1 /* Dwarf2 Call Frame Information helper routines.
2 Copyright (C) 1992-2021 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
27 #include "tree-pass.h"
31 #include "stor-layout.h"
33 #include "dwarf2out.h"
34 #include "dwarf2asm.h"
35 #include "common/common-target.h"
37 #include "except.h" /* expand_builtin_dwarf_sp_column */
38 #include "profile-count.h" /* For expr.h */
39 #include "expr.h" /* init_return_column_size */
40 #include "output.h" /* asm_out_file */
41 #include "debug.h" /* dwarf2out_do_frame, dwarf2out_do_cfi_asm */
44 /* ??? Poison these here until it can be done generically. They've been
45 totally replaced in this file; make sure it stays that way. */
46 #undef DWARF2_UNWIND_INFO
47 #undef DWARF2_FRAME_INFO
48 #if (GCC_VERSION >= 3000)
49 #pragma GCC poison DWARF2_UNWIND_INFO DWARF2_FRAME_INFO
52 #ifndef INCOMING_RETURN_ADDR_RTX
53 #define INCOMING_RETURN_ADDR_RTX (gcc_unreachable (), NULL_RTX)
56 #ifndef DEFAULT_INCOMING_FRAME_SP_OFFSET
57 #define DEFAULT_INCOMING_FRAME_SP_OFFSET INCOMING_FRAME_SP_OFFSET
60 /* A collected description of an entire row of the abstract CFI table. */
61 struct GTY(()) dw_cfi_row
63 /* The expression that computes the CFA, expressed in two different ways.
64 The CFA member for the simple cases, and the full CFI expression for
65 the complex cases. The later will be a DW_CFA_cfa_expression. */
69 /* The expressions for any register column that is saved. */
72 /* True if the register window is saved. */
75 /* True if the return address is in a mangled state. */
79 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
80 struct GTY(()) reg_saved_in_data
{
86 /* Since we no longer have a proper CFG, we're going to create a facsimile
87 of one on the fly while processing the frame-related insns.
89 We create dw_trace_info structures for each extended basic block beginning
90 and ending at a "save point". Save points are labels, barriers, certain
91 notes, and of course the beginning and end of the function.
93 As we encounter control transfer insns, we propagate the "current"
94 row state across the edges to the starts of traces. When checking is
95 enabled, we validate that we propagate the same data from all sources.
97 All traces are members of the TRACE_INFO array, in the order in which
98 they appear in the instruction stream.
100 All save points are present in the TRACE_INDEX hash, mapping the insn
101 starting a trace to the dw_trace_info describing the trace. */
105 /* The insn that begins the trace. */
108 /* The row state at the beginning and end of the trace. */
109 dw_cfi_row
*beg_row
, *end_row
;
111 /* Tracking for DW_CFA_GNU_args_size. The "true" sizes are those we find
112 while scanning insns. However, the args_size value is irrelevant at
113 any point except can_throw_internal_p insns. Therefore the "delay"
114 sizes the values that must actually be emitted for this trace. */
115 poly_int64_pod beg_true_args_size
, end_true_args_size
;
116 poly_int64_pod beg_delay_args_size
, end_delay_args_size
;
118 /* The first EH insn in the trace, where beg_delay_args_size must be set. */
121 /* The following variables contain data used in interpreting frame related
122 expressions. These are not part of the "real" row state as defined by
123 Dwarf, but it seems like they need to be propagated into a trace in case
124 frame related expressions have been sunk. */
125 /* ??? This seems fragile. These variables are fragments of a larger
126 expression. If we do not keep the entire expression together, we risk
127 not being able to put it together properly. Consider forcing targets
128 to generate self-contained expressions and dropping all of the magic
129 interpretation code in this file. Or at least refusing to shrink wrap
130 any frame related insn that doesn't contain a complete expression. */
132 /* The register used for saving registers to the stack, and its offset
134 dw_cfa_location cfa_store
;
136 /* A temporary register holding an integral value used in adjusting SP
137 or setting up the store_reg. The "offset" field holds the integer
138 value, not an offset. */
139 dw_cfa_location cfa_temp
;
141 /* A set of registers saved in other registers. This is the inverse of
142 the row->reg_save info, if the entry is a DW_CFA_register. This is
143 implemented as a flat array because it normally contains zero or 1
144 entry, depending on the target. IA-64 is the big spender here, using
145 a maximum of 5 entries. */
146 vec
<reg_saved_in_data
> regs_saved_in_regs
;
148 /* An identifier for this trace. Used only for debugging dumps. */
151 /* True if this trace immediately follows NOTE_INSN_SWITCH_TEXT_SECTIONS. */
152 bool switch_sections
;
154 /* True if we've seen different values incoming to beg_true_args_size. */
155 bool args_size_undefined
;
157 /* True if we've seen an insn with a REG_ARGS_SIZE note before EH_HEAD. */
158 bool args_size_defined_for_eh
;
162 /* Hashtable helpers. */
164 struct trace_info_hasher
: nofree_ptr_hash
<dw_trace_info
>
166 static inline hashval_t
hash (const dw_trace_info
*);
167 static inline bool equal (const dw_trace_info
*, const dw_trace_info
*);
171 trace_info_hasher::hash (const dw_trace_info
*ti
)
173 return INSN_UID (ti
->head
);
177 trace_info_hasher::equal (const dw_trace_info
*a
, const dw_trace_info
*b
)
179 return a
->head
== b
->head
;
183 /* The variables making up the pseudo-cfg, as described above. */
184 static vec
<dw_trace_info
> trace_info
;
185 static vec
<dw_trace_info
*> trace_work_list
;
186 static hash_table
<trace_info_hasher
> *trace_index
;
188 /* A vector of call frame insns for the CIE. */
191 /* The state of the first row of the FDE table, which includes the
192 state provided by the CIE. */
193 static GTY(()) dw_cfi_row
*cie_cfi_row
;
195 static GTY(()) reg_saved_in_data
*cie_return_save
;
197 static GTY(()) unsigned long dwarf2out_cfi_label_num
;
199 /* The insn after which a new CFI note should be emitted. */
200 static rtx_insn
*add_cfi_insn
;
202 /* When non-null, add_cfi will add the CFI to this vector. */
203 static cfi_vec
*add_cfi_vec
;
205 /* The current instruction trace. */
206 static dw_trace_info
*cur_trace
;
208 /* The current, i.e. most recently generated, row of the CFI table. */
209 static dw_cfi_row
*cur_row
;
211 /* A copy of the current CFA, for use during the processing of a
213 static dw_cfa_location
*cur_cfa
;
215 /* We delay emitting a register save until either (a) we reach the end
216 of the prologue or (b) the register is clobbered. This clusters
217 register saves so that there are fewer pc advances. */
219 struct queued_reg_save
{
222 poly_int64_pod cfa_offset
;
226 static vec
<queued_reg_save
> queued_reg_saves
;
228 /* True if any CFI directives were emitted at the current insn. */
229 static bool any_cfis_emitted
;
231 /* Short-hand for commonly used register numbers. */
232 static unsigned dw_stack_pointer_regnum
;
233 static unsigned dw_frame_pointer_regnum
;
235 /* Hook used by __throw. */
238 expand_builtin_dwarf_sp_column (void)
240 unsigned int dwarf_regnum
= DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM
);
241 return GEN_INT (DWARF2_FRAME_REG_OUT (dwarf_regnum
, 1));
244 /* MEM is a memory reference for the register size table, each element of
245 which has mode MODE. Initialize column C as a return address column. */
248 init_return_column_size (scalar_int_mode mode
, rtx mem
, unsigned int c
)
250 HOST_WIDE_INT offset
= c
* GET_MODE_SIZE (mode
);
251 HOST_WIDE_INT size
= GET_MODE_SIZE (Pmode
);
252 emit_move_insn (adjust_address (mem
, mode
, offset
),
253 gen_int_mode (size
, mode
));
256 /* Datastructure used by expand_builtin_init_dwarf_reg_sizes and
257 init_one_dwarf_reg_size to communicate on what has been done by the
260 struct init_one_dwarf_reg_state
262 /* Whether the dwarf return column was initialized. */
263 bool wrote_return_column
;
265 /* For each hard register REGNO, whether init_one_dwarf_reg_size
266 was given REGNO to process already. */
267 bool processed_regno
[FIRST_PSEUDO_REGISTER
];
271 /* Helper for expand_builtin_init_dwarf_reg_sizes. Generate code to
272 initialize the dwarf register size table entry corresponding to register
273 REGNO in REGMODE. TABLE is the table base address, SLOTMODE is the mode to
274 use for the size entry to initialize, and INIT_STATE is the communication
275 datastructure conveying what we're doing to our caller. */
278 void init_one_dwarf_reg_size (int regno
, machine_mode regmode
,
279 rtx table
, machine_mode slotmode
,
280 init_one_dwarf_reg_state
*init_state
)
282 const unsigned int dnum
= DWARF_FRAME_REGNUM (regno
);
283 const unsigned int rnum
= DWARF2_FRAME_REG_OUT (dnum
, 1);
284 const unsigned int dcol
= DWARF_REG_TO_UNWIND_COLUMN (rnum
);
286 poly_int64 slotoffset
= dcol
* GET_MODE_SIZE (slotmode
);
287 poly_int64 regsize
= GET_MODE_SIZE (regmode
);
289 init_state
->processed_regno
[regno
] = true;
291 if (rnum
>= DWARF_FRAME_REGISTERS
)
294 if (dnum
== DWARF_FRAME_RETURN_COLUMN
)
296 if (regmode
== VOIDmode
)
298 init_state
->wrote_return_column
= true;
301 /* ??? When is this true? Should it be a test based on DCOL instead? */
302 if (maybe_lt (slotoffset
, 0))
305 emit_move_insn (adjust_address (table
, slotmode
, slotoffset
),
306 gen_int_mode (regsize
, slotmode
));
309 /* Generate code to initialize the dwarf register size table located
310 at the provided ADDRESS. */
313 expand_builtin_init_dwarf_reg_sizes (tree address
)
316 scalar_int_mode mode
= SCALAR_INT_TYPE_MODE (char_type_node
);
317 rtx addr
= expand_normal (address
);
318 rtx mem
= gen_rtx_MEM (BLKmode
, addr
);
320 init_one_dwarf_reg_state init_state
;
322 memset ((char *)&init_state
, 0, sizeof (init_state
));
324 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
326 machine_mode save_mode
;
329 /* No point in processing a register multiple times. This could happen
330 with register spans, e.g. when a reg is first processed as a piece of
331 a span, then as a register on its own later on. */
333 if (init_state
.processed_regno
[i
])
336 save_mode
= targetm
.dwarf_frame_reg_mode (i
);
337 span
= targetm
.dwarf_register_span (gen_rtx_REG (save_mode
, i
));
340 init_one_dwarf_reg_size (i
, save_mode
, mem
, mode
, &init_state
);
343 for (int si
= 0; si
< XVECLEN (span
, 0); si
++)
345 rtx reg
= XVECEXP (span
, 0, si
);
347 init_one_dwarf_reg_size
348 (REGNO (reg
), GET_MODE (reg
), mem
, mode
, &init_state
);
353 if (!init_state
.wrote_return_column
)
354 init_return_column_size (mode
, mem
, DWARF_FRAME_RETURN_COLUMN
);
356 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
357 init_return_column_size (mode
, mem
, DWARF_ALT_FRAME_RETURN_COLUMN
);
360 targetm
.init_dwarf_reg_sizes_extra (address
);
364 static dw_trace_info
*
365 get_trace_info (rtx_insn
*insn
)
369 return trace_index
->find_with_hash (&dummy
, INSN_UID (insn
));
373 save_point_p (rtx_insn
*insn
)
375 /* Labels, except those that are really jump tables. */
