1 /* Breadth-first and depth-first routines for
2 searching multiple-inheritance lattice for GNU C++.
3 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to
21 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
24 /* High-level class interface. */
28 #include "coretypes.h"
38 static int is_subobject_of_p (tree
, tree
);
39 static tree
dfs_lookup_base (tree
, void *);
40 static tree
dfs_dcast_hint_pre (tree
, void *);
41 static tree
dfs_dcast_hint_post (tree
, void *);
42 static tree
dfs_debug_mark (tree
, void *);
43 static tree
dfs_walk_once_r (tree
, tree (*pre_fn
) (tree
, void *),
44 tree (*post_fn
) (tree
, void *), void *data
);
45 static void dfs_unmark_r (tree
);
46 static int check_hidden_convs (tree
, int, int, tree
, tree
, tree
);
47 static tree
split_conversions (tree
, tree
, tree
, tree
);
48 static int lookup_conversions_r (tree
, int, int,
49 tree
, tree
, tree
, tree
, tree
*, tree
*);
50 static int look_for_overrides_r (tree
, tree
);
51 static tree
lookup_field_r (tree
, void *);
52 static tree
dfs_accessible_post (tree
, void *);
53 static tree
dfs_walk_once_accessible_r (tree
, bool, bool,
54 tree (*pre_fn
) (tree
, void *),
55 tree (*post_fn
) (tree
, void *),
57 static tree
dfs_walk_once_accessible (tree
, bool,
58 tree (*pre_fn
) (tree
, void *),
59 tree (*post_fn
) (tree
, void *),
61 static tree
dfs_access_in_type (tree
, void *);
62 static access_kind
access_in_type (tree
, tree
);
63 static int protected_accessible_p (tree
, tree
, tree
);
64 static int friend_accessible_p (tree
, tree
, tree
);
65 static int template_self_reference_p (tree
, tree
);
66 static tree
dfs_get_pure_virtuals (tree
, void *);
69 /* Variables for gathering statistics. */
70 #ifdef GATHER_STATISTICS
71 static int n_fields_searched
;
72 static int n_calls_lookup_field
, n_calls_lookup_field_1
;
73 static int n_calls_lookup_fnfields
, n_calls_lookup_fnfields_1
;
74 static int n_calls_get_base_type
;
75 static int n_outer_fields_searched
;
76 static int n_contexts_saved
;
77 #endif /* GATHER_STATISTICS */
80 /* Data for lookup_base and its workers. */
82 struct lookup_base_data_s
84 tree t
; /* type being searched. */
85 tree base
; /* The base type we're looking for. */
86 tree binfo
; /* Found binfo. */
87 bool via_virtual
; /* Found via a virtual path. */
88 bool ambiguous
; /* Found multiply ambiguous */
89 bool repeated_base
; /* Whether there are repeated bases in the
91 bool want_any
; /* Whether we want any matching binfo. */
94 /* Worker function for lookup_base. See if we've found the desired
95 base and update DATA_ (a pointer to LOOKUP_BASE_DATA_S). */
98 dfs_lookup_base (tree binfo
, void *data_
)
100 struct lookup_base_data_s
*data
= data_
;
102 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), data
->base
))
108 = binfo_via_virtual (data
->binfo
, data
->t
) != NULL_TREE
;
110 if (!data
->repeated_base
)
111 /* If there are no repeated bases, we can stop now. */
114 if (data
->want_any
&& !data
->via_virtual
)
115 /* If this is a non-virtual base, then we can't do
119 return dfs_skip_bases
;
123 gcc_assert (binfo
!= data
->binfo
);
125 /* We've found more than one matching binfo. */
128 /* This is immediately ambiguous. */
129 data
->binfo
= NULL_TREE
;
130 data
->ambiguous
= true;
131 return error_mark_node
;
134 /* Prefer one via a non-virtual path. */
135 if (!binfo_via_virtual (binfo
, data
->t
))
138 data
->via_virtual
= false;
142 /* There must be repeated bases, otherwise we'd have stopped
143 on the first base we found. */
144 return dfs_skip_bases
;
151 /* Returns true if type BASE is accessible in T. (BASE is known to be
152 a (possibly non-proper) base class of T.) If CONSIDER_LOCAL_P is
153 true, consider any special access of the current scope, or access
154 bestowed by friendship. */
157 accessible_base_p (tree t
, tree base
, bool consider_local_p
)
161 /* [class.access.base]
163 A base class is said to be accessible if an invented public
164 member of the base class is accessible.
166 If BASE is a non-proper base, this condition is trivially
168 if (same_type_p (t
, base
))
170 /* Rather than inventing a public member, we use the implicit
171 public typedef created in the scope of every class. */
172 decl
= TYPE_FIELDS (base
);
173 while (!DECL_SELF_REFERENCE_P (decl
))
174 decl
= TREE_CHAIN (decl
);
175 while (ANON_AGGR_TYPE_P (t
))
176 t
= TYPE_CONTEXT (t
);
177 return accessible_p (t
, decl
, consider_local_p
);
180 /* Lookup BASE in the hierarchy dominated by T. Do access checking as
181 ACCESS specifies. Return the binfo we discover. If KIND_PTR is
182 non-NULL, fill with information about what kind of base we
185 If the base is inaccessible, or ambiguous, and the ba_quiet bit is
186 not set in ACCESS, then an error is issued and error_mark_node is
187 returned. If the ba_quiet bit is set, then no error is issued and
188 NULL_TREE is returned. */
191 lookup_base (tree t
, tree base
, base_access access
, base_kind
*kind_ptr
)
197 if (t
== error_mark_node
|| base
== error_mark_node
)
200 *kind_ptr
= bk_not_base
;
201 return error_mark_node
;
203 gcc_assert (TYPE_P (base
));
212 t
= complete_type (TYPE_MAIN_VARIANT (t
));
213 t_binfo
= TYPE_BINFO (t
);
216 base
= complete_type (TYPE_MAIN_VARIANT (base
));
220 struct lookup_base_data_s data
;
224 data
.binfo
= NULL_TREE
;
225 data
.ambiguous
= data
.via_virtual
= false;
226 data
.repeated_base
= CLASSTYPE_REPEATED_BASE_P (t
);
227 data
.want_any
= access
== ba_any
;
229 dfs_walk_once (t_binfo
, dfs_lookup_base
, NULL
, &data
);
233 bk
= data
.ambiguous
? bk_ambig
: bk_not_base
;
234 else if (binfo
== t_binfo
)
236 else if (data
.via_virtual
)
247 /* Check that the base is unambiguous and accessible. */
248 if (access
!= ba_any
)
255 if (!(access
& ba_quiet
))
257 error ("%qT is an ambiguous base of %qT", base
, t
);
258 binfo
= error_mark_node
;
263 if ((access
& ba_check_bit
)
264 /* If BASE is incomplete, then BASE and TYPE are probably
265 the same, in which case BASE is accessible. If they
266 are not the same, then TYPE is invalid. In that case,
267 there's no need to issue another error here, and
268 there's no implicit typedef to use in the code that
269 follows, so we skip the check. */
270 && COMPLETE_TYPE_P (base
)
271 && !accessible_base_p (t
, base
, !(access
& ba_ignore_scope
)))
273 if (!(access
& ba_quiet
))
275 error ("%qT is an inaccessible base of %qT", base
, t
);
276 binfo
= error_mark_node
;
280 bk
= bk_inaccessible
;
291 /* Data for dcast_base_hint walker. */
295 tree subtype
; /* The base type we're looking for. */
296 int virt_depth
; /* Number of virtual bases encountered from most
298 tree offset
; /* Best hint offset discovered so far. */
299 bool repeated_base
; /* Whether there are repeated bases in the
303 /* Worker for dcast_base_hint. Search for the base type being cast
307 dfs_dcast_hint_pre (tree binfo
, void *data_
)
309 struct dcast_data_s
*data
= data_
;
311 if (BINFO_VIRTUAL_P (binfo
))
314 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), data
->subtype
))
316 if (data
->virt_depth
)
318 data
->offset
= ssize_int (-1);
322 data
->offset
= ssize_int (-3);
324 data
->offset
= BINFO_OFFSET (binfo
);
326 return data
->repeated_base
? dfs_skip_bases
: data
->offset
;
332 /* Worker for dcast_base_hint. Track the virtual depth. */
335 dfs_dcast_hint_post (tree binfo
, void *data_
)
337 struct dcast_data_s
*data
= data_
;
339 if (BINFO_VIRTUAL_P (binfo
))
345 /* The dynamic cast runtime needs a hint about how the static SUBTYPE type
346 started from is related to the required TARGET type, in order to optimize
347 the inheritance graph search. This information is independent of the
348 current context, and ignores private paths, hence get_base_distance is
349 inappropriate. Return a TREE specifying the base offset, BOFF.
350 BOFF >= 0, there is only one public non-virtual SUBTYPE base at offset BOFF,
351 and there are no public virtual SUBTYPE bases.
352 BOFF == -1, SUBTYPE occurs as multiple public virtual or non-virtual bases.
353 BOFF == -2, SUBTYPE is not a public base.
354 BOFF == -3, SUBTYPE occurs as multiple public non-virtual bases. */
357 dcast_base_hint (tree subtype
, tree target
)
359 struct dcast_data_s data
;
361 data
.subtype
= subtype
;
363 data
.offset
= NULL_TREE
;
364 data
.repeated_base
= CLASSTYPE_REPEATED_BASE_P (target
);
366 dfs_walk_once_accessible (TYPE_BINFO (target
), /*friends=*/false,
367 dfs_dcast_hint_pre
, dfs_dcast_hint_post
, &data
);
368 return data
.offset
? data
.offset
: ssize_int (-2);
371 /* Search for a member with name NAME in a multiple inheritance
372 lattice specified by TYPE. If it does not exist, return NULL_TREE.
