C++: -Wwrite-strings: use location of string constant
[official-gcc.git] / gcc / reginfo.c
blob1f36d141c73a29a0d015922b5bf804532943bd18
1 /* Compute different info about registers.
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 /* This file contains regscan pass of the compiler and passes for
22 dealing with info about modes of pseudo-registers inside
23 subregisters. It also defines some tables of information about the
24 hardware registers, function init_reg_sets to initialize the
25 tables, and other auxiliary functions to deal with info about
26 registers and their classes. */
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "backend.h"
32 #include "target.h"
33 #include "rtl.h"
34 #include "tree.h"
35 #include "df.h"
36 #include "memmodel.h"
37 #include "tm_p.h"
38 #include "insn-config.h"
39 #include "regs.h"
40 #include "ira.h"
41 #include "recog.h"
42 #include "diagnostic-core.h"
43 #include "reload.h"
44 #include "output.h"
45 #include "tree-pass.h"
47 /* Maximum register number used in this function, plus one. */
49 int max_regno;
51 /* Used to cache the results of simplifiable_subregs. SHAPE is the input
52 parameter and SIMPLIFIABLE_REGS is the result. */
53 struct simplifiable_subreg
55 simplifiable_subreg (const subreg_shape &);
57 subreg_shape shape;
58 HARD_REG_SET simplifiable_regs;
61 struct target_hard_regs default_target_hard_regs;
62 struct target_regs default_target_regs;
63 #if SWITCHABLE_TARGET
64 struct target_hard_regs *this_target_hard_regs = &default_target_hard_regs;
65 struct target_regs *this_target_regs = &default_target_regs;
66 #endif
68 /* Data for initializing fixed_regs. */
69 static const char initial_fixed_regs[] = FIXED_REGISTERS;
71 /* Data for initializing call_used_regs. */
72 static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
74 #ifdef CALL_REALLY_USED_REGISTERS
75 /* Data for initializing call_really_used_regs. */
76 static const char initial_call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
77 #endif
79 #ifdef CALL_REALLY_USED_REGISTERS
80 #define CALL_REALLY_USED_REGNO_P(X) call_really_used_regs[X]
81 #else
82 #define CALL_REALLY_USED_REGNO_P(X) call_used_regs[X]
83 #endif
85 /* Indexed by hard register number, contains 1 for registers
86 that are being used for global register decls.
87 These must be exempt from ordinary flow analysis
88 and are also considered fixed. */
89 char global_regs[FIRST_PSEUDO_REGISTER];
91 /* Declaration for the global register. */
92 tree global_regs_decl[FIRST_PSEUDO_REGISTER];
94 /* Same information as REGS_INVALIDATED_BY_CALL but in regset form to be used
95 in dataflow more conveniently. */
96 regset regs_invalidated_by_call_regset;
98 /* Same information as FIXED_REG_SET but in regset form. */
99 regset fixed_reg_set_regset;
101 /* The bitmap_obstack is used to hold some static variables that
102 should not be reset after each function is compiled. */
103 static bitmap_obstack persistent_obstack;
105 /* Used to initialize reg_alloc_order. */
106 #ifdef REG_ALLOC_ORDER
107 static int initial_reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
108 #endif
110 /* The same information, but as an array of unsigned ints. We copy from
111 these unsigned ints to the table above. We do this so the tm.h files
112 do not have to be aware of the wordsize for machines with <= 64 regs.
113 Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
114 #define N_REG_INTS \
115 ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
117 static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
118 = REG_CLASS_CONTENTS;
120 /* Array containing all of the register names. */
121 static const char *const initial_reg_names[] = REGISTER_NAMES;
123 /* Array containing all of the register class names. */
124 const char * reg_class_names[] = REG_CLASS_NAMES;
126 /* No more global register variables may be declared; true once
127 reginfo has been initialized. */
128 static int no_global_reg_vars = 0;
130 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
131 correspond to the hard registers, if any, set in that map. This
132 could be done far more efficiently by having all sorts of special-cases
133 with moving single words, but probably isn't worth the trouble. */
134 void
135 reg_set_to_hard_reg_set (HARD_REG_SET *to, const_bitmap from)
137 unsigned i;
138 bitmap_iterator bi;
140 EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
142 if (i >= FIRST_PSEUDO_REGISTER)
143 return;
144 SET_HARD_REG_BIT (*to, i);
148 /* Function called only once per target_globals to initialize the
149 target_hard_regs structure. Once this is done, various switches
150 may override. */
151 void
152 init_reg_sets (void)
154 int i, j;
156 /* First copy the register information from the initial int form into
157 the regsets. */
159 for (i = 0; i < N_REG_CLASSES; i++)
161 CLEAR_HARD_REG_SET (reg_class_contents[i]);
163 /* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
164 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
165 if (int_reg_class_contents[i][j / 32]
166 & ((unsigned) 1 << (j % 32)))
167 SET_HARD_REG_BIT (reg_class_contents[i], j);
170 /* Sanity check: make sure the target macros FIXED_REGISTERS and
171 CALL_USED_REGISTERS had the right number of initializers. */
172 gcc_assert (sizeof fixed_regs == sizeof initial_fixed_regs);
173 gcc_assert (sizeof call_used_regs == sizeof initial_call_used_regs);