377 return inside_basic_block_p (insn
);
379 /* We split traces at the prologue/epilogue notes because those
380 are points at which the unwind info is usually stable. This
381 makes it easier to find spots with identical unwind info so
382 that we can use remember/restore_state opcodes. */
384 switch (NOTE_KIND (insn
))
386 case NOTE_INSN_PROLOGUE_END
:
387 case NOTE_INSN_EPILOGUE_BEG
:
394 /* Divide OFF by DWARF_CIE_DATA_ALIGNMENT, asserting no remainder. */
396 static inline HOST_WIDE_INT
397 div_data_align (HOST_WIDE_INT off
)
399 HOST_WIDE_INT r
= off
/ DWARF_CIE_DATA_ALIGNMENT
;
400 gcc_assert (r
* DWARF_CIE_DATA_ALIGNMENT
== off
);
404 /* Return true if we need a signed version of a given opcode
405 (e.g. DW_CFA_offset_extended_sf vs DW_CFA_offset_extended). */
408 need_data_align_sf_opcode (HOST_WIDE_INT off
)
410 return DWARF_CIE_DATA_ALIGNMENT
< 0 ? off
> 0 : off
< 0;
413 /* Return a pointer to a newly allocated Call Frame Instruction. */
415 static inline dw_cfi_ref
418 dw_cfi_ref cfi
= ggc_alloc
<dw_cfi_node
> ();
420 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= 0;
421 cfi
->dw_cfi_oprnd2
.dw_cfi_reg_num
= 0;
426 /* Return a newly allocated CFI row, with no defined data. */
431 dw_cfi_row
*row
= ggc_cleared_alloc
<dw_cfi_row
> ();
433 row
->cfa
.reg
= INVALID_REGNUM
;
438 /* Return a copy of an existing CFI row. */
441 copy_cfi_row (dw_cfi_row
*src
)
443 dw_cfi_row
*dst
= ggc_alloc
<dw_cfi_row
> ();
446 dst
->reg_save
= vec_safe_copy (src
->reg_save
);
451 /* Return a copy of an existing CFA location. */
453 static dw_cfa_location
*
454 copy_cfa (dw_cfa_location
*src
)
456 dw_cfa_location
*dst
= ggc_alloc
<dw_cfa_location
> ();
461 /* Generate a new label for the CFI info to refer to. */
464 dwarf2out_cfi_label (void)
466 int num
= dwarf2out_cfi_label_num
++;
469 ASM_GENERATE_INTERNAL_LABEL (label
, "LCFI", num
);
471 return xstrdup (label
);
474 /* Add CFI either to the current insn stream or to a vector, or both. */
477 add_cfi (dw_cfi_ref cfi
)
479 any_cfis_emitted
= true;
481 if (add_cfi_insn
!= NULL
)
483 add_cfi_insn
= emit_note_after (NOTE_INSN_CFI
, add_cfi_insn
);
484 NOTE_CFI (add_cfi_insn
) = cfi
;
487 if (add_cfi_vec
!= NULL
)
488 vec_safe_push (*add_cfi_vec
, cfi
);
492 add_cfi_args_size (poly_int64 size
)
494 /* We don't yet have a representation for polynomial sizes. */
495 HOST_WIDE_INT const_size
= size
.to_constant ();
497 dw_cfi_ref cfi
= new_cfi ();
499 /* While we can occasionally have args_size < 0 internally, this state
500 should not persist at a point we actually need an opcode. */
501 gcc_assert (const_size
>= 0);
503 cfi
->dw_cfi_opc
= DW_CFA_GNU_args_size
;
504 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
= const_size
;
510 add_cfi_restore (unsigned reg
)
512 dw_cfi_ref cfi
= new_cfi ();
514 cfi
->dw_cfi_opc
= (reg
& ~0x3f ? DW_CFA_restore_extended
: DW_CFA_restore
);
515 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= reg
;
520 /* Perform ROW->REG_SAVE[COLUMN] = CFI. CFI may be null, indicating
521 that the register column is no longer saved. */
524 update_row_reg_save (dw_cfi_row
*row
, unsigned column
, dw_cfi_ref cfi
)
526 if (vec_safe_length (row
->reg_save
) <= column
)
527 vec_safe_grow_cleared (row
->reg_save
, column
+ 1, true);
528 (*row
->reg_save
)[column
] = cfi
;
531 /* This function fills in aa dw_cfa_location structure from a dwarf location
532 descriptor sequence. */
535 get_cfa_from_loc_descr (dw_cfa_location
*cfa
, struct dw_loc_descr_node
*loc
)
537 struct dw_loc_descr_node
*ptr
;
539 cfa
->base_offset
= 0;
543 for (ptr
= loc
; ptr
!= NULL
; ptr
= ptr
->dw_loc_next
)
545 enum dwarf_location_atom op
= ptr
->dw_loc_opc
;
581 cfa
->reg
= op
- DW_OP_reg0
;
584 cfa
->reg
= ptr
->dw_loc_oprnd1
.v
.val_int
;
618 cfa
->reg
= op
- DW_OP_breg0
;
619 cfa
->base_offset
= ptr
->dw_loc_oprnd1
.v
.val_int
;
622 cfa
->reg
= ptr
->dw_loc_oprnd1
.v
.val_int
;
623 cfa
->base_offset
= ptr
->dw_loc_oprnd2
.v
.val_int
;
628 case DW_OP_plus_uconst
:
629 cfa
->offset
= ptr
->dw_loc_oprnd1
.v
.val_unsigned
;
637 /* Find the previous value for the CFA, iteratively. CFI is the opcode
638 to interpret, *LOC will be updated as necessary, *REMEMBER is used for
639 one level of remember/restore state processing. */
642 lookup_cfa_1 (dw_cfi_ref cfi
, dw_cfa_location
*loc
, dw_cfa_location
*remember
)
644 switch (cfi
->dw_cfi_opc
)
646 case DW_CFA_def_cfa_offset
:
647 case DW_CFA_def_cfa_offset_sf
:
648 loc
->offset
= cfi
->dw_cfi_oprnd1
.dw_cfi_offset
;
650 case DW_CFA_def_cfa_register
:
651 loc
->reg
= cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
;
654 case DW_CFA_def_cfa_sf
:
655 loc
->reg
= cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
;
656 loc
->offset
= cfi
->dw_cfi_oprnd2
.dw_cfi_offset
;
658 case DW_CFA_def_cfa_expression
:
659 if (cfi
->dw_cfi_oprnd2
.dw_cfi_cfa_loc
)
660 *loc
= *cfi
->dw_cfi_oprnd2
.dw_cfi_cfa_loc
;
662 get_cfa_from_loc_descr (loc
, cfi
->dw_cfi_oprnd1
.dw_cfi_loc
);
665 case DW_CFA_remember_state
:
666 gcc_assert (!remember
->in_use
);
668 remember
->in_use
= 1;
670 case DW_CFA_restore_state
:
671 gcc_assert (remember
->in_use
);
673 remember
->in_use
= 0;
681 /* Determine if two dw_cfa_location structures define the same data. */
684 cfa_equal_p (const dw_cfa_location
*loc1
, const dw_cfa_location
*loc2
)
686 return (loc1
->reg
== loc2
->reg
687 && known_eq (loc1
->offset
, loc2
->offset
)
688 && loc1
->indirect
== loc2
->indirect
689 && (loc1
->indirect
== 0
690 || known_eq (loc1
->base_offset
, loc2
->base_offset
)));
693 /* Determine if two CFI operands are identical. */
696 cfi_oprnd_equal_p (enum dw_cfi_oprnd_type t
, dw_cfi_oprnd
*a
, dw_cfi_oprnd
*b
)
700 case dw_cfi_oprnd_unused
:
702 case dw_cfi_oprnd_reg_num
:
703 return a
->dw_cfi_reg_num
== b
->dw_cfi_reg_num
;
704 case dw_cfi_oprnd_offset
:
705 return a
->dw_cfi_offset
== b
->dw_cfi_offset
;
706 case dw_cfi_oprnd_addr
:
707 return (a
->dw_cfi_addr
== b
->dw_cfi_addr
708 || strcmp (a
->dw_cfi_addr
, b
->dw_cfi_addr
) == 0);
709 case dw_cfi_oprnd_loc
:
710 return loc_descr_equal_p (a
->dw_cfi_loc
, b
->dw_cfi_loc
);
711 case dw_cfi_oprnd_cfa_loc
:
712 return cfa_equal_p (a
->dw_cfi_cfa_loc
, b
->dw_cfi_cfa_loc
);
717 /* Determine if two CFI entries are identical. */
720 cfi_equal_p (dw_cfi_ref a
, dw_cfi_ref b
)
722 enum dwarf_call_frame_info opc
;
724 /* Make things easier for our callers, including missing operands. */
727 if (a
== NULL
|| b
== NULL
)
730 /* Obviously, the opcodes must match. */
732 if (opc
!= b
->dw_cfi_opc
)
735 /* Compare the two operands, re-using the type of the operands as
736 already exposed elsewhere. */
737 return (cfi_oprnd_equal_p (dw_cfi_oprnd1_desc (opc
),
738 &a
->dw_cfi_oprnd1
, &b
->dw_cfi_oprnd1
)
739 && cfi_oprnd_equal_p (dw_cfi_oprnd2_desc (opc
),
740 &a
->dw_cfi_oprnd2
, &b
->dw_cfi_oprnd2
));
743 /* Determine if two CFI_ROW structures are identical. */
746 cfi_row_equal_p (dw_cfi_row
*a
, dw_cfi_row
*b
)
748 size_t i
, n_a
, n_b
, n_max
;
752 if (!cfi_equal_p (a
->cfa_cfi
, b
->cfa_cfi
))
755 else if (!cfa_equal_p (&a
->cfa
, &b
->cfa
))
758 n_a
= vec_safe_length (a
->reg_save
);
759 n_b
= vec_safe_length (b
->reg_save
);
760 n_max
= MAX (n_a
, n_b
);
762 for (i
= 0; i
< n_max
; ++i
)
764 dw_cfi_ref r_a
= NULL
, r_b
= NULL
;
767 r_a
= (*a
->reg_save
)[i
];
769 r_b
= (*b
->reg_save
)[i
];
771 if (!cfi_equal_p (r_a
, r_b
))
775 if (a
->window_save
!= b
->window_save
)
778 if (a
->ra_mangled
!= b
->ra_mangled
)
784 /* The CFA is now calculated from NEW_CFA. Consider OLD_CFA in determining
785 what opcode to emit. Returns the CFI opcode to effect the change, or
786 NULL if NEW_CFA == OLD_CFA. */
789 def_cfa_0 (dw_cfa_location
*old_cfa
, dw_cfa_location
*new_cfa
)
793 /* If nothing changed, no need to issue any call frame instructions. */
794 if (cfa_equal_p (old_cfa
, new_cfa
))
799 HOST_WIDE_INT const_offset
;
800 if (new_cfa
->reg
== old_cfa
->reg
801 && !new_cfa
->indirect
802 && !old_cfa
->indirect
803 && new_cfa
->offset
.is_constant (&const_offset
))
805 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction, indicating
806 the CFA register did not change but the offset did. The data
807 factoring for DW_CFA_def_cfa_offset_sf happens in output_cfi, or
808 in the assembler via the .cfi_def_cfa_offset directive. */
809 if (const_offset
< 0)
810 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_offset_sf
;
812 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_offset
;
813 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
= const_offset
;
815 else if (new_cfa
->offset
.is_constant ()
816 && known_eq (new_cfa
->offset
, old_cfa
->offset
)
817 && old_cfa
->reg
!= INVALID_REGNUM
818 && !new_cfa
->indirect
819 && !old_cfa
->indirect
)
821 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
822 indicating the CFA register has changed to <register> but the
823 offset has not changed. This requires the old CFA to have
824 been set as a register plus offset rather than a general
825 DW_CFA_def_cfa_expression. */
826 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_register
;
827 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= new_cfa
->reg
;
829 else if (new_cfa
->indirect
== 0
830 && new_cfa
->offset
.is_constant (&const_offset
))
832 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
833 indicating the CFA register has changed to <register> with
834 the specified offset. The data factoring for DW_CFA_def_cfa_sf
835 happens in output_cfi, or in the assembler via the .cfi_def_cfa
837 if (const_offset
< 0)
838 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_sf
;
840 cfi
->dw_cfi_opc
= DW_CFA_def_cfa
;
841 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= new_cfa
->reg
;
842 cfi
->dw_cfi_oprnd2
.dw_cfi_offset
= const_offset
;
846 /* Construct a DW_CFA_def_cfa_expression instruction to
847 calculate the CFA using a full location expression since no
848 register-offset pair is available. */
849 struct dw_loc_descr_node
*loc_list
;
851 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_expression
;
852 loc_list
= build_cfa_loc (new_cfa
, 0);
853 cfi
->dw_cfi_oprnd1
.dw_cfi_loc
= loc_list
;
854 if (!new_cfa
->offset
.is_constant ()
855 || !new_cfa
->base_offset
.is_constant ())
856 /* It's hard to reconstruct the CFA location for a polynomial
857 expression, so just cache it instead. */
858 cfi
->dw_cfi_oprnd2
.dw_cfi_cfa_loc
= copy_cfa (new_cfa
);
860 cfi
->dw_cfi_oprnd2
.dw_cfi_cfa_loc
= NULL
;
866 /* Similarly, but take OLD_CFA from CUR_ROW, and update it after the fact. */
869 def_cfa_1 (dw_cfa_location
*new_cfa
)
873 if (cur_trace
->cfa_store
.reg
== new_cfa
->reg
&& new_cfa
->indirect
== 0)
874 cur_trace
->cfa_store
.offset
= new_cfa
->offset
;
876 cfi
= def_cfa_0 (&cur_row
->cfa
, new_cfa
);
879 cur_row
->cfa
= *new_cfa
;
880 cur_row
->cfa_cfi
= (cfi
->dw_cfi_opc
== DW_CFA_def_cfa_expression
887 /* Add the CFI for saving a register. REG is the CFA column number.
