919 and then Present
(Non_Limited_View
(Typ
))
2921 Set_Etype
(Id
, Non_Limited_View
(Typ
));
2923 end Detect_And_Exchange
;
2929 -- Start of processing for Exchange_Limited_Views
2932 if No
(Subp_Id
) then
2935 -- Do not process subprogram bodies as they already use the non-
2936 -- limited view of types.
2938 elsif not Ekind_In
(Subp_Id
, E_Function
, E_Procedure
) then
2942 -- Examine all formals and swap views when applicable
2944 Formal
:= First_Formal
(Subp_Id
);
2945 while Present
(Formal
) loop
2946 Detect_And_Exchange
(Formal
);
2948 Next_Formal
(Formal
);
2951 -- Process the return type of a function
2953 if Ekind
(Subp_Id
) = E_Function
then
2954 Detect_And_Exchange
(Subp_Id
);
2956 end Exchange_Limited_Views
;
2958 -------------------------------------
2959 -- Is_Private_Concurrent_Primitive --
2960 -------------------------------------
2962 function Is_Private_Concurrent_Primitive
2963 (Subp_Id
: Entity_Id
) return Boolean
2965 Formal_Typ
: Entity_Id
;
2968 if Present
(First_Formal
(Subp_Id
)) then
2969 Formal_Typ
:= Etype
(First_Formal
(Subp_Id
));
2971 if Is_Concurrent_Record_Type
(Formal_Typ
) then
2972 if Is_Class_Wide_Type
(Formal_Typ
) then
2973 Formal_Typ
:= Root_Type
(Formal_Typ
);
2976 Formal_Typ
:= Corresponding_Concurrent_Type
(Formal_Typ
);
2979 -- The type of the first formal is a concurrent tagged type with
2983 Is_Concurrent_Type
(Formal_Typ
)
2984 and then Is_Tagged_Type
(Formal_Typ
)
2985 and then Has_Private_Declaration
(Formal_Typ
);
2989 end Is_Private_Concurrent_Primitive
;
2991 ----------------------------
2992 -- Set_Trivial_Subprogram --
2993 ----------------------------
2995 procedure Set_Trivial_Subprogram
(N
: Node_Id
) is
2996 Nxt
: constant Node_Id
:= Next
(N
);
2999 Set_Is_Trivial_Subprogram
(Body_Id
);
3001 if Present
(Spec_Id
) then
3002 Set_Is_Trivial_Subprogram
(Spec_Id
);
3006 and then Nkind
(Nxt
) = N_Simple_Return_Statement
3007 and then No
(Next
(Nxt
))
3008 and then Present
(Expression
(Nxt
))
3009 and then Is_Entity_Name
(Expression
(Nxt
))
3011 Set_Never_Set_In_Source
(Entity
(Expression
(Nxt
)), False);
3013 end Set_Trivial_Subprogram
;
3015 ---------------------------------
3016 -- Verify_Overriding_Indicator --
3017 ---------------------------------
3019 procedure Verify_Overriding_Indicator
is
3021 if Must_Override
(Body_Spec
) then
3022 if Nkind
(Spec_Id
) = N_Defining_Operator_Symbol
3023 and then Operator_Matches_Spec
(Spec_Id
, Spec_Id
)
3027 elsif not Present
(Overridden_Operation
(Spec_Id
)) then
3029 ("subprogram& is not overriding", Body_Spec
, Spec_Id
);
3031 -- Overriding indicators aren't allowed for protected subprogram
3032 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3033 -- this to a warning if -gnatd.E is enabled.
3035 elsif Ekind
(Scope
(Spec_Id
)) = E_Protected_Type
then
3036 Error_Msg_Warn
:= Error_To_Warning
;
3038 ("<<overriding indicator not allowed for protected "
3039 & "subprogram body", Body_Spec
);
3042 elsif Must_Not_Override
(Body_Spec
) then
3043 if Present
(Overridden_Operation
(Spec_Id
)) then
3045 ("subprogram& overrides inherited operation",
3046 Body_Spec
, Spec_Id
);
3048 elsif Nkind
(Spec_Id
) = N_Defining_Operator_Symbol
3049 and then Operator_Matches_Spec
(Spec_Id
, Spec_Id
)
3052 ("subprogram& overrides predefined operator ",
3053 Body_Spec
, Spec_Id
);
3055 -- Overriding indicators aren't allowed for protected subprogram
3056 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3057 -- this to a warning if -gnatd.E is enabled.
3059 elsif Ekind
(Scope
(Spec_Id
)) = E_Protected_Type
then
3060 Error_Msg_Warn
:= Error_To_Warning
;
3063 ("<<overriding indicator not allowed "
3064 & "for protected subprogram body", Body_Spec
);
3066 -- If this is not a primitive operation, then the overriding
3067 -- indicator is altogether illegal.
3069 elsif not Is_Primitive
(Spec_Id
) then
3071 ("overriding indicator only allowed "
3072 & "if subprogram is primitive", Body_Spec
);
3075 -- If checking the style rule and the operation overrides, then
3076 -- issue a warning about a missing overriding_indicator. Protected
3077 -- subprogram bodies are excluded from this style checking, since
3078 -- they aren't primitives (even though their declarations can
3079 -- override) and aren't allowed to have an overriding_indicator.
3082 and then Present
(Overridden_Operation
(Spec_Id
))
3083 and then Ekind
(Scope
(Spec_Id
)) /= E_Protected_Type
3085 pragma Assert
(Unit_Declaration_Node
(Body_Id
) = N
);
3086 Style
.Missing_Overriding
(N
, Body_Id
);
3089 and then Can_Override_Operator
(Spec_Id
)
3090 and then not Is_Predefined_File_Name
3091 (Unit_File_Name
(Get_Source_Unit
(Spec_Id
)))
3093 pragma Assert
(Unit_Declaration_Node
(Body_Id
) = N
);
3094 Style
.Missing_Overriding
(N
, Body_Id
);
3096 end Verify_Overriding_Indicator
;
3098 -- Start of processing for Analyze_Subprogram_Body_Helper
3101 -- Generic subprograms are handled separately. They always have a
3102 -- generic specification. Determine whether current scope has a
3103 -- previous declaration.
3105 -- If the subprogram body is defined within an instance of the same
3106 -- name, the instance appears as a package renaming, and will be hidden
3107 -- within the subprogram.
3109 if Present
(Prev_Id
)
3110 and then not Is_Overloadable
(Prev_Id
)
3111 and then (Nkind
(Parent
(Prev_Id
)) /= N_Package_Renaming_Declaration
3112 or else Comes_From_Source
(Prev_Id
))
3114 if Is_Generic_Subprogram
(Prev_Id
) then
3116 Set_Is_Compilation_Unit
(Body_Id
, Is_Compilation_Unit
(Spec_Id
));
3117 Set_Is_Child_Unit
(Body_Id
, Is_Child_Unit
(Spec_Id
));
3119 Analyze_Generic_Subprogram_Body
(N
, Spec_Id
);
3121 if Nkind
(N
) = N_Subprogram_Body
then
3122 HSS
:= Handled_Statement_Sequence
(N
);
3123 Check_Missing_Return
;
3129 -- Previous entity conflicts with subprogram name. Attempting to
3130 -- enter name will post error.
3132 Enter_Name
(Body_Id
);
3136 -- Non-generic case, find the subprogram declaration, if one was seen,
3137 -- or enter new overloaded entity in the current scope. If the
3138 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
3139 -- part of the context of one of its subunits. No need to redo the
3142 elsif Prev_Id
= Body_Id
and then Has_Completion
(Body_Id
) then
3146 Body_Id
:= Analyze_Subprogram_Specification
(Body_Spec
);
3148 if Nkind
(N
) = N_Subprogram_Body_Stub
3149 or else No
(Corresponding_Spec
(N
))
3151 if Is_Private_Concurrent_Primitive
(Body_Id
) then
3152 Spec_Id
:= Disambiguate_Spec
;
3154 Spec_Id
:= Find_Corresponding_Spec
(N
);
3156 -- In GNATprove mode, if the body has no previous spec, create
3157 -- one so that the inlining machinery can operate properly.
3158 -- Transfer aspects, if any, to the new spec, so that they
3159 -- are legal and can be processed ahead of the body.
3160 -- We make two copies of the given spec, one for the new
3161 -- declaration, and one for the body.
3164 and then GNATprove_Mode
3166 -- Inlining does not apply during pre-analysis of code
3168 and then Full_Analysis
3170 -- Inlining only applies to full bodies, not stubs
3172 and then Nkind
(N
) /= N_Subprogram_Body_Stub
3174 -- Inlining only applies to bodies in the source code, not to
3175 -- those generated by the compiler. In particular, expression
3176 -- functions, whose body is generated by the compiler, are
3177 -- treated specially by GNATprove.
3179 and then Comes_From_Source
(Body_Id
)
3181 -- This cannot be done for a compilation unit, which is not
3182 -- in a context where we can insert a new spec.
3184 and then Is_List_Member
(N
)
3186 -- Inlining only applies to subprograms without contracts,
3187 -- as a contract is a sign that GNATprove should perform a
3188 -- modular analysis of the subprogram instead of a contextual
3189 -- analysis at each call site. The same test is performed in
3190 -- Inline.Can_Be_Inlined_In_GNATprove_Mode. It is repeated
3191 -- here in another form (because the contract has not
3192 -- been attached to the body) to avoid frontend errors in
3193 -- case pragmas are used instead of aspects, because the
3194 -- corresponding pragmas in the body would not be transferred
3195 -- to the spec, leading to legality errors.
3197 and then not Body_Has_Contract
3200 Body_Spec
: constant Node_Id
:=
3201 Copy_Separate_Tree
(Specification
(N
));
3202 New_Decl
: constant Node_Id
:=
3203 Make_Subprogram_Declaration
(Loc
,
3204 Copy_Separate_Tree
(Specification
(N
)));
3206 SPARK_Mode_Aspect
: Node_Id
;
3208 Prag
, Aspect
: Node_Id
;
3211 Insert_Before
(N
, New_Decl
);
3212 Move_Aspects
(From
=> N
, To
=> New_Decl
);
3214 -- Mark the newly moved aspects as not analyzed, so that
3215 -- their effect on New_Decl is properly analyzed.
3217 Aspect
:= First
(Aspect_Specifications
(New_Decl
));
3218 while Present
(Aspect
) loop
3219 Set_Analyzed
(Aspect
, False);
3225 -- The analysis of the generated subprogram declaration
3226 -- may have introduced pragmas that need to be analyzed.
3228 Prag
:= Next
(New_Decl
);
3229 while Prag
/= N
loop
3234 Spec_Id
:= Defining_Entity
(New_Decl
);
3236 -- As Body_Id originally comes from source, mark the new
3237 -- Spec_Id as such, which is required so that calls to
3238 -- this subprogram are registered in the local effects
3239 -- stored in ALI files for GNATprove.
3241 Set_Comes_From_Source
(Spec_Id
, True);
3243 -- If aspect SPARK_Mode was specified on the body, it
3244 -- needs to be repeated on the generated decl and the
3245 -- body. Since the original aspect was moved to the
3246 -- generated decl, copy it for the body.
3248 if Has_Aspect
(Spec_Id
, Aspect_SPARK_Mode
) then
3249 SPARK_Mode_Aspect
:=
3250 New_Copy
(Find_Aspect
(Spec_Id
, Aspect_SPARK_Mode
));
3251 Set_Analyzed
(SPARK_Mode_Aspect
, False);
3252 Aspects
:= New_List
(SPARK_Mode_Aspect
);
3253 Set_Aspect_Specifications
(N
, Aspects
);
3256 Set_Specification
(N
, Body_Spec
);
3257 Body_Id
:= Analyze_Subprogram_Specification
(Body_Spec
);
3258 Set_Corresponding_Spec
(N
, Spec_Id
);
3263 -- If this is a duplicate body, no point in analyzing it
3265 if Error_Posted
(N
) then
3269 -- A subprogram body should cause freezing of its own declaration,
3270 -- but if there was no previous explicit declaration, then the
3271 -- subprogram will get frozen too late (there may be code within
3272 -- the body that depends on the subprogram having been frozen,
3273 -- such as uses of extra formals), so we force it to be frozen
3274 -- here. Same holds if the body and spec are compilation units.
3275 -- Finally, if the return type is an anonymous access to protected
3276 -- subprogram, it must be frozen before the body because its
3277 -- expansion has generated an equivalent type that is used when
3278 -- elaborating the body.
3280 -- An exception in the case of Ada 2012, AI05-177: The bodies
3281 -- created for expression functions do not freeze.
3284 and then Nkind
(Original_Node
(N
)) /= N_Expression_Function
3286 Freeze_Before
(N
, Body_Id
);
3288 elsif Nkind
(Parent
(N
)) = N_Compilation_Unit
then
3289 Freeze_Before
(N
, Spec_Id
);
3291 elsif Is_Access_Subprogram_Type
(Etype
(Body_Id
)) then
3292 Freeze_Before
(N
, Etype
(Body_Id
));
3296 Spec_Id
:= Corresponding_Spec
(N
);
3300 -- Previously we scanned the body to look for nested subprograms, and
3301 -- rejected an inline directive if nested subprograms were present,
3302 -- because the back-end would generate conflicting symbols for the
3303 -- nested bodies. This is now unnecessary.
3305 -- Look ahead to recognize a pragma Inline that appears after the body
3307 Check_Inline_Pragma
(Spec_Id
);
3309 -- Deal with special case of a fully private operation in the body of
3310 -- the protected type. We must create a declaration for the subprogram,
3311 -- in order to attach the protected subprogram that will be used in
3312 -- internal calls. We exclude compiler generated bodies from the
3313 -- expander since the issue does not arise for those cases.
3316 and then Comes_From_Source
(N
)
3317 and then Is_Protected_Type
(Current_Scope
)
3319 Spec_Id
:= Build_Private_Protected_Declaration
(N
);
3322 -- If a separate spec is present, then deal with freezing issues
3324 if Present
(Spec_Id
) then
3325 Spec_Decl
:= Unit_Declaration_Node
(Spec_Id
);
3326 Verify_Overriding_Indicator
;
3328 -- In general, the spec will be frozen when we start analyzing the
3329 -- body. However, for internally generated operations, such as
3330 -- wrapper functions for inherited operations with controlling
3331 -- results, the spec may not have been frozen by the time we expand
3332 -- the freeze actions that include the bodies. In particular, extra
3333 -- formals for accessibility or for return-in-place may need to be
3334 -- generated. Freeze nodes, if any, are inserted before the current
3335 -- body. These freeze actions are also needed in ASIS mode to enable
3336 -- the proper back-annotations.
3338 if not Is_Frozen
(Spec_Id
)
3339 and then (Expander_Active
or ASIS_Mode
)
3341 -- Force the generation of its freezing node to ensure proper
3342 -- management of access types in the backend.
3344 -- This is definitely needed for some cases, but it is not clear
3345 -- why, to be investigated further???
3347 Set_Has_Delayed_Freeze
(Spec_Id
);
3348 Freeze_Before
(N
, Spec_Id
);
3352 -- Mark presence of postcondition procedure in current scope and mark
3353 -- the procedure itself as needing debug info. The latter is important
3354 -- when analyzing decision coverage (for example, for MC/DC coverage).
3356 if Chars
(Body_Id
) = Name_uPostconditions
then
3357 Set_Has_Postconditions
(Current_Scope
);
3358 Set_Debug_Info_Needed
(Body_Id
);
3361 -- Place subprogram on scope stack, and make formals visible. If there
3362 -- is a spec, the visible entity remains that of the spec.
3364 if Present
(Spec_Id
) then
3365 Generate_Reference
(Spec_Id
, Body_Id
, 'b', Set_Ref
=> False);
3367 if Is_Child_Unit
(Spec_Id
) then
3368 Generate_Reference
(Spec_Id
, Scope
(Spec_Id
), 'k', False);
3372 Style
.Check_Identifier
(Body_Id
, Spec_Id
);
3375 Set_Is_Compilation_Unit
(Body_Id
, Is_Compilation_Unit
(Spec_Id
));
3376 Set_Is_Child_Unit
(Body_Id
, Is_Child_Unit
(Spec_Id
));
3378 if Is_Abstract_Subprogram
(Spec_Id
) then
3379 Error_Msg_N
("an abstract subprogram cannot have a body", N
);
3383 Set_Convention
(Body_Id
, Convention
(Spec_Id
));
3384 Set_Has_Completion
(Spec_Id
);
3386 -- Inherit the "ghostness" of the subprogram spec. Note that this
3387 -- property is not directly inherited as the body may be subject
3388 -- to a different Ghost assertion policy.
3390 if Is_Ghost_Entity
(Spec_Id
) or else Within_Ghost_Scope
then
3391 Set_Is_Ghost_Entity
(Body_Id
);
3393 -- The Ghost policy in effect at the point of declaration and
3394 -- at the point of completion must match (SPARK RM 6.9(15)).
3396 Check_Ghost_Completion
(Spec_Id
, Body_Id
);
3399 if Is_Protected_Type
(Scope
(Spec_Id
)) then
3400 Prot_Typ
:= Scope
(Spec_Id
);
3403 -- If this is a body generated for a renaming, do not check for
3404 -- full conformance. The check is redundant, because the spec of
3405 -- the body is a copy of the spec in the renaming declaration,
3406 -- and the test can lead to spurious errors on nested defaults.
3408 if Present
(Spec_Decl
)
3409 and then not Comes_From_Source
(N
)
3411 (Nkind
(Original_Node
(Spec_Decl
)) =
3412 N_Subprogram_Renaming_Declaration
3413 or else (Present
(Corresponding_Body
(Spec_Decl
))
3415 Nkind
(Unit_Declaration_Node
3416 (Corresponding_Body
(Spec_Decl
))) =
3417 N_Subprogram_Renaming_Declaration
))
3421 -- Conversely, the spec may have been generated for specless body
3422 -- with an inline pragma.
3424 elsif Comes_From_Source
(N
)
3425 and then not Comes_From_Source
(Spec_Id
)
3426 and then Has_Pragma_Inline
(Spec_Id
)
3433 Fully_Conformant
, True, Conformant
, Body_Id
);
3436 -- If the body is not fully conformant, we have to decide if we
3437 -- should analyze it or not. If it has a really messed up profile
3438 -- then we probably should not analyze it, since we will get too
3439 -- many bogus messages.
3441 -- Our decision is to go ahead in the non-fully conformant case
3442 -- only if it is at least mode conformant with the spec. Note
3443 -- that the call to Check_Fully_Conformant has issued the proper
3444 -- error messages to complain about the lack of conformance.
3447 and then not Mode_Conformant
(Body_Id
, Spec_Id
)
3453 if Spec_Id
/= Body_Id
then
3454 Reference_Body_Formals
(Spec_Id
, Body_Id
);
3457 Set_Ekind
(Body_Id
, E_Subprogram_Body
);
3459 if Nkind
(N
) = N_Subprogram_Body_Stub
then
3460 Set_Corresponding_Spec_Of_Stub
(N
, Spec_Id
);
3465 Set_Corresponding_Spec
(N
, Spec_Id
);
3467 -- Ada 2005 (AI-345): If the operation is a primitive operation
3468 -- of a concurrent type, the type of the first parameter has been
3469 -- replaced with the corresponding record, which is the proper
3470 -- run-time structure to use. However, within the body there may
3471 -- be uses of the formals that depend on primitive operations
3472 -- of the type (in particular calls in prefixed form) for which
3473 -- we need the original concurrent type. The operation may have
3474 -- several controlling formals, so the replacement must be done
3477 if Comes_From_Source
(Spec_Id
)
3478 and then Present
(First_Entity
(Spec_Id
))
3479 and then Ekind
(Etype
(First_Entity
(Spec_Id
))) = E_Record_Type
3480 and then Is_Tagged_Type
(Etype
(First_Entity
(Spec_Id
)))
3481 and then Present
(Interfaces
(Etype
(First_Entity
(Spec_Id
))))
3482 and then Present
(Corresponding_Concurrent_Type
3483 (Etype
(First_Entity
(Spec_Id
))))
3486 Typ
: constant Entity_Id
:= Etype
(First_Entity
(Spec_Id
));
3490 Form
:= First_Formal
(Spec_Id
);
3491 while Present
(Form
) loop
3492 if Etype
(Form
) = Typ
then
3493 Set_Etype
(Form
, Corresponding_Concurrent_Type
(Typ
));
3501 -- Make the formals visible, and place subprogram on scope stack.
3502 -- This is also the point at which we set Last_Real_Spec_Entity
3503 -- to mark the entities which will not be moved to the body.
3505 Install_Formals
(Spec_Id
);
3506 Last_Real_Spec_Entity
:= Last_Entity
(Spec_Id
);
3508 -- Within an instance, add local renaming declarations so that
3509 -- gdb can retrieve the values of actuals more easily. This is
3510 -- only relevant if generating code (and indeed we definitely
3511 -- do not want these definitions -gnatc mode, because that would
3514 if Is_Generic_Instance
(Spec_Id
)
3515 and then Is_Wrapper_Package
(Current_Scope
)
3516 and then Expander_Active
3518 Build_Subprogram_Instance_Renamings
(N
, Current_Scope
);
3521 Push_Scope
(Spec_Id
);
3523 -- Make sure that the subprogram is immediately visible. For
3524 -- child units that have no separate spec this is indispensable.
3525 -- Otherwise it is safe albeit redundant.
3527 Set_Is_Immediately_Visible
(Spec_Id
);
3530 Set_Corresponding_Body
(Unit_Declaration_Node
(Spec_Id
), Body_Id
);
3531 Set_Contract
(Body_Id
, Make_Contract
(Sloc
(Body_Id
)));
3532 Set_Scope
(Body_Id
, Scope
(Spec_Id
));
3533 Set_Is_Obsolescent
(Body_Id
, Is_Obsolescent
(Spec_Id
));
3535 -- Case of subprogram body with no previous spec
3538 -- Check for style warning required
3542 -- Only apply check for source level subprograms for which checks
3543 -- have not been suppressed.
3545 and then Comes_From_Source
(Body_Id
)
3546 and then not Suppress_Style_Checks
(Body_Id
)
3548 -- No warnings within an instance
3550 and then not In_Instance
3552 -- No warnings for expression functions
3554 and then Nkind
(Original_Node
(N
)) /= N_Expression_Function
3556 Style
.Body_With_No_Spec
(N
);
3559 New_Overloaded_Entity
(Body_Id
);
3561 if Nkind
(N
) /= N_Subprogram_Body_Stub
then
3562 Set_Acts_As_Spec
(N
);
3563 Generate_Definition
(Body_Id
);
3564 Set_Contract
(Body_Id
, Make_Contract
(Sloc
(Body_Id
)));
3566 (Body_Id
, Body_Id
, 'b', Set_Ref
=> False, Force
=> True);
3567 Install_Formals
(Body_Id
);
3569 Push_Scope
(Body_Id
);
3572 -- For stubs and bodies with no previous spec, generate references to
3575 Generate_Reference_To_Formals
(Body_Id
);
3578 -- Set SPARK_Mode from context
3580 Set_SPARK_Pragma
(Body_Id
, SPARK_Mode_Pragma
);
3581 Set_SPARK_Pragma_Inherited
(Body_Id
, True);
3583 -- If the return type is an anonymous access type whose designated type
3584 -- is the limited view of a class-wide type and the non-limited view is
3585 -- available, update the return type accordingly.
3587 if Ada_Version
>= Ada_2005
and then Comes_From_Source
(N
) then
3593 Rtyp
:= Etype
(Current_Scope
);
3595 if Ekind
(Rtyp
) = E_Anonymous_Access_Type
then
3596 Etyp
:= Directly_Designated_Type
(Rtyp
);
3598 if Is_Class_Wide_Type
(Etyp
)
3599 and then From_Limited_With
(Etyp
)
3601 Set_Directly_Designated_Type
3602 (Etype
(Current_Scope
), Available_View
(Etyp
));
3608 -- If this is the proper body of a stub, we must verify that the stub
3609 -- conforms to the body, and to the previous spec if one was present.
3610 -- We know already that the body conforms to that spec. This test is
3611 -- only required for subprograms that come from source.
3613 if Nkind
(Parent
(N
)) = N_Subunit
3614 and then Comes_From_Source
(N
)
3615 and then not Error_Posted
(Body_Id
)
3616 and then Nkind
(Corresponding_Stub
(Parent
(N
))) =
3617 N_Subprogram_Body_Stub
3620 Old_Id
: constant Entity_Id
:=
3622 (Specification
(Corresponding_Stub
(Parent
(N
))));
3624 Conformant
: Boolean := False;
3627 if No
(Spec_Id
) then
3628 Check_Fully_Conformant
(Body_Id
, Old_Id
);
3632 (Body_Id
, Old_Id
, Fully_Conformant
, False, Conformant
);
3634 if not Conformant
then
3636 -- The stub was taken to be a new declaration. Indicate that
3639 Set_Has_Completion
(Old_Id
, False);
3645 Set_Has_Completion
(Body_Id
);
3646 Check_Eliminated
(Body_Id
);
3648 if Nkind
(N
) = N_Subprogram_Body_Stub
then
3650 -- Analyze any aspect specifications that appear on the subprogram
3653 if Has_Aspects
(N
) then
3654 Analyze_Aspects_On_Body_Or_Stub
;
3657 -- Stop the analysis now as the stub cannot be inlined, plus it does
3658 -- not have declarative or statement lists.
3663 -- Handle frontend inlining
3665 -- Note: Normally we don't do any inlining if expansion is off, since
3666 -- we won't generate code in any case. An exception arises in GNATprove
3667 -- mode where we want to expand some calls in place, even with expansion
3668 -- disabled, since the inlining eases formal verification.
3670 if not GNATprove_Mode
3671 and then Expander_Active
3672 and then Serious_Errors_Detected
= 0
3673 and then Present
(Spec_Id
)
3674 and then Has_Pragma_Inline
(Spec_Id
)
3676 -- Legacy implementation (relying on frontend inlining)
3678 if not Back_End_Inlining
then
3679 if Has_Pragma_Inline_Always
(Spec_Id
)
3680 or else (Has_Pragma_Inline
(Spec_Id
) and Front_End_Inlining
)
3682 Build_Body_To_Inline
(N
, Spec_Id
);
3685 -- New implementation (relying on backend inlining)
3688 if Has_Pragma_Inline_Always
(Spec_Id
)
3689 or else Optimization_Level
> 0
3691 -- Handle function returning an unconstrained type
3693 if Comes_From_Source
(Body_Id
)
3694 and then Ekind
(Spec_Id
) = E_Function
3695 and then Returns_Unconstrained_Type
(Spec_Id
)
3697 -- If function builds in place, i.e. returns a limited type,
3698 -- inlining cannot be done.
3700 and then not Is_Limited_Type
(Etype
(Spec_Id
))
3702 Check_And_Split_Unconstrained_Function
(N
, Spec_Id
, Body_Id
);
3706 Subp_Body
: constant Node_Id
:=
3707 Unit_Declaration_Node
(Body_Id
);
3708 Subp_Decl
: constant List_Id
:= Declarations
(Subp_Body
);
3711 -- Do not pass inlining to the backend if the subprogram
3712 -- has declarations or statements which cannot be inlined
3713 -- by the backend. This check is done here to emit an
3714 -- error instead of the generic warning message reported
3715 -- by the GCC backend (ie. "function might not be
3718 if Present
(Subp_Decl
)
3719 and then Has_Excluded_Declaration
(Spec_Id
, Subp_Decl
)
3723 elsif Has_Excluded_Statement
3726 (Handled_Statement_Sequence
(Subp_Body
)))
3730 -- If the backend inlining is available then at this
3731 -- stage we only have to mark the subprogram as inlined.
3732 -- The expander will take care of registering it in the
3733 -- table of subprograms inlined by the backend a part of
3734 -- processing calls to it (cf. Expand_Call)
3737 Set_Is_Inlined
(Spec_Id
);
3744 -- In GNATprove mode, inline only when there is a separate subprogram
3745 -- declaration for now, as inlining of subprogram bodies acting as
3746 -- declarations, or subprogram stubs, are not supported by frontend
3747 -- inlining. This inlining should occur after analysis of the body, so
3748 -- that it is known whether the value of SPARK_Mode applicable to the
3749 -- body, which can be defined by a pragma inside the body.
3751 elsif GNATprove_Mode
3752 and then Full_Analysis
3753 and then not Inside_A_Generic
3754 and then Present
(Spec_Id
)
3755 and then Nkind
(Parent
(Parent
(Spec_Id
))) = N_Subprogram_Declaration
3756 and then Can_Be_Inlined_In_GNATprove_Mode
(Spec_Id
, Body_Id
)
3757 and then not Body_Has_Contract
3759 Build_Body_To_Inline
(N
, Spec_Id
);
3762 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
3763 -- of the specification we have to install the private withed units.
3764 -- This holds for child units as well.
3766 if Is_Compilation_Unit
(Body_Id
)
3767 or else Nkind
(Parent
(N
)) = N_Compilation_Unit
3769 Install_Private_With_Clauses
(Body_Id
);
3772 Check_Anonymous_Return
;
3774 -- Set the Protected_Formal field of each extra formal of the protected
3775 -- subprogram to reference the corresponding extra formal of the
3776 -- subprogram that implements it. For regular formals this occurs when
3777 -- the protected subprogram's declaration is expanded, but the extra
3778 -- formals don't get created until the subprogram is frozen. We need to
3779 -- do this before analyzing the protected subprogram's body so that any
3780 -- references to the original subprogram's extra formals will be changed
3781 -- refer to the implementing subprogram's formals (see Expand_Formal).
3783 if Present
(Spec_Id
)
3784 and then Is_Protected_Type
(Scope
(Spec_Id
))
3785 and then Present
(Protected_Body_Subprogram
(Spec_Id
))
3788 Impl_Subp
: constant Entity_Id
:=
3789 Protected_Body_Subprogram
(Spec_Id
);
3790 Prot_Ext_Formal
: Entity_Id
:= Extra_Formals
(Spec_Id
);
3791 Impl_Ext_Formal
: Entity_Id
:= Extra_Formals
(Impl_Subp
);
3793 while Present
(Prot_Ext_Formal
) loop
3794 pragma Assert
(Present
(Impl_Ext_Formal
));
3795 Set_Protected_Formal
(Prot_Ext_Formal
, Impl_Ext_Formal
);
3796 Next_Formal_With_Extras
(Prot_Ext_Formal
);
3797 Next_Formal_With_Extras
(Impl_Ext_Formal
);
3802 -- Now we can go on to analyze the body
3804 HSS
:= Handled_Statement_Sequence
(N
);
3805 Set_Actual_Subtypes
(N
, Current_Scope
);
3807 -- Add a declaration for the Protection object, renaming declarations
3808 -- for discriminals and privals and finally a declaration for the entry
3809 -- family index (if applicable). This form of early expansion is done
3810 -- when the Expander is active because Install_Private_Data_Declarations
3811 -- references entities which were created during regular expansion. The
3812 -- subprogram entity must come from source, and not be an internally
3813 -- generated subprogram.
