1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /*@@ This file should be rewritten to use an arbitrary precision
21 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
22 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
23 @@ The routines that translate from the ap rep should
24 @@ warn if precision et. al. is lost.
25 @@ This would also make life easier when this technology is used
26 @@ for cross-compilers. */
28 /* The entry points in this file are fold, size_int_wide and size_binop.
30 fold takes a tree as argument and returns a simplified tree.
32 size_binop takes a tree code for an arithmetic operation
33 and two operands that are trees, and produces a tree for the
34 result, assuming the type comes from `sizetype'.
36 size_int takes an integer value, and creates a tree constant
37 with type from `sizetype'.
39 Note: Since the folders get called on non-gimple code as well as
40 gimple code, we need to handle GIMPLE tuples as well as their
41 corresponding tree equivalents. */
45 #include "coretypes.h"
54 #include "tree-ssa-operands.h"
55 #include "optabs-query.h"
57 #include "diagnostic-core.h"
60 #include "fold-const.h"
61 #include "fold-const-call.h"
62 #include "stor-layout.h"
64 #include "tree-iterator.h"
67 #include "langhooks.h"
72 #include "generic-match.h"
73 #include "gimple-fold.h"
75 #include "tree-into-ssa.h"
77 #include "case-cfn-macros.h"
78 #include "stringpool.h"
80 #include "tree-ssanames.h"
82 #include "stringpool.h"
84 #include "tree-vector-builder.h"
85 #include "vec-perm-indices.h"
87 /* Nonzero if we are folding constants inside an initializer; zero
89 int folding_initializer
= 0;
91 /* The following constants represent a bit based encoding of GCC's
92 comparison operators. This encoding simplifies transformations
93 on relational comparison operators, such as AND and OR. */
94 enum comparison_code
{
113 static bool negate_expr_p (tree
);
114 static tree
negate_expr (tree
);
115 static tree
associate_trees (location_t
, tree
, tree
, enum tree_code
, tree
);
116 static enum comparison_code
comparison_to_compcode (enum tree_code
);
117 static enum tree_code
compcode_to_comparison (enum comparison_code
);
118 static int twoval_comparison_p (tree
, tree
*, tree
*);
119 static tree
eval_subst (location_t
, tree
, tree
, tree
, tree
, tree
);
120 static tree
optimize_bit_field_compare (location_t
, enum tree_code
,
122 static int simple_operand_p (const_tree
);
123 static bool simple_operand_p_2 (tree
);
124 static tree
range_binop (enum tree_code
, tree
, tree
, int, tree
, int);
125 static tree
range_predecessor (tree
);
126 static tree
range_successor (tree
);
127 static tree
fold_range_test (location_t
, enum tree_code
, tree
, tree
, tree
);
128 static tree
fold_cond_expr_with_comparison (location_t
, tree
, tree
, tree
, tree
);
129 static tree
unextend (tree
, int, int, tree
);
130 static tree
extract_muldiv (tree
, tree
, enum tree_code
, tree
, bool *);
131 static tree
extract_muldiv_1 (tree
, tree
, enum tree_code
, tree
, bool *);
132 static tree
fold_binary_op_with_conditional_arg (location_t
,
133 enum tree_code
, tree
,
136 static tree
fold_negate_const (tree
, tree
);
137 static tree
fold_not_const (const_tree
, tree
);
138 static tree
fold_relational_const (enum tree_code
, tree
, tree
, tree
);
139 static tree
fold_convert_const (enum tree_code
, tree
, tree
);
140 static tree
fold_view_convert_expr (tree
, tree
);
141 static tree
fold_negate_expr (location_t
, tree
);
144 /* Return EXPR_LOCATION of T if it is not UNKNOWN_LOCATION.
145 Otherwise, return LOC. */
148 expr_location_or (tree t
, location_t loc
)
150 location_t tloc
= EXPR_LOCATION (t
);
151 return tloc
== UNKNOWN_LOCATION
? loc
: tloc
;
154 /* Similar to protected_set_expr_location, but never modify x in place,
155 if location can and needs to be set, unshare it. */
158 protected_set_expr_location_unshare (tree x
, location_t loc
)
160 if (CAN_HAVE_LOCATION_P (x
)
161 && EXPR_LOCATION (x
) != loc
162 && !(TREE_CODE (x
) == SAVE_EXPR
163 || TREE_CODE (x
) == TARGET_EXPR
164 || TREE_CODE (x
) == BIND_EXPR
))
167 SET_EXPR_LOCATION (x
, loc
);
172 /* If ARG2 divides ARG1 with zero remainder, carries out the exact
173 division and returns the quotient. Otherwise returns
177 div_if_zero_remainder (const_tree arg1
, const_tree arg2
)
181 if (wi::multiple_of_p (wi::to_widest (arg1
), wi::to_widest (arg2
),
183 return wide_int_to_tree (TREE_TYPE (arg1
), quo
);
188 /* This is nonzero if we should defer warnings about undefined
189 overflow. This facility exists because these warnings are a
190 special case. The code to estimate loop iterations does not want
191 to issue any warnings, since it works with expressions which do not
192 occur in user code. Various bits of cleanup code call fold(), but
193 only use the result if it has certain characteristics (e.g., is a
194 constant); that code only wants to issue a warning if the result is
197 static int fold_deferring_overflow_warnings
;
199 /* If a warning about undefined overflow is deferred, this is the
200 warning. Note that this may cause us to turn two warnings into
201 one, but that is fine since it is sufficient to only give one
202 warning per expression. */
204 static const char* fold_deferred_overflow_warning
;
206 /* If a warning about undefined overflow is deferred, this is the
207 level at which the warning should be emitted. */
209 static enum warn_strict_overflow_code fold_deferred_overflow_code
;
211 /* Start deferring overflow warnings. We could use a stack here to
212 permit nested calls, but at present it is not necessary. */
215 fold_defer_overflow_warnings (void)
217 ++fold_deferring_overflow_warnings
;
220 /* Stop deferring overflow warnings. If there is a pending warning,
221 and ISSUE is true, then issue the warning if appropriate. STMT is
222 the statement with which the warning should be associated (used for
223 location information); STMT may be NULL. CODE is the level of the
224 warning--a warn_strict_overflow_code value. This function will use
225 the smaller of CODE and the deferred code when deciding whether to
226 issue the warning. CODE may be zero to mean to always use the
230 fold_undefer_overflow_warnings (bool issue
, const gimple
*stmt
, int code
)
235 gcc_assert (fold_deferring_overflow_warnings
> 0);
236 --fold_deferring_overflow_warnings
;
237 if (fold_deferring_overflow_warnings
> 0)
239 if (fold_deferred_overflow_warning
!= NULL
241 && code
< (int) fold_deferred_overflow_code
)
242 fold_deferred_overflow_code
= (enum warn_strict_overflow_code
) code
;
246 warnmsg
= fold_deferred_overflow_warning
;
247 fold_deferred_overflow_warning
= NULL
;
249 if (!issue
|| warnmsg
== NULL
)
252 if (gimple_no_warning_p (stmt
))
255 /* Use the smallest code level when deciding to issue the
257 if (code
== 0 || code
> (int) fold_deferred_overflow_code
)
258 code
= fold_deferred_overflow_code
;
260 if (!issue_strict_overflow_warning (code
))
264 locus
= input_location
;
266 locus
= gimple_location (stmt
);
267 warning_at (locus
, OPT_Wstrict_overflow
, "%s", warnmsg
);
270 /* Stop deferring overflow warnings, ignoring any deferred
274 fold_undefer_and_ignore_overflow_warnings (void)
276 fold_undefer_overflow_warnings (false, NULL
, 0);
279 /* Whether we are deferring overflow warnings. */
282 fold_deferring_overflow_warnings_p (void)
284 return fold_deferring_overflow_warnings
> 0;
287 /* This is called when we fold something based on the fact that signed
288 overflow is undefined. */
291 fold_overflow_warning (const char* gmsgid
, enum warn_strict_overflow_code wc
)
293 if (fold_deferring_overflow_warnings
> 0)
295 if (fold_deferred_overflow_warning
== NULL
296 || wc
< fold_deferred_overflow_code
)
298 fold_deferred_overflow_warning
= gmsgid
;
299 fold_deferred_overflow_code
= wc
;
302 else if (issue_strict_overflow_warning (wc
))
303 warning (OPT_Wstrict_overflow
, gmsgid
);
306 /* Return true if the built-in mathematical function specified by CODE
307 is odd, i.e. -f(x) == f(-x). */
310 negate_mathfn_p (combined_fn fn
)
343 return !flag_rounding_math
;
351 /* Check whether we may negate an integer constant T without causing
355 may_negate_without_overflow_p (const_tree t
)
359 gcc_assert (TREE_CODE (t
) == INTEGER_CST
);
361 type
= TREE_TYPE (t
);
362 if (TYPE_UNSIGNED (type
))
365 return !wi::only_sign_bit_p (wi::to_wide (t
));
368 /* Determine whether an expression T can be cheaply negated using
369 the function negate_expr without introducing undefined overflow. */
372 negate_expr_p (tree t
)
379 type
= TREE_TYPE (t
);
382 switch (TREE_CODE (t
))
385 if (INTEGRAL_TYPE_P (type
) && TYPE_UNSIGNED (type
))
388 /* Check that -CST will not overflow type. */
389 return may_negate_without_overflow_p (t
);
391 return (INTEGRAL_TYPE_P (type
)
392 && TYPE_OVERFLOW_WRAPS (type
));
398 return !TYPE_OVERFLOW_SANITIZED (type
);
401 /* We want to canonicalize to positive real constants. Pretend
402 that only negative ones can be easily negated. */
403 return REAL_VALUE_NEGATIVE (TREE_REAL_CST (t
));
406 return negate_expr_p (TREE_REALPART (t
))
407 && negate_expr_p (TREE_IMAGPART (t
));
411 if (FLOAT_TYPE_P (TREE_TYPE (type
)) || TYPE_OVERFLOW_WRAPS (type
))
414 /* Steps don't prevent negation. */
415 unsigned int count
= vector_cst_encoded_nelts (t
);
416 for (unsigned int i
= 0; i
< count
; ++i
)
417 if (!negate_expr_p (VECTOR_CST_ENCODED_ELT (t
, i
)))
424 return negate_expr_p (TREE_OPERAND (t
, 0))
425 && negate_expr_p (TREE_OPERAND (t
, 1));
428 return negate_expr_p (TREE_OPERAND (t
, 0));
431 if (HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
))
432 || HONOR_SIGNED_ZEROS (element_mode (type
))
433 || (ANY_INTEGRAL_TYPE_P (type
)
434 && ! TYPE_OVERFLOW_WRAPS (type
)))
436 /* -(A + B) -> (-B) - A. */
437 if (negate_expr_p (TREE_OPERAND (t
, 1)))
439 /* -(A + B) -> (-A) - B. */
440 return negate_expr_p (TREE_OPERAND (t
, 0));
443 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
444 return !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
))
445 && !HONOR_SIGNED_ZEROS (element_mode (type
))
446 && (! ANY_INTEGRAL_TYPE_P (type
)
447 || TYPE_OVERFLOW_WRAPS (type
));
450 if (TYPE_UNSIGNED (type
))
452 /* INT_MIN/n * n doesn't overflow while negating one operand it does
453 if n is a (negative) power of two. */
454 if (INTEGRAL_TYPE_P (TREE_TYPE (t
))
455 && ! TYPE_OVERFLOW_WRAPS (TREE_TYPE (t
))
456 && ! ((TREE_CODE (TREE_OPERAND (t
, 0)) == INTEGER_CST
458 (wi::abs (wi::to_wide (TREE_OPERAND (t
, 0))))) != 1)
459 || (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
461 (wi::abs (wi::to_wide (TREE_OPERAND (t
, 1))))) != 1)))
467 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (TREE_TYPE (t
))))
468 return negate_expr_p (TREE_OPERAND (t
, 1))
469 || negate_expr_p (TREE_OPERAND (t
, 0));
475 if (TYPE_UNSIGNED (type
))
477 /* In general we can't negate A in A / B, because if A is INT_MIN and
478 B is not 1 we change the sign of the result. */
479 if (TREE_CODE (TREE_OPERAND (t
, 0)) == INTEGER_CST
480 && negate_expr_p (TREE_OPERAND (t
, 0)))
482 /* In general we can't negate B in A / B, because if A is INT_MIN and
483 B is 1, we may turn this into INT_MIN / -1 which is undefined
484 and actually traps on some architectures. */
485 if (! ANY_INTEGRAL_TYPE_P (TREE_TYPE (t
))
486 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t
))
487 || (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
488 && ! integer_onep (TREE_OPERAND (t
, 1))))
489 return negate_expr_p (TREE_OPERAND (t
, 1));
493 /* Negate -((double)float) as (double)(-float). */
494 if (TREE_CODE (type
) == REAL_TYPE
)
496 tree tem
= strip_float_extensions (t
);
498 return negate_expr_p (tem
);
503 /* Negate -f(x) as f(-x). */
504 if (negate_mathfn_p (get_call_combined_fn (t
)))
505 return negate_expr_p (CALL_EXPR_ARG (t
, 0));
509 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
510 if (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
)
512 tree op1
= TREE_OPERAND (t
, 1);
513 if (wi::to_wide (op1
) == TYPE_PRECISION (type
) - 1)
524 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
525 simplification is possible.
526 If negate_expr_p would return true for T, NULL_TREE will never be
530 fold_negate_expr_1 (location_t loc
, tree t
)
532 tree type
= TREE_TYPE (t
);
535 switch (TREE_CODE (t
))
537 /* Convert - (~A) to A + 1. */
539 if (INTEGRAL_TYPE_P (type
))
540 return fold_build2_loc (loc
, PLUS_EXPR
, type
, TREE_OPERAND (t
, 0),
541 build_one_cst (type
));
545 tem
= fold_negate_const (t
, type
);
546 if (TREE_OVERFLOW (tem
) == TREE_OVERFLOW (t
)
547 || (ANY_INTEGRAL_TYPE_P (type
)
548 && !TYPE_OVERFLOW_TRAPS (type
)
549 && TYPE_OVERFLOW_WRAPS (type
))
550 || (flag_sanitize
& SANITIZE_SI_OVERFLOW
) == 0)
557 tem
= fold_negate_const (t
, type
);
562 tree rpart
= fold_negate_expr (loc
, TREE_REALPART (t
));
563 tree ipart
= fold_negate_expr (loc
, TREE_IMAGPART (t
));
565 return build_complex (type
, rpart
, ipart
);
571 tree_vector_builder elts
;
572 elts
.new_unary_operation (type
, t
, true);
573 unsigned int count
= elts
.encoded_nelts ();
574 for (unsigned int i
= 0; i
< count
; ++i
)
576 tree elt
= fold_negate_expr (loc
, VECTOR_CST_ELT (t
, i
));
577 if (elt
== NULL_TREE
)
579 elts
.quick_push (elt
);
582 return elts
.build ();
586 if (negate_expr_p (t
))
587 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
,
588 fold_negate_expr (loc
, TREE_OPERAND (t
, 0)),
589 fold_negate_expr (loc
, TREE_OPERAND (t
, 1)));
593 if (negate_expr_p (t
))
594 return fold_build1_loc (loc
, CONJ_EXPR
, type
,
595 fold_negate_expr (loc
, TREE_OPERAND (t
, 0)));
599 if (!TYPE_OVERFLOW_SANITIZED (type
))
600 return TREE_OPERAND (t
, 0);
604 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
))
605 && !HONOR_SIGNED_ZEROS (element_mode (type
)))
607 /* -(A + B) -> (-B) - A. */
608 if (negate_expr_p (TREE_OPERAND (t
, 1)))
610 tem
= negate_expr (TREE_OPERAND (t
, 1));
611 return fold_build2_loc (loc
, MINUS_EXPR
, type
,
612 tem
, TREE_OPERAND (t
, 0));
615 /* -(A + B) -> (-A) - B. */
616 if (negate_expr_p (TREE_OPERAND (t
, 0)))
618 tem
= negate_expr (TREE_OPERAND (t
, 0));
619 return fold_build2_loc (loc
, MINUS_EXPR
, type
,
620 tem
, TREE_OPERAND (t
, 1));
626 /* - (A - B) -> B - A */
627 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
))
628 && !HONOR_SIGNED_ZEROS (element_mode (type
)))
629 return fold_build2_loc (loc
, MINUS_EXPR
, type
,
630 TREE_OPERAND (t
, 1), TREE_OPERAND (t
, 0));
634 if (TYPE_UNSIGNED (type
))
640 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
)))
642 tem
= TREE_OPERAND (t
, 1);
643 if (negate_expr_p (tem
))
644 return fold_build2_loc (loc
, TREE_CODE (t
), type
,
645 TREE_OPERAND (t
, 0), negate_expr (tem
));
646 tem
= TREE_OPERAND (t
, 0);
647 if (negate_expr_p (tem
))
648 return fold_build2_loc (loc
, TREE_CODE (t
), type
,
649 negate_expr (tem
), TREE_OPERAND (t
, 1));
656 if (TYPE_UNSIGNED (type
))
658 /* In general we can't negate A in A / B, because if A is INT_MIN and
659 B is not 1 we change the sign of the result. */
660 if (TREE_CODE (TREE_OPERAND (t
, 0)) == INTEGER_CST
661 && negate_expr_p (TREE_OPERAND (t
, 0)))
662 return fold_build2_loc (loc
, TREE_CODE (t
), type
,
663 negate_expr (TREE_OPERAND (t
, 0)),
664 TREE_OPERAND (t
, 1));
665 /* In general we can't negate B in A / B, because if A is INT_MIN and
666 B is 1, we may turn this into INT_MIN / -1 which is undefined
667 and actually traps on some architectures. */
668 if ((! ANY_INTEGRAL_TYPE_P (TREE_TYPE (t
))
669 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t
))
670 || (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
671 && ! integer_onep (TREE_OPERAND (t
, 1))))
672 && negate_expr_p (TREE_OPERAND (t
, 1)))
673 return fold_build2_loc (loc
, TREE_CODE (t
), type
,
675 negate_expr (TREE_OPERAND (t
, 1)));
679 /* Convert -((double)float) into (double)(-float). */
680 if (TREE_CODE (type
) == REAL_TYPE
)
682 tem
= strip_float_extensions (t
);
683 if (tem
!= t
&& negate_expr_p (tem
))
684 return fold_convert_loc (loc
, type
, negate_expr (tem
));
689 /* Negate -f(x) as f(-x). */
690 if (negate_mathfn_p (get_call_combined_fn (t
))
691 && negate_expr_p (CALL_EXPR_ARG (t
, 0)))
695 fndecl
= get_callee_fndecl (t
);
696 arg
= negate_expr (CALL_EXPR_ARG (t
, 0));
697 return build_call_expr_loc (loc
, fndecl
, 1, arg
);
702 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
703 if (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
)
705 tree op1
= TREE_OPERAND (t
, 1);
706 if (wi::to_wide (op1
) == TYPE_PRECISION (type
) - 1)
708 tree ntype
= TYPE_UNSIGNED (type
)
709 ? signed_type_for (type
)
710 : unsigned_type_for (type
);
711 tree temp
= fold_convert_loc (loc
, ntype
, TREE_OPERAND (t
, 0));
712 temp
= fold_build2_loc (loc
, RSHIFT_EXPR
, ntype
, temp
, op1
);
713 return fold_convert_loc (loc
, type
, temp
);
725 /* A wrapper for fold_negate_expr_1. */
728 fold_negate_expr (location_t loc
, tree t
)
730 tree type
= TREE_TYPE (t
);
732 tree tem
= fold_negate_expr_1 (loc
, t
);
733 if (tem
== NULL_TREE
)
735 return fold_convert_loc (loc
, type
, tem
);
738 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T can not be
739 negated in a simpler way. Also allow for T to be NULL_TREE, in which case
751 loc
= EXPR_LOCATION (t
);
752 type
= TREE_TYPE (t
);
755 tem
= fold_negate_expr (loc
, t
);
757 tem
= build1_loc (loc
, NEGATE_EXPR
, TREE_TYPE (t
), t
);
758 return fold_convert_loc (loc
, type
, tem
);
761 /* Split a tree IN into a constant, literal and variable parts that could be
762 combined with CODE to make IN. "constant" means an expression with
763 TREE_CONSTANT but that isn't an actual constant. CODE must be a
764 commutative arithmetic operation. Store the constant part into *CONP,
765 the literal in *LITP and return the variable part. If a part isn't
766 present, set it to null. If the tree does not decompose in this way,
767 return the entire tree as the variable part and the other parts as null.
769 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
770 case, we negate an operand that was subtracted. Except if it is a
771 literal for which we use *MINUS_LITP instead.
773 If NEGATE_P is true, we are negating all of IN, again except a literal
774 for which we use *MINUS_LITP instead. If a variable part is of pointer
775 type, it is negated after converting to TYPE. This prevents us from
776 generating illegal MINUS pointer expression. LOC is the location of
777 the converted variable part.
779 If IN is itself a literal or constant, return it as appropriate.
781 Note that we do not guarantee that any of the three values will be the
782 same type as IN, but they will have the same signedness and mode. */
785 split_tree (tree in
, tree type
, enum tree_code code
,
786 tree
*minus_varp
, tree
*conp
, tree
*minus_conp
,
787 tree
*litp
, tree
*minus_litp
, int negate_p
)
796 /* Strip any conversions that don't change the machine mode or signedness. */
797 STRIP_SIGN_NOPS (in
);
799 if (TREE_CODE (in
) == INTEGER_CST
|| TREE_CODE (in
) == REAL_CST
800 || TREE_CODE (in
) == FIXED_CST
)
802 else if (TREE_CODE (in
) == code
803 || ((! FLOAT_TYPE_P (TREE_TYPE (in
)) || flag_associative_math
)
804 && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in
))
805 /* We can associate addition and subtraction together (even
806 though the C standard doesn't say so) for integers because
807 the value is not affected. For reals, the value might be
808 affected, so we can't. */
809 && ((code
== PLUS_EXPR
&& TREE_CODE (in
) == POINTER_PLUS_EXPR
)
810 || (code
== PLUS_EXPR
&& TREE_CODE (in
) == MINUS_EXPR
)
811 || (code
== MINUS_EXPR
812 && (TREE_CODE (in
) == PLUS_EXPR
813 || TREE_CODE (in
) == POINTER_PLUS_EXPR
)))))
815 tree op0
= TREE_OPERAND (in
, 0);
816 tree op1
= TREE_OPERAND (in
, 1);
817 int neg1_p
= TREE_CODE (in
) == MINUS_EXPR
;
818 int neg_litp_p
= 0, neg_conp_p
= 0, neg_var_p
= 0;
820 /* First see if either of the operands is a literal, then a constant. */
821 if (TREE_CODE (op0
) == INTEGER_CST
|| TREE_CODE (op0
) == REAL_CST
822 || TREE_CODE (op0
) == FIXED_CST
)
823 *litp
= op0
, op0
= 0;
824 else if (TREE_CODE (op1
) == INTEGER_CST
|| TREE_CODE (op1
) == REAL_CST
825 || TREE_CODE (op1
) == FIXED_CST
)
826 *litp
= op1
, neg_litp_p
= neg1_p
, op1
= 0;
828 if (op0
!= 0 && TREE_CONSTANT (op0
))
829 *conp
= op0
, op0
= 0;
830 else if (op1
!= 0 && TREE_CONSTANT (op1
))
831 *conp
= op1
, neg_conp_p
= neg1_p
, op1
= 0;
833 /* If we haven't dealt with either operand, this is not a case we can
834 decompose. Otherwise, VAR is either of the ones remaining, if any. */
835 if (op0
!= 0 && op1
!= 0)
840 var
= op1
, neg_var_p
= neg1_p
;
842 /* Now do any needed negations. */
844 *minus_litp
= *litp
, *litp
= 0;
845 if (neg_conp_p
&& *conp
)
846 *minus_conp
= *conp
, *conp
= 0;
847 if (neg_var_p
&& var
)
848 *minus_varp
= var
, var
= 0;
850 else if (TREE_CONSTANT (in
))
852 else if (TREE_CODE (in
) == BIT_NOT_EXPR
853 && code
== PLUS_EXPR
)
855 /* -1 - X is folded to ~X, undo that here. Do _not_ do this
856 when IN is constant. */
857 *litp
= build_minus_one_cst (type
);
858 *minus_varp
= TREE_OPERAND (in
, 0);
866 *minus_litp
= *litp
, *litp
= 0;
867 else if (*minus_litp
)
868 *litp
= *minus_litp
, *minus_litp
= 0;
870 *minus_conp
= *conp
, *conp
= 0;
871 else if (*minus_conp
)
872 *conp
= *minus_conp
, *minus_conp
= 0;
874 *minus_varp
= var
, var
= 0;
875 else if (*minus_varp
)
876 var
= *minus_varp
, *minus_varp
= 0;
880 && TREE_OVERFLOW_P (*litp
))
881 *litp
= drop_tree_overflow (*litp
);
883 && TREE_OVERFLOW_P (*minus_litp
))
884 *minus_litp
= drop_tree_overflow (*minus_litp
);
889 /* Re-associate trees split by the above function. T1 and T2 are
890 either expressions to associate or null. Return the new
891 expression, if any. LOC is the location of the new expression. If
892 we build an operation, do it in TYPE and with CODE. */
895 associate_trees (location_t loc
, tree t1
, tree t2
, enum tree_code code
, tree type
)
899 gcc_assert (t2
== 0 || code
!= MINUS_EXPR
);
905 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
906 try to fold this since we will have infinite recursion. But do
907 deal with any NEGATE_EXPRs. */
908 if (TREE_CODE (t1
) == code
|| TREE_CODE (t2
) == code
909 || TREE_CODE (t1
) == PLUS_EXPR
|| TREE_CODE (t2
) == PLUS_EXPR
910 || TREE_CODE (t1
) == MINUS_EXPR
|| TREE_CODE (t2
) == MINUS_EXPR
)
912 if (code
== PLUS_EXPR
)
914 if (TREE_CODE (t1
) == NEGATE_EXPR
)
915 return build2_loc (loc
, MINUS_EXPR
, type
,
916 fold_convert_loc (loc
, type
, t2
),
917 fold_convert_loc (loc
, type
,
918 TREE_OPERAND (t1
, 0)));
919 else if (TREE_CODE (t2
) == NEGATE_EXPR
)
920 return build2_loc (loc
, MINUS_EXPR
, type
,
921 fold_convert_loc (loc
, type
, t1
),
922 fold_convert_loc (loc
, type
,
923 TREE_OPERAND (t2
, 0)));
924 else if (integer_zerop (t2
))
925 return fold_convert_loc (loc
, type
, t1
);
927 else if (code
== MINUS_EXPR
)
929 if (integer_zerop (t2
))
930 return fold_convert_loc (loc
, type
, t1
);
933 return build2_loc (loc
, code
, type
, fold_convert_loc (loc
, type
, t1
),
934 fold_convert_loc (loc
, type
, t2
));
937 return fold_build2_loc (loc
, code
, type
, fold_convert_loc (loc
, type
, t1
),
938 fold_convert_loc (loc
, type
, t2
));
941 /* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable
942 for use in int_const_binop, size_binop and size_diffop. */
945 int_binop_types_match_p (enum tree_code code
, const_tree type1
, const_tree type2
)
947 if (!INTEGRAL_TYPE_P (type1
) && !POINTER_TYPE_P (type1
))
949 if (!INTEGRAL_TYPE_P (type2
) && !POINTER_TYPE_P (type2
))
964 return TYPE_UNSIGNED (type1
) == TYPE_UNSIGNED (type2
)
965 && TYPE_PRECISION (type1
) == TYPE_PRECISION (type2
)
966 && TYPE_MODE (type1
) == TYPE_MODE (type2
);
969 /* Combine two wide ints ARG1 and ARG2 under operation CODE to produce
970 a new constant in RES. Return FALSE if we don't know how to
971 evaluate CODE at compile-time. */
974 wide_int_binop (wide_int
&res
,
975 enum tree_code code
, const wide_int
&arg1
, const wide_int
&arg2
,
976 signop sign
, wi::overflow_type
*overflow
)
979 *overflow
= wi::OVF_NONE
;
983 res
= wi::bit_or (arg1
, arg2
);
987 res
= wi::bit_xor (arg1
, arg2
);
991 res
= wi::bit_and (arg1
, arg2
);
996 if (wi::neg_p (arg2
))
999 if (code
== RSHIFT_EXPR
)
1007 if (code
== RSHIFT_EXPR
)
1008 /* It's unclear from the C standard whether shifts can overflow.
1009 The following code ignores overflow; perhaps a C standard
1010 interpretation ruling is needed. */
1011 res
= wi::rshift (arg1
, tmp
, sign
);
1013 res
= wi::lshift (arg1
, tmp
);
1018 if (wi::neg_p (arg2
))
1021 if (code
== RROTATE_EXPR
)
1022 code
= LROTATE_EXPR
;
1024 code
= RROTATE_EXPR
;
1029 if (code
== RROTATE_EXPR
)
1030 res
= wi::rrotate (arg1
, tmp
);
1032 res
= wi::lrotate (arg1
, tmp
);
1036 res
= wi::add (arg1
, arg2
, sign
, overflow
);
1040 res
= wi::sub (arg1
, arg2
, sign
, overflow
);
1044 res
= wi::mul (arg1
, arg2
, sign
, overflow
);
1047 case MULT_HIGHPART_EXPR
:
1048 res
= wi::mul_high (arg1
, arg2
, sign
);
1051 case TRUNC_DIV_EXPR
:
1052 case EXACT_DIV_EXPR
:
1055 res
= wi::div_trunc (arg1
, arg2
, sign
, overflow
);
1058 case FLOOR_DIV_EXPR
:
1061 res
= wi::div_floor (arg1
, arg2
, sign
, overflow
);
1067 res
= wi::div_ceil (arg1
, arg2
, sign
, overflow
);
1070 case ROUND_DIV_EXPR
:
1073 res
= wi::div_round (arg1
, arg2
, sign
, overflow
);
1076 case TRUNC_MOD_EXPR
:
1079 res
= wi::mod_trunc (arg1
, arg2
, sign
, overflow
);
1082 case FLOOR_MOD_EXPR
:
1085 res
= wi::mod_floor (arg1
, arg2
, sign
, overflow
);
1091 res
= wi::mod_ceil (arg1
, arg2
, sign
, overflow
);
1094 case ROUND_MOD_EXPR
:
1097 res
= wi::mod_round (arg1
, arg2
, sign
, overflow
);
1101 res
= wi::min (arg1
, arg2
, sign
);
1105 res
= wi::max (arg1
, arg2
, sign
);
1114 /* Combine two poly int's ARG1 and ARG2 under operation CODE to
1115 produce a new constant in RES. Return FALSE if we don't know how
1116 to evaluate CODE at compile-time. */
1119 poly_int_binop (poly_wide_int
&res
, enum tree_code code
,
1120 const_tree arg1
, const_tree arg2
,
1121 signop sign
, wi::overflow_type
*overflow
)
1123 gcc_assert (NUM_POLY_INT_COEFFS
!= 1);
1124 gcc_assert (poly_int_tree_p (arg1
) && poly_int_tree_p (arg2
));
1128 res
= wi::add (wi::to_poly_wide (arg1
),
1129 wi::to_poly_wide (arg2
), sign
, overflow
);
1133 res
= wi::sub (wi::to_poly_wide (arg1
),
1134 wi::to_poly_wide (arg2
), sign
, overflow
);
1138 if (TREE_CODE (arg2
) == INTEGER_CST
)
1139 res
= wi::mul (wi::to_poly_wide (arg1
),
1140 wi::to_wide (arg2
), sign
, overflow
);
1141 else if (TREE_CODE (arg1
) == INTEGER_CST
)
1142 res
= wi::mul (wi::to_poly_wide (arg2
),
1143 wi::to_wide (arg1
), sign
, overflow
);
1149 if (TREE_CODE (arg2
) == INTEGER_CST
)
1150 res
= wi::to_poly_wide (arg1
) << wi::to_wide (arg2
);
1156 if (TREE_CODE (arg2
) != INTEGER_CST
1157 || !can_ior_p (wi::to_poly_wide (arg1
), wi::to_wide (arg2
),
1168 /* Combine two integer constants ARG1 and ARG2 under operation CODE to
1169 produce a new constant. Return NULL_TREE if we don't know how to
1170 evaluate CODE at compile-time. */
1173 int_const_binop (enum tree_code code
, const_tree arg1
, const_tree arg2
,
1176 bool success
= false;
1177 poly_wide_int poly_res
;
1178 tree type
= TREE_TYPE (arg1
);
1179 signop sign
= TYPE_SIGN (type
);
1180 wi::overflow_type overflow
= wi::OVF_NONE
;
1182 if (TREE_CODE (arg1
) == INTEGER_CST
&& TREE_CODE (arg2
) == INTEGER_CST
)
1184 wide_int warg1
= wi::to_wide (arg1
), res
;
1185 wide_int warg2
= wi::to_wide (arg2
, TYPE_PRECISION (type
));
1186 success
= wide_int_binop (res
, code
, warg1
, warg2
, sign
, &overflow
);
1189 else if (poly_int_tree_p (arg1
) && poly_int_tree_p (arg2
))
1190 success
= poly_int_binop (poly_res
, code
, arg1
, arg2
, sign
, &overflow
);
1192 return force_fit_type (type
, poly_res
, overflowable
,
1193 (((sign
== SIGNED
|| overflowable
== -1)
1195 | TREE_OVERFLOW (arg1
) | TREE_OVERFLOW (arg2
)));
1199 /* Return true if binary operation OP distributes over addition in operand
1200 OPNO, with the other operand being held constant. OPNO counts from 1. */
1203 distributes_over_addition_p (tree_code op
, int opno
)
1220 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1221 constant. We assume ARG1 and ARG2 have the same data type, or at least
1222 are the same kind of constant and the same machine mode. Return zero if
1223 combining the constants is not allowed in the current operating mode. */
1226 const_binop (enum tree_code code
, tree arg1
, tree arg2
)
1228 /* Sanity check for the recursive cases. */
1235 if (poly_int_tree_p (arg1
) && poly_int_tree_p (arg2
))
1237 if (code
== POINTER_PLUS_EXPR
)
1238 return int_const_binop (PLUS_EXPR
,
1239 arg1
, fold_convert (TREE_TYPE (arg1
), arg2
));
1241 return int_const_binop (code
, arg1
, arg2
);
1244 if (TREE_CODE (arg1
) == REAL_CST
&& TREE_CODE (arg2
) == REAL_CST
)
1249 REAL_VALUE_TYPE value
;
1250 REAL_VALUE_TYPE result
;
1254 /* The following codes are handled by real_arithmetic. */
1269 d1
= TREE_REAL_CST (arg1
);
1270 d2
= TREE_REAL_CST (arg2
);
1272 type
= TREE_TYPE (arg1
);
1273 mode
= TYPE_MODE (type
);
1275 /* Don't perform operation if we honor signaling NaNs and
1276 either operand is a signaling NaN. */
1277 if (HONOR_SNANS (mode
)
1278 && (REAL_VALUE_ISSIGNALING_NAN (d1
)
1279 || REAL_VALUE_ISSIGNALING_NAN (d2
)))
1282 /* Don't perform operation if it would raise a division
1283 by zero exception. */
1284 if (code
== RDIV_EXPR
1285 && real_equal (&d2
, &dconst0
)
1286 && (flag_trapping_math
|| ! MODE_HAS_INFINITIES (mode
)))
1289 /* If either operand is a NaN, just return it. Otherwise, set up
1290 for floating-point trap; we return an overflow. */
1291 if (REAL_VALUE_ISNAN (d1
))
1293 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1296 t
= build_real (type
, d1
);
1299 else if (REAL_VALUE_ISNAN (d2
))
1301 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1304 t
= build_real (type
, d2
);
1308 inexact
= real_arithmetic (&value
, code
, &d1
, &d2
);
1309 real_convert (&result
, mode
, &value
);
1311 /* Don't constant fold this floating point operation if
1312 the result has overflowed and flag_trapping_math. */
1313 if (flag_trapping_math
1314 && MODE_HAS_INFINITIES (mode
)
1315 && REAL_VALUE_ISINF (result
)
1316 && !REAL_VALUE_ISINF (d1
)
1317 && !REAL_VALUE_ISINF (d2
))
1320 /* Don't constant fold this floating point operation if the
1321 result may dependent upon the run-time rounding mode and
1322 flag_rounding_math is set, or if GCC's software emulation
1323 is unable to accurately represent the result. */
1324 if ((flag_rounding_math
1325 || (MODE_COMPOSITE_P (mode
) && !flag_unsafe_math_optimizations
))
1326 && (inexact
|| !real_identical (&result
, &value
)))
1329 t
= build_real (type
, result
);
1331 TREE_OVERFLOW (t
) = TREE_OVERFLOW (arg1
) | TREE_OVERFLOW (arg2
);
1335 if (TREE_CODE (arg1
) == FIXED_CST
)
1337 FIXED_VALUE_TYPE f1
;
1338 FIXED_VALUE_TYPE f2
;
1339 FIXED_VALUE_TYPE result
;
1344 /* The following codes are handled by fixed_arithmetic. */
1350 case TRUNC_DIV_EXPR
:
1351 if (TREE_CODE (arg2
) != FIXED_CST
)
1353 f2
= TREE_FIXED_CST (arg2
);
1359 if (TREE_CODE (arg2
) != INTEGER_CST
)
1361 wi::tree_to_wide_ref w2
= wi::to_wide (arg2
);
1362 f2
.data
.high
= w2
.elt (1);
1363 f2
.data
.low
= w2
.ulow ();
1372 f1
= TREE_FIXED_CST (arg1
);
1373 type
= TREE_TYPE (arg1
);
1374 sat_p
= TYPE_SATURATING (type
);
1375 overflow_p
= fixed_arithmetic (&result
, code
, &f1
, &f2
, sat_p
);
1376 t
= build_fixed (type
, result
);
1377 /* Propagate overflow flags. */
1378 if (overflow_p
| TREE_OVERFLOW (arg1
) | TREE_OVERFLOW (arg2
))
1379 TREE_OVERFLOW (t
) = 1;
1383 if (TREE_CODE (arg1
) == COMPLEX_CST
&& TREE_CODE (arg2
) == COMPLEX_CST
)
1385 tree type
= TREE_TYPE (arg1
);
1386 tree r1
= TREE_REALPART (arg1
);
1387 tree i1
= TREE_IMAGPART (arg1
);
1388 tree r2
= TREE_REALPART (arg2
);
1389 tree i2
= TREE_IMAGPART (arg2
);
1396 real
= const_binop (code
, r1
, r2
);
1397 imag
= const_binop (code
, i1
, i2
);
1401 if (COMPLEX_FLOAT_TYPE_P (type
))
1402 return do_mpc_arg2 (arg1
, arg2
, type
,
1403 /* do_nonfinite= */ folding_initializer
,
1406 real
= const_binop (MINUS_EXPR
,
1407 const_binop (MULT_EXPR
, r1
, r2
),
1408 const_binop (MULT_EXPR
, i1
, i2
));
1409 imag
= const_binop (PLUS_EXPR
,
1410 const_binop (MULT_EXPR
, r1
, i2
),
1411 const_binop (MULT_EXPR
, i1
, r2
));
1415 if (COMPLEX_FLOAT_TYPE_P (type
))
1416 return do_mpc_arg2 (arg1
, arg2
, type
,
1417 /* do_nonfinite= */ folding_initializer
,
1420 case TRUNC_DIV_EXPR
:
1422 case FLOOR_DIV_EXPR
:
1423 case ROUND_DIV_EXPR
:
1424 if (flag_complex_method
== 0)
1426 /* Keep this algorithm in sync with
1427 tree-complex.c:expand_complex_div_straight().
1429 Expand complex division to scalars, straightforward algorithm.
1430 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1434 = const_binop (PLUS_EXPR
,
1435 const_binop (MULT_EXPR
, r2
, r2
),
1436 const_binop (MULT_EXPR
, i2
, i2
));
1438 = const_binop (PLUS_EXPR
,
1439 const_binop (MULT_EXPR
, r1
, r2
),
1440 const_binop (MULT_EXPR
, i1
, i2
));
1442 = const_binop (MINUS_EXPR
,
1443 const_binop (MULT_EXPR
, i1
, r2
),
1444 const_binop (MULT_EXPR
, r1
, i2
));
1446 real
= const_binop (code
, t1
, magsquared
);
1447 imag
= const_binop (code
, t2
, magsquared
);
1451 /* Keep this algorithm in sync with
1452 tree-complex.c:expand_complex_div_wide().
1454 Expand complex division to scalars, modified algorithm to minimize
1455 overflow with wide input ranges. */
1456 tree compare
= fold_build2 (LT_EXPR
, boolean_type_node
,
1457 fold_abs_const (r2
, TREE_TYPE (type
)),
1458 fold_abs_const (i2
, TREE_TYPE (type
)));
1460 if (integer_nonzerop (compare
))
1462 /* In the TRUE branch, we compute
1464 div = (br * ratio) + bi;
1465 tr = (ar * ratio) + ai;
1466 ti = (ai * ratio) - ar;
1469 tree ratio
= const_binop (code
, r2
, i2
);
1470 tree div
= const_binop (PLUS_EXPR
, i2
,
1471 const_binop (MULT_EXPR
, r2
, ratio
));
1472 real
= const_binop (MULT_EXPR
, r1
, ratio
);
1473 real
= const_binop (PLUS_EXPR
, real
, i1
);
1474 real
= const_binop (code
, real
, div
);
1476 imag
= const_binop (MULT_EXPR
, i1
, ratio
);
1477 imag
= const_binop (MINUS_EXPR
, imag
, r1
);
1478 imag
= const_binop (code
, imag
, div
);
1482 /* In the FALSE branch, we compute
1484 divisor = (d * ratio) + c;
1485 tr = (b * ratio) + a;
1486 ti = b - (a * ratio);
1489 tree ratio
= const_binop (code
, i2
, r2
);
1490 tree div
= const_binop (PLUS_EXPR
, r2
,
1491 const_binop (MULT_EXPR
, i2
, ratio
));
1493 real
= const_binop (MULT_EXPR
, i1
, ratio
);
1494 real
= const_binop (PLUS_EXPR
, real
, r1
);
1495 real
= const_binop (code
, real
, div
);
1497 imag
= const_binop (MULT_EXPR
, r1
, ratio
);
1498 imag
= const_binop (MINUS_EXPR
, i1
, imag
);
1499 imag
= const_binop (code
, imag
, div
);
1509 return build_complex (type
, real
, imag
);
1512 if (TREE_CODE (arg1
) == VECTOR_CST
1513 && TREE_CODE (arg2
) == VECTOR_CST
1514 && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1
)),
1515 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2
))))
1517 tree type
= TREE_TYPE (arg1
);
1519 if (VECTOR_CST_STEPPED_P (arg1
)
1520 && VECTOR_CST_STEPPED_P (arg2
))
1521 /* We can operate directly on the encoding if:
1523 a3 - a2 == a2 - a1 && b3 - b2 == b2 - b1
1525 (a3 op b3) - (a2 op b2) == (a2 op b2) - (a1 op b1)
1527 Addition and subtraction are the supported operators
1528 for which this is true. */
1529 step_ok_p
= (code
== PLUS_EXPR
|| code
== MINUS_EXPR
);
1530 else if (VECTOR_CST_STEPPED_P (arg1
))
1531 /* We can operate directly on stepped encodings if:
1535 (a3 op c) - (a2 op c) == (a2 op c) - (a1 op c)
1537 which is true if (x -> x op c) distributes over addition. */
1538 step_ok_p
= distributes_over_addition_p (code
, 1);
1540 /* Similarly in reverse. */
1541 step_ok_p
= distributes_over_addition_p (code
, 2);
1542 tree_vector_builder elts
;
1543 if (!elts
.new_binary_operation (type
, arg1
, arg2
, step_ok_p
))
1545 unsigned int count
= elts
.encoded_nelts ();
1546 for (unsigned int i
= 0; i
< count
; ++i
)
1548 tree elem1
= VECTOR_CST_ELT (arg1
, i
);
1549 tree elem2
= VECTOR_CST_ELT (arg2
, i
);
1551 tree elt
= const_binop (code
, elem1
, elem2
);
1553 /* It is possible that const_binop cannot handle the given
1554 code and return NULL_TREE */
1555 if (elt
== NULL_TREE
)
1557 elts
.quick_push (elt
);
1560 return elts
.build ();
1563 /* Shifts allow a scalar offset for a vector. */
1564 if (TREE_CODE (arg1
) == VECTOR_CST
1565 && TREE_CODE (arg2
) == INTEGER_CST
)
1567 tree type
= TREE_TYPE (arg1
);
1568 bool step_ok_p
= distributes_over_addition_p (code
, 1);
1569 tree_vector_builder elts
;
1570 if (!elts
.new_unary_operation (type
, arg1
, step_ok_p
))
1572 unsigned int count
= elts
.encoded_nelts ();
1573 for (unsigned int i
= 0; i
< count
; ++i
)
1575 tree elem1
= VECTOR_CST_ELT (arg1
, i
);
1577 tree elt
= const_binop (code
, elem1
, arg2
);
1579 /* It is possible that const_binop cannot handle the given
1580 code and return NULL_TREE. */
1581 if (elt
== NULL_TREE
)
1583 elts
.quick_push (elt
);
1586 return elts
.build ();
1591 /* Overload that adds a TYPE parameter to be able to dispatch
1592 to fold_relational_const. */
1595 const_binop (enum tree_code code
, tree type
, tree arg1
, tree arg2
)
1597 if (TREE_CODE_CLASS (code
) == tcc_comparison
)
1598 return fold_relational_const (code
, type
, arg1
, arg2
);
1600 /* ??? Until we make the const_binop worker take the type of the
1601 result as argument put those cases that need it here. */
1604 case VEC_SERIES_EXPR
:
1605 if (CONSTANT_CLASS_P (arg1
)
1606 && CONSTANT_CLASS_P (arg2
))
1607 return build_vec_series (type
, arg1
, arg2
);
1611 if ((TREE_CODE (arg1
) == REAL_CST
1612 && TREE_CODE (arg2
) == REAL_CST
)
1613 || (TREE_CODE (arg1
) == INTEGER_CST
1614 && TREE_CODE (arg2
) == INTEGER_CST
))
1615 return build_complex (type
, arg1
, arg2
);
1618 case POINTER_DIFF_EXPR
:
1619 if (poly_int_tree_p (arg1
) && poly_int_tree_p (arg2
))
1621 poly_offset_int res
= (wi::to_poly_offset (arg1
)
1622 - wi::to_poly_offset (arg2
));
1623 return force_fit_type (type
, res
, 1,
1624 TREE_OVERFLOW (arg1
) | TREE_OVERFLOW (arg2
));
1628 case VEC_PACK_TRUNC_EXPR
:
1629 case VEC_PACK_FIX_TRUNC_EXPR
:
1630 case VEC_PACK_FLOAT_EXPR
:
1632 unsigned int HOST_WIDE_INT out_nelts
, in_nelts
, i
;
1634 if (TREE_CODE (arg1
) != VECTOR_CST
1635 || TREE_CODE (arg2
) != VECTOR_CST
)
1638 if (!VECTOR_CST_NELTS (arg1
).is_constant (&in_nelts
))
1641 out_nelts
= in_nelts
* 2;
1642 gcc_assert (known_eq (in_nelts
, VECTOR_CST_NELTS (arg2
))
1643 && known_eq (out_nelts
, TYPE_VECTOR_SUBPARTS (type
)));
1645 tree_vector_builder
elts (type
, out_nelts
, 1);
1646 for (i
= 0; i
< out_nelts
; i
++)
1648 tree elt
= (i
< in_nelts
1649 ? VECTOR_CST_ELT (arg1
, i
)
1650 : VECTOR_CST_ELT (arg2
, i
- in_nelts
));
1651 elt
= fold_convert_const (code
== VEC_PACK_TRUNC_EXPR
1653 : code
== VEC_PACK_FLOAT_EXPR
1654 ? FLOAT_EXPR
: FIX_TRUNC_EXPR
,
1655 TREE_TYPE (type
), elt
);
1656 if (elt
== NULL_TREE
|| !CONSTANT_CLASS_P (elt
))
1658 elts
.quick_push (elt
);
1661 return elts
.build ();
1664 case VEC_WIDEN_MULT_LO_EXPR
:
1665 case VEC_WIDEN_MULT_HI_EXPR
:
1666 case VEC_WIDEN_MULT_EVEN_EXPR
:
1667 case VEC_WIDEN_MULT_ODD_EXPR
:
1669 unsigned HOST_WIDE_INT out_nelts
, in_nelts
, out
, ofs
, scale
;
1671 if (TREE_CODE (arg1
) != VECTOR_CST
|| TREE_CODE (arg2
) != VECTOR_CST
)
1674 if (!VECTOR_CST_NELTS (arg1
).is_constant (&in_nelts
))
1676 out_nelts
= in_nelts
/ 2;
1677 gcc_assert (known_eq (in_nelts
, VECTOR_CST_NELTS (arg2
))
1678 && known_eq (out_nelts
, TYPE_VECTOR_SUBPARTS (type
)));
1680 if (code
== VEC_WIDEN_MULT_LO_EXPR
)
1681 scale
= 0, ofs
= BYTES_BIG_ENDIAN
? out_nelts
: 0;
1682 else if (code
== VEC_WIDEN_MULT_HI_EXPR
)
1683 scale
= 0, ofs
= BYTES_BIG_ENDIAN
? 0 : out_nelts
;
1684 else if (code
== VEC_WIDEN_MULT_EVEN_EXPR
)
1686 else /* if (code == VEC_WIDEN_MULT_ODD_EXPR) */
1689 tree_vector_builder
elts (type
, out_nelts
, 1);
1690 for (out
= 0; out
< out_nelts
; out
++)
1692 unsigned int in
= (out
<< scale
) + ofs
;
1693 tree t1
= fold_convert_const (NOP_EXPR
, TREE_TYPE (type
),
1694 VECTOR_CST_ELT (arg1
, in
));
1695 tree t2
= fold_convert_const (NOP_EXPR
, TREE_TYPE (type
),
1696 VECTOR_CST_ELT (arg2
, in
));
1698 if (t1
== NULL_TREE
|| t2
== NULL_TREE
)
1700 tree elt
= const_binop (MULT_EXPR
, t1
, t2
);
1701 if (elt
== NULL_TREE
|| !CONSTANT_CLASS_P (elt
))
1703 elts
.quick_push (elt
);
1706 return elts
.build ();
1712 if (TREE_CODE_CLASS (code
) != tcc_binary
)
1715 /* Make sure type and arg0 have the same saturating flag. */
1716 gcc_checking_assert (TYPE_SATURATING (type
)
1717 == TYPE_SATURATING (TREE_TYPE (arg1
)));
1719 return const_binop (code
, arg1
, arg2
);
1722 /* Compute CODE ARG1 with resulting type TYPE with ARG1 being constant.
1723 Return zero if computing the constants is not possible. */
1726 const_unop (enum tree_code code
, tree type
, tree arg0
)
1728 /* Don't perform the operation, other than NEGATE and ABS, if
1729 flag_signaling_nans is on and the operand is a signaling NaN. */
1730 if (TREE_CODE (arg0
) == REAL_CST
1731 && HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0
)))
1732 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg0
))
1733 && code
!= NEGATE_EXPR
1735 && code
!= ABSU_EXPR
)
1742 case FIX_TRUNC_EXPR
:
1743 case FIXED_CONVERT_EXPR
:
1744 return fold_convert_const (code
, type
, arg0
);
1746 case ADDR_SPACE_CONVERT_EXPR
:
1747 /* If the source address is 0, and the source address space
1748 cannot have a valid object at 0, fold to dest type null. */
1749 if (integer_zerop (arg0
)
1750 && !(targetm
.addr_space
.zero_address_valid
1751 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0
))))))
1752 return fold_convert_const (code
, type
, arg0
);
1755 case VIEW_CONVERT_EXPR
:
1756 return fold_view_convert_expr (type
, arg0
);
1760 /* Can't call fold_negate_const directly here as that doesn't
1761 handle all cases and we might not be able to negate some
1763 tree tem
= fold_negate_expr (UNKNOWN_LOCATION
, arg0
);
1764 if (tem
&& CONSTANT_CLASS_P (tem
))
1771 if (TREE_CODE (arg0
) == INTEGER_CST
|| TREE_CODE (arg0
) == REAL_CST
)
1772 return fold_abs_const (arg0
, type
);
1776 if (TREE_CODE (arg0
) == COMPLEX_CST
)
1778 tree ipart
= fold_negate_const (TREE_IMAGPART (arg0
),
1780 return build_complex (type
, TREE_REALPART (arg0
), ipart
);
1785 if (TREE_CODE (arg0
) == INTEGER_CST
)
1786 return fold_not_const (arg0
, type
);
1787 else if (POLY_INT_CST_P (arg0
))
1788 return wide_int_to_tree (type
, -poly_int_cst_value (arg0
));
1789 /* Perform BIT_NOT_EXPR on each element individually. */
1790 else if (TREE_CODE (arg0
) == VECTOR_CST
)
1794 /* This can cope with stepped encodings because ~x == -1 - x. */
1795 tree_vector_builder elements
;
1796 elements
.new_unary_operation (type
, arg0
, true);
1797 unsigned int i
, count
= elements
.encoded_nelts ();
1798 for (i
= 0; i
< count
; ++i
)
1800 elem
= VECTOR_CST_ELT (arg0
, i
);
1801 elem
= const_unop (BIT_NOT_EXPR
, TREE_TYPE (type
), elem
);
1802 if (elem
== NULL_TREE
)
1804 elements
.quick_push (elem
);
1807 return elements
.build ();
1811 case TRUTH_NOT_EXPR
:
1812 if (TREE_CODE (arg0
) == INTEGER_CST
)
1813 return constant_boolean_node (integer_zerop (arg0
), type
);
1817 if (TREE_CODE (arg0
) == COMPLEX_CST
)
1818 return fold_convert (type
, TREE_REALPART (arg0
));
1822 if (TREE_CODE (arg0
) == COMPLEX_CST
)
1823 return fold_convert (type
, TREE_IMAGPART (arg0
));
1826 case VEC_UNPACK_LO_EXPR
:
1827 case VEC_UNPACK_HI_EXPR
:
1828 case VEC_UNPACK_FLOAT_LO_EXPR
:
1829 case VEC_UNPACK_FLOAT_HI_EXPR
:
1830 case VEC_UNPACK_FIX_TRUNC_LO_EXPR
:
1831 case VEC_UNPACK_FIX_TRUNC_HI_EXPR
:
1833 unsigned HOST_WIDE_INT out_nelts
, in_nelts
, i
;
1834 enum tree_code subcode
;
1836 if (TREE_CODE (arg0
) != VECTOR_CST
)
1839 if (!VECTOR_CST_NELTS (arg0
).is_constant (&in_nelts
))
1841 out_nelts
= in_nelts
/ 2;
1842 gcc_assert (known_eq (out_nelts
, TYPE_VECTOR_SUBPARTS (type
)));
1844 unsigned int offset
= 0;
1845 if ((!BYTES_BIG_ENDIAN
) ^ (code
== VEC_UNPACK_LO_EXPR
1846 || code
== VEC_UNPACK_FLOAT_LO_EXPR
1847 || code
== VEC_UNPACK_FIX_TRUNC_LO_EXPR
))
1850 if (code
== VEC_UNPACK_LO_EXPR
|| code
== VEC_UNPACK_HI_EXPR
)
1852 else if (code
== VEC_UNPACK_FLOAT_LO_EXPR
1853 || code
== VEC_UNPACK_FLOAT_HI_EXPR
)
1854 subcode
= FLOAT_EXPR
;
1856 subcode
= FIX_TRUNC_EXPR
;
1858 tree_vector_builder
elts (type
, out_nelts
, 1);
1859 for (i
= 0; i
< out_nelts
; i
++)
1861 tree elt
= fold_convert_const (subcode
, TREE_TYPE (type
),
1862 VECTOR_CST_ELT (arg0
, i
+ offset
));
1863 if (elt
== NULL_TREE
|| !CONSTANT_CLASS_P (elt
))
1865 elts
.quick_push (elt
);
1868 return elts
.build ();
1871 case VEC_DUPLICATE_EXPR
:
1872 if (CONSTANT_CLASS_P (arg0
))
1873 return build_vector_from_val (type
, arg0
);
1883 /* Create a sizetype INT_CST node with NUMBER sign extended. KIND
1884 indicates which particular sizetype to create. */
1887 size_int_kind (poly_int64 number
, enum size_type_kind kind
)
1889 return build_int_cst (sizetype_tab
[(int) kind
], number
);
1892 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1893 is a tree code. The type of the result is taken from the operands.
1894 Both must be equivalent integer types, ala int_binop_types_match_p.
1895 If the operands are constant, so is the result. */
1898 size_binop_loc (location_t loc
, enum tree_code code
, tree arg0
, tree arg1
)
1900 tree type
= TREE_TYPE (arg0
);
1902 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
1903 return error_mark_node
;
1905 gcc_assert (int_binop_types_match_p (code
, TREE_TYPE (arg0
),
1908 /* Handle the special case of two poly_int constants faster. */
1909 if (poly_int_tree_p (arg0
) && poly_int_tree_p (arg1
))
1911 /* And some specific cases even faster than that. */
1912 if (code
== PLUS_EXPR
)
1914 if (integer_zerop (arg0
) && !TREE_OVERFLOW (arg0
))
1916 if (integer_zerop (arg1
) && !TREE_OVERFLOW (arg1
))
1919 else if (code
== MINUS_EXPR
)
1921 if (integer_zerop (arg1
) && !TREE_OVERFLOW (arg1
))
1924 else if (code
== MULT_EXPR
)
1926 if (integer_onep (arg0
) && !TREE_OVERFLOW (arg0
))
1930 /* Handle general case of two integer constants. For sizetype
1931 constant calculations we always want to know about overflow,
1932 even in the unsigned case. */
1933 tree res
= int_const_binop (code
, arg0
, arg1
, -1);
1934 if (res
!= NULL_TREE
)
1938 return fold_build2_loc (loc
, code
, type
, arg0
, arg1
);
1941 /* Given two values, either both of sizetype or both of bitsizetype,
1942 compute the difference between the two values. Return the value
1943 in signed type corresponding to the type of the operands. */
1946 size_diffop_loc (location_t loc
, tree arg0
, tree arg1
)
1948 tree type
= TREE_TYPE (arg0
);
1951 gcc_assert (int_binop_types_match_p (MINUS_EXPR
, TREE_TYPE (arg0
),
1954 /* If the type is already signed, just do the simple thing. */
1955 if (!TYPE_UNSIGNED (type
))
1956 return size_binop_loc (loc
, MINUS_EXPR
, arg0
, arg1
);
1958 if (type
== sizetype
)
1960 else if (type
== bitsizetype
)
1961 ctype
= sbitsizetype
;
1963 ctype
= signed_type_for (type
);
1965 /* If either operand is not a constant, do the conversions to the signed
1966 type and subtract. The hardware will do the right thing with any
1967 overflow in the subtraction. */
1968 if (TREE_CODE (arg0
) != INTEGER_CST
|| TREE_CODE (arg1
) != INTEGER_CST
)
1969 return size_binop_loc (loc
, MINUS_EXPR
,
1970 fold_convert_loc (loc
, ctype
, arg0
),
1971 fold_convert_loc (loc
, ctype
, arg1
));
1973 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1974 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1975 overflow) and negate (which can't either). Special-case a result
1976 of zero while we're here. */
1977 if (tree_int_cst_equal (arg0
, arg1
))
1978 return build_int_cst (ctype
, 0);
1979 else if (tree_int_cst_lt (arg1
, arg0
))
1980 return fold_convert_loc (loc
, ctype
,
1981 size_binop_loc (loc
, MINUS_EXPR
, arg0
, arg1
));
1983 return size_binop_loc (loc
, MINUS_EXPR
, build_int_cst (ctype
, 0),
1984 fold_convert_loc (loc
, ctype
,
1985 size_binop_loc (loc
,
1990 /* A subroutine of fold_convert_const handling conversions of an
1991 INTEGER_CST to another integer type. */
1994 fold_convert_const_int_from_int (tree type
, const_tree arg1
)
1996 /* Given an integer constant, make new constant with new type,
1997 appropriately sign-extended or truncated. Use widest_int
1998 so that any extension is done according ARG1's type. */
1999 return force_fit_type (type
, wi::to_widest (arg1
),
2000 !POINTER_TYPE_P (TREE_TYPE (arg1
)),
2001 TREE_OVERFLOW (arg1
));
2004 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2005 to an integer type. */
2008 fold_convert_const_int_from_real (enum tree_code code
, tree type
, const_tree arg1
)
2010 bool overflow
= false;
2013 /* The following code implements the floating point to integer
2014 conversion rules required by the Java Language Specification,
2015 that IEEE NaNs are mapped to zero and values that overflow
2016 the target precision saturate, i.e. values greater than
2017 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
2018 are mapped to INT_MIN. These semantics are allowed by the
2019 C and C++ standards that simply state that the behavior of
2020 FP-to-integer conversion is unspecified upon overflow. */
2024 REAL_VALUE_TYPE x
= TREE_REAL_CST (arg1
);
2028 case FIX_TRUNC_EXPR
:
2029 real_trunc (&r
, VOIDmode
, &x
);
2036 /* If R is NaN, return zero and show we have an overflow. */
2037 if (REAL_VALUE_ISNAN (r
))
2040 val
= wi::zero (TYPE_PRECISION (type
));
2043 /* See if R is less than the lower bound or greater than the
2048 tree lt
= TYPE_MIN_VALUE (type
);
2049 REAL_VALUE_TYPE l
= real_value_from_int_cst (NULL_TREE
, lt
);
2050 if (real_less (&r
, &l
))
2053 val
= wi::to_wide (lt
);
2059 tree ut
= TYPE_MAX_VALUE (type
);
2062 REAL_VALUE_TYPE u
= real_value_from_int_cst (NULL_TREE
, ut
);
2063 if (real_less (&u
, &r
))
2066 val
= wi::to_wide (ut
);
2072 val
= real_to_integer (&r
, &overflow
, TYPE_PRECISION (type
));
2074 t
= force_fit_type (type
, val
, -1, overflow
| TREE_OVERFLOW (arg1
));
2078 /* A subroutine of fold_convert_const handling conversions of a
2079 FIXED_CST to an integer type. */
2082 fold_convert_const_int_from_fixed (tree type
, const_tree arg1
)
2085 double_int temp
, temp_trunc
;
2088 /* Right shift FIXED_CST to temp by fbit. */
2089 temp
= TREE_FIXED_CST (arg1
).data
;
2090 mode
= TREE_FIXED_CST (arg1
).mode
;
2091 if (GET_MODE_FBIT (mode
) < HOST_BITS_PER_DOUBLE_INT
)
2093 temp
= temp
.rshift (GET_MODE_FBIT (mode
),
2094 HOST_BITS_PER_DOUBLE_INT
,
2095 SIGNED_FIXED_POINT_MODE_P (mode
));
2097 /* Left shift temp to temp_trunc by fbit. */
2098 temp_trunc
= temp
.lshift (GET_MODE_FBIT (mode
),
2099 HOST_BITS_PER_DOUBLE_INT
,
2100 SIGNED_FIXED_POINT_MODE_P (mode
));
2104 temp
= double_int_zero
;
2105 temp_trunc
= double_int_zero
;
2108 /* If FIXED_CST is negative, we need to round the value toward 0.