888 If SREG is -1, the register is saved at OFFSET from the CFA;
889 otherwise it is saved in SREG. */
892 reg_save (unsigned int reg
, unsigned int sreg
, poly_int64 offset
)
894 dw_fde_ref fde
= cfun
? cfun
->fde
: NULL
;
895 dw_cfi_ref cfi
= new_cfi ();
897 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= reg
;
899 if (sreg
== INVALID_REGNUM
)
901 HOST_WIDE_INT const_offset
;
902 /* When stack is aligned, store REG using DW_CFA_expression with FP. */
903 if (fde
&& fde
->stack_realign
)
905 cfi
->dw_cfi_opc
= DW_CFA_expression
;
906 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= reg
;
907 cfi
->dw_cfi_oprnd2
.dw_cfi_loc
908 = build_cfa_aligned_loc (&cur_row
->cfa
, offset
,
909 fde
->stack_realignment
);
911 else if (offset
.is_constant (&const_offset
))
913 if (need_data_align_sf_opcode (const_offset
))
914 cfi
->dw_cfi_opc
= DW_CFA_offset_extended_sf
;
915 else if (reg
& ~0x3f)
916 cfi
->dw_cfi_opc
= DW_CFA_offset_extended
;
918 cfi
->dw_cfi_opc
= DW_CFA_offset
;
919 cfi
->dw_cfi_oprnd2
.dw_cfi_offset
= const_offset
;
923 cfi
->dw_cfi_opc
= DW_CFA_expression
;
924 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= reg
;
925 cfi
->dw_cfi_oprnd2
.dw_cfi_loc
926 = build_cfa_loc (&cur_row
->cfa
, offset
);
929 else if (sreg
== reg
)
931 /* While we could emit something like DW_CFA_same_value or
932 DW_CFA_restore, we never expect to see something like that
933 in a prologue. This is more likely to be a bug. A backend
934 can always bypass this by using REG_CFA_RESTORE directly. */
939 cfi
->dw_cfi_opc
= DW_CFA_register
;
940 cfi
->dw_cfi_oprnd2
.dw_cfi_reg_num
= sreg
;
944 update_row_reg_save (cur_row
, reg
, cfi
);
947 /* A subroutine of scan_trace. Check INSN for a REG_ARGS_SIZE note
948 and adjust data structures to match. */
951 notice_args_size (rtx_insn
*insn
)
953 poly_int64 args_size
, delta
;
956 note
= find_reg_note (insn
, REG_ARGS_SIZE
, NULL
);
960 if (!cur_trace
->eh_head
)
961 cur_trace
->args_size_defined_for_eh
= true;
963 args_size
= get_args_size (note
);
964 delta
= args_size
- cur_trace
->end_true_args_size
;
965 if (known_eq (delta
, 0))
968 cur_trace
->end_true_args_size
= args_size
;
970 /* If the CFA is computed off the stack pointer, then we must adjust
971 the computation of the CFA as well. */
972 if (cur_cfa
->reg
== dw_stack_pointer_regnum
)
974 gcc_assert (!cur_cfa
->indirect
);
976 /* Convert a change in args_size (always a positive in the
977 direction of stack growth) to a change in stack pointer. */
978 if (!STACK_GROWS_DOWNWARD
)
981 cur_cfa
->offset
+= delta
;
985 /* A subroutine of scan_trace. INSN is can_throw_internal. Update the
986 data within the trace related to EH insns and args_size. */
989 notice_eh_throw (rtx_insn
*insn
)
991 poly_int64 args_size
= cur_trace
->end_true_args_size
;
992 if (cur_trace
->eh_head
== NULL
)
994 cur_trace
->eh_head
= insn
;
995 cur_trace
->beg_delay_args_size
= args_size
;
996 cur_trace
->end_delay_args_size
= args_size
;
998 else if (maybe_ne (cur_trace
->end_delay_args_size
, args_size
))
1000 cur_trace
->end_delay_args_size
= args_size
;
1002 /* ??? If the CFA is the stack pointer, search backward for the last
1003 CFI note and insert there. Given that the stack changed for the
1004 args_size change, there *must* be such a note in between here and
1005 the last eh insn. */
1006 add_cfi_args_size (args_size
);
1010 /* Short-hand inline for the very common D_F_R (REGNO (x)) operation. */
1011 /* ??? This ought to go into dwarf2out.h, except that dwarf2out.h is
1012 used in places where rtl is prohibited. */
1014 static inline unsigned
1015 dwf_regno (const_rtx reg
)
1017 gcc_assert (REGNO (reg
) < FIRST_PSEUDO_REGISTER
);
1018 return DWARF_FRAME_REGNUM (REGNO (reg
));
1021 /* Compare X and Y for equivalence. The inputs may be REGs or PC_RTX. */
1024 compare_reg_or_pc (rtx x
, rtx y
)
1026 if (REG_P (x
) && REG_P (y
))
1027 return REGNO (x
) == REGNO (y
);
1031 /* Record SRC as being saved in DEST. DEST may be null to delete an
1032 existing entry. SRC may be a register or PC_RTX. */
1035 record_reg_saved_in_reg (rtx dest
, rtx src
)
1037 reg_saved_in_data
*elt
;
1040 FOR_EACH_VEC_ELT (cur_trace
->regs_saved_in_regs
, i
, elt
)
1041 if (compare_reg_or_pc (elt
->orig_reg
, src
))
1044 cur_trace
->regs_saved_in_regs
.unordered_remove (i
);
1046 elt
->saved_in_reg
= dest
;
1053 reg_saved_in_data e
= {src
, dest
};
1054 cur_trace
->regs_saved_in_regs
.safe_push (e
);
1057 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1058 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
1061 queue_reg_save (rtx reg
, rtx sreg
, poly_int64 offset
)
1064 queued_reg_save e
= {reg
, sreg
, offset
};
1067 /* Duplicates waste space, but it's also necessary to remove them
1068 for correctness, since the queue gets output in reverse order. */
1069 FOR_EACH_VEC_ELT (queued_reg_saves
, i
, q
)
1070 if (compare_reg_or_pc (q
->reg
, reg
))
1076 queued_reg_saves
.safe_push (e
);
1079 /* Output all the entries in QUEUED_REG_SAVES. */
1082 dwarf2out_flush_queued_reg_saves (void)
1087 FOR_EACH_VEC_ELT (queued_reg_saves
, i
, q
)
1089 unsigned int reg
, sreg
;
1091 record_reg_saved_in_reg (q
->saved_reg
, q
->reg
);
1093 if (q
->reg
== pc_rtx
)
1094 reg
= DWARF_FRAME_RETURN_COLUMN
;
1096 reg
= dwf_regno (q
->reg
);
1098 sreg
= dwf_regno (q
->saved_reg
);
1100 sreg
= INVALID_REGNUM
;
1101 reg_save (reg
, sreg
, q
->cfa_offset
);
1104 queued_reg_saves
.truncate (0);
1107 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1108 location for? Or, does it clobber a register which we've previously
1109 said that some other register is saved in, and for which we now
1110 have a new location for? */
1113 clobbers_queued_reg_save (const_rtx insn
)
1118 FOR_EACH_VEC_ELT (queued_reg_saves
, iq
, q
)
1121 reg_saved_in_data
*rir
;
1123 if (modified_in_p (q
->reg
, insn
))
1126 FOR_EACH_VEC_ELT (cur_trace
->regs_saved_in_regs
, ir
, rir
)
1127 if (compare_reg_or_pc (q
->reg
, rir
->orig_reg
)
1128 && modified_in_p (rir
->saved_in_reg
, insn
))
1135 /* What register, if any, is currently saved in REG? */
1138 reg_saved_in (rtx reg
)
1140 unsigned int regn
= REGNO (reg
);
1142 reg_saved_in_data
*rir
;
1145 FOR_EACH_VEC_ELT (queued_reg_saves
, i
, q
)
1146 if (q
->saved_reg
&& regn
== REGNO (q
->saved_reg
))
1149 FOR_EACH_VEC_ELT (cur_trace
->regs_saved_in_regs
, i
, rir
)
1150 if (regn
== REGNO (rir
->saved_in_reg
))
1151 return rir
->orig_reg
;
1156 /* A subroutine of dwarf2out_frame_debug, process a REG_DEF_CFA note. */
1159 dwarf2out_frame_debug_def_cfa (rtx pat
)
1161 memset (cur_cfa
, 0, sizeof (*cur_cfa
));
1163 pat
= strip_offset (pat
, &cur_cfa
->offset
);
1166 cur_cfa
->indirect
= 1;
1167 pat
= strip_offset (XEXP (pat
, 0), &cur_cfa
->base_offset
);
1169 /* ??? If this fails, we could be calling into the _loc functions to
1170 define a full expression. So far no port does that. */
1171 gcc_assert (REG_P (pat
));
1172 cur_cfa
->reg
= dwf_regno (pat
);
1175 /* A subroutine of dwarf2out_frame_debug, process a REG_ADJUST_CFA note. */
1178 dwarf2out_frame_debug_adjust_cfa (rtx pat
)
1182 gcc_assert (GET_CODE (pat
) == SET
);
1183 dest
= XEXP (pat
, 0);
1184 src
= XEXP (pat
, 1);
1186 switch (GET_CODE (src
))
1189 gcc_assert (dwf_regno (XEXP (src
, 0)) == cur_cfa
->reg
);
1190 cur_cfa
->offset
-= rtx_to_poly_int64 (XEXP (src
, 1));
1200 cur_cfa
->reg
= dwf_regno (dest
);
1201 gcc_assert (cur_cfa
->indirect
== 0);
1204 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_OFFSET note. */
1207 dwarf2out_frame_debug_cfa_offset (rtx set
)
1210 rtx src
, addr
, span
;
1211 unsigned int sregno
;
1213 src
= XEXP (set
, 1);
1214 addr
= XEXP (set
, 0);
1215 gcc_assert (MEM_P (addr
));
1216 addr
= XEXP (addr
, 0);
1218 /* As documented, only consider extremely simple addresses. */
1219 switch (GET_CODE (addr
))
1222 gcc_assert (dwf_regno (addr
) == cur_cfa
->reg
);
1223 offset
= -cur_cfa
->offset
;
1226 gcc_assert (dwf_regno (XEXP (addr
, 0)) == cur_cfa
->reg
);
1227 offset
= rtx_to_poly_int64 (XEXP (addr
, 1)) - cur_cfa
->offset
;
1236 sregno
= DWARF_FRAME_RETURN_COLUMN
;
1240 span
= targetm
.dwarf_register_span (src
);
1241 sregno
= dwf_regno (src
);
1244 /* ??? We'd like to use queue_reg_save, but we need to come up with
1245 a different flushing heuristic for epilogues. */
1247 reg_save (sregno
, INVALID_REGNUM
, offset
);
1250 /* We have a PARALLEL describing where the contents of SRC live.
1251 Adjust the offset for each piece of the PARALLEL. */
1252 poly_int64 span_offset
= offset
;
1254 gcc_assert (GET_CODE (span
) == PARALLEL
);
1256 const int par_len
= XVECLEN (span
, 0);
1257 for (int par_index
= 0; par_index
< par_len
; par_index
++)
1259 rtx elem
= XVECEXP (span
, 0, par_index
);
1260 sregno
= dwf_regno (src
);
1261 reg_save (sregno
, INVALID_REGNUM
, span_offset
);
1262 span_offset
+= GET_MODE_SIZE (GET_MODE (elem
));
1267 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_REGISTER note. */
1270 dwarf2out_frame_debug_cfa_register (rtx set
)
1273 unsigned sregno
, dregno
;
1275 src
= XEXP (set
, 1);
1276 dest
= XEXP (set
, 0);
1278 record_reg_saved_in_reg (dest
, src
);
1280 sregno
= DWARF_FRAME_RETURN_COLUMN
;
1282 sregno
= dwf_regno (src
);
1284 dregno
= dwf_regno (dest
);
1286 /* ??? We'd like to use queue_reg_save, but we need to come up with
1287 a different flushing heuristic for epilogues. */
1288 reg_save (sregno
, dregno
, 0);
1291 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_EXPRESSION note. */
1294 dwarf2out_frame_debug_cfa_expression (rtx set
)
1296 rtx src
, dest
, span
;
1297 dw_cfi_ref cfi
= new_cfi ();
1300 dest
= SET_DEST (set
);
1301 src
= SET_SRC (set
);
1303 gcc_assert (REG_P (src
));
1304 gcc_assert (MEM_P (dest
));
1306 span
= targetm
.dwarf_register_span (src
);
1309 regno
= dwf_regno (src
);
1311 cfi
->dw_cfi_opc
= DW_CFA_expression
;
1312 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= regno
;
1313 cfi
->dw_cfi_oprnd2
.dw_cfi_loc
1314 = mem_loc_descriptor (XEXP (dest
, 0), get_address_mode (dest
),
1315 GET_MODE (dest
), VAR_INIT_STATUS_INITIALIZED
);
1317 /* ??? We'd like to use queue_reg_save, were the interface different,
1318 and, as above, we could manage flushing for epilogues. */
1320 update_row_reg_save (cur_row
, regno
, cfi
);
1323 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_VAL_EXPRESSION
1327 dwarf2out_frame_debug_cfa_val_expression (rtx set
)
1329 rtx dest
= SET_DEST (set
);
1330 gcc_assert (REG_P (dest
));
1332 rtx span
= targetm
.dwarf_register_span (dest
);
1335 rtx src
= SET_SRC (set
);
1336 dw_cfi_ref cfi
= new_cfi ();
1337 cfi
->dw_cfi_opc
= DW_CFA_val_expression
;
1338 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= dwf_regno (dest
);
1339 cfi
->dw_cfi_oprnd2
.dw_cfi_loc
1340 = mem_loc_descriptor (src
, GET_MODE (src
),
1341 GET_MODE (dest
), VAR_INIT_STATUS_INITIALIZED
);
1343 update_row_reg_save (cur_row
, dwf_regno (dest
), cfi
);
1346 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_RESTORE note. */
1349 dwarf2out_frame_debug_cfa_restore (rtx reg
)
1351 gcc_assert (REG_P (reg
));
1353 rtx span
= targetm
.dwarf_register_span (reg
);
1356 unsigned int regno
= dwf_regno (reg
);
1357 add_cfi_restore (regno
);
1358 update_row_reg_save (cur_row
, regno
, NULL
);
1362 /* We have a PARALLEL describing where the contents of REG live.
1363 Restore the register for each piece of the PARALLEL. */
1364 gcc_assert (GET_CODE (span
) == PARALLEL
);
1366 const int par_len
= XVECLEN (span
, 0);
1367 for (int par_index
= 0; par_index
< par_len
; par_index
++)
1369 reg
= XVECEXP (span
, 0, par_index
);
1370 gcc_assert (REG_P (reg
));
1371 unsigned int regno
= dwf_regno (reg
);
1372 add_cfi_restore (regno
);
1373 update_row_reg_save (cur_row
, regno
, NULL
);
1378 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_WINDOW_SAVE.
1380 ??? Perhaps we should note in the CIE where windows are saved (instead
1381 of assuming 0(cfa)) and what registers are in the window. */
1384 dwarf2out_frame_debug_cfa_window_save (void)
1386 dw_cfi_ref cfi
= new_cfi ();
1388 cfi
->dw_cfi_opc
= DW_CFA_GNU_window_save
;
1390 cur_row
->window_save
= true;
1393 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_TOGGLE_RA_MANGLE.
1394 Note: DW_CFA_GNU_window_save dwarf opcode is reused for toggling RA mangle
1395 state, this is a target specific operation on AArch64 and can only be used
1396 on other targets if they don't use the window save operation otherwise. */
1399 dwarf2out_frame_debug_cfa_toggle_ra_mangle (void)
1401 dw_cfi_ref cfi
= new_cfi ();
1403 cfi
->dw_cfi_opc
= DW_CFA_GNU_window_save
;
1405 cur_row
->ra_mangled
= !cur_row
->ra_mangled
;
1408 /* Record call frame debugging information for an expression EXPR,
1409 which either sets SP or FP (adjusting how we calculate the frame
1410 address) or saves a register to the stack or another register.
1411 LABEL indicates the address of EXPR.
1413 This function encodes a state machine mapping rtxes to actions on
1414 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1415 users need not read the source code.
1417 The High-Level Picture
1419 Changes in the register we use to calculate the CFA: Currently we
1420 assume that if you copy the CFA register into another register, we
1421 should take the other one as the new CFA register; this seems to
1422 work pretty well. If it's wrong for some target, it's simple
1423 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1425 Changes in the register we use for saving registers to the stack:
1426 This is usually SP, but not always. Again, we deduce that if you
1427 copy SP into another register (and SP is not the CFA register),
1428 then the new register is the one we will be using for register
1429 saves. This also seems to work.
