ada: Fix (again) incorrect handling of Aggregate aspect
[official-gcc.git] / gcc / ada / sem_ch13.adb
blob6f9fe738ddd93c731180d7a61ffb0cfbc694d3d5
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 1 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2023, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Accessibility; use Accessibility;
27 with Aspects; use Aspects;
28 with Atree; use Atree;
29 with Checks; use Checks;
30 with Contracts; use Contracts;
31 with Debug; use Debug;
32 with Einfo; use Einfo;
33 with Einfo.Entities; use Einfo.Entities;
34 with Einfo.Utils; use Einfo.Utils;
35 with Elists; use Elists;
36 with Errout; use Errout;
37 with Exp_Ch3; use Exp_Ch3;
38 with Exp_Disp; use Exp_Disp;
39 with Exp_Tss; use Exp_Tss;
40 with Exp_Util; use Exp_Util;
41 with Expander; use Expander;
42 with Freeze; use Freeze;
43 with Ghost; use Ghost;
44 with Lib; use Lib;
45 with Lib.Xref; use Lib.Xref;
46 with Namet; use Namet;
47 with Nlists; use Nlists;
48 with Nmake; use Nmake;
49 with Opt; use Opt;
50 with Par_SCO; use Par_SCO;
51 with Restrict; use Restrict;
52 with Rident; use Rident;
53 with Rtsfind; use Rtsfind;
54 with Sem; use Sem;
55 with Sem_Aux; use Sem_Aux;
56 with Sem_Case; use Sem_Case;
57 with Sem_Cat; use Sem_Cat;
58 with Sem_Ch3; use Sem_Ch3;
59 with Sem_Ch6; use Sem_Ch6;
60 with Sem_Ch7; use Sem_Ch7;
61 with Sem_Ch8; use Sem_Ch8;
62 with Sem_Dim; use Sem_Dim;
63 with Sem_Eval; use Sem_Eval;
64 with Sem_Prag; use Sem_Prag;
65 with Sem_Res; use Sem_Res;
66 with Sem_Type; use Sem_Type;
67 with Sem_Util; use Sem_Util;
68 with Sem_Warn; use Sem_Warn;
69 with Sinfo; use Sinfo;
70 with Sinfo.Nodes; use Sinfo.Nodes;
71 with Sinfo.Utils; use Sinfo.Utils;
72 with Sinput; use Sinput;
73 with Snames; use Snames;
74 with Stand; use Stand;
75 with System.Case_Util; use System.Case_Util;
76 with Table;
77 with Targparm; use Targparm;
78 with Ttypes; use Ttypes;
79 with Tbuild; use Tbuild;
80 with Urealp; use Urealp;
81 with Warnsw; use Warnsw;
83 with GNAT.Heap_Sort_G;
85 package body Sem_Ch13 is
87 SSU : constant Pos := System_Storage_Unit;
88 -- Convenient short hand for commonly used constant
90 -----------------------
91 -- Local Subprograms --
92 -----------------------
94 procedure Adjust_Record_For_Reverse_Bit_Order_Ada_95 (R : Entity_Id);
95 -- Helper routine providing the original (pre-AI95-0133) behavior for
96 -- Adjust_Record_For_Reverse_Bit_Order.
98 procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint);
99 -- This routine is called after setting one of the sizes of type entity
100 -- Typ to Size. The purpose is to deal with the situation of a derived
101 -- type whose inherited alignment is no longer appropriate for the new
102 -- size value. In this case, we reset the Alignment to unknown.
104 function All_Static_Choices (L : List_Id) return Boolean;
105 -- Returns true if all elements of the list are OK static choices
106 -- as defined below for Is_Static_Choice. Used for case expression
107 -- alternatives and for the right operand of a membership test. An
108 -- others_choice is static if the corresponding expression is static.
109 -- The staticness of the bounds is checked separately.
111 procedure Build_Discrete_Static_Predicate
112 (Typ : Entity_Id;
113 Expr : Node_Id;
114 Nam : Name_Id);
115 -- Given a predicated type Typ, where Typ is a discrete static subtype,
116 -- whose predicate expression is Expr, tests if Expr is a static predicate,
117 -- and if so, builds the predicate range list. Nam is the name of the one
118 -- argument to the predicate function. Occurrences of the type name in the
119 -- predicate expression have been replaced by identifier references to this
120 -- name, which is unique, so any identifier with Chars matching Nam must be
121 -- a reference to the type. If the predicate is non-static, this procedure
122 -- returns doing nothing. If the predicate is static, then the predicate
123 -- list is stored in Static_Discrete_Predicate (Typ), and the Expr is
124 -- rewritten as a canonicalized membership operation.
126 function Build_Export_Import_Pragma
127 (Asp : Node_Id;
128 Id : Entity_Id) return Node_Id;
129 -- Create the corresponding pragma for aspect Export or Import denoted by
130 -- Asp. Id is the related entity subject to the aspect. Return Empty when
131 -- the expression of aspect Asp evaluates to False or is erroneous.
133 function Build_Predicate_Function_Declaration
134 (Typ : Entity_Id) return Node_Id;
135 -- Build the declaration for a predicate function. The declaration is built
136 -- at the same time as the body but inserted before, as explained below.
138 procedure Build_Predicate_Function (Typ : Entity_Id; N : Node_Id);
139 -- If Typ has predicates (indicated by Has_Predicates being set for Typ),
140 -- then either there are pragma Predicate entries on the rep chain for the
141 -- type (note that Predicate aspects are converted to pragma Predicate), or
142 -- there are inherited aspects from a parent type, or ancestor subtypes.
143 -- This procedure builds body for the Predicate function that tests these
144 -- predicates. N is the freeze node for the type. The spec of the function
145 -- is inserted before the freeze node, and the body of the function is
146 -- inserted after the freeze node.
148 procedure Check_Pool_Size_Clash (Ent : Entity_Id; SP, SS : Node_Id);
149 -- Called if both Storage_Pool and Storage_Size attribute definition
150 -- clauses (SP and SS) are present for entity Ent. Issue error message.
152 procedure Freeze_Entity_Checks (N : Node_Id);
153 -- Called from Analyze_Freeze_Entity and Analyze_Generic_Freeze Entity
154 -- to generate appropriate semantic checks that are delayed until this
155 -- point (they had to be delayed this long for cases of delayed aspects,
156 -- e.g. analysis of statically predicated subtypes in choices, for which
157 -- we have to be sure the subtypes in question are frozen before checking).
159 function Get_Alignment_Value (Expr : Node_Id) return Uint;
160 -- Given the expression for an alignment value, returns the corresponding
161 -- Uint value. If the value is inappropriate, then error messages are
162 -- posted as required, and a value of No_Uint is returned.
164 function Is_Operational_Item (N : Node_Id) return Boolean;
165 -- A specification for a stream attribute is allowed before the full type
166 -- is declared, as explained in AI-00137 and the corrigendum. Attributes
167 -- that do not specify a representation characteristic are operational
168 -- attributes.
170 function Is_Static_Choice (N : Node_Id) return Boolean;
171 -- Returns True if N represents a static choice (static subtype, or
172 -- static subtype indication, or static expression, or static range).
174 -- Note that this is a bit more inclusive than we actually need
175 -- (in particular membership tests do not allow the use of subtype
176 -- indications). But that doesn't matter, we have already checked
177 -- that the construct is legal to get this far.
179 function Is_Type_Related_Rep_Item (N : Node_Id) return Boolean;
180 -- Returns True for a representation clause/pragma that specifies a
181 -- type-related representation (as opposed to operational) aspect.
183 function Is_Predicate_Static
184 (Expr : Node_Id;
185 Nam : Name_Id;
186 Warn : Boolean := True) return Boolean;
187 -- Given predicate expression Expr, tests if Expr is predicate-static in
188 -- the sense of the rules in (RM 3.2.4 (15-24)). Occurrences of the type
189 -- name in the predicate expression have been replaced by references to
190 -- an identifier whose Chars field is Nam. This name is unique, so any
191 -- identifier with Chars matching Nam must be a reference to the type.
192 -- Returns True if the expression is predicate-static and False otherwise,
193 -- but is not in the business of setting flags or issuing error messages.
195 -- Only scalar types can have static predicates, so False is always
196 -- returned for non-scalar types.
198 -- Note: the RM seems to suggest that string types can also have static
199 -- predicates. But that really makes little sense as very few useful
200 -- predicates can be constructed for strings. Remember that:
202 -- "ABC" < "DEF"
204 -- is not a static expression. So even though the clearly faulty RM wording
205 -- allows the following:
207 -- subtype S is String with Static_Predicate => S < "DEF"
209 -- We can't allow this, otherwise we have predicate-static applying to a
210 -- larger class than static expressions, which was never intended.
212 -- The Warn parameter is True iff this is not a recursive call. This
213 -- parameter is used to avoid generating warnings for subexpressions and
214 -- for cases where the predicate expression (as originally written by
215 -- the user, before any transformations) is a Boolean literal.
217 procedure New_Put_Image_Subprogram
218 (N : Node_Id;
219 Ent : Entity_Id;
220 Subp : Entity_Id);
221 -- Similar to New_Stream_Subprogram, but for the Put_Image attribute
223 procedure New_Stream_Subprogram
224 (N : Node_Id;
225 Ent : Entity_Id;
226 Subp : Entity_Id;
227 Nam : TSS_Name_Type);
228 -- Create a subprogram renaming of a given stream attribute to the
229 -- designated subprogram and then in the tagged case, provide this as a
230 -- primitive operation, or in the untagged case make an appropriate TSS
231 -- entry. This is more properly an expansion activity than just semantics,
232 -- but the presence of user-defined stream functions for limited types
233 -- is a legality check, which is why this takes place here rather than in
234 -- exp_ch13, where it was previously. Nam indicates the name of the TSS
235 -- function to be generated.
237 -- To avoid elaboration anomalies with freeze nodes, for untagged types
238 -- we generate both a subprogram declaration and a subprogram renaming
239 -- declaration, so that the attribute specification is handled as a
240 -- renaming_as_body. For tagged types, the specification is one of the
241 -- primitive specs.
243 procedure No_Type_Rep_Item (N : Node_Id);
244 -- Output message indicating that no type-related aspects can be
245 -- specified due to some property of the parent type.
247 procedure Register_Address_Clause_Check
248 (N : Node_Id;
249 X : Entity_Id;
250 A : Uint;
251 Y : Entity_Id;
252 Off : Boolean);
253 -- Register a check for the address clause N. The rest of the parameters
254 -- are in keeping with the components of Address_Clause_Check_Record below.
256 procedure Validate_Aspect_Aggregate (N : Node_Id);
257 -- Check legality of operations given in the Ada 2022 Aggregate aspect for
258 -- containers.
260 procedure Resolve_Aspect_Aggregate
261 (Typ : Entity_Id;
262 Expr : Node_Id);
263 -- Resolve each one of the operations specified in the specification of
264 -- Aspect_Aggregate.
266 procedure Validate_Aspect_Stable_Properties
267 (E : Entity_Id; N : Node_Id; Class_Present : Boolean);
268 -- Check legality of functions given in the Ada 2022 Stable_Properties
269 -- (or Stable_Properties'Class) aspect.
271 procedure Validate_Storage_Model_Type_Aspect
272 (Typ : Entity_Id; ASN : Node_Id);
273 -- Check legality and completeness of the aggregate associations given in
274 -- the Storage_Model_Type aspect associated with Typ.
276 procedure Resolve_Storage_Model_Type_Argument
277 (N : Node_Id;
278 Typ : Entity_Id;
279 Addr_Type : in out Entity_Id;
280 Nam : Name_Id);
281 -- Resolve argument N to be of the proper kind (when a type or constant)
282 -- or to have the proper profile (when a subprogram).
284 procedure Resolve_Aspect_Stable_Properties
285 (Typ_Or_Subp : Entity_Id;
286 Expr : Node_Id;
287 Class_Present : Boolean);
288 -- Resolve each one of the functions specified in the specification of
289 -- aspect Stable_Properties (or Stable_Properties'Class).
291 procedure Resolve_Iterable_Operation
292 (N : Node_Id;
293 Cursor : Entity_Id;
294 Typ : Entity_Id;
295 Nam : Name_Id);
296 -- If the name of a primitive operation for an Iterable aspect is
297 -- overloaded, resolve according to required signature.
299 procedure Set_Biased
300 (E : Entity_Id;
301 N : Node_Id;
302 Msg : String;
303 Biased : Boolean := True);
304 -- If Biased is True, sets Has_Biased_Representation flag for E, and
305 -- outputs a warning message at node N if Warn_On_Biased_Representation is
306 -- is True. This warning inserts the string Msg to describe the construct
307 -- causing biasing.
309 -----------------------------------------------------------
310 -- Visibility of Discriminants in Aspect Specifications --
311 -----------------------------------------------------------
313 -- The discriminants of a type are visible when analyzing the aspect
314 -- specifications of a type declaration or protected type declaration,
315 -- but not when analyzing those of a subtype declaration. The following
316 -- routines enforce this distinction.
318 procedure Push_Type (E : Entity_Id);
319 -- Push scope E and make visible the discriminants of type entity E if E
320 -- has discriminants and is not a subtype.
322 procedure Pop_Type (E : Entity_Id);
323 -- Remove visibility to the discriminants of type entity E and pop the
324 -- scope stack if E has discriminants and is not a subtype.
326 ----------------------------------------------
327 -- Table for Validate_Unchecked_Conversions --
328 ----------------------------------------------
330 -- The following table collects unchecked conversions for validation.
331 -- Entries are made by Validate_Unchecked_Conversion and then the call
332 -- to Validate_Unchecked_Conversions does the actual error checking and
333 -- posting of warnings. The reason for this delayed processing is to take
334 -- advantage of back-annotations of size and alignment values performed by
335 -- the back end.
337 -- Note: the reason we store a Source_Ptr value instead of a Node_Id is
338 -- that by the time Validate_Unchecked_Conversions is called, Sprint will
339 -- already have modified all Sloc values if the -gnatD option is set.
341 type UC_Entry is record
342 Eloc : Source_Ptr; -- node used for posting warnings
343 Source : Entity_Id; -- source type for unchecked conversion
344 Target : Entity_Id; -- target type for unchecked conversion
345 Act_Unit : Entity_Id; -- actual function instantiated
346 end record;
348 package Unchecked_Conversions is new Table.Table (
349 Table_Component_Type => UC_Entry,
350 Table_Index_Type => Int,
351 Table_Low_Bound => 1,
352 Table_Initial => 50,
353 Table_Increment => 200,
354 Table_Name => "Unchecked_Conversions");
356 ----------------------------------------
357 -- Table for Validate_Address_Clauses --
358 ----------------------------------------
360 -- If an address clause has the form
362 -- for X'Address use Expr
364 -- where Expr has a value known at compile time or is of the form Y'Address
365 -- or recursively is a reference to a constant initialized with either of
366 -- these forms, and the value of Expr is not a multiple of X's alignment,
367 -- or if Y has a smaller alignment than X, then that merits a warning about
368 -- possible bad alignment. The following table collects address clauses of
369 -- this kind. We put these in a table so that they can be checked after the
370 -- back end has completed annotation of the alignments of objects, since we
371 -- can catch more cases that way.
373 type Address_Clause_Check_Record is record
374 N : Node_Id;
375 -- The address clause
377 X : Entity_Id;
378 -- The entity of the object subject to the address clause
380 A : Uint;
381 -- The value of the address in the first case
383 Y : Entity_Id;
384 -- The entity of the object being overlaid in the second case
386 Off : Boolean;
387 -- Whether the address is offset within Y in the second case
389 Alignment_Checks_Suppressed : Boolean;
390 -- Whether alignment checks are suppressed by an active scope suppress
391 -- setting. We need to save the value in order to be able to reuse it
392 -- after the back end has been run.
393 end record;
395 package Address_Clause_Checks is new Table.Table (
396 Table_Component_Type => Address_Clause_Check_Record,
397 Table_Index_Type => Int,
398 Table_Low_Bound => 1,
399 Table_Initial => 20,
400 Table_Increment => 200,
401 Table_Name => "Address_Clause_Checks");
403 function Alignment_Checks_Suppressed
404 (ACCR : Address_Clause_Check_Record) return Boolean;
405 -- Return whether the alignment check generated for the address clause
406 -- is suppressed.
408 ---------------------------------
409 -- Alignment_Checks_Suppressed --
410 ---------------------------------
412 function Alignment_Checks_Suppressed
413 (ACCR : Address_Clause_Check_Record) return Boolean
415 begin
416 if Checks_May_Be_Suppressed (ACCR.X) then
417 return Is_Check_Suppressed (ACCR.X, Alignment_Check);
418 else
419 return ACCR.Alignment_Checks_Suppressed;
420 end if;
421 end Alignment_Checks_Suppressed;
423 -----------------------------------------
424 -- Adjust_Record_For_Reverse_Bit_Order --
425 -----------------------------------------
427 procedure Adjust_Record_For_Reverse_Bit_Order (R : Entity_Id) is
428 Max_Machine_Scalar_Size : constant Uint :=
429 UI_From_Int (System_Max_Integer_Size);
430 -- We use this as the maximum machine scalar size
432 SSU : constant Uint := UI_From_Int (System_Storage_Unit);
434 CC : Node_Id;
435 Comp : Node_Id;
436 Num_CC : Natural;
438 begin
439 -- The processing done here used to depend on the Ada version, but the
440 -- behavior has been changed by AI95-0133. However this AI is a Binding
441 -- Interpretation, so we now implement it even in Ada 95 mode. But the
442 -- original behavior from unamended Ada 95 is available for the sake of
443 -- compatibility under the debugging switch -gnatd.p in Ada 95 mode.
445 if Ada_Version < Ada_2005 and then Debug_Flag_Dot_P then
446 Adjust_Record_For_Reverse_Bit_Order_Ada_95 (R);
447 return;
448 end if;
450 -- For Ada 2005, we do machine scalar processing, as fully described In
451 -- AI-133. This involves gathering all components which start at the
452 -- same byte offset and processing them together. Same approach is still
453 -- valid in later versions including Ada 2012.
455 -- Note that component clauses found on record types may be inherited,
456 -- in which case the layout of the component with such a clause still
457 -- has to be done at this point. Therefore, the processing done here
458 -- must exclusively rely on the Component_Clause of the component.
460 -- This first loop through components does two things. First it deals
461 -- with the case of components with component clauses whose length is
462 -- greater than the maximum machine scalar size (either accepting them
463 -- or rejecting as needed). Second, it counts the number of components
464 -- with component clauses whose length does not exceed this maximum for
465 -- later processing.
467 Num_CC := 0;
468 Comp := First_Component_Or_Discriminant (R);
469 while Present (Comp) loop
470 CC := Component_Clause (Comp);
472 if Present (CC) then
473 declare
474 Fbit : constant Uint := Static_Integer (First_Bit (CC));
475 Lbit : constant Uint := Static_Integer (Last_Bit (CC));
477 begin
478 -- Case of component with last bit >= max machine scalar
480 if Lbit >= Max_Machine_Scalar_Size then
482 -- This is allowed only if first bit is zero, and last bit
483 -- + 1 is a multiple of storage unit size.
485 if Fbit = 0 and then (Lbit + 1) mod SSU = 0 then
487 -- This is the case to give a warning if enabled
489 if Warn_On_Reverse_Bit_Order then
490 Error_Msg_N
491 ("info: multi-byte field specified with "
492 & "non-standard Bit_Order?.v?", CC);
494 if Bytes_Big_Endian then
495 Error_Msg_N
496 ("\bytes are not reversed "
497 & "(component is big-endian)?.v?", CC);
498 else
499 Error_Msg_N
500 ("\bytes are not reversed "
501 & "(component is little-endian)?.v?", CC);
502 end if;
503 end if;
505 -- Give error message for RM 13.5.1(10) violation
507 else
508 Error_Msg_FE
509 ("machine scalar rules not followed for&",
510 First_Bit (CC), Comp);
512 Error_Msg_Uint_1 := Lbit + 1;
513 Error_Msg_Uint_2 := Max_Machine_Scalar_Size;
514 Error_Msg_F
515 ("\last bit + 1 (^) exceeds maximum machine scalar "
516 & "size (^)", First_Bit (CC));
518 if (Lbit + 1) mod SSU /= 0 then
519 Error_Msg_Uint_1 := SSU;
520 Error_Msg_F
521 ("\and is not a multiple of Storage_Unit (^) "
522 & "(RM 13.5.1(10))", First_Bit (CC));
524 else
525 Error_Msg_Uint_1 := Fbit;
526 Error_Msg_F
527 ("\and first bit (^) is non-zero "
528 & "(RM 13.4.1(10))", First_Bit (CC));
529 end if;
530 end if;
532 -- OK case of machine scalar related component clause. For now,
533 -- just count them.
535 else
536 Num_CC := Num_CC + 1;
537 end if;
538 end;
539 end if;
541 Next_Component_Or_Discriminant (Comp);
542 end loop;
544 -- We need to sort the component clauses on the basis of the Position
545 -- values in the clause, so we can group clauses with the same Position
546 -- together to determine the relevant machine scalar size.
548 Sort_CC : declare
549 Comps : array (0 .. Num_CC) of Entity_Id;
550 -- Array to collect component and discriminant entities. The data
551 -- starts at index 1, the 0'th entry is for the sort routine.
553 function CP_Lt (Op1, Op2 : Natural) return Boolean;
554 -- Compare routine for Sort
556 procedure CP_Move (From : Natural; To : Natural);
557 -- Move routine for Sort
559 package Sorting is new GNAT.Heap_Sort_G (CP_Move, CP_Lt);
561 MaxL : Uint;
562 -- Maximum last bit value of any component in this set
564 MSS : Uint;
565 -- Corresponding machine scalar size
567 Start : Natural;
568 Stop : Natural;
569 -- Start and stop positions in the component list of the set of
570 -- components with the same starting position (that constitute
571 -- components in a single machine scalar).
573 -----------
574 -- CP_Lt --
575 -----------
577 function CP_Lt (Op1, Op2 : Natural) return Boolean is
578 begin
579 return
580 Position (Component_Clause (Comps (Op1))) <
581 Position (Component_Clause (Comps (Op2)));
582 end CP_Lt;
584 -------------
585 -- CP_Move --
586 -------------
588 procedure CP_Move (From : Natural; To : Natural) is
589 begin
590 Comps (To) := Comps (From);
591 end CP_Move;
593 -- Start of processing for Sort_CC
595 begin
596 -- Collect the machine scalar relevant component clauses
598 Num_CC := 0;
599 Comp := First_Component_Or_Discriminant (R);
600 while Present (Comp) loop
601 declare
602 CC : constant Node_Id := Component_Clause (Comp);
604 begin
605 -- Collect only component clauses whose last bit is less than
606 -- machine scalar size. Any component clause whose last bit
607 -- exceeds this value does not take part in machine scalar
608 -- layout considerations. The test for Error_Posted makes sure
609 -- we exclude component clauses for which we already posted an
610 -- error.
612 if Present (CC)
613 and then not Error_Posted (Last_Bit (CC))
614 and then Static_Integer (Last_Bit (CC)) <
615 Max_Machine_Scalar_Size
616 then
617 Num_CC := Num_CC + 1;
618 Comps (Num_CC) := Comp;
619 end if;
620 end;
622 Next_Component_Or_Discriminant (Comp);
623 end loop;
625 -- Sort by ascending position number
627 Sorting.Sort (Num_CC);
629 -- We now have all the components whose size does not exceed the max
630 -- machine scalar value, sorted by starting position. In this loop we
631 -- gather groups of clauses starting at the same position, to process
632 -- them in accordance with AI-133.
634 Stop := 0;
635 while Stop < Num_CC loop
636 Start := Stop + 1;
637 Stop := Start;
638 MaxL :=
639 Static_Integer
640 (Last_Bit (Component_Clause (Comps (Start))));
641 while Stop < Num_CC loop
642 if Static_Integer
643 (Position (Component_Clause (Comps (Stop + 1)))) =
644 Static_Integer
645 (Position (Component_Clause (Comps (Stop))))
646 then
647 Stop := Stop + 1;
648 MaxL :=
649 UI_Max
650 (MaxL,
651 Static_Integer
652 (Last_Bit
653 (Component_Clause (Comps (Stop)))));
654 else
655 exit;
656 end if;
657 end loop;
659 -- Now we have a group of component clauses from Start to Stop
660 -- whose positions are identical, and MaxL is the maximum last
661 -- bit value of any of these components.
663 -- We need to determine the corresponding machine scalar size.
664 -- This loop assumes that machine scalar sizes are even, and that
665 -- each possible machine scalar has twice as many bits as the next
666 -- smaller one.
668 MSS := Max_Machine_Scalar_Size;
669 while MSS mod 2 = 0
670 and then (MSS / 2) >= SSU
671 and then (MSS / 2) > MaxL
672 loop
673 MSS := MSS / 2;
674 end loop;
676 -- Here is where we fix up the Component_Bit_Offset value to
677 -- account for the reverse bit order. Some examples of what needs
678 -- to be done for the case of a machine scalar size of 8 are:
680 -- First_Bit .. Last_Bit Component_Bit_Offset
681 -- old new old new
683 -- 0 .. 0 7 .. 7 0 7
684 -- 0 .. 1 6 .. 7 0 6
685 -- 0 .. 2 5 .. 7 0 5
686 -- 0 .. 7 0 .. 7 0 4
688 -- 1 .. 1 6 .. 6 1 6
689 -- 1 .. 4 3 .. 6 1 3
690 -- 4 .. 7 0 .. 3 4 0
692 -- The rule is that the first bit is obtained by subtracting the
693 -- old ending bit from machine scalar size - 1.
695 for C in Start .. Stop loop
696 declare
697 Comp : constant Entity_Id := Comps (C);
698 CC : constant Node_Id := Component_Clause (Comp);
700 FB : constant Uint := Static_Integer (First_Bit (CC));
701 LB : constant Uint := Static_Integer (Last_Bit (CC));
702 NFB : constant Uint := MSS - 1 - LB;
703 NLB : constant Uint := NFB + LB - FB;
704 Pos : constant Uint := Static_Integer (Position (CC));
706 begin
707 -- Do not warn for the artificial clause built for the tag
708 -- in Check_Record_Representation_Clause if it is inherited.
710 if Warn_On_Reverse_Bit_Order
711 and then Chars (Comp) /= Name_uTag
712 then
713 Error_Msg_Uint_1 := MSS;
714 Error_Msg_N
715 ("info: reverse bit order in machine scalar of "
716 & "length^?.v?", First_Bit (CC));
717 Error_Msg_Uint_1 := NFB;
718 Error_Msg_Uint_2 := NLB;
720 if Bytes_Big_Endian then
721 Error_Msg_NE
722 ("\big-endian range for component & is ^ .. ^?.v?",
723 First_Bit (CC), Comp);
724 else
725 Error_Msg_NE
726 ("\little-endian range for component " &
727 "& is ^ .. ^?.v?",
728 First_Bit (CC), Comp);
729 end if;
730 end if;
732 Set_Component_Bit_Offset (Comp, Pos * SSU + NFB);
733 Set_Esize (Comp, 1 + (NLB - NFB));
734 Set_Normalized_First_Bit (Comp, NFB mod SSU);
735 Set_Normalized_Position (Comp, Pos + NFB / SSU);
736 end;
737 end loop;
738 end loop;
739 end Sort_CC;
740 end Adjust_Record_For_Reverse_Bit_Order;
742 ------------------------------------------------
743 -- Adjust_Record_For_Reverse_Bit_Order_Ada_95 --
744 ------------------------------------------------
746 procedure Adjust_Record_For_Reverse_Bit_Order_Ada_95 (R : Entity_Id) is
747 CC : Node_Id;
748 Comp : Node_Id;
750 begin
751 -- For Ada 95, we just renumber bits within a storage unit. We do the
752 -- same for Ada 83 mode, since we recognize the Bit_Order attribute in
753 -- Ada 83, and are free to add this extension.
755 Comp := First_Component_Or_Discriminant (R);
756 while Present (Comp) loop
757 CC := Component_Clause (Comp);
759 -- If component clause is present, then deal with the non-default
760 -- bit order case for Ada 95 mode.
762 -- We only do this processing for the base type, and in fact that
763 -- is important, since otherwise if there are record subtypes, we
764 -- could reverse the bits once for each subtype, which is wrong.
766 if Present (CC) and then Ekind (R) = E_Record_Type then
767 declare
768 CFB : constant Uint := Component_Bit_Offset (Comp);
769 CSZ : constant Uint := Esize (Comp);
770 CLC : constant Node_Id := Component_Clause (Comp);
771 Pos : constant Node_Id := Position (CLC);
772 FB : constant Node_Id := First_Bit (CLC);
774 Storage_Unit_Offset : constant Uint :=
775 CFB / System_Storage_Unit;
777 Start_Bit : constant Uint :=
778 CFB mod System_Storage_Unit;
780 begin
781 -- Cases where field goes over storage unit boundary
783 if Start_Bit + CSZ > System_Storage_Unit then
785 -- Allow multi-byte field but generate warning
787 if Start_Bit mod System_Storage_Unit = 0
788 and then CSZ mod System_Storage_Unit = 0
789 then
790 Error_Msg_N
791 ("info: multi-byte field specified with non-standard "
792 & "Bit_Order?.v?", CLC);
794 if Bytes_Big_Endian then
795 Error_Msg_N
796 ("\bytes are not reversed "
797 & "(component is big-endian)?.v?", CLC);
798 else
799 Error_Msg_N
800 ("\bytes are not reversed "
801 & "(component is little-endian)?.v?", CLC);
802 end if;
804 -- Do not allow non-contiguous field
806 else
807 Error_Msg_N
808 ("attempt to specify non-contiguous field not "
809 & "permitted", CLC);
810 Error_Msg_N
811 ("\caused by non-standard Bit_Order specified in "
812 & "legacy Ada 95 mode", CLC);
813 end if;
815 -- Case where field fits in one storage unit
817 else
818 -- Give warning if suspicious component clause
820 if Intval (FB) >= System_Storage_Unit
821 and then Warn_On_Reverse_Bit_Order
822 then
823 Error_Msg_N
824 ("info: Bit_Order clause does not affect byte "
825 & "ordering?.v?", Pos);
826 Error_Msg_Uint_1 :=
827 Intval (Pos) + Intval (FB) /
828 System_Storage_Unit;
829 Error_Msg_N
830 ("info: position normalized to ^ before bit order "
831 & "interpreted?.v?", Pos);
832 end if;
834 -- Here is where we fix up the Component_Bit_Offset value
835 -- to account for the reverse bit order. Some examples of
836 -- what needs to be done are:
838 -- First_Bit .. Last_Bit Component_Bit_Offset
839 -- old new old new
841 -- 0 .. 0 7 .. 7 0 7
842 -- 0 .. 1 6 .. 7 0 6
843 -- 0 .. 2 5 .. 7 0 5
844 -- 0 .. 7 0 .. 7 0 4
846 -- 1 .. 1 6 .. 6 1 6
847 -- 1 .. 4 3 .. 6 1 3
848 -- 4 .. 7 0 .. 3 4 0
850 -- The rule is that the first bit is obtained by subtracting
851 -- the old ending bit from storage_unit - 1.
853 Set_Component_Bit_Offset (Comp,
854 (Storage_Unit_Offset * System_Storage_Unit) +
855 (System_Storage_Unit - 1) -
856 (Start_Bit + CSZ - 1));
858 Set_Normalized_Position (Comp,
859 Component_Bit_Offset (Comp) / System_Storage_Unit);
861 Set_Normalized_First_Bit (Comp,
862 Component_Bit_Offset (Comp) mod System_Storage_Unit);
863 end if;
864 end;
865 end if;
867 Next_Component_Or_Discriminant (Comp);
868 end loop;
869 end Adjust_Record_For_Reverse_Bit_Order_Ada_95;
871 -------------------------------------
872 -- Alignment_Check_For_Size_Change --
873 -------------------------------------
875 procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint) is
876 begin
877 -- If the alignment is known, and not set by a rep clause, and is
878 -- inconsistent with the size being set, then reset it to unknown,
879 -- we assume in this case that the size overrides the inherited
880 -- alignment, and that the alignment must be recomputed.
882 if Known_Alignment (Typ)
883 and then not Has_Alignment_Clause (Typ)
884 and then Present (Size)
885 and then Size mod (Alignment (Typ) * SSU) /= 0
886 then
887 Reinit_Alignment (Typ);
888 end if;
889 end Alignment_Check_For_Size_Change;
891 -----------------------------------
892 -- All_Membership_Choices_Static --
893 -----------------------------------
895 function All_Membership_Choices_Static (Expr : Node_Id) return Boolean is
896 pragma Assert (Nkind (Expr) in N_Membership_Test);
897 begin
898 pragma Assert
899 (Present (Right_Opnd (Expr))
901 Present (Alternatives (Expr)));
903 if Present (Right_Opnd (Expr)) then
904 return Is_Static_Choice (Right_Opnd (Expr));
905 else
906 return All_Static_Choices (Alternatives (Expr));
907 end if;
908 end All_Membership_Choices_Static;
910 ------------------------
911 -- All_Static_Choices --
912 ------------------------
914 function All_Static_Choices (L : List_Id) return Boolean is
915 N : Node_Id;
917 begin
918 N := First (L);
919 while Present (N) loop
920 if not Is_Static_Choice (N) then
921 return False;
922 end if;
924 Next (N);
925 end loop;
927 return True;
928 end All_Static_Choices;
930 -------------------------------------
931 -- Analyze_Aspects_At_Freeze_Point --
932 -------------------------------------
934 procedure Analyze_Aspects_At_Freeze_Point (E : Entity_Id) is
935 procedure Analyze_Aspect_Default_Value (ASN : Node_Id);
936 -- This routine analyzes an Aspect_Default_[Component_]Value denoted by
937 -- the aspect specification node ASN.
939 procedure Check_Aspect_Too_Late (N : Node_Id);
940 -- This procedure is similar to Rep_Item_Too_Late for representation
941 -- aspects that apply to type and that do not have a corresponding
942 -- pragma.
943 -- Used to check in particular that the expression associated with
944 -- aspect node N for the given type (entity) of the aspect does not
945 -- appear too late according to the rules in RM 13.1(9) and 13.1(10).
947 procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id);
948 -- Given an aspect specification node ASN whose expression is an
949 -- optional Boolean, this routines creates the corresponding pragma
950 -- at the freezing point.
952 ----------------------------------
953 -- Analyze_Aspect_Default_Value --
954 ----------------------------------
956 procedure Analyze_Aspect_Default_Value (ASN : Node_Id) is
957 Ent : constant Entity_Id := Entity (ASN);
958 Expr : constant Node_Id := Expression (ASN);
960 begin
961 Set_Has_Default_Aspect (Base_Type (Ent));
963 if Is_Scalar_Type (Ent) then
964 Set_Default_Aspect_Value (Base_Type (Ent), Expr);
965 else
966 Set_Default_Aspect_Component_Value (Base_Type (Ent), Expr);
967 end if;
969 Check_Aspect_Too_Late (ASN);
970 end Analyze_Aspect_Default_Value;
972 ---------------------------
973 -- Check_Aspect_Too_Late --
974 ---------------------------
976 procedure Check_Aspect_Too_Late (N : Node_Id) is
977 Typ : constant Entity_Id := Entity (N);
978 Expr : constant Node_Id := Expression (N);
980 function Find_Type_Reference
981 (Typ : Entity_Id; Expr : Node_Id) return Boolean;
982 -- Return True if a reference to type Typ is found in the expression
983 -- Expr.
985 -------------------------
986 -- Find_Type_Reference --
987 -------------------------
989 function Find_Type_Reference
990 (Typ : Entity_Id; Expr : Node_Id) return Boolean
992 function Find_Type (N : Node_Id) return Traverse_Result;
993 -- Set Found to True if N refers to Typ
995 ---------------
996 -- Find_Type --
997 ---------------
999 function Find_Type (N : Node_Id) return Traverse_Result is
1000 begin
1001 if N = Typ
1002 or else (Nkind (N) in N_Identifier | N_Expanded_Name
1003 and then Present (Entity (N))
1004 and then Entity (N) = Typ)
1005 then
1006 return Abandon;
1007 else
1008 return OK;
1009 end if;
1010 end Find_Type;
1012 function Search_Type_Reference is new Traverse_Func (Find_Type);
1014 begin
1015 return Search_Type_Reference (Expr) = Abandon;
1016 end Find_Type_Reference;
1018 Parent_Type : Entity_Id;
1020 begin
1021 -- Ensure Expr is analyzed so that e.g. all types are properly
1022 -- resolved for Find_Type_Reference.
1024 Analyze (Expr);
1026 -- A self-referential aspect is illegal if it forces freezing the
1027 -- entity before the corresponding aspect has been analyzed.
1029 if Find_Type_Reference (Typ, Expr) then
1030 Error_Msg_NE
1031 ("aspect specification causes premature freezing of&", N, Typ);
1032 end if;
1034 -- For representation aspects, check for case of untagged derived
1035 -- type whose parent either has primitive operations (pre Ada 2022),
1036 -- or is a by-reference type (RM 13.1(10)).
1037 -- Strictly speaking the check also applies to Ada 2012 but it is
1038 -- really too constraining for existing code already, so relax it.
1039 -- ??? Confirming aspects should be allowed here.
1041 if Is_Representation_Aspect (Get_Aspect_Id (N))
1042 and then Is_Derived_Type (Typ)
1043 and then not Is_Tagged_Type (Typ)
1044 then
1045 Parent_Type := Etype (Base_Type (Typ));
1047 if Ada_Version <= Ada_2012
1048 and then Has_Primitive_Operations (Parent_Type)
1049 then
1050 Error_Msg_N
1051 ("|representation aspect not permitted before Ada 2022: " &
1052 "use -gnat2022!", N);
1053 Error_Msg_NE
1054 ("\parent type & has primitive operations!", N, Parent_Type);
1056 elsif Is_By_Reference_Type (Parent_Type) then
1057 No_Type_Rep_Item (N);
1058 Error_Msg_NE
1059 ("\parent type & is a by-reference type!", N, Parent_Type);
1060 end if;
1061 end if;
1062 end Check_Aspect_Too_Late;
1064 -------------------------------------
1065 -- Make_Pragma_From_Boolean_Aspect --
1066 -------------------------------------
1068 procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id) is
1069 Ident : constant Node_Id := Identifier (ASN);
1070 A_Name : constant Name_Id := Chars (Ident);
1071 A_Id : constant Aspect_Id := Get_Aspect_Id (A_Name);
1072 Ent : constant Entity_Id := Entity (ASN);
1073 Expr : constant Node_Id := Expression (ASN);
1074 Loc : constant Source_Ptr := Sloc (ASN);
1076 procedure Check_False_Aspect_For_Derived_Type;
1077 -- This procedure checks for the case of a false aspect for a derived
1078 -- type, which improperly tries to cancel an aspect inherited from
1079 -- the parent.
1081 -----------------------------------------
1082 -- Check_False_Aspect_For_Derived_Type --
1083 -----------------------------------------
1085 procedure Check_False_Aspect_For_Derived_Type is
1086 Par : Node_Id;
1088 begin
1089 -- We are only checking derived types
1091 if not Is_Derived_Type (E) then
1092 return;
1093 end if;
1095 Par := Nearest_Ancestor (E);
1097 case A_Id is
1098 when Aspect_Atomic
1099 | Aspect_Shared
1101 if not Is_Atomic (Par) then
1102 return;
1103 end if;
1105 when Aspect_Atomic_Components =>
1106 if not Has_Atomic_Components (Par) then
1107 return;
1108 end if;
1110 when Aspect_Discard_Names =>
1111 if not Discard_Names (Par) then
1112 return;
1113 end if;
1115 when Aspect_Pack =>
1116 if not Is_Packed (Par) then
1117 return;
1118 end if;
1120 when Aspect_Unchecked_Union =>
1121 if not Is_Unchecked_Union (Par) then
1122 return;
1123 end if;
1125 when Aspect_Volatile =>
1126 if not Is_Volatile (Par) then
1127 return;
1128 end if;
1130 when Aspect_Volatile_Components =>
1131 if not Has_Volatile_Components (Par) then
1132 return;
1133 end if;
1135 when Aspect_Volatile_Full_Access
1136 | Aspect_Full_Access_Only
1138 if not Is_Volatile_Full_Access (Par) then
1139 return;
1140 end if;
1142 when others =>
1143 return;
1144 end case;
1146 -- Fall through means we are canceling an inherited aspect
1148 Error_Msg_Name_1 := A_Name;
1149 Error_Msg_NE
1150 ("derived type& inherits aspect%, cannot cancel", Expr, E);
1151 end Check_False_Aspect_For_Derived_Type;
1153 -- Local variables
1155 Prag : Node_Id;
1156 P_Name : Name_Id;
1158 -- Start of processing for Make_Pragma_From_Boolean_Aspect
1160 begin
1161 if Present (Expr) and then Is_False (Static_Boolean (Expr)) then
1162 Check_False_Aspect_For_Derived_Type;
1164 else
1165 -- There is no Full_Access_Only pragma so use VFA instead
1167 if A_Name = Name_Full_Access_Only then
1168 P_Name := Name_Volatile_Full_Access;
1169 else
1170 P_Name := A_Name;
1171 end if;
1173 Prag :=
1174 Make_Pragma (Loc,
1175 Pragma_Identifier =>
1176 Make_Identifier (Sloc (Ident), P_Name),
1177 Pragma_Argument_Associations => New_List (
1178 Make_Pragma_Argument_Association (Sloc (Ident),
1179 Expression => New_Occurrence_Of (Ent, Sloc (Ident)))));
1181 Set_From_Aspect_Specification (Prag, True);
1182 Set_Corresponding_Aspect (Prag, ASN);
1183 Set_Aspect_Rep_Item (ASN, Prag);
1184 Set_Is_Delayed_Aspect (Prag);
1185 Set_Parent (Prag, ASN);
1186 end if;
1187 end Make_Pragma_From_Boolean_Aspect;
1189 -- Local variables
1191 A_Id : Aspect_Id;
1192 ASN : Node_Id;
1193 Ritem : Node_Id;
1195 -- Start of processing for Analyze_Aspects_At_Freeze_Point
1197 begin
1198 -- Must be visible in current scope, but if this is a type from a nested
1199 -- package it may be frozen from an object declaration in the enclosing
1200 -- scope, so install the package declarations to complete the analysis
1201 -- of the aspects, if any. If the package itself is frozen the type will
1202 -- have been frozen as well.
1204 if not Scope_Within_Or_Same (Current_Scope, Scope (E)) then
1205 if Is_Type (E) and then From_Nested_Package (E) then
1206 declare
1207 Pack : constant Entity_Id := Scope (E);
1209 begin
1210 Push_Scope (Pack);
1211 Install_Visible_Declarations (Pack);
1212 Install_Private_Declarations (Pack);
1213 Analyze_Aspects_At_Freeze_Point (E);
1215 if Is_Private_Type (E)
1216 and then Present (Full_View (E))
1217 then
1218 Analyze_Aspects_At_Freeze_Point (Full_View (E));
1219 end if;
1221 End_Package_Scope (Pack);
1222 return;
1223 end;
1225 -- Aspects from other entities in different contexts are analyzed
1226 -- elsewhere.
1228 else
1229 return;
1230 end if;
1231 end if;
1233 -- Look for aspect specification entries for this entity
1235 ASN := First_Rep_Item (E);
1236 while Present (ASN) loop
1237 if Nkind (ASN) = N_Aspect_Specification then
1238 exit when Entity (ASN) /= E;
1240 if Is_Delayed_Aspect (ASN) then
1241 A_Id := Get_Aspect_Id (ASN);
1243 case A_Id is
1245 -- For aspects whose expression is an optional Boolean, make
1246 -- the corresponding pragma at the freeze point.
1248 when Boolean_Aspects
1249 | Library_Unit_Aspects
1251 -- Aspects Export and Import require special handling.
1252 -- Both are by definition Boolean and may benefit from
1253 -- forward references, however their expressions are
1254 -- treated as static. In addition, the syntax of their
1255 -- corresponding pragmas requires extra "pieces" which
1256 -- may also contain forward references. To account for
1257 -- all of this, the corresponding pragma is created by
1258 -- Analyze_Aspect_Export_Import, but is not analyzed as
1259 -- the complete analysis must happen now.
1261 -- Aspect Full_Access_Only must be analyzed last so that
1262 -- aspects Volatile and Atomic, if any, are analyzed.
1264 -- Skip creation of pragma Preelaborable_Initialization
1265 -- in the case where the aspect has an expression,
1266 -- because the pragma is only needed for setting flag
1267 -- Known_To_Have_Preelab_Init, which is set by other
1268 -- means following resolution of the aspect expression.
1270 if A_Id not in Aspect_Export
1271 | Aspect_Full_Access_Only
1272 | Aspect_Import
1273 and then (A_Id /= Aspect_Preelaborable_Initialization
1274 or else No (Expression (ASN)))
1275 then
1276 Make_Pragma_From_Boolean_Aspect (ASN);
1277 end if;
1279 -- Special handling for aspects that don't correspond to
1280 -- pragmas/attributes.
1282 when Aspect_Default_Value
1283 | Aspect_Default_Component_Value
1285 -- Do not inherit aspect for anonymous base type of a
1286 -- scalar or array type, because they apply to the first
1287 -- subtype of the type, and will be processed when that
1288 -- first subtype is frozen.
1290 if Is_Derived_Type (E)
1291 and then not Comes_From_Source (E)
1292 and then E /= First_Subtype (E)
1293 then
1294 null;
1295 else
1296 Analyze_Aspect_Default_Value (ASN);
1297 end if;
1299 -- Ditto for iterator aspects, because the corresponding
1300 -- attributes may not have been analyzed yet.
1302 when Aspect_Constant_Indexing
1303 | Aspect_Default_Iterator
1304 | Aspect_Iterator_Element
1305 | Aspect_Variable_Indexing
1307 Analyze (Expression (ASN));
1309 if Etype (Expression (ASN)) = Any_Type then
1310 Error_Msg_NE
1311 ("\aspect must be fully defined before & is frozen",
1312 ASN, E);
1313 end if;
1315 when Aspect_Integer_Literal
1316 | Aspect_Real_Literal
1317 | Aspect_String_Literal
1319 Validate_Literal_Aspect (E, ASN);
1321 when Aspect_Iterable =>
1322 Validate_Iterable_Aspect (E, ASN);
1324 when Aspect_Designated_Storage_Model =>
1325 Analyze_And_Resolve (Expression (ASN));
1327 if not Is_Entity_Name (Expression (ASN))
1328 or else not Is_Object (Entity (Expression (ASN)))
1329 or else
1330 No (Find_Aspect (Etype (Expression (ASN)),
1331 Aspect_Storage_Model_Type))
1332 then
1333 Error_Msg_N
1334 ("must specify name of stand-alone object of type "
1335 & "with aspect Storage_Model_Type",
1336 Expression (ASN));
1338 -- Set access type's Associated_Storage_Pool to denote
1339 -- the Storage_Model_Type object given for the aspect
1340 -- (even though that isn't actually an Ada storage pool).
1342 else
1343 Set_Associated_Storage_Pool
1344 (E, Entity (Expression (ASN)));
1345 end if;
1347 when Aspect_Storage_Model_Type =>
1348 Validate_Storage_Model_Type_Aspect (E, ASN);
1350 when Aspect_Aggregate =>
1351 null;
1353 when others =>
1354 null;
1355 end case;
1357 Ritem := Aspect_Rep_Item (ASN);
1359 if Present (Ritem) then
1360 Analyze (Ritem);
1361 end if;
1362 end if;
1363 end if;
1365 Next_Rep_Item (ASN);
1366 end loop;
1368 -- Make a second pass for a Full_Access_Only entry
1370 ASN := First_Rep_Item (E);
1371 while Present (ASN) loop
1372 if Nkind (ASN) = N_Aspect_Specification then
1373 exit when Entity (ASN) /= E;
1375 if Get_Aspect_Id (ASN) = Aspect_Full_Access_Only then
1376 Make_Pragma_From_Boolean_Aspect (ASN);
1377 Ritem := Aspect_Rep_Item (ASN);
1378 if Present (Ritem) then
1379 Analyze (Ritem);
1380 end if;
1381 end if;
1382 end if;
1384 Next_Rep_Item (ASN);
1385 end loop;
1387 if In_Instance
1388 and then E /= Base_Type (E)
1389 and then Is_First_Subtype (E)
1390 then
1391 Inherit_Rep_Item_Chain (Base_Type (E), E);
1392 end if;
1393 end Analyze_Aspects_At_Freeze_Point;
1395 -----------------------------------
1396 -- Analyze_Aspect_Specifications --
1397 -----------------------------------
1399 procedure Analyze_Aspect_Specifications (N : Node_Id; E : Entity_Id) is
1400 pragma Assert (Present (E));
1402 procedure Decorate (Asp : Node_Id; Prag : Node_Id);
1403 -- Establish linkages between an aspect and its corresponding pragma
1405 procedure Insert_Pragma
1406 (Prag : Node_Id;
1407 Is_Instance : Boolean := False);
1408 -- Subsidiary to the analysis of aspects
1409 -- Abstract_State
1410 -- Attach_Handler
1411 -- Contract_Cases
1412 -- Depends
1413 -- Exceptional_Cases
1414 -- Ghost
1415 -- Global
1416 -- Initial_Condition
1417 -- Initializes
1418 -- Post
1419 -- Pre
1420 -- Refined_Depends
1421 -- Refined_Global
1422 -- Refined_State
1423 -- SPARK_Mode
1424 -- Subprogram_Variant
1425 -- Warnings
1426 -- Insert pragma Prag such that it mimics the placement of a source
1427 -- pragma of the same kind. Flag Is_Generic should be set when the
1428 -- context denotes a generic instance.
1430 function Relocate_Expression (Source : Node_Id) return Node_Id;
1431 -- Outside of a generic this function is equivalent to Relocate_Node.
1432 -- Inside a generic it is an identity function, because Relocate_Node
1433 -- would create a new node that is not associated with the generic
1434 -- template. This association is needed to save references to entities
1435 -- that are global to the generic (and might be not visible from where
1436 -- the generic is instantiated).
1438 -- Inside a generic the original tree is shared between aspect and
1439 -- a corresponding pragma (or an attribute definition clause). This
1440 -- parallels what is done in sem_prag.adb (see Get_Argument).
1442 --------------
1443 -- Decorate --
1444 --------------
1446 procedure Decorate (Asp : Node_Id; Prag : Node_Id) is
1447 begin
1448 Set_Aspect_Rep_Item (Asp, Prag);
1449 Set_Corresponding_Aspect (Prag, Asp);
1450 Set_From_Aspect_Specification (Prag);
1451 Set_Parent (Prag, Asp);
1452 end Decorate;
1454 -------------------
1455 -- Insert_Pragma --
1456 -------------------
1458 procedure Insert_Pragma
1459 (Prag : Node_Id;
1460 Is_Instance : Boolean := False)
1462 Aux : Node_Id;
1463 Decl : Node_Id;
1464 Decls : List_Id;
1465 Def : Node_Id;
1466 Inserted : Boolean := False;
1468 begin
1469 -- When the aspect appears on an entry, package, protected unit,
1470 -- subprogram, or task unit body, insert the generated pragma at the
1471 -- top of the body declarations to emulate the behavior of a source
1472 -- pragma.
1474 -- package body Pack with Aspect is
1476 -- package body Pack is
1477 -- pragma Prag;
1479 if Nkind (N) in N_Entry_Body
1480 | N_Package_Body
1481 | N_Protected_Body
1482 | N_Subprogram_Body
1483 | N_Task_Body
1484 then
1485 Decls := Declarations (N);
1487 if No (Decls) then
1488 Decls := New_List;
1489 Set_Declarations (N, Decls);
1490 end if;
1492 Prepend_To (Decls, Prag);
1494 -- When the aspect is associated with a [generic] package declaration
1495 -- insert the generated pragma at the top of the visible declarations
1496 -- to emulate the behavior of a source pragma.
1498 -- package Pack with Aspect is
1500 -- package Pack is
1501 -- pragma Prag;
1503 elsif Nkind (N) in N_Generic_Package_Declaration
1504 | N_Package_Declaration
1505 then
1506 Decls := Visible_Declarations (Specification (N));
1508 if No (Decls) then
1509 Decls := New_List;
1510 Set_Visible_Declarations (Specification (N), Decls);
1511 end if;
1513 -- The visible declarations of a generic instance have the
1514 -- following structure:
1516 -- <renamings of generic formals>
1517 -- <renamings of internally-generated spec and body>
1518 -- <first source declaration>
1520 -- Insert the pragma before the first source declaration by
1521 -- skipping the instance "header" to ensure proper visibility of
1522 -- all formals.
1524 if Is_Instance then
1525 Decl := First (Decls);
1526 while Present (Decl) loop
1527 if Comes_From_Source (Decl) then
1528 Insert_Before (Decl, Prag);
1529 Inserted := True;
1530 exit;
1531 else
1532 Next (Decl);
1533 end if;
1534 end loop;
1536 -- The pragma is placed after the instance "header"
1538 if not Inserted then
1539 Append_To (Decls, Prag);
1540 end if;
1542 -- Otherwise this is not a generic instance
1544 else
1545 Prepend_To (Decls, Prag);
1546 end if;
1548 -- When the aspect is associated with a protected unit declaration,
1549 -- insert the generated pragma at the top of the visible declarations
1550 -- the emulate the behavior of a source pragma.
1552 -- protected [type] Prot with Aspect is
1554 -- protected [type] Prot is
1555 -- pragma Prag;
1557 elsif Nkind (N) = N_Protected_Type_Declaration then
1558 Def := Protected_Definition (N);
1560 if No (Def) then
1561 Def :=
1562 Make_Protected_Definition (Sloc (N),
1563 Visible_Declarations => New_List,
1564 End_Label => Empty);
1566 Set_Protected_Definition (N, Def);
1567 end if;
1569 Decls := Visible_Declarations (Def);
1571 if No (Decls) then
1572 Decls := New_List;
1573 Set_Visible_Declarations (Def, Decls);
1574 end if;
1576 Prepend_To (Decls, Prag);
1578 -- When the aspect is associated with a task unit declaration, insert
1579 -- insert the generated pragma at the top of the visible declarations
1580 -- the emulate the behavior of a source pragma.
1582 -- task [type] Prot with Aspect is
1584 -- task [type] Prot is
1585 -- pragma Prag;
1587 elsif Nkind (N) = N_Task_Type_Declaration then
1588 Def := Task_Definition (N);
1590 if No (Def) then
1591 Def :=
1592 Make_Task_Definition (Sloc (N),
1593 Visible_Declarations => New_List,
1594 End_Label => Empty);
1596 Set_Task_Definition (N, Def);
1597 end if;
1599 Decls := Visible_Declarations (Def);
1601 if No (Decls) then
1602 Decls := New_List;
1603 Set_Visible_Declarations (Def, Decls);
1604 end if;
1606 Prepend_To (Decls, Prag);
1608 -- When the context is a library unit, the pragma is added to the
1609 -- Pragmas_After list.
1611 elsif Nkind (Parent (N)) = N_Compilation_Unit then
1612 Aux := Aux_Decls_Node (Parent (N));
1614 if No (Pragmas_After (Aux)) then
1615 Set_Pragmas_After (Aux, New_List);
1616 end if;
1618 Prepend (Prag, Pragmas_After (Aux));
1620 -- Default, the pragma is inserted after the context
1622 else
1623 Insert_After (N, Prag);
1624 end if;
1625 end Insert_Pragma;
1627 -------------------------
1628 -- Relocate_Expression --
1629 -------------------------
1631 function Relocate_Expression (Source : Node_Id) return Node_Id is
1632 begin
1633 if Inside_A_Generic then
1634 return Source;
1635 else
1636 return Atree.Relocate_Node (Source);
1637 end if;
1638 end Relocate_Expression;
1640 -- Local variables
1642 Aspect : Node_Id;
1643 Aitem : Node_Id := Empty;
1644 Ent : Node_Id;
1646 L : constant List_Id := Aspect_Specifications (N);
1647 pragma Assert (Present (L));
1649 Ins_Node : Node_Id := N;
1650 -- Insert pragmas/attribute definition clause after this node when no
1651 -- delayed analysis is required.
1653 -- Start of processing for Analyze_Aspect_Specifications
1655 begin
1656 -- The general processing involves building an attribute definition
1657 -- clause or a pragma node that corresponds to the aspect. Then in order
1658 -- to delay the evaluation of this aspect to the freeze point, we attach
1659 -- the corresponding pragma/attribute definition clause to the aspect
1660 -- specification node, which is then placed in the Rep Item chain. In
1661 -- this case we mark the entity by setting the flag Has_Delayed_Aspects
1662 -- and we evaluate the rep item at the freeze point. When the aspect
1663 -- doesn't have a corresponding pragma/attribute definition clause, then
1664 -- its analysis is simply delayed at the freeze point.
1666 -- Some special cases don't require delay analysis, thus the aspect is
1667 -- analyzed right now.
1669 -- Note that there is a special handling for Pre, Post, Test_Case,
1670 -- Contract_Cases, Exceptional_Cases and Subprogram_Variant aspects.
1671 -- In these cases, we do not have to worry about delay issues, since the
1672 -- pragmas themselves deal with delay of visibility for the expression
1673 -- analysis. Thus, we just insert the pragma after the node N.
1675 -- Loop through aspects
1677 Aspect := First (L);
1678 Aspect_Loop : while Present (Aspect) loop
1679 Analyze_One_Aspect : declare
1681 Aspect_Exit : exception;
1682 -- This exception is used to exit aspect processing completely. It
1683 -- is used when an error is detected, and no further processing is
1684 -- required. It is also used if an earlier error has left the tree
1685 -- in a state where the aspect should not be processed.
1687 Expr : constant Node_Id := Expression (Aspect);
1688 Id : constant Node_Id := Identifier (Aspect);
1689 Loc : constant Source_Ptr := Sloc (Aspect);
1690 Nam : constant Name_Id := Chars (Id);
1691 A_Id : constant Aspect_Id := Get_Aspect_Id (Nam);
1692 Anod : Node_Id;
1694 Delay_Required : Boolean;
1695 -- Set False if delay is not required
1697 Eloc : Source_Ptr := No_Location;
1698 -- Source location of expression, modified when we split PPC's. It
1699 -- is set below when Expr is present.
1701 procedure Analyze_Aspect_Convention;
1702 -- Perform analysis of aspect Convention
1704 procedure Analyze_Aspect_Disable_Controlled;
1705 -- Perform analysis of aspect Disable_Controlled
1707 procedure Analyze_Aspect_Export_Import;
1708 -- Perform analysis of aspects Export or Import
1710 procedure Analyze_Aspect_External_Link_Name;
1711 -- Perform analysis of aspects External_Name or Link_Name
1713 procedure Analyze_Aspect_Implicit_Dereference;
1714 -- Perform analysis of the Implicit_Dereference aspects
1716 procedure Analyze_Aspect_Relaxed_Initialization;
1717 -- Perform analysis of aspect Relaxed_Initialization
1719 procedure Analyze_Aspect_Yield;
1720 -- Perform analysis of aspect Yield
1722 procedure Analyze_Aspect_Static;
1723 -- Ada 2022 (AI12-0075): Perform analysis of aspect Static
1725 procedure Check_Expr_Is_OK_Static_Expression
1726 (Expr : Node_Id;
1727 Typ : Entity_Id := Empty);
1728 -- Check the specified expression Expr to make sure that it is a
1729 -- static expression of the given type (i.e. it will be analyzed
1730 -- and resolved using this type, which can be any valid argument
1731 -- to Resolve, e.g. Any_Integer is OK). If not, give an error
1732 -- and raise Aspect_Exit. If Typ is left Empty, then any static
1733 -- expression is allowed. Includes checking that the expression
1734 -- does not raise Constraint_Error.
1736 function Directly_Specified
1737 (Id : Entity_Id; A : Aspect_Id) return Boolean;
1738 -- Returns True if the given aspect is directly (as opposed to
1739 -- via any form of inheritance) specified for the given entity.
1741 function Make_Aitem_Pragma
1742 (Pragma_Argument_Associations : List_Id;
1743 Pragma_Name : Name_Id) return Node_Id;
1744 -- This is a wrapper for Make_Pragma used for converting aspects
1745 -- to pragmas. It takes care of Sloc (set from Loc) and building
1746 -- the pragma identifier from the given name. In addition the
1747 -- flags Class_Present and Split_PPC are set from the aspect
1748 -- node, as well as Is_Ignored. This routine also sets the
1749 -- From_Aspect_Specification in the resulting pragma node to
1750 -- True, and sets Corresponding_Aspect to point to the aspect.
1751 -- The resulting pragma is assigned to Aitem.
1753 -------------------------------
1754 -- Analyze_Aspect_Convention --
1755 -------------------------------
1757 procedure Analyze_Aspect_Convention is
1758 Conv : Node_Id;
1759 Dummy_1 : Node_Id;
1760 Dummy_2 : Node_Id;
1761 Dummy_3 : Node_Id;
1762 Expo : Node_Id;
1763 Imp : Node_Id;
1765 begin
1766 -- Obtain all interfacing aspects that apply to the related
1767 -- entity.
1769 Get_Interfacing_Aspects
1770 (Iface_Asp => Aspect,
1771 Conv_Asp => Dummy_1,
1772 EN_Asp => Dummy_2,
1773 Expo_Asp => Expo,
1774 Imp_Asp => Imp,
1775 LN_Asp => Dummy_3,
1776 Do_Checks => True);
1778 -- The related entity is subject to aspect Export or Import.
1779 -- Do not process Convention now because it must be analysed
1780 -- as part of Export or Import.
1782 if Present (Expo) or else Present (Imp) then
1783 return;
1785 -- Otherwise Convention appears by itself
1787 else
1788 -- The aspect specifies a particular convention
1790 if Present (Expr) then
1791 Conv := New_Copy_Tree (Expr);
1793 -- Otherwise assume convention Ada
1795 else
1796 Conv := Make_Identifier (Loc, Name_Ada);
1797 end if;
1799 -- Generate:
1800 -- pragma Convention (<Conv>, <E>);
1802 Aitem := Make_Aitem_Pragma
1803 (Pragma_Name => Name_Convention,
1804 Pragma_Argument_Associations => New_List (
1805 Make_Pragma_Argument_Association (Loc,
1806 Expression => Conv),
1807 Make_Pragma_Argument_Association (Loc,
1808 Expression => New_Occurrence_Of (E, Loc))));
1810 Decorate (Aspect, Aitem);
1811 Insert_Pragma (Aitem);
1812 end if;
1813 end Analyze_Aspect_Convention;
1815 ---------------------------------------
1816 -- Analyze_Aspect_Disable_Controlled --
1817 ---------------------------------------
1819 procedure Analyze_Aspect_Disable_Controlled is
1820 begin
1821 -- The aspect applies only to controlled records
1823 if not (Ekind (E) = E_Record_Type
1824 and then Is_Controlled_Active (E))
1825 then
1826 Error_Msg_N
1827 ("aspect % requires controlled record type", Aspect);
1828 return;
1829 end if;
1831 -- Preanalyze the expression (if any) when the aspect resides
1832 -- in a generic unit.
1834 if Inside_A_Generic then
1835 if Present (Expr) then
1836 Preanalyze_And_Resolve (Expr, Any_Boolean);
1837 end if;
1839 -- Otherwise the aspect resides in a nongeneric context
1841 else
1842 -- A controlled record type loses its controlled semantics
1843 -- when the expression statically evaluates to True.
1845 if Present (Expr) then
1846 Analyze_And_Resolve (Expr, Any_Boolean);
1848 if Is_OK_Static_Expression (Expr) then
1849 if Is_True (Static_Boolean (Expr)) then
1850 Set_Disable_Controlled (E);
1851 end if;
1853 -- Otherwise the expression is not static
1855 else
1856 Error_Msg_N
1857 ("expression of aspect % must be static", Aspect);
1858 end if;
1860 -- Otherwise the aspect appears without an expression and
1861 -- defaults to True.
1863 else
1864 Set_Disable_Controlled (E);
1865 end if;
1866 end if;
1867 end Analyze_Aspect_Disable_Controlled;
1869 ----------------------------------
1870 -- Analyze_Aspect_Export_Import --
1871 ----------------------------------
1873 procedure Analyze_Aspect_Export_Import is
1874 Dummy_1 : Node_Id;
1875 Dummy_2 : Node_Id;
1876 Dummy_3 : Node_Id;
1877 Expo : Node_Id;
1878 Imp : Node_Id;
1880 begin
1881 -- Obtain all interfacing aspects that apply to the related
1882 -- entity.
1884 Get_Interfacing_Aspects
1885 (Iface_Asp => Aspect,
1886 Conv_Asp => Dummy_1,
1887 EN_Asp => Dummy_2,
1888 Expo_Asp => Expo,
1889 Imp_Asp => Imp,
1890 LN_Asp => Dummy_3,
1891 Do_Checks => True);
1893 -- The related entity cannot be subject to both aspects Export
1894 -- and Import.
1896 if Present (Expo) and then Present (Imp) then
1897 Error_Msg_N
1898 ("incompatible interfacing aspects given for &", E);
1899 Error_Msg_Sloc := Sloc (Expo);
1900 Error_Msg_N ("\aspect Export #", E);
1901 Error_Msg_Sloc := Sloc (Imp);
1902 Error_Msg_N ("\aspect Import #", E);
1903 end if;
1905 -- A variable is most likely modified from the outside. Take
1906 -- the optimistic approach to avoid spurious errors.
1908 if Ekind (E) = E_Variable then
1909 Set_Never_Set_In_Source (E, False);
1910 end if;
1912 -- Resolve the expression of an Import or Export here, and
1913 -- require it to be of type Boolean and static. This is not
1914 -- quite right, because in general this should be delayed,
1915 -- but that seems tricky for these, because normally Boolean
1916 -- aspects are replaced with pragmas at the freeze point in
1917 -- Make_Pragma_From_Boolean_Aspect.
1919 if No (Expr)
1920 or else Is_True (Static_Boolean (Expr))
1921 then
1922 if A_Id = Aspect_Import then
1923 Set_Has_Completion (E);
1924 Set_Is_Imported (E);
1926 -- An imported object cannot be explicitly initialized
1928 if Nkind (N) = N_Object_Declaration
1929 and then Present (Expression (N))
1930 then
1931 Error_Msg_N
1932 ("imported entities cannot be initialized "
1933 & "(RM B.1(24))", Expression (N));
1934 end if;
1936 else
1937 pragma Assert (A_Id = Aspect_Export);
1938 Set_Is_Exported (E);
1939 end if;
1941 -- Create the proper form of pragma Export or Import taking
1942 -- into account Conversion, External_Name, and Link_Name.
1944 Aitem := Build_Export_Import_Pragma (Aspect, E);
1946 -- Otherwise the expression is either False or erroneous. There
1947 -- is no corresponding pragma.
1949 else
1950 Aitem := Empty;
1951 end if;
1952 end Analyze_Aspect_Export_Import;
1954 ---------------------------------------
1955 -- Analyze_Aspect_External_Link_Name --
1956 ---------------------------------------
1958 procedure Analyze_Aspect_External_Link_Name is
1959 Dummy_1 : Node_Id;
1960 Dummy_2 : Node_Id;
1961 Dummy_3 : Node_Id;
1962 Expo : Node_Id;
1963 Imp : Node_Id;
1965 begin
1966 -- Obtain all interfacing aspects that apply to the related
1967 -- entity.
1969 Get_Interfacing_Aspects
1970 (Iface_Asp => Aspect,
1971 Conv_Asp => Dummy_1,
1972 EN_Asp => Dummy_2,
1973 Expo_Asp => Expo,
1974 Imp_Asp => Imp,
1975 LN_Asp => Dummy_3,
1976 Do_Checks => True);
1978 -- Ensure that aspect External_Name applies to aspect Export or
1979 -- Import.
1981 if A_Id = Aspect_External_Name then
1982 if No (Expo) and then No (Imp) then
1983 Error_Msg_N
1984 ("aspect External_Name requires aspect Import or "
1985 & "Export", Aspect);
1986 end if;
1988 -- Otherwise ensure that aspect Link_Name applies to aspect
1989 -- Export or Import.
1991 else
1992 pragma Assert (A_Id = Aspect_Link_Name);
1993 if No (Expo) and then No (Imp) then
1994 Error_Msg_N
1995 ("aspect Link_Name requires aspect Import or Export",
1996 Aspect);
1997 end if;
1998 end if;
1999 end Analyze_Aspect_External_Link_Name;
2001 -----------------------------------------
2002 -- Analyze_Aspect_Implicit_Dereference --
2003 -----------------------------------------
2005 procedure Analyze_Aspect_Implicit_Dereference is
2006 begin
2007 if not Is_Type (E) or else not Has_Discriminants (E) then
2008 Error_Msg_N
2009 ("aspect must apply to a type with discriminants", Expr);
2011 elsif not Is_Entity_Name (Expr) then
2012 Error_Msg_N
2013 ("aspect must name a discriminant of current type", Expr);
2015 else
2016 -- Discriminant type be an anonymous access type or an
2017 -- anonymous access to subprogram.
2019 -- Missing synchronized types???
2021 declare
2022 Disc : Entity_Id := First_Discriminant (E);
2023 begin
2024 while Present (Disc) loop
2025 if Chars (Expr) = Chars (Disc)
2026 and then Ekind (Etype (Disc)) in
2027 E_Anonymous_Access_Subprogram_Type |
2028 E_Anonymous_Access_Type
2029 then
2030 Set_Has_Implicit_Dereference (E);
2031 Set_Has_Implicit_Dereference (Disc);
2032 exit;
2033 end if;
2035 Next_Discriminant (Disc);
2036 end loop;
2038 -- Error if no proper access discriminant
2040 if Present (Disc) then
2041 -- For a type extension, check whether parent has
2042 -- a reference discriminant, to verify that use is
2043 -- proper.
2045 if Is_Derived_Type (E)
2046 and then Has_Discriminants (Etype (E))
2047 then
2048 declare
2049 Parent_Disc : constant Entity_Id :=
2050 Get_Reference_Discriminant (Etype (E));
2051 begin
2052 if Present (Parent_Disc)
2053 and then Corresponding_Discriminant (Disc) /=
2054 Parent_Disc
2055 then
2056 Error_Msg_N
2057 ("reference discriminant does not match "
2058 & "discriminant of parent type", Expr);
2059 end if;
2060 end;
2061 end if;
2063 else
2064 Error_Msg_NE
2065 ("not an access discriminant of&", Expr, E);
2066 end if;
2067 end;
2068 end if;
2070 end Analyze_Aspect_Implicit_Dereference;
2072 -------------------------------------------
2073 -- Analyze_Aspect_Relaxed_Initialization --
2074 -------------------------------------------
2076 procedure Analyze_Aspect_Relaxed_Initialization is
2077 procedure Analyze_Relaxed_Parameter
2078 (Subp_Id : Entity_Id;
2079 Param : Node_Id;
2080 Seen : in out Elist_Id);
2081 -- Analyze parameter that appears in the expression of the
2082 -- aspect Relaxed_Initialization.
2084 -------------------------------
2085 -- Analyze_Relaxed_Parameter --
2086 -------------------------------
2088 procedure Analyze_Relaxed_Parameter
2089 (Subp_Id : Entity_Id;
2090 Param : Node_Id;
2091 Seen : in out Elist_Id)
2093 begin
2094 -- Set name of the aspect for error messages
2095 Error_Msg_Name_1 := Nam;
2097 -- The relaxed parameter is a formal parameter
2099 if Nkind (Param) in N_Identifier | N_Expanded_Name then
2100 Analyze (Param);
2102 declare
2103 Item : constant Entity_Id := Entity (Param);
2104 begin
2105 -- It must be a formal of the analyzed subprogram
2107 if Scope (Item) = Subp_Id then
2109 pragma Assert (Is_Formal (Item));
2111 -- It must not have scalar or access type
2113 if Is_Elementary_Type (Etype (Item)) then
2114 Error_Msg_N ("illegal aspect % item", Param);
2115 Error_Msg_N
2116 ("\item must not have elementary type", Param);
2117 end if;
2119 -- Detect duplicated items
2121 if Contains (Seen, Item) then
2122 Error_Msg_N ("duplicate aspect % item", Param);
2123 else
2124 Append_New_Elmt (Item, Seen);
2125 end if;
2126 else
2127 Error_Msg_N ("illegal aspect % item", Param);
2128 end if;
2129 end;
2131 -- The relaxed parameter is the function's Result attribute
2133 elsif Is_Attribute_Result (Param) then
2134 Analyze (Param);
2136 declare
2137 Pref : constant Node_Id := Prefix (Param);
2138 begin
2139 if Present (Pref)
2140 and then
2141 Nkind (Pref) in N_Identifier | N_Expanded_Name
2142 and then
2143 Entity (Pref) = Subp_Id
2144 then
2145 -- Function result must not have scalar or access
2146 -- type.
2148 if Is_Elementary_Type (Etype (Pref)) then
2149 Error_Msg_N ("illegal aspect % item", Param);
2150 Error_Msg_N
2151 ("\function result must not have elementary"
2152 & " type", Param);
2153 end if;
2155 -- Detect duplicated items
2157 if Contains (Seen, Subp_Id) then
2158 Error_Msg_N ("duplicate aspect % item", Param);
2159 else
2160 Append_New_Elmt (Entity (Pref), Seen);
2161 end if;
2163 else
2164 Error_Msg_N ("illegal aspect % item", Param);
2165 end if;
2166 end;
2167 else
2168 Error_Msg_N ("illegal aspect % item", Param);
2169 end if;
2170 end Analyze_Relaxed_Parameter;
2172 -- Local variables
2174 Seen : Elist_Id := No_Elist;
2175 -- Items that appear in the relaxed initialization aspect
2176 -- expression of a subprogram; for detecting duplicates.
2178 Restore_Scope : Boolean;
2179 -- Will be set to True if we need to restore the scope table
2180 -- after analyzing the aspect expression.
2182 Prev_Id : Entity_Id;
2184 -- Start of processing for Analyze_Aspect_Relaxed_Initialization
2186 begin
2187 -- Set name of the aspect for error messages
2188 Error_Msg_Name_1 := Nam;
2190 -- Annotation of a type; no aspect expression is allowed.
2191 -- For a private type, the aspect must be attached to the
2192 -- partial view.
2194 -- ??? Once the exact rule for this aspect is ready, we will
2195 -- likely reject concurrent types, etc., so let's keep the code
2196 -- for types and variable separate.
2198 if Is_First_Subtype (E) then
2199 Prev_Id := Incomplete_Or_Partial_View (E);
2200 if Present (Prev_Id) then
2202 -- Aspect may appear on the full view of an incomplete
2203 -- type because the incomplete declaration cannot have
2204 -- any aspects.