174 #ifdef CALL_REALLY_USED_REGISTERS
175 gcc_assert (sizeof call_really_used_regs
176 == sizeof initial_call_really_used_regs);
177 #endif
178 #ifdef REG_ALLOC_ORDER
179 gcc_assert (sizeof reg_alloc_order == sizeof initial_reg_alloc_order);
180 #endif
181 gcc_assert (sizeof reg_names == sizeof initial_reg_names);
183 memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
184 memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
185 #ifdef CALL_REALLY_USED_REGISTERS
186 memcpy (call_really_used_regs, initial_call_really_used_regs,
187 sizeof call_really_used_regs);
188 #endif
189 #ifdef REG_ALLOC_ORDER
190 memcpy (reg_alloc_order, initial_reg_alloc_order, sizeof reg_alloc_order);
191 #endif
192 memcpy (reg_names, initial_reg_names, sizeof reg_names);
194 SET_HARD_REG_SET (accessible_reg_set);
195 SET_HARD_REG_SET (operand_reg_set);
198 /* We need to save copies of some of the register information which
199 can be munged by command-line switches so we can restore it during
200 subsequent back-end reinitialization. */
201 static char saved_fixed_regs[FIRST_PSEUDO_REGISTER];
202 static char saved_call_used_regs[FIRST_PSEUDO_REGISTER];
203 #ifdef CALL_REALLY_USED_REGISTERS
204 static char saved_call_really_used_regs[FIRST_PSEUDO_REGISTER];
205 #endif
206 static const char *saved_reg_names[FIRST_PSEUDO_REGISTER];
207 static HARD_REG_SET saved_accessible_reg_set;
208 static HARD_REG_SET saved_operand_reg_set;
210 /* Save the register information. */
211 void
212 save_register_info (void)
214 /* Sanity check: make sure the target macros FIXED_REGISTERS and
215 CALL_USED_REGISTERS had the right number of initializers. */
216 gcc_assert (sizeof fixed_regs == sizeof saved_fixed_regs);
217 gcc_assert (sizeof call_used_regs == sizeof saved_call_used_regs);
218 memcpy (saved_fixed_regs, fixed_regs, sizeof fixed_regs);
219 memcpy (saved_call_used_regs, call_used_regs, sizeof call_used_regs);
221 /* Likewise for call_really_used_regs. */
222 #ifdef CALL_REALLY_USED_REGISTERS
223 gcc_assert (sizeof call_really_used_regs
224 == sizeof saved_call_really_used_regs);
225 memcpy (saved_call_really_used_regs, call_really_used_regs,
226 sizeof call_really_used_regs);
227 #endif
229 /* And similarly for reg_names. */
230 gcc_assert (sizeof reg_names == sizeof saved_reg_names);
231 memcpy (saved_reg_names, reg_names, sizeof reg_names);
232 COPY_HARD_REG_SET (saved_accessible_reg_set, accessible_reg_set);
233 COPY_HARD_REG_SET (saved_operand_reg_set, operand_reg_set);
236 /* Restore the register information. */
237 static void
238 restore_register_info (void)
240 memcpy (fixed_regs, saved_fixed_regs, sizeof fixed_regs);
241 memcpy (call_used_regs, saved_call_used_regs, sizeof call_used_regs);
243 #ifdef CALL_REALLY_USED_REGISTERS
244 memcpy (call_really_used_regs, saved_call_really_used_regs,
245 sizeof call_really_used_regs);
246 #endif
248 memcpy (reg_names, saved_reg_names, sizeof reg_names);
249 COPY_HARD_REG_SET (accessible_reg_set, saved_accessible_reg_set);
250 COPY_HARD_REG_SET (operand_reg_set, saved_operand_reg_set);
253 /* After switches have been processed, which perhaps alter
254 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
255 static void
256 init_reg_sets_1 (void)
258 unsigned int i, j;
259 unsigned int /* machine_mode */ m;
261 restore_register_info ();
263 #ifdef REG_ALLOC_ORDER
264 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
265 inv_reg_alloc_order[reg_alloc_order[i]] = i;
266 #endif
268 /* Let the target tweak things if necessary. */
270 targetm.conditional_register_usage ();
272 /* Compute number of hard regs in each class. */
274 memset (reg_class_size, 0, sizeof reg_class_size);
275 for (i = 0; i < N_REG_CLASSES; i++)
277 bool any_nonfixed = false;
278 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
279 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
281 reg_class_size[i]++;
282 if (!fixed_regs[j])
283 any_nonfixed = true;
285 class_only_fixed_regs[i] = !any_nonfixed;
288 /* Initialize the table of subunions.
289 reg_class_subunion[I][J] gets the largest-numbered reg-class
290 that is contained in the union of classes I and J. */
292 memset (reg_class_subunion, 0, sizeof reg_class_subunion);
293 for (i = 0; i < N_REG_CLASSES; i++)
295 for (j = 0; j < N_REG_CLASSES; j++)
297 HARD_REG_SET c;
298 int k;
300 COPY_HARD_REG_SET (c, reg_class_contents[i]);
301 IOR_HARD_REG_SET (c, reg_class_contents[j]);
302 for (k = 0; k < N_REG_CLASSES; k++)
303 if (hard_reg_set_subset_p (reg_class_contents[k], c)
304 && !hard_reg_set_subset_p (reg_class_contents[k],
305 reg_class_contents
306 [(int) reg_class_subunion[i][j]]))
307 reg_class_subunion[i][j] = (enum reg_class) k;
311 /* Initialize the table of superunions.
312 reg_class_superunion[I][J] gets the smallest-numbered reg-class
313 containing the union of classes I and J. */
315 memset (reg_class_superunion, 0, sizeof reg_class_superunion);
316 for (i = 0; i < N_REG_CLASSES; i++)
318 for (j = 0; j < N_REG_CLASSES; j++)
320 HARD_REG_SET c;
321 int k;
323 COPY_HARD_REG_SET (c, reg_class_contents[i]);
324 IOR_HARD_REG_SET (c, reg_class_contents[j]);
325 for (k = 0; k < N_REG_CLASSES; k++)
326 if (hard_reg_set_subset_p (c, reg_class_contents[k]))
327 break;
329 reg_class_superunion[i][j] = (enum reg_class) k;
333 /* Initialize the tables of subclasses and superclasses of each reg class.