2109 By checking if the fractional bits are not zero to add 1 to temp. */
2110 if (SIGNED_FIXED_POINT_MODE_P (mode
)
2111 && temp_trunc
.is_negative ()
2112 && TREE_FIXED_CST (arg1
).data
!= temp_trunc
)
2113 temp
+= double_int_one
;
2115 /* Given a fixed-point constant, make new constant with new type,
2116 appropriately sign-extended or truncated. */
2117 t
= force_fit_type (type
, temp
, -1,
2118 (temp
.is_negative ()
2119 && (TYPE_UNSIGNED (type
)
2120 < TYPE_UNSIGNED (TREE_TYPE (arg1
))))
2121 | TREE_OVERFLOW (arg1
));
2126 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2127 to another floating point type. */
2130 fold_convert_const_real_from_real (tree type
, const_tree arg1
)
2132 REAL_VALUE_TYPE value
;
2135 /* Don't perform the operation if flag_signaling_nans is on
2136 and the operand is a signaling NaN. */
2137 if (HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1
)))
2138 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg1
)))
2141 real_convert (&value
, TYPE_MODE (type
), &TREE_REAL_CST (arg1
));
2142 t
= build_real (type
, value
);
2144 /* If converting an infinity or NAN to a representation that doesn't
2145 have one, set the overflow bit so that we can produce some kind of
2146 error message at the appropriate point if necessary. It's not the
2147 most user-friendly message, but it's better than nothing. */
2148 if (REAL_VALUE_ISINF (TREE_REAL_CST (arg1
))
2149 && !MODE_HAS_INFINITIES (TYPE_MODE (type
)))
2150 TREE_OVERFLOW (t
) = 1;
2151 else if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1
))
2152 && !MODE_HAS_NANS (TYPE_MODE (type
)))
2153 TREE_OVERFLOW (t
) = 1;
2154 /* Regular overflow, conversion produced an infinity in a mode that
2155 can't represent them. */
2156 else if (!MODE_HAS_INFINITIES (TYPE_MODE (type
))
2157 && REAL_VALUE_ISINF (value
)
2158 && !REAL_VALUE_ISINF (TREE_REAL_CST (arg1
)))
2159 TREE_OVERFLOW (t
) = 1;
2161 TREE_OVERFLOW (t
) = TREE_OVERFLOW (arg1
);
2165 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2166 to a floating point type. */
2169 fold_convert_const_real_from_fixed (tree type
, const_tree arg1
)
2171 REAL_VALUE_TYPE value
;
2174 real_convert_from_fixed (&value
, SCALAR_FLOAT_TYPE_MODE (type
),
2175 &TREE_FIXED_CST (arg1
));
2176 t
= build_real (type
, value
);
2178 TREE_OVERFLOW (t
) = TREE_OVERFLOW (arg1
);
2182 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2183 to another fixed-point type. */
2186 fold_convert_const_fixed_from_fixed (tree type
, const_tree arg1
)
2188 FIXED_VALUE_TYPE value
;
2192 overflow_p
= fixed_convert (&value
, SCALAR_TYPE_MODE (type
),
2193 &TREE_FIXED_CST (arg1
), TYPE_SATURATING (type
));
2194 t
= build_fixed (type
, value
);
2196 /* Propagate overflow flags. */
2197 if (overflow_p
| TREE_OVERFLOW (arg1
))
2198 TREE_OVERFLOW (t
) = 1;
2202 /* A subroutine of fold_convert_const handling conversions an INTEGER_CST
2203 to a fixed-point type. */
2206 fold_convert_const_fixed_from_int (tree type
, const_tree arg1
)
2208 FIXED_VALUE_TYPE value
;
2213 gcc_assert (TREE_INT_CST_NUNITS (arg1
) <= 2);
2215 di
.low
= TREE_INT_CST_ELT (arg1
, 0);
2216 if (TREE_INT_CST_NUNITS (arg1
) == 1)
2217 di
.high
= (HOST_WIDE_INT
) di
.low
< 0 ? HOST_WIDE_INT_M1
: 0;
2219 di
.high
= TREE_INT_CST_ELT (arg1
, 1);
2221 overflow_p
= fixed_convert_from_int (&value
, SCALAR_TYPE_MODE (type
), di
,
2222 TYPE_UNSIGNED (TREE_TYPE (arg1
)),
2223 TYPE_SATURATING (type
));
2224 t
= build_fixed (type
, value
);
2226 /* Propagate overflow flags. */
2227 if (overflow_p
| TREE_OVERFLOW (arg1
))
2228 TREE_OVERFLOW (t
) = 1;
2232 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2233 to a fixed-point type. */
2236 fold_convert_const_fixed_from_real (tree type
, const_tree arg1
)
2238 FIXED_VALUE_TYPE value
;
2242 overflow_p
= fixed_convert_from_real (&value
, SCALAR_TYPE_MODE (type
),
2243 &TREE_REAL_CST (arg1
),
2244 TYPE_SATURATING (type
));
2245 t
= build_fixed (type
, value
);
2247 /* Propagate overflow flags. */
2248 if (overflow_p
| TREE_OVERFLOW (arg1
))
2249 TREE_OVERFLOW (t
) = 1;
2253 /* Attempt to fold type conversion operation CODE of expression ARG1 to
2254 type TYPE. If no simplification can be done return NULL_TREE. */
2257 fold_convert_const (enum tree_code code
, tree type
, tree arg1
)
2259 tree arg_type
= TREE_TYPE (arg1
);
2260 if (arg_type
== type
)
2263 /* We can't widen types, since the runtime value could overflow the
2264 original type before being extended to the new type. */
2265 if (POLY_INT_CST_P (arg1
)
2266 && (POINTER_TYPE_P (type
) || INTEGRAL_TYPE_P (type
))
2267 && TYPE_PRECISION (type
) <= TYPE_PRECISION (arg_type
))
2268 return build_poly_int_cst (type
,
2269 poly_wide_int::from (poly_int_cst_value (arg1
),
2270 TYPE_PRECISION (type
),
2271 TYPE_SIGN (arg_type
)));
2273 if (POINTER_TYPE_P (type
) || INTEGRAL_TYPE_P (type
)
2274 || TREE_CODE (type
) == OFFSET_TYPE
)
2276 if (TREE_CODE (arg1
) == INTEGER_CST
)
2277 return fold_convert_const_int_from_int (type
, arg1
);
2278 else if (TREE_CODE (arg1
) == REAL_CST
)
2279 return fold_convert_const_int_from_real (code
, type
, arg1
);
2280 else if (TREE_CODE (arg1
) == FIXED_CST
)
2281 return fold_convert_const_int_from_fixed (type
, arg1
);
2283 else if (TREE_CODE (type
) == REAL_TYPE
)
2285 if (TREE_CODE (arg1
) == INTEGER_CST
)
2286 return build_real_from_int_cst (type
, arg1
);
2287 else if (TREE_CODE (arg1
) == REAL_CST
)
2288 return fold_convert_const_real_from_real (type
, arg1
);
2289 else if (TREE_CODE (arg1
) == FIXED_CST
)
2290 return fold_convert_const_real_from_fixed (type
, arg1
);
2292 else if (TREE_CODE (type
) == FIXED_POINT_TYPE
)
2294 if (TREE_CODE (arg1
) == FIXED_CST
)
2295 return fold_convert_const_fixed_from_fixed (type
, arg1
);
2296 else if (TREE_CODE (arg1
) == INTEGER_CST
)
2297 return fold_convert_const_fixed_from_int (type
, arg1
);
2298 else if (TREE_CODE (arg1
) == REAL_CST
)
2299 return fold_convert_const_fixed_from_real (type
, arg1
);
2301 else if (TREE_CODE (type
) == VECTOR_TYPE
)
2303 if (TREE_CODE (arg1
) == VECTOR_CST
2304 && known_eq (TYPE_VECTOR_SUBPARTS (type
), VECTOR_CST_NELTS (arg1
)))
2306 tree elttype
= TREE_TYPE (type
);
2307 tree arg1_elttype
= TREE_TYPE (TREE_TYPE (arg1
));
2308 /* We can't handle steps directly when extending, since the
2309 values need to wrap at the original precision first. */
2311 = (INTEGRAL_TYPE_P (elttype
)
2312 && INTEGRAL_TYPE_P (arg1_elttype
)
2313 && TYPE_PRECISION (elttype
) <= TYPE_PRECISION (arg1_elttype
));
2314 tree_vector_builder v
;
2315 if (!v
.new_unary_operation (type
, arg1
, step_ok_p
))
2317 unsigned int len
= v
.encoded_nelts ();
2318 for (unsigned int i
= 0; i
< len
; ++i
)
2320 tree elt
= VECTOR_CST_ELT (arg1
, i
);
2321 tree cvt
= fold_convert_const (code
, elttype
, elt
);
2322 if (cvt
== NULL_TREE
)
2332 /* Construct a vector of zero elements of vector type TYPE. */
2335 build_zero_vector (tree type
)
2339 t
= fold_convert_const (NOP_EXPR
, TREE_TYPE (type
), integer_zero_node
);
2340 return build_vector_from_val (type
, t
);
2343 /* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */
2346 fold_convertible_p (const_tree type
, const_tree arg
)
2348 tree orig
= TREE_TYPE (arg
);
2353 if (TREE_CODE (arg
) == ERROR_MARK
2354 || TREE_CODE (type
) == ERROR_MARK
2355 || TREE_CODE (orig
) == ERROR_MARK
)
2358 if (TYPE_MAIN_VARIANT (type
) == TYPE_MAIN_VARIANT (orig
))
2361 switch (TREE_CODE (type
))
2363 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
2364 case POINTER_TYPE
: case REFERENCE_TYPE
:
2366 return (INTEGRAL_TYPE_P (orig
)
2367 || (POINTER_TYPE_P (orig
)
2368 && TYPE_PRECISION (type
) <= TYPE_PRECISION (orig
))
2369 || TREE_CODE (orig
) == OFFSET_TYPE
);
2372 case FIXED_POINT_TYPE
:
2375 return TREE_CODE (type
) == TREE_CODE (orig
);
2382 /* Convert expression ARG to type TYPE. Used by the middle-end for
2383 simple conversions in preference to calling the front-end's convert. */
2386 fold_convert_loc (location_t loc
, tree type
, tree arg
)
2388 tree orig
= TREE_TYPE (arg
);
2394 if (TREE_CODE (arg
) == ERROR_MARK
2395 || TREE_CODE (type
) == ERROR_MARK
2396 || TREE_CODE (orig
) == ERROR_MARK
)
2397 return error_mark_node
;
2399 switch (TREE_CODE (type
))
2402 case REFERENCE_TYPE
:
2403 /* Handle conversions between pointers to different address spaces. */
2404 if (POINTER_TYPE_P (orig
)
2405 && (TYPE_ADDR_SPACE (TREE_TYPE (type
))
2406 != TYPE_ADDR_SPACE (TREE_TYPE (orig
))))
2407 return fold_build1_loc (loc
, ADDR_SPACE_CONVERT_EXPR
, type
, arg
);
2410 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
2412 if (TREE_CODE (arg
) == INTEGER_CST
)
2414 tem
= fold_convert_const (NOP_EXPR
, type
, arg
);
2415 if (tem
!= NULL_TREE
)
2418 if (INTEGRAL_TYPE_P (orig
) || POINTER_TYPE_P (orig
)
2419 || TREE_CODE (orig
) == OFFSET_TYPE
)
2420 return fold_build1_loc (loc
, NOP_EXPR
, type
, arg
);
2421 if (TREE_CODE (orig
) == COMPLEX_TYPE
)
2422 return fold_convert_loc (loc
, type
,
2423 fold_build1_loc (loc
, REALPART_EXPR
,
2424 TREE_TYPE (orig
), arg
));
2425 gcc_assert (TREE_CODE (orig
) == VECTOR_TYPE
2426 && tree_int_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (orig
)));
2427 return fold_build1_loc (loc
, VIEW_CONVERT_EXPR
, type
, arg
);
2430 if (TREE_CODE (arg
) == INTEGER_CST
)
2432 tem
= fold_convert_const (FLOAT_EXPR
, type
, arg
);
2433 if (tem
!= NULL_TREE
)
2436 else if (TREE_CODE (arg
) == REAL_CST
)
2438 tem
= fold_convert_const (NOP_EXPR
, type
, arg
);
2439 if (tem
!= NULL_TREE
)
2442 else if (TREE_CODE (arg
) == FIXED_CST
)
2444 tem
= fold_convert_const (FIXED_CONVERT_EXPR
, type
, arg
);
2445 if (tem
!= NULL_TREE
)
2449 switch (TREE_CODE (orig
))
2452 case BOOLEAN_TYPE
: case ENUMERAL_TYPE
:
2453 case POINTER_TYPE
: case REFERENCE_TYPE
:
2454 return fold_build1_loc (loc
, FLOAT_EXPR
, type
, arg
);
2457 return fold_build1_loc (loc
, NOP_EXPR
, type
, arg
);
2459 case FIXED_POINT_TYPE
:
2460 return fold_build1_loc (loc
, FIXED_CONVERT_EXPR
, type
, arg
);
2463 tem
= fold_build1_loc (loc
, REALPART_EXPR
, TREE_TYPE (orig
), arg
);
2464 return fold_convert_loc (loc
, type
, tem
);
2470 case FIXED_POINT_TYPE
:
2471 if (TREE_CODE (arg
) == FIXED_CST
|| TREE_CODE (arg
) == INTEGER_CST
2472 || TREE_CODE (arg
) == REAL_CST
)
2474 tem
= fold_convert_const (FIXED_CONVERT_EXPR
, type
, arg
);
2475 if (tem
!= NULL_TREE
)
2476 goto fold_convert_exit
;
2479 switch (TREE_CODE (orig
))
2481 case FIXED_POINT_TYPE
:
2486 return fold_build1_loc (loc
, FIXED_CONVERT_EXPR
, type
, arg
);
2489 tem
= fold_build1_loc (loc
, REALPART_EXPR
, TREE_TYPE (orig
), arg
);
2490 return fold_convert_loc (loc
, type
, tem
);
2497 switch (TREE_CODE (orig
))
2500 case BOOLEAN_TYPE
: case ENUMERAL_TYPE
:
2501 case POINTER_TYPE
: case REFERENCE_TYPE
:
2503 case FIXED_POINT_TYPE
:
2504 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
,
2505 fold_convert_loc (loc
, TREE_TYPE (type
), arg
),
2506 fold_convert_loc (loc
, TREE_TYPE (type
),
2507 integer_zero_node
));
2512 if (TREE_CODE (arg
) == COMPLEX_EXPR
)
2514 rpart
= fold_convert_loc (loc
, TREE_TYPE (type
),
2515 TREE_OPERAND (arg
, 0));
2516 ipart
= fold_convert_loc (loc
, TREE_TYPE (type
),
2517 TREE_OPERAND (arg
, 1));
2518 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rpart
, ipart
);
2521 arg
= save_expr (arg
);
2522 rpart
= fold_build1_loc (loc
, REALPART_EXPR
, TREE_TYPE (orig
), arg
);
2523 ipart
= fold_build1_loc (loc
, IMAGPART_EXPR
, TREE_TYPE (orig
), arg
);
2524 rpart
= fold_convert_loc (loc
, TREE_TYPE (type
), rpart
);
2525 ipart
= fold_convert_loc (loc
, TREE_TYPE (type
), ipart
);
2526 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rpart
, ipart
);
2534 if (integer_zerop (arg
))
2535 return build_zero_vector (type
);
2536 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (orig
)));
2537 gcc_assert (INTEGRAL_TYPE_P (orig
) || POINTER_TYPE_P (orig
)
2538 || TREE_CODE (orig
) == VECTOR_TYPE
);
2539 return fold_build1_loc (loc
, VIEW_CONVERT_EXPR
, type
, arg
);
2542 tem
= fold_ignored_result (arg
);
2543 return fold_build1_loc (loc
, NOP_EXPR
, type
, tem
);
2546 if (TYPE_MAIN_VARIANT (type
) == TYPE_MAIN_VARIANT (orig
))
2547 return fold_build1_loc (loc
, NOP_EXPR
, type
, arg
);
2551 protected_set_expr_location_unshare (tem
, loc
);
2555 /* Return false if expr can be assumed not to be an lvalue, true
2559 maybe_lvalue_p (const_tree x
)
2561 /* We only need to wrap lvalue tree codes. */
2562 switch (TREE_CODE (x
))
2575 case ARRAY_RANGE_REF
:
2581 case PREINCREMENT_EXPR
:
2582 case PREDECREMENT_EXPR
:
2584 case TRY_CATCH_EXPR
:
2585 case WITH_CLEANUP_EXPR
:
2594 /* Assume the worst for front-end tree codes. */
2595 if ((int)TREE_CODE (x
) >= NUM_TREE_CODES
)
2603 /* Return an expr equal to X but certainly not valid as an lvalue. */
2606 non_lvalue_loc (location_t loc
, tree x
)
2608 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2613 if (! maybe_lvalue_p (x
))
2615 return build1_loc (loc
, NON_LVALUE_EXPR
, TREE_TYPE (x
), x
);
2618 /* When pedantic, return an expr equal to X but certainly not valid as a
2619 pedantic lvalue. Otherwise, return X. */
2622 pedantic_non_lvalue_loc (location_t loc
, tree x
)
2624 return protected_set_expr_location_unshare (x
, loc
);
2627 /* Given a tree comparison code, return the code that is the logical inverse.
2628 It is generally not safe to do this for floating-point comparisons, except
2629 for EQ_EXPR, NE_EXPR, ORDERED_EXPR and UNORDERED_EXPR, so we return
2630 ERROR_MARK in this case. */
2633 invert_tree_comparison (enum tree_code code
, bool honor_nans
)
2635 if (honor_nans
&& flag_trapping_math
&& code
!= EQ_EXPR
&& code
!= NE_EXPR
2636 && code
!= ORDERED_EXPR
&& code
!= UNORDERED_EXPR
)
2646 return honor_nans
? UNLE_EXPR
: LE_EXPR
;
2648 return honor_nans
? UNLT_EXPR
: LT_EXPR
;
2650 return honor_nans
? UNGE_EXPR
: GE_EXPR
;
2652 return honor_nans
? UNGT_EXPR
: GT_EXPR
;
2666 return UNORDERED_EXPR
;
2667 case UNORDERED_EXPR
:
2668 return ORDERED_EXPR
;
2674 /* Similar, but return the comparison that results if the operands are
2675 swapped. This is safe for floating-point. */
2678 swap_tree_comparison (enum tree_code code
)
2685 case UNORDERED_EXPR
:
2711 /* Convert a comparison tree code from an enum tree_code representation
2712 into a compcode bit-based encoding. This function is the inverse of
2713 compcode_to_comparison. */
2715 static enum comparison_code
2716 comparison_to_compcode (enum tree_code code
)
2733 return COMPCODE_ORD
;
2734 case UNORDERED_EXPR
:
2735 return COMPCODE_UNORD
;
2737 return COMPCODE_UNLT
;
2739 return COMPCODE_UNEQ
;
2741 return COMPCODE_UNLE
;
2743 return COMPCODE_UNGT
;
2745 return COMPCODE_LTGT
;
2747 return COMPCODE_UNGE
;
2753 /* Convert a compcode bit-based encoding of a comparison operator back
2754 to GCC's enum tree_code representation. This function is the
2755 inverse of comparison_to_compcode. */
2757 static enum tree_code
2758 compcode_to_comparison (enum comparison_code code
)
2775 return ORDERED_EXPR
;
2776 case COMPCODE_UNORD
:
2777 return UNORDERED_EXPR
;
2795 /* Return true if COND1 tests the opposite condition of COND2. */
2798 inverse_conditions_p (const_tree cond1
, const_tree cond2
)
2800 return (COMPARISON_CLASS_P (cond1
)
2801 && COMPARISON_CLASS_P (cond2
)
2802 && (invert_tree_comparison
2804 HONOR_NANS (TREE_OPERAND (cond1
, 0))) == TREE_CODE (cond2
))
2805 && operand_equal_p (TREE_OPERAND (cond1
, 0),
2806 TREE_OPERAND (cond2
, 0), 0)
2807 && operand_equal_p (TREE_OPERAND (cond1
, 1),
2808 TREE_OPERAND (cond2
, 1), 0));
2811 /* Return a tree for the comparison which is the combination of
2812 doing the AND or OR (depending on CODE) of the two operations LCODE
2813 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2814 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2815 if this makes the transformation invalid. */
2818 combine_comparisons (location_t loc
,
2819 enum tree_code code
, enum tree_code lcode
,
2820 enum tree_code rcode
, tree truth_type
,
2821 tree ll_arg
, tree lr_arg
)
2823 bool honor_nans
= HONOR_NANS (ll_arg
);
2824 enum comparison_code lcompcode
= comparison_to_compcode (lcode
);
2825 enum comparison_code rcompcode
= comparison_to_compcode (rcode
);
2830 case TRUTH_AND_EXPR
: case TRUTH_ANDIF_EXPR
:
2831 compcode
= lcompcode
& rcompcode
;
2834 case TRUTH_OR_EXPR
: case TRUTH_ORIF_EXPR
:
2835 compcode
= lcompcode
| rcompcode
;
2844 /* Eliminate unordered comparisons, as well as LTGT and ORD
2845 which are not used unless the mode has NaNs. */
2846 compcode
&= ~COMPCODE_UNORD
;
2847 if (compcode
== COMPCODE_LTGT
)
2848 compcode
= COMPCODE_NE
;
2849 else if (compcode
== COMPCODE_ORD
)
2850 compcode
= COMPCODE_TRUE
;
2852 else if (flag_trapping_math
)
2854 /* Check that the original operation and the optimized ones will trap
2855 under the same condition. */
2856 bool ltrap
= (lcompcode
& COMPCODE_UNORD
) == 0
2857 && (lcompcode
!= COMPCODE_EQ
)
2858 && (lcompcode
!= COMPCODE_ORD
);
2859 bool rtrap
= (rcompcode
& COMPCODE_UNORD
) == 0
2860 && (rcompcode
!= COMPCODE_EQ
)
2861 && (rcompcode
!= COMPCODE_ORD
);
2862 bool trap
= (compcode
& COMPCODE_UNORD
) == 0
2863 && (compcode
!= COMPCODE_EQ
)
2864 && (compcode
!= COMPCODE_ORD
);
2866 /* In a short-circuited boolean expression the LHS might be
2867 such that the RHS, if evaluated, will never trap. For
2868 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2869 if neither x nor y is NaN. (This is a mixed blessing: for
2870 example, the expression above will never trap, hence
2871 optimizing it to x < y would be invalid). */
2872 if ((code
== TRUTH_ORIF_EXPR
&& (lcompcode
& COMPCODE_UNORD
))
2873 || (code
== TRUTH_ANDIF_EXPR
&& !(lcompcode
& COMPCODE_UNORD
)))
2876 /* If the comparison was short-circuited, and only the RHS
2877 trapped, we may now generate a spurious trap. */
2879 && (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_ORIF_EXPR
))
2882 /* If we changed the conditions that cause a trap, we lose. */
2883 if ((ltrap
|| rtrap
) != trap
)
2887 if (compcode
== COMPCODE_TRUE
)
2888 return constant_boolean_node (true, truth_type
);
2889 else if (compcode
== COMPCODE_FALSE
)
2890 return constant_boolean_node (false, truth_type
);
2893 enum tree_code tcode
;
2895 tcode
= compcode_to_comparison ((enum comparison_code
) compcode
);
2896 return fold_build2_loc (loc
, tcode
, truth_type
, ll_arg
, lr_arg
);
2900 /* Return nonzero if two operands (typically of the same tree node)
2901 are necessarily equal. FLAGS modifies behavior as follows:
2903 If OEP_ONLY_CONST is set, only return nonzero for constants.
2904 This function tests whether the operands are indistinguishable;
2905 it does not test whether they are equal using C's == operation.
2906 The distinction is important for IEEE floating point, because
2907 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2908 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2910 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2911 even though it may hold multiple values during a function.
2912 This is because a GCC tree node guarantees that nothing else is
2913 executed between the evaluation of its "operands" (which may often
2914 be evaluated in arbitrary order). Hence if the operands themselves
2915 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2916 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2917 unset means assuming isochronic (or instantaneous) tree equivalence.
2918 Unless comparing arbitrary expression trees, such as from different
2919 statements, this flag can usually be left unset.
2921 If OEP_PURE_SAME is set, then pure functions with identical arguments
2922 are considered the same. It is used when the caller has other ways
2923 to ensure that global memory is unchanged in between.
2925 If OEP_ADDRESS_OF is set, we are actually comparing addresses of objects,
2926 not values of expressions.
2928 If OEP_LEXICOGRAPHIC is set, then also handle expressions with side-effects
2929 such as MODIFY_EXPR, RETURN_EXPR, as well as STATEMENT_LISTs.
2931 Unless OEP_MATCH_SIDE_EFFECTS is set, the function returns false on
2932 any operand with side effect. This is unnecesarily conservative in the
2933 case we know that arg0 and arg1 are in disjoint code paths (such as in
2934 ?: operator). In addition OEP_MATCH_SIDE_EFFECTS is used when comparing
2935 addresses with TREE_CONSTANT flag set so we know that &var == &var
2936 even if var is volatile. */
2939 operand_equal_p (const_tree arg0
, const_tree arg1
, unsigned int flags
)
2941 /* When checking, verify at the outermost operand_equal_p call that
2942 if operand_equal_p returns non-zero then ARG0 and ARG1 has the same
2944 if (flag_checking
&& !(flags
& OEP_NO_HASH_CHECK
))
2946 if (operand_equal_p (arg0
, arg1
, flags
| OEP_NO_HASH_CHECK
))
2950 inchash::hash
hstate0 (0), hstate1 (0);
2951 inchash::add_expr (arg0
, hstate0
, flags
| OEP_HASH_CHECK
);
2952 inchash::add_expr (arg1
, hstate1
, flags
| OEP_HASH_CHECK
);
2953 hashval_t h0
= hstate0
.end ();
2954 hashval_t h1
= hstate1
.end ();
2955 gcc_assert (h0
== h1
);
2963 /* If either is ERROR_MARK, they aren't equal. */
2964 if (TREE_CODE (arg0
) == ERROR_MARK
|| TREE_CODE (arg1
) == ERROR_MARK
2965 || TREE_TYPE (arg0
) == error_mark_node
2966 || TREE_TYPE (arg1
) == error_mark_node
)
2969 /* Similar, if either does not have a type (like a released SSA name),
2970 they aren't equal. */
2971 if (!TREE_TYPE (arg0
) || !TREE_TYPE (arg1
))
2974 /* We cannot consider pointers to different address space equal. */
2975 if (POINTER_TYPE_P (TREE_TYPE (arg0
))
2976 && POINTER_TYPE_P (TREE_TYPE (arg1
))
2977 && (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0
)))
2978 != TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg1
)))))
2981 /* Check equality of integer constants before bailing out due to
2982 precision differences. */
2983 if (TREE_CODE (arg0
) == INTEGER_CST
&& TREE_CODE (arg1
) == INTEGER_CST
)
2985 /* Address of INTEGER_CST is not defined; check that we did not forget
2986 to drop the OEP_ADDRESS_OF flags. */
2987 gcc_checking_assert (!(flags
& OEP_ADDRESS_OF
));
2988 return tree_int_cst_equal (arg0
, arg1
);
2991 if (!(flags
& OEP_ADDRESS_OF
))
2993 /* If both types don't have the same signedness, then we can't consider
2994 them equal. We must check this before the STRIP_NOPS calls
2995 because they may change the signedness of the arguments. As pointers
2996 strictly don't have a signedness, require either two pointers or
2997 two non-pointers as well. */
2998 if (TYPE_UNSIGNED (TREE_TYPE (arg0
)) != TYPE_UNSIGNED (TREE_TYPE (arg1
))
2999 || POINTER_TYPE_P (TREE_TYPE (arg0
))
3000 != POINTER_TYPE_P (TREE_TYPE (arg1
)))
3003 /* If both types don't have the same precision, then it is not safe
3005 if (element_precision (TREE_TYPE (arg0
))
3006 != element_precision (TREE_TYPE (arg1
)))
3013 /* FIXME: Fortran FE currently produce ADDR_EXPR of NOP_EXPR. Enable the
3014 sanity check once the issue is solved. */
3016 /* Addresses of conversions and SSA_NAMEs (and many other things)
3017 are not defined. Check that we did not forget to drop the
3018 OEP_ADDRESS_OF/OEP_CONSTANT_ADDRESS_OF flags. */
3019 gcc_checking_assert (!CONVERT_EXPR_P (arg0
) && !CONVERT_EXPR_P (arg1
)
3020 && TREE_CODE (arg0
) != SSA_NAME
);
3023 /* In case both args are comparisons but with different comparison
3024 code, try to swap the comparison operands of one arg to produce
3025 a match and compare that variant. */
3026 if (TREE_CODE (arg0
) != TREE_CODE (arg1
)
3027 && COMPARISON_CLASS_P (arg0
)
3028 && COMPARISON_CLASS_P (arg1
))
3030 enum tree_code swap_code
= swap_tree_comparison (TREE_CODE (arg1
));
3032 if (TREE_CODE (arg0
) == swap_code
)
3033 return operand_equal_p (TREE_OPERAND (arg0
, 0),
3034 TREE_OPERAND (arg1
, 1), flags
)
3035 && operand_equal_p (TREE_OPERAND (arg0
, 1),
3036 TREE_OPERAND (arg1
, 0), flags
);
3039 if (TREE_CODE (arg0
) != TREE_CODE (arg1
))
3041 /* NOP_EXPR and CONVERT_EXPR are considered equal. */
3042 if (CONVERT_EXPR_P (arg0
) && CONVERT_EXPR_P (arg1
))
3044 else if (flags
& OEP_ADDRESS_OF
)
3046 /* If we are interested in comparing addresses ignore
3047 MEM_REF wrappings of the base that can appear just for
3049 if (TREE_CODE (arg0
) == MEM_REF
3051 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == ADDR_EXPR
3052 && TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0) == arg1
3053 && integer_zerop (TREE_OPERAND (arg0
, 1)))
3055 else if (TREE_CODE (arg1
) == MEM_REF
3057 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == ADDR_EXPR
3058 && TREE_OPERAND (TREE_OPERAND (arg1
, 0), 0) == arg0
3059 && integer_zerop (TREE_OPERAND (arg1
, 1)))
3067 /* When not checking adddresses, this is needed for conversions and for
3068 COMPONENT_REF. Might as well play it safe and always test this. */
3069 if (TREE_CODE (TREE_TYPE (arg0
)) == ERROR_MARK
3070 || TREE_CODE (TREE_TYPE (arg1
)) == ERROR_MARK
3071 || (TYPE_MODE (TREE_TYPE (arg0
)) != TYPE_MODE (TREE_TYPE (arg1
))
3072 && !(flags
& OEP_ADDRESS_OF
)))
3075 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
3076 We don't care about side effects in that case because the SAVE_EXPR
3077 takes care of that for us. In all other cases, two expressions are
3078 equal if they have no side effects. If we have two identical
3079 expressions with side effects that should be treated the same due
3080 to the only side effects being identical SAVE_EXPR's, that will
3081 be detected in the recursive calls below.
3082 If we are taking an invariant address of two identical objects
3083 they are necessarily equal as well. */
3084 if (arg0
== arg1
&& ! (flags
& OEP_ONLY_CONST
)
3085 && (TREE_CODE (arg0
) == SAVE_EXPR
3086 || (flags
& OEP_MATCH_SIDE_EFFECTS
)
3087 || (! TREE_SIDE_EFFECTS (arg0
) && ! TREE_SIDE_EFFECTS (arg1
))))
3090 /* Next handle constant cases, those for which we can return 1 even
3091 if ONLY_CONST is set. */
3092 if (TREE_CONSTANT (arg0
) && TREE_CONSTANT (arg1
))
3093 switch (TREE_CODE (arg0
))
3096 return tree_int_cst_equal (arg0
, arg1
);
3099 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0
),
3100 TREE_FIXED_CST (arg1
));
3103 if (real_identical (&TREE_REAL_CST (arg0
), &TREE_REAL_CST (arg1
)))
3107 if (!HONOR_SIGNED_ZEROS (arg0
))
3109 /* If we do not distinguish between signed and unsigned zero,
3110 consider them equal. */
3111 if (real_zerop (arg0
) && real_zerop (arg1
))
3118 if (VECTOR_CST_LOG2_NPATTERNS (arg0
)
3119 != VECTOR_CST_LOG2_NPATTERNS (arg1
))
3122 if (VECTOR_CST_NELTS_PER_PATTERN (arg0
)
3123 != VECTOR_CST_NELTS_PER_PATTERN (arg1
))
3126 unsigned int count
= vector_cst_encoded_nelts (arg0
);
3127 for (unsigned int i
= 0; i
< count
; ++i
)
3128 if (!operand_equal_p (VECTOR_CST_ENCODED_ELT (arg0
, i
),
3129 VECTOR_CST_ENCODED_ELT (arg1
, i
), flags
))
3135 return (operand_equal_p (TREE_REALPART (arg0
), TREE_REALPART (arg1
),
3137 && operand_equal_p (TREE_IMAGPART (arg0
), TREE_IMAGPART (arg1
),
3141 return (TREE_STRING_LENGTH (arg0
) == TREE_STRING_LENGTH (arg1
)
3142 && ! memcmp (TREE_STRING_POINTER (arg0
),
3143 TREE_STRING_POINTER (arg1
),
3144 TREE_STRING_LENGTH (arg0
)));
3147 gcc_checking_assert (!(flags
& OEP_ADDRESS_OF
));
3148 return operand_equal_p (TREE_OPERAND (arg0
, 0), TREE_OPERAND (arg1
, 0),
3149 flags
| OEP_ADDRESS_OF
3150 | OEP_MATCH_SIDE_EFFECTS
);
3152 /* In GIMPLE empty constructors are allowed in initializers of
3154 return !CONSTRUCTOR_NELTS (arg0
) && !CONSTRUCTOR_NELTS (arg1
);
3159 if (flags
& OEP_ONLY_CONST
)
3162 /* Define macros to test an operand from arg0 and arg1 for equality and a
3163 variant that allows null and views null as being different from any
3164 non-null value. In the latter case, if either is null, the both
3165 must be; otherwise, do the normal comparison. */
3166 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
3167 TREE_OPERAND (arg1, N), flags)
3169 #define OP_SAME_WITH_NULL(N) \
3170 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
3171 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
3173 switch (TREE_CODE_CLASS (TREE_CODE (arg0
)))
3176 /* Two conversions are equal only if signedness and modes match. */
3177 switch (TREE_CODE (arg0
))
3180 case FIX_TRUNC_EXPR
:
3181 if (TYPE_UNSIGNED (TREE_TYPE (arg0
))
3182 != TYPE_UNSIGNED (TREE_TYPE (arg1
)))
3192 case tcc_comparison
:
3194 if (OP_SAME (0) && OP_SAME (1))
3197 /* For commutative ops, allow the other order. */
3198 return (commutative_tree_code (TREE_CODE (arg0
))
3199 && operand_equal_p (TREE_OPERAND (arg0
, 0),
3200 TREE_OPERAND (arg1
, 1), flags
)
3201 && operand_equal_p (TREE_OPERAND (arg0
, 1),
3202 TREE_OPERAND (arg1
, 0), flags
));
3205 /* If either of the pointer (or reference) expressions we are
3206 dereferencing contain a side effect, these cannot be equal,
3207 but their addresses can be. */
3208 if ((flags
& OEP_MATCH_SIDE_EFFECTS
) == 0
3209 && (TREE_SIDE_EFFECTS (arg0
)
3210 || TREE_SIDE_EFFECTS (arg1
)))
3213 switch (TREE_CODE (arg0
))
3216 if (!(flags
& OEP_ADDRESS_OF
)
3217 && (TYPE_ALIGN (TREE_TYPE (arg0
))
3218 != TYPE_ALIGN (TREE_TYPE (arg1
))))
3220 flags
&= ~OEP_ADDRESS_OF
;
3224 /* Require the same offset. */
3225 if (!operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0
)),
3226 TYPE_SIZE (TREE_TYPE (arg1
)),
3227 flags
& ~OEP_ADDRESS_OF
))
3232 case VIEW_CONVERT_EXPR
:
3235 case TARGET_MEM_REF
:
3237 if (!(flags
& OEP_ADDRESS_OF
))
3239 /* Require equal access sizes */
3240 if (TYPE_SIZE (TREE_TYPE (arg0
)) != TYPE_SIZE (TREE_TYPE (arg1
))
3241 && (!TYPE_SIZE (TREE_TYPE (arg0
))
3242 || !TYPE_SIZE (TREE_TYPE (arg1
))
3243 || !operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0
)),
3244 TYPE_SIZE (TREE_TYPE (arg1
)),
3247 /* Verify that access happens in similar types. */
3248 if (!types_compatible_p (TREE_TYPE (arg0
), TREE_TYPE (arg1
)))
3250 /* Verify that accesses are TBAA compatible. */
3251 if (!alias_ptr_types_compatible_p
3252 (TREE_TYPE (TREE_OPERAND (arg0
, 1)),
3253 TREE_TYPE (TREE_OPERAND (arg1
, 1)))
3254 || (MR_DEPENDENCE_CLIQUE (arg0
)
3255 != MR_DEPENDENCE_CLIQUE (arg1
))
3256 || (MR_DEPENDENCE_BASE (arg0
)
3257 != MR_DEPENDENCE_BASE (arg1
)))
3259 /* Verify that alignment is compatible. */
3260 if (TYPE_ALIGN (TREE_TYPE (arg0
))
3261 != TYPE_ALIGN (TREE_TYPE (arg1
)))
3264 flags
&= ~OEP_ADDRESS_OF
;
3265 return (OP_SAME (0) && OP_SAME (1)
3266 /* TARGET_MEM_REF require equal extra operands. */
3267 && (TREE_CODE (arg0
) != TARGET_MEM_REF
3268 || (OP_SAME_WITH_NULL (2)
3269 && OP_SAME_WITH_NULL (3)
3270 && OP_SAME_WITH_NULL (4))));
3273 case ARRAY_RANGE_REF
:
3276 flags
&= ~OEP_ADDRESS_OF
;
3277 /* Compare the array index by value if it is constant first as we
3278 may have different types but same value here. */
3279 return ((tree_int_cst_equal (TREE_OPERAND (arg0
, 1),
3280 TREE_OPERAND (arg1
, 1))
3282 && OP_SAME_WITH_NULL (2)
3283 && OP_SAME_WITH_NULL (3)
3284 /* Compare low bound and element size as with OEP_ADDRESS_OF
3285 we have to account for the offset of the ref. */
3286 && (TREE_TYPE (TREE_OPERAND (arg0
, 0))
3287 == TREE_TYPE (TREE_OPERAND (arg1
, 0))
3288 || (operand_equal_p (array_ref_low_bound
3289 (CONST_CAST_TREE (arg0
)),
3291 (CONST_CAST_TREE (arg1
)), flags
)
3292 && operand_equal_p (array_ref_element_size
3293 (CONST_CAST_TREE (arg0
)),
3294 array_ref_element_size
3295 (CONST_CAST_TREE (arg1
)),
3299 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
3300 may be NULL when we're called to compare MEM_EXPRs. */
3301 if (!OP_SAME_WITH_NULL (0)
3304 flags
&= ~OEP_ADDRESS_OF
;
3305 return OP_SAME_WITH_NULL (2);
3310 flags
&= ~OEP_ADDRESS_OF
;
3311 return OP_SAME (1) && OP_SAME (2);
3317 case tcc_expression
:
3318 switch (TREE_CODE (arg0
))
3321 /* Be sure we pass right ADDRESS_OF flag. */
3322 gcc_checking_assert (!(flags
& OEP_ADDRESS_OF
));
3323 return operand_equal_p (TREE_OPERAND (arg0
, 0),
3324 TREE_OPERAND (arg1
, 0),
3325 flags
| OEP_ADDRESS_OF
);
3327 case TRUTH_NOT_EXPR
:
3330 case TRUTH_ANDIF_EXPR
:
3331 case TRUTH_ORIF_EXPR
:
3332 return OP_SAME (0) && OP_SAME (1);
3334 case WIDEN_MULT_PLUS_EXPR
:
3335 case WIDEN_MULT_MINUS_EXPR
:
3338 /* The multiplcation operands are commutative. */
3341 case TRUTH_AND_EXPR
:
3343 case TRUTH_XOR_EXPR
:
3344 if (OP_SAME (0) && OP_SAME (1))
3347 /* Otherwise take into account this is a commutative operation. */
3348 return (operand_equal_p (TREE_OPERAND (arg0
, 0),
3349 TREE_OPERAND (arg1
, 1), flags
)
3350 && operand_equal_p (TREE_OPERAND (arg0
, 1),
3351 TREE_OPERAND (arg1
, 0), flags
));
3354 if (! OP_SAME (1) || ! OP_SAME_WITH_NULL (2))
3356 flags
&= ~OEP_ADDRESS_OF
;
3359 case BIT_INSERT_EXPR
:
3360 /* BIT_INSERT_EXPR has an implict operand as the type precision
3361 of op1. Need to check to make sure they are the same. */
3362 if (TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
3363 && TREE_CODE (TREE_OPERAND (arg1
, 1)) == INTEGER_CST
3364 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0
, 1)))
3365 != TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1
, 1))))
3371 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
3376 case PREDECREMENT_EXPR
:
3377 case PREINCREMENT_EXPR
:
3378 case POSTDECREMENT_EXPR
:
3379 case POSTINCREMENT_EXPR
:
3380 if (flags
& OEP_LEXICOGRAPHIC
)
3381 return OP_SAME (0) && OP_SAME (1);
3384 case CLEANUP_POINT_EXPR
:
3387 if (flags
& OEP_LEXICOGRAPHIC
)
3396 switch (TREE_CODE (arg0
))
3399 if ((CALL_EXPR_FN (arg0
) == NULL_TREE
)
3400 != (CALL_EXPR_FN (arg1
) == NULL_TREE
))
3401 /* If not both CALL_EXPRs are either internal or normal function
3402 functions, then they are not equal. */
3404 else if (CALL_EXPR_FN (arg0
) == NULL_TREE
)
3406 /* If the CALL_EXPRs call different internal functions, then they
3408 if (CALL_EXPR_IFN (arg0
) != CALL_EXPR_IFN (arg1
))
3413 /* If the CALL_EXPRs call different functions, then they are not
3415 if (! operand_equal_p (CALL_EXPR_FN (arg0
), CALL_EXPR_FN (arg1
),
3420 /* FIXME: We could skip this test for OEP_MATCH_SIDE_EFFECTS. */
3422 unsigned int cef
= call_expr_flags (arg0
);
3423 if (flags
& OEP_PURE_SAME
)
3424 cef
&= ECF_CONST
| ECF_PURE
;
3427 if (!cef
&& !(flags
& OEP_LEXICOGRAPHIC
))
3431 /* Now see if all the arguments are the same. */
3433 const_call_expr_arg_iterator iter0
, iter1
;
3435 for (a0
= first_const_call_expr_arg (arg0
, &iter0
),
3436 a1
= first_const_call_expr_arg (arg1
, &iter1
);
3438 a0
= next_const_call_expr_arg (&iter0
),
3439 a1
= next_const_call_expr_arg (&iter1
))
3440 if (! operand_equal_p (a0
, a1
, flags
))
3443 /* If we get here and both argument lists are exhausted
3444 then the CALL_EXPRs are equal. */
3445 return ! (a0
|| a1
);
3451 case tcc_declaration
:
3452 /* Consider __builtin_sqrt equal to sqrt. */
3453 return (TREE_CODE (arg0
) == FUNCTION_DECL
3454 && DECL_BUILT_IN (arg0
) && DECL_BUILT_IN (arg1
)
3455 && DECL_BUILT_IN_CLASS (arg0
) == DECL_BUILT_IN_CLASS (arg1
)
3456 && DECL_FUNCTION_CODE (arg0
) == DECL_FUNCTION_CODE (arg1
));
3458 case tcc_exceptional
:
3459 if (TREE_CODE (arg0
) == CONSTRUCTOR
)
3461 /* In GIMPLE constructors are used only to build vectors from
3462 elements. Individual elements in the constructor must be
3463 indexed in increasing order and form an initial sequence.
3465 We make no effort to compare constructors in generic.
3466 (see sem_variable::equals in ipa-icf which can do so for
3468 if (!VECTOR_TYPE_P (TREE_TYPE (arg0
))
3469 || !VECTOR_TYPE_P (TREE_TYPE (arg1
)))
3472 /* Be sure that vectors constructed have the same representation.
3473 We only tested element precision and modes to match.
3474 Vectors may be BLKmode and thus also check that the number of
3476 if (maybe_ne (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0
)),
3477 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1
))))
3480 vec
<constructor_elt
, va_gc
> *v0
= CONSTRUCTOR_ELTS (arg0
);
3481 vec
<constructor_elt
, va_gc
> *v1
= CONSTRUCTOR_ELTS (arg1
);
3482 unsigned int len
= vec_safe_length (v0
);
3484 if (len
!= vec_safe_length (v1
))
3487 for (unsigned int i
= 0; i
< len
; i
++)
3489 constructor_elt
*c0
= &(*v0
)[i
];
3490 constructor_elt
*c1
= &(*v1
)[i
];
3492 if (!operand_equal_p (c0
->value
, c1
->value
, flags
)
3493 /* In GIMPLE the indexes can be either NULL or matching i.
3494 Double check this so we won't get false
3495 positives for GENERIC. */
3497 && (TREE_CODE (c0
->index
) != INTEGER_CST
3498 || !compare_tree_int (c0
->index
, i
)))
3500 && (TREE_CODE (c1
->index
) != INTEGER_CST
3501 || !compare_tree_int (c1
->index
, i
))))
3506 else if (TREE_CODE (arg0
) == STATEMENT_LIST
3507 && (flags
& OEP_LEXICOGRAPHIC
))
3509 /* Compare the STATEMENT_LISTs. */
3510 tree_stmt_iterator tsi1
, tsi2
;
3511 tree body1
= CONST_CAST_TREE (arg0
);
3512 tree body2
= CONST_CAST_TREE (arg1
);
3513 for (tsi1
= tsi_start (body1
), tsi2
= tsi_start (body2
); ;
3514 tsi_next (&tsi1
), tsi_next (&tsi2
))
3516 /* The lists don't have the same number of statements. */
3517 if (tsi_end_p (tsi1
) ^ tsi_end_p (tsi2
))
3519 if (tsi_end_p (tsi1
) && tsi_end_p (tsi2
))
3521 if (!operand_equal_p (tsi_stmt (tsi1
), tsi_stmt (tsi2
),
3522 flags
& (OEP_LEXICOGRAPHIC
3523 | OEP_NO_HASH_CHECK
)))
3530 switch (TREE_CODE (arg0
))
3533 if (flags
& OEP_LEXICOGRAPHIC
)
3534 return OP_SAME_WITH_NULL (0);
3536 case DEBUG_BEGIN_STMT
:
3537 if (flags
& OEP_LEXICOGRAPHIC
)
3549 #undef OP_SAME_WITH_NULL
3552 /* Similar to operand_equal_p, but see if ARG0 might be a variant of ARG1
3553 with a different signedness or a narrower precision. */
3556 operand_equal_for_comparison_p (tree arg0
, tree arg1
)
3558 if (operand_equal_p (arg0
, arg1
, 0))
3561 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
3562 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1
)))
3565 /* Discard any conversions that don't change the modes of ARG0 and ARG1
3566 and see if the inner values are the same. This removes any
3567 signedness comparison, which doesn't matter here. */
3572 if (operand_equal_p (op0
, op1
, 0))
3575 /* Discard a single widening conversion from ARG1 and see if the inner
3576 value is the same as ARG0. */
3577 if (CONVERT_EXPR_P (arg1
)
3578 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg1
, 0)))
3579 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1
, 0)))
3580 < TYPE_PRECISION (TREE_TYPE (arg1
))
3581 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
3587 /* See if ARG is an expression that is either a comparison or is performing
3588 arithmetic on comparisons. The comparisons must only be comparing
3589 two different values, which will be stored in *CVAL1 and *CVAL2; if
3590 they are nonzero it means that some operands have already been found.
3591 No variables may be used anywhere else in the expression except in the
3594 If this is true, return 1. Otherwise, return zero. */
3597 twoval_comparison_p (tree arg
, tree
*cval1
, tree
*cval2
)
3599 enum tree_code code
= TREE_CODE (arg
);
3600 enum tree_code_class tclass
= TREE_CODE_CLASS (code
);
3602 /* We can handle some of the tcc_expression cases here. */
3603 if (tclass
== tcc_expression
&& code
== TRUTH_NOT_EXPR
)
3605 else if (tclass
== tcc_expression
3606 && (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_ORIF_EXPR
3607 || code
== COMPOUND_EXPR
))
3608 tclass
= tcc_binary
;
3613 return twoval_comparison_p (TREE_OPERAND (arg
, 0), cval1
, cval2
);
3616 return (twoval_comparison_p (TREE_OPERAND (arg
, 0), cval1
, cval2
)
3617 && twoval_comparison_p (TREE_OPERAND (arg
, 1), cval1
, cval2
));
3622 case tcc_expression
:
3623 if (code
== COND_EXPR
)
3624 return (twoval_comparison_p (TREE_OPERAND (arg
, 0), cval1
, cval2
)
3625 && twoval_comparison_p (TREE_OPERAND (arg
, 1), cval1
, cval2
)
3626 && twoval_comparison_p (TREE_OPERAND (arg
, 2), cval1
, cval2
));
3629 case tcc_comparison
:
3630 /* First see if we can handle the first operand, then the second. For
3631 the second operand, we know *CVAL1 can't be zero. It must be that
3632 one side of the comparison is each of the values; test for the
3633 case where this isn't true by failing if the two operands
3636 if (operand_equal_p (TREE_OPERAND (arg
, 0),
3637 TREE_OPERAND (arg
, 1), 0))
3641 *cval1
= TREE_OPERAND (arg
, 0);
3642 else if (operand_equal_p (*cval1
, TREE_OPERAND (arg
, 0), 0))
3644 else if (*cval2
== 0)
3645 *cval2
= TREE_OPERAND (arg
, 0);
3646 else if (operand_equal_p (*cval2
, TREE_OPERAND (arg
, 0), 0))
3651 if (operand_equal_p (*cval1
, TREE_OPERAND (arg
, 1), 0))
3653 else if (*cval2
== 0)
3654 *cval2
= TREE_OPERAND (arg
, 1);
3655 else if (operand_equal_p (*cval2
, TREE_OPERAND (arg
, 1), 0))
3667 /* ARG is a tree that is known to contain just arithmetic operations and
3668 comparisons. Evaluate the operations in the tree substituting NEW0 for
3669 any occurrence of OLD0 as an operand of a comparison and likewise for
3673 eval_subst (location_t loc
, tree arg
, tree old0
, tree new0
,
3674 tree old1
, tree new1
)
3676 tree type
= TREE_TYPE (arg
);
3677 enum tree_code code
= TREE_CODE (arg
);
3678 enum tree_code_class tclass
= TREE_CODE_CLASS (code
);
3680 /* We can handle some of the tcc_expression cases here. */
3681 if (tclass
== tcc_expression
&& code
== TRUTH_NOT_EXPR
)
3683 else if (tclass
== tcc_expression
3684 && (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_ORIF_EXPR
))
3685 tclass
= tcc_binary
;
3690 return fold_build1_loc (loc
, code
, type
,
3691 eval_subst (loc
, TREE_OPERAND (arg
, 0),
3692 old0
, new0
, old1
, new1
));
3695 return fold_build2_loc (loc
, code
, type
,
3696 eval_subst (loc
, TREE_OPERAND (arg
, 0),
3697 old0
, new0
, old1
, new1
),
3698 eval_subst (loc
, TREE_OPERAND (arg
, 1),
3699 old0
, new0
, old1
, new1
));
3701 case tcc_expression
:
3705 return eval_subst (loc
, TREE_OPERAND (arg
, 0), old0
, new0
,
3709 return eval_subst (loc
, TREE_OPERAND (arg
, 1), old0
, new0
,
3713 return fold_build3_loc (loc
, code
, type
,
3714 eval_subst (loc
, TREE_OPERAND (arg
, 0),
3715 old0
, new0
, old1
, new1
),
3716 eval_subst (loc
, TREE_OPERAND (arg
, 1),
3717 old0
, new0
, old1
, new1
),
3718 eval_subst (loc
, TREE_OPERAND (arg
, 2),
3719 old0
, new0
, old1
, new1
));
3723 /* Fall through - ??? */
3725 case tcc_comparison
:
3727 tree arg0
= TREE_OPERAND (arg
, 0);
3728 tree arg1
= TREE_OPERAND (arg
, 1);
3730 /* We need to check both for exact equality and tree equality. The
3731 former will be true if the operand has a side-effect. In that
3732 case, we know the operand occurred exactly once. */
3734 if (arg0
== old0
|| operand_equal_p (arg0
, old0
, 0))
3736 else if (arg0
== old1
|| operand_equal_p (arg0
, old1
, 0))
3739 if (arg1
== old0
|| operand_equal_p (arg1
, old0
, 0))
3741 else if (arg1
== old1
|| operand_equal_p (arg1
, old1
, 0))
3744 return fold_build2_loc (loc
, code
, type
, arg0
, arg1
);
3752 /* Return a tree for the case when the result of an expression is RESULT
3753 converted to TYPE and OMITTED was previously an operand of the expression
3754 but is now not needed (e.g., we folded OMITTED * 0).
3756 If OMITTED has side effects, we must evaluate it. Otherwise, just do
3757 the conversion of RESULT to TYPE. */
3760 omit_one_operand_loc (location_t loc
, tree type
, tree result
, tree omitted
)
3762 tree t
= fold_convert_loc (loc
, type
, result
);
3764 /* If the resulting operand is an empty statement, just return the omitted
3765 statement casted to void. */
3766 if (IS_EMPTY_STMT (t
) && TREE_SIDE_EFFECTS (omitted
))
3767 return build1_loc (loc
, NOP_EXPR
, void_type_node
,
3768 fold_ignored_result (omitted
));
3770 if (TREE_SIDE_EFFECTS (omitted
))
3771 return build2_loc (loc
, COMPOUND_EXPR
, type
,
3772 fold_ignored_result (omitted
), t
);
3774 return non_lvalue_loc (loc
, t
);
3777 /* Return a tree for the case when the result of an expression is RESULT
3778 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
3779 of the expression but are now not needed.
3781 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
3782 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
3783 evaluated before OMITTED2. Otherwise, if neither has side effects,
3784 just do the conversion of RESULT to TYPE. */
3787 omit_two_operands_loc (location_t loc
, tree type
, tree result
,
3788 tree omitted1
, tree omitted2
)
3790 tree t
= fold_convert_loc (loc
, type
, result
);
3792 if (TREE_SIDE_EFFECTS (omitted2
))
3793 t
= build2_loc (loc
, COMPOUND_EXPR
, type
, omitted2
, t
);
3794 if (TREE_SIDE_EFFECTS (omitted1
))
3795 t
= build2_loc (loc
, COMPOUND_EXPR
, type
, omitted1
, t
);
3797 return TREE_CODE (t
) != COMPOUND_EXPR
? non_lvalue_loc (loc
, t
) : t
;
3801 /* Return a simplified tree node for the truth-negation of ARG. This
3802 never alters ARG itself. We assume that ARG is an operation that
3803 returns a truth value (0 or 1).
3805 FIXME: one would think we would fold the result, but it causes
3806 problems with the dominator optimizer. */
3809 fold_truth_not_expr (location_t loc
, tree arg
)
3811 tree type
= TREE_TYPE (arg
);
3812 enum tree_code code
= TREE_CODE (arg
);
3813 location_t loc1
, loc2
;
3815 /* If this is a comparison, we can simply invert it, except for
3816 floating-point non-equality comparisons, in which case we just
3817 enclose a TRUTH_NOT_EXPR around what we have. */
3819 if (TREE_CODE_CLASS (code
) == tcc_comparison
)
3821 tree op_type
= TREE_TYPE (TREE_OPERAND (arg
, 0));
3822 if (FLOAT_TYPE_P (op_type
)
3823 && flag_trapping_math
3824 && code
!= ORDERED_EXPR
&& code
!= UNORDERED_EXPR
3825 && code
!= NE_EXPR
&& code
!= EQ_EXPR
)
3828 code
= invert_tree_comparison (code
, HONOR_NANS (op_type
));
3829 if (code
== ERROR_MARK
)
3832 tree ret
= build2_loc (loc
, code
, type
, TREE_OPERAND (arg
, 0),
3833 TREE_OPERAND (arg
, 1));
3834 if (TREE_NO_WARNING (arg
))
3835 TREE_NO_WARNING (ret
) = 1;
3842 return constant_boolean_node (integer_zerop (arg
), type
);
3844 case TRUTH_AND_EXPR
:
3845 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3846 loc2
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3847 return build2_loc (loc
, TRUTH_OR_EXPR
, type
,
3848 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)),
3849 invert_truthvalue_loc (loc2
, TREE_OPERAND (arg
, 1)));
3852 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3853 loc2
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3854 return build2_loc (loc
, TRUTH_AND_EXPR
, type
,
3855 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)),
3856 invert_truthvalue_loc (loc2
, TREE_OPERAND (arg
, 1)));
3858 case TRUTH_XOR_EXPR
:
3859 /* Here we can invert either operand. We invert the first operand
3860 unless the second operand is a TRUTH_NOT_EXPR in which case our
3861 result is the XOR of the first operand with the inside of the
3862 negation of the second operand. */
3864 if (TREE_CODE (TREE_OPERAND (arg
, 1)) == TRUTH_NOT_EXPR
)
3865 return build2_loc (loc
, TRUTH_XOR_EXPR
, type
, TREE_OPERAND (arg
, 0),
3866 TREE_OPERAND (TREE_OPERAND (arg
, 1), 0));
3868 return build2_loc (loc
, TRUTH_XOR_EXPR
, type
,
3869 invert_truthvalue_loc (loc
, TREE_OPERAND (arg
, 0)),
3870 TREE_OPERAND (arg
, 1));
3872 case TRUTH_ANDIF_EXPR
:
3873 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3874 loc2
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3875 return build2_loc (loc
, TRUTH_ORIF_EXPR
, type
,
3876 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)),
3877 invert_truthvalue_loc (loc2
, TREE_OPERAND (arg
, 1)));
3879 case TRUTH_ORIF_EXPR
:
3880 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3881 loc2
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3882 return build2_loc (loc
, TRUTH_ANDIF_EXPR
, type
,
3883 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)),
3884 invert_truthvalue_loc (loc2
, TREE_OPERAND (arg
, 1)));
3886 case TRUTH_NOT_EXPR
:
3887 return TREE_OPERAND (arg
, 0);
3891 tree arg1
= TREE_OPERAND (arg
, 1);
3892 tree arg2
= TREE_OPERAND (arg
, 2);
3894 loc1
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3895 loc2
= expr_location_or (TREE_OPERAND (arg
, 2), loc
);
3897 /* A COND_EXPR may have a throw as one operand, which
3898 then has void type. Just leave void operands
3900 return build3_loc (loc
, COND_EXPR
, type
, TREE_OPERAND (arg
, 0),
3901 VOID_TYPE_P (TREE_TYPE (arg1
))
3902 ? arg1
: invert_truthvalue_loc (loc1
, arg1
),
3903 VOID_TYPE_P (TREE_TYPE (arg2
))
3904 ? arg2
: invert_truthvalue_loc (loc2
, arg2
));
3908 loc1
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3909 return build2_loc (loc
, COMPOUND_EXPR
, type
,
3910 TREE_OPERAND (arg
, 0),
3911 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 1)));
3913 case NON_LVALUE_EXPR
:
3914 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3915 return invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0));
3918 if (TREE_CODE (TREE_TYPE (arg
)) == BOOLEAN_TYPE
)
3919 return build1_loc (loc
, TRUTH_NOT_EXPR
, type
, arg
);
3924 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3925 return build1_loc (loc
, TREE_CODE (arg
), type
,
3926 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)));
3929 if (!integer_onep (TREE_OPERAND (arg
, 1)))
3931 return build2_loc (loc
, EQ_EXPR
, type
, arg
, build_int_cst (type
, 0));
3934 return build1_loc (loc
, TRUTH_NOT_EXPR
, type
, arg
);
3936 case CLEANUP_POINT_EXPR
:
3937 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3938 return build1_loc (loc
, CLEANUP_POINT_EXPR
, type
,
3939 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)));
3946 /* Fold the truth-negation of ARG. This never alters ARG itself. We
3947 assume that ARG is an operation that returns a truth value (0 or 1
3948 for scalars, 0 or -1 for vectors). Return the folded expression if
3949 folding is successful. Otherwise, return NULL_TREE. */
3952 fold_invert_truthvalue (location_t loc
, tree arg
)
3954 tree type
= TREE_TYPE (arg
);
3955 return fold_unary_loc (loc
, VECTOR_TYPE_P (type
)
3961 /* Return a simplified tree node for the truth-negation of ARG. This
3962 never alters ARG itself. We assume that ARG is an operation that
3963 returns a truth value (0 or 1 for scalars, 0 or -1 for vectors). */
3966 invert_truthvalue_loc (location_t loc
, tree arg
)
3968 if (TREE_CODE (arg
) == ERROR_MARK
)
3971 tree type
= TREE_TYPE (arg
);
3972 return fold_build1_loc (loc
, VECTOR_TYPE_P (type
)
3978 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3979 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero
3980 and uses reverse storage order if REVERSEP is nonzero. ORIG_INNER
3981 is the original memory reference used to preserve the alias set of
3985 make_bit_field_ref (location_t loc
, tree inner
, tree orig_inner
, tree type
,
3986 HOST_WIDE_INT bitsize
, poly_int64 bitpos
,
3987 int unsignedp
, int reversep
)
3989 tree result
, bftype
;
3991 /* Attempt not to lose the access path if possible. */
3992 if (TREE_CODE (orig_inner
) == COMPONENT_REF
)
3994 tree ninner
= TREE_OPERAND (orig_inner
, 0);
3996 poly_int64 nbitsize
, nbitpos
;
3998 int nunsignedp
, nreversep
, nvolatilep
= 0;
3999 tree base
= get_inner_reference (ninner
, &nbitsize
, &nbitpos
,
4000 &noffset
, &nmode
, &nunsignedp
,
4001 &nreversep
, &nvolatilep
);
4003 && noffset
== NULL_TREE
4004 && known_subrange_p (bitpos
, bitsize
, nbitpos
, nbitsize
)
4014 alias_set_type iset
= get_alias_set (orig_inner
);
4015 if (iset
== 0 && get_alias_set (inner
) != iset
)
4016 inner
= fold_build2 (MEM_REF
, TREE_TYPE (inner
),
4017 build_fold_addr_expr (inner
),
4018 build_int_cst (ptr_type_node
, 0));
4020 if (known_eq (bitpos
, 0) && !reversep
)
4022 tree size
= TYPE_SIZE (TREE_TYPE (inner
));
4023 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner
))
4024 || POINTER_TYPE_P (TREE_TYPE (inner
)))
4025 && tree_fits_shwi_p (size
)
4026 && tree_to_shwi (size
) == bitsize
)
4027 return fold_convert_loc (loc
, type
, inner
);
4031 if (TYPE_PRECISION (bftype
) != bitsize
4032 || TYPE_UNSIGNED (bftype
) == !unsignedp
)
4033 bftype
= build_nonstandard_integer_type (bitsize
, 0);
4035 result
= build3_loc (loc
, BIT_FIELD_REF
, bftype
, inner
,
4036 bitsize_int (bitsize
), bitsize_int (bitpos
));
4037 REF_REVERSE_STORAGE_ORDER (result
) = reversep
;
4040 result
= fold_convert_loc (loc
, type
, result
);
4045 /* Optimize a bit-field compare.
4047 There are two cases: First is a compare against a constant and the
4048 second is a comparison of two items where the fields are at the same
4049 bit position relative to the start of a chunk (byte, halfword, word)
4050 large enough to contain it. In these cases we can avoid the shift
4051 implicit in bitfield extractions.