2206 if Ekind (Prev_Id) = E_Incomplete_Type then
2207 null;
2208 else
2209 Error_Msg_N ("aspect % must apply to partial view", N);
2210 end if;
2212 elsif Present (Expr) then
2213 Error_Msg_N ("illegal aspect % expression", Expr);
2214 end if;
2216 -- Annotation of a variable; no aspect expression is allowed
2218 elsif Ekind (E) = E_Variable then
2219 if Present (Expr) then
2220 Error_Msg_N ("illegal aspect % expression", Expr);
2221 end if;
2223 -- Annotation of a constant; no aspect expression is allowed.
2224 -- For a deferred constant, the aspect must be attached to the
2225 -- partial view.
2227 elsif Ekind (E) = E_Constant then
2228 if Present (Incomplete_Or_Partial_View (E)) then
2229 Error_Msg_N
2230 ("aspect % must apply to deferred constant", N);
2232 elsif Present (Expr) then
2233 Error_Msg_N ("illegal aspect % expression", Expr);
2234 end if;
2236 -- Annotation of a subprogram; aspect expression is required
2238 elsif Is_Subprogram_Or_Entry (E)
2239 or else Is_Generic_Subprogram (E)
2240 then
2241 if Present (Expr) then
2243 -- If we analyze subprogram body that acts as its own
2244 -- spec, then the subprogram itself and its formals are
2245 -- already installed; otherwise, we need to install them,
2246 -- as they must be visible when analyzing the aspect
2247 -- expression.
2249 if In_Open_Scopes (E) then
2250 Restore_Scope := False;
2251 else
2252 Restore_Scope := True;
2253 Push_Scope (E);
2255 -- Only formals of the subprogram itself can appear
2256 -- in Relaxed_Initialization aspect expression, not
2257 -- formals of the enclosing generic unit. (This is
2258 -- different than in Precondition or Depends aspects,
2259 -- where both kinds of formals are allowed.)
2261 Install_Formals (E);
2262 end if;
2264 -- Aspect expression is either an aggregate with list of
2265 -- parameters (and possibly the Result attribute for a
2266 -- function).
2268 if Nkind (Expr) = N_Aggregate then
2270 -- Component associations in the aggregate must be a
2271 -- parameter name followed by a static boolean
2272 -- expression.
2274 if Present (Component_Associations (Expr)) then
2275 declare
2276 Assoc : Node_Id :=
2277 First (Component_Associations (Expr));
2278 begin
2279 while Present (Assoc) loop
2280 if List_Length (Choices (Assoc)) = 1 then
2281 Analyze_Relaxed_Parameter
2282 (E, First (Choices (Assoc)), Seen);
2284 if Inside_A_Generic then
2285 Preanalyze_And_Resolve
2286 (Expression (Assoc), Any_Boolean);
2287 else
2288 Analyze_And_Resolve
2289 (Expression (Assoc), Any_Boolean);
2290 end if;
2292 if not Is_OK_Static_Expression
2293 (Expression (Assoc))
2294 then
2295 Error_Msg_Name_1 := Nam;
2296 Error_Msg_N
2297 ("expression of aspect % " &
2298 "must be static", Aspect);
2299 end if;
2301 else
2302 Error_Msg_Name_1 := Nam;
2303 Error_Msg_N
2304 ("illegal aspect % expression", Expr);
2305 end if;
2306 Next (Assoc);
2307 end loop;
2308 end;
2309 end if;
2311 -- Expressions of the aggregate are parameter names
2313 if Present (Expressions (Expr)) then
2314 declare
2315 Param : Node_Id := First (Expressions (Expr));
2317 begin
2318 while Present (Param) loop
2319 Analyze_Relaxed_Parameter (E, Param, Seen);
2320 Next (Param);
2321 end loop;
2322 end;
2323 end if;
2325 -- Mark the aggregate expression itself as analyzed;
2326 -- its subexpressions were marked when they themselves
2327 -- were analyzed.
2329 Set_Analyzed (Expr);
2331 -- Otherwise, it is a single name of a subprogram
2332 -- parameter (or possibly the Result attribute for
2333 -- a function).
2335 else
2336 Analyze_Relaxed_Parameter (E, Expr, Seen);
2337 end if;
2339 if Restore_Scope then
2340 End_Scope;
2341 end if;
2342 else
2343 Error_Msg_N ("missing expression for aspect %", N);
2344 end if;
2346 else
2347 Error_Msg_N ("inappropriate entity for aspect %", E);
2348 end if;
2349 end Analyze_Aspect_Relaxed_Initialization;
2351 ---------------------------
2352 -- Analyze_Aspect_Static --
2353 ---------------------------
2355 procedure Analyze_Aspect_Static is
2356 function Has_Convention_Intrinsic (L : List_Id) return Boolean;
2357 -- Return True if L contains a pragma argument association
2358 -- node representing a convention Intrinsic.
2360 ------------------------------
2361 -- Has_Convention_Intrinsic --
2362 ------------------------------
2364 function Has_Convention_Intrinsic
2365 (L : List_Id) return Boolean
2367 Arg : Node_Id := First (L);
2368 begin
2369 while Present (Arg) loop
2370 if Nkind (Arg) = N_Pragma_Argument_Association
2371 and then Chars (Arg) = Name_Convention
2372 and then Chars (Expression (Arg)) = Name_Intrinsic
2373 then
2374 return True;
2375 end if;
2377 Next (Arg);
2378 end loop;
2380 return False;
2381 end Has_Convention_Intrinsic;
2383 Is_Imported_Intrinsic : Boolean;
2385 begin
2386 if Ada_Version < Ada_2022 then
2387 Error_Msg_Ada_2022_Feature ("aspect %", Sloc (Aspect));
2388 return;
2389 end if;
2391 Is_Imported_Intrinsic := Is_Imported (E)
2392 and then
2393 Has_Convention_Intrinsic
2394 (Pragma_Argument_Associations (Import_Pragma (E)));
2396 -- The aspect applies only to expression functions that
2397 -- statisfy the requirements for a static expression function
2398 -- (such as having an expression that is predicate-static) as
2399 -- well as Intrinsic imported functions as a -gnatX extension.
2401 if not Is_Expression_Function (E)
2402 and then
2403 not (All_Extensions_Allowed and then Is_Imported_Intrinsic)
2404 then
2405 if All_Extensions_Allowed then
2406 Error_Msg_N
2407 ("aspect % requires intrinsic or expression function",
2408 Aspect);
2410 elsif Is_Imported_Intrinsic then
2411 Error_Msg_GNAT_Extension
2412 ("aspect % on intrinsic function", Sloc (Aspect),
2413 Is_Core_Extension => True);
2415 else
2416 Error_Msg_N
2417 ("aspect % requires expression function", Aspect);
2418 end if;
2420 return;
2422 -- Ada 2022 (AI12-0075): Check that the function satisfies
2423 -- several requirements of static functions as specified in
2424 -- RM 6.8(5.1-5.8). Note that some of the requirements given
2425 -- there are checked elsewhere.
2427 else
2428 -- The expression of the expression function must be a
2429 -- potentially static expression (RM 2022 6.8(3.2-3.4)).
2430 -- That's checked in Sem_Ch6.Analyze_Expression_Function.
2432 -- The function must not contain any calls to itself, which
2433 -- is checked in Sem_Res.Resolve_Call.
2435 -- Each formal must be of mode in and have a static subtype
2437 declare
2438 Formal : Entity_Id := First_Formal (E);
2439 begin
2440 while Present (Formal) loop
2441 if Ekind (Formal) /= E_In_Parameter then
2442 Error_Msg_N
2443 ("aspect % requires formals of mode IN",
2444 Aspect);
2446 return;
2447 end if;
2449 if not Is_Static_Subtype (Etype (Formal)) then
2450 Error_Msg_N
2451 ("aspect % requires formals with static subtypes",
2452 Aspect);
2454 return;
2455 end if;
2457 Next_Formal (Formal);
2458 end loop;
2459 end;
2461 -- The function's result subtype must be a static subtype
2463 if not Is_Static_Subtype (Etype (E)) then
2464 Error_Msg_N
2465 ("aspect % requires function with result of "
2466 & "a static subtype",
2467 Aspect);
2469 return;
2470 end if;
2472 -- Check that the function does not have any applicable
2473 -- precondition or postcondition expression.
2475 for Asp in Pre_Post_Aspects loop
2476 if Has_Aspect (E, Asp) then
2477 Error_Msg_Name_1 := Aspect_Names (Asp);
2478 Error_Msg_N
2479 ("aspect % is not allowed for a static "
2480 & "expression function",
2481 Find_Aspect (E, Asp));
2483 return;
2484 end if;
2485 end loop;
2487 -- ??? Must check that "for result type R, if the
2488 -- function is a boundary entity for type R (see 7.3.2),
2489 -- no type invariant applies to type R; if R has a
2490 -- component type C, a similar rule applies to C."
2491 end if;
2493 -- When the expression is present, it must be static. If it
2494 -- evaluates to True, the expression function is treated as
2495 -- a static function. Otherwise the aspect appears without
2496 -- an expression and defaults to True.
2498 if Present (Expr) then
2499 -- Preanalyze the expression when the aspect resides in a
2500 -- generic unit. (Is this generic-related code necessary
2501 -- for this aspect? It's modeled on what's done for aspect
2502 -- Disable_Controlled. ???)
2504 if Inside_A_Generic then
2505 Preanalyze_And_Resolve (Expr, Any_Boolean);
2507 -- Otherwise the aspect resides in a nongeneric context
2509 else
2510 Analyze_And_Resolve (Expr, Any_Boolean);
2512 -- Error if the boolean expression is not static
2514 if not Is_OK_Static_Expression (Expr) then
2515 Error_Msg_N
2516 ("expression of aspect % must be static", Aspect);
2517 end if;
2518 end if;
2519 end if;
2520 end Analyze_Aspect_Static;
2522 --------------------------
2523 -- Analyze_Aspect_Yield --
2524 --------------------------
2526 procedure Analyze_Aspect_Yield is
2527 Expr_Value : Boolean := False;
2529 begin
2530 -- Check valid entity for 'Yield
2532 if (Is_Subprogram (E)
2533 or else Is_Generic_Subprogram (E)
2534 or else Is_Entry (E))
2535 and then not Within_Protected_Type (E)
2536 then
2537 null;
2539 elsif Within_Protected_Type (E) then
2540 Error_Msg_N
2541 ("aspect% not applicable to protected operation", Id);
2542 return;
2544 else
2545 Error_Msg_N
2546 ("aspect% only applicable to subprogram and entry "
2547 & "declarations", Id);
2548 return;
2549 end if;
2551 -- Evaluate its static expression (if available); otherwise it
2552 -- defaults to True.
2554 if No (Expr) then
2555 Expr_Value := True;
2557 -- Otherwise it must have a static boolean expression
2559 else
2560 if Inside_A_Generic then
2561 Preanalyze_And_Resolve (Expr, Any_Boolean);
2562 else
2563 Analyze_And_Resolve (Expr, Any_Boolean);
2564 end if;
2566 if Is_OK_Static_Expression (Expr) then
2567 if Is_True (Static_Boolean (Expr)) then
2568 Expr_Value := True;
2569 end if;
2570 else
2571 Error_Msg_N
2572 ("expression of aspect % must be static", Aspect);
2573 end if;
2574 end if;
2576 if Expr_Value then
2577 Set_Has_Yield_Aspect (E);
2578 end if;
2580 -- If the Yield aspect is specified for a dispatching
2581 -- subprogram that inherits the aspect, the specified
2582 -- value shall be confirming.
2584 if Present (Expr)
2585 and then Is_Dispatching_Operation (E)
2586 and then Present (Overridden_Operation (E))
2587 and then Has_Yield_Aspect (Overridden_Operation (E))
2588 /= Is_True (Static_Boolean (Expr))
2589 then
2590 Error_Msg_N ("specification of inherited aspect% can only " &
2591 "confirm parent value", Id);
2592 end if;
2593 end Analyze_Aspect_Yield;
2595 ----------------------------------------
2596 -- Check_Expr_Is_OK_Static_Expression --
2597 ----------------------------------------
2599 procedure Check_Expr_Is_OK_Static_Expression
2600 (Expr : Node_Id;
2601 Typ : Entity_Id := Empty)
2603 begin
2604 if Present (Typ) then
2605 Analyze_And_Resolve (Expr, Typ);
2606 else
2607 Analyze_And_Resolve (Expr);
2608 end if;
2610 -- An expression cannot be considered static if its resolution
2611 -- failed or if it's erroneous. Stop the analysis of the
2612 -- related aspect.
2614 if Etype (Expr) = Any_Type or else Error_Posted (Expr) then
2615 raise Aspect_Exit;
2617 elsif Is_OK_Static_Expression (Expr) then
2618 return;
2620 -- Finally, we have a real error
2622 else
2623 Error_Msg_Name_1 := Nam;
2624 Flag_Non_Static_Expr
2625 ("entity for aspect% must be a static expression",
2626 Expr);
2627 raise Aspect_Exit;
2628 end if;
2629 end Check_Expr_Is_OK_Static_Expression;
2631 ------------------------
2632 -- Directly_Specified --
2633 ------------------------
2635 function Directly_Specified
2636 (Id : Entity_Id; A : Aspect_Id) return Boolean
2638 Aspect_Spec : constant Node_Id := Find_Aspect (Id, A);
2639 begin
2640 return Present (Aspect_Spec) and then Entity (Aspect_Spec) = Id;
2641 end Directly_Specified;
2643 -----------------------
2644 -- Make_Aitem_Pragma --
2645 -----------------------
2647 function Make_Aitem_Pragma
2648 (Pragma_Argument_Associations : List_Id;
2649 Pragma_Name : Name_Id) return Node_Id
2651 Args : List_Id := Pragma_Argument_Associations;
2652 Aitem : Node_Id;
2654 begin
2655 -- We should never get here if aspect was disabled
2657 pragma Assert (not Is_Disabled (Aspect));
2659 -- Certain aspects allow for an optional name or expression. Do
2660 -- not generate a pragma with empty argument association list.
2662 if No (Args) or else No (Expression (First (Args))) then
2663 Args := No_List;
2664 end if;
2666 -- Build the pragma
2668 Aitem :=
2669 Make_Pragma (Loc,
2670 Pragma_Argument_Associations => Args,
2671 Pragma_Identifier =>
2672 Make_Identifier (Sloc (Id), Pragma_Name),
2673 Class_Present => Class_Present (Aspect),
2674 Split_PPC => Split_PPC (Aspect));
2676 -- Set additional semantic fields
2678 if Is_Ignored (Aspect) then
2679 Set_Is_Ignored (Aitem);
2680 elsif Is_Checked (Aspect) then
2681 Set_Is_Checked (Aitem);
2682 end if;
2684 Set_Corresponding_Aspect (Aitem, Aspect);
2685 Set_From_Aspect_Specification (Aitem);
2687 return Aitem;
2688 end Make_Aitem_Pragma;
2690 -- Start of processing for Analyze_One_Aspect
2692 begin
2693 -- Skip aspect if already analyzed, to avoid looping in some cases
2695 if Analyzed (Aspect) then
2696 goto Continue;
2697 end if;
2699 -- Skip looking at aspect if it is totally disabled. Just mark it
2700 -- as such for later reference in the tree. This also sets the
2701 -- Is_Ignored and Is_Checked flags appropriately.
2703 Check_Applicable_Policy (Aspect);
2705 if Is_Disabled (Aspect) then
2706 goto Continue;
2707 end if;
2709 -- Set the source location of expression, used in the case of
2710 -- a failed precondition/postcondition or invariant. Note that
2711 -- the source location of the expression is not usually the best
2712 -- choice here. For example, it gets located on the last AND
2713 -- keyword in a chain of boolean expressiond AND'ed together.
2714 -- It is best to put the message on the first character of the
2715 -- assertion, which is the effect of the First_Node call here.
2717 if Present (Expr) then
2718 Eloc := Sloc (First_Node (Expr));
2719 end if;
2721 -- Check restriction No_Implementation_Aspect_Specifications
2723 if Implementation_Defined_Aspect (A_Id) then
2724 Check_Restriction
2725 (No_Implementation_Aspect_Specifications, Aspect);
2726 end if;
2728 -- Check restriction No_Specification_Of_Aspect
2730 Check_Restriction_No_Specification_Of_Aspect (Aspect);
2732 -- Mark aspect analyzed (actual analysis is delayed till later)
2734 Set_Analyzed (Aspect);
2735 Set_Entity (Aspect, E);
2737 -- Build the reference to E that will be used in the built pragmas
2739 Ent := New_Occurrence_Of (E, Sloc (Id));
2741 if A_Id in Aspect_Attach_Handler | Aspect_Interrupt_Handler then
2743 -- Treat the specification as a reference to the protected
2744 -- operation, which might otherwise appear unreferenced and
2745 -- generate spurious warnings.
2747 Generate_Reference (E, Id);
2748 end if;
2750 -- Check for duplicate aspect. Note that the Comes_From_Source
2751 -- test allows duplicate Pre/Post's that we generate internally
2752 -- to escape being flagged here.
2754 if No_Duplicates_Allowed (A_Id) then
2755 Anod := First (L);
2756 while Anod /= Aspect loop
2757 if Comes_From_Source (Aspect)
2758 and then Same_Aspect (A_Id, Get_Aspect_Id (Anod))
2759 then
2760 Error_Msg_Name_1 := Nam;
2761 Error_Msg_Sloc := Sloc (Anod);
2763 -- Case of same aspect specified twice
2765 if Class_Present (Anod) = Class_Present (Aspect) then
2766 if not Class_Present (Anod) then
2767 Error_Msg_NE
2768 ("aspect% for & previously given#",
2769 Id, E);
2770 else
2771 Error_Msg_NE
2772 ("aspect `%''Class` for & previously given#",
2773 Id, E);
2774 end if;
2775 end if;
2776 end if;
2778 Next (Anod);
2779 end loop;
2780 end if;
2782 -- Check some general restrictions on language defined aspects
2784 if not Implementation_Defined_Aspect (A_Id)
2785 or else A_Id in Aspect_Async_Readers
2786 | Aspect_Async_Writers
2787 | Aspect_Effective_Reads
2788 | Aspect_Effective_Writes
2789 | Aspect_Preelaborable_Initialization
2790 then
2791 Error_Msg_Name_1 := Nam;
2793 -- Not allowed for renaming declarations. Examine the original
2794 -- node because a subprogram renaming may have been rewritten
2795 -- as a body.
2797 if Nkind (Original_Node (N)) in N_Renaming_Declaration then
2798 Error_Msg_N
2799 ("aspect % not allowed for renaming declaration",
2800 Aspect);
2801 end if;
2803 -- Not allowed for formal type declarations in previous
2804 -- versions of the language. Allowed for them only for
2805 -- shared variable control aspects.
2807 -- Original node is used in case expansion rewrote the node -
2808 -- as is the case with generic derived types.
2810 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
2811 if Ada_Version < Ada_2022 then
2812 Error_Msg_N
2813 ("aspect % not allowed for formal type declaration",
2814 Aspect);
2816 elsif A_Id not in Aspect_Atomic
2817 | Aspect_Volatile
2818 | Aspect_Independent
2819 | Aspect_Atomic_Components
2820 | Aspect_Independent_Components
2821 | Aspect_Volatile_Components
2822 | Aspect_Async_Readers
2823 | Aspect_Async_Writers
2824 | Aspect_Effective_Reads
2825 | Aspect_Effective_Writes
2826 | Aspect_Preelaborable_Initialization
2827 then
2828 Error_Msg_N
2829 ("aspect % not allowed for formal type declaration",
2830 Aspect);
2831 end if;
2832 end if;
2833 end if;
2835 -- Copy expression for later processing by the procedures
2836 -- Check_Aspect_At_[Freeze_Point | End_Of_Declarations]
2838 -- The expression may be a subprogram name, and can
2839 -- be an operator name that appears as a string, but
2840 -- requires its own analysis procedure (see sem_ch6).
2842 if Nkind (Expr) = N_Operator_Symbol then
2843 Set_Entity (Id, Expr);
2844 else
2845 Set_Entity (Id, New_Copy_Tree (Expr));
2846 end if;
2848 -- Set Delay_Required as appropriate to aspect
2850 case Aspect_Delay (A_Id) is
2851 when Always_Delay =>
2852 -- For Boolean aspects, do not delay if no expression
2854 if A_Id in Boolean_Aspects | Library_Unit_Aspects then
2855 Delay_Required := Present (Expr);
2856 else
2857 Delay_Required := True;
2858 end if;
2860 when Never_Delay =>
2861 Delay_Required := False;
2863 when Rep_Aspect =>
2865 -- For Boolean aspects, do not delay if no expression except
2866 -- for Full_Access_Only because we need to process it after
2867 -- Volatile and Atomic, which can be independently delayed.
2869 if A_Id in Boolean_Aspects
2870 and then A_Id /= Aspect_Full_Access_Only
2871 and then No (Expr)
2872 then
2873 Delay_Required := False;
2875 -- For non-Boolean aspects, if the expression has the form
2876 -- of an integer literal, then do not delay, since we know
2877 -- the value cannot change. This optimization catches most
2878 -- rep clause cases.
2880 elsif A_Id not in Boolean_Aspects
2881 and then Present (Expr)
2882 and then Nkind (Expr) = N_Integer_Literal
2883 then
2884 Delay_Required := False;
2886 -- For Alignment and various Size aspects, do not delay for
2887 -- an attribute reference whose prefix is Standard, for
2888 -- example Standard'Maximum_Alignment or Standard'Word_Size.
2890 elsif A_Id in Aspect_Alignment
2891 | Aspect_Component_Size
2892 | Aspect_Object_Size
2893 | Aspect_Size
2894 | Aspect_Value_Size
2895 and then Present (Expr)
2896 and then Nkind (Expr) = N_Attribute_Reference
2897 and then Nkind (Prefix (Expr)) = N_Identifier
2898 and then Chars (Prefix (Expr)) = Name_Standard
2899 then
2900 Delay_Required := False;
2902 -- All other cases are delayed
2904 else
2905 Delay_Required := True;
2906 Set_Has_Delayed_Rep_Aspects (E);
2907 end if;
2908 end case;
2910 if Delay_Required
2911 and then (A_Id = Aspect_Stable_Properties
2912 or else A_Id = Aspect_Designated_Storage_Model
2913 or else A_Id = Aspect_Storage_Model_Type
2914 or else A_Id = Aspect_Aggregate)
2915 -- ??? It seems like we should do this for all aspects, not
2916 -- just these, but that causes as-yet-undiagnosed regressions.
2918 then
2919 Set_Has_Delayed_Aspects (E);
2920 Set_Is_Delayed_Aspect (Aspect);
2921 end if;
2923 -- Check 13.1(9.2/5): A representation aspect of a subtype or type
2924 -- shall not be specified (whether by a representation item or an
2925 -- aspect_specification) before the type is completely defined
2926 -- (see 3.11.1).
2928 if Is_Representation_Aspect (A_Id)
2929 and then Rep_Item_Too_Early (E, N)
2930 then
2931 goto Continue;
2932 end if;
2934 -- Processing based on specific aspect
2936 case A_Id is
2937 when Aspect_Unimplemented =>
2938 null; -- ??? temp for now
2940 -- No_Aspect should be impossible
2942 when No_Aspect =>
2943 raise Program_Error;
2945 -- Case 1: Aspects corresponding to attribute definition
2946 -- clauses.
2948 when Aspect_Address
2949 | Aspect_Alignment
2950 | Aspect_Bit_Order
2951 | Aspect_Component_Size
2952 | Aspect_Constant_Indexing
2953 | Aspect_Default_Iterator
2954 | Aspect_Dispatching_Domain
2955 | Aspect_External_Tag
2956 | Aspect_Input
2957 | Aspect_Iterable
2958 | Aspect_Iterator_Element
2959 | Aspect_Machine_Radix
2960 | Aspect_Object_Size
2961 | Aspect_Output
2962 | Aspect_Put_Image
2963 | Aspect_Read
2964 | Aspect_Scalar_Storage_Order
2965 | Aspect_Simple_Storage_Pool
2966 | Aspect_Size
2967 | Aspect_Small
2968 | Aspect_Storage_Pool
2969 | Aspect_Stream_Size
2970 | Aspect_Value_Size
2971 | Aspect_Variable_Indexing
2972 | Aspect_Write
2974 -- Indexing aspects apply only to tagged type
2976 if A_Id in Aspect_Constant_Indexing
2977 | Aspect_Variable_Indexing
2978 and then not (Is_Type (E)
2979 and then Is_Tagged_Type (E))
2980 then
2981 Error_Msg_N
2982 ("indexing aspect can only apply to a tagged type",
2983 Aspect);
2984 goto Continue;
2985 end if;
2987 -- For the case of aspect Address, we don't consider that we
2988 -- know the entity is never set in the source, since it is
2989 -- is likely aliasing is occurring.
2991 -- Note: one might think that the analysis of the resulting
2992 -- attribute definition clause would take care of that, but
2993 -- that's not the case since it won't be from source.
2995 if A_Id = Aspect_Address then
2996 Set_Never_Set_In_Source (E, False);
2997 end if;
2999 -- Correctness of the profile of a stream operation is
3000 -- verified at the freeze point, but we must detect the
3001 -- illegal specification of this aspect for a subtype now,
3002 -- to prevent malformed rep_item chains.
3004 if A_Id in Aspect_Input
3005 | Aspect_Output
3006 | Aspect_Read
3007 | Aspect_Write
3008 then
3009 if not Is_First_Subtype (E) then
3010 Error_Msg_N
3011 ("local name must be a first subtype", Aspect);
3012 goto Continue;
3014 -- If stream aspect applies to the class-wide type,
3015 -- the generated attribute definition applies to the
3016 -- class-wide type as well.
3018 elsif Class_Present (Aspect) then
3019 Ent :=
3020 Make_Attribute_Reference (Loc,
3021 Prefix => Ent,
3022 Attribute_Name => Name_Class);
3023 end if;
3024 end if;
3026 -- Construct the attribute_definition_clause. The expression
3027 -- in the aspect specification is simply shared with the
3028 -- constructed attribute, because it will be fully analyzed
3029 -- when the attribute is processed.
3031 Aitem :=
3032 Make_Attribute_Definition_Clause (Loc,
3033 Name => Ent,
3034 Chars => Nam,
3035 Expression => Relocate_Expression (Expr));
3037 -- If the address is specified, then we treat the entity as
3038 -- referenced, to avoid spurious warnings. This is analogous
3039 -- to what is done with an attribute definition clause, but
3040 -- here we don't want to generate a reference because this
3041 -- is the point of definition of the entity.
3043 if A_Id = Aspect_Address then
3044 Set_Referenced (E);
3045 end if;
3047 -- Case 2: Aspects corresponding to pragmas
3049 -- Case 2a: Aspects corresponding to pragmas with two
3050 -- arguments, where the first argument is a local name
3051 -- referring to the entity, and the second argument is the
3052 -- aspect definition expression.
3054 -- Linker_Section
3056 when Aspect_Linker_Section =>
3057 Aitem := Make_Aitem_Pragma
3058 (Pragma_Argument_Associations => New_List (
3059 Make_Pragma_Argument_Association (Loc,
3060 Expression => New_Occurrence_Of (E, Loc)),
3061 Make_Pragma_Argument_Association (Sloc (Expr),
3062 Expression => Relocate_Node (Expr))),
3063 Pragma_Name => Name_Linker_Section);
3065 -- Linker_Section does not need delaying, as its argument
3066 -- must be a static string. Furthermore, if applied to
3067 -- an object with an explicit initialization, the object
3068 -- must be frozen in order to elaborate the initialization
3069 -- code. (This is already done for types with implicit
3070 -- initialization, such as protected types.)
3072 if Nkind (N) = N_Object_Declaration
3073 and then Has_Init_Expression (N)
3074 then
3075 Delay_Required := False;
3076 end if;
3078 -- Synchronization
3080 -- Corresponds to pragma Implemented, construct the pragma
3082 when Aspect_Synchronization =>
3083 Aitem := Make_Aitem_Pragma
3084 (Pragma_Argument_Associations => New_List (
3085 Make_Pragma_Argument_Association (Loc,
3086 Expression => New_Occurrence_Of (E, Loc)),
3087 Make_Pragma_Argument_Association (Sloc (Expr),
3088 Expression => Relocate_Node (Expr))),
3089 Pragma_Name => Name_Implemented);
3091 -- Attach_Handler
3093 when Aspect_Attach_Handler =>
3094 Aitem := Make_Aitem_Pragma
3095 (Pragma_Argument_Associations => New_List (
3096 Make_Pragma_Argument_Association (Sloc (Ent),
3097 Expression => Ent),
3098 Make_Pragma_Argument_Association (Sloc (Expr),
3099 Expression => Relocate_Expression (Expr))),
3100 Pragma_Name => Name_Attach_Handler);
3102 -- We need to insert this pragma into the tree to get proper
3103 -- processing and to look valid from a placement viewpoint.
3105 Insert_Pragma (Aitem);
3106 goto Continue;
3108 -- Dynamic_Predicate, Predicate, Static_Predicate
3110 when Aspect_Dynamic_Predicate
3111 | Aspect_Predicate
3112 | Aspect_Static_Predicate
3114 -- These aspects apply only to subtypes
3116 if not Is_Type (E) then
3117 Error_Msg_N
3118 ("predicate can only be specified for a subtype",
3119 Aspect);
3120 goto Continue;
3122 elsif Is_Incomplete_Type (E) then
3123 Error_Msg_N
3124 ("predicate cannot apply to incomplete view", Aspect);
3126 elsif Is_Generic_Type (E) then
3127 Error_Msg_N
3128 ("predicate cannot apply to formal type", Aspect);
3129 goto Continue;
3130 end if;
3132 -- Construct the pragma (always a pragma Predicate, with
3133 -- flags recording whether it is static/dynamic). We also
3134 -- set flags recording this in the type itself.
3136 Aitem := Make_Aitem_Pragma
3137 (Pragma_Argument_Associations => New_List (
3138 Make_Pragma_Argument_Association (Sloc (Ent),
3139 Expression => Ent),
3140 Make_Pragma_Argument_Association (Sloc (Expr),
3141 Expression => Relocate_Expression (Expr))),
3142 Pragma_Name => Name_Predicate);
3144 -- Mark type has predicates, and remember what kind of
3145 -- aspect lead to this predicate (we need this to access
3146 -- the right set of check policies later on).
3148 Set_Has_Predicates (E);
3150 if A_Id = Aspect_Dynamic_Predicate then
3151 Set_Has_Dynamic_Predicate_Aspect (E);
3153 -- If the entity has a dynamic predicate, any inherited
3154 -- static predicate becomes dynamic as well, and the
3155 -- predicate function includes the conjunction of both.
3157 Set_Has_Static_Predicate_Aspect (E, False);
3159 elsif A_Id = Aspect_Static_Predicate then
3160 Set_Has_Static_Predicate_Aspect (E);
3161 end if;
3163 -- If the type is private, indicate that its completion
3164 -- has a freeze node, because that is the one that will
3165 -- be visible at freeze time.
3167 if Is_Private_Type (E) and then Present (Full_View (E)) then
3168 Set_Has_Predicates (Full_View (E));
3170 if A_Id = Aspect_Dynamic_Predicate then
3171 Set_Has_Dynamic_Predicate_Aspect (Full_View (E));
3172 elsif A_Id = Aspect_Static_Predicate then
3173 Set_Has_Static_Predicate_Aspect (Full_View (E));
3174 end if;
3176 Set_Has_Delayed_Aspects (Full_View (E));
3177 Ensure_Freeze_Node (Full_View (E));
3179 -- If there is an Underlying_Full_View, also create a
3180 -- freeze node for that one.
3182 if Is_Private_Type (Full_View (E)) then
3183 declare
3184 U_Full : constant Entity_Id :=
3185 Underlying_Full_View (Full_View (E));
3186 begin
3187 if Present (U_Full) then
3188 Set_Has_Delayed_Aspects (U_Full);
3189 Ensure_Freeze_Node (U_Full);
3190 end if;
3191 end;
3192 end if;
3193 end if;
3195 -- Predicate_Failure
3197 when Aspect_Predicate_Failure =>
3199 -- This aspect applies only to subtypes
3201 if not Is_Type (E) then
3202 Error_Msg_N
3203 ("predicate can only be specified for a subtype",
3204 Aspect);
3205 goto Continue;
3207 elsif Is_Incomplete_Type (E) then
3208 Error_Msg_N
3209 ("predicate cannot apply to incomplete view", Aspect);
3210 goto Continue;
3212 elsif not Has_Predicates (E) then
3213 Error_Msg_N
3214 ("Predicate_Failure requires previous predicate" &
3215 " specification", Aspect);
3216 goto Continue;
3218 elsif not (Directly_Specified (E, Aspect_Dynamic_Predicate)
3219 or else Directly_Specified (E, Aspect_Static_Predicate)
3220 or else Directly_Specified (E, Aspect_Predicate))
3221 then
3222 Error_Msg_N
3223 ("Predicate_Failure requires accompanying" &
3224 " noninherited predicate specification", Aspect);
3225 goto Continue;
3226 end if;
3228 -- Construct the pragma
3230 Aitem := Make_Aitem_Pragma
3231 (Pragma_Argument_Associations => New_List (
3232 Make_Pragma_Argument_Association (Sloc (Ent),
3233 Expression => Ent),
3234 Make_Pragma_Argument_Association (Sloc (Expr),
3235 Expression => Relocate_Node (Expr))),
3236 Pragma_Name => Name_Predicate_Failure);
3238 -- Case 2b: Aspects corresponding to pragmas with two
3239 -- arguments, where the second argument is a local name
3240 -- referring to the entity, and the first argument is the
3241 -- aspect definition expression.
3243 -- Convention
3245 when Aspect_Convention =>
3246 Analyze_Aspect_Convention;
3247 goto Continue;
3249 -- External_Name, Link_Name
3251 when Aspect_External_Name
3252 | Aspect_Link_Name
3254 Analyze_Aspect_External_Link_Name;
3255 goto Continue;
3257 -- CPU, Interrupt_Priority, Priority
3259 -- These three aspects can be specified for a subprogram spec
3260 -- or body, in which case we analyze the expression and export
3261 -- the value of the aspect.
3263 -- Previously, we generated an equivalent pragma for bodies
3264 -- (note that the specs cannot contain these pragmas). The
3265 -- pragma was inserted ahead of local declarations, rather than
3266 -- after the body. This leads to a certain duplication between
3267 -- the processing performed for the aspect and the pragma, but
3268 -- given the straightforward handling required it is simpler
3269 -- to duplicate than to translate the aspect in the spec into
3270 -- a pragma in the declarative part of the body.
3272 when Aspect_CPU
3273 | Aspect_Interrupt_Priority
3274 | Aspect_Priority
3276 -- Verify the expression is static when Static_Priorities is
3277 -- enabled.
3279 if not Is_OK_Static_Expression (Expr) then
3280 Check_Restriction (Static_Priorities, Expr);
3281 end if;
3283 if Nkind (N) in N_Subprogram_Body | N_Subprogram_Declaration
3284 then
3285 -- Analyze the aspect expression
3287 Analyze_And_Resolve (Expr, Standard_Integer);
3289 -- Interrupt_Priority aspect not allowed for main
3290 -- subprograms. RM D.1 does not forbid this explicitly,
3291 -- but RM J.15.11(6/3) does not permit pragma
3292 -- Interrupt_Priority for subprograms.
3294 if A_Id = Aspect_Interrupt_Priority then
3295 Error_Msg_N
3296 ("Interrupt_Priority aspect cannot apply to "
3297 & "subprogram", Expr);
3299 -- The expression must be static
3301 elsif not Is_OK_Static_Expression (Expr) then
3302 Flag_Non_Static_Expr
3303 ("aspect requires static expression!", Expr);
3305 -- Check whether this is the main subprogram. Issue a
3306 -- warning only if it is obviously not a main program
3307 -- (when it has parameters or when the subprogram is
3308 -- within a package).
3310 elsif Present (Parameter_Specifications
3311 (Specification (N)))
3312 or else not Is_Compilation_Unit (Defining_Entity (N))
3313 then
3314 -- See RM D.1(14/3) and D.16(12/3)
3316 Error_Msg_N
3317 ("aspect applied to subprogram other than the "
3318 & "main subprogram has no effect??", Expr);
3320 -- Otherwise check in range and export the value
3322 -- For the CPU aspect
3324 elsif A_Id = Aspect_CPU then
3325 if Is_In_Range (Expr, RTE (RE_CPU_Range)) then
3327 -- Value is correct so we export the value to make
3328 -- it available at execution time.
3330 Set_Main_CPU
3331 (Main_Unit, UI_To_Int (Expr_Value (Expr)));
3333 else
3334 Error_Msg_N
3335 ("main subprogram 'C'P'U is out of range", Expr);
3336 end if;
3338 -- For the Priority aspect
3340 elsif A_Id = Aspect_Priority then
3341 if Is_In_Range (Expr, RTE (RE_Priority)) then
3343 -- Value is correct so we export the value to make
3344 -- it available at execution time.
3346 Set_Main_Priority
3347 (Main_Unit, UI_To_Int (Expr_Value (Expr)));
3349 -- Ignore pragma if Relaxed_RM_Semantics to support
3350 -- other targets/non GNAT compilers.
3352 elsif not Relaxed_RM_Semantics then
3353 Error_Msg_N
3354 ("main subprogram priority is out of range",
3355 Expr);
3356 end if;
3357 end if;
3359 -- Load an arbitrary entity from System.Tasking.Stages
3360 -- or System.Tasking.Restricted.Stages (depending on
3361 -- the supported profile) to make sure that one of these
3362 -- packages is implicitly with'ed, since we need to have
3363 -- the tasking run time active for the pragma Priority to
3364 -- have any effect. Previously we with'ed the package
3365 -- System.Tasking, but this package does not trigger the
3366 -- required initialization of the run-time library.
3368 if Restricted_Profile then
3369 Discard_Node (RTE (RE_Activate_Restricted_Tasks));
3370 else
3371 Discard_Node (RTE (RE_Activate_Tasks));
3372 end if;
3374 -- Handling for these aspects in subprograms is complete
3376 goto Continue;
3378 -- For task and protected types pass the aspect as an
3379 -- attribute.
3381 else
3382 Aitem :=
3383 Make_Attribute_Definition_Clause (Loc,
3384 Name => Ent,
3385 Chars => Nam,
3386 Expression => Relocate_Expression (Expr));
3387 end if;
3389 -- Suppress/Unsuppress
3391 when Aspect_Suppress
3392 | Aspect_Unsuppress
3394 Aitem := Make_Aitem_Pragma
3395 (Pragma_Argument_Associations => New_List (
3396 Make_Pragma_Argument_Association (Loc,
3397 Expression => Relocate_Node (Expr)),
3398 Make_Pragma_Argument_Association (Sloc (Expr),
3399 Expression => New_Occurrence_Of (E, Loc))),
3400 Pragma_Name => Nam);
3402 Delay_Required := False;
3404 -- Warnings
3406 when Aspect_Warnings =>
3407 Aitem := Make_Aitem_Pragma
3408 (Pragma_Argument_Associations => New_List (
3409 Make_Pragma_Argument_Association (Sloc (Expr),
3410 Expression => Relocate_Node (Expr)),
3411 Make_Pragma_Argument_Association (Loc,
3412 Expression => New_Occurrence_Of (E, Loc))),
3413 Pragma_Name => Name_Warnings);
3415 Decorate (Aspect, Aitem);
3416 Insert_Pragma (Aitem);
3417 goto Continue;
3419 -- Case 2c: Aspects corresponding to pragmas with three
3420 -- arguments.
3422 -- Invariant aspects have a first argument that references the
3423 -- entity, a second argument that is the expression and a third
3424 -- argument that is an appropriate message.
3426 -- Invariant, Type_Invariant
3428 when Aspect_Invariant
3429 | Aspect_Type_Invariant
3431 -- Analysis of the pragma will verify placement legality:
3432 -- an invariant must apply to a private type, or appear in
3433 -- the private part of a spec and apply to a completion.
3435 Aitem := Make_Aitem_Pragma
3436 (Pragma_Argument_Associations => New_List (
3437 Make_Pragma_Argument_Association (Sloc (Ent),
3438 Expression => Ent),
3439 Make_Pragma_Argument_Association (Sloc (Expr),
3440 Expression => Relocate_Node (Expr))),
3441 Pragma_Name => Name_Invariant);
3443 -- Add message unless exception messages are suppressed
3445 if not Opt.Exception_Locations_Suppressed then
3446 Append_To (Pragma_Argument_Associations (Aitem),
3447 Make_Pragma_Argument_Association (Eloc,
3448 Chars => Name_Message,
3449 Expression =>
3450 Make_String_Literal (Eloc,
3451 Strval => "failed invariant from "
3452 & Build_Location_String (Eloc))));
3453 end if;
3455 -- For Invariant case, insert immediately after the entity
3456 -- declaration. We do not have to worry about delay issues
3457 -- since the pragma processing takes care of this.
3459 Delay_Required := False;
3461 -- Case 2d : Aspects that correspond to a pragma with one
3462 -- argument.
3464 -- Abstract_State
3466 -- Aspect Abstract_State introduces implicit declarations for
3467 -- all state abstraction entities it defines. To emulate this
3468 -- behavior, insert the pragma at the beginning of the visible
3469 -- declarations of the related package so that it is analyzed
3470 -- immediately.
3472 when Aspect_Abstract_State => Abstract_State : declare
3473 Context : Node_Id := N;
3475 begin
3476 -- When aspect Abstract_State appears on a generic package,
3477 -- it is propagated to the package instance. The context in
3478 -- this case is the instance spec.
3480 if Nkind (Context) = N_Package_Instantiation then
3481 Context := Instance_Spec (Context);
3482 end if;
3484 if Nkind (Context) in N_Generic_Package_Declaration
3485 | N_Package_Declaration
3486 then
3487 Aitem := Make_Aitem_Pragma
3488 (Pragma_Argument_Associations => New_List (
3489 Make_Pragma_Argument_Association (Loc,
3490 Expression => Relocate_Node (Expr))),
3491 Pragma_Name => Name_Abstract_State);
3493 Decorate (Aspect, Aitem);
3494 Insert_Pragma
3495 (Prag => Aitem,
3496 Is_Instance =>
3497 Is_Generic_Instance (Defining_Entity (Context)));
3499 else
3500 Error_Msg_NE
3501 ("aspect & must apply to a package declaration",
3502 Aspect, Id);
3503 end if;
3505 goto Continue;
3506 end Abstract_State;
3508 -- Aspect Async_Readers is never delayed because it is
3509 -- equivalent to a source pragma which appears after the
3510 -- related object declaration.
3512 when Aspect_Async_Readers =>
3513 Aitem := Make_Aitem_Pragma
3514 (Pragma_Argument_Associations => New_List (
3515 Make_Pragma_Argument_Association (Loc,
3516 Expression => Relocate_Node (Expr))),
3517 Pragma_Name => Name_Async_Readers);
3519 Decorate (Aspect, Aitem);
3520 Insert_Pragma (Aitem);
3521 goto Continue;
3523 -- Aspect Async_Writers is never delayed because it is
3524 -- equivalent to a source pragma which appears after the
3525 -- related object declaration.
3527 when Aspect_Async_Writers =>
3528 Aitem := Make_Aitem_Pragma
3529 (Pragma_Argument_Associations => New_List (
3530 Make_Pragma_Argument_Association (Loc,
3531 Expression => Relocate_Node (Expr))),
3532 Pragma_Name => Name_Async_Writers);
3534 Decorate (Aspect, Aitem);
3535 Insert_Pragma (Aitem);
3536 goto Continue;
3538 -- Aspect Constant_After_Elaboration is never delayed because
3539 -- it is equivalent to a source pragma which appears after the
3540 -- related object declaration.
3542 when Aspect_Constant_After_Elaboration =>
3543 Aitem := Make_Aitem_Pragma
3544 (Pragma_Argument_Associations => New_List (
3545 Make_Pragma_Argument_Association (Loc,
3546 Expression => Relocate_Node (Expr))),
3547 Pragma_Name =>
3548 Name_Constant_After_Elaboration);
3550 Decorate (Aspect, Aitem);
3551 Insert_Pragma (Aitem);
3552 goto Continue;
3554 -- Aspect Default_Internal_Condition is never delayed because
3555 -- it is equivalent to a source pragma which appears after the
3556 -- related private type. To deal with forward references, the
3557 -- generated pragma is stored in the rep chain of the related
3558 -- private type as types do not carry contracts. The pragma is
3559 -- wrapped inside of a procedure at the freeze point of the
3560 -- private type's full view.
3562 -- A type entity argument is appended to facilitate inheriting
3563 -- the aspect from parent types (see Build_DIC_Procedure_Body),
3564 -- though that extra argument isn't documented for the pragma.
3566 when Aspect_Default_Initial_Condition =>
3567 Aitem := Make_Aitem_Pragma
3568 (Pragma_Argument_Associations => New_List (
3569 Make_Pragma_Argument_Association (Loc,
3570 Expression => Relocate_Node (Expr)),
3571 Make_Pragma_Argument_Association (Sloc (Ent),
3572 Expression => Ent)),
3573 Pragma_Name =>
3574 Name_Default_Initial_Condition);
3576 Decorate (Aspect, Aitem);
3577 Insert_Pragma (Aitem);
3578 goto Continue;
3580 -- Default_Storage_Pool
3582 when Aspect_Default_Storage_Pool =>
3583 Aitem := Make_Aitem_Pragma
3584 (Pragma_Argument_Associations => New_List (
3585 Make_Pragma_Argument_Association (Loc,
3586 Expression => Relocate_Node (Expr))),
3587 Pragma_Name =>
3588 Name_Default_Storage_Pool);
3590 Decorate (Aspect, Aitem);
3591 Insert_Pragma (Aitem);
3592 goto Continue;
3594 -- Depends
3596 -- Aspect Depends is never delayed because it is equivalent to
3597 -- a source pragma which appears after the related subprogram.
3598 -- To deal with forward references, the generated pragma is
3599 -- stored in the contract of the related subprogram and later
3600 -- analyzed at the end of the declarative region. See routine
3601 -- Analyze_Depends_In_Decl_Part for details.
3603 when Aspect_Depends =>
3604 Aitem := Make_Aitem_Pragma
3605 (Pragma_Argument_Associations => New_List (
3606 Make_Pragma_Argument_Association (Loc,
3607 Expression => Relocate_Node (Expr))),
3608 Pragma_Name => Name_Depends);
3610 Decorate (Aspect, Aitem);
3611 Insert_Pragma (Aitem);
3612 goto Continue;
3614 -- Aspect Effective_Reads is never delayed because it is
3615 -- equivalent to a source pragma which appears after the
3616 -- related object declaration.
3618 when Aspect_Effective_Reads =>
3619 Aitem := Make_Aitem_Pragma
3620 (Pragma_Argument_Associations => New_List (
3621 Make_Pragma_Argument_Association (Loc,
3622 Expression => Relocate_Node (Expr))),
3623 Pragma_Name => Name_Effective_Reads);
3625 Decorate (Aspect, Aitem);
3626 Insert_Pragma (Aitem);
3627 goto Continue;
3629 -- Aspect Effective_Writes is never delayed because it is
3630 -- equivalent to a source pragma which appears after the
3631 -- related object declaration.
3633 when Aspect_Effective_Writes =>
3634 Aitem := Make_Aitem_Pragma
3635 (Pragma_Argument_Associations => New_List (
3636 Make_Pragma_Argument_Association (Loc,
3637 Expression => Relocate_Node (Expr))),
3638 Pragma_Name => Name_Effective_Writes);
3640 Decorate (Aspect, Aitem);
3641 Insert_Pragma (Aitem);
3642 goto Continue;
3644 -- Aspect Extensions_Visible is never delayed because it is
3645 -- equivalent to a source pragma which appears after the
3646 -- related subprogram.
3648 when Aspect_Extensions_Visible =>
3649 Aitem := Make_Aitem_Pragma
3650 (Pragma_Argument_Associations => New_List (
3651 Make_Pragma_Argument_Association (Loc,
3652 Expression => Relocate_Node (Expr))),
3653 Pragma_Name => Name_Extensions_Visible);
3655 Decorate (Aspect, Aitem);
3656 Insert_Pragma (Aitem);
3657 goto Continue;
3659 -- Aspect Ghost is never delayed because it is equivalent to a
3660 -- source pragma which appears at the top of [generic] package
3661 -- declarations or after an object, a [generic] subprogram, or
3662 -- a type declaration.
3664 when Aspect_Ghost =>
3665 Aitem := Make_Aitem_Pragma
3666 (Pragma_Argument_Associations => New_List (
3667 Make_Pragma_Argument_Association (Loc,
3668 Expression => Relocate_Node (Expr))),
3669 Pragma_Name => Name_Ghost);
3671 Decorate (Aspect, Aitem);
3672 Insert_Pragma (Aitem);
3673 goto Continue;
3675 -- Global
3677 -- Aspect Global is never delayed because it is equivalent to
3678 -- a source pragma which appears after the related subprogram.
3679 -- To deal with forward references, the generated pragma is
3680 -- stored in the contract of the related subprogram and later
3681 -- analyzed at the end of the declarative region. See routine
3682 -- Analyze_Global_In_Decl_Part for details.
3684 when Aspect_Global =>
3685 Aitem := Make_Aitem_Pragma
3686 (Pragma_Argument_Associations => New_List (
3687 Make_Pragma_Argument_Association (Loc,
3688 Expression => Relocate_Node (Expr))),
3689 Pragma_Name => Name_Global);
3691 Decorate (Aspect, Aitem);
3692 Insert_Pragma (Aitem);
3693 goto Continue;
3695 -- Initial_Condition
3697 -- Aspect Initial_Condition is never delayed because it is
3698 -- equivalent to a source pragma which appears after the
3699 -- related package. To deal with forward references, the
3700 -- generated pragma is stored in the contract of the related
3701 -- package and later analyzed at the end of the declarative
3702 -- region. See routine Analyze_Initial_Condition_In_Decl_Part
3703 -- for details.
3705 when Aspect_Initial_Condition => Initial_Condition : declare
3706 Context : Node_Id := N;
3708 begin
3709 -- When aspect Initial_Condition appears on a generic
3710 -- package, it is propagated to the package instance. The
3711 -- context in this case is the instance spec.
3713 if Nkind (Context) = N_Package_Instantiation then
3714 Context := Instance_Spec (Context);
3715 end if;
3717 if Nkind (Context) in N_Generic_Package_Declaration
3718 | N_Package_Declaration
3719 then
3720 Aitem := Make_Aitem_Pragma
3721 (Pragma_Argument_Associations => New_List (
3722 Make_Pragma_Argument_Association (Loc,
3723 Expression => Relocate_Node (Expr))),
3724 Pragma_Name =>
3725 Name_Initial_Condition);
3727 Decorate (Aspect, Aitem);
3728 Insert_Pragma
3729 (Prag => Aitem,
3730 Is_Instance =>
3731 Is_Generic_Instance (Defining_Entity (Context)));
3733 -- Otherwise the context is illegal
3735 else
3736 Error_Msg_NE
3737 ("aspect & must apply to a package declaration",
3738 Aspect, Id);
3739 end if;
3741 goto Continue;
3742 end Initial_Condition;
3744 -- Initializes
3746 -- Aspect Initializes is never delayed because it is equivalent
3747 -- to a source pragma appearing after the related package. To
3748 -- deal with forward references, the generated pragma is stored
3749 -- in the contract of the related package and later analyzed at
3750 -- the end of the declarative region. For details, see routine
3751 -- Analyze_Initializes_In_Decl_Part.
3753 when Aspect_Initializes => Initializes : declare
3754 Context : Node_Id := N;
3756 begin
3757 -- When aspect Initializes appears on a generic package,
3758 -- it is propagated to the package instance. The context
3759 -- in this case is the instance spec.
3761 if Nkind (Context) = N_Package_Instantiation then
3762 Context := Instance_Spec (Context);
3763 end if;
3765 if Nkind (Context) in N_Generic_Package_Declaration
3766 | N_Package_Declaration
3767 then
3768 Aitem := Make_Aitem_Pragma
3769 (Pragma_Argument_Associations => New_List (
3770 Make_Pragma_Argument_Association (Loc,
3771 Expression => Relocate_Node (Expr))),
3772 Pragma_Name => Name_Initializes);
3774 Decorate (Aspect, Aitem);
3775 Insert_Pragma
3776 (Prag => Aitem,
3777 Is_Instance =>
3778 Is_Generic_Instance (Defining_Entity (Context)));
3780 -- Otherwise the context is illegal
3782 else
3783 Error_Msg_NE
3784 ("aspect & must apply to a package declaration",
3785 Aspect, Id);
3786 end if;
3788 goto Continue;
3789 end Initializes;
3791 -- Max_Entry_Queue_Depth
3793 when Aspect_Max_Entry_Queue_Depth =>
3794 Aitem := Make_Aitem_Pragma
3795 (Pragma_Argument_Associations => New_List (
3796 Make_Pragma_Argument_Association (Loc,
3797 Expression => Relocate_Node (Expr))),
3798 Pragma_Name => Name_Max_Entry_Queue_Depth);
3800 Decorate (Aspect, Aitem);
3801 Insert_Pragma (Aitem);
3802 goto Continue;
3804 -- Max_Entry_Queue_Length
3806 when Aspect_Max_Entry_Queue_Length =>
3807 Aitem := Make_Aitem_Pragma
3808 (Pragma_Argument_Associations => New_List (
3809 Make_Pragma_Argument_Association (Loc,
3810 Expression => Relocate_Node (Expr))),
3811 Pragma_Name => Name_Max_Entry_Queue_Length);
3813 Decorate (Aspect, Aitem);
3814 Insert_Pragma (Aitem);
3815 goto Continue;
3817 -- Max_Queue_Length
3819 when Aspect_Max_Queue_Length =>
3820 Aitem := Make_Aitem_Pragma
3821 (Pragma_Argument_Associations => New_List (
3822 Make_Pragma_Argument_Association (Loc,
3823 Expression => Relocate_Node (Expr))),
3824 Pragma_Name => Name_Max_Queue_Length);
3826 Decorate (Aspect, Aitem);
3827 Insert_Pragma (Aitem);
3828 goto Continue;
3830 -- Aspect No_Caching is never delayed because it is equivalent
3831 -- to a source pragma which appears after the related object
3832 -- declaration.
3834 when Aspect_No_Caching =>
3835 Aitem := Make_Aitem_Pragma
3836 (Pragma_Argument_Associations => New_List (
3837 Make_Pragma_Argument_Association (Loc,
3838 Expression => Relocate_Node (Expr))),
3839 Pragma_Name => Name_No_Caching);
3841 Decorate (Aspect, Aitem);
3842 Insert_Pragma (Aitem);
3843 goto Continue;
3845 -- No_Controlled_Parts, No_Task_Parts
3847 when Aspect_No_Controlled_Parts | Aspect_No_Task_Parts =>
3849 -- Check appropriate type argument
3851 if not Is_Type (E) then
3852 Error_Msg_N
3853 ("aspect % can only be applied to types", E);
3854 end if;
3856 -- Disallow subtypes
3858 if Nkind (Declaration_Node (E)) = N_Subtype_Declaration then
3859 Error_Msg_N
3860 ("aspect % cannot be applied to subtypes", E);
3861 end if;
3863 -- Resolve the expression to a boolean
3865 if Present (Expr) then
3866 Check_Expr_Is_OK_Static_Expression (Expr, Any_Boolean);
3867 end if;
3869 goto Continue;
3871 -- Obsolescent
3873 when Aspect_Obsolescent => declare
3874 Args : List_Id;
3876 begin
3877 if No (Expr) then
3878 Args := No_List;
3879 else
3880 Args := New_List (
3881 Make_Pragma_Argument_Association (Sloc (Expr),
3882 Expression => Relocate_Node (Expr)));
3883 end if;
3885 Aitem := Make_Aitem_Pragma
3886 (Pragma_Argument_Associations => Args,
3887 Pragma_Name => Name_Obsolescent);
3888 end;
3890 -- Part_Of
3892 when Aspect_Part_Of =>
3893 if Nkind (N) in N_Object_Declaration
3894 | N_Package_Instantiation
3895 or else Is_Single_Concurrent_Type_Declaration (N)
3896 then
3897 Aitem := Make_Aitem_Pragma
3898 (Pragma_Argument_Associations => New_List (
3899 Make_Pragma_Argument_Association (Loc,
3900 Expression => Relocate_Node (Expr))),
3901 Pragma_Name => Name_Part_Of);
3903 Decorate (Aspect, Aitem);
3904 Insert_Pragma (Aitem);
3906 else
3907 Error_Msg_NE
3908 ("aspect & must apply to package instantiation, "
3909 & "object, single protected type or single task type",
3910 Aspect, Id);
3911 end if;
3913 goto Continue;
3915 -- SPARK_Mode
3917 when Aspect_SPARK_Mode =>
3918 Aitem := Make_Aitem_Pragma
3919 (Pragma_Argument_Associations => New_List (
3920 Make_Pragma_Argument_Association (Loc,
3921 Expression => Relocate_Node (Expr))),
3922 Pragma_Name => Name_SPARK_Mode);
3924 Decorate (Aspect, Aitem);
3925 Insert_Pragma (Aitem);
3926 goto Continue;
3928 -- Refined_Depends
3930 -- Aspect Refined_Depends is never delayed because it is
3931 -- equivalent to a source pragma which appears in the
3932 -- declarations of the related subprogram body. To deal with
3933 -- forward references, the generated pragma is stored in the
3934 -- contract of the related subprogram body and later analyzed
3935 -- at the end of the declarative region. For details, see
3936 -- routine Analyze_Refined_Depends_In_Decl_Part.
3938 when Aspect_Refined_Depends =>
3939 Aitem := Make_Aitem_Pragma
3940 (Pragma_Argument_Associations => New_List (
3941 Make_Pragma_Argument_Association (Loc,
3942 Expression => Relocate_Node (Expr))),
3943 Pragma_Name => Name_Refined_Depends);
3945 Decorate (Aspect, Aitem);
3946 Insert_Pragma (Aitem);
3947 goto Continue;
3949 -- Refined_Global
3951 -- Aspect Refined_Global is never delayed because it is
3952 -- equivalent to a source pragma which appears in the
3953 -- declarations of the related subprogram body. To deal with
3954 -- forward references, the generated pragma is stored in the
3955 -- contract of the related subprogram body and later analyzed
3956 -- at the end of the declarative region. For details, see
3957 -- routine Analyze_Refined_Global_In_Decl_Part.
3959 when Aspect_Refined_Global =>
3960 Aitem := Make_Aitem_Pragma
3961 (Pragma_Argument_Associations => New_List (
3962 Make_Pragma_Argument_Association (Loc,
3963 Expression => Relocate_Node (Expr))),
3964 Pragma_Name => Name_Refined_Global);
3966 Decorate (Aspect, Aitem);
3967 Insert_Pragma (Aitem);
3968 goto Continue;
3970 -- Refined_Post
3972 when Aspect_Refined_Post =>
3973 Aitem := Make_Aitem_Pragma
3974 (Pragma_Argument_Associations => New_List (
3975 Make_Pragma_Argument_Association (Loc,
3976 Expression => Relocate_Node (Expr))),
3977 Pragma_Name => Name_Refined_Post);
3979 Decorate (Aspect, Aitem);
3980 Insert_Pragma (Aitem);
3981 goto Continue;
3983 -- Refined_State
3985 when Aspect_Refined_State =>
3987 -- The corresponding pragma for Refined_State is inserted in
3988 -- the declarations of the related package body. This action
3989 -- synchronizes both the source and from-aspect versions of
3990 -- the pragma.
3992 if Nkind (N) = N_Package_Body then
3993 Aitem := Make_Aitem_Pragma
3994 (Pragma_Argument_Associations => New_List (
3995 Make_Pragma_Argument_Association (Loc,
3996 Expression => Relocate_Node (Expr))),
3997 Pragma_Name => Name_Refined_State);
3999 Decorate (Aspect, Aitem);
4000 Insert_Pragma (Aitem);
4002 -- Otherwise the context is illegal
4004 else
4005 Error_Msg_NE
4006 ("aspect & must apply to a package body", Aspect, Id);
4007 end if;
4009 goto Continue;
4011 -- Relative_Deadline
4013 when Aspect_Relative_Deadline =>
4014 Aitem := Make_Aitem_Pragma
4015 (Pragma_Argument_Associations => New_List (
4016 Make_Pragma_Argument_Association (Loc,
4017 Expression => Relocate_Node (Expr))),
4018 Pragma_Name => Name_Relative_Deadline);
4020 -- If the aspect applies to a task, the corresponding pragma
4021 -- must appear within its declarations, not after.
4023 if Nkind (N) = N_Task_Type_Declaration then
4024 declare
4025 Def : Node_Id;
4026 V : List_Id;
4028 begin
4029 if No (Task_Definition (N)) then
4030 Set_Task_Definition (N,
4031 Make_Task_Definition (Loc,
4032 Visible_Declarations => New_List,
4033 End_Label => Empty));
4034 end if;
4036 Def := Task_Definition (N);
4037 V := Visible_Declarations (Def);
4038 if not Is_Empty_List (V) then
4039 Insert_Before (First (V), Aitem);
4041 else
4042 Set_Visible_Declarations (Def, New_List (Aitem));
4043 end if;
4045 goto Continue;
4046 end;
4047 end if;
4049 -- Relaxed_Initialization
4051 when Aspect_Relaxed_Initialization =>
4052 Analyze_Aspect_Relaxed_Initialization;
4053 goto Continue;
4055 -- Secondary_Stack_Size
4057 -- Aspect Secondary_Stack_Size needs to be converted into a
4058 -- pragma for two reasons: the attribute is not analyzed until
4059 -- after the expansion of the task type declaration and the
4060 -- attribute does not have visibility on the discriminant.
4062 when Aspect_Secondary_Stack_Size =>
4063 Aitem := Make_Aitem_Pragma
4064 (Pragma_Argument_Associations => New_List (
4065 Make_Pragma_Argument_Association (Loc,
4066 Expression => Relocate_Node (Expr))),
4067 Pragma_Name =>
4068 Name_Secondary_Stack_Size);
4070 Decorate (Aspect, Aitem);
4071 Insert_Pragma (Aitem);
4072 goto Continue;
4074 -- Volatile_Function
4076 -- Aspect Volatile_Function is never delayed because it is
4077 -- equivalent to a source pragma which appears after the
4078 -- related subprogram.
4080 when Aspect_Volatile_Function =>
4081 Aitem := Make_Aitem_Pragma
4082 (Pragma_Argument_Associations => New_List (
4083 Make_Pragma_Argument_Association (Loc,
4084 Expression => Relocate_Node (Expr))),
4085 Pragma_Name => Name_Volatile_Function);
4087 Decorate (Aspect, Aitem);
4088 Insert_Pragma (Aitem);
4089 goto Continue;
4091 -- Case 2e: Annotate aspect
4093 when Aspect_Annotate | Aspect_GNAT_Annotate =>
4094 declare
4095 Args : List_Id;
4096 Pargs : List_Id;
4097 Arg : Node_Id;
4099 begin
4100 -- The argument can be a single identifier
4102 if Nkind (Expr) = N_Identifier then
4104 -- One level of parens is allowed
4106 if Paren_Count (Expr) > 1 then
4107 Error_Msg_F ("extra parentheses ignored", Expr);
4108 end if;
4110 Set_Paren_Count (Expr, 0);
4112 -- Add the single item to the list
4114 Args := New_List (Expr);
4116 -- Otherwise we must have an aggregate
4118 elsif Nkind (Expr) = N_Aggregate then
4120 -- Must be positional
4122 if Present (Component_Associations (Expr)) then
4123 Error_Msg_F
4124 ("purely positional aggregate required", Expr);
4125 goto Continue;
4126 end if;
4128 -- Must not be parenthesized
4130 if Paren_Count (Expr) /= 0 then
4131 Error_Msg_F -- CODEFIX
4132 ("redundant parentheses", Expr);
4133 end if;
4135 -- List of arguments is list of aggregate expressions
4137 Args := Expressions (Expr);
4139 -- Anything else is illegal
4141 else
4142 Error_Msg_F ("wrong form for Annotate aspect", Expr);
4143 goto Continue;
4144 end if;
4146 -- Prepare pragma arguments
4148 Pargs := New_List;
4149 Arg := First (Args);
4150 while Present (Arg) loop
4151 Append_To (Pargs,
4152 Make_Pragma_Argument_Association (Sloc (Arg),
4153 Expression => Relocate_Node (Arg)));
4154 Next (Arg);
4155 end loop;
4157 Append_To (Pargs,
4158 Make_Pragma_Argument_Association (Sloc (Ent),
4159 Chars => Name_Entity,
4160 Expression => Ent));
4162 Aitem := Make_Aitem_Pragma
4163 (Pragma_Argument_Associations => Pargs,
4164 Pragma_Name => Name_Annotate);
4165 end;
4167 -- Case 3 : Aspects that don't correspond to pragma/attribute
4168 -- definition clause.
4170 -- Case 3a: The aspects listed below don't correspond to
4171 -- pragmas/attributes but do require delayed analysis.
4173 when Aspect_Default_Value | Aspect_Default_Component_Value =>
4174 Error_Msg_Name_1 := Nam;
4176 if not Is_Type (E) then
4177 Error_Msg_N ("aspect% can only apply to a type", Id);
4178 goto Continue;
4180 elsif not Is_First_Subtype (E) then
4181 Error_Msg_N ("aspect% cannot apply to subtype", Id);
4182 goto Continue;
4184 elsif A_Id = Aspect_Default_Value
4185 and then not Is_Scalar_Type (E)
4186 then
4187 Error_Msg_N
4188 ("aspect% can only be applied to scalar type", Id);
4189 goto Continue;
4191 elsif A_Id = Aspect_Default_Component_Value then
4192 if not Is_Array_Type (E) then
4193 Error_Msg_N
4194 ("aspect% can only be applied to array type", Id);
4195 goto Continue;
4197 elsif not Is_Scalar_Type (Component_Type (E)) then
4198 Error_Msg_N ("aspect% requires scalar components", Id);
4199 goto Continue;
4200 end if;
4201 end if;
4203 Aitem := Empty;
4205 when Aspect_Aggregate =>
4206 -- We will be checking that the aspect is not specified on a
4207 -- non-array type in Check_Aspect_At_Freeze_Point
4209 Validate_Aspect_Aggregate (Expr);
4210 Record_Rep_Item (E, Aspect);
4211 goto Continue;
4213 when Aspect_Stable_Properties =>
4214 Validate_Aspect_Stable_Properties
4215 (E, Expr, Class_Present => Class_Present (Aspect));
4216 Record_Rep_Item (E, Aspect);
4217 goto Continue;
4219 when Aspect_Designated_Storage_Model =>
4220 if not All_Extensions_Allowed then
4221 Error_Msg_GNAT_Extension ("aspect %", Sloc (Aspect));
4223 elsif not Is_Type (E)
4224 or else Ekind (E) /= E_Access_Type
4225 then
4226 Error_Msg_N
4227 ("can only be specified for pool-specific access type",
4228 Aspect);
4229 end if;
4231 Record_Rep_Item (E, Aspect);
4232 goto Continue;
4234 when Aspect_Storage_Model_Type =>
4235 if not All_Extensions_Allowed then
4236 Error_Msg_GNAT_Extension ("aspect %", Sloc (Aspect));
4238 elsif not Is_Type (E)
4239 or else not Is_Immutably_Limited_Type (E)
4240 then
4241 Error_Msg_N
4242 ("can only be specified for immutably limited type",
4243 Aspect);
4244 end if;
4246 Record_Rep_Item (E, Aspect);
4247 goto Continue;
4249 when Aspect_Integer_Literal
4250 | Aspect_Real_Literal
4251 | Aspect_String_Literal
4254 if not Is_First_Subtype (E) then
4255 Error_Msg_N
4256 ("may only be specified for a first subtype", Aspect);
4257 goto Continue;
4258 end if;
4260 if Ada_Version < Ada_2022 then
4261 Check_Restriction
4262 (No_Implementation_Aspect_Specifications, N);
4263 end if;
4265 Aitem := Empty;
4267 -- Case 3b: The aspects listed below don't correspond to
4268 -- pragmas/attributes and don't need delayed analysis.
4270 -- Implicit_Dereference
4272 -- For Implicit_Dereference, External_Name and Link_Name, only
4273 -- the legality checks are done during the analysis, thus no
4274 -- delay is required.
4276 when Aspect_Implicit_Dereference =>
4277 Analyze_Aspect_Implicit_Dereference;
4278 goto Continue;
4280 -- Dimension
4282 when Aspect_Dimension =>
4283 Analyze_Aspect_Dimension (N, Id, Expr);
4284 goto Continue;
4286 -- Dimension_System
4288 when Aspect_Dimension_System =>
4289 Analyze_Aspect_Dimension_System (N, Id, Expr);
4290 goto Continue;
4292 -- Case 4: Aspects requiring special handling
4294 -- Pre/Post/Test_Case/Contract_Cases/Exceptional_Cases and
4295 -- Subprogram_Variant whose corresponding pragmas take care
4296 -- of the delay.
4298 -- Pre/Post
4300 -- Aspects Pre/Post generate Precondition/Postcondition pragmas
4301 -- with a first argument that is the expression, and a second
4302 -- argument that is an informative message if the test fails.
4303 -- This is inserted right after the declaration, to get the
4304 -- required pragma placement. The processing for the pragmas
4305 -- takes care of the required delay.
4307 when Pre_Post_Aspects => Pre_Post : declare
4308 Pname : Name_Id;
4310 begin
4311 if A_Id in Aspect_Pre | Aspect_Precondition then
4312 Pname := Name_Precondition;
4313 else
4314 Pname := Name_Postcondition;
4315 end if;
4317 -- Check that the class-wide predicate cannot be applied to
4318 -- an operation of a synchronized type. AI12-0182 forbids
4319 -- these altogether, while earlier language semantics made
4320 -- them legal on tagged synchronized types.
4322 -- Other legality checks are performed when analyzing the
4323 -- contract of the operation.
4325 if Class_Present (Aspect)
4326 and then Is_Concurrent_Type (Current_Scope)
4327 and then Ekind (E) in E_Entry | E_Function | E_Procedure
4328 then
4329 Error_Msg_Name_1 := Original_Aspect_Pragma_Name (Aspect);
4330 Error_Msg_N
4331 ("aspect % can only be specified for a primitive "
4332 & "operation of a tagged type", Aspect);
4334 goto Continue;
4335 end if;
4337 -- Remember class-wide conditions; they will be merged
4338 -- with inherited conditions.
4340 if Class_Present (Aspect)
4341 and then A_Id in Aspect_Pre | Aspect_Post
4342 and then Is_Subprogram (E)
4343 and then not Is_Ignored_Ghost_Entity (E)
4344 then
4345 if A_Id = Aspect_Pre then
4346 if Is_Ignored (Aspect) then
4347 Set_Ignored_Class_Preconditions (E,
4348 New_Copy_Tree (Expr));
4349 else
4350 Set_Class_Preconditions (E, New_Copy_Tree (Expr));
4351 end if;
4353 -- Postconditions may split into separate aspects, and we
4354 -- remember the expression before such split (i.e. when
4355 -- the first postcondition is processed).
4357 elsif No (Class_Postconditions (E))
4358 and then No (Ignored_Class_Postconditions (E))
4359 then
4360 if Is_Ignored (Aspect) then
4361 Set_Ignored_Class_Postconditions (E,
4362 New_Copy_Tree (Expr));
4363 else
4364 Set_Class_Postconditions (E, New_Copy_Tree (Expr));
4365 end if;
4366 end if;
4367 end if;
4369 -- If the expressions is of the form A and then B, then
4370 -- we generate separate Pre/Post aspects for the separate
4371 -- clauses. Since we allow multiple pragmas, there is no
4372 -- problem in allowing multiple Pre/Post aspects internally.
4373 -- These should be treated in reverse order (B first and
4374 -- A second) since they are later inserted just after N in
4375 -- the order they are treated. This way, the pragma for A
4376 -- ends up preceding the pragma for B, which may have an
4377 -- importance for the error raised (either constraint error
4378 -- or precondition error).
4380 -- We do not do this for Pre'Class, since we have to put
4381 -- these conditions together in a complex OR expression.
4383 -- We don't do this in GNATprove mode, because it brings no
4384 -- benefit for proof and causes annoyance for flow analysis,
4385 -- which prefers to be as close to the original source code
4386 -- as possible. Also we don't do this when analyzing generic
4387 -- units since it causes spurious visibility errors in the
4388 -- preanalysis of instantiations.
4390 if not GNATprove_Mode
4391 and then (Pname = Name_Postcondition
4392 or else not Class_Present (Aspect))
4393 and then not Inside_A_Generic
4394 then
4395 while Nkind (Expr) = N_And_Then loop
4396 Insert_After (Aspect,
4397 Make_Aspect_Specification (Sloc (Left_Opnd (Expr)),
4398 Identifier => Identifier (Aspect),
4399 Expression => Relocate_Node (Left_Opnd (Expr)),
4400 Class_Present => Class_Present (Aspect),
4401 Split_PPC => True));
4402 Rewrite (Expr, Relocate_Node (Right_Opnd (Expr)));
4403 Eloc := Sloc (Expr);
4404 end loop;
4405 end if;
4407 -- Build the precondition/postcondition pragma
4409 Aitem := Make_Aitem_Pragma
4410 (Pragma_Argument_Associations => New_List (
4411 Make_Pragma_Argument_Association (Eloc,
4412 Chars => Name_Check,
4413 Expression => Relocate_Expression (Expr))),
4414 Pragma_Name => Pname);
4416 -- Add message unless exception messages are suppressed
4418 if not Opt.Exception_Locations_Suppressed then
4419 Append_To (Pragma_Argument_Associations (Aitem),
4420 Make_Pragma_Argument_Association (Eloc,
4421 Chars => Name_Message,
4422 Expression =>
4423 Make_String_Literal (Eloc,
4424 Strval => "failed "
4425 & Get_Name_String (Pname)
4426 & " from "
4427 & Build_Location_String (Eloc))));
4428 end if;
4430 Set_Is_Delayed_Aspect (Aspect);
4432 -- For Pre/Post cases, insert immediately after the entity
4433 -- declaration, since that is the required pragma placement.
4434 -- Note that for these aspects, we do not have to worry
4435 -- about delay issues, since the pragmas themselves deal
4436 -- with delay of visibility for the expression analysis.