334 First clear the whole table, then add the elements as they are found. */
336 for (i = 0; i < N_REG_CLASSES; i++)
338 for (j = 0; j < N_REG_CLASSES; j++)
339 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
342 for (i = 0; i < N_REG_CLASSES; i++)
344 if (i == (int) NO_REGS)
345 continue;
347 for (j = i + 1; j < N_REG_CLASSES; j++)
348 if (hard_reg_set_subset_p (reg_class_contents[i],
349 reg_class_contents[j]))
351 /* Reg class I is a subclass of J.
352 Add J to the table of superclasses of I. */
353 enum reg_class *p;
355 /* Add I to the table of superclasses of J. */
356 p = &reg_class_subclasses[j][0];
357 while (*p != LIM_REG_CLASSES) p++;
358 *p = (enum reg_class) i;
362 /* Initialize "constant" tables. */
364 CLEAR_HARD_REG_SET (fixed_reg_set);
365 CLEAR_HARD_REG_SET (call_used_reg_set);
366 CLEAR_HARD_REG_SET (call_fixed_reg_set);
367 CLEAR_HARD_REG_SET (regs_invalidated_by_call);
368 if (!regs_invalidated_by_call_regset)
370 bitmap_obstack_initialize (&persistent_obstack);
371 regs_invalidated_by_call_regset = ALLOC_REG_SET (&persistent_obstack);
373 else
374 CLEAR_REG_SET (regs_invalidated_by_call_regset);
375 if (!fixed_reg_set_regset)
376 fixed_reg_set_regset = ALLOC_REG_SET (&persistent_obstack);
377 else
378 CLEAR_REG_SET (fixed_reg_set_regset);
380 AND_HARD_REG_SET (operand_reg_set, accessible_reg_set);
381 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
383 /* As a special exception, registers whose class is NO_REGS are
384 not accepted by `register_operand'. The reason for this change
385 is to allow the representation of special architecture artifacts
386 (such as a condition code register) without extending the rtl
387 definitions. Since registers of class NO_REGS cannot be used
388 as registers in any case where register classes are examined,
389 it is better to apply this exception in a target-independent way. */
390 if (REGNO_REG_CLASS (i) == NO_REGS)
391 CLEAR_HARD_REG_BIT (operand_reg_set, i);
393 /* If a register is too limited to be treated as a register operand,
394 then it should never be allocated to a pseudo. */
395 if (!TEST_HARD_REG_BIT (operand_reg_set, i))
397 fixed_regs[i] = 1;
398 call_used_regs[i] = 1;
401 /* call_used_regs must include fixed_regs. */
402 gcc_assert (!fixed_regs[i] || call_used_regs[i]);
403 #ifdef CALL_REALLY_USED_REGISTERS
404 /* call_used_regs must include call_really_used_regs. */
405 gcc_assert (!call_really_used_regs[i] || call_used_regs[i]);
406 #endif
408 if (fixed_regs[i])
410 SET_HARD_REG_BIT (fixed_reg_set, i);
411 SET_REGNO_REG_SET (fixed_reg_set_regset, i);
414 if (call_used_regs[i])
415 SET_HARD_REG_BIT (call_used_reg_set, i);
417 /* There are a couple of fixed registers that we know are safe to
418 exclude from being clobbered by calls:
420 The frame pointer is always preserved across calls. The arg
421 pointer is if it is fixed. The stack pointer usually is,
422 unless TARGET_RETURN_POPS_ARGS, in which case an explicit
423 CLOBBER will be present. If we are generating PIC code, the
424 PIC offset table register is preserved across calls, though the
425 target can override that. */
427 if (i == STACK_POINTER_REGNUM)
429 else if (global_regs[i])
431 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
432 SET_REGNO_REG_SET (regs_invalidated_by_call_regset, i);
434 else if (i == FRAME_POINTER_REGNUM)
436 else if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
437 && i == HARD_FRAME_POINTER_REGNUM)
439 else if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
440 && i == ARG_POINTER_REGNUM && fixed_regs[i])
442 else if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
443 && i == (unsigned) PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
445 else if (CALL_REALLY_USED_REGNO_P (i))
447 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
448 SET_REGNO_REG_SET (regs_invalidated_by_call_regset, i);
452 COPY_HARD_REG_SET (call_fixed_reg_set, fixed_reg_set);
453 COPY_HARD_REG_SET (fixed_nonglobal_reg_set, fixed_reg_set);
455 /* Preserve global registers if called more than once. */
456 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
458 if (global_regs[i])
460 fixed_regs[i] = call_used_regs[i] = 1;
461 SET_HARD_REG_BIT (fixed_reg_set, i);
462 SET_HARD_REG_BIT (call_used_reg_set, i);
463 SET_HARD_REG_BIT (call_fixed_reg_set, i);
467 memset (have_regs_of_mode, 0, sizeof (have_regs_of_mode));
468 memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
469 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
471 HARD_REG_SET ok_regs, ok_regs2;
472 CLEAR_HARD_REG_SET (ok_regs);
473 CLEAR_HARD_REG_SET (ok_regs2);
474 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
475 if (!TEST_HARD_REG_BIT (fixed_nonglobal_reg_set, j)
476 && targetm.hard_regno_mode_ok (j, (machine_mode) m))
478 SET_HARD_REG_BIT (ok_regs, j);
479 if (!fixed_regs[j])
480 SET_HARD_REG_BIT (ok_regs2, j);
483 for (i = 0; i < N_REG_CLASSES; i++)
484 if ((targetm.class_max_nregs ((reg_class_t) i, (machine_mode) m)
485 <= reg_class_size[i])
486 && hard_reg_set_intersect_p (ok_regs, reg_class_contents[i]))
488 contains_reg_of_mode[i][m] = 1;
489 if (hard_reg_set_intersect_p (ok_regs2, reg_class_contents[i]))
491 have_regs_of_mode[m] = 1;
492 contains_allocatable_reg_of_mode[i][m] = 1;
498 /* Compute the table of register modes.