373 If the member is ambiguously referenced, return `error_mark_node'.
374 Otherwise, return a DECL with the indicated name. If WANT_TYPE is
375 true, type declarations are preferred. */
377 /* Do a 1-level search for NAME as a member of TYPE. The caller must
378 figure out whether it can access this field. (Since it is only one
379 level, this is reasonable.) */
382 lookup_field_1 (tree type
, tree name
, bool want_type
)
386 if (TREE_CODE (type
) == TEMPLATE_TYPE_PARM
387 || TREE_CODE (type
) == BOUND_TEMPLATE_TEMPLATE_PARM
388 || TREE_CODE (type
) == TYPENAME_TYPE
)
389 /* The TYPE_FIELDS of a TEMPLATE_TYPE_PARM and
390 BOUND_TEMPLATE_TEMPLATE_PARM are not fields at all;
391 instead TYPE_FIELDS is the TEMPLATE_PARM_INDEX. (Miraculously,
392 the code often worked even when we treated the index as a list
394 The TYPE_FIELDS of TYPENAME_TYPE is its TYPENAME_TYPE_FULLNAME. */
398 && DECL_LANG_SPECIFIC (TYPE_NAME (type
))
399 && DECL_SORTED_FIELDS (TYPE_NAME (type
)))
401 tree
*fields
= &DECL_SORTED_FIELDS (TYPE_NAME (type
))->elts
[0];
402 int lo
= 0, hi
= DECL_SORTED_FIELDS (TYPE_NAME (type
))->len
;
409 #ifdef GATHER_STATISTICS
411 #endif /* GATHER_STATISTICS */
413 if (DECL_NAME (fields
[i
]) > name
)
415 else if (DECL_NAME (fields
[i
]) < name
)
421 /* We might have a nested class and a field with the
422 same name; we sorted them appropriately via
423 field_decl_cmp, so just look for the first or last
424 field with this name. */
429 while (i
>= lo
&& DECL_NAME (fields
[i
]) == name
);
430 if (TREE_CODE (field
) != TYPE_DECL
431 && !DECL_CLASS_TEMPLATE_P (field
))
438 while (i
< hi
&& DECL_NAME (fields
[i
]) == name
);
446 field
= TYPE_FIELDS (type
);
448 #ifdef GATHER_STATISTICS
449 n_calls_lookup_field_1
++;
450 #endif /* GATHER_STATISTICS */
451 for (field
= TYPE_FIELDS (type
); field
; field
= TREE_CHAIN (field
))
453 #ifdef GATHER_STATISTICS
455 #endif /* GATHER_STATISTICS */
456 gcc_assert (DECL_P (field
));
457 if (DECL_NAME (field
) == NULL_TREE
458 && ANON_AGGR_TYPE_P (TREE_TYPE (field
)))
460 tree temp
= lookup_field_1 (TREE_TYPE (field
), name
, want_type
);
464 if (TREE_CODE (field
) == USING_DECL
)
466 /* We generally treat class-scope using-declarations as
467 ARM-style access specifications, because support for the
468 ISO semantics has not been implemented. So, in general,
469 there's no reason to return a USING_DECL, and the rest of
470 the compiler cannot handle that. Once the class is
471 defined, USING_DECLs are purged from TYPE_FIELDS; see
472 handle_using_decl. However, we make special efforts to
473 make using-declarations in class templates and class
474 template partial specializations work correctly. */
475 if (!DECL_DEPENDENT_P (field
))
479 if (DECL_NAME (field
) == name
481 || TREE_CODE (field
) == TYPE_DECL
482 || DECL_CLASS_TEMPLATE_P (field
)))
486 if (name
== vptr_identifier
)
488 /* Give the user what s/he thinks s/he wants. */
489 if (TYPE_POLYMORPHIC_P (type
))
490 return TYPE_VFIELD (type
);
495 /* Return the FUNCTION_DECL, RECORD_TYPE, UNION_TYPE, or
496 NAMESPACE_DECL corresponding to the innermost non-block scope. */
501 /* There are a number of cases we need to be aware of here:
502 current_class_type current_function_decl
509 Those last two make life interesting. If we're in a function which is
510 itself inside a class, we need decls to go into the fn's decls (our
511 second case below). But if we're in a class and the class itself is
512 inside a function, we need decls to go into the decls for the class. To
513 achieve this last goal, we must see if, when both current_class_ptr and
514 current_function_decl are set, the class was declared inside that
515 function. If so, we know to put the decls into the class's scope. */
516 if (current_function_decl
&& current_class_type
517 && ((DECL_FUNCTION_MEMBER_P (current_function_decl
)
518 && same_type_p (DECL_CONTEXT (current_function_decl
),
520 || (DECL_FRIEND_CONTEXT (current_function_decl
)
521 && same_type_p (DECL_FRIEND_CONTEXT (current_function_decl
),
522 current_class_type
))))
523 return current_function_decl
;
524 if (current_class_type
)
525 return current_class_type
;
526 if (current_function_decl
)
527 return current_function_decl
;
528 return current_namespace
;
531 /* Returns nonzero if we are currently in a function scope. Note
532 that this function returns zero if we are within a local class, but
533 not within a member function body of the local class. */
536 at_function_scope_p (void)
538 tree cs
= current_scope ();
539 return cs
&& TREE_CODE (cs
) == FUNCTION_DECL
;
542 /* Returns true if the innermost active scope is a class scope. */
545 at_class_scope_p (void)
547 tree cs
= current_scope ();
548 return cs
&& TYPE_P (cs
);
551 /* Returns true if the innermost active scope is a namespace scope. */
554 at_namespace_scope_p (void)
556 tree cs
= current_scope ();
557 return cs
&& TREE_CODE (cs
) == NAMESPACE_DECL
;
560 /* Return the scope of DECL, as appropriate when doing name-lookup. */
563 context_for_name_lookup (tree decl
)
567 For the purposes of name lookup, after the anonymous union
568 definition, the members of the anonymous union are considered to
569 have been defined in the scope in which the anonymous union is
571 tree context
= DECL_CONTEXT (decl
);
573 while (context
&& TYPE_P (context
) && ANON_AGGR_TYPE_P (context
))
574 context
= TYPE_CONTEXT (context
);
576 context
= global_namespace
;
581 /* The accessibility routines use BINFO_ACCESS for scratch space
582 during the computation of the accessibility of some declaration. */
584 #define BINFO_ACCESS(NODE) \
585 ((access_kind) ((TREE_PUBLIC (NODE) << 1) | TREE_PRIVATE (NODE)))
587 /* Set the access associated with NODE to ACCESS. */
589 #define SET_BINFO_ACCESS(NODE, ACCESS) \
590 ((TREE_PUBLIC (NODE) = ((ACCESS) & 2) != 0), \
591 (TREE_PRIVATE (NODE) = ((ACCESS) & 1) != 0))
593 /* Called from access_in_type via dfs_walk. Calculate the access to
594 DATA (which is really a DECL) in BINFO. */
597 dfs_access_in_type (tree binfo
, void *data
)
599 tree decl
= (tree
) data
;
600 tree type
= BINFO_TYPE (binfo
);
601 access_kind access
= ak_none
;
603 if (context_for_name_lookup (decl
) == type
)
605 /* If we have descended to the scope of DECL, just note the
606 appropriate access. */
607 if (TREE_PRIVATE (decl
))
609 else if (TREE_PROTECTED (decl
))
610 access
= ak_protected
;
616 /* First, check for an access-declaration that gives us more
617 access to the DECL. The CONST_DECL for an enumeration
618 constant will not have DECL_LANG_SPECIFIC, and thus no
620 if (DECL_LANG_SPECIFIC (decl
) && !DECL_DISCRIMINATOR_P (decl
))
622 tree decl_access
= purpose_member (type
, DECL_ACCESS (decl
));
626 decl_access
= TREE_VALUE (decl_access
);
628 if (decl_access
== access_public_node
)
630 else if (decl_access
== access_protected_node
)
631 access
= ak_protected
;
632 else if (decl_access
== access_private_node
)
643 VEC(tree
,gc
) *accesses
;
645 /* Otherwise, scan our baseclasses, and pick the most favorable
647 accesses
= BINFO_BASE_ACCESSES (binfo
);
648 for (i
= 0; BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); i
++)
650 tree base_access
= VEC_index (tree
, accesses
, i
);
651 access_kind base_access_now
= BINFO_ACCESS (base_binfo
);
653 if (base_access_now
== ak_none
|| base_access_now
== ak_private
)
654 /* If it was not accessible in the base, or only
655 accessible as a private member, we can't access it
657 base_access_now
= ak_none
;
658 else if (base_access
== access_protected_node
)
659 /* Public and protected members in the base become
661 base_access_now
= ak_protected
;
662 else if (base_access
== access_private_node
)
663 /* Public and protected members in the base become
665 base_access_now
= ak_private
;
667 /* See if the new access, via this base, gives more
668 access than our previous best access. */
669 if (base_access_now
!= ak_none
670 && (access
== ak_none
|| base_access_now
< access
))
672 access
= base_access_now
;
674 /* If the new access is public, we can't do better. */
675 if (access
== ak_public
)
682 /* Note the access to DECL in TYPE. */
683 SET_BINFO_ACCESS (binfo
, access
);
688 /* Return the access to DECL in TYPE. */
691 access_in_type (tree type
, tree decl
)
693 tree binfo
= TYPE_BINFO (type
);
695 /* We must take into account