4438 Insert_Pragma (Aitem);
4440 goto Continue;
4441 end Pre_Post;
4443 -- Test_Case
4445 when Aspect_Test_Case => Test_Case : declare
4446 Args : List_Id;
4447 Comp_Expr : Node_Id;
4448 Comp_Assn : Node_Id;
4450 begin
4451 Args := New_List;
4453 if Nkind (Parent (N)) = N_Compilation_Unit then
4454 Error_Msg_Name_1 := Nam;
4455 Error_Msg_N ("incorrect placement of aspect %", E);
4456 goto Continue;
4457 end if;
4459 if Nkind (Expr) /= N_Aggregate
4460 or else Null_Record_Present (Expr)
4461 then
4462 Error_Msg_Name_1 := Nam;
4463 Error_Msg_NE
4464 ("wrong syntax for aspect % for &", Id, E);
4465 goto Continue;
4466 end if;
4468 -- Check that the expression is a proper aggregate (no
4469 -- parentheses).
4471 if Paren_Count (Expr) /= 0 then
4472 Error_Msg_F -- CODEFIX
4473 ("redundant parentheses", Expr);
4474 goto Continue;
4475 end if;
4477 -- Create the list of arguments for building the Test_Case
4478 -- pragma.
4480 Comp_Expr := First (Expressions (Expr));
4481 while Present (Comp_Expr) loop
4482 Append_To (Args,
4483 Make_Pragma_Argument_Association (Sloc (Comp_Expr),
4484 Expression => Relocate_Node (Comp_Expr)));
4485 Next (Comp_Expr);
4486 end loop;
4488 Comp_Assn := First (Component_Associations (Expr));
4489 while Present (Comp_Assn) loop
4490 if List_Length (Choices (Comp_Assn)) /= 1
4491 or else
4492 Nkind (First (Choices (Comp_Assn))) /= N_Identifier
4493 then
4494 Error_Msg_Name_1 := Nam;
4495 Error_Msg_NE
4496 ("wrong syntax for aspect % for &", Id, E);
4497 goto Continue;
4498 end if;
4500 Append_To (Args,
4501 Make_Pragma_Argument_Association (Sloc (Comp_Assn),
4502 Chars => Chars (First (Choices (Comp_Assn))),
4503 Expression =>
4504 Relocate_Node (Expression (Comp_Assn))));
4505 Next (Comp_Assn);
4506 end loop;
4508 -- Build the test-case pragma
4510 Aitem := Make_Aitem_Pragma
4511 (Pragma_Argument_Associations => Args,
4512 Pragma_Name => Name_Test_Case);
4513 end Test_Case;
4515 -- Contract_Cases
4517 when Aspect_Contract_Cases =>
4518 Aitem := Make_Aitem_Pragma
4519 (Pragma_Argument_Associations => New_List (
4520 Make_Pragma_Argument_Association (Loc,
4521 Expression => Relocate_Node (Expr))),
4522 Pragma_Name => Name_Contract_Cases);
4524 Decorate (Aspect, Aitem);
4525 Insert_Pragma (Aitem);
4526 goto Continue;
4528 -- Exceptional_Cases
4530 when Aspect_Exceptional_Cases =>
4531 Aitem := Make_Aitem_Pragma
4532 (Pragma_Argument_Associations => New_List (
4533 Make_Pragma_Argument_Association (Loc,
4534 Expression => Relocate_Node (Expr))),
4535 Pragma_Name => Name_Exceptional_Cases);
4537 Decorate (Aspect, Aitem);
4538 Insert_Pragma (Aitem);
4539 goto Continue;
4541 -- Subprogram_Variant
4543 when Aspect_Subprogram_Variant =>
4544 Aitem := Make_Aitem_Pragma
4545 (Pragma_Argument_Associations => New_List (
4546 Make_Pragma_Argument_Association (Loc,
4547 Expression => Relocate_Node (Expr))),
4548 Pragma_Name => Name_Subprogram_Variant);
4550 Decorate (Aspect, Aitem);
4551 Insert_Pragma (Aitem);
4552 goto Continue;
4554 -- Case 5: Special handling for aspects with an optional
4555 -- boolean argument.
4557 -- In the delayed case, the corresponding pragma cannot be
4558 -- generated yet because the evaluation of the boolean needs
4559 -- to be delayed till the freeze point.
4561 when Boolean_Aspects
4562 | Library_Unit_Aspects
4564 Set_Is_Boolean_Aspect (Aspect);
4566 -- Lock_Free aspect only apply to protected objects
4568 if A_Id = Aspect_Lock_Free then
4569 if Ekind (E) /= E_Protected_Type then
4570 Error_Msg_Name_1 := Nam;
4571 Error_Msg_N
4572 ("aspect % only applies to a protected type " &
4573 "or object",
4574 Aspect);
4576 else
4577 -- Set the Uses_Lock_Free flag to True if there is no
4578 -- expression or if the expression is True. The
4579 -- evaluation of this aspect should be delayed to the
4580 -- freeze point if we wanted to handle the corner case
4581 -- of "true" or "false" being redefined.
4583 if No (Expr)
4584 or else Is_True (Static_Boolean (Expr))
4585 then
4586 Set_Uses_Lock_Free (E);
4587 end if;
4589 Record_Rep_Item (E, Aspect);
4590 end if;
4592 goto Continue;
4594 elsif A_Id in Aspect_Export | Aspect_Import then
4595 Analyze_Aspect_Export_Import;
4597 -- Disable_Controlled
4599 elsif A_Id = Aspect_Disable_Controlled then
4600 Analyze_Aspect_Disable_Controlled;
4601 goto Continue;
4603 -- Ada 2022 (AI12-0129): Exclusive_Functions
4605 elsif A_Id = Aspect_Exclusive_Functions then
4606 if Ekind (E) /= E_Protected_Type then
4607 Error_Msg_Name_1 := Nam;
4608 Error_Msg_N
4609 ("aspect % only applies to a protected type " &
4610 "or object",
4611 Aspect);
4612 end if;
4614 goto Continue;
4616 -- Ada 2022 (AI12-0363): Full_Access_Only
4618 elsif A_Id = Aspect_Full_Access_Only then
4619 Error_Msg_Ada_2022_Feature ("aspect %", Sloc (Aspect));
4621 -- Ada 2022 (AI12-0075): static expression functions
4623 elsif A_Id = Aspect_Static then
4624 Analyze_Aspect_Static;
4625 goto Continue;
4627 -- Ada 2022 (AI12-0279)
4629 elsif A_Id = Aspect_Yield then
4630 Analyze_Aspect_Yield;
4631 goto Continue;
4632 end if;
4634 -- Library unit aspects require special handling in the case
4635 -- of a package declaration, the pragma needs to be inserted
4636 -- in the list of declarations for the associated package.
4637 -- There is no issue of visibility delay for these aspects.
4639 if A_Id in Library_Unit_Aspects
4640 and then
4641 Nkind (N) in N_Package_Declaration
4642 | N_Generic_Package_Declaration
4643 and then Nkind (Parent (N)) /= N_Compilation_Unit
4645 -- Aspect is legal on a local instantiation of a library-
4646 -- level generic unit.
4648 and then not Is_Generic_Instance (Defining_Entity (N))
4649 then
4650 Error_Msg_N
4651 ("incorrect context for library unit aspect&", Id);
4652 goto Continue;
4653 end if;
4655 -- Cases where we do not delay
4657 if not Delay_Required then
4659 -- Exclude aspects Export and Import because their pragma
4660 -- syntax does not map directly to a Boolean aspect.
4662 if A_Id not in Aspect_Export | Aspect_Import then
4663 Aitem := Make_Aitem_Pragma
4664 (Pragma_Argument_Associations => New_List (
4665 Make_Pragma_Argument_Association (Sloc (Ent),
4666 Expression => Ent)),
4667 Pragma_Name => Nam);
4668 end if;
4670 -- In general cases, the corresponding pragma/attribute
4671 -- definition clause will be inserted later at the freezing
4672 -- point, and we do not need to build it now.
4674 else
4675 Aitem := Empty;
4676 end if;
4678 -- Storage_Size
4680 -- This is special because for access types we need to generate
4681 -- an attribute definition clause. This also works for single
4682 -- task declarations, but it does not work for task type
4683 -- declarations, because we have the case where the expression
4684 -- references a discriminant of the task type. That can't use
4685 -- an attribute definition clause because we would not have
4686 -- visibility on the discriminant. For that case we must
4687 -- generate a pragma in the task definition.
4689 when Aspect_Storage_Size =>
4691 -- Task type case
4693 if Ekind (E) = E_Task_Type then
4694 declare
4695 Decl : constant Node_Id := Declaration_Node (E);
4697 begin
4698 pragma Assert (Nkind (Decl) = N_Task_Type_Declaration);
4700 -- If no task definition, create one
4702 if No (Task_Definition (Decl)) then
4703 Set_Task_Definition (Decl,
4704 Make_Task_Definition (Loc,
4705 Visible_Declarations => Empty_List,
4706 End_Label => Empty));
4707 end if;
4709 -- Create a pragma and put it at the start of the task
4710 -- definition for the task type declaration.
4712 Aitem := Make_Aitem_Pragma
4713 (Pragma_Argument_Associations => New_List (
4714 Make_Pragma_Argument_Association (Loc,
4715 Expression => Relocate_Node (Expr))),
4716 Pragma_Name => Name_Storage_Size);
4718 Prepend
4719 (Aitem,
4720 Visible_Declarations (Task_Definition (Decl)));
4721 goto Continue;
4722 end;
4724 -- All other cases, generate attribute definition
4726 else
4727 Aitem :=
4728 Make_Attribute_Definition_Clause (Loc,
4729 Name => Ent,
4730 Chars => Name_Storage_Size,
4731 Expression => Relocate_Node (Expr));
4732 end if;
4733 end case;
4735 -- Attach the corresponding pragma/attribute definition clause to
4736 -- the aspect specification node.
4738 if Present (Aitem) then
4739 Set_From_Aspect_Specification (Aitem);
4740 end if;
4742 -- For an aspect that applies to a type, indicate whether it
4743 -- appears on a partial view of the type.
4745 if Is_Type (E)
4746 and then Is_Private_Type (E)
4747 then
4748 Set_Aspect_On_Partial_View (Aspect);
4749 end if;
4751 -- In the context of a compilation unit, we directly put the
4752 -- pragma in the Pragmas_After list of the N_Compilation_Unit_Aux
4753 -- node (no delay is required here) except for aspects on a
4754 -- subprogram body (see below) and a generic package, for which we
4755 -- need to introduce the pragma before building the generic copy
4756 -- (see sem_ch12), and for package instantiations, where the
4757 -- library unit pragmas are better handled early.
4759 if Nkind (Parent (N)) = N_Compilation_Unit
4760 and then (Present (Aitem) or else Is_Boolean_Aspect (Aspect))
4761 then
4762 declare
4763 Aux : constant Node_Id := Aux_Decls_Node (Parent (N));
4765 begin
4766 pragma Assert (Nkind (Aux) = N_Compilation_Unit_Aux);
4768 -- For a Boolean aspect, create the corresponding pragma if
4769 -- no expression or if the value is True.
4771 if Is_Boolean_Aspect (Aspect) and then No (Aitem) then
4772 if Is_True (Static_Boolean (Expr)) then
4773 Aitem := Make_Aitem_Pragma
4774 (Pragma_Argument_Associations => New_List (
4775 Make_Pragma_Argument_Association (Sloc (Ent),
4776 Expression => Ent)),
4777 Pragma_Name => Nam);
4779 Set_From_Aspect_Specification (Aitem, True);
4780 Set_Corresponding_Aspect (Aitem, Aspect);
4782 else
4783 goto Continue;
4784 end if;
4785 end if;
4787 -- If the aspect is on a subprogram body (relevant aspect
4788 -- is Inline), add the pragma in front of the declarations.
4790 if Nkind (N) = N_Subprogram_Body then
4791 if No (Declarations (N)) then
4792 Set_Declarations (N, New_List);
4793 end if;
4795 Prepend (Aitem, Declarations (N));
4797 elsif Nkind (N) = N_Generic_Package_Declaration then
4798 if No (Visible_Declarations (Specification (N))) then
4799 Set_Visible_Declarations (Specification (N), New_List);
4800 end if;
4802 Prepend (Aitem,
4803 Visible_Declarations (Specification (N)));
4805 elsif Nkind (N) = N_Package_Instantiation then
4806 declare
4807 Spec : constant Node_Id :=
4808 Specification (Instance_Spec (N));
4809 begin
4810 if No (Visible_Declarations (Spec)) then
4811 Set_Visible_Declarations (Spec, New_List);
4812 end if;
4814 Prepend (Aitem, Visible_Declarations (Spec));
4815 end;
4817 else
4818 if No (Pragmas_After (Aux)) then
4819 Set_Pragmas_After (Aux, New_List);
4820 end if;
4822 Append (Aitem, Pragmas_After (Aux));
4823 end if;
4825 goto Continue;
4826 end;
4827 end if;
4829 -- The evaluation of the aspect is delayed to the freezing point.
4830 -- The pragma or attribute clause if there is one is then attached
4831 -- to the aspect specification which is put in the rep item list.
4833 if Delay_Required then
4834 if Present (Aitem) then
4835 Set_Is_Delayed_Aspect (Aitem);
4836 Set_Aspect_Rep_Item (Aspect, Aitem);
4837 Set_Parent (Aitem, Aspect);
4838 end if;
4840 Set_Is_Delayed_Aspect (Aspect);
4842 -- In the case of Default_Value, link the aspect to base type
4843 -- as well, even though it appears on a first subtype. This is
4844 -- mandated by the semantics of the aspect. Do not establish
4845 -- the link when processing the base type itself as this leads
4846 -- to a rep item circularity.
4848 if A_Id = Aspect_Default_Value and then Base_Type (E) /= E then
4849 Set_Has_Delayed_Aspects (Base_Type (E));
4850 Record_Rep_Item (Base_Type (E), Aspect);
4851 end if;
4853 Set_Has_Delayed_Aspects (E);
4854 Record_Rep_Item (E, Aspect);
4856 -- When delay is not required and the context is a package or a
4857 -- subprogram body, insert the pragma in the body declarations.
4859 elsif Nkind (N) in N_Package_Body | N_Subprogram_Body then
4860 if No (Declarations (N)) then
4861 Set_Declarations (N, New_List);
4862 end if;
4864 -- The pragma is added before source declarations
4866 Prepend_To (Declarations (N), Aitem);
4868 -- When delay is not required and the context is not a compilation
4869 -- unit, we simply insert the pragma/attribute definition clause
4870 -- in sequence.
4872 elsif Present (Aitem) then
4873 Insert_After (Ins_Node, Aitem);
4874 Ins_Node := Aitem;
4875 end if;
4877 <<Continue>>
4879 -- If a nonoverridable aspect is explicitly specified for a
4880 -- derived type, then check consistency with the parent type.
4882 if A_Id in Nonoverridable_Aspect_Id
4883 and then Nkind (N) = N_Full_Type_Declaration
4884 and then Nkind (Type_Definition (N)) = N_Derived_Type_Definition
4885 and then not In_Instance_Body
4886 then
4887 declare
4888 Parent_Type : constant Entity_Id := Etype (E);
4889 Inherited_Aspect : constant Node_Id :=
4890 Find_Aspect (Parent_Type, A_Id);
4891 begin
4892 if Present (Inherited_Aspect)
4893 and then not Is_Confirming
4894 (A_Id, Inherited_Aspect, Aspect)
4895 then
4896 Error_Msg_Name_1 := Aspect_Names (A_Id);
4897 Error_Msg_Sloc := Sloc (Inherited_Aspect);
4899 Error_Msg_N
4900 ("overriding aspect specification for "
4901 & "nonoverridable aspect % does not confirm "
4902 & "aspect specification inherited from #",
4903 Aspect);
4904 end if;
4905 end;
4906 end if;
4907 exception
4908 when Aspect_Exit => null;
4909 end Analyze_One_Aspect;
4911 Next (Aspect);
4912 end loop Aspect_Loop;
4914 if Has_Delayed_Aspects (E) then
4915 Ensure_Freeze_Node (E);
4916 end if;
4917 end Analyze_Aspect_Specifications;
4919 ------------------------------------------------
4920 -- Analyze_Aspects_On_Subprogram_Body_Or_Stub --
4921 ------------------------------------------------
4923 procedure Analyze_Aspects_On_Subprogram_Body_Or_Stub (N : Node_Id) is
4924 Body_Id : constant Entity_Id := Defining_Entity (N);
4926 procedure Diagnose_Misplaced_Aspects (Spec_Id : Entity_Id);
4927 -- Body [stub] N has aspects, but they are not properly placed. Emit an
4928 -- error message depending on the aspects involved. Spec_Id denotes the
4929 -- entity of the corresponding spec.
4931 --------------------------------
4932 -- Diagnose_Misplaced_Aspects --
4933 --------------------------------
4935 procedure Diagnose_Misplaced_Aspects (Spec_Id : Entity_Id) is
4936 procedure Misplaced_Aspect_Error
4937 (Asp : Node_Id;
4938 Ref_Nam : Name_Id);
4939 -- Emit an error message concerning misplaced aspect Asp. Ref_Nam is
4940 -- the name of the refined version of the aspect.
4942 ----------------------------
4943 -- Misplaced_Aspect_Error --
4944 ----------------------------
4946 procedure Misplaced_Aspect_Error
4947 (Asp : Node_Id;
4948 Ref_Nam : Name_Id)
4950 Asp_Nam : constant Name_Id := Chars (Identifier (Asp));
4951 Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp_Nam);
4953 begin
4954 -- The corresponding spec already contains the aspect in question
4955 -- and the one appearing on the body must be the refined form:
4957 -- procedure P with Global ...;
4958 -- procedure P with Global ... is ... end P;
4959 -- ^
4960 -- Refined_Global
4962 if Has_Aspect (Spec_Id, Asp_Id) then
4963 Error_Msg_Name_1 := Asp_Nam;
4965 -- Subunits cannot carry aspects that apply to a subprogram
4966 -- declaration.
4968 if Nkind (Parent (N)) = N_Subunit then
4969 Error_Msg_N ("aspect % cannot apply to a subunit", Asp);
4971 -- Otherwise suggest the refined form
4973 else
4974 Error_Msg_Name_2 := Ref_Nam;
4975 Error_Msg_N ("aspect % should be %", Asp);
4976 end if;
4978 -- Otherwise the aspect must appear on the spec, not on the body
4980 -- procedure P;
4981 -- procedure P with Global ... is ... end P;
4983 else
4984 Error_Msg_N
4985 ("aspect specification must appear on initial declaration",
4986 Asp);
4987 end if;
4988 end Misplaced_Aspect_Error;
4990 -- Local variables
4992 Asp : Node_Id;
4993 Asp_Nam : Name_Id;
4995 -- Start of processing for Diagnose_Misplaced_Aspects
4997 begin
4998 -- Iterate over the aspect specifications and emit specific errors
4999 -- where applicable.
5001 Asp := First (Aspect_Specifications (N));
5002 while Present (Asp) loop
5003 Asp_Nam := Chars (Identifier (Asp));
5005 -- Do not emit errors on aspects that can appear on a subprogram
5006 -- body. This scenario occurs when the aspect specification list
5007 -- contains both misplaced and properly placed aspects.
5009 if Aspect_On_Body_Or_Stub_OK (Get_Aspect_Id (Asp_Nam)) then
5010 null;
5012 -- Special diagnostics for SPARK aspects
5014 elsif Asp_Nam = Name_Depends then
5015 Misplaced_Aspect_Error (Asp, Name_Refined_Depends);
5017 elsif Asp_Nam = Name_Global then
5018 Misplaced_Aspect_Error (Asp, Name_Refined_Global);
5020 elsif Asp_Nam = Name_Post then
5021 Misplaced_Aspect_Error (Asp, Name_Refined_Post);
5023 -- Otherwise a language-defined aspect is misplaced
5025 else
5026 Error_Msg_N
5027 ("aspect specification must appear on initial declaration",
5028 Asp);
5029 end if;
5031 Next (Asp);
5032 end loop;
5033 end Diagnose_Misplaced_Aspects;
5035 -- Local variables
5037 Spec_Id : constant Entity_Id := Unique_Defining_Entity (N);
5039 -- Start of processing for Analyze_Aspects_On_Subprogram_Body_Or_Stub
5041 begin
5042 -- Language-defined aspects cannot be associated with a subprogram body
5043 -- [stub] if the subprogram has a spec. Certain implementation defined
5044 -- aspects are allowed to break this rule (for all applicable cases, see
5045 -- table Aspects.Aspect_On_Body_Or_Stub_OK).
5047 if Spec_Id /= Body_Id and then not Aspects_On_Body_Or_Stub_OK (N) then
5048 Diagnose_Misplaced_Aspects (Spec_Id);
5049 else
5050 Analyze_Aspect_Specifications (N, Body_Id);
5051 end if;
5052 end Analyze_Aspects_On_Subprogram_Body_Or_Stub;
5054 -----------------------
5055 -- Analyze_At_Clause --
5056 -----------------------
5058 -- An at clause is replaced by the corresponding Address attribute
5059 -- definition clause that is the preferred approach in Ada 95.
5061 procedure Analyze_At_Clause (N : Node_Id) is
5062 CS : constant Boolean := Comes_From_Source (N);
5064 begin
5065 -- This is an obsolescent feature
5067 Check_Restriction (No_Obsolescent_Features, N);
5069 if Warn_On_Obsolescent_Feature then
5070 Error_Msg_N
5071 ("?j?at clause is an obsolescent feature (RM J.7(2))", N);
5072 Error_Msg_N
5073 ("\?j?use address attribute definition clause instead", N);
5074 end if;
5076 -- Rewrite as address clause
5078 Rewrite (N,
5079 Make_Attribute_Definition_Clause (Sloc (N),
5080 Name => Identifier (N),
5081 Chars => Name_Address,
5082 Expression => Expression (N)));
5084 -- We preserve Comes_From_Source, since logically the clause still comes
5085 -- from the source program even though it is changed in form.
5087 Set_Comes_From_Source (N, CS);
5089 -- Analyze rewritten clause
5091 Analyze_Attribute_Definition_Clause (N);
5092 end Analyze_At_Clause;
5094 -----------------------------------------
5095 -- Analyze_Attribute_Definition_Clause --
5096 -----------------------------------------
5098 procedure Analyze_Attribute_Definition_Clause (N : Node_Id) is
5099 Loc : constant Source_Ptr := Sloc (N);
5100 Nam : constant Node_Id := Name (N);
5101 Attr : constant Name_Id := Chars (N);
5102 Expr : constant Node_Id := Expression (N);
5103 Id : constant Attribute_Id := Get_Attribute_Id (Attr);
5105 Ent : Entity_Id;
5106 -- The entity of Nam after it is analyzed. In the case of an incomplete
5107 -- type, this is the underlying type.
5109 U_Ent : Entity_Id;
5110 -- The underlying entity to which the attribute applies. Generally this
5111 -- is the Underlying_Type of Ent, except in the case where the clause
5112 -- applies to the full view of an incomplete or private type, in which
5113 -- case U_Ent is just a copy of Ent.
5115 FOnly : Boolean := False;
5116 -- Reset to True for subtype specific attribute (Alignment, Size)
5117 -- and for stream attributes, i.e. those cases where in the call to
5118 -- Rep_Item_Too_Late, FOnly is set True so that only the freezing rules
5119 -- are checked. Note that the case of stream attributes is not clear
5120 -- from the RM, but see AI95-00137. Also, the RM seems to disallow
5121 -- Storage_Size for derived task types, but that is also clearly
5122 -- unintentional.
5124 procedure Analyze_Put_Image_TSS_Definition;
5126 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type);
5127 -- Common processing for 'Read, 'Write, 'Input and 'Output attribute
5128 -- definition clauses.
5130 function Duplicate_Clause return Boolean;
5131 -- This routine checks if the aspect for U_Ent being given by attribute
5132 -- definition clause N is for an aspect that has already been specified,
5133 -- and if so gives an error message. If there is a duplicate, True is
5134 -- returned, otherwise there is no error, and False is returned. Size
5135 -- and Value_Size are considered to conflict, but for compatibility,
5136 -- this is merely a warning.
5138 procedure Check_Indexing_Functions;
5139 -- Check that the function in Constant_Indexing or Variable_Indexing
5140 -- attribute has the proper type structure. If the name is overloaded,
5141 -- check that some interpretation is legal.
5143 procedure Check_Iterator_Functions;
5144 -- Check that there is a single function in Default_Iterator attribute
5145 -- that has the proper type structure.
5147 function Check_Primitive_Function (Subp : Entity_Id) return Boolean;
5148 -- Common legality check for the previous two
5150 -----------------------------------
5151 -- Analyze_Put_Image_TSS_Definition --
5152 -----------------------------------
5154 procedure Analyze_Put_Image_TSS_Definition is
5155 Subp : Entity_Id := Empty;
5156 I : Interp_Index;
5157 It : Interp;
5158 Pnam : Entity_Id;
5160 function Has_Good_Profile
5161 (Subp : Entity_Id;
5162 Report : Boolean := False) return Boolean;
5163 -- Return true if the entity is a subprogram with an appropriate
5164 -- profile for the attribute being defined. If result is False and
5165 -- Report is True, function emits appropriate error.
5167 ----------------------
5168 -- Has_Good_Profile --
5169 ----------------------
5171 function Has_Good_Profile
5172 (Subp : Entity_Id;
5173 Report : Boolean := False) return Boolean
5175 F : Entity_Id;
5176 Typ : Entity_Id;
5178 begin
5179 if Ekind (Subp) /= E_Procedure then
5180 return False;
5181 end if;
5183 F := First_Formal (Subp);
5185 if No (F) then
5186 return False;
5187 end if;
5189 if Base_Type (Etype (F))
5190 /= Class_Wide_Type (RTE (RE_Root_Buffer_Type))
5191 then
5192 if Report then
5193 Error_Msg_N
5194 ("wrong type for Put_Image procedure''s first parameter",
5195 Parameter_Type (Parent (F)));
5196 end if;
5198 return False;
5199 end if;
5201 if Parameter_Mode (F) /= E_In_Out_Parameter then
5202 if Report then
5203 Error_Msg_N
5204 ("wrong mode for Put_Image procedure''s first parameter",
5205 Parent (F));
5206 end if;
5208 return False;
5209 end if;
5211 Next_Formal (F);
5213 Typ := Etype (F);
5215 -- Verify that the prefix of the attribute and the local name for
5216 -- the type of the formal match.
5218 if Base_Type (Typ) /= Base_Type (Ent) then
5219 if Report then
5220 Error_Msg_N
5221 ("wrong type for Put_Image procedure''s second parameter",
5222 Parameter_Type (Parent (F)));
5223 end if;
5225 return False;
5226 end if;
5228 if Parameter_Mode (F) /= E_In_Parameter then
5229 if Report then
5230 Error_Msg_N
5231 ("wrong mode for Put_Image procedure''s second parameter",
5232 Parent (F));
5233 end if;
5235 return False;
5236 end if;
5238 if Present (Next_Formal (F)) then
5239 return False;
5240 end if;
5242 return True;
5243 end Has_Good_Profile;
5245 -- Start of processing for Analyze_Put_Image_TSS_Definition
5247 begin
5248 if not Is_Type (U_Ent) then
5249 Error_Msg_N ("local name must be a subtype", Nam);
5250 return;
5252 elsif not Is_First_Subtype (U_Ent) then
5253 Error_Msg_N ("local name must be a first subtype", Nam);
5254 return;
5255 end if;
5257 Pnam := TSS (Base_Type (U_Ent), TSS_Put_Image);
5259 -- If Pnam is present, it can be either inherited from an ancestor
5260 -- type (in which case it is legal to redefine it for this type), or
5261 -- be a previous definition of the attribute for the same type (in
5262 -- which case it is illegal).
5264 -- In the first case, it will have been analyzed already, and we can
5265 -- check that its profile does not match the expected profile for the
5266 -- Put_Image attribute of U_Ent. In the second case, either Pnam has
5267 -- been analyzed (and has the expected profile), or it has not been
5268 -- analyzed yet (case of a type that has not been frozen yet and for
5269 -- which Put_Image has been set using Set_TSS).
5271 if Present (Pnam)
5272 and then (No (First_Entity (Pnam)) or else Has_Good_Profile (Pnam))
5273 then
5274 Error_Msg_Sloc := Sloc (Pnam);
5275 Error_Msg_Name_1 := Attr;
5276 Error_Msg_N ("% attribute already defined #", Nam);
5277 return;
5278 end if;
5280 Analyze (Expr);
5282 if Is_Entity_Name (Expr) then
5283 if not Is_Overloaded (Expr) then
5284 if Has_Good_Profile (Entity (Expr), Report => True) then
5285 Subp := Entity (Expr);
5286 end if;
5288 else
5289 Get_First_Interp (Expr, I, It);
5290 while Present (It.Nam) loop
5291 if Has_Good_Profile (It.Nam) then
5292 Subp := It.Nam;
5293 exit;
5294 end if;
5296 Get_Next_Interp (I, It);
5297 end loop;
5298 end if;
5299 end if;
5301 if Present (Subp) then
5302 if Is_Abstract_Subprogram (Subp) then
5303 Error_Msg_N ("Put_Image subprogram must not be abstract", Expr);
5304 return;
5305 end if;
5307 Set_Entity (Expr, Subp);
5308 Set_Etype (Expr, Etype (Subp));
5310 New_Put_Image_Subprogram (N, U_Ent, Subp);
5312 else
5313 Error_Msg_Name_1 := Attr;
5314 Error_Msg_N ("incorrect expression for% attribute", Expr);
5315 end if;
5316 end Analyze_Put_Image_TSS_Definition;
5318 -----------------------------------
5319 -- Analyze_Stream_TSS_Definition --
5320 -----------------------------------
5322 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type) is
5323 Subp : Entity_Id := Empty;
5324 I : Interp_Index;
5325 It : Interp;
5326 Pnam : Entity_Id;
5328 Is_Read : constant Boolean := (TSS_Nam = TSS_Stream_Read);
5329 -- True for Read attribute, False for other attributes
5331 function Has_Good_Profile
5332 (Subp : Entity_Id;
5333 Report : Boolean := False) return Boolean;
5334 -- Return true if the entity is a subprogram with an appropriate
5335 -- profile for the attribute being defined. If result is False and
5336 -- Report is True, function emits appropriate error.
5338 ----------------------
5339 -- Has_Good_Profile --
5340 ----------------------
5342 function Has_Good_Profile
5343 (Subp : Entity_Id;
5344 Report : Boolean := False) return Boolean
5346 Expected_Ekind : constant array (Boolean) of Entity_Kind :=
5347 (False => E_Procedure, True => E_Function);
5348 Is_Function : constant Boolean := (TSS_Nam = TSS_Stream_Input);
5349 F : Entity_Id;
5350 Typ : Entity_Id;
5352 begin
5353 if Ekind (Subp) /= Expected_Ekind (Is_Function) then
5354 return False;
5355 end if;
5357 F := First_Formal (Subp);
5359 if No (F)
5360 or else Ekind (Etype (F)) /= E_Anonymous_Access_Type
5361 or else Base_Type (Designated_Type (Etype (F))) /=
5362 Class_Wide_Type (RTE (RE_Root_Stream_Type))
5363 then
5364 return False;
5365 end if;
5367 if not Is_Function then
5368 Next_Formal (F);
5370 declare
5371 Expected_Mode : constant array (Boolean) of Entity_Kind :=
5372 (False => E_In_Parameter,
5373 True => E_Out_Parameter);
5374 begin
5375 if Parameter_Mode (F) /= Expected_Mode (Is_Read) then
5376 return False;
5377 end if;
5378 end;
5380 Typ := Etype (F);
5382 else
5383 Typ := Etype (Subp);
5384 end if;
5386 -- Verify that the prefix of the attribute and the local name for
5387 -- the type of the formal match.
5389 if Base_Type (Typ) /= Base_Type (Ent) then
5390 return False;
5391 end if;
5393 if Present (Next_Formal (F)) then
5394 return False;
5396 elsif not Is_Scalar_Type (Typ)
5397 and then not Is_First_Subtype (Typ)
5398 and then not Is_Class_Wide_Type (Typ)
5399 then
5400 if Report and not Is_First_Subtype (Typ) then
5401 Error_Msg_N
5402 ("subtype of formal in stream operation must be a first "
5403 & "subtype", Parameter_Type (Parent (F)));
5404 end if;
5406 return False;
5408 else
5409 return True;
5410 end if;
5411 end Has_Good_Profile;
5413 -- Start of processing for Analyze_Stream_TSS_Definition
5415 begin
5416 FOnly := True;
5418 if not Is_Type (U_Ent) then
5419 Error_Msg_N ("local name must be a subtype", Nam);
5420 return;
5422 elsif not Is_First_Subtype (U_Ent) then
5423 Error_Msg_N ("local name must be a first subtype", Nam);
5424 return;
5425 end if;
5427 Pnam := TSS (Base_Type (U_Ent), TSS_Nam);
5429 -- If Pnam is present, it can be either inherited from an ancestor
5430 -- type (in which case it is legal to redefine it for this type), or
5431 -- be a previous definition of the attribute for the same type (in
5432 -- which case it is illegal).
5434 -- In the first case, it will have been analyzed already, and we
5435 -- can check that its profile does not match the expected profile
5436 -- for a stream attribute of U_Ent. In the second case, either Pnam
5437 -- has been analyzed (and has the expected profile), or it has not
5438 -- been analyzed yet (case of a type that has not been frozen yet
5439 -- and for which the stream attribute has been set using Set_TSS).
5441 if Present (Pnam)
5442 and then (No (First_Entity (Pnam)) or else Has_Good_Profile (Pnam))
5443 then
5444 Error_Msg_Sloc := Sloc (Pnam);
5445 Error_Msg_Name_1 := Attr;
5446 Error_Msg_N ("% attribute already defined #", Nam);
5447 return;
5448 end if;
5450 Analyze (Expr);
5452 if Is_Entity_Name (Expr) then
5453 if not Is_Overloaded (Expr) then
5454 if Has_Good_Profile (Entity (Expr), Report => True) then
5455 Subp := Entity (Expr);
5456 end if;
5458 else
5459 Get_First_Interp (Expr, I, It);
5460 while Present (It.Nam) loop
5461 if Has_Good_Profile (It.Nam) then
5462 Subp := It.Nam;
5463 exit;
5464 end if;
5466 Get_Next_Interp (I, It);
5467 end loop;
5468 end if;
5469 end if;
5471 if Present (Subp) then
5472 if Is_Abstract_Subprogram (Subp) then
5473 Error_Msg_N ("stream subprogram must not be abstract", Expr);
5474 return;
5476 -- A stream subprogram for an interface type must be a null
5477 -- procedure (RM 13.13.2 (38/3)). Note that the class-wide type
5478 -- of an interface is not an interface type (3.9.4 (6.b/2)).
5480 elsif Is_Interface (U_Ent)
5481 and then not Is_Class_Wide_Type (U_Ent)
5482 and then not Inside_A_Generic
5483 and then
5484 (Ekind (Subp) = E_Function
5485 or else
5486 not Null_Present
5487 (Specification
5488 (Unit_Declaration_Node (Ultimate_Alias (Subp)))))
5489 then
5490 Error_Msg_N
5491 ("stream subprogram for interface type must be null "
5492 & "procedure", Expr);
5493 end if;
5495 Set_Entity (Expr, Subp);
5496 Set_Etype (Expr, Etype (Subp));
5498 New_Stream_Subprogram (N, U_Ent, Subp, TSS_Nam);
5500 else
5501 Error_Msg_Name_1 := Attr;
5503 if Is_Class_Wide_Type (Base_Type (Ent)) then
5504 Error_Msg_N
5505 ("incorrect expression for class-wide% attribute", Expr);
5506 else
5507 Error_Msg_N ("incorrect expression for% attribute", Expr);
5508 end if;
5509 end if;
5510 end Analyze_Stream_TSS_Definition;
5512 ------------------------------
5513 -- Check_Indexing_Functions --
5514 ------------------------------
5516 procedure Check_Indexing_Functions is
5517 Indexing_Found : Boolean := False;
5519 procedure Check_Inherited_Indexing;
5520 -- For a derived type, check that for a derived type, a specification
5521 -- of an indexing aspect can only be confirming, i.e. uses the same
5522 -- name as in the parent type.
5523 -- AI12-0160: Verify that an indexing cannot be specified for
5524 -- a derived type unless it is specified for the parent.
5526 procedure Check_One_Function (Subp : Entity_Id);
5527 -- Check one possible interpretation. Sets Indexing_Found True if a
5528 -- legal indexing function is found.
5530 procedure Illegal_Indexing (Msg : String);
5531 -- Diagnose illegal indexing function if not overloaded. In the
5532 -- overloaded case indicate that no legal interpretation exists.
5534 ------------------------------
5535 -- Check_Inherited_Indexing --
5536 ------------------------------
5538 procedure Check_Inherited_Indexing is
5539 Inherited : Node_Id;
5540 Other_Indexing : Node_Id;
5542 begin
5543 if Attr = Name_Constant_Indexing then
5544 Inherited :=
5545 Find_Aspect (Etype (Ent), Aspect_Constant_Indexing);
5546 Other_Indexing :=
5547 Find_Aspect (Etype (Ent), Aspect_Variable_Indexing);
5549 else pragma Assert (Attr = Name_Variable_Indexing);
5550 Inherited :=
5551 Find_Aspect (Etype (Ent), Aspect_Variable_Indexing);
5552 Other_Indexing :=
5553 Find_Aspect (Etype (Ent), Aspect_Constant_Indexing);
5554 end if;
5556 if Present (Inherited) then
5557 if Debug_Flag_Dot_XX then
5558 null;
5560 -- OK if current attribute_definition_clause is expansion of
5561 -- inherited aspect.
5563 elsif Aspect_Rep_Item (Inherited) = N then
5564 null;
5566 -- Check if this is a confirming specification. The name
5567 -- may be overloaded between the parent operation and the
5568 -- inherited one, so we check that the Chars fields match.
5570 elsif Is_Entity_Name (Expression (Inherited))
5571 and then Chars (Entity (Expression (Inherited))) =
5572 Chars (Entity (Expression (N)))
5573 then
5574 Indexing_Found := True;
5576 -- Indicate the operation that must be overridden, rather than
5577 -- redefining the indexing aspect.
5579 else
5580 Illegal_Indexing
5581 ("indexing function already inherited from parent type");
5582 Error_Msg_NE
5583 ("!override & instead",
5584 N, Entity (Expression (Inherited)));
5585 end if;
5587 -- If not inherited and the parent has another indexing function
5588 -- this is illegal, because it leads to inconsistent results in
5589 -- class-wide calls.
5591 elsif Present (Other_Indexing) then
5592 Error_Msg_N
5593 ("cannot specify indexing operation on derived type"
5594 & " if not specified for parent", N);
5595 end if;
5596 end Check_Inherited_Indexing;
5598 ------------------------
5599 -- Check_One_Function --
5600 ------------------------
5602 procedure Check_One_Function (Subp : Entity_Id) is
5603 Default_Element : Node_Id;
5604 Ret_Type : constant Entity_Id := Etype (Subp);
5606 begin
5607 if not Is_Overloadable (Subp) then
5608 Illegal_Indexing ("illegal indexing function for type&");
5609 return;
5611 elsif Scope (Subp) /= Scope (Ent) then
5612 if Nkind (Expr) = N_Expanded_Name then
5614 -- Indexing function can't be declared elsewhere
5616 Illegal_Indexing
5617 ("indexing function must be declared"
5618 & " in scope of type&");
5619 end if;
5621 if Is_Derived_Type (Ent) then
5622 Check_Inherited_Indexing;
5623 end if;
5625 return;
5627 elsif No (First_Formal (Subp)) then
5628 Illegal_Indexing
5629 ("Indexing requires a function that applies to type&");
5630 return;
5632 elsif No (Next_Formal (First_Formal (Subp))) then
5633 Illegal_Indexing
5634 ("indexing function must have at least two parameters");
5635 return;
5637 elsif Is_Derived_Type (Ent) then
5638 Check_Inherited_Indexing;
5639 end if;
5641 if not Check_Primitive_Function (Subp) then
5642 Illegal_Indexing
5643 ("Indexing aspect requires a function that applies to type&");
5644 return;
5645 end if;
5647 -- If partial declaration exists, verify that it is not tagged.
5649 if Ekind (Current_Scope) = E_Package
5650 and then Has_Private_Declaration (Ent)
5651 and then From_Aspect_Specification (N)
5652 and then
5653 List_Containing (Parent (Ent)) =
5654 Private_Declarations
5655 (Specification (Unit_Declaration_Node (Current_Scope)))
5656 and then Nkind (N) = N_Attribute_Definition_Clause
5657 then
5658 declare
5659 Decl : Node_Id;
5661 begin
5662 Decl :=
5663 First (Visible_Declarations
5664 (Specification
5665 (Unit_Declaration_Node (Current_Scope))));
5667 while Present (Decl) loop
5668 if Nkind (Decl) = N_Private_Type_Declaration
5669 and then Ent = Full_View (Defining_Identifier (Decl))
5670 and then Tagged_Present (Decl)
5671 and then No (Aspect_Specifications (Decl))
5672 then
5673 Illegal_Indexing
5674 ("Indexing aspect cannot be specified on full view "
5675 & "if partial view is tagged");
5676 return;
5677 end if;
5679 Next (Decl);
5680 end loop;
5681 end;
5682 end if;
5684 -- An indexing function must return either the default element of
5685 -- the container, or a reference type. For variable indexing it
5686 -- must be the latter.
5688 Default_Element :=
5689 Find_Value_Of_Aspect
5690 (Etype (First_Formal (Subp)), Aspect_Iterator_Element);
5692 if Present (Default_Element) then
5693 Analyze (Default_Element);
5694 end if;
5696 -- For variable_indexing the return type must be a reference type
5698 if Attr = Name_Variable_Indexing then
5699 if not Has_Implicit_Dereference (Ret_Type) then
5700 Illegal_Indexing
5701 ("variable indexing must return a reference type");
5702 return;
5704 elsif Is_Access_Constant
5705 (Etype (First_Discriminant (Ret_Type)))
5706 then
5707 Illegal_Indexing
5708 ("variable indexing must return an access to variable");
5709 return;
5710 end if;
5712 else
5713 if Has_Implicit_Dereference (Ret_Type)
5714 and then not
5715 Is_Access_Constant
5716 (Etype (Get_Reference_Discriminant (Ret_Type)))
5717 then
5718 Illegal_Indexing
5719 ("constant indexing must return an access to constant");
5720 return;
5722 elsif Is_Access_Type (Etype (First_Formal (Subp)))
5723 and then not Is_Access_Constant (Etype (First_Formal (Subp)))
5724 then
5725 Illegal_Indexing
5726 ("constant indexing must apply to an access to constant");
5727 return;
5728 end if;
5729 end if;
5731 -- All checks succeeded
5733 Indexing_Found := True;
5734 end Check_One_Function;
5736 -----------------------
5737 -- Illegal_Indexing --
5738 -----------------------
5740 procedure Illegal_Indexing (Msg : String) is
5741 begin
5742 Error_Msg_NE (Msg, N, Ent);
5743 end Illegal_Indexing;
5745 -- Start of processing for Check_Indexing_Functions
5747 begin
5748 if In_Instance then
5749 Check_Inherited_Indexing;
5750 end if;
5752 Analyze (Expr);
5754 if not Is_Overloaded (Expr) then
5755 Check_One_Function (Entity (Expr));
5757 else
5758 declare
5759 I : Interp_Index;
5760 It : Interp;
5762 begin
5763 Indexing_Found := False;
5764 Get_First_Interp (Expr, I, It);
5765 while Present (It.Nam) loop
5767 -- Note that analysis will have added the interpretation
5768 -- that corresponds to the dereference. We only check the
5769 -- subprogram itself. Ignore homonyms that may come from
5770 -- derived types in the context.
5772 if Is_Overloadable (It.Nam)
5773 and then Comes_From_Source (It.Nam)
5774 then
5775 Check_One_Function (It.Nam);
5776 end if;
5778 Get_Next_Interp (I, It);
5779 end loop;
5780 end;
5781 end if;
5783 if not Indexing_Found and then not Error_Posted (N) then
5784 Error_Msg_NE
5785 ("aspect Indexing requires a local function that applies to "
5786 & "type&", Expr, Ent);
5787 end if;
5788 end Check_Indexing_Functions;
5790 ------------------------------
5791 -- Check_Iterator_Functions --
5792 ------------------------------
5794 procedure Check_Iterator_Functions is
5795 function Valid_Default_Iterator (Subp : Entity_Id) return Boolean;
5796 -- Check one possible interpretation for validity
5798 ----------------------------
5799 -- Valid_Default_Iterator --
5800 ----------------------------
5802 function Valid_Default_Iterator (Subp : Entity_Id) return Boolean is
5803 Root_T : constant Entity_Id := Root_Type (Etype (Etype (Subp)));
5804 Formal : Entity_Id;
5806 begin
5807 if not Check_Primitive_Function (Subp) then
5808 return False;
5810 -- The return type must be derived from a type in an instance
5811 -- of Iterator.Interfaces, and thus its root type must have a
5812 -- predefined name.
5814 elsif Chars (Root_T) /= Name_Forward_Iterator
5815 and then Chars (Root_T) /= Name_Reversible_Iterator
5816 then
5817 return False;
5819 else
5820 Formal := First_Formal (Subp);
5821 end if;
5823 -- False if any subsequent formal has no default expression
5825 Next_Formal (Formal);
5826 while Present (Formal) loop
5827 if No (Expression (Parent (Formal))) then
5828 return False;
5829 end if;
5831 Next_Formal (Formal);
5832 end loop;
5834 -- True if all subsequent formals have default expressions
5836 return True;
5837 end Valid_Default_Iterator;
5839 -- Start of processing for Check_Iterator_Functions
5841 begin
5842 Analyze (Expr);
5844 if not Is_Entity_Name (Expr) then
5845 Error_Msg_N ("aspect Iterator must be a function name", Expr);
5846 end if;
5848 if not Is_Overloaded (Expr) then
5849 if Entity (Expr) /= Any_Id
5850 and then not Check_Primitive_Function (Entity (Expr))
5851 then
5852 Error_Msg_NE
5853 ("aspect Indexing requires a function that applies to type&",
5854 Entity (Expr), Ent);
5855 end if;
5857 -- Flag the default_iterator as well as the denoted function.
5859 if not Valid_Default_Iterator (Entity (Expr)) then
5860 Error_Msg_N ("improper function for default iterator!", Expr);
5861 end if;
5863 else
5864 declare
5865 Default : Entity_Id := Empty;
5866 I : Interp_Index;
5867 It : Interp;
5869 begin
5870 Get_First_Interp (Expr, I, It);
5871 while Present (It.Nam) loop
5872 if not Check_Primitive_Function (It.Nam)
5873 or else not Valid_Default_Iterator (It.Nam)
5874 then
5875 Remove_Interp (I);
5877 elsif Present (Default) then
5879 -- An explicit one should override an implicit one
5881 if Comes_From_Source (Default) =
5882 Comes_From_Source (It.Nam)
5883 then
5884 Error_Msg_N ("default iterator must be unique", Expr);
5885 Error_Msg_Sloc := Sloc (Default);
5886 Error_Msg_N ("\\possible interpretation#", Expr);
5887 Error_Msg_Sloc := Sloc (It.Nam);
5888 Error_Msg_N ("\\possible interpretation#", Expr);
5890 elsif Comes_From_Source (It.Nam) then
5891 Default := It.Nam;
5892 end if;
5893 else
5894 Default := It.Nam;
5895 end if;
5897 Get_Next_Interp (I, It);
5898 end loop;
5900 if Present (Default) then
5901 Set_Entity (Expr, Default);
5902 Set_Is_Overloaded (Expr, False);
5903 else
5904 Error_Msg_N
5905 ("no interpretation is a valid default iterator!", Expr);
5906 end if;
5907 end;
5908 end if;
5909 end Check_Iterator_Functions;
5911 -------------------------------
5912 -- Check_Primitive_Function --
5913 -------------------------------
5915 function Check_Primitive_Function (Subp : Entity_Id) return Boolean is
5916 Ctrl : Entity_Id;
5918 begin
5919 if Ekind (Subp) /= E_Function then
5920 return False;
5921 end if;
5923 if No (First_Formal (Subp)) then
5924 return False;
5925 else
5926 Ctrl := Etype (First_Formal (Subp));
5927 end if;
5929 -- To be a primitive operation subprogram has to be in same scope.
5931 if Scope (Ctrl) /= Scope (Subp) then
5932 return False;
5933 end if;
5935 -- Type of formal may be the class-wide type, an access to such,
5936 -- or an incomplete view.
5938 if Ctrl = Ent
5939 or else Ctrl = Class_Wide_Type (Ent)
5940 or else
5941 (Ekind (Ctrl) = E_Anonymous_Access_Type
5942 and then (Designated_Type (Ctrl) = Ent
5943 or else
5944 Designated_Type (Ctrl) = Class_Wide_Type (Ent)))
5945 or else
5946 (Ekind (Ctrl) = E_Incomplete_Type
5947 and then Full_View (Ctrl) = Ent)
5948 then
5949 null;
5950 else
5951 return False;
5952 end if;
5954 return True;
5955 end Check_Primitive_Function;
5957 ----------------------
5958 -- Duplicate_Clause --
5959 ----------------------
5961 function Duplicate_Clause return Boolean is
5963 function Check_One_Attr (Attr_1, Attr_2 : Name_Id) return Boolean;
5964 -- Check for one attribute; Attr_1 is the attribute_designator we are
5965 -- looking for. Attr_2 is the attribute_designator of the current
5966 -- node. Normally, this is called just once by Duplicate_Clause, with
5967 -- Attr_1 = Attr_2. However, it needs to be called twice for Size and
5968 -- Value_Size, because these mean the same thing. For compatibility,
5969 -- we allow specifying both Size and Value_Size, but only if the two
5970 -- sizes are equal.
5972 --------------------
5973 -- Check_One_Attr --
5974 --------------------
5976 function Check_One_Attr (Attr_1, Attr_2 : Name_Id) return Boolean is
5977 A : constant Node_Id :=
5978 Get_Rep_Item (U_Ent, Attr_1, Check_Parents => False);
5979 begin
5980 if Present (A) then
5981 if Attr_1 = Attr_2 then
5982 Error_Msg_Name_1 := Attr_1;
5983 Error_Msg_Sloc := Sloc (A);
5984 Error_Msg_NE ("aspect% for & previously given#", N, U_Ent);
5986 else
5987 pragma Assert (Attr_1 in Name_Size | Name_Value_Size);
5988 pragma Assert (Attr_2 in Name_Size | Name_Value_Size);
5990 Error_Msg_Name_1 := Attr_2;
5991 Error_Msg_Name_2 := Attr_1;
5992 Error_Msg_Sloc := Sloc (A);
5993 Error_Msg_NE ("?% for & conflicts with % #", N, U_Ent);
5994 end if;
5996 return True;
5997 end if;
5999 return False;
6000 end Check_One_Attr;
6002 -- Start of processing for Duplicate_Clause
6004 begin
6005 -- Nothing to do if this attribute definition clause comes from
6006 -- an aspect specification, since we could not be duplicating an
6007 -- explicit clause, and we dealt with the case of duplicated aspects
6008 -- in Analyze_Aspect_Specifications.
6010 if From_Aspect_Specification (N) then
6011 return False;
6012 end if;
6014 -- Special cases for Size and Value_Size
6016 if (Chars (N) = Name_Size
6017 and then Check_One_Attr (Name_Value_Size, Name_Size))
6018 or else
6019 (Chars (N) = Name_Value_Size
6020 and then Check_One_Attr (Name_Size, Name_Value_Size))
6021 then
6022 return True;
6023 end if;
6025 -- Normal case (including Size and Value_Size)
6027 return Check_One_Attr (Chars (N), Chars (N));
6028 end Duplicate_Clause;
6030 -- Start of processing for Analyze_Attribute_Definition_Clause
6032 begin
6033 -- The following code is a defense against recursion. Not clear that
6034 -- this can happen legitimately, but perhaps some error situations can
6035 -- cause it, and we did see this recursion during testing.
6037 if Analyzed (N) then
6038 return;
6039 else
6040 Set_Analyzed (N, True);
6041 end if;
6043 Check_Restriction_No_Use_Of_Attribute (N);
6045 if Is_Aspect_Id (Chars (N)) then
6046 -- 6.1/3 No_Specification_of_Aspect: Identifies an aspect for which
6047 -- no aspect_specification, attribute_definition_clause, or pragma
6048 -- is given.
6049 Check_Restriction_No_Specification_Of_Aspect (N);
6050 end if;
6052 -- Ignore some selected attributes in CodePeer mode since they are not
6053 -- relevant in this context.
6055 if CodePeer_Mode then
6056 case Id is
6058 -- Ignore Component_Size in CodePeer mode, to avoid changing the
6059 -- internal representation of types by implicitly packing them.
6061 when Attribute_Component_Size =>
6062 Rewrite (N, Make_Null_Statement (Sloc (N)));
6063 return;
6065 when others =>
6066 null;
6067 end case;
6068 end if;
6070 -- Process Ignore_Rep_Clauses option
6072 if Ignore_Rep_Clauses then
6073 case Id is
6075 -- The following should be ignored. They do not affect legality
6076 -- and may be target dependent. The basic idea of -gnatI is to
6077 -- ignore any rep clauses that may be target dependent but do not
6078 -- affect legality (except possibly to be rejected because they
6079 -- are incompatible with the compilation target).
6081 when Attribute_Alignment
6082 | Attribute_Bit_Order
6083 | Attribute_Component_Size
6084 | Attribute_Default_Scalar_Storage_Order
6085 | Attribute_Machine_Radix
6086 | Attribute_Object_Size
6087 | Attribute_Scalar_Storage_Order
6088 | Attribute_Size
6089 | Attribute_Small
6090 | Attribute_Stream_Size
6091 | Attribute_Value_Size
6093 Kill_Rep_Clause (N);
6094 return;
6096 -- The following should not be ignored, because in the first place
6097 -- they are reasonably portable, and should not cause problems
6098 -- in compiling code from another target, and also they do affect
6099 -- legality, e.g. failing to provide a stream attribute for a type
6100 -- may make a program illegal.
6102 when Attribute_External_Tag
6103 | Attribute_Input
6104 | Attribute_Output
6105 | Attribute_Put_Image
6106 | Attribute_Read
6107 | Attribute_Simple_Storage_Pool
6108 | Attribute_Storage_Pool
6109 | Attribute_Storage_Size
6110 | Attribute_Write
6112 null;
6114 -- We do not do anything here with address clauses, they will be
6115 -- removed by Freeze later on, but for now, it works better to
6116 -- keep them in the tree.
6118 when Attribute_Address =>
6119 null;
6121 -- Other cases are errors ("attribute& cannot be set with
6122 -- definition clause"), which will be caught below.
6124 when others =>
6125 null;
6126 end case;
6127 end if;
6129 Analyze (Nam);
6130 Ent := Entity (Nam);
6132 if Rep_Item_Too_Early (Ent, N) then
6133 return;
6134 end if;
6136 -- Rep clause applies to (underlying) full view of private or incomplete
6137 -- type if we have one (if not, this is a premature use of the type).
6138 -- However, some semantic checks need to be done on the specified entity
6139 -- i.e. the private view, so we save it in Ent.
6141 if Is_Private_Type (Ent)
6142 and then Is_Derived_Type (Ent)
6143 and then not Is_Tagged_Type (Ent)
6144 and then No (Full_View (Ent))
6145 and then No (Underlying_Full_View (Ent))
6146 then
6147 U_Ent := Ent;
6149 elsif Ekind (Ent) = E_Incomplete_Type then
6151 -- The attribute applies to the full view, set the entity of the
6152 -- attribute definition accordingly.
6154 Ent := Underlying_Type (Ent);
6155 U_Ent := Ent;
6156 Set_Entity (Nam, Ent);
6158 else
6159 U_Ent := Underlying_Type (Ent);
6160 end if;
6162 -- Avoid cascaded error
6164 if Etype (Nam) = Any_Type then
6165 return;
6167 -- Must be declared in current scope or in case of an aspect
6168 -- specification, must be visible in current scope.
6170 elsif Scope (Ent) /= Current_Scope
6171 and then
6172 not (From_Aspect_Specification (N)
6173 and then Scope_Within_Or_Same (Current_Scope, Scope (Ent)))
6174 then
6175 Error_Msg_N ("entity must be declared in this scope", Nam);
6176 return;
6178 -- Must not be a source renaming (we do have some cases where the
6179 -- expander generates a renaming, and those cases are OK, in such
6180 -- cases any attribute applies to the renamed object as well).
6182 elsif Is_Object (Ent)
6183 and then Present (Renamed_Object (Ent))
6184 then
6185 -- In the case of a renamed object from source, this is an error
6186 -- unless the object is an aggregate and the renaming is created
6187 -- for an object declaration.
6189 if Comes_From_Source (Renamed_Object (Ent))
6190 and then Nkind (Renamed_Object (Ent)) /= N_Aggregate
6191 then
6192 Get_Name_String (Chars (N));
6193 Error_Msg_Strlen := Name_Len;
6194 Error_Msg_String (1 .. Name_Len) := Name_Buffer (1 .. Name_Len);
6195 Error_Msg_N
6196 ("~ clause not allowed for a renaming declaration "
6197 & "(RM 13.1(6))", Nam);
6198 return;
6200 -- For the case of a compiler generated renaming, the attribute
6201 -- definition clause applies to the renamed object created by the
6202 -- expander. The easiest general way to handle this is to create a
6203 -- copy of the attribute definition clause for this object.
6205 elsif Is_Entity_Name (Renamed_Object (Ent)) then
6206 Insert_Action (N,
6207 Make_Attribute_Definition_Clause (Loc,
6208 Name =>
6209 New_Occurrence_Of (Entity (Renamed_Object (Ent)), Loc),
6210 Chars => Chars (N),
6211 Expression => Duplicate_Subexpr (Expression (N))));
6213 -- If the renamed object is not an entity, it must be a dereference
6214 -- of an unconstrained function call, and we must introduce a new
6215 -- declaration to capture the expression. This is needed in the case
6216 -- of 'Alignment, where the original declaration must be rewritten.
6218 else
6219 pragma Assert
6220 (Nkind (Renamed_Object (Ent)) = N_Explicit_Dereference);
6221 null;
6222 end if;
6224 -- If no underlying entity, use entity itself, applies to some
6225 -- previously detected error cases ???
6227 elsif No (U_Ent) then
6228 U_Ent := Ent;
6230 -- Cannot specify for a subtype (exception Object/Value_Size)
6232 elsif Is_Type (U_Ent)
6233 and then not Is_First_Subtype (U_Ent)
6234 and then Id /= Attribute_Object_Size
6235 and then Id /= Attribute_Value_Size
6236 and then not From_At_Mod (N)
6237 then
6238 Error_Msg_N ("cannot specify attribute for subtype", Nam);
6239 return;
6240 end if;
6242 Set_Entity (N, U_Ent);
6244 -- Switch on particular attribute
6246 case Id is
6248 -------------
6249 -- Address --
6250 -------------
6252 -- Address attribute definition clause
6254 when Attribute_Address => Address : begin
6256 -- A little error check, catch for X'Address use X'Address;
6258 if Nkind (Nam) = N_Identifier
6259 and then Nkind (Expr) = N_Attribute_Reference
6260 and then Attribute_Name (Expr) = Name_Address
6261 and then Nkind (Prefix (Expr)) = N_Identifier
6262 and then Chars (Nam) = Chars (Prefix (Expr))
6263 then
6264 Error_Msg_NE
6265 ("address for & is self-referencing", Prefix (Expr), Ent);
6266 return;
6267 end if;
6269 -- Not that special case, carry on with analysis of expression
6271 Analyze_And_Resolve (Expr, RTE (RE_Address));
6273 -- Even when ignoring rep clauses we need to indicate that the
6274 -- entity has an address clause and thus it is legal to declare
6275 -- it imported. Freeze will get rid of the address clause later.
6276 -- Also call Set_Address_Taken to indicate that an address clause
6277 -- was present, even if we are about to remove it.
6279 if Ignore_Rep_Clauses then
6280 Set_Address_Taken (U_Ent);
6282 if Ekind (U_Ent) in E_Variable | E_Constant then
6283 Record_Rep_Item (U_Ent, N);
6284 end if;
6286 return;
6287 end if;
6289 if Duplicate_Clause then
6290 null;
6292 -- Case of address clause for subprogram
6294 elsif Is_Subprogram (U_Ent) then
6295 if Has_Homonym (U_Ent) then
6296 Error_Msg_N
6297 ("address clause cannot be given for overloaded "
6298 & "subprogram", Nam);
6299 return;
6300 end if;
6302 -- For subprograms, all address clauses are permitted, and we
6303 -- mark the subprogram as having a deferred freeze so that Gigi
6304 -- will not elaborate it too soon.
6306 -- Above needs more comments, what is too soon about???
6308 Set_Has_Delayed_Freeze (U_Ent);
6310 -- Case of address clause for entry
6312 elsif Ekind (U_Ent) = E_Entry then
6313 if Nkind (Parent (N)) = N_Task_Body then
6314 Error_Msg_N
6315 ("entry address must be specified in task spec", Nam);
6316 return;
6317 end if;
6319 -- For entries, we require a constant address
6321 Check_Constant_Address_Clause (Expr, U_Ent);
6323 -- Special checks for task types
6325 if Is_Task_Type (Scope (U_Ent))
6326 and then Comes_From_Source (Scope (U_Ent))
6327 then
6328 Error_Msg_N
6329 ("??entry address declared for entry in task type", N);
6330 Error_Msg_N
6331 ("\??only one task can be declared of this type", N);
6332 end if;
6334 -- Entry address clauses are obsolescent
6336 Check_Restriction (No_Obsolescent_Features, N);
6338 if Warn_On_Obsolescent_Feature then
6339 Error_Msg_N
6340 ("?j?attaching interrupt to task entry is an obsolescent "
6341 & "feature (RM J.7.1)", N);
6342 Error_Msg_N
6343 ("\?j?use interrupt procedure instead", N);
6344 end if;
6346 -- Case of address clause for an object
6348 elsif Ekind (U_Ent) in E_Constant | E_Variable then
6350 -- Disallow case of an address clause for an object of an
6351 -- indefinite subtype which takes its bounds/discriminant/tag
6352 -- from its initial value. Without this, we get a Gigi
6353 -- assertion failure for things like
6354 -- X : String := Some_Function (...) with Address => ...;
6355 -- where the result subtype of the function is unconstrained.
6357 -- We want to reject two cases: the class-wide case, and the
6358 -- case where the FE conjures up a renaming declaration and
6359 -- would then otherwise generate an address specification for
6360 -- that renaming (which is a malformed tree, which is why Gigi
6361 -- complains).
6363 if Is_Class_Wide_Type (Etype (U_Ent)) then
6364 Error_Msg_N
6365 ("address specification not supported for class-wide " &
6366 "object declaration", Nam);
6367 return;
6368 elsif Is_Constr_Subt_For_U_Nominal (Etype (U_Ent))
6369 and then
6370 Nkind (Parent (U_Ent)) = N_Object_Renaming_Declaration
6371 then
6372 -- Confirm accuracy of " and dynamic size" message text
6373 -- before including it. We want to include that text when
6374 -- it is correct because it may be useful to the reader.
6375 -- The case where we omit that part of the message text
6376 -- might be dead code, but let's not rely on that.
6378 Error_Msg_N
6379 ("address specification not supported for object " &
6380 "declaration with indefinite nominal subtype" &
6381 (if Size_Known_At_Compile_Time (Etype (U_Ent))
6382 then ""
6383 else " and dynamic size"), Nam);
6384 return;
6385 end if;
6387 declare
6388 Expr : constant Node_Id := Expression (N);
6389 O_Ent : Entity_Id;
6390 Off : Boolean;
6392 begin
6393 -- Exported variables cannot have an address clause, because
6394 -- this cancels the effect of the pragma Export.
6396 if Is_Exported (U_Ent) then
6397 Error_Msg_N
6398 ("cannot export object with address clause", Nam);
6399 return;
6400 end if;
6402 Find_Overlaid_Entity (N, O_Ent, Off);
6404 if Present (O_Ent) then
6406 -- If the object overlays a constant object, mark it so
6408 if Is_Constant_Object (O_Ent) then
6409 Set_Overlays_Constant (U_Ent);
6410 end if;
6412 -- If the address clause is of the form:
6414 -- for X'Address use Y'Address;
6416 -- or
6418 -- C : constant Address := Y'Address;
6419 -- ...
6420 -- for X'Address use C;
6422 -- then we make an entry in the table to check the size
6423 -- and alignment of the overlaying variable. But we defer
6424 -- this check till after code generation to take full
6425 -- advantage of the annotation done by the back end.
6427 -- If the entity has a generic type, the check will be
6428 -- performed in the instance if the actual type justifies
6429 -- it, and we do not insert the clause in the table to
6430 -- prevent spurious warnings.
6432 -- Note: we used to test Comes_From_Source and only give
6433 -- this warning for source entities, but we have removed
6434 -- this test. It really seems bogus to generate overlays
6435 -- that would trigger this warning in generated code.
6436 -- Furthermore, by removing the test, we handle the
6437 -- aspect case properly.
6439 if Is_Object (O_Ent)
6440 and then not Is_Generic_Formal (O_Ent)
6441 and then not Is_Generic_Type (Etype (U_Ent))
6442 and then Address_Clause_Overlay_Warnings
6443 then
6444 Register_Address_Clause_Check
6445 (N, U_Ent, No_Uint, O_Ent, Off);
6446 end if;
6448 -- If the overlay changes the storage order, warn since
6449 -- the construct is not really supported by the back end.
6450 -- Also mark the entity as being volatile to block the
6451 -- optimizer, even if there is no warranty on the result.
6453 if (Is_Record_Type (Etype (U_Ent))
6454 or else Is_Array_Type (Etype (U_Ent)))
6455 and then (Is_Record_Type (Etype (O_Ent))
6456 or else Is_Array_Type (Etype (O_Ent)))
6457 and then Reverse_Storage_Order (Etype (U_Ent)) /=
6458 Reverse_Storage_Order (Etype (O_Ent))
6459 then
6460 Error_Msg_N
6461 ("??overlay changes scalar storage order", Expr);
6462 Set_Treat_As_Volatile (U_Ent);
6463 end if;
6465 else
6466 -- If this is not an overlay, mark a variable as being
6467 -- volatile to prevent unwanted optimizations. It's a
6468 -- conservative interpretation of RM 13.3(19) for the
6469 -- cases where the compiler cannot detect potential
6470 -- aliasing issues easily and it also covers the case
6471 -- of an absolute address where the volatile aspect is
6472 -- kind of implicit.
6474 if Ekind (U_Ent) = E_Variable then
6475 Set_Treat_As_Volatile (U_Ent);
6476 end if;
6478 -- Make an entry in the table for an absolute address as
6479 -- above to check that the value is compatible with the
6480 -- alignment of the object.
6482 declare
6483 Addr : constant Node_Id := Address_Value (Expr);
6484 begin
6485 if Compile_Time_Known_Value (Addr)
6486 and then Address_Clause_Overlay_Warnings
6487 then
6488 Register_Address_Clause_Check
6489 (N, U_Ent, Expr_Value (Addr), Empty, False);
6490 end if;
6491 end;
6492 end if;
6494 -- Issue an unconditional warning for a constant overlaying
6495 -- a variable. For the reverse case, we will issue it only
6496 -- if the variable is modified.
6497 -- Within a generic unit an In_Parameter is a constant.
6498 -- It can be instantiated with a variable, in which case
6499 -- there will be a warning on the instance.
6501 if Ekind (U_Ent) = E_Constant
6502 and then Present (O_Ent)
6503 and then Ekind (O_Ent) /= E_Generic_In_Parameter
6504 and then not Overlays_Constant (U_Ent)
6505 and then Address_Clause_Overlay_Warnings
6506 then
6507 Error_Msg_N ("?o?constant overlays a variable", Expr);
6509 -- Imported variables can have an address clause, but then
6510 -- the import is pretty meaningless except to suppress
6511 -- initializations, so we do not need such variables to
6512 -- be statically allocated (and in fact it causes trouble
6513 -- if the address clause is a local value).
6515 elsif Is_Imported (U_Ent) then
6516 Set_Is_Statically_Allocated (U_Ent, False);
6517 end if;
6519 -- We mark a possible modification of a variable with an
6520 -- address clause, since it is likely aliasing is occurring.
6522 Note_Possible_Modification (Nam, Sure => False);
6524 -- Legality checks on the address clause for initialized
6525 -- objects is deferred until the freeze point, because
6526 -- a subsequent pragma might indicate that the object
6527 -- is imported and thus not initialized. Also, the address
6528 -- clause might involve entities that have yet to be
6529 -- elaborated.
6531 Set_Has_Delayed_Freeze (U_Ent);
6533 -- If an initialization call has been generated for this
6534 -- object, it needs to be deferred to after the freeze node
6535 -- we have just now added, otherwise GIGI will see a
6536 -- reference to the variable (as actual to the IP call)
6537 -- before its definition.
6539 declare
6540 Init_Call : constant Node_Id :=
6541 Remove_Init_Call (U_Ent, N);
6543 begin
6544 if Present (Init_Call) then
6545 Append_Freeze_Action (U_Ent, Init_Call);
6547 -- Reset Initialization_Statements pointer so that
6548 -- if there is a pragma Import further down, it can
6549 -- clear any default initialization.
6551 Set_Initialization_Statements (U_Ent, Init_Call);
6552 end if;
6553 end;
6555 -- Entity has delayed freeze, so we will generate an
6556 -- alignment check at the freeze point unless suppressed.
6558 if not Range_Checks_Suppressed (U_Ent)
6559 and then not Alignment_Checks_Suppressed (U_Ent)
6560 then
6561 Set_Check_Address_Alignment (N);
6562 end if;
6564 -- Kill the size check code, since we are not allocating
6565 -- the variable, it is somewhere else.
6567 Kill_Size_Check_Code (U_Ent);
6568 end;
6570 -- Not a valid entity for an address clause
6572 else
6573 Error_Msg_N ("address cannot be given for &", Nam);
6574 end if;
6575 end Address;
6577 ---------------
6578 -- Alignment --
6579 ---------------
6581 -- Alignment attribute definition clause
6583 when Attribute_Alignment => Alignment : declare
6584 Align : constant Uint := Get_Alignment_Value (Expr);
6585 Max_Align : constant Uint := UI_From_Int (Maximum_Alignment);
6587 begin
6588 FOnly := True;
6590 if not Is_Type (U_Ent)
6591 and then Ekind (U_Ent) /= E_Variable
6592 and then Ekind (U_Ent) /= E_Constant
6593 then
6594 Error_Msg_N ("alignment cannot be given for &", Nam);
6596 elsif Duplicate_Clause then
6597 null;
6599 elsif Present (Align) then
6600 Set_Has_Alignment_Clause (U_Ent);
6602 -- Tagged type case, check for attempt to set alignment to a
6603 -- value greater than Max_Align, and reset if so.
6605 if Is_Tagged_Type (U_Ent) and then Align > Max_Align then
6606 Error_Msg_N
6607 ("alignment for & set to Maximum_Aligment??", Nam);
6608 Set_Alignment (U_Ent, Max_Align);
6610 -- All other cases
6612 else
6613 Set_Alignment (U_Ent, Align);
6614 end if;
6616 -- For an array type, U_Ent is the first subtype. In that case,
6617 -- also set the alignment of the anonymous base type so that
6618 -- other subtypes (such as the itypes for aggregates of the
6619 -- type) also receive the expected alignment.
6621 if Is_Array_Type (U_Ent) then
6622 Set_Alignment (Base_Type (U_Ent), Align);
6623 end if;
6624 end if;
6625 end Alignment;
6627 ---------------
6628 -- Bit_Order --
6629 ---------------
6631 -- Bit_Order attribute definition clause
6633 when Attribute_Bit_Order =>
6634 if not Is_Record_Type (U_Ent) then
6635 Error_Msg_N
6636 ("Bit_Order can only be defined for record type", Nam);
6638 elsif Is_Tagged_Type (U_Ent) and then Is_Derived_Type (U_Ent) then
6639 Error_Msg_N
6640 ("Bit_Order cannot be defined for record extensions", Nam);
6642 elsif Duplicate_Clause then
6643 null;
6645 else
6646 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
6648 if Etype (Expr) = Any_Type then
6649 return;
6651 elsif not Is_OK_Static_Expression (Expr) then
6652 Flag_Non_Static_Expr
6653 ("Bit_Order requires static expression!", Expr);
6655 elsif (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
6656 Set_Reverse_Bit_Order (Base_Type (U_Ent), True);
6657 end if;
6658 end if;
6660 --------------------
6661 -- Component_Size --
6662 --------------------
6664 -- Component_Size attribute definition clause
6666 when Attribute_Component_Size => Component_Size_Case : declare
6667 Csize : constant Uint := Static_Integer (Expr);
6668 Ctyp : Entity_Id;
6669 Btype : Entity_Id;
6670 Biased : Boolean;
6671 New_Ctyp : Entity_Id;
6672 Decl : Node_Id;
6674 begin
6675 if not Is_Array_Type (U_Ent) then
6676 Error_Msg_N ("component size requires array type", Nam);
6677 return;
6678 end if;
6680 Btype := Base_Type (U_Ent);
6681 Ctyp := Component_Type (Btype);
6683 if Duplicate_Clause then
6684 null;
6686 elsif Rep_Item_Too_Early (Btype, N) then
6687 null;
6689 elsif Present (Csize) then
6690 Check_Size (Expr, Ctyp, Csize, Biased);
6692 -- For the biased case, build a declaration for a subtype that
6693 -- will be used to represent the biased subtype that reflects
6694 -- the biased representation of components. We need the subtype
6695 -- to get proper conversions on referencing elements of the
6696 -- array.
6698 if Biased then
6699 New_Ctyp :=
6700 Make_Defining_Identifier (Loc,
6701 Chars =>
6702 New_External_Name (Chars (U_Ent), 'C', 0, 'T'));
6704 Decl :=
6705 Make_Subtype_Declaration (Loc,
6706 Defining_Identifier => New_Ctyp,
6707 Subtype_Indication =>
6708 New_Occurrence_Of (Component_Type (Btype), Loc));
6710 Set_Parent (Decl, N);
6711 Analyze (Decl, Suppress => All_Checks);
6713 Set_Has_Delayed_Freeze (New_Ctyp, False);
6714 Reinit_Esize (New_Ctyp);
6715 Set_RM_Size (New_Ctyp, Csize);
6716 Reinit_Alignment (New_Ctyp);
6717 Set_Is_Itype (New_Ctyp, True);
6718 Set_Associated_Node_For_Itype (New_Ctyp, U_Ent);
6720 Set_Component_Type (Btype, New_Ctyp);
6721 Set_Biased (New_Ctyp, N, "component size clause");
6722 end if;
6724 Set_Component_Size (Btype, Csize);
6726 -- Deal with warning on overridden size
6728 if Warn_On_Overridden_Size
6729 and then Has_Size_Clause (Ctyp)
6730 and then RM_Size (Ctyp) /= Csize
6731 then
6732 Error_Msg_NE
6733 ("component size overrides size clause for&?.s?", N, Ctyp);
6734 end if;
6736 Set_Has_Component_Size_Clause (Btype, True);
6737 Set_Has_Non_Standard_Rep (Btype, True);
6738 end if;
6739 end Component_Size_Case;
6741 -----------------------
6742 -- Constant_Indexing --
6743 -----------------------
6745 when Attribute_Constant_Indexing =>
6746 Check_Indexing_Functions;
6748 ---------
6749 -- CPU --
6750 ---------
6752 when Attribute_CPU =>
6753 pragma Assert (From_Aspect_Specification (N));
6754 -- The parser forbids this clause in source code, so it must have
6755 -- come from an aspect specification.