499 These values are used to record death information for individual registers
500 (as opposed to a multi-register mode).
501 This function might be invoked more than once, if the target has support
502 for changing register usage conventions on a per-function basis.
504 void
505 init_reg_modes_target (void)
507 int i, j;
509 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
510 for (j = 0; j < MAX_MACHINE_MODE; j++)
511 this_target_regs->x_hard_regno_nregs[i][j]
512 = targetm.hard_regno_nregs (i, (machine_mode) j);
514 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
516 reg_raw_mode[i] = choose_hard_reg_mode (i, 1, false);
518 /* If we couldn't find a valid mode, just use the previous mode
519 if it is suitable, otherwise fall back on word_mode. */
520 if (reg_raw_mode[i] == VOIDmode)
522 if (i > 0 && hard_regno_nregs (i, reg_raw_mode[i - 1]) == 1)
523 reg_raw_mode[i] = reg_raw_mode[i - 1];
524 else
525 reg_raw_mode[i] = word_mode;
530 /* Finish initializing the register sets and initialize the register modes.
531 This function might be invoked more than once, if the target has support
532 for changing register usage conventions on a per-function basis.
534 void
535 init_regs (void)
537 /* This finishes what was started by init_reg_sets, but couldn't be done
538 until after register usage was specified. */
539 init_reg_sets_1 ();
542 /* The same as previous function plus initializing IRA. */
543 void
544 reinit_regs (void)
546 init_regs ();
547 /* caller_save needs to be re-initialized. */
548 caller_save_initialized_p = false;
549 if (this_target_rtl->target_specific_initialized)
551 ira_init ();
552 recog_init ();
556 /* Initialize some fake stack-frame MEM references for use in
557 memory_move_secondary_cost. */
558 void
559 init_fake_stack_mems (void)
561 int i;
563 for (i = 0; i < MAX_MACHINE_MODE; i++)
564 top_of_stack[i] = gen_rtx_MEM ((machine_mode) i, stack_pointer_rtx);
568 /* Compute cost of moving data from a register of class FROM to one of
569 TO, using MODE. */
572 register_move_cost (machine_mode mode, reg_class_t from, reg_class_t to)
574 return targetm.register_move_cost (mode, from, to);
577 /* Compute cost of moving registers to/from memory. */
580 memory_move_cost (machine_mode mode, reg_class_t rclass, bool in)
582 return targetm.memory_move_cost (mode, rclass, in);
585 /* Compute extra cost of moving registers to/from memory due to reloads.
586 Only needed if secondary reloads are required for memory moves. */
588 memory_move_secondary_cost (machine_mode mode, reg_class_t rclass,
589 bool in)
591 reg_class_t altclass;
592 int partial_cost = 0;
593 /* We need a memory reference to feed to SECONDARY... macros. */
594 /* mem may be unused even if the SECONDARY_ macros are defined. */
595 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
597 altclass = secondary_reload_class (in ? 1 : 0, rclass, mode, mem);
599 if (altclass == NO_REGS)
600 return 0;
602 if (in)
603 partial_cost = register_move_cost (mode, altclass, rclass);
604 else
605 partial_cost = register_move_cost (mode, rclass, altclass);
607 if (rclass == altclass)
608 /* This isn't simply a copy-to-temporary situation. Can't guess
609 what it is, so TARGET_MEMORY_MOVE_COST really ought not to be
610 calling here in that case.
612 I'm tempted to put in an assert here, but returning this will
613 probably only give poor estimates, which is what we would've
614 had before this code anyways. */
615 return partial_cost;
617 /* Check if the secondary reload register will also need a
618 secondary reload. */
619 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
622 /* Return a machine mode that is legitimate for hard reg REGNO and large
623 enough to save nregs. If we can't find one, return VOIDmode.
624 If CALL_SAVED is true, only consider modes that are call saved. */
625 machine_mode
626 choose_hard_reg_mode (unsigned int regno ATTRIBUTE_UNUSED,
627 unsigned int nregs, bool call_saved)
629 unsigned int /* machine_mode */ m;
630 machine_mode found_mode = VOIDmode, mode;
632 /* We first look for the largest integer mode that can be validly
633 held in REGNO. If none, we look for the largest floating-point mode.
634 If we still didn't find a valid mode, try CCmode.
636 The tests use maybe_gt rather than known_gt because we want (for example)
637 N V4SFs to win over plain V4SF even though N might be 1. */
638 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT)
639 if (hard_regno_nregs (regno, mode) == nregs
640 && targetm.hard_regno_mode_ok (regno, mode)
641 && (!call_saved
642 || !targetm.hard_regno_call_part_clobbered (regno, mode))
643 && maybe_gt (GET_MODE_SIZE (mode), GET_MODE_SIZE (found_mode)))
644 found_mode = mode;
646 FOR_EACH_MODE_IN_CLASS (mode, MODE_FLOAT)
647 if (hard_regno_nregs (regno, mode) == nregs
648 && targetm.hard_regno_mode_ok (regno, mode)
649 && (!call_saved
650 || !targetm.hard_regno_call_part_clobbered (regno, mode))
651 && maybe_gt (GET_MODE_SIZE (mode), GET_MODE_SIZE (found_mode)))
652 found_mode = mode;
654 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FLOAT)
655 if (hard_regno_nregs (regno, mode) == nregs
656 && targetm.hard_regno_mode_ok (regno, mode)
657 && (!call_saved
658 || !targetm.hard_regno_call_part_clobbered (regno, mode))
659 && maybe_gt (GET_MODE_SIZE (mode), GET_MODE_SIZE (found_mode)))
660 found_mode = mode;
662 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_INT)
663 if (hard_regno_nregs (regno, mode) == nregs
664 && targetm.hard_regno_mode_ok (regno, mode)
665 && (!call_saved
666 || !targetm.hard_regno_call_part_clobbered (regno, mode))
667 && maybe_gt (GET_MODE_SIZE (mode), GET_MODE_SIZE (found_mode)))
668 found_mode = mode;
670 if (found_mode != VOIDmode)
671 return found_mode;
673 /* Iterate over all of the CCmodes. */
674 for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
676 mode = (machine_mode) m;
677 if (hard_regno_nregs (regno, mode) == nregs
678 && targetm.hard_regno_mode_ok (regno, mode)
679 && (!call_saved
680 || !targetm.hard_regno_call_part_clobbered (regno, mode)))
681 return mode;
684 /* We can't find a mode valid for this register. */
685 return VOIDmode;
688 /* Specify the usage characteristics of the register named NAME.