699 If a name can be reached by several paths through a multiple
700 inheritance graph, the access is that of the path that gives
703 The algorithm we use is to make a post-order depth-first traversal
704 of the base-class hierarchy. As we come up the tree, we annotate
705 each node with the most lenient access. */
706 dfs_walk_once (binfo
, NULL
, dfs_access_in_type
, decl
);
708 return BINFO_ACCESS (binfo
);
711 /* Returns nonzero if it is OK to access DECL through an object
712 indicated by BINFO in the context of DERIVED. */
715 protected_accessible_p (tree decl
, tree derived
, tree binfo
)
719 /* We're checking this clause from [class.access.base]
721 m as a member of N is protected, and the reference occurs in a
722 member or friend of class N, or in a member or friend of a
723 class P derived from N, where m as a member of P is private or
726 Here DERIVED is a possible P and DECL is m. accessible_p will
727 iterate over various values of N, but the access to m in DERIVED
730 Note that I believe that the passage above is wrong, and should read
731 "...is private or protected or public"; otherwise you get bizarre results
732 whereby a public using-decl can prevent you from accessing a protected
733 member of a base. (jason 2000/02/28) */
735 /* If DERIVED isn't derived from m's class, then it can't be a P. */
736 if (!DERIVED_FROM_P (context_for_name_lookup (decl
), derived
))
739 access
= access_in_type (derived
, decl
);
741 /* If m is inaccessible in DERIVED, then it's not a P. */
742 if (access
== ak_none
)
747 When a friend or a member function of a derived class references
748 a protected nonstatic member of a base class, an access check
749 applies in addition to those described earlier in clause
750 _class.access_) Except when forming a pointer to member
751 (_expr.unary.op_), the access must be through a pointer to,
752 reference to, or object of the derived class itself (or any class
753 derived from that class) (_expr.ref_). If the access is to form
754 a pointer to member, the nested-name-specifier shall name the
755 derived class (or any class derived from that class). */
756 if (DECL_NONSTATIC_MEMBER_P (decl
))
758 /* We can tell through what the reference is occurring by
759 chasing BINFO up to the root. */
761 while (BINFO_INHERITANCE_CHAIN (t
))
762 t
= BINFO_INHERITANCE_CHAIN (t
);
764 if (!DERIVED_FROM_P (derived
, BINFO_TYPE (t
)))
771 /* Returns nonzero if SCOPE is a friend of a type which would be able
772 to access DECL through the object indicated by BINFO. */
775 friend_accessible_p (tree scope
, tree decl
, tree binfo
)
777 tree befriending_classes
;
783 if (TREE_CODE (scope
) == FUNCTION_DECL
784 || DECL_FUNCTION_TEMPLATE_P (scope
))
785 befriending_classes
= DECL_BEFRIENDING_CLASSES (scope
);
786 else if (TYPE_P (scope
))
787 befriending_classes
= CLASSTYPE_BEFRIENDING_CLASSES (scope
);
791 for (t
= befriending_classes
; t
; t
= TREE_CHAIN (t
))
792 if (protected_accessible_p (decl
, TREE_VALUE (t
), binfo
))
795 /* Nested classes are implicitly friends of their enclosing types, as
796 per core issue 45 (this is a change from the standard). */
798 for (t
= TYPE_CONTEXT (scope
); t
&& TYPE_P (t
); t
= TYPE_CONTEXT (t
))
799 if (protected_accessible_p (decl
, t
, binfo
))
802 if (TREE_CODE (scope
) == FUNCTION_DECL
803 || DECL_FUNCTION_TEMPLATE_P (scope
))
805 /* Perhaps this SCOPE is a member of a class which is a
807 if (DECL_CLASS_SCOPE_P (scope
)
808 && friend_accessible_p (DECL_CONTEXT (scope
), decl
, binfo
))
811 /* Or an instantiation of something which is a friend. */
812 if (DECL_TEMPLATE_INFO (scope
))
815 /* Increment processing_template_decl to make sure that
816 dependent_type_p works correctly. */
817 ++processing_template_decl
;
818 ret
= friend_accessible_p (DECL_TI_TEMPLATE (scope
), decl
, binfo
);
819 --processing_template_decl
;
827 /* Called via dfs_walk_once_accessible from accessible_p */
830 dfs_accessible_post (tree binfo
, void *data ATTRIBUTE_UNUSED
)
832 if (BINFO_ACCESS (binfo
) != ak_none
)
834 tree scope
= current_scope ();
835 if (scope
&& TREE_CODE (scope
) != NAMESPACE_DECL
836 && is_friend (BINFO_TYPE (binfo
), scope
))
843 /* DECL is a declaration from a base class of TYPE, which was the
844 class used to name DECL. Return nonzero if, in the current
845 context, DECL is accessible. If TYPE is actually a BINFO node,
846 then we can tell in what context the access is occurring by looking
847 at the most derived class along the path indicated by BINFO. If
848 CONSIDER_LOCAL is true, do consider special access the current
849 scope or friendship thereof we might have. */
852 accessible_p (tree type
, tree decl
, bool consider_local_p
)
858 /* Nonzero if it's OK to access DECL if it has protected
859 accessibility in TYPE. */
860 int protected_ok
= 0;
862 /* If this declaration is in a block or namespace scope, there's no
864 if (!TYPE_P (context_for_name_lookup (decl
)))
867 /* There is no need to perform access checks inside a thunk. */
868 scope
= current_scope ();
869 if (scope
&& DECL_THUNK_P (scope
))
872 /* In a template declaration, we cannot be sure whether the
873 particular specialization that is instantiated will be a friend
874 or not. Therefore, all access checks are deferred until
876 if (processing_template_decl
)
882 type
= BINFO_TYPE (type
);
885 binfo
= TYPE_BINFO (type
);
887 /* [class.access.base]
889 A member m is accessible when named in class N if
891 --m as a member of N is public, or
893 --m as a member of N is private, and the reference occurs in a
894 member or friend of class N, or
896 --m as a member of N is protected, and the reference occurs in a
897 member or friend of class N, or in a member or friend of a
898 class P derived from N, where m as a member of P is private or
901 --there exists a base class B of N that is accessible at the point
902 of reference, and m is accessible when named in class B.
904 We walk the base class hierarchy, checking these conditions. */
906 if (consider_local_p
)
908 /* Figure out where the reference is occurring. Check to see if
909 DECL is private or protected in this scope, since that will
910 determine whether protected access is allowed. */
911 if (current_class_type
)
912 protected_ok
= protected_accessible_p (decl
,
913 current_class_type
, binfo
);
915 /* Now, loop through the classes of which we are a friend. */
917 protected_ok
= friend_accessible_p (scope
, decl
, binfo
);
920 /* Standardize the binfo that access_in_type will use. We don't
921 need to know what path was chosen from this point onwards. */
922 binfo
= TYPE_BINFO (type
);
924 /* Compute the accessibility of DECL in the class hierarchy
925 dominated by type. */
926 access
= access_in_type (type
, decl
);
927 if (access
== ak_public
928 || (access
== ak_protected
&& protected_ok
))
931 if (!consider_local_p
)
934 /* Walk the hierarchy again, looking for a base class that allows
936 return dfs_walk_once_accessible (binfo
, /*friends=*/true,
937 NULL
, dfs_accessible_post
, NULL
)
941 struct lookup_field_info
{
942 /* The type in which we're looking. */
944 /* The name of the field for which we're looking. */
946 /* If non-NULL, the current result of the lookup. */
948 /* The path to RVAL. */
950 /* If non-NULL, the lookup was ambiguous, and this is a list of the
953 /* If nonzero, we are looking for types, not data members. */
955 /* If something went wrong, a message indicating what. */
959 /* Within the scope of a template class, you can refer to the to the
960 current specialization with the name of the template itself. For
963 template <typename T> struct S { S* sp; }
965 Returns nonzero if DECL is such a declaration in a class TYPE. */
968 template_self_reference_p (tree type
, tree decl
)
970 return (CLASSTYPE_USE_TEMPLATE (type
)
971 && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (type
))
972 && TREE_CODE (decl
) == TYPE_DECL
973 && DECL_ARTIFICIAL (decl
)
974 && DECL_NAME (decl
) == constructor_name (type
));
977 /* Nonzero for a class member means that it is shared between all objects
980 [class.member.lookup]:If the resulting set of declarations are not all
981 from sub-objects of the same type, or the set has a nonstatic member
982 and includes members from distinct sub-objects, there is an ambiguity
983 and the program is ill-formed.