6757 if not Is_Task_Type (U_Ent) then
6758 Error_Msg_N ("'C'P'U can only be defined for task", Nam);
6760 elsif Duplicate_Clause then
6761 null;
6763 else
6764 -- The expression must be analyzed in the special manner
6765 -- described in "Handling of Default and Per-Object
6766 -- Expressions" in sem.ads.
6768 -- The visibility to the components must be established
6769 -- and restored before and after analysis.
6771 Push_Type (U_Ent);
6772 Preanalyze_Spec_Expression (Expr, RTE (RE_CPU_Range));
6773 Pop_Type (U_Ent);
6775 -- AI12-0117-1, "Restriction No_Tasks_Unassigned_To_CPU":
6776 -- If the expression is static, and its value is
6777 -- System.Multiprocessors.Not_A_Specific_CPU (i.e. zero) then
6778 -- that's a violation of No_Tasks_Unassigned_To_CPU. It might
6779 -- seem better to refer to Not_A_Specific_CPU here, but that
6780 -- involves a lot of horsing around with Rtsfind, and this
6781 -- value is not going to change, so it's better to hardwire
6782 -- Uint_0.
6784 -- AI12-0055-1, "All properties of a usage profile are defined
6785 -- by pragmas": If the expression is nonstatic, that's a
6786 -- violation of No_Dynamic_CPU_Assignment.
6788 if Is_OK_Static_Expression (Expr) then
6789 if Expr_Value (Expr) = Uint_0 then
6790 Check_Restriction (No_Tasks_Unassigned_To_CPU, Expr);
6791 end if;
6792 else
6793 Check_Restriction (No_Dynamic_CPU_Assignment, Expr);
6794 end if;
6795 end if;
6797 ----------------------
6798 -- Default_Iterator --
6799 ----------------------
6801 when Attribute_Default_Iterator => Default_Iterator : declare
6802 Func : Entity_Id;
6803 Typ : Entity_Id;
6805 begin
6806 -- If target type is untagged, further checks are irrelevant
6808 if not Is_Tagged_Type (U_Ent) then
6809 Error_Msg_N
6810 ("aspect Default_Iterator applies to tagged type", Nam);
6811 return;
6812 end if;
6814 Check_Iterator_Functions;
6816 Analyze (Expr);
6818 if not Is_Entity_Name (Expr)
6819 or else Ekind (Entity (Expr)) /= E_Function
6820 then
6821 Error_Msg_N ("aspect Iterator must be a function", Expr);
6822 return;
6823 else
6824 Func := Entity (Expr);
6825 end if;
6827 -- The type of the first parameter must be T, T'class, or a
6828 -- corresponding access type (5.5.1 (8/3). If function is
6829 -- parameterless label type accordingly.
6831 if No (First_Formal (Func)) then
6832 Typ := Any_Type;
6833 else
6834 Typ := Etype (First_Formal (Func));
6835 end if;
6837 if Typ = U_Ent
6838 or else Typ = Class_Wide_Type (U_Ent)
6839 or else (Is_Access_Type (Typ)
6840 and then Designated_Type (Typ) = U_Ent)
6841 or else (Is_Access_Type (Typ)
6842 and then Designated_Type (Typ) =
6843 Class_Wide_Type (U_Ent))
6844 then
6845 null;
6847 else
6848 Error_Msg_NE
6849 ("Default_Iterator must be a primitive of&", Func, U_Ent);
6850 end if;
6851 end Default_Iterator;
6853 ------------------------
6854 -- Dispatching_Domain --
6855 ------------------------
6857 when Attribute_Dispatching_Domain =>
6858 pragma Assert (From_Aspect_Specification (N));
6859 -- The parser forbids this clause in source code, so it must have
6860 -- come from an aspect specification.
6862 if not Is_Task_Type (U_Ent) then
6863 Error_Msg_N
6864 ("Dispatching_Domain can only be defined for task", Nam);
6866 elsif Duplicate_Clause then
6867 null;
6869 else
6870 -- The expression must be analyzed in the special manner
6871 -- described in "Handling of Default and Per-Object
6872 -- Expressions" in sem.ads.
6874 -- The visibility to the components must be restored
6876 Push_Type (U_Ent);
6878 Preanalyze_Spec_Expression
6879 (Expr, RTE (RE_Dispatching_Domain));
6881 Pop_Type (U_Ent);
6882 end if;
6884 ------------------
6885 -- External_Tag --
6886 ------------------
6888 when Attribute_External_Tag =>
6889 if not Is_Tagged_Type (U_Ent) then
6890 Error_Msg_N ("should be a tagged type", Nam);
6891 end if;
6893 if Duplicate_Clause then
6894 null;
6896 else
6897 Analyze_And_Resolve (Expr, Standard_String);
6899 if not Is_OK_Static_Expression (Expr) then
6900 Flag_Non_Static_Expr
6901 ("static string required for tag name!", Nam);
6902 end if;
6904 if not Is_Library_Level_Entity (U_Ent) then
6905 Error_Msg_NE
6906 ("??non-unique external tag supplied for &", N, U_Ent);
6907 Error_Msg_N
6908 ("\??same external tag applies to all subprogram calls",
6910 Error_Msg_N
6911 ("\??corresponding internal tag cannot be obtained", N);
6912 end if;
6913 end if;
6915 --------------------------
6916 -- Implicit_Dereference --
6917 --------------------------
6919 when Attribute_Implicit_Dereference =>
6921 -- Legality checks already performed at the point of the type
6922 -- declaration, aspect is not delayed.
6924 null;
6926 -----------
6927 -- Input --
6928 -----------
6930 when Attribute_Input =>
6931 Analyze_Stream_TSS_Definition (TSS_Stream_Input);
6932 Set_Has_Specified_Stream_Input (Ent);
6934 ------------------------
6935 -- Interrupt_Priority --
6936 ------------------------
6938 when Attribute_Interrupt_Priority =>
6939 pragma Assert (From_Aspect_Specification (N));
6940 -- The parser forbids this clause in source code, so it must have
6941 -- come from an aspect specification.
6943 if not Is_Concurrent_Type (U_Ent) then
6944 Error_Msg_N
6945 ("Interrupt_Priority can only be defined for task and "
6946 & "protected object", Nam);
6948 elsif Duplicate_Clause then
6949 null;
6951 else
6952 -- The expression must be analyzed in the special manner
6953 -- described in "Handling of Default and Per-Object
6954 -- Expressions" in sem.ads.
6956 -- The visibility to the components must be restored
6958 Push_Type (U_Ent);
6960 Preanalyze_Spec_Expression
6961 (Expr, RTE (RE_Interrupt_Priority));
6963 Pop_Type (U_Ent);
6965 -- Check the No_Task_At_Interrupt_Priority restriction
6967 if Is_Task_Type (U_Ent) then
6968 Check_Restriction (No_Task_At_Interrupt_Priority, N);
6969 end if;
6970 end if;
6972 --------------
6973 -- Iterable --
6974 --------------
6976 when Attribute_Iterable =>
6977 Analyze (Expr);
6979 if Nkind (Expr) /= N_Aggregate then
6980 Error_Msg_N ("aspect Iterable must be an aggregate", Expr);
6981 return;
6982 end if;
6984 declare
6985 Assoc : Node_Id;
6987 begin
6988 Assoc := First (Component_Associations (Expr));
6989 while Present (Assoc) loop
6990 Analyze (Expression (Assoc));
6992 if not Is_Entity_Name (Expression (Assoc))
6993 or else Ekind (Entity (Expression (Assoc))) /= E_Function
6994 then
6995 Error_Msg_N ("value must be a function", Assoc);
6996 end if;
6998 Next (Assoc);
6999 end loop;
7000 end;
7002 ----------------------
7003 -- Iterator_Element --
7004 ----------------------
7006 when Attribute_Iterator_Element =>
7007 Analyze (Expr);
7009 if not Is_Entity_Name (Expr)
7010 or else not Is_Type (Entity (Expr))
7011 then
7012 Error_Msg_N ("aspect Iterator_Element must be a type", Expr);
7013 return;
7014 end if;
7016 -------------------
7017 -- Machine_Radix --
7018 -------------------
7020 -- Machine radix attribute definition clause
7022 when Attribute_Machine_Radix => Machine_Radix : declare
7023 Radix : constant Uint := Static_Integer (Expr);
7025 begin
7026 if not Is_Decimal_Fixed_Point_Type (U_Ent) then
7027 Error_Msg_N ("decimal fixed-point type expected for &", Nam);
7029 elsif Duplicate_Clause then
7030 null;
7032 elsif Present (Radix) then
7033 Set_Has_Machine_Radix_Clause (U_Ent);
7034 Set_Has_Non_Standard_Rep (Base_Type (U_Ent));
7036 if Radix = 2 then
7037 null;
7039 elsif Radix = 10 then
7040 Set_Machine_Radix_10 (U_Ent);
7042 else
7043 Error_Msg_N ("machine radix value must be 2 or 10", Expr);
7044 end if;
7045 end if;
7046 end Machine_Radix;
7048 -----------------
7049 -- Object_Size --
7050 -----------------
7052 -- Object_Size attribute definition clause
7054 when Attribute_Object_Size => Object_Size : declare
7055 Size : constant Uint := Static_Integer (Expr);
7057 Biased : Boolean;
7058 pragma Warnings (Off, Biased);
7060 begin
7061 if not Is_Type (U_Ent) then
7062 Error_Msg_N ("Object_Size cannot be given for &", Nam);
7064 elsif Duplicate_Clause then
7065 null;
7067 else
7068 Check_Size (Expr, U_Ent, Size, Biased);
7070 if No (Size) or else Size <= 0 then
7071 Error_Msg_N ("Object_Size must be positive", Expr);
7073 elsif Is_Scalar_Type (U_Ent) then
7074 if Size /= 8 and then Size /= 16 and then Size /= 32
7075 and then UI_Mod (Size, 64) /= 0
7076 then
7077 Error_Msg_N
7078 ("Object_Size must be 8, 16, 32, or multiple of 64",
7079 Expr);
7080 end if;
7082 elsif Size mod 8 /= 0 then
7083 Error_Msg_N ("Object_Size must be a multiple of 8", Expr);
7084 end if;
7086 Set_Esize (U_Ent, Size);
7087 Set_Has_Object_Size_Clause (U_Ent);
7088 Alignment_Check_For_Size_Change (U_Ent, Size);
7089 end if;
7090 end Object_Size;
7092 ------------
7093 -- Output --
7094 ------------
7096 when Attribute_Output =>
7097 Analyze_Stream_TSS_Definition (TSS_Stream_Output);
7098 Set_Has_Specified_Stream_Output (Ent);
7100 --------------
7101 -- Priority --
7102 --------------
7104 when Attribute_Priority =>
7106 -- Priority attribute definition clause not allowed except from
7107 -- aspect specification.
7109 if From_Aspect_Specification (N) then
7110 if not (Is_Concurrent_Type (U_Ent)
7111 or else Ekind (U_Ent) = E_Procedure)
7112 then
7113 Error_Msg_N
7114 ("Priority can only be defined for task and protected "
7115 & "object", Nam);
7117 elsif Duplicate_Clause then
7118 null;
7120 else
7121 -- The expression must be analyzed in the special manner
7122 -- described in "Handling of Default and Per-Object
7123 -- Expressions" in sem.ads.
7125 -- The visibility to the components must be restored
7127 Push_Type (U_Ent);
7128 Preanalyze_Spec_Expression (Expr, Standard_Integer);
7129 Pop_Type (U_Ent);
7131 if not Is_OK_Static_Expression (Expr) then
7132 Check_Restriction (Static_Priorities, Expr);
7133 end if;
7134 end if;
7136 else
7137 Error_Msg_N
7138 ("attribute& cannot be set with definition clause", N);
7139 end if;
7141 ---------------
7142 -- Put_Image --
7143 ---------------
7145 when Attribute_Put_Image =>
7146 Analyze_Put_Image_TSS_Definition;
7148 ----------
7149 -- Read --
7150 ----------
7152 when Attribute_Read =>
7153 Analyze_Stream_TSS_Definition (TSS_Stream_Read);
7154 Set_Has_Specified_Stream_Read (Ent);
7156 --------------------------
7157 -- Scalar_Storage_Order --
7158 --------------------------
7160 -- Scalar_Storage_Order attribute definition clause
7162 when Attribute_Scalar_Storage_Order =>
7163 if not (Is_Record_Type (U_Ent) or else Is_Array_Type (U_Ent)) then
7164 Error_Msg_N
7165 ("Scalar_Storage_Order can only be defined for record or "
7166 & "array type", Nam);
7168 elsif Duplicate_Clause then
7169 null;
7171 else
7172 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
7174 if Etype (Expr) = Any_Type then
7175 return;
7177 elsif not Is_OK_Static_Expression (Expr) then
7178 Flag_Non_Static_Expr
7179 ("Scalar_Storage_Order requires static expression!", Expr);
7181 elsif (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
7183 -- Here for the case of a non-default (i.e. non-confirming)
7184 -- Scalar_Storage_Order attribute definition.
7186 if Support_Nondefault_SSO_On_Target then
7187 Set_Reverse_Storage_Order (Base_Type (U_Ent), True);
7188 else
7189 Error_Msg_N
7190 ("non-default Scalar_Storage_Order not supported on "
7191 & "target", Expr);
7192 end if;
7193 end if;
7195 -- Clear SSO default indications since explicit setting of the
7196 -- order overrides the defaults.
7198 Set_SSO_Set_Low_By_Default (Base_Type (U_Ent), False);
7199 Set_SSO_Set_High_By_Default (Base_Type (U_Ent), False);
7200 end if;
7202 ------------------------
7203 -- Size or Value_Size --
7204 ------------------------
7206 -- Size or Value_Size attribute definition clause. These are treated
7207 -- the same, except that Size is allowed on objects, and Value_Size
7208 -- is allowed on nonfirst subtypes. First subtypes allow both Size
7209 -- and Value_Size; the treatment is the same for both.
7211 when Attribute_Size | Attribute_Value_Size => Size : declare
7212 Size : constant Uint := Static_Integer (Expr);
7214 Attr_Name : constant String :=
7215 (if Id = Attribute_Size then "size"
7216 elsif Id = Attribute_Value_Size then "value size"
7217 else ""); -- can't happen
7218 -- Name of the attribute for printing in messages
7220 OK_Prefix : constant Boolean :=
7221 (if Id = Attribute_Size then
7222 Ekind (U_Ent) in Type_Kind | Constant_Or_Variable_Kind
7223 elsif Id = Attribute_Value_Size then
7224 Ekind (U_Ent) in Type_Kind
7225 else False); -- can't happen
7226 -- For X'Size, X can be a type or object; for X'Value_Size,
7227 -- X can be a type. Note that we already checked that 'Size
7228 -- can be specified only for a first subtype.
7230 begin
7231 FOnly := True;
7233 if not OK_Prefix then
7234 Error_Msg_N (Attr_Name & " cannot be given for &", Nam);
7236 elsif Duplicate_Clause then
7237 null;
7239 elsif Is_Array_Type (U_Ent)
7240 and then not Is_Constrained (U_Ent)
7241 then
7242 Error_Msg_N
7243 (Attr_Name & " cannot be given for unconstrained array", Nam);
7245 elsif Present (Size) then
7246 declare
7247 Etyp : constant Entity_Id :=
7248 (if Is_Type (U_Ent) then U_Ent else Etype (U_Ent));
7250 begin
7251 -- Check size, note that Gigi is in charge of checking that
7252 -- the size of an array or record type is OK. Also we do not
7253 -- check the size in the ordinary fixed-point case, since
7254 -- it is too early to do so (there may be subsequent small
7255 -- clause that affects the size). We can check the size if
7256 -- a small clause has already been given.
7258 if not Is_Ordinary_Fixed_Point_Type (U_Ent)
7259 or else Has_Small_Clause (U_Ent)
7260 then
7261 declare
7262 Biased : Boolean;
7263 begin
7264 Check_Size (Expr, Etyp, Size, Biased);
7265 Set_Biased (U_Ent, N, Attr_Name & " clause", Biased);
7266 end;
7267 end if;
7269 -- For types, set RM_Size and Esize if appropriate
7271 if Is_Type (U_Ent) then
7272 Set_RM_Size (U_Ent, Size);
7274 -- If we are specifying the Size or Value_Size of a
7275 -- first subtype, then for elementary types, increase
7276 -- Object_Size to power of 2, but not less than a storage
7277 -- unit in any case (normally this means it will be byte
7278 -- addressable).
7280 -- For all other types, nothing else to do, we leave
7281 -- Esize (object size) unset; the back end will set it
7282 -- from the size and alignment in an appropriate manner.
7284 -- In both cases, we check whether the alignment must be
7285 -- reset in the wake of the size change.
7287 -- For nonfirst subtypes ('Value_Size only), we do
7288 -- nothing here.
7290 if Is_First_Subtype (U_Ent) then
7291 if Is_Elementary_Type (U_Ent) then
7292 if Size <= System_Storage_Unit then
7293 Set_Esize
7294 (U_Ent, UI_From_Int (System_Storage_Unit));
7295 elsif Size <= 16 then
7296 Set_Esize (U_Ent, Uint_16);
7297 elsif Size <= 32 then
7298 Set_Esize (U_Ent, Uint_32);
7299 else
7300 Set_Esize (U_Ent, (Size + 63) / 64 * 64);
7301 end if;
7303 Alignment_Check_For_Size_Change
7304 (U_Ent, Esize (U_Ent));
7305 else
7306 Alignment_Check_For_Size_Change (U_Ent, Size);
7307 end if;
7308 end if;
7310 -- For Object'Size, set Esize only
7312 else
7313 if Is_Elementary_Type (Etyp)
7314 and then Size /= System_Storage_Unit
7315 and then Size /= 16
7316 and then Size /= 32
7317 and then Size /= 64
7318 and then Size /= System_Max_Integer_Size
7319 then
7320 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
7321 Error_Msg_Uint_2 :=
7322 UI_From_Int (System_Max_Integer_Size);
7323 Error_Msg_N
7324 ("size for primitive object must be a power of 2 in "
7325 & "the range ^-^", N);
7326 end if;
7328 Set_Esize (U_Ent, Size);
7329 end if;
7331 -- As of RM 13.1, only confirming size
7332 -- (i.e. (Size = Esize (Etyp))) for aliased object of
7333 -- elementary type must be supported.
7334 -- GNAT rejects nonconfirming size for such object.
7336 if Is_Aliased (U_Ent)
7337 and then Is_Elementary_Type (Etyp)
7338 and then Known_Esize (U_Ent)
7339 and then Size /= Esize (Etyp)
7340 then
7341 Error_Msg_N
7342 ("nonconfirming Size for aliased object is not "
7343 & "supported", N);
7344 end if;
7346 Set_Has_Size_Clause (U_Ent);
7347 end;
7348 end if;
7349 end Size;
7351 -----------
7352 -- Small --
7353 -----------
7355 -- Small attribute definition clause
7357 when Attribute_Small => Small : declare
7358 Implicit_Base : constant Entity_Id := Base_Type (U_Ent);
7359 Small : Ureal;
7361 begin
7362 Analyze_And_Resolve (Expr, Any_Real);
7364 if Etype (Expr) = Any_Type then
7365 return;
7367 elsif not Is_OK_Static_Expression (Expr) then
7368 Flag_Non_Static_Expr
7369 ("small requires static expression!", Expr);
7370 return;
7372 else
7373 Small := Expr_Value_R (Expr);
7375 if Small <= Ureal_0 then
7376 Error_Msg_N ("small value must be greater than zero", Expr);
7377 return;
7378 end if;
7380 end if;
7382 if not Is_Ordinary_Fixed_Point_Type (U_Ent) then
7383 Error_Msg_N
7384 ("small requires an ordinary fixed point type", Nam);
7386 elsif Has_Small_Clause (U_Ent) then
7387 Error_Msg_N ("small already given for &", Nam);
7389 elsif Small > Delta_Value (U_Ent) then
7390 Error_Msg_N
7391 ("small value must not be greater than delta value", Nam);
7393 else
7394 Set_Small_Value (U_Ent, Small);
7395 Set_Small_Value (Implicit_Base, Small);
7396 Set_Has_Small_Clause (U_Ent);
7397 Set_Has_Small_Clause (Implicit_Base);
7398 Set_Has_Non_Standard_Rep (Implicit_Base);
7399 end if;
7400 end Small;
7402 ------------------
7403 -- Storage_Pool --
7404 ------------------
7406 -- Storage_Pool attribute definition clause
7408 when Attribute_Simple_Storage_Pool
7409 | Attribute_Storage_Pool
7411 Storage_Pool : declare
7412 Pool : Entity_Id;
7413 T : Entity_Id;
7415 procedure Associate_Storage_Pool
7416 (Ent : Entity_Id; Pool : Entity_Id);
7417 -- Associate Pool to Ent and perform legality checks on subpools
7419 ----------------------------
7420 -- Associate_Storage_Pool --
7421 ----------------------------
7423 procedure Associate_Storage_Pool
7424 (Ent : Entity_Id; Pool : Entity_Id)
7426 function Object_From (Pool : Entity_Id) return Entity_Id;
7427 -- Return the entity of which Pool is a part of
7429 -----------------
7430 -- Object_From --
7431 -----------------
7433 function Object_From
7434 (Pool : Entity_Id) return Entity_Id
7436 N : Node_Id := Pool;
7437 begin
7438 if Present (Renamed_Object (Pool)) then
7439 N := Renamed_Object (Pool);
7440 end if;
7442 while Present (N) loop
7443 case Nkind (N) is
7444 when N_Defining_Identifier =>
7445 return N;
7447 when N_Identifier | N_Expanded_Name =>
7448 return Entity (N);
7450 when N_Indexed_Component | N_Selected_Component |
7451 N_Explicit_Dereference
7453 N := Prefix (N);
7455 when N_Type_Conversion =>
7456 N := Expression (N);
7458 when others =>
7459 -- ??? we probably should handle more cases but
7460 -- this is good enough in practice for this check
7461 -- on a corner case.
7463 return Empty;
7464 end case;
7465 end loop;
7467 return Empty;
7468 end Object_From;
7470 Obj : Entity_Id;
7472 begin
7473 Set_Associated_Storage_Pool (Ent, Pool);
7475 -- Check RM 13.11.4(22-23/3): a specification of a storage pool
7476 -- is illegal if the storage pool supports subpools and:
7477 -- (A) The access type is a general access type.
7478 -- (B) The access type is statically deeper than the storage
7479 -- pool object;
7480 -- (C) The storage pool object is a part of a formal parameter;
7481 -- (D) The storage pool object is a part of the dereference of
7482 -- a non-library level general access type;
7484 if Ada_Version >= Ada_2012
7485 and then RTU_Loaded (System_Storage_Pools_Subpools)
7486 and then
7487 Is_Ancestor (RTE (RE_Root_Storage_Pool_With_Subpools),
7488 Etype (Pool))
7489 then
7490 -- check (A)
7492 if Ekind (Etype (Ent)) = E_General_Access_Type then
7493 Error_Msg_N
7494 ("subpool cannot be used on general access type", Ent);
7495 end if;
7497 -- check (B)
7499 if Type_Access_Level (Ent)
7500 > Static_Accessibility_Level
7501 (Pool, Object_Decl_Level)
7502 then
7503 Error_Msg_N
7504 ("subpool access type has deeper accessibility "
7505 & "level than pool", Ent);
7506 return;
7507 end if;
7509 Obj := Object_From (Pool);
7511 -- check (C)
7513 if Present (Obj) and then Is_Formal (Obj) then
7514 Error_Msg_N
7515 ("subpool cannot be part of a parameter", Ent);
7516 return;
7517 end if;
7519 -- check (D)
7521 if Present (Obj)
7522 and then Ekind (Etype (Obj)) = E_General_Access_Type
7523 and then not Is_Library_Level_Entity (Etype (Obj))
7524 then
7525 Error_Msg_N
7526 ("subpool cannot be part of the dereference of a " &
7527 "nested general access type", Ent);
7528 return;
7529 end if;
7530 end if;
7531 end Associate_Storage_Pool;
7533 begin
7534 if Ekind (U_Ent) = E_Access_Subprogram_Type then
7535 Error_Msg_N
7536 ("storage pool cannot be given for access-to-subprogram type",
7537 Nam);
7538 return;
7540 elsif Ekind (U_Ent) not in E_Access_Type | E_General_Access_Type
7541 then
7542 Error_Msg_N
7543 ("storage pool can only be given for access types", Nam);
7544 return;
7546 elsif Is_Derived_Type (U_Ent) then
7547 Error_Msg_N
7548 ("storage pool cannot be given for a derived access type",
7549 Nam);
7551 elsif Duplicate_Clause then
7552 return;
7554 elsif Present (Associated_Storage_Pool (U_Ent)) then
7555 Error_Msg_N ("storage pool already given for &", Nam);
7556 return;
7557 end if;
7559 -- Check for Storage_Size previously given
7561 declare
7562 SS : constant Node_Id :=
7563 Get_Attribute_Definition_Clause
7564 (U_Ent, Attribute_Storage_Size);
7565 begin
7566 if Present (SS) then
7567 Check_Pool_Size_Clash (U_Ent, N, SS);
7568 end if;
7569 end;
7571 -- Storage_Pool case
7573 if Id = Attribute_Storage_Pool then
7574 Analyze_And_Resolve
7575 (Expr, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
7577 -- In the Simple_Storage_Pool case, we allow a variable of any
7578 -- simple storage pool type, so we Resolve without imposing an
7579 -- expected type.
7581 else
7582 Analyze_And_Resolve (Expr);
7584 if No (Get_Rep_Pragma
7585 (Etype (Expr), Name_Simple_Storage_Pool_Type))
7586 then
7587 Error_Msg_N
7588 ("expression must be of a simple storage pool type", Expr);
7589 end if;
7590 end if;
7592 if not Denotes_Variable (Expr) then
7593 Error_Msg_N ("storage pool must be a variable", Expr);
7594 return;
7595 end if;
7597 if Nkind (Expr) = N_Type_Conversion then
7598 T := Etype (Expression (Expr));
7599 else
7600 T := Etype (Expr);
7601 end if;
7603 -- The Stack_Bounded_Pool is used internally for implementing
7604 -- access types with a Storage_Size. Since it only work properly
7605 -- when used on one specific type, we need to check that it is not
7606 -- hijacked improperly:
7608 -- type T is access Integer;
7609 -- for T'Storage_Size use n;
7610 -- type Q is access Float;
7611 -- for Q'Storage_Size use T'Storage_Size; -- incorrect
7613 if Is_RTE (Base_Type (T), RE_Stack_Bounded_Pool) then
7614 Error_Msg_N ("non-shareable internal Pool", Expr);
7615 return;
7616 end if;
7618 -- Validate_Remote_Access_To_Class_Wide_Type for attribute
7619 -- Storage_Pool since this attribute cannot be defined for such
7620 -- types (RM E.2.2(17)).
7622 Validate_Remote_Access_To_Class_Wide_Type (N);
7624 -- If the argument is a name that is not an entity name, then
7625 -- we construct a renaming operation to define an entity of
7626 -- type storage pool.
7628 if not Is_Entity_Name (Expr)
7629 and then Is_Object_Reference (Expr)
7630 then
7631 Pool := Make_Temporary (Loc, 'P', Expr);
7633 declare
7634 Rnode : constant Node_Id :=
7635 Make_Object_Renaming_Declaration (Loc,
7636 Defining_Identifier => Pool,
7637 Subtype_Mark =>
7638 New_Occurrence_Of (Etype (Expr), Loc),
7639 Name => Expr);
7641 begin
7642 -- If the attribute definition clause comes from an aspect
7643 -- clause, then insert the renaming before the associated
7644 -- entity's declaration, since the attribute clause has
7645 -- not yet been appended to the declaration list.
7647 if From_Aspect_Specification (N) then
7648 Insert_Before (Parent (Entity (N)), Rnode);
7649 else
7650 Insert_Before (N, Rnode);
7651 end if;
7653 Analyze (Rnode);
7654 Associate_Storage_Pool (U_Ent, Pool);
7655 end;
7657 elsif Is_Entity_Name (Expr) then
7658 Pool := Entity (Expr);
7660 -- If pool is a renamed object, get original one. This can
7661 -- happen with an explicit renaming, and within instances.
7663 while Present (Renamed_Object (Pool))
7664 and then Is_Entity_Name (Renamed_Object (Pool))
7665 loop
7666 Pool := Entity (Renamed_Object (Pool));
7667 end loop;
7669 if Present (Renamed_Object (Pool))
7670 and then Nkind (Renamed_Object (Pool)) = N_Type_Conversion
7671 and then Is_Entity_Name (Expression (Renamed_Object (Pool)))
7672 then
7673 Pool := Entity (Expression (Renamed_Object (Pool)));
7674 end if;
7676 Associate_Storage_Pool (U_Ent, Pool);
7678 elsif Nkind (Expr) = N_Type_Conversion
7679 and then Is_Entity_Name (Expression (Expr))
7680 and then Nkind (Original_Node (Expr)) = N_Attribute_Reference
7681 then
7682 Pool := Entity (Expression (Expr));
7683 Associate_Storage_Pool (U_Ent, Pool);
7685 else
7686 Error_Msg_N ("incorrect reference to a Storage Pool", Expr);
7687 return;
7688 end if;
7689 end Storage_Pool;
7691 ------------------
7692 -- Storage_Size --
7693 ------------------
7695 -- Storage_Size attribute definition clause
7697 when Attribute_Storage_Size => Storage_Size : declare
7698 Btype : constant Entity_Id := Base_Type (U_Ent);
7700 begin
7701 if Is_Task_Type (U_Ent) then
7703 -- Check obsolescent (but never obsolescent if from aspect)
7705 if not From_Aspect_Specification (N) then
7706 Check_Restriction (No_Obsolescent_Features, N);
7708 if Warn_On_Obsolescent_Feature then
7709 Error_Msg_N
7710 ("?j?storage size clause for task is an obsolescent "
7711 & "feature (RM J.9)", N);
7712 Error_Msg_N ("\?j?use Storage_Size pragma instead", N);
7713 end if;
7714 end if;
7716 FOnly := True;
7717 end if;
7719 if not Is_Access_Type (U_Ent)
7720 and then Ekind (U_Ent) /= E_Task_Type
7721 then
7722 Error_Msg_N ("storage size cannot be given for &", Nam);
7724 elsif Is_Access_Type (U_Ent) and Is_Derived_Type (U_Ent) then
7725 Error_Msg_N
7726 ("storage size cannot be given for a derived access type",
7727 Nam);
7729 elsif Duplicate_Clause then
7730 null;
7732 else
7733 -- Validate_Remote_Access_To_Class_Wide_Type for attribute
7734 -- Storage_Size since this attribute cannot be defined for such
7735 -- types (RM E.2.2(17)).
7737 Validate_Remote_Access_To_Class_Wide_Type (N);
7739 Analyze_And_Resolve (Expr, Any_Integer);
7741 if Is_Access_Type (U_Ent) then
7743 -- Check for Storage_Pool previously given
7745 declare
7746 SP : constant Node_Id :=
7747 Get_Attribute_Definition_Clause
7748 (U_Ent, Attribute_Storage_Pool);
7750 begin
7751 if Present (SP) then
7752 Check_Pool_Size_Clash (U_Ent, SP, N);
7753 end if;
7754 end;
7756 -- Special case of for x'Storage_Size use 0
7758 if Is_OK_Static_Expression (Expr)
7759 and then Expr_Value (Expr) = 0
7760 then
7761 Set_No_Pool_Assigned (Btype);
7762 end if;
7763 end if;
7765 Set_Has_Storage_Size_Clause (Btype);
7766 end if;
7767 end Storage_Size;
7769 -----------------
7770 -- Stream_Size --
7771 -----------------
7773 when Attribute_Stream_Size => Stream_Size : declare
7774 Size : constant Uint := Static_Integer (Expr);
7776 begin
7777 if Ada_Version <= Ada_95 then
7778 Check_Restriction (No_Implementation_Attributes, N);
7779 end if;
7781 if Duplicate_Clause then
7782 null;
7784 elsif Is_Elementary_Type (U_Ent) then
7785 -- Size will be empty if we already detected an error
7786 -- (e.g. Expr is of the wrong type); we might as well
7787 -- give the useful hint below even in that case.
7789 if No (Size) or else
7790 (Size /= System_Storage_Unit
7791 and then Size /= System_Storage_Unit * 2
7792 and then Size /= System_Storage_Unit * 3
7793 and then Size /= System_Storage_Unit * 4
7794 and then Size /= System_Storage_Unit * 8)
7795 then
7796 Error_Msg_N
7797 ("stream size for elementary type must be 8, 16, 24, " &
7798 "32 or 64", N);
7800 elsif Known_RM_Size (U_Ent) and then RM_Size (U_Ent) > Size then
7801 Error_Msg_Uint_1 := RM_Size (U_Ent);
7802 Error_Msg_N
7803 ("stream size for elementary type must be 8, 16, 24, " &
7804 "32 or 64 and at least ^", N);
7805 end if;
7807 Set_Has_Stream_Size_Clause (U_Ent);
7809 else
7810 Error_Msg_N ("Stream_Size cannot be given for &", Nam);
7811 end if;
7812 end Stream_Size;
7814 -----------------------
7815 -- Variable_Indexing --
7816 -----------------------
7818 when Attribute_Variable_Indexing =>
7819 Check_Indexing_Functions;
7821 -----------
7822 -- Write --
7823 -----------
7825 when Attribute_Write =>
7826 Analyze_Stream_TSS_Definition (TSS_Stream_Write);
7827 Set_Has_Specified_Stream_Write (Ent);
7829 -- All other attributes cannot be set
7831 when others =>
7832 Error_Msg_N
7833 ("attribute& cannot be set with definition clause", N);
7834 end case;
7836 -- The test for the type being frozen must be performed after any
7837 -- expression the clause has been analyzed since the expression itself
7838 -- might cause freezing that makes the clause illegal.
7840 if Rep_Item_Too_Late (U_Ent, N, FOnly) then
7841 return;
7842 end if;
7843 end Analyze_Attribute_Definition_Clause;
7845 ----------------------------
7846 -- Analyze_Code_Statement --
7847 ----------------------------
7849 procedure Analyze_Code_Statement (N : Node_Id) is
7850 HSS : constant Node_Id := Parent (N);
7851 SBody : constant Node_Id := Parent (HSS);
7852 Subp : constant Entity_Id := Current_Scope;
7853 Stmt : Node_Id;
7854 Decl : Node_Id;
7855 StmtO : Node_Id;
7856 DeclO : Node_Id;
7858 begin
7859 -- Accept foreign code statements for CodePeer. The analysis is skipped
7860 -- to avoid rejecting unrecognized constructs.
7862 if CodePeer_Mode then
7863 Set_Analyzed (N);
7864 return;
7865 end if;
7867 -- Analyze and check we get right type, note that this implements the
7868 -- requirement (RM 13.8(1)) that Machine_Code be with'ed, since that is
7869 -- the only way that Asm_Insn could possibly be visible.
7871 Analyze_And_Resolve (Expression (N));
7873 if Etype (Expression (N)) = Any_Type then
7874 return;
7875 elsif not Is_RTE (Etype (Expression (N)), RE_Asm_Insn) then
7876 Error_Msg_N ("incorrect type for code statement", N);
7877 return;
7878 end if;
7880 Check_Code_Statement (N);
7882 -- Make sure we appear in the handled statement sequence of a subprogram
7883 -- (RM 13.8(3)).
7885 if Nkind (HSS) /= N_Handled_Sequence_Of_Statements
7886 or else Nkind (SBody) /= N_Subprogram_Body
7887 then
7888 Error_Msg_N
7889 ("code statement can only appear in body of subprogram", N);
7890 return;
7891 end if;
7893 -- Do remaining checks (RM 13.8(3)) if not already done
7895 if not Is_Machine_Code_Subprogram (Subp) then
7896 Set_Is_Machine_Code_Subprogram (Subp);
7898 -- No exception handlers allowed
7900 if Present (Exception_Handlers (HSS)) then
7901 Error_Msg_N
7902 ("exception handlers not permitted in machine code subprogram",
7903 First (Exception_Handlers (HSS)));
7904 end if;
7906 -- No declarations other than use clauses and pragmas (we allow
7907 -- certain internally generated declarations as well).
7909 Decl := First (Declarations (SBody));
7910 while Present (Decl) loop
7911 DeclO := Original_Node (Decl);
7912 if Comes_From_Source (DeclO)
7913 and Nkind (DeclO) not in N_Pragma
7914 | N_Use_Package_Clause
7915 | N_Use_Type_Clause
7916 | N_Implicit_Label_Declaration
7917 then
7918 Error_Msg_N
7919 ("this declaration is not allowed in machine code subprogram",
7920 DeclO);
7921 end if;
7923 Next (Decl);
7924 end loop;
7926 -- No statements other than code statements, pragmas, and labels.
7927 -- Again we allow certain internally generated statements.
7929 -- In Ada 2012, qualified expressions are names, and the code
7930 -- statement is initially parsed as a procedure call.
7932 Stmt := First (Statements (HSS));
7933 while Present (Stmt) loop
7934 StmtO := Original_Node (Stmt);
7936 -- A procedure call transformed into a code statement is OK
7938 if Ada_Version >= Ada_2012
7939 and then Nkind (StmtO) = N_Procedure_Call_Statement
7940 and then Nkind (Name (StmtO)) = N_Qualified_Expression
7941 then
7942 null;
7944 elsif Comes_From_Source (StmtO)
7945 and then Nkind (StmtO) not in
7946 N_Pragma | N_Label | N_Code_Statement
7947 then
7948 Error_Msg_N
7949 ("this statement is not allowed in machine code subprogram",
7950 StmtO);
7951 end if;
7953 Next (Stmt);
7954 end loop;
7955 end if;
7956 end Analyze_Code_Statement;
7958 -----------------------------------------------
7959 -- Analyze_Enumeration_Representation_Clause --
7960 -----------------------------------------------
7962 procedure Analyze_Enumeration_Representation_Clause (N : Node_Id) is
7963 Ident : constant Node_Id := Identifier (N);
7964 Aggr : constant Node_Id := Array_Aggregate (N);
7965 Enumtype : Entity_Id;
7966 Elit : Entity_Id;
7967 Expr : Node_Id;
7968 Assoc : Node_Id;
7969 Choice : Node_Id;
7970 Val : Uint;
7972 Err : Boolean := False;
7973 -- Set True to avoid cascade errors and crashes on incorrect source code
7975 Lo : constant Uint := Expr_Value (Type_Low_Bound (Universal_Integer));
7976 Hi : constant Uint := Expr_Value (Type_High_Bound (Universal_Integer));
7977 -- Allowed range of universal integer (= allowed range of enum lit vals)
7979 Min : Uint;
7980 Max : Uint;
7981 -- Minimum and maximum values of entries
7983 Max_Node : Node_Id := Empty; -- init to avoid warning
7984 -- Pointer to node for literal providing max value
7986 begin
7987 if Ignore_Rep_Clauses then
7988 Kill_Rep_Clause (N);
7989 return;
7990 end if;
7992 -- Ignore enumeration rep clauses by default in CodePeer mode,
7993 -- unless -gnatd.I is specified, as a work around for potential false
7994 -- positive messages.
7996 if CodePeer_Mode and not Debug_Flag_Dot_II then
7997 return;
7998 end if;
8000 -- First some basic error checks
8002 Find_Type (Ident);
8003 Enumtype := Entity (Ident);
8005 if Enumtype = Any_Type
8006 or else Rep_Item_Too_Early (Enumtype, N)
8007 then
8008 return;
8009 else
8010 Enumtype := Underlying_Type (Enumtype);
8011 end if;
8013 if not Is_Enumeration_Type (Enumtype) then
8014 Error_Msg_NE
8015 ("enumeration type required, found}",
8016 Ident, First_Subtype (Enumtype));
8017 return;
8018 end if;
8020 -- Ignore rep clause on generic actual type. This will already have
8021 -- been flagged on the template as an error, and this is the safest
8022 -- way to ensure we don't get a junk cascaded message in the instance.
8024 if Is_Generic_Actual_Type (Enumtype) then
8025 return;
8027 -- Type must be in current scope
8029 elsif Scope (Enumtype) /= Current_Scope then
8030 Error_Msg_N ("type must be declared in this scope", Ident);
8031 return;
8033 -- Type must be a first subtype
8035 elsif not Is_First_Subtype (Enumtype) then
8036 Error_Msg_N ("cannot give enumeration rep clause for subtype", N);
8037 return;
8039 -- Ignore duplicate rep clause
8041 elsif Has_Enumeration_Rep_Clause (Enumtype) then
8042 Error_Msg_N ("duplicate enumeration rep clause ignored", N);
8043 return;
8045 -- Don't allow rep clause for standard [wide_[wide_]]character
8047 elsif Is_Standard_Character_Type (Enumtype) then
8048 Error_Msg_N ("enumeration rep clause not allowed for this type", N);
8049 return;
8051 -- Check that the expression is a proper aggregate (no parentheses)
8053 elsif Paren_Count (Aggr) /= 0 then
8054 Error_Msg_F
8055 ("extra parentheses surrounding aggregate not allowed", Aggr);
8056 return;
8058 -- Reject the mixing of named and positional entries in the aggregate
8060 elsif Present (Expressions (Aggr))
8061 and then Present (Component_Associations (Aggr))
8062 then
8063 Error_Msg_N ("cannot mix positional and named entries in "
8064 & "enumeration rep clause", N);
8065 return;
8067 -- All tests passed, so set rep clause in place
8069 else
8070 Set_Has_Enumeration_Rep_Clause (Enumtype);
8071 Set_Has_Enumeration_Rep_Clause (Base_Type (Enumtype));
8072 end if;
8074 -- Now we process the aggregate. Note that we don't use the normal
8075 -- aggregate code for this purpose, because we don't want any of the
8076 -- normal expansion activities, and a number of special semantic
8077 -- rules apply (including the component type being any integer type)
8079 Elit := First_Literal (Enumtype);
8081 -- Process positional entries
8083 if Present (Expressions (Aggr)) then
8084 Expr := First (Expressions (Aggr));
8085 while Present (Expr) loop
8086 if No (Elit) then
8087 Error_Msg_N ("too many entries in aggregate", Expr);
8088 return;
8089 end if;
8091 Val := Static_Integer (Expr);
8093 -- Err signals that we found some incorrect entries processing
8094 -- the list. The final checks for completeness and ordering are
8095 -- skipped in this case.
8097 if No (Val) then
8098 Err := True;
8100 elsif Val < Lo or else Hi < Val then
8101 Error_Msg_N ("value outside permitted range", Expr);
8102 Err := True;
8104 else
8105 Set_Enumeration_Rep (Elit, Val);
8106 Set_Enumeration_Rep_Expr (Elit, Expr);
8107 end if;
8109 Next (Expr);
8110 Next (Elit);
8111 end loop;
8113 -- Process named entries
8115 elsif Present (Component_Associations (Aggr)) then
8116 Assoc := First (Component_Associations (Aggr));
8117 while Present (Assoc) loop
8118 Choice := First (Choices (Assoc));
8120 if Present (Next (Choice)) then
8121 Error_Msg_N
8122 ("multiple choice not allowed here", Next (Choice));
8123 Err := True;
8124 end if;
8126 if Nkind (Choice) = N_Others_Choice then
8127 Error_Msg_N ("OTHERS choice not allowed here", Choice);
8128 Err := True;
8130 elsif Nkind (Choice) = N_Range then
8132 -- ??? should allow zero/one element range here
8134 Error_Msg_N ("range not allowed here", Choice);
8135 Err := True;
8137 else
8138 Analyze_And_Resolve (Choice, Enumtype);
8140 if Error_Posted (Choice) then
8141 Err := True;
8142 end if;
8144 if not Err then
8145 if Is_Entity_Name (Choice)
8146 and then Is_Type (Entity (Choice))
8147 then
8148 Error_Msg_N ("subtype name not allowed here", Choice);
8149 Err := True;
8151 -- ??? should allow static subtype with zero/one entry
8153 elsif Etype (Choice) = Base_Type (Enumtype) then
8154 if not Is_OK_Static_Expression (Choice) then
8155 Flag_Non_Static_Expr
8156 ("non-static expression used for choice!", Choice);
8157 Err := True;
8159 else
8160 Elit := Expr_Value_E (Choice);
8162 if Present (Enumeration_Rep_Expr (Elit)) then
8163 Error_Msg_Sloc :=
8164 Sloc (Enumeration_Rep_Expr (Elit));
8165 Error_Msg_NE
8166 ("representation for& previously given#",
8167 Choice, Elit);
8168 Err := True;
8169 end if;
8171 Set_Enumeration_Rep_Expr (Elit, Expression (Assoc));
8173 Expr := Expression (Assoc);
8174 Val := Static_Integer (Expr);
8176 if No (Val) then
8177 Err := True;
8179 elsif Val < Lo or else Hi < Val then
8180 Error_Msg_N ("value outside permitted range", Expr);
8181 Err := True;
8183 else
8184 Set_Enumeration_Rep (Elit, Val);
8185 end if;
8186 end if;
8187 end if;
8188 end if;
8189 end if;
8191 Next (Assoc);
8192 end loop;
8193 end if;
8195 -- Aggregate is fully processed. Now we check that a full set of
8196 -- representations was given, and that they are in range and in order.
8197 -- These checks are only done if no other errors occurred.
8199 if not Err then
8200 Min := No_Uint;
8201 Max := No_Uint;
8203 Elit := First_Literal (Enumtype);
8204 while Present (Elit) loop
8205 if No (Enumeration_Rep_Expr (Elit)) then
8206 Error_Msg_NE ("missing representation for&!", N, Elit);
8208 else
8209 Val := Enumeration_Rep (Elit);
8211 if No (Min) then
8212 Min := Val;
8213 end if;
8215 if Present (Val) then
8216 if Present (Max) and then Val <= Max then
8217 Error_Msg_NE
8218 ("enumeration value for& not ordered!",
8219 Enumeration_Rep_Expr (Elit), Elit);
8220 end if;
8222 Max_Node := Enumeration_Rep_Expr (Elit);
8223 Max := Val;
8224 end if;
8226 -- If there is at least one literal whose representation is not
8227 -- equal to the Pos value, then note that this enumeration type
8228 -- has a non-standard representation.
8230 if Val /= Enumeration_Pos (Elit) then
8231 Set_Has_Non_Standard_Rep (Base_Type (Enumtype));
8232 end if;
8233 end if;
8235 Next (Elit);
8236 end loop;
8238 -- Now set proper size information
8240 declare
8241 Minsize : Uint := UI_From_Int (Minimum_Size (Enumtype));
8243 begin
8244 if Has_Size_Clause (Enumtype) then
8246 -- All OK, if size is OK now
8248 if RM_Size (Enumtype) >= Minsize then
8249 null;
8251 else
8252 -- Try if we can get by with biasing
8254 Minsize :=
8255 UI_From_Int (Minimum_Size (Enumtype, Biased => True));
8257 -- Error message if even biasing does not work
8259 if RM_Size (Enumtype) < Minsize then
8260 Error_Msg_Uint_1 := RM_Size (Enumtype);
8261 Error_Msg_Uint_2 := Max;
8262 Error_Msg_N
8263 ("previously given size (^) is too small "
8264 & "for this value (^)", Max_Node);
8266 -- If biasing worked, indicate that we now have biased rep
8268 else
8269 Set_Biased
8270 (Enumtype, Size_Clause (Enumtype), "size clause");
8271 end if;
8272 end if;
8274 else
8275 Set_RM_Size (Enumtype, Minsize);
8276 Set_Enum_Esize (Enumtype);
8277 end if;
8279 Set_RM_Size (Base_Type (Enumtype), RM_Size (Enumtype));
8280 Set_Esize (Base_Type (Enumtype), Esize (Enumtype));
8282 Copy_Alignment (To => Base_Type (Enumtype), From => Enumtype);
8283 end;
8284 end if;
8286 -- We repeat the too late test in case it froze itself
8288 if Rep_Item_Too_Late (Enumtype, N) then
8289 null;
8290 end if;
8291 end Analyze_Enumeration_Representation_Clause;
8293 ----------------------------
8294 -- Analyze_Free_Statement --
8295 ----------------------------
8297 procedure Analyze_Free_Statement (N : Node_Id) is
8298 begin
8299 Analyze (Expression (N));
8300 end Analyze_Free_Statement;
8302 ---------------------------
8303 -- Analyze_Freeze_Entity --
8304 ---------------------------
8306 procedure Analyze_Freeze_Entity (N : Node_Id) is
8307 begin
8308 Freeze_Entity_Checks (N);
8309 end Analyze_Freeze_Entity;
8311 -----------------------------------
8312 -- Analyze_Freeze_Generic_Entity --
8313 -----------------------------------
8315 procedure Analyze_Freeze_Generic_Entity (N : Node_Id) is
8316 E : constant Entity_Id := Entity (N);
8318 begin
8319 if not Is_Frozen (E) and then Has_Delayed_Aspects (E) then
8320 Analyze_Aspects_At_Freeze_Point (E);
8321 end if;
8323 Freeze_Entity_Checks (N);
8324 end Analyze_Freeze_Generic_Entity;
8326 ------------------------------------------
8327 -- Analyze_Record_Representation_Clause --
8328 ------------------------------------------
8330 -- Note: we check as much as we can here, but we can't do any checks
8331 -- based on the position values (e.g. overlap checks) until freeze time
8332 -- because especially in Ada 2005 (machine scalar mode), the processing
8333 -- for non-standard bit order can substantially change the positions.
8334 -- See procedure Check_Record_Representation_Clause (called from Freeze)
8335 -- for the remainder of this processing.
8337 procedure Analyze_Record_Representation_Clause (N : Node_Id) is
8338 Ident : constant Node_Id := Identifier (N);
8339 Biased : Boolean;
8340 CC : Node_Id;
8341 Comp : Entity_Id;
8342 Fbit : Uint;
8343 Lbit : Uint;
8344 Ocomp : Entity_Id;
8345 Posit : Uint;
8346 Rectype : Entity_Id;
8347 Recdef : Node_Id;
8349 function Is_Inherited (Comp : Entity_Id) return Boolean;
8350 -- True if Comp is an inherited component in a record extension
8352 ------------------
8353 -- Is_Inherited --
8354 ------------------
8356 function Is_Inherited (Comp : Entity_Id) return Boolean is
8357 Comp_Base : Entity_Id;
8359 begin
8360 if Ekind (Rectype) = E_Record_Subtype then
8361 Comp_Base := Original_Record_Component (Comp);
8362 else
8363 Comp_Base := Comp;
8364 end if;
8366 return Comp_Base /= Original_Record_Component (Comp_Base);
8367 end Is_Inherited;
8369 -- Local variables
8371 Is_Record_Extension : Boolean;
8372 -- True if Rectype is a record extension
8374 CR_Pragma : Node_Id := Empty;
8375 -- Points to N_Pragma node if Complete_Representation pragma present
8377 -- Start of processing for Analyze_Record_Representation_Clause
8379 begin
8380 if Ignore_Rep_Clauses then
8381 Kill_Rep_Clause (N);
8382 return;
8383 end if;
8385 Find_Type (Ident);
8386 Rectype := Entity (Ident);
8388 if Rectype = Any_Type or else Rep_Item_Too_Early (Rectype, N) then
8389 return;
8390 else
8391 Rectype := Underlying_Type (Rectype);
8392 end if;
8394 -- First some basic error checks
8396 if not Is_Record_Type (Rectype) then
8397 Error_Msg_NE
8398 ("record type required, found}", Ident, First_Subtype (Rectype));
8399 return;
8401 elsif Scope (Rectype) /= Current_Scope then
8402 Error_Msg_N ("type must be declared in this scope", N);
8403 return;
8405 elsif not Is_First_Subtype (Rectype) then
8406 Error_Msg_N ("cannot give record rep clause for subtype", N);
8407 return;
8409 elsif Has_Record_Rep_Clause (Rectype) then
8410 Error_Msg_N ("duplicate record rep clause ignored", N);
8411 return;
8413 elsif Rep_Item_Too_Late (Rectype, N) then
8414 return;
8415 end if;
8417 -- We know we have a first subtype, now possibly go to the anonymous
8418 -- base type to determine whether Rectype is a record extension.
8420 Recdef := Type_Definition (Declaration_Node (Base_Type (Rectype)));
8421 Is_Record_Extension :=
8422 Nkind (Recdef) = N_Derived_Type_Definition
8423 and then Present (Record_Extension_Part (Recdef));
8425 if Present (Mod_Clause (N)) then
8426 declare
8427 M : constant Node_Id := Mod_Clause (N);
8428 P : constant List_Id := Pragmas_Before (M);
8429 Ignore : Uint;
8431 begin
8432 Check_Restriction (No_Obsolescent_Features, Mod_Clause (N));
8434 if Warn_On_Obsolescent_Feature then
8435 Error_Msg_N
8436 ("?j?mod clause is an obsolescent feature (RM J.8)", N);
8437 Error_Msg_N
8438 ("\?j?use alignment attribute definition clause instead", N);
8439 end if;
8441 if Present (P) then
8442 Analyze_List (P);
8443 end if;
8445 -- Get the alignment value to perform error checking
8447 Ignore := Get_Alignment_Value (Expression (M));
8448 end;
8449 end if;
8451 -- For untagged types, clear any existing component clauses for the
8452 -- type. If the type is derived, this is what allows us to override
8453 -- a rep clause for the parent. For type extensions, the representation
8454 -- of the inherited components is inherited, so we want to keep previous
8455 -- component clauses for completeness.
8457 if not Is_Tagged_Type (Rectype) then
8458 Comp := First_Component_Or_Discriminant (Rectype);
8459 while Present (Comp) loop
8460 Set_Component_Clause (Comp, Empty);
8461 Next_Component_Or_Discriminant (Comp);
8462 end loop;
8463 end if;
8465 -- All done if no component clauses
8467 CC := First (Component_Clauses (N));
8469 if No (CC) then
8470 return;
8471 end if;
8473 -- A representation like this applies to the base type
8475 Set_Has_Record_Rep_Clause (Base_Type (Rectype));
8476 Set_Has_Non_Standard_Rep (Base_Type (Rectype));
8477 Set_Has_Specified_Layout (Base_Type (Rectype));
8479 -- Process the component clauses
8481 while Present (CC) loop
8483 -- Pragma
8485 if Nkind (CC) = N_Pragma then
8486 Analyze (CC);
8488 -- The only pragma of interest is Complete_Representation
8490 if Pragma_Name (CC) = Name_Complete_Representation then
8491 CR_Pragma := CC;
8492 end if;
8494 -- Processing for real component clause
8496 else
8497 Posit := Static_Integer (Position (CC));
8498 Fbit := Static_Integer (First_Bit (CC));
8499 Lbit := Static_Integer (Last_Bit (CC));
8501 if Present (Posit)
8502 and then Present (Fbit)
8503 and then Present (Lbit)
8504 then
8505 if Posit < 0 then
8506 Error_Msg_N ("position cannot be negative", Position (CC));
8508 elsif Fbit < 0 then
8509 Error_Msg_N ("first bit cannot be negative", First_Bit (CC));
8511 -- The Last_Bit specified in a component clause must not be
8512 -- less than the First_Bit minus one (RM-13.5.1(10)).
8514 elsif Lbit < Fbit - 1 then
8515 Error_Msg_N
8516 ("last bit cannot be less than first bit minus one",
8517 Last_Bit (CC));
8519 -- Values look OK, so find the corresponding record component
8520 -- Even though the syntax allows an attribute reference for
8521 -- implementation-defined components, GNAT does not allow the
8522 -- tag to get an explicit position.
8524 elsif Nkind (Component_Name (CC)) = N_Attribute_Reference then
8525 if Attribute_Name (Component_Name (CC)) = Name_Tag then
8526 Error_Msg_N ("position of tag cannot be specified", CC);
8527 else
8528 Error_Msg_N ("illegal component name", CC);
8529 end if;
8531 else
8532 Comp := First_Entity (Rectype);
8533 while Present (Comp) loop
8534 exit when Chars (Comp) = Chars (Component_Name (CC));
8535 Next_Entity (Comp);
8536 end loop;
8538 if No (Comp) then
8540 -- Maybe component of base type that is absent from
8541 -- statically constrained first subtype.
8543 Comp := First_Entity (Base_Type (Rectype));
8544 while Present (Comp) loop
8545 exit when Chars (Comp) = Chars (Component_Name (CC));
8546 Next_Entity (Comp);
8547 end loop;
8548 end if;
8550 if No (Comp) then
8551 Error_Msg_N
8552 ("component clause is for non-existent field", CC);
8554 -- Ada 2012 (AI05-0026): Any name that denotes a
8555 -- discriminant of an object of an unchecked union type
8556 -- shall not occur within a record_representation_clause.
8558 -- The general restriction of using record rep clauses on
8559 -- Unchecked_Union types has now been lifted. Since it is
8560 -- possible to introduce a record rep clause which mentions
8561 -- the discriminant of an Unchecked_Union in non-Ada 2012
8562 -- code, this check is applied to all versions of the
8563 -- language.
8565 elsif Ekind (Comp) = E_Discriminant
8566 and then Is_Unchecked_Union (Rectype)
8567 then
8568 Error_Msg_N
8569 ("cannot reference discriminant of unchecked union",
8570 Component_Name (CC));
8572 elsif Is_Record_Extension and then Is_Inherited (Comp) then
8573 Error_Msg_NE
8574 ("component clause not allowed for inherited "
8575 & "component&", CC, Comp);
8577 elsif Present (Component_Clause (Comp)) then
8579 -- Diagnose duplicate rep clause, or check consistency
8580 -- if this is an inherited component. In a double fault,
8581 -- there may be a duplicate inconsistent clause for an
8582 -- inherited component.
8584 if Scope (Original_Record_Component (Comp)) = Rectype
8585 or else Parent (Component_Clause (Comp)) = N
8586 then
8587 Error_Msg_Sloc := Sloc (Component_Clause (Comp));
8588 Error_Msg_N ("component clause previously given#", CC);
8590 else
8591 declare
8592 Rep1 : constant Node_Id := Component_Clause (Comp);
8593 begin
8594 if Intval (Position (Rep1)) /=
8595 Intval (Position (CC))
8596 or else Intval (First_Bit (Rep1)) /=
8597 Intval (First_Bit (CC))
8598 or else Intval (Last_Bit (Rep1)) /=
8599 Intval (Last_Bit (CC))
8600 then
8601 Error_Msg_N
8602 ("component clause inconsistent with "
8603 & "representation of ancestor", CC);
8605 elsif Warn_On_Redundant_Constructs then
8606 Error_Msg_N
8607 ("?r?redundant confirming component clause "
8608 & "for component!", CC);
8609 end if;
8610 end;
8611 end if;
8613 -- Normal case where this is the first component clause we
8614 -- have seen for this entity, so set it up properly.
8616 else
8617 -- Make reference for field in record rep clause and set
8618 -- appropriate entity field in the field identifier.
8620 Generate_Reference
8621 (Comp, Component_Name (CC), Set_Ref => False);
8622 Set_Entity_With_Checks (Component_Name (CC), Comp);
8624 -- Update Fbit and Lbit to the actual bit number
8626 Fbit := Fbit + UI_From_Int (SSU) * Posit;
8627 Lbit := Lbit + UI_From_Int (SSU) * Posit;
8629 if Has_Size_Clause (Rectype)
8630 and then RM_Size (Rectype) <= Lbit
8631 then
8632 Error_Msg_Uint_1 := RM_Size (Rectype);
8633 Error_Msg_Uint_2 := Lbit + 1;
8634 Error_Msg_N ("bit number out of range of specified "
8635 & "size (expected ^, got ^)",
8636 Last_Bit (CC));
8637 else
8638 Set_Component_Clause (Comp, CC);
8639 Set_Component_Bit_Offset (Comp, Fbit);
8640 Set_Esize (Comp, 1 + (Lbit - Fbit));
8641 Set_Normalized_First_Bit (Comp, Fbit mod SSU);
8642 Set_Normalized_Position (Comp, Fbit / SSU);
8644 if Warn_On_Overridden_Size
8645 and then Has_Size_Clause (Etype (Comp))
8646 and then RM_Size (Etype (Comp)) /= Esize (Comp)
8647 then
8648 Error_Msg_NE
8649 ("?.s?component size overrides size clause for&",
8650 Component_Name (CC), Etype (Comp));
8651 end if;
8653 Check_Size
8654 (Component_Name (CC),
8655 Etype (Comp),
8656 Esize (Comp),
8657 Biased);
8659 Set_Biased
8660 (Comp, First_Node (CC), "component clause", Biased);
8662 -- This information is also set in the corresponding
8663 -- component of the base type, found by accessing the
8664 -- Original_Record_Component link if it is present.
8666 Ocomp := Original_Record_Component (Comp);
8668 if Present (Ocomp) and then Ocomp /= Comp then
8669 Set_Component_Clause (Ocomp, CC);
8670 Set_Component_Bit_Offset (Ocomp, Fbit);
8671 Set_Esize (Ocomp, 1 + (Lbit - Fbit));
8672 Set_Normalized_First_Bit (Ocomp, Fbit mod SSU);
8673 Set_Normalized_Position (Ocomp, Fbit / SSU);
8675 -- Note: we don't use Set_Biased here, because we
8676 -- already gave a warning above if needed, and we
8677 -- would get a duplicate for the same name here.
8679 Set_Has_Biased_Representation
8680 (Ocomp, Has_Biased_Representation (Comp));
8681 end if;
8683 if Esize (Comp) < 0 then
8684 Error_Msg_N ("component size is negative", CC);
8685 end if;
8686 end if;
8687 end if;
8688 end if;
8689 end if;
8690 end if;
8692 Next (CC);
8693 end loop;
8695 -- Check missing components if Complete_Representation pragma appeared
8697 if Present (CR_Pragma) then
8698 Comp := First_Component_Or_Discriminant (Rectype);
8699 while Present (Comp) loop
8700 if No (Component_Clause (Comp)) then
8701 Error_Msg_NE
8702 ("missing component clause for &", CR_Pragma, Comp);
8703 end if;
8705 Next_Component_Or_Discriminant (Comp);
8706 end loop;
8708 -- Give missing components warning if required
8710 elsif Warn_On_Unrepped_Components then
8711 declare
8712 Num_Repped_Components : Nat := 0;
8713 Num_Unrepped_Components : Nat := 0;
8715 begin
8716 -- First count number of repped and unrepped components
8718 Comp := First_Component_Or_Discriminant (Rectype);
8719 while Present (Comp) loop
8720 if Present (Component_Clause (Comp)) then
8721 Num_Repped_Components := Num_Repped_Components + 1;
8722 else
8723 Num_Unrepped_Components := Num_Unrepped_Components + 1;
8724 end if;
8726 Next_Component_Or_Discriminant (Comp);
8727 end loop;
8729 -- We are only interested in the case where there is at least one
8730 -- unrepped component, and at least half the components have rep
8731 -- clauses. We figure that if less than half have them, then the
8732 -- partial rep clause is really intentional. If the component
8733 -- type has no underlying type set at this point (as for a generic
8734 -- formal type), we don't know enough to give a warning on the
8735 -- component.
8737 if Num_Unrepped_Components > 0
8738 and then Num_Unrepped_Components < Num_Repped_Components
8739 then
8740 Comp := First_Component_Or_Discriminant (Rectype);
8741 while Present (Comp) loop
8742 if No (Component_Clause (Comp))
8743 and then Comes_From_Source (Comp)
8744 and then Present (Underlying_Type (Etype (Comp)))
8745 and then (Is_Scalar_Type (Underlying_Type (Etype (Comp)))
8746 or else Size_Known_At_Compile_Time
8747 (Underlying_Type (Etype (Comp))))
8748 and then not Has_Warnings_Off (Rectype)
8750 -- Ignore discriminant in unchecked union, since it is
8751 -- not there, and cannot have a component clause.
8753 and then (not Is_Unchecked_Union (Rectype)
8754 or else Ekind (Comp) /= E_Discriminant)
8755 then
8756 Error_Msg_Sloc := Sloc (Comp);
8757 Error_Msg_NE
8758 ("?.c?no component clause given for & declared #",
8759 N, Comp);
8760 end if;
8762 Next_Component_Or_Discriminant (Comp);
8763 end loop;
8764 end if;
8765 end;
8766 end if;
8767 end Analyze_Record_Representation_Clause;
8769 -------------------------------------
8770 -- Build_Discrete_Static_Predicate --
8771 -------------------------------------
8773 procedure Build_Discrete_Static_Predicate
8774 (Typ : Entity_Id;
8775 Expr : Node_Id;
8776 Nam : Name_Id)
8778 Loc : constant Source_Ptr := Sloc (Expr);
8780 Btyp : constant Entity_Id := Base_Type (Typ);
8782 BLo : constant Uint := Expr_Value (Type_Low_Bound (Btyp));
8783 BHi : constant Uint := Expr_Value (Type_High_Bound (Btyp));
8784 -- Low bound and high bound value of base type of Typ
8786 TLo : Uint;
8787 THi : Uint;
8788 -- Bounds for constructing the static predicate. We use the bound of the
8789 -- subtype if it is static, otherwise the corresponding base type bound.
8790 -- Note: a non-static subtype can have a static predicate.
8792 type REnt is record
8793 Lo, Hi : Uint;
8794 end record;
8795 -- One entry in a Rlist value, a single REnt (range entry) value denotes
8796 -- one range from Lo to Hi. To represent a single value range Lo = Hi =
8797 -- value.
8799 type RList is array (Nat range <>) of REnt;
8800 -- A list of ranges. The ranges are sorted in increasing order, and are
8801 -- disjoint (there is a gap of at least one value between each range in
8802 -- the table). A value is in the set of ranges in Rlist if it lies
8803 -- within one of these ranges.
8805 False_Range : constant RList :=
8806 RList'(1 .. 0 => REnt'(No_Uint, No_Uint));
8807 -- An empty set of ranges represents a range list that can never be
8808 -- satisfied, since there are no ranges in which the value could lie,
8809 -- so it does not lie in any of them. False_Range is a canonical value
8810 -- for this empty set, but general processing should test for an Rlist
8811 -- with length zero (see Is_False predicate), since other null ranges
8812 -- may appear which must be treated as False.
8814 True_Range : constant RList := RList'(1 => REnt'(BLo, BHi));
8815 -- Range representing True, value must be in the base range
8817 function "and" (Left : RList; Right : RList) return RList;
8818 -- And's together two range lists, returning a range list. This is a set
8819 -- intersection operation.
8821 function "or" (Left : RList; Right : RList) return RList;
8822 -- Or's together two range lists, returning a range list. This is a set
8823 -- union operation.
8825 function "not" (Right : RList) return RList;
8826 -- Returns complement of a given range list, i.e. a range list
8827 -- representing all the values in TLo .. THi that are not in the input
8828 -- operand Right.
8830 function Build_Val (V : Uint) return Node_Id;
8831 -- Return an analyzed N_Identifier node referencing this value, suitable
8832 -- for use as an entry in the Static_Discrete_Predicate list. This node
8833 -- is typed with the base type.
8835 function Build_Range (Lo : Uint; Hi : Uint) return Node_Id;
8836 -- Return an analyzed N_Range node referencing this range, suitable for
8837 -- use as an entry in the Static_Discrete_Predicate list. This node is
8838 -- typed with the base type.
8840 function Get_RList
8841 (Exp : Node_Id;
8842 Static : access Boolean) return RList;
8843 -- This is a recursive routine that converts the given expression into a
8844 -- list of ranges, suitable for use in building the static predicate.
8845 -- Static.all will be set to False if the expression is found to be non
8846 -- static. Note that Static.all should be set to True by the caller.
8848 function Is_False (R : RList) return Boolean;
8849 pragma Inline (Is_False);
8850 -- Returns True if the given range list is empty, and thus represents a
8851 -- False list of ranges that can never be satisfied.
8853 function Is_True (R : RList) return Boolean;
8854 -- Returns True if R trivially represents the True predicate by having a
8855 -- single range from BLo to BHi.
8857 function Is_Type_Ref (N : Node_Id) return Boolean;
8858 pragma Inline (Is_Type_Ref);
8859 -- Returns if True if N is a reference to the type for the predicate in
8860 -- the expression (i.e. if it is an identifier whose Chars field matches
8861 -- the Nam given in the call). N must not be parenthesized, if the type
8862 -- name appears in parens, this routine will return False.
8864 function Lo_Val (N : Node_Id) return Uint;
8865 -- Given an entry from a Static_Discrete_Predicate list that is either
8866 -- a static expression or static range, gets either the expression value
8867 -- or the low bound of the range.
8869 function Hi_Val (N : Node_Id) return Uint;
8870 -- Given an entry from a Static_Discrete_Predicate list that is either
8871 -- a static expression or static range, gets either the expression value
8872 -- or the high bound of the range.
8874 function Membership_Entry
8875 (N : Node_Id; Static : access Boolean) return RList;
8876 -- Given a single membership entry (range, value, or subtype), returns
8877 -- the corresponding range list. Set Static.all to False if not static.
8879 function Membership_Entries
8880 (N : Node_Id; Static : access Boolean) return RList;
8881 -- Given an element on an alternatives list of a membership operation,
8882 -- returns the range list corresponding to this entry and all following
8883 -- entries (i.e. returns the "or" of this list of values).
8884 -- Set Static.all to False if not static.
8886 function Stat_Pred
8887 (Typ : Entity_Id;
8888 Static : access Boolean) return RList;
8889 -- Given a type, if it has a static predicate, then set Result to the
8890 -- predicate as a range list, otherwise set Static.all to False.
8892 procedure Warn_If_Test_Ineffective (REntry : REnt; N : Node_Id);
8893 -- Issue a warning if REntry includes only values that are
8894 -- outside the range TLo .. THi.
8896 -----------
8897 -- "and" --
8898 -----------
8900 function "and" (Left : RList; Right : RList) return RList is
8901 FEnt : REnt;
8902 -- First range of result
8904 SLeft : Nat := Left'First;
8905 -- Start of rest of left entries
8907 SRight : Nat := Right'First;
8908 -- Start of rest of right entries
8910 begin
8911 -- If either range is True, return the other
8913 if Is_True (Left) then
8914 return Right;
8915 elsif Is_True (Right) then
8916 return Left;
8917 end if;
8919 -- If either range is False, return False
8921 if Is_False (Left) or else Is_False (Right) then
8922 return False_Range;
8923 end if;
8925 -- Loop to remove entries at start that are disjoint, and thus just
8926 -- get discarded from the result entirely.
8928 loop
8929 -- If no operands left in either operand, result is false
8931 if SLeft > Left'Last or else SRight > Right'Last then
8932 return False_Range;
8934 -- Discard first left operand entry if disjoint with right
8936 elsif Left (SLeft).Hi < Right (SRight).Lo then
8937 SLeft := SLeft + 1;
8939 -- Discard first right operand entry if disjoint with left
8941 elsif Right (SRight).Hi < Left (SLeft).Lo then
8942 SRight := SRight + 1;
8944 -- Otherwise we have an overlapping entry
8946 else
8947 exit;
8948 end if;
8949 end loop;
8951 -- Now we have two non-null operands, and first entries overlap. The
8952 -- first entry in the result will be the overlapping part of these
8953 -- two entries.
8955 FEnt := REnt'(Lo => UI_Max (Left (SLeft).Lo, Right (SRight).Lo),
8956 Hi => UI_Min (Left (SLeft).Hi, Right (SRight).Hi));
8958 -- Now we can remove the entry that ended at a lower value, since its
8959 -- contribution is entirely contained in Fent.
8961 if Left (SLeft).Hi <= Right (SRight).Hi then
8962 SLeft := SLeft + 1;
8963 else
8964 SRight := SRight + 1;
8965 end if;
8967 -- Compute result by concatenating this first entry with the "and" of
8968 -- the remaining parts of the left and right operands. Note that if
8969 -- either of these is empty, "and" will yield empty, so that we will
8970 -- end up with just Fent, which is what we want in that case.
8972 return
8973 FEnt & (Left (SLeft .. Left'Last) and Right (SRight .. Right'Last));
8974 end "and";
8976 -----------
8977 -- "not" --
8978 -----------
8980 function "not" (Right : RList) return RList is
8981 begin
8982 -- Return True if False range
8984 if Is_False (Right) then
8985 return True_Range;
8986 end if;
8988 -- Return False if True range
8990 if Is_True (Right) then
8991 return False_Range;
8992 end if;
8994 -- Here if not trivial case
8996 declare
8997 Result : RList (1 .. Right'Length + 1);
8998 -- May need one more entry for gap at beginning and end
9000 Count : Nat := 0;
9001 -- Number of entries stored in Result
9003 begin
9004 -- Gap at start
9006 if Right (Right'First).Lo > TLo then
9007 Count := Count + 1;
9008 Result (Count) := REnt'(TLo, Right (Right'First).Lo - 1);
9009 end if;
9011 -- Gaps between ranges
9013 for J in Right'First .. Right'Last - 1 loop
9014 Count := Count + 1;
9015 Result (Count) := REnt'(Right (J).Hi + 1, Right (J + 1).Lo - 1);
9016 end loop;
9018 -- Gap at end
9020 if Right (Right'Last).Hi < THi then
9021 Count := Count + 1;
9022 Result (Count) := REnt'(Right (Right'Last).Hi + 1, THi);
9023 end if;
9025 return Result (1 .. Count);
9026 end;
9027 end "not";
9029 ----------
9030 -- "or" --
9031 ----------
9033 function "or" (Left : RList; Right : RList) return RList is
9034 FEnt : REnt;
9035 -- First range of result
9037 SLeft : Nat := Left'First;
9038 -- Start of rest of left entries
9040 SRight : Nat := Right'First;
9041 -- Start of rest of right entries
9043 begin
9044 -- If either range is True, return True
9046 if Is_True (Left) or else Is_True (Right) then
9047 return True_Range;
9048 end if;
9050 -- If either range is False (empty), return the other
9052 if Is_False (Left) then
9053 return Right;
9054 elsif Is_False (Right) then
9055 return Left;
9056 end if;
9058 -- Initialize result first entry from left or right operand depending
9059 -- on which starts with the lower range.