689 It should be a fixed register if FIXED and a
690 call-used register if CALL_USED. */
691 void
692 fix_register (const char *name, int fixed, int call_used)
694 int i;
695 int reg, nregs;
697 /* Decode the name and update the primary form of
698 the register info. */
700 if ((reg = decode_reg_name_and_count (name, &nregs)) >= 0)
702 gcc_assert (nregs >= 1);
703 for (i = reg; i < reg + nregs; i++)
705 if ((i == STACK_POINTER_REGNUM
706 #ifdef HARD_FRAME_POINTER_REGNUM
707 || i == HARD_FRAME_POINTER_REGNUM
708 #else
709 || i == FRAME_POINTER_REGNUM
710 #endif
712 && (fixed == 0 || call_used == 0))
714 switch (fixed)
716 case 0:
717 switch (call_used)
719 case 0:
720 error ("can%'t use %qs as a call-saved register", name);
721 break;
723 case 1:
724 error ("can%'t use %qs as a call-used register", name);
725 break;
727 default:
728 gcc_unreachable ();
730 break;
732 case 1:
733 switch (call_used)
735 case 1:
736 error ("can%'t use %qs as a fixed register", name);
737 break;
739 case 0:
740 default:
741 gcc_unreachable ();
743 break;
745 default:
746 gcc_unreachable ();
749 else
751 fixed_regs[i] = fixed;
752 call_used_regs[i] = call_used;
753 #ifdef CALL_REALLY_USED_REGISTERS
754 if (fixed == 0)
755 call_really_used_regs[i] = call_used;
756 #endif
760 else
762 warning (0, "unknown register name: %s", name);
766 /* Mark register number I as global. */
767 void
768 globalize_reg (tree decl, int i)
770 location_t loc = DECL_SOURCE_LOCATION (decl);
772 #ifdef STACK_REGS
773 if (IN_RANGE (i, FIRST_STACK_REG, LAST_STACK_REG))
775 error ("stack register used for global register variable");
776 return;
778 #endif
780 if (fixed_regs[i] == 0 && no_global_reg_vars)
781 error_at (loc, "global register variable follows a function definition");
783 if (global_regs[i])
785 warning_at (loc, 0,
786 "register of %qD used for multiple global register variables",
787 decl);
788 inform (DECL_SOURCE_LOCATION (global_regs_decl[i]),
789 "conflicts with %qD", global_regs_decl[i]);
790 return;
793 if (call_used_regs[i] && ! fixed_regs[i])
794 warning_at (loc, 0, "call-clobbered register used for global register variable");
796 global_regs[i] = 1;
797 global_regs_decl[i] = decl;
799 /* If we're globalizing the frame pointer, we need to set the
800 appropriate regs_invalidated_by_call bit, even if it's already
801 set in fixed_regs. */
802 if (i != STACK_POINTER_REGNUM)
804 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
805 SET_REGNO_REG_SET (regs_invalidated_by_call_regset, i);
808 /* If already fixed, nothing else to do. */
809 if (fixed_regs[i])
810 return;
812 fixed_regs[i] = call_used_regs[i] = 1;
813 #ifdef CALL_REALLY_USED_REGISTERS
814 call_really_used_regs[i] = 1;
815 #endif
817 SET_HARD_REG_BIT (fixed_reg_set, i);
818 SET_HARD_REG_BIT (call_used_reg_set, i);
819 SET_HARD_REG_BIT (call_fixed_reg_set, i);
821 reinit_regs ();
825 /* Structure used to record preferences of given pseudo. */
826 struct reg_pref
828 /* (enum reg_class) prefclass is the preferred class. May be
829 NO_REGS if no class is better than memory. */
830 char prefclass;
832 /* altclass is a register class that we should use for allocating
833 pseudo if no register in the preferred class is available.
834 If no register in this class is available, memory is preferred.
836 It might appear to be more general to have a bitmask of classes here,
837 but since it is recommended that there be a class corresponding to the
838 union of most major pair of classes, that generality is not required. */
839 char altclass;
841 /* allocnoclass is a register class that IRA uses for allocating
842 the pseudo. */
843 char allocnoclass;
846 /* Record preferences of each pseudo. This is available after RA is
847 run. */
848 static struct reg_pref *reg_pref;
850 /* Current size of reg_info. */
851 static int reg_info_size;
852 /* Max_reg_num still last resize_reg_info call. */
853 static int max_regno_since_last_resize;