3816 and then Present
(Prot_Typ
)
3817 and then Present
(Spec_Id
)
3818 and then Comes_From_Source
(Spec_Id
)
3819 and then not Is_Eliminated
(Spec_Id
)
3821 Install_Private_Data_Declarations
3822 (Sloc
(N
), Spec_Id
, Prot_Typ
, N
, Declarations
(N
));
3825 -- Ada 2012 (AI05-0151): Incomplete types coming from a limited context
3826 -- may now appear in parameter and result profiles. Since the analysis
3827 -- of a subprogram body may use the parameter and result profile of the
3828 -- spec, swap any limited views with their non-limited counterpart.
3830 if Ada_Version
>= Ada_2012
then
3831 Exchange_Limited_Views
(Spec_Id
);
3834 -- Analyze any aspect specifications that appear on the subprogram body
3836 if Has_Aspects
(N
) then
3837 Analyze_Aspects_On_Body_Or_Stub
;
3840 -- Deal with [refined] preconditions, postconditions, Contract_Cases,
3841 -- invariants and predicates associated with the body and its spec.
3842 -- Note that this is not pure expansion as Expand_Subprogram_Contract
3843 -- prepares the contract assertions for generic subprograms or for ASIS.
3844 -- Do not generate contract checks in SPARK mode.
3846 if not GNATprove_Mode
then
3847 Expand_Subprogram_Contract
(N
, Spec_Id
, Body_Id
);
3850 -- Analyze the declarations (this call will analyze the precondition
3851 -- Check pragmas we prepended to the list, as well as the declaration
3852 -- of the _Postconditions procedure).
3854 Analyze_Declarations
(Declarations
(N
));
3856 -- Verify that the SPARK_Mode of the body agrees with that of its spec
3858 if Present
(Spec_Id
) and then Present
(SPARK_Pragma
(Body_Id
)) then
3859 if Present
(SPARK_Pragma
(Spec_Id
)) then
3860 if Get_SPARK_Mode_From_Pragma
(SPARK_Pragma
(Spec_Id
)) = Off
3862 Get_SPARK_Mode_From_Pragma
(SPARK_Pragma
(Body_Id
)) = On
3864 Error_Msg_Sloc
:= Sloc
(SPARK_Pragma
(Body_Id
));
3865 Error_Msg_N
("incorrect application of SPARK_Mode#", N
);
3866 Error_Msg_Sloc
:= Sloc
(SPARK_Pragma
(Spec_Id
));
3868 ("\value Off was set for SPARK_Mode on & #", N
, Spec_Id
);
3871 elsif Nkind
(Parent
(Parent
(Spec_Id
))) = N_Subprogram_Body_Stub
then
3875 Error_Msg_Sloc
:= Sloc
(SPARK_Pragma
(Body_Id
));
3876 Error_Msg_N
("incorrect application of SPARK_Mode #", N
);
3877 Error_Msg_Sloc
:= Sloc
(Spec_Id
);
3879 ("\no value was set for SPARK_Mode on & #", N
, Spec_Id
);
3883 -- If SPARK_Mode for body is not On, disable frontend inlining for this
3884 -- subprogram in GNATprove mode, as its body should not be analyzed.
3887 and then GNATprove_Mode
3888 and then Present
(Spec_Id
)
3889 and then Nkind
(Parent
(Parent
(Spec_Id
))) = N_Subprogram_Declaration
3891 Set_Body_To_Inline
(Parent
(Parent
(Spec_Id
)), Empty
);
3892 Set_Is_Inlined_Always
(Spec_Id
, False);
3895 -- Check completion, and analyze the statements
3898 Inspect_Deferred_Constant_Completion
(Declarations
(N
));
3901 -- Deal with end of scope processing for the body
3903 Process_End_Label
(HSS
, 't', Current_Scope
);
3905 Check_Subprogram_Order
(N
);
3906 Set_Analyzed
(Body_Id
);
3908 -- If we have a separate spec, then the analysis of the declarations
3909 -- caused the entities in the body to be chained to the spec id, but
3910 -- we want them chained to the body id. Only the formal parameters
3911 -- end up chained to the spec id in this case.
3913 if Present
(Spec_Id
) then
3915 -- We must conform to the categorization of our spec
3917 Validate_Categorization_Dependency
(N
, Spec_Id
);
3919 -- And if this is a child unit, the parent units must conform
3921 if Is_Child_Unit
(Spec_Id
) then
3922 Validate_Categorization_Dependency
3923 (Unit_Declaration_Node
(Spec_Id
), Spec_Id
);
3926 -- Here is where we move entities from the spec to the body
3928 -- Case where there are entities that stay with the spec
3930 if Present
(Last_Real_Spec_Entity
) then
3932 -- No body entities (happens when the only real spec entities come
3933 -- from precondition and postcondition pragmas).
3935 if No
(Last_Entity
(Body_Id
)) then
3937 (Body_Id
, Next_Entity
(Last_Real_Spec_Entity
));
3939 -- Body entities present (formals), so chain stuff past them
3943 (Last_Entity
(Body_Id
), Next_Entity
(Last_Real_Spec_Entity
));
3946 Set_Next_Entity
(Last_Real_Spec_Entity
, Empty
);
3947 Set_Last_Entity
(Body_Id
, Last_Entity
(Spec_Id
));
3948 Set_Last_Entity
(Spec_Id
, Last_Real_Spec_Entity
);
3950 -- Case where there are no spec entities, in this case there can be
3951 -- no body entities either, so just move everything.
3954 pragma Assert
(No
(Last_Entity
(Body_Id
)));
3955 Set_First_Entity
(Body_Id
, First_Entity
(Spec_Id
));
3956 Set_Last_Entity
(Body_Id
, Last_Entity
(Spec_Id
));
3957 Set_First_Entity
(Spec_Id
, Empty
);
3958 Set_Last_Entity
(Spec_Id
, Empty
);
3962 Check_Missing_Return
;
3964 -- Now we are going to check for variables that are never modified in
3965 -- the body of the procedure. But first we deal with a special case
3966 -- where we want to modify this check. If the body of the subprogram
3967 -- starts with a raise statement or its equivalent, or if the body
3968 -- consists entirely of a null statement, then it is pretty obvious that
3969 -- it is OK to not reference the parameters. For example, this might be
3970 -- the following common idiom for a stubbed function: statement of the
3971 -- procedure raises an exception. In particular this deals with the
3972 -- common idiom of a stubbed function, which appears something like:
3974 -- function F (A : Integer) return Some_Type;
3977 -- raise Program_Error;
3981 -- Here the purpose of X is simply to satisfy the annoying requirement
3982 -- in Ada that there be at least one return, and we certainly do not
3983 -- want to go posting warnings on X that it is not initialized. On
3984 -- the other hand, if X is entirely unreferenced that should still
3987 -- What we do is to detect these cases, and if we find them, flag the
3988 -- subprogram as being Is_Trivial_Subprogram and then use that flag to
3989 -- suppress unwanted warnings. For the case of the function stub above
3990 -- we have a special test to set X as apparently assigned to suppress
3997 -- Skip initial labels (for one thing this occurs when we are in
3998 -- front end ZCX mode, but in any case it is irrelevant), and also
3999 -- initial Push_xxx_Error_Label nodes, which are also irrelevant.
4001 Stm
:= First
(Statements
(HSS
));
4002 while Nkind
(Stm
) = N_Label
4003 or else Nkind
(Stm
) in N_Push_xxx_Label
4008 -- Do the test on the original statement before expansion
4011 Ostm
: constant Node_Id
:= Original_Node
(Stm
);
4014 -- If explicit raise statement, turn on flag
4016 if Nkind
(Ostm
) = N_Raise_Statement
then
4017 Set_Trivial_Subprogram
(Stm
);
4019 -- If null statement, and no following statements, turn on flag
4021 elsif Nkind
(Stm
) = N_Null_Statement
4022 and then Comes_From_Source
(Stm
)
4023 and then No
(Next
(Stm
))
4025 Set_Trivial_Subprogram
(Stm
);
4027 -- Check for explicit call cases which likely raise an exception
4029 elsif Nkind
(Ostm
) = N_Procedure_Call_Statement
then
4030 if Is_Entity_Name
(Name
(Ostm
)) then
4032 Ent
: constant Entity_Id
:= Entity
(Name
(Ostm
));
4035 -- If the procedure is marked No_Return, then likely it
4036 -- raises an exception, but in any case it is not coming
4037 -- back here, so turn on the flag.
4040 and then Ekind
(Ent
) = E_Procedure
4041 and then No_Return
(Ent
)
4043 Set_Trivial_Subprogram
(Stm
);
4051 -- Check for variables that are never modified
4057 -- If there is a separate spec, then transfer Never_Set_In_Source
4058 -- flags from out parameters to the corresponding entities in the
4059 -- body. The reason we do that is we want to post error flags on
4060 -- the body entities, not the spec entities.
4062 if Present
(Spec_Id
) then
4063 E1
:= First_Entity
(Spec_Id
);
4064 while Present
(E1
) loop
4065 if Ekind
(E1
) = E_Out_Parameter
then
4066 E2
:= First_Entity
(Body_Id
);
4067 while Present
(E2
) loop
4068 exit when Chars
(E1
) = Chars
(E2
);
4072 if Present
(E2
) then
4073 Set_Never_Set_In_Source
(E2
, Never_Set_In_Source
(E1
));
4081 -- Check references in body
4083 Check_References
(Body_Id
);
4085 end Analyze_Subprogram_Body_Helper
;
4087 ---------------------------------
4088 -- Analyze_Subprogram_Contract --
4089 ---------------------------------
4091 procedure Analyze_Subprogram_Contract
(Subp
: Entity_Id
) is
4092 Items
: constant Node_Id
:= Contract
(Subp
);
4093 Case_Prag
: Node_Id
:= Empty
;
4094 Depends
: Node_Id
:= Empty
;
4095 Global
: Node_Id
:= Empty
;
4096 Mode
: SPARK_Mode_Type
;
4098 Post_Prag
: Node_Id
:= Empty
;
4100 Seen_In_Case
: Boolean := False;
4101 Seen_In_Post
: Boolean := False;
4104 -- Due to the timing of contract analysis, delayed pragmas may be
4105 -- subject to the wrong SPARK_Mode, usually that of the enclosing
4106 -- context. To remedy this, restore the original SPARK_Mode of the
4107 -- related subprogram body.
4109 Save_SPARK_Mode_And_Set
(Subp
, Mode
);
4111 if Present
(Items
) then
4113 -- Analyze pre- and postconditions
4115 Prag
:= Pre_Post_Conditions
(Items
);
4116 while Present
(Prag
) loop
4117 Analyze_Pre_Post_Condition_In_Decl_Part
(Prag
, Subp
);
4119 -- Verify whether a postcondition mentions attribute 'Result and
4120 -- its expression introduces a post-state.
4122 if Warn_On_Suspicious_Contract
4123 and then Pragma_Name
(Prag
) = Name_Postcondition
4126 Check_Result_And_Post_State
(Prag
, Seen_In_Post
);
4129 Prag
:= Next_Pragma
(Prag
);
4132 -- Analyze contract-cases and test-cases
4134 Prag
:= Contract_Test_Cases
(Items
);
4135 while Present
(Prag
) loop
4136 Nam
:= Pragma_Name
(Prag
);
4138 if Nam
= Name_Contract_Cases
then
4139 Analyze_Contract_Cases_In_Decl_Part
(Prag
);
4141 -- Verify whether contract-cases mention attribute 'Result and
4142 -- its expression introduces a post-state. Perform the check
4143 -- only when the pragma is legal.
4145 if Warn_On_Suspicious_Contract
4146 and then not Error_Posted
(Prag
)
4149 Check_Result_And_Post_State
(Prag
, Seen_In_Case
);
4153 pragma Assert
(Nam
= Name_Test_Case
);
4154 Analyze_Test_Case_In_Decl_Part
(Prag
, Subp
);
4157 Prag
:= Next_Pragma
(Prag
);
4160 -- Analyze classification pragmas
4162 Prag
:= Classifications
(Items
);
4163 while Present
(Prag
) loop
4164 Nam
:= Pragma_Name
(Prag
);
4166 if Nam
= Name_Depends
then
4169 elsif Nam
= Name_Global
then
4172 -- Note that pragma Extensions_Visible has already been analyzed
4176 Prag
:= Next_Pragma
(Prag
);
4179 -- Analyze Global first as Depends may mention items classified in
4180 -- the global categorization.
4182 if Present
(Global
) then
4183 Analyze_Global_In_Decl_Part
(Global
);
4186 -- Depends must be analyzed after Global in order to see the modes of
4187 -- all global items.
4189 if Present
(Depends
) then
4190 Analyze_Depends_In_Decl_Part
(Depends
);
4194 -- Emit an error when neither the postconditions nor the contract-cases
4195 -- mention attribute 'Result in the context of a function.
4197 if Warn_On_Suspicious_Contract
4198 and then Ekind_In
(Subp
, E_Function
, E_Generic_Function
)
4200 if Present
(Case_Prag
)
4201 and then not Seen_In_Case
4202 and then Present
(Post_Prag
)
4203 and then not Seen_In_Post
4206 ("neither function postcondition nor contract cases mention "
4207 & "result?T?", Post_Prag
);
4209 elsif Present
(Case_Prag
) and then not Seen_In_Case
then
4211 ("contract cases do not mention result?T?", Case_Prag
);
4213 -- OK if we have at least one IN OUT parameter
4215 elsif Present
(Post_Prag
) and then not Seen_In_Post
then
4219 F
:= First_Formal
(Subp
);
4220 while Present
(F
) loop
4221 if Ekind
(F
) = E_In_Out_Parameter
then
4229 -- If no in-out parameters and no mention of Result, the contract
4230 -- is certainly suspicious.
4233 ("function postcondition does not mention result?T?", Post_Prag
);
4237 -- Restore the SPARK_Mode of the enclosing context after all delayed
4238 -- pragmas have been analyzed.
4240 Restore_SPARK_Mode
(Mode
);
4241 end Analyze_Subprogram_Contract
;
4243 ------------------------------------
4244 -- Analyze_Subprogram_Declaration --
4245 ------------------------------------
4247 procedure Analyze_Subprogram_Declaration
(N
: Node_Id
) is
4248 Scop
: constant Entity_Id
:= Current_Scope
;
4249 Designator
: Entity_Id
;
4251 Is_Completion
: Boolean;
4252 -- Indicates whether a null procedure declaration is a completion
4255 -- Null procedures are not allowed in SPARK
4257 if Nkind
(Specification
(N
)) = N_Procedure_Specification
4258 and then Null_Present
(Specification
(N
))
4260 Check_SPARK_05_Restriction
("null procedure is not allowed", N
);
4262 if Is_Protected_Type
(Current_Scope
) then
4263 Error_Msg_N
("protected operation cannot be a null procedure", N
);
4266 Analyze_Null_Procedure
(N
, Is_Completion
);
4268 if Is_Completion
then
4270 -- The null procedure acts as a body, nothing further is needed.
4276 Designator
:= Analyze_Subprogram_Specification
(Specification
(N
));
4278 -- A reference may already have been generated for the unit name, in
4279 -- which case the following call is redundant. However it is needed for
4280 -- declarations that are the rewriting of an expression function.
4282 Generate_Definition
(Designator
);
4284 -- Set SPARK mode from current context (may be overwritten later with
4285 -- explicit pragma).
4287 Set_SPARK_Pragma
(Designator
, SPARK_Mode_Pragma
);
4288 Set_SPARK_Pragma_Inherited
(Designator
, True);
4290 -- A subprogram declared within a Ghost scope is automatically Ghost
4291 -- (SPARK RM 6.9(2)).
4293 if Comes_From_Source
(Designator
) and then Within_Ghost_Scope
then
4294 Set_Is_Ghost_Entity
(Designator
);
4297 if Debug_Flag_C
then
4298 Write_Str
("==> subprogram spec ");
4299 Write_Name
(Chars
(Designator
));
4300 Write_Str
(" from ");
4301 Write_Location
(Sloc
(N
));
4306 Validate_RCI_Subprogram_Declaration
(N
);
4307 New_Overloaded_Entity
(Designator
);
4308 Check_Delayed_Subprogram
(Designator
);
4310 -- If the type of the first formal of the current subprogram is a non-
4311 -- generic tagged private type, mark the subprogram as being a private
4312 -- primitive. Ditto if this is a function with controlling result, and
4313 -- the return type is currently private. In both cases, the type of the
4314 -- controlling argument or result must be in the current scope for the
4315 -- operation to be primitive.
4317 if Has_Controlling_Result
(Designator
)
4318 and then Is_Private_Type
(Etype
(Designator
))
4319 and then Scope
(Etype
(Designator
)) = Current_Scope
4320 and then not Is_Generic_Actual_Type
(Etype
(Designator
))
4322 Set_Is_Private_Primitive
(Designator
);
4324 elsif Present
(First_Formal
(Designator
)) then
4326 Formal_Typ
: constant Entity_Id
:=
4327 Etype
(First_Formal
(Designator
));
4329 Set_Is_Private_Primitive
(Designator
,
4330 Is_Tagged_Type
(Formal_Typ
)
4331 and then Scope
(Formal_Typ
) = Current_Scope
4332 and then Is_Private_Type
(Formal_Typ
)
4333 and then not Is_Generic_Actual_Type
(Formal_Typ
));
4337 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
4340 if Ada_Version
>= Ada_2005
4341 and then Comes_From_Source
(N
)
4342 and then Is_Dispatching_Operation
(Designator
)
4349 if Has_Controlling_Result
(Designator
) then
4350 Etyp
:= Etype
(Designator
);
4353 E
:= First_Entity
(Designator
);
4355 and then Is_Formal
(E
)
4356 and then not Is_Controlling_Formal
(E
)
4364 if Is_Access_Type
(Etyp
) then
4365 Etyp
:= Directly_Designated_Type
(Etyp
);
4368 if Is_Interface
(Etyp
)
4369 and then not Is_Abstract_Subprogram
(Designator
)
4370 and then not (Ekind
(Designator
) = E_Procedure
4371 and then Null_Present
(Specification
(N
)))
4373 Error_Msg_Name_1
:= Chars
(Defining_Entity
(N
));
4375 -- Specialize error message based on procedures vs. functions,
4376 -- since functions can't be null subprograms.
4378 if Ekind
(Designator
) = E_Procedure
then
4380 ("interface procedure % must be abstract or null", N
);
4383 ("interface function % must be abstract", N
);
4389 -- What is the following code for, it used to be
4391 -- ??? Set_Suppress_Elaboration_Checks
4392 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
4394 -- The following seems equivalent, but a bit dubious
4396 if Elaboration_Checks_Suppressed
(Designator
) then
4397 Set_Kill_Elaboration_Checks
(Designator
);
4400 if Scop
/= Standard_Standard
and then not Is_Child_Unit
(Designator
) then
4401 Set_Categorization_From_Scope
(Designator
, Scop
);
4404 -- For a compilation unit, check for library-unit pragmas
4406 Push_Scope
(Designator
);
4407 Set_Categorization_From_Pragmas
(N
);
4408 Validate_Categorization_Dependency
(N
, Designator
);
4412 -- For a compilation unit, set body required. This flag will only be
4413 -- reset if a valid Import or Interface pragma is processed later on.
4415 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
4416 Set_Body_Required
(Parent
(N
), True);
4418 if Ada_Version
>= Ada_2005
4419 and then Nkind
(Specification
(N
)) = N_Procedure_Specification
4420 and then Null_Present
(Specification
(N
))
4423 ("null procedure cannot be declared at library level", N
);
4427 Generate_Reference_To_Formals
(Designator
);
4428 Check_Eliminated
(Designator
);
4430 if Debug_Flag_C
then
4432 Write_Str
("<== subprogram spec ");
4433 Write_Name
(Chars
(Designator
));
4434 Write_Str
(" from ");
4435 Write_Location
(Sloc
(N
));
4439 if Is_Protected_Type
(Current_Scope
) then
4441 -- Indicate that this is a protected operation, because it may be
4442 -- used in subsequent declarations within the protected type.
4444 Set_Convention
(Designator
, Convention_Protected
);
4447 List_Inherited_Pre_Post_Aspects
(Designator
);
4449 if Has_Aspects
(N
) then
4450 Analyze_Aspect_Specifications
(N
, Designator
);
4452 end Analyze_Subprogram_Declaration
;
4454 --------------------------------------
4455 -- Analyze_Subprogram_Specification --
4456 --------------------------------------
4458 -- Reminder: N here really is a subprogram specification (not a subprogram
4459 -- declaration). This procedure is called to analyze the specification in
4460 -- both subprogram bodies and subprogram declarations (specs).
4462 function Analyze_Subprogram_Specification
(N
: Node_Id
) return Entity_Id
is
4463 Designator
: constant Entity_Id
:= Defining_Entity
(N
);
4464 Formals
: constant List_Id
:= Parameter_Specifications
(N
);
4466 -- Start of processing for Analyze_Subprogram_Specification
4469 -- User-defined operator is not allowed in SPARK, except as a renaming
4471 if Nkind
(Defining_Unit_Name
(N
)) = N_Defining_Operator_Symbol
4472 and then Nkind
(Parent
(N
)) /= N_Subprogram_Renaming_Declaration
4474 Check_SPARK_05_Restriction
4475 ("user-defined operator is not allowed", N
);
4478 -- Proceed with analysis. Do not emit a cross-reference entry if the
4479 -- specification comes from an expression function, because it may be
4480 -- the completion of a previous declaration. It is is not, the cross-
4481 -- reference entry will be emitted for the new subprogram declaration.
4483 if Nkind
(Parent
(N
)) /= N_Expression_Function
then
4484 Generate_Definition
(Designator
);
4487 Set_Contract
(Designator
, Make_Contract
(Sloc
(Designator
)));
4489 if Nkind
(N
) = N_Function_Specification
then
4490 Set_Ekind
(Designator
, E_Function
);
4491 Set_Mechanism
(Designator
, Default_Mechanism
);
4493 Set_Ekind
(Designator
, E_Procedure
);
4494 Set_Etype
(Designator
, Standard_Void_Type
);
4497 -- Flag Is_Inlined_Always is True by default, and reversed to False for
4498 -- those subprograms which could be inlined in GNATprove mode (because
4499 -- Body_To_Inline is non-Empty) but cannot be inlined.
4501 if GNATprove_Mode
then
4502 Set_Is_Inlined_Always
(Designator
);
4505 -- Introduce new scope for analysis of the formals and the return type
4507 Set_Scope
(Designator
, Current_Scope
);
4509 if Present
(Formals
) then
4510 Push_Scope
(Designator
);
4511 Process_Formals
(Formals
, N
);
4513 -- Check dimensions in N for formals with default expression
4515 Analyze_Dimension_Formals
(N
, Formals
);
4517 -- Ada 2005 (AI-345): If this is an overriding operation of an
4518 -- inherited interface operation, and the controlling type is
4519 -- a synchronized type, replace the type with its corresponding
4520 -- record, to match the proper signature of an overriding operation.
4521 -- Same processing for an access parameter whose designated type is
4522 -- derived from a synchronized interface.
4524 if Ada_Version
>= Ada_2005
then
4527 Formal_Typ
: Entity_Id
;
4528 Rec_Typ
: Entity_Id
;
4529 Desig_Typ
: Entity_Id
;
4532 Formal
:= First_Formal
(Designator
);
4533 while Present
(Formal
) loop
4534 Formal_Typ
:= Etype
(Formal
);
4536 if Is_Concurrent_Type
(Formal_Typ
)
4537 and then Present
(Corresponding_Record_Type
(Formal_Typ
))
4539 Rec_Typ
:= Corresponding_Record_Type
(Formal_Typ
);
4541 if Present
(Interfaces
(Rec_Typ
)) then
4542 Set_Etype
(Formal
, Rec_Typ
);
4545 elsif Ekind
(Formal_Typ
) = E_Anonymous_Access_Type
then
4546 Desig_Typ
:= Designated_Type
(Formal_Typ
);
4548 if Is_Concurrent_Type
(Desig_Typ
)
4549 and then Present
(Corresponding_Record_Type
(Desig_Typ
))
4551 Rec_Typ
:= Corresponding_Record_Type
(Desig_Typ
);
4553 if Present
(Interfaces
(Rec_Typ
)) then
4554 Set_Directly_Designated_Type
(Formal_Typ
, Rec_Typ
);
4559 Next_Formal
(Formal
);
4566 -- The subprogram scope is pushed and popped around the processing of
4567 -- the return type for consistency with call above to Process_Formals
4568 -- (which itself can call Analyze_Return_Type), and to ensure that any
4569 -- itype created for the return type will be associated with the proper
4572 elsif Nkind
(N
) = N_Function_Specification
then
4573 Push_Scope
(Designator
);
4574 Analyze_Return_Type
(N
);
4580 if Nkind
(N
) = N_Function_Specification
then
4582 -- Deal with operator symbol case
4584 if Nkind
(Designator
) = N_Defining_Operator_Symbol
then
4585 Valid_Operator_Definition
(Designator
);
4588 May_Need_Actuals
(Designator
);
4590 -- Ada 2005 (AI-251): If the return type is abstract, verify that
4591 -- the subprogram is abstract also. This does not apply to renaming
4592 -- declarations, where abstractness is inherited, and to subprogram
4593 -- bodies generated for stream operations, which become renamings as
4596 -- In case of primitives associated with abstract interface types
4597 -- the check is applied later (see Analyze_Subprogram_Declaration).
4599 if not Nkind_In
(Original_Node
(Parent
(N
)),
4600 N_Subprogram_Renaming_Declaration
,
4601 N_Abstract_Subprogram_Declaration
,
4602 N_Formal_Abstract_Subprogram_Declaration
)
4604 if Is_Abstract_Type
(Etype
(Designator
))
4605 and then not Is_Interface
(Etype
(Designator
))
4608 ("function that returns abstract type must be abstract", N
);
4610 -- Ada 2012 (AI-0073): Extend this test to subprograms with an
4611 -- access result whose designated type is abstract.
4613 elsif Nkind
(Result_Definition
(N
)) = N_Access_Definition
4615 not Is_Class_Wide_Type
(Designated_Type
(Etype
(Designator
)))
4616 and then Is_Abstract_Type
(Designated_Type
(Etype
(Designator
)))
4617 and then Ada_Version
>= Ada_2012
4619 Error_Msg_N
("function whose access result designates "
4620 & "abstract type must be abstract", N
);
4626 end Analyze_Subprogram_Specification
;
4628 -----------------------
4629 -- Check_Conformance --
4630 -----------------------
4632 procedure Check_Conformance
4633 (New_Id
: Entity_Id
;
4635 Ctype
: Conformance_Type
;
4637 Conforms
: out Boolean;
4638 Err_Loc
: Node_Id
:= Empty
;
4639 Get_Inst
: Boolean := False;
4640 Skip_Controlling_Formals
: Boolean := False)
4642 procedure Conformance_Error
(Msg
: String; N
: Node_Id
:= New_Id
);
4643 -- Sets Conforms to False. If Errmsg is False, then that's all it does.
4644 -- If Errmsg is True, then processing continues to post an error message
4645 -- for conformance error on given node. Two messages are output. The
4646 -- first message points to the previous declaration with a general "no
4647 -- conformance" message. The second is the detailed reason, supplied as
4648 -- Msg. The parameter N provide information for a possible & insertion
4649 -- in the message, and also provides the location for posting the
4650 -- message in the absence of a specified Err_Loc location.
4652 -----------------------
4653 -- Conformance_Error --
4654 -----------------------
4656 procedure Conformance_Error
(Msg
: String; N
: Node_Id
:= New_Id
) is
4663 if No
(Err_Loc
) then
4669 Error_Msg_Sloc
:= Sloc
(Old_Id
);
4672 when Type_Conformant
=>
4673 Error_Msg_N
-- CODEFIX
4674 ("not type conformant with declaration#!", Enode
);
4676 when Mode_Conformant
=>
4677 if Nkind
(Parent
(Old_Id
)) = N_Full_Type_Declaration
then
4679 ("not mode conformant with operation inherited#!",
4683 ("not mode conformant with declaration#!", Enode
);
4686 when Subtype_Conformant
=>
4687 if Nkind
(Parent
(Old_Id
)) = N_Full_Type_Declaration
then
4689 ("not subtype conformant with operation inherited#!",
4693 ("not subtype conformant with declaration#!", Enode
);
4696 when Fully_Conformant
=>
4697 if Nkind
(Parent
(Old_Id
)) = N_Full_Type_Declaration
then
4698 Error_Msg_N
-- CODEFIX
4699 ("not fully conformant with operation inherited#!",
4702 Error_Msg_N
-- CODEFIX
4703 ("not fully conformant with declaration#!", Enode
);
4707 Error_Msg_NE
(Msg
, Enode
, N
);
4709 end Conformance_Error
;
4713 Old_Type
: constant Entity_Id
:= Etype
(Old_Id
);
4714 New_Type
: constant Entity_Id
:= Etype
(New_Id
);
4715 Old_Formal
: Entity_Id
;
4716 New_Formal
: Entity_Id
;
4717 Access_Types_Match
: Boolean;
4718 Old_Formal_Base
: Entity_Id
;
4719 New_Formal_Base
: Entity_Id
;
4721 -- Start of processing for Check_Conformance
4726 -- We need a special case for operators, since they don't appear
4729 if Ctype
= Type_Conformant
then
4730 if Ekind
(New_Id
) = E_Operator
4731 and then Operator_Matches_Spec
(New_Id
, Old_Id
)
4737 -- If both are functions/operators, check return types conform
4739 if Old_Type
/= Standard_Void_Type
4741 New_Type
/= Standard_Void_Type
4743 -- If we are checking interface conformance we omit controlling
4744 -- arguments and result, because we are only checking the conformance
4745 -- of the remaining parameters.
4747 if Has_Controlling_Result
(Old_Id
)
4748 and then Has_Controlling_Result
(New_Id
)
4749 and then Skip_Controlling_Formals
4753 elsif not Conforming_Types
(Old_Type
, New_Type
, Ctype
, Get_Inst
) then
4754 if Ctype
>= Subtype_Conformant
4755 and then not Predicates_Match
(Old_Type
, New_Type
)
4758 ("\predicate of return type does not match!", New_Id
);
4761 ("\return type does not match!", New_Id
);
4767 -- Ada 2005 (AI-231): In case of anonymous access types check the
4768 -- null-exclusion and access-to-constant attributes match.
4770 if Ada_Version
>= Ada_2005
4771 and then Ekind
(Etype
(Old_Type
)) = E_Anonymous_Access_Type
4773 (Can_Never_Be_Null
(Old_Type
) /= Can_Never_Be_Null
(New_Type
)
4774 or else Is_Access_Constant
(Etype
(Old_Type
)) /=
4775 Is_Access_Constant
(Etype
(New_Type
)))
4777 Conformance_Error
("\return type does not match!", New_Id
);
4781 -- If either is a function/operator and the other isn't, error
4783 elsif Old_Type
/= Standard_Void_Type
4784 or else New_Type
/= Standard_Void_Type
4786 Conformance_Error
("\functions can only match functions!", New_Id
);
4790 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
4791 -- If this is a renaming as body, refine error message to indicate that
4792 -- the conflict is with the original declaration. If the entity is not
4793 -- frozen, the conventions don't have to match, the one of the renamed
4794 -- entity is inherited.