9061 if Left (SLeft).Lo < Right (SRight).Lo then
9062 FEnt := Left (SLeft);
9063 SLeft := SLeft + 1;
9064 else
9065 FEnt := Right (SRight);
9066 SRight := SRight + 1;
9067 end if;
9069 -- This loop eats ranges from left and right operands that are
9070 -- contiguous with the first range we are gathering.
9072 loop
9073 -- Eat first entry in left operand if contiguous or overlapped by
9074 -- gathered first operand of result.
9076 if SLeft <= Left'Last
9077 and then Left (SLeft).Lo <= FEnt.Hi + 1
9078 then
9079 FEnt.Hi := UI_Max (FEnt.Hi, Left (SLeft).Hi);
9080 SLeft := SLeft + 1;
9082 -- Eat first entry in right operand if contiguous or overlapped by
9083 -- gathered right operand of result.
9085 elsif SRight <= Right'Last
9086 and then Right (SRight).Lo <= FEnt.Hi + 1
9087 then
9088 FEnt.Hi := UI_Max (FEnt.Hi, Right (SRight).Hi);
9089 SRight := SRight + 1;
9091 -- All done if no more entries to eat
9093 else
9094 exit;
9095 end if;
9096 end loop;
9098 -- Obtain result as the first entry we just computed, concatenated
9099 -- to the "or" of the remaining results (if one operand is empty,
9100 -- this will just concatenate with the other
9102 return
9103 FEnt & (Left (SLeft .. Left'Last) or Right (SRight .. Right'Last));
9104 end "or";
9106 -----------------
9107 -- Build_Range --
9108 -----------------
9110 function Build_Range (Lo : Uint; Hi : Uint) return Node_Id is
9111 Result : Node_Id;
9112 begin
9113 Result :=
9114 Make_Range (Loc,
9115 Low_Bound => Build_Val (Lo),
9116 High_Bound => Build_Val (Hi));
9117 Set_Etype (Result, Btyp);
9118 Set_Analyzed (Result);
9119 return Result;
9120 end Build_Range;
9122 ---------------
9123 -- Build_Val --
9124 ---------------
9126 function Build_Val (V : Uint) return Node_Id is
9127 Result : Node_Id;
9129 begin
9130 if Is_Enumeration_Type (Typ) then
9131 Result := Get_Enum_Lit_From_Pos (Typ, V, Loc);
9132 else
9133 Result := Make_Integer_Literal (Loc, V);
9134 end if;
9136 Set_Etype (Result, Btyp);
9137 Set_Is_Static_Expression (Result);
9138 Set_Analyzed (Result);
9139 return Result;
9140 end Build_Val;
9142 ---------------
9143 -- Get_RList --
9144 ---------------
9146 function Get_RList
9147 (Exp : Node_Id;
9148 Static : access Boolean) return RList
9150 Op : Node_Kind;
9151 Val : Uint;
9152 Val_Bearer : Node_Id;
9154 begin
9155 -- Static expression can only be true or false
9157 if Is_OK_Static_Expression (Exp) then
9158 if Expr_Value (Exp) = 0 then
9159 return False_Range;
9160 else
9161 return True_Range;
9162 end if;
9163 end if;
9165 -- Otherwise test node type
9167 Op := Nkind (Exp);
9169 case Op is
9171 -- And
9173 when N_And_Then
9174 | N_Op_And
9176 return Get_RList (Left_Opnd (Exp), Static)
9178 Get_RList (Right_Opnd (Exp), Static);
9180 -- Or
9182 when N_Op_Or
9183 | N_Or_Else
9185 return Get_RList (Left_Opnd (Exp), Static)
9187 Get_RList (Right_Opnd (Exp), Static);
9189 -- Not
9191 when N_Op_Not =>
9192 return not Get_RList (Right_Opnd (Exp), Static);
9194 -- Comparisons of type with static value
9196 when N_Op_Compare =>
9198 -- Type is left operand
9200 if Is_Type_Ref (Left_Opnd (Exp))
9201 and then Is_OK_Static_Expression (Right_Opnd (Exp))
9202 then
9203 Val_Bearer := Right_Opnd (Exp);
9205 -- Typ is right operand
9207 elsif Is_Type_Ref (Right_Opnd (Exp))
9208 and then Is_OK_Static_Expression (Left_Opnd (Exp))
9209 then
9210 Val_Bearer := Left_Opnd (Exp);
9212 -- Invert sense of comparison
9214 case Op is
9215 when N_Op_Gt => Op := N_Op_Lt;
9216 when N_Op_Lt => Op := N_Op_Gt;
9217 when N_Op_Ge => Op := N_Op_Le;
9218 when N_Op_Le => Op := N_Op_Ge;
9219 when others => null;
9220 end case;
9222 -- Other cases are non-static
9224 else
9225 Static.all := False;
9226 return False_Range;
9227 end if;
9229 Val := Expr_Value (Val_Bearer);
9231 -- Construct range according to comparison operation
9233 declare
9234 REntry : REnt;
9235 begin
9236 case Op is
9237 when N_Op_Eq =>
9238 REntry := (Val, Val);
9240 when N_Op_Ge =>
9241 REntry := (Val, THi);
9243 when N_Op_Gt =>
9244 REntry := (Val + 1, THi);
9246 when N_Op_Le =>
9247 REntry := (TLo, Val);
9249 when N_Op_Lt =>
9250 REntry := (TLo, Val - 1);
9252 when N_Op_Ne =>
9253 Warn_If_Test_Ineffective ((Val, Val), Val_Bearer);
9254 return RList'(REnt'(TLo, Val - 1),
9255 REnt'(Val + 1, THi));
9257 when others =>
9258 raise Program_Error;
9259 end case;
9261 Warn_If_Test_Ineffective (REntry, Val_Bearer);
9262 return RList'(1 => REntry);
9263 end;
9265 -- Membership (IN)
9267 when N_In =>
9268 if not Is_Type_Ref (Left_Opnd (Exp)) then
9269 Static.all := False;
9270 return False_Range;
9271 end if;
9273 if Present (Right_Opnd (Exp)) then
9274 return Membership_Entry (Right_Opnd (Exp), Static);
9275 else
9276 return Membership_Entries
9277 (First (Alternatives (Exp)), Static);
9278 end if;
9280 -- Negative membership (NOT IN)
9282 when N_Not_In =>
9283 if not Is_Type_Ref (Left_Opnd (Exp)) then
9284 Static.all := False;
9285 return False_Range;
9286 end if;
9288 if Present (Right_Opnd (Exp)) then
9289 return not Membership_Entry (Right_Opnd (Exp), Static);
9290 else
9291 return not Membership_Entries
9292 (First (Alternatives (Exp)), Static);
9293 end if;
9295 -- Function call, may be call to static predicate
9297 when N_Function_Call =>
9298 if Is_Entity_Name (Name (Exp)) then
9299 declare
9300 Ent : constant Entity_Id := Entity (Name (Exp));
9301 begin
9302 if Is_Predicate_Function (Ent) then
9303 return Stat_Pred (Etype (First_Formal (Ent)), Static);
9304 end if;
9305 end;
9306 end if;
9308 -- Other function call cases are non-static
9310 Static.all := False;
9311 return False_Range;
9313 -- Qualified expression, dig out the expression
9315 when N_Qualified_Expression =>
9316 return Get_RList (Expression (Exp), Static);
9318 when N_Case_Expression =>
9319 declare
9320 Alt : Node_Id;
9321 Choices : List_Id;
9322 Dep : Node_Id;
9324 begin
9325 if not Is_Entity_Name (Expression (Expr))
9326 or else Etype (Expression (Expr)) /= Typ
9327 then
9328 Error_Msg_N
9329 ("expression must denote subtype", Expression (Expr));
9330 return False_Range;
9331 end if;
9333 -- Collect discrete choices in all True alternatives
9335 Choices := New_List;
9336 Alt := First (Alternatives (Exp));
9337 while Present (Alt) loop
9338 Dep := Expression (Alt);
9340 if not Is_OK_Static_Expression (Dep) then
9341 Static.all := False;
9342 return False_Range;
9344 elsif Is_True (Expr_Value (Dep)) then
9345 Append_List_To (Choices,
9346 New_Copy_List (Discrete_Choices (Alt)));
9347 end if;
9349 Next (Alt);
9350 end loop;
9352 return Membership_Entries (First (Choices), Static);
9353 end;
9355 -- Expression with actions: if no actions, dig out expression
9357 when N_Expression_With_Actions =>
9358 if Is_Empty_List (Actions (Exp)) then
9359 return Get_RList (Expression (Exp), Static);
9360 else
9361 Static.all := False;
9362 return False_Range;
9363 end if;
9365 -- Xor operator
9367 when N_Op_Xor =>
9368 return (Get_RList (Left_Opnd (Exp), Static)
9369 and not Get_RList (Right_Opnd (Exp), Static))
9370 or (Get_RList (Right_Opnd (Exp), Static)
9371 and not Get_RList (Left_Opnd (Exp), Static));
9373 -- Any other node type is non-static
9375 when others =>
9376 Static.all := False;
9377 return False_Range;
9378 end case;
9379 end Get_RList;
9381 ------------
9382 -- Hi_Val --
9383 ------------
9385 function Hi_Val (N : Node_Id) return Uint is
9386 begin
9387 if Is_OK_Static_Expression (N) then
9388 return Expr_Value (N);
9389 else
9390 pragma Assert (Nkind (N) = N_Range);
9391 return Expr_Value (High_Bound (N));
9392 end if;
9393 end Hi_Val;
9395 --------------
9396 -- Is_False --
9397 --------------
9399 function Is_False (R : RList) return Boolean is
9400 begin
9401 return R'Length = 0;
9402 end Is_False;
9404 -------------
9405 -- Is_True --
9406 -------------
9408 function Is_True (R : RList) return Boolean is
9409 begin
9410 return R'Length = 1
9411 and then R (R'First).Lo = BLo
9412 and then R (R'First).Hi = BHi;
9413 end Is_True;
9415 -----------------
9416 -- Is_Type_Ref --
9417 -----------------
9419 function Is_Type_Ref (N : Node_Id) return Boolean is
9420 begin
9421 return Nkind (N) = N_Identifier
9422 and then Chars (N) = Nam
9423 and then Paren_Count (N) = 0;
9424 end Is_Type_Ref;
9426 ------------
9427 -- Lo_Val --
9428 ------------
9430 function Lo_Val (N : Node_Id) return Uint is
9431 begin
9432 if Is_OK_Static_Expression (N) then
9433 return Expr_Value (N);
9434 else
9435 pragma Assert (Nkind (N) = N_Range);
9436 return Expr_Value (Low_Bound (N));
9437 end if;
9438 end Lo_Val;
9440 ------------------------
9441 -- Membership_Entries --
9442 ------------------------
9444 function Membership_Entries
9445 (N : Node_Id; Static : access Boolean) return RList is
9446 begin
9447 if No (Next (N)) then
9448 return Membership_Entry (N, Static);
9449 else
9450 return Membership_Entry (N, Static)
9451 or Membership_Entries (Next (N), Static);
9452 end if;
9453 end Membership_Entries;
9455 ----------------------
9456 -- Membership_Entry --
9457 ----------------------
9459 function Membership_Entry
9460 (N : Node_Id; Static : access Boolean) return RList
9462 Val : Uint;
9463 SLo : Uint;
9464 SHi : Uint;
9466 begin
9467 -- Range case
9469 if Nkind (N) = N_Range then
9470 if not Is_OK_Static_Expression (Low_Bound (N))
9471 or else
9472 not Is_OK_Static_Expression (High_Bound (N))
9473 then
9474 Static.all := False;
9475 return False_Range;
9476 else
9477 SLo := Expr_Value (Low_Bound (N));
9478 SHi := Expr_Value (High_Bound (N));
9479 declare
9480 REntry : constant REnt := (SLo, SHi);
9481 begin
9482 Warn_If_Test_Ineffective (REntry, N);
9483 return RList'(1 => REntry);
9484 end;
9485 end if;
9487 -- Others case
9489 elsif Nkind (N) = N_Others_Choice then
9490 declare
9491 Choices : constant List_Id := Others_Discrete_Choices (N);
9492 Choice : Node_Id;
9493 Range_List : RList (1 .. List_Length (Choices));
9495 begin
9496 Choice := First (Choices);
9498 for J in Range_List'Range loop
9499 Range_List (J) := REnt'(Lo_Val (Choice), Hi_Val (Choice));
9500 Next (Choice);
9501 end loop;
9503 return Range_List;
9504 end;
9506 -- Static expression case
9508 elsif Is_OK_Static_Expression (N) then
9509 Val := Expr_Value (N);
9510 declare
9511 REntry : constant REnt := (Val, Val);
9512 begin
9513 Warn_If_Test_Ineffective (REntry, N);
9514 return RList'(1 => REntry);
9515 end;
9517 -- Identifier (other than static expression) case
9519 else pragma Assert (Nkind (N) in N_Expanded_Name | N_Identifier);
9521 -- Type case
9523 if Is_Type (Entity (N)) then
9525 -- If type has predicates, process them
9527 if Has_Predicates (Entity (N)) then
9528 return Stat_Pred (Entity (N), Static);
9530 -- For static subtype without predicates, get range
9532 elsif Is_OK_Static_Subtype (Entity (N)) then
9533 SLo := Expr_Value (Type_Low_Bound (Entity (N)));
9534 SHi := Expr_Value (Type_High_Bound (Entity (N)));
9535 return RList'(1 => REnt'(SLo, SHi));
9537 -- Any other type makes us non-static
9539 else
9540 Static.all := False;
9541 return False_Range;
9542 end if;
9544 -- Any other kind of identifier in predicate (e.g. a non-static
9545 -- expression value) means this is not a static predicate.
9547 else
9548 Static.all := False;
9549 return False_Range;
9550 end if;
9551 end if;
9552 end Membership_Entry;
9554 ---------------
9555 -- Stat_Pred --
9556 ---------------
9558 function Stat_Pred
9559 (Typ : Entity_Id;
9560 Static : access Boolean) return RList is
9561 begin
9562 -- Not static if type does not have static predicates
9564 if not Has_Static_Predicate (Typ) then
9565 Static.all := False;
9566 return False_Range;
9567 end if;
9569 -- Otherwise we convert the predicate list to a range list
9571 declare
9572 Spred : constant List_Id := Static_Discrete_Predicate (Typ);
9573 Result : RList (1 .. List_Length (Spred));
9574 P : Node_Id;
9576 begin
9577 P := First (Static_Discrete_Predicate (Typ));
9578 for J in Result'Range loop
9579 Result (J) := REnt'(Lo_Val (P), Hi_Val (P));
9580 Next (P);
9581 end loop;
9583 return Result;
9584 end;
9585 end Stat_Pred;
9587 procedure Warn_If_Test_Ineffective (REntry : REnt; N : Node_Id) is
9589 procedure IPT_Warning (Msg : String);
9590 -- Emit warning
9592 -----------------
9593 -- IPT_Warning --
9594 -----------------
9595 procedure IPT_Warning (Msg : String) is
9596 begin
9597 Error_Msg_N ("ineffective predicate test " & Msg & "?_s?", N);
9598 end IPT_Warning;
9600 -- Start of processing for Warn_If_Test_Ineffective
9602 begin
9603 -- Do nothing if warning disabled
9605 if not Warn_On_Ineffective_Predicate_Test then
9606 null;
9608 -- skip null-range corner cases
9610 elsif REntry.Lo > REntry.Hi or else TLo > THi then
9611 null;
9613 -- warn if no overlap between subtype bounds and the given range
9615 elsif REntry.Lo > THi or else REntry.Hi < TLo then
9616 Error_Msg_Uint_1 := REntry.Lo;
9617 if REntry.Lo /= REntry.Hi then
9618 Error_Msg_Uint_2 := REntry.Hi;
9619 IPT_Warning ("range: ^ .. ^");
9620 elsif Is_Enumeration_Type (Typ) and then
9621 Nkind (N) in N_Identifier | N_Expanded_Name
9622 then
9623 IPT_Warning ("value: &");
9624 else
9625 IPT_Warning ("value: ^");
9626 end if;
9627 end if;
9628 end Warn_If_Test_Ineffective;
9630 -- Start of processing for Build_Discrete_Static_Predicate
9632 begin
9633 -- Establish bounds for the predicate
9635 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
9636 TLo := Expr_Value (Type_Low_Bound (Typ));
9637 else
9638 TLo := BLo;
9639 end if;
9641 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
9642 THi := Expr_Value (Type_High_Bound (Typ));
9643 else
9644 THi := BHi;
9645 end if;
9647 -- Analyze the expression to see if it is a static predicate
9649 declare
9650 Static : aliased Boolean := True;
9651 Ranges : constant RList := Get_RList (Expr, Static'Access);
9652 -- Range list from expression if it is static
9654 Plist : List_Id;
9656 begin
9657 -- If non-static, return doing nothing
9659 if not Static then
9660 return;
9661 end if;
9663 -- Convert range list into a form for the static predicate. In the
9664 -- Ranges array, we just have raw ranges, these must be converted
9665 -- to properly typed and analyzed static expressions or range nodes.
9667 -- Note: here we limit ranges to the ranges of the subtype, so that
9668 -- a predicate is always false for values outside the subtype. That
9669 -- seems fine, such values are invalid anyway, and considering them
9670 -- to fail the predicate seems allowed and friendly, and furthermore
9671 -- simplifies processing for case statements and loops.
9673 Plist := New_List;
9675 for J in Ranges'Range loop
9676 declare
9677 Lo : Uint := Ranges (J).Lo;
9678 Hi : Uint := Ranges (J).Hi;
9680 begin
9681 -- Ignore completely out of range entry
9683 if Hi < TLo or else Lo > THi then
9684 null;
9686 -- Otherwise process entry
9688 else
9689 -- Adjust out of range value to subtype range
9691 if Lo < TLo then
9692 Lo := TLo;
9693 end if;
9695 if Hi > THi then
9696 Hi := THi;
9697 end if;
9699 -- Convert range into required form
9701 Append_To (Plist, Build_Range (Lo, Hi));
9702 end if;
9703 end;
9704 end loop;
9706 -- Processing was successful and all entries were static, so now we
9707 -- can store the result as the predicate list.
9709 Set_Static_Discrete_Predicate (Typ, Plist);
9711 -- Within a generic the predicate functions themselves need not
9712 -- be constructed.
9714 if Inside_A_Generic then
9715 return;
9716 end if;
9718 -- The processing for static predicates put the expression into
9719 -- canonical form as a series of ranges. It also eliminated
9720 -- duplicates and collapsed and combined ranges. We might as well
9721 -- replace the alternatives list of the right operand of the
9722 -- membership test with the static predicate list, which will
9723 -- usually be more efficient.
9725 declare
9726 New_Alts : constant List_Id := New_List;
9727 Old_Node : Node_Id;
9728 New_Node : Node_Id;
9730 begin
9731 Old_Node := First (Plist);
9732 while Present (Old_Node) loop
9733 New_Node := New_Copy (Old_Node);
9735 if Nkind (New_Node) = N_Range then
9736 Set_Low_Bound (New_Node, New_Copy (Low_Bound (Old_Node)));
9737 Set_High_Bound (New_Node, New_Copy (High_Bound (Old_Node)));
9738 end if;
9740 Append_To (New_Alts, New_Node);
9741 Next (Old_Node);
9742 end loop;
9744 -- If empty list, replace by False
9746 if Is_Empty_List (New_Alts) then
9747 Rewrite (Expr, New_Occurrence_Of (Standard_False, Loc));
9749 -- Else replace by set membership test
9751 else
9752 Rewrite (Expr,
9753 Make_In (Loc,
9754 Left_Opnd => Make_Identifier (Loc, Nam),
9755 Right_Opnd => Empty,
9756 Alternatives => New_Alts));
9758 -- Resolve new expression in function context
9760 Install_Formals (Predicate_Function (Typ));
9761 Push_Scope (Predicate_Function (Typ));
9762 Analyze_And_Resolve (Expr, Standard_Boolean);
9763 Pop_Scope;
9764 end if;
9765 end;
9766 end;
9767 end Build_Discrete_Static_Predicate;
9769 --------------------------------
9770 -- Build_Export_Import_Pragma --
9771 --------------------------------
9773 function Build_Export_Import_Pragma
9774 (Asp : Node_Id;
9775 Id : Entity_Id) return Node_Id
9777 Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp);
9778 Expr : constant Node_Id := Expression (Asp);
9779 Loc : constant Source_Ptr := Sloc (Asp);
9781 Args : List_Id;
9782 Conv : Node_Id;
9783 Conv_Arg : Node_Id;
9784 Dummy_1 : Node_Id;
9785 Dummy_2 : Node_Id;
9786 EN : Node_Id;
9787 LN : Node_Id;
9788 Prag : Node_Id;
9790 Create_Pragma : Boolean := False;
9791 -- This flag is set when the aspect form is such that it warrants the
9792 -- creation of a corresponding pragma.
9794 begin
9795 if Present (Expr) then
9796 if Error_Posted (Expr) then
9797 null;
9799 elsif Is_True (Expr_Value (Expr)) then
9800 Create_Pragma := True;
9801 end if;
9803 -- Otherwise the aspect defaults to True
9805 else
9806 Create_Pragma := True;
9807 end if;
9809 -- Nothing to do when the expression is False or is erroneous
9811 if not Create_Pragma then
9812 return Empty;
9813 end if;
9815 -- Obtain all interfacing aspects that apply to the related entity
9817 Get_Interfacing_Aspects
9818 (Iface_Asp => Asp,
9819 Conv_Asp => Conv,
9820 EN_Asp => EN,
9821 Expo_Asp => Dummy_1,
9822 Imp_Asp => Dummy_2,
9823 LN_Asp => LN);
9825 Args := New_List;
9827 -- Handle the convention argument
9829 if Present (Conv) then
9830 Conv_Arg := New_Copy_Tree (Expression (Conv));
9832 -- Assume convention "Ada' when aspect Convention is missing
9834 else
9835 Conv_Arg := Make_Identifier (Loc, Name_Ada);
9836 end if;
9838 Append_To (Args,
9839 Make_Pragma_Argument_Association (Loc,
9840 Chars => Name_Convention,
9841 Expression => Conv_Arg));
9843 -- Handle the entity argument
9845 Append_To (Args,
9846 Make_Pragma_Argument_Association (Loc,
9847 Chars => Name_Entity,
9848 Expression => New_Occurrence_Of (Id, Loc)));
9850 -- Handle the External_Name argument
9852 if Present (EN) then
9853 Append_To (Args,
9854 Make_Pragma_Argument_Association (Loc,
9855 Chars => Name_External_Name,
9856 Expression => New_Copy_Tree (Expression (EN))));
9857 end if;
9859 -- Handle the Link_Name argument
9861 if Present (LN) then
9862 Append_To (Args,
9863 Make_Pragma_Argument_Association (Loc,
9864 Chars => Name_Link_Name,
9865 Expression => New_Copy_Tree (Expression (LN))));
9866 end if;
9868 -- Generate:
9869 -- pragma Export/Import
9870 -- (Convention => <Conv>/Ada,
9871 -- Entity => <Id>,
9872 -- [External_Name => <EN>,]
9873 -- [Link_Name => <LN>]);
9875 Prag :=
9876 Make_Pragma (Loc,
9877 Pragma_Identifier =>
9878 Make_Identifier (Loc, Chars (Identifier (Asp))),
9879 Pragma_Argument_Associations => Args);
9881 -- Decorate the relevant aspect and the pragma
9883 Set_Aspect_Rep_Item (Asp, Prag);
9885 Set_Corresponding_Aspect (Prag, Asp);
9886 Set_From_Aspect_Specification (Prag);
9887 Set_Parent (Prag, Asp);
9889 if Asp_Id = Aspect_Import and then Is_Subprogram (Id) then
9890 Set_Import_Pragma (Id, Prag);
9891 end if;
9893 return Prag;
9894 end Build_Export_Import_Pragma;
9896 ------------------------------
9897 -- Build_Predicate_Function --
9898 ------------------------------
9900 -- The function constructed here has the form:
9902 -- function typPredicate (Ixxx : typ) return Boolean is
9903 -- begin
9904 -- return
9905 -- typ1Predicate (typ1 (Ixxx))
9906 -- and then typ2Predicate (typ2 (Ixxx))
9907 -- and then ...
9908 -- and then exp1 and then exp2 and then ...;
9909 -- end typPredicate;
9911 -- If Predicate_Function_Needs_Membership_Parameter is true, then this
9912 -- function takes an additional boolean parameter; the parameter
9913 -- indicates whether the predicate evaluation is part of a membership
9914 -- test. This parameter is used in two cases: 1) It is passed along
9915 -- if another predicate function is called and that predicate function
9916 -- expects to be passed a boolean parameter. 2) If the Predicate_Failure
9917 -- aspect is directly specified for typ, then we replace the return
9918 -- expression described above with
9919 -- (if <expression described above> then True
9920 -- elsif For_Membership_Test then False
9921 -- else (raise Assertion_Error
9922 -- with <Predicate_Failure expression>))
9923 -- Here exp1, and exp2 are expressions from Predicate pragmas. Note that
9924 -- this is the point at which these expressions get analyzed, providing the
9925 -- required delay, and typ1, typ2, are entities from which predicates are
9926 -- inherited. Note that we do NOT generate Check pragmas, that's because we
9927 -- use this function even if checks are off, e.g. for membership tests.
9929 -- Note that the inherited predicates are evaluated first, as required by
9930 -- AI12-0071-1.
9932 -- Note that Sem_Eval.Real_Or_String_Static_Predicate_Matches depends on
9933 -- the form of this return expression.
9935 -- WARNING: This routine manages Ghost regions. Return statements must be
9936 -- replaced by gotos which jump to the end of the routine and restore the
9937 -- Ghost mode.
9939 procedure Build_Predicate_Function (Typ : Entity_Id; N : Node_Id) is
9940 Loc : constant Source_Ptr := Sloc (Typ);
9942 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
9943 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
9944 -- Save the Ghost-related attributes to restore on exit
9946 Expr : Node_Id;
9947 -- This is the expression for the result of the function. It is
9948 -- is build by connecting the component predicates with AND THEN.
9950 Object_Name : Name_Id;
9951 -- Name for argument of Predicate procedure. Note that we use the same
9952 -- name for both predicate functions. That way the reference within the
9953 -- predicate expression is the same in both functions.
9955 Object_Entity : Entity_Id;
9956 -- Entity for argument of Predicate procedure
9958 FDecl : Node_Id;
9959 -- The function declaration
9961 SId : Entity_Id;
9962 -- Its entity
9964 Restore_Scope : Boolean;
9965 -- True if the current scope must be restored on exit
9967 Ancestor_Predicate_Function_Called : Boolean := False;
9968 -- Does this predicate function include a call to the
9969 -- predication function of an ancestor subtype?
9971 procedure Add_Condition (Cond : Node_Id);
9972 -- Append Cond to Expr using "and then" (or just copy Cond to Expr if
9973 -- Expr is empty).
9975 procedure Add_Predicates;
9976 -- Appends expressions for any Predicate pragmas in the rep item chain
9977 -- Typ to Expr. Note that we look only at items for this exact entity.
9978 -- Inheritance of predicates for the parent type is done by calling the
9979 -- Predicate_Function of the parent type, using Add_Call above.
9981 procedure Add_Call (T : Entity_Id);
9982 -- Includes a call to the predicate function for type T in Expr if
9983 -- Predicate_Function (T) is non-empty.
9985 procedure Replace_Current_Instance_References
9986 (N : Node_Id; Typ, New_Entity : Entity_Id);
9987 -- Replace all references to Typ in the tree rooted at N with
9988 -- references to Param. [New_Entity will be a formal parameter of a
9989 -- predicate function.]
9991 --------------
9992 -- Add_Call --
9993 --------------
9995 procedure Add_Call (T : Entity_Id) is
9996 Exp : Node_Id;
9998 begin
9999 if Present (Predicate_Function (T)) then
10000 pragma Assert (Has_Predicates (Typ));
10002 -- Build the call to the predicate function of T. The type may be
10003 -- derived, so use an unchecked conversion for the actual.
10005 declare
10006 Dynamic_Mem : Node_Id := Empty;
10007 Second_Formal : constant Entity_Id :=
10008 Next_Entity (Object_Entity);
10009 begin
10010 -- Some predicate functions require a second parameter;
10011 -- If one predicate function calls another and the second
10012 -- requires two parameters, then the first should also
10013 -- take two parameters (so that the first function has
10014 -- something to pass to the second function).
10015 if Predicate_Function_Needs_Membership_Parameter (T) then
10016 pragma Assert (Present (Second_Formal));
10017 Dynamic_Mem := New_Occurrence_Of (Second_Formal, Loc);
10018 end if;
10020 Exp :=
10021 Make_Predicate_Call
10022 (Typ => T,
10023 Expr =>
10024 Unchecked_Convert_To (T,
10025 Make_Identifier (Loc, Object_Name)),
10026 Dynamic_Mem => Dynamic_Mem);
10027 end;
10029 -- "and"-in the call to evolving expression
10031 Add_Condition (Exp);
10032 Ancestor_Predicate_Function_Called := True;
10034 -- Output info message on inheritance if required. Note we do not
10035 -- give this information for generic actual types, since it is
10036 -- unwelcome noise in that case in instantiations. We also
10037 -- generally suppress the message in instantiations, and also
10038 -- if it involves internal names.
10040 if List_Inherited_Aspects
10041 and then not Is_Generic_Actual_Type (Typ)
10042 and then Instantiation_Location (Sloc (Typ)) = No_Location
10043 and then not Is_Internal_Name (Chars (T))
10044 and then not Is_Internal_Name (Chars (Typ))
10045 then
10046 Error_Msg_Sloc := Sloc (Predicate_Function (T));
10047 Error_Msg_Node_2 := T;
10048 Error_Msg_N ("info: & inherits predicate from & #?.l?", Typ);
10049 end if;
10050 end if;
10051 end Add_Call;
10053 -------------------
10054 -- Add_Condition --
10055 -------------------
10057 procedure Add_Condition (Cond : Node_Id) is
10058 begin
10059 -- This is the first predicate expression
10061 if No (Expr) then
10062 Expr := Cond;
10064 -- Otherwise concatenate to the existing predicate expressions by
10065 -- using "and then".
10067 else
10068 Expr :=
10069 Make_And_Then (Loc,
10070 Left_Opnd => Relocate_Node (Expr),
10071 Right_Opnd => Cond);
10072 end if;
10073 end Add_Condition;
10075 --------------------
10076 -- Add_Predicates --
10077 --------------------
10079 procedure Add_Predicates is
10080 procedure Add_Predicate (Prag : Node_Id);
10081 -- Concatenate the expression of predicate pragma Prag to Expr by
10082 -- using a short circuit "and then" operator.
10084 -------------------
10085 -- Add_Predicate --
10086 -------------------
10088 procedure Add_Predicate (Prag : Node_Id) is
10089 -- Local variables
10091 Asp : constant Node_Id := Corresponding_Aspect (Prag);
10092 Arg1 : Node_Id;
10093 Arg2 : Node_Id;
10095 -- Start of processing for Add_Predicate
10097 begin
10098 -- Mark corresponding SCO as enabled
10100 Set_SCO_Pragma_Enabled (Sloc (Prag));
10102 -- Extract the arguments of the pragma
10104 Arg1 := First (Pragma_Argument_Associations (Prag));
10105 Arg2 := Next (Arg1);
10107 Arg1 := Get_Pragma_Arg (Arg1);
10108 Arg2 := Get_Pragma_Arg (Arg2);
10110 -- When the predicate pragma applies to the current type or its
10111 -- full view, replace all occurrences of the subtype name with
10112 -- references to the formal parameter of the predicate function.
10114 if Entity (Arg1) = Typ
10115 or else Full_View (Entity (Arg1)) = Typ
10116 then
10117 declare
10118 Arg2_Copy : constant Node_Id := New_Copy_Tree (Arg2);
10119 begin
10120 Replace_Current_Instance_References
10121 (Arg2_Copy, Typ => Typ, New_Entity => Object_Entity);
10123 -- If the predicate pragma comes from an aspect, replace the
10124 -- saved expression because we need the subtype references
10125 -- replaced for the calls to Preanalyze_Spec_Expression in
10126 -- Check_Aspect_At_xxx routines.
10128 if Present (Asp) then
10129 Set_Entity (Identifier (Asp), New_Copy_Tree (Arg2_Copy));
10130 end if;
10132 -- "and"-in the Arg2 condition to evolving expression
10134 Add_Condition (Arg2_Copy);
10135 end;
10136 end if;
10137 end Add_Predicate;
10139 -- Local variables
10141 Ritem : Node_Id;
10143 -- Start of processing for Add_Predicates
10145 begin
10146 Ritem := First_Rep_Item (Typ);
10148 -- If the type is private, check whether full view has inherited
10149 -- predicates.
10151 if Is_Private_Type (Typ)
10152 and then No (Ritem)
10153 and then Present (Full_View (Typ))
10154 then
10155 Ritem := First_Rep_Item (Full_View (Typ));
10156 end if;
10158 while Present (Ritem) loop
10159 if Nkind (Ritem) = N_Pragma
10160 and then Pragma_Name (Ritem) = Name_Predicate
10161 then
10162 Add_Predicate (Ritem);
10164 -- If the type is declared in an inner package it may be frozen
10165 -- outside of the package, and the generated pragma has not been
10166 -- analyzed yet, so capture the expression for the predicate
10167 -- function at this point.
10169 elsif Nkind (Ritem) = N_Aspect_Specification
10170 and then Present (Aspect_Rep_Item (Ritem))
10171 and then Scope_Depth (Scope (Typ)) > Scope_Depth (Current_Scope)
10172 then
10173 declare
10174 Prag : constant Node_Id := Aspect_Rep_Item (Ritem);
10176 begin
10177 if Nkind (Prag) = N_Pragma
10178 and then Pragma_Name (Prag) = Name_Predicate
10179 then
10180 Add_Predicate (Prag);
10181 end if;
10182 end;
10183 end if;
10185 Next_Rep_Item (Ritem);
10186 end loop;
10187 end Add_Predicates;
10189 -----------------------------------------
10190 -- Replace_Current_Instance_References --
10191 -----------------------------------------
10193 procedure Replace_Current_Instance_References
10194 (N : Node_Id; Typ, New_Entity : Entity_Id)
10196 Root : Node_Id renames N;
10198 procedure Replace_One_Reference (N : Node_Id);
10199 -- Actual parameter for Replace_Type_References_Generic instance
10201 ---------------------------
10202 -- Replace_One_Reference --
10203 ---------------------------
10205 procedure Replace_One_Reference (N : Node_Id) is
10206 pragma Assert (In_Subtree (N, Root => Root));
10207 begin
10208 Rewrite (N, New_Occurrence_Of (New_Entity, Sloc (N)));
10209 -- Use the Sloc of the usage name, not the defining name
10210 end Replace_One_Reference;
10212 procedure Replace_Type_References is
10213 new Replace_Type_References_Generic (Replace_One_Reference);
10214 begin
10215 Replace_Type_References (N, Typ);
10216 end Replace_Current_Instance_References;
10218 -- Start of processing for Build_Predicate_Function
10220 begin
10221 -- Return if already built, if type does not have predicates,
10222 -- or if type is a constructed subtype that will inherit a
10223 -- predicate function from its ancestor. In a generic context
10224 -- the predicated parent may not have a predicate function yet
10225 -- but we don't want to build a new one for the subtype. This can
10226 -- happen in an instance body which is nested within a generic
10227 -- unit, in which case Within_A_Generic may be false, SId is
10228 -- Empty, but uses of Typ will receive a predicate check in a
10229 -- context where expansion and tests are enabled.
10231 SId := Predicate_Function (Typ);
10232 if not Has_Predicates (Typ)
10233 or else (Present (SId) and then Has_Completion (SId))
10234 or else
10235 (Is_Itype (Typ)
10236 and then not Comes_From_Source (Typ)
10237 and then Ekind (Typ) in E_Array_Subtype
10238 | E_Record_Subtype
10239 | E_Record_Subtype_With_Private
10240 and then Present (Predicated_Parent (Typ)))
10241 then
10242 return;
10244 -- Do not generate predicate bodies within a generic unit. The
10245 -- expressions have been analyzed already, and the bodies play no role
10246 -- if not within an executable unit. However, if a static predicate is
10247 -- present it must be processed for legality checks such as case
10248 -- coverage in an expression.
10250 elsif Inside_A_Generic
10251 and then not Has_Static_Predicate_Aspect (Typ)
10252 then
10253 return;
10254 end if;
10256 -- Ensure that the declarations are added to the scope of the type
10258 if Scope (Typ) /= Current_Scope then
10259 Push_Scope (Scope (Typ));
10260 Restore_Scope := True;
10261 else
10262 Restore_Scope := False;
10263 end if;
10265 -- The related type may be subject to pragma Ghost. Set the mode now to
10266 -- ensure that the predicate functions are properly marked as Ghost.
10268 Set_Ghost_Mode (Typ);
10270 -- Prepare to construct predicate expression
10272 Expr := Empty;
10274 if Present (SId) then
10275 FDecl := Unit_Declaration_Node (SId);
10277 else
10278 FDecl := Build_Predicate_Function_Declaration (Typ);
10279 SId := Defining_Entity (FDecl);
10280 end if;
10282 -- Recover name of formal parameter of function that replaces references
10283 -- to the type in predicate expressions.
10285 Object_Entity :=
10286 Defining_Identifier
10287 (First (Parameter_Specifications (Specification (FDecl))));
10289 Object_Name := Chars (Object_Entity);
10291 -- Add predicates for ancestor if present. These must come before the
10292 -- ones for the current type, as required by AI12-0071-1.
10294 -- Looks like predicates aren't added for case of inheriting from
10295 -- multiple progenitors???
10297 declare
10298 Atyp : Entity_Id;
10299 begin
10300 Atyp := Nearest_Ancestor (Typ);
10302 -- The type may be private but the full view may inherit predicates
10304 if No (Atyp) and then Is_Private_Type (Typ) then
10305 Atyp := Nearest_Ancestor (Full_View (Typ));
10306 end if;
10308 if Present (Atyp) then
10309 Add_Call (Atyp);
10310 end if;
10311 end;
10313 -- Add Predicates for the current type
10315 Add_Predicates;
10317 -- Case where predicates are present
10319 if Present (Expr) then
10321 -- Build the main predicate function
10323 declare
10324 SIdB : constant Entity_Id :=
10325 Make_Defining_Identifier (Loc,
10326 Chars => New_External_Name (Chars (Typ), "Predicate"));
10327 -- The entity for the function body
10329 Spec : Node_Id;
10330 FBody : Node_Id;
10332 begin
10333 Mutate_Ekind (SIdB, E_Function);
10334 Set_Is_Predicate_Function (SIdB);
10336 -- Build function body
10338 declare
10339 Param_Specs : constant List_Id := New_List (
10340 Make_Parameter_Specification (Loc,
10341 Defining_Identifier =>
10342 Make_Defining_Identifier (Loc, Object_Name),
10343 Parameter_Type =>
10344 New_Occurrence_Of (Typ, Loc)));
10345 begin
10346 -- if Spec has 2 parameters, then body should too
10347 if Present (Next_Entity (Object_Entity)) then
10348 Append (Make_Parameter_Specification (Loc,
10349 Defining_Identifier =>
10350 Make_Defining_Identifier
10351 (Loc, Chars (Next_Entity (Object_Entity))),
10352 Parameter_Type =>
10353 New_Occurrence_Of (Standard_Boolean, Loc)),
10354 Param_Specs);
10355 end if;
10357 Spec :=
10358 Make_Function_Specification (Loc,
10359 Defining_Unit_Name => SIdB,
10360 Parameter_Specifications => Param_Specs,
10361 Result_Definition =>
10362 New_Occurrence_Of (Standard_Boolean, Loc));
10363 end;
10365 -- The Predicate_Expression attribute is used by SPARK.
10367 -- If Ancestor_Predicate_Function_Called is True, then
10368 -- we try to exclude that call to the ancestor's
10369 -- predicate function by calling Right_Opnd.
10370 -- The call is not excluded in the case where
10371 -- it is not "and"ed with anything else (so we don't have
10372 -- an N_And_Then node). This exclusion is required if the
10373 -- Predicate_Failure aspect is specified for Typ because
10374 -- in that case we are going to drop the N_And_Then node
10375 -- on the floor. Otherwise, it is a question of what is
10376 -- most convenient for SPARK.
10378 Set_Predicate_Expression
10379 (SId, (if Ancestor_Predicate_Function_Called
10380 and then Nkind (Expr) = N_And_Then
10381 then Right_Opnd (Expr)
10382 else Expr));
10384 declare
10385 Result_Expr : Node_Id := Expr;
10386 PF_Expr : Node_Id := Predicate_Failure_Expression
10387 (Typ, Inherited_OK => False);
10388 PF_Expr_Copy : Node_Id;
10389 Second_Formal : constant Entity_Id :=
10390 Next_Entity (Object_Entity);
10391 begin
10392 -- In GNATprove mode we are only interested in the predicate
10393 -- expression itself and don't want a raise expression that
10394 -- comes from the Predicate_Failure. Ditto for CodePeer.
10395 -- And an illegal Predicate_Failure aspect can lead to cases
10396 -- we want to avoid.
10398 if Present (PF_Expr)
10399 and then not GNATprove_Mode
10400 and then not CodePeer_Mode
10401 and then Serious_Errors_Detected = 0
10402 then
10403 pragma Assert (Present (Second_Formal));
10405 -- This is an ugly hack to cope with an ugly situation.
10406 -- PF_Expr may have children whose Parent attribute
10407 -- does not point back to PF_Expr. If we pass such a
10408 -- tree to New_Copy_Tree, then it does not make a deep
10409 -- copy. But we need a deep copy. So we need to find a
10410 -- tree for which New_Copy_Tree *will* make a deep copy.
10412 declare
10413 function Check_Node_Parent (Parent_Node, Node : Node_Id)
10414 return Traverse_Result;
10415 function Check_Node_Parent (Parent_Node, Node : Node_Id)
10416 return Traverse_Result is
10417 begin
10418 if Parent_Node = PF_Expr
10419 and then not Is_List_Member (Node)
10420 then
10421 pragma Assert
10422 (Nkind (PF_Expr) = Nkind (Parent (Node)));
10424 -- We need PF_Expr to be a node for which
10425 -- New_Copy_Tree will make a deep copy.
10426 PF_Expr := Parent (Node);
10427 return Abandon;
10428 end if;
10429 return OK;
10430 end Check_Node_Parent;
10431 procedure Check_Parentage is
10432 new Traverse_Proc_With_Parent (Check_Node_Parent);
10433 begin
10434 Check_Parentage (PF_Expr);
10435 PF_Expr_Copy := New_Copy_Tree (PF_Expr);
10436 end;
10438 -- Current instance uses need to have their Entity
10439 -- fields set so that Replace_Current_Instance_References
10440 -- can find them. So we preanalyze. Just for purposes of
10441 -- calls to Is_Current_Instance during this preanalysis,
10442 -- we set the Parent field.
10443 Set_Parent (PF_Expr_Copy, Parent (PF_Expr));
10444 Preanalyze (PF_Expr_Copy);
10445 Set_Parent (PF_Expr_Copy, Empty);
10447 Replace_Current_Instance_References
10448 (PF_Expr_Copy, Typ => Typ, New_Entity => Object_Entity);
10450 if Ancestor_Predicate_Function_Called then
10451 -- If the call to an ancestor predicate function
10452 -- returns False, we do not want to raise an
10453 -- exception here. Our Predicate_Failure aspect does
10454 -- not apply in that case. So we have to build a
10455 -- more complicated result expression:
10456 -- (if not Ancestor_Predicate_Function (...) then False
10457 -- elsif Noninherited_Predicates (...) then True
10458 -- elsif Is_Membership_Test then False
10459 -- else (raise Assertion_Error with PF text))
10461 declare
10462 Ancestor_Call : constant Node_Id :=
10463 Left_Opnd (Result_Expr);
10464 Local_Preds : constant Node_Id :=
10465 Right_Opnd (Result_Expr);
10466 begin
10467 Result_Expr :=
10468 Make_If_Expression (Loc,
10469 Expressions => New_List (
10470 Make_Op_Not (Loc, Ancestor_Call),
10471 New_Occurrence_Of (Standard_False, Loc),
10472 Make_If_Expression (Loc,
10473 Is_Elsif => True,
10474 Expressions => New_List (
10475 Local_Preds,
10476 New_Occurrence_Of (Standard_True, Loc),
10477 Make_If_Expression (Loc,
10478 Is_Elsif => True,
10479 Expressions => New_List (
10480 New_Occurrence_Of (Second_Formal, Loc),
10481 New_Occurrence_Of (Standard_False, Loc),
10482 Make_Raise_Expression (Loc,
10483 New_Occurrence_Of (RTE
10484 (RE_Assert_Failure), Loc),
10485 PF_Expr_Copy)))))));
10486 end;
10488 else
10489 -- Build a conditional expression:
10490 -- (if <predicate evaluates to True> then True
10491 -- elsif Is_Membership_Test then False
10492 -- else (raise Assertion_Error with PF text))
10494 Result_Expr :=
10495 Make_If_Expression (Loc,
10496 Expressions => New_List (
10497 Result_Expr,
10498 New_Occurrence_Of (Standard_True, Loc),
10499 Make_If_Expression (Loc,
10500 Is_Elsif => True,
10501 Expressions => New_List (
10502 New_Occurrence_Of (Second_Formal, Loc),
10503 New_Occurrence_Of (Standard_False, Loc),
10504 Make_Raise_Expression (Loc,
10505 New_Occurrence_Of (RTE
10506 (RE_Assert_Failure), Loc),
10507 PF_Expr_Copy)))));
10508 end if;
10509 end if;
10511 FBody :=
10512 Make_Subprogram_Body (Loc,
10513 Specification => Spec,
10514 Declarations => Empty_List,
10515 Handled_Statement_Sequence =>
10516 Make_Handled_Sequence_Of_Statements (Loc,
10517 Statements => New_List (
10518 Make_Simple_Return_Statement (Loc,
10519 Expression => Result_Expr))));
10520 end;
10522 -- The declaration has been analyzed when created, and placed
10523 -- after type declaration. Insert body itself after freeze node,
10524 -- unless subprogram declaration is already there, in which case
10525 -- body better be placed afterwards.
10527 if FDecl = Next (N) then
10528 Insert_After_And_Analyze (FDecl, FBody);
10529 else
10530 Insert_After_And_Analyze (N, FBody);
10531 end if;
10533 -- The defining identifier of a quantified expression carries the
10534 -- scope in which the type appears, but when unnesting we need
10535 -- to indicate that its proper scope is the constructed predicate
10536 -- function. The quantified expressions have been converted into
10537 -- loops during analysis and expansion.
10539 declare
10540 function Reset_Quantified_Variable_Scope
10541 (N : Node_Id) return Traverse_Result;
10543 procedure Reset_Quantified_Variables_Scope is
10544 new Traverse_Proc (Reset_Quantified_Variable_Scope);
10546 -------------------------------------
10547 -- Reset_Quantified_Variable_Scope --
10548 -------------------------------------
10550 function Reset_Quantified_Variable_Scope
10551 (N : Node_Id) return Traverse_Result is
10552 begin
10553 if Nkind (N) in N_Iterator_Specification
10554 | N_Loop_Parameter_Specification
10555 then
10556 Set_Scope (Defining_Identifier (N),
10557 Predicate_Function (Typ));
10558 end if;
10560 return OK;
10561 end Reset_Quantified_Variable_Scope;
10563 begin
10564 if Unnest_Subprogram_Mode then
10565 Reset_Quantified_Variables_Scope (Expr);
10566 end if;
10567 end;
10569 -- Within a generic unit, prevent a double analysis of the body
10570 -- which will not be marked analyzed yet. This will happen when
10571 -- the freeze node is created during the preanalysis of an
10572 -- expression function.
10574 if Inside_A_Generic then
10575 Set_Analyzed (FBody);
10576 end if;
10578 -- Static predicate functions are always side-effect free, and
10579 -- in most cases dynamic predicate functions are as well. Mark
10580 -- them as such whenever possible, so redundant predicate checks
10581 -- can be optimized. If there is a variable reference within the
10582 -- expression, the function is not pure.
10584 if Expander_Active then
10585 Set_Is_Pure (SId,
10586 Side_Effect_Free (Expr, Variable_Ref => True));
10587 Set_Is_Inlined (SId);
10588 end if;
10589 end;
10591 -- See if we have a static predicate. Note that the answer may be
10592 -- yes even if we have an explicit Dynamic_Predicate present.
10594 declare
10595 PS : Boolean;
10596 EN : Node_Id;
10598 begin
10599 if not Is_Scalar_Type (Typ) and then not Is_String_Type (Typ) then
10600 PS := False;
10601 else
10602 PS := Is_Predicate_Static (Expr, Object_Name);
10603 end if;
10605 -- Case where we have a predicate-static aspect
10607 if PS then
10609 -- We don't set Has_Static_Predicate_Aspect, since we can have
10610 -- any of the three cases (Predicate, Dynamic_Predicate, or
10611 -- Static_Predicate) generating a predicate with an expression
10612 -- that is predicate-static. We just indicate that we have a
10613 -- predicate that can be treated as static.
10615 Set_Has_Static_Predicate (Typ);
10617 -- For discrete subtype, build the static predicate list
10619 if Is_Discrete_Type (Typ) then
10620 Build_Discrete_Static_Predicate (Typ, Expr, Object_Name);
10622 -- If we don't get a static predicate list, it means that we
10623 -- have a case where this is not possible, most typically in
10624 -- the case where we inherit a dynamic predicate. We do not
10625 -- consider this an error, we just leave the predicate as
10626 -- dynamic. But if we do succeed in building the list, then
10627 -- we mark the predicate as static.
10629 if No (Static_Discrete_Predicate (Typ)) then
10630 Set_Has_Static_Predicate (Typ, False);
10631 end if;
10633 -- For real or string subtype, save predicate expression
10635 elsif Is_Real_Type (Typ) or else Is_String_Type (Typ) then
10636 Set_Static_Real_Or_String_Predicate (Typ, Expr);
10637 end if;
10639 -- Case of dynamic predicate (expression is not predicate-static)
10641 else
10642 -- Again, we don't set Has_Dynamic_Predicate_Aspect, since that
10643 -- is only set if we have an explicit Dynamic_Predicate aspect
10644 -- given. Here we may simply have a Predicate aspect where the
10645 -- expression happens not to be predicate-static.
10647 -- Emit an error when the predicate is categorized as static
10648 -- but its expression is not predicate-static.
10650 -- First a little fiddling to get a nice location for the
10651 -- message. If the expression is of the form (A and then B),
10652 -- where A is an inherited predicate, then use the right
10653 -- operand for the Sloc. This avoids getting confused by a call
10654 -- to an inherited predicate with a less convenient source
10655 -- location.
10657 EN := Expr;
10658 while Nkind (EN) = N_And_Then
10659 and then Nkind (Left_Opnd (EN)) = N_Function_Call
10660 and then Is_Predicate_Function
10661 (Entity (Name (Left_Opnd (EN))))
10662 loop
10663 EN := Right_Opnd (EN);
10664 end loop;
10666 -- Now post appropriate message
10668 if Has_Static_Predicate_Aspect (Typ) then
10669 if Is_Scalar_Type (Typ) or else Is_String_Type (Typ) then
10670 Error_Msg_F
10671 ("expression is not predicate-static (RM 3.2.4(16-22))",
10672 EN);
10673 else
10674 Error_Msg_F
10675 ("static predicate requires scalar or string type", EN);
10676 end if;
10677 end if;
10678 end if;
10679 end;
10680 end if;
10682 Restore_Ghost_Region (Saved_GM, Saved_IGR);
10684 if Restore_Scope then
10685 Pop_Scope;
10686 end if;
10687 end Build_Predicate_Function;
10689 ------------------------------------------
10690 -- Build_Predicate_Function_Declaration --
10691 ------------------------------------------
10693 -- WARNING: This routine manages Ghost regions. Return statements must be
10694 -- replaced by gotos which jump to the end of the routine and restore the
10695 -- Ghost mode.
10697 function Build_Predicate_Function_Declaration
10698 (Typ : Entity_Id) return Node_Id
10700 Loc : constant Source_Ptr := Sloc (Typ);
10702 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
10703 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
10704 -- Save the Ghost-related attributes to restore on exit
10706 Func_Decl : Node_Id;
10707 Func_Id : Entity_Id;
10708 Spec : Node_Id;
10710 CRec_Typ : Entity_Id;
10711 -- The corresponding record type of Full_Typ
10713 Full_Typ : Entity_Id;
10714 -- The full view of Typ
10716 Priv_Typ : Entity_Id;
10717 -- The partial view of Typ
10719 UFull_Typ : Entity_Id;
10720 -- The underlying full view of Full_Typ
10722 begin
10723 -- The related type may be subject to pragma Ghost. Set the mode now to
10724 -- ensure that the predicate functions are properly marked as Ghost.
10726 Set_Ghost_Mode (Typ);
10728 Func_Id :=
10729 Make_Defining_Identifier (Loc,
10730 Chars => New_External_Name (Chars (Typ), "Predicate"));
10732 Mutate_Ekind (Func_Id, E_Function);
10733 Set_Etype (Func_Id, Standard_Boolean);
10734 Set_Is_Internal (Func_Id);
10735 Set_Is_Predicate_Function (Func_Id);
10736 Set_Predicate_Function (Typ, Func_Id);
10738 -- The predicate function requires debug info when the predicates are
10739 -- subject to Source Coverage Obligations.
10741 if Opt.Generate_SCO then
10742 Set_Debug_Info_Needed (Func_Id);
10743 end if;
10745 -- Obtain all views of the input type
10747 Get_Views (Typ, Priv_Typ, Full_Typ, UFull_Typ, CRec_Typ);
10749 -- Associate the predicate function and various flags with all views
10751 Propagate_Predicate_Attributes (Priv_Typ, From_Typ => Typ);
10752 Propagate_Predicate_Attributes (Full_Typ, From_Typ => Typ);
10753 Propagate_Predicate_Attributes (UFull_Typ, From_Typ => Typ);
10754 Propagate_Predicate_Attributes (CRec_Typ, From_Typ => Typ);
10756 declare
10757 Param_Specs : constant List_Id := New_List (
10758 Make_Parameter_Specification (Loc,
10759 Defining_Identifier => Make_Temporary (Loc, 'I'),
10760 Parameter_Type => New_Occurrence_Of (Typ, Loc)));
10761 begin
10762 if Predicate_Function_Needs_Membership_Parameter (Typ) then
10763 -- Add Boolean-valued For_Membership_Test param
10764 Append (Make_Parameter_Specification (Loc,
10765 Defining_Identifier => Make_Temporary (Loc, 'M'),
10766 Parameter_Type =>
10767 New_Occurrence_Of (Standard_Boolean, Loc)),
10768 Param_Specs);
10769 end if;
10771 Spec :=
10772 Make_Function_Specification (Loc,
10773 Defining_Unit_Name => Func_Id,
10774 Parameter_Specifications => Param_Specs,
10775 Result_Definition =>
10776 New_Occurrence_Of (Standard_Boolean, Loc));
10777 end;
10779 Func_Decl := Make_Subprogram_Declaration (Loc, Specification => Spec);
10781 Insert_After (Parent (Typ), Func_Decl);
10782 Analyze (Func_Decl);
10784 Restore_Ghost_Region (Saved_GM, Saved_IGR);
10786 return Func_Decl;
10787 end Build_Predicate_Function_Declaration;
10789 -----------------------------------------
10790 -- Check_Aspect_At_End_Of_Declarations --
10791 -----------------------------------------
10793 procedure Check_Aspect_At_End_Of_Declarations (ASN : Node_Id) is
10794 Ent : constant Entity_Id := Entity (ASN);
10795 Ident : constant Node_Id := Identifier (ASN);
10796 A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
10798 End_Decl_Expr : constant Node_Id := Entity (Ident);
10799 -- Expression to be analyzed at end of declarations
10801 Freeze_Expr : constant Node_Id := Expression (ASN);
10802 -- Expression from call to Check_Aspect_At_Freeze_Point.
10804 T : constant Entity_Id :=
10805 (if Present (Freeze_Expr) and A_Id /= Aspect_Stable_Properties
10806 then Etype (Original_Node (Freeze_Expr))
10807 else Empty);
10808 -- Type required for preanalyze call. We use the original expression to
10809 -- get the proper type, to prevent cascaded errors when the expression
10810 -- is constant-folded. For Stable_Properties, the aspect value is
10811 -- not semantically an expression (although it is syntactically);
10812 -- in particular, it has no type.
10814 Err : Boolean;
10815 -- Set True if error
10817 -- On entry to this procedure, Entity (Ident) contains a copy of the
10818 -- original expression from the aspect, saved for this purpose, and
10819 -- but Expression (Ident) is a preanalyzed copy of the expression,
10820 -- preanalyzed just after the freeze point.
10822 procedure Check_Overloaded_Name;
10823 -- For aspects whose expression is simply a name, this routine checks if
10824 -- the name is overloaded or not. If so, it verifies there is an
10825 -- interpretation that matches the entity obtained at the freeze point,
10826 -- otherwise the compiler complains.
10828 ---------------------------
10829 -- Check_Overloaded_Name --
10830 ---------------------------
10832 procedure Check_Overloaded_Name is
10833 begin
10834 if not Is_Overloaded (End_Decl_Expr) then
10835 Err := not Is_Entity_Name (End_Decl_Expr)
10836 or else Entity (End_Decl_Expr) /= Entity (Freeze_Expr);
10838 else
10839 Err := True;
10841 declare
10842 Index : Interp_Index;
10843 It : Interp;
10845 begin
10846 Get_First_Interp (End_Decl_Expr, Index, It);
10847 while Present (It.Typ) loop
10848 if It.Nam = Entity (Freeze_Expr) then
10849 Err := False;
10850 exit;
10851 end if;
10853 Get_Next_Interp (Index, It);
10854 end loop;
10855 end;
10856 end if;
10857 end Check_Overloaded_Name;
10859 -- Start of processing for Check_Aspect_At_End_Of_Declarations
10861 begin
10862 -- In an instance we do not perform the consistency check between freeze
10863 -- point and end of declarations, because it was done already in the
10864 -- analysis of the generic. Furthermore, the delayed analysis of an
10865 -- aspect of the instance may produce spurious errors when the generic
10866 -- is a child unit that references entities in the parent (which might
10867 -- not be in scope at the freeze point of the instance).
10869 if In_Instance then
10870 return;
10872 -- The enclosing scope may have been rewritten during expansion (.e.g. a
10873 -- task body is rewritten as a procedure) after this conformance check
10874 -- has been performed, so do not perform it again (it may not easily be
10875 -- done if full visibility of local entities is not available).
10877 elsif not Comes_From_Source (Current_Scope) then
10878 return;
10880 -- Case of aspects Dimension, Dimension_System and Synchronization
10882 elsif A_Id = Aspect_Synchronization then
10883 return;
10885 -- Case of stream attributes and Put_Image, just have to compare
10886 -- entities. However, the expression is just a possibly-overloaded
10887 -- name, so we need to verify that one of these interpretations is
10888 -- the one available at at the freeze point.
10890 elsif A_Id in Aspect_Input
10891 | Aspect_Output
10892 | Aspect_Read
10893 | Aspect_Write
10894 | Aspect_Put_Image
10895 then
10896 Analyze (End_Decl_Expr);
10897 Check_Overloaded_Name;
10899 elsif A_Id in Aspect_Variable_Indexing
10900 | Aspect_Constant_Indexing
10901 | Aspect_Default_Iterator
10902 | Aspect_Iterator_Element
10903 | Aspect_Integer_Literal
10904 | Aspect_Real_Literal
10905 | Aspect_String_Literal
10906 then
10907 -- Make type unfrozen before analysis, to prevent spurious errors
10908 -- about late attributes.
10910 Set_Is_Frozen (Ent, False);
10911 Analyze (End_Decl_Expr);
10912 Set_Is_Frozen (Ent, True);
10914 -- If the end of declarations comes before any other freeze point,
10915 -- the Freeze_Expr is not analyzed: no check needed.
10917 if Analyzed (Freeze_Expr) and then not In_Instance then
10918 Check_Overloaded_Name;
10919 else
10920 Err := False;
10921 end if;
10923 -- All other cases
10925 else
10926 -- In a generic context freeze nodes are not always generated, so
10927 -- analyze the expression now. If the aspect is for a type, we must
10928 -- also make its potential components accessible.
10930 if not Analyzed (Freeze_Expr) and then Inside_A_Generic then
10931 if A_Id in Aspect_Dynamic_Predicate | Aspect_Predicate |
10932 Aspect_Static_Predicate
10933 then
10934 Push_Type (Ent);
10935 Preanalyze_Spec_Expression (Freeze_Expr, Standard_Boolean);
10936 Pop_Type (Ent);
10938 elsif A_Id = Aspect_Priority then
10939 Push_Type (Ent);
10940 Preanalyze_Spec_Expression (Freeze_Expr, Any_Integer);
10941 Pop_Type (Ent);
10943 else
10944 Preanalyze (Freeze_Expr);
10945 end if;
10946 end if;
10948 -- Indicate that the expression comes from an aspect specification,
10949 -- which is used in subsequent analysis even if expansion is off.
10951 if Present (End_Decl_Expr) then
10952 Set_Parent (End_Decl_Expr, ASN);
10953 end if;
10955 -- In a generic context the original aspect expressions have not
10956 -- been preanalyzed, so do it now. There are no conformance checks
10957 -- to perform in this case. As before, we have to make components
10958 -- visible for aspects that may reference them.
10960 if Present (Freeze_Expr) and then No (T) then
10961 if A_Id in Aspect_Dynamic_Predicate
10962 | Aspect_Predicate
10963 | Aspect_Priority
10964 | Aspect_Static_Predicate
10965 then
10966 Push_Type (Ent);
10967 Check_Aspect_At_Freeze_Point (ASN);
10968 Pop_Type (Ent);
10970 else
10971 Check_Aspect_At_Freeze_Point (ASN);
10972 end if;
10973 return;
10975 -- The default values attributes may be defined in the private part,
10976 -- and the analysis of the expression may take place when only the
10977 -- partial view is visible. The expression must be scalar, so use
10978 -- the full view to resolve.
10980 elsif A_Id in Aspect_Default_Component_Value | Aspect_Default_Value
10981 and then Is_Private_Type (T)
10982 then
10983 Preanalyze_Spec_Expression (End_Decl_Expr, Full_View (T));
10985 -- The following aspect expressions may contain references to
10986 -- components and discriminants of the type.
10988 elsif A_Id in Aspect_CPU
10989 | Aspect_Dynamic_Predicate
10990 | Aspect_Predicate
10991 | Aspect_Priority
10992 | Aspect_Static_Predicate
10993 then
10994 Push_Type (Ent);
10995 Preanalyze_Spec_Expression (End_Decl_Expr, T);
10996 Pop_Type (Ent);
10998 elsif A_Id = Aspect_Predicate_Failure then
10999 Preanalyze_Spec_Expression (End_Decl_Expr, Standard_String);
11000 elsif Present (End_Decl_Expr) then
11001 Preanalyze_Spec_Expression (End_Decl_Expr, T);
11002 end if;
11004 Err :=
11005 not Fully_Conformant_Expressions
11006 (End_Decl_Expr, Freeze_Expr, Report => True);
11007 end if;
11009 -- Output error message if error. Force error on aspect specification
11010 -- even if there is an error on the expression itself.
11012 if Err then
11013 Error_Msg_NE
11014 ("!visibility of aspect for& changes after freeze point",
11015 ASN, Ent);
11016 Error_Msg_NE
11017 ("info: & is frozen here, (RM 13.1.1 (13/3))??",
11018 Freeze_Node (Ent), Ent);
11019 end if;
11020 end Check_Aspect_At_End_Of_Declarations;
11022 ----------------------------------
11023 -- Check_Aspect_At_Freeze_Point --
11024 ----------------------------------
11026 procedure Check_Aspect_At_Freeze_Point (ASN : Node_Id) is
11027 Ident : constant Node_Id := Identifier (ASN);
11028 -- Identifier (use Entity field to save expression)
11030 Expr : constant Node_Id := Expression (ASN);
11031 -- For cases where using Entity (Identifier) doesn't work
11033 A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
11035 T : Entity_Id := Empty;
11036 -- Type required for preanalyze call
11038 begin
11039 -- On entry to this procedure, Entity (Ident) contains a copy of the
11040 -- original expression from the aspect, saved for this purpose.
11042 -- On exit from this procedure Entity (Ident) is unchanged, still
11043 -- containing that copy, but Expression (Ident) is a preanalyzed copy
11044 -- of the expression, preanalyzed just after the freeze point.
11046 -- Make a copy of the expression to be preanalyzed
11048 Set_Expression (ASN, New_Copy_Tree (Entity (Ident)));
11050 -- Find type for preanalyze call
11052 case A_Id is
11054 -- No_Aspect should be impossible
11056 when No_Aspect =>
11057 raise Program_Error;
11059 -- Aspects taking an optional boolean argument
11061 when Boolean_Aspects
11062 | Library_Unit_Aspects
11064 T := Standard_Boolean;
11066 -- Aspects corresponding to attribute definition clauses
11068 when Aspect_Address =>
11069 T := RTE (RE_Address);
11071 when Aspect_Attach_Handler =>
11072 T := RTE (RE_Interrupt_ID);
11074 when Aspect_Bit_Order
11075 | Aspect_Scalar_Storage_Order
11077 T := RTE (RE_Bit_Order);
11079 when Aspect_Convention =>
11080 return;
11082 when Aspect_CPU =>
11083 T := RTE (RE_CPU_Range);
11085 -- Default_Component_Value is resolved with the component type
11087 when Aspect_Default_Component_Value =>
11088 T := Component_Type (Entity (ASN));
11090 when Aspect_Default_Storage_Pool =>
11091 T := Class_Wide_Type (RTE (RE_Root_Storage_Pool));
11093 -- Default_Value is resolved with the type entity in question
11095 when Aspect_Default_Value =>
11096 T := Entity (ASN);
11098 when Aspect_Dispatching_Domain =>
11099 T := RTE (RE_Dispatching_Domain);
11101 when Aspect_External_Tag =>
11102 T := Standard_String;
11104 when Aspect_External_Name =>
11105 T := Standard_String;
11107 when Aspect_Link_Name =>
11108 T := Standard_String;
11110 when Aspect_Interrupt_Priority
11111 | Aspect_Priority
11113 T := Standard_Integer;
11115 when Aspect_Relative_Deadline =>
11116 T := RTE (RE_Time_Span);
11118 when Aspect_Secondary_Stack_Size =>
11119 T := Standard_Integer;
11121 when Aspect_Small =>
11123 -- Note that the expression can be of any real type (not just a
11124 -- real universal literal) as long as it is a static constant.
11126 T := Any_Real;
11128 -- For a simple storage pool, we have to retrieve the type of the
11129 -- pool object associated with the aspect's corresponding attribute
11130 -- definition clause.
11132 when Aspect_Simple_Storage_Pool =>
11133 T := Etype (Expression (Aspect_Rep_Item (ASN)));
11135 when Aspect_Storage_Pool =>
11136 T := Class_Wide_Type (RTE (RE_Root_Storage_Pool));
11138 when Aspect_Alignment
11139 | Aspect_Component_Size
11140 | Aspect_Machine_Radix
11141 | Aspect_Object_Size
11142 | Aspect_Size
11143 | Aspect_Storage_Size
11144 | Aspect_Stream_Size
11145 | Aspect_Value_Size
11147 T := Any_Integer;
11149 when Aspect_Linker_Section =>
11150 T := Standard_String;
11152 when Aspect_Synchronization =>
11153 return;
11155 -- Special case, the expression of these aspects is just an entity
11156 -- that does not need any resolution, so just analyze.
11158 when Aspect_Input
11159 | Aspect_Output
11160 | Aspect_Put_Image
11161 | Aspect_Read
11162 | Aspect_Warnings
11163 | Aspect_Write
11165 Analyze (Expression (ASN));
11166 return;
11168 -- Same for Iterator aspects, where the expression is a function
11169 -- name. Legality rules are checked separately.
11171 when Aspect_Constant_Indexing
11172 | Aspect_Default_Iterator
11173 | Aspect_Iterator_Element
11174 | Aspect_Variable_Indexing
11176 Analyze (Expression (ASN));
11177 return;
11179 -- Same for Literal aspects, where the expression is a function
11180 -- name. Legality rules are checked separately. Use Expr to avoid
11181 -- losing track of the previous resolution of Expression.
11183 when Aspect_Integer_Literal
11184 | Aspect_Real_Literal
11185 | Aspect_String_Literal
11187 Set_Entity (Expression (ASN), Entity (Expr));
11188 Set_Etype (Expression (ASN), Etype (Expr));
11189 Set_Is_Overloaded (Expression (ASN), False);
11190 Analyze (Expression (ASN));
11191 return;
11193 -- Ditto for Iterable, legality checks in Validate_Iterable_Aspect.
11195 when Aspect_Iterable =>
11196 T := Entity (ASN);
11198 declare
11199 Cursor : constant Entity_Id := Get_Cursor_Type (ASN, T);
11200 Assoc : Node_Id;
11201 Expr : Node_Id;
11203 begin
11204 if Cursor = Any_Type then
11205 return;
11206 end if;
11208 Assoc := First (Component_Associations (Expression (ASN)));
11209 while Present (Assoc) loop
11210 Expr := Expression (Assoc);
11211 Analyze (Expr);
11213 if not Error_Posted (Expr) then
11214 Resolve_Iterable_Operation
11215 (Expr, Cursor, T, Chars (First (Choices (Assoc))));
11216 end if;
11218 Next (Assoc);
11219 end loop;
11220 end;
11222 return;
11224 when Aspect_Aggregate =>
11225 if Is_Array_Type (Entity (ASN)) then
11226 Error_Msg_N
11227 ("aspect% can only be applied to non-array type",
11228 Identifier (ASN));
11229 end if;
11230 Resolve_Aspect_Aggregate (Entity (ASN), Expression (ASN));
11231 return;
11233 when Aspect_Stable_Properties =>
11234 Resolve_Aspect_Stable_Properties
11235 (Entity (ASN), Expression (ASN),
11236 Class_Present => Class_Present (ASN));
11237 return;
11239 -- Invariant/Predicate take boolean expressions
11241 when Aspect_Dynamic_Predicate
11242 | Aspect_Invariant
11243 | Aspect_Predicate
11244 | Aspect_Static_Predicate
11245 | Aspect_Type_Invariant
11247 T := Standard_Boolean;
11249 when Aspect_Predicate_Failure =>
11250 T := Standard_String;
11252 -- As for some other aspects above, the expression of this aspect is
11253 -- just an entity that does not need any resolution, so just analyze.
11255 when Aspect_Designated_Storage_Model =>
11256 Analyze (Expression (ASN));
11257 return;
11259 when Aspect_Storage_Model_Type =>
11261 -- The aggregate argument of Storage_Model_Type is optional, and
11262 -- when not present the aspect defaults to the native storage
11263 -- model (where the address type is System.Address, and other
11264 -- arguments default to corresponding native storage operations).
11266 if No (Expression (ASN)) then
11267 return;
11268 end if;
11270 T := Entity (ASN);
11272 declare
11273 Assoc : Node_Id;
11274 Expr : Node_Id;
11275 Addr_Type : Entity_Id := Empty;
11277 begin
11278 Assoc := First (Component_Associations (Expression (ASN)));
11279 while Present (Assoc) loop
11280 Expr := Expression (Assoc);
11281 Analyze (Expr);
11283 if not Error_Posted (Expr) then
11284 Resolve_Storage_Model_Type_Argument
11285 (Expr, T, Addr_Type, Chars (First (Choices (Assoc))));
11286 end if;
11288 Next (Assoc);
11289 end loop;
11290 end;
11292 return;
11294 -- Here is the list of aspects that don't require delay analysis
11296 when Aspect_Abstract_State
11297 | Aspect_Annotate
11298 | Aspect_Async_Readers
11299 | Aspect_Async_Writers
11300 | Aspect_Constant_After_Elaboration
11301 | Aspect_Contract_Cases
11302 | Aspect_Default_Initial_Condition
11303 | Aspect_Depends
11304 | Aspect_Dimension
11305 | Aspect_Dimension_System
11306 | Aspect_Exceptional_Cases
11307 | Aspect_Effective_Reads
11308 | Aspect_Effective_Writes
11309 | Aspect_Extensions_Visible
11310 | Aspect_Ghost
11311 | Aspect_Global
11312 | Aspect_GNAT_Annotate
11313 | Aspect_Implicit_Dereference
11314 | Aspect_Initial_Condition
11315 | Aspect_Initializes
11316 | Aspect_Max_Entry_Queue_Depth
11317 | Aspect_Max_Entry_Queue_Length
11318 | Aspect_Max_Queue_Length
11319 | Aspect_No_Caching
11320 | Aspect_No_Controlled_Parts
11321 | Aspect_No_Task_Parts
11322 | Aspect_Obsolescent
11323 | Aspect_Part_Of
11324 | Aspect_Post
11325 | Aspect_Postcondition
11326 | Aspect_Pre
11327 | Aspect_Precondition
11328 | Aspect_Refined_Depends
11329 | Aspect_Refined_Global
11330 | Aspect_Refined_Post
11331 | Aspect_Refined_State
11332 | Aspect_Relaxed_Initialization
11333 | Aspect_SPARK_Mode
11334 | Aspect_Subprogram_Variant
11335 | Aspect_Suppress
11336 | Aspect_Test_Case
11337 | Aspect_Unimplemented
11338 | Aspect_Unsuppress
11339 | Aspect_Volatile_Function
11341 raise Program_Error;
11343 end case;
11345 -- Do the preanalyze call
11347 if Present (Expression (ASN)) then
11348 Preanalyze_Spec_Expression (Expression (ASN), T);
11349 end if;
11350 end Check_Aspect_At_Freeze_Point;
11352 -----------------------------------
11353 -- Check_Constant_Address_Clause --
11354 -----------------------------------
11356 procedure Check_Constant_Address_Clause
11357 (Expr : Node_Id;
11358 U_Ent : Entity_Id)
11360 procedure Check_At_Constant_Address (Nod : Node_Id);
11361 -- Checks that the given node N represents a name whose 'Address is
11362 -- constant (in the same sense as OK_Constant_Address_Clause, i.e. the
11363 -- address value is the same at the point of declaration of U_Ent and at
11364 -- the time of elaboration of the address clause.
11366 procedure Check_Expr_Constants (Nod : Node_Id);
11367 -- Checks that Nod meets the requirements for a constant address clause
11368 -- in the sense of the enclosing procedure.