855 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
856 This function is sometimes called before the info has been computed.
857 When that happens, just return GENERAL_REGS, which is innocuous. */
858 enum reg_class
859 reg_preferred_class (int regno)
861 if (reg_pref == 0)
862 return GENERAL_REGS;
864 gcc_assert (regno < reg_info_size);
865 return (enum reg_class) reg_pref[regno].prefclass;
868 enum reg_class
869 reg_alternate_class (int regno)
871 if (reg_pref == 0)
872 return ALL_REGS;
874 gcc_assert (regno < reg_info_size);
875 return (enum reg_class) reg_pref[regno].altclass;
878 /* Return the reg_class which is used by IRA for its allocation. */
879 enum reg_class
880 reg_allocno_class (int regno)
882 if (reg_pref == 0)
883 return NO_REGS;
885 gcc_assert (regno < reg_info_size);
886 return (enum reg_class) reg_pref[regno].allocnoclass;
891 /* Allocate space for reg info and initilize it. */
892 static void
893 allocate_reg_info (void)
895 int i;
897 max_regno_since_last_resize = max_reg_num ();
898 reg_info_size = max_regno_since_last_resize * 3 / 2 + 1;
899 gcc_assert (! reg_pref && ! reg_renumber);
900 reg_renumber = XNEWVEC (short, reg_info_size);
901 reg_pref = XCNEWVEC (struct reg_pref, reg_info_size);
902 memset (reg_renumber, -1, reg_info_size * sizeof (short));
903 for (i = 0; i < reg_info_size; i++)
905 reg_pref[i].prefclass = GENERAL_REGS;
906 reg_pref[i].altclass = ALL_REGS;
907 reg_pref[i].allocnoclass = GENERAL_REGS;
912 /* Resize reg info. The new elements will be initialized. Return TRUE
913 if new pseudos were added since the last call. */
914 bool
915 resize_reg_info (void)
917 int old, i;
918 bool change_p;
920 if (reg_pref == NULL)
922 allocate_reg_info ();
923 return true;
925 change_p = max_regno_since_last_resize != max_reg_num ();
926 max_regno_since_last_resize = max_reg_num ();
927 if (reg_info_size >= max_reg_num ())
928 return change_p;
929 old = reg_info_size;
930 reg_info_size = max_reg_num () * 3 / 2 + 1;
931 gcc_assert (reg_pref && reg_renumber);
932 reg_renumber = XRESIZEVEC (short, reg_renumber, reg_info_size);
933 reg_pref = XRESIZEVEC (struct reg_pref, reg_pref, reg_info_size);
934 memset (reg_pref + old, -1,
935 (reg_info_size - old) * sizeof (struct reg_pref));
936 memset (reg_renumber + old, -1, (reg_info_size - old) * sizeof (short));
937 for (i = old; i < reg_info_size; i++)
939 reg_pref[i].prefclass = GENERAL_REGS;
940 reg_pref[i].altclass = ALL_REGS;
941 reg_pref[i].allocnoclass = GENERAL_REGS;
943 return true;
947 /* Free up the space allocated by allocate_reg_info. */
948 void
949 free_reg_info (void)
951 if (reg_pref)
953 free (reg_pref);
954 reg_pref = NULL;
957 if (reg_renumber)
959 free (reg_renumber);
960 reg_renumber = NULL;
964 /* Initialize some global data for this pass. */
965 static unsigned int
966 reginfo_init (void)
968 if (df)
969 df_compute_regs_ever_live (true);
971 /* This prevents dump_reg_info from losing if called
972 before reginfo is run. */
973 reg_pref = NULL;
974 reg_info_size = max_regno_since_last_resize = 0;
975 /* No more global register variables may be declared. */
976 no_global_reg_vars = 1;
977 return 1;
980 namespace {
982 const pass_data pass_data_reginfo_init =
984 RTL_PASS, /* type */
985 "reginfo", /* name */
986 OPTGROUP_NONE, /* optinfo_flags */
987 TV_NONE, /* tv_id */
988 0, /* properties_required */
989 0, /* properties_provided */
990 0, /* properties_destroyed */
991 0, /* todo_flags_start */
992 0, /* todo_flags_finish */
995 class pass_reginfo_init : public rtl_opt_pass
997 public:
998 pass_reginfo_init (gcc::context *ctxt)
999 : rtl_opt_pass (pass_data_reginfo_init, ctxt)
1002 /* opt_pass methods: */
1003 virtual unsigned int execute (function *) { return reginfo_init (); }
1005 }; // class pass_reginfo_init
1007 } // anon namespace
1009 rtl_opt_pass *
1010 make_pass_reginfo_init (gcc::context *ctxt)
1012 return new pass_reginfo_init (ctxt);
1017 /* Set up preferred, alternate, and allocno classes for REGNO as
1018 PREFCLASS, ALTCLASS, and ALLOCNOCLASS. */
1019 void
1020 setup_reg_classes (int regno,
1021 enum reg_class prefclass, enum reg_class altclass,
1022 enum reg_class allocnoclass)
1024 if (reg_pref == NULL)
1025 return;
1026 gcc_assert (reg_info_size >= max_reg_num ());
1027 reg_pref[regno].prefclass = prefclass;
1028 reg_pref[regno].altclass = altclass;
1029 reg_pref[regno].allocnoclass = allocnoclass;
1033 /* This is the `regscan' pass of the compiler, run just before cse and
1034 again just before loop. It finds the first and last use of each
1035 pseudo-register. */
1037 static void reg_scan_mark_refs (rtx, rtx_insn *);
1039 void
1040 reg_scan (rtx_insn *f, unsigned int nregs ATTRIBUTE_UNUSED)
1042 rtx_insn *insn;
1044 timevar_push (TV_REG_SCAN);
1046 for (insn = f; insn; insn = NEXT_INSN (insn))
1047 if (INSN_P (insn))
1049 reg_scan_mark_refs (PATTERN (insn), insn);
1050 if (REG_NOTES (insn))
1051 reg_scan_mark_refs (REG_NOTES (insn), insn);
1054 timevar_pop (TV_REG_SCAN);
1058 /* X is the expression to scan. INSN is the insn it appears in.