1431 Register saves: There's not much guesswork about this one; if
1432 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1433 register save, and the register used to calculate the destination
1434 had better be the one we think we're using for this purpose.
1435 It's also assumed that a copy from a call-saved register to another
1436 register is saving that register if RTX_FRAME_RELATED_P is set on
1437 that instruction. If the copy is from a call-saved register to
1438 the *same* register, that means that the register is now the same
1439 value as in the caller.
1441 Except: If the register being saved is the CFA register, and the
1442 offset is nonzero, we are saving the CFA, so we assume we have to
1443 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1444 the intent is to save the value of SP from the previous frame.
1446 In addition, if a register has previously been saved to a different
1449 Invariants / Summaries of Rules
1451 cfa current rule for calculating the CFA. It usually
1452 consists of a register and an offset. This is
1453 actually stored in *cur_cfa, but abbreviated
1454 for the purposes of this documentation.
1455 cfa_store register used by prologue code to save things to the stack
1456 cfa_store.offset is the offset from the value of
1457 cfa_store.reg to the actual CFA
1458 cfa_temp register holding an integral value. cfa_temp.offset
1459 stores the value, which will be used to adjust the
1460 stack pointer. cfa_temp is also used like cfa_store,
1461 to track stores to the stack via fp or a temp reg.
1463 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1464 with cfa.reg as the first operand changes the cfa.reg and its
1465 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1468 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1469 expression yielding a constant. This sets cfa_temp.reg
1470 and cfa_temp.offset.
1472 Rule 5: Create a new register cfa_store used to save items to the
1475 Rules 10-14: Save a register to the stack. Define offset as the
1476 difference of the original location and cfa_store's
1477 location (or cfa_temp's location if cfa_temp is used).
1479 Rules 16-20: If AND operation happens on sp in prologue, we assume
1480 stack is realigned. We will use a group of DW_OP_XXX
1481 expressions to represent the location of the stored
1482 register instead of CFA+offset.
1486 "{a,b}" indicates a choice of a xor b.
1487 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1490 (set <reg1> <reg2>:cfa.reg)
1491 effects: cfa.reg = <reg1>
1492 cfa.offset unchanged
1493 cfa_temp.reg = <reg1>
1494 cfa_temp.offset = cfa.offset
1497 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1498 {<const_int>,<reg>:cfa_temp.reg}))
1499 effects: cfa.reg = sp if fp used
1500 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1501 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1502 if cfa_store.reg==sp
1505 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1506 effects: cfa.reg = fp
1507 cfa_offset += +/- <const_int>
1510 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1511 constraints: <reg1> != fp
1513 effects: cfa.reg = <reg1>
1514 cfa_temp.reg = <reg1>
1515 cfa_temp.offset = cfa.offset
1518 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1519 constraints: <reg1> != fp
1521 effects: cfa_store.reg = <reg1>
1522 cfa_store.offset = cfa.offset - cfa_temp.offset
1525 (set <reg> <const_int>)
1526 effects: cfa_temp.reg = <reg>
1527 cfa_temp.offset = <const_int>
1530 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1531 effects: cfa_temp.reg = <reg1>
1532 cfa_temp.offset |= <const_int>
1535 (set <reg> (high <exp>))
1539 (set <reg> (lo_sum <exp> <const_int>))
1540 effects: cfa_temp.reg = <reg>
1541 cfa_temp.offset = <const_int>
1544 (set (mem ({pre,post}_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1545 effects: cfa_store.offset -= <const_int>
1546 cfa.offset = cfa_store.offset if cfa.reg == sp
1548 cfa.base_offset = -cfa_store.offset
1551 (set (mem ({pre_inc,pre_dec,post_dec} sp:cfa_store.reg)) <reg>)
1552 effects: cfa_store.offset += -/+ mode_size(mem)
1553 cfa.offset = cfa_store.offset if cfa.reg == sp
1555 cfa.base_offset = -cfa_store.offset
1558 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1561 effects: cfa.reg = <reg1>
1562 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1565 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1566 effects: cfa.reg = <reg1>
1567 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1570 (set (mem (post_inc <reg1>:cfa_temp <const_int>)) <reg2>)
1571 effects: cfa.reg = <reg1>
1572 cfa.base_offset = -cfa_temp.offset
1573 cfa_temp.offset -= mode_size(mem)
1576 (set <reg> {unspec, unspec_volatile})
1577 effects: target-dependent
1580 (set sp (and: sp <const_int>))
1581 constraints: cfa_store.reg == sp
1582 effects: cfun->fde.stack_realign = 1
1583 cfa_store.offset = 0
1584 fde->drap_reg = cfa.reg if cfa.reg != sp and cfa.reg != fp
1587 (set (mem ({pre_inc, pre_dec} sp)) (mem (plus (cfa.reg) (const_int))))
1588 effects: cfa_store.offset += -/+ mode_size(mem)
1591 (set (mem ({pre_inc, pre_dec} sp)) fp)
1592 constraints: fde->stack_realign == 1
1593 effects: cfa_store.offset = 0
1594 cfa.reg != HARD_FRAME_POINTER_REGNUM
1597 (set (mem ({pre_inc, pre_dec} sp)) cfa.reg)
1598 constraints: fde->stack_realign == 1
1600 && cfa.indirect == 0
1601 && cfa.reg != HARD_FRAME_POINTER_REGNUM
1602 effects: Use DW_CFA_def_cfa_expression to define cfa
1603 cfa.reg == fde->drap_reg */
1606 dwarf2out_frame_debug_expr (rtx expr
)
1608 rtx src
, dest
, span
;
1612 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1613 the PARALLEL independently. The first element is always processed if
1614 it is a SET. This is for backward compatibility. Other elements
1615 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1616 flag is set in them. */
1617 if (GET_CODE (expr
) == PARALLEL
|| GET_CODE (expr
) == SEQUENCE
)
1620 int limit
= XVECLEN (expr
, 0);
1623 /* PARALLELs have strict read-modify-write semantics, so we
1624 ought to evaluate every rvalue before changing any lvalue.
1625 It's cumbersome to do that in general, but there's an
1626 easy approximation that is enough for all current users:
1627 handle register saves before register assignments. */
1628 if (GET_CODE (expr
) == PARALLEL
)
1629 for (par_index
= 0; par_index
< limit
; par_index
++)
1631 elem
= XVECEXP (expr
, 0, par_index
);
1632 if (GET_CODE (elem
) == SET
1633 && MEM_P (SET_DEST (elem
))
1634 && (RTX_FRAME_RELATED_P (elem
) || par_index
== 0))
1635 dwarf2out_frame_debug_expr (elem
);
1638 for (par_index
= 0; par_index
< limit
; par_index
++)
1640 elem
= XVECEXP (expr
, 0, par_index
);
1641 if (GET_CODE (elem
) == SET
1642 && (!MEM_P (SET_DEST (elem
)) || GET_CODE (expr
) == SEQUENCE
)
1643 && (RTX_FRAME_RELATED_P (elem
) || par_index
== 0))
1644 dwarf2out_frame_debug_expr (elem
);
1649 gcc_assert (GET_CODE (expr
) == SET
);
1651 src
= SET_SRC (expr
);
1652 dest
= SET_DEST (expr
);
1656 rtx rsi
= reg_saved_in (src
);
1663 switch (GET_CODE (dest
))
1666 switch (GET_CODE (src
))
1668 /* Setting FP from SP. */
1670 if (cur_cfa
->reg
== dwf_regno (src
))
1673 /* Update the CFA rule wrt SP or FP. Make sure src is
1674 relative to the current CFA register.
1676 We used to require that dest be either SP or FP, but the
1677 ARM copies SP to a temporary register, and from there to
1678 FP. So we just rely on the backends to only set
1679 RTX_FRAME_RELATED_P on appropriate insns. */
1680 cur_cfa
->reg
= dwf_regno (dest
);
1681 cur_trace
->cfa_temp
.reg
= cur_cfa
->reg
;
1682 cur_trace
->cfa_temp
.offset
= cur_cfa
->offset
;
1686 /* Saving a register in a register. */
1687 gcc_assert (!fixed_regs
[REGNO (dest
)]
1688 /* For the SPARC and its register window. */
1689 || (dwf_regno (src
) == DWARF_FRAME_RETURN_COLUMN
));
1691 /* After stack is aligned, we can only save SP in FP
1692 if drap register is used. In this case, we have
1693 to restore stack pointer with the CFA value and we
1694 don't generate this DWARF information. */
1696 && fde
->stack_realign
1697 && REGNO (src
) == STACK_POINTER_REGNUM
)
1698 gcc_assert (REGNO (dest
) == HARD_FRAME_POINTER_REGNUM
1699 && fde
->drap_reg
!= INVALID_REGNUM
1700 && cur_cfa
->reg
!= dwf_regno (src
));
1702 queue_reg_save (src
, dest
, 0);
1709 if (dest
== stack_pointer_rtx
)
1713 if (REG_P (XEXP (src
, 1)))
1715 gcc_assert (dwf_regno (XEXP (src
, 1))
1716 == cur_trace
->cfa_temp
.reg
);
1717 offset
= cur_trace
->cfa_temp
.offset
;
1719 else if (!poly_int_rtx_p (XEXP (src
, 1), &offset
))
1722 if (XEXP (src
, 0) == hard_frame_pointer_rtx
)
1724 /* Restoring SP from FP in the epilogue. */
1725 gcc_assert (cur_cfa
->reg
== dw_frame_pointer_regnum
);
1726 cur_cfa
->reg
= dw_stack_pointer_regnum
;
1728 else if (GET_CODE (src
) == LO_SUM
)
1729 /* Assume we've set the source reg of the LO_SUM from sp. */
1732 gcc_assert (XEXP (src
, 0) == stack_pointer_rtx
);
1734 if (GET_CODE (src
) != MINUS
)
1736 if (cur_cfa
->reg
== dw_stack_pointer_regnum
)
1737 cur_cfa
->offset
+= offset
;
1738 if (cur_trace
->cfa_store
.reg
== dw_stack_pointer_regnum
)
1739 cur_trace
->cfa_store
.offset
+= offset
;
1741 else if (dest
== hard_frame_pointer_rtx
)
1744 /* Either setting the FP from an offset of the SP,
1745 or adjusting the FP */
1746 gcc_assert (frame_pointer_needed
);
1748 gcc_assert (REG_P (XEXP (src
, 0))
1749 && dwf_regno (XEXP (src
, 0)) == cur_cfa
->reg
);
1750 offset
= rtx_to_poly_int64 (XEXP (src
, 1));
1751 if (GET_CODE (src
) != MINUS
)
1753 cur_cfa
->offset
+= offset
;
1754 cur_cfa
->reg
= dw_frame_pointer_regnum
;
1758 gcc_assert (GET_CODE (src
) != MINUS
);
1761 if (REG_P (XEXP (src
, 0))
1762 && dwf_regno (XEXP (src
, 0)) == cur_cfa
->reg
1763 && poly_int_rtx_p (XEXP (src
, 1), &offset
))
1765 /* Setting a temporary CFA register that will be copied
1766 into the FP later on. */
1768 cur_cfa
->offset
+= offset
;
1769 cur_cfa
->reg
= dwf_regno (dest
);
1770 /* Or used to save regs to the stack. */
1771 cur_trace
->cfa_temp
.reg
= cur_cfa
->reg
;
1772 cur_trace
->cfa_temp
.offset
= cur_cfa
->offset
;
1776 else if (REG_P (XEXP (src
, 0))
1777 && dwf_regno (XEXP (src
, 0)) == cur_trace
->cfa_temp
.reg
1778 && XEXP (src
, 1) == stack_pointer_rtx
)
1780 /* Setting a scratch register that we will use instead
1781 of SP for saving registers to the stack. */
1782 gcc_assert (cur_cfa
->reg
== dw_stack_pointer_regnum
);
1783 cur_trace
->cfa_store
.reg
= dwf_regno (dest
);
1784 cur_trace
->cfa_store
.offset
1785 = cur_cfa
->offset
- cur_trace
->cfa_temp
.offset
;
1789 else if (GET_CODE (src
) == LO_SUM
1790 && poly_int_rtx_p (XEXP (src
, 1),
1791 &cur_trace
->cfa_temp
.offset
))
1792 cur_trace
->cfa_temp
.reg
= dwf_regno (dest
);
1800 case CONST_POLY_INT
:
1801 cur_trace
->cfa_temp
.reg
= dwf_regno (dest
);
1802 cur_trace
->cfa_temp
.offset
= rtx_to_poly_int64 (src
);
1807 gcc_assert (REG_P (XEXP (src
, 0))
1808 && dwf_regno (XEXP (src
, 0)) == cur_trace
->cfa_temp
.reg
1809 && CONST_INT_P (XEXP (src
, 1)));
1811 cur_trace
->cfa_temp
.reg
= dwf_regno (dest
);
1812 if (!can_ior_p (cur_trace
->cfa_temp
.offset
, INTVAL (XEXP (src
, 1)),
1813 &cur_trace
->cfa_temp
.offset
))
1814 /* The target shouldn't generate this kind of CFI note if we
1815 can't represent it. */
1819 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1820 which will fill in all of the bits. */
1827 case UNSPEC_VOLATILE
:
1828 /* All unspecs should be represented by REG_CFA_* notes. */
1834 /* If this AND operation happens on stack pointer in prologue,
1835 we assume the stack is realigned and we extract the
1837 if (fde
&& XEXP (src
, 0) == stack_pointer_rtx
)
1839 /* We interpret reg_save differently with stack_realign set.