4053 For constants, we emit a compare of the shifted constant with the
4054 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
4055 compared. For two fields at the same position, we do the ANDs with the
4056 similar mask and compare the result of the ANDs.
4058 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
4059 COMPARE_TYPE is the type of the comparison, and LHS and RHS
4060 are the left and right operands of the comparison, respectively.
4062 If the optimization described above can be done, we return the resulting
4063 tree. Otherwise we return zero. */
4066 optimize_bit_field_compare (location_t loc
, enum tree_code code
,
4067 tree compare_type
, tree lhs
, tree rhs
)
4069 poly_int64 plbitpos
, plbitsize
, rbitpos
, rbitsize
;
4070 HOST_WIDE_INT lbitpos
, lbitsize
, nbitpos
, nbitsize
;
4071 tree type
= TREE_TYPE (lhs
);
4073 int const_p
= TREE_CODE (rhs
) == INTEGER_CST
;
4074 machine_mode lmode
, rmode
;
4075 scalar_int_mode nmode
;
4076 int lunsignedp
, runsignedp
;
4077 int lreversep
, rreversep
;
4078 int lvolatilep
= 0, rvolatilep
= 0;
4079 tree linner
, rinner
= NULL_TREE
;
4083 /* Get all the information about the extractions being done. If the bit size
4084 is the same as the size of the underlying object, we aren't doing an
4085 extraction at all and so can do nothing. We also don't want to
4086 do anything if the inner expression is a PLACEHOLDER_EXPR since we
4087 then will no longer be able to replace it. */
4088 linner
= get_inner_reference (lhs
, &plbitsize
, &plbitpos
, &offset
, &lmode
,
4089 &lunsignedp
, &lreversep
, &lvolatilep
);
4091 || !known_size_p (plbitsize
)
4092 || !plbitsize
.is_constant (&lbitsize
)
4093 || !plbitpos
.is_constant (&lbitpos
)
4094 || known_eq (lbitsize
, GET_MODE_BITSIZE (lmode
))
4096 || TREE_CODE (linner
) == PLACEHOLDER_EXPR
4101 rreversep
= lreversep
;
4104 /* If this is not a constant, we can only do something if bit positions,
4105 sizes, signedness and storage order are the same. */
4107 = get_inner_reference (rhs
, &rbitsize
, &rbitpos
, &offset
, &rmode
,
4108 &runsignedp
, &rreversep
, &rvolatilep
);
4111 || maybe_ne (lbitpos
, rbitpos
)
4112 || maybe_ne (lbitsize
, rbitsize
)
4113 || lunsignedp
!= runsignedp
4114 || lreversep
!= rreversep
4116 || TREE_CODE (rinner
) == PLACEHOLDER_EXPR
4121 /* Honor the C++ memory model and mimic what RTL expansion does. */
4122 poly_uint64 bitstart
= 0;
4123 poly_uint64 bitend
= 0;
4124 if (TREE_CODE (lhs
) == COMPONENT_REF
)
4126 get_bit_range (&bitstart
, &bitend
, lhs
, &plbitpos
, &offset
);
4127 if (!plbitpos
.is_constant (&lbitpos
) || offset
!= NULL_TREE
)
4131 /* See if we can find a mode to refer to this field. We should be able to,
4132 but fail if we can't. */
4133 if (!get_best_mode (lbitsize
, lbitpos
, bitstart
, bitend
,
4134 const_p
? TYPE_ALIGN (TREE_TYPE (linner
))
4135 : MIN (TYPE_ALIGN (TREE_TYPE (linner
)),
4136 TYPE_ALIGN (TREE_TYPE (rinner
))),
4137 BITS_PER_WORD
, false, &nmode
))
4140 /* Set signed and unsigned types of the precision of this mode for the
4142 unsigned_type
= lang_hooks
.types
.type_for_mode (nmode
, 1);
4144 /* Compute the bit position and size for the new reference and our offset
4145 within it. If the new reference is the same size as the original, we
4146 won't optimize anything, so return zero. */
4147 nbitsize
= GET_MODE_BITSIZE (nmode
);
4148 nbitpos
= lbitpos
& ~ (nbitsize
- 1);
4150 if (nbitsize
== lbitsize
)
4153 if (lreversep
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
4154 lbitpos
= nbitsize
- lbitsize
- lbitpos
;
4156 /* Make the mask to be used against the extracted field. */
4157 mask
= build_int_cst_type (unsigned_type
, -1);
4158 mask
= const_binop (LSHIFT_EXPR
, mask
, size_int (nbitsize
- lbitsize
));
4159 mask
= const_binop (RSHIFT_EXPR
, mask
,
4160 size_int (nbitsize
- lbitsize
- lbitpos
));
4167 /* If not comparing with constant, just rework the comparison
4169 tree t1
= make_bit_field_ref (loc
, linner
, lhs
, unsigned_type
,
4170 nbitsize
, nbitpos
, 1, lreversep
);
4171 t1
= fold_build2_loc (loc
, BIT_AND_EXPR
, unsigned_type
, t1
, mask
);
4172 tree t2
= make_bit_field_ref (loc
, rinner
, rhs
, unsigned_type
,
4173 nbitsize
, nbitpos
, 1, rreversep
);
4174 t2
= fold_build2_loc (loc
, BIT_AND_EXPR
, unsigned_type
, t2
, mask
);
4175 return fold_build2_loc (loc
, code
, compare_type
, t1
, t2
);
4178 /* Otherwise, we are handling the constant case. See if the constant is too
4179 big for the field. Warn and return a tree for 0 (false) if so. We do
4180 this not only for its own sake, but to avoid having to test for this
4181 error case below. If we didn't, we might generate wrong code.
4183 For unsigned fields, the constant shifted right by the field length should
4184 be all zero. For signed fields, the high-order bits should agree with
4189 if (wi::lrshift (wi::to_wide (rhs
), lbitsize
) != 0)
4191 warning (0, "comparison is always %d due to width of bit-field",
4193 return constant_boolean_node (code
== NE_EXPR
, compare_type
);
4198 wide_int tem
= wi::arshift (wi::to_wide (rhs
), lbitsize
- 1);
4199 if (tem
!= 0 && tem
!= -1)
4201 warning (0, "comparison is always %d due to width of bit-field",
4203 return constant_boolean_node (code
== NE_EXPR
, compare_type
);
4210 /* Single-bit compares should always be against zero. */
4211 if (lbitsize
== 1 && ! integer_zerop (rhs
))
4213 code
= code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
;
4214 rhs
= build_int_cst (type
, 0);
4217 /* Make a new bitfield reference, shift the constant over the
4218 appropriate number of bits and mask it with the computed mask
4219 (in case this was a signed field). If we changed it, make a new one. */
4220 lhs
= make_bit_field_ref (loc
, linner
, lhs
, unsigned_type
,
4221 nbitsize
, nbitpos
, 1, lreversep
);
4223 rhs
= const_binop (BIT_AND_EXPR
,
4224 const_binop (LSHIFT_EXPR
,
4225 fold_convert_loc (loc
, unsigned_type
, rhs
),
4226 size_int (lbitpos
)),
4229 lhs
= build2_loc (loc
, code
, compare_type
,
4230 build2 (BIT_AND_EXPR
, unsigned_type
, lhs
, mask
), rhs
);
4234 /* Subroutine for fold_truth_andor_1: decode a field reference.
4236 If EXP is a comparison reference, we return the innermost reference.
4238 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
4239 set to the starting bit number.
4241 If the innermost field can be completely contained in a mode-sized
4242 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
4244 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
4245 otherwise it is not changed.
4247 *PUNSIGNEDP is set to the signedness of the field.
4249 *PREVERSEP is set to the storage order of the field.
4251 *PMASK is set to the mask used. This is either contained in a
4252 BIT_AND_EXPR or derived from the width of the field.
4254 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
4256 Return 0 if this is not a component reference or is one that we can't
4257 do anything with. */
4260 decode_field_reference (location_t loc
, tree
*exp_
, HOST_WIDE_INT
*pbitsize
,
4261 HOST_WIDE_INT
*pbitpos
, machine_mode
*pmode
,
4262 int *punsignedp
, int *preversep
, int *pvolatilep
,
4263 tree
*pmask
, tree
*pand_mask
)
4266 tree outer_type
= 0;
4268 tree mask
, inner
, offset
;
4270 unsigned int precision
;
4272 /* All the optimizations using this function assume integer fields.
4273 There are problems with FP fields since the type_for_size call
4274 below can fail for, e.g., XFmode. */
4275 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp
)))
4278 /* We are interested in the bare arrangement of bits, so strip everything
4279 that doesn't affect the machine mode. However, record the type of the
4280 outermost expression if it may matter below. */
4281 if (CONVERT_EXPR_P (exp
)
4282 || TREE_CODE (exp
) == NON_LVALUE_EXPR
)
4283 outer_type
= TREE_TYPE (exp
);
4286 if (TREE_CODE (exp
) == BIT_AND_EXPR
)
4288 and_mask
= TREE_OPERAND (exp
, 1);
4289 exp
= TREE_OPERAND (exp
, 0);
4290 STRIP_NOPS (exp
); STRIP_NOPS (and_mask
);
4291 if (TREE_CODE (and_mask
) != INTEGER_CST
)
4295 poly_int64 poly_bitsize
, poly_bitpos
;
4296 inner
= get_inner_reference (exp
, &poly_bitsize
, &poly_bitpos
, &offset
,
4297 pmode
, punsignedp
, preversep
, pvolatilep
);
4298 if ((inner
== exp
&& and_mask
== 0)
4299 || !poly_bitsize
.is_constant (pbitsize
)
4300 || !poly_bitpos
.is_constant (pbitpos
)
4303 || TREE_CODE (inner
) == PLACEHOLDER_EXPR
4304 /* Reject out-of-bound accesses (PR79731). */
4305 || (! AGGREGATE_TYPE_P (TREE_TYPE (inner
))
4306 && compare_tree_int (TYPE_SIZE (TREE_TYPE (inner
)),
4307 *pbitpos
+ *pbitsize
) < 0))
4312 /* If the number of bits in the reference is the same as the bitsize of
4313 the outer type, then the outer type gives the signedness. Otherwise
4314 (in case of a small bitfield) the signedness is unchanged. */
4315 if (outer_type
&& *pbitsize
== TYPE_PRECISION (outer_type
))
4316 *punsignedp
= TYPE_UNSIGNED (outer_type
);
4318 /* Compute the mask to access the bitfield. */
4319 unsigned_type
= lang_hooks
.types
.type_for_size (*pbitsize
, 1);
4320 precision
= TYPE_PRECISION (unsigned_type
);
4322 mask
= build_int_cst_type (unsigned_type
, -1);
4324 mask
= const_binop (LSHIFT_EXPR
, mask
, size_int (precision
- *pbitsize
));
4325 mask
= const_binop (RSHIFT_EXPR
, mask
, size_int (precision
- *pbitsize
));
4327 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
4329 mask
= fold_build2_loc (loc
, BIT_AND_EXPR
, unsigned_type
,
4330 fold_convert_loc (loc
, unsigned_type
, and_mask
), mask
);
4333 *pand_mask
= and_mask
;
4337 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
4338 bit positions and MASK is SIGNED. */
4341 all_ones_mask_p (const_tree mask
, unsigned int size
)
4343 tree type
= TREE_TYPE (mask
);
4344 unsigned int precision
= TYPE_PRECISION (type
);
4346 /* If this function returns true when the type of the mask is
4347 UNSIGNED, then there will be errors. In particular see
4348 gcc.c-torture/execute/990326-1.c. There does not appear to be
4349 any documentation paper trail as to why this is so. But the pre
4350 wide-int worked with that restriction and it has been preserved
4352 if (size
> precision
|| TYPE_SIGN (type
) == UNSIGNED
)
4355 return wi::mask (size
, false, precision
) == wi::to_wide (mask
);
4358 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
4359 represents the sign bit of EXP's type. If EXP represents a sign
4360 or zero extension, also test VAL against the unextended type.
4361 The return value is the (sub)expression whose sign bit is VAL,
4362 or NULL_TREE otherwise. */
4365 sign_bit_p (tree exp
, const_tree val
)
4370 /* Tree EXP must have an integral type. */
4371 t
= TREE_TYPE (exp
);
4372 if (! INTEGRAL_TYPE_P (t
))
4375 /* Tree VAL must be an integer constant. */
4376 if (TREE_CODE (val
) != INTEGER_CST
4377 || TREE_OVERFLOW (val
))
4380 width
= TYPE_PRECISION (t
);
4381 if (wi::only_sign_bit_p (wi::to_wide (val
), width
))
4384 /* Handle extension from a narrower type. */
4385 if (TREE_CODE (exp
) == NOP_EXPR
4386 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp
, 0))) < width
)
4387 return sign_bit_p (TREE_OPERAND (exp
, 0), val
);
4392 /* Subroutine for fold_truth_andor_1: determine if an operand is simple enough
4393 to be evaluated unconditionally. */
4396 simple_operand_p (const_tree exp
)
4398 /* Strip any conversions that don't change the machine mode. */
4401 return (CONSTANT_CLASS_P (exp
)
4402 || TREE_CODE (exp
) == SSA_NAME
4404 && ! TREE_ADDRESSABLE (exp
)
4405 && ! TREE_THIS_VOLATILE (exp
)
4406 && ! DECL_NONLOCAL (exp
)
4407 /* Don't regard global variables as simple. They may be
4408 allocated in ways unknown to the compiler (shared memory,
4409 #pragma weak, etc). */
4410 && ! TREE_PUBLIC (exp
)
4411 && ! DECL_EXTERNAL (exp
)
4412 /* Weakrefs are not safe to be read, since they can be NULL.
4413 They are !TREE_PUBLIC && !DECL_EXTERNAL but still
4414 have DECL_WEAK flag set. */
4415 && (! VAR_OR_FUNCTION_DECL_P (exp
) || ! DECL_WEAK (exp
))
4416 /* Loading a static variable is unduly expensive, but global
4417 registers aren't expensive. */
4418 && (! TREE_STATIC (exp
) || DECL_REGISTER (exp
))));
4421 /* Subroutine for fold_truth_andor: determine if an operand is simple enough
4422 to be evaluated unconditionally.
4423 I addition to simple_operand_p, we assume that comparisons, conversions,
4424 and logic-not operations are simple, if their operands are simple, too. */
4427 simple_operand_p_2 (tree exp
)
4429 enum tree_code code
;
4431 if (TREE_SIDE_EFFECTS (exp
)
4432 || tree_could_trap_p (exp
))
4435 while (CONVERT_EXPR_P (exp
))
4436 exp
= TREE_OPERAND (exp
, 0);
4438 code
= TREE_CODE (exp
);
4440 if (TREE_CODE_CLASS (code
) == tcc_comparison
)
4441 return (simple_operand_p (TREE_OPERAND (exp
, 0))
4442 && simple_operand_p (TREE_OPERAND (exp
, 1)));
4444 if (code
== TRUTH_NOT_EXPR
)
4445 return simple_operand_p_2 (TREE_OPERAND (exp
, 0));
4447 return simple_operand_p (exp
);
4451 /* The following functions are subroutines to fold_range_test and allow it to
4452 try to change a logical combination of comparisons into a range test.
4455 X == 2 || X == 3 || X == 4 || X == 5
4459 (unsigned) (X - 2) <= 3
4461 We describe each set of comparisons as being either inside or outside
4462 a range, using a variable named like IN_P, and then describe the
4463 range with a lower and upper bound. If one of the bounds is omitted,
4464 it represents either the highest or lowest value of the type.
4466 In the comments below, we represent a range by two numbers in brackets
4467 preceded by a "+" to designate being inside that range, or a "-" to
4468 designate being outside that range, so the condition can be inverted by
4469 flipping the prefix. An omitted bound is represented by a "-". For
4470 example, "- [-, 10]" means being outside the range starting at the lowest
4471 possible value and ending at 10, in other words, being greater than 10.
4472 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
4475 We set up things so that the missing bounds are handled in a consistent
4476 manner so neither a missing bound nor "true" and "false" need to be
4477 handled using a special case. */
4479 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
4480 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
4481 and UPPER1_P are nonzero if the respective argument is an upper bound
4482 and zero for a lower. TYPE, if nonzero, is the type of the result; it
4483 must be specified for a comparison. ARG1 will be converted to ARG0's
4484 type if both are specified. */
4487 range_binop (enum tree_code code
, tree type
, tree arg0
, int upper0_p
,
4488 tree arg1
, int upper1_p
)
4494 /* If neither arg represents infinity, do the normal operation.
4495 Else, if not a comparison, return infinity. Else handle the special
4496 comparison rules. Note that most of the cases below won't occur, but
4497 are handled for consistency. */
4499 if (arg0
!= 0 && arg1
!= 0)
4501 tem
= fold_build2 (code
, type
!= 0 ? type
: TREE_TYPE (arg0
),
4502 arg0
, fold_convert (TREE_TYPE (arg0
), arg1
));
4504 return TREE_CODE (tem
) == INTEGER_CST
? tem
: 0;
4507 if (TREE_CODE_CLASS (code
) != tcc_comparison
)
4510 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
4511 for neither. In real maths, we cannot assume open ended ranges are
4512 the same. But, this is computer arithmetic, where numbers are finite.
4513 We can therefore make the transformation of any unbounded range with
4514 the value Z, Z being greater than any representable number. This permits
4515 us to treat unbounded ranges as equal. */
4516 sgn0
= arg0
!= 0 ? 0 : (upper0_p
? 1 : -1);
4517 sgn1
= arg1
!= 0 ? 0 : (upper1_p
? 1 : -1);
4521 result
= sgn0
== sgn1
;
4524 result
= sgn0
!= sgn1
;
4527 result
= sgn0
< sgn1
;
4530 result
= sgn0
<= sgn1
;
4533 result
= sgn0
> sgn1
;
4536 result
= sgn0
>= sgn1
;
4542 return constant_boolean_node (result
, type
);
4545 /* Helper routine for make_range. Perform one step for it, return
4546 new expression if the loop should continue or NULL_TREE if it should
4550 make_range_step (location_t loc
, enum tree_code code
, tree arg0
, tree arg1
,
4551 tree exp_type
, tree
*p_low
, tree
*p_high
, int *p_in_p
,
4552 bool *strict_overflow_p
)
4554 tree arg0_type
= TREE_TYPE (arg0
);
4555 tree n_low
, n_high
, low
= *p_low
, high
= *p_high
;
4556 int in_p
= *p_in_p
, n_in_p
;
4560 case TRUTH_NOT_EXPR
:
4561 /* We can only do something if the range is testing for zero. */
4562 if (low
== NULL_TREE
|| high
== NULL_TREE
4563 || ! integer_zerop (low
) || ! integer_zerop (high
))
4568 case EQ_EXPR
: case NE_EXPR
:
4569 case LT_EXPR
: case LE_EXPR
: case GE_EXPR
: case GT_EXPR
:
4570 /* We can only do something if the range is testing for zero
4571 and if the second operand is an integer constant. Note that
4572 saying something is "in" the range we make is done by
4573 complementing IN_P since it will set in the initial case of
4574 being not equal to zero; "out" is leaving it alone. */
4575 if (low
== NULL_TREE
|| high
== NULL_TREE
4576 || ! integer_zerop (low
) || ! integer_zerop (high
)
4577 || TREE_CODE (arg1
) != INTEGER_CST
)
4582 case NE_EXPR
: /* - [c, c] */
4585 case EQ_EXPR
: /* + [c, c] */
4586 in_p
= ! in_p
, low
= high
= arg1
;
4588 case GT_EXPR
: /* - [-, c] */
4589 low
= 0, high
= arg1
;
4591 case GE_EXPR
: /* + [c, -] */
4592 in_p
= ! in_p
, low
= arg1
, high
= 0;
4594 case LT_EXPR
: /* - [c, -] */
4595 low
= arg1
, high
= 0;
4597 case LE_EXPR
: /* + [-, c] */
4598 in_p
= ! in_p
, low
= 0, high
= arg1
;
4604 /* If this is an unsigned comparison, we also know that EXP is
4605 greater than or equal to zero. We base the range tests we make
4606 on that fact, so we record it here so we can parse existing
4607 range tests. We test arg0_type since often the return type
4608 of, e.g. EQ_EXPR, is boolean. */
4609 if (TYPE_UNSIGNED (arg0_type
) && (low
== 0 || high
== 0))
4611 if (! merge_ranges (&n_in_p
, &n_low
, &n_high
,
4613 build_int_cst (arg0_type
, 0),
4617 in_p
= n_in_p
, low
= n_low
, high
= n_high
;
4619 /* If the high bound is missing, but we have a nonzero low
4620 bound, reverse the range so it goes from zero to the low bound
4622 if (high
== 0 && low
&& ! integer_zerop (low
))
4625 high
= range_binop (MINUS_EXPR
, NULL_TREE
, low
, 0,
4626 build_int_cst (TREE_TYPE (low
), 1), 0);
4627 low
= build_int_cst (arg0_type
, 0);
4637 /* If flag_wrapv and ARG0_TYPE is signed, make sure
4638 low and high are non-NULL, then normalize will DTRT. */
4639 if (!TYPE_UNSIGNED (arg0_type
)
4640 && !TYPE_OVERFLOW_UNDEFINED (arg0_type
))
4642 if (low
== NULL_TREE
)
4643 low
= TYPE_MIN_VALUE (arg0_type
);
4644 if (high
== NULL_TREE
)
4645 high
= TYPE_MAX_VALUE (arg0_type
);
4648 /* (-x) IN [a,b] -> x in [-b, -a] */
4649 n_low
= range_binop (MINUS_EXPR
, exp_type
,
4650 build_int_cst (exp_type
, 0),
4652 n_high
= range_binop (MINUS_EXPR
, exp_type
,
4653 build_int_cst (exp_type
, 0),
4655 if (n_high
!= 0 && TREE_OVERFLOW (n_high
))
4661 return build2_loc (loc
, MINUS_EXPR
, exp_type
, negate_expr (arg0
),
4662 build_int_cst (exp_type
, 1));
4666 if (TREE_CODE (arg1
) != INTEGER_CST
)
4669 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
4670 move a constant to the other side. */
4671 if (!TYPE_UNSIGNED (arg0_type
)
4672 && !TYPE_OVERFLOW_UNDEFINED (arg0_type
))
4675 /* If EXP is signed, any overflow in the computation is undefined,
4676 so we don't worry about it so long as our computations on
4677 the bounds don't overflow. For unsigned, overflow is defined
4678 and this is exactly the right thing. */
4679 n_low
= range_binop (code
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
,
4680 arg0_type
, low
, 0, arg1
, 0);
4681 n_high
= range_binop (code
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
,
4682 arg0_type
, high
, 1, arg1
, 0);
4683 if ((n_low
!= 0 && TREE_OVERFLOW (n_low
))
4684 || (n_high
!= 0 && TREE_OVERFLOW (n_high
)))
4687 if (TYPE_OVERFLOW_UNDEFINED (arg0_type
))
4688 *strict_overflow_p
= true;
4691 /* Check for an unsigned range which has wrapped around the maximum
4692 value thus making n_high < n_low, and normalize it. */
4693 if (n_low
&& n_high
&& tree_int_cst_lt (n_high
, n_low
))
4695 low
= range_binop (PLUS_EXPR
, arg0_type
, n_high
, 0,
4696 build_int_cst (TREE_TYPE (n_high
), 1), 0);
4697 high
= range_binop (MINUS_EXPR
, arg0_type
, n_low
, 0,
4698 build_int_cst (TREE_TYPE (n_low
), 1), 0);
4700 /* If the range is of the form +/- [ x+1, x ], we won't
4701 be able to normalize it. But then, it represents the
4702 whole range or the empty set, so make it
4704 if (tree_int_cst_equal (n_low
, low
)
4705 && tree_int_cst_equal (n_high
, high
))
4711 low
= n_low
, high
= n_high
;
4719 case NON_LVALUE_EXPR
:
4720 if (TYPE_PRECISION (arg0_type
) > TYPE_PRECISION (exp_type
))
4723 if (! INTEGRAL_TYPE_P (arg0_type
)
4724 || (low
!= 0 && ! int_fits_type_p (low
, arg0_type
))
4725 || (high
!= 0 && ! int_fits_type_p (high
, arg0_type
)))
4728 n_low
= low
, n_high
= high
;
4731 n_low
= fold_convert_loc (loc
, arg0_type
, n_low
);
4734 n_high
= fold_convert_loc (loc
, arg0_type
, n_high
);
4736 /* If we're converting arg0 from an unsigned type, to exp,
4737 a signed type, we will be doing the comparison as unsigned.
4738 The tests above have already verified that LOW and HIGH
4741 So we have to ensure that we will handle large unsigned
4742 values the same way that the current signed bounds treat
4745 if (!TYPE_UNSIGNED (exp_type
) && TYPE_UNSIGNED (arg0_type
))
4749 /* For fixed-point modes, we need to pass the saturating flag
4750 as the 2nd parameter. */
4751 if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type
)))
4753 = lang_hooks
.types
.type_for_mode (TYPE_MODE (arg0_type
),
4754 TYPE_SATURATING (arg0_type
));
4757 = lang_hooks
.types
.type_for_mode (TYPE_MODE (arg0_type
), 1);
4759 /* A range without an upper bound is, naturally, unbounded.
4760 Since convert would have cropped a very large value, use
4761 the max value for the destination type. */
4763 = TYPE_MAX_VALUE (equiv_type
) ? TYPE_MAX_VALUE (equiv_type
)
4764 : TYPE_MAX_VALUE (arg0_type
);
4766 if (TYPE_PRECISION (exp_type
) == TYPE_PRECISION (arg0_type
))
4767 high_positive
= fold_build2_loc (loc
, RSHIFT_EXPR
, arg0_type
,
4768 fold_convert_loc (loc
, arg0_type
,
4770 build_int_cst (arg0_type
, 1));
4772 /* If the low bound is specified, "and" the range with the
4773 range for which the original unsigned value will be
4777 if (! merge_ranges (&n_in_p
, &n_low
, &n_high
, 1, n_low
, n_high
,
4778 1, fold_convert_loc (loc
, arg0_type
,
4783 in_p
= (n_in_p
== in_p
);
4787 /* Otherwise, "or" the range with the range of the input
4788 that will be interpreted as negative. */
4789 if (! merge_ranges (&n_in_p
, &n_low
, &n_high
, 0, n_low
, n_high
,
4790 1, fold_convert_loc (loc
, arg0_type
,
4795 in_p
= (in_p
!= n_in_p
);
4809 /* Given EXP, a logical expression, set the range it is testing into
4810 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
4811 actually being tested. *PLOW and *PHIGH will be made of the same
4812 type as the returned expression. If EXP is not a comparison, we
4813 will most likely not be returning a useful value and range. Set
4814 *STRICT_OVERFLOW_P to true if the return value is only valid
4815 because signed overflow is undefined; otherwise, do not change
4816 *STRICT_OVERFLOW_P. */
4819 make_range (tree exp
, int *pin_p
, tree
*plow
, tree
*phigh
,
4820 bool *strict_overflow_p
)
4822 enum tree_code code
;
4823 tree arg0
, arg1
= NULL_TREE
;
4824 tree exp_type
, nexp
;
4827 location_t loc
= EXPR_LOCATION (exp
);
4829 /* Start with simply saying "EXP != 0" and then look at the code of EXP
4830 and see if we can refine the range. Some of the cases below may not
4831 happen, but it doesn't seem worth worrying about this. We "continue"
4832 the outer loop when we've changed something; otherwise we "break"
4833 the switch, which will "break" the while. */
4836 low
= high
= build_int_cst (TREE_TYPE (exp
), 0);
4840 code
= TREE_CODE (exp
);
4841 exp_type
= TREE_TYPE (exp
);
4844 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code
)))
4846 if (TREE_OPERAND_LENGTH (exp
) > 0)
4847 arg0
= TREE_OPERAND (exp
, 0);
4848 if (TREE_CODE_CLASS (code
) == tcc_binary
4849 || TREE_CODE_CLASS (code
) == tcc_comparison
4850 || (TREE_CODE_CLASS (code
) == tcc_expression
4851 && TREE_OPERAND_LENGTH (exp
) > 1))
4852 arg1
= TREE_OPERAND (exp
, 1);
4854 if (arg0
== NULL_TREE
)
4857 nexp
= make_range_step (loc
, code
, arg0
, arg1
, exp_type
, &low
,
4858 &high
, &in_p
, strict_overflow_p
);
4859 if (nexp
== NULL_TREE
)
4864 /* If EXP is a constant, we can evaluate whether this is true or false. */
4865 if (TREE_CODE (exp
) == INTEGER_CST
)
4867 in_p
= in_p
== (integer_onep (range_binop (GE_EXPR
, integer_type_node
,
4869 && integer_onep (range_binop (LE_EXPR
, integer_type_node
,
4875 *pin_p
= in_p
, *plow
= low
, *phigh
= high
;
4879 /* Returns TRUE if [LOW, HIGH] range check can be optimized to
4880 a bitwise check i.e. when
4881 LOW == 0xXX...X00...0
4882 HIGH == 0xXX...X11...1
4883 Return corresponding mask in MASK and stem in VALUE. */
4886 maskable_range_p (const_tree low
, const_tree high
, tree type
, tree
*mask
,
4889 if (TREE_CODE (low
) != INTEGER_CST
4890 || TREE_CODE (high
) != INTEGER_CST
)
4893 unsigned prec
= TYPE_PRECISION (type
);
4894 wide_int lo
= wi::to_wide (low
, prec
);
4895 wide_int hi
= wi::to_wide (high
, prec
);
4897 wide_int end_mask
= lo
^ hi
;
4898 if ((end_mask
& (end_mask
+ 1)) != 0
4899 || (lo
& end_mask
) != 0)
4902 wide_int stem_mask
= ~end_mask
;
4903 wide_int stem
= lo
& stem_mask
;
4904 if (stem
!= (hi
& stem_mask
))
4907 *mask
= wide_int_to_tree (type
, stem_mask
);
4908 *value
= wide_int_to_tree (type
, stem
);
4913 /* Helper routine for build_range_check and match.pd. Return the type to
4914 perform the check or NULL if it shouldn't be optimized. */
4917 range_check_type (tree etype
)
4919 /* First make sure that arithmetics in this type is valid, then make sure
4920 that it wraps around. */
4921 if (TREE_CODE (etype
) == ENUMERAL_TYPE
|| TREE_CODE (etype
) == BOOLEAN_TYPE
)
4922 etype
= lang_hooks
.types
.type_for_size (TYPE_PRECISION (etype
),
4923 TYPE_UNSIGNED (etype
));
4925 if (TREE_CODE (etype
) == INTEGER_TYPE
&& !TYPE_OVERFLOW_WRAPS (etype
))
4927 tree utype
, minv
, maxv
;
4929 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
4930 for the type in question, as we rely on this here. */
4931 utype
= unsigned_type_for (etype
);
4932 maxv
= fold_convert (utype
, TYPE_MAX_VALUE (etype
));
4933 maxv
= range_binop (PLUS_EXPR
, NULL_TREE
, maxv
, 1,
4934 build_int_cst (TREE_TYPE (maxv
), 1), 1);
4935 minv
= fold_convert (utype
, TYPE_MIN_VALUE (etype
));
4937 if (integer_zerop (range_binop (NE_EXPR
, integer_type_node
,
4946 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
4947 type, TYPE, return an expression to test if EXP is in (or out of, depending
4948 on IN_P) the range. Return 0 if the test couldn't be created. */
4951 build_range_check (location_t loc
, tree type
, tree exp
, int in_p
,
4952 tree low
, tree high
)
4954 tree etype
= TREE_TYPE (exp
), mask
, value
;
4956 /* Disable this optimization for function pointer expressions
4957 on targets that require function pointer canonicalization. */
4958 if (targetm
.have_canonicalize_funcptr_for_compare ()
4959 && TREE_CODE (etype
) == POINTER_TYPE
4960 && TREE_CODE (TREE_TYPE (etype
)) == FUNCTION_TYPE
)
4965 value
= build_range_check (loc
, type
, exp
, 1, low
, high
);
4967 return invert_truthvalue_loc (loc
, value
);
4972 if (low
== 0 && high
== 0)
4973 return omit_one_operand_loc (loc
, type
, build_int_cst (type
, 1), exp
);
4976 return fold_build2_loc (loc
, LE_EXPR
, type
, exp
,
4977 fold_convert_loc (loc
, etype
, high
));
4980 return fold_build2_loc (loc
, GE_EXPR
, type
, exp
,
4981 fold_convert_loc (loc
, etype
, low
));
4983 if (operand_equal_p (low
, high
, 0))
4984 return fold_build2_loc (loc
, EQ_EXPR
, type
, exp
,
4985 fold_convert_loc (loc
, etype
, low
));
4987 if (TREE_CODE (exp
) == BIT_AND_EXPR
4988 && maskable_range_p (low
, high
, etype
, &mask
, &value
))
4989 return fold_build2_loc (loc
, EQ_EXPR
, type
,
4990 fold_build2_loc (loc
, BIT_AND_EXPR
, etype
,
4994 if (integer_zerop (low
))
4996 if (! TYPE_UNSIGNED (etype
))
4998 etype
= unsigned_type_for (etype
);
4999 high
= fold_convert_loc (loc
, etype
, high
);
5000 exp
= fold_convert_loc (loc
, etype
, exp
);
5002 return build_range_check (loc
, type
, exp
, 1, 0, high
);
5005 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
5006 if (integer_onep (low
) && TREE_CODE (high
) == INTEGER_CST
)
5008 int prec
= TYPE_PRECISION (etype
);
5010 if (wi::mask
<widest_int
> (prec
- 1, false) == wi::to_widest (high
))
5012 if (TYPE_UNSIGNED (etype
))
5014 tree signed_etype
= signed_type_for (etype
);
5015 if (TYPE_PRECISION (signed_etype
) != TYPE_PRECISION (etype
))
5017 = build_nonstandard_integer_type (TYPE_PRECISION (etype
), 0);
5019 etype
= signed_etype
;
5020 exp
= fold_convert_loc (loc
, etype
, exp
);
5022 return fold_build2_loc (loc
, GT_EXPR
, type
, exp
,
5023 build_int_cst (etype
, 0));
5027 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
5028 This requires wrap-around arithmetics for the type of the expression. */
5029 etype
= range_check_type (etype
);
5030 if (etype
== NULL_TREE
)
5033 if (POINTER_TYPE_P (etype
))
5034 etype
= unsigned_type_for (etype
);
5036 high
= fold_convert_loc (loc
, etype
, high
);
5037 low
= fold_convert_loc (loc
, etype
, low
);
5038 exp
= fold_convert_loc (loc
, etype
, exp
);
5040 value
= const_binop (MINUS_EXPR
, high
, low
);
5042 if (value
!= 0 && !TREE_OVERFLOW (value
))
5043 return build_range_check (loc
, type
,
5044 fold_build2_loc (loc
, MINUS_EXPR
, etype
, exp
, low
),
5045 1, build_int_cst (etype
, 0), value
);
5050 /* Return the predecessor of VAL in its type, handling the infinite case. */
5053 range_predecessor (tree val
)
5055 tree type
= TREE_TYPE (val
);
5057 if (INTEGRAL_TYPE_P (type
)
5058 && operand_equal_p (val
, TYPE_MIN_VALUE (type
), 0))
5061 return range_binop (MINUS_EXPR
, NULL_TREE
, val
, 0,
5062 build_int_cst (TREE_TYPE (val
), 1), 0);
5065 /* Return the successor of VAL in its type, handling the infinite case. */
5068 range_successor (tree val
)
5070 tree type
= TREE_TYPE (val
);
5072 if (INTEGRAL_TYPE_P (type
)
5073 && operand_equal_p (val
, TYPE_MAX_VALUE (type
), 0))
5076 return range_binop (PLUS_EXPR
, NULL_TREE
, val
, 0,
5077 build_int_cst (TREE_TYPE (val
), 1), 0);
5080 /* Given two ranges, see if we can merge them into one. Return 1 if we
5081 can, 0 if we can't. Set the output range into the specified parameters. */
5084 merge_ranges (int *pin_p
, tree
*plow
, tree
*phigh
, int in0_p
, tree low0
,
5085 tree high0
, int in1_p
, tree low1
, tree high1
)
5093 int lowequal
= ((low0
== 0 && low1
== 0)
5094 || integer_onep (range_binop (EQ_EXPR
, integer_type_node
,
5095 low0
, 0, low1
, 0)));
5096 int highequal
= ((high0
== 0 && high1
== 0)
5097 || integer_onep (range_binop (EQ_EXPR
, integer_type_node
,
5098 high0
, 1, high1
, 1)));
5100 /* Make range 0 be the range that starts first, or ends last if they
5101 start at the same value. Swap them if it isn't. */
5102 if (integer_onep (range_binop (GT_EXPR
, integer_type_node
,
5105 && integer_onep (range_binop (GT_EXPR
, integer_type_node
,
5106 high1
, 1, high0
, 1))))
5108 temp
= in0_p
, in0_p
= in1_p
, in1_p
= temp
;
5109 tem
= low0
, low0
= low1
, low1
= tem
;
5110 tem
= high0
, high0
= high1
, high1
= tem
;
5113 /* If the second range is != high1 where high1 is the type maximum of
5114 the type, try first merging with < high1 range. */
5117 && TREE_CODE (low1
) == INTEGER_CST
5118 && (TREE_CODE (TREE_TYPE (low1
)) == INTEGER_TYPE
5119 || (TREE_CODE (TREE_TYPE (low1
)) == ENUMERAL_TYPE
5120 && known_eq (TYPE_PRECISION (TREE_TYPE (low1
)),
5121 GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low1
))))))
5122 && operand_equal_p (low1
, high1
, 0))
5124 if (tree_int_cst_equal (low1
, TYPE_MAX_VALUE (TREE_TYPE (low1
)))
5125 && merge_ranges (pin_p
, plow
, phigh
, in0_p
, low0
, high0
,
5126 !in1_p
, NULL_TREE
, range_predecessor (low1
)))
5128 /* Similarly for the second range != low1 where low1 is the type minimum
5129 of the type, try first merging with > low1 range. */
5130 if (tree_int_cst_equal (low1
, TYPE_MIN_VALUE (TREE_TYPE (low1
)))
5131 && merge_ranges (pin_p
, plow
, phigh
, in0_p
, low0
, high0
,
5132 !in1_p
, range_successor (low1
), NULL_TREE
))
5136 /* Now flag two cases, whether the ranges are disjoint or whether the
5137 second range is totally subsumed in the first. Note that the tests
5138 below are simplified by the ones above. */
5139 no_overlap
= integer_onep (range_binop (LT_EXPR
, integer_type_node
,
5140 high0
, 1, low1
, 0));
5141 subset
= integer_onep (range_binop (LE_EXPR
, integer_type_node
,
5142 high1
, 1, high0
, 1));
5144 /* We now have four cases, depending on whether we are including or
5145 excluding the two ranges. */
5148 /* If they don't overlap, the result is false. If the second range
5149 is a subset it is the result. Otherwise, the range is from the start
5150 of the second to the end of the first. */
5152 in_p
= 0, low
= high
= 0;
5154 in_p
= 1, low
= low1
, high
= high1
;
5156 in_p
= 1, low
= low1
, high
= high0
;
5159 else if (in0_p
&& ! in1_p
)
5161 /* If they don't overlap, the result is the first range. If they are
5162 equal, the result is false. If the second range is a subset of the
5163 first, and the ranges begin at the same place, we go from just after
5164 the end of the second range to the end of the first. If the second
5165 range is not a subset of the first, or if it is a subset and both
5166 ranges end at the same place, the range starts at the start of the
5167 first range and ends just before the second range.
5168 Otherwise, we can't describe this as a single range. */
5170 in_p
= 1, low
= low0
, high
= high0
;
5171 else if (lowequal
&& highequal
)
5172 in_p
= 0, low
= high
= 0;
5173 else if (subset
&& lowequal
)
5175 low
= range_successor (high1
);
5180 /* We are in the weird situation where high0 > high1 but
5181 high1 has no successor. Punt. */
5185 else if (! subset
|| highequal
)
5188 high
= range_predecessor (low1
);
5192 /* low0 < low1 but low1 has no predecessor. Punt. */
5200 else if (! in0_p
&& in1_p
)
5202 /* If they don't overlap, the result is the second range. If the second
5203 is a subset of the first, the result is false. Otherwise,
5204 the range starts just after the first range and ends at the
5205 end of the second. */
5207 in_p
= 1, low
= low1
, high
= high1
;
5208 else if (subset
|| highequal
)
5209 in_p
= 0, low
= high
= 0;
5212 low
= range_successor (high0
);
5217 /* high1 > high0 but high0 has no successor. Punt. */
5225 /* The case where we are excluding both ranges. Here the complex case
5226 is if they don't overlap. In that case, the only time we have a
5227 range is if they are adjacent. If the second is a subset of the
5228 first, the result is the first. Otherwise, the range to exclude
5229 starts at the beginning of the first range and ends at the end of the
5233 if (integer_onep (range_binop (EQ_EXPR
, integer_type_node
,
5234 range_successor (high0
),
5236 in_p
= 0, low
= low0
, high
= high1
;
5239 /* Canonicalize - [min, x] into - [-, x]. */
5240 if (low0
&& TREE_CODE (low0
) == INTEGER_CST
)
5241 switch (TREE_CODE (TREE_TYPE (low0
)))
5244 if (maybe_ne (TYPE_PRECISION (TREE_TYPE (low0
)),
5246 (TYPE_MODE (TREE_TYPE (low0
)))))
5250 if (tree_int_cst_equal (low0
,
5251 TYPE_MIN_VALUE (TREE_TYPE (low0
))))
5255 if (TYPE_UNSIGNED (TREE_TYPE (low0
))
5256 && integer_zerop (low0
))
5263 /* Canonicalize - [x, max] into - [x, -]. */
5264 if (high1
&& TREE_CODE (high1
) == INTEGER_CST
)
5265 switch (TREE_CODE (TREE_TYPE (high1
)))
5268 if (maybe_ne (TYPE_PRECISION (TREE_TYPE (high1
)),
5270 (TYPE_MODE (TREE_TYPE (high1
)))))
5274 if (tree_int_cst_equal (high1
,
5275 TYPE_MAX_VALUE (TREE_TYPE (high1
))))
5279 if (TYPE_UNSIGNED (TREE_TYPE (high1
))
5280 && integer_zerop (range_binop (PLUS_EXPR
, NULL_TREE
,
5282 build_int_cst (TREE_TYPE (high1
), 1),
5290 /* The ranges might be also adjacent between the maximum and
5291 minimum values of the given type. For
5292 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
5293 return + [x + 1, y - 1]. */
5294 if (low0
== 0 && high1
== 0)
5296 low
= range_successor (high0
);
5297 high
= range_predecessor (low1
);
5298 if (low
== 0 || high
== 0)
5308 in_p
= 0, low
= low0
, high
= high0
;
5310 in_p
= 0, low
= low0
, high
= high1
;
5313 *pin_p
= in_p
, *plow
= low
, *phigh
= high
;
5318 /* Subroutine of fold, looking inside expressions of the form
5319 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
5320 of the COND_EXPR. This function is being used also to optimize
5321 A op B ? C : A, by reversing the comparison first.
5323 Return a folded expression whose code is not a COND_EXPR
5324 anymore, or NULL_TREE if no folding opportunity is found. */
5327 fold_cond_expr_with_comparison (location_t loc
, tree type
,
5328 tree arg0
, tree arg1
, tree arg2
)
5330 enum tree_code comp_code
= TREE_CODE (arg0
);
5331 tree arg00
= TREE_OPERAND (arg0
, 0);
5332 tree arg01
= TREE_OPERAND (arg0
, 1);
5333 tree arg1_type
= TREE_TYPE (arg1
);
5339 /* If we have A op 0 ? A : -A, consider applying the following
5342 A == 0? A : -A same as -A
5343 A != 0? A : -A same as A
5344 A >= 0? A : -A same as abs (A)
5345 A > 0? A : -A same as abs (A)
5346 A <= 0? A : -A same as -abs (A)
5347 A < 0? A : -A same as -abs (A)
5349 None of these transformations work for modes with signed
5350 zeros. If A is +/-0, the first two transformations will
5351 change the sign of the result (from +0 to -0, or vice
5352 versa). The last four will fix the sign of the result,
5353 even though the original expressions could be positive or
5354 negative, depending on the sign of A.
5356 Note that all these transformations are correct if A is
5357 NaN, since the two alternatives (A and -A) are also NaNs. */
5358 if (!HONOR_SIGNED_ZEROS (element_mode (type
))
5359 && (FLOAT_TYPE_P (TREE_TYPE (arg01
))
5360 ? real_zerop (arg01
)
5361 : integer_zerop (arg01
))
5362 && ((TREE_CODE (arg2
) == NEGATE_EXPR
5363 && operand_equal_p (TREE_OPERAND (arg2
, 0), arg1
, 0))
5364 /* In the case that A is of the form X-Y, '-A' (arg2) may
5365 have already been folded to Y-X, check for that. */
5366 || (TREE_CODE (arg1
) == MINUS_EXPR
5367 && TREE_CODE (arg2
) == MINUS_EXPR
5368 && operand_equal_p (TREE_OPERAND (arg1
, 0),
5369 TREE_OPERAND (arg2
, 1), 0)
5370 && operand_equal_p (TREE_OPERAND (arg1
, 1),
5371 TREE_OPERAND (arg2
, 0), 0))))
5376 tem
= fold_convert_loc (loc
, arg1_type
, arg1
);
5377 return fold_convert_loc (loc
, type
, negate_expr (tem
));
5380 return fold_convert_loc (loc
, type
, arg1
);
5383 if (flag_trapping_math
)
5388 if (TYPE_UNSIGNED (TREE_TYPE (arg1
)))
5390 tem
= fold_build1_loc (loc
, ABS_EXPR
, TREE_TYPE (arg1
), arg1
);
5391 return fold_convert_loc (loc
, type
, tem
);
5394 if (flag_trapping_math
)
5399 if (TYPE_UNSIGNED (TREE_TYPE (arg1
)))
5401 tem
= fold_build1_loc (loc
, ABS_EXPR
, TREE_TYPE (arg1
), arg1
);
5402 return negate_expr (fold_convert_loc (loc
, type
, tem
));
5404 gcc_assert (TREE_CODE_CLASS (comp_code
) == tcc_comparison
);
5408 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
5409 A == 0 ? A : 0 is always 0 unless A is -0. Note that
5410 both transformations are correct when A is NaN: A != 0
5411 is then true, and A == 0 is false. */
5413 if (!HONOR_SIGNED_ZEROS (element_mode (type
))
5414 && integer_zerop (arg01
) && integer_zerop (arg2
))
5416 if (comp_code
== NE_EXPR
)
5417 return fold_convert_loc (loc
, type
, arg1
);
5418 else if (comp_code
== EQ_EXPR
)
5419 return build_zero_cst (type
);
5422 /* Try some transformations of A op B ? A : B.
5424 A == B? A : B same as B
5425 A != B? A : B same as A
5426 A >= B? A : B same as max (A, B)
5427 A > B? A : B same as max (B, A)
5428 A <= B? A : B same as min (A, B)
5429 A < B? A : B same as min (B, A)
5431 As above, these transformations don't work in the presence
5432 of signed zeros. For example, if A and B are zeros of
5433 opposite sign, the first two transformations will change
5434 the sign of the result. In the last four, the original
5435 expressions give different results for (A=+0, B=-0) and
5436 (A=-0, B=+0), but the transformed expressions do not.
5438 The first two transformations are correct if either A or B
5439 is a NaN. In the first transformation, the condition will
5440 be false, and B will indeed be chosen. In the case of the
5441 second transformation, the condition A != B will be true,
5442 and A will be chosen.
5444 The conversions to max() and min() are not correct if B is
5445 a number and A is not. The conditions in the original
5446 expressions will be false, so all four give B. The min()
5447 and max() versions would give a NaN instead. */
5448 if (!HONOR_SIGNED_ZEROS (element_mode (type
))
5449 && operand_equal_for_comparison_p (arg01
, arg2
)
5450 /* Avoid these transformations if the COND_EXPR may be used
5451 as an lvalue in the C++ front-end. PR c++/19199. */
5453 || VECTOR_TYPE_P (type
)
5454 || (! lang_GNU_CXX ()
5455 && strcmp (lang_hooks
.name
, "GNU Objective-C++") != 0)
5456 || ! maybe_lvalue_p (arg1
)
5457 || ! maybe_lvalue_p (arg2
)))
5459 tree comp_op0
= arg00
;
5460 tree comp_op1
= arg01
;
5461 tree comp_type
= TREE_TYPE (comp_op0
);
5466 return fold_convert_loc (loc
, type
, arg2
);
5468 return fold_convert_loc (loc
, type
, arg1
);
5473 /* In C++ a ?: expression can be an lvalue, so put the
5474 operand which will be used if they are equal first
5475 so that we can convert this back to the
5476 corresponding COND_EXPR. */
5477 if (!HONOR_NANS (arg1
))
5479 comp_op0
= fold_convert_loc (loc
, comp_type
, comp_op0
);
5480 comp_op1
= fold_convert_loc (loc
, comp_type
, comp_op1
);
5481 tem
= (comp_code
== LE_EXPR
|| comp_code
== UNLE_EXPR
)
5482 ? fold_build2_loc (loc
, MIN_EXPR
, comp_type
, comp_op0
, comp_op1
)
5483 : fold_build2_loc (loc
, MIN_EXPR
, comp_type
,
5484 comp_op1
, comp_op0
);
5485 return fold_convert_loc (loc
, type
, tem
);
5492 if (!HONOR_NANS (arg1
))
5494 comp_op0
= fold_convert_loc (loc
, comp_type
, comp_op0
);
5495 comp_op1
= fold_convert_loc (loc
, comp_type
, comp_op1
);
5496 tem
= (comp_code
== GE_EXPR
|| comp_code
== UNGE_EXPR
)
5497 ? fold_build2_loc (loc
, MAX_EXPR
, comp_type
, comp_op0
, comp_op1
)
5498 : fold_build2_loc (loc
, MAX_EXPR
, comp_type
,
5499 comp_op1
, comp_op0
);
5500 return fold_convert_loc (loc
, type
, tem
);
5504 if (!HONOR_NANS (arg1
))
5505 return fold_convert_loc (loc
, type
, arg2
);
5508 if (!HONOR_NANS (arg1
))
5509 return fold_convert_loc (loc
, type
, arg1
);
5512 gcc_assert (TREE_CODE_CLASS (comp_code
) == tcc_comparison
);
5522 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
5523 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
5524 (BRANCH_COST (optimize_function_for_speed_p (cfun), \
5528 /* EXP is some logical combination of boolean tests. See if we can
5529 merge it into some range test. Return the new tree if so. */
5532 fold_range_test (location_t loc
, enum tree_code code
, tree type
,
5535 int or_op
= (code
== TRUTH_ORIF_EXPR
5536 || code
== TRUTH_OR_EXPR
);
5537 int in0_p
, in1_p
, in_p
;
5538 tree low0
, low1
, low
, high0
, high1
, high
;
5539 bool strict_overflow_p
= false;
5541 const char * const warnmsg
= G_("assuming signed overflow does not occur "
5542 "when simplifying range test");
5544 if (!INTEGRAL_TYPE_P (type
))
5547 lhs
= make_range (op0
, &in0_p
, &low0
, &high0
, &strict_overflow_p
);
5548 rhs
= make_range (op1
, &in1_p
, &low1
, &high1
, &strict_overflow_p
);
5550 /* If this is an OR operation, invert both sides; we will invert
5551 again at the end. */
5553 in0_p
= ! in0_p
, in1_p
= ! in1_p
;
5555 /* If both expressions are the same, if we can merge the ranges, and we
5556 can build the range test, return it or it inverted. If one of the
5557 ranges is always true or always false, consider it to be the same
5558 expression as the other. */
5559 if ((lhs
== 0 || rhs
== 0 || operand_equal_p (lhs
, rhs
, 0))
5560 && merge_ranges (&in_p
, &low
, &high
, in0_p
, low0
, high0
,
5562 && (tem
= (build_range_check (loc
, type
,
5564 : rhs
!= 0 ? rhs
: integer_zero_node
,
5565 in_p
, low
, high
))) != 0)
5567 if (strict_overflow_p
)
5568 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_COMPARISON
);
5569 return or_op
? invert_truthvalue_loc (loc
, tem
) : tem
;
5572 /* On machines where the branch cost is expensive, if this is a
5573 short-circuited branch and the underlying object on both sides
5574 is the same, make a non-short-circuit operation. */
5575 else if (LOGICAL_OP_NON_SHORT_CIRCUIT
5576 && !flag_sanitize_coverage
5577 && lhs
!= 0 && rhs
!= 0
5578 && (code
== TRUTH_ANDIF_EXPR
5579 || code
== TRUTH_ORIF_EXPR
)
5580 && operand_equal_p (lhs
, rhs
, 0))
5582 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
5583 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
5584 which cases we can't do this. */
5585 if (simple_operand_p (lhs
))
5586 return build2_loc (loc
, code
== TRUTH_ANDIF_EXPR
5587 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
,
5590 else if (!lang_hooks
.decls
.global_bindings_p ()
5591 && !CONTAINS_PLACEHOLDER_P (lhs
))
5593 tree common
= save_expr (lhs
);
5595 if ((lhs
= build_range_check (loc
, type
, common
,
5596 or_op
? ! in0_p
: in0_p
,
5598 && (rhs
= build_range_check (loc
, type
, common
,
5599 or_op
? ! in1_p
: in1_p
,
5602 if (strict_overflow_p
)
5603 fold_overflow_warning (warnmsg
,
5604 WARN_STRICT_OVERFLOW_COMPARISON
);
5605 return build2_loc (loc
, code
== TRUTH_ANDIF_EXPR
5606 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
,
5615 /* Subroutine for fold_truth_andor_1: C is an INTEGER_CST interpreted as a P
5616 bit value. Arrange things so the extra bits will be set to zero if and
5617 only if C is signed-extended to its full width. If MASK is nonzero,
5618 it is an INTEGER_CST that should be AND'ed with the extra bits. */
5621 unextend (tree c
, int p
, int unsignedp
, tree mask
)
5623 tree type
= TREE_TYPE (c
);
5624 int modesize
= GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE (type
));
5627 if (p
== modesize
|| unsignedp
)
5630 /* We work by getting just the sign bit into the low-order bit, then
5631 into the high-order bit, then sign-extend. We then XOR that value
5633 temp
= build_int_cst (TREE_TYPE (c
),
5634 wi::extract_uhwi (wi::to_wide (c
), p
- 1, 1));
5636 /* We must use a signed type in order to get an arithmetic right shift.
5637 However, we must also avoid introducing accidental overflows, so that
5638 a subsequent call to integer_zerop will work. Hence we must
5639 do the type conversion here. At this point, the constant is either
5640 zero or one, and the conversion to a signed type can never overflow.
5641 We could get an overflow if this conversion is done anywhere else. */
5642 if (TYPE_UNSIGNED (type
))
5643 temp
= fold_convert (signed_type_for (type
), temp
);
5645 temp
= const_binop (LSHIFT_EXPR
, temp
, size_int (modesize
- 1));
5646 temp
= const_binop (RSHIFT_EXPR
, temp
, size_int (modesize
- p
- 1));
5648 temp
= const_binop (BIT_AND_EXPR
, temp
,
5649 fold_convert (TREE_TYPE (c
), mask
));
5650 /* If necessary, convert the type back to match the type of C. */
5651 if (TYPE_UNSIGNED (type
))
5652 temp
= fold_convert (type
, temp
);
5654 return fold_convert (type
, const_binop (BIT_XOR_EXPR
, c
, temp
));
5657 /* For an expression that has the form
5661 we can drop one of the inner expressions and simplify to
5665 LOC is the location of the resulting expression. OP is the inner
5666 logical operation; the left-hand side in the examples above, while CMPOP
5667 is the right-hand side. RHS_ONLY is used to prevent us from accidentally
5668 removing a condition that guards another, as in
5669 (A != NULL && A->...) || A == NULL
5670 which we must not transform. If RHS_ONLY is true, only eliminate the
5671 right-most operand of the inner logical operation. */
5674 merge_truthop_with_opposite_arm (location_t loc
, tree op
, tree cmpop
,
5677 tree type
= TREE_TYPE (cmpop
);
5678 enum tree_code code
= TREE_CODE (cmpop
);
5679 enum tree_code truthop_code
= TREE_CODE (op
);
5680 tree lhs
= TREE_OPERAND (op
, 0);
5681 tree rhs
= TREE_OPERAND (op
, 1);
5682 tree orig_lhs
= lhs
, orig_rhs
= rhs
;
5683 enum tree_code rhs_code
= TREE_CODE (rhs
);
5684 enum tree_code lhs_code
= TREE_CODE (lhs
);
5685 enum tree_code inv_code
;
5687 if (TREE_SIDE_EFFECTS (op
) || TREE_SIDE_EFFECTS (cmpop
))
5690 if (TREE_CODE_CLASS (code
) != tcc_comparison
)
5693 if (rhs_code
== truthop_code
)
5695 tree newrhs
= merge_truthop_with_opposite_arm (loc
, rhs
, cmpop
, rhs_only
);
5696 if (newrhs
!= NULL_TREE
)
5699 rhs_code
= TREE_CODE (rhs
);
5702 if (lhs_code
== truthop_code
&& !rhs_only
)
5704 tree newlhs
= merge_truthop_with_opposite_arm (loc
, lhs
, cmpop
, false);
5705 if (newlhs
!= NULL_TREE
)
5708 lhs_code
= TREE_CODE (lhs
);
5712 inv_code
= invert_tree_comparison (code
, HONOR_NANS (type
));
5713 if (inv_code
== rhs_code
5714 && operand_equal_p (TREE_OPERAND (rhs
, 0), TREE_OPERAND (cmpop
, 0), 0)
5715 && operand_equal_p (TREE_OPERAND (rhs
, 1), TREE_OPERAND (cmpop
, 1), 0))
5717 if (!rhs_only
&& inv_code
== lhs_code
5718 && operand_equal_p (TREE_OPERAND (lhs
, 0), TREE_OPERAND (cmpop
, 0), 0)
5719 && operand_equal_p (TREE_OPERAND (lhs
, 1), TREE_OPERAND (cmpop
, 1), 0))
5721 if (rhs
!= orig_rhs
|| lhs
!= orig_lhs
)
5722 return fold_build2_loc (loc
, truthop_code
, TREE_TYPE (cmpop
),
5727 /* Find ways of folding logical expressions of LHS and RHS:
5728 Try to merge two comparisons to the same innermost item.
5729 Look for range tests like "ch >= '0' && ch <= '9'".
5730 Look for combinations of simple terms on machines with expensive branches
5731 and evaluate the RHS unconditionally.
5733 For example, if we have p->a == 2 && p->b == 4 and we can make an
5734 object large enough to span both A and B, we can do this with a comparison
5735 against the object ANDed with the a mask.
5737 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
5738 operations to do this with one comparison.
5740 We check for both normal comparisons and the BIT_AND_EXPRs made this by
5741 function and the one above.
5743 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
5744 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
5746 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
5749 We return the simplified tree or 0 if no optimization is possible. */
5752 fold_truth_andor_1 (location_t loc
, enum tree_code code
, tree truth_type
,
5755 /* If this is the "or" of two comparisons, we can do something if
5756 the comparisons are NE_EXPR. If this is the "and", we can do something
5757 if the comparisons are EQ_EXPR. I.e.,
5758 (a->b == 2 && a->c == 4) can become (a->new == NEW).
5760 WANTED_CODE is this operation code. For single bit fields, we can
5761 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
5762 comparison for one-bit fields. */
5764 enum tree_code wanted_code
;
5765 enum tree_code lcode
, rcode
;
5766 tree ll_arg
, lr_arg
, rl_arg
, rr_arg
;
5767 tree ll_inner
, lr_inner
, rl_inner
, rr_inner
;
5768 HOST_WIDE_INT ll_bitsize
, ll_bitpos
, lr_bitsize
, lr_bitpos
;
5769 HOST_WIDE_INT rl_bitsize
, rl_bitpos
, rr_bitsize
, rr_bitpos
;
5770 HOST_WIDE_INT xll_bitpos
, xlr_bitpos
, xrl_bitpos
, xrr_bitpos
;
5771 HOST_WIDE_INT lnbitsize
, lnbitpos
, rnbitsize
, rnbitpos
;
5772 int ll_unsignedp
, lr_unsignedp
, rl_unsignedp
, rr_unsignedp
;
5773 int ll_reversep
, lr_reversep
, rl_reversep
, rr_reversep
;
5774 machine_mode ll_mode
, lr_mode
, rl_mode
, rr_mode
;
5775 scalar_int_mode lnmode
, rnmode
;
5776 tree ll_mask
, lr_mask
, rl_mask
, rr_mask
;
5777 tree ll_and_mask
, lr_and_mask
, rl_and_mask
, rr_and_mask
;
5778 tree l_const
, r_const
;
5779 tree lntype
, rntype
, result
;
5780 HOST_WIDE_INT first_bit
, end_bit
;
5783 /* Start by getting the comparison codes. Fail if anything is volatile.