1059 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
1060 We should only record information for REGs with numbers
1061 greater than or equal to MIN_REGNO. */
1062 static void
1063 reg_scan_mark_refs (rtx x, rtx_insn *insn)
1065 enum rtx_code code;
1066 rtx dest;
1067 rtx note;
1069 if (!x)
1070 return;
1071 code = GET_CODE (x);
1072 switch (code)
1074 case CONST:
1075 CASE_CONST_ANY:
1076 case CC0:
1077 case PC:
1078 case SYMBOL_REF:
1079 case LABEL_REF:
1080 case ADDR_VEC:
1081 case ADDR_DIFF_VEC:
1082 case REG:
1083 return;
1085 case EXPR_LIST:
1086 if (XEXP (x, 0))
1087 reg_scan_mark_refs (XEXP (x, 0), insn);
1088 if (XEXP (x, 1))
1089 reg_scan_mark_refs (XEXP (x, 1), insn);
1090 break;
1092 case INSN_LIST:
1093 case INT_LIST:
1094 if (XEXP (x, 1))
1095 reg_scan_mark_refs (XEXP (x, 1), insn);
1096 break;
1098 case CLOBBER:
1099 if (MEM_P (XEXP (x, 0)))
1100 reg_scan_mark_refs (XEXP (XEXP (x, 0), 0), insn);
1101 break;
1103 case CLOBBER_HIGH:
1104 gcc_assert (!(MEM_P (XEXP (x, 0))));
1105 break;
1107 case SET:
1108 /* Count a set of the destination if it is a register. */
1109 for (dest = SET_DEST (x);
1110 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
1111 || GET_CODE (dest) == ZERO_EXTRACT;
1112 dest = XEXP (dest, 0))
1115 /* If this is setting a pseudo from another pseudo or the sum of a
1116 pseudo and a constant integer and the other pseudo is known to be
1117 a pointer, set the destination to be a pointer as well.
1119 Likewise if it is setting the destination from an address or from a
1120 value equivalent to an address or to the sum of an address and
1121 something else.
1123 But don't do any of this if the pseudo corresponds to a user
1124 variable since it should have already been set as a pointer based
1125 on the type. */
1127 if (REG_P (SET_DEST (x))
1128 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
1129 /* If the destination pseudo is set more than once, then other
1130 sets might not be to a pointer value (consider access to a
1131 union in two threads of control in the presence of global
1132 optimizations). So only set REG_POINTER on the destination
1133 pseudo if this is the only set of that pseudo. */
1134 && DF_REG_DEF_COUNT (REGNO (SET_DEST (x))) == 1
1135 && ! REG_USERVAR_P (SET_DEST (x))
1136 && ! REG_POINTER (SET_DEST (x))
1137 && ((REG_P (SET_SRC (x))
1138 && REG_POINTER (SET_SRC (x)))
1139 || ((GET_CODE (SET_SRC (x)) == PLUS
1140 || GET_CODE (SET_SRC (x)) == LO_SUM)
1141 && CONST_INT_P (XEXP (SET_SRC (x), 1))
1142 && REG_P (XEXP (SET_SRC (x), 0))
1143 && REG_POINTER (XEXP (SET_SRC (x), 0)))
1144 || GET_CODE (SET_SRC (x)) == CONST
1145 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
1146 || GET_CODE (SET_SRC (x)) == LABEL_REF
1147 || (GET_CODE (SET_SRC (x)) == HIGH
1148 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
1149 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
1150 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
1151 || ((GET_CODE (SET_SRC (x)) == PLUS
1152 || GET_CODE (SET_SRC (x)) == LO_SUM)
1153 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
1154 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
1155 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
1156 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
1157 && (GET_CODE (XEXP (note, 0)) == CONST
1158 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
1159 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
1160 REG_POINTER (SET_DEST (x)) = 1;
1162 /* If this is setting a register from a register or from a simple
1163 conversion of a register, propagate REG_EXPR. */
1164 if (REG_P (dest) && !REG_ATTRS (dest))
1165 set_reg_attrs_from_value (dest, SET_SRC (x));
1167 /* fall through */
1169 default:
1171 const char *fmt = GET_RTX_FORMAT (code);
1172 int i;
1173 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1175 if (fmt[i] == 'e')
1176 reg_scan_mark_refs (XEXP (x, i), insn);
1177 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
1179 int j;
1180 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1181 reg_scan_mark_refs (XVECEXP (x, i, j), insn);
1189 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
1190 is also in C2. */
1192 reg_class_subset_p (reg_class_t c1, reg_class_t c2)
1194 return (c1 == c2
1195 || c2 == ALL_REGS
1196 || hard_reg_set_subset_p (reg_class_contents[(int) c1],
1197 reg_class_contents[(int) c2]));
1200 /* Return nonzero if there is a register that is in both C1 and C2. */
1202 reg_classes_intersect_p (reg_class_t c1, reg_class_t c2)
1204 return (c1 == c2
1205 || c1 == ALL_REGS
1206 || c2 == ALL_REGS
1207 || hard_reg_set_intersect_p (reg_class_contents[(int) c1],
1208 reg_class_contents[(int) c2]));
1212 inline hashval_t
1213 simplifiable_subregs_hasher::hash (const simplifiable_subreg *value)
1215 inchash::hash h;
1216 h.add_hwi (value->shape.unique_id ());
1217 return h.end ();
1220 inline bool
1221 simplifiable_subregs_hasher::equal (const simplifiable_subreg *value,
1222 const subreg_shape *compare)
1224 return value->shape == *compare;
1227 inline simplifiable_subreg::simplifiable_subreg (const subreg_shape &shape_in)
1228 : shape (shape_in)
1230 CLEAR_HARD_REG_SET (simplifiable_regs);
1233 /* Return the set of hard registers that are able to form the subreg
1234 described by SHAPE. */
1236 const HARD_REG_SET &
1237 simplifiable_subregs (const subreg_shape &shape)
1239 if (!this_target_hard_regs->x_simplifiable_subregs)
1240 this_target_hard_regs->x_simplifiable_subregs
1241 = new hash_table <simplifiable_subregs_hasher> (30);
1242 inchash::hash h;
1243 h.add_hwi (shape.unique_id ());
1244 simplifiable_subreg **slot
1245 = (this_target_hard_regs->x_simplifiable_subregs
1246 ->find_slot_with_hash (&shape, h.end (), INSERT));
1248 if (!*slot)
1250 simplifiable_subreg *info = new simplifiable_subreg (shape);
1251 for (unsigned int i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1252 if (targetm.hard_regno_mode_ok (i, shape.inner_mode)
1253 && simplify_subreg_regno (i, shape.inner_mode, shape.offset,
1254 shape.outer_mode) >= 0)
1255 SET_HARD_REG_BIT (info->simplifiable_regs, i);
1256 *slot = info;
1258 return (*slot)->simplifiable_regs;
1261 /* Passes for keeping and updating info about modes of registers
1262 inside subregisters. */
1264 static HARD_REG_SET **valid_mode_changes;
1265 static obstack valid_mode_changes_obstack;
1267 /* Restrict the choice of register for SUBREG_REG (SUBREG) based
1268 on information about SUBREG.