1840 Thus we must flush whatever we have queued first. */
1841 dwarf2out_flush_queued_reg_saves ();
1843 gcc_assert (cur_trace
->cfa_store
.reg
1844 == dwf_regno (XEXP (src
, 0)));
1845 fde
->stack_realign
= 1;
1846 fde
->stack_realignment
= INTVAL (XEXP (src
, 1));
1847 cur_trace
->cfa_store
.offset
= 0;
1849 if (cur_cfa
->reg
!= dw_stack_pointer_regnum
1850 && cur_cfa
->reg
!= dw_frame_pointer_regnum
)
1851 fde
->drap_reg
= cur_cfa
->reg
;
1862 /* Saving a register to the stack. Make sure dest is relative to the
1864 switch (GET_CODE (XEXP (dest
, 0)))
1870 /* We can't handle variable size modifications. */
1871 offset
= -rtx_to_poly_int64 (XEXP (XEXP (XEXP (dest
, 0), 1), 1));
1873 gcc_assert (REGNO (XEXP (XEXP (dest
, 0), 0)) == STACK_POINTER_REGNUM
1874 && cur_trace
->cfa_store
.reg
== dw_stack_pointer_regnum
);
1876 cur_trace
->cfa_store
.offset
+= offset
;
1877 if (cur_cfa
->reg
== dw_stack_pointer_regnum
)
1878 cur_cfa
->offset
= cur_trace
->cfa_store
.offset
;
1880 if (GET_CODE (XEXP (dest
, 0)) == POST_MODIFY
)
1881 offset
-= cur_trace
->cfa_store
.offset
;
1883 offset
= -cur_trace
->cfa_store
.offset
;
1890 offset
= GET_MODE_SIZE (GET_MODE (dest
));
1891 if (GET_CODE (XEXP (dest
, 0)) == PRE_INC
)
1894 gcc_assert ((REGNO (XEXP (XEXP (dest
, 0), 0))
1895 == STACK_POINTER_REGNUM
)
1896 && cur_trace
->cfa_store
.reg
== dw_stack_pointer_regnum
);
1898 cur_trace
->cfa_store
.offset
+= offset
;
1900 /* Rule 18: If stack is aligned, we will use FP as a
1901 reference to represent the address of the stored
1904 && fde
->stack_realign
1906 && REGNO (src
) == HARD_FRAME_POINTER_REGNUM
)
1908 gcc_assert (cur_cfa
->reg
!= dw_frame_pointer_regnum
);
1909 cur_trace
->cfa_store
.offset
= 0;
1912 if (cur_cfa
->reg
== dw_stack_pointer_regnum
)
1913 cur_cfa
->offset
= cur_trace
->cfa_store
.offset
;
1915 if (GET_CODE (XEXP (dest
, 0)) == POST_DEC
)
1916 offset
+= -cur_trace
->cfa_store
.offset
;
1918 offset
= -cur_trace
->cfa_store
.offset
;
1922 /* With an offset. */
1929 gcc_assert (REG_P (XEXP (XEXP (dest
, 0), 0)));
1930 offset
= rtx_to_poly_int64 (XEXP (XEXP (dest
, 0), 1));
1931 if (GET_CODE (XEXP (dest
, 0)) == MINUS
)
1934 regno
= dwf_regno (XEXP (XEXP (dest
, 0), 0));
1936 if (cur_cfa
->reg
== regno
)
1937 offset
-= cur_cfa
->offset
;
1938 else if (cur_trace
->cfa_store
.reg
== regno
)
1939 offset
-= cur_trace
->cfa_store
.offset
;
1942 gcc_assert (cur_trace
->cfa_temp
.reg
== regno
);
1943 offset
-= cur_trace
->cfa_temp
.offset
;
1949 /* Without an offset. */
1952 unsigned int regno
= dwf_regno (XEXP (dest
, 0));
1954 if (cur_cfa
->reg
== regno
)
1955 offset
= -cur_cfa
->offset
;
1956 else if (cur_trace
->cfa_store
.reg
== regno
)
1957 offset
= -cur_trace
->cfa_store
.offset
;
1960 gcc_assert (cur_trace
->cfa_temp
.reg
== regno
);
1961 offset
= -cur_trace
->cfa_temp
.offset
;
1968 gcc_assert (cur_trace
->cfa_temp
.reg
1969 == dwf_regno (XEXP (XEXP (dest
, 0), 0)));
1970 offset
= -cur_trace
->cfa_temp
.offset
;
1971 cur_trace
->cfa_temp
.offset
-= GET_MODE_SIZE (GET_MODE (dest
));
1979 /* If the source operand of this MEM operation is a memory,
1980 we only care how much stack grew. */
1985 && REGNO (src
) != STACK_POINTER_REGNUM
1986 && REGNO (src
) != HARD_FRAME_POINTER_REGNUM
1987 && dwf_regno (src
) == cur_cfa
->reg
)
1989 /* We're storing the current CFA reg into the stack. */
1991 if (known_eq (cur_cfa
->offset
, 0))
1994 /* If stack is aligned, putting CFA reg into stack means
1995 we can no longer use reg + offset to represent CFA.
1996 Here we use DW_CFA_def_cfa_expression instead. The
1997 result of this expression equals to the original CFA
2000 && fde
->stack_realign
2001 && cur_cfa
->indirect
== 0
2002 && cur_cfa
->reg
!= dw_frame_pointer_regnum
)
2004 gcc_assert (fde
->drap_reg
== cur_cfa
->reg
);
2006 cur_cfa
->indirect
= 1;
2007 cur_cfa
->reg
= dw_frame_pointer_regnum
;
2008 cur_cfa
->base_offset
= offset
;
2009 cur_cfa
->offset
= 0;
2011 fde
->drap_reg_saved
= 1;
2015 /* If the source register is exactly the CFA, assume
2016 we're saving SP like any other register; this happens
2018 queue_reg_save (stack_pointer_rtx
, NULL_RTX
, offset
);
2023 /* Otherwise, we'll need to look in the stack to
2024 calculate the CFA. */
2025 rtx x
= XEXP (dest
, 0);
2029 gcc_assert (REG_P (x
));
2031 cur_cfa
->reg
= dwf_regno (x
);
2032 cur_cfa
->base_offset
= offset
;
2033 cur_cfa
->indirect
= 1;
2039 span
= targetm
.dwarf_register_span (src
);
2044 queue_reg_save (src
, NULL_RTX
, offset
);
2047 /* We have a PARALLEL describing where the contents of SRC live.
2048 Queue register saves for each piece of the PARALLEL. */
2049 poly_int64 span_offset
= offset
;
2051 gcc_assert (GET_CODE (span
) == PARALLEL
);
2053 const int par_len
= XVECLEN (span
, 0);
2054 for (int par_index
= 0; par_index
< par_len
; par_index
++)
2056 rtx elem
= XVECEXP (span
, 0, par_index
);
2057 queue_reg_save (elem
, NULL_RTX
, span_offset
);
2058 span_offset
+= GET_MODE_SIZE (GET_MODE (elem
));
2068 /* Record call frame debugging information for INSN, which either sets
2069 SP or FP (adjusting how we calculate the frame address) or saves a
2070 register to the stack. */
2073 dwarf2out_frame_debug (rtx_insn
*insn
)
2076 bool handled_one
= false;
2078 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
2079 switch (REG_NOTE_KIND (note
))
2081 case REG_FRAME_RELATED_EXPR
:
2082 pat
= XEXP (note
, 0);
2085 case REG_CFA_DEF_CFA
:
2086 dwarf2out_frame_debug_def_cfa (XEXP (note
, 0));
2090 case REG_CFA_ADJUST_CFA
:
2095 if (GET_CODE (n
) == PARALLEL
)
2096 n
= XVECEXP (n
, 0, 0);
2098 dwarf2out_frame_debug_adjust_cfa (n
);
2102 case REG_CFA_OFFSET
:
2105 n
= single_set (insn
);
2106 dwarf2out_frame_debug_cfa_offset (n
);
2110 case REG_CFA_REGISTER
:
2115 if (GET_CODE (n
) == PARALLEL
)
2116 n
= XVECEXP (n
, 0, 0);
2118 dwarf2out_frame_debug_cfa_register (n
);
2122 case REG_CFA_EXPRESSION
:
2123 case REG_CFA_VAL_EXPRESSION
:
2126 n
= single_set (insn
);
2128 if (REG_NOTE_KIND (note
) == REG_CFA_EXPRESSION
)
2129 dwarf2out_frame_debug_cfa_expression (n
);
2131 dwarf2out_frame_debug_cfa_val_expression (n
);
2136 case REG_CFA_RESTORE
:
2141 if (GET_CODE (n
) == PARALLEL
)
2142 n
= XVECEXP (n
, 0, 0);
2145 dwarf2out_frame_debug_cfa_restore (n
);
2149 case REG_CFA_SET_VDRAP
:
2153 dw_fde_ref fde
= cfun
->fde
;
2156 gcc_assert (fde
->vdrap_reg
== INVALID_REGNUM
);
2158 fde
->vdrap_reg
= dwf_regno (n
);
2164 case REG_CFA_TOGGLE_RA_MANGLE
:
2165 dwarf2out_frame_debug_cfa_toggle_ra_mangle ();
2169 case REG_CFA_WINDOW_SAVE
:
2170 dwarf2out_frame_debug_cfa_window_save ();
2174 case REG_CFA_FLUSH_QUEUE
:
2175 /* The actual flush happens elsewhere. */
2185 pat
= PATTERN (insn
);
2187 dwarf2out_frame_debug_expr (pat
);
2189 /* Check again. A parallel can save and update the same register.
2190 We could probably check just once, here, but this is safer than
2191 removing the check at the start of the function. */
2192 if (clobbers_queued_reg_save (pat
))
2193 dwarf2out_flush_queued_reg_saves ();
2197 /* Emit CFI info to change the state from OLD_ROW to NEW_ROW. */
2200 change_cfi_row (dw_cfi_row
*old_row
, dw_cfi_row
*new_row
)
2202 size_t i
, n_old
, n_new
, n_max
;
2205 if (new_row
->cfa_cfi
&& !cfi_equal_p (old_row
->cfa_cfi
, new_row
->cfa_cfi
))
2206 add_cfi (new_row
->cfa_cfi
);
2209 cfi
= def_cfa_0 (&old_row
->cfa
, &new_row
->cfa
);
2214 n_old
= vec_safe_length (old_row
->reg_save
);
2215 n_new
= vec_safe_length (new_row
->reg_save
);
2216 n_max
= MAX (n_old
, n_new
);
2218 for (i
= 0; i
< n_max
; ++i
)
2220 dw_cfi_ref r_old
= NULL
, r_new
= NULL
;
2223 r_old
= (*old_row
->reg_save
)[i
];
2225 r_new
= (*new_row
->reg_save
)[i
];
2229 else if (r_new
== NULL
)
2230 add_cfi_restore (i
);
2231 else if (!cfi_equal_p (r_old
, r_new
))
2235 if (!old_row
->window_save
&& new_row
->window_save
)
2237 dw_cfi_ref cfi
= new_cfi ();
2239 gcc_assert (!old_row
->ra_mangled
&& !new_row
->ra_mangled
);
2240 cfi
->dw_cfi_opc
= DW_CFA_GNU_window_save
;
2244 if (old_row
->ra_mangled
!= new_row
->ra_mangled
)
2246 dw_cfi_ref cfi
= new_cfi ();
2248 gcc_assert (!old_row
->window_save
&& !new_row
->window_save
);
2249 /* DW_CFA_GNU_window_save is reused for toggling RA mangle state. */
2250 cfi
->dw_cfi_opc
= DW_CFA_GNU_window_save
;
2255 /* Examine CFI and return true if a cfi label and set_loc is needed
2256 beforehand. Even when generating CFI assembler instructions, we
2257 still have to add the cfi to the list so that lookup_cfa_1 works
2258 later on. When -g2 and above we even need to force emitting of
2259 CFI labels and add to list a DW_CFA_set_loc for convert_cfa_to_fb_loc_list
2260 purposes. If we're generating DWARF3 output we use DW_OP_call_frame_cfa
2261 and so don't use convert_cfa_to_fb_loc_list. */
2264 cfi_label_required_p (dw_cfi_ref cfi
)
2266 if (!dwarf2out_do_cfi_asm ())
2269 if (dwarf_version
== 2
2270 && debug_info_level
> DINFO_LEVEL_TERSE
2271 && (write_symbols
== DWARF2_DEBUG
2272 || write_symbols
== VMS_AND_DWARF2_DEBUG
))
2274 switch (cfi
->dw_cfi_opc
)
2276 case DW_CFA_def_cfa_offset
:
2277 case DW_CFA_def_cfa_offset_sf
:
2278 case DW_CFA_def_cfa_register
:
2279 case DW_CFA_def_cfa
:
2280 case DW_CFA_def_cfa_sf
:
2281 case DW_CFA_def_cfa_expression
:
2282 case DW_CFA_restore_state
:
2291 /* Walk the function, looking for NOTE_INSN_CFI notes. Add the CFIs to the
2292 function's FDE, adding CFI labels and set_loc/advance_loc opcodes as
2295 add_cfis_to_fde (void)
2297 dw_fde_ref fde
= cfun
->fde
;
2298 rtx_insn
*insn
, *next
;
2300 for (insn
= get_insns (); insn
; insn
= next
)
2302 next
= NEXT_INSN (insn
);
2304 if (NOTE_P (insn
) && NOTE_KIND (insn
) == NOTE_INSN_SWITCH_TEXT_SECTIONS
)
2305 fde
->dw_fde_switch_cfi_index
= vec_safe_length (fde
->dw_fde_cfi
);
2307 if (NOTE_P (insn
) && NOTE_KIND (insn
) == NOTE_INSN_CFI
)
2309 bool required
= cfi_label_required_p (NOTE_CFI (insn
));
2311 if (NOTE_P (next
) && NOTE_KIND (next
) == NOTE_INSN_CFI
)
2313 required
|= cfi_label_required_p (NOTE_CFI (next
));
2314 next
= NEXT_INSN (next
);
2316 else if (active_insn_p (next
)
2317 || (NOTE_P (next
) && (NOTE_KIND (next
)
2318 == NOTE_INSN_SWITCH_TEXT_SECTIONS
)))
2321 next
= NEXT_INSN (next
);
2324 int num
= dwarf2out_cfi_label_num
;
2325 const char *label
= dwarf2out_cfi_label ();
2328 /* Set the location counter to the new label. */
2330 xcfi
->dw_cfi_opc
= DW_CFA_advance_loc4
;
2331 xcfi
->dw_cfi_oprnd1
.dw_cfi_addr
= label
;
2332 vec_safe_push (fde
->dw_fde_cfi
, xcfi
);
2334 rtx_note
*tmp
= emit_note_before (NOTE_INSN_CFI_LABEL
, insn
);
2335 NOTE_LABEL_NUMBER (tmp
) = num
;
2340 if (NOTE_P (insn
) && NOTE_KIND (insn
) == NOTE_INSN_CFI
)
2341 vec_safe_push (fde
->dw_fde_cfi
, NOTE_CFI (insn
));
2342 insn
= NEXT_INSN (insn
);
2344 while (insn
!= next
);
2349 static void dump_cfi_row (FILE *f
, dw_cfi_row
*row
);
2351 /* If LABEL is the start of a trace, then initialize the state of that
2352 trace from CUR_TRACE and CUR_ROW. */
2355 maybe_record_trace_start (rtx_insn
*start
, rtx_insn
*origin
)
2359 ti
= get_trace_info (start
);