5784 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
5785 it were surrounded with a NE_EXPR. */
5787 if (TREE_SIDE_EFFECTS (lhs
) || TREE_SIDE_EFFECTS (rhs
))
5790 lcode
= TREE_CODE (lhs
);
5791 rcode
= TREE_CODE (rhs
);
5793 if (lcode
== BIT_AND_EXPR
&& integer_onep (TREE_OPERAND (lhs
, 1)))
5795 lhs
= build2 (NE_EXPR
, truth_type
, lhs
,
5796 build_int_cst (TREE_TYPE (lhs
), 0));
5800 if (rcode
== BIT_AND_EXPR
&& integer_onep (TREE_OPERAND (rhs
, 1)))
5802 rhs
= build2 (NE_EXPR
, truth_type
, rhs
,
5803 build_int_cst (TREE_TYPE (rhs
), 0));
5807 if (TREE_CODE_CLASS (lcode
) != tcc_comparison
5808 || TREE_CODE_CLASS (rcode
) != tcc_comparison
)
5811 ll_arg
= TREE_OPERAND (lhs
, 0);
5812 lr_arg
= TREE_OPERAND (lhs
, 1);
5813 rl_arg
= TREE_OPERAND (rhs
, 0);
5814 rr_arg
= TREE_OPERAND (rhs
, 1);
5816 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
5817 if (simple_operand_p (ll_arg
)
5818 && simple_operand_p (lr_arg
))
5820 if (operand_equal_p (ll_arg
, rl_arg
, 0)
5821 && operand_equal_p (lr_arg
, rr_arg
, 0))
5823 result
= combine_comparisons (loc
, code
, lcode
, rcode
,
5824 truth_type
, ll_arg
, lr_arg
);
5828 else if (operand_equal_p (ll_arg
, rr_arg
, 0)
5829 && operand_equal_p (lr_arg
, rl_arg
, 0))
5831 result
= combine_comparisons (loc
, code
, lcode
,
5832 swap_tree_comparison (rcode
),
5833 truth_type
, ll_arg
, lr_arg
);
5839 code
= ((code
== TRUTH_AND_EXPR
|| code
== TRUTH_ANDIF_EXPR
)
5840 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
);
5842 /* If the RHS can be evaluated unconditionally and its operands are
5843 simple, it wins to evaluate the RHS unconditionally on machines
5844 with expensive branches. In this case, this isn't a comparison
5845 that can be merged. */
5847 if (BRANCH_COST (optimize_function_for_speed_p (cfun
),
5849 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg
))
5850 && simple_operand_p (rl_arg
)
5851 && simple_operand_p (rr_arg
))
5853 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
5854 if (code
== TRUTH_OR_EXPR
5855 && lcode
== NE_EXPR
&& integer_zerop (lr_arg
)
5856 && rcode
== NE_EXPR
&& integer_zerop (rr_arg
)
5857 && TREE_TYPE (ll_arg
) == TREE_TYPE (rl_arg
)
5858 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg
)))
5859 return build2_loc (loc
, NE_EXPR
, truth_type
,
5860 build2 (BIT_IOR_EXPR
, TREE_TYPE (ll_arg
),
5862 build_int_cst (TREE_TYPE (ll_arg
), 0));
5864 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
5865 if (code
== TRUTH_AND_EXPR
5866 && lcode
== EQ_EXPR
&& integer_zerop (lr_arg
)
5867 && rcode
== EQ_EXPR
&& integer_zerop (rr_arg
)
5868 && TREE_TYPE (ll_arg
) == TREE_TYPE (rl_arg
)
5869 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg
)))
5870 return build2_loc (loc
, EQ_EXPR
, truth_type
,
5871 build2 (BIT_IOR_EXPR
, TREE_TYPE (ll_arg
),
5873 build_int_cst (TREE_TYPE (ll_arg
), 0));
5876 /* See if the comparisons can be merged. Then get all the parameters for
5879 if ((lcode
!= EQ_EXPR
&& lcode
!= NE_EXPR
)
5880 || (rcode
!= EQ_EXPR
&& rcode
!= NE_EXPR
))
5883 ll_reversep
= lr_reversep
= rl_reversep
= rr_reversep
= 0;
5885 ll_inner
= decode_field_reference (loc
, &ll_arg
,
5886 &ll_bitsize
, &ll_bitpos
, &ll_mode
,
5887 &ll_unsignedp
, &ll_reversep
, &volatilep
,
5888 &ll_mask
, &ll_and_mask
);
5889 lr_inner
= decode_field_reference (loc
, &lr_arg
,
5890 &lr_bitsize
, &lr_bitpos
, &lr_mode
,
5891 &lr_unsignedp
, &lr_reversep
, &volatilep
,
5892 &lr_mask
, &lr_and_mask
);
5893 rl_inner
= decode_field_reference (loc
, &rl_arg
,
5894 &rl_bitsize
, &rl_bitpos
, &rl_mode
,
5895 &rl_unsignedp
, &rl_reversep
, &volatilep
,
5896 &rl_mask
, &rl_and_mask
);
5897 rr_inner
= decode_field_reference (loc
, &rr_arg
,
5898 &rr_bitsize
, &rr_bitpos
, &rr_mode
,
5899 &rr_unsignedp
, &rr_reversep
, &volatilep
,
5900 &rr_mask
, &rr_and_mask
);
5902 /* It must be true that the inner operation on the lhs of each
5903 comparison must be the same if we are to be able to do anything.
5904 Then see if we have constants. If not, the same must be true for
5907 || ll_reversep
!= rl_reversep
5908 || ll_inner
== 0 || rl_inner
== 0
5909 || ! operand_equal_p (ll_inner
, rl_inner
, 0))
5912 if (TREE_CODE (lr_arg
) == INTEGER_CST
5913 && TREE_CODE (rr_arg
) == INTEGER_CST
)
5915 l_const
= lr_arg
, r_const
= rr_arg
;
5916 lr_reversep
= ll_reversep
;
5918 else if (lr_reversep
!= rr_reversep
5919 || lr_inner
== 0 || rr_inner
== 0
5920 || ! operand_equal_p (lr_inner
, rr_inner
, 0))
5923 l_const
= r_const
= 0;
5925 /* If either comparison code is not correct for our logical operation,
5926 fail. However, we can convert a one-bit comparison against zero into
5927 the opposite comparison against that bit being set in the field. */
5929 wanted_code
= (code
== TRUTH_AND_EXPR
? EQ_EXPR
: NE_EXPR
);
5930 if (lcode
!= wanted_code
)
5932 if (l_const
&& integer_zerop (l_const
) && integer_pow2p (ll_mask
))
5934 /* Make the left operand unsigned, since we are only interested
5935 in the value of one bit. Otherwise we are doing the wrong
5944 /* This is analogous to the code for l_const above. */
5945 if (rcode
!= wanted_code
)
5947 if (r_const
&& integer_zerop (r_const
) && integer_pow2p (rl_mask
))
5956 /* See if we can find a mode that contains both fields being compared on
5957 the left. If we can't, fail. Otherwise, update all constants and masks
5958 to be relative to a field of that size. */
5959 first_bit
= MIN (ll_bitpos
, rl_bitpos
);
5960 end_bit
= MAX (ll_bitpos
+ ll_bitsize
, rl_bitpos
+ rl_bitsize
);
5961 if (!get_best_mode (end_bit
- first_bit
, first_bit
, 0, 0,
5962 TYPE_ALIGN (TREE_TYPE (ll_inner
)), BITS_PER_WORD
,
5963 volatilep
, &lnmode
))
5966 lnbitsize
= GET_MODE_BITSIZE (lnmode
);
5967 lnbitpos
= first_bit
& ~ (lnbitsize
- 1);
5968 lntype
= lang_hooks
.types
.type_for_size (lnbitsize
, 1);
5969 xll_bitpos
= ll_bitpos
- lnbitpos
, xrl_bitpos
= rl_bitpos
- lnbitpos
;
5971 if (ll_reversep
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
5973 xll_bitpos
= lnbitsize
- xll_bitpos
- ll_bitsize
;
5974 xrl_bitpos
= lnbitsize
- xrl_bitpos
- rl_bitsize
;
5977 ll_mask
= const_binop (LSHIFT_EXPR
, fold_convert_loc (loc
, lntype
, ll_mask
),
5978 size_int (xll_bitpos
));
5979 rl_mask
= const_binop (LSHIFT_EXPR
, fold_convert_loc (loc
, lntype
, rl_mask
),
5980 size_int (xrl_bitpos
));
5984 l_const
= fold_convert_loc (loc
, lntype
, l_const
);
5985 l_const
= unextend (l_const
, ll_bitsize
, ll_unsignedp
, ll_and_mask
);
5986 l_const
= const_binop (LSHIFT_EXPR
, l_const
, size_int (xll_bitpos
));
5987 if (! integer_zerop (const_binop (BIT_AND_EXPR
, l_const
,
5988 fold_build1_loc (loc
, BIT_NOT_EXPR
,
5991 warning (0, "comparison is always %d", wanted_code
== NE_EXPR
);
5993 return constant_boolean_node (wanted_code
== NE_EXPR
, truth_type
);
5998 r_const
= fold_convert_loc (loc
, lntype
, r_const
);
5999 r_const
= unextend (r_const
, rl_bitsize
, rl_unsignedp
, rl_and_mask
);
6000 r_const
= const_binop (LSHIFT_EXPR
, r_const
, size_int (xrl_bitpos
));
6001 if (! integer_zerop (const_binop (BIT_AND_EXPR
, r_const
,
6002 fold_build1_loc (loc
, BIT_NOT_EXPR
,
6005 warning (0, "comparison is always %d", wanted_code
== NE_EXPR
);
6007 return constant_boolean_node (wanted_code
== NE_EXPR
, truth_type
);
6011 /* If the right sides are not constant, do the same for it. Also,
6012 disallow this optimization if a size or signedness mismatch occurs
6013 between the left and right sides. */
6016 if (ll_bitsize
!= lr_bitsize
|| rl_bitsize
!= rr_bitsize
6017 || ll_unsignedp
!= lr_unsignedp
|| rl_unsignedp
!= rr_unsignedp
6018 /* Make sure the two fields on the right
6019 correspond to the left without being swapped. */
6020 || ll_bitpos
- rl_bitpos
!= lr_bitpos
- rr_bitpos
)
6023 first_bit
= MIN (lr_bitpos
, rr_bitpos
);
6024 end_bit
= MAX (lr_bitpos
+ lr_bitsize
, rr_bitpos
+ rr_bitsize
);
6025 if (!get_best_mode (end_bit
- first_bit
, first_bit
, 0, 0,
6026 TYPE_ALIGN (TREE_TYPE (lr_inner
)), BITS_PER_WORD
,
6027 volatilep
, &rnmode
))
6030 rnbitsize
= GET_MODE_BITSIZE (rnmode
);
6031 rnbitpos
= first_bit
& ~ (rnbitsize
- 1);
6032 rntype
= lang_hooks
.types
.type_for_size (rnbitsize
, 1);
6033 xlr_bitpos
= lr_bitpos
- rnbitpos
, xrr_bitpos
= rr_bitpos
- rnbitpos
;
6035 if (lr_reversep
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
6037 xlr_bitpos
= rnbitsize
- xlr_bitpos
- lr_bitsize
;
6038 xrr_bitpos
= rnbitsize
- xrr_bitpos
- rr_bitsize
;
6041 lr_mask
= const_binop (LSHIFT_EXPR
, fold_convert_loc (loc
,
6043 size_int (xlr_bitpos
));
6044 rr_mask
= const_binop (LSHIFT_EXPR
, fold_convert_loc (loc
,
6046 size_int (xrr_bitpos
));
6048 /* Make a mask that corresponds to both fields being compared.
6049 Do this for both items being compared. If the operands are the
6050 same size and the bits being compared are in the same position
6051 then we can do this by masking both and comparing the masked
6053 ll_mask
= const_binop (BIT_IOR_EXPR
, ll_mask
, rl_mask
);
6054 lr_mask
= const_binop (BIT_IOR_EXPR
, lr_mask
, rr_mask
);
6055 if (lnbitsize
== rnbitsize
6056 && xll_bitpos
== xlr_bitpos
6060 lhs
= make_bit_field_ref (loc
, ll_inner
, ll_arg
,
6061 lntype
, lnbitsize
, lnbitpos
,
6062 ll_unsignedp
|| rl_unsignedp
, ll_reversep
);
6063 if (! all_ones_mask_p (ll_mask
, lnbitsize
))
6064 lhs
= build2 (BIT_AND_EXPR
, lntype
, lhs
, ll_mask
);
6066 rhs
= make_bit_field_ref (loc
, lr_inner
, lr_arg
,
6067 rntype
, rnbitsize
, rnbitpos
,
6068 lr_unsignedp
|| rr_unsignedp
, lr_reversep
);
6069 if (! all_ones_mask_p (lr_mask
, rnbitsize
))
6070 rhs
= build2 (BIT_AND_EXPR
, rntype
, rhs
, lr_mask
);
6072 return build2_loc (loc
, wanted_code
, truth_type
, lhs
, rhs
);
6075 /* There is still another way we can do something: If both pairs of
6076 fields being compared are adjacent, we may be able to make a wider
6077 field containing them both.
6079 Note that we still must mask the lhs/rhs expressions. Furthermore,
6080 the mask must be shifted to account for the shift done by
6081 make_bit_field_ref. */
6082 if (((ll_bitsize
+ ll_bitpos
== rl_bitpos
6083 && lr_bitsize
+ lr_bitpos
== rr_bitpos
)
6084 || (ll_bitpos
== rl_bitpos
+ rl_bitsize
6085 && lr_bitpos
== rr_bitpos
+ rr_bitsize
))
6093 lhs
= make_bit_field_ref (loc
, ll_inner
, ll_arg
, lntype
,
6094 ll_bitsize
+ rl_bitsize
,
6095 MIN (ll_bitpos
, rl_bitpos
),
6096 ll_unsignedp
, ll_reversep
);
6097 rhs
= make_bit_field_ref (loc
, lr_inner
, lr_arg
, rntype
,
6098 lr_bitsize
+ rr_bitsize
,
6099 MIN (lr_bitpos
, rr_bitpos
),
6100 lr_unsignedp
, lr_reversep
);
6102 ll_mask
= const_binop (RSHIFT_EXPR
, ll_mask
,
6103 size_int (MIN (xll_bitpos
, xrl_bitpos
)));
6104 lr_mask
= const_binop (RSHIFT_EXPR
, lr_mask
,
6105 size_int (MIN (xlr_bitpos
, xrr_bitpos
)));
6107 /* Convert to the smaller type before masking out unwanted bits. */
6109 if (lntype
!= rntype
)
6111 if (lnbitsize
> rnbitsize
)
6113 lhs
= fold_convert_loc (loc
, rntype
, lhs
);
6114 ll_mask
= fold_convert_loc (loc
, rntype
, ll_mask
);
6117 else if (lnbitsize
< rnbitsize
)
6119 rhs
= fold_convert_loc (loc
, lntype
, rhs
);
6120 lr_mask
= fold_convert_loc (loc
, lntype
, lr_mask
);
6125 if (! all_ones_mask_p (ll_mask
, ll_bitsize
+ rl_bitsize
))
6126 lhs
= build2 (BIT_AND_EXPR
, type
, lhs
, ll_mask
);
6128 if (! all_ones_mask_p (lr_mask
, lr_bitsize
+ rr_bitsize
))
6129 rhs
= build2 (BIT_AND_EXPR
, type
, rhs
, lr_mask
);
6131 return build2_loc (loc
, wanted_code
, truth_type
, lhs
, rhs
);
6137 /* Handle the case of comparisons with constants. If there is something in
6138 common between the masks, those bits of the constants must be the same.
6139 If not, the condition is always false. Test for this to avoid generating
6140 incorrect code below. */
6141 result
= const_binop (BIT_AND_EXPR
, ll_mask
, rl_mask
);
6142 if (! integer_zerop (result
)
6143 && simple_cst_equal (const_binop (BIT_AND_EXPR
, result
, l_const
),
6144 const_binop (BIT_AND_EXPR
, result
, r_const
)) != 1)
6146 if (wanted_code
== NE_EXPR
)
6148 warning (0, "%<or%> of unmatched not-equal tests is always 1");
6149 return constant_boolean_node (true, truth_type
);
6153 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
6154 return constant_boolean_node (false, truth_type
);
6161 /* Construct the expression we will return. First get the component
6162 reference we will make. Unless the mask is all ones the width of
6163 that field, perform the mask operation. Then compare with the
6165 result
= make_bit_field_ref (loc
, ll_inner
, ll_arg
,
6166 lntype
, lnbitsize
, lnbitpos
,
6167 ll_unsignedp
|| rl_unsignedp
, ll_reversep
);
6169 ll_mask
= const_binop (BIT_IOR_EXPR
, ll_mask
, rl_mask
);
6170 if (! all_ones_mask_p (ll_mask
, lnbitsize
))
6171 result
= build2_loc (loc
, BIT_AND_EXPR
, lntype
, result
, ll_mask
);
6173 return build2_loc (loc
, wanted_code
, truth_type
, result
,
6174 const_binop (BIT_IOR_EXPR
, l_const
, r_const
));
6177 /* T is an integer expression that is being multiplied, divided, or taken a
6178 modulus (CODE says which and what kind of divide or modulus) by a
6179 constant C. See if we can eliminate that operation by folding it with
6180 other operations already in T. WIDE_TYPE, if non-null, is a type that
6181 should be used for the computation if wider than our type.
6183 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
6184 (X * 2) + (Y * 4). We must, however, be assured that either the original
6185 expression would not overflow or that overflow is undefined for the type
6186 in the language in question.
6188 If we return a non-null expression, it is an equivalent form of the
6189 original computation, but need not be in the original type.
6191 We set *STRICT_OVERFLOW_P to true if the return values depends on
6192 signed overflow being undefined. Otherwise we do not change
6193 *STRICT_OVERFLOW_P. */
6196 extract_muldiv (tree t
, tree c
, enum tree_code code
, tree wide_type
,
6197 bool *strict_overflow_p
)
6199 /* To avoid exponential search depth, refuse to allow recursion past
6200 three levels. Beyond that (1) it's highly unlikely that we'll find
6201 something interesting and (2) we've probably processed it before
6202 when we built the inner expression. */
6211 ret
= extract_muldiv_1 (t
, c
, code
, wide_type
, strict_overflow_p
);
6218 extract_muldiv_1 (tree t
, tree c
, enum tree_code code
, tree wide_type
,
6219 bool *strict_overflow_p
)
6221 tree type
= TREE_TYPE (t
);
6222 enum tree_code tcode
= TREE_CODE (t
);
6223 tree ctype
= (wide_type
!= 0
6224 && (GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (wide_type
))
6225 > GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type
)))
6226 ? wide_type
: type
);
6228 int same_p
= tcode
== code
;
6229 tree op0
= NULL_TREE
, op1
= NULL_TREE
;
6230 bool sub_strict_overflow_p
;
6232 /* Don't deal with constants of zero here; they confuse the code below. */
6233 if (integer_zerop (c
))
6236 if (TREE_CODE_CLASS (tcode
) == tcc_unary
)
6237 op0
= TREE_OPERAND (t
, 0);
6239 if (TREE_CODE_CLASS (tcode
) == tcc_binary
)
6240 op0
= TREE_OPERAND (t
, 0), op1
= TREE_OPERAND (t
, 1);
6242 /* Note that we need not handle conditional operations here since fold
6243 already handles those cases. So just do arithmetic here. */
6247 /* For a constant, we can always simplify if we are a multiply
6248 or (for divide and modulus) if it is a multiple of our constant. */
6249 if (code
== MULT_EXPR
6250 || wi::multiple_of_p (wi::to_wide (t
), wi::to_wide (c
),
6253 tree tem
= const_binop (code
, fold_convert (ctype
, t
),
6254 fold_convert (ctype
, c
));
6255 /* If the multiplication overflowed, we lost information on it.
6256 See PR68142 and PR69845. */
6257 if (TREE_OVERFLOW (tem
))
6263 CASE_CONVERT
: case NON_LVALUE_EXPR
:
6264 /* If op0 is an expression ... */
6265 if ((COMPARISON_CLASS_P (op0
)
6266 || UNARY_CLASS_P (op0
)
6267 || BINARY_CLASS_P (op0
)
6268 || VL_EXP_CLASS_P (op0
)
6269 || EXPRESSION_CLASS_P (op0
))
6270 /* ... and has wrapping overflow, and its type is smaller
6271 than ctype, then we cannot pass through as widening. */
6272 && (((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0
))
6273 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0
)))
6274 && (TYPE_PRECISION (ctype
)
6275 > TYPE_PRECISION (TREE_TYPE (op0
))))
6276 /* ... or this is a truncation (t is narrower than op0),
6277 then we cannot pass through this narrowing. */
6278 || (TYPE_PRECISION (type
)
6279 < TYPE_PRECISION (TREE_TYPE (op0
)))
6280 /* ... or signedness changes for division or modulus,
6281 then we cannot pass through this conversion. */
6282 || (code
!= MULT_EXPR
6283 && (TYPE_UNSIGNED (ctype
)
6284 != TYPE_UNSIGNED (TREE_TYPE (op0
))))
6285 /* ... or has undefined overflow while the converted to
6286 type has not, we cannot do the operation in the inner type
6287 as that would introduce undefined overflow. */
6288 || ((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0
))
6289 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0
)))
6290 && !TYPE_OVERFLOW_UNDEFINED (type
))))
6293 /* Pass the constant down and see if we can make a simplification. If
6294 we can, replace this expression with the inner simplification for
6295 possible later conversion to our or some other type. */
6296 if ((t2
= fold_convert (TREE_TYPE (op0
), c
)) != 0
6297 && TREE_CODE (t2
) == INTEGER_CST
6298 && !TREE_OVERFLOW (t2
)
6299 && (t1
= extract_muldiv (op0
, t2
, code
,
6300 code
== MULT_EXPR
? ctype
: NULL_TREE
,
6301 strict_overflow_p
)) != 0)
6306 /* If widening the type changes it from signed to unsigned, then we
6307 must avoid building ABS_EXPR itself as unsigned. */
6308 if (TYPE_UNSIGNED (ctype
) && !TYPE_UNSIGNED (type
))
6310 tree cstype
= (*signed_type_for
) (ctype
);
6311 if ((t1
= extract_muldiv (op0
, c
, code
, cstype
, strict_overflow_p
))
6314 t1
= fold_build1 (tcode
, cstype
, fold_convert (cstype
, t1
));
6315 return fold_convert (ctype
, t1
);
6319 /* If the constant is negative, we cannot simplify this. */
6320 if (tree_int_cst_sgn (c
) == -1)
6324 /* For division and modulus, type can't be unsigned, as e.g.
6325 (-(x / 2U)) / 2U isn't equal to -((x / 2U) / 2U) for x >= 2.
6326 For signed types, even with wrapping overflow, this is fine. */
6327 if (code
!= MULT_EXPR
&& TYPE_UNSIGNED (type
))
6329 if ((t1
= extract_muldiv (op0
, c
, code
, wide_type
, strict_overflow_p
))
6331 return fold_build1 (tcode
, ctype
, fold_convert (ctype
, t1
));
6334 case MIN_EXPR
: case MAX_EXPR
:
6335 /* If widening the type changes the signedness, then we can't perform
6336 this optimization as that changes the result. */
6337 if (TYPE_UNSIGNED (ctype
) != TYPE_UNSIGNED (type
))
6340 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
6341 sub_strict_overflow_p
= false;
6342 if ((t1
= extract_muldiv (op0
, c
, code
, wide_type
,
6343 &sub_strict_overflow_p
)) != 0
6344 && (t2
= extract_muldiv (op1
, c
, code
, wide_type
,
6345 &sub_strict_overflow_p
)) != 0)
6347 if (tree_int_cst_sgn (c
) < 0)
6348 tcode
= (tcode
== MIN_EXPR
? MAX_EXPR
: MIN_EXPR
);
6349 if (sub_strict_overflow_p
)
6350 *strict_overflow_p
= true;
6351 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, t1
),
6352 fold_convert (ctype
, t2
));
6356 case LSHIFT_EXPR
: case RSHIFT_EXPR
:
6357 /* If the second operand is constant, this is a multiplication
6358 or floor division, by a power of two, so we can treat it that
6359 way unless the multiplier or divisor overflows. Signed
6360 left-shift overflow is implementation-defined rather than
6361 undefined in C90, so do not convert signed left shift into
6363 if (TREE_CODE (op1
) == INTEGER_CST
6364 && (tcode
== RSHIFT_EXPR
|| TYPE_UNSIGNED (TREE_TYPE (op0
)))
6365 /* const_binop may not detect overflow correctly,
6366 so check for it explicitly here. */
6367 && wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node
)),
6369 && (t1
= fold_convert (ctype
,
6370 const_binop (LSHIFT_EXPR
, size_one_node
,
6372 && !TREE_OVERFLOW (t1
))
6373 return extract_muldiv (build2 (tcode
== LSHIFT_EXPR
6374 ? MULT_EXPR
: FLOOR_DIV_EXPR
,
6376 fold_convert (ctype
, op0
),
6378 c
, code
, wide_type
, strict_overflow_p
);
6381 case PLUS_EXPR
: case MINUS_EXPR
:
6382 /* See if we can eliminate the operation on both sides. If we can, we
6383 can return a new PLUS or MINUS. If we can't, the only remaining
6384 cases where we can do anything are if the second operand is a
6386 sub_strict_overflow_p
= false;
6387 t1
= extract_muldiv (op0
, c
, code
, wide_type
, &sub_strict_overflow_p
);
6388 t2
= extract_muldiv (op1
, c
, code
, wide_type
, &sub_strict_overflow_p
);
6389 if (t1
!= 0 && t2
!= 0
6390 && TYPE_OVERFLOW_WRAPS (ctype
)
6391 && (code
== MULT_EXPR
6392 /* If not multiplication, we can only do this if both operands
6393 are divisible by c. */
6394 || (multiple_of_p (ctype
, op0
, c
)
6395 && multiple_of_p (ctype
, op1
, c
))))
6397 if (sub_strict_overflow_p
)
6398 *strict_overflow_p
= true;
6399 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, t1
),
6400 fold_convert (ctype
, t2
));
6403 /* If this was a subtraction, negate OP1 and set it to be an addition.
6404 This simplifies the logic below. */
6405 if (tcode
== MINUS_EXPR
)
6407 tcode
= PLUS_EXPR
, op1
= negate_expr (op1
);
6408 /* If OP1 was not easily negatable, the constant may be OP0. */
6409 if (TREE_CODE (op0
) == INTEGER_CST
)
6411 std::swap (op0
, op1
);
6416 if (TREE_CODE (op1
) != INTEGER_CST
)
6419 /* If either OP1 or C are negative, this optimization is not safe for
6420 some of the division and remainder types while for others we need
6421 to change the code. */
6422 if (tree_int_cst_sgn (op1
) < 0 || tree_int_cst_sgn (c
) < 0)
6424 if (code
== CEIL_DIV_EXPR
)
6425 code
= FLOOR_DIV_EXPR
;
6426 else if (code
== FLOOR_DIV_EXPR
)
6427 code
= CEIL_DIV_EXPR
;
6428 else if (code
!= MULT_EXPR
6429 && code
!= CEIL_MOD_EXPR
&& code
!= FLOOR_MOD_EXPR
)
6433 /* If it's a multiply or a division/modulus operation of a multiple
6434 of our constant, do the operation and verify it doesn't overflow. */
6435 if (code
== MULT_EXPR
6436 || wi::multiple_of_p (wi::to_wide (op1
), wi::to_wide (c
),
6439 op1
= const_binop (code
, fold_convert (ctype
, op1
),
6440 fold_convert (ctype
, c
));
6441 /* We allow the constant to overflow with wrapping semantics. */
6443 || (TREE_OVERFLOW (op1
) && !TYPE_OVERFLOW_WRAPS (ctype
)))
6449 /* If we have an unsigned type, we cannot widen the operation since it
6450 will change the result if the original computation overflowed. */
6451 if (TYPE_UNSIGNED (ctype
) && ctype
!= type
)
6454 /* The last case is if we are a multiply. In that case, we can
6455 apply the distributive law to commute the multiply and addition
6456 if the multiplication of the constants doesn't overflow
6457 and overflow is defined. With undefined overflow
6458 op0 * c might overflow, while (op0 + orig_op1) * c doesn't. */
6459 if (code
== MULT_EXPR
&& TYPE_OVERFLOW_WRAPS (ctype
))
6460 return fold_build2 (tcode
, ctype
,
6461 fold_build2 (code
, ctype
,
6462 fold_convert (ctype
, op0
),
6463 fold_convert (ctype
, c
)),
6469 /* We have a special case here if we are doing something like
6470 (C * 8) % 4 since we know that's zero. */
6471 if ((code
== TRUNC_MOD_EXPR
|| code
== CEIL_MOD_EXPR
6472 || code
== FLOOR_MOD_EXPR
|| code
== ROUND_MOD_EXPR
)
6473 /* If the multiplication can overflow we cannot optimize this. */
6474 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t
))
6475 && TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
6476 && wi::multiple_of_p (wi::to_wide (op1
), wi::to_wide (c
),
6479 *strict_overflow_p
= true;
6480 return omit_one_operand (type
, integer_zero_node
, op0
);
6483 /* ... fall through ... */
6485 case TRUNC_DIV_EXPR
: case CEIL_DIV_EXPR
: case FLOOR_DIV_EXPR
:
6486 case ROUND_DIV_EXPR
: case EXACT_DIV_EXPR
:
6487 /* If we can extract our operation from the LHS, do so and return a
6488 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
6489 do something only if the second operand is a constant. */
6491 && TYPE_OVERFLOW_WRAPS (ctype
)
6492 && (t1
= extract_muldiv (op0
, c
, code
, wide_type
,
6493 strict_overflow_p
)) != 0)
6494 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, t1
),
6495 fold_convert (ctype
, op1
));
6496 else if (tcode
== MULT_EXPR
&& code
== MULT_EXPR
6497 && TYPE_OVERFLOW_WRAPS (ctype
)
6498 && (t1
= extract_muldiv (op1
, c
, code
, wide_type
,
6499 strict_overflow_p
)) != 0)
6500 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, op0
),
6501 fold_convert (ctype
, t1
));
6502 else if (TREE_CODE (op1
) != INTEGER_CST
)
6505 /* If these are the same operation types, we can associate them
6506 assuming no overflow. */
6509 bool overflow_p
= false;
6510 wi::overflow_type overflow_mul
;
6511 signop sign
= TYPE_SIGN (ctype
);
6512 unsigned prec
= TYPE_PRECISION (ctype
);
6513 wide_int mul
= wi::mul (wi::to_wide (op1
, prec
),
6514 wi::to_wide (c
, prec
),
6515 sign
, &overflow_mul
);
6516 overflow_p
= TREE_OVERFLOW (c
) | TREE_OVERFLOW (op1
);
6518 && ((sign
== UNSIGNED
&& tcode
!= MULT_EXPR
) || sign
== SIGNED
))
6521 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, op0
),
6522 wide_int_to_tree (ctype
, mul
));
6525 /* If these operations "cancel" each other, we have the main
6526 optimizations of this pass, which occur when either constant is a
6527 multiple of the other, in which case we replace this with either an
6528 operation or CODE or TCODE.
6530 If we have an unsigned type, we cannot do this since it will change
6531 the result if the original computation overflowed. */
6532 if (TYPE_OVERFLOW_UNDEFINED (ctype
)
6533 && ((code
== MULT_EXPR
&& tcode
== EXACT_DIV_EXPR
)
6534 || (tcode
== MULT_EXPR
6535 && code
!= TRUNC_MOD_EXPR
&& code
!= CEIL_MOD_EXPR
6536 && code
!= FLOOR_MOD_EXPR
&& code
!= ROUND_MOD_EXPR
6537 && code
!= MULT_EXPR
)))
6539 if (wi::multiple_of_p (wi::to_wide (op1
), wi::to_wide (c
),
6542 if (TYPE_OVERFLOW_UNDEFINED (ctype
))
6543 *strict_overflow_p
= true;
6544 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, op0
),
6545 fold_convert (ctype
,
6546 const_binop (TRUNC_DIV_EXPR
,
6549 else if (wi::multiple_of_p (wi::to_wide (c
), wi::to_wide (op1
),
6552 if (TYPE_OVERFLOW_UNDEFINED (ctype
))
6553 *strict_overflow_p
= true;
6554 return fold_build2 (code
, ctype
, fold_convert (ctype
, op0
),
6555 fold_convert (ctype
,
6556 const_binop (TRUNC_DIV_EXPR
,
6569 /* Return a node which has the indicated constant VALUE (either 0 or
6570 1 for scalars or {-1,-1,..} or {0,0,...} for vectors),
6571 and is of the indicated TYPE. */
6574 constant_boolean_node (bool value
, tree type
)
6576 if (type
== integer_type_node
)
6577 return value
? integer_one_node
: integer_zero_node
;
6578 else if (type
== boolean_type_node
)
6579 return value
? boolean_true_node
: boolean_false_node
;
6580 else if (TREE_CODE (type
) == VECTOR_TYPE
)
6581 return build_vector_from_val (type
,
6582 build_int_cst (TREE_TYPE (type
),
6585 return fold_convert (type
, value
? integer_one_node
: integer_zero_node
);
6589 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
6590 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
6591 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
6592 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
6593 COND is the first argument to CODE; otherwise (as in the example
6594 given here), it is the second argument. TYPE is the type of the
6595 original expression. Return NULL_TREE if no simplification is
6599 fold_binary_op_with_conditional_arg (location_t loc
,
6600 enum tree_code code
,
6601 tree type
, tree op0
, tree op1
,
6602 tree cond
, tree arg
, int cond_first_p
)
6604 tree cond_type
= cond_first_p
? TREE_TYPE (op0
) : TREE_TYPE (op1
);
6605 tree arg_type
= cond_first_p
? TREE_TYPE (op1
) : TREE_TYPE (op0
);
6606 tree test
, true_value
, false_value
;
6607 tree lhs
= NULL_TREE
;
6608 tree rhs
= NULL_TREE
;
6609 enum tree_code cond_code
= COND_EXPR
;
6611 /* Do not move possibly trapping operations into the conditional as this
6612 pessimizes code and causes gimplification issues when applied late. */
6613 if (operation_could_trap_p (code
, FLOAT_TYPE_P (type
),
6614 ANY_INTEGRAL_TYPE_P (type
)
6615 && TYPE_OVERFLOW_TRAPS (type
), op1
))
6618 if (TREE_CODE (cond
) == COND_EXPR
6619 || TREE_CODE (cond
) == VEC_COND_EXPR
)
6621 test
= TREE_OPERAND (cond
, 0);
6622 true_value
= TREE_OPERAND (cond
, 1);
6623 false_value
= TREE_OPERAND (cond
, 2);
6624 /* If this operand throws an expression, then it does not make
6625 sense to try to perform a logical or arithmetic operation
6627 if (VOID_TYPE_P (TREE_TYPE (true_value
)))
6629 if (VOID_TYPE_P (TREE_TYPE (false_value
)))
6632 else if (!(TREE_CODE (type
) != VECTOR_TYPE
6633 && TREE_CODE (TREE_TYPE (cond
)) == VECTOR_TYPE
))
6635 tree testtype
= TREE_TYPE (cond
);
6637 true_value
= constant_boolean_node (true, testtype
);
6638 false_value
= constant_boolean_node (false, testtype
);
6641 /* Detect the case of mixing vector and scalar types - bail out. */
6644 if (TREE_CODE (TREE_TYPE (test
)) == VECTOR_TYPE
)
6645 cond_code
= VEC_COND_EXPR
;
6647 /* This transformation is only worthwhile if we don't have to wrap ARG
6648 in a SAVE_EXPR and the operation can be simplified without recursing
6649 on at least one of the branches once its pushed inside the COND_EXPR. */
6650 if (!TREE_CONSTANT (arg
)
6651 && (TREE_SIDE_EFFECTS (arg
)
6652 || TREE_CODE (arg
) == COND_EXPR
|| TREE_CODE (arg
) == VEC_COND_EXPR
6653 || TREE_CONSTANT (true_value
) || TREE_CONSTANT (false_value
)))
6656 arg
= fold_convert_loc (loc
, arg_type
, arg
);
6659 true_value
= fold_convert_loc (loc
, cond_type
, true_value
);
6661 lhs
= fold_build2_loc (loc
, code
, type
, true_value
, arg
);
6663 lhs
= fold_build2_loc (loc
, code
, type
, arg
, true_value
);
6667 false_value
= fold_convert_loc (loc
, cond_type
, false_value
);
6669 rhs
= fold_build2_loc (loc
, code
, type
, false_value
, arg
);
6671 rhs
= fold_build2_loc (loc
, code
, type
, arg
, false_value
);
6674 /* Check that we have simplified at least one of the branches. */
6675 if (!TREE_CONSTANT (arg
) && !TREE_CONSTANT (lhs
) && !TREE_CONSTANT (rhs
))
6678 return fold_build3_loc (loc
, cond_code
, type
, test
, lhs
, rhs
);
6682 /* Subroutine of fold() that checks for the addition of +/- 0.0.
6684 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
6685 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
6686 ADDEND is the same as X.
6688 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
6689 and finite. The problematic cases are when X is zero, and its mode
6690 has signed zeros. In the case of rounding towards -infinity,
6691 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
6692 modes, X + 0 is not the same as X because -0 + 0 is 0. */
6695 fold_real_zero_addition_p (const_tree type
, const_tree addend
, int negate
)
6697 if (!real_zerop (addend
))
6700 /* Don't allow the fold with -fsignaling-nans. */
6701 if (HONOR_SNANS (element_mode (type
)))
6704 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
6705 if (!HONOR_SIGNED_ZEROS (element_mode (type
)))
6708 /* In a vector or complex, we would need to check the sign of all zeros. */
6709 if (TREE_CODE (addend
) != REAL_CST
)
6712 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
6713 if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend
)))
6716 /* The mode has signed zeros, and we have to honor their sign.
6717 In this situation, there is only one case we can return true for.
6718 X - 0 is the same as X unless rounding towards -infinity is
6720 return negate
&& !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
));
6723 /* Subroutine of match.pd that optimizes comparisons of a division by
6724 a nonzero integer constant against an integer constant, i.e.
6727 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6728 GE_EXPR or LE_EXPR. ARG01 and ARG1 must be a INTEGER_CST. */
6731 fold_div_compare (enum tree_code code
, tree c1
, tree c2
, tree
*lo
,
6732 tree
*hi
, bool *neg_overflow
)
6734 tree prod
, tmp
, type
= TREE_TYPE (c1
);
6735 signop sign
= TYPE_SIGN (type
);
6736 wi::overflow_type overflow
;
6738 /* We have to do this the hard way to detect unsigned overflow.
6739 prod = int_const_binop (MULT_EXPR, c1, c2); */
6740 wide_int val
= wi::mul (wi::to_wide (c1
), wi::to_wide (c2
), sign
, &overflow
);
6741 prod
= force_fit_type (type
, val
, -1, overflow
);
6742 *neg_overflow
= false;
6744 if (sign
== UNSIGNED
)
6746 tmp
= int_const_binop (MINUS_EXPR
, c1
, build_int_cst (type
, 1));
6749 /* Likewise *hi = int_const_binop (PLUS_EXPR, prod, tmp). */
6750 val
= wi::add (wi::to_wide (prod
), wi::to_wide (tmp
), sign
, &overflow
);
6751 *hi
= force_fit_type (type
, val
, -1, overflow
| TREE_OVERFLOW (prod
));
6753 else if (tree_int_cst_sgn (c1
) >= 0)
6755 tmp
= int_const_binop (MINUS_EXPR
, c1
, build_int_cst (type
, 1));
6756 switch (tree_int_cst_sgn (c2
))
6759 *neg_overflow
= true;
6760 *lo
= int_const_binop (MINUS_EXPR
, prod
, tmp
);
6765 *lo
= fold_negate_const (tmp
, type
);
6770 *hi
= int_const_binop (PLUS_EXPR
, prod
, tmp
);
6780 /* A negative divisor reverses the relational operators. */
6781 code
= swap_tree_comparison (code
);
6783 tmp
= int_const_binop (PLUS_EXPR
, c1
, build_int_cst (type
, 1));
6784 switch (tree_int_cst_sgn (c2
))
6787 *hi
= int_const_binop (MINUS_EXPR
, prod
, tmp
);
6792 *hi
= fold_negate_const (tmp
, type
);
6797 *neg_overflow
= true;
6798 *lo
= int_const_binop (PLUS_EXPR
, prod
, tmp
);
6807 if (code
!= EQ_EXPR
&& code
!= NE_EXPR
)
6810 if (TREE_OVERFLOW (*lo
)
6811 || operand_equal_p (*lo
, TYPE_MIN_VALUE (type
), 0))
6813 if (TREE_OVERFLOW (*hi
)
6814 || operand_equal_p (*hi
, TYPE_MAX_VALUE (type
), 0))
6821 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6822 equality/inequality test, then return a simplified form of the test
6823 using a sign testing. Otherwise return NULL. TYPE is the desired
6827 fold_single_bit_test_into_sign_test (location_t loc
,
6828 enum tree_code code
, tree arg0
, tree arg1
,
6831 /* If this is testing a single bit, we can optimize the test. */
6832 if ((code
== NE_EXPR
|| code
== EQ_EXPR
)
6833 && TREE_CODE (arg0
) == BIT_AND_EXPR
&& integer_zerop (arg1
)
6834 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
6836 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6837 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6838 tree arg00
= sign_bit_p (TREE_OPERAND (arg0
, 0), TREE_OPERAND (arg0
, 1));
6840 if (arg00
!= NULL_TREE
6841 /* This is only a win if casting to a signed type is cheap,
6842 i.e. when arg00's type is not a partial mode. */
6843 && type_has_mode_precision_p (TREE_TYPE (arg00
)))
6845 tree stype
= signed_type_for (TREE_TYPE (arg00
));
6846 return fold_build2_loc (loc
, code
== EQ_EXPR
? GE_EXPR
: LT_EXPR
,
6848 fold_convert_loc (loc
, stype
, arg00
),
6849 build_int_cst (stype
, 0));
6856 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6857 equality/inequality test, then return a simplified form of
6858 the test using shifts and logical operations. Otherwise return
6859 NULL. TYPE is the desired result type. */
6862 fold_single_bit_test (location_t loc
, enum tree_code code
,
6863 tree arg0
, tree arg1
, tree result_type
)
6865 /* If this is testing a single bit, we can optimize the test. */
6866 if ((code
== NE_EXPR
|| code
== EQ_EXPR
)
6867 && TREE_CODE (arg0
) == BIT_AND_EXPR
&& integer_zerop (arg1
)
6868 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
6870 tree inner
= TREE_OPERAND (arg0
, 0);
6871 tree type
= TREE_TYPE (arg0
);
6872 int bitnum
= tree_log2 (TREE_OPERAND (arg0
, 1));
6873 scalar_int_mode operand_mode
= SCALAR_INT_TYPE_MODE (type
);
6875 tree signed_type
, unsigned_type
, intermediate_type
;
6878 /* First, see if we can fold the single bit test into a sign-bit
6880 tem
= fold_single_bit_test_into_sign_test (loc
, code
, arg0
, arg1
,
6885 /* Otherwise we have (A & C) != 0 where C is a single bit,
6886 convert that into ((A >> C2) & 1). Where C2 = log2(C).
6887 Similarly for (A & C) == 0. */
6889 /* If INNER is a right shift of a constant and it plus BITNUM does
6890 not overflow, adjust BITNUM and INNER. */
6891 if (TREE_CODE (inner
) == RSHIFT_EXPR
6892 && TREE_CODE (TREE_OPERAND (inner
, 1)) == INTEGER_CST
6893 && bitnum
< TYPE_PRECISION (type
)
6894 && wi::ltu_p (wi::to_wide (TREE_OPERAND (inner
, 1)),
6895 TYPE_PRECISION (type
) - bitnum
))
6897 bitnum
+= tree_to_uhwi (TREE_OPERAND (inner
, 1));
6898 inner
= TREE_OPERAND (inner
, 0);
6901 /* If we are going to be able to omit the AND below, we must do our
6902 operations as unsigned. If we must use the AND, we have a choice.
6903 Normally unsigned is faster, but for some machines signed is. */
6904 ops_unsigned
= (load_extend_op (operand_mode
) == SIGN_EXTEND
6905 && !flag_syntax_only
) ? 0 : 1;
6907 signed_type
= lang_hooks
.types
.type_for_mode (operand_mode
, 0);
6908 unsigned_type
= lang_hooks
.types
.type_for_mode (operand_mode
, 1);
6909 intermediate_type
= ops_unsigned
? unsigned_type
: signed_type
;
6910 inner
= fold_convert_loc (loc
, intermediate_type
, inner
);
6913 inner
= build2 (RSHIFT_EXPR
, intermediate_type
,
6914 inner
, size_int (bitnum
));
6916 one
= build_int_cst (intermediate_type
, 1);
6918 if (code
== EQ_EXPR
)
6919 inner
= fold_build2_loc (loc
, BIT_XOR_EXPR
, intermediate_type
, inner
, one
);
6921 /* Put the AND last so it can combine with more things. */
6922 inner
= build2 (BIT_AND_EXPR
, intermediate_type
, inner
, one
);
6924 /* Make sure to return the proper type. */
6925 inner
= fold_convert_loc (loc
, result_type
, inner
);
6932 /* Test whether it is preferable two swap two operands, ARG0 and
6933 ARG1, for example because ARG0 is an integer constant and ARG1
6937 tree_swap_operands_p (const_tree arg0
, const_tree arg1
)
6939 if (CONSTANT_CLASS_P (arg1
))
6941 if (CONSTANT_CLASS_P (arg0
))
6947 if (TREE_CONSTANT (arg1
))
6949 if (TREE_CONSTANT (arg0
))
6952 /* It is preferable to swap two SSA_NAME to ensure a canonical form
6953 for commutative and comparison operators. Ensuring a canonical
6954 form allows the optimizers to find additional redundancies without
6955 having to explicitly check for both orderings. */
6956 if (TREE_CODE (arg0
) == SSA_NAME
6957 && TREE_CODE (arg1
) == SSA_NAME
6958 && SSA_NAME_VERSION (arg0
) > SSA_NAME_VERSION (arg1
))
6961 /* Put SSA_NAMEs last. */
6962 if (TREE_CODE (arg1
) == SSA_NAME
)
6964 if (TREE_CODE (arg0
) == SSA_NAME
)
6967 /* Put variables last. */
6977 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
6978 means A >= Y && A != MAX, but in this case we know that
6979 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
6982 fold_to_nonsharp_ineq_using_bound (location_t loc
, tree ineq
, tree bound
)
6984 tree a
, typea
, type
= TREE_TYPE (ineq
), a1
, diff
, y
;
6986 if (TREE_CODE (bound
) == LT_EXPR
)
6987 a
= TREE_OPERAND (bound
, 0);
6988 else if (TREE_CODE (bound
) == GT_EXPR
)
6989 a
= TREE_OPERAND (bound
, 1);
6993 typea
= TREE_TYPE (a
);
6994 if (!INTEGRAL_TYPE_P (typea
)
6995 && !POINTER_TYPE_P (typea
))
6998 if (TREE_CODE (ineq
) == LT_EXPR
)
7000 a1
= TREE_OPERAND (ineq
, 1);
7001 y
= TREE_OPERAND (ineq
, 0);
7003 else if (TREE_CODE (ineq
) == GT_EXPR
)
7005 a1
= TREE_OPERAND (ineq
, 0);
7006 y
= TREE_OPERAND (ineq
, 1);
7011 if (TREE_TYPE (a1
) != typea
)
7014 if (POINTER_TYPE_P (typea
))
7016 /* Convert the pointer types into integer before taking the difference. */
7017 tree ta
= fold_convert_loc (loc
, ssizetype
, a
);
7018 tree ta1
= fold_convert_loc (loc
, ssizetype
, a1
);
7019 diff
= fold_binary_loc (loc
, MINUS_EXPR
, ssizetype
, ta1
, ta
);
7022 diff
= fold_binary_loc (loc
, MINUS_EXPR
, typea
, a1
, a
);
7024 if (!diff
|| !integer_onep (diff
))
7027 return fold_build2_loc (loc
, GE_EXPR
, type
, a
, y
);
7030 /* Fold a sum or difference of at least one multiplication.
7031 Returns the folded tree or NULL if no simplification could be made. */
7034 fold_plusminus_mult_expr (location_t loc
, enum tree_code code
, tree type
,
7035 tree arg0
, tree arg1
)
7037 tree arg00
, arg01
, arg10
, arg11
;
7038 tree alt0
= NULL_TREE
, alt1
= NULL_TREE
, same
;
7040 /* (A * C) +- (B * C) -> (A+-B) * C.
7041 (A * C) +- A -> A * (C+-1).
7042 We are most concerned about the case where C is a constant,
7043 but other combinations show up during loop reduction. Since
7044 it is not difficult, try all four possibilities. */
7046 if (TREE_CODE (arg0
) == MULT_EXPR
)
7048 arg00
= TREE_OPERAND (arg0
, 0);
7049 arg01
= TREE_OPERAND (arg0
, 1);
7051 else if (TREE_CODE (arg0
) == INTEGER_CST
)
7053 arg00
= build_one_cst (type
);
7058 /* We cannot generate constant 1 for fract. */
7059 if (ALL_FRACT_MODE_P (TYPE_MODE (type
)))
7062 arg01
= build_one_cst (type
);
7064 if (TREE_CODE (arg1
) == MULT_EXPR
)
7066 arg10
= TREE_OPERAND (arg1
, 0);
7067 arg11
= TREE_OPERAND (arg1
, 1);
7069 else if (TREE_CODE (arg1
) == INTEGER_CST
)
7071 arg10
= build_one_cst (type
);
7072 /* As we canonicalize A - 2 to A + -2 get rid of that sign for
7073 the purpose of this canonicalization. */
7074 if (wi::neg_p (wi::to_wide (arg1
), TYPE_SIGN (TREE_TYPE (arg1
)))
7075 && negate_expr_p (arg1
)
7076 && code
== PLUS_EXPR
)
7078 arg11
= negate_expr (arg1
);
7086 /* We cannot generate constant 1 for fract. */
7087 if (ALL_FRACT_MODE_P (TYPE_MODE (type
)))
7090 arg11
= build_one_cst (type
);
7094 /* Prefer factoring a common non-constant. */
7095 if (operand_equal_p (arg00
, arg10
, 0))
7096 same
= arg00
, alt0
= arg01
, alt1
= arg11
;
7097 else if (operand_equal_p (arg01
, arg11
, 0))
7098 same
= arg01
, alt0
= arg00
, alt1
= arg10
;
7099 else if (operand_equal_p (arg00
, arg11
, 0))
7100 same
= arg00
, alt0
= arg01
, alt1
= arg10
;
7101 else if (operand_equal_p (arg01
, arg10
, 0))
7102 same
= arg01
, alt0
= arg00
, alt1
= arg11
;
7104 /* No identical multiplicands; see if we can find a common
7105 power-of-two factor in non-power-of-two multiplies. This
7106 can help in multi-dimensional array access. */
7107 else if (tree_fits_shwi_p (arg01
)
7108 && tree_fits_shwi_p (arg11
))
7110 HOST_WIDE_INT int01
, int11
, tmp
;
7113 int01
= tree_to_shwi (arg01
);
7114 int11
= tree_to_shwi (arg11
);
7116 /* Move min of absolute values to int11. */
7117 if (absu_hwi (int01
) < absu_hwi (int11
))
7119 tmp
= int01
, int01
= int11
, int11
= tmp
;
7120 alt0
= arg00
, arg00
= arg10
, arg10
= alt0
;
7127 if (exact_log2 (absu_hwi (int11
)) > 0 && int01
% int11
== 0
7128 /* The remainder should not be a constant, otherwise we
7129 end up folding i * 4 + 2 to (i * 2 + 1) * 2 which has
7130 increased the number of multiplications necessary. */
7131 && TREE_CODE (arg10
) != INTEGER_CST
)
7133 alt0
= fold_build2_loc (loc
, MULT_EXPR
, TREE_TYPE (arg00
), arg00
,
7134 build_int_cst (TREE_TYPE (arg00
),
7139 maybe_same
= alt0
, alt0
= alt1
, alt1
= maybe_same
;
7146 if (! INTEGRAL_TYPE_P (type
)
7147 || TYPE_OVERFLOW_WRAPS (type
)
7148 /* We are neither factoring zero nor minus one. */
7149 || TREE_CODE (same
) == INTEGER_CST
)
7150 return fold_build2_loc (loc
, MULT_EXPR
, type
,
7151 fold_build2_loc (loc
, code
, type
,
7152 fold_convert_loc (loc
, type
, alt0
),
7153 fold_convert_loc (loc
, type
, alt1
)),
7154 fold_convert_loc (loc
, type
, same
));
7156 /* Same may be zero and thus the operation 'code' may overflow. Likewise
7157 same may be minus one and thus the multiplication may overflow. Perform
7158 the sum operation in an unsigned type. */
7159 tree utype
= unsigned_type_for (type
);
7160 tree tem
= fold_build2_loc (loc
, code
, utype
,
7161 fold_convert_loc (loc
, utype
, alt0
),
7162 fold_convert_loc (loc
, utype
, alt1
));
7163 /* If the sum evaluated to a constant that is not -INF the multiplication
7165 if (TREE_CODE (tem
) == INTEGER_CST
7166 && (wi::to_wide (tem
)
7167 != wi::min_value (TYPE_PRECISION (utype
), SIGNED
)))
7168 return fold_build2_loc (loc
, MULT_EXPR
, type
,
7169 fold_convert (type
, tem
), same
);
7171 /* Do not resort to unsigned multiplication because
7172 we lose the no-overflow property of the expression. */
7176 /* Subroutine of native_encode_expr. Encode the INTEGER_CST
7177 specified by EXPR into the buffer PTR of length LEN bytes.
7178 Return the number of bytes placed in the buffer, or zero
7182 native_encode_int (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7184 tree type
= TREE_TYPE (expr
);
7185 int total_bytes
= GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type
));
7186 int byte
, offset
, word
, words
;
7187 unsigned char value
;
7189 if ((off
== -1 && total_bytes
> len
) || off
>= total_bytes
)
7196 return MIN (len
, total_bytes
- off
);
7198 words
= total_bytes
/ UNITS_PER_WORD
;
7200 for (byte
= 0; byte
< total_bytes
; byte
++)
7202 int bitpos
= byte
* BITS_PER_UNIT
;
7203 /* Extend EXPR according to TYPE_SIGN if the precision isn't a whole
7205 value
= wi::extract_uhwi (wi::to_widest (expr
), bitpos
, BITS_PER_UNIT
);
7207 if (total_bytes
> UNITS_PER_WORD
)
7209 word
= byte
/ UNITS_PER_WORD
;
7210 if (WORDS_BIG_ENDIAN
)
7211 word
= (words
- 1) - word
;
7212 offset
= word
* UNITS_PER_WORD
;
7213 if (BYTES_BIG_ENDIAN
)
7214 offset
+= (UNITS_PER_WORD
- 1) - (byte
% UNITS_PER_WORD
);
7216 offset
+= byte
% UNITS_PER_WORD
;
7219 offset
= BYTES_BIG_ENDIAN
? (total_bytes
- 1) - byte
: byte
;
7220 if (offset
>= off
&& offset
- off
< len
)
7221 ptr
[offset
- off
] = value
;
7223 return MIN (len
, total_bytes
- off
);
7227 /* Subroutine of native_encode_expr. Encode the FIXED_CST
7228 specified by EXPR into the buffer PTR of length LEN bytes.
7229 Return the number of bytes placed in the buffer, or zero
7233 native_encode_fixed (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7235 tree type
= TREE_TYPE (expr
);
7236 scalar_mode mode
= SCALAR_TYPE_MODE (type
);
7237 int total_bytes
= GET_MODE_SIZE (mode
);
7238 FIXED_VALUE_TYPE value
;
7239 tree i_value
, i_type
;
7241 if (total_bytes
* BITS_PER_UNIT
> HOST_BITS_PER_DOUBLE_INT
)
7244 i_type
= lang_hooks
.types
.type_for_size (GET_MODE_BITSIZE (mode
), 1);
7246 if (NULL_TREE
== i_type
|| TYPE_PRECISION (i_type
) != total_bytes
)
7249 value
= TREE_FIXED_CST (expr
);
7250 i_value
= double_int_to_tree (i_type
, value
.data
);
7252 return native_encode_int (i_value
, ptr
, len
, off
);
7256 /* Subroutine of native_encode_expr. Encode the REAL_CST
7257 specified by EXPR into the buffer PTR of length LEN bytes.
7258 Return the number of bytes placed in the buffer, or zero
7262 native_encode_real (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7264 tree type
= TREE_TYPE (expr
);
7265 int total_bytes
= GET_MODE_SIZE (SCALAR_FLOAT_TYPE_MODE (type
));
7266 int byte
, offset
, word
, words
, bitpos
;
7267 unsigned char value
;
7269 /* There are always 32 bits in each long, no matter the size of
7270 the hosts long. We handle floating point representations with
7274 if ((off
== -1 && total_bytes
> len
) || off
>= total_bytes
)
7281 return MIN (len
, total_bytes
- off
);
7283 words
= (32 / BITS_PER_UNIT
) / UNITS_PER_WORD
;
7285 real_to_target (tmp
, TREE_REAL_CST_PTR (expr
), TYPE_MODE (type
));
7287 for (bitpos
= 0; bitpos
< total_bytes
* BITS_PER_UNIT
;
7288 bitpos
+= BITS_PER_UNIT
)
7290 byte
= (bitpos
/ BITS_PER_UNIT
) & 3;
7291 value
= (unsigned char) (tmp
[bitpos
/ 32] >> (bitpos
& 31));
7293 if (UNITS_PER_WORD
< 4)
7295 word
= byte
/ UNITS_PER_WORD
;
7296 if (WORDS_BIG_ENDIAN
)
7297 word
= (words
- 1) - word
;
7298 offset
= word
* UNITS_PER_WORD
;
7299 if (BYTES_BIG_ENDIAN
)
7300 offset
+= (UNITS_PER_WORD
- 1) - (byte
% UNITS_PER_WORD
);
7302 offset
+= byte
% UNITS_PER_WORD
;
7307 if (BYTES_BIG_ENDIAN
)
7309 /* Reverse bytes within each long, or within the entire float
7310 if it's smaller than a long (for HFmode). */
7311 offset
= MIN (3, total_bytes
- 1) - offset
;
7312 gcc_assert (offset
>= 0);
7315 offset
= offset
+ ((bitpos
/ BITS_PER_UNIT
) & ~3);
7317 && offset
- off
< len
)
7318 ptr
[offset
- off
] = value
;
7320 return MIN (len
, total_bytes
- off
);
7323 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST
7324 specified by EXPR into the buffer PTR of length LEN bytes.
7325 Return the number of bytes placed in the buffer, or zero
7329 native_encode_complex (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7334 part
= TREE_REALPART (expr
);
7335 rsize
= native_encode_expr (part
, ptr
, len
, off
);
7336 if (off
== -1 && rsize
== 0)
7338 part
= TREE_IMAGPART (expr
);
7340 off
= MAX (0, off
- GET_MODE_SIZE (SCALAR_TYPE_MODE (TREE_TYPE (part
))));
7341 isize
= native_encode_expr (part
, ptr
? ptr
+ rsize
: NULL
,
7343 if (off
== -1 && isize
!= rsize
)
7345 return rsize
+ isize
;
7349 /* Subroutine of native_encode_expr. Encode the VECTOR_CST
7350 specified by EXPR into the buffer PTR of length LEN bytes.
7351 Return the number of bytes placed in the buffer, or zero
7355 native_encode_vector (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7357 unsigned HOST_WIDE_INT i
, count
;
7362 if (!VECTOR_CST_NELTS (expr
).is_constant (&count
))
7364 itype
= TREE_TYPE (TREE_TYPE (expr
));
7365 size
= GET_MODE_SIZE (SCALAR_TYPE_MODE (itype
));
7366 for (i
= 0; i
< count
; i
++)
7373 elem
= VECTOR_CST_ELT (expr
, i
);
7374 int res
= native_encode_expr (elem
, ptr
? ptr
+ offset
: NULL
,
7376 if ((off
== -1 && res
!= size
) || res
== 0)
7380 return (off
== -1 && i
< count
- 1) ? 0 : offset
;
7388 /* Subroutine of native_encode_expr. Encode the STRING_CST
7389 specified by EXPR into the buffer PTR of length LEN bytes.
7390 Return the number of bytes placed in the buffer, or zero
7394 native_encode_string (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7396 tree type
= TREE_TYPE (expr
);
7398 /* Wide-char strings are encoded in target byte-order so native
7399 encoding them is trivial. */
7400 if (BITS_PER_UNIT
!= CHAR_BIT
7401 || TREE_CODE (type
) != ARRAY_TYPE
7402 || TREE_CODE (TREE_TYPE (type
)) != INTEGER_TYPE
7403 || !tree_fits_shwi_p (TYPE_SIZE_UNIT (type
)))
7406 HOST_WIDE_INT total_bytes
= tree_to_shwi (TYPE_SIZE_UNIT (TREE_TYPE (expr
)));
7407 if ((off
== -1 && total_bytes
> len
) || off
>= total_bytes
)
7413 else if (TREE_STRING_LENGTH (expr
) - off
< MIN (total_bytes
, len
))
7416 if (off
< TREE_STRING_LENGTH (expr
))
7418 written
= MIN (len
, TREE_STRING_LENGTH (expr
) - off
);
7419 memcpy (ptr
, TREE_STRING_POINTER (expr
) + off
, written
);
7421 memset (ptr
+ written
, 0,
7422 MIN (total_bytes
- written
, len
- written
));
7425 memcpy (ptr
, TREE_STRING_POINTER (expr
) + off
, MIN (total_bytes
, len
));
7426 return MIN (total_bytes
- off
, len
);
7430 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST,
7431 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the
7432 buffer PTR of length LEN bytes. If PTR is NULL, don't actually store
7433 anything, just do a dry run. If OFF is not -1 then start
7434 the encoding at byte offset OFF and encode at most LEN bytes.
7435 Return the number of bytes placed in the buffer, or zero upon failure. */
7438 native_encode_expr (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7440 /* We don't support starting at negative offset and -1 is special. */
7444 switch (TREE_CODE (expr
))
7447 return native_encode_int (expr
, ptr
, len
, off
);
7450 return native_encode_real (expr
, ptr
, len
, off
);
7453 return native_encode_fixed (expr
, ptr
, len
, off
);
7456 return native_encode_complex (expr
, ptr
, len
, off
);
7459 return native_encode_vector (expr
, ptr
, len
, off
);
7462 return native_encode_string (expr
, ptr
, len
, off
);
7470 /* Subroutine of native_interpret_expr. Interpret the contents of
7471 the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
7472 If the buffer cannot be interpreted, return NULL_TREE. */
7475 native_interpret_int (tree type
, const unsigned char *ptr
, int len
)
7477 int total_bytes
= GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type
));
7479 if (total_bytes
> len
7480 || total_bytes
* BITS_PER_UNIT
> HOST_BITS_PER_DOUBLE_INT
)
7483 wide_int result
= wi::from_buffer (ptr
, total_bytes
);
7485 return wide_int_to_tree (type
, result
);
7489 /* Subroutine of native_interpret_expr. Interpret the contents of
7490 the buffer PTR of length LEN as a FIXED_CST of type TYPE.
7491 If the buffer cannot be interpreted, return NULL_TREE. */
7494 native_interpret_fixed (tree type
, const unsigned char *ptr
, int len
)
7496 scalar_mode mode
= SCALAR_TYPE_MODE (type
);
7497 int total_bytes
= GET_MODE_SIZE (mode
);
7499 FIXED_VALUE_TYPE fixed_value
;
7501 if (total_bytes
> len
7502 || total_bytes
* BITS_PER_UNIT
> HOST_BITS_PER_DOUBLE_INT
)
7505 result
= double_int::from_buffer (ptr
, total_bytes
);
7506 fixed_value
= fixed_from_double_int (result
, mode
);
7508 return build_fixed (type
, fixed_value
);
7512 /* Subroutine of native_interpret_expr. Interpret the contents of
7513 the buffer PTR of length LEN as a REAL_CST of type TYPE.