1270 If PARTIAL_DEF, SUBREG is a partial definition of a multipart inner
1271 register and we want to ensure that the other parts of the inner
1272 register are correctly preserved. If !PARTIAL_DEF we need to
1273 ensure that SUBREG itself can be formed. */
1275 static void
1276 record_subregs_of_mode (rtx subreg, bool partial_def)
1278 unsigned int regno;
1280 if (!REG_P (SUBREG_REG (subreg)))
1281 return;
1283 regno = REGNO (SUBREG_REG (subreg));
1284 if (regno < FIRST_PSEUDO_REGISTER)
1285 return;
1287 subreg_shape shape (shape_of_subreg (subreg));
1288 if (partial_def)
1290 /* The number of independently-accessible SHAPE.outer_mode values
1291 in SHAPE.inner_mode is GET_MODE_SIZE (SHAPE.inner_mode) / SIZE.
1292 We need to check that the assignment will preserve all the other
1293 SIZE-byte chunks in the inner register besides the one that
1294 includes SUBREG.
1296 In practice it is enough to check whether an equivalent
1297 SHAPE.inner_mode value in an adjacent SIZE-byte chunk can be formed.
1298 If the underlying registers are small enough, both subregs will
1299 be valid. If the underlying registers are too large, one of the
1300 subregs will be invalid.
1302 This relies on the fact that we've already been passed
1303 SUBREG with PARTIAL_DEF set to false.
1305 The size of the outer mode must ordered wrt the size of the
1306 inner mode's registers, since otherwise we wouldn't know at
1307 compile time how many registers the outer mode occupies. */
1308 poly_uint64 size = ordered_max (REGMODE_NATURAL_SIZE (shape.inner_mode),
1309 GET_MODE_SIZE (shape.outer_mode));
1310 gcc_checking_assert (known_lt (size, GET_MODE_SIZE (shape.inner_mode)));
1311 if (known_ge (shape.offset, size))
1312 shape.offset -= size;
1313 else
1314 shape.offset += size;
1317 if (valid_mode_changes[regno])
1318 AND_HARD_REG_SET (*valid_mode_changes[regno],
1319 simplifiable_subregs (shape));
1320 else
1322 valid_mode_changes[regno]
1323 = XOBNEW (&valid_mode_changes_obstack, HARD_REG_SET);
1324 COPY_HARD_REG_SET (*valid_mode_changes[regno],
1325 simplifiable_subregs (shape));
1329 /* Call record_subregs_of_mode for all the subregs in X. */
1330 static void
1331 find_subregs_of_mode (rtx x)
1333 enum rtx_code code = GET_CODE (x);
1334 const char * const fmt = GET_RTX_FORMAT (code);
1335 int i;
1337 if (code == SUBREG)
1338 record_subregs_of_mode (x, false);
1340 /* Time for some deep diving. */
1341 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1343 if (fmt[i] == 'e')
1344 find_subregs_of_mode (XEXP (x, i));
1345 else if (fmt[i] == 'E')
1347 int j;
1348 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1349 find_subregs_of_mode (XVECEXP (x, i, j));
1354 void
1355 init_subregs_of_mode (void)
1357 basic_block bb;
1358 rtx_insn *insn;
1360 gcc_obstack_init (&valid_mode_changes_obstack);
1361 valid_mode_changes = XCNEWVEC (HARD_REG_SET *, max_reg_num ());
1363 FOR_EACH_BB_FN (bb, cfun)
1364 FOR_BB_INSNS (bb, insn)
1365 if (NONDEBUG_INSN_P (insn))
1367 find_subregs_of_mode (PATTERN (insn));
1368 df_ref def;
1369 FOR_EACH_INSN_DEF (def, insn)
1370 if (DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL)
1371 && read_modify_subreg_p (DF_REF_REG (def)))
1372 record_subregs_of_mode (DF_REF_REG (def), true);
1376 const HARD_REG_SET *
1377 valid_mode_changes_for_regno (unsigned int regno)
1379 return valid_mode_changes[regno];
1382 void
1383 finish_subregs_of_mode (void)
1385 XDELETEVEC (valid_mode_changes);
1386 obstack_free (&valid_mode_changes_obstack, NULL);
1389 /* Free all data attached to the structure. This isn't a destructor because
1390 we don't want to run on exit. */
1392 void
1393 target_hard_regs::finalize ()
1395 delete x_simplifiable_subregs;