2360 gcc_assert (ti
!= NULL
);
2364 fprintf (dump_file
, " saw edge from trace %u to %u (via %s %d)\n",
2365 cur_trace
->id
, ti
->id
,
2366 (origin
? rtx_name
[(int) GET_CODE (origin
)] : "fallthru"),
2367 (origin
? INSN_UID (origin
) : 0));
2370 poly_int64 args_size
= cur_trace
->end_true_args_size
;
2371 if (ti
->beg_row
== NULL
)
2373 /* This is the first time we've encountered this trace. Propagate
2374 state across the edge and push the trace onto the work list. */
2375 ti
->beg_row
= copy_cfi_row (cur_row
);
2376 ti
->beg_true_args_size
= args_size
;
2378 ti
->cfa_store
= cur_trace
->cfa_store
;
2379 ti
->cfa_temp
= cur_trace
->cfa_temp
;
2380 ti
->regs_saved_in_regs
= cur_trace
->regs_saved_in_regs
.copy ();
2382 trace_work_list
.safe_push (ti
);
2385 fprintf (dump_file
, "\tpush trace %u to worklist\n", ti
->id
);
2390 /* We ought to have the same state incoming to a given trace no
2391 matter how we arrive at the trace. Anything else means we've
2392 got some kind of optimization error. */
2394 if (!cfi_row_equal_p (cur_row
, ti
->beg_row
))
2398 fprintf (dump_file
, "Inconsistent CFI state!\n");
2399 fprintf (dump_file
, "SHOULD have:\n");
2400 dump_cfi_row (dump_file
, ti
->beg_row
);
2401 fprintf (dump_file
, "DO have:\n");
2402 dump_cfi_row (dump_file
, cur_row
);
2409 /* The args_size is allowed to conflict if it isn't actually used. */
2410 if (maybe_ne (ti
->beg_true_args_size
, args_size
))
2411 ti
->args_size_undefined
= true;
2415 /* Similarly, but handle the args_size and CFA reset across EH
2416 and non-local goto edges. */
2419 maybe_record_trace_start_abnormal (rtx_insn
*start
, rtx_insn
*origin
)
2421 poly_int64 save_args_size
, delta
;
2422 dw_cfa_location save_cfa
;
2424 save_args_size
= cur_trace
->end_true_args_size
;
2425 if (known_eq (save_args_size
, 0))
2427 maybe_record_trace_start (start
, origin
);
2431 delta
= -save_args_size
;
2432 cur_trace
->end_true_args_size
= 0;
2434 save_cfa
= cur_row
->cfa
;
2435 if (cur_row
->cfa
.reg
== dw_stack_pointer_regnum
)
2437 /* Convert a change in args_size (always a positive in the
2438 direction of stack growth) to a change in stack pointer. */
2439 if (!STACK_GROWS_DOWNWARD
)
2442 cur_row
->cfa
.offset
+= delta
;
2445 maybe_record_trace_start (start
, origin
);
2447 cur_trace
->end_true_args_size
= save_args_size
;
2448 cur_row
->cfa
= save_cfa
;
2451 /* Propagate CUR_TRACE state to the destinations implied by INSN. */
2452 /* ??? Sadly, this is in large part a duplicate of make_edges. */
2455 create_trace_edges (rtx_insn
*insn
)
2462 rtx_jump_table_data
*table
;
2464 if (find_reg_note (insn
, REG_NON_LOCAL_GOTO
, NULL_RTX
))
2467 if (tablejump_p (insn
, NULL
, &table
))
2469 rtvec vec
= table
->get_labels ();
2471 n
= GET_NUM_ELEM (vec
);
2472 for (i
= 0; i
< n
; ++i
)
2474 rtx_insn
*lab
= as_a
<rtx_insn
*> (XEXP (RTVEC_ELT (vec
, i
), 0));
2475 maybe_record_trace_start (lab
, insn
);
2478 /* Handle casesi dispatch insns. */
2479 if ((tmp
= tablejump_casesi_pattern (insn
)) != NULL_RTX
)
2481 rtx_insn
* lab
= label_ref_label (XEXP (SET_SRC (tmp
), 2));
2482 maybe_record_trace_start (lab
, insn
);
2485 else if (computed_jump_p (insn
))
2489 FOR_EACH_VEC_SAFE_ELT (forced_labels
, i
, temp
)
2490 maybe_record_trace_start (temp
, insn
);
2492 else if (returnjump_p (insn
))
2494 else if ((tmp
= extract_asm_operands (PATTERN (insn
))) != NULL
)
2496 n
= ASM_OPERANDS_LABEL_LENGTH (tmp
);
2497 for (i
= 0; i
< n
; ++i
)
2500 as_a
<rtx_insn
*> (XEXP (ASM_OPERANDS_LABEL (tmp
, i
), 0));
2501 maybe_record_trace_start (lab
, insn
);
2506 rtx_insn
*lab
= JUMP_LABEL_AS_INSN (insn
);
2507 gcc_assert (lab
!= NULL
);
2508 maybe_record_trace_start (lab
, insn
);
2511 else if (CALL_P (insn
))
2513 /* Sibling calls don't have edges inside this function. */
2514 if (SIBLING_CALL_P (insn
))
2517 /* Process non-local goto edges. */
2518 if (can_nonlocal_goto (insn
))
2519 for (rtx_insn_list
*lab
= nonlocal_goto_handler_labels
;
2522 maybe_record_trace_start_abnormal (lab
->insn (), insn
);
2524 else if (rtx_sequence
*seq
= dyn_cast
<rtx_sequence
*> (PATTERN (insn
)))
2526 int i
, n
= seq
->len ();
2527 for (i
= 0; i
< n
; ++i
)
2528 create_trace_edges (seq
->insn (i
));
2532 /* Process EH edges. */
2533 if (CALL_P (insn
) || cfun
->can_throw_non_call_exceptions
)
2535 eh_landing_pad lp
= get_eh_landing_pad_from_rtx (insn
);
2537 maybe_record_trace_start_abnormal (lp
->landing_pad
, insn
);
2541 /* A subroutine of scan_trace. Do what needs to be done "after" INSN. */
2544 scan_insn_after (rtx_insn
*insn
)
2546 if (RTX_FRAME_RELATED_P (insn
))
2547 dwarf2out_frame_debug (insn
);
2548 notice_args_size (insn
);
2551 /* Scan the trace beginning at INSN and create the CFI notes for the
2552 instructions therein. */
2555 scan_trace (dw_trace_info
*trace
, bool entry
)
2557 rtx_insn
*prev
, *insn
= trace
->head
;
2558 dw_cfa_location this_cfa
;
2561 fprintf (dump_file
, "Processing trace %u : start at %s %d\n",
2562 trace
->id
, rtx_name
[(int) GET_CODE (insn
)],
2565 trace
->end_row
= copy_cfi_row (trace
->beg_row
);
2566 trace
->end_true_args_size
= trace
->beg_true_args_size
;
2569 cur_row
= trace
->end_row
;
2571 this_cfa
= cur_row
->cfa
;
2572 cur_cfa
= &this_cfa
;
2574 /* If the current function starts with a non-standard incoming frame
2575 sp offset, emit a note before the first instruction. */
2577 && DEFAULT_INCOMING_FRAME_SP_OFFSET
!= INCOMING_FRAME_SP_OFFSET
)
2579 add_cfi_insn
= insn
;
2580 gcc_assert (NOTE_P (insn
) && NOTE_KIND (insn
) == NOTE_INSN_DELETED
);
2581 this_cfa
.offset
= INCOMING_FRAME_SP_OFFSET
;
2582 def_cfa_1 (&this_cfa
);
2585 for (prev
= insn
, insn
= NEXT_INSN (insn
);
2587 prev
= insn
, insn
= NEXT_INSN (insn
))
2591 /* Do everything that happens "before" the insn. */
2592 add_cfi_insn
= prev
;
2594 /* Notice the end of a trace. */
2595 if (BARRIER_P (insn
))
2597 /* Don't bother saving the unneeded queued registers at all. */
2598 queued_reg_saves
.truncate (0);
2601 if (save_point_p (insn
))
2603 /* Propagate across fallthru edges. */
2604 dwarf2out_flush_queued_reg_saves ();
2605 maybe_record_trace_start (insn
, NULL
);
2609 if (DEBUG_INSN_P (insn
) || !inside_basic_block_p (insn
))
2612 /* Handle all changes to the row state. Sequences require special
2613 handling for the positioning of the notes. */
2614 if (rtx_sequence
*pat
= dyn_cast
<rtx_sequence
*> (PATTERN (insn
)))
2617 int i
, n
= pat
->len ();
2619 control
= pat
->insn (0);
2620 if (can_throw_internal (control
))
2621 notice_eh_throw (control
);
2622 dwarf2out_flush_queued_reg_saves ();
2624 if (JUMP_P (control
) && INSN_ANNULLED_BRANCH_P (control
))
2626 /* ??? Hopefully multiple delay slots are not annulled. */
2627 gcc_assert (n
== 2);
2628 gcc_assert (!RTX_FRAME_RELATED_P (control
));
2629 gcc_assert (!find_reg_note (control
, REG_ARGS_SIZE
, NULL
));
2631 elt
= pat
->insn (1);
2633 if (INSN_FROM_TARGET_P (elt
))
2635 cfi_vec save_row_reg_save
;
2637 /* If ELT is an instruction from target of an annulled
2638 branch, the effects are for the target only and so
2639 the args_size and CFA along the current path
2640 shouldn't change. */
2641 add_cfi_insn
= NULL
;
2642 poly_int64 restore_args_size
= cur_trace
->end_true_args_size
;
2643 cur_cfa
= &cur_row
->cfa
;
2644 save_row_reg_save
= vec_safe_copy (cur_row
->reg_save
);
2646 scan_insn_after (elt
);
2648 /* ??? Should we instead save the entire row state? */
2649 gcc_assert (!queued_reg_saves
.length ());
2651 create_trace_edges (control
);
2653 cur_trace
->end_true_args_size
= restore_args_size
;
2654 cur_row
->cfa
= this_cfa
;
2655 cur_row
->reg_save
= save_row_reg_save
;
2656 cur_cfa
= &this_cfa
;
2660 /* If ELT is a annulled branch-taken instruction (i.e.
2661 executed only when branch is not taken), the args_size
2662 and CFA should not change through the jump. */
2663 create_trace_edges (control
);
2665 /* Update and continue with the trace. */
2666 add_cfi_insn
= insn
;
2667 scan_insn_after (elt
);
2668 def_cfa_1 (&this_cfa
);
2673 /* The insns in the delay slot should all be considered to happen
2674 "before" a call insn. Consider a call with a stack pointer
2675 adjustment in the delay slot. The backtrace from the callee
2676 should include the sp adjustment. Unfortunately, that leaves
2677 us with an unavoidable unwinding error exactly at the call insn
2678 itself. For jump insns we'd prefer to avoid this error by
2679 placing the notes after the sequence. */
2680 if (JUMP_P (control
))
2681 add_cfi_insn
= insn
;
2683 for (i
= 1; i
< n
; ++i
)
2685 elt
= pat
->insn (i
);
2686 scan_insn_after (elt
);
2689 /* Make sure any register saves are visible at the jump target. */
2690 dwarf2out_flush_queued_reg_saves ();
2691 any_cfis_emitted
= false;
2693 /* However, if there is some adjustment on the call itself, e.g.
2694 a call_pop, that action should be considered to happen after
2695 the call returns. */
2696 add_cfi_insn
= insn
;
2697 scan_insn_after (control
);
2701 /* Flush data before calls and jumps, and of course if necessary. */
2702 if (can_throw_internal (insn
))
2704 notice_eh_throw (insn
);
2705 dwarf2out_flush_queued_reg_saves ();
2707 else if (!NONJUMP_INSN_P (insn
)
2708 || clobbers_queued_reg_save (insn
)
2709 || find_reg_note (insn
, REG_CFA_FLUSH_QUEUE
, NULL
))
2710 dwarf2out_flush_queued_reg_saves ();
2711 any_cfis_emitted
= false;
2713 add_cfi_insn
= insn
;
2714 scan_insn_after (insn
);
2718 /* Between frame-related-p and args_size we might have otherwise
2719 emitted two cfa adjustments. Do it now. */
2720 def_cfa_1 (&this_cfa
);
2722 /* Minimize the number of advances by emitting the entire queue
2723 once anything is emitted. */
2724 if (any_cfis_emitted
2725 || find_reg_note (insn
, REG_CFA_FLUSH_QUEUE
, NULL
))
2726 dwarf2out_flush_queued_reg_saves ();
2728 /* Note that a test for control_flow_insn_p does exactly the
2729 same tests as are done to actually create the edges. So
2730 always call the routine and let it not create edges for
2731 non-control-flow insns. */
2732 create_trace_edges (control
);
2735 add_cfi_insn
= NULL
;
2741 /* Scan the function and create the initial set of CFI notes. */
2744 create_cfi_notes (void)
2748 gcc_checking_assert (!queued_reg_saves
.exists ());
2749 gcc_checking_assert (!trace_work_list
.exists ());
2751 /* Always begin at the entry trace. */
2752 ti
= &trace_info
[0];
2753 scan_trace (ti
, true);
2755 while (!trace_work_list
.is_empty ())
2757 ti
= trace_work_list
.pop ();
2758 scan_trace (ti
, false);
2761 queued_reg_saves
.release ();
2762 trace_work_list
.release ();
2765 /* Return the insn before the first NOTE_INSN_CFI after START. */
2768 before_next_cfi_note (rtx_insn
*start
)
2770 rtx_insn
*prev
= start
;
2773 if (NOTE_P (start
) && NOTE_KIND (start
) == NOTE_INSN_CFI
)
2776 start
= NEXT_INSN (start
);
2781 /* Insert CFI notes between traces to properly change state between them. */
2784 connect_traces (void)
2787 dw_trace_info
*prev_ti
, *ti
;
2789 /* ??? Ideally, we should have both queued and processed every trace.