4796 if Ctype
>= Subtype_Conformant
then
4797 if Convention
(Old_Id
) /= Convention
(New_Id
) then
4798 if not Is_Frozen
(New_Id
) then
4801 elsif Present
(Err_Loc
)
4802 and then Nkind
(Err_Loc
) = N_Subprogram_Renaming_Declaration
4803 and then Present
(Corresponding_Spec
(Err_Loc
))
4805 Error_Msg_Name_1
:= Chars
(New_Id
);
4807 Name_Ada
+ Convention_Id
'Pos (Convention
(New_Id
));
4808 Conformance_Error
("\prior declaration for% has convention %!");
4811 Conformance_Error
("\calling conventions do not match!");
4816 elsif Is_Formal_Subprogram
(Old_Id
)
4817 or else Is_Formal_Subprogram
(New_Id
)
4819 Conformance_Error
("\formal subprograms not allowed!");
4822 -- Pragma Ghost behaves as a convention in the context of subtype
4823 -- conformance (SPARK RM 6.9(5)). Do not check internally generated
4824 -- subprograms as their spec may reside in a Ghost region and their
4825 -- body not, or vice versa.
4827 elsif Comes_From_Source
(Old_Id
)
4828 and then Comes_From_Source
(New_Id
)
4829 and then Is_Ghost_Entity
(Old_Id
) /= Is_Ghost_Entity
(New_Id
)
4831 Conformance_Error
("\ghost modes do not match!");
4836 -- Deal with parameters
4838 -- Note: we use the entity information, rather than going directly
4839 -- to the specification in the tree. This is not only simpler, but
4840 -- absolutely necessary for some cases of conformance tests between
4841 -- operators, where the declaration tree simply does not exist.
4843 Old_Formal
:= First_Formal
(Old_Id
);
4844 New_Formal
:= First_Formal
(New_Id
);
4845 while Present
(Old_Formal
) and then Present
(New_Formal
) loop
4846 if Is_Controlling_Formal
(Old_Formal
)
4847 and then Is_Controlling_Formal
(New_Formal
)
4848 and then Skip_Controlling_Formals
4850 -- The controlling formals will have different types when
4851 -- comparing an interface operation with its match, but both
4852 -- or neither must be access parameters.
4854 if Is_Access_Type
(Etype
(Old_Formal
))
4856 Is_Access_Type
(Etype
(New_Formal
))
4858 goto Skip_Controlling_Formal
;
4861 ("\access parameter does not match!", New_Formal
);
4865 -- Ada 2012: Mode conformance also requires that formal parameters
4866 -- be both aliased, or neither.
4868 if Ctype
>= Mode_Conformant
and then Ada_Version
>= Ada_2012
then
4869 if Is_Aliased
(Old_Formal
) /= Is_Aliased
(New_Formal
) then
4871 ("\aliased parameter mismatch!", New_Formal
);
4875 if Ctype
= Fully_Conformant
then
4877 -- Names must match. Error message is more accurate if we do
4878 -- this before checking that the types of the formals match.
4880 if Chars
(Old_Formal
) /= Chars
(New_Formal
) then
4881 Conformance_Error
("\name& does not match!", New_Formal
);
4883 -- Set error posted flag on new formal as well to stop
4884 -- junk cascaded messages in some cases.
4886 Set_Error_Posted
(New_Formal
);
4890 -- Null exclusion must match
4892 if Null_Exclusion_Present
(Parent
(Old_Formal
))
4894 Null_Exclusion_Present
(Parent
(New_Formal
))
4896 -- Only give error if both come from source. This should be
4897 -- investigated some time, since it should not be needed ???
4899 if Comes_From_Source
(Old_Formal
)
4901 Comes_From_Source
(New_Formal
)
4904 ("\null exclusion for& does not match", New_Formal
);
4906 -- Mark error posted on the new formal to avoid duplicated
4907 -- complaint about types not matching.
4909 Set_Error_Posted
(New_Formal
);
4914 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
4915 -- case occurs whenever a subprogram is being renamed and one of its
4916 -- parameters imposes a null exclusion. For example:
4918 -- type T is null record;
4919 -- type Acc_T is access T;
4920 -- subtype Acc_T_Sub is Acc_T;
4922 -- procedure P (Obj : not null Acc_T_Sub); -- itype
4923 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
4926 Old_Formal_Base
:= Etype
(Old_Formal
);
4927 New_Formal_Base
:= Etype
(New_Formal
);
4930 Old_Formal_Base
:= Get_Instance_Of
(Old_Formal_Base
);
4931 New_Formal_Base
:= Get_Instance_Of
(New_Formal_Base
);
4934 Access_Types_Match
:= Ada_Version
>= Ada_2005
4936 -- Ensure that this rule is only applied when New_Id is a
4937 -- renaming of Old_Id.
4939 and then Nkind
(Parent
(Parent
(New_Id
))) =
4940 N_Subprogram_Renaming_Declaration
4941 and then Nkind
(Name
(Parent
(Parent
(New_Id
)))) in N_Has_Entity
4942 and then Present
(Entity
(Name
(Parent
(Parent
(New_Id
)))))
4943 and then Entity
(Name
(Parent
(Parent
(New_Id
)))) = Old_Id
4945 -- Now handle the allowed access-type case
4947 and then Is_Access_Type
(Old_Formal_Base
)
4948 and then Is_Access_Type
(New_Formal_Base
)
4950 -- The type kinds must match. The only exception occurs with
4951 -- multiple generics of the form:
4954 -- type F is private; type A is private;
4955 -- type F_Ptr is access F; type A_Ptr is access A;
4956 -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
4957 -- package F_Pack is ... package A_Pack is
4958 -- package F_Inst is
4959 -- new F_Pack (A, A_Ptr, A_P);
4961 -- When checking for conformance between the parameters of A_P
4962 -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
4963 -- because the compiler has transformed A_Ptr into a subtype of
4964 -- F_Ptr. We catch this case in the code below.
4966 and then (Ekind
(Old_Formal_Base
) = Ekind
(New_Formal_Base
)
4968 (Is_Generic_Type
(Old_Formal_Base
)
4969 and then Is_Generic_Type
(New_Formal_Base
)
4970 and then Is_Internal
(New_Formal_Base
)
4971 and then Etype
(Etype
(New_Formal_Base
)) =
4973 and then Directly_Designated_Type
(Old_Formal_Base
) =
4974 Directly_Designated_Type
(New_Formal_Base
)
4975 and then ((Is_Itype
(Old_Formal_Base
)
4976 and then Can_Never_Be_Null
(Old_Formal_Base
))
4978 (Is_Itype
(New_Formal_Base
)
4979 and then Can_Never_Be_Null
(New_Formal_Base
)));
4981 -- Types must always match. In the visible part of an instance,
4982 -- usual overloading rules for dispatching operations apply, and
4983 -- we check base types (not the actual subtypes).
4985 if In_Instance_Visible_Part
4986 and then Is_Dispatching_Operation
(New_Id
)
4988 if not Conforming_Types
4989 (T1
=> Base_Type
(Etype
(Old_Formal
)),
4990 T2
=> Base_Type
(Etype
(New_Formal
)),
4992 Get_Inst
=> Get_Inst
)
4993 and then not Access_Types_Match
4995 Conformance_Error
("\type of & does not match!", New_Formal
);
4999 elsif not Conforming_Types
5000 (T1
=> Old_Formal_Base
,
5001 T2
=> New_Formal_Base
,
5003 Get_Inst
=> Get_Inst
)
5004 and then not Access_Types_Match
5006 -- Don't give error message if old type is Any_Type. This test
5007 -- avoids some cascaded errors, e.g. in case of a bad spec.
5009 if Errmsg
and then Old_Formal_Base
= Any_Type
then
5012 if Ctype
>= Subtype_Conformant
5014 not Predicates_Match
(Old_Formal_Base
, New_Formal_Base
)
5017 ("\predicate of & does not match!", New_Formal
);
5020 ("\type of & does not match!", New_Formal
);
5027 -- For mode conformance, mode must match
5029 if Ctype
>= Mode_Conformant
then
5030 if Parameter_Mode
(Old_Formal
) /= Parameter_Mode
(New_Formal
) then
5031 if not Ekind_In
(New_Id
, E_Function
, E_Procedure
)
5032 or else not Is_Primitive_Wrapper
(New_Id
)
5034 Conformance_Error
("\mode of & does not match!", New_Formal
);
5038 T
: constant Entity_Id
:= Find_Dispatching_Type
(New_Id
);
5040 if Is_Protected_Type
(Corresponding_Concurrent_Type
(T
))
5042 Error_Msg_PT
(T
, New_Id
);
5045 ("\mode of & does not match!", New_Formal
);
5052 -- Part of mode conformance for access types is having the same
5053 -- constant modifier.
5055 elsif Access_Types_Match
5056 and then Is_Access_Constant
(Old_Formal_Base
) /=
5057 Is_Access_Constant
(New_Formal_Base
)
5060 ("\constant modifier does not match!", New_Formal
);
5065 if Ctype
>= Subtype_Conformant
then
5067 -- Ada 2005 (AI-231): In case of anonymous access types check
5068 -- the null-exclusion and access-to-constant attributes must
5069 -- match. For null exclusion, we test the types rather than the
5070 -- formals themselves, since the attribute is only set reliably
5071 -- on the formals in the Ada 95 case, and we exclude the case
5072 -- where Old_Formal is marked as controlling, to avoid errors
5073 -- when matching completing bodies with dispatching declarations
5074 -- (access formals in the bodies aren't marked Can_Never_Be_Null).
5076 if Ada_Version
>= Ada_2005
5077 and then Ekind
(Etype
(Old_Formal
)) = E_Anonymous_Access_Type
5078 and then Ekind
(Etype
(New_Formal
)) = E_Anonymous_Access_Type
5080 ((Can_Never_Be_Null
(Etype
(Old_Formal
)) /=
5081 Can_Never_Be_Null
(Etype
(New_Formal
))
5083 not Is_Controlling_Formal
(Old_Formal
))
5085 Is_Access_Constant
(Etype
(Old_Formal
)) /=
5086 Is_Access_Constant
(Etype
(New_Formal
)))
5088 -- Do not complain if error already posted on New_Formal. This
5089 -- avoids some redundant error messages.
5091 and then not Error_Posted
(New_Formal
)
5093 -- It is allowed to omit the null-exclusion in case of stream
5094 -- attribute subprograms. We recognize stream subprograms
5095 -- through their TSS-generated suffix.
5098 TSS_Name
: constant TSS_Name_Type
:= Get_TSS_Name
(New_Id
);
5101 if TSS_Name
/= TSS_Stream_Read
5102 and then TSS_Name
/= TSS_Stream_Write
5103 and then TSS_Name
/= TSS_Stream_Input
5104 and then TSS_Name
/= TSS_Stream_Output
5106 -- Here we have a definite conformance error. It is worth
5107 -- special casing the error message for the case of a
5108 -- controlling formal (which excludes null).
5110 if Is_Controlling_Formal
(New_Formal
) then
5111 Error_Msg_Node_2
:= Scope
(New_Formal
);
5113 ("\controlling formal & of & excludes null, "
5114 & "declaration must exclude null as well",
5117 -- Normal case (couldn't we give more detail here???)
5121 ("\type of & does not match!", New_Formal
);
5130 -- Full conformance checks
5132 if Ctype
= Fully_Conformant
then
5134 -- We have checked already that names match
5136 if Parameter_Mode
(Old_Formal
) = E_In_Parameter
then
5138 -- Check default expressions for in parameters
5141 NewD
: constant Boolean :=
5142 Present
(Default_Value
(New_Formal
));
5143 OldD
: constant Boolean :=
5144 Present
(Default_Value
(Old_Formal
));
5146 if NewD
or OldD
then
5148 -- The old default value has been analyzed because the
5149 -- current full declaration will have frozen everything
5150 -- before. The new default value has not been analyzed,
5151 -- so analyze it now before we check for conformance.
5154 Push_Scope
(New_Id
);
5155 Preanalyze_Spec_Expression
5156 (Default_Value
(New_Formal
), Etype
(New_Formal
));
5160 if not (NewD
and OldD
)
5161 or else not Fully_Conformant_Expressions
5162 (Default_Value
(Old_Formal
),
5163 Default_Value
(New_Formal
))
5166 ("\default expression for & does not match!",
5175 -- A couple of special checks for Ada 83 mode. These checks are
5176 -- skipped if either entity is an operator in package Standard,
5177 -- or if either old or new instance is not from the source program.
5179 if Ada_Version
= Ada_83
5180 and then Sloc
(Old_Id
) > Standard_Location
5181 and then Sloc
(New_Id
) > Standard_Location
5182 and then Comes_From_Source
(Old_Id
)
5183 and then Comes_From_Source
(New_Id
)
5186 Old_Param
: constant Node_Id
:= Declaration_Node
(Old_Formal
);
5187 New_Param
: constant Node_Id
:= Declaration_Node
(New_Formal
);
5190 -- Explicit IN must be present or absent in both cases. This
5191 -- test is required only in the full conformance case.
5193 if In_Present
(Old_Param
) /= In_Present
(New_Param
)
5194 and then Ctype
= Fully_Conformant
5197 ("\(Ada 83) IN must appear in both declarations",
5202 -- Grouping (use of comma in param lists) must be the same
5203 -- This is where we catch a misconformance like:
5206 -- A : Integer; B : Integer
5208 -- which are represented identically in the tree except
5209 -- for the setting of the flags More_Ids and Prev_Ids.
5211 if More_Ids
(Old_Param
) /= More_Ids
(New_Param
)
5212 or else Prev_Ids
(Old_Param
) /= Prev_Ids
(New_Param
)
5215 ("\grouping of & does not match!", New_Formal
);
5221 -- This label is required when skipping controlling formals
5223 <<Skip_Controlling_Formal
>>
5225 Next_Formal
(Old_Formal
);
5226 Next_Formal
(New_Formal
);
5229 if Present
(Old_Formal
) then
5230 Conformance_Error
("\too few parameters!");
5233 elsif Present
(New_Formal
) then
5234 Conformance_Error
("\too many parameters!", New_Formal
);
5237 end Check_Conformance
;
5239 -----------------------
5240 -- Check_Conventions --
5241 -----------------------
5243 procedure Check_Conventions
(Typ
: Entity_Id
) is
5244 Ifaces_List
: Elist_Id
;
5246 procedure Check_Convention
(Op
: Entity_Id
);
5247 -- Verify that the convention of inherited dispatching operation Op is
5248 -- consistent among all subprograms it overrides. In order to minimize
5249 -- the search, Search_From is utilized to designate a specific point in
5250 -- the list rather than iterating over the whole list once more.
5252 ----------------------
5253 -- Check_Convention --
5254 ----------------------
5256 procedure Check_Convention
(Op
: Entity_Id
) is
5257 Op_Conv
: constant Convention_Id
:= Convention
(Op
);
5258 Iface_Conv
: Convention_Id
;
5259 Iface_Elmt
: Elmt_Id
;
5260 Iface_Prim_Elmt
: Elmt_Id
;
5261 Iface_Prim
: Entity_Id
;
5264 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
5265 while Present
(Iface_Elmt
) loop
5267 First_Elmt
(Primitive_Operations
(Node
(Iface_Elmt
)));
5268 while Present
(Iface_Prim_Elmt
) loop
5269 Iface_Prim
:= Node
(Iface_Prim_Elmt
);
5270 Iface_Conv
:= Convention
(Iface_Prim
);
5272 if Is_Interface_Conformant
(Typ
, Iface_Prim
, Op
)
5273 and then Iface_Conv
/= Op_Conv
5276 ("inconsistent conventions in primitive operations", Typ
);
5278 Error_Msg_Name_1
:= Chars
(Op
);
5279 Error_Msg_Name_2
:= Get_Convention_Name
(Op_Conv
);
5280 Error_Msg_Sloc
:= Sloc
(Op
);
5282 if Comes_From_Source
(Op
) or else No
(Alias
(Op
)) then
5283 if not Present
(Overridden_Operation
(Op
)) then
5284 Error_Msg_N
("\\primitive % defined #", Typ
);
5287 ("\\overriding operation % with "
5288 & "convention % defined #", Typ
);
5291 else pragma Assert
(Present
(Alias
(Op
)));
5292 Error_Msg_Sloc
:= Sloc
(Alias
(Op
));
5293 Error_Msg_N
("\\inherited operation % with "
5294 & "convention % defined #", Typ
);
5297 Error_Msg_Name_1
:= Chars
(Op
);
5298 Error_Msg_Name_2
:= Get_Convention_Name
(Iface_Conv
);
5299 Error_Msg_Sloc
:= Sloc
(Iface_Prim
);
5300 Error_Msg_N
("\\overridden operation % with "
5301 & "convention % defined #", Typ
);
5303 -- Avoid cascading errors
5308 Next_Elmt
(Iface_Prim_Elmt
);
5311 Next_Elmt
(Iface_Elmt
);
5313 end Check_Convention
;
5317 Prim_Op
: Entity_Id
;
5318 Prim_Op_Elmt
: Elmt_Id
;
5320 -- Start of processing for Check_Conventions
5323 if not Has_Interfaces
(Typ
) then
5327 Collect_Interfaces
(Typ
, Ifaces_List
);
5329 -- The algorithm checks every overriding dispatching operation against
5330 -- all the corresponding overridden dispatching operations, detecting
5331 -- differences in conventions.
5333 Prim_Op_Elmt
:= First_Elmt
(Primitive_Operations
(Typ
));
5334 while Present
(Prim_Op_Elmt
) loop
5335 Prim_Op
:= Node
(Prim_Op_Elmt
);
5337 -- A small optimization: skip the predefined dispatching operations
5338 -- since they always have the same convention.
5340 if not Is_Predefined_Dispatching_Operation
(Prim_Op
) then
5341 Check_Convention
(Prim_Op
);
5344 Next_Elmt
(Prim_Op_Elmt
);
5346 end Check_Conventions
;
5348 ------------------------------
5349 -- Check_Delayed_Subprogram --
5350 ------------------------------
5352 procedure Check_Delayed_Subprogram
(Designator
: Entity_Id
) is
5355 procedure Possible_Freeze
(T
: Entity_Id
);
5356 -- T is the type of either a formal parameter or of the return type.
5357 -- If T is not yet frozen and needs a delayed freeze, then the
5358 -- subprogram itself must be delayed. If T is the limited view of an
5359 -- incomplete type the subprogram must be frozen as well, because
5360 -- T may depend on local types that have not been frozen yet.
5362 ---------------------
5363 -- Possible_Freeze --
5364 ---------------------
5366 procedure Possible_Freeze
(T
: Entity_Id
) is
5368 if Has_Delayed_Freeze
(T
) and then not Is_Frozen
(T
) then
5369 Set_Has_Delayed_Freeze
(Designator
);
5371 elsif Is_Access_Type
(T
)
5372 and then Has_Delayed_Freeze
(Designated_Type
(T
))
5373 and then not Is_Frozen
(Designated_Type
(T
))
5375 Set_Has_Delayed_Freeze
(Designator
);
5377 elsif Ekind
(T
) = E_Incomplete_Type
5378 and then From_Limited_With
(T
)
5380 Set_Has_Delayed_Freeze
(Designator
);
5382 -- AI05-0151: In Ada 2012, Incomplete types can appear in the profile
5383 -- of a subprogram or entry declaration.
5385 elsif Ekind
(T
) = E_Incomplete_Type
5386 and then Ada_Version
>= Ada_2012
5388 Set_Has_Delayed_Freeze
(Designator
);
5391 end Possible_Freeze
;
5393 -- Start of processing for Check_Delayed_Subprogram
5396 -- All subprograms, including abstract subprograms, may need a freeze
5397 -- node if some formal type or the return type needs one.
5399 Possible_Freeze
(Etype
(Designator
));
5400 Possible_Freeze
(Base_Type
(Etype
(Designator
))); -- needed ???
5402 -- Need delayed freeze if any of the formal types themselves need
5403 -- a delayed freeze and are not yet frozen.
5405 F
:= First_Formal
(Designator
);
5406 while Present
(F
) loop
5407 Possible_Freeze
(Etype
(F
));
5408 Possible_Freeze
(Base_Type
(Etype
(F
))); -- needed ???
5412 -- Mark functions that return by reference. Note that it cannot be
5413 -- done for delayed_freeze subprograms because the underlying
5414 -- returned type may not be known yet (for private types)
5416 if not Has_Delayed_Freeze
(Designator
) and then Expander_Active
then
5418 Typ
: constant Entity_Id
:= Etype
(Designator
);
5419 Utyp
: constant Entity_Id
:= Underlying_Type
(Typ
);
5421 if Is_Limited_View
(Typ
) then
5422 Set_Returns_By_Ref
(Designator
);
5423 elsif Present
(Utyp
) and then CW_Or_Has_Controlled_Part
(Utyp
) then
5424 Set_Returns_By_Ref
(Designator
);
5428 end Check_Delayed_Subprogram
;
5430 ------------------------------------
5431 -- Check_Discriminant_Conformance --
5432 ------------------------------------
5434 procedure Check_Discriminant_Conformance
5439 Old_Discr
: Entity_Id
:= First_Discriminant
(Prev
);
5440 New_Discr
: Node_Id
:= First
(Discriminant_Specifications
(N
));
5441 New_Discr_Id
: Entity_Id
;
5442 New_Discr_Type
: Entity_Id
;
5444 procedure Conformance_Error
(Msg
: String; N
: Node_Id
);
5445 -- Post error message for conformance error on given node. Two messages
5446 -- are output. The first points to the previous declaration with a
5447 -- general "no conformance" message. The second is the detailed reason,
5448 -- supplied as Msg. The parameter N provide information for a possible
5449 -- & insertion in the message.
5451 -----------------------
5452 -- Conformance_Error --
5453 -----------------------
5455 procedure Conformance_Error
(Msg
: String; N
: Node_Id
) is
5457 Error_Msg_Sloc
:= Sloc
(Prev_Loc
);
5458 Error_Msg_N
-- CODEFIX
5459 ("not fully conformant with declaration#!", N
);
5460 Error_Msg_NE
(Msg
, N
, N
);
5461 end Conformance_Error
;
5463 -- Start of processing for Check_Discriminant_Conformance
5466 while Present
(Old_Discr
) and then Present
(New_Discr
) loop
5467 New_Discr_Id
:= Defining_Identifier
(New_Discr
);
5469 -- The subtype mark of the discriminant on the full type has not
5470 -- been analyzed so we do it here. For an access discriminant a new
5473 if Nkind
(Discriminant_Type
(New_Discr
)) = N_Access_Definition
then
5475 Access_Definition
(N
, Discriminant_Type
(New_Discr
));
5478 Analyze
(Discriminant_Type
(New_Discr
));
5479 New_Discr_Type
:= Etype
(Discriminant_Type
(New_Discr
));
5481 -- Ada 2005: if the discriminant definition carries a null
5482 -- exclusion, create an itype to check properly for consistency
5483 -- with partial declaration.
5485 if Is_Access_Type
(New_Discr_Type
)
5486 and then Null_Exclusion_Present
(New_Discr
)
5489 Create_Null_Excluding_Itype
5490 (T
=> New_Discr_Type
,
5491 Related_Nod
=> New_Discr
,
5492 Scope_Id
=> Current_Scope
);
5496 if not Conforming_Types
5497 (Etype
(Old_Discr
), New_Discr_Type
, Fully_Conformant
)
5499 Conformance_Error
("type of & does not match!", New_Discr_Id
);
5502 -- Treat the new discriminant as an occurrence of the old one,
5503 -- for navigation purposes, and fill in some semantic
5504 -- information, for completeness.
5506 Generate_Reference
(Old_Discr
, New_Discr_Id
, 'r');
5507 Set_Etype
(New_Discr_Id
, Etype
(Old_Discr
));
5508 Set_Scope
(New_Discr_Id
, Scope
(Old_Discr
));
5513 if Chars
(Old_Discr
) /= Chars
(Defining_Identifier
(New_Discr
)) then
5514 Conformance_Error
("name & does not match!", New_Discr_Id
);
5518 -- Default expressions must match
5521 NewD
: constant Boolean :=
5522 Present
(Expression
(New_Discr
));
5523 OldD
: constant Boolean :=
5524 Present
(Expression
(Parent
(Old_Discr
)));
5527 if NewD
or OldD
then
5529 -- The old default value has been analyzed and expanded,
5530 -- because the current full declaration will have frozen
5531 -- everything before. The new default values have not been
5532 -- expanded, so expand now to check conformance.
5535 Preanalyze_Spec_Expression
5536 (Expression
(New_Discr
), New_Discr_Type
);
5539 if not (NewD
and OldD
)
5540 or else not Fully_Conformant_Expressions
5541 (Expression
(Parent
(Old_Discr
)),
5542 Expression
(New_Discr
))
5546 ("default expression for & does not match!",
5553 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
5555 if Ada_Version
= Ada_83
then
5557 Old_Disc
: constant Node_Id
:= Declaration_Node
(Old_Discr
);
5560 -- Grouping (use of comma in param lists) must be the same
5561 -- This is where we catch a misconformance like:
5564 -- A : Integer; B : Integer
5566 -- which are represented identically in the tree except
5567 -- for the setting of the flags More_Ids and Prev_Ids.
5569 if More_Ids
(Old_Disc
) /= More_Ids
(New_Discr
)
5570 or else Prev_Ids
(Old_Disc
) /= Prev_Ids
(New_Discr
)
5573 ("grouping of & does not match!", New_Discr_Id
);
5579 Next_Discriminant
(Old_Discr
);
5583 if Present
(Old_Discr
) then
5584 Conformance_Error
("too few discriminants!", Defining_Identifier
(N
));
5587 elsif Present
(New_Discr
) then
5589 ("too many discriminants!", Defining_Identifier
(New_Discr
));
5592 end Check_Discriminant_Conformance
;
5594 ----------------------------
5595 -- Check_Fully_Conformant --
5596 ----------------------------
5598 procedure Check_Fully_Conformant
5599 (New_Id
: Entity_Id
;
5601 Err_Loc
: Node_Id
:= Empty
)
5604 pragma Warnings
(Off
, Result
);
5607 (New_Id
, Old_Id
, Fully_Conformant
, True, Result
, Err_Loc
);
5608 end Check_Fully_Conformant
;
5610 ---------------------------
5611 -- Check_Mode_Conformant --
5612 ---------------------------
5614 procedure Check_Mode_Conformant
5615 (New_Id
: Entity_Id
;
5617 Err_Loc
: Node_Id
:= Empty
;
5618 Get_Inst
: Boolean := False)
5621 pragma Warnings
(Off
, Result
);
5624 (New_Id
, Old_Id
, Mode_Conformant
, True, Result
, Err_Loc
, Get_Inst
);
5625 end Check_Mode_Conformant
;
5627 --------------------------------
5628 -- Check_Overriding_Indicator --
5629 --------------------------------
5631 procedure Check_Overriding_Indicator
5633 Overridden_Subp
: Entity_Id
;
5634 Is_Primitive
: Boolean)
5640 -- No overriding indicator for literals
5642 if Ekind
(Subp
) = E_Enumeration_Literal
then
5645 elsif Ekind
(Subp
) = E_Entry
then
5646 Decl
:= Parent
(Subp
);
5648 -- No point in analyzing a malformed operator
5650 elsif Nkind
(Subp
) = N_Defining_Operator_Symbol
5651 and then Error_Posted
(Subp
)
5656 Decl
:= Unit_Declaration_Node
(Subp
);
5659 if Nkind_In
(Decl
, N_Subprogram_Body
,
5660 N_Subprogram_Body_Stub
,
5661 N_Subprogram_Declaration
,
5662 N_Abstract_Subprogram_Declaration
,
5663 N_Subprogram_Renaming_Declaration
)
5665 Spec
:= Specification
(Decl
);
5667 elsif Nkind
(Decl
) = N_Entry_Declaration
then
5674 -- The overriding operation is type conformant with the overridden one,
5675 -- but the names of the formals are not required to match. If the names
5676 -- appear permuted in the overriding operation, this is a possible
5677 -- source of confusion that is worth diagnosing. Controlling formals
5678 -- often carry names that reflect the type, and it is not worthwhile
5679 -- requiring that their names match.
5681 if Present
(Overridden_Subp
)
5682 and then Nkind
(Subp
) /= N_Defining_Operator_Symbol
5689 Form1
:= First_Formal
(Subp
);
5690 Form2
:= First_Formal
(Overridden_Subp
);
5692 -- If the overriding operation is a synchronized operation, skip
5693 -- the first parameter of the overridden operation, which is
5694 -- implicit in the new one. If the operation is declared in the
5695 -- body it is not primitive and all formals must match.
5697 if Is_Concurrent_Type
(Scope
(Subp
))
5698 and then Is_Tagged_Type
(Scope
(Subp
))
5699 and then not Has_Completion
(Scope
(Subp
))
5701 Form2
:= Next_Formal
(Form2
);
5704 if Present
(Form1
) then
5705 Form1
:= Next_Formal
(Form1
);
5706 Form2
:= Next_Formal
(Form2
);
5709 while Present
(Form1
) loop
5710 if not Is_Controlling_Formal
(Form1
)
5711 and then Present
(Next_Formal
(Form2
))
5712 and then Chars
(Form1
) = Chars
(Next_Formal
(Form2
))
5714 Error_Msg_Node_2
:= Alias
(Overridden_Subp
);
5715 Error_Msg_Sloc
:= Sloc
(Error_Msg_Node_2
);
5717 ("& does not match corresponding formal of&#",
5722 Next_Formal
(Form1
);
5723 Next_Formal
(Form2
);
5728 -- If there is an overridden subprogram, then check that there is no
5729 -- "not overriding" indicator, and mark the subprogram as overriding.
5730 -- This is not done if the overridden subprogram is marked as hidden,
5731 -- which can occur for the case of inherited controlled operations
5732 -- (see Derive_Subprogram), unless the inherited subprogram's parent
5733 -- subprogram is not itself hidden. (Note: This condition could probably
5734 -- be simplified, leaving out the testing for the specific controlled
5735 -- cases, but it seems safer and clearer this way, and echoes similar
5736 -- special-case tests of this kind in other places.)
5738 if Present
(Overridden_Subp
)
5739 and then (not Is_Hidden
(Overridden_Subp
)
5741 (Nam_In
(Chars
(Overridden_Subp
), Name_Initialize
,
5744 and then Present
(Alias
(Overridden_Subp
))
5745 and then not Is_Hidden
(Alias
(Overridden_Subp
))))
5747 if Must_Not_Override
(Spec
) then
5748 Error_Msg_Sloc
:= Sloc
(Overridden_Subp
);
5750 if Ekind
(Subp
) = E_Entry
then
5752 ("entry & overrides inherited operation #", Spec
, Subp
);
5755 ("subprogram & overrides inherited operation #", Spec
, Subp
);
5758 -- Special-case to fix a GNAT oddity: Limited_Controlled is declared
5759 -- as an extension of Root_Controlled, and thus has a useless Adjust
5760 -- operation. This operation should not be inherited by other limited
5761 -- controlled types. An explicit Adjust for them is not overriding.