985 This function checks that T contains no nonstatic members. */
988 shared_member_p (tree t
)
990 if (TREE_CODE (t
) == VAR_DECL
|| TREE_CODE (t
) == TYPE_DECL \
991 || TREE_CODE (t
) == CONST_DECL
)
993 if (is_overloaded_fn (t
))
995 for (; t
; t
= OVL_NEXT (t
))
997 tree fn
= OVL_CURRENT (t
);
998 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn
))
1006 /* Routine to see if the sub-object denoted by the binfo PARENT can be
1007 found as a base class and sub-object of the object denoted by
1011 is_subobject_of_p (tree parent
, tree binfo
)
1015 for (probe
= parent
; probe
; probe
= BINFO_INHERITANCE_CHAIN (probe
))
1019 if (BINFO_VIRTUAL_P (probe
))
1020 return (binfo_for_vbase (BINFO_TYPE (probe
), BINFO_TYPE (binfo
))
1026 /* DATA is really a struct lookup_field_info. Look for a field with
1027 the name indicated there in BINFO. If this function returns a
1028 non-NULL value it is the result of the lookup. Called from
1029 lookup_field via breadth_first_search. */
1032 lookup_field_r (tree binfo
, void *data
)
1034 struct lookup_field_info
*lfi
= (struct lookup_field_info
*) data
;
1035 tree type
= BINFO_TYPE (binfo
);
1036 tree nval
= NULL_TREE
;
1038 /* If this is a dependent base, don't look in it. */
1039 if (BINFO_DEPENDENT_BASE_P (binfo
))
1042 /* If this base class is hidden by the best-known value so far, we
1043 don't need to look. */
1044 if (lfi
->rval_binfo
&& BINFO_INHERITANCE_CHAIN (binfo
) == lfi
->rval_binfo
1045 && !BINFO_VIRTUAL_P (binfo
))
1046 return dfs_skip_bases
;
1048 /* First, look for a function. There can't be a function and a data
1049 member with the same name, and if there's a function and a type
1050 with the same name, the type is hidden by the function. */
1051 if (!lfi
->want_type
)
1053 int idx
= lookup_fnfields_1 (type
, lfi
->name
);
1055 nval
= VEC_index (tree
, CLASSTYPE_METHOD_VEC (type
), idx
);
1059 /* Look for a data member or type. */
1060 nval
= lookup_field_1 (type
, lfi
->name
, lfi
->want_type
);
1062 /* If there is no declaration with the indicated name in this type,
1063 then there's nothing to do. */
1067 /* If we're looking up a type (as with an elaborated type specifier)
1068 we ignore all non-types we find. */
1069 if (lfi
->want_type
&& TREE_CODE (nval
) != TYPE_DECL
1070 && !DECL_CLASS_TEMPLATE_P (nval
))
1072 if (lfi
->name
== TYPE_IDENTIFIER (type
))
1074 /* If the aggregate has no user defined constructors, we allow
1075 it to have fields with the same name as the enclosing type.
1076 If we are looking for that name, find the corresponding
1078 for (nval
= TREE_CHAIN (nval
); nval
; nval
= TREE_CHAIN (nval
))
1079 if (DECL_NAME (nval
) == lfi
->name
1080 && TREE_CODE (nval
) == TYPE_DECL
)
1085 if (!nval
&& CLASSTYPE_NESTED_UTDS (type
) != NULL
)
1087 binding_entry e
= binding_table_find (CLASSTYPE_NESTED_UTDS (type
),
1090 nval
= TYPE_MAIN_DECL (e
->type
);
1096 /* You must name a template base class with a template-id. */
1097 if (!same_type_p (type
, lfi
->type
)
1098 && template_self_reference_p (type
, nval
))
1101 /* If the lookup already found a match, and the new value doesn't
1102 hide the old one, we might have an ambiguity. */
1104 && !is_subobject_of_p (lfi
->rval_binfo
, binfo
))
1107 if (nval
== lfi
->rval
&& shared_member_p (nval
))
1108 /* The two things are really the same. */
1110 else if (is_subobject_of_p (binfo
, lfi
->rval_binfo
))
1111 /* The previous value hides the new one. */
1115 /* We have a real ambiguity. We keep a chain of all the
1117 if (!lfi
->ambiguous
&& lfi
->rval
)
1119 /* This is the first time we noticed an ambiguity. Add
1120 what we previously thought was a reasonable candidate
1122 lfi
->ambiguous
= tree_cons (NULL_TREE
, lfi
->rval
, NULL_TREE
);
1123 TREE_TYPE (lfi
->ambiguous
) = error_mark_node
;
1126 /* Add the new value. */
1127 lfi
->ambiguous
= tree_cons (NULL_TREE
, nval
, lfi
->ambiguous
);
1128 TREE_TYPE (lfi
->ambiguous
) = error_mark_node
;
1129 lfi
->errstr
= "request for member %qD is ambiguous";
1135 lfi
->rval_binfo
= binfo
;
1139 /* Don't look for constructors or destructors in base classes. */
1140 if (IDENTIFIER_CTOR_OR_DTOR_P (lfi
->name
))
1141 return dfs_skip_bases
;
1145 /* Return a "baselink" with BASELINK_BINFO, BASELINK_ACCESS_BINFO,
1146 BASELINK_FUNCTIONS, and BASELINK_OPTYPE set to BINFO, ACCESS_BINFO,
1147 FUNCTIONS, and OPTYPE respectively. */
1150 build_baselink (tree binfo
, tree access_binfo
, tree functions
, tree optype
)
1154 gcc_assert (TREE_CODE (functions
) == FUNCTION_DECL
1155 || TREE_CODE (functions
) == TEMPLATE_DECL
1156 || TREE_CODE (functions
) == TEMPLATE_ID_EXPR
1157 || TREE_CODE (functions
) == OVERLOAD
);
1158 gcc_assert (!optype
|| TYPE_P (optype
));
1159 gcc_assert (TREE_TYPE (functions
));
1161 baselink
= make_node (BASELINK
);
1162 TREE_TYPE (baselink
) = TREE_TYPE (functions
);
1163 BASELINK_BINFO (baselink
) = binfo
;
1164 BASELINK_ACCESS_BINFO (baselink
) = access_binfo
;
1165 BASELINK_FUNCTIONS (baselink
) = functions
;
1166 BASELINK_OPTYPE (baselink
) = optype
;
1171 /* Look for a member named NAME in an inheritance lattice dominated by
1172 XBASETYPE. If PROTECT is 0 or two, we do not check access. If it
1173 is 1, we enforce accessibility. If PROTECT is zero, then, for an
1174 ambiguous lookup, we return NULL. If PROTECT is 1, we issue error
1175 messages about inaccessible or ambiguous lookup. If PROTECT is 2,
1176 we return a TREE_LIST whose TREE_TYPE is error_mark_node and whose
1177 TREE_VALUEs are the list of ambiguous candidates.
1179 WANT_TYPE is 1 when we should only return TYPE_DECLs.
1181 If nothing can be found return NULL_TREE and do not issue an error. */
1184 lookup_member (tree xbasetype
, tree name
, int protect
, bool want_type
)
1186 tree rval
, rval_binfo
= NULL_TREE
;
1187 tree type
= NULL_TREE
, basetype_path
= NULL_TREE
;
1188 struct lookup_field_info lfi
;
1190 /* rval_binfo is the binfo associated with the found member, note,
1191 this can be set with useful information, even when rval is not
1192 set, because it must deal with ALL members, not just non-function
1193 members. It is used for ambiguity checking and the hidden
1194 checks. Whereas rval is only set if a proper (not hidden)
1195 non-function member is found. */
1197 const char *errstr
= 0;
1199 gcc_assert (TREE_CODE (name
) == IDENTIFIER_NODE
);
1201 if (TREE_CODE (xbasetype
) == TREE_BINFO
)
1203 type
= BINFO_TYPE (xbasetype
);
1204 basetype_path
= xbasetype
;
1208 gcc_assert (IS_AGGR_TYPE_CODE (TREE_CODE (xbasetype
)));
1210 xbasetype
= NULL_TREE
;
1213 type
= complete_type (type
);
1215 basetype_path
= TYPE_BINFO (type
);
1220 #ifdef GATHER_STATISTICS
1221 n_calls_lookup_field
++;
1222 #endif /* GATHER_STATISTICS */
1224 memset (&lfi
, 0, sizeof (lfi
));
1227 lfi
.want_type
= want_type
;
1228 dfs_walk_all (basetype_path
, &lookup_field_r
, NULL
, &lfi
);
1230 rval_binfo
= lfi
.rval_binfo
;
1232 type
= BINFO_TYPE (rval_binfo
);
1233 errstr
= lfi
.errstr
;
1235 /* If we are not interested in ambiguities, don't report them;
1236 just return NULL_TREE. */
1237 if (!protect
&& lfi
.ambiguous
)
1243 return lfi
.ambiguous
;
1250 In the case of overloaded function names, access control is
1251 applied to the function selected by overloaded resolution. */
1252 if (rval
&& protect
&& !is_overloaded_fn (rval
))
1253 perform_or_defer_access_check (basetype_path
, rval
);
1255 if (errstr
&& protect
)
1257 error (errstr
, name
, type
);
1259 print_candidates (lfi
.ambiguous
);
1260 rval
= error_mark_node
;
1263 if (rval
&& is_overloaded_fn (rval
))
1264 rval
= build_baselink (rval_binfo
, basetype_path
, rval
,
1265 (IDENTIFIER_TYPENAME_P (name
)
1266 ? TREE_TYPE (name
): NULL_TREE
));
1270 /* Like lookup_member, except that if we find a function member we
1271 return NULL_TREE. */
1274 lookup_field (tree xbasetype
, tree name
, int protect
, bool want_type
)
1276 tree rval
= lookup_member (xbasetype
, name
, protect
, want_type
);
1278 /* Ignore functions, but propagate the ambiguity list. */
1279 if (!error_operand_p (rval
)
1280 && (rval
&& BASELINK_P (rval
)))