2790 However the current representation of constant pools on various targets
2791 is indistinguishable from unreachable code. Assume for the moment that
2792 we can simply skip over such traces. */
2793 /* ??? Consider creating a DATA_INSN rtx code to indicate that
2794 these are not "real" instructions, and should not be considered.
2795 This could be generically useful for tablejump data as well. */
2796 /* Remove all unprocessed traces from the list. */
2798 VEC_ORDERED_REMOVE_IF_FROM_TO (trace_info
, ix
, ix2
, ti
, 1,
2799 trace_info
.length (), ti
->beg_row
== NULL
);
2800 FOR_EACH_VEC_ELT (trace_info
, ix
, ti
)
2801 gcc_assert (ti
->end_row
!= NULL
);
2803 /* Work from the end back to the beginning. This lets us easily insert
2804 remember/restore_state notes in the correct order wrt other notes. */
2805 n
= trace_info
.length ();
2806 prev_ti
= &trace_info
[n
- 1];
2807 for (i
= n
- 1; i
> 0; --i
)
2809 dw_cfi_row
*old_row
;
2812 prev_ti
= &trace_info
[i
- 1];
2814 add_cfi_insn
= ti
->head
;
2816 /* In dwarf2out_switch_text_section, we'll begin a new FDE
2817 for the portion of the function in the alternate text
2818 section. The row state at the very beginning of that
2819 new FDE will be exactly the row state from the CIE. */
2820 if (ti
->switch_sections
)
2821 old_row
= cie_cfi_row
;
2824 old_row
= prev_ti
->end_row
;
2825 /* If there's no change from the previous end state, fine. */
2826 if (cfi_row_equal_p (old_row
, ti
->beg_row
))
2828 /* Otherwise check for the common case of sharing state with
2829 the beginning of an epilogue, but not the end. Insert
2830 remember/restore opcodes in that case. */
2831 else if (cfi_row_equal_p (prev_ti
->beg_row
, ti
->beg_row
))
2835 /* Note that if we blindly insert the remember at the
2836 start of the trace, we can wind up increasing the
2837 size of the unwind info due to extra advance opcodes.
2838 Instead, put the remember immediately before the next
2839 state change. We know there must be one, because the
2840 state at the beginning and head of the trace differ. */
2841 add_cfi_insn
= before_next_cfi_note (prev_ti
->head
);
2843 cfi
->dw_cfi_opc
= DW_CFA_remember_state
;
2846 add_cfi_insn
= ti
->head
;
2848 cfi
->dw_cfi_opc
= DW_CFA_restore_state
;
2851 /* If the target unwinder does not save the CFA as part of the
2852 register state, we need to restore it separately. */
2853 if (targetm
.asm_out
.should_restore_cfa_state ()
2854 && (cfi
= def_cfa_0 (&old_row
->cfa
, &ti
->beg_row
->cfa
)))
2857 old_row
= prev_ti
->beg_row
;
2859 /* Otherwise, we'll simply change state from the previous end. */
2862 change_cfi_row (old_row
, ti
->beg_row
);
2864 if (dump_file
&& add_cfi_insn
!= ti
->head
)
2868 fprintf (dump_file
, "Fixup between trace %u and %u:\n",
2869 prev_ti
->id
, ti
->id
);
2874 note
= NEXT_INSN (note
);
2875 gcc_assert (NOTE_P (note
) && NOTE_KIND (note
) == NOTE_INSN_CFI
);
2876 output_cfi_directive (dump_file
, NOTE_CFI (note
));
2878 while (note
!= add_cfi_insn
);
2882 /* Connect args_size between traces that have can_throw_internal insns. */
2883 if (cfun
->eh
->lp_array
)
2885 poly_int64 prev_args_size
= 0;
2887 for (i
= 0; i
< n
; ++i
)
2889 ti
= &trace_info
[i
];
2891 if (ti
->switch_sections
)
2894 if (ti
->eh_head
== NULL
)
2897 /* We require either the incoming args_size values to match or the
2898 presence of an insn setting it before the first EH insn. */
2899 gcc_assert (!ti
->args_size_undefined
|| ti
->args_size_defined_for_eh
);
2901 /* In the latter case, we force the creation of a CFI note. */
2902 if (ti
->args_size_undefined
2903 || maybe_ne (ti
->beg_delay_args_size
, prev_args_size
))
2905 /* ??? Search back to previous CFI note. */
2906 add_cfi_insn
= PREV_INSN (ti
->eh_head
);
2907 add_cfi_args_size (ti
->beg_delay_args_size
);
2910 prev_args_size
= ti
->end_delay_args_size
;
2915 /* Set up the pseudo-cfg of instruction traces, as described at the
2916 block comment at the top of the file. */
2919 create_pseudo_cfg (void)
2921 bool saw_barrier
, switch_sections
;
2926 /* The first trace begins at the start of the function,
2927 and begins with the CIE row state. */
2928 trace_info
.create (16);
2929 memset (&ti
, 0, sizeof (ti
));
2930 ti
.head
= get_insns ();
2931 ti
.beg_row
= cie_cfi_row
;
2932 ti
.cfa_store
= cie_cfi_row
->cfa
;
2933 ti
.cfa_temp
.reg
= INVALID_REGNUM
;
2934 trace_info
.quick_push (ti
);
2936 if (cie_return_save
)
2937 ti
.regs_saved_in_regs
.safe_push (*cie_return_save
);
2939 /* Walk all the insns, collecting start of trace locations. */
2940 saw_barrier
= false;
2941 switch_sections
= false;
2942 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
2944 if (BARRIER_P (insn
))
2946 else if (NOTE_P (insn
)
2947 && NOTE_KIND (insn
) == NOTE_INSN_SWITCH_TEXT_SECTIONS
)
2949 /* We should have just seen a barrier. */
2950 gcc_assert (saw_barrier
);
2951 switch_sections
= true;
2953 /* Watch out for save_point notes between basic blocks.
2954 In particular, a note after a barrier. Do not record these,
2955 delaying trace creation until the label. */
2956 else if (save_point_p (insn
)
2957 && (LABEL_P (insn
) || !saw_barrier
))
2959 memset (&ti
, 0, sizeof (ti
));
2961 ti
.switch_sections
= switch_sections
;
2962 ti
.id
= trace_info
.length ();
2963 trace_info
.safe_push (ti
);
2965 saw_barrier
= false;
2966 switch_sections
= false;
2970 /* Create the trace index after we've finished building trace_info,
2971 avoiding stale pointer problems due to reallocation. */
2973 = new hash_table
<trace_info_hasher
> (trace_info
.length ());
2975 FOR_EACH_VEC_ELT (trace_info
, i
, tp
)
2977 dw_trace_info
**slot
;
2980 fprintf (dump_file
, "Creating trace %u : start at %s %d%s\n", tp
->id
,
2981 rtx_name
[(int) GET_CODE (tp
->head
)], INSN_UID (tp
->head
),
2982 tp
->switch_sections
? " (section switch)" : "");
2984 slot
= trace_index
->find_slot_with_hash (tp
, INSN_UID (tp
->head
), INSERT
);
2985 gcc_assert (*slot
== NULL
);
2990 /* Record the initial position of the return address. RTL is
2991 INCOMING_RETURN_ADDR_RTX. */
2994 initial_return_save (rtx rtl
)
2996 unsigned int reg
= INVALID_REGNUM
;
2997 poly_int64 offset
= 0;
2999 switch (GET_CODE (rtl
))
3002 /* RA is in a register. */
3003 reg
= dwf_regno (rtl
);
3007 /* RA is on the stack. */
3008 rtl
= XEXP (rtl
, 0);
3009 switch (GET_CODE (rtl
))
3012 gcc_assert (REGNO (rtl
) == STACK_POINTER_REGNUM
);
3017 gcc_assert (REGNO (XEXP (rtl
, 0)) == STACK_POINTER_REGNUM
);
3018 offset
= rtx_to_poly_int64 (XEXP (rtl
, 1));
3022 gcc_assert (REGNO (XEXP (rtl
, 0)) == STACK_POINTER_REGNUM
);
3023 offset
= -rtx_to_poly_int64 (XEXP (rtl
, 1));
3033 /* The return address is at some offset from any value we can
3034 actually load. For instance, on the SPARC it is in %i7+8. Just
3035 ignore the offset for now; it doesn't matter for unwinding frames. */
3036 gcc_assert (CONST_INT_P (XEXP (rtl
, 1)));
3037 initial_return_save (XEXP (rtl
, 0));
3044 if (reg
!= DWARF_FRAME_RETURN_COLUMN
)
3046 if (reg
!= INVALID_REGNUM
)
3047 record_reg_saved_in_reg (rtl
, pc_rtx
);
3048 reg_save (DWARF_FRAME_RETURN_COLUMN
, reg
, offset
- cur_row
->cfa
.offset
);
3053 create_cie_data (void)
3055 dw_cfa_location loc
;
3056 dw_trace_info cie_trace
;
3058 dw_stack_pointer_regnum
= DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM
);
3060 memset (&cie_trace
, 0, sizeof (cie_trace
));
3061 cur_trace
= &cie_trace
;
3063 add_cfi_vec
= &cie_cfi_vec
;
3064 cie_cfi_row
= cur_row
= new_cfi_row ();
3066 /* On entry, the Canonical Frame Address is at SP. */
3067 memset (&loc
, 0, sizeof (loc
));
3068 loc
.reg
= dw_stack_pointer_regnum
;
3069 /* create_cie_data is called just once per TU, and when using .cfi_startproc
3070 is even done by the assembler rather than the compiler. If the target
3071 has different incoming frame sp offsets depending on what kind of
3072 function it is, use a single constant offset for the target and
3073 if needed, adjust before the first instruction in insn stream. */
3074 loc
.offset
= DEFAULT_INCOMING_FRAME_SP_OFFSET
;
3077 if (targetm
.debug_unwind_info () == UI_DWARF2
3078 || targetm_common
.except_unwind_info (&global_options
) == UI_DWARF2
)
3080 initial_return_save (INCOMING_RETURN_ADDR_RTX
);
3082 /* For a few targets, we have the return address incoming into a
3083 register, but choose a different return column. This will result
3084 in a DW_CFA_register for the return, and an entry in
3085 regs_saved_in_regs to match. If the target later stores that
3086 return address register to the stack, we want to be able to emit
3087 the DW_CFA_offset against the return column, not the intermediate
3088 save register. Save the contents of regs_saved_in_regs so that
3089 we can re-initialize it at the start of each function. */
3090 switch (cie_trace
.regs_saved_in_regs
.length ())
3095 cie_return_save
= ggc_alloc
<reg_saved_in_data
> ();
3096 *cie_return_save
= cie_trace
.regs_saved_in_regs
[0];
3097 cie_trace
.regs_saved_in_regs
.release ();
3109 /* Annotate the function with NOTE_INSN_CFI notes to record the CFI
3110 state at each location within the function. These notes will be
3111 emitted during pass_final. */
3114 execute_dwarf2_frame (void)
3116 /* Different HARD_FRAME_POINTER_REGNUM might coexist in the same file. */
3117 dw_frame_pointer_regnum
= DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM
);
3119 /* The first time we're called, compute the incoming frame state. */
3120 if (cie_cfi_vec
== NULL
)
3123 dwarf2out_alloc_current_fde ();
3125 create_pseudo_cfg ();
3128 create_cfi_notes ();
3132 /* Free all the data we allocated. */
3137 FOR_EACH_VEC_ELT (trace_info
, i
, ti
)
3138 ti
->regs_saved_in_regs
.release ();
3140 trace_info
.release ();
3148 /* Convert a DWARF call frame info. operation to its string name */
3151 dwarf_cfi_name (unsigned int cfi_opc
)
3153 const char *name
= get_DW_CFA_name (cfi_opc
);
3158 return "DW_CFA_<unknown>";
3161 /* This routine will generate the correct assembly data for a location
3162 description based on a cfi entry with a complex address. */
3165 output_cfa_loc (dw_cfi_ref cfi
, int for_eh
)
3167 dw_loc_descr_ref loc
;
3170 if (cfi
->dw_cfi_opc
== DW_CFA_expression
3171 || cfi
->dw_cfi_opc
== DW_CFA_val_expression
)
3174 DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
3175 dw2_asm_output_data (1, r
, NULL
);
3176 loc
= cfi
->dw_cfi_oprnd2
.dw_cfi_loc
;
3179 loc
= cfi
->dw_cfi_oprnd1
.dw_cfi_loc
;
3181 /* Output the size of the block. */
3182 size
= size_of_locs (loc
);
3183 dw2_asm_output_data_uleb128 (size
, NULL
);
3185 /* Now output the operations themselves. */
3186 output_loc_sequence (loc
, for_eh
);
3189 /* Similar, but used for .cfi_escape. */
3192 output_cfa_loc_raw (dw_cfi_ref cfi
)
3194 dw_loc_descr_ref loc
;
3197 if (cfi
->dw_cfi_opc
== DW_CFA_expression
3198 || cfi
->dw_cfi_opc
== DW_CFA_val_expression
)
3201 DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, 1);
3202 fprintf (asm_out_file
, "%#x,", r
);
3203 loc
= cfi
->dw_cfi_oprnd2
.dw_cfi_loc
;
3206 loc
= cfi
->dw_cfi_oprnd1
.dw_cfi_loc
;
3208 /* Output the size of the block. */
3209 size
= size_of_locs (loc
);
3210 dw2_asm_output_data_uleb128_raw (size
);
3211 fputc (',', asm_out_file
);
3213 /* Now output the operations themselves. */
3214 output_loc_sequence_raw (loc
);
3217 /* Output a Call Frame Information opcode and its operand(s). */
3220 output_cfi (dw_cfi_ref cfi
, dw_fde_ref fde