7514 If the buffer cannot be interpreted, return NULL_TREE. */
7517 native_interpret_real (tree type
, const unsigned char *ptr
, int len
)
7519 scalar_float_mode mode
= SCALAR_FLOAT_TYPE_MODE (type
);
7520 int total_bytes
= GET_MODE_SIZE (mode
);
7521 unsigned char value
;
7522 /* There are always 32 bits in each long, no matter the size of
7523 the hosts long. We handle floating point representations with
7528 if (total_bytes
> len
|| total_bytes
> 24)
7530 int words
= (32 / BITS_PER_UNIT
) / UNITS_PER_WORD
;
7532 memset (tmp
, 0, sizeof (tmp
));
7533 for (int bitpos
= 0; bitpos
< total_bytes
* BITS_PER_UNIT
;
7534 bitpos
+= BITS_PER_UNIT
)
7536 /* Both OFFSET and BYTE index within a long;
7537 bitpos indexes the whole float. */
7538 int offset
, byte
= (bitpos
/ BITS_PER_UNIT
) & 3;
7539 if (UNITS_PER_WORD
< 4)
7541 int word
= byte
/ UNITS_PER_WORD
;
7542 if (WORDS_BIG_ENDIAN
)
7543 word
= (words
- 1) - word
;
7544 offset
= word
* UNITS_PER_WORD
;
7545 if (BYTES_BIG_ENDIAN
)
7546 offset
+= (UNITS_PER_WORD
- 1) - (byte
% UNITS_PER_WORD
);
7548 offset
+= byte
% UNITS_PER_WORD
;
7553 if (BYTES_BIG_ENDIAN
)
7555 /* Reverse bytes within each long, or within the entire float
7556 if it's smaller than a long (for HFmode). */
7557 offset
= MIN (3, total_bytes
- 1) - offset
;
7558 gcc_assert (offset
>= 0);
7561 value
= ptr
[offset
+ ((bitpos
/ BITS_PER_UNIT
) & ~3)];
7563 tmp
[bitpos
/ 32] |= (unsigned long)value
<< (bitpos
& 31);
7566 real_from_target (&r
, tmp
, mode
);
7567 return build_real (type
, r
);
7571 /* Subroutine of native_interpret_expr. Interpret the contents of
7572 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
7573 If the buffer cannot be interpreted, return NULL_TREE. */
7576 native_interpret_complex (tree type
, const unsigned char *ptr
, int len
)
7578 tree etype
, rpart
, ipart
;
7581 etype
= TREE_TYPE (type
);
7582 size
= GET_MODE_SIZE (SCALAR_TYPE_MODE (etype
));
7585 rpart
= native_interpret_expr (etype
, ptr
, size
);
7588 ipart
= native_interpret_expr (etype
, ptr
+size
, size
);
7591 return build_complex (type
, rpart
, ipart
);
7595 /* Subroutine of native_interpret_expr. Interpret the contents of
7596 the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
7597 If the buffer cannot be interpreted, return NULL_TREE. */
7600 native_interpret_vector (tree type
, const unsigned char *ptr
, unsigned int len
)
7603 unsigned int i
, size
;
7604 unsigned HOST_WIDE_INT count
;
7606 etype
= TREE_TYPE (type
);
7607 size
= GET_MODE_SIZE (SCALAR_TYPE_MODE (etype
));
7608 if (!TYPE_VECTOR_SUBPARTS (type
).is_constant (&count
)
7609 || size
* count
> len
)
7612 tree_vector_builder
elements (type
, count
, 1);
7613 for (i
= 0; i
< count
; ++i
)
7615 elem
= native_interpret_expr (etype
, ptr
+(i
*size
), size
);
7618 elements
.quick_push (elem
);
7620 return elements
.build ();
7624 /* Subroutine of fold_view_convert_expr. Interpret the contents of
7625 the buffer PTR of length LEN as a constant of type TYPE. For
7626 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
7627 we return a REAL_CST, etc... If the buffer cannot be interpreted,
7628 return NULL_TREE. */
7631 native_interpret_expr (tree type
, const unsigned char *ptr
, int len
)
7633 switch (TREE_CODE (type
))
7639 case REFERENCE_TYPE
:
7640 return native_interpret_int (type
, ptr
, len
);
7643 return native_interpret_real (type
, ptr
, len
);
7645 case FIXED_POINT_TYPE
:
7646 return native_interpret_fixed (type
, ptr
, len
);
7649 return native_interpret_complex (type
, ptr
, len
);
7652 return native_interpret_vector (type
, ptr
, len
);
7659 /* Returns true if we can interpret the contents of a native encoding
7663 can_native_interpret_type_p (tree type
)
7665 switch (TREE_CODE (type
))
7671 case REFERENCE_TYPE
:
7672 case FIXED_POINT_TYPE
:
7683 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
7684 TYPE at compile-time. If we're unable to perform the conversion
7685 return NULL_TREE. */
7688 fold_view_convert_expr (tree type
, tree expr
)
7690 /* We support up to 512-bit values (for V8DFmode). */
7691 unsigned char buffer
[64];
7694 /* Check that the host and target are sane. */
7695 if (CHAR_BIT
!= 8 || BITS_PER_UNIT
!= 8)
7698 len
= native_encode_expr (expr
, buffer
, sizeof (buffer
));
7702 return native_interpret_expr (type
, buffer
, len
);
7705 /* Build an expression for the address of T. Folds away INDIRECT_REF
7706 to avoid confusing the gimplify process. */
7709 build_fold_addr_expr_with_type_loc (location_t loc
, tree t
, tree ptrtype
)
7711 /* The size of the object is not relevant when talking about its address. */
7712 if (TREE_CODE (t
) == WITH_SIZE_EXPR
)
7713 t
= TREE_OPERAND (t
, 0);
7715 if (TREE_CODE (t
) == INDIRECT_REF
)
7717 t
= TREE_OPERAND (t
, 0);
7719 if (TREE_TYPE (t
) != ptrtype
)
7720 t
= build1_loc (loc
, NOP_EXPR
, ptrtype
, t
);
7722 else if (TREE_CODE (t
) == MEM_REF
7723 && integer_zerop (TREE_OPERAND (t
, 1)))
7724 return TREE_OPERAND (t
, 0);
7725 else if (TREE_CODE (t
) == MEM_REF
7726 && TREE_CODE (TREE_OPERAND (t
, 0)) == INTEGER_CST
)
7727 return fold_binary (POINTER_PLUS_EXPR
, ptrtype
,
7728 TREE_OPERAND (t
, 0),
7729 convert_to_ptrofftype (TREE_OPERAND (t
, 1)));
7730 else if (TREE_CODE (t
) == VIEW_CONVERT_EXPR
)
7732 t
= build_fold_addr_expr_loc (loc
, TREE_OPERAND (t
, 0));
7734 if (TREE_TYPE (t
) != ptrtype
)
7735 t
= fold_convert_loc (loc
, ptrtype
, t
);
7738 t
= build1_loc (loc
, ADDR_EXPR
, ptrtype
, t
);
7743 /* Build an expression for the address of T. */
7746 build_fold_addr_expr_loc (location_t loc
, tree t
)
7748 tree ptrtype
= build_pointer_type (TREE_TYPE (t
));
7750 return build_fold_addr_expr_with_type_loc (loc
, t
, ptrtype
);
7753 /* Fold a unary expression of code CODE and type TYPE with operand
7754 OP0. Return the folded expression if folding is successful.
7755 Otherwise, return NULL_TREE. */
7758 fold_unary_loc (location_t loc
, enum tree_code code
, tree type
, tree op0
)
7762 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
7764 gcc_assert (IS_EXPR_CODE_CLASS (kind
)
7765 && TREE_CODE_LENGTH (code
) == 1);
7770 if (CONVERT_EXPR_CODE_P (code
)
7771 || code
== FLOAT_EXPR
|| code
== ABS_EXPR
|| code
== NEGATE_EXPR
)
7773 /* Don't use STRIP_NOPS, because signedness of argument type
7775 STRIP_SIGN_NOPS (arg0
);
7779 /* Strip any conversions that don't change the mode. This
7780 is safe for every expression, except for a comparison
7781 expression because its signedness is derived from its
7784 Note that this is done as an internal manipulation within
7785 the constant folder, in order to find the simplest
7786 representation of the arguments so that their form can be
7787 studied. In any cases, the appropriate type conversions
7788 should be put back in the tree that will get out of the
7793 if (CONSTANT_CLASS_P (arg0
))
7795 tree tem
= const_unop (code
, type
, arg0
);
7798 if (TREE_TYPE (tem
) != type
)
7799 tem
= fold_convert_loc (loc
, type
, tem
);
7805 tem
= generic_simplify (loc
, code
, type
, op0
);
7809 if (TREE_CODE_CLASS (code
) == tcc_unary
)
7811 if (TREE_CODE (arg0
) == COMPOUND_EXPR
)
7812 return build2 (COMPOUND_EXPR
, type
, TREE_OPERAND (arg0
, 0),
7813 fold_build1_loc (loc
, code
, type
,
7814 fold_convert_loc (loc
, TREE_TYPE (op0
),
7815 TREE_OPERAND (arg0
, 1))));
7816 else if (TREE_CODE (arg0
) == COND_EXPR
)
7818 tree arg01
= TREE_OPERAND (arg0
, 1);
7819 tree arg02
= TREE_OPERAND (arg0
, 2);
7820 if (! VOID_TYPE_P (TREE_TYPE (arg01
)))
7821 arg01
= fold_build1_loc (loc
, code
, type
,
7822 fold_convert_loc (loc
,
7823 TREE_TYPE (op0
), arg01
));
7824 if (! VOID_TYPE_P (TREE_TYPE (arg02
)))
7825 arg02
= fold_build1_loc (loc
, code
, type
,
7826 fold_convert_loc (loc
,
7827 TREE_TYPE (op0
), arg02
));
7828 tem
= fold_build3_loc (loc
, COND_EXPR
, type
, TREE_OPERAND (arg0
, 0),
7831 /* If this was a conversion, and all we did was to move into
7832 inside the COND_EXPR, bring it back out. But leave it if
7833 it is a conversion from integer to integer and the
7834 result precision is no wider than a word since such a
7835 conversion is cheap and may be optimized away by combine,
7836 while it couldn't if it were outside the COND_EXPR. Then return
7837 so we don't get into an infinite recursion loop taking the
7838 conversion out and then back in. */
7840 if ((CONVERT_EXPR_CODE_P (code
)
7841 || code
== NON_LVALUE_EXPR
)
7842 && TREE_CODE (tem
) == COND_EXPR
7843 && TREE_CODE (TREE_OPERAND (tem
, 1)) == code
7844 && TREE_CODE (TREE_OPERAND (tem
, 2)) == code
7845 && ! VOID_TYPE_P (TREE_OPERAND (tem
, 1))
7846 && ! VOID_TYPE_P (TREE_OPERAND (tem
, 2))
7847 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem
, 1), 0))
7848 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem
, 2), 0)))
7849 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem
))
7851 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem
, 1), 0))))
7852 && TYPE_PRECISION (TREE_TYPE (tem
)) <= BITS_PER_WORD
)
7853 || flag_syntax_only
))
7854 tem
= build1_loc (loc
, code
, type
,
7856 TREE_TYPE (TREE_OPERAND
7857 (TREE_OPERAND (tem
, 1), 0)),
7858 TREE_OPERAND (tem
, 0),
7859 TREE_OPERAND (TREE_OPERAND (tem
, 1), 0),
7860 TREE_OPERAND (TREE_OPERAND (tem
, 2),
7868 case NON_LVALUE_EXPR
:
7869 if (!maybe_lvalue_p (op0
))
7870 return fold_convert_loc (loc
, type
, op0
);
7875 case FIX_TRUNC_EXPR
:
7876 if (COMPARISON_CLASS_P (op0
))
7878 /* If we have (type) (a CMP b) and type is an integral type, return
7879 new expression involving the new type. Canonicalize
7880 (type) (a CMP b) to (a CMP b) ? (type) true : (type) false for
7882 Do not fold the result as that would not simplify further, also
7883 folding again results in recursions. */
7884 if (TREE_CODE (type
) == BOOLEAN_TYPE
)
7885 return build2_loc (loc
, TREE_CODE (op0
), type
,
7886 TREE_OPERAND (op0
, 0),
7887 TREE_OPERAND (op0
, 1));
7888 else if (!INTEGRAL_TYPE_P (type
) && !VOID_TYPE_P (type
)
7889 && TREE_CODE (type
) != VECTOR_TYPE
)
7890 return build3_loc (loc
, COND_EXPR
, type
, op0
,
7891 constant_boolean_node (true, type
),
7892 constant_boolean_node (false, type
));
7895 /* Handle (T *)&A.B.C for A being of type T and B and C
7896 living at offset zero. This occurs frequently in
7897 C++ upcasting and then accessing the base. */
7898 if (TREE_CODE (op0
) == ADDR_EXPR
7899 && POINTER_TYPE_P (type
)
7900 && handled_component_p (TREE_OPERAND (op0
, 0)))
7902 poly_int64 bitsize
, bitpos
;
7905 int unsignedp
, reversep
, volatilep
;
7907 = get_inner_reference (TREE_OPERAND (op0
, 0), &bitsize
, &bitpos
,
7908 &offset
, &mode
, &unsignedp
, &reversep
,
7910 /* If the reference was to a (constant) zero offset, we can use
7911 the address of the base if it has the same base type
7912 as the result type and the pointer type is unqualified. */
7914 && known_eq (bitpos
, 0)
7915 && (TYPE_MAIN_VARIANT (TREE_TYPE (type
))
7916 == TYPE_MAIN_VARIANT (TREE_TYPE (base
)))
7917 && TYPE_QUALS (type
) == TYPE_UNQUALIFIED
)
7918 return fold_convert_loc (loc
, type
,
7919 build_fold_addr_expr_loc (loc
, base
));
7922 if (TREE_CODE (op0
) == MODIFY_EXPR
7923 && TREE_CONSTANT (TREE_OPERAND (op0
, 1))
7924 /* Detect assigning a bitfield. */
7925 && !(TREE_CODE (TREE_OPERAND (op0
, 0)) == COMPONENT_REF
7927 (TREE_OPERAND (TREE_OPERAND (op0
, 0), 1))))
7929 /* Don't leave an assignment inside a conversion
7930 unless assigning a bitfield. */
7931 tem
= fold_build1_loc (loc
, code
, type
, TREE_OPERAND (op0
, 1));
7932 /* First do the assignment, then return converted constant. */
7933 tem
= build2_loc (loc
, COMPOUND_EXPR
, TREE_TYPE (tem
), op0
, tem
);
7934 TREE_NO_WARNING (tem
) = 1;
7935 TREE_USED (tem
) = 1;
7939 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
7940 constants (if x has signed type, the sign bit cannot be set
7941 in c). This folds extension into the BIT_AND_EXPR.
7942 ??? We don't do it for BOOLEAN_TYPE or ENUMERAL_TYPE because they
7943 very likely don't have maximal range for their precision and this
7944 transformation effectively doesn't preserve non-maximal ranges. */
7945 if (TREE_CODE (type
) == INTEGER_TYPE
7946 && TREE_CODE (op0
) == BIT_AND_EXPR
7947 && TREE_CODE (TREE_OPERAND (op0
, 1)) == INTEGER_CST
)
7949 tree and_expr
= op0
;
7950 tree and0
= TREE_OPERAND (and_expr
, 0);
7951 tree and1
= TREE_OPERAND (and_expr
, 1);
7954 if (TYPE_UNSIGNED (TREE_TYPE (and_expr
))
7955 || (TYPE_PRECISION (type
)
7956 <= TYPE_PRECISION (TREE_TYPE (and_expr
))))
7958 else if (TYPE_PRECISION (TREE_TYPE (and1
))
7959 <= HOST_BITS_PER_WIDE_INT
7960 && tree_fits_uhwi_p (and1
))
7962 unsigned HOST_WIDE_INT cst
;
7964 cst
= tree_to_uhwi (and1
);
7965 cst
&= HOST_WIDE_INT_M1U
7966 << (TYPE_PRECISION (TREE_TYPE (and1
)) - 1);
7967 change
= (cst
== 0);
7969 && !flag_syntax_only
7970 && (load_extend_op (TYPE_MODE (TREE_TYPE (and0
)))
7973 tree uns
= unsigned_type_for (TREE_TYPE (and0
));
7974 and0
= fold_convert_loc (loc
, uns
, and0
);
7975 and1
= fold_convert_loc (loc
, uns
, and1
);
7980 tem
= force_fit_type (type
, wi::to_widest (and1
), 0,
7981 TREE_OVERFLOW (and1
));
7982 return fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
7983 fold_convert_loc (loc
, type
, and0
), tem
);
7987 /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type, when the new
7988 cast (T1)X will fold away. We assume that this happens when X itself
7990 if (POINTER_TYPE_P (type
)
7991 && TREE_CODE (arg0
) == POINTER_PLUS_EXPR
7992 && CONVERT_EXPR_P (TREE_OPERAND (arg0
, 0)))
7994 tree arg00
= TREE_OPERAND (arg0
, 0);
7995 tree arg01
= TREE_OPERAND (arg0
, 1);
7997 return fold_build_pointer_plus_loc
7998 (loc
, fold_convert_loc (loc
, type
, arg00
), arg01
);
8001 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
8002 of the same precision, and X is an integer type not narrower than
8003 types T1 or T2, i.e. the cast (T2)X isn't an extension. */
8004 if (INTEGRAL_TYPE_P (type
)
8005 && TREE_CODE (op0
) == BIT_NOT_EXPR
8006 && INTEGRAL_TYPE_P (TREE_TYPE (op0
))
8007 && CONVERT_EXPR_P (TREE_OPERAND (op0
, 0))
8008 && TYPE_PRECISION (type
) == TYPE_PRECISION (TREE_TYPE (op0
)))
8010 tem
= TREE_OPERAND (TREE_OPERAND (op0
, 0), 0);
8011 if (INTEGRAL_TYPE_P (TREE_TYPE (tem
))
8012 && TYPE_PRECISION (type
) <= TYPE_PRECISION (TREE_TYPE (tem
)))
8013 return fold_build1_loc (loc
, BIT_NOT_EXPR
, type
,
8014 fold_convert_loc (loc
, type
, tem
));
8017 /* Convert (T1)(X * Y) into (T1)X * (T1)Y if T1 is narrower than the
8018 type of X and Y (integer types only). */
8019 if (INTEGRAL_TYPE_P (type
)
8020 && TREE_CODE (op0
) == MULT_EXPR
8021 && INTEGRAL_TYPE_P (TREE_TYPE (op0
))
8022 && TYPE_PRECISION (type
) < TYPE_PRECISION (TREE_TYPE (op0
)))
8024 /* Be careful not to introduce new overflows. */
8026 if (TYPE_OVERFLOW_WRAPS (type
))
8029 mult_type
= unsigned_type_for (type
);
8031 if (TYPE_PRECISION (mult_type
) < TYPE_PRECISION (TREE_TYPE (op0
)))
8033 tem
= fold_build2_loc (loc
, MULT_EXPR
, mult_type
,
8034 fold_convert_loc (loc
, mult_type
,
8035 TREE_OPERAND (op0
, 0)),
8036 fold_convert_loc (loc
, mult_type
,
8037 TREE_OPERAND (op0
, 1)));
8038 return fold_convert_loc (loc
, type
, tem
);
8044 case VIEW_CONVERT_EXPR
:
8045 if (TREE_CODE (op0
) == MEM_REF
)
8047 if (TYPE_ALIGN (TREE_TYPE (op0
)) != TYPE_ALIGN (type
))
8048 type
= build_aligned_type (type
, TYPE_ALIGN (TREE_TYPE (op0
)));
8049 tem
= fold_build2_loc (loc
, MEM_REF
, type
,
8050 TREE_OPERAND (op0
, 0), TREE_OPERAND (op0
, 1));
8051 REF_REVERSE_STORAGE_ORDER (tem
) = REF_REVERSE_STORAGE_ORDER (op0
);
8058 tem
= fold_negate_expr (loc
, arg0
);
8060 return fold_convert_loc (loc
, type
, tem
);
8064 /* Convert fabs((double)float) into (double)fabsf(float). */
8065 if (TREE_CODE (arg0
) == NOP_EXPR
8066 && TREE_CODE (type
) == REAL_TYPE
)
8068 tree targ0
= strip_float_extensions (arg0
);
8070 return fold_convert_loc (loc
, type
,
8071 fold_build1_loc (loc
, ABS_EXPR
,
8078 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
8079 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
8080 && (tem
= fold_unary_loc (loc
, BIT_NOT_EXPR
, type
,
8081 fold_convert_loc (loc
, type
,
8082 TREE_OPERAND (arg0
, 0)))))
8083 return fold_build2_loc (loc
, BIT_XOR_EXPR
, type
, tem
,
8084 fold_convert_loc (loc
, type
,
8085 TREE_OPERAND (arg0
, 1)));
8086 else if (TREE_CODE (arg0
) == BIT_XOR_EXPR
8087 && (tem
= fold_unary_loc (loc
, BIT_NOT_EXPR
, type
,
8088 fold_convert_loc (loc
, type
,
8089 TREE_OPERAND (arg0
, 1)))))
8090 return fold_build2_loc (loc
, BIT_XOR_EXPR
, type
,
8091 fold_convert_loc (loc
, type
,
8092 TREE_OPERAND (arg0
, 0)), tem
);
8096 case TRUTH_NOT_EXPR
:
8097 /* Note that the operand of this must be an int
8098 and its values must be 0 or 1.
8099 ("true" is a fixed value perhaps depending on the language,
8100 but we don't handle values other than 1 correctly yet.) */
8101 tem
= fold_truth_not_expr (loc
, arg0
);
8104 return fold_convert_loc (loc
, type
, tem
);
8107 /* Fold *&X to X if X is an lvalue. */
8108 if (TREE_CODE (op0
) == ADDR_EXPR
)
8110 tree op00
= TREE_OPERAND (op0
, 0);
8112 || TREE_CODE (op00
) == PARM_DECL
8113 || TREE_CODE (op00
) == RESULT_DECL
)
8114 && !TREE_READONLY (op00
))
8121 } /* switch (code) */
8125 /* If the operation was a conversion do _not_ mark a resulting constant
8126 with TREE_OVERFLOW if the original constant was not. These conversions
8127 have implementation defined behavior and retaining the TREE_OVERFLOW
8128 flag here would confuse later passes such as VRP. */
8130 fold_unary_ignore_overflow_loc (location_t loc
, enum tree_code code
,
8131 tree type
, tree op0
)
8133 tree res
= fold_unary_loc (loc
, code
, type
, op0
);
8135 && TREE_CODE (res
) == INTEGER_CST
8136 && TREE_CODE (op0
) == INTEGER_CST
8137 && CONVERT_EXPR_CODE_P (code
))
8138 TREE_OVERFLOW (res
) = TREE_OVERFLOW (op0
);
8143 /* Fold a binary bitwise/truth expression of code CODE and type TYPE with
8144 operands OP0 and OP1. LOC is the location of the resulting expression.
8145 ARG0 and ARG1 are the NOP_STRIPed results of OP0 and OP1.
8146 Return the folded expression if folding is successful. Otherwise,
8147 return NULL_TREE. */
8149 fold_truth_andor (location_t loc
, enum tree_code code
, tree type
,
8150 tree arg0
, tree arg1
, tree op0
, tree op1
)
8154 /* We only do these simplifications if we are optimizing. */
8158 /* Check for things like (A || B) && (A || C). We can convert this
8159 to A || (B && C). Note that either operator can be any of the four
8160 truth and/or operations and the transformation will still be
8161 valid. Also note that we only care about order for the
8162 ANDIF and ORIF operators. If B contains side effects, this
8163 might change the truth-value of A. */
8164 if (TREE_CODE (arg0
) == TREE_CODE (arg1
)
8165 && (TREE_CODE (arg0
) == TRUTH_ANDIF_EXPR
8166 || TREE_CODE (arg0
) == TRUTH_ORIF_EXPR
8167 || TREE_CODE (arg0
) == TRUTH_AND_EXPR
8168 || TREE_CODE (arg0
) == TRUTH_OR_EXPR
)
8169 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0
, 1)))
8171 tree a00
= TREE_OPERAND (arg0
, 0);
8172 tree a01
= TREE_OPERAND (arg0
, 1);
8173 tree a10
= TREE_OPERAND (arg1
, 0);
8174 tree a11
= TREE_OPERAND (arg1
, 1);
8175 int commutative
= ((TREE_CODE (arg0
) == TRUTH_OR_EXPR
8176 || TREE_CODE (arg0
) == TRUTH_AND_EXPR
)
8177 && (code
== TRUTH_AND_EXPR
8178 || code
== TRUTH_OR_EXPR
));
8180 if (operand_equal_p (a00
, a10
, 0))
8181 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
, a00
,
8182 fold_build2_loc (loc
, code
, type
, a01
, a11
));
8183 else if (commutative
&& operand_equal_p (a00
, a11
, 0))
8184 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
, a00
,
8185 fold_build2_loc (loc
, code
, type
, a01
, a10
));
8186 else if (commutative
&& operand_equal_p (a01
, a10
, 0))
8187 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
, a01
,
8188 fold_build2_loc (loc
, code
, type
, a00
, a11
));
8190 /* This case if tricky because we must either have commutative
8191 operators or else A10 must not have side-effects. */
8193 else if ((commutative
|| ! TREE_SIDE_EFFECTS (a10
))
8194 && operand_equal_p (a01
, a11
, 0))
8195 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
,
8196 fold_build2_loc (loc
, code
, type
, a00
, a10
),
8200 /* See if we can build a range comparison. */
8201 if ((tem
= fold_range_test (loc
, code
, type
, op0
, op1
)) != 0)
8204 if ((code
== TRUTH_ANDIF_EXPR
&& TREE_CODE (arg0
) == TRUTH_ORIF_EXPR
)
8205 || (code
== TRUTH_ORIF_EXPR
&& TREE_CODE (arg0
) == TRUTH_ANDIF_EXPR
))
8207 tem
= merge_truthop_with_opposite_arm (loc
, arg0
, arg1
, true);
8209 return fold_build2_loc (loc
, code
, type
, tem
, arg1
);
8212 if ((code
== TRUTH_ANDIF_EXPR
&& TREE_CODE (arg1
) == TRUTH_ORIF_EXPR
)
8213 || (code
== TRUTH_ORIF_EXPR
&& TREE_CODE (arg1
) == TRUTH_ANDIF_EXPR
))
8215 tem
= merge_truthop_with_opposite_arm (loc
, arg1
, arg0
, false);
8217 return fold_build2_loc (loc
, code
, type
, arg0
, tem
);
8220 /* Check for the possibility of merging component references. If our
8221 lhs is another similar operation, try to merge its rhs with our
8222 rhs. Then try to merge our lhs and rhs. */
8223 if (TREE_CODE (arg0
) == code
8224 && (tem
= fold_truth_andor_1 (loc
, code
, type
,
8225 TREE_OPERAND (arg0
, 1), arg1
)) != 0)
8226 return fold_build2_loc (loc
, code
, type
, TREE_OPERAND (arg0
, 0), tem
);
8228 if ((tem
= fold_truth_andor_1 (loc
, code
, type
, arg0
, arg1
)) != 0)
8231 if (LOGICAL_OP_NON_SHORT_CIRCUIT
8232 && !flag_sanitize_coverage
8233 && (code
== TRUTH_AND_EXPR
8234 || code
== TRUTH_ANDIF_EXPR
8235 || code
== TRUTH_OR_EXPR
8236 || code
== TRUTH_ORIF_EXPR
))
8238 enum tree_code ncode
, icode
;
8240 ncode
= (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_AND_EXPR
)
8241 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
;
8242 icode
= ncode
== TRUTH_AND_EXPR
? TRUTH_ANDIF_EXPR
: TRUTH_ORIF_EXPR
;
8244 /* Transform ((A AND-IF B) AND[-IF] C) into (A AND-IF (B AND C)),
8245 or ((A OR-IF B) OR[-IF] C) into (A OR-IF (B OR C))
8246 We don't want to pack more than two leafs to a non-IF AND/OR
8248 If tree-code of left-hand operand isn't an AND/OR-IF code and not
8249 equal to IF-CODE, then we don't want to add right-hand operand.
8250 If the inner right-hand side of left-hand operand has
8251 side-effects, or isn't simple, then we can't add to it,
8252 as otherwise we might destroy if-sequence. */
8253 if (TREE_CODE (arg0
) == icode
8254 && simple_operand_p_2 (arg1
)
8255 /* Needed for sequence points to handle trappings, and
8257 && simple_operand_p_2 (TREE_OPERAND (arg0
, 1)))
8259 tem
= fold_build2_loc (loc
, ncode
, type
, TREE_OPERAND (arg0
, 1),
8261 return fold_build2_loc (loc
, icode
, type
, TREE_OPERAND (arg0
, 0),
8264 /* Same as above but for (A AND[-IF] (B AND-IF C)) -> ((A AND B) AND-IF C),
8265 or (A OR[-IF] (B OR-IF C) -> ((A OR B) OR-IF C). */
8266 else if (TREE_CODE (arg1
) == icode
8267 && simple_operand_p_2 (arg0
)
8268 /* Needed for sequence points to handle trappings, and
8270 && simple_operand_p_2 (TREE_OPERAND (arg1
, 0)))
8272 tem
= fold_build2_loc (loc
, ncode
, type
,
8273 arg0
, TREE_OPERAND (arg1
, 0));
8274 return fold_build2_loc (loc
, icode
, type
, tem
,
8275 TREE_OPERAND (arg1
, 1));
8277 /* Transform (A AND-IF B) into (A AND B), or (A OR-IF B)
8279 For sequence point consistancy, we need to check for trapping,
8280 and side-effects. */
8281 else if (code
== icode
&& simple_operand_p_2 (arg0
)
8282 && simple_operand_p_2 (arg1
))
8283 return fold_build2_loc (loc
, ncode
, type
, arg0
, arg1
);
8289 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1
8290 by changing CODE to reduce the magnitude of constants involved in
8291 ARG0 of the comparison.
8292 Returns a canonicalized comparison tree if a simplification was
8293 possible, otherwise returns NULL_TREE.
8294 Set *STRICT_OVERFLOW_P to true if the canonicalization is only
8295 valid if signed overflow is undefined. */
8298 maybe_canonicalize_comparison_1 (location_t loc
, enum tree_code code
, tree type
,
8299 tree arg0
, tree arg1
,
8300 bool *strict_overflow_p
)
8302 enum tree_code code0
= TREE_CODE (arg0
);
8303 tree t
, cst0
= NULL_TREE
;
8306 /* Match A +- CST code arg1. We can change this only if overflow
8308 if (!((ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
8309 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0
)))
8310 /* In principle pointers also have undefined overflow behavior,
8311 but that causes problems elsewhere. */
8312 && !POINTER_TYPE_P (TREE_TYPE (arg0
))
8313 && (code0
== MINUS_EXPR
8314 || code0
== PLUS_EXPR
)
8315 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
))
8318 /* Identify the constant in arg0 and its sign. */
8319 cst0
= TREE_OPERAND (arg0
, 1);
8320 sgn0
= tree_int_cst_sgn (cst0
);
8322 /* Overflowed constants and zero will cause problems. */
8323 if (integer_zerop (cst0
)
8324 || TREE_OVERFLOW (cst0
))
8327 /* See if we can reduce the magnitude of the constant in
8328 arg0 by changing the comparison code. */
8329 /* A - CST < arg1 -> A - CST-1 <= arg1. */
8331 && code0
== ((sgn0
== -1) ? PLUS_EXPR
: MINUS_EXPR
))
8333 /* A + CST > arg1 -> A + CST-1 >= arg1. */
8334 else if (code
== GT_EXPR
8335 && code0
== ((sgn0
== -1) ? MINUS_EXPR
: PLUS_EXPR
))
8337 /* A + CST <= arg1 -> A + CST-1 < arg1. */
8338 else if (code
== LE_EXPR
8339 && code0
== ((sgn0
== -1) ? MINUS_EXPR
: PLUS_EXPR
))
8341 /* A - CST >= arg1 -> A - CST-1 > arg1. */
8342 else if (code
== GE_EXPR
8343 && code0
== ((sgn0
== -1) ? PLUS_EXPR
: MINUS_EXPR
))
8347 *strict_overflow_p
= true;
8349 /* Now build the constant reduced in magnitude. But not if that
8350 would produce one outside of its types range. */
8351 if (INTEGRAL_TYPE_P (TREE_TYPE (cst0
))
8353 && TYPE_MIN_VALUE (TREE_TYPE (cst0
))
8354 && tree_int_cst_equal (cst0
, TYPE_MIN_VALUE (TREE_TYPE (cst0
))))
8356 && TYPE_MAX_VALUE (TREE_TYPE (cst0
))
8357 && tree_int_cst_equal (cst0
, TYPE_MAX_VALUE (TREE_TYPE (cst0
))))))
8360 t
= int_const_binop (sgn0
== -1 ? PLUS_EXPR
: MINUS_EXPR
,
8361 cst0
, build_int_cst (TREE_TYPE (cst0
), 1));
8362 t
= fold_build2_loc (loc
, code0
, TREE_TYPE (arg0
), TREE_OPERAND (arg0
, 0), t
);
8363 t
= fold_convert (TREE_TYPE (arg1
), t
);
8365 return fold_build2_loc (loc
, code
, type
, t
, arg1
);
8368 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined
8369 overflow further. Try to decrease the magnitude of constants involved
8370 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa
8371 and put sole constants at the second argument position.
8372 Returns the canonicalized tree if changed, otherwise NULL_TREE. */
8375 maybe_canonicalize_comparison (location_t loc
, enum tree_code code
, tree type
,
8376 tree arg0
, tree arg1
)
8379 bool strict_overflow_p
;
8380 const char * const warnmsg
= G_("assuming signed overflow does not occur "
8381 "when reducing constant in comparison");
8383 /* Try canonicalization by simplifying arg0. */
8384 strict_overflow_p
= false;
8385 t
= maybe_canonicalize_comparison_1 (loc
, code
, type
, arg0
, arg1
,
8386 &strict_overflow_p
);
8389 if (strict_overflow_p
)
8390 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_MAGNITUDE
);
8394 /* Try canonicalization by simplifying arg1 using the swapped
8396 code
= swap_tree_comparison (code
);
8397 strict_overflow_p
= false;
8398 t
= maybe_canonicalize_comparison_1 (loc
, code
, type
, arg1
, arg0
,
8399 &strict_overflow_p
);
8400 if (t
&& strict_overflow_p
)
8401 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_MAGNITUDE
);
8405 /* Return whether BASE + OFFSET + BITPOS may wrap around the address
8406 space. This is used to avoid issuing overflow warnings for
8407 expressions like &p->x which can not wrap. */
8410 pointer_may_wrap_p (tree base
, tree offset
, poly_int64 bitpos
)
8412 if (!POINTER_TYPE_P (TREE_TYPE (base
)))
8415 if (maybe_lt (bitpos
, 0))
8418 poly_wide_int wi_offset
;
8419 int precision
= TYPE_PRECISION (TREE_TYPE (base
));
8420 if (offset
== NULL_TREE
)
8421 wi_offset
= wi::zero (precision
);
8422 else if (!poly_int_tree_p (offset
) || TREE_OVERFLOW (offset
))
8425 wi_offset
= wi::to_poly_wide (offset
);
8427 wi::overflow_type overflow
;
8428 poly_wide_int units
= wi::shwi (bits_to_bytes_round_down (bitpos
),
8430 poly_wide_int total
= wi::add (wi_offset
, units
, UNSIGNED
, &overflow
);
8434 poly_uint64 total_hwi
, size
;
8435 if (!total
.to_uhwi (&total_hwi
)
8436 || !poly_int_tree_p (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (base
))),
8438 || known_eq (size
, 0U))
8441 if (known_le (total_hwi
, size
))
8444 /* We can do slightly better for SIZE if we have an ADDR_EXPR of an
8446 if (TREE_CODE (base
) == ADDR_EXPR
8447 && poly_int_tree_p (TYPE_SIZE_UNIT (TREE_TYPE (TREE_OPERAND (base
, 0))),
8449 && maybe_ne (size
, 0U)
8450 && known_le (total_hwi
, size
))
8456 /* Return a positive integer when the symbol DECL is known to have
8457 a nonzero address, zero when it's known not to (e.g., it's a weak
8458 symbol), and a negative integer when the symbol is not yet in the
8459 symbol table and so whether or not its address is zero is unknown.
8460 For function local objects always return positive integer. */
8462 maybe_nonzero_address (tree decl
)
8464 if (DECL_P (decl
) && decl_in_symtab_p (decl
))
8465 if (struct symtab_node
*symbol
= symtab_node::get_create (decl
))
8466 return symbol
->nonzero_address ();
8468 /* Function local objects are never NULL. */
8470 && (DECL_CONTEXT (decl
)
8471 && TREE_CODE (DECL_CONTEXT (decl
)) == FUNCTION_DECL
8472 && auto_var_in_fn_p (decl
, DECL_CONTEXT (decl
))))
8478 /* Subroutine of fold_binary. This routine performs all of the
8479 transformations that are common to the equality/inequality
8480 operators (EQ_EXPR and NE_EXPR) and the ordering operators
8481 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than
8482 fold_binary should call fold_binary. Fold a comparison with
8483 tree code CODE and type TYPE with operands OP0 and OP1. Return
8484 the folded comparison or NULL_TREE. */
8487 fold_comparison (location_t loc
, enum tree_code code
, tree type
,
8490 const bool equality_code
= (code
== EQ_EXPR
|| code
== NE_EXPR
);
8491 tree arg0
, arg1
, tem
;
8496 STRIP_SIGN_NOPS (arg0
);
8497 STRIP_SIGN_NOPS (arg1
);
8499 /* For comparisons of pointers we can decompose it to a compile time
8500 comparison of the base objects and the offsets into the object.
8501 This requires at least one operand being an ADDR_EXPR or a
8502 POINTER_PLUS_EXPR to do more than the operand_equal_p test below. */
8503 if (POINTER_TYPE_P (TREE_TYPE (arg0
))
8504 && (TREE_CODE (arg0
) == ADDR_EXPR
8505 || TREE_CODE (arg1
) == ADDR_EXPR
8506 || TREE_CODE (arg0
) == POINTER_PLUS_EXPR
8507 || TREE_CODE (arg1
) == POINTER_PLUS_EXPR
))
8509 tree base0
, base1
, offset0
= NULL_TREE
, offset1
= NULL_TREE
;
8510 poly_int64 bitsize
, bitpos0
= 0, bitpos1
= 0;
8512 int volatilep
, reversep
, unsignedp
;
8513 bool indirect_base0
= false, indirect_base1
= false;
8515 /* Get base and offset for the access. Strip ADDR_EXPR for
8516 get_inner_reference, but put it back by stripping INDIRECT_REF
8517 off the base object if possible. indirect_baseN will be true
8518 if baseN is not an address but refers to the object itself. */
8520 if (TREE_CODE (arg0
) == ADDR_EXPR
)
8523 = get_inner_reference (TREE_OPERAND (arg0
, 0),
8524 &bitsize
, &bitpos0
, &offset0
, &mode
,
8525 &unsignedp
, &reversep
, &volatilep
);
8526 if (TREE_CODE (base0
) == INDIRECT_REF
)
8527 base0
= TREE_OPERAND (base0
, 0);
8529 indirect_base0
= true;
8531 else if (TREE_CODE (arg0
) == POINTER_PLUS_EXPR
)
8533 base0
= TREE_OPERAND (arg0
, 0);
8534 STRIP_SIGN_NOPS (base0
);
8535 if (TREE_CODE (base0
) == ADDR_EXPR
)
8538 = get_inner_reference (TREE_OPERAND (base0
, 0),
8539 &bitsize
, &bitpos0
, &offset0
, &mode
,
8540 &unsignedp
, &reversep
, &volatilep
);
8541 if (TREE_CODE (base0
) == INDIRECT_REF
)
8542 base0
= TREE_OPERAND (base0
, 0);
8544 indirect_base0
= true;
8546 if (offset0
== NULL_TREE
|| integer_zerop (offset0
))
8547 offset0
= TREE_OPERAND (arg0
, 1);
8549 offset0
= size_binop (PLUS_EXPR
, offset0
,
8550 TREE_OPERAND (arg0
, 1));
8551 if (poly_int_tree_p (offset0
))
8553 poly_offset_int tem
= wi::sext (wi::to_poly_offset (offset0
),
8554 TYPE_PRECISION (sizetype
));
8555 tem
<<= LOG2_BITS_PER_UNIT
;
8557 if (tem
.to_shwi (&bitpos0
))
8558 offset0
= NULL_TREE
;
8563 if (TREE_CODE (arg1
) == ADDR_EXPR
)
8566 = get_inner_reference (TREE_OPERAND (arg1
, 0),
8567 &bitsize
, &bitpos1
, &offset1
, &mode
,
8568 &unsignedp
, &reversep
, &volatilep
);
8569 if (TREE_CODE (base1
) == INDIRECT_REF
)
8570 base1
= TREE_OPERAND (base1
, 0);
8572 indirect_base1
= true;
8574 else if (TREE_CODE (arg1
) == POINTER_PLUS_EXPR
)
8576 base1
= TREE_OPERAND (arg1
, 0);
8577 STRIP_SIGN_NOPS (base1
);
8578 if (TREE_CODE (base1
) == ADDR_EXPR
)
8581 = get_inner_reference (TREE_OPERAND (base1
, 0),
8582 &bitsize
, &bitpos1
, &offset1
, &mode
,
8583 &unsignedp
, &reversep
, &volatilep
);
8584 if (TREE_CODE (base1
) == INDIRECT_REF
)
8585 base1
= TREE_OPERAND (base1
, 0);
8587 indirect_base1
= true;
8589 if (offset1
== NULL_TREE
|| integer_zerop (offset1
))
8590 offset1
= TREE_OPERAND (arg1
, 1);
8592 offset1
= size_binop (PLUS_EXPR
, offset1
,
8593 TREE_OPERAND (arg1
, 1));
8594 if (poly_int_tree_p (offset1
))
8596 poly_offset_int tem
= wi::sext (wi::to_poly_offset (offset1
),
8597 TYPE_PRECISION (sizetype
));
8598 tem
<<= LOG2_BITS_PER_UNIT
;
8600 if (tem
.to_shwi (&bitpos1
))
8601 offset1
= NULL_TREE
;
8605 /* If we have equivalent bases we might be able to simplify. */
8606 if (indirect_base0
== indirect_base1
8607 && operand_equal_p (base0
, base1
,
8608 indirect_base0
? OEP_ADDRESS_OF
: 0))
8610 /* We can fold this expression to a constant if the non-constant
8611 offset parts are equal. */
8612 if ((offset0
== offset1
8613 || (offset0
&& offset1
8614 && operand_equal_p (offset0
, offset1
, 0)))
8617 && (DECL_P (base0
) || CONSTANT_CLASS_P (base0
)))
8618 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0
))))
8621 && maybe_ne (bitpos0
, bitpos1
)
8622 && (pointer_may_wrap_p (base0
, offset0
, bitpos0
)
8623 || pointer_may_wrap_p (base1
, offset1
, bitpos1
)))
8624 fold_overflow_warning (("assuming pointer wraparound does not "
8625 "occur when comparing P +- C1 with "
8627 WARN_STRICT_OVERFLOW_CONDITIONAL
);
8632 if (known_eq (bitpos0
, bitpos1
))
8633 return constant_boolean_node (true, type
);
8634 if (known_ne (bitpos0
, bitpos1
))
8635 return constant_boolean_node (false, type
);
8638 if (known_ne (bitpos0
, bitpos1
))
8639 return constant_boolean_node (true, type
);
8640 if (known_eq (bitpos0
, bitpos1
))
8641 return constant_boolean_node (false, type
);
8644 if (known_lt (bitpos0
, bitpos1
))
8645 return constant_boolean_node (true, type
);
8646 if (known_ge (bitpos0
, bitpos1
))
8647 return constant_boolean_node (false, type
);
8650 if (known_le (bitpos0
, bitpos1
))
8651 return constant_boolean_node (true, type
);
8652 if (known_gt (bitpos0
, bitpos1
))
8653 return constant_boolean_node (false, type
);
8656 if (known_ge (bitpos0
, bitpos1
))
8657 return constant_boolean_node (true, type
);
8658 if (known_lt (bitpos0
, bitpos1
))
8659 return constant_boolean_node (false, type
);
8662 if (known_gt (bitpos0
, bitpos1
))
8663 return constant_boolean_node (true, type
);
8664 if (known_le (bitpos0
, bitpos1
))
8665 return constant_boolean_node (false, type
);
8670 /* We can simplify the comparison to a comparison of the variable
8671 offset parts if the constant offset parts are equal.
8672 Be careful to use signed sizetype here because otherwise we
8673 mess with array offsets in the wrong way. This is possible
8674 because pointer arithmetic is restricted to retain within an
8675 object and overflow on pointer differences is undefined as of
8676 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */
8677 else if (known_eq (bitpos0
, bitpos1
)
8680 && (DECL_P (base0
) || CONSTANT_CLASS_P (base0
)))
8681 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0
))))
8683 /* By converting to signed sizetype we cover middle-end pointer
8684 arithmetic which operates on unsigned pointer types of size
8685 type size and ARRAY_REF offsets which are properly sign or
8686 zero extended from their type in case it is narrower than
8688 if (offset0
== NULL_TREE
)
8689 offset0
= build_int_cst (ssizetype
, 0);
8691 offset0
= fold_convert_loc (loc
, ssizetype
, offset0
);
8692 if (offset1
== NULL_TREE
)
8693 offset1
= build_int_cst (ssizetype
, 0);
8695 offset1
= fold_convert_loc (loc
, ssizetype
, offset1
);
8698 && (pointer_may_wrap_p (base0
, offset0
, bitpos0
)
8699 || pointer_may_wrap_p (base1
, offset1
, bitpos1
)))
8700 fold_overflow_warning (("assuming pointer wraparound does not "
8701 "occur when comparing P +- C1 with "
8703 WARN_STRICT_OVERFLOW_COMPARISON
);
8705 return fold_build2_loc (loc
, code
, type
, offset0
, offset1
);
8708 /* For equal offsets we can simplify to a comparison of the
8710 else if (known_eq (bitpos0
, bitpos1
)
8712 ? base0
!= TREE_OPERAND (arg0
, 0) : base0
!= arg0
)
8714 ? base1
!= TREE_OPERAND (arg1
, 0) : base1
!= arg1
)
8715 && ((offset0
== offset1
)
8716 || (offset0
&& offset1
8717 && operand_equal_p (offset0
, offset1
, 0))))
8720 base0
= build_fold_addr_expr_loc (loc
, base0
);
8722 base1
= build_fold_addr_expr_loc (loc
, base1
);
8723 return fold_build2_loc (loc
, code
, type
, base0
, base1
);
8725 /* Comparison between an ordinary (non-weak) symbol and a null
8726 pointer can be eliminated since such symbols must have a non
8727 null address. In C, relational expressions between pointers
8728 to objects and null pointers are undefined. The results
8729 below follow the C++ rules with the additional property that
8730 every object pointer compares greater than a null pointer.
8732 else if (((DECL_P (base0
)
8733 && maybe_nonzero_address (base0
) > 0
8734 /* Avoid folding references to struct members at offset 0 to
8735 prevent tests like '&ptr->firstmember == 0' from getting
8736 eliminated. When ptr is null, although the -> expression
8737 is strictly speaking invalid, GCC retains it as a matter
8738 of QoI. See PR c/44555. */
8739 && (offset0
== NULL_TREE
&& known_ne (bitpos0
, 0)))
8740 || CONSTANT_CLASS_P (base0
))
8742 /* The caller guarantees that when one of the arguments is
8743 constant (i.e., null in this case) it is second. */
8744 && integer_zerop (arg1
))
8751 return constant_boolean_node (false, type
);
8755 return constant_boolean_node (true, type
);
8762 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to
8763 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
8764 the resulting offset is smaller in absolute value than the
8765 original one and has the same sign. */
8766 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
8767 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0
))
8768 && (TREE_CODE (arg0
) == PLUS_EXPR
|| TREE_CODE (arg0
) == MINUS_EXPR
)
8769 && (TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
8770 && !TREE_OVERFLOW (TREE_OPERAND (arg0
, 1)))
8771 && (TREE_CODE (arg1
) == PLUS_EXPR
|| TREE_CODE (arg1
) == MINUS_EXPR
)
8772 && (TREE_CODE (TREE_OPERAND (arg1
, 1)) == INTEGER_CST
8773 && !TREE_OVERFLOW (TREE_OPERAND (arg1
, 1))))
8775 tree const1
= TREE_OPERAND (arg0
, 1);
8776 tree const2
= TREE_OPERAND (arg1
, 1);
8777 tree variable1
= TREE_OPERAND (arg0
, 0);
8778 tree variable2
= TREE_OPERAND (arg1
, 0);
8780 const char * const warnmsg
= G_("assuming signed overflow does not "
8781 "occur when combining constants around "
8784 /* Put the constant on the side where it doesn't overflow and is
8785 of lower absolute value and of same sign than before. */
8786 cst
= int_const_binop (TREE_CODE (arg0
) == TREE_CODE (arg1
)
8787 ? MINUS_EXPR
: PLUS_EXPR
,
8789 if (!TREE_OVERFLOW (cst
)
8790 && tree_int_cst_compare (const2
, cst
) == tree_int_cst_sgn (const2
)
8791 && tree_int_cst_sgn (cst
) == tree_int_cst_sgn (const2
))
8793 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_COMPARISON
);
8794 return fold_build2_loc (loc
, code
, type
,
8796 fold_build2_loc (loc
, TREE_CODE (arg1
),
8801 cst
= int_const_binop (TREE_CODE (arg0
) == TREE_CODE (arg1
)
8802 ? MINUS_EXPR
: PLUS_EXPR
,
8804 if (!TREE_OVERFLOW (cst
)
8805 && tree_int_cst_compare (const1
, cst
) == tree_int_cst_sgn (const1
)
8806 && tree_int_cst_sgn (cst
) == tree_int_cst_sgn (const1
))
8808 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_COMPARISON
);
8809 return fold_build2_loc (loc
, code
, type
,
8810 fold_build2_loc (loc
, TREE_CODE (arg0
),
8817 tem
= maybe_canonicalize_comparison (loc
, code
, type
, arg0
, arg1
);
8821 /* If we are comparing an expression that just has comparisons
8822 of two integer values, arithmetic expressions of those comparisons,
8823 and constants, we can simplify it. There are only three cases
8824 to check: the two values can either be equal, the first can be
8825 greater, or the second can be greater. Fold the expression for
8826 those three values. Since each value must be 0 or 1, we have
8827 eight possibilities, each of which corresponds to the constant 0
8828 or 1 or one of the six possible comparisons.
8830 This handles common cases like (a > b) == 0 but also handles
8831 expressions like ((x > y) - (y > x)) > 0, which supposedly
8832 occur in macroized code. */
8834 if (TREE_CODE (arg1
) == INTEGER_CST
&& TREE_CODE (arg0
) != INTEGER_CST
)
8836 tree cval1
= 0, cval2
= 0;
8838 if (twoval_comparison_p (arg0
, &cval1
, &cval2
)
8839 /* Don't handle degenerate cases here; they should already
8840 have been handled anyway. */
8841 && cval1
!= 0 && cval2
!= 0
8842 && ! (TREE_CONSTANT (cval1
) && TREE_CONSTANT (cval2
))
8843 && TREE_TYPE (cval1
) == TREE_TYPE (cval2
)
8844 && INTEGRAL_TYPE_P (TREE_TYPE (cval1
))
8845 && TYPE_MAX_VALUE (TREE_TYPE (cval1
))
8846 && TYPE_MAX_VALUE (TREE_TYPE (cval2
))
8847 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1
)),
8848 TYPE_MAX_VALUE (TREE_TYPE (cval2
)), 0))
8850 tree maxval
= TYPE_MAX_VALUE (TREE_TYPE (cval1
));
8851 tree minval
= TYPE_MIN_VALUE (TREE_TYPE (cval1
));
8853 /* We can't just pass T to eval_subst in case cval1 or cval2
8854 was the same as ARG1. */
8857 = fold_build2_loc (loc
, code
, type
,
8858 eval_subst (loc
, arg0
, cval1
, maxval
,
8862 = fold_build2_loc (loc
, code
, type
,
8863 eval_subst (loc
, arg0
, cval1
, maxval
,
8867 = fold_build2_loc (loc
, code
, type
,
8868 eval_subst (loc
, arg0
, cval1
, minval
,
8872 /* All three of these results should be 0 or 1. Confirm they are.
8873 Then use those values to select the proper code to use. */
8875 if (TREE_CODE (high_result
) == INTEGER_CST
8876 && TREE_CODE (equal_result
) == INTEGER_CST
8877 && TREE_CODE (low_result
) == INTEGER_CST
)
8879 /* Make a 3-bit mask with the high-order bit being the
8880 value for `>', the next for '=', and the low for '<'. */
8881 switch ((integer_onep (high_result
) * 4)
8882 + (integer_onep (equal_result
) * 2)
8883 + integer_onep (low_result
))
8887 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
8908 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg0
);
8911 return fold_build2_loc (loc
, code
, type
, cval1
, cval2
);
8920 /* Subroutine of fold_binary. Optimize complex multiplications of the
8921 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The
8922 argument EXPR represents the expression "z" of type TYPE. */
8925 fold_mult_zconjz (location_t loc
, tree type
, tree expr
)
8927 tree itype
= TREE_TYPE (type
);
8928 tree rpart
, ipart
, tem
;
8930 if (TREE_CODE (expr
) == COMPLEX_EXPR
)
8932 rpart
= TREE_OPERAND (expr
, 0);
8933 ipart
= TREE_OPERAND (expr
, 1);
8935 else if (TREE_CODE (expr
) == COMPLEX_CST
)
8937 rpart
= TREE_REALPART (expr
);
8938 ipart
= TREE_IMAGPART (expr
);
8942 expr
= save_expr (expr
);
8943 rpart
= fold_build1_loc (loc
, REALPART_EXPR
, itype
, expr
);
8944 ipart
= fold_build1_loc (loc
, IMAGPART_EXPR
, itype
, expr
);
8947 rpart
= save_expr (rpart
);
8948 ipart
= save_expr (ipart
);
8949 tem
= fold_build2_loc (loc
, PLUS_EXPR
, itype
,
8950 fold_build2_loc (loc
, MULT_EXPR
, itype
, rpart
, rpart
),
8951 fold_build2_loc (loc
, MULT_EXPR
, itype
, ipart
, ipart
));
8952 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, tem
,
8953 build_zero_cst (itype
));
8957 /* Helper function for fold_vec_perm. Store elements of VECTOR_CST or
8958 CONSTRUCTOR ARG into array ELTS, which has NELTS elements, and return
8959 true if successful. */
8962 vec_cst_ctor_to_array (tree arg
, unsigned int nelts
, tree
*elts
)
8964 unsigned HOST_WIDE_INT i
, nunits
;
8966 if (TREE_CODE (arg
) == VECTOR_CST
8967 && VECTOR_CST_NELTS (arg
).is_constant (&nunits
))
8969 for (i
= 0; i
< nunits
; ++i
)
8970 elts
[i
] = VECTOR_CST_ELT (arg
, i
);
8972 else if (TREE_CODE (arg
) == CONSTRUCTOR
)
8974 constructor_elt
*elt
;
8976 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (arg
), i
, elt
)
8977 if (i
>= nelts
|| TREE_CODE (TREE_TYPE (elt
->value
)) == VECTOR_TYPE
)
8980 elts
[i
] = elt
->value
;
8984 for (; i
< nelts
; i
++)
8986 = fold_convert (TREE_TYPE (TREE_TYPE (arg
)), integer_zero_node
);
8990 /* Attempt to fold vector permutation of ARG0 and ARG1 vectors using SEL
8991 selector. Return the folded VECTOR_CST or CONSTRUCTOR if successful,
8992 NULL_TREE otherwise. */
8995 fold_vec_perm (tree type
, tree arg0
, tree arg1
, const vec_perm_indices
&sel
)
8998 unsigned HOST_WIDE_INT nelts
;
8999 bool need_ctor
= false;
9001 if (!sel
.length ().is_constant (&nelts
))
9003 gcc_assert (known_eq (TYPE_VECTOR_SUBPARTS (type
), nelts
)
9004 && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0
)), nelts
)
9005 && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1
)), nelts
));
9006 if (TREE_TYPE (TREE_TYPE (arg0
)) != TREE_TYPE (type
)
9007 || TREE_TYPE (TREE_TYPE (arg1
)) != TREE_TYPE (type
))
9010 tree
*in_elts
= XALLOCAVEC (tree
, nelts
* 2);
9011 if (!vec_cst_ctor_to_array (arg0
, nelts
, in_elts
)
9012 || !vec_cst_ctor_to_array (arg1
, nelts
, in_elts
+ nelts
))
9015 tree_vector_builder
out_elts (type
, nelts
, 1);
9016 for (i
= 0; i
< nelts
; i
++)
9018 HOST_WIDE_INT index
;
9019 if (!sel
[i
].is_constant (&index
))
9021 if (!CONSTANT_CLASS_P (in_elts
[index
]))
9023 out_elts
.quick_push (unshare_expr (in_elts
[index
]));
9028 vec
<constructor_elt
, va_gc
> *v
;
9029 vec_alloc (v
, nelts
);
9030 for (i
= 0; i
< nelts
; i
++)
9031 CONSTRUCTOR_APPEND_ELT (v
, NULL_TREE
, out_elts
[i
]);
9032 return build_constructor (type
, v
);
9035 return out_elts
.build ();
9038 /* Try to fold a pointer difference of type TYPE two address expressions of
9039 array references AREF0 and AREF1 using location LOC. Return a
9040 simplified expression for the difference or NULL_TREE. */
9043 fold_addr_of_array_ref_difference (location_t loc
, tree type
,
9044 tree aref0
, tree aref1
,
9045 bool use_pointer_diff
)
9047 tree base0
= TREE_OPERAND (aref0
, 0);
9048 tree base1
= TREE_OPERAND (aref1
, 0);
9049 tree base_offset
= build_int_cst (type
, 0);
9051 /* If the bases are array references as well, recurse. If the bases
9052 are pointer indirections compute the difference of the pointers.
9053 If the bases are equal, we are set. */
9054 if ((TREE_CODE (base0
) == ARRAY_REF
9055 && TREE_CODE (base1
) == ARRAY_REF
9057 = fold_addr_of_array_ref_difference (loc
, type
, base0
, base1
,
9059 || (INDIRECT_REF_P (base0
)
9060 && INDIRECT_REF_P (base1
)
9063 ? fold_binary_loc (loc
, POINTER_DIFF_EXPR
, type
,
9064 TREE_OPERAND (base0
, 0),
9065 TREE_OPERAND (base1
, 0))
9066 : fold_binary_loc (loc
, MINUS_EXPR
, type
,
9068 TREE_OPERAND (base0
, 0)),
9070 TREE_OPERAND (base1
, 0)))))
9071 || operand_equal_p (base0
, base1
, OEP_ADDRESS_OF
))
9073 tree op0
= fold_convert_loc (loc
, type
, TREE_OPERAND (aref0
, 1));
9074 tree op1
= fold_convert_loc (loc
, type
, TREE_OPERAND (aref1
, 1));
9075 tree esz
= fold_convert_loc (loc
, type
, array_ref_element_size (aref0
));
9076 tree diff
= fold_build2_loc (loc
, MINUS_EXPR
, type
, op0
, op1
);
9077 return fold_build2_loc (loc
, PLUS_EXPR
, type
,
9079 fold_build2_loc (loc
, MULT_EXPR
, type
,
9085 /* If the real or vector real constant CST of type TYPE has an exact
9086 inverse, return it, else return NULL. */
9089 exact_inverse (tree type
, tree cst
)
9095 switch (TREE_CODE (cst
))
9098 r
= TREE_REAL_CST (cst
);
9100 if (exact_real_inverse (TYPE_MODE (type
), &r
))
9101 return build_real (type
, r
);
9107 unit_type
= TREE_TYPE (type
);
9108 mode
= TYPE_MODE (unit_type
);
9110 tree_vector_builder elts
;
9111 if (!elts
.new_unary_operation (type
, cst
, false))
9113 unsigned int count
= elts
.encoded_nelts ();
9114 for (unsigned int i
= 0; i
< count
; ++i
)
9116 r
= TREE_REAL_CST (VECTOR_CST_ELT (cst
, i
));
9117 if (!exact_real_inverse (mode
, &r
))
9119 elts
.quick_push (build_real (unit_type
, r
));
9122 return elts
.build ();
9130 /* Mask out the tz least significant bits of X of type TYPE where
9131 tz is the number of trailing zeroes in Y. */
9133 mask_with_tz (tree type
, const wide_int
&x
, const wide_int
&y
)
9135 int tz
= wi::ctz (y
);
9137 return wi::mask (tz
, true, TYPE_PRECISION (type
)) & x
;
9141 /* Return true when T is an address and is known to be nonzero.
9142 For floating point we further ensure that T is not denormal.
9143 Similar logic is present in nonzero_address in rtlanal.h.
9145 If the return value is based on the assumption that signed overflow
9146 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
9147 change *STRICT_OVERFLOW_P. */
9150 tree_expr_nonzero_warnv_p (tree t
, bool *strict_overflow_p
)
9152 tree type
= TREE_TYPE (t
);
9153 enum tree_code code
;
9155 /* Doing something useful for floating point would need more work. */
9156 if (!INTEGRAL_TYPE_P (type
) && !POINTER_TYPE_P (type
))
9159 code
= TREE_CODE (t
);
9160 switch (TREE_CODE_CLASS (code
))
9163 return tree_unary_nonzero_warnv_p (code
, type
, TREE_OPERAND (t
, 0),
9166 case tcc_comparison
:
9167 return tree_binary_nonzero_warnv_p (code
, type
,
9168 TREE_OPERAND (t
, 0),
9169 TREE_OPERAND (t
, 1),
9172 case tcc_declaration
:
9174 return tree_single_nonzero_warnv_p (t
, strict_overflow_p
);
9182 case TRUTH_NOT_EXPR
:
9183 return tree_unary_nonzero_warnv_p (code
, type
, TREE_OPERAND (t
, 0),
9186 case TRUTH_AND_EXPR
:
9188 case TRUTH_XOR_EXPR
:
9189 return tree_binary_nonzero_warnv_p (code
, type
,
9190 TREE_OPERAND (t
, 0),
9191 TREE_OPERAND (t
, 1),
9199 case WITH_SIZE_EXPR
:
9201 return tree_single_nonzero_warnv_p (t
, strict_overflow_p
);
9206 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 1),
9210 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 0),
9215 tree fndecl
= get_callee_fndecl (t
);
9216 if (!fndecl
) return false;
9217 if (flag_delete_null_pointer_checks
&& !flag_check_new
9218 && DECL_IS_OPERATOR_NEW (fndecl
)
9219 && !TREE_NOTHROW (fndecl
))
9221 if (flag_delete_null_pointer_checks
9222 && lookup_attribute ("returns_nonnull",
9223 TYPE_ATTRIBUTES (TREE_TYPE (fndecl
))))
9225 return alloca_call_p (t
);
9234 /* Return true when T is an address and is known to be nonzero.
9235 Handle warnings about undefined signed overflow. */
9238 tree_expr_nonzero_p (tree t
)
9240 bool ret
, strict_overflow_p
;
9242 strict_overflow_p
= false;
9243 ret
= tree_expr_nonzero_warnv_p (t
, &strict_overflow_p
);
9244 if (strict_overflow_p
)
9245 fold_overflow_warning (("assuming signed overflow does not occur when "
9246 "determining that expression is always "
9248 WARN_STRICT_OVERFLOW_MISC
);
9252 /* Return true if T is known not to be equal to an integer W. */
9255 expr_not_equal_to (tree t
, const wide_int
&w
)
9257 wide_int min
, max
, nz
;
9258 value_range_type rtype
;
9259 switch (TREE_CODE (t
))
9262 return wi::to_wide (t
) != w
;
9265 if (!INTEGRAL_TYPE_P (TREE_TYPE (t
)))
9267 rtype
= get_range_info (t
, &min
, &max
);
9268 if (rtype
== VR_RANGE
)
9270 if (wi::lt_p (max
, w
, TYPE_SIGN (TREE_TYPE (t
))))
9272 if (wi::lt_p (w
, min
, TYPE_SIGN (TREE_TYPE (t
))))
9275 else if (rtype
== VR_ANTI_RANGE
9276 && wi::le_p (min
, w
, TYPE_SIGN (TREE_TYPE (t
)))
9277 && wi::le_p (w
, max
, TYPE_SIGN (TREE_TYPE (t
))))
9279 /* If T has some known zero bits and W has any of those bits set,
9280 then T is known not to be equal to W. */
9281 if (wi::ne_p (wi::zext (wi::bit_and_not (w
, get_nonzero_bits (t
)),
9282 TYPE_PRECISION (TREE_TYPE (t
))), 0))
9291 /* Fold a binary expression of code CODE and type TYPE with operands
9292 OP0 and OP1. LOC is the location of the resulting expression.
9293 Return the folded expression if folding is successful. Otherwise,
9294 return NULL_TREE. */
9297 fold_binary_loc (location_t loc
, enum tree_code code
, tree type
,
9300 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
9301 tree arg0
, arg1
, tem
;
9302 tree t1
= NULL_TREE
;
9303 bool strict_overflow_p
;
9306 gcc_assert (IS_EXPR_CODE_CLASS (kind
)
9307 && TREE_CODE_LENGTH (code
) == 2
9309 && op1
!= NULL_TREE
);
9314 /* Strip any conversions that don't change the mode. This is
9315 safe for every expression, except for a comparison expression
9316 because its signedness is derived from its operands. So, in
9317 the latter case, only strip conversions that don't change the
9318 signedness. MIN_EXPR/MAX_EXPR also need signedness of arguments
9321 Note that this is done as an internal manipulation within the
9322 constant folder, in order to find the simplest representation
9323 of the arguments so that their form can be studied. In any
9324 cases, the appropriate type conversions should be put back in
9325 the tree that will get out of the constant folder. */
9327 if (kind
== tcc_comparison
|| code
== MIN_EXPR
|| code
== MAX_EXPR
)
9329 STRIP_SIGN_NOPS (arg0
);
9330 STRIP_SIGN_NOPS (arg1
);
9338 /* Note that TREE_CONSTANT isn't enough: static var addresses are
9339 constant but we can't do arithmetic on them. */
9340 if (CONSTANT_CLASS_P (arg0
) && CONSTANT_CLASS_P (arg1
))
9342 tem
= const_binop (code
, type
, arg0
, arg1
);
9343 if (tem
!= NULL_TREE
)
9345 if (TREE_TYPE (tem
) != type
)
9346 tem
= fold_convert_loc (loc
, type
, tem
);
9351 /* If this is a commutative operation, and ARG0 is a constant, move it
9352 to ARG1 to reduce the number of tests below. */
9353 if (commutative_tree_code (code
)
9354 && tree_swap_operands_p (arg0
, arg1
))
9355 return fold_build2_loc (loc
, code
, type
, op1
, op0
);
9357 /* Likewise if this is a comparison, and ARG0 is a constant, move it
9358 to ARG1 to reduce the number of tests below. */
9359 if (kind
== tcc_comparison
9360 && tree_swap_operands_p (arg0
, arg1
))
9361 return fold_build2_loc (loc
, swap_tree_comparison (code
), type
, op1
, op0
);
9363 tem
= generic_simplify (loc
, code
, type
, op0
, op1
);
9367 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
9369 First check for cases where an arithmetic operation is applied to a
9370 compound, conditional, or comparison operation. Push the arithmetic
9371 operation inside the compound or conditional to see if any folding
9372 can then be done. Convert comparison to conditional for this purpose.