5763 elsif Must_Override
(Spec
)
5764 and then Chars
(Overridden_Subp
) = Name_Adjust
5765 and then Is_Limited_Type
(Etype
(First_Formal
(Subp
)))
5766 and then Present
(Alias
(Overridden_Subp
))
5768 Is_Predefined_File_Name
5769 (Unit_File_Name
(Get_Source_Unit
(Alias
(Overridden_Subp
))))
5771 Error_Msg_NE
("subprogram & is not overriding", Spec
, Subp
);
5773 elsif Is_Subprogram
(Subp
) then
5774 if Is_Init_Proc
(Subp
) then
5777 elsif No
(Overridden_Operation
(Subp
)) then
5779 -- For entities generated by Derive_Subprograms the overridden
5780 -- operation is the inherited primitive (which is available
5781 -- through the attribute alias)
5783 if (Is_Dispatching_Operation
(Subp
)
5784 or else Is_Dispatching_Operation
(Overridden_Subp
))
5785 and then not Comes_From_Source
(Overridden_Subp
)
5786 and then Find_Dispatching_Type
(Overridden_Subp
) =
5787 Find_Dispatching_Type
(Subp
)
5788 and then Present
(Alias
(Overridden_Subp
))
5789 and then Comes_From_Source
(Alias
(Overridden_Subp
))
5791 Set_Overridden_Operation
(Subp
, Alias
(Overridden_Subp
));
5792 Inherit_Subprogram_Contract
(Subp
, Alias
(Overridden_Subp
));
5795 Set_Overridden_Operation
(Subp
, Overridden_Subp
);
5796 Inherit_Subprogram_Contract
(Subp
, Overridden_Subp
);
5801 -- If primitive flag is set or this is a protected operation, then
5802 -- the operation is overriding at the point of its declaration, so
5803 -- warn if necessary. Otherwise it may have been declared before the
5804 -- operation it overrides and no check is required.
5807 and then not Must_Override
(Spec
)
5808 and then (Is_Primitive
5809 or else Ekind
(Scope
(Subp
)) = E_Protected_Type
)
5811 Style
.Missing_Overriding
(Decl
, Subp
);
5814 -- If Subp is an operator, it may override a predefined operation, if
5815 -- it is defined in the same scope as the type to which it applies.
5816 -- In that case Overridden_Subp is empty because of our implicit
5817 -- representation for predefined operators. We have to check whether the
5818 -- signature of Subp matches that of a predefined operator. Note that
5819 -- first argument provides the name of the operator, and the second
5820 -- argument the signature that may match that of a standard operation.
5821 -- If the indicator is overriding, then the operator must match a
5822 -- predefined signature, because we know already that there is no
5823 -- explicit overridden operation.
5825 elsif Nkind
(Subp
) = N_Defining_Operator_Symbol
then
5826 if Must_Not_Override
(Spec
) then
5828 -- If this is not a primitive or a protected subprogram, then
5829 -- "not overriding" is illegal.
5832 and then Ekind
(Scope
(Subp
)) /= E_Protected_Type
5834 Error_Msg_N
("overriding indicator only allowed "
5835 & "if subprogram is primitive", Subp
);
5837 elsif Can_Override_Operator
(Subp
) then
5839 ("subprogram& overrides predefined operator ", Spec
, Subp
);
5842 elsif Must_Override
(Spec
) then
5843 if No
(Overridden_Operation
(Subp
))
5844 and then not Can_Override_Operator
(Subp
)
5846 Error_Msg_NE
("subprogram & is not overriding", Spec
, Subp
);
5849 elsif not Error_Posted
(Subp
)
5850 and then Style_Check
5851 and then Can_Override_Operator
(Subp
)
5853 not Is_Predefined_File_Name
5854 (Unit_File_Name
(Get_Source_Unit
(Subp
)))
5856 -- If style checks are enabled, indicate that the indicator is
5857 -- missing. However, at the point of declaration, the type of
5858 -- which this is a primitive operation may be private, in which
5859 -- case the indicator would be premature.
5861 if Has_Private_Declaration
(Etype
(Subp
))
5862 or else Has_Private_Declaration
(Etype
(First_Formal
(Subp
)))
5866 Style
.Missing_Overriding
(Decl
, Subp
);
5870 elsif Must_Override
(Spec
) then
5871 if Ekind
(Subp
) = E_Entry
then
5872 Error_Msg_NE
("entry & is not overriding", Spec
, Subp
);
5874 Error_Msg_NE
("subprogram & is not overriding", Spec
, Subp
);
5877 -- If the operation is marked "not overriding" and it's not primitive
5878 -- then an error is issued, unless this is an operation of a task or
5879 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
5880 -- has been specified have already been checked above.
5882 elsif Must_Not_Override
(Spec
)
5883 and then not Is_Primitive
5884 and then Ekind
(Subp
) /= E_Entry
5885 and then Ekind
(Scope
(Subp
)) /= E_Protected_Type
5888 ("overriding indicator only allowed if subprogram is primitive",
5892 end Check_Overriding_Indicator
;
5898 -- Note: this procedure needs to know far too much about how the expander
5899 -- messes with exceptions. The use of the flag Exception_Junk and the
5900 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
5901 -- works, but is not very clean. It would be better if the expansion
5902 -- routines would leave Original_Node working nicely, and we could use
5903 -- Original_Node here to ignore all the peculiar expander messing ???
5905 procedure Check_Returns
5909 Proc
: Entity_Id
:= Empty
)
5913 procedure Check_Statement_Sequence
(L
: List_Id
);
5914 -- Internal recursive procedure to check a list of statements for proper
5915 -- termination by a return statement (or a transfer of control or a
5916 -- compound statement that is itself internally properly terminated).
5918 ------------------------------
5919 -- Check_Statement_Sequence --
5920 ------------------------------
5922 procedure Check_Statement_Sequence
(L
: List_Id
) is
5927 function Assert_False
return Boolean;
5928 -- Returns True if Last_Stm is a pragma Assert (False) that has been
5929 -- rewritten as a null statement when assertions are off. The assert
5930 -- is not active, but it is still enough to kill the warning.
5936 function Assert_False
return Boolean is
5937 Orig
: constant Node_Id
:= Original_Node
(Last_Stm
);
5940 if Nkind
(Orig
) = N_Pragma
5941 and then Pragma_Name
(Orig
) = Name_Assert
5942 and then not Error_Posted
(Orig
)
5945 Arg
: constant Node_Id
:=
5946 First
(Pragma_Argument_Associations
(Orig
));
5947 Exp
: constant Node_Id
:= Expression
(Arg
);
5949 return Nkind
(Exp
) = N_Identifier
5950 and then Chars
(Exp
) = Name_False
;
5960 Raise_Exception_Call
: Boolean;
5961 -- Set True if statement sequence terminated by Raise_Exception call
5962 -- or a Reraise_Occurrence call.
5964 -- Start of processing for Check_Statement_Sequence
5967 Raise_Exception_Call
:= False;
5969 -- Get last real statement
5971 Last_Stm
:= Last
(L
);
5973 -- Deal with digging out exception handler statement sequences that
5974 -- have been transformed by the local raise to goto optimization.
5975 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
5976 -- optimization has occurred, we are looking at something like:
5979 -- original stmts in block
5983 -- goto L1; | omitted if No_Exception_Propagation
5988 -- goto L3; -- skip handler when exception not raised
5990 -- <<L1>> -- target label for local exception
6004 -- and what we have to do is to dig out the estmts1 and estmts2
6005 -- sequences (which were the original sequences of statements in
6006 -- the exception handlers) and check them.
6008 if Nkind
(Last_Stm
) = N_Label
and then Exception_Junk
(Last_Stm
) then
6013 exit when Nkind
(Stm
) /= N_Block_Statement
;
6014 exit when not Exception_Junk
(Stm
);
6017 exit when Nkind
(Stm
) /= N_Label
;
6018 exit when not Exception_Junk
(Stm
);
6019 Check_Statement_Sequence
6020 (Statements
(Handled_Statement_Sequence
(Next
(Stm
))));
6025 exit when Nkind
(Stm
) /= N_Goto_Statement
;
6026 exit when not Exception_Junk
(Stm
);
6030 -- Don't count pragmas
6032 while Nkind
(Last_Stm
) = N_Pragma
6034 -- Don't count call to SS_Release (can happen after Raise_Exception)
6037 (Nkind
(Last_Stm
) = N_Procedure_Call_Statement
6039 Nkind
(Name
(Last_Stm
)) = N_Identifier
6041 Is_RTE
(Entity
(Name
(Last_Stm
)), RE_SS_Release
))
6043 -- Don't count exception junk
6046 (Nkind_In
(Last_Stm
, N_Goto_Statement
,
6048 N_Object_Declaration
)
6049 and then Exception_Junk
(Last_Stm
))
6050 or else Nkind
(Last_Stm
) in N_Push_xxx_Label
6051 or else Nkind
(Last_Stm
) in N_Pop_xxx_Label
6053 -- Inserted code, such as finalization calls, is irrelevant: we only
6054 -- need to check original source.
6056 or else Is_Rewrite_Insertion
(Last_Stm
)
6061 -- Here we have the "real" last statement
6063 Kind
:= Nkind
(Last_Stm
);
6065 -- Transfer of control, OK. Note that in the No_Return procedure
6066 -- case, we already diagnosed any explicit return statements, so
6067 -- we can treat them as OK in this context.
6069 if Is_Transfer
(Last_Stm
) then
6072 -- Check cases of explicit non-indirect procedure calls
6074 elsif Kind
= N_Procedure_Call_Statement
6075 and then Is_Entity_Name
(Name
(Last_Stm
))
6077 -- Check call to Raise_Exception procedure which is treated
6078 -- specially, as is a call to Reraise_Occurrence.
6080 -- We suppress the warning in these cases since it is likely that
6081 -- the programmer really does not expect to deal with the case
6082 -- of Null_Occurrence, and thus would find a warning about a
6083 -- missing return curious, and raising Program_Error does not
6084 -- seem such a bad behavior if this does occur.
6086 -- Note that in the Ada 2005 case for Raise_Exception, the actual
6087 -- behavior will be to raise Constraint_Error (see AI-329).
6089 if Is_RTE
(Entity
(Name
(Last_Stm
)), RE_Raise_Exception
)
6091 Is_RTE
(Entity
(Name
(Last_Stm
)), RE_Reraise_Occurrence
)
6093 Raise_Exception_Call
:= True;
6095 -- For Raise_Exception call, test first argument, if it is
6096 -- an attribute reference for a 'Identity call, then we know
6097 -- that the call cannot possibly return.
6100 Arg
: constant Node_Id
:=
6101 Original_Node
(First_Actual
(Last_Stm
));
6103 if Nkind
(Arg
) = N_Attribute_Reference
6104 and then Attribute_Name
(Arg
) = Name_Identity
6111 -- If statement, need to look inside if there is an else and check
6112 -- each constituent statement sequence for proper termination.
6114 elsif Kind
= N_If_Statement
6115 and then Present
(Else_Statements
(Last_Stm
))
6117 Check_Statement_Sequence
(Then_Statements
(Last_Stm
));
6118 Check_Statement_Sequence
(Else_Statements
(Last_Stm
));
6120 if Present
(Elsif_Parts
(Last_Stm
)) then
6122 Elsif_Part
: Node_Id
:= First
(Elsif_Parts
(Last_Stm
));
6125 while Present
(Elsif_Part
) loop
6126 Check_Statement_Sequence
(Then_Statements
(Elsif_Part
));
6134 -- Case statement, check each case for proper termination
6136 elsif Kind
= N_Case_Statement
then
6140 Case_Alt
:= First_Non_Pragma
(Alternatives
(Last_Stm
));
6141 while Present
(Case_Alt
) loop
6142 Check_Statement_Sequence
(Statements
(Case_Alt
));
6143 Next_Non_Pragma
(Case_Alt
);
6149 -- Block statement, check its handled sequence of statements
6151 elsif Kind
= N_Block_Statement
then
6157 (Handled_Statement_Sequence
(Last_Stm
), Mode
, Err1
);
6166 -- Loop statement. If there is an iteration scheme, we can definitely
6167 -- fall out of the loop. Similarly if there is an exit statement, we
6168 -- can fall out. In either case we need a following return.
6170 elsif Kind
= N_Loop_Statement
then
6171 if Present
(Iteration_Scheme
(Last_Stm
))
6172 or else Has_Exit
(Entity
(Identifier
(Last_Stm
)))
6176 -- A loop with no exit statement or iteration scheme is either
6177 -- an infinite loop, or it has some other exit (raise/return).
6178 -- In either case, no warning is required.
6184 -- Timed entry call, check entry call and delay alternatives
6186 -- Note: in expanded code, the timed entry call has been converted
6187 -- to a set of expanded statements on which the check will work
6188 -- correctly in any case.
6190 elsif Kind
= N_Timed_Entry_Call
then
6192 ECA
: constant Node_Id
:= Entry_Call_Alternative
(Last_Stm
);
6193 DCA
: constant Node_Id
:= Delay_Alternative
(Last_Stm
);
6196 -- If statement sequence of entry call alternative is missing,
6197 -- then we can definitely fall through, and we post the error
6198 -- message on the entry call alternative itself.
6200 if No
(Statements
(ECA
)) then
6203 -- If statement sequence of delay alternative is missing, then
6204 -- we can definitely fall through, and we post the error
6205 -- message on the delay alternative itself.
6207 -- Note: if both ECA and DCA are missing the return, then we
6208 -- post only one message, should be enough to fix the bugs.
6209 -- If not we will get a message next time on the DCA when the
6212 elsif No
(Statements
(DCA
)) then
6215 -- Else check both statement sequences
6218 Check_Statement_Sequence
(Statements
(ECA
));
6219 Check_Statement_Sequence
(Statements
(DCA
));
6224 -- Conditional entry call, check entry call and else part
6226 -- Note: in expanded code, the conditional entry call has been
6227 -- converted to a set of expanded statements on which the check
6228 -- will work correctly in any case.
6230 elsif Kind
= N_Conditional_Entry_Call
then
6232 ECA
: constant Node_Id
:= Entry_Call_Alternative
(Last_Stm
);
6235 -- If statement sequence of entry call alternative is missing,
6236 -- then we can definitely fall through, and we post the error
6237 -- message on the entry call alternative itself.
6239 if No
(Statements
(ECA
)) then
6242 -- Else check statement sequence and else part
6245 Check_Statement_Sequence
(Statements
(ECA
));
6246 Check_Statement_Sequence
(Else_Statements
(Last_Stm
));
6252 -- If we fall through, issue appropriate message
6256 -- Kill warning if last statement is a raise exception call,
6257 -- or a pragma Assert (False). Note that with assertions enabled,
6258 -- such a pragma has been converted into a raise exception call
6259 -- already, so the Assert_False is for the assertions off case.
6261 if not Raise_Exception_Call
and then not Assert_False
then
6263 -- In GNATprove mode, it is an error to have a missing return
6265 Error_Msg_Warn
:= SPARK_Mode
/= On
;
6267 -- Issue error message or warning
6270 ("RETURN statement missing following this statement<<!",
6273 ("\Program_Error ]<<!", Last_Stm
);
6276 -- Note: we set Err even though we have not issued a warning
6277 -- because we still have a case of a missing return. This is
6278 -- an extremely marginal case, probably will never be noticed
6279 -- but we might as well get it right.
6283 -- Otherwise we have the case of a procedure marked No_Return
6286 if not Raise_Exception_Call
then
6287 if GNATprove_Mode
then
6289 ("implied return after this statement "
6290 & "would have raised Program_Error", Last_Stm
);
6293 ("implied return after this statement "
6294 & "will raise Program_Error??", Last_Stm
);
6297 Error_Msg_Warn
:= SPARK_Mode
/= On
;
6299 ("\procedure & is marked as No_Return<<!", Last_Stm
, Proc
);
6303 RE
: constant Node_Id
:=
6304 Make_Raise_Program_Error
(Sloc
(Last_Stm
),
6305 Reason
=> PE_Implicit_Return
);
6307 Insert_After
(Last_Stm
, RE
);
6311 end Check_Statement_Sequence
;
6313 -- Start of processing for Check_Returns
6317 Check_Statement_Sequence
(Statements
(HSS
));
6319 if Present
(Exception_Handlers
(HSS
)) then
6320 Handler
:= First_Non_Pragma
(Exception_Handlers
(HSS
));
6321 while Present
(Handler
) loop
6322 Check_Statement_Sequence
(Statements
(Handler
));
6323 Next_Non_Pragma
(Handler
);
6328 ----------------------------
6329 -- Check_Subprogram_Order --
6330 ----------------------------
6332 procedure Check_Subprogram_Order
(N
: Node_Id
) is
6334 function Subprogram_Name_Greater
(S1
, S2
: String) return Boolean;
6335 -- This is used to check if S1 > S2 in the sense required by this test,
6336 -- for example nameab < namec, but name2 < name10.
6338 -----------------------------
6339 -- Subprogram_Name_Greater --
6340 -----------------------------
6342 function Subprogram_Name_Greater
(S1
, S2
: String) return Boolean is
6347 -- Deal with special case where names are identical except for a
6348 -- numerical suffix. These are handled specially, taking the numeric
6349 -- ordering from the suffix into account.
6352 while S1
(L1
) in '0' .. '9' loop
6357 while S2
(L2
) in '0' .. '9' loop
6361 -- If non-numeric parts non-equal, do straight compare
6363 if S1
(S1
'First .. L1
) /= S2
(S2
'First .. L2
) then
6366 -- If non-numeric parts equal, compare suffixed numeric parts. Note
6367 -- that a missing suffix is treated as numeric zero in this test.
6371 while L1
< S1
'Last loop
6373 N1
:= N1
* 10 + Character'Pos (S1
(L1
)) - Character'Pos ('0');
6377 while L2
< S2
'Last loop
6379 N2
:= N2
* 10 + Character'Pos (S2
(L2
)) - Character'Pos ('0');
6384 end Subprogram_Name_Greater
;
6386 -- Start of processing for Check_Subprogram_Order
6389 -- Check body in alpha order if this is option
6392 and then Style_Check_Order_Subprograms
6393 and then Nkind
(N
) = N_Subprogram_Body
6394 and then Comes_From_Source
(N
)
6395 and then In_Extended_Main_Source_Unit
(N
)
6399 renames Scope_Stack
.Table
6400 (Scope_Stack
.Last
).Last_Subprogram_Name
;
6402 Body_Id
: constant Entity_Id
:=
6403 Defining_Entity
(Specification
(N
));
6406 Get_Decoded_Name_String
(Chars
(Body_Id
));
6409 if Subprogram_Name_Greater
6410 (LSN
.all, Name_Buffer
(1 .. Name_Len
))
6412 Style
.Subprogram_Not_In_Alpha_Order
(Body_Id
);
6418 LSN
:= new String'(Name_Buffer (1 .. Name_Len));
6421 end Check_Subprogram_Order;
6423 ------------------------------
6424 -- Check_Subtype_Conformant --
6425 ------------------------------
6427 procedure Check_Subtype_Conformant
6428 (New_Id : Entity_Id;
6430 Err_Loc : Node_Id := Empty;
6431 Skip_Controlling_Formals : Boolean := False;
6432 Get_Inst : Boolean := False)
6435 pragma Warnings (Off, Result);
6438 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
6439 Skip_Controlling_Formals => Skip_Controlling_Formals,
6440 Get_Inst => Get_Inst);
6441 end Check_Subtype_Conformant;
6443 ---------------------------
6444 -- Check_Type_Conformant --
6445 ---------------------------
6447 procedure Check_Type_Conformant
6448 (New_Id : Entity_Id;
6450 Err_Loc : Node_Id := Empty)
6453 pragma Warnings (Off, Result);
6456 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
6457 end Check_Type_Conformant;
6459 ---------------------------
6460 -- Can_Override_Operator --
6461 ---------------------------
6463 function Can_Override_Operator (Subp : Entity_Id) return Boolean is
6467 if Nkind (Subp) /= N_Defining_Operator_Symbol then
6471 Typ := Base_Type (Etype (First_Formal (Subp)));
6473 -- Check explicitly that the operation is a primitive of the type
6475 return Operator_Matches_Spec (Subp, Subp)
6476 and then not Is_Generic_Type (Typ)
6477 and then Scope (Subp) = Scope (Typ)
6478 and then not Is_Class_Wide_Type (Typ);
6480 end Can_Override_Operator;
6482 ----------------------
6483 -- Conforming_Types --
6484 ----------------------
6486 function Conforming_Types
6489 Ctype : Conformance_Type;
6490 Get_Inst : Boolean := False) return Boolean
6492 Type_1 : Entity_Id := T1;
6493 Type_2 : Entity_Id := T2;
6494 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
6496 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean;
6497 -- If neither T1 nor T2 are generic actual types, or if they are in
6498 -- different scopes (e.g. parent and child instances), then verify that
6499 -- the base types are equal. Otherwise T1 and T2 must be on the same
6500 -- subtype chain. The whole purpose of this procedure is to prevent
6501 -- spurious ambiguities in an instantiation that may arise if two
6502 -- distinct generic types are instantiated with the same actual.
6504 function Find_Designated_Type (T : Entity_Id) return Entity_Id;
6505 -- An access parameter can designate an incomplete type. If the
6506 -- incomplete type is the limited view of a type from a limited_
6507 -- with_clause, check whether the non-limited view is available. If
6508 -- it is a (non-limited) incomplete type, get the full view.
6510 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean;
6511 -- Returns True if and only if either T1 denotes a limited view of T2
6512 -- or T2 denotes a limited view of T1. This can arise when the limited
6513 -- with view of a type is used in a subprogram declaration and the
6514 -- subprogram body is in the scope of a regular with clause for the
6515 -- same unit. In such a case, the two type entities can be considered
6516 -- identical for purposes of conformance checking.
6518 ----------------------
6519 -- Base_Types_Match --
6520 ----------------------
6522 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean is
6523 BT1 : constant Entity_Id := Base_Type (T1);
6524 BT2 : constant Entity_Id := Base_Type (T2);
6530 elsif BT1 = BT2 then
6532 -- The following is too permissive. A more precise test should
6533 -- check that the generic actual is an ancestor subtype of the
6536 -- See code in Find_Corresponding_Spec that applies an additional
6537 -- filter to handle accidental amiguities in instances.
6539 return not Is_Generic_Actual_Type (T1)
6540 or else not Is_Generic_Actual_Type (T2)
6541 or else Scope (T1) /= Scope (T2);
6543 -- If T2 is a generic actual type it is declared as the subtype of
6544 -- the actual. If that actual is itself a subtype we need to use its
6545 -- own base type to check for compatibility.
6547 elsif Ekind (BT2) = Ekind (T2) and then BT1 = Base_Type (BT2) then
6550 elsif Ekind (BT1) = Ekind (T1) and then BT2 = Base_Type (BT1) then
6556 end Base_Types_Match;
6558 --------------------------
6559 -- Find_Designated_Type --
6560 --------------------------
6562 function Find_Designated_Type (T : Entity_Id) return Entity_Id is
6566 Desig := Directly_Designated_Type (T);
6568 if Ekind (Desig) = E_Incomplete_Type then
6570 -- If regular incomplete type, get full view if available
6572 if Present (Full_View (Desig)) then
6573 Desig := Full_View (Desig);
6575 -- If limited view of a type, get non-limited view if available,
6576 -- and check again for a regular incomplete type.
6578 elsif Present (Non_Limited_View (Desig)) then
6579 Desig := Get_Full_View (Non_Limited_View (Desig));
6584 end Find_Designated_Type;
6586 -------------------------------
6587 -- Matches_Limited_With_View --
6588 -------------------------------
6590 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean is
6592 -- In some cases a type imported through a limited_with clause, and
6593 -- its nonlimited view are both visible, for example in an anonymous
6594 -- access-to-class-wide type in a formal. Both entities designate the
6597 if From_Limited_With (T1) and then T2 = Available_View (T1) then
6600 elsif From_Limited_With (T2) and then T1 = Available_View (T2) then
6603 elsif From_Limited_With (T1)
6604 and then From_Limited_With (T2)
6605 and then Available_View (T1) = Available_View (T2)
6612 end Matches_Limited_With_View;
6614 -- Start of processing for Conforming_Types
6617 -- The context is an instance association for a formal access-to-
6618 -- subprogram type; the formal parameter types require mapping because
6619 -- they may denote other formal parameters of the generic unit.
6622 Type_1 := Get_Instance_Of (T1);
6623 Type_2 := Get_Instance_Of (T2);
6626 -- If one of the types is a view of the other introduced by a limited
6627 -- with clause, treat these as conforming for all purposes.
6629 if Matches_Limited_With_View (T1, T2) then
6632 elsif Base_Types_Match (Type_1, Type_2) then
6633 return Ctype <= Mode_Conformant
6634 or else Subtypes_Statically_Match (Type_1, Type_2);
6636 elsif Is_Incomplete_Or_Private_Type (Type_1)
6637 and then Present (Full_View (Type_1))
6638 and then Base_Types_Match (Full_View (Type_1), Type_2)
6640 return Ctype <= Mode_Conformant
6641 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
6643 elsif Ekind (Type_2) = E_Incomplete_Type
6644 and then Present (Full_View (Type_2))
6645 and then Base_Types_Match (Type_1, Full_View (Type_2))
6647 return Ctype <= Mode_Conformant
6648 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
6650 elsif Is_Private_Type (Type_2)
6651 and then In_Instance
6652 and then Present (Full_View (Type_2))
6653 and then Base_Types_Match (Type_1, Full_View (Type_2))
6655 return Ctype <= Mode_Conformant
6656 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
6659 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
6660 -- treated recursively because they carry a signature. As far as
6661 -- conformance is concerned, convention plays no role, and either
6662 -- or both could be access to protected subprograms.
6664 Are_Anonymous_Access_To_Subprogram_Types :=
6665 Ekind_In (Type_1, E_Anonymous_Access_Subprogram_Type,
6666 E_Anonymous_Access_Protected_Subprogram_Type)
6668 Ekind_In (Type_2, E_Anonymous_Access_Subprogram_Type,
6669 E_Anonymous_Access_Protected_Subprogram_Type);
6671 -- Test anonymous access type case. For this case, static subtype
6672 -- matching is required for mode conformance (RM 6.3.1(15)). We check
6673 -- the base types because we may have built internal subtype entities
6674 -- to handle null-excluding types (see Process_Formals).
6676 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
6678 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
6680 -- Ada 2005 (AI-254)
6682 or else Are_Anonymous_Access_To_Subprogram_Types
6685 Desig_1 : Entity_Id;
6686 Desig_2 : Entity_Id;
6689 -- In Ada 2005, access constant indicators must match for
6690 -- subtype conformance.
6692 if Ada_Version >= Ada_2005
6693 and then Ctype >= Subtype_Conformant
6695 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
6700 Desig_1 := Find_Designated_Type (Type_1);
6701 Desig_2 := Find_Designated_Type (Type_2);
6703 -- If the context is an instance association for a formal
6704 -- access-to-subprogram type; formal access parameter designated
6705 -- types require mapping because they may denote other formal
6706 -- parameters of the generic unit.
6709 Desig_1 := Get_Instance_Of (Desig_1);
6710 Desig_2 := Get_Instance_Of (Desig_2);
6713 -- It is possible for a Class_Wide_Type to be introduced for an
6714 -- incomplete type, in which case there is a separate class_ wide
6715 -- type for the full view. The types conform if their Etypes
6716 -- conform, i.e. one may be the full view of the other. This can
6717 -- only happen in the context of an access parameter, other uses
6718 -- of an incomplete Class_Wide_Type are illegal.
6720 if Is_Class_Wide_Type (Desig_1)
6722 Is_Class_Wide_Type (Desig_2)
6726 (Etype (Base_Type (Desig_1)),
6727 Etype (Base_Type (Desig_2)), Ctype);
6729 elsif Are_Anonymous_Access_To_Subprogram_Types then
6730 if Ada_Version < Ada_2005 then
6731 return Ctype = Type_Conformant
6733 Subtypes_Statically_Match (Desig_1, Desig_2);
6735 -- We must check the conformance of the signatures themselves
6739 Conformant : Boolean;
6742 (Desig_1, Desig_2, Ctype, False, Conformant);
6748 return Base_Type (Desig_1) = Base_Type (Desig_2)
6749 and then (Ctype = Type_Conformant
6751 Subtypes_Statically_Match (Desig_1, Desig_2));
6755 -- Otherwise definitely no match
6758 if ((Ekind (Type_1) = E_Anonymous_Access_Type
6759 and then Is_Access_Type (Type_2))
6760 or else (Ekind (Type_2) = E_Anonymous_Access_Type
6761 and then Is_Access_Type (Type_1)))
6764 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
6766 May_Hide_Profile := True;
6771 end Conforming_Types;
6773 --------------------------
6774 -- Create_Extra_Formals --
6775 --------------------------
6777 procedure Create_Extra_Formals (E : Entity_Id) is
6779 First_Extra : Entity_Id := Empty;
6780 Last_Extra : Entity_Id;
6781 Formal_Type : Entity_Id;
6782 P_Formal : Entity_Id := Empty;
6784 function Add_Extra_Formal
6785 (Assoc_Entity : Entity_Id;
6788 Suffix : String) return Entity_Id;
6789 -- Add an extra formal to the current list of formals and extra formals.
6790 -- The extra formal is added to the end of the list of extra formals,
6791 -- and also returned as the result. These formals are always of mode IN.
6792 -- The new formal has the type Typ, is declared in Scope, and its name
6793 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
6794 -- The following suffixes are currently used. They should not be changed
6795 -- without coordinating with CodePeer, which makes use of these to
6796 -- provide better messages.
6798 -- O denotes the Constrained bit.
6799 -- L denotes the accessibility level.
6800 -- BIP_xxx denotes an extra formal for a build-in-place function. See
6801 -- the full list in exp_ch6.BIP_Formal_Kind.
6803 ----------------------
6804 -- Add_Extra_Formal --
6805 ----------------------
6807 function Add_Extra_Formal
6808 (Assoc_Entity : Entity_Id;
6811 Suffix : String) return Entity_Id
6813 EF : constant Entity_Id :=
6814 Make_Defining_Identifier (Sloc (Assoc_Entity),
6815 Chars => New_External_Name (Chars (Assoc_Entity),
6819 -- A little optimization. Never generate an extra formal for the
6820 -- _init operand of an initialization procedure, since it could
6823 if Chars (Formal) = Name_uInit then
6827 Set_Ekind (EF, E_In_Parameter);
6828 Set_Actual_Subtype (EF, Typ);
6829 Set_Etype (EF, Typ);
6830 Set_Scope (EF, Scope);
6831 Set_Mechanism (EF, Default_Mechanism);
6832 Set_Formal_Validity (EF);
6834 if No (First_Extra) then
6836 Set_Extra_Formals (Scope, First_Extra);
6839 if Present (Last_Extra) then
6840 Set_Extra_Formal (Last_Extra, EF);
6846 end Add_Extra_Formal;
6848 -- Start of processing for Create_Extra_Formals
6851 -- We never generate extra formals if expansion is not active because we
6852 -- don't need them unless we are generating code.