, int for_eh
)
3225 if (cfi
->dw_cfi_opc
== DW_CFA_advance_loc
)
3226 dw2_asm_output_data (1, (cfi
->dw_cfi_opc
3227 | (cfi
->dw_cfi_oprnd1
.dw_cfi_offset
& 0x3f)),
3228 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX
,
3229 ((unsigned HOST_WIDE_INT
)
3230 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
));
3231 else if (cfi
->dw_cfi_opc
== DW_CFA_offset
)
3233 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
3234 dw2_asm_output_data (1, (cfi
->dw_cfi_opc
| (r
& 0x3f)),
3235 "DW_CFA_offset, column %#lx", r
);
3236 off
= div_data_align (cfi
->dw_cfi_oprnd2
.dw_cfi_offset
);
3237 dw2_asm_output_data_uleb128 (off
, NULL
);
3239 else if (cfi
->dw_cfi_opc
== DW_CFA_restore
)
3241 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
3242 dw2_asm_output_data (1, (cfi
->dw_cfi_opc
| (r
& 0x3f)),
3243 "DW_CFA_restore, column %#lx", r
);
3247 dw2_asm_output_data (1, cfi
->dw_cfi_opc
,
3248 "%s", dwarf_cfi_name (cfi
->dw_cfi_opc
));
3250 switch (cfi
->dw_cfi_opc
)
3252 case DW_CFA_set_loc
:
3254 dw2_asm_output_encoded_addr_rtx (
3255 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
3256 gen_rtx_SYMBOL_REF (Pmode
, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
),
3259 dw2_asm_output_addr (DWARF2_ADDR_SIZE
,
3260 cfi
->dw_cfi_oprnd1
.dw_cfi_addr
, NULL
);
3261 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
3264 case DW_CFA_advance_loc1
:
3265 dw2_asm_output_delta (1, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
3266 fde
->dw_fde_current_label
, NULL
);
3267 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
3270 case DW_CFA_advance_loc2
:
3271 dw2_asm_output_delta (2, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
3272 fde
->dw_fde_current_label
, NULL
);
3273 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
3276 case DW_CFA_advance_loc4
:
3277 dw2_asm_output_delta (4, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
3278 fde
->dw_fde_current_label
, NULL
);
3279 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
3282 case DW_CFA_MIPS_advance_loc8
:
3283 dw2_asm_output_delta (8, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
3284 fde
->dw_fde_current_label
, NULL
);
3285 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
3288 case DW_CFA_offset_extended
:
3289 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
3290 dw2_asm_output_data_uleb128 (r
, NULL
);
3291 off
= div_data_align (cfi
->dw_cfi_oprnd2
.dw_cfi_offset
);
3292 dw2_asm_output_data_uleb128 (off
, NULL
);
3295 case DW_CFA_def_cfa
:
3296 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
3297 dw2_asm_output_data_uleb128 (r
, NULL
);
3298 dw2_asm_output_data_uleb128 (cfi
->dw_cfi_oprnd2
.dw_cfi_offset
, NULL
);
3301 case DW_CFA_offset_extended_sf
:
3302 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
3303 dw2_asm_output_data_uleb128 (r
, NULL
);
3304 off
= div_data_align (cfi
->dw_cfi_oprnd2
.dw_cfi_offset
);
3305 dw2_asm_output_data_sleb128 (off
, NULL
);
3308 case DW_CFA_def_cfa_sf
:
3309 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
3310 dw2_asm_output_data_uleb128 (r
, NULL
);
3311 off
= div_data_align (cfi
->dw_cfi_oprnd2
.dw_cfi_offset
);
3312 dw2_asm_output_data_sleb128 (off
, NULL
);
3315 case DW_CFA_restore_extended
:
3316 case DW_CFA_undefined
:
3317 case DW_CFA_same_value
:
3318 case DW_CFA_def_cfa_register
:
3319 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
3320 dw2_asm_output_data_uleb128 (r
, NULL
);
3323 case DW_CFA_register
:
3324 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
3325 dw2_asm_output_data_uleb128 (r
, NULL
);
3326 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd2
.dw_cfi_reg_num
, for_eh
);
3327 dw2_asm_output_data_uleb128 (r
, NULL
);
3330 case DW_CFA_def_cfa_offset
:
3331 case DW_CFA_GNU_args_size
:
3332 dw2_asm_output_data_uleb128 (cfi
->dw_cfi_oprnd1
.dw_cfi_offset
, NULL
);
3335 case DW_CFA_def_cfa_offset_sf
:
3336 off
= div_data_align (cfi
->dw_cfi_oprnd1
.dw_cfi_offset
);
3337 dw2_asm_output_data_sleb128 (off
, NULL
);
3340 case DW_CFA_GNU_window_save
:
3343 case DW_CFA_def_cfa_expression
:
3344 case DW_CFA_expression
:
3345 case DW_CFA_val_expression
:
3346 output_cfa_loc (cfi
, for_eh
);
3349 case DW_CFA_GNU_negative_offset_extended
:
3350 /* Obsoleted by DW_CFA_offset_extended_sf. */
3359 /* Similar, but do it via assembler directives instead. */
3362 output_cfi_directive (FILE *f
, dw_cfi_ref cfi
)
3364 unsigned long r
, r2
;
3366 switch (cfi
->dw_cfi_opc
)
3368 case DW_CFA_advance_loc
:
3369 case DW_CFA_advance_loc1
:
3370 case DW_CFA_advance_loc2
:
3371 case DW_CFA_advance_loc4
:
3372 case DW_CFA_MIPS_advance_loc8
:
3373 case DW_CFA_set_loc
:
3374 /* Should only be created in a code path not followed when emitting
3375 via directives. The assembler is going to take care of this for
3376 us. But this routines is also used for debugging dumps, so
3378 gcc_assert (f
!= asm_out_file
);
3379 fprintf (f
, "\t.cfi_advance_loc\n");
3383 case DW_CFA_offset_extended
:
3384 case DW_CFA_offset_extended_sf
:
3385 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, 1);
3386 fprintf (f
, "\t.cfi_offset %lu, " HOST_WIDE_INT_PRINT_DEC
"\n",
3387 r
, cfi
->dw_cfi_oprnd2
.dw_cfi_offset
);
3390 case DW_CFA_restore
:
3391 case DW_CFA_restore_extended
:
3392 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, 1);
3393 fprintf (f
, "\t.cfi_restore %lu\n", r
);
3396 case DW_CFA_undefined
:
3397 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, 1);
3398 fprintf (f
, "\t.cfi_undefined %lu\n", r
);
3401 case DW_CFA_same_value
:
3402 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, 1);
3403 fprintf (f
, "\t.cfi_same_value %lu\n", r
);
3406 case DW_CFA_def_cfa
:
3407 case DW_CFA_def_cfa_sf
:
3408 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, 1);
3409 fprintf (f
, "\t.cfi_def_cfa %lu, " HOST_WIDE_INT_PRINT_DEC
"\n",
3410 r
, cfi
->dw_cfi_oprnd2
.dw_cfi_offset
);
3413 case DW_CFA_def_cfa_register
:
3414 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, 1);
3415 fprintf (f
, "\t.cfi_def_cfa_register %lu\n", r
);
3418 case DW_CFA_register
:
3419 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, 1);
3420 r2
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd2
.dw_cfi_reg_num
, 1);
3421 fprintf (f
, "\t.cfi_register %lu, %lu\n", r
, r2
);
3424 case DW_CFA_def_cfa_offset
:
3425 case DW_CFA_def_cfa_offset_sf
:
3426 fprintf (f
, "\t.cfi_def_cfa_offset "
3427 HOST_WIDE_INT_PRINT_DEC
"\n",
3428 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
);
3431 case DW_CFA_remember_state
:
3432 fprintf (f
, "\t.cfi_remember_state\n");
3434 case DW_CFA_restore_state
:
3435 fprintf (f
, "\t.cfi_restore_state\n");
3438 case DW_CFA_GNU_args_size
:
3439 if (f
== asm_out_file
)
3441 fprintf (f
, "\t.cfi_escape %#x,", DW_CFA_GNU_args_size
);
3442 dw2_asm_output_data_uleb128_raw (cfi
->dw_cfi_oprnd1
.dw_cfi_offset
);
3444 fprintf (f
, "\t%s args_size " HOST_WIDE_INT_PRINT_DEC
,
3445 ASM_COMMENT_START
, cfi
->dw_cfi_oprnd1
.dw_cfi_offset
);
3450 fprintf (f
, "\t.cfi_GNU_args_size " HOST_WIDE_INT_PRINT_DEC
"\n",
3451 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
);
3455 case DW_CFA_GNU_window_save
:
3456 fprintf (f
, "\t.cfi_window_save\n");
3459 case DW_CFA_def_cfa_expression
:
3460 case DW_CFA_expression
:
3461 case DW_CFA_val_expression
:
3462 if (f
!= asm_out_file
)
3464 fprintf (f
, "\t.cfi_%scfa_%sexpression ...\n",
3465 cfi
->dw_cfi_opc
== DW_CFA_def_cfa_expression
? "def_" : "",
3466 cfi
->dw_cfi_opc
== DW_CFA_val_expression
? "val_" : "");
3469 fprintf (f
, "\t.cfi_escape %#x,", cfi
->dw_cfi_opc
);
3470 output_cfa_loc_raw (cfi
);
3480 dwarf2out_emit_cfi (dw_cfi_ref cfi
)
3482 if (dwarf2out_do_cfi_asm ())
3483 output_cfi_directive (asm_out_file
, cfi
);
3487 dump_cfi_row (FILE *f
, dw_cfi_row
*row
)
3495 dw_cfa_location dummy
;
3496 memset (&dummy
, 0, sizeof (dummy
));
3497 dummy
.reg
= INVALID_REGNUM
;
3498 cfi
= def_cfa_0 (&dummy
, &row
->cfa
);
3500 output_cfi_directive (f
, cfi
);
3502 FOR_EACH_VEC_SAFE_ELT (row
->reg_save
, i
, cfi
)
3504 output_cfi_directive (f
, cfi
);
3507 void debug_cfi_row (dw_cfi_row
*row
);
3510 debug_cfi_row (dw_cfi_row
*row
)
3512 dump_cfi_row (stderr
, row
);
3516 /* Save the result of dwarf2out_do_frame across PCH.
3517 This variable is tri-state, with 0 unset, >0 true, <0 false. */
3518 static GTY(()) signed char saved_do_cfi_asm
= 0;
3520 /* Decide whether to emit EH frame unwind information for the current
3521 translation unit. */
3524 dwarf2out_do_eh_frame (void)
3527 (flag_unwind_tables
|| flag_exceptions
)
3528 && targetm_common
.except_unwind_info (&global_options
) == UI_DWARF2
;
3531 /* Decide whether we want to emit frame unwind information for the current
3532 translation unit. */
3535 dwarf2out_do_frame (void)
3537 /* We want to emit correct CFA location expressions or lists, so we
3538 have to return true if we're going to output debug info, even if
3539 we're not going to output frame or unwind info. */
3540 if (write_symbols
== DWARF2_DEBUG
|| write_symbols
== VMS_AND_DWARF2_DEBUG
)
3543 if (saved_do_cfi_asm
> 0)
3546 if (targetm
.debug_unwind_info () == UI_DWARF2
)
3549 if (dwarf2out_do_eh_frame ())
3555 /* Decide whether to emit frame unwind via assembler directives. */
3558 dwarf2out_do_cfi_asm (void)
3562 if (saved_do_cfi_asm
!= 0)
3563 return saved_do_cfi_asm
> 0;
3565 /* Assume failure for a moment. */
3566 saved_do_cfi_asm
= -1;
3568 if (!flag_dwarf2_cfi_asm
|| !dwarf2out_do_frame ())
3570 if (!HAVE_GAS_CFI_PERSONALITY_DIRECTIVE
)
3573 /* Make sure the personality encoding is one the assembler can support.
3574 In particular, aligned addresses can't be handled. */
3575 enc
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,/*global=*/1);
3576 if ((enc
& 0x70) != 0 && (enc
& 0x70) != DW_EH_PE_pcrel
)
3578 enc
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,/*global=*/0);
3579 if ((enc
& 0x70) != 0 && (enc
& 0x70) != DW_EH_PE_pcrel
)
3582 /* If we can't get the assembler to emit only .debug_frame, and we don't need
3583 dwarf2 unwind info for exceptions, then emit .debug_frame by hand. */
3584 if (!HAVE_GAS_CFI_SECTIONS_DIRECTIVE
&& !dwarf2out_do_eh_frame ())
3588 saved_do_cfi_asm
= 1;
3594 const pass_data pass_data_dwarf2_frame
=
3596 RTL_PASS
, /* type */
3597 "dwarf2", /* name */
3598 OPTGROUP_NONE
, /* optinfo_flags */
3599 TV_FINAL
, /* tv_id */
3600 0, /* properties_required */
3601 0, /* properties_provided */
3602 0, /* properties_destroyed */
3603 0, /* todo_flags_start */
3604 0, /* todo_flags_finish */
3607 class pass_dwarf2_frame
: public rtl_opt_pass
3610 pass_dwarf2_frame (gcc::context
*ctxt
)
3611 : rtl_opt_pass (pass_data_dwarf2_frame
, ctxt
)
3614 /* opt_pass methods: */
3615 virtual bool gate (function
*);
3616 virtual unsigned int execute (function
*) { return execute_dwarf2_frame (); }
3618 }; // class pass_dwarf2_frame
3621 pass_dwarf2_frame::gate (function
*)
3623 /* Targets which still implement the prologue in assembler text
3624 cannot use the generic dwarf2 unwinding. */
3625 if (!targetm
.have_prologue ())
3628 /* ??? What to do for UI_TARGET unwinding? They might be able to benefit
3629 from the optimized shrink-wrapping annotations that we will compute.
3630 For now, only produce the CFI notes for dwarf2. */
3631 return dwarf2out_do_frame ();
3637 make_pass_dwarf2_frame (gcc::context
*ctxt
)
3639 return new pass_dwarf2_frame (ctxt
);
3642 #include "gt-dwarf2cfi.h"