9373 The also optimizes non-constant cases that used to be done in
9376 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
9377 one of the operands is a comparison and the other is a comparison, a
9378 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
9379 code below would make the expression more complex. Change it to a
9380 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
9381 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
9383 if ((code
== BIT_AND_EXPR
|| code
== BIT_IOR_EXPR
9384 || code
== EQ_EXPR
|| code
== NE_EXPR
)
9385 && !VECTOR_TYPE_P (TREE_TYPE (arg0
))
9386 && ((truth_value_p (TREE_CODE (arg0
))
9387 && (truth_value_p (TREE_CODE (arg1
))
9388 || (TREE_CODE (arg1
) == BIT_AND_EXPR
9389 && integer_onep (TREE_OPERAND (arg1
, 1)))))
9390 || (truth_value_p (TREE_CODE (arg1
))
9391 && (truth_value_p (TREE_CODE (arg0
))
9392 || (TREE_CODE (arg0
) == BIT_AND_EXPR
9393 && integer_onep (TREE_OPERAND (arg0
, 1)))))))
9395 tem
= fold_build2_loc (loc
, code
== BIT_AND_EXPR
? TRUTH_AND_EXPR
9396 : code
== BIT_IOR_EXPR
? TRUTH_OR_EXPR
9399 fold_convert_loc (loc
, boolean_type_node
, arg0
),
9400 fold_convert_loc (loc
, boolean_type_node
, arg1
));
9402 if (code
== EQ_EXPR
)
9403 tem
= invert_truthvalue_loc (loc
, tem
);
9405 return fold_convert_loc (loc
, type
, tem
);
9408 if (TREE_CODE_CLASS (code
) == tcc_binary
9409 || TREE_CODE_CLASS (code
) == tcc_comparison
)
9411 if (TREE_CODE (arg0
) == COMPOUND_EXPR
)
9413 tem
= fold_build2_loc (loc
, code
, type
,
9414 fold_convert_loc (loc
, TREE_TYPE (op0
),
9415 TREE_OPERAND (arg0
, 1)), op1
);
9416 return build2_loc (loc
, COMPOUND_EXPR
, type
, TREE_OPERAND (arg0
, 0),
9419 if (TREE_CODE (arg1
) == COMPOUND_EXPR
)
9421 tem
= fold_build2_loc (loc
, code
, type
, op0
,
9422 fold_convert_loc (loc
, TREE_TYPE (op1
),
9423 TREE_OPERAND (arg1
, 1)));
9424 return build2_loc (loc
, COMPOUND_EXPR
, type
, TREE_OPERAND (arg1
, 0),
9428 if (TREE_CODE (arg0
) == COND_EXPR
9429 || TREE_CODE (arg0
) == VEC_COND_EXPR
9430 || COMPARISON_CLASS_P (arg0
))
9432 tem
= fold_binary_op_with_conditional_arg (loc
, code
, type
, op0
, op1
,
9434 /*cond_first_p=*/1);
9435 if (tem
!= NULL_TREE
)
9439 if (TREE_CODE (arg1
) == COND_EXPR
9440 || TREE_CODE (arg1
) == VEC_COND_EXPR
9441 || COMPARISON_CLASS_P (arg1
))
9443 tem
= fold_binary_op_with_conditional_arg (loc
, code
, type
, op0
, op1
,
9445 /*cond_first_p=*/0);
9446 if (tem
!= NULL_TREE
)
9454 /* MEM[&MEM[p, CST1], CST2] -> MEM[p, CST1 + CST2]. */
9455 if (TREE_CODE (arg0
) == ADDR_EXPR
9456 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == MEM_REF
)
9458 tree iref
= TREE_OPERAND (arg0
, 0);
9459 return fold_build2 (MEM_REF
, type
,
9460 TREE_OPERAND (iref
, 0),
9461 int_const_binop (PLUS_EXPR
, arg1
,
9462 TREE_OPERAND (iref
, 1)));
9465 /* MEM[&a.b, CST2] -> MEM[&a, offsetof (a, b) + CST2]. */
9466 if (TREE_CODE (arg0
) == ADDR_EXPR
9467 && handled_component_p (TREE_OPERAND (arg0
, 0)))
9471 base
= get_addr_base_and_unit_offset (TREE_OPERAND (arg0
, 0),
9475 return fold_build2 (MEM_REF
, type
,
9476 build_fold_addr_expr (base
),
9477 int_const_binop (PLUS_EXPR
, arg1
,
9478 size_int (coffset
)));
9483 case POINTER_PLUS_EXPR
:
9484 /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */
9485 if (INTEGRAL_TYPE_P (TREE_TYPE (arg1
))
9486 && INTEGRAL_TYPE_P (TREE_TYPE (arg0
)))
9487 return fold_convert_loc (loc
, type
,
9488 fold_build2_loc (loc
, PLUS_EXPR
, sizetype
,
9489 fold_convert_loc (loc
, sizetype
,
9491 fold_convert_loc (loc
, sizetype
,
9497 if (INTEGRAL_TYPE_P (type
) || VECTOR_INTEGER_TYPE_P (type
))
9499 /* X + (X / CST) * -CST is X % CST. */
9500 if (TREE_CODE (arg1
) == MULT_EXPR
9501 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == TRUNC_DIV_EXPR
9502 && operand_equal_p (arg0
,
9503 TREE_OPERAND (TREE_OPERAND (arg1
, 0), 0), 0))
9505 tree cst0
= TREE_OPERAND (TREE_OPERAND (arg1
, 0), 1);
9506 tree cst1
= TREE_OPERAND (arg1
, 1);
9507 tree sum
= fold_binary_loc (loc
, PLUS_EXPR
, TREE_TYPE (cst1
),
9509 if (sum
&& integer_zerop (sum
))
9510 return fold_convert_loc (loc
, type
,
9511 fold_build2_loc (loc
, TRUNC_MOD_EXPR
,
9512 TREE_TYPE (arg0
), arg0
,
9517 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the same or
9518 one. Make sure the type is not saturating and has the signedness of
9519 the stripped operands, as fold_plusminus_mult_expr will re-associate.
9520 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
9521 if ((TREE_CODE (arg0
) == MULT_EXPR
9522 || TREE_CODE (arg1
) == MULT_EXPR
)
9523 && !TYPE_SATURATING (type
)
9524 && TYPE_UNSIGNED (type
) == TYPE_UNSIGNED (TREE_TYPE (arg0
))
9525 && TYPE_UNSIGNED (type
) == TYPE_UNSIGNED (TREE_TYPE (arg1
))
9526 && (!FLOAT_TYPE_P (type
) || flag_associative_math
))
9528 tree tem
= fold_plusminus_mult_expr (loc
, code
, type
, arg0
, arg1
);
9533 if (! FLOAT_TYPE_P (type
))
9535 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
9536 (plus (plus (mult) (mult)) (foo)) so that we can
9537 take advantage of the factoring cases below. */
9538 if (ANY_INTEGRAL_TYPE_P (type
)
9539 && TYPE_OVERFLOW_WRAPS (type
)
9540 && (((TREE_CODE (arg0
) == PLUS_EXPR
9541 || TREE_CODE (arg0
) == MINUS_EXPR
)
9542 && TREE_CODE (arg1
) == MULT_EXPR
)
9543 || ((TREE_CODE (arg1
) == PLUS_EXPR
9544 || TREE_CODE (arg1
) == MINUS_EXPR
)
9545 && TREE_CODE (arg0
) == MULT_EXPR
)))
9547 tree parg0
, parg1
, parg
, marg
;
9548 enum tree_code pcode
;
9550 if (TREE_CODE (arg1
) == MULT_EXPR
)
9551 parg
= arg0
, marg
= arg1
;
9553 parg
= arg1
, marg
= arg0
;
9554 pcode
= TREE_CODE (parg
);
9555 parg0
= TREE_OPERAND (parg
, 0);
9556 parg1
= TREE_OPERAND (parg
, 1);
9560 if (TREE_CODE (parg0
) == MULT_EXPR
9561 && TREE_CODE (parg1
) != MULT_EXPR
)
9562 return fold_build2_loc (loc
, pcode
, type
,
9563 fold_build2_loc (loc
, PLUS_EXPR
, type
,
9564 fold_convert_loc (loc
, type
,
9566 fold_convert_loc (loc
, type
,
9568 fold_convert_loc (loc
, type
, parg1
));
9569 if (TREE_CODE (parg0
) != MULT_EXPR
9570 && TREE_CODE (parg1
) == MULT_EXPR
)
9572 fold_build2_loc (loc
, PLUS_EXPR
, type
,
9573 fold_convert_loc (loc
, type
, parg0
),
9574 fold_build2_loc (loc
, pcode
, type
,
9575 fold_convert_loc (loc
, type
, marg
),
9576 fold_convert_loc (loc
, type
,
9582 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y )
9583 to __complex__ ( x, y ). This is not the same for SNaNs or
9584 if signed zeros are involved. */
9585 if (!HONOR_SNANS (element_mode (arg0
))
9586 && !HONOR_SIGNED_ZEROS (element_mode (arg0
))
9587 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0
)))
9589 tree rtype
= TREE_TYPE (TREE_TYPE (arg0
));
9590 tree arg0r
= fold_unary_loc (loc
, REALPART_EXPR
, rtype
, arg0
);
9591 tree arg0i
= fold_unary_loc (loc
, IMAGPART_EXPR
, rtype
, arg0
);
9592 bool arg0rz
= false, arg0iz
= false;
9593 if ((arg0r
&& (arg0rz
= real_zerop (arg0r
)))
9594 || (arg0i
&& (arg0iz
= real_zerop (arg0i
))))
9596 tree arg1r
= fold_unary_loc (loc
, REALPART_EXPR
, rtype
, arg1
);
9597 tree arg1i
= fold_unary_loc (loc
, IMAGPART_EXPR
, rtype
, arg1
);
9598 if (arg0rz
&& arg1i
&& real_zerop (arg1i
))
9600 tree rp
= arg1r
? arg1r
9601 : build1 (REALPART_EXPR
, rtype
, arg1
);
9602 tree ip
= arg0i
? arg0i
9603 : build1 (IMAGPART_EXPR
, rtype
, arg0
);
9604 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rp
, ip
);
9606 else if (arg0iz
&& arg1r
&& real_zerop (arg1r
))
9608 tree rp
= arg0r
? arg0r
9609 : build1 (REALPART_EXPR
, rtype
, arg0
);
9610 tree ip
= arg1i
? arg1i
9611 : build1 (IMAGPART_EXPR
, rtype
, arg1
);
9612 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rp
, ip
);
9617 /* Convert a + (b*c + d*e) into (a + b*c) + d*e.
9618 We associate floats only if the user has specified
9619 -fassociative-math. */
9620 if (flag_associative_math
9621 && TREE_CODE (arg1
) == PLUS_EXPR
9622 && TREE_CODE (arg0
) != MULT_EXPR
)
9624 tree tree10
= TREE_OPERAND (arg1
, 0);
9625 tree tree11
= TREE_OPERAND (arg1
, 1);
9626 if (TREE_CODE (tree11
) == MULT_EXPR
9627 && TREE_CODE (tree10
) == MULT_EXPR
)
9630 tree0
= fold_build2_loc (loc
, PLUS_EXPR
, type
, arg0
, tree10
);
9631 return fold_build2_loc (loc
, PLUS_EXPR
, type
, tree0
, tree11
);
9634 /* Convert (b*c + d*e) + a into b*c + (d*e +a).
9635 We associate floats only if the user has specified
9636 -fassociative-math. */
9637 if (flag_associative_math
9638 && TREE_CODE (arg0
) == PLUS_EXPR
9639 && TREE_CODE (arg1
) != MULT_EXPR
)
9641 tree tree00
= TREE_OPERAND (arg0
, 0);
9642 tree tree01
= TREE_OPERAND (arg0
, 1);
9643 if (TREE_CODE (tree01
) == MULT_EXPR
9644 && TREE_CODE (tree00
) == MULT_EXPR
)
9647 tree0
= fold_build2_loc (loc
, PLUS_EXPR
, type
, tree01
, arg1
);
9648 return fold_build2_loc (loc
, PLUS_EXPR
, type
, tree00
, tree0
);
9654 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
9655 is a rotate of A by C1 bits. */
9656 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
9657 is a rotate of A by B bits.
9658 Similarly for (A << B) | (A >> (-B & C3)) where C3 is Z-1,
9659 though in this case CODE must be | and not + or ^, otherwise
9660 it doesn't return A when B is 0. */
9662 enum tree_code code0
, code1
;
9664 code0
= TREE_CODE (arg0
);
9665 code1
= TREE_CODE (arg1
);
9666 if (((code0
== RSHIFT_EXPR
&& code1
== LSHIFT_EXPR
)
9667 || (code1
== RSHIFT_EXPR
&& code0
== LSHIFT_EXPR
))
9668 && operand_equal_p (TREE_OPERAND (arg0
, 0),
9669 TREE_OPERAND (arg1
, 0), 0)
9670 && (rtype
= TREE_TYPE (TREE_OPERAND (arg0
, 0)),
9671 TYPE_UNSIGNED (rtype
))
9672 /* Only create rotates in complete modes. Other cases are not
9673 expanded properly. */
9674 && (element_precision (rtype
)
9675 == GET_MODE_UNIT_PRECISION (TYPE_MODE (rtype
))))
9677 tree tree01
, tree11
;
9678 tree orig_tree01
, orig_tree11
;
9679 enum tree_code code01
, code11
;
9681 tree01
= orig_tree01
= TREE_OPERAND (arg0
, 1);
9682 tree11
= orig_tree11
= TREE_OPERAND (arg1
, 1);
9683 STRIP_NOPS (tree01
);
9684 STRIP_NOPS (tree11
);
9685 code01
= TREE_CODE (tree01
);
9686 code11
= TREE_CODE (tree11
);
9687 if (code11
!= MINUS_EXPR
9688 && (code01
== MINUS_EXPR
|| code01
== BIT_AND_EXPR
))
9690 std::swap (code0
, code1
);
9691 std::swap (code01
, code11
);
9692 std::swap (tree01
, tree11
);
9693 std::swap (orig_tree01
, orig_tree11
);
9695 if (code01
== INTEGER_CST
9696 && code11
== INTEGER_CST
9697 && (wi::to_widest (tree01
) + wi::to_widest (tree11
)
9698 == element_precision (rtype
)))
9700 tem
= build2_loc (loc
, LROTATE_EXPR
,
9701 rtype
, TREE_OPERAND (arg0
, 0),
9702 code0
== LSHIFT_EXPR
9703 ? orig_tree01
: orig_tree11
);
9704 return fold_convert_loc (loc
, type
, tem
);
9706 else if (code11
== MINUS_EXPR
)
9708 tree tree110
, tree111
;
9709 tree110
= TREE_OPERAND (tree11
, 0);
9710 tree111
= TREE_OPERAND (tree11
, 1);
9711 STRIP_NOPS (tree110
);
9712 STRIP_NOPS (tree111
);
9713 if (TREE_CODE (tree110
) == INTEGER_CST
9714 && compare_tree_int (tree110
,
9715 element_precision (rtype
)) == 0
9716 && operand_equal_p (tree01
, tree111
, 0))
9718 tem
= build2_loc (loc
, (code0
== LSHIFT_EXPR
9719 ? LROTATE_EXPR
: RROTATE_EXPR
),
9720 rtype
, TREE_OPERAND (arg0
, 0),
9722 return fold_convert_loc (loc
, type
, tem
);
9725 else if (code
== BIT_IOR_EXPR
9726 && code11
== BIT_AND_EXPR
9727 && pow2p_hwi (element_precision (rtype
)))
9729 tree tree110
, tree111
;
9730 tree110
= TREE_OPERAND (tree11
, 0);
9731 tree111
= TREE_OPERAND (tree11
, 1);
9732 STRIP_NOPS (tree110
);
9733 STRIP_NOPS (tree111
);
9734 if (TREE_CODE (tree110
) == NEGATE_EXPR
9735 && TREE_CODE (tree111
) == INTEGER_CST
9736 && compare_tree_int (tree111
,
9737 element_precision (rtype
) - 1) == 0
9738 && operand_equal_p (tree01
, TREE_OPERAND (tree110
, 0), 0))
9740 tem
= build2_loc (loc
, (code0
== LSHIFT_EXPR
9741 ? LROTATE_EXPR
: RROTATE_EXPR
),
9742 rtype
, TREE_OPERAND (arg0
, 0),
9744 return fold_convert_loc (loc
, type
, tem
);
9751 /* In most languages, can't associate operations on floats through
9752 parentheses. Rather than remember where the parentheses were, we
9753 don't associate floats at all, unless the user has specified
9755 And, we need to make sure type is not saturating. */
9757 if ((! FLOAT_TYPE_P (type
) || flag_associative_math
)
9758 && !TYPE_SATURATING (type
))
9760 tree var0
, minus_var0
, con0
, minus_con0
, lit0
, minus_lit0
;
9761 tree var1
, minus_var1
, con1
, minus_con1
, lit1
, minus_lit1
;
9765 /* Split both trees into variables, constants, and literals. Then
9766 associate each group together, the constants with literals,
9767 then the result with variables. This increases the chances of
9768 literals being recombined later and of generating relocatable
9769 expressions for the sum of a constant and literal. */
9770 var0
= split_tree (arg0
, type
, code
,
9771 &minus_var0
, &con0
, &minus_con0
,
9772 &lit0
, &minus_lit0
, 0);
9773 var1
= split_tree (arg1
, type
, code
,
9774 &minus_var1
, &con1
, &minus_con1
,
9775 &lit1
, &minus_lit1
, code
== MINUS_EXPR
);
9777 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
9778 if (code
== MINUS_EXPR
)
9781 /* With undefined overflow prefer doing association in a type
9782 which wraps on overflow, if that is one of the operand types. */
9783 if ((POINTER_TYPE_P (type
) || INTEGRAL_TYPE_P (type
))
9784 && !TYPE_OVERFLOW_WRAPS (type
))
9786 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
9787 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0
)))
9788 atype
= TREE_TYPE (arg0
);
9789 else if (INTEGRAL_TYPE_P (TREE_TYPE (arg1
))
9790 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1
)))
9791 atype
= TREE_TYPE (arg1
);
9792 gcc_assert (TYPE_PRECISION (atype
) == TYPE_PRECISION (type
));
9795 /* With undefined overflow we can only associate constants with one
9796 variable, and constants whose association doesn't overflow. */
9797 if ((POINTER_TYPE_P (atype
) || INTEGRAL_TYPE_P (atype
))
9798 && !TYPE_OVERFLOW_WRAPS (atype
))
9800 if ((var0
&& var1
) || (minus_var0
&& minus_var1
))
9802 /* ??? If split_tree would handle NEGATE_EXPR we could
9803 simply reject these cases and the allowed cases would
9804 be the var0/minus_var1 ones. */
9805 tree tmp0
= var0
? var0
: minus_var0
;
9806 tree tmp1
= var1
? var1
: minus_var1
;
9807 bool one_neg
= false;
9809 if (TREE_CODE (tmp0
) == NEGATE_EXPR
)
9811 tmp0
= TREE_OPERAND (tmp0
, 0);
9814 if (CONVERT_EXPR_P (tmp0
)
9815 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp0
, 0)))
9816 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp0
, 0)))
9817 <= TYPE_PRECISION (atype
)))
9818 tmp0
= TREE_OPERAND (tmp0
, 0);
9819 if (TREE_CODE (tmp1
) == NEGATE_EXPR
)
9821 tmp1
= TREE_OPERAND (tmp1
, 0);
9824 if (CONVERT_EXPR_P (tmp1
)
9825 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp1
, 0)))
9826 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp1
, 0)))
9827 <= TYPE_PRECISION (atype
)))
9828 tmp1
= TREE_OPERAND (tmp1
, 0);
9829 /* The only case we can still associate with two variables
9830 is if they cancel out. */
9832 || !operand_equal_p (tmp0
, tmp1
, 0))
9835 else if ((var0
&& minus_var1
9836 && ! operand_equal_p (var0
, minus_var1
, 0))
9837 || (minus_var0
&& var1
9838 && ! operand_equal_p (minus_var0
, var1
, 0)))
9842 /* Only do something if we found more than two objects. Otherwise,
9843 nothing has changed and we risk infinite recursion. */
9845 && ((var0
!= 0) + (var1
!= 0)
9846 + (minus_var0
!= 0) + (minus_var1
!= 0)
9847 + (con0
!= 0) + (con1
!= 0)
9848 + (minus_con0
!= 0) + (minus_con1
!= 0)
9849 + (lit0
!= 0) + (lit1
!= 0)
9850 + (minus_lit0
!= 0) + (minus_lit1
!= 0)) > 2)
9852 var0
= associate_trees (loc
, var0
, var1
, code
, atype
);
9853 minus_var0
= associate_trees (loc
, minus_var0
, minus_var1
,
9855 con0
= associate_trees (loc
, con0
, con1
, code
, atype
);
9856 minus_con0
= associate_trees (loc
, minus_con0
, minus_con1
,
9858 lit0
= associate_trees (loc
, lit0
, lit1
, code
, atype
);
9859 minus_lit0
= associate_trees (loc
, minus_lit0
, minus_lit1
,
9862 if (minus_var0
&& var0
)
9864 var0
= associate_trees (loc
, var0
, minus_var0
,
9868 if (minus_con0
&& con0
)
9870 con0
= associate_trees (loc
, con0
, minus_con0
,
9875 /* Preserve the MINUS_EXPR if the negative part of the literal is
9876 greater than the positive part. Otherwise, the multiplicative
9877 folding code (i.e extract_muldiv) may be fooled in case
9878 unsigned constants are subtracted, like in the following
9879 example: ((X*2 + 4) - 8U)/2. */
9880 if (minus_lit0
&& lit0
)
9882 if (TREE_CODE (lit0
) == INTEGER_CST
9883 && TREE_CODE (minus_lit0
) == INTEGER_CST
9884 && tree_int_cst_lt (lit0
, minus_lit0
)
9885 /* But avoid ending up with only negated parts. */
9888 minus_lit0
= associate_trees (loc
, minus_lit0
, lit0
,
9894 lit0
= associate_trees (loc
, lit0
, minus_lit0
,
9900 /* Don't introduce overflows through reassociation. */
9901 if ((lit0
&& TREE_OVERFLOW_P (lit0
))
9902 || (minus_lit0
&& TREE_OVERFLOW_P (minus_lit0
)))
9905 /* Eliminate lit0 and minus_lit0 to con0 and minus_con0. */
9906 con0
= associate_trees (loc
, con0
, lit0
, code
, atype
);
9908 minus_con0
= associate_trees (loc
, minus_con0
, minus_lit0
,
9912 /* Eliminate minus_con0. */
9916 con0
= associate_trees (loc
, con0
, minus_con0
,
9919 var0
= associate_trees (loc
, var0
, minus_con0
,
9926 /* Eliminate minus_var0. */
9930 con0
= associate_trees (loc
, con0
, minus_var0
,
9938 fold_convert_loc (loc
, type
, associate_trees (loc
, var0
, con0
,
9945 case POINTER_DIFF_EXPR
:
9947 /* Fold &a[i] - &a[j] to i-j. */
9948 if (TREE_CODE (arg0
) == ADDR_EXPR
9949 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == ARRAY_REF
9950 && TREE_CODE (arg1
) == ADDR_EXPR
9951 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == ARRAY_REF
)
9953 tree tem
= fold_addr_of_array_ref_difference (loc
, type
,
9954 TREE_OPERAND (arg0
, 0),
9955 TREE_OPERAND (arg1
, 0),
9957 == POINTER_DIFF_EXPR
);
9962 /* Further transformations are not for pointers. */
9963 if (code
== POINTER_DIFF_EXPR
)
9966 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
9967 if (TREE_CODE (arg0
) == NEGATE_EXPR
9968 && negate_expr_p (op1
)
9969 /* If arg0 is e.g. unsigned int and type is int, then this could
9970 introduce UB, because if A is INT_MIN at runtime, the original
9971 expression can be well defined while the latter is not.
9973 && !(ANY_INTEGRAL_TYPE_P (type
)
9974 && TYPE_OVERFLOW_UNDEFINED (type
)
9975 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
9976 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0
))))
9977 return fold_build2_loc (loc
, MINUS_EXPR
, type
, negate_expr (op1
),
9978 fold_convert_loc (loc
, type
,
9979 TREE_OPERAND (arg0
, 0)));
9981 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to
9982 __complex__ ( x, -y ). This is not the same for SNaNs or if
9983 signed zeros are involved. */
9984 if (!HONOR_SNANS (element_mode (arg0
))
9985 && !HONOR_SIGNED_ZEROS (element_mode (arg0
))
9986 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0
)))
9988 tree rtype
= TREE_TYPE (TREE_TYPE (arg0
));
9989 tree arg0r
= fold_unary_loc (loc
, REALPART_EXPR
, rtype
, arg0
);
9990 tree arg0i
= fold_unary_loc (loc
, IMAGPART_EXPR
, rtype
, arg0
);
9991 bool arg0rz
= false, arg0iz
= false;
9992 if ((arg0r
&& (arg0rz
= real_zerop (arg0r
)))
9993 || (arg0i
&& (arg0iz
= real_zerop (arg0i
))))
9995 tree arg1r
= fold_unary_loc (loc
, REALPART_EXPR
, rtype
, arg1
);
9996 tree arg1i
= fold_unary_loc (loc
, IMAGPART_EXPR
, rtype
, arg1
);
9997 if (arg0rz
&& arg1i
&& real_zerop (arg1i
))
9999 tree rp
= fold_build1_loc (loc
, NEGATE_EXPR
, rtype
,
10001 : build1 (REALPART_EXPR
, rtype
, arg1
));
10002 tree ip
= arg0i
? arg0i
10003 : build1 (IMAGPART_EXPR
, rtype
, arg0
);
10004 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rp
, ip
);
10006 else if (arg0iz
&& arg1r
&& real_zerop (arg1r
))
10008 tree rp
= arg0r
? arg0r
10009 : build1 (REALPART_EXPR
, rtype
, arg0
);
10010 tree ip
= fold_build1_loc (loc
, NEGATE_EXPR
, rtype
,
10012 : build1 (IMAGPART_EXPR
, rtype
, arg1
));
10013 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rp
, ip
);
10018 /* A - B -> A + (-B) if B is easily negatable. */
10019 if (negate_expr_p (op1
)
10020 && ! TYPE_OVERFLOW_SANITIZED (type
)
10021 && ((FLOAT_TYPE_P (type
)
10022 /* Avoid this transformation if B is a positive REAL_CST. */
10023 && (TREE_CODE (op1
) != REAL_CST
10024 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (op1
))))
10025 || INTEGRAL_TYPE_P (type
)))
10026 return fold_build2_loc (loc
, PLUS_EXPR
, type
,
10027 fold_convert_loc (loc
, type
, arg0
),
10028 negate_expr (op1
));
10030 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the same or
10031 one. Make sure the type is not saturating and has the signedness of
10032 the stripped operands, as fold_plusminus_mult_expr will re-associate.
10033 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
10034 if ((TREE_CODE (arg0
) == MULT_EXPR
10035 || TREE_CODE (arg1
) == MULT_EXPR
)
10036 && !TYPE_SATURATING (type
)
10037 && TYPE_UNSIGNED (type
) == TYPE_UNSIGNED (TREE_TYPE (arg0
))
10038 && TYPE_UNSIGNED (type
) == TYPE_UNSIGNED (TREE_TYPE (arg1
))
10039 && (!FLOAT_TYPE_P (type
) || flag_associative_math
))
10041 tree tem
= fold_plusminus_mult_expr (loc
, code
, type
, arg0
, arg1
);
10049 if (! FLOAT_TYPE_P (type
))
10051 /* Transform x * -C into -x * C if x is easily negatable. */
10052 if (TREE_CODE (op1
) == INTEGER_CST
10053 && tree_int_cst_sgn (op1
) == -1
10054 && negate_expr_p (op0
)
10055 && negate_expr_p (op1
)
10056 && (tem
= negate_expr (op1
)) != op1
10057 && ! TREE_OVERFLOW (tem
))
10058 return fold_build2_loc (loc
, MULT_EXPR
, type
,
10059 fold_convert_loc (loc
, type
,
10060 negate_expr (op0
)), tem
);
10062 strict_overflow_p
= false;
10063 if (TREE_CODE (arg1
) == INTEGER_CST
10064 && (tem
= extract_muldiv (op0
, arg1
, code
, NULL_TREE
,
10065 &strict_overflow_p
)) != 0)
10067 if (strict_overflow_p
)
10068 fold_overflow_warning (("assuming signed overflow does not "
10069 "occur when simplifying "
10071 WARN_STRICT_OVERFLOW_MISC
);
10072 return fold_convert_loc (loc
, type
, tem
);
10075 /* Optimize z * conj(z) for integer complex numbers. */
10076 if (TREE_CODE (arg0
) == CONJ_EXPR
10077 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10078 return fold_mult_zconjz (loc
, type
, arg1
);
10079 if (TREE_CODE (arg1
) == CONJ_EXPR
10080 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10081 return fold_mult_zconjz (loc
, type
, arg0
);
10085 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z).
10086 This is not the same for NaNs or if signed zeros are
10088 if (!HONOR_NANS (arg0
)
10089 && !HONOR_SIGNED_ZEROS (element_mode (arg0
))
10090 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0
))
10091 && TREE_CODE (arg1
) == COMPLEX_CST
10092 && real_zerop (TREE_REALPART (arg1
)))
10094 tree rtype
= TREE_TYPE (TREE_TYPE (arg0
));
10095 if (real_onep (TREE_IMAGPART (arg1
)))
10097 fold_build2_loc (loc
, COMPLEX_EXPR
, type
,
10098 negate_expr (fold_build1_loc (loc
, IMAGPART_EXPR
,
10100 fold_build1_loc (loc
, REALPART_EXPR
, rtype
, arg0
));
10101 else if (real_minus_onep (TREE_IMAGPART (arg1
)))
10103 fold_build2_loc (loc
, COMPLEX_EXPR
, type
,
10104 fold_build1_loc (loc
, IMAGPART_EXPR
, rtype
, arg0
),
10105 negate_expr (fold_build1_loc (loc
, REALPART_EXPR
,
10109 /* Optimize z * conj(z) for floating point complex numbers.
10110 Guarded by flag_unsafe_math_optimizations as non-finite
10111 imaginary components don't produce scalar results. */
10112 if (flag_unsafe_math_optimizations
10113 && TREE_CODE (arg0
) == CONJ_EXPR
10114 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10115 return fold_mult_zconjz (loc
, type
, arg1
);
10116 if (flag_unsafe_math_optimizations
10117 && TREE_CODE (arg1
) == CONJ_EXPR
10118 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10119 return fold_mult_zconjz (loc
, type
, arg0
);
10124 /* Canonicalize (X & C1) | C2. */
10125 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10126 && TREE_CODE (arg1
) == INTEGER_CST
10127 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
10129 int width
= TYPE_PRECISION (type
), w
;
10130 wide_int c1
= wi::to_wide (TREE_OPERAND (arg0
, 1));
10131 wide_int c2
= wi::to_wide (arg1
);
10133 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
10134 if ((c1
& c2
) == c1
)
10135 return omit_one_operand_loc (loc
, type
, arg1
,
10136 TREE_OPERAND (arg0
, 0));
10138 wide_int msk
= wi::mask (width
, false,
10139 TYPE_PRECISION (TREE_TYPE (arg1
)));
10141 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
10142 if (wi::bit_and_not (msk
, c1
| c2
) == 0)
10144 tem
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10145 return fold_build2_loc (loc
, BIT_IOR_EXPR
, type
, tem
, arg1
);
10148 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2,
10149 unless (C1 & ~C2) | (C2 & C3) for some C3 is a mask of some
10150 mode which allows further optimizations. */
10153 wide_int c3
= wi::bit_and_not (c1
, c2
);
10154 for (w
= BITS_PER_UNIT
; w
<= width
; w
<<= 1)
10156 wide_int mask
= wi::mask (w
, false,
10157 TYPE_PRECISION (type
));
10158 if (((c1
| c2
) & mask
) == mask
10159 && wi::bit_and_not (c1
, mask
) == 0)
10168 tem
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10169 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, type
, tem
,
10170 wide_int_to_tree (type
, c3
));
10171 return fold_build2_loc (loc
, BIT_IOR_EXPR
, type
, tem
, arg1
);
10175 /* See if this can be simplified into a rotate first. If that
10176 is unsuccessful continue in the association code. */
10180 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */
10181 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10182 && INTEGRAL_TYPE_P (type
)
10183 && integer_onep (TREE_OPERAND (arg0
, 1))
10184 && integer_onep (arg1
))
10185 return fold_build2_loc (loc
, EQ_EXPR
, type
, arg0
,
10186 build_zero_cst (TREE_TYPE (arg0
)));
10188 /* See if this can be simplified into a rotate first. If that
10189 is unsuccessful continue in the association code. */
10193 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */
10194 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
10195 && INTEGRAL_TYPE_P (type
)
10196 && integer_onep (TREE_OPERAND (arg0
, 1))
10197 && integer_onep (arg1
))
10200 tem
= TREE_OPERAND (arg0
, 0);
10201 tem2
= fold_convert_loc (loc
, TREE_TYPE (tem
), arg1
);
10202 tem2
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (tem
),
10204 return fold_build2_loc (loc
, EQ_EXPR
, type
, tem2
,
10205 build_zero_cst (TREE_TYPE (tem
)));
10207 /* Fold ~X & 1 as (X & 1) == 0. */
10208 if (TREE_CODE (arg0
) == BIT_NOT_EXPR
10209 && INTEGRAL_TYPE_P (type
)
10210 && integer_onep (arg1
))
10213 tem
= TREE_OPERAND (arg0
, 0);
10214 tem2
= fold_convert_loc (loc
, TREE_TYPE (tem
), arg1
);
10215 tem2
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (tem
),
10217 return fold_build2_loc (loc
, EQ_EXPR
, type
, tem2
,
10218 build_zero_cst (TREE_TYPE (tem
)));
10220 /* Fold !X & 1 as X == 0. */
10221 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
10222 && integer_onep (arg1
))
10224 tem
= TREE_OPERAND (arg0
, 0);
10225 return fold_build2_loc (loc
, EQ_EXPR
, type
, tem
,
10226 build_zero_cst (TREE_TYPE (tem
)));
10229 /* Fold (X * Y) & -(1 << CST) to X * Y if Y is a constant
10230 multiple of 1 << CST. */
10231 if (TREE_CODE (arg1
) == INTEGER_CST
)
10233 wi::tree_to_wide_ref cst1
= wi::to_wide (arg1
);
10234 wide_int ncst1
= -cst1
;
10235 if ((cst1
& ncst1
) == ncst1
10236 && multiple_of_p (type
, arg0
,
10237 wide_int_to_tree (TREE_TYPE (arg1
), ncst1
)))
10238 return fold_convert_loc (loc
, type
, arg0
);
10241 /* Fold (X * CST1) & CST2 to zero if we can, or drop known zero
10243 if (TREE_CODE (arg1
) == INTEGER_CST
10244 && TREE_CODE (arg0
) == MULT_EXPR
10245 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
10247 wi::tree_to_wide_ref warg1
= wi::to_wide (arg1
);
10249 = mask_with_tz (type
, warg1
, wi::to_wide (TREE_OPERAND (arg0
, 1)));
10252 return omit_two_operands_loc (loc
, type
, build_zero_cst (type
),
10254 else if (masked
!= warg1
)
10256 /* Avoid the transform if arg1 is a mask of some
10257 mode which allows further optimizations. */
10258 int pop
= wi::popcount (warg1
);
10259 if (!(pop
>= BITS_PER_UNIT
10261 && wi::mask (pop
, false, warg1
.get_precision ()) == warg1
))
10262 return fold_build2_loc (loc
, code
, type
, op0
,
10263 wide_int_to_tree (type
, masked
));
10267 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
10268 if (TREE_CODE (arg1
) == INTEGER_CST
&& TREE_CODE (arg0
) == NOP_EXPR
10269 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0
, 0))))
10271 prec
= element_precision (TREE_TYPE (TREE_OPERAND (arg0
, 0)));
10273 wide_int mask
= wide_int::from (wi::to_wide (arg1
), prec
, UNSIGNED
);
10276 fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10282 /* Don't touch a floating-point divide by zero unless the mode
10283 of the constant can represent infinity. */
10284 if (TREE_CODE (arg1
) == REAL_CST
10285 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1
)))
10286 && real_zerop (arg1
))
10289 /* (-A) / (-B) -> A / B */
10290 if (TREE_CODE (arg0
) == NEGATE_EXPR
&& negate_expr_p (arg1
))
10291 return fold_build2_loc (loc
, RDIV_EXPR
, type
,
10292 TREE_OPERAND (arg0
, 0),
10293 negate_expr (arg1
));
10294 if (TREE_CODE (arg1
) == NEGATE_EXPR
&& negate_expr_p (arg0
))
10295 return fold_build2_loc (loc
, RDIV_EXPR
, type
,
10296 negate_expr (arg0
),
10297 TREE_OPERAND (arg1
, 0));
10300 case TRUNC_DIV_EXPR
:
10303 case FLOOR_DIV_EXPR
:
10304 /* Simplify A / (B << N) where A and B are positive and B is
10305 a power of 2, to A >> (N + log2(B)). */
10306 strict_overflow_p
= false;
10307 if (TREE_CODE (arg1
) == LSHIFT_EXPR
10308 && (TYPE_UNSIGNED (type
)
10309 || tree_expr_nonnegative_warnv_p (op0
, &strict_overflow_p
)))
10311 tree sval
= TREE_OPERAND (arg1
, 0);
10312 if (integer_pow2p (sval
) && tree_int_cst_sgn (sval
) > 0)
10314 tree sh_cnt
= TREE_OPERAND (arg1
, 1);
10315 tree pow2
= build_int_cst (TREE_TYPE (sh_cnt
),
10316 wi::exact_log2 (wi::to_wide (sval
)));
10318 if (strict_overflow_p
)
10319 fold_overflow_warning (("assuming signed overflow does not "
10320 "occur when simplifying A / (B << N)"),
10321 WARN_STRICT_OVERFLOW_MISC
);
10323 sh_cnt
= fold_build2_loc (loc
, PLUS_EXPR
, TREE_TYPE (sh_cnt
),
10325 return fold_build2_loc (loc
, RSHIFT_EXPR
, type
,
10326 fold_convert_loc (loc
, type
, arg0
), sh_cnt
);
10332 case ROUND_DIV_EXPR
:
10333 case CEIL_DIV_EXPR
:
10334 case EXACT_DIV_EXPR
:
10335 if (integer_zerop (arg1
))
10338 /* Convert -A / -B to A / B when the type is signed and overflow is
10340 if ((!INTEGRAL_TYPE_P (type
) || TYPE_OVERFLOW_UNDEFINED (type
))
10341 && TREE_CODE (op0
) == NEGATE_EXPR
10342 && negate_expr_p (op1
))
10344 if (INTEGRAL_TYPE_P (type
))
10345 fold_overflow_warning (("assuming signed overflow does not occur "
10346 "when distributing negation across "
10348 WARN_STRICT_OVERFLOW_MISC
);
10349 return fold_build2_loc (loc
, code
, type
,
10350 fold_convert_loc (loc
, type
,
10351 TREE_OPERAND (arg0
, 0)),
10352 negate_expr (op1
));
10354 if ((!INTEGRAL_TYPE_P (type
) || TYPE_OVERFLOW_UNDEFINED (type
))
10355 && TREE_CODE (arg1
) == NEGATE_EXPR
10356 && negate_expr_p (op0
))
10358 if (INTEGRAL_TYPE_P (type
))
10359 fold_overflow_warning (("assuming signed overflow does not occur "
10360 "when distributing negation across "
10362 WARN_STRICT_OVERFLOW_MISC
);
10363 return fold_build2_loc (loc
, code
, type
,
10365 fold_convert_loc (loc
, type
,
10366 TREE_OPERAND (arg1
, 0)));
10369 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
10370 operation, EXACT_DIV_EXPR.
10372 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
10373 At one time others generated faster code, it's not clear if they do
10374 after the last round to changes to the DIV code in expmed.c. */
10375 if ((code
== CEIL_DIV_EXPR
|| code
== FLOOR_DIV_EXPR
)
10376 && multiple_of_p (type
, arg0
, arg1
))
10377 return fold_build2_loc (loc
, EXACT_DIV_EXPR
, type
,
10378 fold_convert (type
, arg0
),
10379 fold_convert (type
, arg1
));
10381 strict_overflow_p
= false;
10382 if (TREE_CODE (arg1
) == INTEGER_CST
10383 && (tem
= extract_muldiv (op0
, arg1
, code
, NULL_TREE
,
10384 &strict_overflow_p
)) != 0)
10386 if (strict_overflow_p
)
10387 fold_overflow_warning (("assuming signed overflow does not occur "
10388 "when simplifying division"),
10389 WARN_STRICT_OVERFLOW_MISC
);
10390 return fold_convert_loc (loc
, type
, tem
);
10395 case CEIL_MOD_EXPR
:
10396 case FLOOR_MOD_EXPR
:
10397 case ROUND_MOD_EXPR
:
10398 case TRUNC_MOD_EXPR
:
10399 strict_overflow_p
= false;
10400 if (TREE_CODE (arg1
) == INTEGER_CST
10401 && (tem
= extract_muldiv (op0
, arg1
, code
, NULL_TREE
,
10402 &strict_overflow_p
)) != 0)
10404 if (strict_overflow_p
)
10405 fold_overflow_warning (("assuming signed overflow does not occur "
10406 "when simplifying modulus"),
10407 WARN_STRICT_OVERFLOW_MISC
);
10408 return fold_convert_loc (loc
, type
, tem
);
10417 /* Since negative shift count is not well-defined,
10418 don't try to compute it in the compiler. */
10419 if (TREE_CODE (arg1
) == INTEGER_CST
&& tree_int_cst_sgn (arg1
) < 0)
10422 prec
= element_precision (type
);
10424 /* If we have a rotate of a bit operation with the rotate count and
10425 the second operand of the bit operation both constant,
10426 permute the two operations. */
10427 if (code
== RROTATE_EXPR
&& TREE_CODE (arg1
) == INTEGER_CST
10428 && (TREE_CODE (arg0
) == BIT_AND_EXPR
10429 || TREE_CODE (arg0
) == BIT_IOR_EXPR
10430 || TREE_CODE (arg0
) == BIT_XOR_EXPR
)
10431 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
10433 tree arg00
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10434 tree arg01
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 1));
10435 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
,
10436 fold_build2_loc (loc
, code
, type
,
10438 fold_build2_loc (loc
, code
, type
,
10442 /* Two consecutive rotates adding up to the some integer
10443 multiple of the precision of the type can be ignored. */
10444 if (code
== RROTATE_EXPR
&& TREE_CODE (arg1
) == INTEGER_CST
10445 && TREE_CODE (arg0
) == RROTATE_EXPR
10446 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
10447 && wi::umod_trunc (wi::to_wide (arg1
)
10448 + wi::to_wide (TREE_OPERAND (arg0
, 1)),
10450 return fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10458 case TRUTH_ANDIF_EXPR
:
10459 /* Note that the operands of this must be ints
10460 and their values must be 0 or 1.
10461 ("true" is a fixed value perhaps depending on the language.) */
10462 /* If first arg is constant zero, return it. */
10463 if (integer_zerop (arg0
))
10464 return fold_convert_loc (loc
, type
, arg0
);
10466 case TRUTH_AND_EXPR
:
10467 /* If either arg is constant true, drop it. */
10468 if (TREE_CODE (arg0
) == INTEGER_CST
&& ! integer_zerop (arg0
))
10469 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg1
));
10470 if (TREE_CODE (arg1
) == INTEGER_CST
&& ! integer_zerop (arg1
)
10471 /* Preserve sequence points. */
10472 && (code
!= TRUTH_ANDIF_EXPR
|| ! TREE_SIDE_EFFECTS (arg0
)))
10473 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
10474 /* If second arg is constant zero, result is zero, but first arg
10475 must be evaluated. */
10476 if (integer_zerop (arg1
))
10477 return omit_one_operand_loc (loc
, type
, arg1
, arg0
);
10478 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
10479 case will be handled here. */
10480 if (integer_zerop (arg0
))
10481 return omit_one_operand_loc (loc
, type
, arg0
, arg1
);
10483 /* !X && X is always false. */
10484 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
10485 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10486 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg1
);
10487 /* X && !X is always false. */
10488 if (TREE_CODE (arg1
) == TRUTH_NOT_EXPR
10489 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10490 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
10492 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
10493 means A >= Y && A != MAX, but in this case we know that
10496 if (!TREE_SIDE_EFFECTS (arg0
)
10497 && !TREE_SIDE_EFFECTS (arg1
))
10499 tem
= fold_to_nonsharp_ineq_using_bound (loc
, arg0
, arg1
);
10500 if (tem
&& !operand_equal_p (tem
, arg0
, 0))
10501 return fold_build2_loc (loc
, code
, type
, tem
, arg1
);
10503 tem
= fold_to_nonsharp_ineq_using_bound (loc
, arg1
, arg0
);
10504 if (tem
&& !operand_equal_p (tem
, arg1
, 0))
10505 return fold_build2_loc (loc
, code
, type
, arg0
, tem
);
10508 if ((tem
= fold_truth_andor (loc
, code
, type
, arg0
, arg1
, op0
, op1
))
10514 case TRUTH_ORIF_EXPR
:
10515 /* Note that the operands of this must be ints
10516 and their values must be 0 or true.
10517 ("true" is a fixed value perhaps depending on the language.) */
10518 /* If first arg is constant true, return it. */
10519 if (TREE_CODE (arg0
) == INTEGER_CST
&& ! integer_zerop (arg0
))
10520 return fold_convert_loc (loc
, type
, arg0
);
10522 case TRUTH_OR_EXPR
:
10523 /* If either arg is constant zero, drop it. */
10524 if (TREE_CODE (arg0
) == INTEGER_CST
&& integer_zerop (arg0
))
10525 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg1
));
10526 if (TREE_CODE (arg1
) == INTEGER_CST
&& integer_zerop (arg1
)
10527 /* Preserve sequence points. */
10528 && (code
!= TRUTH_ORIF_EXPR
|| ! TREE_SIDE_EFFECTS (arg0
)))
10529 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
10530 /* If second arg is constant true, result is true, but we must
10531 evaluate first arg. */
10532 if (TREE_CODE (arg1
) == INTEGER_CST
&& ! integer_zerop (arg1
))
10533 return omit_one_operand_loc (loc
, type
, arg1
, arg0
);
10534 /* Likewise for first arg, but note this only occurs here for
10536 if (TREE_CODE (arg0
) == INTEGER_CST
&& ! integer_zerop (arg0
))
10537 return omit_one_operand_loc (loc
, type
, arg0
, arg1
);
10539 /* !X || X is always true. */
10540 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
10541 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10542 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg1
);
10543 /* X || !X is always true. */
10544 if (TREE_CODE (arg1
) == TRUTH_NOT_EXPR
10545 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10546 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg0
);
10548 /* (X && !Y) || (!X && Y) is X ^ Y */
10549 if (TREE_CODE (arg0
) == TRUTH_AND_EXPR
10550 && TREE_CODE (arg1
) == TRUTH_AND_EXPR
)
10552 tree a0
, a1
, l0
, l1
, n0
, n1
;
10554 a0
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg1
, 0));
10555 a1
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg1
, 1));
10557 l0
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10558 l1
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 1));
10560 n0
= fold_build1_loc (loc
, TRUTH_NOT_EXPR
, type
, l0
);
10561 n1
= fold_build1_loc (loc
, TRUTH_NOT_EXPR
, type
, l1
);
10563 if ((operand_equal_p (n0
, a0
, 0)
10564 && operand_equal_p (n1
, a1
, 0))
10565 || (operand_equal_p (n0
, a1
, 0)
10566 && operand_equal_p (n1
, a0
, 0)))
10567 return fold_build2_loc (loc
, TRUTH_XOR_EXPR
, type
, l0
, n1
);
10570 if ((tem
= fold_truth_andor (loc
, code
, type
, arg0
, arg1
, op0
, op1
))
10576 case TRUTH_XOR_EXPR
:
10577 /* If the second arg is constant zero, drop it. */
10578 if (integer_zerop (arg1
))
10579 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
10580 /* If the second arg is constant true, this is a logical inversion. */
10581 if (integer_onep (arg1
))
10583 tem
= invert_truthvalue_loc (loc
, arg0
);
10584 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, tem
));
10586 /* Identical arguments cancel to zero. */
10587 if (operand_equal_p (arg0
, arg1
, 0))
10588 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
10590 /* !X ^ X is always true. */
10591 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
10592 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10593 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg1
);
10595 /* X ^ !X is always true. */
10596 if (TREE_CODE (arg1
) == TRUTH_NOT_EXPR
10597 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10598 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg0
);
10607 tem
= fold_comparison (loc
, code
, type
, op0
, op1
);
10608 if (tem
!= NULL_TREE
)
10611 /* bool_var != 1 becomes !bool_var. */
10612 if (TREE_CODE (TREE_TYPE (arg0
)) == BOOLEAN_TYPE
&& integer_onep (arg1
)
10613 && code
== NE_EXPR
)
10614 return fold_convert_loc (loc
, type
,
10615 fold_build1_loc (loc
, TRUTH_NOT_EXPR
,
10616 TREE_TYPE (arg0
), arg0
));
10618 /* bool_var == 0 becomes !bool_var. */
10619 if (TREE_CODE (TREE_TYPE (arg0
)) == BOOLEAN_TYPE
&& integer_zerop (arg1
)
10620 && code
== EQ_EXPR
)
10621 return fold_convert_loc (loc
, type
,
10622 fold_build1_loc (loc
, TRUTH_NOT_EXPR
,
10623 TREE_TYPE (arg0
), arg0
));
10625 /* !exp != 0 becomes !exp */
10626 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
&& integer_zerop (arg1
)
10627 && code
== NE_EXPR
)
10628 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
10630 /* If this is an EQ or NE comparison with zero and ARG0 is
10631 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
10632 two operations, but the latter can be done in one less insn
10633 on machines that have only two-operand insns or on which a
10634 constant cannot be the first operand. */
10635 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10636 && integer_zerop (arg1
))
10638 tree arg00
= TREE_OPERAND (arg0
, 0);
10639 tree arg01
= TREE_OPERAND (arg0
, 1);
10640 if (TREE_CODE (arg00
) == LSHIFT_EXPR
10641 && integer_onep (TREE_OPERAND (arg00
, 0)))
10643 tree tem
= fold_build2_loc (loc
, RSHIFT_EXPR
, TREE_TYPE (arg00
),
10644 arg01
, TREE_OPERAND (arg00
, 1));
10645 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg0
), tem
,
10646 build_int_cst (TREE_TYPE (arg0
), 1));
10647 return fold_build2_loc (loc
, code
, type
,
10648 fold_convert_loc (loc
, TREE_TYPE (arg1
), tem
),
10651 else if (TREE_CODE (arg01
) == LSHIFT_EXPR
10652 && integer_onep (TREE_OPERAND (arg01
, 0)))
10654 tree tem
= fold_build2_loc (loc
, RSHIFT_EXPR
, TREE_TYPE (arg01
),
10655 arg00
, TREE_OPERAND (arg01
, 1));
10656 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg0
), tem
,
10657 build_int_cst (TREE_TYPE (arg0
), 1));
10658 return fold_build2_loc (loc
, code
, type
,
10659 fold_convert_loc (loc
, TREE_TYPE (arg1
), tem
),
10664 /* If this is an NE or EQ comparison of zero against the result of a
10665 signed MOD operation whose second operand is a power of 2, make
10666 the MOD operation unsigned since it is simpler and equivalent. */
10667 if (integer_zerop (arg1
)
10668 && !TYPE_UNSIGNED (TREE_TYPE (arg0
))
10669 && (TREE_CODE (arg0
) == TRUNC_MOD_EXPR
10670 || TREE_CODE (arg0
) == CEIL_MOD_EXPR
10671 || TREE_CODE (arg0
) == FLOOR_MOD_EXPR
10672 || TREE_CODE (arg0
) == ROUND_MOD_EXPR
)
10673 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
10675 tree newtype
= unsigned_type_for (TREE_TYPE (arg0
));
10676 tree newmod
= fold_build2_loc (loc
, TREE_CODE (arg0
), newtype
,
10677 fold_convert_loc (loc
, newtype
,
10678 TREE_OPERAND (arg0
, 0)),
10679 fold_convert_loc (loc
, newtype
,
10680 TREE_OPERAND (arg0
, 1)));
10682 return fold_build2_loc (loc
, code
, type
, newmod
,
10683 fold_convert_loc (loc
, newtype
, arg1
));
10686 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
10687 C1 is a valid shift constant, and C2 is a power of two, i.e.
10689 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10690 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == RSHIFT_EXPR
10691 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1))
10693 && integer_pow2p (TREE_OPERAND (arg0
, 1))
10694 && integer_zerop (arg1
))
10696 tree itype
= TREE_TYPE (arg0
);
10697 tree arg001
= TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1);
10698 prec
= TYPE_PRECISION (itype
);
10700 /* Check for a valid shift count. */
10701 if (wi::ltu_p (wi::to_wide (arg001
), prec
))
10703 tree arg01
= TREE_OPERAND (arg0
, 1);
10704 tree arg000
= TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0);
10705 unsigned HOST_WIDE_INT log2
= tree_log2 (arg01
);
10706 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0
10707 can be rewritten as (X & (C2 << C1)) != 0. */
10708 if ((log2
+ TREE_INT_CST_LOW (arg001
)) < prec
)
10710 tem
= fold_build2_loc (loc
, LSHIFT_EXPR
, itype
, arg01
, arg001
);
10711 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, itype
, arg000
, tem
);
10712 return fold_build2_loc (loc
, code
, type
, tem
,
10713 fold_convert_loc (loc
, itype
, arg1
));
10715 /* Otherwise, for signed (arithmetic) shifts,
10716 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
10717 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */
10718 else if (!TYPE_UNSIGNED (itype
))
10719 return fold_build2_loc (loc
, code
== EQ_EXPR
? GE_EXPR
: LT_EXPR
, type
,
10720 arg000
, build_int_cst (itype
, 0));
10721 /* Otherwise, of unsigned (logical) shifts,
10722 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
10723 ((X >> C1) & C2) == 0 is rewritten as (X,true). */
10725 return omit_one_operand_loc (loc
, type
,
10726 code
== EQ_EXPR
? integer_one_node
10727 : integer_zero_node
,
10732 /* If this is a comparison of a field, we may be able to simplify it. */
10733 if ((TREE_CODE (arg0
) == COMPONENT_REF
10734 || TREE_CODE (arg0
) == BIT_FIELD_REF
)
10735 /* Handle the constant case even without -O
10736 to make sure the warnings are given. */
10737 && (optimize
|| TREE_CODE (arg1
) == INTEGER_CST
))
10739 t1
= optimize_bit_field_compare (loc
, code
, type
, arg0
, arg1
);
10744 /* Optimize comparisons of strlen vs zero to a compare of the
10745 first character of the string vs zero. To wit,
10746 strlen(ptr) == 0 => *ptr == 0
10747 strlen(ptr) != 0 => *ptr != 0
10748 Other cases should reduce to one of these two (or a constant)
10749 due to the return value of strlen being unsigned. */
10750 if (TREE_CODE (arg0
) == CALL_EXPR
10751 && integer_zerop (arg1
))
10753 tree fndecl
= get_callee_fndecl (arg0
);
10756 && DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
10757 && DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_STRLEN
10758 && call_expr_nargs (arg0
) == 1
10759 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0
, 0))) == POINTER_TYPE
)
10761 tree iref
= build_fold_indirect_ref_loc (loc
,
10762 CALL_EXPR_ARG (arg0
, 0));
10763 return fold_build2_loc (loc
, code
, type
, iref
,
10764 build_int_cst (TREE_TYPE (iref
), 0));
10768 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
10769 of X. Similarly fold (X >> C) == 0 into X >= 0. */
10770 if (TREE_CODE (arg0
) == RSHIFT_EXPR
10771 && integer_zerop (arg1
)
10772 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
10774 tree arg00
= TREE_OPERAND (arg0
, 0);
10775 tree arg01
= TREE_OPERAND (arg0
, 1);
10776 tree itype
= TREE_TYPE (arg00
);
10777 if (wi::to_wide (arg01
) == element_precision (itype
) - 1)
10779 if (TYPE_UNSIGNED (itype
))
10781 itype
= signed_type_for (itype
);
10782 arg00
= fold_convert_loc (loc
, itype
, arg00
);
10784 return fold_build2_loc (loc
, code
== EQ_EXPR
? GE_EXPR
: LT_EXPR
,
10785 type
, arg00
, build_zero_cst (itype
));
10789 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
10790 (X & C) == 0 when C is a single bit. */
10791 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10792 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_NOT_EXPR
10793 && integer_zerop (arg1
)
10794 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
10796 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg0
),
10797 TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0),
10798 TREE_OPERAND (arg0
, 1));
10799 return fold_build2_loc (loc
, code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
,
10801 fold_convert_loc (loc
, TREE_TYPE (arg0
),
10805 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
10806 constant C is a power of two, i.e. a single bit. */
10807 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
10808 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_AND_EXPR
10809 && integer_zerop (arg1
)
10810 && integer_pow2p (TREE_OPERAND (arg0
, 1))
10811 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1),
10812 TREE_OPERAND (arg0
, 1), OEP_ONLY_CONST
))
10814 tree arg00
= TREE_OPERAND (arg0
, 0);
10815 return fold_build2_loc (loc
, code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
, type
,
10816 arg00
, build_int_cst (TREE_TYPE (arg00
), 0));
10819 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
10820 when is C is a power of two, i.e. a single bit. */
10821 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10822 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_XOR_EXPR
10823 && integer_zerop (arg1
)
10824 && integer_pow2p (TREE_OPERAND (arg0
, 1))
10825 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1),
10826 TREE_OPERAND (arg0
, 1), OEP_ONLY_CONST
))
10828 tree arg000
= TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0);
10829 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg000
),
10830 arg000
, TREE_OPERAND (arg0
, 1));
10831 return fold_build2_loc (loc
, code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
, type
,
10832 tem
, build_int_cst (TREE_TYPE (tem
), 0));
10835 if (integer_zerop (arg1
)
10836 && tree_expr_nonzero_p (arg0
))
10838 tree res
= constant_boolean_node (code
==NE_EXPR
, type
);
10839 return omit_one_operand_loc (loc
, type
, res
, arg0
);
10842 /* Fold (X & C) op (Y & C) as (X ^ Y) & C op 0", and symmetries. */
10843 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10844 && TREE_CODE (arg1
) == BIT_AND_EXPR
)
10846 tree arg00
= TREE_OPERAND (arg0
, 0);
10847 tree arg01
= TREE_OPERAND (arg0
, 1);
10848 tree arg10
= TREE_OPERAND (arg1
, 0);
10849 tree arg11
= TREE_OPERAND (arg1
, 1);
10850 tree itype
= TREE_TYPE (arg0
);
10852 if (operand_equal_p (arg01
, arg11
, 0))
10854 tem
= fold_convert_loc (loc
, itype
, arg10
);
10855 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg00
, tem
);
10856 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, itype
, tem
, arg01
);
10857 return fold_build2_loc (loc
, code
, type
, tem
,
10858 build_zero_cst (itype
));
10860 if (operand_equal_p (arg01
, arg10
, 0))
10862 tem
= fold_convert_loc (loc
, itype
, arg11
);
10863 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg00
, tem
);
10864 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, itype
, tem
, arg01
);
10865 return fold_build2_loc (loc
, code
, type
, tem
,
10866 build_zero_cst (itype
));
10868 if (operand_equal_p (arg00
, arg11
, 0))
10870 tem
= fold_convert_loc (loc
, itype
, arg10
);
10871 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg01
, tem
);
10872 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, itype
, tem
, arg00
);
10873 return fold_build2_loc (loc
, code
, type
, tem
,
10874 build_zero_cst (itype
));
10876 if (operand_equal_p (arg00
, arg10
, 0))
10878 tem
= fold_convert_loc (loc
, itype
, arg11
);
10879 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg01
, tem
);
10880 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, itype
, tem
, arg00
);
10881 return fold_build2_loc (loc
, code
, type
, tem
,
10882 build_zero_cst (itype
));
10886 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
10887 && TREE_CODE (arg1
) == BIT_XOR_EXPR
)
10889 tree arg00
= TREE_OPERAND (arg0
, 0);
10890 tree arg01
= TREE_OPERAND (arg0
, 1);
10891 tree arg10
= TREE_OPERAND (arg1
, 0);
10892 tree arg11
= TREE_OPERAND (arg1
, 1);
10893 tree itype
= TREE_TYPE (arg0
);
10895 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries.
