Configuration bits for ARC port:
[official-gcc.git] / libsanitizer / asan / asan_allocator.cc
blob4e97ff57530223d01f1831772beefb65e9a44278
1 //===-- asan_allocator.cc -------------------------------------------------===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // This file is a part of AddressSanitizer, an address sanity checker.
9 //
10 // Implementation of ASan's memory allocator.
11 // Evey piece of memory (AsanChunk) allocated by the allocator
12 // has a left redzone of REDZONE bytes and
13 // a right redzone such that the end of the chunk is aligned by REDZONE
14 // (i.e. the right redzone is between 0 and REDZONE-1).
15 // The left redzone is always poisoned.
16 // The right redzone is poisoned on malloc, the body is poisoned on free.
17 // Once freed, a chunk is moved to a quarantine (fifo list).
18 // After quarantine, a chunk is returned to freelists.
20 // The left redzone contains ASan's internal data and the stack trace of
21 // the malloc call.
22 // Once freed, the body of the chunk contains the stack trace of the free call.
24 //===----------------------------------------------------------------------===//
25 #include "asan_allocator.h"
27 #if ASAN_ALLOCATOR_VERSION == 1
28 #include "asan_interceptors.h"
29 #include "asan_internal.h"
30 #include "asan_mapping.h"
31 #include "asan_stats.h"
32 #include "asan_report.h"
33 #include "asan_thread.h"
34 #include "asan_thread_registry.h"
35 #include "sanitizer_common/sanitizer_allocator.h"
36 #include "sanitizer_common/sanitizer_atomic.h"
37 #include "sanitizer_common/sanitizer_mutex.h"
39 namespace __asan {
41 #define REDZONE ((uptr)(flags()->redzone))
42 static const uptr kMinAllocSize = REDZONE * 2;
43 static const u64 kMaxAvailableRam = 128ULL << 30; // 128G
44 static const uptr kMaxThreadLocalQuarantine = 1 << 20; // 1M
46 static const uptr kMinMmapSize = (ASAN_LOW_MEMORY) ? 4UL << 17 : 4UL << 20;
47 static const uptr kMaxSizeForThreadLocalFreeList =
48 (ASAN_LOW_MEMORY) ? 1 << 15 : 1 << 17;
50 // Size classes less than kMallocSizeClassStep are powers of two.
51 // All other size classes are multiples of kMallocSizeClassStep.
52 static const uptr kMallocSizeClassStepLog = 26;
53 static const uptr kMallocSizeClassStep = 1UL << kMallocSizeClassStepLog;
55 static const uptr kMaxAllowedMallocSize =
56 (SANITIZER_WORDSIZE == 32) ? 3UL << 30 : 8UL << 30;
58 static inline uptr SizeClassToSize(u8 size_class) {
59 CHECK(size_class < kNumberOfSizeClasses);
60 if (size_class <= kMallocSizeClassStepLog) {
61 return 1UL << size_class;
62 } else {
63 return (size_class - kMallocSizeClassStepLog) * kMallocSizeClassStep;
67 static inline u8 SizeToSizeClass(uptr size) {
68 u8 res = 0;
69 if (size <= kMallocSizeClassStep) {
70 uptr rounded = RoundUpToPowerOfTwo(size);
71 res = Log2(rounded);
72 } else {
73 res = ((size + kMallocSizeClassStep - 1) / kMallocSizeClassStep)
74 + kMallocSizeClassStepLog;
76 CHECK(res < kNumberOfSizeClasses);
77 CHECK(size <= SizeClassToSize(res));
78 return res;
81 // Given REDZONE bytes, we need to mark first size bytes
82 // as addressable and the rest REDZONE-size bytes as unaddressable.
83 static void PoisonHeapPartialRightRedzone(uptr mem, uptr size) {
84 CHECK(size <= REDZONE);
85 CHECK(IsAligned(mem, REDZONE));
86 CHECK(IsPowerOfTwo(SHADOW_GRANULARITY));
87 CHECK(IsPowerOfTwo(REDZONE));
88 CHECK(REDZONE >= SHADOW_GRANULARITY);
89 PoisonShadowPartialRightRedzone(mem, size, REDZONE,
90 kAsanHeapRightRedzoneMagic);
93 static u8 *MmapNewPagesAndPoisonShadow(uptr size) {
94 CHECK(IsAligned(size, GetPageSizeCached()));
95 u8 *res = (u8*)MmapOrDie(size, __FUNCTION__);
96 PoisonShadow((uptr)res, size, kAsanHeapLeftRedzoneMagic);
97 if (flags()->debug) {
98 Printf("ASAN_MMAP: [%p, %p)\n", res, res + size);
100 return res;
103 // Every chunk of memory allocated by this allocator can be in one of 3 states:
104 // CHUNK_AVAILABLE: the chunk is in the free list and ready to be allocated.