11370 procedure Check_List_Constants (Lst : List_Id);
11371 -- Check that all elements of list Lst meet the requirements for a
11372 -- constant address clause in the sense of the enclosing procedure.
11374 -------------------------------
11375 -- Check_At_Constant_Address --
11376 -------------------------------
11378 procedure Check_At_Constant_Address (Nod : Node_Id) is
11379 begin
11380 if Is_Entity_Name (Nod) then
11381 if Present (Address_Clause (Entity ((Nod)))) then
11382 Error_Msg_NE
11383 ("invalid address clause for initialized object &!",
11384 Nod, U_Ent);
11385 Error_Msg_NE
11386 ("address for& cannot depend on another address clause! "
11387 & "(RM 13.1(22))!", Nod, U_Ent);
11389 elsif In_Same_Source_Unit (Entity (Nod), U_Ent)
11390 and then Sloc (U_Ent) < Sloc (Entity (Nod))
11391 then
11392 Error_Msg_NE
11393 ("invalid address clause for initialized object &!",
11394 Nod, U_Ent);
11395 Error_Msg_Node_2 := U_Ent;
11396 Error_Msg_NE
11397 ("\& must be defined before & (RM 13.1(22))!",
11398 Nod, Entity (Nod));
11399 end if;
11401 elsif Nkind (Nod) = N_Selected_Component then
11402 declare
11403 T : constant Entity_Id := Etype (Prefix (Nod));
11405 begin
11406 if (Is_Record_Type (T)
11407 and then Has_Discriminants (T))
11408 or else
11409 (Is_Access_Type (T)
11410 and then Is_Record_Type (Designated_Type (T))
11411 and then Has_Discriminants (Designated_Type (T)))
11412 then
11413 Error_Msg_NE
11414 ("invalid address clause for initialized object &!",
11415 Nod, U_Ent);
11416 Error_Msg_N
11417 ("\address cannot depend on component of discriminated "
11418 & "record (RM 13.1(22))!", Nod);
11419 else
11420 Check_At_Constant_Address (Prefix (Nod));
11421 end if;
11422 end;
11424 elsif Nkind (Nod) = N_Indexed_Component then
11425 Check_At_Constant_Address (Prefix (Nod));
11426 Check_List_Constants (Expressions (Nod));
11428 else
11429 Check_Expr_Constants (Nod);
11430 end if;
11431 end Check_At_Constant_Address;
11433 --------------------------
11434 -- Check_Expr_Constants --
11435 --------------------------
11437 procedure Check_Expr_Constants (Nod : Node_Id) is
11438 Loc_U_Ent : constant Source_Ptr := Sloc (U_Ent);
11439 Ent : Entity_Id := Empty;
11441 begin
11442 if Nkind (Nod) in N_Has_Etype
11443 and then Etype (Nod) = Any_Type
11444 then
11445 return;
11446 end if;
11448 case Nkind (Nod) is
11449 when N_Empty
11450 | N_Error
11452 return;
11454 when N_Expanded_Name
11455 | N_Identifier
11457 Ent := Entity (Nod);
11459 -- We need to look at the original node if it is different
11460 -- from the node, since we may have rewritten things and
11461 -- substituted an identifier representing the rewrite.
11463 if Is_Rewrite_Substitution (Nod) then
11464 Check_Expr_Constants (Original_Node (Nod));
11466 -- If the node is an object declaration without initial
11467 -- value, some code has been expanded, and the expression
11468 -- is not constant, even if the constituents might be
11469 -- acceptable, as in A'Address + offset.
11471 if Ekind (Ent) = E_Variable
11472 and then
11473 Nkind (Declaration_Node (Ent)) = N_Object_Declaration
11474 and then
11475 No (Expression (Declaration_Node (Ent)))
11476 then
11477 Error_Msg_NE
11478 ("invalid address clause for initialized object &!",
11479 Nod, U_Ent);
11481 -- If entity is constant, it may be the result of expanding
11482 -- a check. We must verify that its declaration appears
11483 -- before the object in question, else we also reject the
11484 -- address clause.
11486 elsif Ekind (Ent) = E_Constant
11487 and then In_Same_Source_Unit (Ent, U_Ent)
11488 and then Sloc (Ent) > Loc_U_Ent
11489 then
11490 Error_Msg_NE
11491 ("invalid address clause for initialized object &!",
11492 Nod, U_Ent);
11493 end if;
11495 return;
11496 end if;
11498 -- Otherwise look at the identifier and see if it is OK
11500 if Is_Named_Number (Ent) or else Is_Type (Ent) then
11501 return;
11503 elsif Ekind (Ent) in E_Constant | E_In_Parameter then
11505 -- This is the case where we must have Ent defined before
11506 -- U_Ent. Clearly if they are in different units this
11507 -- requirement is met since the unit containing Ent is
11508 -- already processed.
11510 if not In_Same_Source_Unit (Ent, U_Ent) then
11511 return;
11513 -- Otherwise location of Ent must be before the location
11514 -- of U_Ent, that's what prior defined means.
11516 elsif Sloc (Ent) < Loc_U_Ent then
11517 return;
11519 else
11520 Error_Msg_NE
11521 ("invalid address clause for initialized object &!",
11522 Nod, U_Ent);
11523 Error_Msg_Node_2 := U_Ent;
11524 Error_Msg_NE
11525 ("\& must be defined before & (RM 13.1(22))!",
11526 Nod, Ent);
11527 end if;
11529 elsif Nkind (Original_Node (Nod)) = N_Function_Call then
11530 Check_Expr_Constants (Original_Node (Nod));
11532 else
11533 Error_Msg_NE
11534 ("invalid address clause for initialized object &!",
11535 Nod, U_Ent);
11537 if Comes_From_Source (Ent) then
11538 Error_Msg_NE
11539 ("\reference to variable& not allowed"
11540 & " (RM 13.1(22))!", Nod, Ent);
11541 else
11542 Error_Msg_N
11543 ("non-static expression not allowed"
11544 & " (RM 13.1(22))!", Nod);
11545 end if;
11546 end if;
11548 when N_Integer_Literal =>
11550 -- If this is a rewritten unchecked conversion, in a system
11551 -- where Address is an integer type, always use the base type
11552 -- for a literal value. This is user-friendly and prevents
11553 -- order-of-elaboration issues with instances of unchecked
11554 -- conversion.
11556 if Nkind (Original_Node (Nod)) = N_Function_Call then
11557 Set_Etype (Nod, Base_Type (Etype (Nod)));
11558 end if;
11560 when N_Character_Literal
11561 | N_Real_Literal
11562 | N_String_Literal
11564 return;
11566 when N_Range =>
11567 Check_Expr_Constants (Low_Bound (Nod));
11568 Check_Expr_Constants (High_Bound (Nod));
11570 when N_Explicit_Dereference =>
11571 Check_Expr_Constants (Prefix (Nod));
11573 when N_Indexed_Component =>
11574 Check_Expr_Constants (Prefix (Nod));
11575 Check_List_Constants (Expressions (Nod));
11577 when N_Slice =>
11578 Check_Expr_Constants (Prefix (Nod));
11579 Check_Expr_Constants (Discrete_Range (Nod));
11581 when N_Selected_Component =>
11582 Check_Expr_Constants (Prefix (Nod));
11584 when N_Attribute_Reference =>
11585 if Attribute_Name (Nod) in Name_Address
11586 | Name_Access
11587 | Name_Unchecked_Access
11588 | Name_Unrestricted_Access
11589 then
11590 Check_At_Constant_Address (Prefix (Nod));
11592 -- Normally, System'To_Address will have been transformed into
11593 -- an Unchecked_Conversion, but in -gnatc mode, it will not,
11594 -- and we don't want to give an error, because the whole point
11595 -- of 'To_Address is that it is static.
11597 elsif Attribute_Name (Nod) = Name_To_Address then
11598 pragma Assert (Operating_Mode = Check_Semantics);
11599 null;
11601 else
11602 Check_Expr_Constants (Prefix (Nod));
11603 Check_List_Constants (Expressions (Nod));
11604 end if;
11606 when N_Aggregate =>
11607 Check_List_Constants (Component_Associations (Nod));
11608 Check_List_Constants (Expressions (Nod));
11610 when N_Component_Association =>
11611 Check_Expr_Constants (Expression (Nod));
11613 when N_Extension_Aggregate =>
11614 Check_Expr_Constants (Ancestor_Part (Nod));
11615 Check_List_Constants (Component_Associations (Nod));
11616 Check_List_Constants (Expressions (Nod));
11618 when N_Null =>
11619 return;
11621 when N_Binary_Op
11622 | N_Membership_Test
11623 | N_Short_Circuit
11625 Check_Expr_Constants (Left_Opnd (Nod));
11626 Check_Expr_Constants (Right_Opnd (Nod));
11628 when N_Unary_Op =>
11629 Check_Expr_Constants (Right_Opnd (Nod));
11631 when N_Allocator
11632 | N_Qualified_Expression
11633 | N_Type_Conversion
11634 | N_Unchecked_Type_Conversion
11636 Check_Expr_Constants (Expression (Nod));
11638 when N_Function_Call =>
11639 if not Is_Pure (Entity (Name (Nod))) then
11640 Error_Msg_NE
11641 ("invalid address clause for initialized object &!",
11642 Nod, U_Ent);
11644 Error_Msg_NE
11645 ("\function & is not pure (RM 13.1(22))!",
11646 Nod, Entity (Name (Nod)));
11648 else
11649 Check_List_Constants (Parameter_Associations (Nod));
11650 end if;
11652 when N_Parameter_Association =>
11653 Check_Expr_Constants (Explicit_Actual_Parameter (Nod));
11655 when others =>
11656 Error_Msg_NE
11657 ("invalid address clause for initialized object &!",
11658 Nod, U_Ent);
11659 Error_Msg_NE
11660 ("\must be constant defined before& (RM 13.1(22))!",
11661 Nod, U_Ent);
11662 end case;
11663 end Check_Expr_Constants;
11665 --------------------------
11666 -- Check_List_Constants --
11667 --------------------------
11669 procedure Check_List_Constants (Lst : List_Id) is
11670 Nod1 : Node_Id;
11672 begin
11673 Nod1 := First (Lst);
11674 while Present (Nod1) loop
11675 Check_Expr_Constants (Nod1);
11676 Next (Nod1);
11677 end loop;
11678 end Check_List_Constants;
11680 -- Start of processing for Check_Constant_Address_Clause
11682 begin
11683 -- If rep_clauses are to be ignored, no need for legality checks. In
11684 -- particular, no need to pester user about rep clauses that violate the
11685 -- rule on constant addresses, given that these clauses will be removed
11686 -- by Freeze before they reach the back end. Similarly in CodePeer mode,
11687 -- we want to relax these checks.
11689 if not Ignore_Rep_Clauses and not CodePeer_Mode then
11690 Check_Expr_Constants (Expr);
11691 end if;
11692 end Check_Constant_Address_Clause;
11694 ---------------------------
11695 -- Check_Pool_Size_Clash --
11696 ---------------------------
11698 procedure Check_Pool_Size_Clash (Ent : Entity_Id; SP, SS : Node_Id) is
11699 Post : Node_Id;
11701 begin
11702 -- We need to find out which one came first. Note that in the case of
11703 -- aspects mixed with pragmas there are cases where the processing order
11704 -- is reversed, which is why we do the check here.
11706 if Sloc (SP) < Sloc (SS) then
11707 Error_Msg_Sloc := Sloc (SP);
11708 Post := SS;
11709 Error_Msg_NE ("Storage_Pool previously given for&#", Post, Ent);
11711 else
11712 Error_Msg_Sloc := Sloc (SS);
11713 Post := SP;
11714 Error_Msg_NE ("Storage_Size previously given for&#", Post, Ent);
11715 end if;
11717 Error_Msg_N
11718 ("\cannot have Storage_Size and Storage_Pool (RM 13.11(3))", Post);
11719 end Check_Pool_Size_Clash;
11721 ----------------------------------------
11722 -- Check_Record_Representation_Clause --
11723 ----------------------------------------
11725 procedure Check_Record_Representation_Clause (N : Node_Id) is
11726 Loc : constant Source_Ptr := Sloc (N);
11727 Ident : constant Node_Id := Identifier (N);
11728 Rectype : Entity_Id;
11729 Fent : Entity_Id;
11730 CC : Node_Id;
11731 Fbit : Uint := No_Uint;
11732 Lbit : Uint := No_Uint;
11733 Hbit : Uint := Uint_0;
11734 Comp : Entity_Id;
11735 Pcomp : Entity_Id;
11737 Max_Bit_So_Far : Uint;
11738 -- Records the maximum bit position so far. If all field positions
11739 -- are monotonically increasing, then we can skip the circuit for
11740 -- checking for overlap, since no overlap is possible.
11742 Tagged_Parent : Entity_Id := Empty;
11743 -- This is set in the case of an extension for which we have either a
11744 -- size clause or Is_Fully_Repped_Tagged_Type True (indicating that all
11745 -- components are positioned by record representation clauses) on the
11746 -- parent type. In this case we check for overlap between components of
11747 -- this tagged type and the parent component. Tagged_Parent will point
11748 -- to this parent type. For all other cases, Tagged_Parent is Empty.
11750 Parent_Last_Bit : Uint := No_Uint; -- init to avoid warning
11751 -- Relevant only if Tagged_Parent is set, Parent_Last_Bit indicates the
11752 -- last bit position for any field in the parent type. We only need to
11753 -- check overlap for fields starting below this point.
11755 Overlap_Check_Required : Boolean;
11756 -- Used to keep track of whether or not an overlap check is required
11758 Overlap_Detected : Boolean := False;
11759 -- Set True if an overlap is detected
11761 Ccount : Natural := 0;
11762 -- Number of component clauses in record rep clause
11764 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id);
11765 -- Given two entities for record components or discriminants, checks
11766 -- if they have overlapping component clauses and issues errors if so.
11768 procedure Find_Component;
11769 -- Finds component entity corresponding to current component clause (in
11770 -- CC), and sets Comp to the entity, and Fbit/Lbit to the zero origin
11771 -- start/stop bits for the field. If there is no matching component or
11772 -- if the matching component does not have a component clause, then
11773 -- that's an error and Comp is set to Empty, but no error message is
11774 -- issued, since the message was already given. Comp is also set to
11775 -- Empty if the current "component clause" is in fact a pragma.
11777 procedure Record_Hole_Check
11778 (Rectype : Entity_Id; After_Last : out Uint; Warn : Boolean);
11779 -- Checks for gaps in the given Rectype. Compute After_Last, the bit
11780 -- number after the last component. Warn is True on the initial call,
11781 -- and warnings are given for gaps. For a type extension, this is called
11782 -- recursively to compute After_Last for the parent type; in this case
11783 -- Warn is False and the warnings are suppressed.
11785 procedure Component_Order_Check (Rectype : Entity_Id);
11786 -- Check that the order of component clauses agrees with the order of
11787 -- component declarations, and that the component clauses are given in
11788 -- increasing order of bit offset.
11790 -----------------------------
11791 -- Check_Component_Overlap --
11792 -----------------------------
11794 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id) is
11795 CC1 : constant Node_Id := Component_Clause (C1_Ent);
11796 CC2 : constant Node_Id := Component_Clause (C2_Ent);
11798 begin
11799 if Present (CC1) and then Present (CC2) then
11801 -- Exclude odd case where we have two tag components in the same
11802 -- record, both at location zero. This seems a bit strange, but
11803 -- it seems to happen in some circumstances, perhaps on an error.
11805 if Chars (C1_Ent) = Name_uTag then
11806 return;
11807 end if;
11809 -- Here we check if the two fields overlap
11811 declare
11812 S1 : constant Uint := Component_Bit_Offset (C1_Ent);
11813 S2 : constant Uint := Component_Bit_Offset (C2_Ent);
11814 E1 : constant Uint := S1 + Esize (C1_Ent);
11815 E2 : constant Uint := S2 + Esize (C2_Ent);
11817 begin
11818 if E2 <= S1 or else E1 <= S2 then
11819 null;
11820 else
11821 Error_Msg_Node_2 := Component_Name (CC2);
11822 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
11823 Error_Msg_Node_1 := Component_Name (CC1);
11824 Error_Msg_N
11825 ("component& overlaps & #", Component_Name (CC1));
11826 Overlap_Detected := True;
11827 end if;
11828 end;
11829 end if;
11830 end Check_Component_Overlap;
11832 ---------------------------
11833 -- Component_Order_Check --
11834 ---------------------------
11836 procedure Component_Order_Check (Rectype : Entity_Id) is
11837 Comp : Entity_Id := First_Component (Rectype);
11838 Clause : Node_Id := First (Component_Clauses (N));
11839 Prev_Bit_Offset : Uint := Uint_0;
11840 OOO : constant String :=
11841 "?_r?component clause out of order with respect to declaration";
11843 begin
11844 -- Step Comp through components and Clause through component clauses,
11845 -- skipping pragmas. We ignore discriminants and variant parts,
11846 -- because we get most of the benefit from the plain vanilla
11847 -- component cases, without the extra complexity. If we find a Comp
11848 -- and Clause that don't match, give a warning on both and quit. If
11849 -- we find two subsequent clauses out of order by bit layout, give
11850 -- warning and quit. On each iteration, Prev_Bit_Offset is the one
11851 -- from the previous iteration (or 0 to start).
11853 while Present (Comp) and then Present (Clause) loop
11854 if Nkind (Clause) = N_Component_Clause
11855 and then Ekind (Entity (Component_Name (Clause))) = E_Component
11856 then
11857 if Entity (Component_Name (Clause)) /= Comp then
11858 Error_Msg_N (OOO, Comp);
11859 Error_Msg_N (OOO, Clause);
11860 exit;
11861 end if;
11863 if not Reverse_Bit_Order (Rectype)
11864 and then not Reverse_Storage_Order (Rectype)
11865 and then Component_Bit_Offset (Comp) < Prev_Bit_Offset
11866 then
11867 Error_Msg_N ("?_r?memory layout out of order", Clause);
11868 exit;
11869 end if;
11871 Prev_Bit_Offset := Component_Bit_Offset (Comp);
11872 Next_Component (Comp);
11873 end if;
11875 Next (Clause);
11876 end loop;
11877 end Component_Order_Check;
11879 --------------------
11880 -- Find_Component --
11881 --------------------
11883 procedure Find_Component is
11885 procedure Search_Component (R : Entity_Id);
11886 -- Search components of R for a match. If found, Comp is set
11888 ----------------------
11889 -- Search_Component --
11890 ----------------------
11892 procedure Search_Component (R : Entity_Id) is
11893 begin
11894 Comp := First_Component_Or_Discriminant (R);
11895 while Present (Comp) loop
11897 -- Ignore error of attribute name for component name (we
11898 -- already gave an error message for this, so no need to
11899 -- complain here)
11901 if Nkind (Component_Name (CC)) = N_Attribute_Reference then
11902 null;
11903 else
11904 exit when Chars (Comp) = Chars (Component_Name (CC));
11905 end if;
11907 Next_Component_Or_Discriminant (Comp);
11908 end loop;
11909 end Search_Component;
11911 -- Start of processing for Find_Component
11913 begin
11914 -- Return with Comp set to Empty if we have a pragma
11916 if Nkind (CC) = N_Pragma then
11917 Comp := Empty;
11918 return;
11919 end if;
11921 -- Search current record for matching component
11923 Search_Component (Rectype);
11925 -- If not found, maybe component of base type discriminant that is
11926 -- absent from statically constrained first subtype.
11928 if No (Comp) then
11929 Search_Component (Base_Type (Rectype));
11930 end if;
11932 -- If no component, or the component does not reference the component
11933 -- clause in question, then there was some previous error for which
11934 -- we already gave a message, so just return with Comp Empty.
11936 if No (Comp) or else Component_Clause (Comp) /= CC then
11937 Check_Error_Detected;
11938 Comp := Empty;
11940 -- Normal case where we have a component clause
11942 else
11943 Fbit := Component_Bit_Offset (Comp);
11944 Lbit := Fbit + Esize (Comp) - 1;
11945 end if;
11946 end Find_Component;
11948 -----------------------
11949 -- Record_Hole_Check --
11950 -----------------------
11952 procedure Record_Hole_Check
11953 (Rectype : Entity_Id; After_Last : out Uint; Warn : Boolean)
11955 Decl : constant Node_Id := Declaration_Node (Base_Type (Rectype));
11956 -- Full declaration of record type
11958 procedure Check_Component_List
11959 (DS : List_Id;
11960 CL : Node_Id;
11961 Sbit : Uint;
11962 Abit : out Uint);
11963 -- Check component list CL for holes. DS is a list of discriminant
11964 -- specifications to be included in the consideration of components.
11965 -- Sbit is the starting bit, which is zero if there are no preceding
11966 -- components (before a variant part, or a parent type, or a tag
11967 -- field). If there are preceding components, Sbit is the bit just
11968 -- after the last such component. Abit is set to the bit just after
11969 -- the last component of DS and CL.
11971 --------------------------
11972 -- Check_Component_List --
11973 --------------------------
11975 procedure Check_Component_List
11976 (DS : List_Id;
11977 CL : Node_Id;
11978 Sbit : Uint;
11979 Abit : out Uint)
11981 Compl : Integer;
11983 begin
11984 Compl := Integer (List_Length (Component_Items (CL)));
11986 if DS /= No_List then
11987 Compl := Compl + Integer (List_Length (DS));
11988 end if;
11990 declare
11991 Comps : array (Natural range 0 .. Compl) of Entity_Id;
11992 -- Gather components (zero entry is for sort routine)
11994 Ncomps : Natural := 0;
11995 -- Number of entries stored in Comps (starting at Comps (1))
11997 Citem : Node_Id;
11998 -- One component item or discriminant specification
12000 Nbit : Uint;
12001 -- Starting bit for next component
12003 CEnt : Entity_Id;
12004 -- Component entity
12006 Variant : Node_Id;
12007 -- One variant
12009 function Lt (Op1, Op2 : Natural) return Boolean;
12010 -- Compare routine for Sort
12012 procedure Move (From : Natural; To : Natural);
12013 -- Move routine for Sort
12015 package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
12017 --------
12018 -- Lt --
12019 --------
12021 function Lt (Op1, Op2 : Natural) return Boolean is
12022 K1 : constant Boolean :=
12023 Known_Component_Bit_Offset (Comps (Op1));
12024 K2 : constant Boolean :=
12025 Known_Component_Bit_Offset (Comps (Op2));
12026 -- Record representation clauses can be incomplete, so the
12027 -- Component_Bit_Offsets can be unknown.
12028 begin
12029 if K1 then
12030 if K2 then
12031 return Component_Bit_Offset (Comps (Op1))
12032 < Component_Bit_Offset (Comps (Op2));
12033 else
12034 return True;
12035 end if;
12036 else
12037 return K2;
12038 end if;
12039 end Lt;
12041 ----------
12042 -- Move --
12043 ----------
12045 procedure Move (From : Natural; To : Natural) is
12046 begin
12047 Comps (To) := Comps (From);
12048 end Move;
12050 begin
12051 -- Gather discriminants into Comp
12053 Citem := First (DS);
12054 while Present (Citem) loop
12055 if Nkind (Citem) = N_Discriminant_Specification then
12056 declare
12057 Ent : constant Entity_Id :=
12058 Defining_Identifier (Citem);
12059 begin
12060 if Ekind (Ent) = E_Discriminant then
12061 Ncomps := Ncomps + 1;
12062 Comps (Ncomps) := Ent;
12063 end if;
12064 end;
12065 end if;
12067 Next (Citem);
12068 end loop;
12070 -- Gather component entities into Comp
12072 Citem := First (Component_Items (CL));
12073 while Present (Citem) loop
12074 if Nkind (Citem) = N_Component_Declaration then
12075 Ncomps := Ncomps + 1;
12076 Comps (Ncomps) := Defining_Identifier (Citem);
12077 end if;
12079 Next (Citem);
12080 end loop;
12082 -- Now sort the component entities based on the first bit.
12083 -- Note we already know there are no overlapping components.
12085 Sorting.Sort (Ncomps);
12087 -- Loop through entries checking for holes
12089 Nbit := Sbit;
12090 for J in 1 .. Ncomps loop
12091 CEnt := Comps (J);
12092 pragma Annotate (CodePeer, Modified, CEnt);
12094 declare
12095 CBO : constant Uint := Component_Bit_Offset (CEnt);
12097 begin
12098 -- Skip components with unknown offsets
12100 if Present (CBO) and then CBO >= 0 then
12101 Error_Msg_Uint_1 := CBO - Nbit;
12103 if Warn and then Error_Msg_Uint_1 > 0 then
12104 Error_Msg_NE
12105 ("?.h?^-bit gap before component&",
12106 Component_Name (Component_Clause (CEnt)),
12107 CEnt);
12108 end if;
12110 Nbit := CBO + Esize (CEnt);
12111 end if;
12112 end;
12113 end loop;
12115 -- Set Abit to just after the last nonvariant component
12117 Abit := Nbit;
12119 -- Process variant parts recursively if present. Set Abit to
12120 -- the maximum for all variant parts.
12122 if Present (Variant_Part (CL)) then
12123 declare
12124 Var_Start : constant Uint := Nbit;
12125 begin
12126 Variant := First (Variants (Variant_Part (CL)));
12127 while Present (Variant) loop
12128 Check_Component_List
12129 (No_List, Component_List (Variant), Var_Start, Nbit);
12130 Next (Variant);
12131 if Nbit > Abit then
12132 Abit := Nbit;
12133 end if;
12134 end loop;
12135 end;
12136 end if;
12137 end;
12138 end Check_Component_List;
12140 -- Local variables
12142 Sbit : Uint;
12143 -- Starting bit for call to Check_Component_List. Zero for an
12144 -- untagged type. The size of the Tag for a nonderived tagged
12145 -- type. Parent size for a type extension.
12147 Record_Definition : Node_Id;
12148 -- Record_Definition containing Component_List to pass to
12149 -- Check_Component_List.
12151 -- Start of processing for Record_Hole_Check
12153 begin
12154 if Is_Tagged_Type (Rectype) then
12155 Sbit := UI_From_Int (System_Address_Size);
12156 else
12157 Sbit := Uint_0;
12158 end if;
12160 After_Last := Uint_0;
12162 if Nkind (Decl) = N_Full_Type_Declaration then
12163 Record_Definition := Type_Definition (Decl);
12165 -- If we have a record extension, set Sbit to point after the last
12166 -- component of the parent type, by calling Record_Hole_Check
12167 -- recursively.
12169 if Nkind (Record_Definition) = N_Derived_Type_Definition then
12170 Record_Definition := Record_Extension_Part (Record_Definition);
12171 Record_Hole_Check (Underlying_Type (Parent_Subtype (Rectype)),
12172 After_Last => Sbit, Warn => False);
12173 end if;
12175 if Nkind (Record_Definition) = N_Record_Definition then
12176 Check_Component_List
12177 (Discriminant_Specifications (Decl),
12178 Component_List (Record_Definition),
12179 Sbit, After_Last);
12180 end if;
12181 end if;
12182 end Record_Hole_Check;
12184 -- Start of processing for Check_Record_Representation_Clause
12186 begin
12187 Find_Type (Ident);
12188 Rectype := Entity (Ident);
12190 if Rectype = Any_Type then
12191 return;
12192 end if;
12194 Rectype := Underlying_Type (Rectype);
12196 -- See if we have a fully repped derived tagged type
12198 declare
12199 PS : constant Entity_Id := Parent_Subtype (Rectype);
12201 begin
12202 if Present (PS) and then Known_Static_RM_Size (PS) then
12203 Tagged_Parent := PS;
12204 Parent_Last_Bit := RM_Size (PS) - 1;
12206 elsif Present (PS) and then Is_Fully_Repped_Tagged_Type (PS) then
12207 Tagged_Parent := PS;
12209 -- Find maximum bit of any component of the parent type
12211 Parent_Last_Bit := UI_From_Int (System_Address_Size - 1);
12212 Pcomp := First_Component_Or_Discriminant (Tagged_Parent);
12213 while Present (Pcomp) loop
12214 if Present (Component_Bit_Offset (Pcomp))
12215 and then Known_Static_Esize (Pcomp)
12216 then
12217 Parent_Last_Bit :=
12218 UI_Max
12219 (Parent_Last_Bit,
12220 Component_Bit_Offset (Pcomp) + Esize (Pcomp) - 1);
12221 end if;
12223 Next_Component_Or_Discriminant (Pcomp);
12224 end loop;
12225 end if;
12226 end;
12228 -- All done if no component clauses
12230 CC := First (Component_Clauses (N));
12232 if No (CC) then
12233 return;
12234 end if;
12236 -- If a tag is present, then create a component clause that places it
12237 -- at the start of the record (otherwise gigi may place it after other
12238 -- fields that have rep clauses).
12240 Fent := First_Entity (Rectype);
12242 if Nkind (Fent) = N_Defining_Identifier
12243 and then Chars (Fent) = Name_uTag
12244 then
12245 Set_Component_Bit_Offset (Fent, Uint_0);
12246 Set_Normalized_Position (Fent, Uint_0);
12247 Set_Normalized_First_Bit (Fent, Uint_0);
12248 Set_Esize (Fent, UI_From_Int (System_Address_Size));
12250 Set_Component_Clause (Fent,
12251 Make_Component_Clause (Loc,
12252 Component_Name => Make_Identifier (Loc, Name_uTag),
12254 Position => Make_Integer_Literal (Loc, Uint_0),
12255 First_Bit => Make_Integer_Literal (Loc, Uint_0),
12256 Last_Bit =>
12257 Make_Integer_Literal (Loc,
12258 UI_From_Int (System_Address_Size - 1))));
12260 Ccount := Ccount + 1;
12261 end if;
12263 Max_Bit_So_Far := Uint_Minus_1;
12264 Overlap_Check_Required := False;
12266 -- Process the component clauses
12268 while Present (CC) loop
12269 Find_Component;
12271 if Present (Comp) then
12272 Ccount := Ccount + 1;
12274 -- We need a full overlap check if record positions non-monotonic
12276 if Fbit <= Max_Bit_So_Far then
12277 Overlap_Check_Required := True;
12278 end if;
12280 Max_Bit_So_Far := Lbit;
12282 -- Check bit position out of range of specified size
12284 if Has_Size_Clause (Rectype)
12285 and then RM_Size (Rectype) <= Lbit
12286 then
12287 Error_Msg_Uint_1 := RM_Size (Rectype);
12288 Error_Msg_Uint_2 := Lbit + 1;
12289 Error_Msg_N ("bit number out of range of specified "
12290 & "size (expected ^, got ^)",
12291 Last_Bit (CC));
12293 -- Check for overlap with tag or parent component
12295 else
12296 if Is_Tagged_Type (Rectype)
12297 and then Fbit < System_Address_Size
12298 then
12299 Error_Msg_NE
12300 ("component overlaps tag field of&",
12301 Component_Name (CC), Rectype);
12302 Overlap_Detected := True;
12304 elsif Present (Tagged_Parent)
12305 and then Fbit <= Parent_Last_Bit
12306 then
12307 Error_Msg_NE
12308 ("component overlaps parent field of&",
12309 Component_Name (CC), Rectype);
12310 Overlap_Detected := True;
12311 end if;
12313 if Hbit < Lbit then
12314 Hbit := Lbit;
12315 end if;
12316 end if;
12317 end if;
12319 Next (CC);
12320 end loop;
12322 -- Now that we have processed all the component clauses, check for
12323 -- overlap. We have to leave this till last, since the components can
12324 -- appear in any arbitrary order in the representation clause.
12326 -- We do not need this check if all specified ranges were monotonic,
12327 -- as recorded by Overlap_Check_Required being False at this stage.
12329 -- This first section checks if there are any overlapping entries at
12330 -- all. It does this by sorting all entries and then seeing if there are
12331 -- any overlaps. If there are none, then that is decisive, but if there
12332 -- are overlaps, they may still be OK (they may result from fields in
12333 -- different variants).
12335 if Overlap_Check_Required then
12336 Overlap_Check1 : declare
12338 OC_Fbit : array (0 .. Ccount) of Uint;
12339 -- First-bit values for component clauses, the value is the offset
12340 -- of the first bit of the field from start of record. The zero
12341 -- entry is for use in sorting.
12343 OC_Lbit : array (0 .. Ccount) of Uint;
12344 -- Last-bit values for component clauses, the value is the offset
12345 -- of the last bit of the field from start of record. The zero
12346 -- entry is for use in sorting.
12348 OC_Count : Natural := 0;
12349 -- Count of entries in OC_Fbit and OC_Lbit
12351 function OC_Lt (Op1, Op2 : Natural) return Boolean;
12352 -- Compare routine for Sort
12354 procedure OC_Move (From : Natural; To : Natural);
12355 -- Move routine for Sort
12357 package Sorting is new GNAT.Heap_Sort_G (OC_Move, OC_Lt);
12359 -----------
12360 -- OC_Lt --
12361 -----------
12363 function OC_Lt (Op1, Op2 : Natural) return Boolean is
12364 begin
12365 return OC_Fbit (Op1) < OC_Fbit (Op2);
12366 end OC_Lt;
12368 -------------
12369 -- OC_Move --
12370 -------------
12372 procedure OC_Move (From : Natural; To : Natural) is
12373 begin
12374 OC_Fbit (To) := OC_Fbit (From);
12375 OC_Lbit (To) := OC_Lbit (From);
12376 end OC_Move;
12378 -- Start of processing for Overlap_Check
12380 begin
12381 CC := First (Component_Clauses (N));
12382 while Present (CC) loop
12384 -- Exclude component clause already marked in error
12386 if not Error_Posted (CC) then
12387 Find_Component;
12389 if Present (Comp) then
12390 OC_Count := OC_Count + 1;
12391 OC_Fbit (OC_Count) := Fbit;
12392 OC_Lbit (OC_Count) := Lbit;
12393 end if;
12394 end if;
12396 Next (CC);
12397 end loop;
12399 Sorting.Sort (OC_Count);
12401 Overlap_Check_Required := False;
12402 for J in 1 .. OC_Count - 1 loop
12403 if OC_Lbit (J) >= OC_Fbit (J + 1) then
12404 Overlap_Check_Required := True;
12405 exit;
12406 end if;
12407 end loop;
12408 end Overlap_Check1;
12409 end if;
12411 -- If Overlap_Check_Required is still True, then we have to do the full
12412 -- scale overlap check, since we have at least two fields that do
12413 -- overlap, and we need to know if that is OK since they are in
12414 -- different variant, or whether we have a definite problem.
12416 if Overlap_Check_Required then
12417 Overlap_Check2 : declare
12418 C1_Ent, C2_Ent : Entity_Id;
12419 -- Entities of components being checked for overlap
12421 Clist : Node_Id;
12422 -- Component_List node whose Component_Items are being checked
12424 Citem : Node_Id;
12425 -- Component declaration for component being checked
12427 begin
12428 C1_Ent := First_Entity (Base_Type (Rectype));
12430 -- Loop through all components in record. For each component check
12431 -- for overlap with any of the preceding elements on the component
12432 -- list containing the component and also, if the component is in
12433 -- a variant, check against components outside the case structure.
12434 -- This latter test is repeated recursively up the variant tree.
12436 Main_Component_Loop : while Present (C1_Ent) loop
12437 if Ekind (C1_Ent) not in E_Component | E_Discriminant then
12438 goto Continue_Main_Component_Loop;
12439 end if;
12441 -- Skip overlap check if entity has no declaration node. This
12442 -- happens with discriminants in constrained derived types.
12443 -- Possibly we are missing some checks as a result, but that
12444 -- does not seem terribly serious.
12446 if No (Declaration_Node (C1_Ent)) then
12447 goto Continue_Main_Component_Loop;
12448 end if;
12450 Clist := Parent (List_Containing (Declaration_Node (C1_Ent)));
12452 -- Loop through component lists that need checking. Check the
12453 -- current component list and all lists in variants above us.
12455 Component_List_Loop : loop
12457 -- If derived type definition, go to full declaration
12458 -- If at outer level, check discriminants if there are any.
12460 if Nkind (Clist) = N_Derived_Type_Definition then
12461 Clist := Parent (Clist);
12462 end if;
12464 -- Outer level of record definition, check discriminants
12465 -- but be careful not to flag a non-stored discriminant
12466 -- and the stored discriminant it renames as overlapping.
12468 if Nkind (Clist) in N_Full_Type_Declaration
12469 | N_Private_Type_Declaration
12470 then
12471 if Has_Discriminants (Defining_Identifier (Clist)) then
12472 C2_Ent :=
12473 First_Discriminant (Defining_Identifier (Clist));
12474 while Present (C2_Ent) loop
12475 exit when
12476 Original_Record_Component (C1_Ent) =
12477 Original_Record_Component (C2_Ent);
12478 Check_Component_Overlap (C1_Ent, C2_Ent);
12479 Next_Discriminant (C2_Ent);
12480 end loop;
12481 end if;
12483 -- Record extension case
12485 elsif Nkind (Clist) = N_Derived_Type_Definition then
12486 Clist := Empty;
12488 -- Otherwise check one component list
12490 else
12491 Citem := First (Component_Items (Clist));
12492 while Present (Citem) loop
12493 if Nkind (Citem) = N_Component_Declaration then
12494 C2_Ent := Defining_Identifier (Citem);
12495 exit when C1_Ent = C2_Ent;
12496 Check_Component_Overlap (C1_Ent, C2_Ent);
12497 end if;
12499 Next (Citem);
12500 end loop;
12501 end if;
12503 -- Check for variants above us (the parent of the Clist can
12504 -- be a variant, in which case its parent is a variant part,
12505 -- and the parent of the variant part is a component list
12506 -- whose components must all be checked against the current
12507 -- component for overlap).
12509 if Nkind (Parent (Clist)) = N_Variant then
12510 Clist := Parent (Parent (Parent (Clist)));
12512 -- Check for possible discriminant part in record, this
12513 -- is treated essentially as another level in the
12514 -- recursion. For this case the parent of the component
12515 -- list is the record definition, and its parent is the
12516 -- full type declaration containing the discriminant
12517 -- specifications.
12519 elsif Nkind (Parent (Clist)) = N_Record_Definition then
12520 Clist := Parent (Parent ((Clist)));
12522 -- If neither of these two cases, we are at the top of
12523 -- the tree.
12525 else
12526 exit Component_List_Loop;
12527 end if;
12528 end loop Component_List_Loop;
12530 <<Continue_Main_Component_Loop>>
12531 Next_Entity (C1_Ent);
12533 end loop Main_Component_Loop;
12534 end Overlap_Check2;
12535 end if;
12537 -- Skip the following warnings if overlap was detected; programmer
12538 -- should fix the errors first. Also skip the warnings for types in
12539 -- generics, because their representation information is not fully
12540 -- computed.
12542 if not Overlap_Detected and then not In_Generic_Scope (Rectype) then
12543 -- Check for record holes (gaps)
12545 if Warn_On_Record_Holes then
12546 declare
12547 Ignore : Uint;
12548 begin
12549 Record_Hole_Check (Rectype, After_Last => Ignore, Warn => True);
12550 end;
12551 end if;
12553 -- Check for out-of-order component clauses
12555 if Warn_On_Component_Order then
12556 Component_Order_Check (Rectype);
12557 end if;
12558 end if;
12560 -- For records that have component clauses for all components, and whose
12561 -- size is less than or equal to 32, and which can be fully packed, we
12562 -- need to know the size in the front end to activate possible packed
12563 -- array processing where the component type is a record.
12565 -- At this stage Hbit + 1 represents the first unused bit from all the
12566 -- component clauses processed, so if the component clauses are
12567 -- complete, then this is the length of the record.
12569 -- For records longer than System.Storage_Unit, and for those where not
12570 -- all components have component clauses, the back end determines the
12571 -- length (it may for example be appropriate to round up the size
12572 -- to some convenient boundary, based on alignment considerations, etc).
12574 if not Known_RM_Size (Rectype)
12575 and then Hbit + 1 <= 32
12576 and then not Strict_Alignment (Rectype)
12577 then
12579 -- Nothing to do if at least one component has no component clause
12581 Comp := First_Component_Or_Discriminant (Rectype);
12582 while Present (Comp) loop
12583 exit when No (Component_Clause (Comp));
12584 Next_Component_Or_Discriminant (Comp);
12585 end loop;
12587 -- If we fall out of loop, all components have component clauses
12588 -- and so we can set the size to the maximum value.
12590 if No (Comp) then
12591 Set_RM_Size (Rectype, Hbit + 1);
12592 end if;
12593 end if;
12594 end Check_Record_Representation_Clause;
12596 ----------------
12597 -- Check_Size --
12598 ----------------
12600 procedure Check_Size
12601 (N : Node_Id;
12602 T : Entity_Id;
12603 Siz : Uint;
12604 Biased : out Boolean)
12606 procedure Size_Too_Small_Error (Min_Siz : Uint);
12607 -- Emit an error concerning illegal size Siz. Min_Siz denotes the
12608 -- minimum size.
12610 --------------------------
12611 -- Size_Too_Small_Error --
12612 --------------------------
12614 procedure Size_Too_Small_Error (Min_Siz : Uint) is
12615 begin
12616 Error_Msg_Uint_1 := Min_Siz;
12617 Error_Msg_NE (Size_Too_Small_Message, N, T);
12618 end Size_Too_Small_Error;
12620 -- Local variables
12622 UT : constant Entity_Id := Underlying_Type (T);
12623 M : Uint;
12625 -- Start of processing for Check_Size
12627 begin
12628 Biased := False;
12630 -- Reject patently improper size values
12632 if Is_Elementary_Type (T)
12633 and then Siz > Int'Last
12634 then
12635 Error_Msg_N ("Size value too large for elementary type", N);
12637 if Nkind (Original_Node (N)) = N_Op_Expon then
12638 Error_Msg_N
12639 ("\maybe '* was meant, rather than '*'*", Original_Node (N));
12640 end if;
12641 end if;
12643 -- Dismiss generic types
12645 if Is_Generic_Type (T)
12646 or else
12647 Is_Generic_Type (UT)
12648 or else
12649 Is_Generic_Type (Root_Type (UT))
12650 then
12651 return;
12653 -- Guard against previous errors
12655 elsif No (UT) or else UT = Any_Type then
12656 Check_Error_Detected;
12657 return;
12659 -- Check case of bit packed array
12661 elsif Is_Array_Type (UT)
12662 and then Known_Static_Component_Size (UT)
12663 and then Is_Bit_Packed_Array (UT)
12664 then
12665 declare
12666 Asiz : Uint;
12667 Indx : Node_Id;
12668 Ityp : Entity_Id;
12670 begin
12671 Asiz := Component_Size (UT);
12672 Indx := First_Index (UT);
12673 loop
12674 Ityp := Etype (Indx);
12676 -- If non-static bound, then we are not in the business of
12677 -- trying to check the length, and indeed an error will be
12678 -- issued elsewhere, since sizes of non-static array types
12679 -- cannot be set implicitly or explicitly.
12681 if not Is_OK_Static_Subtype (Ityp) then
12682 return;
12683 end if;
12685 -- Otherwise accumulate next dimension
12687 Asiz := Asiz * (Expr_Value (Type_High_Bound (Ityp)) -
12688 Expr_Value (Type_Low_Bound (Ityp)) +
12689 Uint_1);
12691 Next_Index (Indx);
12692 exit when No (Indx);
12693 end loop;
12695 if Asiz <= Siz then
12696 return;
12698 else
12699 Size_Too_Small_Error (Asiz);
12700 end if;
12701 end;
12703 -- All other composite types are ignored
12705 elsif Is_Composite_Type (UT) then
12706 return;
12708 -- For fixed-point types, don't check minimum if type is not frozen,
12709 -- since we don't know all the characteristics of the type that can
12710 -- affect the size (e.g. a specified small) till freeze time.
12712 elsif Is_Fixed_Point_Type (UT) and then not Is_Frozen (UT) then
12713 null;
12715 -- Cases for which a minimum check is required
12717 else
12718 -- Ignore if specified size is correct for the type
12720 if Known_Esize (UT) and then Siz = Esize (UT) then
12721 return;
12722 end if;
12724 -- Otherwise get minimum size
12726 M := UI_From_Int (Minimum_Size (UT));
12728 if Siz < M then
12730 -- Size is less than minimum size, but one possibility remains
12731 -- that we can manage with the new size if we bias the type.
12733 M := UI_From_Int (Minimum_Size (UT, Biased => True));
12735 if Siz < M then
12736 Size_Too_Small_Error (M);
12737 else
12738 Biased := True;
12739 end if;
12740 end if;
12741 end if;
12742 end Check_Size;
12744 --------------------------
12745 -- Freeze_Entity_Checks --
12746 --------------------------
12748 procedure Freeze_Entity_Checks (N : Node_Id) is
12749 procedure Hide_Non_Overridden_Subprograms (Typ : Entity_Id);
12750 -- Inspect the primitive operations of type Typ and hide all pairs of
12751 -- implicitly declared non-overridden non-fully conformant homographs
12752 -- (Ada RM 8.3 12.3/2).
12754 -------------------------------------
12755 -- Hide_Non_Overridden_Subprograms --
12756 -------------------------------------
12758 procedure Hide_Non_Overridden_Subprograms (Typ : Entity_Id) is
12759 procedure Hide_Matching_Homographs
12760 (Subp_Id : Entity_Id;
12761 Start_Elmt : Elmt_Id);
12762 -- Inspect a list of primitive operations starting with Start_Elmt
12763 -- and find matching implicitly declared non-overridden non-fully
12764 -- conformant homographs of Subp_Id. If found, all matches along
12765 -- with Subp_Id are hidden from all visibility.
12767 function Is_Non_Overridden_Or_Null_Procedure
12768 (Subp_Id : Entity_Id) return Boolean;
12769 -- Determine whether subprogram Subp_Id is implicitly declared non-
12770 -- overridden subprogram or an implicitly declared null procedure.
12772 ------------------------------
12773 -- Hide_Matching_Homographs --
12774 ------------------------------
12776 procedure Hide_Matching_Homographs
12777 (Subp_Id : Entity_Id;
12778 Start_Elmt : Elmt_Id)
12780 Prim : Entity_Id;
12781 Prim_Elmt : Elmt_Id;
12783 begin
12784 Prim_Elmt := Start_Elmt;
12785 while Present (Prim_Elmt) loop
12786 Prim := Node (Prim_Elmt);
12788 -- The current primitive is implicitly declared non-overridden
12789 -- non-fully conformant homograph of Subp_Id. Both subprograms
12790 -- must be hidden from visibility.
12792 if Chars (Prim) = Chars (Subp_Id)
12793 and then Is_Non_Overridden_Or_Null_Procedure (Prim)
12794 and then not Fully_Conformant (Prim, Subp_Id)
12795 then
12796 Set_Is_Hidden_Non_Overridden_Subpgm (Prim);
12797 Set_Is_Immediately_Visible (Prim, False);
12798 Set_Is_Potentially_Use_Visible (Prim, False);
12800 Set_Is_Hidden_Non_Overridden_Subpgm (Subp_Id);
12801 Set_Is_Immediately_Visible (Subp_Id, False);
12802 Set_Is_Potentially_Use_Visible (Subp_Id, False);
12803 end if;
12805 Next_Elmt (Prim_Elmt);
12806 end loop;
12807 end Hide_Matching_Homographs;
12809 -----------------------------------------
12810 -- Is_Non_Overridden_Or_Null_Procedure --
12811 -----------------------------------------
12813 function Is_Non_Overridden_Or_Null_Procedure
12814 (Subp_Id : Entity_Id) return Boolean
12816 Alias_Id : Entity_Id;
12818 begin
12819 -- The subprogram is inherited (implicitly declared), it does not
12820 -- override and does not cover a primitive of an interface.
12822 if Ekind (Subp_Id) in E_Function | E_Procedure
12823 and then Present (Alias (Subp_Id))
12824 and then No (Interface_Alias (Subp_Id))
12825 and then No (Overridden_Operation (Subp_Id))
12826 then
12827 Alias_Id := Alias (Subp_Id);
12829 if Requires_Overriding (Alias_Id) then
12830 return True;
12832 elsif Nkind (Parent (Alias_Id)) = N_Procedure_Specification
12833 and then Null_Present (Parent (Alias_Id))
12834 then
12835 return True;
12836 end if;
12837 end if;
12839 return False;
12840 end Is_Non_Overridden_Or_Null_Procedure;
12842 -- Local variables
12844 Prim_Ops : constant Elist_Id := Direct_Primitive_Operations (Typ);
12845 Prim : Entity_Id;
12846 Prim_Elmt : Elmt_Id;
12848 -- Start of processing for Hide_Non_Overridden_Subprograms
12850 begin
12851 -- Inspect the list of primitives looking for non-overridden
12852 -- subprograms.
12854 if Present (Prim_Ops) then
12855 Prim_Elmt := First_Elmt (Prim_Ops);
12856 while Present (Prim_Elmt) loop
12857 Prim := Node (Prim_Elmt);
12858 Next_Elmt (Prim_Elmt);
12860 if Is_Non_Overridden_Or_Null_Procedure (Prim) then
12861 Hide_Matching_Homographs
12862 (Subp_Id => Prim,
12863 Start_Elmt => Prim_Elmt);
12864 end if;
12865 end loop;
12866 end if;
12867 end Hide_Non_Overridden_Subprograms;
12869 -- Local variables
12871 E : constant Entity_Id := Entity (N);
12873 Nongeneric_Case : constant Boolean := Nkind (N) = N_Freeze_Entity;
12874 -- True in nongeneric case. Some of the processing here is skipped
12875 -- for the generic case since it is not needed. Basically in the
12876 -- generic case, we only need to do stuff that might generate error
12877 -- messages or warnings.
12879 -- Start of processing for Freeze_Entity_Checks
12881 begin
12882 -- Remember that we are processing a freezing entity. Required to
12883 -- ensure correct decoration of internal entities associated with
12884 -- interfaces (see New_Overloaded_Entity).
12886 Inside_Freezing_Actions := Inside_Freezing_Actions + 1;
12888 -- For tagged types covering interfaces add internal entities that link
12889 -- the primitives of the interfaces with the primitives that cover them.
12890 -- Note: These entities were originally generated only when generating
12891 -- code because their main purpose was to provide support to initialize
12892 -- the secondary dispatch tables. They are also used to locate
12893 -- primitives covering interfaces when processing generics (see
12894 -- Derive_Subprograms).
12896 -- This is not needed in the generic case
12898 if Ada_Version >= Ada_2005
12899 and then Nongeneric_Case
12900 and then Ekind (E) = E_Record_Type
12901 and then Is_Tagged_Type (E)
12902 and then not Is_Interface (E)
12903 and then Has_Interfaces (E)
12904 then
12905 -- This would be a good common place to call the routine that checks
12906 -- overriding of interface primitives (and thus factorize calls to
12907 -- Check_Abstract_Overriding located at different contexts in the
12908 -- compiler). However, this is not possible because it causes
12909 -- spurious errors in case of late overriding.
12911 Add_Internal_Interface_Entities (E);
12912 end if;
12914 -- After all forms of overriding have been resolved, a tagged type may
12915 -- be left with a set of implicitly declared and possibly erroneous
12916 -- abstract subprograms, null procedures and subprograms that require
12917 -- overriding. If this set contains fully conformant homographs, then
12918 -- one is chosen arbitrarily (already done during resolution), otherwise
12919 -- all remaining non-fully conformant homographs are hidden from
12920 -- visibility (Ada RM 8.3 12.3/2).
12922 if Is_Tagged_Type (E) then
12923 Hide_Non_Overridden_Subprograms (E);
12924 end if;
12926 -- Check CPP types
12928 if Ekind (E) = E_Record_Type
12929 and then Is_CPP_Class (E)
12930 and then Is_Tagged_Type (E)
12931 and then Tagged_Type_Expansion
12932 then
12933 if CPP_Num_Prims (E) = 0 then
12935 -- If the CPP type has user defined components then it must import
12936 -- primitives from C++. This is required because if the C++ class
12937 -- has no primitives then the C++ compiler does not added the _tag
12938 -- component to the type.
12940 if First_Entity (E) /= Last_Entity (E) then
12941 Error_Msg_N
12942 ("'C'P'P type must import at least one primitive from C++??",
12944 end if;
12945 end if;
12947 -- Check that all its primitives are abstract or imported from C++.
12948 -- Check also availability of the C++ constructor.
12950 declare
12951 Has_Constructors : constant Boolean := Has_CPP_Constructors (E);
12952 Elmt : Elmt_Id;
12953 Error_Reported : Boolean := False;
12954 Prim : Node_Id;
12956 begin
12957 Elmt := First_Elmt (Primitive_Operations (E));
12958 while Present (Elmt) loop
12959 Prim := Node (Elmt);
12961 if Comes_From_Source (Prim) then
12962 if Is_Abstract_Subprogram (Prim) then
12963 null;
12965 elsif not Is_Imported (Prim)
12966 or else Convention (Prim) /= Convention_CPP
12967 then
12968 Error_Msg_N
12969 ("primitives of 'C'P'P types must be imported from C++ "
12970 & "or abstract??", Prim);
12972 elsif not Has_Constructors
12973 and then not Error_Reported
12974 then
12975 Error_Msg_Name_1 := Chars (E);
12976 Error_Msg_N
12977 ("??'C'P'P constructor required for type %", Prim);
12978 Error_Reported := True;
12979 end if;
12980 end if;
12982 Next_Elmt (Elmt);
12983 end loop;
12984 end;
12985 end if;
12987 -- Check Ada derivation of CPP type
12989 if Expander_Active -- why? losing errors in -gnatc mode???
12990 and then Present (Etype (E)) -- defend against errors
12991 and then Tagged_Type_Expansion
12992 and then Ekind (E) = E_Record_Type
12993 and then Etype (E) /= E
12994 and then Is_CPP_Class (Etype (E))
12995 and then CPP_Num_Prims (Etype (E)) > 0
12996 and then not Is_CPP_Class (E)
12997 and then not Has_CPP_Constructors (Etype (E))
12998 then
12999 -- If the parent has C++ primitives but it has no constructor then
13000 -- check that all the primitives are overridden in this derivation;
13001 -- otherwise the constructor of the parent is needed to build the
13002 -- dispatch table.
13004 declare
13005 Elmt : Elmt_Id;
13006 Prim : Node_Id;
13008 begin
13009 Elmt := First_Elmt (Primitive_Operations (E));
13010 while Present (Elmt) loop
13011 Prim := Node (Elmt);
13013 if not Is_Abstract_Subprogram (Prim)
13014 and then No (Interface_Alias (Prim))
13015 and then Find_Dispatching_Type (Ultimate_Alias (Prim)) /= E
13016 then
13017 Error_Msg_Name_1 := Chars (Etype (E));
13018 Error_Msg_N
13019 ("'C'P'P constructor required for parent type %", E);
13020 exit;
13021 end if;
13023 Next_Elmt (Elmt);
13024 end loop;
13025 end;
13026 end if;
13028 Inside_Freezing_Actions := Inside_Freezing_Actions - 1;
13030 -- For a record type, deal with variant parts. This has to be delayed to
13031 -- this point, because of the issue of statically predicated subtypes,
13032 -- which we have to ensure are frozen before checking choices, since we
13033 -- need to have the static choice list set.
13035 if Is_Record_Type (E) then
13036 Check_Variant_Part : declare
13037 D : constant Node_Id := Declaration_Node (E);
13038 T : Node_Id;
13039 C : Node_Id;
13040 VP : Node_Id;
13042 Others_Present : Boolean;
13043 pragma Warnings (Off, Others_Present);
13044 -- Indicates others present, not used in this case
13046 procedure Non_Static_Choice_Error (Choice : Node_Id);
13047 -- Error routine invoked by the generic instantiation below when
13048 -- the variant part has a non static choice.
13050 procedure Process_Declarations (Variant : Node_Id);
13051 -- Processes declarations associated with a variant. We analyzed
13052 -- the declarations earlier (in Sem_Ch3.Analyze_Variant_Part),
13053 -- but we still need the recursive call to Check_Choices for any
13054 -- nested variant to get its choices properly processed. This is
13055 -- also where we expand out the choices if expansion is active.
13057 package Variant_Choices_Processing is new
13058 Generic_Check_Choices
13059 (Process_Empty_Choice => No_OP,
13060 Process_Non_Static_Choice => Non_Static_Choice_Error,
13061 Process_Associated_Node => Process_Declarations);
13062 use Variant_Choices_Processing;
13064 -----------------------------
13065 -- Non_Static_Choice_Error --
13066 -----------------------------
13068 procedure Non_Static_Choice_Error (Choice : Node_Id) is
13069 begin
13070 Flag_Non_Static_Expr
13071 ("choice given in variant part is not static!", Choice);
13072 end Non_Static_Choice_Error;
13074 --------------------------
13075 -- Process_Declarations --
13076 --------------------------
13078 procedure Process_Declarations (Variant : Node_Id) is
13079 CL : constant Node_Id := Component_List (Variant);
13080 VP : Node_Id;
13082 begin
13083 -- Check for static predicate present in this variant
13085 if Has_SP_Choice (Variant) then
13087 -- Here we expand. You might expect to find this call in
13088 -- Expand_N_Variant_Part, but that is called when we first
13089 -- see the variant part, and we cannot do this expansion
13090 -- earlier than the freeze point, since for statically
13091 -- predicated subtypes, the predicate is not known till
13092 -- the freeze point.
13094 -- Furthermore, we do this expansion even if the expander
13095 -- is not active, because other semantic processing, e.g.
13096 -- for aggregates, requires the expanded list of choices.
13098 -- If the expander is not active, then we can't just clobber
13099 -- the list since it would invalidate the tree.
13100 -- So we have to rewrite the variant part with a Rewrite
13101 -- call that replaces it with a copy and clobber the copy.
13103 if not Expander_Active then
13104 declare
13105 NewV : constant Node_Id := New_Copy (Variant);
13106 begin
13107 Set_Discrete_Choices
13108 (NewV, New_Copy_List (Discrete_Choices (Variant)));
13109 Rewrite (Variant, NewV);
13110 end;
13111 end if;
13113 Expand_Static_Predicates_In_Choices (Variant);
13114 end if;
13116 -- We don't need to worry about the declarations in the variant
13117 -- (since they were analyzed by Analyze_Choices when we first
13118 -- encountered the variant), but we do need to take care of
13119 -- expansion of any nested variants.
13121 if not Null_Present (CL) then
13122 VP := Variant_Part (CL);
13124 if Present (VP) then
13125 Check_Choices
13126 (VP, Variants (VP), Etype (Name (VP)), Others_Present);
13127 end if;
13128 end if;
13129 end Process_Declarations;
13131 -- Start of processing for Check_Variant_Part
13133 begin
13134 -- Find component list
13136 C := Empty;
13138 if Nkind (D) = N_Full_Type_Declaration then
13139 T := Type_Definition (D);
13141 if Nkind (T) = N_Record_Definition then
13142 C := Component_List (T);
13144 elsif Nkind (T) = N_Derived_Type_Definition
13145 and then Present (Record_Extension_Part (T))
13146 then
13147 C := Component_List (Record_Extension_Part (T));
13148 end if;
13149 end if;
13151 -- Case of variant part present
13153 if Present (C) and then Present (Variant_Part (C)) then
13154 VP := Variant_Part (C);
13156 -- Check choices
13158 Check_Choices
13159 (VP, Variants (VP), Etype (Name (VP)), Others_Present);
13161 -- If the last variant does not contain the Others choice,
13162 -- replace it with an N_Others_Choice node since Gigi always
13163 -- wants an Others. Note that we do not bother to call Analyze
13164 -- on the modified variant part, since its only effect would be
13165 -- to compute the Others_Discrete_Choices node laboriously, and
13166 -- of course we already know the list of choices corresponding
13167 -- to the others choice (it's the list we're replacing).
13169 -- We only want to do this if the expander is active, since
13170 -- we do not want to clobber the tree.
13172 if Expander_Active then
13173 declare
13174 Last_Var : constant Node_Id :=
13175 Last_Non_Pragma (Variants (VP));
13177 Others_Node : Node_Id;
13179 begin
13180 if Nkind (First (Discrete_Choices (Last_Var))) /=
13181 N_Others_Choice
13182 then
13183 Others_Node := Make_Others_Choice (Sloc (Last_Var));
13184 Set_Others_Discrete_Choices
13185 (Others_Node, Discrete_Choices (Last_Var));
13186 Set_Discrete_Choices
13187 (Last_Var, New_List (Others_Node));
13188 end if;
13189 end;
13190 end if;
13191 end if;
13192 end Check_Variant_Part;
13193 end if;
13195 -- If we have a type with predicates, build predicate function. This is
13196 -- not needed in the generic case, nor within e.g. TSS subprograms and
13197 -- other predefined primitives. For a derived type, ensure that the
13198 -- parent type is already frozen so that its predicate function has been
13199 -- constructed already. This is necessary if the parent is declared
13200 -- in a nested package and its own freeze point has not been reached.
13202 if Is_Type (E)
13203 and then Nongeneric_Case
13204 and then Has_Predicates (E)
13205 and then Predicate_Check_In_Scope (N)
13206 then
13207 declare
13208 Atyp : constant Entity_Id := Nearest_Ancestor (E);
13210 begin
13211 if Present (Atyp)
13212 and then Has_Predicates (Atyp)
13213 and then not Is_Frozen (Atyp)
13214 then
13215 Freeze_Before (N, Atyp);
13216 end if;
13217 end;
13219 -- Before we build a predicate function, ensure that discriminant
13220 -- checking functions are available. The predicate function might
13221 -- need to call these functions if the predicate references any
13222 -- components declared in a variant part.
13224 if Ekind (E) = E_Record_Type and then Has_Discriminants (E) then
13225 Build_Or_Copy_Discr_Checking_Funcs (Parent (E));
13226 end if;
13228 Build_Predicate_Function (E, N);
13229 end if;
13231 -- If type has delayed aspects, this is where we do the preanalysis at
13232 -- the freeze point, as part of the consistent visibility check. Note
13233 -- that this must be done after calling Build_Predicate_Function or
13234 -- Build_Invariant_Procedure since these subprograms fix occurrences of
13235 -- the subtype name in the saved expression so that they will not cause
13236 -- trouble in the preanalysis.
13238 -- This is also not needed in the generic case
13240 if Nongeneric_Case
13241 and then Has_Delayed_Aspects (E)
13242 and then Scope (E) = Current_Scope
13243 then
13244 declare
13245 Ritem : Node_Id;
13247 begin
13248 -- Look for aspect specification entries for this entity
13250 Ritem := First_Rep_Item (E);
13251 while Present (Ritem) loop
13252 if Nkind (Ritem) = N_Aspect_Specification
13253 and then Entity (Ritem) = E
13254 and then Is_Delayed_Aspect (Ritem)
13255 then
13256 if Get_Aspect_Id (Ritem) in Aspect_CPU
13257 | Aspect_Dynamic_Predicate
13258 | Aspect_Predicate
13259 | Aspect_Static_Predicate
13260 | Aspect_Priority
13261 then
13262 -- Retrieve the visibility to components and discriminants
13263 -- in order to properly analyze the aspects.
13265 Push_Type (E);
13266 Check_Aspect_At_Freeze_Point (Ritem);
13268 -- In the case of predicate aspects, there will be
13269 -- a corresponding Predicate pragma associated with
13270 -- the aspect, and the expression of the pragma also
13271 -- needs to be analyzed at this point, to ensure that
13272 -- Save_Global_References will capture global refs in
13273 -- expressions that occur in generic bodies, for proper
13274 -- later resolution of the pragma in instantiations.
13276 if Is_Type (E)
13277 and then Inside_A_Generic
13278 and then Has_Predicates (E)
13279 and then Present (Aspect_Rep_Item (Ritem))
13280 then
13281 declare
13282 Pragma_Args : constant List_Id :=
13283 Pragma_Argument_Associations
13284 (Aspect_Rep_Item (Ritem));
13285 Pragma_Expr : constant Node_Id :=
13286 Expression (Next (First (Pragma_Args)));
13287 begin
13288 if Present (Pragma_Expr) then
13289 Analyze_And_Resolve
13290 (Pragma_Expr, Standard_Boolean);
13291 end if;
13292 end;
13293 end if;
13295 Pop_Type (E);
13297 else
13298 Check_Aspect_At_Freeze_Point (Ritem);
13299 end if;
13301 -- A pragma Predicate should be checked like one of the
13302 -- corresponding aspects, wrt possible misuse of ghost
13303 -- entities.
13305 elsif Nkind (Ritem) = N_Pragma
13306 and then No (Corresponding_Aspect (Ritem))
13307 and then
13308 Get_Pragma_Id (Pragma_Name (Ritem)) = Pragma_Predicate
13309 then
13310 -- Retrieve the visibility to components and discriminants
13311 -- in order to properly analyze the pragma.
13313 declare
13314 Arg : constant Node_Id :=
13315 Next (First (Pragma_Argument_Associations (Ritem)));
13316 begin
13317 Push_Type (E);
13318 Preanalyze_Spec_Expression
13319 (Expression (Arg), Standard_Boolean);
13320 Pop_Type (E);
13321 end;
13322 end if;
13324 Next_Rep_Item (Ritem);
13325 end loop;
13326 end;
13327 end if;
13329 if not In_Generic_Scope (E)
13330 and then Ekind (E) = E_Record_Type
13331 and then Is_Tagged_Type (E)
13332 then
13333 Process_Class_Conditions_At_Freeze_Point (E);
13334 end if;
13335 end Freeze_Entity_Checks;
13337 -------------------------
13338 -- Get_Alignment_Value --
13339 -------------------------
13341 function Get_Alignment_Value (Expr : Node_Id) return Uint is
13342 Align : constant Uint := Static_Integer (Expr);
13344 begin
13345 if No (Align) then
13346 return No_Uint;
13348 elsif Align < 0 then
13349 Error_Msg_N ("alignment value must be positive", Expr);
13350 return No_Uint;
13352 -- If Alignment is specified to be 0, we treat it the same as 1
13354 elsif Align = 0 then
13355 return Uint_1;
13357 else
13358 for J in Int range 0 .. 64 loop
13359 declare
13360 M : constant Uint := Uint_2 ** J;
13362 begin
13363 exit when M = Align;
13365 if M > Align then
13366 Error_Msg_N ("alignment value must be power of 2", Expr);
13367 return No_Uint;
13368 end if;
13369 end;
13370 end loop;
13372 return Align;
13373 end if;
13374 end Get_Alignment_Value;
13376 -----------------------------------
13377 -- Has_Compatible_Representation --
13378 -----------------------------------
13380 function Has_Compatible_Representation
13381 (Target_Typ, Operand_Typ : Entity_Id) return Boolean
13383 -- The subtype-specific representation attributes (Size and Alignment)
13384 -- do not affect representation from the point of view of this function.
13386 T1 : constant Entity_Id := Implementation_Base_Type (Target_Typ);
13387 T2 : constant Entity_Id := Implementation_Base_Type (Operand_Typ);
13389 begin
13390 -- Return true immediately for the same base type
13392 if T1 = T2 then
13393 return True;
13395 -- Tagged types always have the same representation, because it is not
13396 -- possible to specify different representations for common fields.
13398 elsif Is_Tagged_Type (T1) then
13399 return True;
13401 -- Representations are definitely different if conventions differ
13403 elsif Convention (T1) /= Convention (T2) then
13404 return False;
13406 -- Representations are different if component alignments or scalar
13407 -- storage orders differ.
13409 elsif (Is_Record_Type (T1) or else Is_Array_Type (T1))
13410 and then
13411 (Is_Record_Type (T2) or else Is_Array_Type (T2))
13412 and then (Component_Alignment (T1) /= Component_Alignment (T2)
13413 or else
13414 Reverse_Storage_Order (T1) /= Reverse_Storage_Order (T2))
13415 then
13416 return False;
13417 end if;
13419 -- For arrays, the only real issue is component size. If we know the
13420 -- component size for both arrays, and it is the same, then that's
13421 -- good enough to know we don't have a change of representation.
13423 if Is_Array_Type (T1) then
13425 -- In a view conversion, if the target type is an array type having
13426 -- aliased components and the operand type is an array type having
13427 -- unaliased components, then a new object is created (4.6(58.3/4)).
13429 if Has_Aliased_Components (T1)
13430 and then not Has_Aliased_Components (T2)
13431 then
13432 return False;
13433 end if;
13435 if Known_Component_Size (T1)
13436 and then Known_Component_Size (T2)
13437 and then Component_Size (T1) = Component_Size (T2)
13438 then
13439 return True;
13440 end if;
13442 -- For records, representations are different if reordering differs
13444 elsif Is_Record_Type (T1)
13445 and then Is_Record_Type (T2)
13446 and then No_Reordering (T1) /= No_Reordering (T2)
13447 then
13448 return False;
13449 end if;
13451 -- Types definitely have same representation if neither has non-standard
13452 -- representation since default representations are always consistent.
13453 -- If only one has non-standard representation, and the other does not,
13454 -- then we consider that they do not have the same representation. They
13455 -- might, but there is no way of telling early enough.
13457 if Has_Non_Standard_Rep (T1) then
13458 if not Has_Non_Standard_Rep (T2) then
13459 return False;
13460 end if;
13461 else
13462 return not Has_Non_Standard_Rep (T2);
13463 end if;
13465 -- Here the two types both have non-standard representation, and we need
13466 -- to determine if they have the same non-standard representation.
13468 -- For arrays, we simply need to test if the component sizes are the
13469 -- same. Pragma Pack is reflected in modified component sizes, so this
13470 -- check also deals with pragma Pack.
13472 if Is_Array_Type (T1) then
13473 return Component_Size (T1) = Component_Size (T2);
13475 -- Case of record types
13477 elsif Is_Record_Type (T1) then
13479 -- Packed status must conform
13481 if Is_Packed (T1) /= Is_Packed (T2) then
13482 return False;
13484 -- If the operand type is derived from the target type and no clause
13485 -- has been given after the derivation, then the representations are
13486 -- the same since the derived type inherits that of the parent type.
13488 elsif Is_Derived_Type (T2)
13489 and then Etype (T2) = T1
13490 and then not Has_Record_Rep_Clause (T2)
13491 then
13492 return True;
13494 -- Otherwise we must check components. Typ2 maybe a constrained
13495 -- subtype with fewer components, so we compare the components
13496 -- of the base types.
13498 else
13499 Record_Case : declare
13500 CD1, CD2 : Entity_Id;
13502 function Same_Rep return Boolean;
13503 -- CD1 and CD2 are either components or discriminants. This
13504 -- function tests whether they have the same representation.
13506 --------------
13507 -- Same_Rep --
13508 --------------
13510 function Same_Rep return Boolean is
13511 begin
13512 if No (Component_Clause (CD1)) then
13513 return No (Component_Clause (CD2));
13514 else
13515 -- Note: at this point, component clauses have been
13516 -- normalized to the default bit order, so that the
13517 -- comparison of Component_Bit_Offsets is meaningful.
13519 return
13520 Present (Component_Clause (CD2))
13521 and then
13522 Component_Bit_Offset (CD1) = Component_Bit_Offset (CD2)
13523 and then
13524 Esize (CD1) = Esize (CD2);
13525 end if;
13526 end Same_Rep;
13528 -- Start of processing for Record_Case
13530 begin
13531 if Has_Discriminants (T1) then
13533 -- The number of discriminants may be different if the
13534 -- derived type has fewer (constrained by values). The
13535 -- invisible discriminants retain the representation of
13536 -- the original, so the discrepancy does not per se
13537 -- indicate a different representation.
13539 CD1 := First_Discriminant (T1);
13540 CD2 := First_Discriminant (T2);
13541 while Present (CD1) and then Present (CD2) loop
13542 if not Same_Rep then
13543 return False;
13544 else
13545 Next_Discriminant (CD1);
13546 Next_Discriminant (CD2);
13547 end if;
13548 end loop;
13549 end if;
13551 CD1 := First_Component (Underlying_Type (Base_Type (T1)));
13552 CD2 := First_Component (Underlying_Type (Base_Type (T2)));
13553 while Present (CD1) loop
13554 if not Same_Rep then
13555 return False;
13556 else
13557 Next_Component (CD1);
13558 Next_Component (CD2);
13559 end if;
13560 end loop;
13562 return True;
13563 end Record_Case;
13564 end if;
13566 -- For enumeration types, we must check each literal to see if the
13567 -- representation is the same. Note that we do not permit enumeration
13568 -- representation clauses for Character and Wide_Character, so these
13569 -- cases were already dealt with.
13571 elsif Is_Enumeration_Type (T1) then
13572 Enumeration_Case : declare
13573 L1, L2 : Entity_Id;
13575 begin
13576 L1 := First_Literal (T1);
13577 L2 := First_Literal (T2);
13578 while Present (L1) loop
13579 if Enumeration_Rep (L1) /= Enumeration_Rep (L2) then
13580 return False;
13581 else
13582 Next_Literal (L1);
13583 Next_Literal (L2);
13584 end if;
13585 end loop;
13587 return True;
13588 end Enumeration_Case;
13590 -- Any other types have the same representation for these purposes
13592 else
13593 return True;
13594 end if;
13595 end Has_Compatible_Representation;
13597 -------------------------------------
13598 -- Inherit_Aspects_At_Freeze_Point --
13599 -------------------------------------
13601 procedure Inherit_Aspects_At_Freeze_Point (Typ : Entity_Id) is
13602 function Get_Inherited_Rep_Item
13603 (E : Entity_Id;
13604 Nam : Name_Id) return Node_Id;
13605 -- Search the Rep_Item chain of entity E for an instance of a rep item
13606 -- (pragma, attribute definition clause, or aspect specification) whose
13607 -- name matches the given name Nam, and that has been inherited from its
13608 -- parent, i.e. that has not been directly specified for E . If one is
13609 -- found, it is returned, otherwise Empty is returned.
13611 function Get_Inherited_Rep_Item
13612 (E : Entity_Id;
13613 Nam1 : Name_Id;
13614 Nam2 : Name_Id) return Node_Id;
13615 -- Search the Rep_Item chain of entity E for an instance of a rep item
13616 -- (pragma, attribute definition clause, or aspect specification) whose
13617 -- name matches one of the given names Nam1 or Nam2, and that has been
13618 -- inherited from its parent, i.e. that has not been directly specified
13619 -- for E . If one is found, it is returned, otherwise Empty is returned.
13621 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
13622 (Rep_Item : Node_Id) return Boolean;
13623 -- This routine checks if Rep_Item is either a pragma or an aspect
13624 -- specification node whose corresponding pragma (if any) is present in
13625 -- the Rep Item chain of the entity it has been specified to.