10896 operand_equal_p guarantees no side-effects so we don't need
10897 to use omit_one_operand on Z. */
10898 if (operand_equal_p (arg01
, arg11
, 0))
10899 return fold_build2_loc (loc
, code
, type
, arg00
,
10900 fold_convert_loc (loc
, TREE_TYPE (arg00
),
10902 if (operand_equal_p (arg01
, arg10
, 0))
10903 return fold_build2_loc (loc
, code
, type
, arg00
,
10904 fold_convert_loc (loc
, TREE_TYPE (arg00
),
10906 if (operand_equal_p (arg00
, arg11
, 0))
10907 return fold_build2_loc (loc
, code
, type
, arg01
,
10908 fold_convert_loc (loc
, TREE_TYPE (arg01
),
10910 if (operand_equal_p (arg00
, arg10
, 0))
10911 return fold_build2_loc (loc
, code
, type
, arg01
,
10912 fold_convert_loc (loc
, TREE_TYPE (arg01
),
10915 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */
10916 if (TREE_CODE (arg01
) == INTEGER_CST
10917 && TREE_CODE (arg11
) == INTEGER_CST
)
10919 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg01
,
10920 fold_convert_loc (loc
, itype
, arg11
));
10921 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg00
, tem
);
10922 return fold_build2_loc (loc
, code
, type
, tem
,
10923 fold_convert_loc (loc
, itype
, arg10
));
10927 /* Attempt to simplify equality/inequality comparisons of complex
10928 values. Only lower the comparison if the result is known or
10929 can be simplified to a single scalar comparison. */
10930 if ((TREE_CODE (arg0
) == COMPLEX_EXPR
10931 || TREE_CODE (arg0
) == COMPLEX_CST
)
10932 && (TREE_CODE (arg1
) == COMPLEX_EXPR
10933 || TREE_CODE (arg1
) == COMPLEX_CST
))
10935 tree real0
, imag0
, real1
, imag1
;
10938 if (TREE_CODE (arg0
) == COMPLEX_EXPR
)
10940 real0
= TREE_OPERAND (arg0
, 0);
10941 imag0
= TREE_OPERAND (arg0
, 1);
10945 real0
= TREE_REALPART (arg0
);
10946 imag0
= TREE_IMAGPART (arg0
);
10949 if (TREE_CODE (arg1
) == COMPLEX_EXPR
)
10951 real1
= TREE_OPERAND (arg1
, 0);
10952 imag1
= TREE_OPERAND (arg1
, 1);
10956 real1
= TREE_REALPART (arg1
);
10957 imag1
= TREE_IMAGPART (arg1
);
10960 rcond
= fold_binary_loc (loc
, code
, type
, real0
, real1
);
10961 if (rcond
&& TREE_CODE (rcond
) == INTEGER_CST
)
10963 if (integer_zerop (rcond
))
10965 if (code
== EQ_EXPR
)
10966 return omit_two_operands_loc (loc
, type
, boolean_false_node
,
10968 return fold_build2_loc (loc
, NE_EXPR
, type
, imag0
, imag1
);
10972 if (code
== NE_EXPR
)
10973 return omit_two_operands_loc (loc
, type
, boolean_true_node
,
10975 return fold_build2_loc (loc
, EQ_EXPR
, type
, imag0
, imag1
);
10979 icond
= fold_binary_loc (loc
, code
, type
, imag0
, imag1
);
10980 if (icond
&& TREE_CODE (icond
) == INTEGER_CST
)
10982 if (integer_zerop (icond
))
10984 if (code
== EQ_EXPR
)
10985 return omit_two_operands_loc (loc
, type
, boolean_false_node
,
10987 return fold_build2_loc (loc
, NE_EXPR
, type
, real0
, real1
);
10991 if (code
== NE_EXPR
)
10992 return omit_two_operands_loc (loc
, type
, boolean_true_node
,
10994 return fold_build2_loc (loc
, EQ_EXPR
, type
, real0
, real1
);
11005 tem
= fold_comparison (loc
, code
, type
, op0
, op1
);
11006 if (tem
!= NULL_TREE
)
11009 /* Transform comparisons of the form X +- C CMP X. */
11010 if ((TREE_CODE (arg0
) == PLUS_EXPR
|| TREE_CODE (arg0
) == MINUS_EXPR
)
11011 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0)
11012 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == REAL_CST
11013 && !HONOR_SNANS (arg0
))
11015 tree arg01
= TREE_OPERAND (arg0
, 1);
11016 enum tree_code code0
= TREE_CODE (arg0
);
11017 int is_positive
= REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01
)) ? -1 : 1;
11019 /* (X - c) > X becomes false. */
11020 if (code
== GT_EXPR
11021 && ((code0
== MINUS_EXPR
&& is_positive
>= 0)
11022 || (code0
== PLUS_EXPR
&& is_positive
<= 0)))
11023 return constant_boolean_node (0, type
);
11025 /* Likewise (X + c) < X becomes false. */
11026 if (code
== LT_EXPR
11027 && ((code0
== PLUS_EXPR
&& is_positive
>= 0)
11028 || (code0
== MINUS_EXPR
&& is_positive
<= 0)))
11029 return constant_boolean_node (0, type
);
11031 /* Convert (X - c) <= X to true. */
11032 if (!HONOR_NANS (arg1
)
11034 && ((code0
== MINUS_EXPR
&& is_positive
>= 0)
11035 || (code0
== PLUS_EXPR
&& is_positive
<= 0)))
11036 return constant_boolean_node (1, type
);
11038 /* Convert (X + c) >= X to true. */
11039 if (!HONOR_NANS (arg1
)
11041 && ((code0
== PLUS_EXPR
&& is_positive
>= 0)
11042 || (code0
== MINUS_EXPR
&& is_positive
<= 0)))
11043 return constant_boolean_node (1, type
);
11046 /* If we are comparing an ABS_EXPR with a constant, we can
11047 convert all the cases into explicit comparisons, but they may
11048 well not be faster than doing the ABS and one comparison.
11049 But ABS (X) <= C is a range comparison, which becomes a subtraction
11050 and a comparison, and is probably faster. */
11051 if (code
== LE_EXPR
11052 && TREE_CODE (arg1
) == INTEGER_CST
11053 && TREE_CODE (arg0
) == ABS_EXPR
11054 && ! TREE_SIDE_EFFECTS (arg0
)
11055 && (tem
= negate_expr (arg1
)) != 0
11056 && TREE_CODE (tem
) == INTEGER_CST
11057 && !TREE_OVERFLOW (tem
))
11058 return fold_build2_loc (loc
, TRUTH_ANDIF_EXPR
, type
,
11059 build2 (GE_EXPR
, type
,
11060 TREE_OPERAND (arg0
, 0), tem
),
11061 build2 (LE_EXPR
, type
,
11062 TREE_OPERAND (arg0
, 0), arg1
));
11064 /* Convert ABS_EXPR<x> >= 0 to true. */
11065 strict_overflow_p
= false;
11066 if (code
== GE_EXPR
11067 && (integer_zerop (arg1
)
11068 || (! HONOR_NANS (arg0
)
11069 && real_zerop (arg1
)))
11070 && tree_expr_nonnegative_warnv_p (arg0
, &strict_overflow_p
))
11072 if (strict_overflow_p
)
11073 fold_overflow_warning (("assuming signed overflow does not occur "
11074 "when simplifying comparison of "
11075 "absolute value and zero"),
11076 WARN_STRICT_OVERFLOW_CONDITIONAL
);
11077 return omit_one_operand_loc (loc
, type
,
11078 constant_boolean_node (true, type
),
11082 /* Convert ABS_EXPR<x> < 0 to false. */
11083 strict_overflow_p
= false;
11084 if (code
== LT_EXPR
11085 && (integer_zerop (arg1
) || real_zerop (arg1
))
11086 && tree_expr_nonnegative_warnv_p (arg0
, &strict_overflow_p
))
11088 if (strict_overflow_p
)
11089 fold_overflow_warning (("assuming signed overflow does not occur "
11090 "when simplifying comparison of "
11091 "absolute value and zero"),
11092 WARN_STRICT_OVERFLOW_CONDITIONAL
);
11093 return omit_one_operand_loc (loc
, type
,
11094 constant_boolean_node (false, type
),
11098 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
11099 and similarly for >= into !=. */
11100 if ((code
== LT_EXPR
|| code
== GE_EXPR
)
11101 && TYPE_UNSIGNED (TREE_TYPE (arg0
))
11102 && TREE_CODE (arg1
) == LSHIFT_EXPR
11103 && integer_onep (TREE_OPERAND (arg1
, 0)))
11104 return build2_loc (loc
, code
== LT_EXPR
? EQ_EXPR
: NE_EXPR
, type
,
11105 build2 (RSHIFT_EXPR
, TREE_TYPE (arg0
), arg0
,
11106 TREE_OPERAND (arg1
, 1)),
11107 build_zero_cst (TREE_TYPE (arg0
)));
11109 /* Similarly for X < (cast) (1 << Y). But cast can't be narrowing,
11110 otherwise Y might be >= # of bits in X's type and thus e.g.
11111 (unsigned char) (1 << Y) for Y 15 might be 0.
11112 If the cast is widening, then 1 << Y should have unsigned type,
11113 otherwise if Y is number of bits in the signed shift type minus 1,
11114 we can't optimize this. E.g. (unsigned long long) (1 << Y) for Y
11115 31 might be 0xffffffff80000000. */
11116 if ((code
== LT_EXPR
|| code
== GE_EXPR
)
11117 && TYPE_UNSIGNED (TREE_TYPE (arg0
))
11118 && CONVERT_EXPR_P (arg1
)
11119 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == LSHIFT_EXPR
11120 && (element_precision (TREE_TYPE (arg1
))
11121 >= element_precision (TREE_TYPE (TREE_OPERAND (arg1
, 0))))
11122 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg1
, 0)))
11123 || (element_precision (TREE_TYPE (arg1
))
11124 == element_precision (TREE_TYPE (TREE_OPERAND (arg1
, 0)))))
11125 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1
, 0), 0)))
11127 tem
= build2 (RSHIFT_EXPR
, TREE_TYPE (arg0
), arg0
,
11128 TREE_OPERAND (TREE_OPERAND (arg1
, 0), 1));
11129 return build2_loc (loc
, code
== LT_EXPR
? EQ_EXPR
: NE_EXPR
, type
,
11130 fold_convert_loc (loc
, TREE_TYPE (arg0
), tem
),
11131 build_zero_cst (TREE_TYPE (arg0
)));
11136 case UNORDERED_EXPR
:
11144 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
11146 tree targ0
= strip_float_extensions (arg0
);
11147 tree targ1
= strip_float_extensions (arg1
);
11148 tree newtype
= TREE_TYPE (targ0
);
11150 if (TYPE_PRECISION (TREE_TYPE (targ1
)) > TYPE_PRECISION (newtype
))
11151 newtype
= TREE_TYPE (targ1
);
11153 if (TYPE_PRECISION (newtype
) < TYPE_PRECISION (TREE_TYPE (arg0
)))
11154 return fold_build2_loc (loc
, code
, type
,
11155 fold_convert_loc (loc
, newtype
, targ0
),
11156 fold_convert_loc (loc
, newtype
, targ1
));
11161 case COMPOUND_EXPR
:
11162 /* When pedantic, a compound expression can be neither an lvalue
11163 nor an integer constant expression. */
11164 if (TREE_SIDE_EFFECTS (arg0
) || TREE_CONSTANT (arg1
))
11166 /* Don't let (0, 0) be null pointer constant. */
11167 tem
= integer_zerop (arg1
) ? build1 (NOP_EXPR
, type
, arg1
)
11168 : fold_convert_loc (loc
, type
, arg1
);
11169 return pedantic_non_lvalue_loc (loc
, tem
);
11172 /* An ASSERT_EXPR should never be passed to fold_binary. */
11173 gcc_unreachable ();
11177 } /* switch (code) */
11180 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
11181 ((A & N) + B) & M -> (A + B) & M
11182 Similarly if (N & M) == 0,
11183 ((A | N) + B) & M -> (A + B) & M
11184 and for - instead of + (or unary - instead of +)
11185 and/or ^ instead of |.
11186 If B is constant and (B & M) == 0, fold into A & M.
11188 This function is a helper for match.pd patterns. Return non-NULL
11189 type in which the simplified operation should be performed only
11190 if any optimization is possible.
11192 ARG1 is M above, ARG00 is left operand of +/-, if CODE00 is BIT_*_EXPR,
11193 then ARG00{0,1} are operands of that bitop, otherwise CODE00 is ERROR_MARK.
11194 Similarly for ARG01, CODE01 and ARG01{0,1}, just for the right operand of
11197 fold_bit_and_mask (tree type
, tree arg1
, enum tree_code code
,
11198 tree arg00
, enum tree_code code00
, tree arg000
, tree arg001
,
11199 tree arg01
, enum tree_code code01
, tree arg010
, tree arg011
,
11202 gcc_assert (TREE_CODE (arg1
) == INTEGER_CST
);
11203 gcc_assert (code
== PLUS_EXPR
|| code
== MINUS_EXPR
|| code
== NEGATE_EXPR
);
11204 wi::tree_to_wide_ref cst1
= wi::to_wide (arg1
);
11206 || (cst1
& (cst1
+ 1)) != 0
11207 || !INTEGRAL_TYPE_P (type
)
11208 || (!TYPE_OVERFLOW_WRAPS (type
)
11209 && TREE_CODE (type
) != INTEGER_TYPE
)
11210 || (wi::max_value (type
) & cst1
) != cst1
)
11213 enum tree_code codes
[2] = { code00
, code01
};
11214 tree arg0xx
[4] = { arg000
, arg001
, arg010
, arg011
};
11218 /* Now we know that arg0 is (C + D) or (C - D) or -C and
11219 arg1 (M) is == (1LL << cst) - 1.
11220 Store C into PMOP[0] and D into PMOP[1]. */
11223 which
= code
!= NEGATE_EXPR
;
11225 for (; which
>= 0; which
--)
11226 switch (codes
[which
])
11231 gcc_assert (TREE_CODE (arg0xx
[2 * which
+ 1]) == INTEGER_CST
);
11232 cst0
= wi::to_wide (arg0xx
[2 * which
+ 1]) & cst1
;
11233 if (codes
[which
] == BIT_AND_EXPR
)
11238 else if (cst0
!= 0)
11240 /* If C or D is of the form (A & N) where
11241 (N & M) == M, or of the form (A | N) or
11242 (A ^ N) where (N & M) == 0, replace it with A. */
11243 pmop
[which
] = arg0xx
[2 * which
];
11246 if (TREE_CODE (pmop
[which
]) != INTEGER_CST
)
11248 /* If C or D is a N where (N & M) == 0, it can be
11249 omitted (replaced with 0). */
11250 if ((code
== PLUS_EXPR
11251 || (code
== MINUS_EXPR
&& which
== 0))
11252 && (cst1
& wi::to_wide (pmop
[which
])) == 0)
11253 pmop
[which
] = build_int_cst (type
, 0);
11254 /* Similarly, with C - N where (-N & M) == 0. */
11255 if (code
== MINUS_EXPR
11257 && (cst1
& -wi::to_wide (pmop
[which
])) == 0)
11258 pmop
[which
] = build_int_cst (type
, 0);
11261 gcc_unreachable ();
11264 /* Only build anything new if we optimized one or both arguments above. */
11265 if (pmop
[0] == arg00
&& pmop
[1] == arg01
)
11268 if (TYPE_OVERFLOW_WRAPS (type
))
11271 return unsigned_type_for (type
);
11274 /* Used by contains_label_[p1]. */
11276 struct contains_label_data
11278 hash_set
<tree
> *pset
;
11279 bool inside_switch_p
;
11282 /* Callback for walk_tree, looking for LABEL_EXPR. Return *TP if it is
11283 a LABEL_EXPR or CASE_LABEL_EXPR not inside of another SWITCH_EXPR; otherwise
11284 return NULL_TREE. Do not check the subtrees of GOTO_EXPR. */
11287 contains_label_1 (tree
*tp
, int *walk_subtrees
, void *data
)
11289 contains_label_data
*d
= (contains_label_data
*) data
;
11290 switch (TREE_CODE (*tp
))
11295 case CASE_LABEL_EXPR
:
11296 if (!d
->inside_switch_p
)
11301 if (!d
->inside_switch_p
)
11303 if (walk_tree (&SWITCH_COND (*tp
), contains_label_1
, data
, d
->pset
))
11305 d
->inside_switch_p
= true;
11306 if (walk_tree (&SWITCH_BODY (*tp
), contains_label_1
, data
, d
->pset
))
11308 d
->inside_switch_p
= false;
11309 *walk_subtrees
= 0;
11314 *walk_subtrees
= 0;
11322 /* Return whether the sub-tree ST contains a label which is accessible from
11323 outside the sub-tree. */
11326 contains_label_p (tree st
)
11328 hash_set
<tree
> pset
;
11329 contains_label_data data
= { &pset
, false };
11330 return walk_tree (&st
, contains_label_1
, &data
, &pset
) != NULL_TREE
;
11333 /* Fold a ternary expression of code CODE and type TYPE with operands
11334 OP0, OP1, and OP2. Return the folded expression if folding is
11335 successful. Otherwise, return NULL_TREE. */
11338 fold_ternary_loc (location_t loc
, enum tree_code code
, tree type
,
11339 tree op0
, tree op1
, tree op2
)
11342 tree arg0
= NULL_TREE
, arg1
= NULL_TREE
, arg2
= NULL_TREE
;
11343 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
11345 gcc_assert (IS_EXPR_CODE_CLASS (kind
)
11346 && TREE_CODE_LENGTH (code
) == 3);
11348 /* If this is a commutative operation, and OP0 is a constant, move it
11349 to OP1 to reduce the number of tests below. */
11350 if (commutative_ternary_tree_code (code
)
11351 && tree_swap_operands_p (op0
, op1
))
11352 return fold_build3_loc (loc
, code
, type
, op1
, op0
, op2
);
11354 tem
= generic_simplify (loc
, code
, type
, op0
, op1
, op2
);
11358 /* Strip any conversions that don't change the mode. This is safe
11359 for every expression, except for a comparison expression because
11360 its signedness is derived from its operands. So, in the latter
11361 case, only strip conversions that don't change the signedness.
11363 Note that this is done as an internal manipulation within the
11364 constant folder, in order to find the simplest representation of
11365 the arguments so that their form can be studied. In any cases,
11366 the appropriate type conversions should be put back in the tree
11367 that will get out of the constant folder. */
11388 case COMPONENT_REF
:
11389 if (TREE_CODE (arg0
) == CONSTRUCTOR
11390 && ! type_contains_placeholder_p (TREE_TYPE (arg0
)))
11392 unsigned HOST_WIDE_INT idx
;
11394 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0
), idx
, field
, value
)
11401 case VEC_COND_EXPR
:
11402 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
11403 so all simple results must be passed through pedantic_non_lvalue. */
11404 if (TREE_CODE (arg0
) == INTEGER_CST
)
11406 tree unused_op
= integer_zerop (arg0
) ? op1
: op2
;
11407 tem
= integer_zerop (arg0
) ? op2
: op1
;
11408 /* Only optimize constant conditions when the selected branch
11409 has the same type as the COND_EXPR. This avoids optimizing
11410 away "c ? x : throw", where the throw has a void type.
11411 Avoid throwing away that operand which contains label. */
11412 if ((!TREE_SIDE_EFFECTS (unused_op
)
11413 || !contains_label_p (unused_op
))
11414 && (! VOID_TYPE_P (TREE_TYPE (tem
))
11415 || VOID_TYPE_P (type
)))
11416 return pedantic_non_lvalue_loc (loc
, tem
);
11419 else if (TREE_CODE (arg0
) == VECTOR_CST
)
11421 unsigned HOST_WIDE_INT nelts
;
11422 if ((TREE_CODE (arg1
) == VECTOR_CST
11423 || TREE_CODE (arg1
) == CONSTRUCTOR
)
11424 && (TREE_CODE (arg2
) == VECTOR_CST
11425 || TREE_CODE (arg2
) == CONSTRUCTOR
)
11426 && TYPE_VECTOR_SUBPARTS (type
).is_constant (&nelts
))
11428 vec_perm_builder
sel (nelts
, nelts
, 1);
11429 for (unsigned int i
= 0; i
< nelts
; i
++)
11431 tree val
= VECTOR_CST_ELT (arg0
, i
);
11432 if (integer_all_onesp (val
))
11433 sel
.quick_push (i
);
11434 else if (integer_zerop (val
))
11435 sel
.quick_push (nelts
+ i
);
11436 else /* Currently unreachable. */
11439 vec_perm_indices
indices (sel
, 2, nelts
);
11440 tree t
= fold_vec_perm (type
, arg1
, arg2
, indices
);
11441 if (t
!= NULL_TREE
)
11446 /* If we have A op B ? A : C, we may be able to convert this to a
11447 simpler expression, depending on the operation and the values
11448 of B and C. Signed zeros prevent all of these transformations,
11449 for reasons given above each one.
11451 Also try swapping the arguments and inverting the conditional. */
11452 if (COMPARISON_CLASS_P (arg0
)
11453 && operand_equal_for_comparison_p (TREE_OPERAND (arg0
, 0), op1
)
11454 && !HONOR_SIGNED_ZEROS (element_mode (op1
)))
11456 tem
= fold_cond_expr_with_comparison (loc
, type
, arg0
, op1
, op2
);
11461 if (COMPARISON_CLASS_P (arg0
)
11462 && operand_equal_for_comparison_p (TREE_OPERAND (arg0
, 0), op2
)
11463 && !HONOR_SIGNED_ZEROS (element_mode (op2
)))
11465 location_t loc0
= expr_location_or (arg0
, loc
);
11466 tem
= fold_invert_truthvalue (loc0
, arg0
);
11467 if (tem
&& COMPARISON_CLASS_P (tem
))
11469 tem
= fold_cond_expr_with_comparison (loc
, type
, tem
, op2
, op1
);
11475 /* If the second operand is simpler than the third, swap them
11476 since that produces better jump optimization results. */
11477 if (truth_value_p (TREE_CODE (arg0
))
11478 && tree_swap_operands_p (op1
, op2
))
11480 location_t loc0
= expr_location_or (arg0
, loc
);
11481 /* See if this can be inverted. If it can't, possibly because
11482 it was a floating-point inequality comparison, don't do
11484 tem
= fold_invert_truthvalue (loc0
, arg0
);
11486 return fold_build3_loc (loc
, code
, type
, tem
, op2
, op1
);
11489 /* Convert A ? 1 : 0 to simply A. */
11490 if ((code
== VEC_COND_EXPR
? integer_all_onesp (op1
)
11491 : (integer_onep (op1
)
11492 && !VECTOR_TYPE_P (type
)))
11493 && integer_zerop (op2
)
11494 /* If we try to convert OP0 to our type, the
11495 call to fold will try to move the conversion inside
11496 a COND, which will recurse. In that case, the COND_EXPR
11497 is probably the best choice, so leave it alone. */
11498 && type
== TREE_TYPE (arg0
))
11499 return pedantic_non_lvalue_loc (loc
, arg0
);
11501 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
11502 over COND_EXPR in cases such as floating point comparisons. */
11503 if (integer_zerop (op1
)
11504 && code
== COND_EXPR
11505 && integer_onep (op2
)
11506 && !VECTOR_TYPE_P (type
)
11507 && truth_value_p (TREE_CODE (arg0
)))
11508 return pedantic_non_lvalue_loc (loc
,
11509 fold_convert_loc (loc
, type
,
11510 invert_truthvalue_loc (loc
,
11513 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
11514 if (TREE_CODE (arg0
) == LT_EXPR
11515 && integer_zerop (TREE_OPERAND (arg0
, 1))
11516 && integer_zerop (op2
)
11517 && (tem
= sign_bit_p (TREE_OPERAND (arg0
, 0), arg1
)))
11519 /* sign_bit_p looks through both zero and sign extensions,
11520 but for this optimization only sign extensions are
11522 tree tem2
= TREE_OPERAND (arg0
, 0);
11523 while (tem
!= tem2
)
11525 if (TREE_CODE (tem2
) != NOP_EXPR
11526 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (tem2
, 0))))
11531 tem2
= TREE_OPERAND (tem2
, 0);
11533 /* sign_bit_p only checks ARG1 bits within A's precision.
11534 If <sign bit of A> has wider type than A, bits outside
11535 of A's precision in <sign bit of A> need to be checked.
11536 If they are all 0, this optimization needs to be done
11537 in unsigned A's type, if they are all 1 in signed A's type,
11538 otherwise this can't be done. */
11540 && TYPE_PRECISION (TREE_TYPE (tem
))
11541 < TYPE_PRECISION (TREE_TYPE (arg1
))
11542 && TYPE_PRECISION (TREE_TYPE (tem
))
11543 < TYPE_PRECISION (type
))
11545 int inner_width
, outer_width
;
11548 inner_width
= TYPE_PRECISION (TREE_TYPE (tem
));
11549 outer_width
= TYPE_PRECISION (TREE_TYPE (arg1
));
11550 if (outer_width
> TYPE_PRECISION (type
))
11551 outer_width
= TYPE_PRECISION (type
);
11553 wide_int mask
= wi::shifted_mask
11554 (inner_width
, outer_width
- inner_width
, false,
11555 TYPE_PRECISION (TREE_TYPE (arg1
)));
11557 wide_int common
= mask
& wi::to_wide (arg1
);
11558 if (common
== mask
)
11560 tem_type
= signed_type_for (TREE_TYPE (tem
));
11561 tem
= fold_convert_loc (loc
, tem_type
, tem
);
11563 else if (common
== 0)
11565 tem_type
= unsigned_type_for (TREE_TYPE (tem
));
11566 tem
= fold_convert_loc (loc
, tem_type
, tem
);
11574 fold_convert_loc (loc
, type
,
11575 fold_build2_loc (loc
, BIT_AND_EXPR
,
11576 TREE_TYPE (tem
), tem
,
11577 fold_convert_loc (loc
,
11582 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
11583 already handled above. */
11584 if (TREE_CODE (arg0
) == BIT_AND_EXPR
11585 && integer_onep (TREE_OPERAND (arg0
, 1))
11586 && integer_zerop (op2
)
11587 && integer_pow2p (arg1
))
11589 tree tem
= TREE_OPERAND (arg0
, 0);
11591 if (TREE_CODE (tem
) == RSHIFT_EXPR
11592 && tree_fits_uhwi_p (TREE_OPERAND (tem
, 1))
11593 && (unsigned HOST_WIDE_INT
) tree_log2 (arg1
)
11594 == tree_to_uhwi (TREE_OPERAND (tem
, 1)))
11595 return fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
11596 fold_convert_loc (loc
, type
,
11597 TREE_OPERAND (tem
, 0)),
11601 /* A & N ? N : 0 is simply A & N if N is a power of two. This
11602 is probably obsolete because the first operand should be a
11603 truth value (that's why we have the two cases above), but let's
11604 leave it in until we can confirm this for all front-ends. */
11605 if (integer_zerop (op2
)
11606 && TREE_CODE (arg0
) == NE_EXPR
11607 && integer_zerop (TREE_OPERAND (arg0
, 1))
11608 && integer_pow2p (arg1
)
11609 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_AND_EXPR
11610 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1),
11611 arg1
, OEP_ONLY_CONST
))
11612 return pedantic_non_lvalue_loc (loc
,
11613 fold_convert_loc (loc
, type
,
11614 TREE_OPERAND (arg0
, 0)));
11616 /* Disable the transformations below for vectors, since
11617 fold_binary_op_with_conditional_arg may undo them immediately,
11618 yielding an infinite loop. */
11619 if (code
== VEC_COND_EXPR
)
11622 /* Convert A ? B : 0 into A && B if A and B are truth values. */
11623 if (integer_zerop (op2
)
11624 && truth_value_p (TREE_CODE (arg0
))
11625 && truth_value_p (TREE_CODE (arg1
))
11626 && (code
== VEC_COND_EXPR
|| !VECTOR_TYPE_P (type
)))
11627 return fold_build2_loc (loc
, code
== VEC_COND_EXPR
? BIT_AND_EXPR
11628 : TRUTH_ANDIF_EXPR
,
11629 type
, fold_convert_loc (loc
, type
, arg0
), op1
);
11631 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
11632 if (code
== VEC_COND_EXPR
? integer_all_onesp (op2
) : integer_onep (op2
)
11633 && truth_value_p (TREE_CODE (arg0
))
11634 && truth_value_p (TREE_CODE (arg1
))
11635 && (code
== VEC_COND_EXPR
|| !VECTOR_TYPE_P (type
)))
11637 location_t loc0
= expr_location_or (arg0
, loc
);
11638 /* Only perform transformation if ARG0 is easily inverted. */
11639 tem
= fold_invert_truthvalue (loc0
, arg0
);
11641 return fold_build2_loc (loc
, code
== VEC_COND_EXPR
11644 type
, fold_convert_loc (loc
, type
, tem
),
11648 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
11649 if (integer_zerop (arg1
)
11650 && truth_value_p (TREE_CODE (arg0
))
11651 && truth_value_p (TREE_CODE (op2
))
11652 && (code
== VEC_COND_EXPR
|| !VECTOR_TYPE_P (type
)))
11654 location_t loc0
= expr_location_or (arg0
, loc
);
11655 /* Only perform transformation if ARG0 is easily inverted. */
11656 tem
= fold_invert_truthvalue (loc0
, arg0
);
11658 return fold_build2_loc (loc
, code
== VEC_COND_EXPR
11659 ? BIT_AND_EXPR
: TRUTH_ANDIF_EXPR
,
11660 type
, fold_convert_loc (loc
, type
, tem
),
11664 /* Convert A ? 1 : B into A || B if A and B are truth values. */
11665 if (code
== VEC_COND_EXPR
? integer_all_onesp (arg1
) : integer_onep (arg1
)
11666 && truth_value_p (TREE_CODE (arg0
))
11667 && truth_value_p (TREE_CODE (op2
))
11668 && (code
== VEC_COND_EXPR
|| !VECTOR_TYPE_P (type
)))
11669 return fold_build2_loc (loc
, code
== VEC_COND_EXPR
11670 ? BIT_IOR_EXPR
: TRUTH_ORIF_EXPR
,
11671 type
, fold_convert_loc (loc
, type
, arg0
), op2
);
11676 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses
11677 of fold_ternary on them. */
11678 gcc_unreachable ();
11680 case BIT_FIELD_REF
:
11681 if (TREE_CODE (arg0
) == VECTOR_CST
11682 && (type
== TREE_TYPE (TREE_TYPE (arg0
))
11683 || (VECTOR_TYPE_P (type
)
11684 && TREE_TYPE (type
) == TREE_TYPE (TREE_TYPE (arg0
))))
11685 && tree_fits_uhwi_p (op1
)
11686 && tree_fits_uhwi_p (op2
))
11688 tree eltype
= TREE_TYPE (TREE_TYPE (arg0
));
11689 unsigned HOST_WIDE_INT width
= tree_to_uhwi (TYPE_SIZE (eltype
));
11690 unsigned HOST_WIDE_INT n
= tree_to_uhwi (arg1
);
11691 unsigned HOST_WIDE_INT idx
= tree_to_uhwi (op2
);
11694 && (idx
% width
) == 0
11695 && (n
% width
) == 0
11696 && known_le ((idx
+ n
) / width
,
11697 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0
))))
11702 if (TREE_CODE (arg0
) == VECTOR_CST
)
11706 tem
= VECTOR_CST_ELT (arg0
, idx
);
11707 if (VECTOR_TYPE_P (type
))
11708 tem
= fold_build1 (VIEW_CONVERT_EXPR
, type
, tem
);
11712 tree_vector_builder
vals (type
, n
, 1);
11713 for (unsigned i
= 0; i
< n
; ++i
)
11714 vals
.quick_push (VECTOR_CST_ELT (arg0
, idx
+ i
));
11715 return vals
.build ();
11720 /* On constants we can use native encode/interpret to constant
11721 fold (nearly) all BIT_FIELD_REFs. */
11722 if (CONSTANT_CLASS_P (arg0
)
11723 && can_native_interpret_type_p (type
)
11724 && BITS_PER_UNIT
== 8
11725 && tree_fits_uhwi_p (op1
)
11726 && tree_fits_uhwi_p (op2
))
11728 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (op2
);
11729 unsigned HOST_WIDE_INT bitsize
= tree_to_uhwi (op1
);
11730 /* Limit us to a reasonable amount of work. To relax the
11731 other limitations we need bit-shifting of the buffer
11732 and rounding up the size. */
11733 if (bitpos
% BITS_PER_UNIT
== 0
11734 && bitsize
% BITS_PER_UNIT
== 0
11735 && bitsize
<= MAX_BITSIZE_MODE_ANY_MODE
)
11737 unsigned char b
[MAX_BITSIZE_MODE_ANY_MODE
/ BITS_PER_UNIT
];
11738 unsigned HOST_WIDE_INT len
11739 = native_encode_expr (arg0
, b
, bitsize
/ BITS_PER_UNIT
,
11740 bitpos
/ BITS_PER_UNIT
);
11742 && len
* BITS_PER_UNIT
>= bitsize
)
11744 tree v
= native_interpret_expr (type
, b
,
11745 bitsize
/ BITS_PER_UNIT
);
11754 case VEC_PERM_EXPR
:
11755 if (TREE_CODE (arg2
) == VECTOR_CST
)
11757 /* Build a vector of integers from the tree mask. */
11758 vec_perm_builder builder
;
11759 if (!tree_to_vec_perm_builder (&builder
, arg2
))
11762 /* Create a vec_perm_indices for the integer vector. */
11763 poly_uint64 nelts
= TYPE_VECTOR_SUBPARTS (type
);
11764 bool single_arg
= (op0
== op1
);
11765 vec_perm_indices
sel (builder
, single_arg
? 1 : 2, nelts
);
11767 /* Check for cases that fold to OP0 or OP1 in their original
11769 if (sel
.series_p (0, 1, 0, 1))
11771 if (sel
.series_p (0, 1, nelts
, 1))
11776 if (sel
.all_from_input_p (0))
11778 else if (sel
.all_from_input_p (1))
11781 sel
.rotate_inputs (1);
11785 if ((TREE_CODE (op0
) == VECTOR_CST
11786 || TREE_CODE (op0
) == CONSTRUCTOR
)
11787 && (TREE_CODE (op1
) == VECTOR_CST
11788 || TREE_CODE (op1
) == CONSTRUCTOR
))
11790 tree t
= fold_vec_perm (type
, op0
, op1
, sel
);
11791 if (t
!= NULL_TREE
)
11795 bool changed
= (op0
== op1
&& !single_arg
);
11797 /* Generate a canonical form of the selector. */
11798 if (arg2
== op2
&& sel
.encoding () != builder
)
11800 /* Some targets are deficient and fail to expand a single
11801 argument permutation while still allowing an equivalent
11802 2-argument version. */
11803 if (sel
.ninputs () == 2
11804 || can_vec_perm_const_p (TYPE_MODE (type
), sel
, false))
11805 op2
= vec_perm_indices_to_tree (TREE_TYPE (arg2
), sel
);
11808 vec_perm_indices
sel2 (builder
, 2, nelts
);
11809 if (can_vec_perm_const_p (TYPE_MODE (type
), sel2
, false))
11810 op2
= vec_perm_indices_to_tree (TREE_TYPE (arg2
), sel2
);
11812 /* Not directly supported with either encoding,
11813 so use the preferred form. */
11814 op2
= vec_perm_indices_to_tree (TREE_TYPE (arg2
), sel
);
11820 return build3_loc (loc
, VEC_PERM_EXPR
, type
, op0
, op1
, op2
);
11824 case BIT_INSERT_EXPR
:
11825 /* Perform (partial) constant folding of BIT_INSERT_EXPR. */
11826 if (TREE_CODE (arg0
) == INTEGER_CST
11827 && TREE_CODE (arg1
) == INTEGER_CST
)
11829 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (op2
);
11830 unsigned bitsize
= TYPE_PRECISION (TREE_TYPE (arg1
));
11831 wide_int tem
= (wi::to_wide (arg0
)
11832 & wi::shifted_mask (bitpos
, bitsize
, true,
11833 TYPE_PRECISION (type
)));
11835 = wi::lshift (wi::zext (wi::to_wide (arg1
, TYPE_PRECISION (type
)),
11837 return wide_int_to_tree (type
, wi::bit_or (tem
, tem2
));
11839 else if (TREE_CODE (arg0
) == VECTOR_CST
11840 && CONSTANT_CLASS_P (arg1
)
11841 && types_compatible_p (TREE_TYPE (TREE_TYPE (arg0
)),
11844 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (op2
);
11845 unsigned HOST_WIDE_INT elsize
11846 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (arg1
)));
11847 if (bitpos
% elsize
== 0)
11849 unsigned k
= bitpos
/ elsize
;
11850 unsigned HOST_WIDE_INT nelts
;
11851 if (operand_equal_p (VECTOR_CST_ELT (arg0
, k
), arg1
, 0))
11853 else if (VECTOR_CST_NELTS (arg0
).is_constant (&nelts
))
11855 tree_vector_builder
elts (type
, nelts
, 1);
11856 elts
.quick_grow (nelts
);
11857 for (unsigned HOST_WIDE_INT i
= 0; i
< nelts
; ++i
)
11858 elts
[i
] = (i
== k
? arg1
: VECTOR_CST_ELT (arg0
, i
));
11859 return elts
.build ();
11867 } /* switch (code) */
11870 /* Gets the element ACCESS_INDEX from CTOR, which must be a CONSTRUCTOR
11871 of an array (or vector). */
11874 get_array_ctor_element_at_index (tree ctor
, offset_int access_index
)
11876 tree index_type
= NULL_TREE
;
11877 offset_int low_bound
= 0;
11879 if (TREE_CODE (TREE_TYPE (ctor
)) == ARRAY_TYPE
)
11881 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (ctor
));
11882 if (domain_type
&& TYPE_MIN_VALUE (domain_type
))
11884 /* Static constructors for variably sized objects makes no sense. */
11885 gcc_assert (TREE_CODE (TYPE_MIN_VALUE (domain_type
)) == INTEGER_CST
);
11886 index_type
= TREE_TYPE (TYPE_MIN_VALUE (domain_type
));
11887 low_bound
= wi::to_offset (TYPE_MIN_VALUE (domain_type
));
11892 access_index
= wi::ext (access_index
, TYPE_PRECISION (index_type
),
11893 TYPE_SIGN (index_type
));
11895 offset_int index
= low_bound
- 1;
11897 index
= wi::ext (index
, TYPE_PRECISION (index_type
),
11898 TYPE_SIGN (index_type
));
11900 offset_int max_index
;
11901 unsigned HOST_WIDE_INT cnt
;
11904 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor
), cnt
, cfield
, cval
)
11906 /* Array constructor might explicitly set index, or specify a range,
11907 or leave index NULL meaning that it is next index after previous
11911 if (TREE_CODE (cfield
) == INTEGER_CST
)
11912 max_index
= index
= wi::to_offset (cfield
);
11915 gcc_assert (TREE_CODE (cfield
) == RANGE_EXPR
);
11916 index
= wi::to_offset (TREE_OPERAND (cfield
, 0));
11917 max_index
= wi::to_offset (TREE_OPERAND (cfield
, 1));
11924 index
= wi::ext (index
, TYPE_PRECISION (index_type
),
11925 TYPE_SIGN (index_type
));
11929 /* Do we have match? */
11930 if (wi::cmpu (access_index
, index
) >= 0
11931 && wi::cmpu (access_index
, max_index
) <= 0)
11937 /* Perform constant folding and related simplification of EXPR.
11938 The related simplifications include x*1 => x, x*0 => 0, etc.,
11939 and application of the associative law.
11940 NOP_EXPR conversions may be removed freely (as long as we
11941 are careful not to change the type of the overall expression).
11942 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
11943 but we can constant-fold them if they have constant operands. */
11945 #ifdef ENABLE_FOLD_CHECKING
11946 # define fold(x) fold_1 (x)
11947 static tree
fold_1 (tree
);
11953 const tree t
= expr
;
11954 enum tree_code code
= TREE_CODE (t
);
11955 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
11957 location_t loc
= EXPR_LOCATION (expr
);
11959 /* Return right away if a constant. */
11960 if (kind
== tcc_constant
)
11963 /* CALL_EXPR-like objects with variable numbers of operands are
11964 treated specially. */
11965 if (kind
== tcc_vl_exp
)
11967 if (code
== CALL_EXPR
)
11969 tem
= fold_call_expr (loc
, expr
, false);
11970 return tem
? tem
: expr
;
11975 if (IS_EXPR_CODE_CLASS (kind
))
11977 tree type
= TREE_TYPE (t
);
11978 tree op0
, op1
, op2
;
11980 switch (TREE_CODE_LENGTH (code
))
11983 op0
= TREE_OPERAND (t
, 0);
11984 tem
= fold_unary_loc (loc
, code
, type
, op0
);
11985 return tem
? tem
: expr
;
11987 op0
= TREE_OPERAND (t
, 0);
11988 op1
= TREE_OPERAND (t
, 1);
11989 tem
= fold_binary_loc (loc
, code
, type
, op0
, op1
);
11990 return tem
? tem
: expr
;
11992 op0
= TREE_OPERAND (t
, 0);
11993 op1
= TREE_OPERAND (t
, 1);
11994 op2
= TREE_OPERAND (t
, 2);
11995 tem
= fold_ternary_loc (loc
, code
, type
, op0
, op1
, op2
);
11996 return tem
? tem
: expr
;
12006 tree op0
= TREE_OPERAND (t
, 0);
12007 tree op1
= TREE_OPERAND (t
, 1);
12009 if (TREE_CODE (op1
) == INTEGER_CST
12010 && TREE_CODE (op0
) == CONSTRUCTOR
12011 && ! type_contains_placeholder_p (TREE_TYPE (op0
)))
12013 tree val
= get_array_ctor_element_at_index (op0
,
12014 wi::to_offset (op1
));
12022 /* Return a VECTOR_CST if possible. */
12025 tree type
= TREE_TYPE (t
);
12026 if (TREE_CODE (type
) != VECTOR_TYPE
)
12031 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t
), i
, val
)
12032 if (! CONSTANT_CLASS_P (val
))
12035 return build_vector_from_ctor (type
, CONSTRUCTOR_ELTS (t
));
12039 return fold (DECL_INITIAL (t
));
12043 } /* switch (code) */
12046 #ifdef ENABLE_FOLD_CHECKING
12049 static void fold_checksum_tree (const_tree
, struct md5_ctx
*,
12050 hash_table
<nofree_ptr_hash
<const tree_node
> > *);
12051 static void fold_check_failed (const_tree
, const_tree
);
12052 void print_fold_checksum (const_tree
);
12054 /* When --enable-checking=fold, compute a digest of expr before
12055 and after actual fold call to see if fold did not accidentally
12056 change original expr. */
12062 struct md5_ctx ctx
;
12063 unsigned char checksum_before
[16], checksum_after
[16];
12064 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12066 md5_init_ctx (&ctx
);
12067 fold_checksum_tree (expr
, &ctx
, &ht
);
12068 md5_finish_ctx (&ctx
, checksum_before
);
12071 ret
= fold_1 (expr
);
12073 md5_init_ctx (&ctx
);
12074 fold_checksum_tree (expr
, &ctx
, &ht
);
12075 md5_finish_ctx (&ctx
, checksum_after
);
12077 if (memcmp (checksum_before
, checksum_after
, 16))
12078 fold_check_failed (expr
, ret
);
12084 print_fold_checksum (const_tree expr
)
12086 struct md5_ctx ctx
;
12087 unsigned char checksum
[16], cnt
;
12088 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12090 md5_init_ctx (&ctx
);
12091 fold_checksum_tree (expr
, &ctx
, &ht
);
12092 md5_finish_ctx (&ctx
, checksum
);
12093 for (cnt
= 0; cnt
< 16; ++cnt
)
12094 fprintf (stderr
, "%02x", checksum
[cnt
]);
12095 putc ('\n', stderr
);
12099 fold_check_failed (const_tree expr ATTRIBUTE_UNUSED
, const_tree ret ATTRIBUTE_UNUSED
)
12101 internal_error ("fold check: original tree changed by fold");
12105 fold_checksum_tree (const_tree expr
, struct md5_ctx
*ctx
,
12106 hash_table
<nofree_ptr_hash
<const tree_node
> > *ht
)
12108 const tree_node
**slot
;
12109 enum tree_code code
;
12110 union tree_node buf
;
12116 slot
= ht
->find_slot (expr
, INSERT
);
12120 code
= TREE_CODE (expr
);
12121 if (TREE_CODE_CLASS (code
) == tcc_declaration
12122 && HAS_DECL_ASSEMBLER_NAME_P (expr
))
12124 /* Allow DECL_ASSEMBLER_NAME and symtab_node to be modified. */
12125 memcpy ((char *) &buf
, expr
, tree_size (expr
));
12126 SET_DECL_ASSEMBLER_NAME ((tree
)&buf
, NULL
);
12127 buf
.decl_with_vis
.symtab_node
= NULL
;
12128 expr
= (tree
) &buf
;
12130 else if (TREE_CODE_CLASS (code
) == tcc_type
12131 && (TYPE_POINTER_TO (expr
)
12132 || TYPE_REFERENCE_TO (expr
)
12133 || TYPE_CACHED_VALUES_P (expr
)
12134 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr
)
12135 || TYPE_NEXT_VARIANT (expr
)
12136 || TYPE_ALIAS_SET_KNOWN_P (expr
)))
12138 /* Allow these fields to be modified. */
12140 memcpy ((char *) &buf
, expr
, tree_size (expr
));
12141 expr
= tmp
= (tree
) &buf
;
12142 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (tmp
) = 0;
12143 TYPE_POINTER_TO (tmp
) = NULL
;
12144 TYPE_REFERENCE_TO (tmp
) = NULL
;
12145 TYPE_NEXT_VARIANT (tmp
) = NULL
;
12146 TYPE_ALIAS_SET (tmp
) = -1;
12147 if (TYPE_CACHED_VALUES_P (tmp
))
12149 TYPE_CACHED_VALUES_P (tmp
) = 0;
12150 TYPE_CACHED_VALUES (tmp
) = NULL
;
12153 md5_process_bytes (expr
, tree_size (expr
), ctx
);
12154 if (CODE_CONTAINS_STRUCT (code
, TS_TYPED
))
12155 fold_checksum_tree (TREE_TYPE (expr
), ctx
, ht
);
12156 if (TREE_CODE_CLASS (code
) != tcc_type
12157 && TREE_CODE_CLASS (code
) != tcc_declaration
12158 && code
!= TREE_LIST
12159 && code
!= SSA_NAME
12160 && CODE_CONTAINS_STRUCT (code
, TS_COMMON
))
12161 fold_checksum_tree (TREE_CHAIN (expr
), ctx
, ht
);
12162 switch (TREE_CODE_CLASS (code
))
12168 md5_process_bytes (TREE_STRING_POINTER (expr
),
12169 TREE_STRING_LENGTH (expr
), ctx
);
12172 fold_checksum_tree (TREE_REALPART (expr
), ctx
, ht
);
12173 fold_checksum_tree (TREE_IMAGPART (expr
), ctx
, ht
);
12176 len
= vector_cst_encoded_nelts (expr
);
12177 for (i
= 0; i
< len
; ++i
)
12178 fold_checksum_tree (VECTOR_CST_ENCODED_ELT (expr
, i
), ctx
, ht
);
12184 case tcc_exceptional
:
12188 fold_checksum_tree (TREE_PURPOSE (expr
), ctx
, ht
);
12189 fold_checksum_tree (TREE_VALUE (expr
), ctx
, ht
);
12190 expr
= TREE_CHAIN (expr
);
12191 goto recursive_label
;
12194 for (i
= 0; i
< TREE_VEC_LENGTH (expr
); ++i
)
12195 fold_checksum_tree (TREE_VEC_ELT (expr
, i
), ctx
, ht
);
12201 case tcc_expression
:
12202 case tcc_reference
:
12203 case tcc_comparison
:
12206 case tcc_statement
:
12208 len
= TREE_OPERAND_LENGTH (expr
);
12209 for (i
= 0; i
< len
; ++i
)
12210 fold_checksum_tree (TREE_OPERAND (expr
, i
), ctx
, ht
);
12212 case tcc_declaration
:
12213 fold_checksum_tree (DECL_NAME (expr
), ctx
, ht
);
12214 fold_checksum_tree (DECL_CONTEXT (expr
), ctx
, ht
);
12215 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr
), TS_DECL_COMMON
))
12217 fold_checksum_tree (DECL_SIZE (expr
), ctx
, ht
);
12218 fold_checksum_tree (DECL_SIZE_UNIT (expr
), ctx
, ht
);
12219 fold_checksum_tree (DECL_INITIAL (expr
), ctx
, ht
);
12220 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr
), ctx
, ht
);
12221 fold_checksum_tree (DECL_ATTRIBUTES (expr
), ctx
, ht
);
12224 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr
), TS_DECL_NON_COMMON
))
12226 if (TREE_CODE (expr
) == FUNCTION_DECL
)
12228 fold_checksum_tree (DECL_VINDEX (expr
), ctx
, ht
);
12229 fold_checksum_tree (DECL_ARGUMENTS (expr
), ctx
, ht
);
12231 fold_checksum_tree (DECL_RESULT_FLD (expr
), ctx
, ht
);
12235 if (TREE_CODE (expr
) == ENUMERAL_TYPE
)
12236 fold_checksum_tree (TYPE_VALUES (expr
), ctx
, ht
);
12237 fold_checksum_tree (TYPE_SIZE (expr
), ctx
, ht
);
12238 fold_checksum_tree (TYPE_SIZE_UNIT (expr
), ctx
, ht
);
12239 fold_checksum_tree (TYPE_ATTRIBUTES (expr
), ctx
, ht
);
12240 fold_checksum_tree (TYPE_NAME (expr
), ctx
, ht
);
12241 if (INTEGRAL_TYPE_P (expr
)
12242 || SCALAR_FLOAT_TYPE_P (expr
))
12244 fold_checksum_tree (TYPE_MIN_VALUE (expr
), ctx
, ht
);
12245 fold_checksum_tree (TYPE_MAX_VALUE (expr
), ctx
, ht
);
12247 fold_checksum_tree (TYPE_MAIN_VARIANT (expr
), ctx
, ht
);
12248 if (TREE_CODE (expr
) == RECORD_TYPE
12249 || TREE_CODE (expr
) == UNION_TYPE
12250 || TREE_CODE (expr
) == QUAL_UNION_TYPE
)
12251 fold_checksum_tree (TYPE_BINFO (expr
), ctx
, ht
);
12252 fold_checksum_tree (TYPE_CONTEXT (expr
), ctx
, ht
);
12259 /* Helper function for outputting the checksum of a tree T. When
12260 debugging with gdb, you can "define mynext" to be "next" followed
12261 by "call debug_fold_checksum (op0)", then just trace down till the
12264 DEBUG_FUNCTION
void
12265 debug_fold_checksum (const_tree t
)
12268 unsigned char checksum
[16];
12269 struct md5_ctx ctx
;
12270 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12272 md5_init_ctx (&ctx
);
12273 fold_checksum_tree (t
, &ctx
, &ht
);
12274 md5_finish_ctx (&ctx
, checksum
);
12277 for (i
= 0; i
< 16; i
++)
12278 fprintf (stderr
, "%d ", checksum
[i
]);
12280 fprintf (stderr
, "\n");
12285 /* Fold a unary tree expression with code CODE of type TYPE with an
12286 operand OP0. LOC is the location of the resulting expression.
12287 Return a folded expression if successful. Otherwise, return a tree
12288 expression with code CODE of type TYPE with an operand OP0. */
12291 fold_build1_loc (location_t loc
,
12292 enum tree_code code
, tree type
, tree op0 MEM_STAT_DECL
)
12295 #ifdef ENABLE_FOLD_CHECKING
12296 unsigned char checksum_before
[16], checksum_after
[16];
12297 struct md5_ctx ctx
;
12298 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12300 md5_init_ctx (&ctx
);
12301 fold_checksum_tree (op0
, &ctx
, &ht
);
12302 md5_finish_ctx (&ctx
, checksum_before
);
12306 tem
= fold_unary_loc (loc
, code
, type
, op0
);
12308 tem
= build1_loc (loc
, code
, type
, op0 PASS_MEM_STAT
);
12310 #ifdef ENABLE_FOLD_CHECKING
12311 md5_init_ctx (&ctx
);
12312 fold_checksum_tree (op0
, &ctx
, &ht
);
12313 md5_finish_ctx (&ctx
, checksum_after
);
12315 if (memcmp (checksum_before
, checksum_after
, 16))
12316 fold_check_failed (op0
, tem
);
12321 /* Fold a binary tree expression with code CODE of type TYPE with
12322 operands OP0 and OP1. LOC is the location of the resulting
12323 expression. Return a folded expression if successful. Otherwise,
12324 return a tree expression with code CODE of type TYPE with operands
12328 fold_build2_loc (location_t loc
,
12329 enum tree_code code
, tree type
, tree op0
, tree op1
12333 #ifdef ENABLE_FOLD_CHECKING
12334 unsigned char checksum_before_op0
[16],
12335 checksum_before_op1
[16],
12336 checksum_after_op0
[16],
12337 checksum_after_op1
[16];
12338 struct md5_ctx ctx
;
12339 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12341 md5_init_ctx (&ctx
);
12342 fold_checksum_tree (op0
, &ctx
, &ht
);
12343 md5_finish_ctx (&ctx
, checksum_before_op0
);
12346 md5_init_ctx (&ctx
);
12347 fold_checksum_tree (op1
, &ctx
, &ht
);
12348 md5_finish_ctx (&ctx
, checksum_before_op1
);
12352 tem
= fold_binary_loc (loc
, code
, type
, op0
, op1
);
12354 tem
= build2_loc (loc
, code
, type
, op0
, op1 PASS_MEM_STAT
);
12356 #ifdef ENABLE_FOLD_CHECKING
12357 md5_init_ctx (&ctx
);
12358 fold_checksum_tree (op0
, &ctx
, &ht
);
12359 md5_finish_ctx (&ctx
, checksum_after_op0
);
12362 if (memcmp (checksum_before_op0
, checksum_after_op0
, 16))
12363 fold_check_failed (op0
, tem
);
12365 md5_init_ctx (&ctx
);
12366 fold_checksum_tree (op1
, &ctx
, &ht
);
12367 md5_finish_ctx (&ctx
, checksum_after_op1
);
12369 if (memcmp (checksum_before_op1
, checksum_after_op1
, 16))
12370 fold_check_failed (op1
, tem
);
12375 /* Fold a ternary tree expression with code CODE of type TYPE with
12376 operands OP0, OP1, and OP2. Return a folded expression if
12377 successful. Otherwise, return a tree expression with code CODE of
12378 type TYPE with operands OP0, OP1, and OP2. */
12381 fold_build3_loc (location_t loc
, enum tree_code code
, tree type
,
12382 tree op0
, tree op1
, tree op2 MEM_STAT_DECL
)
12385 #ifdef ENABLE_FOLD_CHECKING
12386 unsigned char checksum_before_op0
[16],
12387 checksum_before_op1
[16],
12388 checksum_before_op2
[16],
12389 checksum_after_op0
[16],
12390 checksum_after_op1
[16],
12391 checksum_after_op2
[16];
12392 struct md5_ctx ctx
;
12393 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12395 md5_init_ctx (&ctx
);
12396 fold_checksum_tree (op0
, &ctx
, &ht
);
12397 md5_finish_ctx (&ctx
, checksum_before_op0
);
12400 md5_init_ctx (&ctx
);
12401 fold_checksum_tree (op1
, &ctx
, &ht
);
12402 md5_finish_ctx (&ctx
, checksum_before_op1
);
12405 md5_init_ctx (&ctx
);
12406 fold_checksum_tree (op2
, &ctx
, &ht
);
12407 md5_finish_ctx (&ctx
, checksum_before_op2
);
12411 gcc_assert (TREE_CODE_CLASS (code
) != tcc_vl_exp
);
12412 tem
= fold_ternary_loc (loc
, code
, type
, op0
, op1
, op2
);
12414 tem
= build3_loc (loc
, code
, type
, op0
, op1
, op2 PASS_MEM_STAT
);
12416 #ifdef ENABLE_FOLD_CHECKING
12417 md5_init_ctx (&ctx
);
12418 fold_checksum_tree (op0
, &ctx
, &ht
);
12419 md5_finish_ctx (&ctx
, checksum_after_op0
);
12422 if (memcmp (checksum_before_op0
, checksum_after_op0
, 16))
12423 fold_check_failed (op0
, tem
);
12425 md5_init_ctx (&ctx
);
12426 fold_checksum_tree (op1
, &ctx
, &ht
);
12427 md5_finish_ctx (&ctx
, checksum_after_op1
);
12430 if (memcmp (checksum_before_op1
, checksum_after_op1
, 16))
12431 fold_check_failed (op1
, tem
);
12433 md5_init_ctx (&ctx
);
12434 fold_checksum_tree (op2
, &ctx
, &ht
);
12435 md5_finish_ctx (&ctx
, checksum_after_op2
);
12437 if (memcmp (checksum_before_op2
, checksum_after_op2
, 16))
12438 fold_check_failed (op2
, tem
);
12443 /* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS
12444 arguments in ARGARRAY, and a null static chain.
12445 Return a folded expression if successful. Otherwise, return a CALL_EXPR
12446 of type TYPE from the given operands as constructed by build_call_array. */
12449 fold_build_call_array_loc (location_t loc
, tree type
, tree fn
,
12450 int nargs
, tree
*argarray
)
12453 #ifdef ENABLE_FOLD_CHECKING
12454 unsigned char checksum_before_fn
[16],
12455 checksum_before_arglist
[16],
12456 checksum_after_fn
[16],
12457 checksum_after_arglist
[16];
12458 struct md5_ctx ctx
;
12459 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12462 md5_init_ctx (&ctx
);
12463 fold_checksum_tree (fn
, &ctx
, &ht
);
12464 md5_finish_ctx (&ctx
, checksum_before_fn
);
12467 md5_init_ctx (&ctx
);
12468 for (i
= 0; i
< nargs
; i
++)
12469 fold_checksum_tree (argarray
[i
], &ctx
, &ht
);
12470 md5_finish_ctx (&ctx
, checksum_before_arglist
);
12474 tem
= fold_builtin_call_array (loc
, type
, fn
, nargs
, argarray
);
12476 tem
= build_call_array_loc (loc
, type
, fn
, nargs
, argarray
);
12478 #ifdef ENABLE_FOLD_CHECKING
12479 md5_init_ctx (&ctx
);
12480 fold_checksum_tree (fn
, &ctx
, &ht
);
12481 md5_finish_ctx (&ctx
, checksum_after_fn
);
12484 if (memcmp (checksum_before_fn
, checksum_after_fn
, 16))
12485 fold_check_failed (fn
, tem
);
12487 md5_init_ctx (&ctx
);
12488 for (i
= 0; i
< nargs
; i
++)
12489 fold_checksum_tree (argarray
[i
], &ctx
, &ht
);
12490 md5_finish_ctx (&ctx
, checksum_after_arglist
);
12492 if (memcmp (checksum_before_arglist
, checksum_after_arglist
, 16))
12493 fold_check_failed (NULL_TREE
, tem
);
12498 /* Perform constant folding and related simplification of initializer
12499 expression EXPR. These behave identically to "fold_buildN" but ignore
12500 potential run-time traps and exceptions that fold must preserve. */
12502 #define START_FOLD_INIT \
12503 int saved_signaling_nans = flag_signaling_nans;\
12504 int saved_trapping_math = flag_trapping_math;\
12505 int saved_rounding_math = flag_rounding_math;\
12506 int saved_trapv = flag_trapv;\
12507 int saved_folding_initializer = folding_initializer;\
12508 flag_signaling_nans = 0;\
12509 flag_trapping_math = 0;\
12510 flag_rounding_math = 0;\
12512 folding_initializer = 1;
12514 #define END_FOLD_INIT \
12515 flag_signaling_nans = saved_signaling_nans;\
12516 flag_trapping_math = saved_trapping_math;\
12517 flag_rounding_math = saved_rounding_math;\
12518 flag_trapv = saved_trapv;\
12519 folding_initializer = saved_folding_initializer;
12522 fold_build1_initializer_loc (location_t loc
, enum tree_code code
,
12523 tree type
, tree op
)
12528 result
= fold_build1_loc (loc
, code
, type
, op
);
12535 fold_build2_initializer_loc (location_t loc
, enum tree_code code
,
12536 tree type
, tree op0
, tree op1
)
12541 result
= fold_build2_loc (loc
, code
, type
, op0
, op1
);
12548 fold_build_call_array_initializer_loc (location_t loc
, tree type
, tree fn
,
12549 int nargs
, tree
*argarray
)
12554 result
= fold_build_call_array_loc (loc
, type
, fn
, nargs
, argarray
);
12560 #undef START_FOLD_INIT
12561 #undef END_FOLD_INIT
12563 /* Determine if first argument is a multiple of second argument. Return 0 if
12564 it is not, or we cannot easily determined it to be.
12566 An example of the sort of thing we care about (at this point; this routine
12567 could surely be made more general, and expanded to do what the *_DIV_EXPR's
12568 fold cases do now) is discovering that
12570 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12576 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
12578 This code also handles discovering that
12580 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12582 is a multiple of 8 so we don't have to worry about dealing with a
12583 possible remainder.