6854 if not Expander_Active then
6858 -- No need to generate extra formals in interface thunks whose target
6859 -- primitive has no extra formals.
6861 if Is_Thunk (E) and then No (Extra_Formals (Thunk_Entity (E))) then
6865 -- If this is a derived subprogram then the subtypes of the parent
6866 -- subprogram's formal parameters will be used to determine the need
6867 -- for extra formals.
6869 if Is_Overloadable (E) and then Present (Alias (E)) then
6870 P_Formal := First_Formal (Alias (E));
6873 Last_Extra := Empty;
6874 Formal := First_Formal (E);
6875 while Present (Formal) loop
6876 Last_Extra := Formal;
6877 Next_Formal (Formal);
6880 -- If Extra_formals were already created, don't do it again. This
6881 -- situation may arise for subprogram types created as part of
6882 -- dispatching calls (see Expand_Dispatching_Call)
6884 if Present (Last_Extra) and then Present (Extra_Formal (Last_Extra)) then
6888 -- If the subprogram is a predefined dispatching subprogram then don't
6889 -- generate any extra constrained or accessibility level formals. In
6890 -- general we suppress these for internal subprograms (by not calling
6891 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
6892 -- generated stream attributes do get passed through because extra
6893 -- build-in-place formals are needed in some cases (limited 'Input
).
6895 if Is_Predefined_Internal_Operation
(E
) then
6896 goto Test_For_Func_Result_Extras
;
6899 Formal
:= First_Formal
(E
);
6900 while Present
(Formal
) loop
6902 -- Create extra formal for supporting the attribute 'Constrained.
6903 -- The case of a private type view without discriminants also
6904 -- requires the extra formal if the underlying type has defaulted
6907 if Ekind
(Formal
) /= E_In_Parameter
then
6908 if Present
(P_Formal
) then
6909 Formal_Type
:= Etype
(P_Formal
);
6911 Formal_Type
:= Etype
(Formal
);
6914 -- Do not produce extra formals for Unchecked_Union parameters.
6915 -- Jump directly to the end of the loop.
6917 if Is_Unchecked_Union
(Base_Type
(Formal_Type
)) then
6918 goto Skip_Extra_Formal_Generation
;
6921 if not Has_Discriminants
(Formal_Type
)
6922 and then Ekind
(Formal_Type
) in Private_Kind
6923 and then Present
(Underlying_Type
(Formal_Type
))
6925 Formal_Type
:= Underlying_Type
(Formal_Type
);
6928 -- Suppress the extra formal if formal's subtype is constrained or
6929 -- indefinite, or we're compiling for Ada 2012 and the underlying
6930 -- type is tagged and limited. In Ada 2012, a limited tagged type
6931 -- can have defaulted discriminants, but 'Constrained is required
6932 -- to return True, so the formal is never needed (see AI05-0214).
6933 -- Note that this ensures consistency of calling sequences for
6934 -- dispatching operations when some types in a class have defaults
6935 -- on discriminants and others do not (and requiring the extra
6936 -- formal would introduce distributed overhead).
6938 -- If the type does not have a completion yet, treat as prior to
6939 -- Ada 2012 for consistency.
6941 if Has_Discriminants
(Formal_Type
)
6942 and then not Is_Constrained
(Formal_Type
)
6943 and then not Is_Indefinite_Subtype
(Formal_Type
)
6944 and then (Ada_Version
< Ada_2012
6945 or else No
(Underlying_Type
(Formal_Type
))
6947 (Is_Limited_Type
(Formal_Type
)
6950 (Underlying_Type
(Formal_Type
)))))
6952 Set_Extra_Constrained
6953 (Formal
, Add_Extra_Formal
(Formal
, Standard_Boolean
, E
, "O"));
6957 -- Create extra formal for supporting accessibility checking. This
6958 -- is done for both anonymous access formals and formals of named
6959 -- access types that are marked as controlling formals. The latter
6960 -- case can occur when Expand_Dispatching_Call creates a subprogram
6961 -- type and substitutes the types of access-to-class-wide actuals
6962 -- for the anonymous access-to-specific-type of controlling formals.
6963 -- Base_Type is applied because in cases where there is a null
6964 -- exclusion the formal may have an access subtype.
6966 -- This is suppressed if we specifically suppress accessibility
6967 -- checks at the package level for either the subprogram, or the
6968 -- package in which it resides. However, we do not suppress it
6969 -- simply if the scope has accessibility checks suppressed, since
6970 -- this could cause trouble when clients are compiled with a
6971 -- different suppression setting. The explicit checks at the
6972 -- package level are safe from this point of view.
6974 if (Ekind
(Base_Type
(Etype
(Formal
))) = E_Anonymous_Access_Type
6975 or else (Is_Controlling_Formal
(Formal
)
6976 and then Is_Access_Type
(Base_Type
(Etype
(Formal
)))))
6978 (Explicit_Suppress
(E
, Accessibility_Check
)
6980 Explicit_Suppress
(Scope
(E
), Accessibility_Check
))
6983 or else Present
(Extra_Accessibility
(P_Formal
)))
6985 Set_Extra_Accessibility
6986 (Formal
, Add_Extra_Formal
(Formal
, Standard_Natural
, E
, "L"));
6989 -- This label is required when skipping extra formal generation for
6990 -- Unchecked_Union parameters.
6992 <<Skip_Extra_Formal_Generation
>>
6994 if Present
(P_Formal
) then
6995 Next_Formal
(P_Formal
);
6998 Next_Formal
(Formal
);
7001 <<Test_For_Func_Result_Extras
>>
7003 -- Ada 2012 (AI05-234): "the accessibility level of the result of a
7004 -- function call is ... determined by the point of call ...".
7006 if Needs_Result_Accessibility_Level
(E
) then
7007 Set_Extra_Accessibility_Of_Result
7008 (E
, Add_Extra_Formal
(E
, Standard_Natural
, E
, "L"));
7011 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
7012 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
7014 if Ada_Version
>= Ada_2005
and then Is_Build_In_Place_Function
(E
) then
7016 Result_Subt
: constant Entity_Id
:= Etype
(E
);
7017 Full_Subt
: constant Entity_Id
:= Available_View
(Result_Subt
);
7018 Formal_Typ
: Entity_Id
;
7020 Discard
: Entity_Id
;
7021 pragma Warnings
(Off
, Discard
);
7024 -- In the case of functions with unconstrained result subtypes,
7025 -- add a 4-state formal indicating whether the return object is
7026 -- allocated by the caller (1), or should be allocated by the
7027 -- callee on the secondary stack (2), in the global heap (3), or
7028 -- in a user-defined storage pool (4). For the moment we just use
7029 -- Natural for the type of this formal. Note that this formal
7030 -- isn't usually needed in the case where the result subtype is
7031 -- constrained, but it is needed when the function has a tagged
7032 -- result, because generally such functions can be called in a
7033 -- dispatching context and such calls must be handled like calls
7034 -- to a class-wide function.
7036 if Needs_BIP_Alloc_Form
(E
) then
7039 (E
, Standard_Natural
,
7040 E
, BIP_Formal_Suffix
(BIP_Alloc_Form
));
7042 -- Add BIP_Storage_Pool, in case BIP_Alloc_Form indicates to
7043 -- use a user-defined pool. This formal is not added on
7044 -- .NET/JVM/ZFP as those targets do not support pools.
7046 if VM_Target
= No_VM
7047 and then RTE_Available
(RE_Root_Storage_Pool_Ptr
)
7051 (E
, RTE
(RE_Root_Storage_Pool_Ptr
),
7052 E
, BIP_Formal_Suffix
(BIP_Storage_Pool
));
7056 -- In the case of functions whose result type needs finalization,
7057 -- add an extra formal which represents the finalization master.
7059 if Needs_BIP_Finalization_Master
(E
) then
7062 (E
, RTE
(RE_Finalization_Master_Ptr
),
7063 E
, BIP_Formal_Suffix
(BIP_Finalization_Master
));
7066 -- When the result type contains tasks, add two extra formals: the
7067 -- master of the tasks to be created, and the caller's activation
7070 if Has_Task
(Full_Subt
) then
7073 (E
, RTE
(RE_Master_Id
),
7074 E
, BIP_Formal_Suffix
(BIP_Task_Master
));
7077 (E
, RTE
(RE_Activation_Chain_Access
),
7078 E
, BIP_Formal_Suffix
(BIP_Activation_Chain
));
7081 -- All build-in-place functions get an extra formal that will be
7082 -- passed the address of the return object within the caller.
7085 Create_Itype
(E_Anonymous_Access_Type
, E
, Scope_Id
=> Scope
(E
));
7087 Set_Directly_Designated_Type
(Formal_Typ
, Result_Subt
);
7088 Set_Etype
(Formal_Typ
, Formal_Typ
);
7089 Set_Depends_On_Private
7090 (Formal_Typ
, Has_Private_Component
(Formal_Typ
));
7091 Set_Is_Public
(Formal_Typ
, Is_Public
(Scope
(Formal_Typ
)));
7092 Set_Is_Access_Constant
(Formal_Typ
, False);
7094 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
7095 -- the designated type comes from the limited view (for back-end
7098 Set_From_Limited_With
7099 (Formal_Typ
, From_Limited_With
(Result_Subt
));
7101 Layout_Type
(Formal_Typ
);
7105 (E
, Formal_Typ
, E
, BIP_Formal_Suffix
(BIP_Object_Access
));
7108 end Create_Extra_Formals
;
7110 -----------------------------
7111 -- Enter_Overloaded_Entity --
7112 -----------------------------
7114 procedure Enter_Overloaded_Entity
(S
: Entity_Id
) is
7115 E
: Entity_Id
:= Current_Entity_In_Scope
(S
);
7116 C_E
: Entity_Id
:= Current_Entity
(S
);
7120 Set_Has_Homonym
(E
);
7121 Set_Has_Homonym
(S
);
7124 Set_Is_Immediately_Visible
(S
);
7125 Set_Scope
(S
, Current_Scope
);
7127 -- Chain new entity if front of homonym in current scope, so that
7128 -- homonyms are contiguous.
7130 if Present
(E
) and then E
/= C_E
then
7131 while Homonym
(C_E
) /= E
loop
7132 C_E
:= Homonym
(C_E
);
7135 Set_Homonym
(C_E
, S
);
7139 Set_Current_Entity
(S
);
7144 if Is_Inherited_Operation
(S
) then
7145 Append_Inherited_Subprogram
(S
);
7147 Append_Entity
(S
, Current_Scope
);
7150 Set_Public_Status
(S
);
7152 if Debug_Flag_E
then
7153 Write_Str
("New overloaded entity chain: ");
7154 Write_Name
(Chars
(S
));
7157 while Present
(E
) loop
7158 Write_Str
(" "); Write_Int
(Int
(E
));
7165 -- Generate warning for hiding
7168 and then Comes_From_Source
(S
)
7169 and then In_Extended_Main_Source_Unit
(S
)
7176 -- Warn unless genuine overloading. Do not emit warning on
7177 -- hiding predefined operators in Standard (these are either an
7178 -- (artifact of our implicit declarations, or simple noise) but
7179 -- keep warning on a operator defined on a local subtype, because
7180 -- of the real danger that different operators may be applied in
7181 -- various parts of the program.
7183 -- Note that if E and S have the same scope, there is never any
7184 -- hiding. Either the two conflict, and the program is illegal,
7185 -- or S is overriding an implicit inherited subprogram.
7187 if Scope
(E
) /= Scope
(S
)
7188 and then (not Is_Overloadable
(E
)
7189 or else Subtype_Conformant
(E
, S
))
7190 and then (Is_Immediately_Visible
(E
)
7192 Is_Potentially_Use_Visible
(S
))
7194 if Scope
(E
) /= Standard_Standard
then
7195 Error_Msg_Sloc
:= Sloc
(E
);
7196 Error_Msg_N
("declaration of & hides one #?h?", S
);
7198 elsif Nkind
(S
) = N_Defining_Operator_Symbol
7200 Scope
(Base_Type
(Etype
(First_Formal
(S
)))) /= Scope
(S
)
7203 ("declaration of & hides predefined operator?h?", S
);
7208 end Enter_Overloaded_Entity
;
7210 -----------------------------
7211 -- Check_Untagged_Equality --
7212 -----------------------------
7214 procedure Check_Untagged_Equality
(Eq_Op
: Entity_Id
) is
7215 Typ
: constant Entity_Id
:= Etype
(First_Formal
(Eq_Op
));
7216 Decl
: constant Node_Id
:= Unit_Declaration_Node
(Eq_Op
);
7220 -- This check applies only if we have a subprogram declaration with an
7221 -- untagged record type.
7223 if Nkind
(Decl
) /= N_Subprogram_Declaration
7224 or else not Is_Record_Type
(Typ
)
7225 or else Is_Tagged_Type
(Typ
)
7230 -- In Ada 2012 case, we will output errors or warnings depending on
7231 -- the setting of debug flag -gnatd.E.
7233 if Ada_Version
>= Ada_2012
then
7234 Error_Msg_Warn
:= Debug_Flag_Dot_EE
;
7236 -- In earlier versions of Ada, nothing to do unless we are warning on
7237 -- Ada 2012 incompatibilities (Warn_On_Ada_2012_Incompatibility set).
7240 if not Warn_On_Ada_2012_Compatibility
then
7245 -- Cases where the type has already been frozen
7247 if Is_Frozen
(Typ
) then
7249 -- If the type is not declared in a package, or if we are in the body
7250 -- of the package or in some other scope, the new operation is not
7251 -- primitive, and therefore legal, though suspicious. Should we
7252 -- generate a warning in this case ???
7254 if Ekind
(Scope
(Typ
)) /= E_Package
7255 or else Scope
(Typ
) /= Current_Scope
7259 -- If the type is a generic actual (sub)type, the operation is not
7260 -- primitive either because the base type is declared elsewhere.
7262 elsif Is_Generic_Actual_Type
(Typ
) then
7265 -- Here we have a definite error of declaration after freezing
7268 if Ada_Version
>= Ada_2012
then
7270 ("equality operator must be declared before type & is "
7271 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)<<", Eq_Op
, Typ
);
7273 -- In Ada 2012 mode with error turned to warning, output one
7274 -- more warning to warn that the equality operation may not
7275 -- compose. This is the consequence of ignoring the error.
7277 if Error_Msg_Warn
then
7278 Error_Msg_N
("\equality operation may not compose??", Eq_Op
);
7283 ("equality operator must be declared before type& is "
7284 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)?y?", Eq_Op
, Typ
);
7287 -- If we are in the package body, we could just move the
7288 -- declaration to the package spec, so add a message saying that.
7290 if In_Package_Body
(Scope
(Typ
)) then
7291 if Ada_Version
>= Ada_2012
then
7293 ("\move declaration to package spec<<", Eq_Op
);
7296 ("\move declaration to package spec (Ada 2012)?y?", Eq_Op
);
7299 -- Otherwise try to find the freezing point
7302 Obj_Decl
:= Next
(Parent
(Typ
));
7303 while Present
(Obj_Decl
) and then Obj_Decl
/= Decl
loop
7304 if Nkind
(Obj_Decl
) = N_Object_Declaration
7305 and then Etype
(Defining_Identifier
(Obj_Decl
)) = Typ
7307 -- Freezing point, output warnings
7309 if Ada_Version
>= Ada_2012
then
7311 ("type& is frozen by declaration??", Obj_Decl
, Typ
);
7313 ("\an equality operator cannot be declared after "
7318 ("type& is frozen by declaration (Ada 2012)?y?",
7321 ("\an equality operator cannot be declared after "
7322 & "this point (Ada 2012)?y?",
7334 -- Here if type is not frozen yet. It is illegal to have a primitive
7335 -- equality declared in the private part if the type is visible.
7337 elsif not In_Same_List
(Parent
(Typ
), Decl
)
7338 and then not Is_Limited_Type
(Typ
)
7340 -- Shouldn't we give an RM reference here???
7342 if Ada_Version
>= Ada_2012
then
7344 ("equality operator appears too late<<", Eq_Op
);
7347 ("equality operator appears too late (Ada 2012)?y?", Eq_Op
);
7350 -- No error detected
7355 end Check_Untagged_Equality
;
7357 -----------------------------
7358 -- Find_Corresponding_Spec --
7359 -----------------------------
7361 function Find_Corresponding_Spec
7363 Post_Error
: Boolean := True) return Entity_Id
7365 Spec
: constant Node_Id
:= Specification
(N
);
7366 Designator
: constant Entity_Id
:= Defining_Entity
(Spec
);
7370 function Different_Generic_Profile
(E
: Entity_Id
) return Boolean;
7371 -- Even if fully conformant, a body may depend on a generic actual when
7372 -- the spec does not, or vice versa, in which case they were distinct
7373 -- entities in the generic.
7375 -------------------------------
7376 -- Different_Generic_Profile --
7377 -------------------------------
7379 function Different_Generic_Profile
(E
: Entity_Id
) return Boolean is
7382 function Same_Generic_Actual
(T1
, T2
: Entity_Id
) return Boolean;
7383 -- Check that the types of corresponding formals have the same
7384 -- generic actual if any. We have to account for subtypes of a
7385 -- generic formal, declared between a spec and a body, which may
7386 -- appear distinct in an instance but matched in the generic, and
7387 -- the subtype may be used either in the spec or the body of the
7388 -- subprogram being checked.
7390 -------------------------
7391 -- Same_Generic_Actual --
7392 -------------------------
7394 function Same_Generic_Actual
(T1
, T2
: Entity_Id
) return Boolean is
7396 function Is_Declared_Subtype
(S1
, S2
: Entity_Id
) return Boolean;
7397 -- Predicate to check whether S1 is a subtype of S2 in the source
7400 -------------------------
7401 -- Is_Declared_Subtype --
7402 -------------------------
7404 function Is_Declared_Subtype
(S1
, S2
: Entity_Id
) return Boolean is
7406 return Comes_From_Source
(Parent
(S1
))
7407 and then Nkind
(Parent
(S1
)) = N_Subtype_Declaration
7408 and then Is_Entity_Name
(Subtype_Indication
(Parent
(S1
)))
7409 and then Entity
(Subtype_Indication
(Parent
(S1
))) = S2
;
7410 end Is_Declared_Subtype
;
7412 -- Start of processing for Same_Generic_Actual
7415 return Is_Generic_Actual_Type
(T1
) = Is_Generic_Actual_Type
(T2
)
7416 or else Is_Declared_Subtype
(T1
, T2
)
7417 or else Is_Declared_Subtype
(T2
, T1
);
7418 end Same_Generic_Actual
;
7420 -- Start of processing for Different_Generic_Profile
7423 if not In_Instance
then
7426 elsif Ekind
(E
) = E_Function
7427 and then not Same_Generic_Actual
(Etype
(E
), Etype
(Designator
))
7432 F1
:= First_Formal
(Designator
);
7433 F2
:= First_Formal
(E
);
7434 while Present
(F1
) loop
7435 if not Same_Generic_Actual
(Etype
(F1
), Etype
(F2
)) then
7444 end Different_Generic_Profile
;
7446 -- Start of processing for Find_Corresponding_Spec
7449 E
:= Current_Entity
(Designator
);
7450 while Present
(E
) loop
7452 -- We are looking for a matching spec. It must have the same scope,
7453 -- and the same name, and either be type conformant, or be the case
7454 -- of a library procedure spec and its body (which belong to one
7455 -- another regardless of whether they are type conformant or not).
7457 if Scope
(E
) = Current_Scope
then
7458 if Current_Scope
= Standard_Standard
7459 or else (Ekind
(E
) = Ekind
(Designator
)
7460 and then Type_Conformant
(E
, Designator
))
7462 -- Within an instantiation, we know that spec and body are
7463 -- subtype conformant, because they were subtype conformant in
7464 -- the generic. We choose the subtype-conformant entity here as
7465 -- well, to resolve spurious ambiguities in the instance that
7466 -- were not present in the generic (i.e. when two different
7467 -- types are given the same actual). If we are looking for a
7468 -- spec to match a body, full conformance is expected.
7472 -- Inherit the convention and "ghostness" of the matching
7473 -- spec to ensure proper full and subtype conformance.
7475 Set_Convention
(Designator
, Convention
(E
));
7477 if Is_Ghost_Entity
(E
) then
7478 Set_Is_Ghost_Entity
(Designator
);
7481 -- Skip past subprogram bodies and subprogram renamings that
7482 -- may appear to have a matching spec, but that aren't fully
7483 -- conformant with it. That can occur in cases where an
7484 -- actual type causes unrelated homographs in the instance.
7486 if Nkind_In
(N
, N_Subprogram_Body
,
7487 N_Subprogram_Renaming_Declaration
)
7488 and then Present
(Homonym
(E
))
7489 and then not Fully_Conformant
(Designator
, E
)
7493 elsif not Subtype_Conformant
(Designator
, E
) then
7496 elsif Different_Generic_Profile
(E
) then
7501 -- Ada 2012 (AI05-0165): For internally generated bodies of
7502 -- null procedures locate the internally generated spec. We
7503 -- enforce mode conformance since a tagged type may inherit
7504 -- from interfaces several null primitives which differ only
7505 -- in the mode of the formals.
7507 if not (Comes_From_Source
(E
))
7508 and then Is_Null_Procedure
(E
)
7509 and then not Mode_Conformant
(Designator
, E
)
7513 -- For null procedures coming from source that are completions,
7514 -- analysis of the generated body will establish the link.
7516 elsif Comes_From_Source
(E
)
7517 and then Nkind
(Spec
) = N_Procedure_Specification
7518 and then Null_Present
(Spec
)
7522 elsif not Has_Completion
(E
) then
7523 if Nkind
(N
) /= N_Subprogram_Body_Stub
then
7524 Set_Corresponding_Spec
(N
, E
);
7527 Set_Has_Completion
(E
);
7530 elsif Nkind
(Parent
(N
)) = N_Subunit
then
7532 -- If this is the proper body of a subunit, the completion
7533 -- flag is set when analyzing the stub.
7537 -- If E is an internal function with a controlling result that
7538 -- was created for an operation inherited by a null extension,
7539 -- it may be overridden by a body without a previous spec (one
7540 -- more reason why these should be shunned). In that case we
7541 -- remove the generated body if present, because the current
7542 -- one is the explicit overriding.
7544 elsif Ekind
(E
) = E_Function
7545 and then Ada_Version
>= Ada_2005
7546 and then not Comes_From_Source
(E
)
7547 and then Has_Controlling_Result
(E
)
7548 and then Is_Null_Extension
(Etype
(E
))
7549 and then Comes_From_Source
(Spec
)
7551 Set_Has_Completion
(E
, False);
7554 and then Nkind
(Parent
(E
)) = N_Function_Specification
7557 (Unit_Declaration_Node
7558 (Corresponding_Body
(Unit_Declaration_Node
(E
))));
7562 -- If expansion is disabled, or if the wrapper function has
7563 -- not been generated yet, this a late body overriding an
7564 -- inherited operation, or it is an overriding by some other
7565 -- declaration before the controlling result is frozen. In
7566 -- either case this is a declaration of a new entity.
7572 -- If the body already exists, then this is an error unless
7573 -- the previous declaration is the implicit declaration of a
7574 -- derived subprogram. It is also legal for an instance to
7575 -- contain type conformant overloadable declarations (but the
7576 -- generic declaration may not), per 8.3(26/2).
7578 elsif No
(Alias
(E
))
7579 and then not Is_Intrinsic_Subprogram
(E
)
7580 and then not In_Instance
7583 Error_Msg_Sloc
:= Sloc
(E
);
7585 if Is_Imported
(E
) then
7587 ("body not allowed for imported subprogram & declared#",
7590 Error_Msg_NE
("duplicate body for & declared#", N
, E
);
7594 -- Child units cannot be overloaded, so a conformance mismatch
7595 -- between body and a previous spec is an error.
7597 elsif Is_Child_Unit
(E
)
7599 Nkind
(Unit_Declaration_Node
(Designator
)) = N_Subprogram_Body
7601 Nkind
(Parent
(Unit_Declaration_Node
(Designator
))) =
7606 ("body of child unit does not match previous declaration", N
);
7614 -- On exit, we know that no previous declaration of subprogram exists
7617 end Find_Corresponding_Spec
;
7619 ----------------------
7620 -- Fully_Conformant --
7621 ----------------------
7623 function Fully_Conformant
(New_Id
, Old_Id
: Entity_Id
) return Boolean is
7626 Check_Conformance
(New_Id
, Old_Id
, Fully_Conformant
, False, Result
);
7628 end Fully_Conformant
;
7630 ----------------------------------
7631 -- Fully_Conformant_Expressions --
7632 ----------------------------------
7634 function Fully_Conformant_Expressions
7635 (Given_E1
: Node_Id
;
7636 Given_E2
: Node_Id
) return Boolean
7638 E1
: constant Node_Id
:= Original_Node
(Given_E1
);
7639 E2
: constant Node_Id
:= Original_Node
(Given_E2
);
7640 -- We always test conformance on original nodes, since it is possible
7641 -- for analysis and/or expansion to make things look as though they
7642 -- conform when they do not, e.g. by converting 1+2 into 3.
7644 function FCE
(Given_E1
, Given_E2
: Node_Id
) return Boolean
7645 renames Fully_Conformant_Expressions
;
7647 function FCL
(L1
, L2
: List_Id
) return Boolean;
7648 -- Compare elements of two lists for conformance. Elements have to be
7649 -- conformant, and actuals inserted as default parameters do not match
7650 -- explicit actuals with the same value.
7652 function FCO
(Op_Node
, Call_Node
: Node_Id
) return Boolean;
7653 -- Compare an operator node with a function call
7659 function FCL
(L1
, L2
: List_Id
) return Boolean is
7663 if L1
= No_List
then
7669 if L2
= No_List
then
7675 -- Compare two lists, skipping rewrite insertions (we want to compare
7676 -- the original trees, not the expanded versions).
7679 if Is_Rewrite_Insertion
(N1
) then
7681 elsif Is_Rewrite_Insertion
(N2
) then
7687 elsif not FCE
(N1
, N2
) then
7700 function FCO
(Op_Node
, Call_Node
: Node_Id
) return Boolean is
7701 Actuals
: constant List_Id
:= Parameter_Associations
(Call_Node
);
7706 or else Entity
(Op_Node
) /= Entity
(Name
(Call_Node
))
7711 Act
:= First
(Actuals
);
7713 if Nkind
(Op_Node
) in N_Binary_Op
then
7714 if not FCE
(Left_Opnd
(Op_Node
), Act
) then
7721 return Present
(Act
)
7722 and then FCE
(Right_Opnd
(Op_Node
), Act
)
7723 and then No
(Next
(Act
));
7727 -- Start of processing for Fully_Conformant_Expressions
7730 -- Non-conformant if paren count does not match. Note: if some idiot
7731 -- complains that we don't do this right for more than 3 levels of
7732 -- parentheses, they will be treated with the respect they deserve.
7734 if Paren_Count
(E1
) /= Paren_Count
(E2
) then
7737 -- If same entities are referenced, then they are conformant even if
7738 -- they have different forms (RM 8.3.1(19-20)).
7740 elsif Is_Entity_Name
(E1
) and then Is_Entity_Name
(E2
) then
7741 if Present
(Entity
(E1
)) then
7742 return Entity
(E1
) = Entity
(E2
)
7743 or else (Chars
(Entity
(E1
)) = Chars
(Entity
(E2
))
7744 and then Ekind
(Entity
(E1
)) = E_Discriminant
7745 and then Ekind
(Entity
(E2
)) = E_In_Parameter
);
7747 elsif Nkind
(E1
) = N_Expanded_Name
7748 and then Nkind
(E2
) = N_Expanded_Name
7749 and then Nkind
(Selector_Name
(E1
)) = N_Character_Literal
7750 and then Nkind
(Selector_Name
(E2
)) = N_Character_Literal
7752 return Chars
(Selector_Name
(E1
)) = Chars
(Selector_Name
(E2
));
7755 -- Identifiers in component associations don't always have
7756 -- entities, but their names must conform.