13627 ----------------------------
13628 -- Get_Inherited_Rep_Item --
13629 ----------------------------
13631 function Get_Inherited_Rep_Item
13632 (E : Entity_Id;
13633 Nam : Name_Id) return Node_Id
13635 Rep : constant Node_Id
13636 := Get_Rep_Item (E, Nam, Check_Parents => True);
13637 begin
13638 if Present (Rep)
13639 and then not Has_Rep_Item (E, Nam, Check_Parents => False)
13640 then
13641 return Rep;
13642 else
13643 return Empty;
13644 end if;
13645 end Get_Inherited_Rep_Item;
13647 function Get_Inherited_Rep_Item
13648 (E : Entity_Id;
13649 Nam1 : Name_Id;
13650 Nam2 : Name_Id) return Node_Id
13652 Rep : constant Node_Id
13653 := Get_Rep_Item (E, Nam1, Nam2, Check_Parents => True);
13654 begin
13655 if Present (Rep)
13656 and then not Has_Rep_Item (E, Nam1, Nam2, Check_Parents => False)
13657 then
13658 return Rep;
13659 else
13660 return Empty;
13661 end if;
13662 end Get_Inherited_Rep_Item;
13664 --------------------------------------------------
13665 -- Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item --
13666 --------------------------------------------------
13668 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
13669 (Rep_Item : Node_Id) return Boolean
13671 begin
13672 return
13673 Nkind (Rep_Item) = N_Pragma
13674 or else
13675 Present_In_Rep_Item (Entity (Rep_Item), Aspect_Rep_Item (Rep_Item));
13676 end Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item;
13678 Rep : Node_Id;
13680 -- Start of processing for Inherit_Aspects_At_Freeze_Point
13682 begin
13683 -- A representation item is either subtype-specific (Size and Alignment
13684 -- clauses) or type-related (all others). Subtype-specific aspects may
13685 -- differ for different subtypes of the same type (RM 13.1.8).
13687 -- A derived type inherits each type-related representation aspect of
13688 -- its parent type that was directly specified before the declaration of
13689 -- the derived type (RM 13.1.15).
13691 -- A derived subtype inherits each subtype-specific representation
13692 -- aspect of its parent subtype that was directly specified before the
13693 -- declaration of the derived type (RM 13.1.15).
13695 -- The general processing involves inheriting a representation aspect
13696 -- from a parent type whenever the first rep item (aspect specification,
13697 -- attribute definition clause, pragma) corresponding to the given
13698 -- representation aspect in the rep item chain of Typ, if any, isn't
13699 -- directly specified to Typ but to one of its parents.
13701 -- In addition, Convention must be propagated from base type to subtype,
13702 -- because the subtype may have been declared on an incomplete view.
13704 if Nkind (Parent (Typ)) = N_Private_Extension_Declaration then
13705 return;
13706 end if;
13708 -- Ada_05/Ada_2005
13710 Rep := Get_Inherited_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005);
13711 if Present (Rep)
13712 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item (Rep)
13713 then
13714 Set_Is_Ada_2005_Only (Typ);
13715 end if;
13717 -- Ada_12/Ada_2012
13719 Rep := Get_Inherited_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012);
13720 if Present (Rep)
13721 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item (Rep)
13722 then
13723 Set_Is_Ada_2012_Only (Typ);
13724 end if;
13726 -- Ada_2022
13728 Rep := Get_Inherited_Rep_Item (Typ, Name_Ada_2022);
13729 if Present (Rep)
13730 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item (Rep)
13731 then
13732 Set_Is_Ada_2022_Only (Typ);
13733 end if;
13735 -- Atomic/Shared
13737 Rep := Get_Inherited_Rep_Item (Typ, Name_Atomic, Name_Shared);
13738 if Present (Rep)
13739 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item (Rep)
13740 then
13741 Set_Is_Atomic (Typ);
13742 Set_Is_Volatile (Typ);
13743 Set_Treat_As_Volatile (Typ);
13744 end if;
13746 -- Convention
13748 if Is_Record_Type (Typ)
13749 and then Typ /= Base_Type (Typ) and then Is_Frozen (Base_Type (Typ))
13750 then
13751 Set_Convention (Typ, Convention (Base_Type (Typ)));
13752 end if;
13754 -- Default_Component_Value (for base types only)
13756 -- Note that we need to look into the first subtype because the base
13757 -- type may be the implicit base type built by the compiler for the
13758 -- declaration of a constrained subtype with the aspect.
13760 if Is_Array_Type (Typ) and then Is_Base_Type (Typ) then
13761 declare
13762 F_Typ : constant Entity_Id := First_Subtype (Typ);
13764 E : Entity_Id;
13766 begin
13767 Rep :=
13768 Get_Inherited_Rep_Item (F_Typ, Name_Default_Component_Value);
13769 if Present (Rep) then
13770 E := Entity (Rep);
13772 -- Deal with private types
13774 if Is_Private_Type (E) then
13775 E := Full_View (E);
13776 end if;
13778 Set_Default_Aspect_Component_Value
13779 (Typ, Default_Aspect_Component_Value (E));
13780 Set_Has_Default_Aspect (Typ);
13781 end if;
13782 end;
13783 end if;
13785 -- Default_Value (for base types only)
13787 -- Note that we need to look into the first subtype because the base
13788 -- type may be the implicit base type built by the compiler for the
13789 -- declaration of a constrained subtype with the aspect.
13791 if Is_Scalar_Type (Typ) and then Is_Base_Type (Typ) then
13792 declare
13793 F_Typ : constant Entity_Id := First_Subtype (Typ);
13795 E : Entity_Id;
13797 begin
13798 Rep := Get_Inherited_Rep_Item (F_Typ, Name_Default_Value);
13799 if Present (Rep) then
13800 E := Entity (Rep);
13802 -- Deal with private types
13804 if Is_Private_Type (E) then
13805 E := Full_View (E);
13806 end if;
13808 Set_Default_Aspect_Value (Typ, Default_Aspect_Value (E));
13809 Set_Has_Default_Aspect (Typ);
13810 end if;
13811 end;
13812 end if;
13814 -- Discard_Names
13816 Rep := Get_Inherited_Rep_Item (Typ, Name_Discard_Names);
13817 if Present (Rep)
13818 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item (Rep)
13819 then
13820 Set_Discard_Names (Typ);
13821 end if;
13823 -- Volatile
13825 Rep := Get_Inherited_Rep_Item (Typ, Name_Volatile);
13826 if Present (Rep)
13827 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item (Rep)
13828 then
13829 Set_Is_Volatile (Typ);
13830 Set_Treat_As_Volatile (Typ);
13831 end if;
13833 -- Volatile_Full_Access and Full_Access_Only
13835 Rep := Get_Inherited_Rep_Item
13836 (Typ, Name_Volatile_Full_Access, Name_Full_Access_Only);
13837 if Present (Rep)
13838 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item (Rep)
13839 then
13840 Set_Is_Volatile_Full_Access (Typ);
13841 Set_Is_Volatile (Typ);
13842 Set_Treat_As_Volatile (Typ);
13843 end if;
13845 -- Inheritance for derived types only
13847 if Is_Derived_Type (Typ) then
13848 declare
13849 Bas_Typ : constant Entity_Id := Base_Type (Typ);
13850 Imp_Bas_Typ : constant Entity_Id := Implementation_Base_Type (Typ);
13852 begin
13853 -- Atomic_Components
13855 Rep := Get_Inherited_Rep_Item (Typ, Name_Atomic_Components);
13856 if Present (Rep)
13857 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item (Rep)
13858 then
13859 Set_Has_Atomic_Components (Imp_Bas_Typ);
13860 end if;
13862 -- Volatile_Components
13864 Rep := Get_Inherited_Rep_Item (Typ, Name_Volatile_Components);
13865 if Present (Rep)
13866 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item (Rep)
13867 then
13868 Set_Has_Volatile_Components (Imp_Bas_Typ);
13869 end if;
13871 -- Finalize_Storage_Only
13873 Rep := Get_Inherited_Rep_Item (Typ, Name_Finalize_Storage_Only);
13874 if Present (Rep) then
13875 Set_Finalize_Storage_Only (Bas_Typ);
13876 end if;
13878 -- Universal_Aliasing
13880 Rep := Get_Inherited_Rep_Item (Typ, Name_Universal_Aliasing);
13881 if Present (Rep)
13882 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item (Rep)
13883 then
13884 Set_Universal_Aliasing (Imp_Bas_Typ);
13885 end if;
13887 -- Bit_Order
13889 if Is_Record_Type (Typ) and then Typ = Bas_Typ then
13890 Rep := Get_Inherited_Rep_Item (Typ, Name_Bit_Order);
13891 if Present (Rep) then
13892 Set_Reverse_Bit_Order (Bas_Typ,
13893 Reverse_Bit_Order
13894 (Implementation_Base_Type (Etype (Bas_Typ))));
13895 end if;
13896 end if;
13898 -- Scalar_Storage_Order
13900 if (Is_Record_Type (Typ) or else Is_Array_Type (Typ))
13901 and then Typ = Bas_Typ
13902 then
13903 -- For a type extension, always inherit from parent; otherwise
13904 -- inherit if no default applies. Note: we do not check for
13905 -- an explicit rep item on the parent type when inheriting,
13906 -- because the parent SSO may itself have been set by default.
13908 if not Has_Rep_Item (First_Subtype (Typ),
13909 Name_Scalar_Storage_Order, False)
13910 and then (Is_Tagged_Type (Bas_Typ)
13911 or else not (SSO_Set_Low_By_Default (Bas_Typ)
13912 or else
13913 SSO_Set_High_By_Default (Bas_Typ)))
13914 then
13915 Set_Reverse_Storage_Order (Bas_Typ,
13916 Reverse_Storage_Order
13917 (Implementation_Base_Type (Etype (Bas_Typ))));
13919 -- Clear default SSO indications, since the inherited aspect
13920 -- which was set explicitly overrides the default.
13922 Set_SSO_Set_Low_By_Default (Bas_Typ, False);
13923 Set_SSO_Set_High_By_Default (Bas_Typ, False);
13924 end if;
13925 end if;
13926 end;
13927 end if;
13928 end Inherit_Aspects_At_Freeze_Point;
13930 ---------------------------------
13931 -- Inherit_Delayed_Rep_Aspects --
13932 ---------------------------------
13934 procedure Inherit_Delayed_Rep_Aspects (Typ : Entity_Id) is
13935 A : Aspect_Id;
13936 N : Node_Id;
13937 P : Entity_Id;
13939 begin
13940 -- Find the first aspect that has been inherited
13942 N := First_Rep_Item (Typ);
13943 while Present (N) loop
13944 if Nkind (N) = N_Aspect_Specification then
13945 exit when Entity (N) /= Typ;
13946 end if;
13948 Next_Rep_Item (N);
13949 end loop;
13951 -- There must be one if we reach here
13953 pragma Assert (Present (N));
13954 P := Entity (N);
13956 -- Loop through delayed aspects for the parent type
13958 while Present (N) loop
13959 if Nkind (N) = N_Aspect_Specification then
13960 exit when Entity (N) /= P;
13962 if Is_Delayed_Aspect (N) then
13963 A := Get_Aspect_Id (N);
13965 -- Process delayed rep aspect. For Boolean attributes it is
13966 -- not possible to cancel an attribute once set (the attempt
13967 -- to use an aspect with xxx => False is an error) for a
13968 -- derived type. So for those cases, we do not have to check
13969 -- if a clause has been given for the derived type, since it
13970 -- is harmless to set it again if it is already set.
13972 case A is
13974 -- Alignment
13976 when Aspect_Alignment =>
13977 if not Has_Alignment_Clause (Typ) then
13978 Set_Alignment (Typ, Alignment (P));
13979 end if;
13981 -- Atomic
13983 when Aspect_Atomic =>
13984 if Is_Atomic (P) then
13985 Set_Is_Atomic (Typ);
13986 end if;
13988 -- Atomic_Components
13990 when Aspect_Atomic_Components =>
13991 if Has_Atomic_Components (P) then
13992 Set_Has_Atomic_Components (Base_Type (Typ));
13993 end if;
13995 -- Bit_Order
13997 when Aspect_Bit_Order =>
13998 if Is_Record_Type (Typ)
13999 and then No (Get_Attribute_Definition_Clause
14000 (Typ, Attribute_Bit_Order))
14001 and then Reverse_Bit_Order (P)
14002 then
14003 Set_Reverse_Bit_Order (Base_Type (Typ));
14004 end if;
14006 -- Component_Size
14008 when Aspect_Component_Size =>
14009 if Is_Array_Type (Typ)
14010 and then not Has_Component_Size_Clause (Typ)
14011 then
14012 Set_Component_Size
14013 (Base_Type (Typ), Component_Size (P));
14014 end if;
14016 -- Machine_Radix
14018 when Aspect_Machine_Radix =>
14019 if Is_Decimal_Fixed_Point_Type (Typ)
14020 and then not Has_Machine_Radix_Clause (Typ)
14021 then
14022 Set_Machine_Radix_10 (Typ, Machine_Radix_10 (P));
14023 end if;
14025 -- Object_Size (also Size which also sets Object_Size)
14027 when Aspect_Object_Size
14028 | Aspect_Size
14030 if not Has_Size_Clause (Typ)
14031 and then
14032 No (Get_Attribute_Definition_Clause
14033 (Typ, Attribute_Object_Size))
14034 then
14035 Set_Esize (Typ, Esize (P));
14036 end if;
14038 -- Pack
14040 when Aspect_Pack =>
14041 if not Is_Packed (Typ) then
14042 Set_Is_Packed (Base_Type (Typ));
14044 if Is_Bit_Packed_Array (P) then
14045 Set_Is_Bit_Packed_Array (Base_Type (Typ));
14046 Set_Packed_Array_Impl_Type
14047 (Typ, Packed_Array_Impl_Type (P));
14048 end if;
14049 end if;
14051 -- Scalar_Storage_Order
14053 when Aspect_Scalar_Storage_Order =>
14054 if (Is_Record_Type (Typ) or else Is_Array_Type (Typ))
14055 and then No (Get_Attribute_Definition_Clause
14056 (Typ, Attribute_Scalar_Storage_Order))
14057 and then Reverse_Storage_Order (P)
14058 then
14059 Set_Reverse_Storage_Order (Base_Type (Typ));
14061 -- Clear default SSO indications, since the aspect
14062 -- overrides the default.
14064 Set_SSO_Set_Low_By_Default (Base_Type (Typ), False);
14065 Set_SSO_Set_High_By_Default (Base_Type (Typ), False);
14066 end if;
14068 -- Small
14070 when Aspect_Small =>
14071 if Is_Fixed_Point_Type (Typ)
14072 and then not Has_Small_Clause (Typ)
14073 then
14074 Set_Small_Value (Typ, Small_Value (P));
14075 end if;
14077 -- Storage_Size
14079 when Aspect_Storage_Size =>
14080 if (Is_Access_Type (Typ) or else Is_Task_Type (Typ))
14081 and then not Has_Storage_Size_Clause (Typ)
14082 then
14083 Set_Storage_Size_Variable
14084 (Base_Type (Typ), Storage_Size_Variable (P));
14085 end if;
14087 -- Value_Size
14089 when Aspect_Value_Size =>
14091 -- Value_Size is never inherited, it is either set by
14092 -- default, or it is explicitly set for the derived
14093 -- type. So nothing to do here.
14095 null;
14097 -- Volatile
14099 when Aspect_Volatile =>
14100 if Is_Volatile (P) then
14101 Set_Is_Volatile (Typ);
14102 end if;
14104 -- Volatile_Full_Access (also Full_Access_Only)
14106 when Aspect_Volatile_Full_Access
14107 | Aspect_Full_Access_Only
14109 if Is_Volatile_Full_Access (P) then
14110 Set_Is_Volatile_Full_Access (Typ);
14111 end if;
14113 -- Volatile_Components
14115 when Aspect_Volatile_Components =>
14116 if Has_Volatile_Components (P) then
14117 Set_Has_Volatile_Components (Base_Type (Typ));
14118 end if;
14120 -- That should be all the Rep Aspects
14122 when others =>
14123 pragma Assert (Aspect_Delay (A) /= Rep_Aspect);
14124 null;
14125 end case;
14126 end if;
14127 end if;
14129 Next_Rep_Item (N);
14130 end loop;
14131 end Inherit_Delayed_Rep_Aspects;
14133 ----------------
14134 -- Initialize --
14135 ----------------
14137 procedure Initialize is
14138 begin
14139 Address_Clause_Checks.Init;
14140 Unchecked_Conversions.Init;
14142 -- The following might be needed in the future for some non-GCC back
14143 -- ends:
14144 -- if AAMP_On_Target then
14145 -- Independence_Checks.Init;
14146 -- end if;
14147 end Initialize;
14149 ---------------------------
14150 -- Install_Discriminants --
14151 ---------------------------
14153 procedure Install_Discriminants (E : Entity_Id) is
14154 Disc : Entity_Id;
14155 Prev : Entity_Id;
14156 begin
14157 Disc := First_Discriminant (E);
14158 while Present (Disc) loop
14159 Prev := Current_Entity (Disc);
14160 Set_Current_Entity (Disc);
14161 Set_Is_Immediately_Visible (Disc);
14162 Set_Homonym (Disc, Prev);
14163 Next_Discriminant (Disc);
14164 end loop;
14165 end Install_Discriminants;
14167 -------------------------
14168 -- Is_Operational_Item --
14169 -------------------------
14171 function Is_Operational_Item (N : Node_Id) return Boolean is
14172 begin
14173 -- List of operational items is given in AARM 13.1(8.mm/1). It is
14174 -- clearly incomplete, as it does not include iterator aspects, among
14175 -- others.
14177 return Nkind (N) = N_Attribute_Definition_Clause
14178 and then
14179 Get_Attribute_Id (Chars (N)) in Attribute_Constant_Indexing
14180 | Attribute_External_Tag
14181 | Attribute_Default_Iterator
14182 | Attribute_Implicit_Dereference
14183 | Attribute_Input
14184 | Attribute_Iterable
14185 | Attribute_Iterator_Element
14186 | Attribute_Output
14187 | Attribute_Put_Image
14188 | Attribute_Read
14189 | Attribute_Variable_Indexing
14190 | Attribute_Write;
14191 end Is_Operational_Item;
14193 -------------------------
14194 -- Is_Predicate_Static --
14195 -------------------------
14197 -- Note: the basic legality of the expression has already been checked, so
14198 -- we don't need to worry about cases or ranges on strings for example.
14200 function Is_Predicate_Static
14201 (Expr : Node_Id;
14202 Nam : Name_Id;
14203 Warn : Boolean := True) return Boolean
14205 function All_Static_Case_Alternatives (L : List_Id) return Boolean;
14206 -- Given a list of case expression alternatives, returns True if all
14207 -- the alternatives are static (have all static choices, and a static
14208 -- expression).
14210 function Is_Type_Ref (N : Node_Id) return Boolean;
14211 pragma Inline (Is_Type_Ref);
14212 -- Returns True if N is a reference to the type for the predicate in the
14213 -- expression (i.e. if it is an identifier whose Chars field matches the
14214 -- Nam given in the call). N must not be parenthesized, if the type name
14215 -- appears in parens, this routine will return False.
14217 -- The routine also returns True for function calls generated during the
14218 -- expansion of comparison operators on strings, which are intended to
14219 -- be legal in static predicates, and are converted into calls to array
14220 -- comparison routines in the body of the corresponding predicate
14221 -- function.
14223 ----------------------------------
14224 -- All_Static_Case_Alternatives --
14225 ----------------------------------
14227 function All_Static_Case_Alternatives (L : List_Id) return Boolean is
14228 N : Node_Id;
14230 begin
14231 N := First (L);
14232 while Present (N) loop
14233 if not (All_Static_Choices (Discrete_Choices (N))
14234 and then Is_OK_Static_Expression (Expression (N)))
14235 then
14236 return False;
14237 end if;
14239 Next (N);
14240 end loop;
14242 return True;
14243 end All_Static_Case_Alternatives;
14245 -----------------
14246 -- Is_Type_Ref --
14247 -----------------
14249 function Is_Type_Ref (N : Node_Id) return Boolean is
14250 begin
14251 return (Nkind (N) = N_Identifier
14252 and then Chars (N) = Nam
14253 and then Paren_Count (N) = 0);
14254 end Is_Type_Ref;
14256 -- helper function for recursive calls
14257 function Is_Predicate_Static_Aux (Expr : Node_Id) return Boolean is
14258 (Is_Predicate_Static (Expr, Nam, Warn => False));
14260 -- Start of processing for Is_Predicate_Static
14262 begin
14263 -- Handle cases like
14264 -- subtype S is Integer with Static_Predicate =>
14265 -- (Some_Integer_Variable in Integer) and then (S /= 0);
14266 -- where the predicate (which should be rejected) might have been
14267 -- transformed into just "(S /= 0)", which would appear to be
14268 -- a predicate-static expression (and therefore legal).
14270 if Original_Node (Expr) /= Expr then
14272 -- Emit warnings for predicates that are always True or always False
14273 -- and were not originally expressed as Boolean literals.
14275 return Result : constant Boolean :=
14276 Is_Predicate_Static_Aux (Original_Node (Expr))
14278 if Result and then Warn and then Is_Entity_Name (Expr) then
14279 if Entity (Expr) = Standard_True then
14280 Error_Msg_N ("predicate is redundant (always True)?", Expr);
14281 elsif Entity (Expr) = Standard_False then
14282 Error_Msg_N
14283 ("predicate is unsatisfiable (always False)?", Expr);
14284 end if;
14285 end if;
14286 end return;
14287 end if;
14289 -- Predicate_Static means one of the following holds. Numbers are the
14290 -- corresponding paragraph numbers in (RM 3.2.4(16-22)).
14292 -- 16: A static expression
14294 if Is_OK_Static_Expression (Expr) then
14295 return True;
14297 -- 17: A membership test whose simple_expression is the current
14298 -- instance, and whose membership_choice_list meets the requirements
14299 -- for a static membership test.
14301 elsif Nkind (Expr) in N_Membership_Test
14302 and then Is_Type_Ref (Left_Opnd (Expr))
14303 and then All_Membership_Choices_Static (Expr)
14304 then
14305 return True;
14307 -- 18. A case_expression whose selecting_expression is the current
14308 -- instance, and whose dependent expressions are static expressions.
14310 elsif Nkind (Expr) = N_Case_Expression
14311 and then Is_Type_Ref (Expression (Expr))
14312 and then All_Static_Case_Alternatives (Alternatives (Expr))
14313 then
14314 return True;
14316 -- 19. A call to a predefined equality or ordering operator, where one
14317 -- operand is the current instance, and the other is a static
14318 -- expression.
14320 -- Note: the RM is clearly wrong here in not excluding string types.
14321 -- Without this exclusion, we would allow expressions like X > "ABC"
14322 -- to be considered as predicate-static, which is clearly not intended,
14323 -- since the idea is for predicate-static to be a subset of normal
14324 -- static expressions (and "DEF" > "ABC" is not a static expression).
14326 -- However, we do allow internally generated (not from source) equality
14327 -- and inequality operations to be valid on strings (this helps deal
14328 -- with cases where we transform A in "ABC" to A = "ABC).
14330 -- In fact, it appears that the intent of the ARG is to extend static
14331 -- predicates to strings, and that the extension should probably apply
14332 -- to static expressions themselves. The code below accepts comparison
14333 -- operators that apply to static strings.
14335 elsif Nkind (Expr) in N_Op_Compare
14336 and then ((Is_Type_Ref (Left_Opnd (Expr))
14337 and then Is_OK_Static_Expression (Right_Opnd (Expr)))
14338 or else
14339 (Is_Type_Ref (Right_Opnd (Expr))
14340 and then Is_OK_Static_Expression (Left_Opnd (Expr))))
14341 then
14342 return True;
14344 -- 20. A call to a predefined boolean logical operator, where each
14345 -- operand is predicate-static.
14347 elsif (Nkind (Expr) in N_Op_And | N_Op_Or | N_Op_Xor
14348 and then Is_Predicate_Static_Aux (Left_Opnd (Expr))
14349 and then Is_Predicate_Static_Aux (Right_Opnd (Expr)))
14350 or else
14351 (Nkind (Expr) = N_Op_Not
14352 and then Is_Predicate_Static_Aux (Right_Opnd (Expr)))
14353 then
14354 return True;
14356 -- 21. A short-circuit control form where both operands are
14357 -- predicate-static.
14359 elsif Nkind (Expr) in N_Short_Circuit
14360 and then Is_Predicate_Static_Aux (Left_Opnd (Expr))
14361 and then Is_Predicate_Static_Aux (Right_Opnd (Expr))
14362 then
14363 return True;
14365 -- 22. A parenthesized predicate-static expression. This does not
14366 -- require any special test, since we just ignore paren levels in
14367 -- all the cases above.
14369 -- One more test that is an implementation artifact caused by the fact
14370 -- that we are analyzing not the original expression, but the generated
14371 -- expression in the body of the predicate function. This can include
14372 -- references to inherited predicates, so that the expression we are
14373 -- processing looks like:
14375 -- xxPredicate (typ (Inns)) and then expression
14377 -- Where the call is to a Predicate function for an inherited predicate.
14378 -- We simply ignore such a call, which could be to either a dynamic or
14379 -- a static predicate. Note that if the parent predicate is dynamic then
14380 -- eventually this type will be marked as dynamic, but you are allowed
14381 -- to specify a static predicate for a subtype which is inheriting a
14382 -- dynamic predicate, so the static predicate validation here ignores
14383 -- the inherited predicate even if it is dynamic.
14384 -- In all cases, a static predicate can only apply to a scalar type.
14386 elsif Nkind (Expr) = N_Function_Call
14387 and then Is_Predicate_Function (Entity (Name (Expr)))
14388 and then Is_Scalar_Type (Etype (First_Entity (Entity (Name (Expr)))))
14389 then
14390 return True;
14392 -- That's an exhaustive list of tests, all other cases are not
14393 -- predicate-static, so we return False.
14395 else
14396 return False;
14397 end if;
14398 end Is_Predicate_Static;
14400 ----------------------
14401 -- Is_Static_Choice --
14402 ----------------------
14404 function Is_Static_Choice (N : Node_Id) return Boolean is
14405 begin
14406 return Nkind (N) = N_Others_Choice
14407 or else Is_OK_Static_Expression (N)
14408 or else (Is_Entity_Name (N) and then Is_Type (Entity (N))
14409 and then Is_OK_Static_Subtype (Entity (N)))
14410 or else (Nkind (N) = N_Subtype_Indication
14411 and then Is_OK_Static_Subtype (Entity (N)))
14412 or else (Nkind (N) = N_Range and then Is_OK_Static_Range (N));
14413 end Is_Static_Choice;
14415 ------------------------------
14416 -- Is_Type_Related_Rep_Item --
14417 ------------------------------
14419 function Is_Type_Related_Rep_Item (N : Node_Id) return Boolean is
14420 begin
14421 case Nkind (N) is
14422 when N_Attribute_Definition_Clause =>
14423 -- See AARM 13.1(8.f-8.x) list items that end in "clause"
14424 -- ???: include any GNAT-defined attributes here?
14425 return Get_Attribute_Id (Chars (N)) in Attribute_Bit_Order
14426 | Attribute_Component_Size
14427 | Attribute_Machine_Radix
14428 | Attribute_Storage_Pool
14429 | Attribute_Stream_Size;
14431 when N_Pragma =>
14432 case Get_Pragma_Id (N) is
14433 -- See AARM 13.1(8.f-8.x) list items that start with "pragma"
14434 -- ???: include any GNAT-defined pragmas here?
14435 when Pragma_Pack
14436 | Pragma_Import
14437 | Pragma_Export
14438 | Pragma_Convention
14439 | Pragma_Atomic
14440 | Pragma_Independent
14441 | Pragma_Volatile
14442 | Pragma_Atomic_Components
14443 | Pragma_Independent_Components
14444 | Pragma_Volatile_Components
14445 | Pragma_Discard_Names
14447 return True;
14448 when others =>
14449 null;
14450 end case;
14452 when N_Enumeration_Representation_Clause
14453 | N_Record_Representation_Clause
14455 return True;
14457 when others =>
14458 null;
14459 end case;
14461 return False;
14462 end Is_Type_Related_Rep_Item;
14464 ---------------------
14465 -- Kill_Rep_Clause --
14466 ---------------------
14468 procedure Kill_Rep_Clause (N : Node_Id) is
14469 begin
14470 pragma Assert (Ignore_Rep_Clauses);
14472 -- Note: we use Replace rather than Rewrite, because we don't want
14473 -- tools to be able to use Original_Node to dig out the (undecorated)
14474 -- rep clause that is being replaced.
14476 Replace (N, Make_Null_Statement (Sloc (N)));
14478 -- The null statement must be marked as not coming from source. This is
14479 -- so that tools ignore it, and also the back end does not expect bogus
14480 -- "from source" null statements in weird places (e.g. in declarative
14481 -- regions where such null statements are not allowed).
14483 Set_Comes_From_Source (N, False);
14484 end Kill_Rep_Clause;
14486 ------------------
14487 -- Minimum_Size --
14488 ------------------
14490 function Minimum_Size
14491 (T : Entity_Id;
14492 Biased : Boolean := False) return Int
14494 Lo : Uint := No_Uint;
14495 Hi : Uint := No_Uint;
14496 LoR : Ureal := No_Ureal;
14497 HiR : Ureal := No_Ureal;
14498 LoSet : Boolean := False;
14499 HiSet : Boolean := False;
14500 B : Uint;
14501 S : Nat;
14502 Ancest : Entity_Id;
14503 R_Typ : constant Entity_Id := Root_Type (T);
14505 begin
14506 -- Bad type
14508 if T = Any_Type then
14509 return Unknown_Minimum_Size;
14511 -- For generic types, just return unknown. There cannot be any
14512 -- legitimate need to know such a size, but this routine may be
14513 -- called with a generic type as part of normal processing.
14515 elsif Is_Generic_Type (R_Typ) or else R_Typ = Any_Type then
14516 return Unknown_Minimum_Size;
14518 -- Access types (cannot have size smaller than System.Address)
14520 elsif Is_Access_Type (T) then
14521 return System_Address_Size;
14523 -- Floating-point types
14525 elsif Is_Floating_Point_Type (T) then
14526 return UI_To_Int (Esize (R_Typ));
14528 -- Discrete types
14530 elsif Is_Discrete_Type (T) then
14532 -- The following loop is looking for the nearest compile time known
14533 -- bounds following the ancestor subtype chain. The idea is to find
14534 -- the most restrictive known bounds information.
14536 Ancest := T;
14537 loop
14538 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
14539 return Unknown_Minimum_Size;
14540 end if;
14542 if not LoSet then
14543 if Compile_Time_Known_Value (Type_Low_Bound (Ancest)) then
14544 Lo := Expr_Rep_Value (Type_Low_Bound (Ancest));
14545 LoSet := True;
14546 exit when HiSet;
14547 end if;
14548 end if;
14550 if not HiSet then
14551 if Compile_Time_Known_Value (Type_High_Bound (Ancest)) then
14552 Hi := Expr_Rep_Value (Type_High_Bound (Ancest));
14553 HiSet := True;
14554 exit when LoSet;
14555 end if;
14556 end if;
14558 Ancest := Ancestor_Subtype (Ancest);
14560 if No (Ancest) then
14561 Ancest := Base_Type (T);
14563 if Is_Generic_Type (Ancest) then
14564 return Unknown_Minimum_Size;
14565 end if;
14566 end if;
14567 end loop;
14569 -- Fixed-point types. We can't simply use Expr_Value to get the
14570 -- Corresponding_Integer_Value values of the bounds, since these do not
14571 -- get set till the type is frozen, and this routine can be called
14572 -- before the type is frozen. Similarly the test for bounds being static
14573 -- needs to include the case where we have unanalyzed real literals for
14574 -- the same reason.
14576 elsif Is_Fixed_Point_Type (T) then
14578 -- The following loop is looking for the nearest compile time known
14579 -- bounds following the ancestor subtype chain. The idea is to find
14580 -- the most restrictive known bounds information.
14582 Ancest := T;
14583 loop
14584 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
14585 return Unknown_Minimum_Size;
14586 end if;
14588 -- Note: In the following two tests for LoSet and HiSet, it may
14589 -- seem redundant to test for N_Real_Literal here since normally
14590 -- one would assume that the test for the value being known at
14591 -- compile time includes this case. However, there is a glitch.
14592 -- If the real literal comes from folding a non-static expression,
14593 -- then we don't consider any non- static expression to be known
14594 -- at compile time if we are in configurable run time mode (needed
14595 -- in some cases to give a clearer definition of what is and what
14596 -- is not accepted). So the test is indeed needed. Without it, we
14597 -- would set neither Lo_Set nor Hi_Set and get an infinite loop.
14599 if not LoSet then
14600 if Nkind (Type_Low_Bound (Ancest)) = N_Real_Literal
14601 or else Compile_Time_Known_Value (Type_Low_Bound (Ancest))
14602 then
14603 LoR := Expr_Value_R (Type_Low_Bound (Ancest));
14604 LoSet := True;
14605 exit when HiSet;
14606 end if;
14607 end if;
14609 if not HiSet then
14610 if Nkind (Type_High_Bound (Ancest)) = N_Real_Literal
14611 or else Compile_Time_Known_Value (Type_High_Bound (Ancest))
14612 then
14613 HiR := Expr_Value_R (Type_High_Bound (Ancest));
14614 HiSet := True;
14615 exit when LoSet;
14616 end if;
14617 end if;
14619 Ancest := Ancestor_Subtype (Ancest);
14621 if No (Ancest) then
14622 Ancest := Base_Type (T);
14624 if Is_Generic_Type (Ancest) then
14625 return Unknown_Minimum_Size;
14626 end if;
14627 end if;
14628 end loop;
14630 Lo := UR_To_Uint (LoR / Small_Value (T));
14631 Hi := UR_To_Uint (HiR / Small_Value (T));
14633 -- No other types allowed
14635 else
14636 raise Program_Error;
14637 end if;
14639 -- Fall through with Hi and Lo set. Deal with biased case
14641 if (Biased
14642 and then not Is_Fixed_Point_Type (T)
14643 and then not (Is_Enumeration_Type (T)
14644 and then Has_Non_Standard_Rep (T)))
14645 or else Has_Biased_Representation (T)
14646 then
14647 Hi := Hi - Lo;
14648 Lo := Uint_0;
14649 end if;
14651 -- Null range case, size is always zero. We only do this in the discrete
14652 -- type case, since that's the odd case that came up. Probably we should
14653 -- also do this in the fixed-point case, but doing so causes peculiar
14654 -- gigi failures, and it is not worth worrying about this incredibly
14655 -- marginal case (explicit null-range fixed-point type declarations).
14657 if Lo > Hi and then Is_Discrete_Type (T) then
14658 S := 0;
14660 -- Signed case. Note that we consider types like range 1 .. -1 to be
14661 -- signed for the purpose of computing the size, since the bounds have
14662 -- to be accommodated in the base type.
14664 elsif Lo < 0 or else Hi < 0 then
14665 S := 1;
14666 B := Uint_1;
14668 -- S = size, B = 2 ** (size - 1) (can accommodate -B .. +(B - 1))
14669 -- Note that we accommodate the case where the bounds cross. This
14670 -- can happen either because of the way the bounds are declared
14671 -- or because of the algorithm in Freeze_Fixed_Point_Type.
14673 while Lo < -B
14674 or else Hi < -B
14675 or else Lo >= B
14676 or else Hi >= B
14677 loop
14678 B := Uint_2 ** S;
14679 S := S + 1;
14680 end loop;
14682 -- Unsigned case
14684 else
14685 -- If both bounds are positive, make sure that both are represen-
14686 -- table in the case where the bounds are crossed. This can happen
14687 -- either because of the way the bounds are declared, or because of
14688 -- the algorithm in Freeze_Fixed_Point_Type.
14690 if Lo > Hi then
14691 Hi := Lo;
14692 end if;
14694 -- S = size, (can accommodate 0 .. (2**size - 1))
14696 S := 0;
14697 while Hi >= Uint_2 ** S loop
14698 S := S + 1;
14699 end loop;
14700 end if;
14702 return S;
14703 end Minimum_Size;
14705 ------------------------------
14706 -- New_Put_Image_Subprogram --
14707 ------------------------------
14709 procedure New_Put_Image_Subprogram
14710 (N : Node_Id;
14711 Ent : Entity_Id;
14712 Subp : Entity_Id)
14714 Loc : constant Source_Ptr := Sloc (N);
14715 Sname : constant Name_Id :=
14716 Make_TSS_Name (Base_Type (Ent), TSS_Put_Image);
14717 Subp_Id : Entity_Id;
14718 Subp_Decl : Node_Id;
14719 F : Entity_Id;
14720 Etyp : Entity_Id;
14722 Defer_Declaration : constant Boolean :=
14723 Is_Tagged_Type (Ent) or else Is_Private_Type (Ent);
14724 -- For a tagged type, there is a declaration at the freeze point, and
14725 -- we must generate only a completion of this declaration. We do the
14726 -- same for private types, because the full view might be tagged.
14727 -- Otherwise we generate a declaration at the point of the attribute
14728 -- definition clause. If the attribute definition comes from an aspect
14729 -- specification the declaration is part of the freeze actions of the
14730 -- type.
14732 function Build_Spec return Node_Id;
14733 -- Used for declaration and renaming declaration, so that this is
14734 -- treated as a renaming_as_body.
14736 ----------------
14737 -- Build_Spec --
14738 ----------------
14740 function Build_Spec return Node_Id is
14741 Formals : List_Id;
14742 Spec : Node_Id;
14743 T_Ref : constant Node_Id := New_Occurrence_Of (Etyp, Loc);
14745 begin
14746 Subp_Id := Make_Defining_Identifier (Loc, Sname);
14748 -- S : Root_Buffer_Type'Class
14750 Formals := New_List (
14751 Make_Parameter_Specification (Loc,
14752 Defining_Identifier =>
14753 Make_Defining_Identifier (Loc, Name_S),
14754 In_Present => True,
14755 Out_Present => True,
14756 Parameter_Type =>
14757 New_Occurrence_Of (Etype (F), Loc)));
14759 -- V : T
14761 Append_To (Formals,
14762 Make_Parameter_Specification (Loc,
14763 Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
14764 Parameter_Type => T_Ref));
14766 Spec :=
14767 Make_Procedure_Specification (Loc,
14768 Defining_Unit_Name => Subp_Id,
14769 Parameter_Specifications => Formals);
14771 return Spec;
14772 end Build_Spec;
14774 -- Start of processing for New_Put_Image_Subprogram
14776 begin
14777 F := First_Formal (Subp);
14779 Etyp := Etype (Next_Formal (F));
14781 -- Prepare subprogram declaration and insert it as an action on the
14782 -- clause node. The visibility for this entity is used to test for
14783 -- visibility of the attribute definition clause (in the sense of
14784 -- 8.3(23) as amended by AI-195).
14786 if not Defer_Declaration then
14787 Subp_Decl :=
14788 Make_Subprogram_Declaration (Loc,
14789 Specification => Build_Spec);
14791 -- For a tagged type, there is always a visible declaration for the
14792 -- Put_Image TSS (it is a predefined primitive operation), and the
14793 -- completion of this declaration occurs at the freeze point, which is
14794 -- not always visible at places where the attribute definition clause is
14795 -- visible. So, we create a dummy entity here for the purpose of
14796 -- tracking the visibility of the attribute definition clause itself.
14798 else
14799 Subp_Id :=
14800 Make_Defining_Identifier (Loc, New_External_Name (Sname, 'V'));
14801 Subp_Decl :=
14802 Make_Object_Declaration (Loc,
14803 Defining_Identifier => Subp_Id,
14804 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc));
14805 end if;
14807 if not Defer_Declaration
14808 and then From_Aspect_Specification (N)
14809 and then Has_Delayed_Freeze (Ent)
14810 then
14811 Append_Freeze_Action (Ent, Subp_Decl);
14813 else
14814 Insert_Action (N, Subp_Decl);
14815 Set_Entity (N, Subp_Id);
14816 end if;
14818 Subp_Decl :=
14819 Make_Subprogram_Renaming_Declaration (Loc,
14820 Specification => Build_Spec,
14821 Name => New_Occurrence_Of (Subp, Loc));
14823 if Defer_Declaration then
14824 Set_TSS (Base_Type (Ent), Subp_Id);
14826 else
14827 if From_Aspect_Specification (N) then
14828 Append_Freeze_Action (Ent, Subp_Decl);
14829 else
14830 Insert_Action (N, Subp_Decl);
14831 end if;
14833 Copy_TSS (Subp_Id, Base_Type (Ent));
14834 end if;
14835 end New_Put_Image_Subprogram;
14837 ---------------------------
14838 -- New_Stream_Subprogram --
14839 ---------------------------
14841 procedure New_Stream_Subprogram
14842 (N : Node_Id;
14843 Ent : Entity_Id;
14844 Subp : Entity_Id;
14845 Nam : TSS_Name_Type)
14847 Loc : constant Source_Ptr := Sloc (N);
14848 Sname : constant Name_Id := Make_TSS_Name (Base_Type (Ent), Nam);
14849 Subp_Id : Entity_Id;
14850 Subp_Decl : Node_Id;
14851 F : Entity_Id;
14852 Etyp : Entity_Id;
14854 Defer_Declaration : constant Boolean :=
14855 Is_Tagged_Type (Ent) or else Is_Private_Type (Ent);
14856 -- For a tagged type, there is a declaration for each stream attribute
14857 -- at the freeze point, and we must generate only a completion of this
14858 -- declaration. We do the same for private types, because the full view
14859 -- might be tagged. Otherwise we generate a declaration at the point of
14860 -- the attribute definition clause. If the attribute definition comes
14861 -- from an aspect specification the declaration is part of the freeze
14862 -- actions of the type.
14864 function Build_Spec return Node_Id;
14865 -- Used for declaration and renaming declaration, so that this is
14866 -- treated as a renaming_as_body.
14868 ----------------
14869 -- Build_Spec --
14870 ----------------
14872 function Build_Spec return Node_Id is
14873 Out_P : constant Boolean := (Nam = TSS_Stream_Read);
14874 Formals : List_Id;
14875 Spec : Node_Id;
14876 T_Ref : constant Node_Id := New_Occurrence_Of (Etyp, Loc);
14878 begin
14879 Subp_Id := Make_Defining_Identifier (Loc, Sname);
14881 -- S : access Root_Stream_Type'Class
14883 Formals := New_List (
14884 Make_Parameter_Specification (Loc,
14885 Defining_Identifier =>
14886 Make_Defining_Identifier (Loc, Name_S),
14887 Parameter_Type =>
14888 Make_Access_Definition (Loc,
14889 Subtype_Mark =>
14890 New_Occurrence_Of (
14891 Designated_Type (Etype (F)), Loc))));
14893 if Nam = TSS_Stream_Input then
14894 Spec :=
14895 Make_Function_Specification (Loc,
14896 Defining_Unit_Name => Subp_Id,
14897 Parameter_Specifications => Formals,
14898 Result_Definition => T_Ref);
14899 else
14900 -- V : [out] T
14902 Append_To (Formals,
14903 Make_Parameter_Specification (Loc,
14904 Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
14905 Out_Present => Out_P,
14906 Parameter_Type => T_Ref));
14908 Spec :=
14909 Make_Procedure_Specification (Loc,
14910 Defining_Unit_Name => Subp_Id,
14911 Parameter_Specifications => Formals);
14912 end if;
14914 return Spec;
14915 end Build_Spec;
14917 -- Start of processing for New_Stream_Subprogram
14919 begin
14920 F := First_Formal (Subp);
14922 if Ekind (Subp) = E_Procedure then
14923 Etyp := Etype (Next_Formal (F));
14924 else
14925 Etyp := Etype (Subp);
14926 end if;
14928 -- Prepare subprogram declaration and insert it as an action on the
14929 -- clause node. The visibility for this entity is used to test for
14930 -- visibility of the attribute definition clause (in the sense of
14931 -- 8.3(23) as amended by AI-195).
14933 if not Defer_Declaration then
14934 Subp_Decl :=
14935 Make_Subprogram_Declaration (Loc,
14936 Specification => Build_Spec);
14938 -- For a tagged type, there is always a visible declaration for each
14939 -- stream TSS (it is a predefined primitive operation), and the
14940 -- completion of this declaration occurs at the freeze point, which is
14941 -- not always visible at places where the attribute definition clause is
14942 -- visible. So, we create a dummy entity here for the purpose of
14943 -- tracking the visibility of the attribute definition clause itself.
14945 else
14946 Subp_Id :=
14947 Make_Defining_Identifier (Loc, New_External_Name (Sname, 'V'));
14948 Subp_Decl :=
14949 Make_Object_Declaration (Loc,
14950 Defining_Identifier => Subp_Id,
14951 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc));
14952 end if;
14954 if not Defer_Declaration
14955 and then From_Aspect_Specification (N)
14956 and then Has_Delayed_Freeze (Ent)
14957 then
14958 Append_Freeze_Action (Ent, Subp_Decl);
14960 else
14961 Insert_Action (N, Subp_Decl);
14962 Set_Entity (N, Subp_Id);
14963 end if;
14965 Subp_Decl :=
14966 Make_Subprogram_Renaming_Declaration (Loc,
14967 Specification => Build_Spec,
14968 Name => New_Occurrence_Of (Subp, Loc));
14970 if Defer_Declaration then
14971 Set_TSS (Base_Type (Ent), Subp_Id);
14973 else
14974 if From_Aspect_Specification (N) then
14975 Append_Freeze_Action (Ent, Subp_Decl);
14976 else
14977 Insert_Action (N, Subp_Decl);
14978 end if;
14980 Copy_TSS (Subp_Id, Base_Type (Ent));
14981 end if;
14982 end New_Stream_Subprogram;
14984 ----------------------
14985 -- No_Type_Rep_Item --
14986 ----------------------
14988 procedure No_Type_Rep_Item (N : Node_Id) is
14989 begin
14990 Error_Msg_N ("|type-related representation item not permitted!", N);
14991 end No_Type_Rep_Item;
14993 --------------
14994 -- Pop_Type --
14995 --------------
14997 procedure Pop_Type (E : Entity_Id) is
14998 begin
14999 if Ekind (E) = E_Record_Type and then E = Current_Scope then
15000 End_Scope;
15002 elsif Is_Type (E)
15003 and then Has_Discriminants (E)
15004 and then Nkind (Parent (E)) /= N_Subtype_Declaration
15005 then
15006 Uninstall_Discriminants (E);
15007 Pop_Scope;
15008 end if;
15009 end Pop_Type;
15011 ---------------
15012 -- Push_Type --
15013 ---------------
15015 procedure Push_Type (E : Entity_Id) is
15016 Comp : Entity_Id;
15018 begin
15019 if Ekind (E) = E_Record_Type then
15020 Push_Scope (E);
15022 Comp := First_Component (E);
15023 while Present (Comp) loop
15024 Install_Entity (Comp);
15025 Next_Component (Comp);
15026 end loop;
15028 if Has_Discriminants (E) then
15029 Install_Discriminants (E);
15030 end if;
15032 elsif Is_Type (E)
15033 and then Has_Discriminants (E)
15034 and then Nkind (Parent (E)) /= N_Subtype_Declaration
15035 then
15036 Push_Scope (E);
15037 Install_Discriminants (E);
15038 end if;
15039 end Push_Type;
15041 -----------------------------------
15042 -- Register_Address_Clause_Check --
15043 -----------------------------------
15045 procedure Register_Address_Clause_Check
15046 (N : Node_Id;
15047 X : Entity_Id;
15048 A : Uint;
15049 Y : Entity_Id;
15050 Off : Boolean)
15052 ACS : constant Boolean := Scope_Suppress.Suppress (Alignment_Check);
15053 begin
15054 Address_Clause_Checks.Append ((N, X, A, Y, Off, ACS));
15055 end Register_Address_Clause_Check;
15057 ------------------------
15058 -- Rep_Item_Too_Early --
15059 ------------------------
15061 function Rep_Item_Too_Early (T : Entity_Id; N : Node_Id) return Boolean is
15062 function Has_Generic_Parent (E : Entity_Id) return Boolean;
15063 -- Return True if R or any ancestor is a generic type
15065 ------------------------
15066 -- Has_Generic_Parent --
15067 ------------------------
15069 function Has_Generic_Parent (E : Entity_Id) return Boolean is
15070 Ancestor_Type : Entity_Id := Etype (E);
15072 begin
15073 if Is_Generic_Type (E) then
15074 return True;
15075 end if;
15077 while Present (Ancestor_Type)
15078 and then not Is_Generic_Type (Ancestor_Type)
15079 and then Etype (Ancestor_Type) /= Ancestor_Type
15080 loop
15081 Ancestor_Type := Etype (Ancestor_Type);
15082 end loop;
15084 return
15085 Present (Ancestor_Type) and then Is_Generic_Type (Ancestor_Type);
15086 end Has_Generic_Parent;
15088 -- Start of processing for Rep_Item_Too_Early
15090 begin
15091 -- Cannot apply non-operational rep items to generic types
15093 if Is_Operational_Item (N) then
15094 return False;
15096 elsif Is_Type (T)
15097 and then Has_Generic_Parent (T)
15098 and then (Nkind (N) /= N_Pragma
15099 or else Get_Pragma_Id (N) /= Pragma_Convention)
15100 then
15101 if Ada_Version < Ada_2022 then
15102 Error_Msg_N
15103 ("representation item not allowed for generic type", N);
15104 return True;
15105 else
15106 return False;
15107 end if;
15108 end if;
15110 -- Otherwise check for incomplete type
15112 if Is_Incomplete_Or_Private_Type (T)
15113 and then No (Underlying_Type (T))
15114 and then
15115 (Nkind (N) /= N_Pragma
15116 or else Get_Pragma_Id (N) /= Pragma_Import)
15117 then
15118 Error_Msg_N
15119 ("representation item must be after full type declaration", N);
15120 return True;
15122 -- If the type has incomplete components, a representation clause is
15123 -- illegal but stream attributes and Convention pragmas are correct.
15125 elsif Has_Private_Component (T) then
15126 if Nkind (N) = N_Pragma then
15127 return False;
15129 else
15130 Error_Msg_N
15131 ("representation item must appear after type is fully defined",
15133 return True;
15134 end if;
15135 else
15136 return False;
15137 end if;
15138 end Rep_Item_Too_Early;
15140 -----------------------
15141 -- Rep_Item_Too_Late --
15142 -----------------------
15144 function Rep_Item_Too_Late
15145 (T : Entity_Id;
15146 N : Node_Id;
15147 FOnly : Boolean := False) return Boolean
15149 procedure Too_Late;
15150 -- Output message for an aspect being specified too late
15152 -- Note that neither of the above errors is considered a serious one,
15153 -- since the effect is simply that we ignore the representation clause
15154 -- in these cases.
15155 -- Is this really true? In any case if we make this change we must
15156 -- document the requirement in the spec of Rep_Item_Too_Late that
15157 -- if True is returned, then the rep item must be completely ignored???
15159 --------------
15160 -- Too_Late --
15161 --------------
15163 procedure Too_Late is
15164 begin
15165 -- Other compilers seem more relaxed about rep items appearing too
15166 -- late. Since analysis tools typically don't care about rep items
15167 -- anyway, no reason to be too strict about this.
15169 if not Relaxed_RM_Semantics then
15170 Error_Msg_N ("|representation item appears too late!", N);
15171 end if;
15172 end Too_Late;
15174 -- Local variables
15176 Parent_Type : Entity_Id;
15177 S : Entity_Id;
15179 -- Start of processing for Rep_Item_Too_Late
15181 begin
15182 -- First make sure entity is not frozen (RM 13.1(9))
15184 if Is_Frozen (T)
15186 -- Exclude imported types, which may be frozen if they appear in a
15187 -- representation clause for a local type.
15189 and then not From_Limited_With (T)
15191 -- Exclude generated entities (not coming from source). The common
15192 -- case is when we generate a renaming which prematurely freezes the
15193 -- renamed internal entity, but we still want to be able to set copies
15194 -- of attribute values such as Size/Alignment.
15196 and then Comes_From_Source (T)
15197 then
15198 -- A self-referential aspect is illegal if it forces freezing the
15199 -- entity before the corresponding pragma has been analyzed.
15201 if Nkind (N) in N_Attribute_Definition_Clause | N_Pragma
15202 and then From_Aspect_Specification (N)
15203 then
15204 Error_Msg_NE
15205 ("aspect specification causes premature freezing of&", N, T);
15206 Set_Has_Delayed_Freeze (T, False);
15207 return True;
15208 end if;
15210 Too_Late;
15211 S := First_Subtype (T);
15213 if Present (Freeze_Node (S)) then
15214 if not Relaxed_RM_Semantics then
15215 Error_Msg_NE
15216 ("??no more representation items for }", Freeze_Node (S), S);
15217 end if;
15218 end if;
15220 return True;
15222 -- Check for case of untagged derived type whose parent either has
15223 -- primitive operations (pre Ada 2022), or is a by-reference type (RM
15224 -- 13.1(10)). In this case we do not output a Too_Late message, since
15225 -- there is no earlier point where the rep item could be placed to make
15226 -- it legal.
15227 -- ??? Confirming representation clauses should be allowed here.
15229 elsif Is_Type (T)
15230 and then not FOnly
15231 and then Is_Derived_Type (T)
15232 and then not Is_Tagged_Type (T)
15233 then
15234 Parent_Type := Etype (Base_Type (T));
15236 if Relaxed_RM_Semantics then
15237 null;
15239 elsif Ada_Version <= Ada_2012
15240 and then Has_Primitive_Operations (Parent_Type)
15241 then
15242 Error_Msg_N
15243 ("|representation item not permitted before Ada 2022!", N);
15244 Error_Msg_NE
15245 ("\parent type & has primitive operations!", N, Parent_Type);
15246 return True;
15248 elsif Is_By_Reference_Type (Parent_Type) then
15249 No_Type_Rep_Item (N);
15250 Error_Msg_NE
15251 ("\parent type & is a by-reference type!", N, Parent_Type);
15252 return True;
15253 end if;
15254 end if;
15256 -- No error, but one more warning to consider. The RM (surprisingly)
15257 -- allows this pattern in some cases:
15259 -- type S is ...
15260 -- primitive operations for S
15261 -- type R is new S;
15262 -- rep clause for S
15264 -- Meaning that calls on the primitive operations of S for values of
15265 -- type R may require possibly expensive implicit conversion operations.
15266 -- So even when this is not an error, it is still worth a warning.
15268 if not Relaxed_RM_Semantics and then Is_Type (T) then
15269 declare
15270 DTL : constant Entity_Id := Derived_Type_Link (Base_Type (T));
15272 begin
15273 if Present (DTL)
15275 -- For now, do not generate this warning for the case of
15276 -- aspect specification using Ada 2012 syntax, since we get
15277 -- wrong messages we do not understand. The whole business
15278 -- of derived types and rep items seems a bit confused when
15279 -- aspects are used, since the aspects are not evaluated
15280 -- till freeze time. However, AI12-0109 confirms (in an AARM
15281 -- ramification) that inheritance in this case is required
15282 -- to work.
15284 and then not From_Aspect_Specification (N)
15285 then
15286 if Is_By_Reference_Type (T)
15287 and then not Is_Tagged_Type (T)
15288 and then Is_Type_Related_Rep_Item (N)
15289 and then (Ada_Version >= Ada_2012
15290 or else Has_Primitive_Operations (Base_Type (T)))
15291 then
15292 -- Treat as hard error (AI12-0109, binding interpretation).
15293 -- Implementing a change of representation is not really
15294 -- an option in the case of a by-reference type, so we
15295 -- take this path for all Ada dialects if primitive
15296 -- operations are present.
15297 Error_Msg_Sloc := Sloc (DTL);
15298 Error_Msg_N
15299 ("representation item for& appears after derived type "
15300 & "declaration#", N);
15302 elsif Has_Primitive_Operations (Base_Type (T)) then
15303 Error_Msg_Sloc := Sloc (DTL);
15305 Error_Msg_N
15306 ("representation item for& appears after derived type "
15307 & "declaration#??", N);
15308 Error_Msg_NE
15309 ("\may result in implicit conversions for primitive "
15310 & "operations of&??", N, T);
15311 Error_Msg_NE
15312 ("\to change representations when called with arguments "
15313 & "of type&??", N, DTL);
15314 end if;
15315 end if;
15316 end;
15317 end if;
15319 -- No error, link item into head of chain of rep items for the entity,
15320 -- but avoid chaining if we have an overloadable entity, and the pragma
15321 -- is one that can apply to multiple overloaded entities.
15323 if Is_Overloadable (T) and then Nkind (N) = N_Pragma then
15324 declare
15325 Pname : constant Name_Id := Pragma_Name (N);
15326 begin
15327 if Pname in Name_Convention | Name_Import | Name_Export
15328 | Name_External | Name_Interface
15329 then
15330 return False;
15331 end if;
15332 end;
15333 end if;
15335 Record_Rep_Item (T, N);
15336 return False;
15337 end Rep_Item_Too_Late;
15339 -------------------------------------
15340 -- Replace_Type_References_Generic --
15341 -------------------------------------
15343 procedure Replace_Type_References_Generic (N : Node_Id; T : Entity_Id) is
15344 TName : constant Name_Id := Chars (T);
15346 function Replace_Type_Ref (N : Node_Id) return Traverse_Result;
15347 -- Processes a single node in the traversal procedure below, checking
15348 -- if node N should be replaced, and if so, doing the replacement.
15350 function Visible_Component (Comp : Name_Id) return Entity_Id;
15351 -- Given an identifier in the expression, check whether there is a
15352 -- discriminant, component, protected procedure, or entry of the type
15353 -- that is directy visible, and rewrite it as the corresponding selected
15354 -- component of the formal of the subprogram.
15356 ----------------------
15357 -- Replace_Type_Ref --
15358 ----------------------
15360 function Replace_Type_Ref (N : Node_Id) return Traverse_Result is
15361 Loc : constant Source_Ptr := Sloc (N);
15363 procedure Add_Prefix (Ref : Node_Id; Comp : Entity_Id);
15364 -- Add the proper prefix to a reference to a component of the type
15365 -- when it is not already a selected component.
15367 ----------------
15368 -- Add_Prefix --
15369 ----------------
15371 procedure Add_Prefix (Ref : Node_Id; Comp : Entity_Id) is
15372 begin
15373 Rewrite (Ref,
15374 Make_Selected_Component (Loc,
15375 Prefix => New_Occurrence_Of (T, Loc),
15376 Selector_Name => New_Occurrence_Of (Comp, Loc)));
15377 Replace_Type_Reference (Prefix (Ref));
15378 end Add_Prefix;
15380 -- Local variables
15382 Comp : Entity_Id;
15383 Pref : Node_Id;
15384 Scop : Entity_Id;
15386 -- Start of processing for Replace_Type_Ref
15388 begin
15389 if Nkind (N) = N_Identifier then
15391 -- If not the type name, check whether it is a reference to some
15392 -- other type, which must be frozen before the predicate function
15393 -- is analyzed, i.e. before the freeze node of the type to which
15394 -- the predicate applies.
15396 if Chars (N) /= TName then
15397 if Present (Current_Entity (N))
15398 and then Is_Type (Current_Entity (N))
15399 then
15400 Freeze_Before (Freeze_Node (T), Current_Entity (N));
15401 end if;
15403 -- The components of the type are directly visible and can
15404 -- be referenced in the source code without a prefix.
15405 -- If a name denoting a component doesn't already have a
15406 -- prefix, then normalize it by adding a reference to the
15407 -- current instance of the type as a prefix.
15409 -- This isn't right in the pathological corner case of an
15410 -- object-declaring expression (e.g., a quantified expression
15411 -- or a declare expression) that declares an object with the
15412 -- same name as a visible component declaration, thereby hiding
15413 -- the component within that expression. For example, given a
15414 -- record with a Boolean component "C" and a dynamic predicate
15415 -- "C = (for some C in Character => Some_Function (C))", only
15416 -- the first of the two uses of C should have a prefix added
15417 -- here; instead, both will get prefixes.
15419 if Nkind (Parent (N)) /= N_Selected_Component
15420 or else N /= Selector_Name (Parent (N))
15421 then
15422 Comp := Visible_Component (Chars (N));
15424 if Present (Comp) then
15425 Add_Prefix (N, Comp);
15426 end if;
15427 end if;
15429 return Skip;
15431 -- Otherwise do the replacement if this is not a qualified
15432 -- reference to a homograph of the type itself. Note that the
15433 -- current instance could not appear in such a context, e.g.
15434 -- the prefix of a type conversion.
15436 else
15437 if Nkind (Parent (N)) /= N_Selected_Component
15438 or else N /= Selector_Name (Parent (N))
15439 then
15440 Replace_Type_Reference (N);
15441 end if;
15443 return Skip;
15444 end if;
15446 -- Case of selected component, which may be a subcomponent of the
15447 -- current instance, or an expanded name which is still unanalyzed.
15449 elsif Nkind (N) = N_Selected_Component then
15451 -- If selector name is not our type, keep going (we might still
15452 -- have an occurrence of the type in the prefix). If it is a
15453 -- subcomponent of the current entity, add prefix.
15455 if Nkind (Selector_Name (N)) /= N_Identifier
15456 or else Chars (Selector_Name (N)) /= TName
15457 then
15458 if Nkind (Prefix (N)) = N_Identifier then
15459 Comp := Visible_Component (Chars (Prefix (N)));
15461 if Present (Comp) then
15462 Add_Prefix (Prefix (N), Comp);
15463 end if;
15464 end if;
15466 return OK;
15468 -- Selector name is our type, check qualification
15470 else
15471 -- Loop through scopes and prefixes, doing comparison
15473 Scop := Current_Scope;
15474 Pref := Prefix (N);
15475 loop
15476 -- Continue if no more scopes or scope with no name
15478 if No (Scop) or else Nkind (Scop) not in N_Has_Chars then
15479 return OK;
15480 end if;
15482 -- Do replace if prefix is an identifier matching the scope
15483 -- that we are currently looking at.
15485 if Nkind (Pref) = N_Identifier
15486 and then Chars (Pref) = Chars (Scop)
15487 then
15488 Replace_Type_Reference (N);
15489 return Skip;
15490 end if;
15492 -- Go check scope above us if prefix is itself of the form
15493 -- of a selected component, whose selector matches the scope
15494 -- we are currently looking at.
15496 if Nkind (Pref) = N_Selected_Component
15497 and then Nkind (Selector_Name (Pref)) = N_Identifier
15498 and then Chars (Selector_Name (Pref)) = Chars (Scop)
15499 then
15500 Scop := Scope (Scop);
15501 Pref := Prefix (Pref);
15503 -- For anything else, we don't have a match, so keep on
15504 -- going, there are still some weird cases where we may
15505 -- still have a replacement within the prefix.
15507 else
15508 return OK;
15509 end if;
15510 end loop;
15511 end if;
15513 -- Continue for any other node kind
15515 else
15516 return OK;
15517 end if;
15518 end Replace_Type_Ref;
15520 procedure Replace_Type_Refs is new Traverse_Proc (Replace_Type_Ref);
15522 -----------------------
15523 -- Visible_Component --
15524 -----------------------
15526 function Visible_Component (Comp : Name_Id) return Entity_Id is
15527 E : Entity_Id;
15528 begin
15529 -- Types with nameable components are record, task, and protected
15530 -- types, and discriminated private types.
15532 if Ekind (T) in E_Record_Type
15533 | E_Task_Type
15534 | E_Protected_Type
15535 or else (Is_Private_Type (T) and then Has_Discriminants (T))
15536 then
15537 -- This is a sequential search, which seems acceptable
15538 -- efficiency-wise, given the typical size of component
15539 -- lists, protected operation lists, task item lists, and
15540 -- check expressions.
15542 E := First_Entity (T);
15543 while Present (E) loop
15544 if Comes_From_Source (E) and then Chars (E) = Comp then
15545 return E;
15546 end if;
15548 Next_Entity (E);
15549 end loop;
15550 end if;
15552 -- Nothing by that name
15554 return Empty;
15555 end Visible_Component;
15557 -- Start of processing for Replace_Type_References_Generic
15559 begin
15560 Replace_Type_Refs (N);
15561 end Replace_Type_References_Generic;
15563 --------------------------------
15564 -- Resolve_Aspect_Expressions --
15565 --------------------------------
15567 procedure Resolve_Aspect_Expressions (E : Entity_Id) is
15568 function Resolve_Name (N : Node_Id) return Traverse_Result;
15569 -- Verify that all identifiers in the expression, with the exception
15570 -- of references to the current entity, denote visible entities. This
15571 -- is done only to detect visibility errors, as the expression will be
15572 -- properly analyzed/expanded during analysis of the predicate function
15573 -- body. We omit quantified expressions from this test, given that they
15574 -- introduce a local identifier that would require proper expansion to
15575 -- handle properly.
15577 ------------------
15578 -- Resolve_Name --
15579 ------------------
15581 function Resolve_Name (N : Node_Id) return Traverse_Result is
15582 Dummy : Traverse_Result;
15584 begin
15585 if Nkind (N) = N_Selected_Component then
15586 if Nkind (Prefix (N)) = N_Identifier
15587 and then Chars (Prefix (N)) /= Chars (E)
15588 then
15589 Find_Selected_Component (N);
15590 end if;
15592 return Skip;
15594 -- Resolve identifiers that are not selectors in parameter
15595 -- associations (these are never resolved by visibility).
15597 elsif Nkind (N) = N_Identifier
15598 and then Chars (N) /= Chars (E)
15599 and then (Nkind (Parent (N)) /= N_Parameter_Association
15600 or else N /= Selector_Name (Parent (N)))
15601 then
15602 Find_Direct_Name (N);
15604 -- Reset the Entity if N is overloaded since the entity may not
15605 -- be the correct one.
15607 if Is_Overloaded (N) then
15608 Set_Entity (N, Empty);
15609 end if;
15611 -- The name in a component association needs no resolution
15613 elsif Nkind (N) = N_Component_Association then
15614 Dummy := Resolve_Name (Expression (N));
15615 return Skip;
15617 elsif Nkind (N) = N_Quantified_Expression then
15618 return Skip;
15619 end if;
15621 return OK;
15622 end Resolve_Name;
15624 procedure Resolve_Aspect_Expression is new Traverse_Proc (Resolve_Name);
15626 -- Local variables
15628 ASN : Node_Id := First_Rep_Item (E);
15630 -- Start of processing for Resolve_Aspect_Expressions
15632 begin
15633 while Present (ASN) loop
15634 if Nkind (ASN) = N_Aspect_Specification and then Entity (ASN) = E then
15635 declare
15636 A_Id : constant Aspect_Id := Get_Aspect_Id (ASN);
15637 Expr : constant Node_Id := Expression (ASN);
15639 begin
15640 case A_Id is
15642 when Aspect_Aggregate =>
15643 Resolve_Aspect_Aggregate (Entity (ASN), Expr);
15645 when Aspect_Stable_Properties =>
15646 Resolve_Aspect_Stable_Properties
15647 (Entity (ASN), Expr, Class_Present (ASN));
15649 -- For now we only deal with aspects that do not generate
15650 -- subprograms, or that may mention current instances of
15651 -- types. These will require special handling???.
15653 when Aspect_Invariant
15654 | Aspect_Predicate_Failure
15656 null;
15658 when Aspect_Dynamic_Predicate
15659 | Aspect_Static_Predicate
15660 | Aspect_Predicate
15662 -- Preanalyze expression after type replacement to catch
15663 -- name resolution errors if the predicate function has
15664 -- not been built yet.
15666 -- Note that we cannot use Preanalyze_Spec_Expression
15667 -- directly because of the special handling required for
15668 -- quantifiers (see comments on Resolve_Aspect_Expression
15669 -- above) but we need to emulate it properly.
15671 if No (Predicate_Function (E)) then
15672 declare
15673 Save_In_Spec_Expression : constant Boolean :=
15674 In_Spec_Expression;
15675 Save_Full_Analysis : constant Boolean :=
15676 Full_Analysis;
15677 begin
15678 In_Spec_Expression := True;
15679 Full_Analysis := False;
15680 Expander_Mode_Save_And_Set (False);
15681 Push_Type (E);
15682 Resolve_Aspect_Expression (Expr);
15683 Pop_Type (E);
15684 Expander_Mode_Restore;
15685 Full_Analysis := Save_Full_Analysis;
15686 In_Spec_Expression := Save_In_Spec_Expression;
15687 end;
15688 end if;
15690 when Pre_Post_Aspects =>
15691 null;
15693 when Aspect_Iterable =>
15694 if Nkind (Expr) = N_Aggregate then
15695 declare
15696 Assoc : Node_Id;
15698 begin
15699 Assoc := First (Component_Associations (Expr));
15700 while Present (Assoc) loop
15701 if Nkind (Expression (Assoc)) in N_Has_Entity
15702 then
15703 Find_Direct_Name (Expression (Assoc));
15704 end if;
15706 Next (Assoc);
15707 end loop;
15708 end;
15709 end if;
15711 -- The expression for Default_Value is a static expression
15712 -- of the type, but this expression does not freeze the
15713 -- type, so it can still appear in a representation clause
15714 -- before the actual freeze point.
15716 when Aspect_Default_Value =>
15717 Set_Must_Not_Freeze (Expr);
15718 Preanalyze_Spec_Expression (Expr, E);
15720 when Aspect_Priority =>
15721 Push_Type (E);
15722 Preanalyze_Spec_Expression (Expr, Any_Integer);
15723 Pop_Type (E);
15725 -- Ditto for Storage_Size. Any other aspects that carry
15726 -- expressions that should not freeze ??? This is only
15727 -- relevant to the misuse of deferred constants.
15729 when Aspect_Storage_Size =>
15730 Set_Must_Not_Freeze (Expr);
15731 Preanalyze_Spec_Expression (Expr, Any_Integer);
15733 when others =>
15734 if Present (Expr) then
15735 case Aspect_Argument (A_Id) is
15736 when Expression
15737 | Optional_Expression
15739 Analyze_And_Resolve (Expr);
15741 when Name
15742 | Optional_Name
15744 if Nkind (Expr) = N_Identifier then
15745 Find_Direct_Name (Expr);
15747 elsif Nkind (Expr) = N_Selected_Component then
15748 Find_Selected_Component (Expr);
15749 end if;
15750 end case;
15751 end if;
15752 end case;
15753 end;
15754 end if;
15756 Next_Rep_Item (ASN);
15757 end loop;
15758 end Resolve_Aspect_Expressions;
15760 ----------------------------
15761 -- Parse_Aspect_Aggregate --
15762 ----------------------------
15764 procedure Parse_Aspect_Aggregate
15765 (N : Node_Id;
15766 Empty_Subp : in out Node_Id;
15767 Add_Named_Subp : in out Node_Id;
15768 Add_Unnamed_Subp : in out Node_Id;
15769 New_Indexed_Subp : in out Node_Id;
15770 Assign_Indexed_Subp : in out Node_Id)
15772 Assoc : Node_Id := First (Component_Associations (N));
15773 Op_Name : Name_Id;
15774 Subp : Node_Id;
15776 begin
15777 while Present (Assoc) loop
15778 Subp := Expression (Assoc);
15779 Op_Name := Chars (First (Choices (Assoc)));
15780 if Op_Name = Name_Empty then
15781 Empty_Subp := Subp;
15783 elsif Op_Name = Name_Add_Named then
15784 Add_Named_Subp := Subp;
15786 elsif Op_Name = Name_Add_Unnamed then
15787 Add_Unnamed_Subp := Subp;
15789 elsif Op_Name = Name_New_Indexed then
15790 New_Indexed_Subp := Subp;
15792 elsif Op_Name = Name_Assign_Indexed then
15793 Assign_Indexed_Subp := Subp;
15794 end if;
15796 Next (Assoc);
15797 end loop;
15798 end Parse_Aspect_Aggregate;
15800 ------------------------------------
15801 -- Parse_Aspect_Stable_Properties --
15802 ------------------------------------
15804 function Parse_Aspect_Stable_Properties
15805 (Aspect_Spec : Node_Id; Negated : out Boolean) return Subprogram_List
15807 function Extract_Entity (Expr : Node_Id) return Entity_Id;
15808 -- Given an element of a Stable_Properties aspect spec, return the
15809 -- associated entity.
15810 -- This function updates the Negated flag as a side-effect.
15812 --------------------
15813 -- Extract_Entity --
15814 --------------------
15816 function Extract_Entity (Expr : Node_Id) return Entity_Id is
15817 Name : Node_Id;
15818 begin
15819 if Nkind (Expr) = N_Op_Not then
15820 Negated := True;
15821 Name := Right_Opnd (Expr);
15822 else
15823 Name := Expr;
15824 end if;
15826 if Nkind (Name) in N_Has_Entity then
15827 return Entity (Name);
15828 else
15829 return Empty;
15830 end if;
15831 end Extract_Entity;
15833 -- Local variables
15835 L : List_Id;
15836 Id : Node_Id;
15838 -- Start of processing for Parse_Aspect_Stable_Properties
15840 begin
15841 Negated := False;
15843 if Nkind (Aspect_Spec) /= N_Aggregate then
15844 return (1 => Extract_Entity (Aspect_Spec));
15845 else
15846 L := Expressions (Aspect_Spec);
15847 Id := First (L);
15849 return Result : Subprogram_List (1 .. List_Length (L)) do
15850 for I in Result'Range loop
15851 Result (I) := Extract_Entity (Id);
15853 if No (Result (I)) then
15854 pragma Assert (Serious_Errors_Detected > 0);
15855 goto Ignore_Aspect;
15856 end if;
15858 Next (Id);
15859 end loop;
15860 end return;
15861 end if;
15863 <<Ignore_Aspect>> return (1 .. 0 => <>);
15864 end Parse_Aspect_Stable_Properties;
15866 -------------------------------
15867 -- Validate_Aspect_Aggregate --
15868 -------------------------------
15870 procedure Validate_Aspect_Aggregate (N : Node_Id) is
15871 Empty_Subp : Node_Id := Empty;
15872 Add_Named_Subp : Node_Id := Empty;
15873 Add_Unnamed_Subp : Node_Id := Empty;
15874 New_Indexed_Subp : Node_Id := Empty;
15875 Assign_Indexed_Subp : Node_Id := Empty;
15877 begin
15878 Error_Msg_Ada_2022_Feature ("aspect Aggregate", Sloc (N));
15880 if Nkind (N) /= N_Aggregate
15881 or else Present (Expressions (N))
15882 or else No (Component_Associations (N))
15883 then
15884 Error_Msg_N ("aspect Aggregate requires an aggregate "
15885 & "with component associations", N);
15886 return;
15887 end if;
15889 Parse_Aspect_Aggregate (N,
15890 Empty_Subp, Add_Named_Subp, Add_Unnamed_Subp,
15891 New_Indexed_Subp, Assign_Indexed_Subp);
15893 if No (Empty_Subp) then
15894 Error_Msg_N ("missing specification for Empty in aggregate", N);
15895 end if;
15897 if Present (Add_Named_Subp) then
15898 if Present (Add_Unnamed_Subp)
15899 or else Present (Assign_Indexed_Subp)
15900 then
15901 Error_Msg_N
15902 ("conflicting operations for aggregate (RM 4.3.5)", N);
15903 return;
15904 end if;
15906 elsif No (Add_Named_Subp)
15907 and then No (Add_Unnamed_Subp)
15908 and then No (Assign_Indexed_Subp)
15909 then
15910 Error_Msg_N ("incomplete specification for aggregate", N);
15912 elsif Present (New_Indexed_Subp) /= Present (Assign_Indexed_Subp) then
15913 Error_Msg_N ("incomplete specification for indexed aggregate", N);
15914 end if;
15915 end Validate_Aspect_Aggregate;
15917 -------------------------------
15918 -- Validate_Aspect_Stable_Properties --
15919 -------------------------------
15921 procedure Validate_Aspect_Stable_Properties
15922 (E : Entity_Id; N : Node_Id; Class_Present : Boolean)
15924 Is_Aspect_Of_Type : constant Boolean := Is_Type (E);
15926 type Permission is (Forbidden, Optional, Required);
15927 Modifier_Permission : Permission :=
15928 (if Is_Aspect_Of_Type then Forbidden else Optional);
15929 Modifier_Error_Called : Boolean := False;
15931 procedure Check_Property_Function_Arg (PF_Arg : Node_Id);
15932 -- Check syntax of a property function argument
15934 ----------------------------------
15935 -- Check_Property_Function_Arg --
15936 ----------------------------------
15938 procedure Check_Property_Function_Arg (PF_Arg : Node_Id) is
15939 procedure Modifier_Error;
15940 -- Generate message about bad "not" modifier if no message already
15941 -- generated. Errors include specifying "not" for an aspect of
15942 -- of a type and specifying "not" for some but not all of the
15943 -- names in a list.