12585 Note that we *look* inside a SAVE_EXPR only to determine how it was
12586 calculated; it is not safe for fold to do much of anything else with the
12587 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
12588 at run time. For example, the latter example above *cannot* be implemented
12589 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
12590 evaluation time of the original SAVE_EXPR is not necessarily the same at
12591 the time the new expression is evaluated. The only optimization of this
12592 sort that would be valid is changing
12594 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
12598 SAVE_EXPR (I) * SAVE_EXPR (J)
12600 (where the same SAVE_EXPR (J) is used in the original and the
12601 transformed version). */
12604 multiple_of_p (tree type
, const_tree top
, const_tree bottom
)
12609 if (operand_equal_p (top
, bottom
, 0))
12612 if (TREE_CODE (type
) != INTEGER_TYPE
)
12615 switch (TREE_CODE (top
))
12618 /* Bitwise and provides a power of two multiple. If the mask is
12619 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
12620 if (!integer_pow2p (bottom
))
12622 return (multiple_of_p (type
, TREE_OPERAND (top
, 1), bottom
)
12623 || multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
));
12626 if (TREE_CODE (bottom
) == INTEGER_CST
)
12628 op1
= TREE_OPERAND (top
, 0);
12629 op2
= TREE_OPERAND (top
, 1);
12630 if (TREE_CODE (op1
) == INTEGER_CST
)
12631 std::swap (op1
, op2
);
12632 if (TREE_CODE (op2
) == INTEGER_CST
)
12634 if (multiple_of_p (type
, op2
, bottom
))
12636 /* Handle multiple_of_p ((x * 2 + 2) * 4, 8). */
12637 if (multiple_of_p (type
, bottom
, op2
))
12639 widest_int w
= wi::sdiv_trunc (wi::to_widest (bottom
),
12640 wi::to_widest (op2
));
12641 if (wi::fits_to_tree_p (w
, TREE_TYPE (bottom
)))
12643 op2
= wide_int_to_tree (TREE_TYPE (bottom
), w
);
12644 return multiple_of_p (type
, op1
, op2
);
12647 return multiple_of_p (type
, op1
, bottom
);
12650 return (multiple_of_p (type
, TREE_OPERAND (top
, 1), bottom
)
12651 || multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
));
12654 /* It is impossible to prove if op0 - op1 is multiple of bottom
12655 precisely, so be conservative here checking if both op0 and op1
12656 are multiple of bottom. Note we check the second operand first
12657 since it's usually simpler. */
12658 return (multiple_of_p (type
, TREE_OPERAND (top
, 1), bottom
)
12659 && multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
));
12662 /* The same as MINUS_EXPR, but handle cases like op0 + 0xfffffffd
12663 as op0 - 3 if the expression has unsigned type. For example,
12664 (X / 3) + 0xfffffffd is multiple of 3, but 0xfffffffd is not. */
12665 op1
= TREE_OPERAND (top
, 1);
12666 if (TYPE_UNSIGNED (type
)
12667 && TREE_CODE (op1
) == INTEGER_CST
&& tree_int_cst_sign_bit (op1
))
12668 op1
= fold_build1 (NEGATE_EXPR
, type
, op1
);
12669 return (multiple_of_p (type
, op1
, bottom
)
12670 && multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
));
12673 if (TREE_CODE (TREE_OPERAND (top
, 1)) == INTEGER_CST
)
12675 op1
= TREE_OPERAND (top
, 1);
12676 /* const_binop may not detect overflow correctly,
12677 so check for it explicitly here. */
12678 if (wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node
)),
12680 && (t1
= fold_convert (type
,
12681 const_binop (LSHIFT_EXPR
, size_one_node
,
12683 && !TREE_OVERFLOW (t1
))
12684 return multiple_of_p (type
, t1
, bottom
);
12689 /* Can't handle conversions from non-integral or wider integral type. */
12690 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top
, 0))) != INTEGER_TYPE
)
12691 || (TYPE_PRECISION (type
)
12692 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top
, 0)))))
12698 return multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
);
12701 return (multiple_of_p (type
, TREE_OPERAND (top
, 1), bottom
)
12702 && multiple_of_p (type
, TREE_OPERAND (top
, 2), bottom
));
12705 if (TREE_CODE (bottom
) != INTEGER_CST
12706 || integer_zerop (bottom
)
12707 || (TYPE_UNSIGNED (type
)
12708 && (tree_int_cst_sgn (top
) < 0
12709 || tree_int_cst_sgn (bottom
) < 0)))
12711 return wi::multiple_of_p (wi::to_widest (top
), wi::to_widest (bottom
),
12715 if (TREE_CODE (bottom
) == INTEGER_CST
12716 && (stmt
= SSA_NAME_DEF_STMT (top
)) != NULL
12717 && gimple_code (stmt
) == GIMPLE_ASSIGN
)
12719 enum tree_code code
= gimple_assign_rhs_code (stmt
);
12721 /* Check for special cases to see if top is defined as multiple
12724 top = (X & ~(bottom - 1) ; bottom is power of 2
12730 if (code
== BIT_AND_EXPR
12731 && (op2
= gimple_assign_rhs2 (stmt
)) != NULL_TREE
12732 && TREE_CODE (op2
) == INTEGER_CST
12733 && integer_pow2p (bottom
)
12734 && wi::multiple_of_p (wi::to_widest (op2
),
12735 wi::to_widest (bottom
), UNSIGNED
))
12738 op1
= gimple_assign_rhs1 (stmt
);
12739 if (code
== MINUS_EXPR
12740 && (op2
= gimple_assign_rhs2 (stmt
)) != NULL_TREE
12741 && TREE_CODE (op2
) == SSA_NAME
12742 && (stmt
= SSA_NAME_DEF_STMT (op2
)) != NULL
12743 && gimple_code (stmt
) == GIMPLE_ASSIGN
12744 && (code
= gimple_assign_rhs_code (stmt
)) == TRUNC_MOD_EXPR
12745 && operand_equal_p (op1
, gimple_assign_rhs1 (stmt
), 0)
12746 && operand_equal_p (bottom
, gimple_assign_rhs2 (stmt
), 0))
12753 if (POLY_INT_CST_P (top
) && poly_int_tree_p (bottom
))
12754 return multiple_p (wi::to_poly_widest (top
),
12755 wi::to_poly_widest (bottom
));
12761 #define tree_expr_nonnegative_warnv_p(X, Y) \
12762 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
12764 #define RECURSE(X) \
12765 ((tree_expr_nonnegative_warnv_p) (X, strict_overflow_p, depth + 1))
12767 /* Return true if CODE or TYPE is known to be non-negative. */
12770 tree_simple_nonnegative_warnv_p (enum tree_code code
, tree type
)
12772 if ((TYPE_PRECISION (type
) != 1 || TYPE_UNSIGNED (type
))
12773 && truth_value_p (code
))
12774 /* Truth values evaluate to 0 or 1, which is nonnegative unless we
12775 have a signed:1 type (where the value is -1 and 0). */
12780 /* Return true if (CODE OP0) is known to be non-negative. If the return
12781 value is based on the assumption that signed overflow is undefined,
12782 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12783 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12786 tree_unary_nonnegative_warnv_p (enum tree_code code
, tree type
, tree op0
,
12787 bool *strict_overflow_p
, int depth
)
12789 if (TYPE_UNSIGNED (type
))
12795 /* We can't return 1 if flag_wrapv is set because
12796 ABS_EXPR<INT_MIN> = INT_MIN. */
12797 if (!ANY_INTEGRAL_TYPE_P (type
))
12799 if (TYPE_OVERFLOW_UNDEFINED (type
))
12801 *strict_overflow_p
= true;
12806 case NON_LVALUE_EXPR
:
12808 case FIX_TRUNC_EXPR
:
12809 return RECURSE (op0
);
12813 tree inner_type
= TREE_TYPE (op0
);
12814 tree outer_type
= type
;
12816 if (TREE_CODE (outer_type
) == REAL_TYPE
)
12818 if (TREE_CODE (inner_type
) == REAL_TYPE
)
12819 return RECURSE (op0
);
12820 if (INTEGRAL_TYPE_P (inner_type
))
12822 if (TYPE_UNSIGNED (inner_type
))
12824 return RECURSE (op0
);
12827 else if (INTEGRAL_TYPE_P (outer_type
))
12829 if (TREE_CODE (inner_type
) == REAL_TYPE
)
12830 return RECURSE (op0
);
12831 if (INTEGRAL_TYPE_P (inner_type
))
12832 return TYPE_PRECISION (inner_type
) < TYPE_PRECISION (outer_type
)
12833 && TYPE_UNSIGNED (inner_type
);
12839 return tree_simple_nonnegative_warnv_p (code
, type
);
12842 /* We don't know sign of `t', so be conservative and return false. */
12846 /* Return true if (CODE OP0 OP1) is known to be non-negative. If the return
12847 value is based on the assumption that signed overflow is undefined,
12848 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12849 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12852 tree_binary_nonnegative_warnv_p (enum tree_code code
, tree type
, tree op0
,
12853 tree op1
, bool *strict_overflow_p
,
12856 if (TYPE_UNSIGNED (type
))
12861 case POINTER_PLUS_EXPR
:
12863 if (FLOAT_TYPE_P (type
))
12864 return RECURSE (op0
) && RECURSE (op1
);
12866 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
12867 both unsigned and at least 2 bits shorter than the result. */
12868 if (TREE_CODE (type
) == INTEGER_TYPE
12869 && TREE_CODE (op0
) == NOP_EXPR
12870 && TREE_CODE (op1
) == NOP_EXPR
)
12872 tree inner1
= TREE_TYPE (TREE_OPERAND (op0
, 0));
12873 tree inner2
= TREE_TYPE (TREE_OPERAND (op1
, 0));
12874 if (TREE_CODE (inner1
) == INTEGER_TYPE
&& TYPE_UNSIGNED (inner1
)
12875 && TREE_CODE (inner2
) == INTEGER_TYPE
&& TYPE_UNSIGNED (inner2
))
12877 unsigned int prec
= MAX (TYPE_PRECISION (inner1
),
12878 TYPE_PRECISION (inner2
)) + 1;
12879 return prec
< TYPE_PRECISION (type
);
12885 if (FLOAT_TYPE_P (type
) || TYPE_OVERFLOW_UNDEFINED (type
))
12887 /* x * x is always non-negative for floating point x
12888 or without overflow. */
12889 if (operand_equal_p (op0
, op1
, 0)
12890 || (RECURSE (op0
) && RECURSE (op1
)))
12892 if (ANY_INTEGRAL_TYPE_P (type
)
12893 && TYPE_OVERFLOW_UNDEFINED (type
))
12894 *strict_overflow_p
= true;
12899 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
12900 both unsigned and their total bits is shorter than the result. */
12901 if (TREE_CODE (type
) == INTEGER_TYPE
12902 && (TREE_CODE (op0
) == NOP_EXPR
|| TREE_CODE (op0
) == INTEGER_CST
)
12903 && (TREE_CODE (op1
) == NOP_EXPR
|| TREE_CODE (op1
) == INTEGER_CST
))
12905 tree inner0
= (TREE_CODE (op0
) == NOP_EXPR
)
12906 ? TREE_TYPE (TREE_OPERAND (op0
, 0))
12908 tree inner1
= (TREE_CODE (op1
) == NOP_EXPR
)
12909 ? TREE_TYPE (TREE_OPERAND (op1
, 0))
12912 bool unsigned0
= TYPE_UNSIGNED (inner0
);
12913 bool unsigned1
= TYPE_UNSIGNED (inner1
);
12915 if (TREE_CODE (op0
) == INTEGER_CST
)
12916 unsigned0
= unsigned0
|| tree_int_cst_sgn (op0
) >= 0;
12918 if (TREE_CODE (op1
) == INTEGER_CST
)
12919 unsigned1
= unsigned1
|| tree_int_cst_sgn (op1
) >= 0;
12921 if (TREE_CODE (inner0
) == INTEGER_TYPE
&& unsigned0
12922 && TREE_CODE (inner1
) == INTEGER_TYPE
&& unsigned1
)
12924 unsigned int precision0
= (TREE_CODE (op0
) == INTEGER_CST
)
12925 ? tree_int_cst_min_precision (op0
, UNSIGNED
)
12926 : TYPE_PRECISION (inner0
);
12928 unsigned int precision1
= (TREE_CODE (op1
) == INTEGER_CST
)
12929 ? tree_int_cst_min_precision (op1
, UNSIGNED
)
12930 : TYPE_PRECISION (inner1
);
12932 return precision0
+ precision1
< TYPE_PRECISION (type
);
12939 return RECURSE (op0
) || RECURSE (op1
);
12945 case TRUNC_DIV_EXPR
:
12946 case CEIL_DIV_EXPR
:
12947 case FLOOR_DIV_EXPR
:
12948 case ROUND_DIV_EXPR
:
12949 return RECURSE (op0
) && RECURSE (op1
);
12951 case TRUNC_MOD_EXPR
:
12952 return RECURSE (op0
);
12954 case FLOOR_MOD_EXPR
:
12955 return RECURSE (op1
);
12957 case CEIL_MOD_EXPR
:
12958 case ROUND_MOD_EXPR
:
12960 return tree_simple_nonnegative_warnv_p (code
, type
);
12963 /* We don't know sign of `t', so be conservative and return false. */
12967 /* Return true if T is known to be non-negative. If the return
12968 value is based on the assumption that signed overflow is undefined,
12969 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12970 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12973 tree_single_nonnegative_warnv_p (tree t
, bool *strict_overflow_p
, int depth
)
12975 if (TYPE_UNSIGNED (TREE_TYPE (t
)))
12978 switch (TREE_CODE (t
))
12981 return tree_int_cst_sgn (t
) >= 0;
12984 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t
));
12987 return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t
));
12990 return RECURSE (TREE_OPERAND (t
, 1)) && RECURSE (TREE_OPERAND (t
, 2));
12993 /* Limit the depth of recursion to avoid quadratic behavior.
12994 This is expected to catch almost all occurrences in practice.
12995 If this code misses important cases that unbounded recursion
12996 would not, passes that need this information could be revised
12997 to provide it through dataflow propagation. */
12998 return (!name_registered_for_update_p (t
)
12999 && depth
< PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH
)
13000 && gimple_stmt_nonnegative_warnv_p (SSA_NAME_DEF_STMT (t
),
13001 strict_overflow_p
, depth
));
13004 return tree_simple_nonnegative_warnv_p (TREE_CODE (t
), TREE_TYPE (t
));
13008 /* Return true if T is known to be non-negative. If the return
13009 value is based on the assumption that signed overflow is undefined,
13010 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13011 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13014 tree_call_nonnegative_warnv_p (tree type
, combined_fn fn
, tree arg0
, tree arg1
,
13015 bool *strict_overflow_p
, int depth
)
13036 case CFN_BUILT_IN_BSWAP32
:
13037 case CFN_BUILT_IN_BSWAP64
:
13043 /* sqrt(-0.0) is -0.0. */
13044 if (!HONOR_SIGNED_ZEROS (element_mode (type
)))
13046 return RECURSE (arg0
);
13074 CASE_CFN_NEARBYINT
:
13075 CASE_CFN_NEARBYINT_FN
:
13084 CASE_CFN_SIGNIFICAND
:
13089 /* True if the 1st argument is nonnegative. */
13090 return RECURSE (arg0
);
13094 /* True if the 1st OR 2nd arguments are nonnegative. */
13095 return RECURSE (arg0
) || RECURSE (arg1
);
13099 /* True if the 1st AND 2nd arguments are nonnegative. */
13100 return RECURSE (arg0
) && RECURSE (arg1
);
13103 CASE_CFN_COPYSIGN_FN
:
13104 /* True if the 2nd argument is nonnegative. */
13105 return RECURSE (arg1
);
13108 /* True if the 1st argument is nonnegative or the second
13109 argument is an even integer. */
13110 if (TREE_CODE (arg1
) == INTEGER_CST
13111 && (TREE_INT_CST_LOW (arg1
) & 1) == 0)
13113 return RECURSE (arg0
);
13116 /* True if the 1st argument is nonnegative or the second
13117 argument is an even integer valued real. */
13118 if (TREE_CODE (arg1
) == REAL_CST
)
13123 c
= TREE_REAL_CST (arg1
);
13124 n
= real_to_integer (&c
);
13127 REAL_VALUE_TYPE cint
;
13128 real_from_integer (&cint
, VOIDmode
, n
, SIGNED
);
13129 if (real_identical (&c
, &cint
))
13133 return RECURSE (arg0
);
13138 return tree_simple_nonnegative_warnv_p (CALL_EXPR
, type
);
13141 /* Return true if T is known to be non-negative. If the return
13142 value is based on the assumption that signed overflow is undefined,
13143 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13144 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13147 tree_invalid_nonnegative_warnv_p (tree t
, bool *strict_overflow_p
, int depth
)
13149 enum tree_code code
= TREE_CODE (t
);
13150 if (TYPE_UNSIGNED (TREE_TYPE (t
)))
13157 tree temp
= TARGET_EXPR_SLOT (t
);
13158 t
= TARGET_EXPR_INITIAL (t
);
13160 /* If the initializer is non-void, then it's a normal expression
13161 that will be assigned to the slot. */
13162 if (!VOID_TYPE_P (t
))
13163 return RECURSE (t
);
13165 /* Otherwise, the initializer sets the slot in some way. One common
13166 way is an assignment statement at the end of the initializer. */
13169 if (TREE_CODE (t
) == BIND_EXPR
)
13170 t
= expr_last (BIND_EXPR_BODY (t
));
13171 else if (TREE_CODE (t
) == TRY_FINALLY_EXPR
13172 || TREE_CODE (t
) == TRY_CATCH_EXPR
)
13173 t
= expr_last (TREE_OPERAND (t
, 0));
13174 else if (TREE_CODE (t
) == STATEMENT_LIST
)
13179 if (TREE_CODE (t
) == MODIFY_EXPR
13180 && TREE_OPERAND (t
, 0) == temp
)
13181 return RECURSE (TREE_OPERAND (t
, 1));
13188 tree arg0
= call_expr_nargs (t
) > 0 ? CALL_EXPR_ARG (t
, 0) : NULL_TREE
;
13189 tree arg1
= call_expr_nargs (t
) > 1 ? CALL_EXPR_ARG (t
, 1) : NULL_TREE
;
13191 return tree_call_nonnegative_warnv_p (TREE_TYPE (t
),
13192 get_call_combined_fn (t
),
13195 strict_overflow_p
, depth
);
13197 case COMPOUND_EXPR
:
13199 return RECURSE (TREE_OPERAND (t
, 1));
13202 return RECURSE (expr_last (TREE_OPERAND (t
, 1)));
13205 return RECURSE (TREE_OPERAND (t
, 0));
13208 return tree_simple_nonnegative_warnv_p (TREE_CODE (t
), TREE_TYPE (t
));
13213 #undef tree_expr_nonnegative_warnv_p
13215 /* Return true if T is known to be non-negative. If the return
13216 value is based on the assumption that signed overflow is undefined,
13217 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13218 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13221 tree_expr_nonnegative_warnv_p (tree t
, bool *strict_overflow_p
, int depth
)
13223 enum tree_code code
;
13224 if (t
== error_mark_node
)
13227 code
= TREE_CODE (t
);
13228 switch (TREE_CODE_CLASS (code
))
13231 case tcc_comparison
:
13232 return tree_binary_nonnegative_warnv_p (TREE_CODE (t
),
13234 TREE_OPERAND (t
, 0),
13235 TREE_OPERAND (t
, 1),
13236 strict_overflow_p
, depth
);
13239 return tree_unary_nonnegative_warnv_p (TREE_CODE (t
),
13241 TREE_OPERAND (t
, 0),
13242 strict_overflow_p
, depth
);
13245 case tcc_declaration
:
13246 case tcc_reference
:
13247 return tree_single_nonnegative_warnv_p (t
, strict_overflow_p
, depth
);
13255 case TRUTH_AND_EXPR
:
13256 case TRUTH_OR_EXPR
:
13257 case TRUTH_XOR_EXPR
:
13258 return tree_binary_nonnegative_warnv_p (TREE_CODE (t
),
13260 TREE_OPERAND (t
, 0),
13261 TREE_OPERAND (t
, 1),
13262 strict_overflow_p
, depth
);
13263 case TRUTH_NOT_EXPR
:
13264 return tree_unary_nonnegative_warnv_p (TREE_CODE (t
),
13266 TREE_OPERAND (t
, 0),
13267 strict_overflow_p
, depth
);
13274 case WITH_SIZE_EXPR
:
13276 return tree_single_nonnegative_warnv_p (t
, strict_overflow_p
, depth
);
13279 return tree_invalid_nonnegative_warnv_p (t
, strict_overflow_p
, depth
);
13283 /* Return true if `t' is known to be non-negative. Handle warnings
13284 about undefined signed overflow. */
13287 tree_expr_nonnegative_p (tree t
)
13289 bool ret
, strict_overflow_p
;
13291 strict_overflow_p
= false;
13292 ret
= tree_expr_nonnegative_warnv_p (t
, &strict_overflow_p
);
13293 if (strict_overflow_p
)
13294 fold_overflow_warning (("assuming signed overflow does not occur when "
13295 "determining that expression is always "
13297 WARN_STRICT_OVERFLOW_MISC
);
13302 /* Return true when (CODE OP0) is an address and is known to be nonzero.
13303 For floating point we further ensure that T is not denormal.
13304 Similar logic is present in nonzero_address in rtlanal.h.
13306 If the return value is based on the assumption that signed overflow
13307 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13308 change *STRICT_OVERFLOW_P. */
13311 tree_unary_nonzero_warnv_p (enum tree_code code
, tree type
, tree op0
,
13312 bool *strict_overflow_p
)
13317 return tree_expr_nonzero_warnv_p (op0
,
13318 strict_overflow_p
);
13322 tree inner_type
= TREE_TYPE (op0
);
13323 tree outer_type
= type
;
13325 return (TYPE_PRECISION (outer_type
) >= TYPE_PRECISION (inner_type
)
13326 && tree_expr_nonzero_warnv_p (op0
,
13327 strict_overflow_p
));
13331 case NON_LVALUE_EXPR
:
13332 return tree_expr_nonzero_warnv_p (op0
,
13333 strict_overflow_p
);
13342 /* Return true when (CODE OP0 OP1) is an address and is known to be nonzero.
13343 For floating point we further ensure that T is not denormal.
13344 Similar logic is present in nonzero_address in rtlanal.h.
13346 If the return value is based on the assumption that signed overflow
13347 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13348 change *STRICT_OVERFLOW_P. */
13351 tree_binary_nonzero_warnv_p (enum tree_code code
,
13354 tree op1
, bool *strict_overflow_p
)
13356 bool sub_strict_overflow_p
;
13359 case POINTER_PLUS_EXPR
:
13361 if (ANY_INTEGRAL_TYPE_P (type
) && TYPE_OVERFLOW_UNDEFINED (type
))
13363 /* With the presence of negative values it is hard
13364 to say something. */
13365 sub_strict_overflow_p
= false;
13366 if (!tree_expr_nonnegative_warnv_p (op0
,
13367 &sub_strict_overflow_p
)
13368 || !tree_expr_nonnegative_warnv_p (op1
,
13369 &sub_strict_overflow_p
))
13371 /* One of operands must be positive and the other non-negative. */
13372 /* We don't set *STRICT_OVERFLOW_P here: even if this value
13373 overflows, on a twos-complement machine the sum of two
13374 nonnegative numbers can never be zero. */
13375 return (tree_expr_nonzero_warnv_p (op0
,
13377 || tree_expr_nonzero_warnv_p (op1
,
13378 strict_overflow_p
));
13383 if (TYPE_OVERFLOW_UNDEFINED (type
))
13385 if (tree_expr_nonzero_warnv_p (op0
,
13387 && tree_expr_nonzero_warnv_p (op1
,
13388 strict_overflow_p
))
13390 *strict_overflow_p
= true;
13397 sub_strict_overflow_p
= false;
13398 if (tree_expr_nonzero_warnv_p (op0
,
13399 &sub_strict_overflow_p
)
13400 && tree_expr_nonzero_warnv_p (op1
,
13401 &sub_strict_overflow_p
))
13403 if (sub_strict_overflow_p
)
13404 *strict_overflow_p
= true;
13409 sub_strict_overflow_p
= false;
13410 if (tree_expr_nonzero_warnv_p (op0
,
13411 &sub_strict_overflow_p
))
13413 if (sub_strict_overflow_p
)
13414 *strict_overflow_p
= true;
13416 /* When both operands are nonzero, then MAX must be too. */
13417 if (tree_expr_nonzero_warnv_p (op1
,
13418 strict_overflow_p
))
13421 /* MAX where operand 0 is positive is positive. */
13422 return tree_expr_nonnegative_warnv_p (op0
,
13423 strict_overflow_p
);
13425 /* MAX where operand 1 is positive is positive. */
13426 else if (tree_expr_nonzero_warnv_p (op1
,
13427 &sub_strict_overflow_p
)
13428 && tree_expr_nonnegative_warnv_p (op1
,
13429 &sub_strict_overflow_p
))
13431 if (sub_strict_overflow_p
)
13432 *strict_overflow_p
= true;
13438 return (tree_expr_nonzero_warnv_p (op1
,
13440 || tree_expr_nonzero_warnv_p (op0
,
13441 strict_overflow_p
));
13450 /* Return true when T is an address and is known to be nonzero.
13451 For floating point we further ensure that T is not denormal.
13452 Similar logic is present in nonzero_address in rtlanal.h.
13454 If the return value is based on the assumption that signed overflow
13455 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13456 change *STRICT_OVERFLOW_P. */
13459 tree_single_nonzero_warnv_p (tree t
, bool *strict_overflow_p
)
13461 bool sub_strict_overflow_p
;
13462 switch (TREE_CODE (t
))
13465 return !integer_zerop (t
);
13469 tree base
= TREE_OPERAND (t
, 0);
13471 if (!DECL_P (base
))
13472 base
= get_base_address (base
);
13474 if (base
&& TREE_CODE (base
) == TARGET_EXPR
)
13475 base
= TARGET_EXPR_SLOT (base
);
13480 /* For objects in symbol table check if we know they are non-zero.
13481 Don't do anything for variables and functions before symtab is built;
13482 it is quite possible that they will be declared weak later. */
13483 int nonzero_addr
= maybe_nonzero_address (base
);
13484 if (nonzero_addr
>= 0)
13485 return nonzero_addr
;
13487 /* Constants are never weak. */
13488 if (CONSTANT_CLASS_P (base
))
13495 sub_strict_overflow_p
= false;
13496 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 1),
13497 &sub_strict_overflow_p
)
13498 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 2),
13499 &sub_strict_overflow_p
))
13501 if (sub_strict_overflow_p
)
13502 *strict_overflow_p
= true;
13508 if (!INTEGRAL_TYPE_P (TREE_TYPE (t
)))
13510 return expr_not_equal_to (t
, wi::zero (TYPE_PRECISION (TREE_TYPE (t
))));
13518 #define integer_valued_real_p(X) \
13519 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
13521 #define RECURSE(X) \
13522 ((integer_valued_real_p) (X, depth + 1))
13524 /* Return true if the floating point result of (CODE OP0) has an
13525 integer value. We also allow +Inf, -Inf and NaN to be considered
13526 integer values. Return false for signaling NaN.
13528 DEPTH is the current nesting depth of the query. */
13531 integer_valued_real_unary_p (tree_code code
, tree op0
, int depth
)
13539 return RECURSE (op0
);
13543 tree type
= TREE_TYPE (op0
);
13544 if (TREE_CODE (type
) == INTEGER_TYPE
)
13546 if (TREE_CODE (type
) == REAL_TYPE
)
13547 return RECURSE (op0
);
13557 /* Return true if the floating point result of (CODE OP0 OP1) has an
13558 integer value. We also allow +Inf, -Inf and NaN to be considered
13559 integer values. Return false for signaling NaN.
13561 DEPTH is the current nesting depth of the query. */
13564 integer_valued_real_binary_p (tree_code code
, tree op0
, tree op1
, int depth
)
13573 return RECURSE (op0
) && RECURSE (op1
);
13581 /* Return true if the floating point result of calling FNDECL with arguments
13582 ARG0 and ARG1 has an integer value. We also allow +Inf, -Inf and NaN to be
13583 considered integer values. Return false for signaling NaN. If FNDECL
13584 takes fewer than 2 arguments, the remaining ARGn are null.
13586 DEPTH is the current nesting depth of the query. */
13589 integer_valued_real_call_p (combined_fn fn
, tree arg0
, tree arg1
, int depth
)
13597 CASE_CFN_NEARBYINT
:
13598 CASE_CFN_NEARBYINT_FN
:
13611 return RECURSE (arg0
) && RECURSE (arg1
);
13619 /* Return true if the floating point expression T (a GIMPLE_SINGLE_RHS)
13620 has an integer value. We also allow +Inf, -Inf and NaN to be
13621 considered integer values. Return false for signaling NaN.
13623 DEPTH is the current nesting depth of the query. */
13626 integer_valued_real_single_p (tree t
, int depth
)
13628 switch (TREE_CODE (t
))
13631 return real_isinteger (TREE_REAL_CST_PTR (t
), TYPE_MODE (TREE_TYPE (t
)));
13634 return RECURSE (TREE_OPERAND (t
, 1)) && RECURSE (TREE_OPERAND (t
, 2));
13637 /* Limit the depth of recursion to avoid quadratic behavior.
13638 This is expected to catch almost all occurrences in practice.
13639 If this code misses important cases that unbounded recursion
13640 would not, passes that need this information could be revised
13641 to provide it through dataflow propagation. */
13642 return (!name_registered_for_update_p (t
)
13643 && depth
< PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH
)
13644 && gimple_stmt_integer_valued_real_p (SSA_NAME_DEF_STMT (t
),
13653 /* Return true if the floating point expression T (a GIMPLE_INVALID_RHS)
13654 has an integer value. We also allow +Inf, -Inf and NaN to be
13655 considered integer values. Return false for signaling NaN.
13657 DEPTH is the current nesting depth of the query. */
13660 integer_valued_real_invalid_p (tree t
, int depth
)
13662 switch (TREE_CODE (t
))
13664 case COMPOUND_EXPR
:
13667 return RECURSE (TREE_OPERAND (t
, 1));
13670 return RECURSE (TREE_OPERAND (t
, 0));
13679 #undef integer_valued_real_p
13681 /* Return true if the floating point expression T has an integer value.
13682 We also allow +Inf, -Inf and NaN to be considered integer values.
13683 Return false for signaling NaN.
13685 DEPTH is the current nesting depth of the query. */
13688 integer_valued_real_p (tree t
, int depth
)
13690 if (t
== error_mark_node
)
13693 tree_code code
= TREE_CODE (t
);
13694 switch (TREE_CODE_CLASS (code
))
13697 case tcc_comparison
:
13698 return integer_valued_real_binary_p (code
, TREE_OPERAND (t
, 0),
13699 TREE_OPERAND (t
, 1), depth
);
13702 return integer_valued_real_unary_p (code
, TREE_OPERAND (t
, 0), depth
);
13705 case tcc_declaration
:
13706 case tcc_reference
:
13707 return integer_valued_real_single_p (t
, depth
);
13717 return integer_valued_real_single_p (t
, depth
);
13721 tree arg0
= (call_expr_nargs (t
) > 0
13722 ? CALL_EXPR_ARG (t
, 0)
13724 tree arg1
= (call_expr_nargs (t
) > 1
13725 ? CALL_EXPR_ARG (t
, 1)
13727 return integer_valued_real_call_p (get_call_combined_fn (t
),
13728 arg0
, arg1
, depth
);
13732 return integer_valued_real_invalid_p (t
, depth
);
13736 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
13737 attempt to fold the expression to a constant without modifying TYPE,
13740 If the expression could be simplified to a constant, then return
13741 the constant. If the expression would not be simplified to a
13742 constant, then return NULL_TREE. */
13745 fold_binary_to_constant (enum tree_code code
, tree type
, tree op0
, tree op1
)
13747 tree tem
= fold_binary (code
, type
, op0
, op1
);
13748 return (tem
&& TREE_CONSTANT (tem
)) ? tem
: NULL_TREE
;
13751 /* Given the components of a unary expression CODE, TYPE and OP0,
13752 attempt to fold the expression to a constant without modifying
13755 If the expression could be simplified to a constant, then return
13756 the constant. If the expression would not be simplified to a
13757 constant, then return NULL_TREE. */
13760 fold_unary_to_constant (enum tree_code code
, tree type
, tree op0
)
13762 tree tem
= fold_unary (code
, type
, op0
);
13763 return (tem
&& TREE_CONSTANT (tem
)) ? tem
: NULL_TREE
;
13766 /* If EXP represents referencing an element in a constant string
13767 (either via pointer arithmetic or array indexing), return the
13768 tree representing the value accessed, otherwise return NULL. */
13771 fold_read_from_constant_string (tree exp
)
13773 if ((TREE_CODE (exp
) == INDIRECT_REF
13774 || TREE_CODE (exp
) == ARRAY_REF
)
13775 && TREE_CODE (TREE_TYPE (exp
)) == INTEGER_TYPE
)
13777 tree exp1
= TREE_OPERAND (exp
, 0);
13780 location_t loc
= EXPR_LOCATION (exp
);
13782 if (TREE_CODE (exp
) == INDIRECT_REF
)
13783 string
= string_constant (exp1
, &index
);
13786 tree low_bound
= array_ref_low_bound (exp
);
13787 index
= fold_convert_loc (loc
, sizetype
, TREE_OPERAND (exp
, 1));
13789 /* Optimize the special-case of a zero lower bound.
13791 We convert the low_bound to sizetype to avoid some problems
13792 with constant folding. (E.g. suppose the lower bound is 1,
13793 and its mode is QI. Without the conversion,l (ARRAY
13794 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
13795 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
13796 if (! integer_zerop (low_bound
))
13797 index
= size_diffop_loc (loc
, index
,
13798 fold_convert_loc (loc
, sizetype
, low_bound
));
13803 scalar_int_mode char_mode
;
13805 && TYPE_MODE (TREE_TYPE (exp
)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string
)))
13806 && TREE_CODE (string
) == STRING_CST
13807 && TREE_CODE (index
) == INTEGER_CST
13808 && compare_tree_int (index
, TREE_STRING_LENGTH (string
)) < 0
13809 && is_int_mode (TYPE_MODE (TREE_TYPE (TREE_TYPE (string
))),
13811 && GET_MODE_SIZE (char_mode
) == 1)
13812 return build_int_cst_type (TREE_TYPE (exp
),
13813 (TREE_STRING_POINTER (string
)
13814 [TREE_INT_CST_LOW (index
)]));
13819 /* Return the tree for neg (ARG0) when ARG0 is known to be either
13820 an integer constant, real, or fixed-point constant.
13822 TYPE is the type of the result. */
13825 fold_negate_const (tree arg0
, tree type
)
13827 tree t
= NULL_TREE
;
13829 switch (TREE_CODE (arg0
))
13832 t
= build_real (type
, real_value_negate (&TREE_REAL_CST (arg0
)));
13837 FIXED_VALUE_TYPE f
;
13838 bool overflow_p
= fixed_arithmetic (&f
, NEGATE_EXPR
,
13839 &(TREE_FIXED_CST (arg0
)), NULL
,
13840 TYPE_SATURATING (type
));
13841 t
= build_fixed (type
, f
);
13842 /* Propagate overflow flags. */
13843 if (overflow_p
| TREE_OVERFLOW (arg0
))
13844 TREE_OVERFLOW (t
) = 1;
13849 if (poly_int_tree_p (arg0
))
13851 wi::overflow_type overflow
;
13852 poly_wide_int res
= wi::neg (wi::to_poly_wide (arg0
), &overflow
);
13853 t
= force_fit_type (type
, res
, 1,
13854 (overflow
&& ! TYPE_UNSIGNED (type
))
13855 || TREE_OVERFLOW (arg0
));
13859 gcc_unreachable ();
13865 /* Return the tree for abs (ARG0) when ARG0 is known to be either
13866 an integer constant or real constant.
13868 TYPE is the type of the result. */
13871 fold_abs_const (tree arg0
, tree type
)
13873 tree t
= NULL_TREE
;
13875 switch (TREE_CODE (arg0
))
13879 /* If the value is unsigned or non-negative, then the absolute value
13880 is the same as the ordinary value. */
13881 wide_int val
= wi::to_wide (arg0
);
13882 wi::overflow_type overflow
= wi::OVF_NONE
;
13883 if (!wi::neg_p (val
, TYPE_SIGN (TREE_TYPE (arg0
))))
13886 /* If the value is negative, then the absolute value is
13889 val
= wi::neg (val
, &overflow
);
13891 /* Force to the destination type, set TREE_OVERFLOW for signed
13893 t
= force_fit_type (type
, val
, 1, overflow
| TREE_OVERFLOW (arg0
));
13898 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0
)))
13899 t
= build_real (type
, real_value_negate (&TREE_REAL_CST (arg0
)));
13905 gcc_unreachable ();
13911 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
13912 constant. TYPE is the type of the result. */
13915 fold_not_const (const_tree arg0
, tree type
)
13917 gcc_assert (TREE_CODE (arg0
) == INTEGER_CST
);
13919 return force_fit_type (type
, ~wi::to_wide (arg0
), 0, TREE_OVERFLOW (arg0
));
13922 /* Given CODE, a relational operator, the target type, TYPE and two
13923 constant operands OP0 and OP1, return the result of the
13924 relational operation. If the result is not a compile time
13925 constant, then return NULL_TREE. */
13928 fold_relational_const (enum tree_code code
, tree type
, tree op0
, tree op1
)
13930 int result
, invert
;
13932 /* From here on, the only cases we handle are when the result is
13933 known to be a constant. */
13935 if (TREE_CODE (op0
) == REAL_CST
&& TREE_CODE (op1
) == REAL_CST
)
13937 const REAL_VALUE_TYPE
*c0
= TREE_REAL_CST_PTR (op0
);
13938 const REAL_VALUE_TYPE
*c1
= TREE_REAL_CST_PTR (op1
);
13940 /* Handle the cases where either operand is a NaN. */
13941 if (real_isnan (c0
) || real_isnan (c1
))
13951 case UNORDERED_EXPR
:
13965 if (flag_trapping_math
)
13971 gcc_unreachable ();
13974 return constant_boolean_node (result
, type
);
13977 return constant_boolean_node (real_compare (code
, c0
, c1
), type
);
13980 if (TREE_CODE (op0
) == FIXED_CST
&& TREE_CODE (op1
) == FIXED_CST
)
13982 const FIXED_VALUE_TYPE
*c0
= TREE_FIXED_CST_PTR (op0
);
13983 const FIXED_VALUE_TYPE
*c1
= TREE_FIXED_CST_PTR (op1
);
13984 return constant_boolean_node (fixed_compare (code
, c0
, c1
), type
);
13987 /* Handle equality/inequality of complex constants. */
13988 if (TREE_CODE (op0
) == COMPLEX_CST
&& TREE_CODE (op1
) == COMPLEX_CST
)
13990 tree rcond
= fold_relational_const (code
, type
,
13991 TREE_REALPART (op0
),
13992 TREE_REALPART (op1
));
13993 tree icond
= fold_relational_const (code
, type
,
13994 TREE_IMAGPART (op0
),
13995 TREE_IMAGPART (op1
));
13996 if (code
== EQ_EXPR
)
13997 return fold_build2 (TRUTH_ANDIF_EXPR
, type
, rcond
, icond
);
13998 else if (code
== NE_EXPR
)
13999 return fold_build2 (TRUTH_ORIF_EXPR
, type
, rcond
, icond
);
14004 if (TREE_CODE (op0
) == VECTOR_CST
&& TREE_CODE (op1
) == VECTOR_CST
)
14006 if (!VECTOR_TYPE_P (type
))
14008 /* Have vector comparison with scalar boolean result. */
14009 gcc_assert ((code
== EQ_EXPR
|| code
== NE_EXPR
)
14010 && known_eq (VECTOR_CST_NELTS (op0
),
14011 VECTOR_CST_NELTS (op1
)));
14012 unsigned HOST_WIDE_INT nunits
;
14013 if (!VECTOR_CST_NELTS (op0
).is_constant (&nunits
))
14015 for (unsigned i
= 0; i
< nunits
; i
++)
14017 tree elem0
= VECTOR_CST_ELT (op0
, i
);
14018 tree elem1
= VECTOR_CST_ELT (op1
, i
);
14019 tree tmp
= fold_relational_const (code
, type
, elem0
, elem1
);
14020 if (tmp
== NULL_TREE
)
14022 if (integer_zerop (tmp
))
14023 return constant_boolean_node (false, type
);
14025 return constant_boolean_node (true, type
);
14027 tree_vector_builder elts
;
14028 if (!elts
.new_binary_operation (type
, op0
, op1
, false))
14030 unsigned int count
= elts
.encoded_nelts ();
14031 for (unsigned i
= 0; i
< count
; i
++)
14033 tree elem_type
= TREE_TYPE (type
);
14034 tree elem0
= VECTOR_CST_ELT (op0
, i
);
14035 tree elem1
= VECTOR_CST_ELT (op1
, i
);
14037 tree tem
= fold_relational_const (code
, elem_type
,
14040 if (tem
== NULL_TREE
)
14043 elts
.quick_push (build_int_cst (elem_type
,
14044 integer_zerop (tem
) ? 0 : -1));
14047 return elts
.build ();
14050 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
14052 To compute GT, swap the arguments and do LT.
14053 To compute GE, do LT and invert the result.
14054 To compute LE, swap the arguments, do LT and invert the result.
14055 To compute NE, do EQ and invert the result.
14057 Therefore, the code below must handle only EQ and LT. */
14059 if (code
== LE_EXPR
|| code
== GT_EXPR
)
14061 std::swap (op0
, op1
);
14062 code
= swap_tree_comparison (code
);
14065 /* Note that it is safe to invert for real values here because we
14066 have already handled the one case that it matters. */
14069 if (code
== NE_EXPR
|| code
== GE_EXPR
)
14072 code
= invert_tree_comparison (code
, false);
14075 /* Compute a result for LT or EQ if args permit;
14076 Otherwise return T. */
14077 if (TREE_CODE (op0
) == INTEGER_CST
&& TREE_CODE (op1
) == INTEGER_CST
)
14079 if (code
== EQ_EXPR
)
14080 result
= tree_int_cst_equal (op0
, op1
);
14082 result
= tree_int_cst_lt (op0
, op1
);
14089 return constant_boolean_node (result
, type
);
14092 /* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the
14093 indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR
14097 fold_build_cleanup_point_expr (tree type
, tree expr
)
14099 /* If the expression does not have side effects then we don't have to wrap
14100 it with a cleanup point expression. */
14101 if (!TREE_SIDE_EFFECTS (expr
))
14104 /* If the expression is a return, check to see if the expression inside the
14105 return has no side effects or the right hand side of the modify expression
14106 inside the return. If either don't have side effects set we don't need to
14107 wrap the expression in a cleanup point expression. Note we don't check the
14108 left hand side of the modify because it should always be a return decl. */
14109 if (TREE_CODE (expr
) == RETURN_EXPR
)
14111 tree op
= TREE_OPERAND (expr
, 0);
14112 if (!op
|| !TREE_SIDE_EFFECTS (op
))
14114 op
= TREE_OPERAND (op
, 1);
14115 if (!TREE_SIDE_EFFECTS (op
))
14119 return build1_loc (EXPR_LOCATION (expr
), CLEANUP_POINT_EXPR
, type
, expr
);
14122 /* Given a pointer value OP0 and a type TYPE, return a simplified version
14123 of an indirection through OP0, or NULL_TREE if no simplification is
14127 fold_indirect_ref_1 (location_t loc
, tree type
, tree op0
)
14131 poly_uint64 const_op01
;
14134 subtype
= TREE_TYPE (sub
);
14135 if (!POINTER_TYPE_P (subtype
)
14136 || TYPE_REF_CAN_ALIAS_ALL (TREE_TYPE (op0
)))
14139 if (TREE_CODE (sub
) == ADDR_EXPR
)
14141 tree op
= TREE_OPERAND (sub
, 0);
14142 tree optype
= TREE_TYPE (op
);
14144 /* *&CONST_DECL -> to the value of the const decl. */
14145 if (TREE_CODE (op
) == CONST_DECL
)
14146 return DECL_INITIAL (op
);
14147 /* *&p => p; make sure to handle *&"str"[cst] here. */
14148 if (type
== optype
)
14150 tree fop
= fold_read_from_constant_string (op
);
14156 /* *(foo *)&fooarray => fooarray[0] */
14157 else if (TREE_CODE (optype
) == ARRAY_TYPE
14158 && type
== TREE_TYPE (optype
)
14159 && (!in_gimple_form
14160 || TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
))
14162 tree type_domain
= TYPE_DOMAIN (optype
);
14163 tree min_val
= size_zero_node
;
14164 if (type_domain
&& TYPE_MIN_VALUE (type_domain
))
14165 min_val
= TYPE_MIN_VALUE (type_domain
);
14167 && TREE_CODE (min_val
) != INTEGER_CST
)
14169 return build4_loc (loc
, ARRAY_REF
, type
, op
, min_val
,
14170 NULL_TREE
, NULL_TREE
);
14172 /* *(foo *)&complexfoo => __real__ complexfoo */
14173 else if (TREE_CODE (optype
) == COMPLEX_TYPE
14174 && type
== TREE_TYPE (optype
))
14175 return fold_build1_loc (loc
, REALPART_EXPR
, type
, op
);
14176 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
14177 else if (VECTOR_TYPE_P (optype
)
14178 && type
== TREE_TYPE (optype
))
14180 tree part_width
= TYPE_SIZE (type
);
14181 tree index
= bitsize_int (0);
14182 return fold_build3_loc (loc
, BIT_FIELD_REF
, type
, op
, part_width
,
14187 if (TREE_CODE (sub
) == POINTER_PLUS_EXPR
14188 && poly_int_tree_p (TREE_OPERAND (sub
, 1), &const_op01
))
14190 tree op00
= TREE_OPERAND (sub
, 0);
14191 tree op01
= TREE_OPERAND (sub
, 1);
14194 if (TREE_CODE (op00
) == ADDR_EXPR
)
14197 op00
= TREE_OPERAND (op00
, 0);
14198 op00type
= TREE_TYPE (op00
);
14200 /* ((foo*)&vectorfoo)[1] => BIT_FIELD_REF<vectorfoo,...> */
14201 if (VECTOR_TYPE_P (op00type
)
14202 && type
== TREE_TYPE (op00type
)
14203 /* POINTER_PLUS_EXPR second operand is sizetype, unsigned,
14204 but we want to treat offsets with MSB set as negative.
14205 For the code below negative offsets are invalid and
14206 TYPE_SIZE of the element is something unsigned, so
14207 check whether op01 fits into poly_int64, which implies
14208 it is from 0 to INTTYPE_MAXIMUM (HOST_WIDE_INT), and
14209 then just use poly_uint64 because we want to treat the
14210 value as unsigned. */
14211 && tree_fits_poly_int64_p (op01
))
14213 tree part_width
= TYPE_SIZE (type
);
14214 poly_uint64 max_offset
14215 = (tree_to_uhwi (part_width
) / BITS_PER_UNIT
14216 * TYPE_VECTOR_SUBPARTS (op00type
));
14217 if (known_lt (const_op01
, max_offset
))
14219 tree index
= bitsize_int (const_op01
* BITS_PER_UNIT
);
14220 return fold_build3_loc (loc
,
14221 BIT_FIELD_REF
, type
, op00
,
14222 part_width
, index
);
14225 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
14226 else if (TREE_CODE (op00type
) == COMPLEX_TYPE
14227 && type
== TREE_TYPE (op00type
))
14229 if (known_eq (wi::to_poly_offset (TYPE_SIZE_UNIT (type
)),
14231 return fold_build1_loc (loc
, IMAGPART_EXPR
, type
, op00
);
14233 /* ((foo *)&fooarray)[1] => fooarray[1] */
14234 else if (TREE_CODE (op00type
) == ARRAY_TYPE
14235 && type
== TREE_TYPE (op00type
))
14237 tree type_domain
= TYPE_DOMAIN (op00type
);
14238 tree min_val
= size_zero_node
;
14239 if (type_domain
&& TYPE_MIN_VALUE (type_domain
))
14240 min_val
= TYPE_MIN_VALUE (type_domain
);
14241 poly_uint64 type_size
, index
;
14242 if (poly_int_tree_p (min_val
)
14243 && poly_int_tree_p (TYPE_SIZE_UNIT (type
), &type_size
)
14244 && multiple_p (const_op01
, type_size
, &index
))
14246 poly_offset_int off
= index
+ wi::to_poly_offset (min_val
);
14247 op01
= wide_int_to_tree (sizetype
, off
);
14248 return build4_loc (loc
, ARRAY_REF
, type
, op00
, op01
,
14249 NULL_TREE
, NULL_TREE
);
14255 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
14256 if (TREE_CODE (TREE_TYPE (subtype
)) == ARRAY_TYPE
14257 && type
== TREE_TYPE (TREE_TYPE (subtype
))
14258 && (!in_gimple_form
14259 || TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
))
14262 tree min_val
= size_zero_node
;
14263 sub
= build_fold_indirect_ref_loc (loc
, sub
);
14264 type_domain
= TYPE_DOMAIN (TREE_TYPE (sub
));
14265 if (type_domain
&& TYPE_MIN_VALUE (type_domain
))
14266 min_val
= TYPE_MIN_VALUE (type_domain
);
14268 && TREE_CODE (min_val
) != INTEGER_CST
)
14270 return build4_loc (loc
, ARRAY_REF
, type
, sub
, min_val
, NULL_TREE
,
14277 /* Builds an expression for an indirection through T, simplifying some
14281 build_fold_indirect_ref_loc (location_t loc
, tree t
)
14283 tree type
= TREE_TYPE (TREE_TYPE (t
));
14284 tree sub
= fold_indirect_ref_1 (loc
, type
, t
);
14289 return build1_loc (loc
, INDIRECT_REF
, type
, t
);
14292 /* Given an INDIRECT_REF T, return either T or a simplified version. */
14295 fold_indirect_ref_loc (location_t loc
, tree t
)
14297 tree sub
= fold_indirect_ref_1 (loc
, TREE_TYPE (t
), TREE_OPERAND (t
, 0));
14305 /* Strip non-trapping, non-side-effecting tree nodes from an expression
14306 whose result is ignored. The type of the returned tree need not be
14307 the same as the original expression. */
14310 fold_ignored_result (tree t
)
14312 if (!TREE_SIDE_EFFECTS (t
))
14313 return integer_zero_node
;
14316 switch (TREE_CODE_CLASS (TREE_CODE (t
)))
14319 t
= TREE_OPERAND (t
, 0);
14323 case tcc_comparison
:
14324 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 1)))
14325 t
= TREE_OPERAND (t
, 0);
14326 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 0)))
14327 t
= TREE_OPERAND (t
, 1);
14332 case tcc_expression
:
14333 switch (TREE_CODE (t
))
14335 case COMPOUND_EXPR
:
14336 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 1)))
14338 t
= TREE_OPERAND (t
, 0);
14342 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 1))
14343 || TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 2)))
14345 t
= TREE_OPERAND (t
, 0);
14358 /* Return the value of VALUE, rounded up to a multiple of DIVISOR. */
14361 round_up_loc (location_t loc
, tree value
, unsigned int divisor
)
14363 tree div
= NULL_TREE
;
14368 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14369 have to do anything. Only do this when we are not given a const,
14370 because in that case, this check is more expensive than just
14372 if (TREE_CODE (value
) != INTEGER_CST
)
14374 div
= build_int_cst (TREE_TYPE (value
), divisor
);
14376 if (multiple_of_p (TREE_TYPE (value
), value
, div
))
14380 /* If divisor is a power of two, simplify this to bit manipulation. */
14381 if (pow2_or_zerop (divisor
))
14383 if (TREE_CODE (value
) == INTEGER_CST
)
14385 wide_int val
= wi::to_wide (value
);
14388 if ((val
& (divisor
- 1)) == 0)
14391 overflow_p
= TREE_OVERFLOW (value
);
14392 val
+= divisor
- 1;
14393 val
&= (int) -divisor
;
14397 return force_fit_type (TREE_TYPE (value
), val
, -1, overflow_p
);
14403 t
= build_int_cst (TREE_TYPE (value
), divisor
- 1);
14404 value
= size_binop_loc (loc
, PLUS_EXPR
, value
, t
);
14405 t
= build_int_cst (TREE_TYPE (value
), - (int) divisor
);
14406 value
= size_binop_loc (loc
, BIT_AND_EXPR
, value
, t
);
14412 div
= build_int_cst (TREE_TYPE (value
), divisor
);
14413 value
= size_binop_loc (loc
, CEIL_DIV_EXPR
, value
, div
);
14414 value
= size_binop_loc (loc
, MULT_EXPR
, value
, div
);
14420 /* Likewise, but round down. */
14423 round_down_loc (location_t loc
, tree value
, int divisor
)
14425 tree div
= NULL_TREE
;
14427 gcc_assert (divisor
> 0);
14431 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14432 have to do anything. Only do this when we are not given a const,
14433 because in that case, this check is more expensive than just
14435 if (TREE_CODE (value
) != INTEGER_CST
)
14437 div
= build_int_cst (TREE_TYPE (value
), divisor
);
14439 if (multiple_of_p (TREE_TYPE (value
), value
, div
))
14443 /* If divisor is a power of two, simplify this to bit manipulation. */
14444 if (pow2_or_zerop (divisor
))
14448 t
= build_int_cst (TREE_TYPE (value
), -divisor
);
14449 value
= size_binop_loc (loc
, BIT_AND_EXPR
, value
, t
);
14454 div
= build_int_cst (TREE_TYPE (value
), divisor
);
14455 value
= size_binop_loc (loc
, FLOOR_DIV_EXPR
, value
, div
);
14456 value
= size_binop_loc (loc
, MULT_EXPR
, value
, div
);
14462 /* Returns the pointer to the base of the object addressed by EXP and
14463 extracts the information about the offset of the access, storing it
14464 to PBITPOS and POFFSET. */
14467 split_address_to_core_and_offset (tree exp
,
14468 poly_int64_pod
*pbitpos
, tree
*poffset
)
14472 int unsignedp
, reversep
, volatilep
;
14473 poly_int64 bitsize
;
14474 location_t loc
= EXPR_LOCATION (exp
);
14476 if (TREE_CODE (exp
) == ADDR_EXPR
)
14478 core
= get_inner_reference (TREE_OPERAND (exp
, 0), &bitsize
, pbitpos
,
14479 poffset
, &mode
, &unsignedp
, &reversep
,
14481 core
= build_fold_addr_expr_loc (loc
, core
);
14483 else if (TREE_CODE (exp
) == POINTER_PLUS_EXPR
)
14485 core
= TREE_OPERAND (exp
, 0);
14488 *poffset
= TREE_OPERAND (exp
, 1);
14489 if (poly_int_tree_p (*poffset
))
14491 poly_offset_int tem
14492 = wi::sext (wi::to_poly_offset (*poffset
),
14493 TYPE_PRECISION (TREE_TYPE (*poffset
)));
14494 tem
<<= LOG2_BITS_PER_UNIT
;
14495 if (tem
.to_shwi (pbitpos
))
14496 *poffset
= NULL_TREE
;
14503 *poffset
= NULL_TREE
;
14509 /* Returns true if addresses of E1 and E2 differ by a constant, false
14510 otherwise. If they do, E1 - E2 is stored in *DIFF. */
14513 ptr_difference_const (tree e1
, tree e2
, poly_int64_pod
*diff
)
14516 poly_int64 bitpos1
, bitpos2
;
14517 tree toffset1
, toffset2
, tdiff
, type
;
14519 core1
= split_address_to_core_and_offset (e1
, &bitpos1
, &toffset1
);
14520 core2
= split_address_to_core_and_offset (e2
, &bitpos2
, &toffset2
);
14522 poly_int64 bytepos1
, bytepos2
;
14523 if (!multiple_p (bitpos1
, BITS_PER_UNIT
, &bytepos1
)
14524 || !multiple_p (bitpos2
, BITS_PER_UNIT
, &bytepos2
)
14525 || !operand_equal_p (core1
, core2
, 0))
14528 if (toffset1
&& toffset2
)
14530 type
= TREE_TYPE (toffset1
);
14531 if (type
!= TREE_TYPE (toffset2
))
14532 toffset2
= fold_convert (type
, toffset2
);
14534 tdiff
= fold_build2 (MINUS_EXPR
, type
, toffset1
, toffset2
);
14535 if (!cst_and_fits_in_hwi (tdiff
))
14538 *diff
= int_cst_value (tdiff
);
14540 else if (toffset1
|| toffset2
)
14542 /* If only one of the offsets is non-constant, the difference cannot
14549 *diff
+= bytepos1
- bytepos2
;
14553 /* Return OFF converted to a pointer offset type suitable as offset for
14554 POINTER_PLUS_EXPR. Use location LOC for this conversion. */
14556 convert_to_ptrofftype_loc (location_t loc
, tree off
)
14558 return fold_convert_loc (loc
, sizetype
, off
);
14561 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14563 fold_build_pointer_plus_loc (location_t loc
, tree ptr
, tree off
)
14565 return fold_build2_loc (loc
, POINTER_PLUS_EXPR
, TREE_TYPE (ptr
),
14566 ptr
, convert_to_ptrofftype_loc (loc
, off
));
14569 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14571 fold_build_pointer_plus_hwi_loc (location_t loc
, tree ptr
, HOST_WIDE_INT off
)
14573 return fold_build2_loc (loc
, POINTER_PLUS_EXPR
, TREE_TYPE (ptr
),
14574 ptr
, size_int (off
));
14577 /* Return a pointer P to a NUL-terminated string representing the sequence
14578 of constant characters referred to by SRC (or a subsequence of such
14579 characters within it if SRC is a reference to a string plus some
14580 constant offset). If STRLEN is non-null, store stgrlen(P) in *STRLEN.
14581 If STRSIZE is non-null, store in *STRSIZE the size of the array
14582 the string is stored in; in that case, even though P points to a NUL
14583 terminated string, SRC need not refer to one. This can happen when
14584 SRC refers to a constant character array initialized to all non-NUL
14585 values, as in the C declaration: char a[4] = "1234"; */
14588 c_getstr (tree src
, unsigned HOST_WIDE_INT
*strlen
/* = NULL */,
14589 unsigned HOST_WIDE_INT
*strsize
/* = NULL */)
14596 src
= string_constant (src
, &offset_node
);
14600 unsigned HOST_WIDE_INT offset
= 0;
14601 if (offset_node
!= NULL_TREE
)
14603 if (!tree_fits_uhwi_p (offset_node
))
14606 offset
= tree_to_uhwi (offset_node
);
14609 /* STRING_LENGTH is the size of the string literal, including any
14610 embedded NULs. STRING_SIZE is the size of the array the string
14611 literal is stored in. */
14612 unsigned HOST_WIDE_INT string_length
= TREE_STRING_LENGTH (src
);
14613 unsigned HOST_WIDE_INT string_size
= string_length
;
14614 tree type
= TREE_TYPE (src
);
14615 if (tree size
= TYPE_SIZE_UNIT (type
))
14616 if (tree_fits_shwi_p (size
))
14617 string_size
= tree_to_uhwi (size
);
14621 /* Compute and store the length of the substring at OFFSET.
14622 All offsets past the initial length refer to null strings. */
14623 if (offset
<= string_length
)
14624 *strlen
= string_length
- offset
;
14629 const char *string
= TREE_STRING_POINTER (src
);
14631 if (string_length
== 0
14632 || offset
>= string_size
)
14637 /* Support even constant character arrays that aren't proper
14638 NUL-terminated strings. */
14639 *strsize
= string_size
;
14641 else if (string
[string_length
- 1] != '\0')
14643 /* Support only properly NUL-terminated strings but handle
14644 consecutive strings within the same array, such as the six
14645 substrings in "1\0002\0003". */
14649 return offset
<= string_length
? string
+ offset
: "";
14652 /* Given a tree T, compute which bits in T may be nonzero. */
14655 tree_nonzero_bits (const_tree t
)
14657 switch (TREE_CODE (t
))
14660 return wi::to_wide (t
);
14662 return get_nonzero_bits (t
);
14663 case NON_LVALUE_EXPR
:
14665 return tree_nonzero_bits (TREE_OPERAND (t
, 0));
14667 return wi::bit_and (tree_nonzero_bits (TREE_OPERAND (t
, 0)),
14668 tree_nonzero_bits (TREE_OPERAND (t
, 1)));
14671 return wi::bit_or (tree_nonzero_bits (TREE_OPERAND (t
, 0)),
14672 tree_nonzero_bits (TREE_OPERAND (t
, 1)));
14674 return wi::bit_or (tree_nonzero_bits (TREE_OPERAND (t
, 1)),
14675 tree_nonzero_bits (TREE_OPERAND (t
, 2)));
14677 return wide_int::from (tree_nonzero_bits (TREE_OPERAND (t
, 0)),
14678 TYPE_PRECISION (TREE_TYPE (t
)),
14679 TYPE_SIGN (TREE_TYPE (TREE_OPERAND (t
, 0))));
14681 if (INTEGRAL_TYPE_P (TREE_TYPE (t
)))
14683 wide_int nzbits1
= tree_nonzero_bits (TREE_OPERAND (t
, 0));
14684 wide_int nzbits2
= tree_nonzero_bits (TREE_OPERAND (t
, 1));
14685 if (wi::bit_and (nzbits1
, nzbits2
) == 0)
14686 return wi::bit_or (nzbits1
, nzbits2
);
14690 if (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
)
14692 tree type
= TREE_TYPE (t
);
14693 wide_int nzbits
= tree_nonzero_bits (TREE_OPERAND (t
, 0));
14694 wide_int arg1
= wi::to_wide (TREE_OPERAND (t
, 1),
14695 TYPE_PRECISION (type
));
14696 return wi::neg_p (arg1
)
14697 ? wi::rshift (nzbits
, -arg1
, TYPE_SIGN (type
))
14698 : wi::lshift (nzbits
, arg1
);
14702 if (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
)
14704 tree type
= TREE_TYPE (t
);
14705 wide_int nzbits
= tree_nonzero_bits (TREE_OPERAND (t
, 0));
14706 wide_int arg1
= wi::to_wide (TREE_OPERAND (t
, 1),
14707 TYPE_PRECISION (type
));
14708 return wi::neg_p (arg1
)
14709 ? wi::lshift (nzbits
, -arg1
)
14710 : wi::rshift (nzbits
, arg1
, TYPE_SIGN (type
));
14717 return wi::shwi (-1, TYPE_PRECISION (TREE_TYPE (t
)));
14722 namespace selftest
{
14724 /* Helper functions for writing tests of folding trees. */
14726 /* Verify that the binary op (LHS CODE RHS) folds to CONSTANT. */
14729 assert_binop_folds_to_const (tree lhs
, enum tree_code code
, tree rhs
,
14732 ASSERT_EQ (constant
, fold_build2 (code
, TREE_TYPE (lhs
), lhs
, rhs
));
14735 /* Verify that the binary op (LHS CODE RHS) folds to an NON_LVALUE_EXPR
14736 wrapping WRAPPED_EXPR. */
14739 assert_binop_folds_to_nonlvalue (tree lhs
, enum tree_code code
, tree rhs
,
14742 tree result
= fold_build2 (code
, TREE_TYPE (lhs
), lhs
, rhs
);
14743 ASSERT_NE (wrapped_expr
, result
);
14744 ASSERT_EQ (NON_LVALUE_EXPR
, TREE_CODE (result
));
14745 ASSERT_EQ (wrapped_expr
, TREE_OPERAND (result
, 0));
14748 /* Verify that various arithmetic binary operations are folded
14752 test_arithmetic_folding ()
14754 tree type
= integer_type_node
;
14755 tree x
= create_tmp_var_raw (type
, "x");
14756 tree zero
= build_zero_cst (type
);
14757 tree one
= build_int_cst (type
, 1);
14760 /* 1 <-- (0 + 1) */
14761 assert_binop_folds_to_const (zero
, PLUS_EXPR
, one
,
14763 assert_binop_folds_to_const (one
, PLUS_EXPR
, zero
,
14766 /* (nonlvalue)x <-- (x + 0) */
14767 assert_binop_folds_to_nonlvalue (x
, PLUS_EXPR
, zero
,
14771 /* 0 <-- (x - x) */
14772 assert_binop_folds_to_const (x
, MINUS_EXPR
, x
,
14774 assert_binop_folds_to_nonlvalue (x
, MINUS_EXPR
, zero
,
14777 /* Multiplication. */
14778 /* 0 <-- (x * 0) */
14779 assert_binop_folds_to_const (x
, MULT_EXPR
, zero
,
14782 /* (nonlvalue)x <-- (x * 1) */
14783 assert_binop_folds_to_nonlvalue (x
, MULT_EXPR
, one
,
14787 /* Verify that various binary operations on vectors are folded
14791 test_vector_folding ()
14793 tree inner_type
= integer_type_node
;
14794 tree type
= build_vector_type (inner_type
, 4);
14795 tree zero
= build_zero_cst (type
);
14796 tree one
= build_one_cst (type
);
14798 /* Verify equality tests that return a scalar boolean result. */
14799 tree res_type
= boolean_type_node
;
14800 ASSERT_FALSE (integer_nonzerop (fold_build2 (EQ_EXPR
, res_type
, zero
, one
)));
14801 ASSERT_TRUE (integer_nonzerop (fold_build2 (EQ_EXPR
, res_type
, zero
, zero
)));
14802 ASSERT_TRUE (integer_nonzerop (fold_build2 (NE_EXPR
, res_type
, zero
, one
)));
14803 ASSERT_FALSE (integer_nonzerop (fold_build2 (NE_EXPR
, res_type
, one
, one
)));
14806 /* Verify folding of VEC_DUPLICATE_EXPRs. */
14809 test_vec_duplicate_folding ()
14811 scalar_int_mode int_mode
= SCALAR_INT_TYPE_MODE (ssizetype
);
14812 machine_mode vec_mode
= targetm
.vectorize
.preferred_simd_mode (int_mode
);
14813 /* This will be 1 if VEC_MODE isn't a vector mode. */
14814 poly_uint64 nunits
= GET_MODE_NUNITS (vec_mode
);
14816 tree type
= build_vector_type (ssizetype
, nunits
);
14817 tree dup5_expr
= fold_unary (VEC_DUPLICATE_EXPR
, type
, ssize_int (5));
14818 tree dup5_cst
= build_vector_from_val (type
, ssize_int (5));
14819 ASSERT_TRUE (operand_equal_p (dup5_expr
, dup5_cst
, 0));
14822 /* Run all of the selftests within this file. */
14825 fold_const_c_tests ()
14827 test_arithmetic_folding ();
14828 test_vector_folding ();
14829 test_vec_duplicate_folding ();
14832 } // namespace selftest
14834 #endif /* CHECKING_P */