7758 return Nkind
(E1
) = N_Identifier
7759 and then Nkind
(E2
) = N_Identifier
7760 and then Chars
(E1
) = Chars
(E2
);
7763 elsif Nkind
(E1
) = N_Character_Literal
7764 and then Nkind
(E2
) = N_Expanded_Name
7766 return Nkind
(Selector_Name
(E2
)) = N_Character_Literal
7767 and then Chars
(E1
) = Chars
(Selector_Name
(E2
));
7769 elsif Nkind
(E2
) = N_Character_Literal
7770 and then Nkind
(E1
) = N_Expanded_Name
7772 return Nkind
(Selector_Name
(E1
)) = N_Character_Literal
7773 and then Chars
(E2
) = Chars
(Selector_Name
(E1
));
7775 elsif Nkind
(E1
) in N_Op
and then Nkind
(E2
) = N_Function_Call
then
7776 return FCO
(E1
, E2
);
7778 elsif Nkind
(E2
) in N_Op
and then Nkind
(E1
) = N_Function_Call
then
7779 return FCO
(E2
, E1
);
7781 -- Otherwise we must have the same syntactic entity
7783 elsif Nkind
(E1
) /= Nkind
(E2
) then
7786 -- At this point, we specialize by node type
7793 FCL
(Expressions
(E1
), Expressions
(E2
))
7795 FCL
(Component_Associations
(E1
),
7796 Component_Associations
(E2
));
7799 if Nkind
(Expression
(E1
)) = N_Qualified_Expression
7801 Nkind
(Expression
(E2
)) = N_Qualified_Expression
7803 return FCE
(Expression
(E1
), Expression
(E2
));
7805 -- Check that the subtype marks and any constraints
7810 Indic1
: constant Node_Id
:= Expression
(E1
);
7811 Indic2
: constant Node_Id
:= Expression
(E2
);
7816 if Nkind
(Indic1
) /= N_Subtype_Indication
then
7818 Nkind
(Indic2
) /= N_Subtype_Indication
7819 and then Entity
(Indic1
) = Entity
(Indic2
);
7821 elsif Nkind
(Indic2
) /= N_Subtype_Indication
then
7823 Nkind
(Indic1
) /= N_Subtype_Indication
7824 and then Entity
(Indic1
) = Entity
(Indic2
);
7827 if Entity
(Subtype_Mark
(Indic1
)) /=
7828 Entity
(Subtype_Mark
(Indic2
))
7833 Elt1
:= First
(Constraints
(Constraint
(Indic1
)));
7834 Elt2
:= First
(Constraints
(Constraint
(Indic2
)));
7835 while Present
(Elt1
) and then Present
(Elt2
) loop
7836 if not FCE
(Elt1
, Elt2
) then
7849 when N_Attribute_Reference
=>
7851 Attribute_Name
(E1
) = Attribute_Name
(E2
)
7852 and then FCL
(Expressions
(E1
), Expressions
(E2
));
7856 Entity
(E1
) = Entity
(E2
)
7857 and then FCE
(Left_Opnd
(E1
), Left_Opnd
(E2
))
7858 and then FCE
(Right_Opnd
(E1
), Right_Opnd
(E2
));
7860 when N_Short_Circuit | N_Membership_Test
=>
7862 FCE
(Left_Opnd
(E1
), Left_Opnd
(E2
))
7864 FCE
(Right_Opnd
(E1
), Right_Opnd
(E2
));
7866 when N_Case_Expression
=>
7872 if not FCE
(Expression
(E1
), Expression
(E2
)) then
7876 Alt1
:= First
(Alternatives
(E1
));
7877 Alt2
:= First
(Alternatives
(E2
));
7879 if Present
(Alt1
) /= Present
(Alt2
) then
7881 elsif No
(Alt1
) then
7885 if not FCE
(Expression
(Alt1
), Expression
(Alt2
))
7886 or else not FCL
(Discrete_Choices
(Alt1
),
7887 Discrete_Choices
(Alt2
))
7898 when N_Character_Literal
=>
7900 Char_Literal_Value
(E1
) = Char_Literal_Value
(E2
);
7902 when N_Component_Association
=>
7904 FCL
(Choices
(E1
), Choices
(E2
))
7906 FCE
(Expression
(E1
), Expression
(E2
));
7908 when N_Explicit_Dereference
=>
7910 FCE
(Prefix
(E1
), Prefix
(E2
));
7912 when N_Extension_Aggregate
=>
7914 FCL
(Expressions
(E1
), Expressions
(E2
))
7915 and then Null_Record_Present
(E1
) =
7916 Null_Record_Present
(E2
)
7917 and then FCL
(Component_Associations
(E1
),
7918 Component_Associations
(E2
));
7920 when N_Function_Call
=>
7922 FCE
(Name
(E1
), Name
(E2
))
7924 FCL
(Parameter_Associations
(E1
),
7925 Parameter_Associations
(E2
));
7927 when N_If_Expression
=>
7929 FCL
(Expressions
(E1
), Expressions
(E2
));
7931 when N_Indexed_Component
=>
7933 FCE
(Prefix
(E1
), Prefix
(E2
))
7935 FCL
(Expressions
(E1
), Expressions
(E2
));
7937 when N_Integer_Literal
=>
7938 return (Intval
(E1
) = Intval
(E2
));
7943 when N_Operator_Symbol
=>
7945 Chars
(E1
) = Chars
(E2
);
7947 when N_Others_Choice
=>
7950 when N_Parameter_Association
=>
7952 Chars
(Selector_Name
(E1
)) = Chars
(Selector_Name
(E2
))
7953 and then FCE
(Explicit_Actual_Parameter
(E1
),
7954 Explicit_Actual_Parameter
(E2
));
7956 when N_Qualified_Expression
=>
7958 FCE
(Subtype_Mark
(E1
), Subtype_Mark
(E2
))
7960 FCE
(Expression
(E1
), Expression
(E2
));
7962 when N_Quantified_Expression
=>
7963 if not FCE
(Condition
(E1
), Condition
(E2
)) then
7967 if Present
(Loop_Parameter_Specification
(E1
))
7968 and then Present
(Loop_Parameter_Specification
(E2
))
7971 L1
: constant Node_Id
:=
7972 Loop_Parameter_Specification
(E1
);
7973 L2
: constant Node_Id
:=
7974 Loop_Parameter_Specification
(E2
);
7978 Reverse_Present
(L1
) = Reverse_Present
(L2
)
7980 FCE
(Defining_Identifier
(L1
),
7981 Defining_Identifier
(L2
))
7983 FCE
(Discrete_Subtype_Definition
(L1
),
7984 Discrete_Subtype_Definition
(L2
));
7987 elsif Present
(Iterator_Specification
(E1
))
7988 and then Present
(Iterator_Specification
(E2
))
7991 I1
: constant Node_Id
:= Iterator_Specification
(E1
);
7992 I2
: constant Node_Id
:= Iterator_Specification
(E2
);
7996 FCE
(Defining_Identifier
(I1
),
7997 Defining_Identifier
(I2
))
7999 Of_Present
(I1
) = Of_Present
(I2
)
8001 Reverse_Present
(I1
) = Reverse_Present
(I2
)
8002 and then FCE
(Name
(I1
), Name
(I2
))
8003 and then FCE
(Subtype_Indication
(I1
),
8004 Subtype_Indication
(I2
));
8007 -- The quantified expressions used different specifications to
8008 -- walk their respective ranges.
8016 FCE
(Low_Bound
(E1
), Low_Bound
(E2
))
8018 FCE
(High_Bound
(E1
), High_Bound
(E2
));
8020 when N_Real_Literal
=>
8021 return (Realval
(E1
) = Realval
(E2
));
8023 when N_Selected_Component
=>
8025 FCE
(Prefix
(E1
), Prefix
(E2
))
8027 FCE
(Selector_Name
(E1
), Selector_Name
(E2
));
8031 FCE
(Prefix
(E1
), Prefix
(E2
))
8033 FCE
(Discrete_Range
(E1
), Discrete_Range
(E2
));
8035 when N_String_Literal
=>
8037 S1
: constant String_Id
:= Strval
(E1
);
8038 S2
: constant String_Id
:= Strval
(E2
);
8039 L1
: constant Nat
:= String_Length
(S1
);
8040 L2
: constant Nat
:= String_Length
(S2
);
8047 for J
in 1 .. L1
loop
8048 if Get_String_Char
(S1
, J
) /=
8049 Get_String_Char
(S2
, J
)
8059 when N_Type_Conversion
=>
8061 FCE
(Subtype_Mark
(E1
), Subtype_Mark
(E2
))
8063 FCE
(Expression
(E1
), Expression
(E2
));
8067 Entity
(E1
) = Entity
(E2
)
8069 FCE
(Right_Opnd
(E1
), Right_Opnd
(E2
));
8071 when N_Unchecked_Type_Conversion
=>
8073 FCE
(Subtype_Mark
(E1
), Subtype_Mark
(E2
))
8075 FCE
(Expression
(E1
), Expression
(E2
));
8077 -- All other node types cannot appear in this context. Strictly
8078 -- we should raise a fatal internal error. Instead we just ignore
8079 -- the nodes. This means that if anyone makes a mistake in the
8080 -- expander and mucks an expression tree irretrievably, the result
8081 -- will be a failure to detect a (probably very obscure) case
8082 -- of non-conformance, which is better than bombing on some
8083 -- case where two expressions do in fact conform.
8090 end Fully_Conformant_Expressions
;
8092 ----------------------------------------
8093 -- Fully_Conformant_Discrete_Subtypes --
8094 ----------------------------------------
8096 function Fully_Conformant_Discrete_Subtypes
8097 (Given_S1
: Node_Id
;
8098 Given_S2
: Node_Id
) return Boolean
8100 S1
: constant Node_Id
:= Original_Node
(Given_S1
);
8101 S2
: constant Node_Id
:= Original_Node
(Given_S2
);
8103 function Conforming_Bounds
(B1
, B2
: Node_Id
) return Boolean;
8104 -- Special-case for a bound given by a discriminant, which in the body
8105 -- is replaced with the discriminal of the enclosing type.
8107 function Conforming_Ranges
(R1
, R2
: Node_Id
) return Boolean;
8108 -- Check both bounds
8110 -----------------------
8111 -- Conforming_Bounds --
8112 -----------------------
8114 function Conforming_Bounds
(B1
, B2
: Node_Id
) return Boolean is
8116 if Is_Entity_Name
(B1
)
8117 and then Is_Entity_Name
(B2
)
8118 and then Ekind
(Entity
(B1
)) = E_Discriminant
8120 return Chars
(B1
) = Chars
(B2
);
8123 return Fully_Conformant_Expressions
(B1
, B2
);
8125 end Conforming_Bounds
;
8127 -----------------------
8128 -- Conforming_Ranges --
8129 -----------------------
8131 function Conforming_Ranges
(R1
, R2
: Node_Id
) return Boolean is
8134 Conforming_Bounds
(Low_Bound
(R1
), Low_Bound
(R2
))
8136 Conforming_Bounds
(High_Bound
(R1
), High_Bound
(R2
));
8137 end Conforming_Ranges
;
8139 -- Start of processing for Fully_Conformant_Discrete_Subtypes
8142 if Nkind
(S1
) /= Nkind
(S2
) then
8145 elsif Is_Entity_Name
(S1
) then
8146 return Entity
(S1
) = Entity
(S2
);
8148 elsif Nkind
(S1
) = N_Range
then
8149 return Conforming_Ranges
(S1
, S2
);
8151 elsif Nkind
(S1
) = N_Subtype_Indication
then
8153 Entity
(Subtype_Mark
(S1
)) = Entity
(Subtype_Mark
(S2
))
8156 (Range_Expression
(Constraint
(S1
)),
8157 Range_Expression
(Constraint
(S2
)));
8161 end Fully_Conformant_Discrete_Subtypes
;
8163 --------------------
8164 -- Install_Entity --
8165 --------------------
8167 procedure Install_Entity
(E
: Entity_Id
) is
8168 Prev
: constant Entity_Id
:= Current_Entity
(E
);
8170 Set_Is_Immediately_Visible
(E
);
8171 Set_Current_Entity
(E
);
8172 Set_Homonym
(E
, Prev
);
8175 ---------------------
8176 -- Install_Formals --
8177 ---------------------
8179 procedure Install_Formals
(Id
: Entity_Id
) is
8182 F
:= First_Formal
(Id
);
8183 while Present
(F
) loop
8187 end Install_Formals
;
8189 -----------------------------
8190 -- Is_Interface_Conformant --
8191 -----------------------------
8193 function Is_Interface_Conformant
8194 (Tagged_Type
: Entity_Id
;
8195 Iface_Prim
: Entity_Id
;
8196 Prim
: Entity_Id
) return Boolean
8198 -- The operation may in fact be an inherited (implicit) operation
8199 -- rather than the original interface primitive, so retrieve the
8200 -- ultimate ancestor.
8202 Iface
: constant Entity_Id
:=
8203 Find_Dispatching_Type
(Ultimate_Alias
(Iface_Prim
));
8204 Typ
: constant Entity_Id
:= Find_Dispatching_Type
(Prim
);
8206 function Controlling_Formal
(Prim
: Entity_Id
) return Entity_Id
;
8207 -- Return the controlling formal of Prim
8209 ------------------------
8210 -- Controlling_Formal --
8211 ------------------------
8213 function Controlling_Formal
(Prim
: Entity_Id
) return Entity_Id
is
8217 E
:= First_Entity
(Prim
);
8218 while Present
(E
) loop
8219 if Is_Formal
(E
) and then Is_Controlling_Formal
(E
) then
8227 end Controlling_Formal
;
8231 Iface_Ctrl_F
: constant Entity_Id
:= Controlling_Formal
(Iface_Prim
);
8232 Prim_Ctrl_F
: constant Entity_Id
:= Controlling_Formal
(Prim
);
8234 -- Start of processing for Is_Interface_Conformant
8237 pragma Assert
(Is_Subprogram
(Iface_Prim
)
8238 and then Is_Subprogram
(Prim
)
8239 and then Is_Dispatching_Operation
(Iface_Prim
)
8240 and then Is_Dispatching_Operation
(Prim
));
8242 pragma Assert
(Is_Interface
(Iface
)
8243 or else (Present
(Alias
(Iface_Prim
))
8246 (Find_Dispatching_Type
(Ultimate_Alias
(Iface_Prim
)))));
8248 if Prim
= Iface_Prim
8249 or else not Is_Subprogram
(Prim
)
8250 or else Ekind
(Prim
) /= Ekind
(Iface_Prim
)
8251 or else not Is_Dispatching_Operation
(Prim
)
8252 or else Scope
(Prim
) /= Scope
(Tagged_Type
)
8254 or else Base_Type
(Typ
) /= Base_Type
(Tagged_Type
)
8255 or else not Primitive_Names_Match
(Iface_Prim
, Prim
)
8259 -- The mode of the controlling formals must match
8261 elsif Present
(Iface_Ctrl_F
)
8262 and then Present
(Prim_Ctrl_F
)
8263 and then Ekind
(Iface_Ctrl_F
) /= Ekind
(Prim_Ctrl_F
)
8267 -- Case of a procedure, or a function whose result type matches the
8268 -- result type of the interface primitive, or a function that has no
8269 -- controlling result (I or access I).
8271 elsif Ekind
(Iface_Prim
) = E_Procedure
8272 or else Etype
(Prim
) = Etype
(Iface_Prim
)
8273 or else not Has_Controlling_Result
(Prim
)
8275 return Type_Conformant
8276 (Iface_Prim
, Prim
, Skip_Controlling_Formals
=> True);
8278 -- Case of a function returning an interface, or an access to one. Check
8279 -- that the return types correspond.
8281 elsif Implements_Interface
(Typ
, Iface
) then
8282 if (Ekind
(Etype
(Prim
)) = E_Anonymous_Access_Type
)
8284 (Ekind
(Etype
(Iface_Prim
)) = E_Anonymous_Access_Type
)
8289 Type_Conformant
(Prim
, Ultimate_Alias
(Iface_Prim
),
8290 Skip_Controlling_Formals
=> True);
8296 end Is_Interface_Conformant
;
8298 ---------------------------------
8299 -- Is_Non_Overriding_Operation --
8300 ---------------------------------
8302 function Is_Non_Overriding_Operation
8303 (Prev_E
: Entity_Id
;
8304 New_E
: Entity_Id
) return Boolean
8308 G_Typ
: Entity_Id
:= Empty
;
8310 function Get_Generic_Parent_Type
(F_Typ
: Entity_Id
) return Entity_Id
;
8311 -- If F_Type is a derived type associated with a generic actual subtype,
8312 -- then return its Generic_Parent_Type attribute, else return Empty.
8314 function Types_Correspond
8315 (P_Type
: Entity_Id
;
8316 N_Type
: Entity_Id
) return Boolean;
8317 -- Returns true if and only if the types (or designated types in the
8318 -- case of anonymous access types) are the same or N_Type is derived
8319 -- directly or indirectly from P_Type.
8321 -----------------------------
8322 -- Get_Generic_Parent_Type --
8323 -----------------------------
8325 function Get_Generic_Parent_Type
(F_Typ
: Entity_Id
) return Entity_Id
is
8331 if Is_Derived_Type
(F_Typ
)
8332 and then Nkind
(Parent
(F_Typ
)) = N_Full_Type_Declaration
8334 -- The tree must be traversed to determine the parent subtype in
8335 -- the generic unit, which unfortunately isn't always available
8336 -- via semantic attributes. ??? (Note: The use of Original_Node
8337 -- is needed for cases where a full derived type has been
8340 Defn
:= Type_Definition
(Original_Node
(Parent
(F_Typ
)));
8341 if Nkind
(Defn
) = N_Derived_Type_Definition
then
8342 Indic
:= Subtype_Indication
(Defn
);
8344 if Nkind
(Indic
) = N_Subtype_Indication
then
8345 G_Typ
:= Entity
(Subtype_Mark
(Indic
));
8347 G_Typ
:= Entity
(Indic
);
8350 if Nkind
(Parent
(G_Typ
)) = N_Subtype_Declaration
8351 and then Present
(Generic_Parent_Type
(Parent
(G_Typ
)))
8353 return Generic_Parent_Type
(Parent
(G_Typ
));
8359 end Get_Generic_Parent_Type
;
8361 ----------------------
8362 -- Types_Correspond --
8363 ----------------------
8365 function Types_Correspond
8366 (P_Type
: Entity_Id
;
8367 N_Type
: Entity_Id
) return Boolean
8369 Prev_Type
: Entity_Id
:= Base_Type
(P_Type
);
8370 New_Type
: Entity_Id
:= Base_Type
(N_Type
);
8373 if Ekind
(Prev_Type
) = E_Anonymous_Access_Type
then
8374 Prev_Type
:= Designated_Type
(Prev_Type
);
8377 if Ekind
(New_Type
) = E_Anonymous_Access_Type
then
8378 New_Type
:= Designated_Type
(New_Type
);
8381 if Prev_Type
= New_Type
then
8384 elsif not Is_Class_Wide_Type
(New_Type
) then
8385 while Etype
(New_Type
) /= New_Type
loop
8386 New_Type
:= Etype
(New_Type
);
8387 if New_Type
= Prev_Type
then
8393 end Types_Correspond
;
8395 -- Start of processing for Is_Non_Overriding_Operation
8398 -- In the case where both operations are implicit derived subprograms
8399 -- then neither overrides the other. This can only occur in certain
8400 -- obscure cases (e.g., derivation from homographs created in a generic
8403 if Present
(Alias
(Prev_E
)) and then Present
(Alias
(New_E
)) then
8406 elsif Ekind
(Current_Scope
) = E_Package
8407 and then Is_Generic_Instance
(Current_Scope
)
8408 and then In_Private_Part
(Current_Scope
)
8409 and then Comes_From_Source
(New_E
)
8411 -- We examine the formals and result type of the inherited operation,
8412 -- to determine whether their type is derived from (the instance of)
8413 -- a generic type. The first such formal or result type is the one
8416 Formal
:= First_Formal
(Prev_E
);
8417 while Present
(Formal
) loop
8418 F_Typ
:= Base_Type
(Etype
(Formal
));
8420 if Ekind
(F_Typ
) = E_Anonymous_Access_Type
then
8421 F_Typ
:= Designated_Type
(F_Typ
);
8424 G_Typ
:= Get_Generic_Parent_Type
(F_Typ
);
8425 exit when Present
(G_Typ
);
8427 Next_Formal
(Formal
);
8430 if No
(G_Typ
) and then Ekind
(Prev_E
) = E_Function
then
8431 G_Typ
:= Get_Generic_Parent_Type
(Base_Type
(Etype
(Prev_E
)));
8438 -- If the generic type is a private type, then the original operation
8439 -- was not overriding in the generic, because there was no primitive
8440 -- operation to override.
8442 if Nkind
(Parent
(G_Typ
)) = N_Formal_Type_Declaration
8443 and then Nkind
(Formal_Type_Definition
(Parent
(G_Typ
))) =
8444 N_Formal_Private_Type_Definition
8448 -- The generic parent type is the ancestor of a formal derived
8449 -- type declaration. We need to check whether it has a primitive
8450 -- operation that should be overridden by New_E in the generic.
8454 P_Formal
: Entity_Id
;
8455 N_Formal
: Entity_Id
;
8459 Prim_Elt
: Elmt_Id
:= First_Elmt
(Primitive_Operations
(G_Typ
));
8462 while Present
(Prim_Elt
) loop
8463 P_Prim
:= Node
(Prim_Elt
);
8465 if Chars
(P_Prim
) = Chars
(New_E
)
8466 and then Ekind
(P_Prim
) = Ekind
(New_E
)
8468 P_Formal
:= First_Formal
(P_Prim
);
8469 N_Formal
:= First_Formal
(New_E
);
8470 while Present
(P_Formal
) and then Present
(N_Formal
) loop
8471 P_Typ
:= Etype
(P_Formal
);
8472 N_Typ
:= Etype
(N_Formal
);
8474 if not Types_Correspond
(P_Typ
, N_Typ
) then
8478 Next_Entity
(P_Formal
);
8479 Next_Entity
(N_Formal
);
8482 -- Found a matching primitive operation belonging to the
8483 -- formal ancestor type, so the new subprogram is
8487 and then No
(N_Formal
)
8488 and then (Ekind
(New_E
) /= E_Function
8491 (Etype
(P_Prim
), Etype
(New_E
)))
8497 Next_Elmt
(Prim_Elt
);
8500 -- If no match found, then the new subprogram does not override
8501 -- in the generic (nor in the instance).
8503 -- If the type in question is not abstract, and the subprogram
8504 -- is, this will be an error if the new operation is in the
8505 -- private part of the instance. Emit a warning now, which will
8506 -- make the subsequent error message easier to understand.
8508 if not Is_Abstract_Type
(F_Typ
)
8509 and then Is_Abstract_Subprogram
(Prev_E
)
8510 and then In_Private_Part
(Current_Scope
)
8512 Error_Msg_Node_2
:= F_Typ
;
8514 ("private operation& in generic unit does not override "
8515 & "any primitive operation of& (RM 12.3 (18))??",
8525 end Is_Non_Overriding_Operation
;
8527 -------------------------------------
8528 -- List_Inherited_Pre_Post_Aspects --
8529 -------------------------------------
8531 procedure List_Inherited_Pre_Post_Aspects
(E
: Entity_Id
) is
8533 if Opt
.List_Inherited_Aspects
8534 and then Is_Subprogram_Or_Generic_Subprogram
(E
)
8537 Inherited
: constant Subprogram_List
:= Inherited_Subprograms
(E
);
8541 for J
in Inherited
'Range loop
8542 P
:= Pre_Post_Conditions
(Contract
(Inherited
(J
)));
8543 while Present
(P
) loop
8544 Error_Msg_Sloc
:= Sloc
(P
);
8546 if Class_Present
(P
) and then not Split_PPC
(P
) then
8547 if Pragma_Name
(P
) = Name_Precondition
then
8548 Error_Msg_N
("info: & inherits `Pre''Class` aspect "
8551 Error_Msg_N
("info: & inherits `Post''Class` aspect "
8556 P
:= Next_Pragma
(P
);
8561 end List_Inherited_Pre_Post_Aspects
;
8563 ------------------------------
8564 -- Make_Inequality_Operator --
8565 ------------------------------
8567 -- S is the defining identifier of an equality operator. We build a
8568 -- subprogram declaration with the right signature. This operation is
8569 -- intrinsic, because it is always expanded as the negation of the
8570 -- call to the equality function.
8572 procedure Make_Inequality_Operator
(S
: Entity_Id
) is
8573 Loc
: constant Source_Ptr
:= Sloc
(S
);
8576 Op_Name
: Entity_Id
;
8578 FF
: constant Entity_Id
:= First_Formal
(S
);
8579 NF
: constant Entity_Id
:= Next_Formal
(FF
);
8582 -- Check that equality was properly defined, ignore call if not
8589 A
: constant Entity_Id
:=
8590 Make_Defining_Identifier
(Sloc
(FF
),
8591 Chars
=> Chars
(FF
));
8593 B
: constant Entity_Id
:=
8594 Make_Defining_Identifier
(Sloc
(NF
),
8595 Chars
=> Chars
(NF
));
8598 Op_Name
:= Make_Defining_Operator_Symbol
(Loc
, Name_Op_Ne
);
8600 Formals
:= New_List
(
8601 Make_Parameter_Specification
(Loc
,
8602 Defining_Identifier
=> A
,
8604 New_Occurrence_Of
(Etype
(First_Formal
(S
)),
8605 Sloc
(Etype
(First_Formal
(S
))))),
8607 Make_Parameter_Specification
(Loc
,
8608 Defining_Identifier
=> B
,
8610 New_Occurrence_Of
(Etype
(Next_Formal
(First_Formal
(S
))),
8611 Sloc
(Etype
(Next_Formal
(First_Formal
(S
)))))));
8614 Make_Subprogram_Declaration
(Loc
,
8616 Make_Function_Specification
(Loc
,
8617 Defining_Unit_Name
=> Op_Name
,
8618 Parameter_Specifications
=> Formals
,
8619 Result_Definition
=>
8620 New_Occurrence_Of
(Standard_Boolean
, Loc
)));
8622 -- Insert inequality right after equality if it is explicit or after
8623 -- the derived type when implicit. These entities are created only
8624 -- for visibility purposes, and eventually replaced in the course
8625 -- of expansion, so they do not need to be attached to the tree and
8626 -- seen by the back-end. Keeping them internal also avoids spurious
8627 -- freezing problems. The declaration is inserted in the tree for
8628 -- analysis, and removed afterwards. If the equality operator comes
8629 -- from an explicit declaration, attach the inequality immediately
8630 -- after. Else the equality is inherited from a derived type
8631 -- declaration, so insert inequality after that declaration.
8633 if No
(Alias
(S
)) then
8634 Insert_After
(Unit_Declaration_Node
(S
), Decl
);
8635 elsif Is_List_Member
(Parent
(S
)) then
8636 Insert_After
(Parent
(S
), Decl
);
8638 Insert_After
(Parent
(Etype
(First_Formal
(S
))), Decl
);
8641 Mark_Rewrite_Insertion
(Decl
);
8642 Set_Is_Intrinsic_Subprogram
(Op_Name
);
8645 Set_Has_Completion
(Op_Name
);
8646 Set_Corresponding_Equality
(Op_Name
, S
);
8647 Set_Is_Abstract_Subprogram
(Op_Name
, Is_Abstract_Subprogram
(S
));
8649 end Make_Inequality_Operator
;
8651 ----------------------
8652 -- May_Need_Actuals --
8653 ----------------------
8655 procedure May_Need_Actuals
(Fun
: Entity_Id
) is
8660 F
:= First_Formal
(Fun
);
8662 while Present
(F
) loop
8663 if No
(Default_Value
(F
)) then
8671 Set_Needs_No_Actuals
(Fun
, B
);
8672 end May_Need_Actuals
;
8674 ---------------------
8675 -- Mode_Conformant --
8676 ---------------------
8678 function Mode_Conformant
(New_Id
, Old_Id
: Entity_Id
) return Boolean is
8681 Check_Conformance
(New_Id
, Old_Id
, Mode_Conformant
, False, Result
);
8683 end Mode_Conformant
;
8685 ---------------------------
8686 -- New_Overloaded_Entity --
8687 ---------------------------
8689 procedure New_Overloaded_Entity
8691 Derived_Type
: Entity_Id
:= Empty
)
8693 Overridden_Subp
: Entity_Id
:= Empty
;
8694 -- Set if the current scope has an operation that is type-conformant
8695 -- with S, and becomes hidden by S.
8697 Is_Primitive_Subp
: Boolean;
8698 -- Set to True if the new subprogram is primitive
8701 -- Entity that S overrides
8703 Prev_Vis
: Entity_Id
:= Empty
;
8704 -- Predecessor of E in Homonym chain
8706 procedure Check_For_Primitive_Subprogram
8707 (Is_Primitive
: out Boolean;
8708 Is_Overriding
: Boolean := False);
8709 -- If the subprogram being analyzed is a primitive operation of the type
8710 -- of a formal or result, set the Has_Primitive_Operations flag on the
8711 -- type, and set Is_Primitive to True (otherwise set to False). Set the
8712 -- corresponding flag on the entity itself for later use.
8714 procedure Check_Synchronized_Overriding
8715 (Def_Id
: Entity_Id
;
8716 Overridden_Subp
: out Entity_Id
);
8717 -- First determine if Def_Id is an entry or a subprogram either defined
8718 -- in the scope of a task or protected type, or is a primitive of such
8719 -- a type. Check whether Def_Id overrides a subprogram of an interface
8720 -- implemented by the synchronized type, return the overridden entity
8723 function Is_Private_Declaration
(E
: Entity_Id
) return Boolean;
8724 -- Check that E is declared in the private part of the current package,
8725 -- or in the package body, where it may hide a previous declaration.
8726 -- We can't use In_Private_Part by itself because this flag is also
8727 -- set when freezing entities, so we must examine the place of the
8728 -- declaration in the tree, and recognize wrapper packages as well.
8730 function Is_Overriding_Alias
8732 New_E
: Entity_Id
) return Boolean;
8733 -- Check whether new subprogram and old subprogram are both inherited
8734 -- from subprograms that have distinct dispatch table entries. This can
8735 -- occur with derivations from instances with accidental homonyms. The
8736 -- function is conservative given that the converse is only true within
8737 -- instances that contain accidental overloadings.
8739 ------------------------------------
8740 -- Check_For_Primitive_Subprogram --
8741 ------------------------------------
8743 procedure Check_For_Primitive_Subprogram
8744 (Is_Primitive
: out Boolean;
8745 Is_Overriding
: Boolean := False)
8751 function Visible_Part_Type
(T
: Entity_Id
) return Boolean;
8752 -- Returns true if T is declared in the visible part of the current
8753 -- package scope; otherwise returns false. Assumes that T is declared
8756 procedure Check_Private_Overriding
(T
: Entity_Id
);
8757 -- Checks that if a primitive abstract subprogram of a visible
8758 -- abstract type is declared in a private part, then it must override
8759 -- an abstract subprogram declared in the visible part. Also checks
8760 -- that if a primitive function with a controlling result is declared
8761 -- in a private part, then it must override a function declared in
8762 -- the visible part.
8764 ------------------------------
8765 -- Check_Private_Overriding --
8766 ------------------------------
8768 procedure Check_Private_Overriding
(T
: Entity_Id
) is
8770 if Is_Package_Or_Generic_Package
(Current_Scope
)
8771 and then In_Private_Part
(Current_Scope
)
8772 and then Visible_Part_Type
(T
)
8773 and then not In_Instance
8775 if Is_Abstract_Type
(T
)
8776 and then Is_Abstract_Subprogram
(S
)
8777 and then (not Is_Overriding
8778 or else not Is_Abstract_Subprogram
(E
))
8780 Error_Msg_N
("abstract subprograms must be visible "
8781 & "(RM 3.9.3(10))!", S
);
8783 elsif Ekind
(S
) = E_Function
and then not Is_Overriding
then
8784 if Is_Tagged_Type
(T
) and then T
= Base_Type
(Etype
(S
)) then
8785 Error_Msg_N
("private function with tagged result must"
8786 & " override visible-part function", S
);
8787 Error_Msg_N
("\move subprogram to the visible part"
8788 & " (RM 3.9.3(10))", S
);
8790 -- AI05-0073: extend this test to the case of a function
8791 -- with a controlling access result.
8793 elsif Ekind
(Etype
(S
)) = E_Anonymous_Access_Type
8794 and then Is_Tagged_Type
(Designated_Type
(Etype
(S
)))
8796 not Is_Class_Wide_Type
(Designated_Type
(Etype
(S
)))
8797 and then Ada_Version
>= Ada_2012
8800 ("private function with controlling access result "
8801 & "must override visible-part function", S
);
8803 ("\move subprogram to the visible part"
8804 & " (RM 3.9.3(10))", S
);
8808 end Check_Private_Overriding
;
8810 -----------------------
8811 -- Visible_Part_Type --
8812 -----------------------
8814 function Visible_Part_Type
(T
: Entity_Id
) return Boolean is
8815 P
: constant Node_Id
:= Unit_Declaration_Node
(Scope
(T
));
8819 -- If the entity is a private type, then it must be declared in a
8822 if Ekind
(T
) in Private_Kind
then
8826 -- Otherwise, we traverse the visible part looking for its
8827 -- corresponding declaration. We cannot use the declaration
8828 -- node directly because in the private part the entity of a
8829 -- private type is the one in the full view, which does not
8830 -- indicate that it is the completion of something visible.