15945 --------------------
15946 -- Modifier_Error --
15947 --------------------
15949 procedure Modifier_Error is
15950 begin
15951 if Modifier_Error_Called then
15952 return; -- error message already generated
15953 end if;
15955 Modifier_Error_Called := True;
15957 if Is_Aspect_Of_Type then
15958 Error_Msg_N
15959 ("NOT modifier not allowed for Stable_Properties aspect"
15960 & " of a type", PF_Arg);
15961 else
15962 Error_Msg_N ("mixed use of NOT modifiers", PF_Arg);
15963 end if;
15964 end Modifier_Error;
15966 PF_Name : Node_Id := PF_Arg;
15968 -- Start of processing for Check_Property_Function_Arg
15970 begin
15971 if Nkind (PF_Arg) = N_Op_Not then
15972 PF_Name := Right_Opnd (PF_Arg);
15974 case Modifier_Permission is
15975 when Forbidden =>
15976 Modifier_Error;
15977 when Optional =>
15978 Modifier_Permission := Required;
15979 when Required =>
15980 null;
15981 end case;
15982 else
15983 case Modifier_Permission is
15984 when Forbidden =>
15985 null;
15986 when Optional =>
15987 Modifier_Permission := Forbidden;
15988 when Required =>
15989 Modifier_Error;
15990 end case;
15991 end if;
15993 if Nkind (PF_Name) not in
15994 N_Identifier | N_Operator_Symbol | N_Selected_Component
15995 then
15996 Error_Msg_N ("bad property function name", PF_Name);
15997 end if;
15998 end Check_Property_Function_Arg;
16000 -- Start of processing for Validate_Aspect_Stable_Properties
16002 begin
16003 Error_Msg_Ada_2022_Feature ("aspect Stable_Properties", Sloc (N));
16005 if not Is_Aspect_Of_Type and then not Is_Subprogram (E) then
16006 Error_Msg_N ("Stable_Properties aspect can only be specified for "
16007 & "a type or a subprogram", N);
16008 elsif Class_Present then
16009 if Is_Aspect_Of_Type then
16010 if not Is_Tagged_Type (E) then
16011 Error_Msg_N
16012 ("Stable_Properties''Class aspect cannot be specified for "
16013 & "an untagged type", N);
16014 end if;
16015 else
16016 if not Is_Dispatching_Operation (E) then
16017 Error_Msg_N
16018 ("Stable_Properties''Class aspect cannot be specified for "
16019 & "a subprogram that is not a primitive subprogram "
16020 & "of a tagged type", N);
16021 end if;
16022 end if;
16023 end if;
16025 if Nkind (N) = N_Aggregate then
16026 if Present (Component_Associations (N))
16027 or else Null_Record_Present (N)
16028 or else not Present (Expressions (N))
16029 then
16030 Error_Msg_N ("bad Stable_Properties aspect specification", N);
16031 return;
16032 end if;
16034 declare
16035 PF_Arg : Node_Id := First (Expressions (N));
16036 begin
16037 while Present (PF_Arg) loop
16038 Check_Property_Function_Arg (PF_Arg);
16039 Next (PF_Arg);
16040 end loop;
16041 end;
16042 else
16043 Check_Property_Function_Arg (N);
16044 end if;
16045 end Validate_Aspect_Stable_Properties;
16047 --------------------------------
16048 -- Resolve_Iterable_Operation --
16049 --------------------------------
16051 procedure Resolve_Iterable_Operation
16052 (N : Node_Id;
16053 Cursor : Entity_Id;
16054 Typ : Entity_Id;
16055 Nam : Name_Id)
16057 Ent : Entity_Id;
16058 F1 : Entity_Id;
16059 F2 : Entity_Id;
16061 begin
16062 if not Is_Overloaded (N) then
16063 if not Is_Entity_Name (N)
16064 or else Ekind (Entity (N)) /= E_Function
16065 or else Scope (Entity (N)) /= Scope (Typ)
16066 or else No (First_Formal (Entity (N)))
16067 or else Etype (First_Formal (Entity (N))) /= Typ
16068 then
16069 Error_Msg_N
16070 ("iterable primitive must be local function name whose first "
16071 & "formal is an iterable type", N);
16072 return;
16073 end if;
16075 Ent := Entity (N);
16076 F1 := First_Formal (Ent);
16077 F2 := Next_Formal (F1);
16079 if Nam = Name_First then
16081 -- First (Container) => Cursor
16083 if Etype (Ent) /= Cursor then
16084 Error_Msg_N ("primitive for First must yield a cursor", N);
16085 elsif Present (F2) then
16086 Error_Msg_N ("no match for First iterable primitive", N);
16087 end if;
16089 elsif Nam = Name_Last then
16091 -- Last (Container) => Cursor
16093 if Etype (Ent) /= Cursor then
16094 Error_Msg_N ("primitive for Last must yield a cursor", N);
16095 elsif Present (F2) then
16096 Error_Msg_N ("no match for Last iterable primitive", N);
16097 end if;
16099 elsif Nam = Name_Next then
16101 -- Next (Container, Cursor) => Cursor
16103 if No (F2)
16104 or else Etype (F2) /= Cursor
16105 or else Etype (Ent) /= Cursor
16106 or else Present (Next_Formal (F2))
16107 then
16108 Error_Msg_N ("no match for Next iterable primitive", N);
16109 end if;
16111 elsif Nam = Name_Previous then
16113 -- Previous (Container, Cursor) => Cursor
16115 if No (F2)
16116 or else Etype (F2) /= Cursor
16117 or else Etype (Ent) /= Cursor
16118 or else Present (Next_Formal (F2))
16119 then
16120 Error_Msg_N ("no match for Previous iterable primitive", N);
16121 end if;
16123 elsif Nam = Name_Has_Element then
16125 -- Has_Element (Container, Cursor) => Boolean
16127 if No (F2)
16128 or else Etype (F2) /= Cursor
16129 or else Etype (Ent) /= Standard_Boolean
16130 or else Present (Next_Formal (F2))
16131 then
16132 Error_Msg_N ("no match for Has_Element iterable primitive", N);
16133 end if;
16135 elsif Nam = Name_Element then
16137 -- Element (Container, Cursor) => Element_Type;
16139 if No (F2)
16140 or else Etype (F2) /= Cursor
16141 or else Present (Next_Formal (F2))
16142 then
16143 Error_Msg_N ("no match for Element iterable primitive", N);
16144 end if;
16146 else
16147 raise Program_Error;
16148 end if;
16150 else
16151 -- Overloaded case: find subprogram with proper signature. Caller
16152 -- will report error if no match is found.
16154 declare
16155 I : Interp_Index;
16156 It : Interp;
16158 begin
16159 Get_First_Interp (N, I, It);
16160 while Present (It.Typ) loop
16161 if Ekind (It.Nam) = E_Function
16162 and then Scope (It.Nam) = Scope (Typ)
16163 and then Present (First_Formal (It.Nam))
16164 and then Etype (First_Formal (It.Nam)) = Typ
16165 then
16166 F1 := First_Formal (It.Nam);
16168 if Nam = Name_First then
16169 if Etype (It.Nam) = Cursor
16170 and then No (Next_Formal (F1))
16171 then
16172 Set_Entity (N, It.Nam);
16173 exit;
16174 end if;
16176 elsif Nam = Name_Next then
16177 F2 := Next_Formal (F1);
16179 if Present (F2)
16180 and then No (Next_Formal (F2))
16181 and then Etype (F2) = Cursor
16182 and then Etype (It.Nam) = Cursor
16183 then
16184 Set_Entity (N, It.Nam);
16185 exit;
16186 end if;
16188 elsif Nam = Name_Has_Element then
16189 F2 := Next_Formal (F1);
16191 if Present (F2)
16192 and then No (Next_Formal (F2))
16193 and then Etype (F2) = Cursor
16194 and then Etype (It.Nam) = Standard_Boolean
16195 then
16196 Set_Entity (N, It.Nam);
16197 F2 := Next_Formal (F1);
16198 exit;
16199 end if;
16201 elsif Nam = Name_Element then
16202 F2 := Next_Formal (F1);
16204 if Present (F2)
16205 and then No (Next_Formal (F2))
16206 and then Etype (F2) = Cursor
16207 then
16208 Set_Entity (N, It.Nam);
16209 exit;
16210 end if;
16211 end if;
16212 end if;
16214 Get_Next_Interp (I, It);
16215 end loop;
16216 end;
16217 end if;
16218 end Resolve_Iterable_Operation;
16220 ------------------------------
16221 -- Resolve_Aspect_Aggregate --
16222 ------------------------------
16224 procedure Resolve_Aspect_Aggregate
16225 (Typ : Entity_Id;
16226 Expr : Node_Id)
16228 function Valid_Empty (E : Entity_Id) return Boolean;
16229 function Valid_Add_Named (E : Entity_Id) return Boolean;
16230 function Valid_Add_Unnamed (E : Entity_Id) return Boolean;
16231 function Valid_New_Indexed (E : Entity_Id) return Boolean;
16232 function Valid_Assign_Indexed (E : Entity_Id) return Boolean;
16233 -- Predicates that establish the legality of each possible operation in
16234 -- an Aggregate aspect.
16236 generic
16237 with function Pred (Id : Node_Id) return Boolean;
16238 procedure Resolve_Operation (Subp_Id : Node_Id);
16239 -- Common processing to resolve each aggregate operation.
16241 ------------------------
16242 -- Valid_Assign_Index --
16243 ------------------------
16245 function Valid_Assign_Indexed (E : Entity_Id) return Boolean is
16246 begin
16247 -- The profile must be the same as for Add_Named, with the added
16248 -- requirement that the key_type be a discrete type.
16250 if Valid_Add_Named (E) then
16251 return Is_Discrete_Type (Etype (Next_Formal (First_Formal (E))));
16252 else
16253 return False;
16254 end if;
16255 end Valid_Assign_Indexed;
16257 -----------------
16258 -- Valid_Empty --
16259 -----------------
16261 function Valid_Empty (E : Entity_Id) return Boolean is
16262 begin
16263 if Etype (E) /= Typ or else Scope (E) /= Scope (Typ) then
16264 return False;
16266 elsif Ekind (E) = E_Constant then
16267 return True;
16269 elsif Ekind (E) = E_Function then
16270 return No (First_Formal (E))
16271 or else
16272 (Is_Integer_Type (Etype (First_Formal (E)))
16273 and then No (Next_Formal (First_Formal (E))));
16274 else
16275 return False;
16276 end if;
16277 end Valid_Empty;
16279 ---------------------
16280 -- Valid_Add_Named --
16281 ---------------------
16283 function Valid_Add_Named (E : Entity_Id) return Boolean is
16284 F2, F3 : Entity_Id;
16285 begin
16286 if Ekind (E) = E_Procedure
16287 and then Scope (E) = Scope (Typ)
16288 and then Number_Formals (E) = 3
16289 and then Etype (First_Formal (E)) = Typ
16290 and then Ekind (First_Formal (E)) = E_In_Out_Parameter
16291 then
16292 F2 := Next_Formal (First_Formal (E));
16293 F3 := Next_Formal (F2);
16294 return Ekind (F2) = E_In_Parameter
16295 and then Ekind (F3) = E_In_Parameter
16296 and then not Is_Limited_Type (Etype (F2))
16297 and then not Is_Limited_Type (Etype (F3));
16298 else
16299 return False;
16300 end if;
16301 end Valid_Add_Named;
16303 -----------------------
16304 -- Valid_Add_Unnamed --
16305 -----------------------
16307 function Valid_Add_Unnamed (E : Entity_Id) return Boolean is
16308 begin
16309 return Ekind (E) = E_Procedure
16310 and then Scope (E) = Scope (Typ)
16311 and then Number_Formals (E) = 2
16312 and then Etype (First_Formal (E)) = Typ
16313 and then Ekind (First_Formal (E)) = E_In_Out_Parameter
16314 and then
16315 not Is_Limited_Type (Etype (Next_Formal (First_Formal (E))));
16316 end Valid_Add_Unnamed;
16318 -----------------------
16319 -- Valid_Nmw_Indexed --
16320 -----------------------
16322 function Valid_New_Indexed (E : Entity_Id) return Boolean is
16323 begin
16324 return Ekind (E) = E_Function
16325 and then Scope (E) = Scope (Typ)
16326 and then Etype (E) = Typ
16327 and then Number_Formals (E) = 2
16328 and then Is_Discrete_Type (Etype (First_Formal (E)))
16329 and then Etype (First_Formal (E)) =
16330 Etype (Next_Formal (First_Formal (E)));
16331 end Valid_New_Indexed;
16333 -----------------------
16334 -- Resolve_Operation --
16335 -----------------------
16337 procedure Resolve_Operation (Subp_Id : Node_Id) is
16338 Subp : Entity_Id;
16340 I : Interp_Index;
16341 It : Interp;
16343 begin
16344 if not Is_Overloaded (Subp_Id) then
16345 Subp := Entity (Subp_Id);
16346 if not Pred (Subp) then
16347 Error_Msg_NE
16348 ("improper aggregate operation for&", Subp_Id, Typ);
16349 end if;
16351 else
16352 Set_Entity (Subp_Id, Empty);
16353 Get_First_Interp (Subp_Id, I, It);
16354 while Present (It.Nam) loop
16355 if Pred (It.Nam) then
16356 Set_Is_Overloaded (Subp_Id, False);
16357 Set_Entity (Subp_Id, It.Nam);
16358 exit;
16359 end if;
16361 Get_Next_Interp (I, It);
16362 end loop;
16364 if No (Entity (Subp_Id)) then
16365 Error_Msg_NE
16366 ("improper aggregate operation for&", Subp_Id, Typ);
16367 end if;
16368 end if;
16369 end Resolve_Operation;
16371 Assoc : Node_Id;
16372 Op_Name : Name_Id;
16373 Subp_Id : Node_Id;
16375 procedure Resolve_Empty is new Resolve_Operation (Valid_Empty);
16376 procedure Resolve_Unnamed is new Resolve_Operation (Valid_Add_Unnamed);
16377 procedure Resolve_Named is new Resolve_Operation (Valid_Add_Named);
16378 procedure Resolve_Indexed is new Resolve_Operation (Valid_New_Indexed);
16379 procedure Resolve_Assign_Indexed
16380 is new Resolve_Operation
16381 (Valid_Assign_Indexed);
16383 -- Start of processing for Resolve_Aspect_Aggregate
16385 begin
16386 Assoc := First (Component_Associations (Expr));
16388 while Present (Assoc) loop
16389 Op_Name := Chars (First (Choices (Assoc)));
16391 -- When verifying the consistency of aspects between the freeze point
16392 -- and the end of declarqtions, we use a copy which is not analyzed
16393 -- yet, so do it now.
16395 Subp_Id := Expression (Assoc);
16396 if No (Etype (Subp_Id)) then
16397 Analyze (Subp_Id);
16398 end if;
16400 if Op_Name = Name_Empty then
16401 Resolve_Empty (Subp_Id);
16403 elsif Op_Name = Name_Add_Named then
16404 Resolve_Named (Subp_Id);
16406 elsif Op_Name = Name_Add_Unnamed then
16407 Resolve_Unnamed (Subp_Id);
16409 elsif Op_Name = Name_New_Indexed then
16410 Resolve_Indexed (Subp_Id);
16412 elsif Op_Name = Name_Assign_Indexed then
16413 Resolve_Assign_Indexed (Subp_Id);
16414 end if;
16416 Next (Assoc);
16417 end loop;
16418 end Resolve_Aspect_Aggregate;
16420 --------------------------------------
16421 -- Resolve_Aspect_Stable_Properties --
16422 --------------------------------------
16424 procedure Resolve_Aspect_Stable_Properties
16425 (Typ_Or_Subp : Entity_Id; Expr : Node_Id; Class_Present : Boolean)
16427 Is_Aspect_Of_Type : constant Boolean := Is_Type (Typ_Or_Subp);
16429 Singleton : constant Boolean := Nkind (Expr) /= N_Aggregate;
16430 Subp_Name : Node_Id := (if Singleton
16431 then Expr
16432 else First (Expressions (Expr)));
16433 Has_Not : Boolean;
16434 begin
16435 if Is_Aspect_Of_Type
16436 and then Has_Private_Declaration (Typ_Or_Subp)
16437 and then not Is_Private_Type (Typ_Or_Subp)
16438 then
16439 Error_Msg_N
16440 ("Stable_Properties aspect cannot be specified " &
16441 "for the completion of a private type", Typ_Or_Subp);
16442 end if;
16444 -- Analogous checks that the aspect is not specified for a completion
16445 -- in the subprogram case are not performed here because they are not
16446 -- specific to this particular aspect. Right ???
16448 loop
16449 Has_Not := Nkind (Subp_Name) = N_Op_Not;
16450 if Has_Not then
16451 Set_Analyzed (Subp_Name); -- ???
16452 Subp_Name := Right_Opnd (Subp_Name);
16453 end if;
16455 if No (Etype (Subp_Name)) then
16456 Analyze (Subp_Name);
16457 end if;
16459 declare
16460 Subp : Entity_Id := Empty;
16462 I : Interp_Index;
16463 It : Interp;
16465 function Is_Property_Function (E : Entity_Id) return Boolean;
16466 -- Implements RM 7.3.4 definition of "property function".
16468 function Is_Property_Function (E : Entity_Id) return Boolean is
16469 begin
16470 if Ekind (E) not in E_Function | E_Operator
16471 or else Number_Formals (E) /= 1
16472 then
16473 return False;
16474 end if;
16476 declare
16477 Param_Type : constant Entity_Id :=
16478 Base_Type (Etype (First_Formal (E)));
16480 function Matches_Param_Type (Typ : Entity_Id)
16481 return Boolean is
16482 (Base_Type (Typ) = Param_Type
16483 or else
16484 (Is_Class_Wide_Type (Param_Type)
16485 and then Is_Ancestor (Root_Type (Param_Type),
16486 Base_Type (Typ))));
16487 begin
16488 if Is_Aspect_Of_Type then
16489 if Matches_Param_Type (Typ_Or_Subp) then
16490 return True;
16491 end if;
16492 elsif Is_Primitive (Typ_Or_Subp) then
16493 declare
16494 Formal : Entity_Id := First_Formal (Typ_Or_Subp);
16495 begin
16496 while Present (Formal) loop
16497 if Matches_Param_Type (Etype (Formal)) then
16499 -- Test whether Typ_Or_Subp (which is a subp
16500 -- in this case) is primitive op of the type
16501 -- of this parameter.
16502 if Scope (Typ_Or_Subp) = Scope (Param_Type) then
16503 return True;
16504 end if;
16505 end if;
16506 Next_Formal (Formal);
16507 end loop;
16508 end;
16509 end if;
16510 end;
16512 return False;
16513 end Is_Property_Function;
16514 begin
16515 if not Is_Overloaded (Subp_Name) then
16516 Subp := Entity (Subp_Name);
16517 if not Is_Property_Function (Subp) then
16518 Error_Msg_NE ("improper property function for&",
16519 Subp_Name, Typ_Or_Subp);
16520 return;
16521 end if;
16522 else
16523 Set_Entity (Subp_Name, Empty);
16524 Get_First_Interp (Subp_Name, I, It);
16525 while Present (It.Nam) loop
16526 if Is_Property_Function (It.Nam) then
16527 if Present (Subp) then
16528 Error_Msg_NE
16529 ("ambiguous property function name for&",
16530 Subp_Name, Typ_Or_Subp);
16531 return;
16532 end if;
16534 Subp := It.Nam;
16535 Set_Is_Overloaded (Subp_Name, False);
16536 Set_Entity (Subp_Name, Subp);
16537 end if;
16539 Get_Next_Interp (I, It);
16540 end loop;
16542 if No (Subp) then
16543 Error_Msg_NE ("improper property function for&",
16544 Subp_Name, Typ_Or_Subp);
16545 return;
16546 end if;
16547 end if;
16549 -- perform legality (as opposed to name resolution) Subp checks
16551 if Is_Limited_Type (Etype (Subp)) then
16552 Error_Msg_NE
16553 ("result type of property function for& is limited",
16554 Subp_Name, Typ_Or_Subp);
16555 end if;
16557 if Ekind (First_Formal (Subp)) /= E_In_Parameter then
16558 Error_Msg_NE
16559 ("mode of parameter of property function for& is not IN",
16560 Subp_Name, Typ_Or_Subp);
16561 end if;
16563 if Is_Class_Wide_Type (Etype (First_Formal (Subp))) then
16564 if not Covers (Etype (First_Formal (Subp)), Typ_Or_Subp) then
16565 Error_Msg_NE
16566 ("class-wide parameter type of property function " &
16567 "for& does not cover the type",
16568 Subp_Name, Typ_Or_Subp);
16570 -- ??? This test is slightly stricter than 7.3.4(12/5);
16571 -- some legal corner cases may be incorrectly rejected.
16572 elsif Scope (Subp) /= Scope (Etype (First_Formal (Subp)))
16573 then
16574 Error_Msg_NE
16575 ("property function for& not declared in same scope " &
16576 "as parameter type",
16577 Subp_Name, Typ_Or_Subp);
16578 end if;
16579 elsif Is_Aspect_Of_Type and then
16580 Scope (Subp) /= Scope (Typ_Or_Subp) and then
16581 Scope (Subp) /= Standard_Standard -- e.g., derived type's "abs"
16582 then
16583 Error_Msg_NE
16584 ("property function for& " &
16585 "not a primitive function of the type",
16586 Subp_Name, Typ_Or_Subp);
16587 end if;
16589 if Has_Not then
16590 -- check that Subp was mentioned in param type's aspect spec
16591 declare
16592 Param_Type : constant Entity_Id :=
16593 Base_Type (Etype (First_Formal (Subp)));
16594 Aspect_Spec : constant Node_Id :=
16595 Find_Value_Of_Aspect
16596 (Param_Type, Aspect_Stable_Properties,
16597 Class_Present => Class_Present);
16598 Found : Boolean := False;
16599 begin
16600 if Present (Aspect_Spec) then
16601 declare
16602 Ignored : Boolean;
16603 SPF_List : constant Subprogram_List :=
16604 Parse_Aspect_Stable_Properties
16605 (Aspect_Spec, Negated => Ignored);
16606 begin
16607 Found := (for some E of SPF_List => E = Subp);
16608 -- look through renamings ???
16609 end;
16610 end if;
16611 if not Found then
16612 declare
16613 CW_Modifier : constant String :=
16614 (if Class_Present then "class-wide " else "");
16615 begin
16616 Error_Msg_NE
16617 (CW_Modifier
16618 & "property function for& mentioned after NOT "
16619 & "but not a "
16620 & CW_Modifier
16621 & "stable property function of its parameter type",
16622 Subp_Name, Typ_Or_Subp);
16623 end;
16624 end if;
16625 end;
16626 end if;
16627 end;
16629 exit when Singleton;
16630 Subp_Name :=
16631 Next ((if Has_Not then Parent (Subp_Name) else Subp_Name));
16632 exit when No (Subp_Name);
16633 end loop;
16635 Set_Analyzed (Expr);
16636 end Resolve_Aspect_Stable_Properties;
16638 -----------------------------------------
16639 -- Resolve_Storage_Model_Type_Argument --
16640 -----------------------------------------
16642 procedure Resolve_Storage_Model_Type_Argument
16643 (N : Node_Id;
16644 Typ : Entity_Id;
16645 Addr_Type : in out Entity_Id;
16646 Nam : Name_Id)
16649 type Formal_Profile is record
16650 Subt : Entity_Id;
16651 Mode : Formal_Kind;
16652 end record;
16654 type Formal_Profiles is array (Positive range <>) of Formal_Profile;
16656 function Aspect_Argument_Profile_Matches
16657 (Subp : Entity_Id;
16658 Profiles : Formal_Profiles;
16659 Result_Subt : Entity_Id;
16660 Err_On_Mismatch : Boolean) return Boolean;
16661 -- Checks that the formal parameters of subprogram Subp conform to the
16662 -- subtypes and modes specified by Profiles, as well as to the result
16663 -- subtype Result_Subt when that is nonempty.
16665 function Aspect_Argument_Profile_Matches
16666 (Subp : Entity_Id;
16667 Profiles : Formal_Profiles;
16668 Result_Subt : Entity_Id;
16669 Err_On_Mismatch : Boolean) return Boolean
16672 procedure Report_Argument_Error
16673 (Msg : String;
16674 Formal : Entity_Id := Empty;
16675 Subt : Entity_Id := Empty);
16676 -- If Err_On_Mismatch is True, reports an argument error given by Msg
16677 -- associated with Formal and/or Subt.
16679 procedure Report_Argument_Error
16680 (Msg : String;
16681 Formal : Entity_Id := Empty;
16682 Subt : Entity_Id := Empty)
16684 begin
16685 if Err_On_Mismatch then
16686 if Present (Formal) then
16687 if Present (Subt) then
16688 Error_Msg_Node_2 := Subt;
16689 end if;
16690 Error_Msg_NE (Msg, N, Formal);
16692 elsif Present (Subt) then
16693 Error_Msg_NE (Msg, N, Subt);
16695 else
16696 Error_Msg_N (Msg, N);
16697 end if;
16698 end if;
16699 end Report_Argument_Error;
16701 -- Local variables
16703 Formal : Entity_Id := First_Formal (Subp);
16704 Is_Error : Boolean := False;
16706 -- Start of processing for Aspect_Argument_Profile_Matches
16708 begin
16709 for FP of Profiles loop
16710 if No (Formal) then
16711 Is_Error := True;
16712 Report_Argument_Error ("missing formal of }", Subt => FP.Subt);
16713 exit;
16715 elsif not Subtypes_Statically_Match
16716 (Etype (Formal), FP.Subt)
16717 then
16718 Is_Error := True;
16719 Report_Argument_Error
16720 ("formal& must be of subtype&",
16721 Formal => Formal, Subt => FP.Subt);
16722 exit;
16724 elsif Ekind (Formal) /= FP.Mode then
16725 Is_Error := True;
16726 Report_Argument_Error
16727 ("formal& has wrong mode", Formal => Formal);
16728 exit;
16729 end if;
16731 Formal := Next_Formal (Formal);
16732 end loop;
16734 if not Is_Error
16735 and then Present (Formal)
16736 then
16737 Is_Error := True;
16738 Report_Argument_Error
16739 ("too many formals for subprogram in aspect");
16740 end if;
16742 if not Is_Error
16743 and then Present (Result_Subt)
16744 and then not Subtypes_Statically_Match (Etype (Subp), Result_Subt)
16745 then
16746 Is_Error := True;
16747 Report_Argument_Error
16748 ("subprogram must have result}", Subt => Result_Subt);
16749 end if;
16751 return not Is_Error;
16752 end Aspect_Argument_Profile_Matches;
16754 -- Local variables
16756 Ent : Entity_Id;
16758 Storage_Count_Type : constant Entity_Id := RTE (RE_Storage_Count);
16759 System_Address_Type : constant Entity_Id := RTE (RE_Address);
16761 -- Start of processing for Resolve_Storage_Model_Type_Argument
16763 begin
16764 if Nam = Name_Address_Type then
16765 if not Is_Entity_Name (N)
16766 or else not Is_Type (Entity (N))
16767 or else (Root_Type (Entity (N)) /= System_Address_Type
16768 and then not Is_Integer_Type (Entity (N)))
16769 then
16770 Error_Msg_N ("named entity must be a descendant of System.Address "
16771 & "or an integer type", N);
16772 end if;
16774 Addr_Type := Entity (N);
16776 return;
16778 -- If Addr_Type is not present as the first association, then we default
16779 -- it to System.Address.
16781 elsif No (Addr_Type) then
16782 Addr_Type := RTE (RE_Address);
16783 end if;
16785 if Nam = Name_Null_Address then
16786 if not Is_Entity_Name (N)
16787 or else not Is_Constant_Object (Entity (N))
16788 or else
16789 not Subtypes_Statically_Match (Etype (Entity (N)), Addr_Type)
16790 then
16791 Error_Msg_NE
16792 ("named entity must be constant of subtype}", N, Addr_Type);
16793 end if;
16795 return;
16797 elsif not Is_Overloaded (N) then
16798 if not Is_Entity_Name (N)
16799 or else Ekind (Entity (N)) not in E_Function | E_Procedure
16800 or else Scope (Entity (N)) /= Scope (Typ)
16801 then
16802 Error_Msg_N ("argument must be local subprogram name", N);
16803 return;
16804 end if;
16806 Ent := Entity (N);
16808 if Nam = Name_Allocate then
16809 if not Aspect_Argument_Profile_Matches
16810 (Ent,
16811 Profiles =>
16812 ((Typ, E_In_Out_Parameter),
16813 (Addr_Type, E_Out_Parameter),
16814 (Storage_Count_Type, E_In_Parameter),
16815 (Storage_Count_Type, E_In_Parameter)),
16816 Result_Subt => Empty,
16817 Err_On_Mismatch => True)
16818 then
16819 Error_Msg_N ("no match for Allocate operation", N);
16820 end if;
16822 elsif Nam = Name_Deallocate then
16823 if not Aspect_Argument_Profile_Matches
16824 (Ent,
16825 Profiles =>
16826 ((Typ, E_In_Out_Parameter),
16827 (Addr_Type, E_In_Parameter),
16828 (Storage_Count_Type, E_In_Parameter),
16829 (Storage_Count_Type, E_In_Parameter)),
16830 Result_Subt => Empty,
16831 Err_On_Mismatch => True)
16832 then
16833 Error_Msg_N ("no match for Deallocate operation", N);
16834 end if;
16836 elsif Nam = Name_Copy_From then
16837 if not Aspect_Argument_Profile_Matches
16838 (Ent,
16839 Profiles =>
16840 ((Typ, E_In_Out_Parameter),
16841 (System_Address_Type, E_In_Parameter),
16842 (Addr_Type, E_In_Parameter),
16843 (Storage_Count_Type, E_In_Parameter)),
16844 Result_Subt => Empty,
16845 Err_On_Mismatch => True)
16846 then
16847 Error_Msg_N ("no match for Copy_From operation", N);
16848 end if;
16850 elsif Nam = Name_Copy_To then
16851 if not Aspect_Argument_Profile_Matches
16852 (Ent,
16853 Profiles =>
16854 ((Typ, E_In_Out_Parameter),
16855 (Addr_Type, E_In_Parameter),
16856 (System_Address_Type, E_In_Parameter),
16857 (Storage_Count_Type, E_In_Parameter)),
16858 Result_Subt => Empty,
16859 Err_On_Mismatch => True)
16860 then
16861 Error_Msg_N ("no match for Copy_To operation", N);
16862 end if;
16864 elsif Nam = Name_Storage_Size then
16865 if not Aspect_Argument_Profile_Matches
16866 (Ent,
16867 Profiles => (1 => (Typ, E_In_Parameter)),
16868 Result_Subt => Storage_Count_Type,
16869 Err_On_Mismatch => True)
16870 then
16871 Error_Msg_N ("no match for Storage_Size operation", N);
16872 end if;
16874 else
16875 null; -- Error will be caught in Validate_Storage_Model_Type_Aspect
16876 end if;
16878 else
16879 -- Overloaded case: find subprogram with proper signature
16881 declare
16882 I : Interp_Index;
16883 It : Interp;
16884 Found_Match : Boolean := False;
16886 begin
16887 Get_First_Interp (N, I, It);
16888 while Present (It.Typ) loop
16889 if Ekind (It.Nam) in E_Function | E_Procedure
16890 and then Scope (It.Nam) = Scope (Typ)
16891 then
16892 if Nam = Name_Allocate then
16893 Found_Match :=
16894 Aspect_Argument_Profile_Matches
16895 (It.Nam,
16896 Profiles =>
16897 ((Typ, E_In_Out_Parameter),
16898 (Addr_Type, E_Out_Parameter),
16899 (Storage_Count_Type, E_In_Parameter),
16900 (Storage_Count_Type, E_In_Parameter)),
16901 Result_Subt => Empty,
16902 Err_On_Mismatch => False);
16904 elsif Nam = Name_Deallocate then
16905 Found_Match :=
16906 Aspect_Argument_Profile_Matches
16907 (It.Nam,
16908 Profiles =>
16909 ((Typ, E_In_Out_Parameter),
16910 (Addr_Type, E_In_Parameter),
16911 (Storage_Count_Type, E_In_Parameter),
16912 (Storage_Count_Type, E_In_Parameter)),
16913 Result_Subt => Empty,
16914 Err_On_Mismatch => False);
16916 elsif Nam = Name_Copy_From then
16917 Found_Match :=
16918 Aspect_Argument_Profile_Matches
16919 (It.Nam,
16920 Profiles =>
16921 ((Typ, E_In_Out_Parameter),
16922 (System_Address_Type, E_In_Parameter),
16923 (Addr_Type, E_In_Parameter),
16924 (Storage_Count_Type, E_In_Parameter),
16925 (Storage_Count_Type, E_In_Parameter)),
16926 Result_Subt => Empty,
16927 Err_On_Mismatch => False);
16929 elsif Nam = Name_Copy_To then
16930 Found_Match :=
16931 Aspect_Argument_Profile_Matches
16932 (It.Nam,
16933 Profiles =>
16934 ((Typ, E_In_Out_Parameter),
16935 (Addr_Type, E_In_Parameter),
16936 (Storage_Count_Type, E_In_Parameter),
16937 (System_Address_Type, E_In_Parameter),
16938 (Storage_Count_Type, E_In_Parameter)),
16939 Result_Subt => Empty,
16940 Err_On_Mismatch => False);
16942 elsif Nam = Name_Storage_Size then
16943 Found_Match :=
16944 Aspect_Argument_Profile_Matches
16945 (It.Nam,
16946 Profiles => (1 => (Typ, E_In_Parameter)),
16947 Result_Subt => Storage_Count_Type,
16948 Err_On_Mismatch => False);
16949 end if;
16951 if Found_Match then
16952 Set_Entity (N, It.Nam);
16953 exit;
16954 end if;
16955 end if;
16957 Get_Next_Interp (I, It);
16958 end loop;
16960 if not Found_Match then
16961 Error_Msg_N
16962 ("no match found for Storage_Model_Type operation", N);
16963 end if;
16964 end;
16965 end if;
16966 end Resolve_Storage_Model_Type_Argument;
16968 ----------------
16969 -- Set_Biased --
16970 ----------------
16972 procedure Set_Biased
16973 (E : Entity_Id;
16974 N : Node_Id;
16975 Msg : String;
16976 Biased : Boolean := True)
16978 begin
16979 if Biased then
16980 Set_Has_Biased_Representation (E);
16982 if Warn_On_Biased_Representation then
16983 Error_Msg_NE
16984 ("?.b?" & Msg & " forces biased representation for&", N, E);
16985 end if;
16986 end if;
16987 end Set_Biased;
16989 --------------------
16990 -- Set_Enum_Esize --
16991 --------------------
16993 procedure Set_Enum_Esize (T : Entity_Id) is
16994 Lo : Uint;
16995 Hi : Uint;
16996 Sz : Unat;
16998 begin
16999 Reinit_Alignment (T);
17001 -- Find the minimum standard size (8,16,32,64,128) that fits
17003 Lo := Enumeration_Rep (Entity (Type_Low_Bound (T)));
17004 Hi := Enumeration_Rep (Entity (Type_High_Bound (T)));
17006 if Lo < 0 then
17007 if Lo >= -Uint_2**7 and then Hi < Uint_2**7 then
17008 Sz := UI_From_Int (Standard_Character_Size);
17009 -- Might be > 8 on some targets
17011 elsif Lo >= -Uint_2**15 and then Hi < Uint_2**15 then
17012 Sz := Uint_16;
17014 elsif Lo >= -Uint_2**31 and then Hi < Uint_2**31 then
17015 Sz := Uint_32;
17017 elsif Lo >= -Uint_2**63 and then Hi < Uint_2**63 then
17018 Sz := Uint_64;
17020 else pragma Assert (Lo >= -Uint_2**127 and then Hi < Uint_2**127);
17021 Sz := Uint_128;
17022 end if;
17024 else
17025 if Hi < Uint_2**8 then
17026 Sz := UI_From_Int (Standard_Character_Size);
17028 elsif Hi < Uint_2**16 then
17029 Sz := Uint_16;
17031 elsif Hi < Uint_2**32 then
17032 Sz := Uint_32;
17034 elsif Hi < Uint_2**64 then
17035 Sz := Uint_64;
17037 else pragma Assert (Hi < Uint_2**128);
17038 Sz := Uint_128;
17039 end if;
17040 end if;
17042 -- That minimum is the proper size unless we have a foreign convention
17043 -- and the size required is 32 or less, in which case we bump the size
17044 -- up to 32. This is required for C and C++ and seems reasonable for
17045 -- all other foreign conventions.
17047 if Has_Foreign_Convention (T)
17048 and then Esize (T) < Standard_Integer_Size
17050 -- Don't do this if Short_Enums on target
17052 and then not Target_Short_Enums
17053 then
17054 Set_Esize (T, UI_From_Int (Standard_Integer_Size));
17055 else
17056 Set_Esize (T, Sz);
17057 end if;
17058 end Set_Enum_Esize;
17060 -----------------------------
17061 -- Uninstall_Discriminants --
17062 -----------------------------
17064 procedure Uninstall_Discriminants (E : Entity_Id) is
17065 Disc : Entity_Id;
17066 Prev : Entity_Id;
17067 Outer : Entity_Id;
17069 begin
17070 -- Discriminants have been made visible for type declarations and
17071 -- protected type declarations, not for subtype declarations.
17073 if Nkind (Parent (E)) /= N_Subtype_Declaration then
17074 Disc := First_Discriminant (E);
17075 while Present (Disc) loop
17076 if Disc /= Current_Entity (Disc) then
17077 Prev := Current_Entity (Disc);
17078 while Present (Prev)
17079 and then Present (Homonym (Prev))
17080 and then Homonym (Prev) /= Disc
17081 loop
17082 Prev := Homonym (Prev);
17083 end loop;
17084 else
17085 Prev := Empty;
17086 end if;
17088 Set_Is_Immediately_Visible (Disc, False);
17090 Outer := Homonym (Disc);
17091 while Present (Outer) and then Scope (Outer) = E loop
17092 Outer := Homonym (Outer);
17093 end loop;
17095 -- Reset homonym link of other entities, but do not modify link
17096 -- between entities in current scope, so that the back end can
17097 -- have a proper count of local overloadings.
17099 if No (Prev) then
17100 Set_Name_Entity_Id (Chars (Disc), Outer);
17102 elsif Scope (Prev) /= Scope (Disc) then
17103 Set_Homonym (Prev, Outer);
17104 end if;
17106 Next_Discriminant (Disc);
17107 end loop;
17108 end if;
17109 end Uninstall_Discriminants;
17111 ------------------------------
17112 -- Validate_Address_Clauses --
17113 ------------------------------
17115 procedure Validate_Address_Clauses is
17116 function Offset_Value (Expr : Node_Id) return Uint;
17117 -- Given an Address attribute reference, return the value in bits of its
17118 -- offset from the first bit of the underlying entity, or 0 if it is not
17119 -- known at compile time.
17121 ------------------
17122 -- Offset_Value --
17123 ------------------
17125 function Offset_Value (Expr : Node_Id) return Uint is
17126 N : Node_Id := Prefix (Expr);
17127 Off : Uint;
17128 Val : Uint := Uint_0;
17130 begin
17131 -- Climb the prefix chain and compute the cumulative offset
17133 loop
17134 if Is_Entity_Name (N) then
17135 return Val;
17137 elsif Nkind (N) = N_Selected_Component then
17138 Off := Component_Bit_Offset (Entity (Selector_Name (N)));
17139 if Present (Off) and then Off >= Uint_0 then
17140 Val := Val + Off;
17141 N := Prefix (N);
17142 else
17143 return Uint_0;
17144 end if;
17146 elsif Nkind (N) = N_Indexed_Component then
17147 Off := Indexed_Component_Bit_Offset (N);
17148 if Present (Off) then
17149 Val := Val + Off;
17150 N := Prefix (N);
17151 else
17152 return Uint_0;
17153 end if;
17155 else
17156 return Uint_0;
17157 end if;
17158 end loop;
17159 end Offset_Value;
17161 -- Start of processing for Validate_Address_Clauses
17163 begin
17164 for J in Address_Clause_Checks.First .. Address_Clause_Checks.Last loop
17165 declare
17166 ACCR : Address_Clause_Check_Record
17167 renames Address_Clause_Checks.Table (J);
17169 Expr : Node_Id;
17171 X_Alignment : Uint;
17172 Y_Alignment : Uint := Uint_0;
17174 X_Size : Uint;
17175 Y_Size : Uint := Uint_0;
17177 X_Offs : Uint;
17179 begin
17180 -- Skip processing of this entry if warning already posted, or if
17181 -- alignments are not set.
17183 if not Address_Warning_Posted (ACCR.N)
17184 and then Known_Alignment (ACCR.X)
17185 and then Known_Alignment (ACCR.Y)
17186 then
17187 Expr := Original_Node (Expression (ACCR.N));
17189 -- Get alignments, sizes and offset, if any
17191 X_Alignment := Alignment (ACCR.X);
17192 X_Size := Esize (ACCR.X);
17194 if Present (ACCR.Y) then
17195 Y_Alignment := Alignment (ACCR.Y);
17196 Y_Size :=
17197 (if Known_Esize (ACCR.Y) then Esize (ACCR.Y) else Uint_0);
17198 end if;
17200 if ACCR.Off
17201 and then Nkind (Expr) = N_Attribute_Reference
17202 and then Attribute_Name (Expr) = Name_Address
17203 then
17204 X_Offs := Offset_Value (Expr);
17205 else
17206 X_Offs := Uint_0;
17207 end if;
17209 -- Check for known value not multiple of alignment
17211 if No (ACCR.Y) then
17212 if not Alignment_Checks_Suppressed (ACCR)
17213 and then X_Alignment /= 0
17214 and then ACCR.A mod X_Alignment /= 0
17215 then
17216 Error_Msg_NE
17217 ("??specified address for& is inconsistent with "
17218 & "alignment", ACCR.N, ACCR.X);
17219 Error_Msg_N
17220 ("\??program execution may be erroneous (RM 13.3(27))",
17221 ACCR.N);
17223 Error_Msg_Uint_1 := X_Alignment;
17224 Error_Msg_NE ("\??alignment of & is ^", ACCR.N, ACCR.X);
17225 end if;
17227 -- Check for large object overlaying smaller one
17229 elsif Y_Size > Uint_0
17230 and then X_Size > Uint_0
17231 and then X_Offs + X_Size > Y_Size
17232 then
17233 Error_Msg_NE ("??& overlays smaller object", ACCR.N, ACCR.X);
17234 Error_Msg_N
17235 ("\??program execution may be erroneous", ACCR.N);
17237 Error_Msg_Uint_1 := X_Size;
17238 Error_Msg_NE ("\??size of & is ^", ACCR.N, ACCR.X);
17240 Error_Msg_Uint_1 := Y_Size;
17241 Error_Msg_NE ("\??size of & is ^", ACCR.N, ACCR.Y);
17243 if Y_Size >= X_Size then
17244 Error_Msg_Uint_1 := X_Offs;
17245 Error_Msg_NE ("\??but offset of & is ^", ACCR.N, ACCR.X);
17246 end if;
17248 -- Check for inadequate alignment, both of the base object
17249 -- and of the offset, if any. We only do this check if the
17250 -- run-time Alignment_Check is active. No point in warning
17251 -- if this check has been suppressed (or is suppressed by
17252 -- default in the non-strict alignment machine case).
17254 -- Note: we do not check the alignment if we gave a size
17255 -- warning, since it would likely be redundant.
17257 elsif not Alignment_Checks_Suppressed (ACCR)
17258 and then Y_Alignment /= Uint_0
17259 and then
17260 (Y_Alignment < X_Alignment
17261 or else
17262 (ACCR.Off
17263 and then Nkind (Expr) = N_Attribute_Reference
17264 and then Attribute_Name (Expr) = Name_Address
17265 and then Has_Compatible_Alignment
17266 (ACCR.X, Prefix (Expr), True) /=
17267 Known_Compatible))
17268 then
17269 Error_Msg_NE
17270 ("??specified address for& may be inconsistent with "
17271 & "alignment", ACCR.N, ACCR.X);
17272 Error_Msg_N
17273 ("\??program execution may be erroneous (RM 13.3(27))",
17274 ACCR.N);
17276 Error_Msg_Uint_1 := X_Alignment;
17277 Error_Msg_NE ("\??alignment of & is ^", ACCR.N, ACCR.X);
17279 Error_Msg_Uint_1 := Y_Alignment;
17280 Error_Msg_NE ("\??alignment of & is ^", ACCR.N, ACCR.Y);
17282 if Y_Alignment >= X_Alignment then
17283 Error_Msg_N
17284 ("\??but offset is not multiple of alignment", ACCR.N);
17285 end if;
17286 end if;
17287 end if;
17288 end;
17289 end loop;
17290 end Validate_Address_Clauses;
17292 ------------------------------
17293 -- Validate_Iterable_Aspect --
17294 ------------------------------
17296 procedure Validate_Iterable_Aspect (Typ : Entity_Id; ASN : Node_Id) is
17297 Aggr : constant Node_Id := Expression (ASN);
17298 Assoc : Node_Id;
17299 Expr : Node_Id;
17301 Prim : Node_Id;
17302 Cursor : Entity_Id;
17304 First_Id : Entity_Id := Empty;
17305 Last_Id : Entity_Id := Empty;
17306 Next_Id : Entity_Id := Empty;
17307 Has_Element_Id : Entity_Id := Empty;
17308 Element_Id : Entity_Id := Empty;
17310 begin
17311 if Nkind (Aggr) /= N_Aggregate then
17312 Error_Msg_N ("aspect Iterable must be an aggregate", Aggr);
17313 return;
17314 end if;
17316 Cursor := Get_Cursor_Type (ASN, Typ);
17318 -- If previous error aspect is unusable
17320 if Cursor = Any_Type then
17321 return;
17322 end if;
17324 if not Is_Empty_List (Expressions (Aggr)) then
17325 Error_Msg_N
17326 ("illegal positional association", First (Expressions (Aggr)));
17327 end if;
17329 -- Each expression must resolve to a function with the proper signature
17331 Assoc := First (Component_Associations (Aggr));
17332 while Present (Assoc) loop
17333 Expr := Expression (Assoc);
17334 Analyze (Expr);
17336 Prim := First (Choices (Assoc));
17338 if Nkind (Prim) /= N_Identifier or else Present (Next (Prim)) then
17339 Error_Msg_N ("illegal name in association", Prim);
17341 elsif Chars (Prim) = Name_First then
17342 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_First);
17343 First_Id := Entity (Expr);
17345 elsif Chars (Prim) = Name_Last then
17346 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Last);
17347 Last_Id := Entity (Expr);
17349 elsif Chars (Prim) = Name_Previous then
17350 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Previous);
17351 Last_Id := Entity (Expr);
17353 elsif Chars (Prim) = Name_Next then
17354 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Next);
17355 Next_Id := Entity (Expr);
17357 elsif Chars (Prim) = Name_Has_Element then
17358 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Has_Element);
17359 Has_Element_Id := Entity (Expr);
17361 elsif Chars (Prim) = Name_Element then
17362 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Element);
17363 Element_Id := Entity (Expr);
17365 else
17366 Error_Msg_N ("invalid name for iterable function", Prim);
17367 end if;
17369 Next (Assoc);
17370 end loop;
17372 if No (First_Id) then
17373 Error_Msg_N ("match for First primitive not found", ASN);
17375 elsif No (Next_Id) then
17376 Error_Msg_N ("match for Next primitive not found", ASN);
17378 elsif No (Has_Element_Id) then
17379 Error_Msg_N ("match for Has_Element primitive not found", ASN);
17381 elsif No (Element_Id) or else No (Last_Id) then
17382 null; -- optional
17383 end if;
17384 end Validate_Iterable_Aspect;
17386 ------------------------------
17387 -- Validate_Literal_Aspect --
17388 ------------------------------
17390 procedure Validate_Literal_Aspect (Typ : Entity_Id; ASN : Node_Id) is
17391 A_Id : constant Aspect_Id := Get_Aspect_Id (ASN);
17392 pragma Assert (A_Id in Aspect_Integer_Literal |
17393 Aspect_Real_Literal | Aspect_String_Literal);
17394 Func_Name : constant Node_Id := Expression (ASN);
17395 Overloaded : Boolean := Is_Overloaded (Func_Name);
17397 I : Interp_Index := 0;
17398 It : Interp;
17399 Param_Type : Entity_Id;
17400 Match_Found : Boolean := False;
17401 Match2_Found : Boolean := False;
17402 Is_Match : Boolean;
17403 Match : Interp;
17404 Match2 : Entity_Id := Empty;
17406 function Matching
17407 (Param_Id : Entity_Id; Param_Type : Entity_Id) return Boolean;
17408 -- Return True if Param_Id is a non aliased in parameter whose base type
17409 -- is Param_Type.
17411 --------------
17412 -- Matching --
17413 --------------
17415 function Matching
17416 (Param_Id : Entity_Id; Param_Type : Entity_Id) return Boolean is
17417 begin
17418 return Base_Type (Etype (Param_Id)) = Param_Type
17419 and then Ekind (Param_Id) = E_In_Parameter
17420 and then not Is_Aliased (Param_Id);
17421 end Matching;
17423 begin
17424 if not Is_Type (Typ) then
17425 Error_Msg_N ("aspect can only be specified for a type", ASN);
17426 return;
17428 elsif not Is_First_Subtype (Typ) then
17429 Error_Msg_N ("aspect cannot be specified for a subtype", ASN);
17430 return;
17431 end if;
17433 if A_Id = Aspect_String_Literal then
17434 if Is_String_Type (Typ) then
17435 Error_Msg_N ("aspect cannot be specified for a string type", ASN);
17436 return;
17437 end if;
17439 Param_Type := Standard_Wide_Wide_String;
17441 else
17442 if Is_Numeric_Type (Typ) then
17443 Error_Msg_N ("aspect cannot be specified for a numeric type", ASN);
17444 return;
17445 end if;
17447 Param_Type := Standard_String;
17448 end if;
17450 if not Overloaded and then No (Entity (Func_Name)) then
17451 -- The aspect is specified by a subprogram name, which
17452 -- may be an operator name given originally by a string.
17454 if Is_Operator_Name (Chars (Func_Name)) then
17455 Analyze_Operator_Symbol (Func_Name);
17456 else
17457 Analyze (Func_Name);
17458 end if;
17460 Overloaded := Is_Overloaded (Func_Name);
17461 end if;
17463 if Overloaded then
17464 Get_First_Interp (Func_Name, I => I, It => It);
17465 else
17466 -- only one possible interpretation
17467 It.Nam := Entity (Func_Name);
17468 pragma Assert (Present (It.Nam));
17469 end if;
17471 while It.Nam /= Empty loop
17472 Is_Match := False;
17474 if Ekind (It.Nam) = E_Function
17475 and then Base_Type (Etype (It.Nam)) = Base_Type (Typ)
17476 then
17477 declare
17478 Params : constant List_Id :=
17479 Parameter_Specifications (Parent (It.Nam));
17480 Param_Spec : Node_Id;
17482 begin
17483 if List_Length (Params) = 1 then
17484 Param_Spec := First (Params);
17485 Is_Match :=
17486 Matching (Defining_Identifier (Param_Spec), Param_Type);
17488 -- Look for the optional overloaded 2-param Real_Literal
17490 elsif List_Length (Params) = 2
17491 and then A_Id = Aspect_Real_Literal
17492 then
17493 Param_Spec := First (Params);
17495 if Matching (Defining_Identifier (Param_Spec), Param_Type)
17496 then
17497 Param_Spec := Next (Param_Spec);
17499 if Matching (Defining_Identifier (Param_Spec), Param_Type)
17500 then
17501 if No (Match2) then
17502 Match2 := It.Nam;
17503 Match2_Found := True;
17504 else
17505 -- If we find more than one possible match then
17506 -- do not take any into account here: since the
17507 -- 2-parameter version of Real_Literal is optional
17508 -- we cannot generate an error here, so let
17509 -- standard resolution fail later if we do need to
17510 -- call this variant.
17512 Match2_Found := False;
17513 end if;
17514 end if;
17515 end if;
17516 end if;
17517 end;
17518 end if;
17520 if Is_Match then
17521 if Match_Found then
17522 Error_Msg_N ("aspect specification is ambiguous", ASN);
17523 return;
17524 end if;
17526 Match_Found := True;
17527 Match := It;
17528 end if;
17530 exit when not Overloaded;
17532 if not Is_Match then
17533 Remove_Interp (I => I);
17534 end if;
17536 Get_Next_Interp (I => I, It => It);
17537 end loop;
17539 if not Match_Found then
17540 Error_Msg_N
17541 ("function name in aspect specification cannot be resolved", ASN);
17542 return;
17543 end if;
17545 Set_Entity (Func_Name, Match.Nam);
17546 Set_Etype (Func_Name, Etype (Match.Nam));
17547 Set_Is_Overloaded (Func_Name, False);
17549 -- Record the match for 2-parameter function if found
17551 if Match2_Found then
17552 Set_Related_Expression (Match.Nam, Match2);
17553 end if;
17554 end Validate_Literal_Aspect;
17556 ----------------------------------------
17557 -- Validate_Storage_Model_Type_Aspect --
17558 ----------------------------------------
17560 procedure Validate_Storage_Model_Type_Aspect
17561 (Typ : Entity_Id; ASN : Node_Id)
17563 Assoc : Node_Id;
17564 Choice : Entity_Id;
17565 Choice_Name : Name_Id;
17566 Expr : Node_Id;
17568 Address_Type_Id : Entity_Id := Empty;
17569 Null_Address_Id : Entity_Id := Empty;
17570 Allocate_Id : Entity_Id := Empty;
17571 Deallocate_Id : Entity_Id := Empty;
17572 Copy_From_Id : Entity_Id := Empty;
17573 Copy_To_Id : Entity_Id := Empty;
17574 Storage_Size_Id : Entity_Id := Empty;
17576 procedure Check_And_Resolve_Storage_Model_Type_Argument
17577 (Expr : Node_Id;
17578 Typ : Entity_Id;
17579 Argument_Id : in out Entity_Id;
17580 Nam : Name_Id);
17581 -- Checks that the subaspect for Nam has not already been specified for
17582 -- Typ's Storage_Model_Type aspect (i.e., checks Argument_Id = Empty),
17583 -- resolves Expr, and sets Argument_Id to the entity resolved for Expr.
17585 procedure Check_And_Resolve_Storage_Model_Type_Argument
17586 (Expr : Node_Id;
17587 Typ : Entity_Id;
17588 Argument_Id : in out Entity_Id;
17589 Nam : Name_Id)
17591 Name_String : String := Get_Name_String (Nam);
17593 begin
17594 To_Mixed (Name_String);
17596 if Present (Argument_Id) then
17597 Error_Msg_String (1 .. Name_String'Length) := Name_String;
17598 Error_Msg_Strlen := Name_String'Length;
17600 Error_Msg_N ("~ already specified", Expr);
17601 end if;
17603 Resolve_Storage_Model_Type_Argument (Expr, Typ, Address_Type_Id, Nam);
17604 Argument_Id := Entity (Expr);
17605 end Check_And_Resolve_Storage_Model_Type_Argument;
17607 -- Start of processing for Validate_Storage_Model_Type_Aspect
17609 begin
17610 -- The aggregate argument of Storage_Model_Type is optional, and when
17611 -- not present the aspect defaults to the native storage model (where
17612 -- the address type is System.Address, and other arguments default to
17613 -- the corresponding native storage operations).
17615 if No (Expression (ASN)) then
17616 return;
17617 end if;
17619 -- Each expression must resolve to an entity of the right kind or proper
17620 -- profile.
17622 Assoc := First (Component_Associations (Expression (ASN)));
17623 while Present (Assoc) loop
17624 Expr := Expression (Assoc);
17625 Analyze (Expr);
17627 Choice := First (Choices (Assoc));
17629 Choice_Name := Chars (Choice);
17631 if Nkind (Choice) /= N_Identifier or else Present (Next (Choice)) then
17632 Error_Msg_N ("illegal name in association", Choice);
17634 elsif Choice_Name = Name_Address_Type then
17635 if Assoc /= First (Component_Associations (Expression (ASN))) then
17636 Error_Msg_N ("Address_Type must be first association", Choice);
17637 end if;
17639 Check_And_Resolve_Storage_Model_Type_Argument
17640 (Expr, Typ, Address_Type_Id, Name_Address_Type);
17642 else
17643 -- It's allowed to leave out the Address_Type argument, in which
17644 -- case the address type is defined to default to System.Address.
17646 if No (Address_Type_Id) then
17647 Address_Type_Id := RTE (RE_Address);
17648 end if;
17650 if Choice_Name = Name_Null_Address then
17651 Check_And_Resolve_Storage_Model_Type_Argument
17652 (Expr, Typ, Null_Address_Id, Name_Null_Address);
17654 elsif Choice_Name = Name_Allocate then
17655 Check_And_Resolve_Storage_Model_Type_Argument
17656 (Expr, Typ, Allocate_Id, Name_Allocate);
17658 elsif Choice_Name = Name_Deallocate then
17659 Check_And_Resolve_Storage_Model_Type_Argument
17660 (Expr, Typ, Deallocate_Id, Name_Deallocate);
17662 elsif Choice_Name = Name_Copy_From then
17663 Check_And_Resolve_Storage_Model_Type_Argument
17664 (Expr, Typ, Copy_From_Id, Name_Copy_From);
17666 elsif Choice_Name = Name_Copy_To then
17667 Check_And_Resolve_Storage_Model_Type_Argument
17668 (Expr, Typ, Copy_To_Id, Name_Copy_To);
17670 elsif Choice_Name = Name_Storage_Size then
17671 Check_And_Resolve_Storage_Model_Type_Argument
17672 (Expr, Typ, Storage_Size_Id, Name_Storage_Size);
17674 else
17675 Error_Msg_N
17676 ("invalid name for Storage_Model_Type argument", Choice);
17677 end if;
17678 end if;
17680 Next (Assoc);
17681 end loop;
17683 -- If Address_Type has been specified as or defaults to System.Address,
17684 -- then other "subaspect" arguments can be specified, but are optional.
17685 -- Otherwise, all other arguments are required and an error is flagged
17686 -- about any that are missing.
17688 if Address_Type_Id = RTE (RE_Address) then
17689 return;
17691 elsif No (Null_Address_Id) then
17692 Error_Msg_N ("match for Null_Address primitive not found", ASN);
17694 elsif No (Allocate_Id) then
17695 Error_Msg_N ("match for Allocate primitive not found", ASN);
17697 elsif No (Deallocate_Id) then
17698 Error_Msg_N ("match for Deallocate primitive not found", ASN);
17700 elsif No (Copy_From_Id) then
17701 Error_Msg_N ("match for Copy_From primitive not found", ASN);
17703 elsif No (Copy_To_Id) then
17704 Error_Msg_N ("match for Copy_To primitive not found", ASN);
17706 elsif No (Storage_Size_Id) then
17707 Error_Msg_N ("match for Storage_Size primitive not found", ASN);
17708 end if;
17709 end Validate_Storage_Model_Type_Aspect;
17711 -----------------------------------
17712 -- Validate_Unchecked_Conversion --
17713 -----------------------------------
17715 procedure Validate_Unchecked_Conversion
17716 (N : Node_Id;
17717 Act_Unit : Entity_Id)
17719 Source : Entity_Id;
17720 Target : Entity_Id;
17722 procedure Warn_Nonportable (RE : RE_Id);
17723 -- Warn if either source or target of the conversion is a predefined
17724 -- private type, whose representation might differ between releases and
17725 -- targets of the compiler.
17727 ----------------------
17728 -- Warn_Nonportable --
17729 ----------------------
17731 procedure Warn_Nonportable (RE : RE_Id) is
17732 begin
17733 if Is_RTE (Source, RE) or else Is_RTE (Target, RE) then
17734 pragma Assert (Is_Private_Type (RTE (RE)));
17735 Error_Msg_NE
17736 ("?z?representation of & values may change between "
17737 & "'G'N'A'T versions", N, RTE (RE));
17738 end if;
17739 end Warn_Nonportable;
17741 -- Local variables
17743 Vnode : Node_Id;
17745 -- Start of processing for Validate_Unchecked_Conversion
17747 begin
17748 -- Obtain source and target types. Note that we call Ancestor_Subtype
17749 -- here because the processing for generic instantiation always makes
17750 -- subtypes, and we want the original frozen actual types.
17752 Source := Ancestor_Subtype (Etype (First_Formal (Act_Unit)));
17753 Target := Ancestor_Subtype (Etype (Act_Unit));
17755 -- If either type is generic, the instantiation happens within a generic
17756 -- unit, and there is nothing to check. The proper check will happen
17757 -- when the enclosing generic is instantiated.
17759 if Is_Generic_Type (Source) or else Is_Generic_Type (Target) then
17760 return;
17761 end if;
17763 -- Warn if one of the operands is a private type declared in
17764 -- Ada.Calendar or Ada.Real_Time. Do not emit a warning when compiling
17765 -- GNAT-related sources.
17767 if Warn_On_Unchecked_Conversion
17768 and then not In_Predefined_Unit (N)
17769 then
17770 Warn_Nonportable (RO_CA_Time);
17771 Warn_Nonportable (RO_RT_Time);
17772 Warn_Nonportable (RE_Time_Span);
17773 end if;
17775 -- If we are dealing with private types, then do the check on their
17776 -- fully declared counterparts if the full declarations have been
17777 -- encountered (they don't have to be visible, but they must exist).
17779 if Is_Private_Type (Source)
17780 and then Present (Underlying_Type (Source))
17781 then
17782 Source := Underlying_Type (Source);
17783 end if;
17785 if Is_Private_Type (Target)
17786 and then Present (Underlying_Type (Target))
17787 then
17788 Target := Underlying_Type (Target);
17789 end if;
17791 -- Source may be unconstrained array, but not target, except in relaxed
17792 -- semantics mode.
17794 if Is_Array_Type (Target)
17795 and then not Is_Constrained (Target)
17796 and then not Relaxed_RM_Semantics
17797 then
17798 Error_Msg_N
17799 ("unchecked conversion to unconstrained array not allowed", N);
17800 return;
17801 end if;
17803 -- Warn if conversion between two different convention pointers
17805 if Is_Access_Type (Target)
17806 and then Is_Access_Type (Source)
17807 and then Convention (Target) /= Convention (Source)
17808 and then Warn_On_Unchecked_Conversion
17809 then
17810 -- Give warnings for subprogram pointers only on most targets
17812 if Is_Access_Subprogram_Type (Target)
17813 or else Is_Access_Subprogram_Type (Source)
17814 then
17815 Error_Msg_N
17816 ("?z?conversion between pointers with different conventions!",
17818 end if;
17819 end if;
17821 -- Make entry in unchecked conversion table for later processing by
17822 -- Validate_Unchecked_Conversions, which will check sizes and alignments
17823 -- (using values set by the back end where possible). This is only done
17824 -- if the appropriate warning is active.
17826 if Warn_On_Unchecked_Conversion then
17827 Unchecked_Conversions.Append
17828 (New_Val => UC_Entry'(Eloc => Sloc (N),
17829 Source => Source,
17830 Target => Target,
17831 Act_Unit => Act_Unit));
17833 -- If both sizes are known statically now, then back-end annotation
17834 -- is not required to do a proper check but if either size is not
17835 -- known statically, then we need the annotation.
17837 if Known_Static_RM_Size (Source)
17838 and then
17839 Known_Static_RM_Size (Target)
17840 then
17841 null;
17842 else
17843 Back_Annotate_Rep_Info := True;
17844 end if;
17845 end if;
17847 -- If unchecked conversion to access type, and access type is declared
17848 -- in the same unit as the unchecked conversion, then set the flag
17849 -- No_Strict_Aliasing (no strict aliasing is implicit here)
17851 if Is_Access_Type (Target)
17852 and then In_Same_Source_Unit (Target, N)
17853 then
17854 Set_No_Strict_Aliasing (Implementation_Base_Type (Target));
17855 end if;
17857 -- If the unchecked conversion is between Address and an access
17858 -- subprogram type, show that we shouldn't use an internal
17859 -- representation for the access subprogram type.
17861 if Is_Access_Subprogram_Type (Target)
17862 and then Is_Descendant_Of_Address (Source)
17863 and then In_Same_Source_Unit (Target, N)
17864 then
17865 Set_Can_Use_Internal_Rep (Base_Type (Target), False);
17866 elsif Is_Access_Subprogram_Type (Source)
17867 and then Is_Descendant_Of_Address (Target)
17868 and then In_Same_Source_Unit (Source, N)
17869 then
17870 Set_Can_Use_Internal_Rep (Base_Type (Source), False);
17871 end if;
17873 -- Generate N_Validate_Unchecked_Conversion node for back end in case
17874 -- the back end needs to perform special validation checks.
17876 -- Shouldn't this be in Exp_Ch13, since the check only gets done if we
17877 -- have full expansion and the back end is called ???
17879 Vnode :=
17880 Make_Validate_Unchecked_Conversion (Sloc (N));
17881 Set_Source_Type (Vnode, Source);
17882 Set_Target_Type (Vnode, Target);
17884 -- If the unchecked conversion node is in a list, just insert before it.
17885 -- If not we have some strange case, not worth bothering about.
17887 if Is_List_Member (N) then
17888 Insert_After (N, Vnode);
17889 end if;
17890 end Validate_Unchecked_Conversion;
17892 ------------------------------------
17893 -- Validate_Unchecked_Conversions --
17894 ------------------------------------
17896 procedure Validate_Unchecked_Conversions is
17897 function Is_Null_Array (T : Entity_Id) return Boolean;
17898 -- We want to warn in the case of converting to a wrong-sized array of
17899 -- bytes, including the zero-size case. This returns True in that case,
17900 -- which is necessary because a size of 0 is used to indicate both an
17901 -- unknown size and a size of 0. It's OK for this to return True in
17902 -- other zero-size cases, but we don't go out of our way; for example,
17903 -- we don't bother with multidimensional arrays.
17905 function Is_Null_Array (T : Entity_Id) return Boolean is
17906 begin
17907 if Is_Array_Type (T) and then Is_Constrained (T) then
17908 declare
17909 Index : constant Node_Id := First_Index (T);
17910 R : Node_Id; -- N_Range
17911 begin
17912 case Nkind (Index) is
17913 when N_Range =>
17914 R := Index;
17915 when N_Subtype_Indication =>
17916 R := Range_Expression (Constraint (Index));
17917 when N_Identifier | N_Expanded_Name =>
17918 R := Scalar_Range (Entity (Index));
17919 when others =>
17920 raise Program_Error;
17921 end case;
17923 return Is_Null_Range (Low_Bound (R), High_Bound (R));
17924 end;
17925 end if;
17927 return False;
17928 end Is_Null_Array;
17930 begin
17931 for N in Unchecked_Conversions.First .. Unchecked_Conversions.Last loop
17932 declare
17933 T : UC_Entry renames Unchecked_Conversions.Table (N);
17935 Act_Unit : constant Entity_Id := T.Act_Unit;
17936 Eloc : constant Source_Ptr := T.Eloc;
17937 Source : constant Entity_Id := T.Source;
17938 Target : constant Entity_Id := T.Target;
17940 Source_Siz : Uint;
17941 Target_Siz : Uint;
17943 begin
17944 -- Skip if function marked as warnings off
17946 if Has_Warnings_Off (Act_Unit)
17947 or else Serious_Errors_Detected > 0
17948 then
17949 goto Continue;
17950 end if;
17952 -- Don't do the check if warnings off for either type, note the
17953 -- deliberate use of OR here instead of OR ELSE to get the flag
17954 -- Warnings_Off_Used set for both types if appropriate.
17956 if Has_Warnings_Off (Source) or Has_Warnings_Off (Target) then
17957 goto Continue;
17958 end if;
17960 if (Known_Static_RM_Size (Source)
17961 and then Known_Static_RM_Size (Target))
17962 or else Is_Null_Array (Target)
17963 then
17964 -- This validation check, which warns if we have unequal sizes
17965 -- for unchecked conversion, and thus implementation dependent
17966 -- semantics, is one of the few occasions on which we use the
17967 -- official RM size instead of Esize. See description in Einfo
17968 -- "Handling of Type'Size Values" for details.
17970 Source_Siz := RM_Size (Source);
17971 Target_Siz := RM_Size (Target);
17973 if Present (Source_Siz) and then Present (Target_Siz)
17974 and then Source_Siz /= Target_Siz
17975 then
17976 Error_Msg
17977 ("?z?types for unchecked conversion have different sizes!",
17978 Eloc, Act_Unit);
17980 if All_Errors_Mode then
17981 Error_Msg_Name_1 := Chars (Source);
17982 Error_Msg_Uint_1 := Source_Siz;
17983 Error_Msg_Name_2 := Chars (Target);
17984 Error_Msg_Uint_2 := Target_Siz;
17985 Error_Msg ("\size of % is ^, size of % is ^?z?", Eloc);
17987 Error_Msg_Uint_1 := UI_Abs (Source_Siz - Target_Siz);
17989 if Is_Discrete_Type (Source)
17990 and then
17991 Is_Discrete_Type (Target)
17992 then
17993 if Source_Siz > Target_Siz then
17994 Error_Msg
17995 ("\?z?^ high order bits of source will "
17996 & "be ignored!", Eloc);
17998 elsif Is_Unsigned_Type (Source) then
17999 Error_Msg
18000 ("\?z?source will be extended with ^ high order "
18001 & "zero bits!", Eloc);
18003 else
18004 Error_Msg
18005 ("\?z?source will be extended with ^ high order "
18006 & "sign bits!", Eloc);
18007 end if;
18009 elsif Source_Siz < Target_Siz then
18010 if Is_Discrete_Type (Target) then
18011 if Bytes_Big_Endian then
18012 Error_Msg
18013 ("\?z?target value will include ^ undefined "
18014 & "low order bits!", Eloc, Act_Unit);
18015 else
18016 Error_Msg
18017 ("\?z?target value will include ^ undefined "
18018 & "high order bits!", Eloc, Act_Unit);
18019 end if;
18021 else
18022 Error_Msg
18023 ("\?z?^ trailing bits of target value will be "
18024 & "undefined!", Eloc, Act_Unit);
18025 end if;
18027 else pragma Assert (Source_Siz > Target_Siz);
18028 if Is_Discrete_Type (Source) then
18029 if Bytes_Big_Endian then
18030 Error_Msg
18031 ("\?z?^ low order bits of source will be "
18032 & "ignored!", Eloc, Act_Unit);
18033 else
18034 Error_Msg
18035 ("\?z?^ high order bits of source will be "
18036 & "ignored!", Eloc, Act_Unit);
18037 end if;
18039 else
18040 Error_Msg
18041 ("\?z?^ trailing bits of source will be "
18042 & "ignored!", Eloc, Act_Unit);
18043 end if;
18044 end if;
18045 end if;
18046 end if;
18047 end if;
18049 -- If both types are access types, we need to check the alignment.
18050 -- If the alignment of both is specified, we can do it here.
18052 if Serious_Errors_Detected = 0
18053 and then Is_Access_Type (Source)
18054 and then Is_Access_Type (Target)
18055 and then Target_Strict_Alignment
18056 and then Present (Designated_Type (Source))
18057 and then Present (Designated_Type (Target))
18058 then
18059 declare
18060 D_Source : constant Entity_Id := Designated_Type (Source);
18061 D_Target : constant Entity_Id := Designated_Type (Target);
18063 begin
18064 if Known_Alignment (D_Source)
18065 and then
18066 Known_Alignment (D_Target)
18067 then
18068 declare
18069 Source_Align : constant Uint := Alignment (D_Source);
18070 Target_Align : constant Uint := Alignment (D_Target);
18072 begin
18073 if Source_Align < Target_Align
18074 and then not Is_Tagged_Type (D_Source)
18076 -- Suppress warning if warnings suppressed on either
18077 -- type or either designated type. Note the use of
18078 -- OR here instead of OR ELSE. That is intentional,
18079 -- we would like to set flag Warnings_Off_Used in
18080 -- all types for which warnings are suppressed.
18082 and then not (Has_Warnings_Off (D_Source)
18084 Has_Warnings_Off (D_Target)
18086 Has_Warnings_Off (Source)
18088 Has_Warnings_Off (Target))
18089 then
18090 Error_Msg_Uint_1 := Target_Align;
18091 Error_Msg_Uint_2 := Source_Align;
18092 Error_Msg_Node_1 := D_Target;
18093 Error_Msg_Node_2 := D_Source;
18094 Error_Msg
18095 ("?z?alignment of & (^) is stricter than "
18096 & "alignment of & (^)!", Eloc, Act_Unit);
18097 Error_Msg
18098 ("\?z?resulting access value may have invalid "
18099 & "alignment!", Eloc, Act_Unit);
18100 end if;
18101 end;
18102 end if;
18103 end;
18104 end if;
18105 end;
18107 <<Continue>>
18108 null;
18109 end loop;
18110 end Validate_Unchecked_Conversions;
18112 end Sem_Ch13;