105 // CHUNK_ALLOCATED: the chunk is allocated and not yet freed.
106 // CHUNK_QUARANTINE: the chunk was freed and put into quarantine zone.
108 // The pseudo state CHUNK_MEMALIGN is used to mark that the address is not
109 // the beginning of a AsanChunk (in which the actual chunk resides at
110 // this - this->used_size).
112 // The magic numbers for the enum values are taken randomly.
113 enum {
114 CHUNK_AVAILABLE = 0x57,
115 CHUNK_ALLOCATED = 0x32,
116 CHUNK_QUARANTINE = 0x19,
117 CHUNK_MEMALIGN = 0xDC
120 struct ChunkBase {
121 // First 8 bytes.
122 uptr chunk_state : 8;
123 uptr alloc_tid : 24;
124 uptr size_class : 8;
125 uptr free_tid : 24;
127 // Second 8 bytes.
128 uptr alignment_log : 8;
129 uptr alloc_type : 2;
130 uptr used_size : FIRST_32_SECOND_64(32, 54); // Size requested by the user.
132 // This field may overlap with the user area and thus should not
133 // be used while the chunk is in CHUNK_ALLOCATED state.
134 AsanChunk *next;
136 // Typically the beginning of the user-accessible memory is 'this'+REDZONE
137 // and is also aligned by REDZONE. However, if the memory is allocated
138 // by memalign, the alignment might be higher and the user-accessible memory
139 // starts at the first properly aligned address after 'this'.
140 uptr Beg() { return RoundUpTo((uptr)this + 1, 1 << alignment_log); }
141 uptr Size() { return SizeClassToSize(size_class); }
142 u8 SizeClass() { return size_class; }
145 struct AsanChunk: public ChunkBase {
146 u32 *compressed_alloc_stack() {
147 return (u32*)((uptr)this + sizeof(ChunkBase));
149 u32 *compressed_free_stack() {
150 return (u32*)((uptr)this + Max((uptr)REDZONE, (uptr)sizeof(ChunkBase)));
153 // The left redzone after the ChunkBase is given to the alloc stack trace.
154 uptr compressed_alloc_stack_size() {
155 if (REDZONE < sizeof(ChunkBase)) return 0;
156 return (REDZONE - sizeof(ChunkBase)) / sizeof(u32);
158 uptr compressed_free_stack_size() {
159 if (REDZONE < sizeof(ChunkBase)) return 0;
160 return (REDZONE) / sizeof(u32);
164 uptr AsanChunkView::Beg() { return chunk_->Beg(); }
165 uptr AsanChunkView::End() { return Beg() + UsedSize(); }
166 uptr AsanChunkView::UsedSize() { return chunk_->used_size; }
167 uptr AsanChunkView::AllocTid() { return chunk_->alloc_tid; }
168 uptr AsanChunkView::FreeTid() { return chunk_->free_tid; }
170 void AsanChunkView::GetAllocStack(StackTrace *stack) {
171 StackTrace::UncompressStack(stack, chunk_->compressed_alloc_stack(),
172 chunk_->compressed_alloc_stack_size());
175 void AsanChunkView::GetFreeStack(StackTrace *stack) {
176 StackTrace::UncompressStack(stack, chunk_->compressed_free_stack(),
177 chunk_->compressed_free_stack_size());
180 static AsanChunk *PtrToChunk(uptr ptr) {
181 AsanChunk *m = (AsanChunk*)(ptr - REDZONE);
182 if (m->chunk_state == CHUNK_MEMALIGN) {
183 m = (AsanChunk*)((uptr)m - m->used_size);
185 return m;
188 void AsanChunkFifoList::PushList(AsanChunkFifoList *q) {
189 CHECK(q->size() > 0);
190 size_ += q->size();
191 append_back(q);
192 q->clear();
195 void AsanChunkFifoList::Push(AsanChunk *n) {
196 push_back(n);
197 size_ += n->Size();
200 // Interesting performance observation: this function takes up to 15% of overal
201 // allocator time. That's because *first_ has been evicted from cache long time
202 // ago. Not sure if we can or want to do anything with this.