8832 N
:= First
(Visible_Declarations
(Specification
(P
)));
8833 while Present
(N
) loop
8834 if Nkind
(N
) = N_Full_Type_Declaration
8835 and then Present
(Defining_Identifier
(N
))
8836 and then T
= Defining_Identifier
(N
)
8840 elsif Nkind_In
(N
, N_Private_Type_Declaration
,
8841 N_Private_Extension_Declaration
)
8842 and then Present
(Defining_Identifier
(N
))
8843 and then T
= Full_View
(Defining_Identifier
(N
))
8852 end Visible_Part_Type
;
8854 -- Start of processing for Check_For_Primitive_Subprogram
8857 Is_Primitive
:= False;
8859 if not Comes_From_Source
(S
) then
8862 -- If subprogram is at library level, it is not primitive operation
8864 elsif Current_Scope
= Standard_Standard
then
8867 elsif (Is_Package_Or_Generic_Package
(Current_Scope
)
8868 and then not In_Package_Body
(Current_Scope
))
8869 or else Is_Overriding
8871 -- For function, check return type
8873 if Ekind
(S
) = E_Function
then
8874 if Ekind
(Etype
(S
)) = E_Anonymous_Access_Type
then
8875 F_Typ
:= Designated_Type
(Etype
(S
));
8880 B_Typ
:= Base_Type
(F_Typ
);
8882 if Scope
(B_Typ
) = Current_Scope
8883 and then not Is_Class_Wide_Type
(B_Typ
)
8884 and then not Is_Generic_Type
(B_Typ
)
8886 Is_Primitive
:= True;
8887 Set_Has_Primitive_Operations
(B_Typ
);
8888 Set_Is_Primitive
(S
);
8889 Check_Private_Overriding
(B_Typ
);
8893 -- For all subprograms, check formals
8895 Formal
:= First_Formal
(S
);
8896 while Present
(Formal
) loop
8897 if Ekind
(Etype
(Formal
)) = E_Anonymous_Access_Type
then
8898 F_Typ
:= Designated_Type
(Etype
(Formal
));
8900 F_Typ
:= Etype
(Formal
);
8903 B_Typ
:= Base_Type
(F_Typ
);
8905 if Ekind
(B_Typ
) = E_Access_Subtype
then
8906 B_Typ
:= Base_Type
(B_Typ
);
8909 if Scope
(B_Typ
) = Current_Scope
8910 and then not Is_Class_Wide_Type
(B_Typ
)
8911 and then not Is_Generic_Type
(B_Typ
)
8913 Is_Primitive
:= True;
8914 Set_Is_Primitive
(S
);
8915 Set_Has_Primitive_Operations
(B_Typ
);
8916 Check_Private_Overriding
(B_Typ
);
8919 Next_Formal
(Formal
);
8922 -- Special case: An equality function can be redefined for a type
8923 -- occurring in a declarative part, and won't otherwise be treated as
8924 -- a primitive because it doesn't occur in a package spec and doesn't
8925 -- override an inherited subprogram. It's important that we mark it
8926 -- primitive so it can be returned by Collect_Primitive_Operations
8927 -- and be used in composing the equality operation of later types
8928 -- that have a component of the type.
8930 elsif Chars
(S
) = Name_Op_Eq
8931 and then Etype
(S
) = Standard_Boolean
8933 B_Typ
:= Base_Type
(Etype
(First_Formal
(S
)));
8935 if Scope
(B_Typ
) = Current_Scope
8937 Base_Type
(Etype
(Next_Formal
(First_Formal
(S
)))) = B_Typ
8938 and then not Is_Limited_Type
(B_Typ
)
8940 Is_Primitive
:= True;
8941 Set_Is_Primitive
(S
);
8942 Set_Has_Primitive_Operations
(B_Typ
);
8943 Check_Private_Overriding
(B_Typ
);
8946 end Check_For_Primitive_Subprogram
;
8948 -----------------------------------
8949 -- Check_Synchronized_Overriding --
8950 -----------------------------------
8952 procedure Check_Synchronized_Overriding
8953 (Def_Id
: Entity_Id
;
8954 Overridden_Subp
: out Entity_Id
)
8956 Ifaces_List
: Elist_Id
;
8960 function Matches_Prefixed_View_Profile
8961 (Prim_Params
: List_Id
;
8962 Iface_Params
: List_Id
) return Boolean;
8963 -- Determine whether a subprogram's parameter profile Prim_Params
8964 -- matches that of a potentially overridden interface subprogram
8965 -- Iface_Params. Also determine if the type of first parameter of
8966 -- Iface_Params is an implemented interface.
8968 -----------------------------------
8969 -- Matches_Prefixed_View_Profile --
8970 -----------------------------------
8972 function Matches_Prefixed_View_Profile
8973 (Prim_Params
: List_Id
;
8974 Iface_Params
: List_Id
) return Boolean
8976 Iface_Id
: Entity_Id
;
8977 Iface_Param
: Node_Id
;
8978 Iface_Typ
: Entity_Id
;
8979 Prim_Id
: Entity_Id
;
8980 Prim_Param
: Node_Id
;
8981 Prim_Typ
: Entity_Id
;
8983 function Is_Implemented
8984 (Ifaces_List
: Elist_Id
;
8985 Iface
: Entity_Id
) return Boolean;
8986 -- Determine if Iface is implemented by the current task or
8989 --------------------
8990 -- Is_Implemented --
8991 --------------------
8993 function Is_Implemented
8994 (Ifaces_List
: Elist_Id
;
8995 Iface
: Entity_Id
) return Boolean
8997 Iface_Elmt
: Elmt_Id
;
9000 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
9001 while Present
(Iface_Elmt
) loop
9002 if Node
(Iface_Elmt
) = Iface
then
9006 Next_Elmt
(Iface_Elmt
);
9012 -- Start of processing for Matches_Prefixed_View_Profile
9015 Iface_Param
:= First
(Iface_Params
);
9016 Iface_Typ
:= Etype
(Defining_Identifier
(Iface_Param
));
9018 if Is_Access_Type
(Iface_Typ
) then
9019 Iface_Typ
:= Designated_Type
(Iface_Typ
);
9022 Prim_Param
:= First
(Prim_Params
);
9024 -- The first parameter of the potentially overridden subprogram
9025 -- must be an interface implemented by Prim.
9027 if not Is_Interface
(Iface_Typ
)
9028 or else not Is_Implemented
(Ifaces_List
, Iface_Typ
)
9033 -- The checks on the object parameters are done, move onto the
9034 -- rest of the parameters.
9036 if not In_Scope
then
9037 Prim_Param
:= Next
(Prim_Param
);
9040 Iface_Param
:= Next
(Iface_Param
);
9041 while Present
(Iface_Param
) and then Present
(Prim_Param
) loop
9042 Iface_Id
:= Defining_Identifier
(Iface_Param
);
9043 Iface_Typ
:= Find_Parameter_Type
(Iface_Param
);
9045 Prim_Id
:= Defining_Identifier
(Prim_Param
);
9046 Prim_Typ
:= Find_Parameter_Type
(Prim_Param
);
9048 if Ekind
(Iface_Typ
) = E_Anonymous_Access_Type
9049 and then Ekind
(Prim_Typ
) = E_Anonymous_Access_Type
9050 and then Is_Concurrent_Type
(Designated_Type
(Prim_Typ
))
9052 Iface_Typ
:= Designated_Type
(Iface_Typ
);
9053 Prim_Typ
:= Designated_Type
(Prim_Typ
);
9056 -- Case of multiple interface types inside a parameter profile
9058 -- (Obj_Param : in out Iface; ...; Param : Iface)
9060 -- If the interface type is implemented, then the matching type
9061 -- in the primitive should be the implementing record type.
9063 if Ekind
(Iface_Typ
) = E_Record_Type
9064 and then Is_Interface
(Iface_Typ
)
9065 and then Is_Implemented
(Ifaces_List
, Iface_Typ
)
9067 if Prim_Typ
/= Typ
then
9071 -- The two parameters must be both mode and subtype conformant
9073 elsif Ekind
(Iface_Id
) /= Ekind
(Prim_Id
)
9075 Conforming_Types
(Iface_Typ
, Prim_Typ
, Subtype_Conformant
)
9084 -- One of the two lists contains more parameters than the other
9086 if Present
(Iface_Param
) or else Present
(Prim_Param
) then
9091 end Matches_Prefixed_View_Profile
;
9093 -- Start of processing for Check_Synchronized_Overriding
9096 Overridden_Subp
:= Empty
;
9098 -- Def_Id must be an entry or a subprogram. We should skip predefined
9099 -- primitives internally generated by the frontend; however at this
9100 -- stage predefined primitives are still not fully decorated. As a
9101 -- minor optimization we skip here internally generated subprograms.
9103 if (Ekind
(Def_Id
) /= E_Entry
9104 and then Ekind
(Def_Id
) /= E_Function
9105 and then Ekind
(Def_Id
) /= E_Procedure
)
9106 or else not Comes_From_Source
(Def_Id
)
9111 -- Search for the concurrent declaration since it contains the list
9112 -- of all implemented interfaces. In this case, the subprogram is
9113 -- declared within the scope of a protected or a task type.
9115 if Present
(Scope
(Def_Id
))
9116 and then Is_Concurrent_Type
(Scope
(Def_Id
))
9117 and then not Is_Generic_Actual_Type
(Scope
(Def_Id
))
9119 Typ
:= Scope
(Def_Id
);
9122 -- The enclosing scope is not a synchronized type and the subprogram
9125 elsif No
(First_Formal
(Def_Id
)) then
9128 -- The subprogram has formals and hence it may be a primitive of a
9132 Typ
:= Etype
(First_Formal
(Def_Id
));
9134 if Is_Access_Type
(Typ
) then
9135 Typ
:= Directly_Designated_Type
(Typ
);
9138 if Is_Concurrent_Type
(Typ
)
9139 and then not Is_Generic_Actual_Type
(Typ
)
9143 -- This case occurs when the concurrent type is declared within
9144 -- a generic unit. As a result the corresponding record has been
9145 -- built and used as the type of the first formal, we just have
9146 -- to retrieve the corresponding concurrent type.
9148 elsif Is_Concurrent_Record_Type
(Typ
)
9149 and then not Is_Class_Wide_Type
(Typ
)
9150 and then Present
(Corresponding_Concurrent_Type
(Typ
))
9152 Typ
:= Corresponding_Concurrent_Type
(Typ
);
9160 -- There is no overriding to check if is an inherited operation in a
9161 -- type derivation on for a generic actual.
9163 Collect_Interfaces
(Typ
, Ifaces_List
);
9165 if Is_Empty_Elmt_List
(Ifaces_List
) then
9169 -- Determine whether entry or subprogram Def_Id overrides a primitive
9170 -- operation that belongs to one of the interfaces in Ifaces_List.
9173 Candidate
: Entity_Id
:= Empty
;
9174 Hom
: Entity_Id
:= Empty
;
9175 Iface_Typ
: Entity_Id
;
9176 Subp
: Entity_Id
:= Empty
;
9179 -- Traverse the homonym chain, looking for a potentially
9180 -- overridden subprogram that belongs to an implemented
9183 Hom
:= Current_Entity_In_Scope
(Def_Id
);
9184 while Present
(Hom
) loop
9188 or else not Is_Overloadable
(Subp
)
9189 or else not Is_Primitive
(Subp
)
9190 or else not Is_Dispatching_Operation
(Subp
)
9191 or else not Present
(Find_Dispatching_Type
(Subp
))
9192 or else not Is_Interface
(Find_Dispatching_Type
(Subp
))
9196 -- Entries and procedures can override abstract or null
9197 -- interface procedures.
9199 elsif (Ekind
(Def_Id
) = E_Procedure
9200 or else Ekind
(Def_Id
) = E_Entry
)
9201 and then Ekind
(Subp
) = E_Procedure
9202 and then Matches_Prefixed_View_Profile
9203 (Parameter_Specifications
(Parent
(Def_Id
)),
9204 Parameter_Specifications
(Parent
(Subp
)))
9208 -- For an overridden subprogram Subp, check whether the mode
9209 -- of its first parameter is correct depending on the kind
9210 -- of synchronized type.
9213 Formal
: constant Node_Id
:= First_Formal
(Candidate
);
9216 -- In order for an entry or a protected procedure to
9217 -- override, the first parameter of the overridden
9218 -- routine must be of mode "out", "in out" or
9219 -- access-to-variable.
9221 if Ekind_In
(Candidate
, E_Entry
, E_Procedure
)
9222 and then Is_Protected_Type
(Typ
)
9223 and then Ekind
(Formal
) /= E_In_Out_Parameter
9224 and then Ekind
(Formal
) /= E_Out_Parameter
9225 and then Nkind
(Parameter_Type
(Parent
(Formal
))) /=
9230 -- All other cases are OK since a task entry or routine
9231 -- does not have a restriction on the mode of the first
9232 -- parameter of the overridden interface routine.
9235 Overridden_Subp
:= Candidate
;
9240 -- Functions can override abstract interface functions
9242 elsif Ekind
(Def_Id
) = E_Function
9243 and then Ekind
(Subp
) = E_Function
9244 and then Matches_Prefixed_View_Profile
9245 (Parameter_Specifications
(Parent
(Def_Id
)),
9246 Parameter_Specifications
(Parent
(Subp
)))
9247 and then Etype
(Result_Definition
(Parent
(Def_Id
))) =
9248 Etype
(Result_Definition
(Parent
(Subp
)))
9250 Overridden_Subp
:= Subp
;
9254 Hom
:= Homonym
(Hom
);
9257 -- After examining all candidates for overriding, we are left with
9258 -- the best match which is a mode incompatible interface routine.
9259 -- Do not emit an error if the Expander is active since this error
9260 -- will be detected later on after all concurrent types are
9261 -- expanded and all wrappers are built. This check is meant for
9262 -- spec-only compilations.
9264 if Present
(Candidate
) and then not Expander_Active
then
9266 Find_Parameter_Type
(Parent
(First_Formal
(Candidate
)));
9268 -- Def_Id is primitive of a protected type, declared inside the
9269 -- type, and the candidate is primitive of a limited or
9270 -- synchronized interface.
9273 and then Is_Protected_Type
(Typ
)
9275 (Is_Limited_Interface
(Iface_Typ
)
9276 or else Is_Protected_Interface
(Iface_Typ
)
9277 or else Is_Synchronized_Interface
(Iface_Typ
)
9278 or else Is_Task_Interface
(Iface_Typ
))
9280 Error_Msg_PT
(Parent
(Typ
), Candidate
);
9284 Overridden_Subp
:= Candidate
;
9287 end Check_Synchronized_Overriding
;
9289 ----------------------------
9290 -- Is_Private_Declaration --
9291 ----------------------------
9293 function Is_Private_Declaration
(E
: Entity_Id
) return Boolean is
9294 Priv_Decls
: List_Id
;
9295 Decl
: constant Node_Id
:= Unit_Declaration_Node
(E
);
9298 if Is_Package_Or_Generic_Package
(Current_Scope
)
9299 and then In_Private_Part
(Current_Scope
)
9302 Private_Declarations
(Package_Specification
(Current_Scope
));
9304 return In_Package_Body
(Current_Scope
)
9306 (Is_List_Member
(Decl
)
9307 and then List_Containing
(Decl
) = Priv_Decls
)
9308 or else (Nkind
(Parent
(Decl
)) = N_Package_Specification
9311 (Defining_Entity
(Parent
(Decl
)))
9312 and then List_Containing
(Parent
(Parent
(Decl
))) =
9317 end Is_Private_Declaration
;
9319 --------------------------
9320 -- Is_Overriding_Alias --
9321 --------------------------
9323 function Is_Overriding_Alias
9325 New_E
: Entity_Id
) return Boolean
9327 AO
: constant Entity_Id
:= Alias
(Old_E
);
9328 AN
: constant Entity_Id
:= Alias
(New_E
);
9330 return Scope
(AO
) /= Scope
(AN
)
9331 or else No
(DTC_Entity
(AO
))
9332 or else No
(DTC_Entity
(AN
))
9333 or else DT_Position
(AO
) = DT_Position
(AN
);
9334 end Is_Overriding_Alias
;
9336 -- Start of processing for New_Overloaded_Entity
9339 -- We need to look for an entity that S may override. This must be a
9340 -- homonym in the current scope, so we look for the first homonym of
9341 -- S in the current scope as the starting point for the search.
9343 E
:= Current_Entity_In_Scope
(S
);
9345 -- Ada 2005 (AI-251): Derivation of abstract interface primitives.
9346 -- They are directly added to the list of primitive operations of
9347 -- Derived_Type, unless this is a rederivation in the private part
9348 -- of an operation that was already derived in the visible part of
9349 -- the current package.
9351 if Ada_Version
>= Ada_2005
9352 and then Present
(Derived_Type
)
9353 and then Present
(Alias
(S
))
9354 and then Is_Dispatching_Operation
(Alias
(S
))
9355 and then Present
(Find_Dispatching_Type
(Alias
(S
)))
9356 and then Is_Interface
(Find_Dispatching_Type
(Alias
(S
)))
9358 -- For private types, when the full-view is processed we propagate to
9359 -- the full view the non-overridden entities whose attribute "alias"
9360 -- references an interface primitive. These entities were added by
9361 -- Derive_Subprograms to ensure that interface primitives are
9364 -- Inside_Freeze_Actions is non zero when S corresponds with an
9365 -- internal entity that links an interface primitive with its
9366 -- covering primitive through attribute Interface_Alias (see
9367 -- Add_Internal_Interface_Entities).
9369 if Inside_Freezing_Actions
= 0
9370 and then Is_Package_Or_Generic_Package
(Current_Scope
)
9371 and then In_Private_Part
(Current_Scope
)
9372 and then Nkind
(Parent
(E
)) = N_Private_Extension_Declaration
9373 and then Nkind
(Parent
(S
)) = N_Full_Type_Declaration
9374 and then Full_View
(Defining_Identifier
(Parent
(E
)))
9375 = Defining_Identifier
(Parent
(S
))
9376 and then Alias
(E
) = Alias
(S
)
9378 Check_Operation_From_Private_View
(S
, E
);
9379 Set_Is_Dispatching_Operation
(S
);
9384 Enter_Overloaded_Entity
(S
);
9385 Check_Dispatching_Operation
(S
, Empty
);
9386 Check_For_Primitive_Subprogram
(Is_Primitive_Subp
);
9392 -- If there is no homonym then this is definitely not overriding
9395 Enter_Overloaded_Entity
(S
);
9396 Check_Dispatching_Operation
(S
, Empty
);
9397 Check_For_Primitive_Subprogram
(Is_Primitive_Subp
);
9399 -- If subprogram has an explicit declaration, check whether it has an
9400 -- overriding indicator.
9402 if Comes_From_Source
(S
) then
9403 Check_Synchronized_Overriding
(S
, Overridden_Subp
);
9405 -- (Ada 2012: AI05-0125-1): If S is a dispatching operation then
9406 -- it may have overridden some hidden inherited primitive. Update
9407 -- Overridden_Subp to avoid spurious errors when checking the
9408 -- overriding indicator.
9410 if Ada_Version
>= Ada_2012
9411 and then No
(Overridden_Subp
)
9412 and then Is_Dispatching_Operation
(S
)
9413 and then Present
(Overridden_Operation
(S
))
9415 Overridden_Subp
:= Overridden_Operation
(S
);
9418 Check_Overriding_Indicator
9419 (S
, Overridden_Subp
, Is_Primitive
=> Is_Primitive_Subp
);
9422 -- If there is a homonym that is not overloadable, then we have an
9423 -- error, except for the special cases checked explicitly below.
9425 elsif not Is_Overloadable
(E
) then
9427 -- Check for spurious conflict produced by a subprogram that has the
9428 -- same name as that of the enclosing generic package. The conflict
9429 -- occurs within an instance, between the subprogram and the renaming
9430 -- declaration for the package. After the subprogram, the package
9431 -- renaming declaration becomes hidden.
9433 if Ekind
(E
) = E_Package
9434 and then Present
(Renamed_Object
(E
))
9435 and then Renamed_Object
(E
) = Current_Scope
9436 and then Nkind
(Parent
(Renamed_Object
(E
))) =
9437 N_Package_Specification
9438 and then Present
(Generic_Parent
(Parent
(Renamed_Object
(E
))))
9441 Set_Is_Immediately_Visible
(E
, False);
9442 Enter_Overloaded_Entity
(S
);
9443 Set_Homonym
(S
, Homonym
(E
));
9444 Check_Dispatching_Operation
(S
, Empty
);
9445 Check_Overriding_Indicator
(S
, Empty
, Is_Primitive
=> False);
9447 -- If the subprogram is implicit it is hidden by the previous
9448 -- declaration. However if it is dispatching, it must appear in the
9449 -- dispatch table anyway, because it can be dispatched to even if it
9450 -- cannot be called directly.
9452 elsif Present
(Alias
(S
)) and then not Comes_From_Source
(S
) then
9453 Set_Scope
(S
, Current_Scope
);
9455 if Is_Dispatching_Operation
(Alias
(S
)) then
9456 Check_Dispatching_Operation
(S
, Empty
);
9462 Error_Msg_Sloc
:= Sloc
(E
);
9464 -- Generate message, with useful additional warning if in generic
9466 if Is_Generic_Unit
(E
) then
9467 Error_Msg_N
("previous generic unit cannot be overloaded", S
);
9468 Error_Msg_N
("\& conflicts with declaration#", S
);
9470 Error_Msg_N
("& conflicts with declaration#", S
);
9476 -- E exists and is overloadable
9479 Check_Synchronized_Overriding
(S
, Overridden_Subp
);
9481 -- Loop through E and its homonyms to determine if any of them is
9482 -- the candidate for overriding by S.
9484 while Present
(E
) loop
9486 -- Definitely not interesting if not in the current scope
9488 if Scope
(E
) /= Current_Scope
then
9491 -- A function can overload the name of an abstract state. The
9492 -- state can be viewed as a function with a profile that cannot
9493 -- be matched by anything.
9495 elsif Ekind
(S
) = E_Function
9496 and then Ekind
(E
) = E_Abstract_State
9498 Enter_Overloaded_Entity
(S
);
9501 -- Ada 2012 (AI05-0165): For internally generated bodies of null
9502 -- procedures locate the internally generated spec. We enforce
9503 -- mode conformance since a tagged type may inherit from
9504 -- interfaces several null primitives which differ only in
9505 -- the mode of the formals.
9507 elsif not Comes_From_Source
(S
)
9508 and then Is_Null_Procedure
(S
)
9509 and then not Mode_Conformant
(E
, S
)
9513 -- Check if we have type conformance
9515 elsif Type_Conformant
(E
, S
) then
9517 -- If the old and new entities have the same profile and one
9518 -- is not the body of the other, then this is an error, unless
9519 -- one of them is implicitly declared.
9521 -- There are some cases when both can be implicit, for example
9522 -- when both a literal and a function that overrides it are
9523 -- inherited in a derivation, or when an inherited operation
9524 -- of a tagged full type overrides the inherited operation of
9525 -- a private extension. Ada 83 had a special rule for the
9526 -- literal case. In Ada 95, the later implicit operation hides
9527 -- the former, and the literal is always the former. In the
9528 -- odd case where both are derived operations declared at the
9529 -- same point, both operations should be declared, and in that
9530 -- case we bypass the following test and proceed to the next
9531 -- part. This can only occur for certain obscure cases in
9532 -- instances, when an operation on a type derived from a formal
9533 -- private type does not override a homograph inherited from
9534 -- the actual. In subsequent derivations of such a type, the
9535 -- DT positions of these operations remain distinct, if they
9538 if Present
(Alias
(S
))
9539 and then (No
(Alias
(E
))
9540 or else Comes_From_Source
(E
)
9541 or else Is_Abstract_Subprogram
(S
)
9543 (Is_Dispatching_Operation
(E
)
9544 and then Is_Overriding_Alias
(E
, S
)))
9545 and then Ekind
(E
) /= E_Enumeration_Literal
9547 -- When an derived operation is overloaded it may be due to
9548 -- the fact that the full view of a private extension
9549 -- re-inherits. It has to be dealt with.
9551 if Is_Package_Or_Generic_Package
(Current_Scope
)
9552 and then In_Private_Part
(Current_Scope
)
9554 Check_Operation_From_Private_View
(S
, E
);
9557 -- In any case the implicit operation remains hidden by the
9558 -- existing declaration, which is overriding. Indicate that
9559 -- E overrides the operation from which S is inherited.
9561 if Present
(Alias
(S
)) then
9562 Set_Overridden_Operation
(E
, Alias
(S
));
9563 Inherit_Subprogram_Contract
(E
, Alias
(S
));
9566 Set_Overridden_Operation
(E
, S
);
9567 Inherit_Subprogram_Contract
(E
, S
);
9570 if Comes_From_Source
(E
) then
9571 Check_Overriding_Indicator
(E
, S
, Is_Primitive
=> False);
9576 -- Within an instance, the renaming declarations for actual
9577 -- subprograms may become ambiguous, but they do not hide each
9580 elsif Ekind
(E
) /= E_Entry
9581 and then not Comes_From_Source
(E
)
9582 and then not Is_Generic_Instance
(E
)
9583 and then (Present
(Alias
(E
))
9584 or else Is_Intrinsic_Subprogram
(E
))
9585 and then (not In_Instance
9586 or else No
(Parent
(E
))
9587 or else Nkind
(Unit_Declaration_Node
(E
)) /=
9588 N_Subprogram_Renaming_Declaration
)
9590 -- A subprogram child unit is not allowed to override an
9591 -- inherited subprogram (10.1.1(20)).
9593 if Is_Child_Unit
(S
) then
9595 ("child unit overrides inherited subprogram in parent",
9600 if Is_Non_Overriding_Operation
(E
, S
) then
9601 Enter_Overloaded_Entity
(S
);
9603 if No
(Derived_Type
)
9604 or else Is_Tagged_Type
(Derived_Type
)
9606 Check_Dispatching_Operation
(S
, Empty
);
9612 -- E is a derived operation or an internal operator which
9613 -- is being overridden. Remove E from further visibility.
9614 -- Furthermore, if E is a dispatching operation, it must be
9615 -- replaced in the list of primitive operations of its type
9616 -- (see Override_Dispatching_Operation).
9618 Overridden_Subp
:= E
;
9624 Prev
:= First_Entity
(Current_Scope
);
9625 while Present
(Prev
) and then Next_Entity
(Prev
) /= E
loop
9629 -- It is possible for E to be in the current scope and
9630 -- yet not in the entity chain. This can only occur in a
9631 -- generic context where E is an implicit concatenation
9632 -- in the formal part, because in a generic body the
9633 -- entity chain starts with the formals.
9636 (Present
(Prev
) or else Chars
(E
) = Name_Op_Concat
);
9638 -- E must be removed both from the entity_list of the
9639 -- current scope, and from the visibility chain
9641 if Debug_Flag_E
then
9642 Write_Str
("Override implicit operation ");
9643 Write_Int
(Int
(E
));
9647 -- If E is a predefined concatenation, it stands for four
9648 -- different operations. As a result, a single explicit
9649 -- declaration does not hide it. In a possible ambiguous
9650 -- situation, Disambiguate chooses the user-defined op,
9651 -- so it is correct to retain the previous internal one.
9653 if Chars
(E
) /= Name_Op_Concat
9654 or else Ekind
(E
) /= E_Operator
9656 -- For nondispatching derived operations that are
9657 -- overridden by a subprogram declared in the private
9658 -- part of a package, we retain the derived subprogram
9659 -- but mark it as not immediately visible. If the
9660 -- derived operation was declared in the visible part
9661 -- then this ensures that it will still be visible
9662 -- outside the package with the proper signature
9663 -- (calls from outside must also be directed to this
9664 -- version rather than the overriding one, unlike the
9665 -- dispatching case). Calls from inside the package
9666 -- will still resolve to the overriding subprogram
9667 -- since the derived one is marked as not visible
9668 -- within the package.
9670 -- If the private operation is dispatching, we achieve
9671 -- the overriding by keeping the implicit operation
9672 -- but setting its alias to be the overriding one. In
9673 -- this fashion the proper body is executed in all
9674 -- cases, but the original signature is used outside
9677 -- If the overriding is not in the private part, we
9678 -- remove the implicit operation altogether.
9680 if Is_Private_Declaration
(S
) then
9681 if not Is_Dispatching_Operation
(E
) then
9682 Set_Is_Immediately_Visible
(E
, False);
9684 -- Work done in Override_Dispatching_Operation,
9685 -- so nothing else needs to be done here.
9691 -- Find predecessor of E in Homonym chain
9693 if E
= Current_Entity
(E
) then
9696 Prev_Vis
:= Current_Entity
(E
);
9697 while Homonym
(Prev_Vis
) /= E
loop
9698 Prev_Vis
:= Homonym
(Prev_Vis
);
9702 if Prev_Vis
/= Empty
then
9704 -- Skip E in the visibility chain
9706 Set_Homonym
(Prev_Vis
, Homonym
(E
));
9709 Set_Name_Entity_Id
(Chars
(E
), Homonym
(E
));
9712 Set_Next_Entity
(Prev
, Next_Entity
(E
));
9714 if No
(Next_Entity
(Prev
)) then
9715 Set_Last_Entity
(Current_Scope
, Prev
);
9720 Enter_Overloaded_Entity
(S
);
9722 -- For entities generated by Derive_Subprograms the
9723 -- overridden operation is the inherited primitive
9724 -- (which is available through the attribute alias).
9726 if not (Comes_From_Source
(E
))
9727 and then Is_Dispatching_Operation
(E
)
9728 and then Find_Dispatching_Type
(E
) =
9729 Find_Dispatching_Type
(S
)
9730 and then Present
(Alias
(E
))
9731 and then Comes_From_Source
(Alias
(E
))
9733 Set_Overridden_Operation
(S
, Alias
(E
));
9734 Inherit_Subprogram_Contract
(S
, Alias
(E
));
9736 -- Normal case of setting entity as overridden
9738 -- Note: Static_Initialization and Overridden_Operation
9739 -- attributes use the same field in subprogram entities.
9740 -- Static_Initialization is only defined for internal
9741 -- initialization procedures, where Overridden_Operation
9742 -- is irrelevant. Therefore the setting of this attribute
9743 -- must check whether the target is an init_proc.
9745 elsif not Is_Init_Proc
(S
) then
9746 Set_Overridden_Operation
(S
, E
);
9747 Inherit_Subprogram_Contract
(S
, E
);
9750 Check_Overriding_Indicator
(S
, E
, Is_Primitive
=> True);
9752 -- If S is a user-defined subprogram or a null procedure
9753 -- expanded to override an inherited null procedure, or a
9754 -- predefined dispatching primitive then indicate that E
9755 -- overrides the operation from which S is inherited.
9757 if Comes_From_Source
(S
)
9759 (Present
(Parent
(S
))
9761 Nkind
(Parent
(S
)) = N_Procedure_Specification
9763 Null_Present
(Parent
(S
)))
9765 (Present
(Alias
(E
))
9767 Is_Predefined_Dispatching_Operation
(Alias
(E
)))
9769 if Present
(Alias
(E
)) then
9770 Set_Overridden_Operation
(S
, Alias
(E
));
9771 Inherit_Subprogram_Contract
(S
, Alias
(E
));
9775 if Is_Dispatching_Operation
(E
) then
9777 -- An overriding dispatching subprogram inherits the
9778 -- convention of the overridden subprogram (AI-117).
9780 Set_Convention
(S
, Convention
(E
));
9781 Check_Dispatching_Operation
(S
, E
);
9784 Check_Dispatching_Operation
(S
, Empty
);
9787 Check_For_Primitive_Subprogram
9788 (Is_Primitive_Subp
, Is_Overriding
=> True);
9789 goto Check_Inequality
;
9792 -- Apparent redeclarations in instances can occur when two
9793 -- formal types get the same actual type. The subprograms in
9794 -- in the instance are legal, even if not callable from the
9795 -- outside. Calls from within are disambiguated elsewhere.