1286 /* Like lookup_member, except that if we find a non-function member we
1287 return NULL_TREE. */
1290 lookup_fnfields (tree xbasetype
, tree name
, int protect
)
1292 tree rval
= lookup_member (xbasetype
, name
, protect
, /*want_type=*/false);
1294 /* Ignore non-functions, but propagate the ambiguity list. */
1295 if (!error_operand_p (rval
)
1296 && (rval
&& !BASELINK_P (rval
)))
1302 /* Return the index in the CLASSTYPE_METHOD_VEC for CLASS_TYPE
1303 corresponding to "operator TYPE ()", or -1 if there is no such
1304 operator. Only CLASS_TYPE itself is searched; this routine does
1305 not scan the base classes of CLASS_TYPE. */
1308 lookup_conversion_operator (tree class_type
, tree type
)
1312 if (TYPE_HAS_CONVERSION (class_type
))
1316 VEC(tree
,gc
) *methods
= CLASSTYPE_METHOD_VEC (class_type
);
1318 for (i
= CLASSTYPE_FIRST_CONVERSION_SLOT
;
1319 VEC_iterate (tree
, methods
, i
, fn
); ++i
)
1321 /* All the conversion operators come near the beginning of
1322 the class. Therefore, if FN is not a conversion
1323 operator, there is no matching conversion operator in
1325 fn
= OVL_CURRENT (fn
);
1326 if (!DECL_CONV_FN_P (fn
))
1329 if (TREE_CODE (fn
) == TEMPLATE_DECL
)
1330 /* All the templated conversion functions are on the same
1331 slot, so remember it. */
1333 else if (same_type_p (DECL_CONV_FN_TYPE (fn
), type
))
1341 /* TYPE is a class type. Return the index of the fields within
1342 the method vector with name NAME, or -1 is no such field exists. */
1345 lookup_fnfields_1 (tree type
, tree name
)
1347 VEC(tree
,gc
) *method_vec
;
1352 if (!CLASS_TYPE_P (type
))
1355 if (COMPLETE_TYPE_P (type
))
1357 if ((name
== ctor_identifier
1358 || name
== base_ctor_identifier
1359 || name
== complete_ctor_identifier
))
1361 if (CLASSTYPE_LAZY_DEFAULT_CTOR (type
))
1362 lazily_declare_fn (sfk_constructor
, type
);
1363 if (CLASSTYPE_LAZY_COPY_CTOR (type
))
1364 lazily_declare_fn (sfk_copy_constructor
, type
);
1366 else if (name
== ansi_assopname(NOP_EXPR
)
1367 && CLASSTYPE_LAZY_ASSIGNMENT_OP (type
))
1368 lazily_declare_fn (sfk_assignment_operator
, type
);
1369 else if ((name
== dtor_identifier
1370 || name
== base_dtor_identifier
1371 || name
== complete_dtor_identifier
1372 || name
== deleting_dtor_identifier
)
1373 && CLASSTYPE_LAZY_DESTRUCTOR (type
))
1374 lazily_declare_fn (sfk_destructor
, type
);
1377 method_vec
= CLASSTYPE_METHOD_VEC (type
);
1381 #ifdef GATHER_STATISTICS
1382 n_calls_lookup_fnfields_1
++;
1383 #endif /* GATHER_STATISTICS */
1385 /* Constructors are first... */
1386 if (name
== ctor_identifier
)
1388 fn
= CLASSTYPE_CONSTRUCTORS (type
);
1389 return fn
? CLASSTYPE_CONSTRUCTOR_SLOT
: -1;
1391 /* and destructors are second. */
1392 if (name
== dtor_identifier
)
1394 fn
= CLASSTYPE_DESTRUCTORS (type
);
1395 return fn
? CLASSTYPE_DESTRUCTOR_SLOT
: -1;
1397 if (IDENTIFIER_TYPENAME_P (name
))
1398 return lookup_conversion_operator (type
, TREE_TYPE (name
));
1400 /* Skip the conversion operators. */
1401 for (i
= CLASSTYPE_FIRST_CONVERSION_SLOT
;
1402 VEC_iterate (tree
, method_vec
, i
, fn
);
1404 if (!DECL_CONV_FN_P (OVL_CURRENT (fn
)))
1407 /* If the type is complete, use binary search. */
1408 if (COMPLETE_TYPE_P (type
))
1414 hi
= VEC_length (tree
, method_vec
);
1419 #ifdef GATHER_STATISTICS
1420 n_outer_fields_searched
++;
1421 #endif /* GATHER_STATISTICS */
1423 tmp
= VEC_index (tree
, method_vec
, i
);
1424 tmp
= DECL_NAME (OVL_CURRENT (tmp
));
1427 else if (tmp
< name
)
1434 for (; VEC_iterate (tree
, method_vec
, i
, fn
); ++i
)
1436 #ifdef GATHER_STATISTICS
1437 n_outer_fields_searched
++;
1438 #endif /* GATHER_STATISTICS */
1439 if (DECL_NAME (OVL_CURRENT (fn
)) == name
)
1446 /* Like lookup_fnfields_1, except that the name is extracted from
1447 FUNCTION, which is a FUNCTION_DECL or a TEMPLATE_DECL. */
1450 class_method_index_for_fn (tree class_type
, tree function
)
1452 gcc_assert (TREE_CODE (function
) == FUNCTION_DECL
1453 || DECL_FUNCTION_TEMPLATE_P (function
));
1455 return lookup_fnfields_1 (class_type
,
1456 DECL_CONSTRUCTOR_P (function
) ? ctor_identifier
:
1457 DECL_DESTRUCTOR_P (function
) ? dtor_identifier
:
1458 DECL_NAME (function
));
1462 /* DECL is the result of a qualified name lookup. QUALIFYING_SCOPE is
1463 the class or namespace used to qualify the name. CONTEXT_CLASS is
1464 the class corresponding to the object in which DECL will be used.
1465 Return a possibly modified version of DECL that takes into account
1468 In particular, consider an expression like `B::m' in the context of
1469 a derived class `D'. If `B::m' has been resolved to a BASELINK,
1470 then the most derived class indicated by the BASELINK_BINFO will be
1471 `B', not `D'. This function makes that adjustment. */
1474 adjust_result_of_qualified_name_lookup (tree decl
,
1475 tree qualifying_scope
,
1478 if (context_class
&& CLASS_TYPE_P (qualifying_scope
)
1479 && DERIVED_FROM_P (qualifying_scope
, context_class
)
1480 && BASELINK_P (decl
))
1484 gcc_assert (CLASS_TYPE_P (context_class
));
1486 /* Look for the QUALIFYING_SCOPE as a base of the CONTEXT_CLASS.
1487 Because we do not yet know which function will be chosen by
1488 overload resolution, we cannot yet check either accessibility
1489 or ambiguity -- in either case, the choice of a static member
1490 function might make the usage valid. */
1491 base
= lookup_base (context_class
, qualifying_scope
,
1492 ba_unique
| ba_quiet
, NULL
);
1495 BASELINK_ACCESS_BINFO (decl
) = base
;
1496 BASELINK_BINFO (decl
)
1497 = lookup_base (base
, BINFO_TYPE (BASELINK_BINFO (decl
)),
1498 ba_unique
| ba_quiet
,
1507 /* Walk the class hierarchy within BINFO, in a depth-first traversal.
1508 PRE_FN is called in preorder, while POST_FN is called in postorder.
1509 If PRE_FN returns DFS_SKIP_BASES, child binfos will not be
1510 walked. If PRE_FN or POST_FN returns a different non-NULL value,
1511 that value is immediately returned and the walk is terminated. One
1512 of PRE_FN and POST_FN can be NULL. At each node, PRE_FN and
1513 POST_FN are passed the binfo to examine and the caller's DATA
1514 value. All paths are walked, thus virtual and morally virtual
1515 binfos can be multiply walked. */
1518 dfs_walk_all (tree binfo
, tree (*pre_fn
) (tree
, void *),
1519 tree (*post_fn
) (tree
, void *), void *data
)
1525 /* Call the pre-order walking function. */
1528 rval
= pre_fn (binfo
, data
);
1531 if (rval
== dfs_skip_bases
)
1537 /* Find the next child binfo to walk. */
1538 for (ix
= 0; BINFO_BASE_ITERATE (binfo
, ix
, base_binfo
); ix
++)
1540 rval
= dfs_walk_all (base_binfo
, pre_fn
, post_fn
, data
);
1546 /* Call the post-order walking function. */
1549 rval
= post_fn (binfo
, data
);
1550 gcc_assert (rval
!= dfs_skip_bases
);
1557 /* Worker for dfs_walk_once. This behaves as dfs_walk_all, except
1558 that binfos are walked at most once. */
1561 dfs_walk_once_r (tree binfo
, tree (*pre_fn
) (tree
, void *),
1562 tree (*post_fn
) (tree
, void *), void *data
)
1568 /* Call the pre-order walking function. */
1571 rval
= pre_fn (binfo
, data
);
1574 if (rval
== dfs_skip_bases
)
1581 /* Find the next child binfo to walk. */
1582 for (ix
= 0; BINFO_BASE_ITERATE (binfo
, ix
, base_binfo
); ix
++)
1584 if (BINFO_VIRTUAL_P (base_binfo
))
1586 if (BINFO_MARKED (base_binfo
))
1588 BINFO_MARKED (base_binfo
) = 1;
1591 rval
= dfs_walk_once_r (base_binfo
, pre_fn
, post_fn
, data
);
1597 /* Call the post-order walking function. */
1600 rval
= post_fn (binfo
, data
);
1601 gcc_assert (rval
!= dfs_skip_bases
);
1608 /* Worker for dfs_walk_once. Recursively unmark the virtual base binfos of
1612 dfs_unmark_r (tree binfo
)
1617 /* Process the basetypes. */
1618 for (ix
= 0; BINFO_BASE_ITERATE (binfo
, ix
, base_binfo
); ix
++)
1620 if (BINFO_VIRTUAL_P (base_binfo
))
1622 if (!BINFO_MARKED (base_binfo
))
1624 BINFO_MARKED (base_binfo
) = 0;
1626 /* Only walk, if it can contain more virtual bases. */
1627 if (CLASSTYPE_VBASECLASSES (BINFO_TYPE (base_binfo
)))
1628 dfs_unmark_r (base_binfo
);
1632 /* Like dfs_walk_all, except that binfos are not multiply walked. For
1633 non-diamond shaped hierarchies this is the same as dfs_walk_all.
1634 For diamond shaped hierarchies we must mark the virtual bases, to
1635 avoid multiple walks. */
1638 dfs_walk_once (tree binfo
, tree (*pre_fn
) (tree
, void *),
1639 tree (*post_fn
) (tree
, void *), void *data
)
1641 static int active
= 0; /* We must not be called recursively. */
1644 gcc_assert (pre_fn
|| post_fn
);
1645 gcc_assert (!active
);
1648 if (!CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo
)))
1649 /* We are not diamond shaped, and therefore cannot encounter the
1650 same binfo twice. */
1651 rval
= dfs_walk_all (binfo
, pre_fn
, post_fn
, data
);
1654 rval
= dfs_walk_once_r (binfo
, pre_fn
, post_fn
, data
);
1655 if (!BINFO_INHERITANCE_CHAIN (binfo
))
1657 /* We are at the top of the hierarchy, and can use the
1658 CLASSTYPE_VBASECLASSES list for unmarking the virtual
1660 VEC(tree
,gc
) *vbases
;
1664 for (vbases
= CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo
)), ix
= 0;
1665 VEC_iterate (tree
, vbases
, ix
, base_binfo
); ix
++)
1666 BINFO_MARKED (base_binfo
) = 0;
1669 dfs_unmark_r (binfo
);
1677 /* Worker function for dfs_walk_once_accessible. Behaves like
1678 dfs_walk_once_r, except (a) FRIENDS_P is true if special
1679 access given by the current context should be considered, (b) ONCE
1680 indicates whether bases should be marked during traversal. */
1683 dfs_walk_once_accessible_r (tree binfo
, bool friends_p
, bool once
,
1684 tree (*pre_fn
) (tree
, void *),
1685 tree (*post_fn
) (tree
, void *), void *data
)
1687 tree rval
= NULL_TREE
;
1691 /* Call the pre-order walking function. */
1694 rval
= pre_fn (binfo
, data
);
1697 if (rval
== dfs_skip_bases
)
1704 /* Find the next child binfo to walk. */
1705 for (ix
= 0; BINFO_BASE_ITERATE (binfo
, ix
, base_binfo
); ix
++)
1707 bool mark
= once
&& BINFO_VIRTUAL_P (base_binfo
);
1709 if (mark
&& BINFO_MARKED (base_binfo
))
1712 /* If the base is inherited via private or protected
1713 inheritance, then we can't see it, unless we are a friend of
1714 the current binfo. */
1715 if (BINFO_BASE_ACCESS (binfo
, ix
) != access_public_node
)
1720 scope
= current_scope ();
1722 || TREE_CODE (scope
) == NAMESPACE_DECL
1723 || !is_friend (BINFO_TYPE (binfo
), scope
))
1728 BINFO_MARKED (base_binfo
) = 1;
1730 rval
= dfs_walk_once_accessible_r (base_binfo
, friends_p
, once
,
1731 pre_fn
, post_fn
, data
);
1737 /* Call the post-order walking function. */
1740 rval
= post_fn (binfo
, data
);
1741 gcc_assert (rval
!= dfs_skip_bases
);
1748 /* Like dfs_walk_once except that only accessible bases are walked.
1749 FRIENDS_P indicates whether friendship of the local context
1750 should be considered when determining accessibility. */
1753 dfs_walk_once_accessible (tree binfo
, bool friends_p
,
1754 tree (*pre_fn
) (tree
, void *),
1755 tree (*post_fn
) (tree
, void *), void *data
)
1757 bool diamond_shaped
= CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo
));
1758 tree rval
= dfs_walk_once_accessible_r (binfo
, friends_p
, diamond_shaped
,
1759 pre_fn
, post_fn
, data
);
1763 if (!BINFO_INHERITANCE_CHAIN (binfo
))
1765 /* We are at the top of the hierarchy, and can use the
1766 CLASSTYPE_VBASECLASSES list for unmarking the virtual
1768 VEC(tree
,gc
) *vbases
;
1772 for (vbases
= CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo
)), ix
= 0;
1773 VEC_iterate (tree
, vbases
, ix
, base_binfo
); ix
++)
1774 BINFO_MARKED (base_binfo
) = 0;
1777 dfs_unmark_r (binfo
);
1782 /* Check that virtual overrider OVERRIDER is acceptable for base function
1783 BASEFN. Issue diagnostic, and return zero, if unacceptable. */
1786 check_final_overrider (tree overrider
, tree basefn
)
1788 tree over_type
= TREE_TYPE (overrider
);
1789 tree base_type
= TREE_TYPE (basefn
);
1790 tree over_return
= TREE_TYPE (over_type
);
1791 tree base_return
= TREE_TYPE (base_type
);
1792 tree over_throw
= TYPE_RAISES_EXCEPTIONS (over_type
);
1793 tree base_throw
= TYPE_RAISES_EXCEPTIONS (base_type
);
1796 if (DECL_INVALID_OVERRIDER_P (overrider
))
1799 if (same_type_p (base_return
, over_return
))
1801 else if ((CLASS_TYPE_P (over_return
) && CLASS_TYPE_P (base_return
))
1802 || (TREE_CODE (base_return
) == TREE_CODE (over_return
)
1803 && POINTER_TYPE_P (base_return
)))
1805 /* Potentially covariant. */
1806 unsigned base_quals
, over_quals
;
1808 fail
= !POINTER_TYPE_P (base_return
);
1811 fail
= cp_type_quals (base_return
) != cp_type_quals (over_return
);
1813 base_return
= TREE_TYPE (base_return
);
1814 over_return
= TREE_TYPE (over_return
);
1816 base_quals
= cp_type_quals (base_return
);
1817 over_quals
= cp_type_quals (over_return
);
1819 if ((base_quals
& over_quals
) != over_quals
)
1822 if (CLASS_TYPE_P (base_return
) && CLASS_TYPE_P (over_return
))
1824 tree binfo
= lookup_base (over_return
, base_return
,
1825 ba_check
| ba_quiet
, NULL
);
1831 && can_convert (TREE_TYPE (base_type
), TREE_TYPE (over_type
)))
1832 /* GNU extension, allow trivial pointer conversions such as
1833 converting to void *, or qualification conversion. */
1835 /* can_convert will permit user defined conversion from a
1836 (reference to) class type. We must reject them. */
1837 over_return
= non_reference (TREE_TYPE (over_type
));
1838 if (CLASS_TYPE_P (over_return
))
1842 warning (0, "deprecated covariant return type for %q+#D",
1844 warning (0, " overriding %q+#D", basefn
);
1858 error ("invalid covariant return type for %q+#D", overrider
);
1859 error (" overriding %q+#D", basefn
);
1863 error ("conflicting return type specified for %q+#D", overrider
);
1864 error (" overriding %q+#D", basefn
);
1866 DECL_INVALID_OVERRIDER_P (overrider
) = 1;
1870 /* Check throw specifier is at least as strict. */
1871 if (!comp_except_specs (base_throw
, over_throw
, 0))
1873 error ("looser throw specifier for %q+#F", overrider
);
1874 error (" overriding %q+#F", basefn
);
1875 DECL_INVALID_OVERRIDER_P (overrider
) = 1;
1882 /* Given a class TYPE, and a function decl FNDECL, look for
1883 virtual functions in TYPE's hierarchy which FNDECL overrides.
1884 We do not look in TYPE itself, only its bases.
1886 Returns nonzero, if we find any. Set FNDECL's DECL_VIRTUAL_P, if we
1887 find that it overrides anything.
1889 We check that every function which is overridden, is correctly
1893 look_for_overrides (tree type
, tree fndecl
)
1895 tree binfo
= TYPE_BINFO (type
);
1900 for (ix
= 0; BINFO_BASE_ITERATE (binfo
, ix
, base_binfo
); ix
++)
1902 tree basetype
= BINFO_TYPE (base_binfo
);
1904 if (TYPE_POLYMORPHIC_P (basetype
))
1905 found
+= look_for_overrides_r (basetype
, fndecl
);
1910 /* Look in TYPE for virtual functions with the same signature as
1914 look_for_overrides_here (tree type
, tree fndecl
)
1918 /* If there are no methods in TYPE (meaning that only implicitly
1919 declared methods will ever be provided for TYPE), then there are
1920 no virtual functions. */
1921 if (!CLASSTYPE_METHOD_VEC (type
))
1924 if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fndecl
))
1925 ix
= CLASSTYPE_DESTRUCTOR_SLOT
;
1927 ix
= lookup_fnfields_1 (type
, DECL_NAME (fndecl
));
1930 tree fns
= VEC_index (tree
, CLASSTYPE_METHOD_VEC (type
), ix
);
1932 for (; fns
; fns
= OVL_NEXT (fns
))
1934 tree fn
= OVL_CURRENT (fns
);
1936 if (!DECL_VIRTUAL_P (fn
))
1937 /* Not a virtual. */;
1938 else if (DECL_CONTEXT (fn
) != type
)
1939 /* Introduced with a using declaration. */;
1940 else if (DECL_STATIC_FUNCTION_P (fndecl
))
1942 tree btypes
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
1943 tree dtypes
= TYPE_ARG_TYPES (TREE_TYPE (fndecl
));
1944 if (compparms (TREE_CHAIN (btypes
), dtypes
))
1947 else if (same_signature_p (fndecl
, fn
))
1954 /* Look in TYPE for virtual functions overridden by FNDECL. Check both
1955 TYPE itself and its bases. */
1958 look_for_overrides_r (tree type
, tree fndecl
)
1960 tree fn
= look_for_overrides_here (type
, fndecl
);
1963 if (DECL_STATIC_FUNCTION_P (fndecl
))
1965 /* A static member function cannot match an inherited
1966 virtual member function. */
1967 error ("%q+#D cannot be declared", fndecl
);
1968 error (" since %q+#D declared in base class", fn
);
1972 /* It's definitely virtual, even if not explicitly set. */
1973 DECL_VIRTUAL_P (fndecl
) = 1;
1974 check_final_overrider (fndecl
, fn
);
1979 /* We failed to find one declared in this class. Look in its bases. */
1980 return look_for_overrides (type
, fndecl
);
1983 /* Called via dfs_walk from dfs_get_pure_virtuals. */
1986 dfs_get_pure_virtuals (tree binfo
, void *data
)
1988 tree type
= (tree
) data
;
1990 /* We're not interested in primary base classes; the derived class
1991 of which they are a primary base will contain the information we
1993 if (!BINFO_PRIMARY_P (binfo
))
1997 for (virtuals
= BINFO_VIRTUALS (binfo
);
1999 virtuals
= TREE_CHAIN (virtuals
))
2000 if (DECL_PURE_VIRTUAL_P (BV_FN (virtuals
)))
2001 VEC_safe_push (tree
, gc
, CLASSTYPE_PURE_VIRTUALS (type
),
2008 /* Set CLASSTYPE_PURE_VIRTUALS for TYPE. */
2011 get_pure_virtuals (tree type
)
2013 /* Clear the CLASSTYPE_PURE_VIRTUALS list; whatever is already there
2014 is going to be overridden. */
2015 CLASSTYPE_PURE_VIRTUALS (type
) = NULL
;
2016 /* Now, run through all the bases which are not primary bases, and
2017 collect the pure virtual functions. We look at the vtable in
2018 each class to determine what pure virtual functions are present.