9796 -- For dispatching operations in the visible part, the usual
9797 -- rules apply, and operations with the same profile are not
9800 elsif (In_Instance_Visible_Part
9801 and then not Is_Dispatching_Operation
(E
))
9802 or else In_Instance_Not_Visible
9806 -- Here we have a real error (identical profile)
9809 Error_Msg_Sloc
:= Sloc
(E
);
9811 -- Avoid cascaded errors if the entity appears in
9812 -- subsequent calls.
9814 Set_Scope
(S
, Current_Scope
);
9816 -- Generate error, with extra useful warning for the case
9817 -- of a generic instance with no completion.
9819 if Is_Generic_Instance
(S
)
9820 and then not Has_Completion
(E
)
9823 ("instantiation cannot provide body for&", S
);
9824 Error_Msg_N
("\& conflicts with declaration#", S
);
9826 Error_Msg_N
("& conflicts with declaration#", S
);
9833 -- If one subprogram has an access parameter and the other
9834 -- a parameter of an access type, calls to either might be
9835 -- ambiguous. Verify that parameters match except for the
9836 -- access parameter.
9838 if May_Hide_Profile
then
9844 F1
:= First_Formal
(S
);
9845 F2
:= First_Formal
(E
);
9846 while Present
(F1
) and then Present
(F2
) loop
9847 if Is_Access_Type
(Etype
(F1
)) then
9848 if not Is_Access_Type
(Etype
(F2
))
9849 or else not Conforming_Types
9850 (Designated_Type
(Etype
(F1
)),
9851 Designated_Type
(Etype
(F2
)),
9854 May_Hide_Profile
:= False;
9858 not Conforming_Types
9859 (Etype
(F1
), Etype
(F2
), Type_Conformant
)
9861 May_Hide_Profile
:= False;
9872 Error_Msg_NE
("calls to& may be ambiguous??", S
, S
);
9881 -- On exit, we know that S is a new entity
9883 Enter_Overloaded_Entity
(S
);
9884 Check_For_Primitive_Subprogram
(Is_Primitive_Subp
);
9885 Check_Overriding_Indicator
9886 (S
, Overridden_Subp
, Is_Primitive
=> Is_Primitive_Subp
);
9888 -- Overloading is not allowed in SPARK, except for operators
9890 if Nkind
(S
) /= N_Defining_Operator_Symbol
then
9891 Error_Msg_Sloc
:= Sloc
(Homonym
(S
));
9892 Check_SPARK_05_Restriction
9893 ("overloading not allowed with entity#", S
);
9896 -- If S is a derived operation for an untagged type then by
9897 -- definition it's not a dispatching operation (even if the parent
9898 -- operation was dispatching), so Check_Dispatching_Operation is not
9899 -- called in that case.
9901 if No
(Derived_Type
)
9902 or else Is_Tagged_Type
(Derived_Type
)
9904 Check_Dispatching_Operation
(S
, Empty
);
9908 -- If this is a user-defined equality operator that is not a derived
9909 -- subprogram, create the corresponding inequality. If the operation is
9910 -- dispatching, the expansion is done elsewhere, and we do not create
9911 -- an explicit inequality operation.
9913 <<Check_Inequality
>>
9914 if Chars
(S
) = Name_Op_Eq
9915 and then Etype
(S
) = Standard_Boolean
9916 and then Present
(Parent
(S
))
9917 and then not Is_Dispatching_Operation
(S
)
9919 Make_Inequality_Operator
(S
);
9920 Check_Untagged_Equality
(S
);
9922 end New_Overloaded_Entity
;
9924 ---------------------
9925 -- Process_Formals --
9926 ---------------------
9928 procedure Process_Formals
9930 Related_Nod
: Node_Id
)
9932 Param_Spec
: Node_Id
;
9934 Formal_Type
: Entity_Id
;
9938 Num_Out_Params
: Nat
:= 0;
9939 First_Out_Param
: Entity_Id
:= Empty
;
9940 -- Used for setting Is_Only_Out_Parameter
9942 function Designates_From_Limited_With
(Typ
: Entity_Id
) return Boolean;
9943 -- Determine whether an access type designates a type coming from a
9946 function Is_Class_Wide_Default
(D
: Node_Id
) return Boolean;
9947 -- Check whether the default has a class-wide type. After analysis the
9948 -- default has the type of the formal, so we must also check explicitly
9949 -- for an access attribute.
9951 ----------------------------------
9952 -- Designates_From_Limited_With --
9953 ----------------------------------
9955 function Designates_From_Limited_With
(Typ
: Entity_Id
) return Boolean is
9956 Desig
: Entity_Id
:= Typ
;
9959 if Is_Access_Type
(Desig
) then
9960 Desig
:= Directly_Designated_Type
(Desig
);
9963 if Is_Class_Wide_Type
(Desig
) then
9964 Desig
:= Root_Type
(Desig
);
9968 Ekind
(Desig
) = E_Incomplete_Type
9969 and then From_Limited_With
(Desig
);
9970 end Designates_From_Limited_With
;
9972 ---------------------------
9973 -- Is_Class_Wide_Default --
9974 ---------------------------
9976 function Is_Class_Wide_Default
(D
: Node_Id
) return Boolean is
9978 return Is_Class_Wide_Type
(Designated_Type
(Etype
(D
)))
9979 or else (Nkind
(D
) = N_Attribute_Reference
9980 and then Attribute_Name
(D
) = Name_Access
9981 and then Is_Class_Wide_Type
(Etype
(Prefix
(D
))));
9982 end Is_Class_Wide_Default
;
9984 -- Start of processing for Process_Formals
9987 -- In order to prevent premature use of the formals in the same formal
9988 -- part, the Ekind is left undefined until all default expressions are
9989 -- analyzed. The Ekind is established in a separate loop at the end.
9991 Param_Spec
:= First
(T
);
9992 while Present
(Param_Spec
) loop
9993 Formal
:= Defining_Identifier
(Param_Spec
);
9994 Set_Never_Set_In_Source
(Formal
, True);
9995 Enter_Name
(Formal
);
9997 -- Case of ordinary parameters
9999 if Nkind
(Parameter_Type
(Param_Spec
)) /= N_Access_Definition
then
10000 Find_Type
(Parameter_Type
(Param_Spec
));
10001 Ptype
:= Parameter_Type
(Param_Spec
);
10003 if Ptype
= Error
then
10007 Formal_Type
:= Entity
(Ptype
);
10009 if Is_Incomplete_Type
(Formal_Type
)
10011 (Is_Class_Wide_Type
(Formal_Type
)
10012 and then Is_Incomplete_Type
(Root_Type
(Formal_Type
)))
10014 -- Ada 2005 (AI-326): Tagged incomplete types allowed in
10015 -- primitive operations, as long as their completion is
10016 -- in the same declarative part. If in the private part
10017 -- this means that the type cannot be a Taft-amendment type.
10018 -- Check is done on package exit. For access to subprograms,
10019 -- the use is legal for Taft-amendment types.
10021 -- Ada 2012: tagged incomplete types are allowed as generic
10022 -- formal types. They do not introduce dependencies and the
10023 -- corresponding generic subprogram does not have a delayed
10024 -- freeze, because it does not need a freeze node. However,
10025 -- it is still the case that untagged incomplete types cannot
10026 -- be Taft-amendment types and must be completed in private
10027 -- part, so the subprogram must appear in the list of private
10028 -- dependents of the type.
10030 if Is_Tagged_Type
(Formal_Type
)
10031 or else (Ada_Version
>= Ada_2012
10032 and then not From_Limited_With
(Formal_Type
)
10033 and then not Is_Generic_Type
(Formal_Type
))
10035 if Ekind
(Scope
(Current_Scope
)) = E_Package
10036 and then not Is_Generic_Type
(Formal_Type
)
10037 and then not Is_Class_Wide_Type
(Formal_Type
)
10040 (Parent
(T
), N_Access_Function_Definition
,
10041 N_Access_Procedure_Definition
)
10045 To
=> Private_Dependents
(Base_Type
(Formal_Type
)));
10047 -- Freezing is delayed to ensure that Register_Prim
10048 -- will get called for this operation, which is needed
10049 -- in cases where static dispatch tables aren't built.
10050 -- (Note that the same is done for controlling access
10051 -- parameter cases in function Access_Definition.)
10053 if not Is_Thunk
(Current_Scope
) then
10054 Set_Has_Delayed_Freeze
(Current_Scope
);
10059 -- Special handling of Value_Type for CIL case
10061 elsif Is_Value_Type
(Formal_Type
) then
10064 elsif not Nkind_In
(Parent
(T
), N_Access_Function_Definition
,
10065 N_Access_Procedure_Definition
)
10067 -- AI05-0151: Tagged incomplete types are allowed in all
10068 -- formal parts. Untagged incomplete types are not allowed
10069 -- in bodies. Limited views of either kind are not allowed
10070 -- if there is no place at which the non-limited view can
10071 -- become available.
10073 -- Incomplete formal untagged types are not allowed in
10074 -- subprogram bodies (but are legal in their declarations).
10076 if Is_Generic_Type
(Formal_Type
)
10077 and then not Is_Tagged_Type
(Formal_Type
)
10078 and then Nkind
(Parent
(Related_Nod
)) = N_Subprogram_Body
10081 ("invalid use of formal incomplete type", Param_Spec
);
10083 elsif Ada_Version
>= Ada_2012
then
10084 if Is_Tagged_Type
(Formal_Type
)
10085 and then (not From_Limited_With
(Formal_Type
)
10086 or else not In_Package_Body
)
10090 elsif Nkind_In
(Parent
(Parent
(T
)), N_Accept_Statement
,
10091 N_Accept_Alternative
,
10096 ("invalid use of untagged incomplete type&",
10097 Ptype
, Formal_Type
);
10102 ("invalid use of incomplete type&",
10103 Param_Spec
, Formal_Type
);
10105 -- Further checks on the legality of incomplete types
10106 -- in formal parts are delayed until the freeze point
10107 -- of the enclosing subprogram or access to subprogram.
10111 elsif Ekind
(Formal_Type
) = E_Void
then
10113 ("premature use of&",
10114 Parameter_Type
(Param_Spec
), Formal_Type
);
10117 -- Ada 2012 (AI-142): Handle aliased parameters
10119 if Ada_Version
>= Ada_2012
10120 and then Aliased_Present
(Param_Spec
)
10122 Set_Is_Aliased
(Formal
);
10125 -- Ada 2005 (AI-231): Create and decorate an internal subtype
10126 -- declaration corresponding to the null-excluding type of the
10127 -- formal in the enclosing scope. Finally, replace the parameter
10128 -- type of the formal with the internal subtype.
10130 if Ada_Version
>= Ada_2005
10131 and then Null_Exclusion_Present
(Param_Spec
)
10133 if not Is_Access_Type
(Formal_Type
) then
10135 ("`NOT NULL` allowed only for an access type", Param_Spec
);
10138 if Can_Never_Be_Null
(Formal_Type
)
10139 and then Comes_From_Source
(Related_Nod
)
10142 ("`NOT NULL` not allowed (& already excludes null)",
10143 Param_Spec
, Formal_Type
);
10147 Create_Null_Excluding_Itype
10149 Related_Nod
=> Related_Nod
,
10150 Scope_Id
=> Scope
(Current_Scope
));
10152 -- If the designated type of the itype is an itype that is
10153 -- not frozen yet, we set the Has_Delayed_Freeze attribute
10154 -- on the access subtype, to prevent order-of-elaboration
10155 -- issues in the backend.
10158 -- type T is access procedure;
10159 -- procedure Op (O : not null T);
10161 if Is_Itype
(Directly_Designated_Type
(Formal_Type
))
10163 not Is_Frozen
(Directly_Designated_Type
(Formal_Type
))
10165 Set_Has_Delayed_Freeze
(Formal_Type
);
10170 -- An access formal type
10174 Access_Definition
(Related_Nod
, Parameter_Type
(Param_Spec
));
10176 -- No need to continue if we already notified errors
10178 if not Present
(Formal_Type
) then
10182 -- Ada 2005 (AI-254)
10185 AD
: constant Node_Id
:=
10186 Access_To_Subprogram_Definition
10187 (Parameter_Type
(Param_Spec
));
10189 if Present
(AD
) and then Protected_Present
(AD
) then
10191 Replace_Anonymous_Access_To_Protected_Subprogram
10197 Set_Etype
(Formal
, Formal_Type
);
10199 -- Deal with default expression if present
10201 Default
:= Expression
(Param_Spec
);
10203 if Present
(Default
) then
10204 Check_SPARK_05_Restriction
10205 ("default expression is not allowed", Default
);
10207 if Out_Present
(Param_Spec
) then
10209 ("default initialization only allowed for IN parameters",
10213 -- Do the special preanalysis of the expression (see section on
10214 -- "Handling of Default Expressions" in the spec of package Sem).
10216 Preanalyze_Spec_Expression
(Default
, Formal_Type
);
10218 -- An access to constant cannot be the default for
10219 -- an access parameter that is an access to variable.
10221 if Ekind
(Formal_Type
) = E_Anonymous_Access_Type
10222 and then not Is_Access_Constant
(Formal_Type
)
10223 and then Is_Access_Type
(Etype
(Default
))
10224 and then Is_Access_Constant
(Etype
(Default
))
10227 ("formal that is access to variable cannot be initialized "
10228 & "with an access-to-constant expression", Default
);
10231 -- Check that the designated type of an access parameter's default
10232 -- is not a class-wide type unless the parameter's designated type
10233 -- is also class-wide.
10235 if Ekind
(Formal_Type
) = E_Anonymous_Access_Type
10236 and then not Designates_From_Limited_With
(Formal_Type
)
10237 and then Is_Class_Wide_Default
(Default
)
10238 and then not Is_Class_Wide_Type
(Designated_Type
(Formal_Type
))
10241 ("access to class-wide expression not allowed here", Default
);
10244 -- Check incorrect use of dynamically tagged expressions
10246 if Is_Tagged_Type
(Formal_Type
) then
10247 Check_Dynamically_Tagged_Expression
10249 Typ
=> Formal_Type
,
10250 Related_Nod
=> Default
);
10254 -- Ada 2005 (AI-231): Static checks
10256 if Ada_Version
>= Ada_2005
10257 and then Is_Access_Type
(Etype
(Formal
))
10258 and then Can_Never_Be_Null
(Etype
(Formal
))
10260 Null_Exclusion_Static_Checks
(Param_Spec
);
10263 -- The following checks are relevant when SPARK_Mode is on as these
10264 -- are not standard Ada legality rules.
10266 if SPARK_Mode
= On
then
10267 if Ekind_In
(Scope
(Formal
), E_Function
, E_Generic_Function
) then
10269 -- A function cannot have a parameter of mode IN OUT or OUT
10272 if Ekind_In
(Formal
, E_In_Out_Parameter
, E_Out_Parameter
) then
10274 ("function cannot have parameter of mode `OUT` or "
10275 & "`IN OUT`", Formal
);
10277 -- A function cannot have an effectively volatile formal
10278 -- parameter (SPARK RM 7.1.3(10)).
10280 elsif Is_Effectively_Volatile
(Formal
) then
10282 ("function cannot have a volatile formal parameter",
10286 -- A procedure cannot have an effectively volatile formal
10287 -- parameter of mode IN because it behaves as a constant
10288 -- (SPARK RM 7.1.3(6)).
10290 elsif Ekind
(Scope
(Formal
)) = E_Procedure
10291 and then Ekind
(Formal
) = E_In_Parameter
10292 and then Is_Effectively_Volatile
(Formal
)
10295 ("formal parameter of mode `IN` cannot be volatile", Formal
);
10303 -- If this is the formal part of a function specification, analyze the
10304 -- subtype mark in the context where the formals are visible but not
10305 -- yet usable, and may hide outer homographs.
10307 if Nkind
(Related_Nod
) = N_Function_Specification
then
10308 Analyze_Return_Type
(Related_Nod
);
10311 -- Now set the kind (mode) of each formal
10313 Param_Spec
:= First
(T
);
10314 while Present
(Param_Spec
) loop
10315 Formal
:= Defining_Identifier
(Param_Spec
);
10316 Set_Formal_Mode
(Formal
);
10318 if Ekind
(Formal
) = E_In_Parameter
then
10319 Set_Default_Value
(Formal
, Expression
(Param_Spec
));
10321 if Present
(Expression
(Param_Spec
)) then
10322 Default
:= Expression
(Param_Spec
);
10324 if Is_Scalar_Type
(Etype
(Default
)) then
10325 if Nkind
(Parameter_Type
(Param_Spec
)) /=
10326 N_Access_Definition
10328 Formal_Type
:= Entity
(Parameter_Type
(Param_Spec
));
10332 (Related_Nod
, Parameter_Type
(Param_Spec
));
10335 Apply_Scalar_Range_Check
(Default
, Formal_Type
);
10339 elsif Ekind
(Formal
) = E_Out_Parameter
then
10340 Num_Out_Params
:= Num_Out_Params
+ 1;
10342 if Num_Out_Params
= 1 then
10343 First_Out_Param
:= Formal
;
10346 elsif Ekind
(Formal
) = E_In_Out_Parameter
then
10347 Num_Out_Params
:= Num_Out_Params
+ 1;
10350 -- Skip remaining processing if formal type was in error
10352 if Etype
(Formal
) = Any_Type
or else Error_Posted
(Formal
) then
10353 goto Next_Parameter
;
10356 -- Force call by reference if aliased
10358 if Is_Aliased
(Formal
) then
10359 Set_Mechanism
(Formal
, By_Reference
);
10361 -- Warn if user asked this to be passed by copy
10363 if Convention
(Formal_Type
) = Convention_Ada_Pass_By_Copy
then
10365 ("cannot pass aliased parameter & by copy??", Formal
);
10368 -- Force mechanism if type has Convention Ada_Pass_By_Ref/Copy
10370 elsif Convention
(Formal_Type
) = Convention_Ada_Pass_By_Copy
then
10371 Set_Mechanism
(Formal
, By_Copy
);
10373 elsif Convention
(Formal_Type
) = Convention_Ada_Pass_By_Reference
then
10374 Set_Mechanism
(Formal
, By_Reference
);
10381 if Present
(First_Out_Param
) and then Num_Out_Params
= 1 then
10382 Set_Is_Only_Out_Parameter
(First_Out_Param
);
10384 end Process_Formals
;
10386 ----------------------------
10387 -- Reference_Body_Formals --
10388 ----------------------------
10390 procedure Reference_Body_Formals
(Spec
: Entity_Id
; Bod
: Entity_Id
) is
10395 if Error_Posted
(Spec
) then
10399 -- Iterate over both lists. They may be of different lengths if the two
10400 -- specs are not conformant.
10402 Fs
:= First_Formal
(Spec
);
10403 Fb
:= First_Formal
(Bod
);
10404 while Present
(Fs
) and then Present
(Fb
) loop
10405 Generate_Reference
(Fs
, Fb
, 'b');
10407 if Style_Check
then
10408 Style
.Check_Identifier
(Fb
, Fs
);
10411 Set_Spec_Entity
(Fb
, Fs
);
10412 Set_Referenced
(Fs
, False);
10416 end Reference_Body_Formals
;
10418 -------------------------
10419 -- Set_Actual_Subtypes --
10420 -------------------------
10422 procedure Set_Actual_Subtypes
(N
: Node_Id
; Subp
: Entity_Id
) is
10424 Formal
: Entity_Id
;
10426 First_Stmt
: Node_Id
:= Empty
;
10427 AS_Needed
: Boolean;
10430 -- If this is an empty initialization procedure, no need to create
10431 -- actual subtypes (small optimization).
10433 if Ekind
(Subp
) = E_Procedure
and then Is_Null_Init_Proc
(Subp
) then
10437 Formal
:= First_Formal
(Subp
);
10438 while Present
(Formal
) loop
10439 T
:= Etype
(Formal
);
10441 -- We never need an actual subtype for a constrained formal
10443 if Is_Constrained
(T
) then
10444 AS_Needed
:= False;
10446 -- If we have unknown discriminants, then we do not need an actual
10447 -- subtype, or more accurately we cannot figure it out. Note that
10448 -- all class-wide types have unknown discriminants.
10450 elsif Has_Unknown_Discriminants
(T
) then
10451 AS_Needed
:= False;
10453 -- At this stage we have an unconstrained type that may need an
10454 -- actual subtype. For sure the actual subtype is needed if we have
10455 -- an unconstrained array type.
10457 elsif Is_Array_Type
(T
) then
10460 -- The only other case needing an actual subtype is an unconstrained
10461 -- record type which is an IN parameter (we cannot generate actual
10462 -- subtypes for the OUT or IN OUT case, since an assignment can
10463 -- change the discriminant values. However we exclude the case of
10464 -- initialization procedures, since discriminants are handled very
10465 -- specially in this context, see the section entitled "Handling of
10466 -- Discriminants" in Einfo.
10468 -- We also exclude the case of Discrim_SO_Functions (functions used
10469 -- in front end layout mode for size/offset values), since in such
10470 -- functions only discriminants are referenced, and not only are such
10471 -- subtypes not needed, but they cannot always be generated, because
10472 -- of order of elaboration issues.
10474 elsif Is_Record_Type
(T
)
10475 and then Ekind
(Formal
) = E_In_Parameter
10476 and then Chars
(Formal
) /= Name_uInit
10477 and then not Is_Unchecked_Union
(T
)
10478 and then not Is_Discrim_SO_Function
(Subp
)
10482 -- All other cases do not need an actual subtype
10485 AS_Needed
:= False;
10488 -- Generate actual subtypes for unconstrained arrays and
10489 -- unconstrained discriminated records.
10492 if Nkind
(N
) = N_Accept_Statement
then
10494 -- If expansion is active, the formal is replaced by a local
10495 -- variable that renames the corresponding entry of the
10496 -- parameter block, and it is this local variable that may
10497 -- require an actual subtype.
10499 if Expander_Active
then
10500 Decl
:= Build_Actual_Subtype
(T
, Renamed_Object
(Formal
));
10502 Decl
:= Build_Actual_Subtype
(T
, Formal
);
10505 if Present
(Handled_Statement_Sequence
(N
)) then
10507 First
(Statements
(Handled_Statement_Sequence
(N
)));
10508 Prepend
(Decl
, Statements
(Handled_Statement_Sequence
(N
)));
10509 Mark_Rewrite_Insertion
(Decl
);
10511 -- If the accept statement has no body, there will be no
10512 -- reference to the actuals, so no need to compute actual
10519 Decl
:= Build_Actual_Subtype
(T
, Formal
);
10520 Prepend
(Decl
, Declarations
(N
));
10521 Mark_Rewrite_Insertion
(Decl
);
10524 -- The declaration uses the bounds of an existing object, and
10525 -- therefore needs no constraint checks.
10527 Analyze
(Decl
, Suppress
=> All_Checks
);
10529 -- We need to freeze manually the generated type when it is
10530 -- inserted anywhere else than in a declarative part.
10532 if Present
(First_Stmt
) then
10533 Insert_List_Before_And_Analyze
(First_Stmt
,
10534 Freeze_Entity
(Defining_Identifier
(Decl
), N
));
10536 -- Ditto if the type has a dynamic predicate, because the
10537 -- generated function will mention the actual subtype.
10539 elsif Has_Dynamic_Predicate_Aspect
(T
) then
10540 Insert_List_Before_And_Analyze
(Decl
,
10541 Freeze_Entity
(Defining_Identifier
(Decl
), N
));
10544 if Nkind
(N
) = N_Accept_Statement
10545 and then Expander_Active
10547 Set_Actual_Subtype
(Renamed_Object
(Formal
),
10548 Defining_Identifier
(Decl
));
10550 Set_Actual_Subtype
(Formal
, Defining_Identifier
(Decl
));
10554 Next_Formal
(Formal
);
10556 end Set_Actual_Subtypes
;
10558 ---------------------
10559 -- Set_Formal_Mode --
10560 ---------------------
10562 procedure Set_Formal_Mode
(Formal_Id
: Entity_Id
) is
10563 Spec
: constant Node_Id
:= Parent
(Formal_Id
);
10566 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
10567 -- since we ensure that corresponding actuals are always valid at the
10568 -- point of the call.
10570 if Out_Present
(Spec
) then
10571 if Ekind_In
(Scope
(Formal_Id
), E_Function
, E_Generic_Function
) then
10573 -- [IN] OUT parameters allowed for functions in Ada 2012
10575 if Ada_Version
>= Ada_2012
then
10577 -- Even in Ada 2012 operators can only have IN parameters
10579 if Is_Operator_Symbol_Name
(Chars
(Scope
(Formal_Id
))) then
10580 Error_Msg_N
("operators can only have IN parameters", Spec
);
10583 if In_Present
(Spec
) then
10584 Set_Ekind
(Formal_Id
, E_In_Out_Parameter
);
10586 Set_Ekind
(Formal_Id
, E_Out_Parameter
);
10589 Set_Has_Out_Or_In_Out_Parameter
(Scope
(Formal_Id
), True);
10591 -- But not in earlier versions of Ada
10594 Error_Msg_N
("functions can only have IN parameters", Spec
);
10595 Set_Ekind
(Formal_Id
, E_In_Parameter
);
10598 elsif In_Present
(Spec
) then
10599 Set_Ekind
(Formal_Id
, E_In_Out_Parameter
);
10602 Set_Ekind
(Formal_Id
, E_Out_Parameter
);
10603 Set_Never_Set_In_Source
(Formal_Id
, True);
10604 Set_Is_True_Constant
(Formal_Id
, False);
10605 Set_Current_Value
(Formal_Id
, Empty
);
10609 Set_Ekind
(Formal_Id
, E_In_Parameter
);
10612 -- Set Is_Known_Non_Null for access parameters since the language
10613 -- guarantees that access parameters are always non-null. We also set
10614 -- Can_Never_Be_Null, since there is no way to change the value.
10616 if Nkind
(Parameter_Type
(Spec
)) = N_Access_Definition
then
10618 -- Ada 2005 (AI-231): In Ada 95, access parameters are always non-
10619 -- null; In Ada 2005, only if then null_exclusion is explicit.
10621 if Ada_Version
< Ada_2005
10622 or else Can_Never_Be_Null
(Etype
(Formal_Id
))
10624 Set_Is_Known_Non_Null
(Formal_Id
);
10625 Set_Can_Never_Be_Null
(Formal_Id
);
10628 -- Ada 2005 (AI-231): Null-exclusion access subtype
10630 elsif Is_Access_Type
(Etype
(Formal_Id
))
10631 and then Can_Never_Be_Null
(Etype
(Formal_Id
))
10633 Set_Is_Known_Non_Null
(Formal_Id
);
10635 -- We can also set Can_Never_Be_Null (thus preventing some junk
10636 -- access checks) for the case of an IN parameter, which cannot
10637 -- be changed, or for an IN OUT parameter, which can be changed but
10638 -- not to a null value. But for an OUT parameter, the initial value
10639 -- passed in can be null, so we can't set this flag in that case.
10641 if Ekind
(Formal_Id
) /= E_Out_Parameter
then
10642 Set_Can_Never_Be_Null
(Formal_Id
);
10646 Set_Mechanism
(Formal_Id
, Default_Mechanism
);
10647 Set_Formal_Validity
(Formal_Id
);
10648 end Set_Formal_Mode
;
10650 -------------------------
10651 -- Set_Formal_Validity --
10652 -------------------------
10654 procedure Set_Formal_Validity
(Formal_Id
: Entity_Id
) is
10656 -- If no validity checking, then we cannot assume anything about the
10657 -- validity of parameters, since we do not know there is any checking
10658 -- of the validity on the call side.
10660 if not Validity_Checks_On
then
10663 -- If validity checking for parameters is enabled, this means we are
10664 -- not supposed to make any assumptions about argument values.
10666 elsif Validity_Check_Parameters
then
10669 -- If we are checking in parameters, we will assume that the caller is
10670 -- also checking parameters, so we can assume the parameter is valid.
10672 elsif Ekind
(Formal_Id
) = E_In_Parameter
10673 and then Validity_Check_In_Params
10675 Set_Is_Known_Valid
(Formal_Id
, True);
10677 -- Similar treatment for IN OUT parameters
10679 elsif Ekind
(Formal_Id
) = E_In_Out_Parameter
10680 and then Validity_Check_In_Out_Params
10682 Set_Is_Known_Valid
(Formal_Id
, True);
10684 end Set_Formal_Validity
;
10686 ------------------------
10687 -- Subtype_Conformant --
10688 ------------------------
10690 function Subtype_Conformant
10691 (New_Id
: Entity_Id
;
10692 Old_Id
: Entity_Id
;
10693 Skip_Controlling_Formals
: Boolean := False) return Boolean
10697 Check_Conformance
(New_Id
, Old_Id
, Subtype_Conformant
, False, Result
,
10698 Skip_Controlling_Formals
=> Skip_Controlling_Formals
);
10700 end Subtype_Conformant
;
10702 ---------------------
10703 -- Type_Conformant --
10704 ---------------------
10706 function Type_Conformant
10707 (New_Id
: Entity_Id
;
10708 Old_Id
: Entity_Id
;
10709 Skip_Controlling_Formals
: Boolean := False) return Boolean
10713 May_Hide_Profile
:= False;
10715 (New_Id
, Old_Id
, Type_Conformant
, False, Result
,
10716 Skip_Controlling_Formals
=> Skip_Controlling_Formals
);
10718 end Type_Conformant
;
10720 -------------------------------
10721 -- Valid_Operator_Definition --
10722 -------------------------------
10724 procedure Valid_Operator_Definition
(Designator
: Entity_Id
) is
10727 Id
: constant Name_Id
:= Chars
(Designator
);
10731 F
:= First_Formal
(Designator
);
10732 while Present
(F
) loop
10735 if Present
(Default_Value
(F
)) then
10737 ("default values not allowed for operator parameters",
10740 -- For function instantiations that are operators, we must check
10741 -- separately that the corresponding generic only has in-parameters.
10742 -- For subprogram declarations this is done in Set_Formal_Mode. Such
10743 -- an error could not arise in earlier versions of the language.
10745 elsif Ekind
(F
) /= E_In_Parameter
then
10746 Error_Msg_N
("operators can only have IN parameters", F
);
10752 -- Verify that user-defined operators have proper number of arguments
10753 -- First case of operators which can only be unary
10755 if Nam_In
(Id
, Name_Op_Not
, Name_Op_Abs
) then
10758 -- Case of operators which can be unary or binary
10760 elsif Nam_In
(Id
, Name_Op_Add
, Name_Op_Subtract
) then
10761 N_OK
:= (N
in 1 .. 2);
10763 -- All other operators can only be binary
10771 ("incorrect number of arguments for operator", Designator
);
10775 and then Base_Type
(Etype
(Designator
)) = Standard_Boolean
10776 and then not Is_Intrinsic_Subprogram
(Designator
)
10779 ("explicit definition of inequality not allowed", Designator
);
10781 end Valid_Operator_Definition
;