2019 (A primary base is not interesting because the derived class of
2020 which it is a primary base will contain vtable entries for the
2021 pure virtuals in the base class. */
2022 dfs_walk_once (TYPE_BINFO (type
), NULL
, dfs_get_pure_virtuals
, type
);
2025 /* Debug info for C++ classes can get very large; try to avoid
2026 emitting it everywhere.
2028 Note that this optimization wins even when the target supports
2029 BINCL (if only slightly), and reduces the amount of work for the
2033 maybe_suppress_debug_info (tree t
)
2035 if (write_symbols
== NO_DEBUG
)
2038 /* We might have set this earlier in cp_finish_decl. */
2039 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t
)) = 0;
2041 /* If we already know how we're handling this class, handle debug info
2043 if (CLASSTYPE_INTERFACE_KNOWN (t
))
2045 if (CLASSTYPE_INTERFACE_ONLY (t
))
2046 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t
)) = 1;
2047 /* else don't set it. */
2049 /* If the class has a vtable, write out the debug info along with
2051 else if (TYPE_CONTAINS_VPTR_P (t
))
2052 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t
)) = 1;
2054 /* Otherwise, just emit the debug info normally. */
2057 /* Note that we want debugging information for a base class of a class
2058 whose vtable is being emitted. Normally, this would happen because
2059 calling the constructor for a derived class implies calling the
2060 constructors for all bases, which involve initializing the
2061 appropriate vptr with the vtable for the base class; but in the
2062 presence of optimization, this initialization may be optimized
2063 away, so we tell finish_vtable_vardecl that we want the debugging
2064 information anyway. */
2067 dfs_debug_mark (tree binfo
, void *data ATTRIBUTE_UNUSED
)
2069 tree t
= BINFO_TYPE (binfo
);
2071 if (CLASSTYPE_DEBUG_REQUESTED (t
))
2072 return dfs_skip_bases
;
2074 CLASSTYPE_DEBUG_REQUESTED (t
) = 1;
2079 /* Write out the debugging information for TYPE, whose vtable is being
2080 emitted. Also walk through our bases and note that we want to
2081 write out information for them. This avoids the problem of not
2082 writing any debug info for intermediate basetypes whose
2083 constructors, and thus the references to their vtables, and thus
2084 the vtables themselves, were optimized away. */
2087 note_debug_info_needed (tree type
)
2089 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type
)))
2091 TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type
)) = 0;
2092 rest_of_type_compilation (type
, toplevel_bindings_p ());
2095 dfs_walk_all (TYPE_BINFO (type
), dfs_debug_mark
, NULL
, 0);
2099 print_search_statistics (void)
2101 #ifdef GATHER_STATISTICS
2102 fprintf (stderr
, "%d fields searched in %d[%d] calls to lookup_field[_1]\n",
2103 n_fields_searched
, n_calls_lookup_field
, n_calls_lookup_field_1
);
2104 fprintf (stderr
, "%d fnfields searched in %d calls to lookup_fnfields\n",
2105 n_outer_fields_searched
, n_calls_lookup_fnfields
);
2106 fprintf (stderr
, "%d calls to get_base_type\n", n_calls_get_base_type
);
2107 #else /* GATHER_STATISTICS */
2108 fprintf (stderr
, "no search statistics\n");
2109 #endif /* GATHER_STATISTICS */
2113 reinit_search_statistics (void)
2115 #ifdef GATHER_STATISTICS
2116 n_fields_searched
= 0;
2117 n_calls_lookup_field
= 0, n_calls_lookup_field_1
= 0;
2118 n_calls_lookup_fnfields
= 0, n_calls_lookup_fnfields_1
= 0;
2119 n_calls_get_base_type
= 0;
2120 n_outer_fields_searched
= 0;
2121 n_contexts_saved
= 0;
2122 #endif /* GATHER_STATISTICS */
2125 /* Helper for lookup_conversions_r. TO_TYPE is the type converted to
2126 by a conversion op in base BINFO. VIRTUAL_DEPTH is nonzero if
2127 BINFO is morally virtual, and VIRTUALNESS is nonzero if virtual
2128 bases have been encountered already in the tree walk. PARENT_CONVS
2129 is the list of lists of conversion functions that could hide CONV
2130 and OTHER_CONVS is the list of lists of conversion functions that
2131 could hide or be hidden by CONV, should virtualness be involved in
2132 the hierarchy. Merely checking the conversion op's name is not
2133 enough because two conversion operators to the same type can have
2134 different names. Return nonzero if we are visible. */
2137 check_hidden_convs (tree binfo
, int virtual_depth
, int virtualness
,
2138 tree to_type
, tree parent_convs
, tree other_convs
)
2142 /* See if we are hidden by a parent conversion. */
2143 for (level
= parent_convs
; level
; level
= TREE_CHAIN (level
))
2144 for (probe
= TREE_VALUE (level
); probe
; probe
= TREE_CHAIN (probe
))
2145 if (same_type_p (to_type
, TREE_TYPE (probe
)))
2148 if (virtual_depth
|| virtualness
)
2150 /* In a virtual hierarchy, we could be hidden, or could hide a
2151 conversion function on the other_convs list. */
2152 for (level
= other_convs
; level
; level
= TREE_CHAIN (level
))
2158 if (!(virtual_depth
|| TREE_STATIC (level
)))
2159 /* Neither is morally virtual, so cannot hide each other. */
2162 if (!TREE_VALUE (level
))
2163 /* They evaporated away already. */
2166 they_hide_us
= (virtual_depth
2167 && original_binfo (binfo
, TREE_PURPOSE (level
)));
2168 we_hide_them
= (!they_hide_us
&& TREE_STATIC (level
)
2169 && original_binfo (TREE_PURPOSE (level
), binfo
));
2171 if (!(we_hide_them
|| they_hide_us
))
2172 /* Neither is within the other, so no hiding can occur. */
2175 for (prev
= &TREE_VALUE (level
), other
= *prev
; other
;)
2177 if (same_type_p (to_type
, TREE_TYPE (other
)))
2180 /* We are hidden. */
2185 /* We hide the other one. */
2186 other
= TREE_CHAIN (other
);
2191 prev
= &TREE_CHAIN (other
);
2199 /* Helper for lookup_conversions_r. PARENT_CONVS is a list of lists
2200 of conversion functions, the first slot will be for the current
2201 binfo, if MY_CONVS is non-NULL. CHILD_CONVS is the list of lists
2202 of conversion functions from children of the current binfo,
2203 concatenated with conversions from elsewhere in the hierarchy --
2204 that list begins with OTHER_CONVS. Return a single list of lists
2205 containing only conversions from the current binfo and its
2209 split_conversions (tree my_convs
, tree parent_convs
,
2210 tree child_convs
, tree other_convs
)
2215 /* Remove the original other_convs portion from child_convs. */
2216 for (prev
= NULL
, t
= child_convs
;
2217 t
!= other_convs
; prev
= t
, t
= TREE_CHAIN (t
))
2221 TREE_CHAIN (prev
) = NULL_TREE
;
2223 child_convs
= NULL_TREE
;
2225 /* Attach the child convs to any we had at this level. */
2228 my_convs
= parent_convs
;
2229 TREE_CHAIN (my_convs
) = child_convs
;
2232 my_convs
= child_convs
;
2237 /* Worker for lookup_conversions. Lookup conversion functions in
2238 BINFO and its children. VIRTUAL_DEPTH is nonzero, if BINFO is in
2239 a morally virtual base, and VIRTUALNESS is nonzero, if we've
2240 encountered virtual bases already in the tree walk. PARENT_CONVS &
2241 PARENT_TPL_CONVS are lists of list of conversions within parent
2242 binfos. OTHER_CONVS and OTHER_TPL_CONVS are conversions found
2243 elsewhere in the tree. Return the conversions found within this
2244 portion of the graph in CONVS and TPL_CONVS. Return nonzero is we
2245 encountered virtualness. We keep template and non-template
2246 conversions separate, to avoid unnecessary type comparisons.
2248 The located conversion functions are held in lists of lists. The
2249 TREE_VALUE of the outer list is the list of conversion functions
2250 found in a particular binfo. The TREE_PURPOSE of both the outer
2251 and inner lists is the binfo at which those conversions were
2252 found. TREE_STATIC is set for those lists within of morally
2253 virtual binfos. The TREE_VALUE of the inner list is the conversion
2254 function or overload itself. The TREE_TYPE of each inner list node
2255 is the converted-to type. */
2258 lookup_conversions_r (tree binfo
,
2259 int virtual_depth
, int virtualness
,
2260 tree parent_convs
, tree parent_tpl_convs
,
2261 tree other_convs
, tree other_tpl_convs
,
2262 tree
*convs
, tree
*tpl_convs
)
2264 int my_virtualness
= 0;
2265 tree my_convs
= NULL_TREE
;
2266 tree my_tpl_convs
= NULL_TREE
;
2267 tree child_convs
= NULL_TREE
;
2268 tree child_tpl_convs
= NULL_TREE
;
2271 VEC(tree
,gc
) *method_vec
= CLASSTYPE_METHOD_VEC (BINFO_TYPE (binfo
));
2274 /* If we have no conversion operators, then don't look. */
2275 if (!TYPE_HAS_CONVERSION (BINFO_TYPE (binfo
)))
2277 *convs
= *tpl_convs
= NULL_TREE
;
2282 if (BINFO_VIRTUAL_P (binfo
))
2285 /* First, locate the unhidden ones at this level. */
2286 for (i
= CLASSTYPE_FIRST_CONVERSION_SLOT
;
2287 VEC_iterate (tree
, method_vec
, i
, conv
);
2290 tree cur
= OVL_CURRENT (conv
);
2292 if (!DECL_CONV_FN_P (cur
))
2295 if (TREE_CODE (cur
) == TEMPLATE_DECL
)
2297 /* Only template conversions can be overloaded, and we must
2298 flatten them out and check each one individually. */
2301 for (tpls
= conv
; tpls
; tpls
= OVL_NEXT (tpls
))
2303 tree tpl
= OVL_CURRENT (tpls
);
2304 tree type
= DECL_CONV_FN_TYPE (tpl
);
2306 if (check_hidden_convs (binfo
, virtual_depth
, virtualness
,
2307 type
, parent_tpl_convs
, other_tpl_convs
))
2309 my_tpl_convs
= tree_cons (binfo
, tpl
, my_tpl_convs
);
2310 TREE_TYPE (my_tpl_convs
) = type
;
2313 TREE_STATIC (my_tpl_convs
) = 1;
2321 tree name
= DECL_NAME (cur
);
2323 if (!IDENTIFIER_MARKED (name
))
2325 tree type
= DECL_CONV_FN_TYPE (cur
);
2327 if (check_hidden_convs (binfo
, virtual_depth
, virtualness
,
2328 type
, parent_convs
, other_convs
))
2330 my_convs
= tree_cons (binfo
, conv
, my_convs
);
2331 TREE_TYPE (my_convs
) = type
;
2334 TREE_STATIC (my_convs
) = 1;
2337 IDENTIFIER_MARKED (name
) = 1;
2345 parent_convs
= tree_cons (binfo
, my_convs
, parent_convs
);
2347 TREE_STATIC (parent_convs
) = 1;
2352 parent_tpl_convs
= tree_cons (binfo
, my_tpl_convs
, parent_tpl_convs
);
2354 TREE_STATIC (parent_convs
) = 1;
2357 child_convs
= other_convs
;
2358 child_tpl_convs
= other_tpl_convs
;
2360 /* Now iterate over each base, looking for more conversions. */
2361 for (i
= 0; BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); i
++)
2363 tree base_convs
, base_tpl_convs
;
2364 unsigned base_virtualness
;
2366 base_virtualness
= lookup_conversions_r (base_binfo
,
2367 virtual_depth
, virtualness
,
2368 parent_convs
, parent_tpl_convs
,
2369 child_convs
, child_tpl_convs
,
2370 &base_convs
, &base_tpl_convs
);
2371 if (base_virtualness
)
2372 my_virtualness
= virtualness
= 1;
2373 child_convs
= chainon (base_convs
, child_convs
);
2374 child_tpl_convs
= chainon (base_tpl_convs
, child_tpl_convs
);
2377 /* Unmark the conversions found at this level */
2378 for (conv
= my_convs
; conv
; conv
= TREE_CHAIN (conv
))
2379 IDENTIFIER_MARKED (DECL_NAME (OVL_CURRENT (TREE_VALUE (conv
)))) = 0;
2381 *convs
= split_conversions (my_convs
, parent_convs
,
2382 child_convs
, other_convs
);
2383 *tpl_convs
= split_conversions (my_tpl_convs
, parent_tpl_convs
,
2384 child_tpl_convs
, other_tpl_convs
);
2386 return my_virtualness
;
2389 /* Return a TREE_LIST containing all the non-hidden user-defined
2390 conversion functions for TYPE (and its base-classes). The
2391 TREE_VALUE of each node is the FUNCTION_DECL of the conversion
2392 function. The TREE_PURPOSE is the BINFO from which the conversion
2393 functions in this node were selected. This function is effectively
2394 performing a set of member lookups as lookup_fnfield does, but
2395 using the type being converted to as the unique key, rather than the
2399 lookup_conversions (tree type
)
2401 tree convs
, tpl_convs
;
2402 tree list
= NULL_TREE
;
2404 complete_type (type
);
2405 if (!TYPE_BINFO (type
))
2408 lookup_conversions_r (TYPE_BINFO (type
), 0, 0,
2409 NULL_TREE
, NULL_TREE
, NULL_TREE
, NULL_TREE
,
2410 &convs
, &tpl_convs
);
2412 /* Flatten the list-of-lists */
2413 for (; convs
; convs
= TREE_CHAIN (convs
))
2417 for (probe
= TREE_VALUE (convs
); probe
; probe
= next
)
2419 next
= TREE_CHAIN (probe
);
2421 TREE_CHAIN (probe
) = list
;
2426 for (; tpl_convs
; tpl_convs
= TREE_CHAIN (tpl_convs
))
2430 for (probe
= TREE_VALUE (tpl_convs
); probe
; probe
= next
)
2432 next
= TREE_CHAIN (probe
);
2434 TREE_CHAIN (probe
) = list
;
2442 /* Returns the binfo of the first direct or indirect virtual base derived
2443 from BINFO, or NULL if binfo is not via virtual. */
2446 binfo_from_vbase (tree binfo
)
2448 for (; binfo
; binfo
= BINFO_INHERITANCE_CHAIN (binfo
))
2450 if (BINFO_VIRTUAL_P (binfo
))
2456 /* Returns the binfo of the first direct or indirect virtual base derived
2457 from BINFO up to the TREE_TYPE, LIMIT, or NULL if binfo is not
2461 binfo_via_virtual (tree binfo
, tree limit
)
2463 if (limit
&& !CLASSTYPE_VBASECLASSES (limit
))
2464 /* LIMIT has no virtual bases, so BINFO cannot be via one. */
2467 for (; binfo
&& !SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), limit
);
2468 binfo
= BINFO_INHERITANCE_CHAIN (binfo
))
2470 if (BINFO_VIRTUAL_P (binfo
))
2476 /* BINFO is a base binfo in the complete type BINFO_TYPE (HERE).
2477 Find the equivalent binfo within whatever graph HERE is located.
2478 This is the inverse of original_binfo. */
2481 copied_binfo (tree binfo
, tree here
)
2483 tree result
= NULL_TREE
;
2485 if (BINFO_VIRTUAL_P (binfo
))
2489 for (t
= here
; BINFO_INHERITANCE_CHAIN (t
);
2490 t
= BINFO_INHERITANCE_CHAIN (t
))
2493 result
= binfo_for_vbase (BINFO_TYPE (binfo
), BINFO_TYPE (t
));
2495 else if (BINFO_INHERITANCE_CHAIN (binfo
))
2501 cbinfo
= copied_binfo (BINFO_INHERITANCE_CHAIN (binfo
), here
);
2502 for (ix
= 0; BINFO_BASE_ITERATE (cbinfo
, ix
, base_binfo
); ix
++)
2503 if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo
), BINFO_TYPE (binfo
)))
2505 result
= base_binfo
;
2511 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (here
), BINFO_TYPE (binfo
)));
2515 gcc_assert (result
);
2520 binfo_for_vbase (tree base
, tree t
)
2524 VEC(tree
,gc
) *vbases
;
2526 for (vbases
= CLASSTYPE_VBASECLASSES (t
), ix
= 0;
2527 VEC_iterate (tree
, vbases
, ix
, binfo
); ix
++)
2528 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), base
))
2533 /* BINFO is some base binfo of HERE, within some other
2534 hierarchy. Return the equivalent binfo, but in the hierarchy
2535 dominated by HERE. This is the inverse of copied_binfo. If BINFO
2536 is not a base binfo of HERE, returns NULL_TREE. */
2539 original_binfo (tree binfo
, tree here
)
2543 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), BINFO_TYPE (here
)))
2545 else if (BINFO_VIRTUAL_P (binfo
))
2546 result
= (CLASSTYPE_VBASECLASSES (BINFO_TYPE (here
))
2547 ? binfo_for_vbase (BINFO_TYPE (binfo
), BINFO_TYPE (here
))
2549 else if (BINFO_INHERITANCE_CHAIN (binfo
))
2553 base_binfos
= original_binfo (BINFO_INHERITANCE_CHAIN (binfo
), here
);
2559 for (ix
= 0; (base_binfo
= BINFO_BASE_BINFO (base_binfos
, ix
)); ix
++)
2560 if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo
),
2561 BINFO_TYPE (binfo
)))
2563 result
= base_binfo
;