203 AsanChunk *AsanChunkFifoList::Pop() {
204 CHECK(first_);
205 AsanChunk *res = front();
206 size_ -= res->Size();
207 pop_front();
208 return res;
211 // All pages we ever allocated.
212 struct PageGroup {
213 uptr beg;
214 uptr end;
215 uptr size_of_chunk;
216 uptr last_chunk;
217 bool InRange(uptr addr) {
218 return addr >= beg && addr < end;
222 class MallocInfo {
223 public:
224 explicit MallocInfo(LinkerInitialized x) : mu_(x) { }
226 AsanChunk *AllocateChunks(u8 size_class, uptr n_chunks) {
227 AsanChunk *m = 0;
228 AsanChunk **fl = &free_lists_[size_class];
230 BlockingMutexLock lock(&mu_);
231 for (uptr i = 0; i < n_chunks; i++) {
232 if (!(*fl)) {
233 *fl = GetNewChunks(size_class);
235 AsanChunk *t = *fl;
236 *fl = t->next;
237 t->next = m;
238 CHECK(t->chunk_state == CHUNK_AVAILABLE);
239 m = t;
242 return m;
245 void SwallowThreadLocalMallocStorage(AsanThreadLocalMallocStorage *x,
246 bool eat_free_lists) {
247 CHECK(flags()->quarantine_size > 0);
248 BlockingMutexLock lock(&mu_);
249 AsanChunkFifoList *q = &x->quarantine_;
250 if (q->size() > 0) {
251 quarantine_.PushList(q);
252 while (quarantine_.size() > (uptr)flags()->quarantine_size) {
253 QuarantinePop();
256 if (eat_free_lists) {
257 for (uptr size_class = 0; size_class < kNumberOfSizeClasses;
258 size_class++) {
259 AsanChunk *m = x->free_lists_[size_class];
260 while (m) {
261 AsanChunk *t = m->next;
262 m->next = free_lists_[size_class];
263 free_lists_[size_class] = m;
264 m = t;
266 x->free_lists_[size_class] = 0;
271 void BypassThreadLocalQuarantine(AsanChunk *chunk) {
272 BlockingMutexLock lock(&mu_);
273 quarantine_.Push(chunk);
276 AsanChunk *FindChunkByAddr(uptr addr) {
277 BlockingMutexLock lock(&mu_);
278 return FindChunkByAddrUnlocked(addr);
281 uptr AllocationSize(uptr ptr) {
282 if (!ptr) return 0;
283 BlockingMutexLock lock(&mu_);
285 // Make sure this is our chunk and |ptr| actually points to the beginning
286 // of the allocated memory.
287 AsanChunk *m = FindChunkByAddrUnlocked(ptr);
288 if (!m || m->Beg() != ptr) return 0;
290 if (m->chunk_state == CHUNK_ALLOCATED) {
291 return m->used_size;
292 } else {
293 return 0;
297 void ForceLock() {
298 mu_.Lock();
301 void ForceUnlock() {
302 mu_.Unlock();
305 void PrintStatus() {
306 BlockingMutexLock lock(&mu_);
307 uptr malloced = 0;
309 Printf(" MallocInfo: in quarantine: %zu malloced: %zu; ",
310 quarantine_.size() >> 20, malloced >> 20);
311 for (uptr j = 1; j < kNumberOfSizeClasses; j++) {
312 AsanChunk *i = free_lists_[j];
313 if (!i) continue;
314 uptr t = 0;
315 for (; i; i = i->next) {
316 t += i->Size();
318 Printf("%zu:%zu ", j, t >> 20);
320 Printf("\n");
323 PageGroup *FindPageGroup(uptr addr) {
324 BlockingMutexLock lock(&mu_);
325 return FindPageGroupUnlocked(addr);
328 private:
329 PageGroup *FindPageGroupUnlocked(uptr addr) {
330 int n = atomic_load(&n_page_groups_, memory_order_relaxed);
331 // If the page groups are not sorted yet, sort them.
332 if (n_sorted_page_groups_ < n) {
333 SortArray((uptr*)page_groups_, n);
334 n_sorted_page_groups_ = n;
336 // Binary search over the page groups.
337 int beg = 0, end = n;
338 while (beg < end) {
339 int med = (beg + end) / 2;
340 uptr g = (uptr)page_groups_[med];
341 if (addr > g) {
342 // 'g' points to the end of the group, so 'addr'
343 // may not belong to page_groups_[med] or any previous group.
344 beg = med + 1;
345 } else {
346 // 'addr' may belong to page_groups_[med] or a previous group.
347 end = med;
350 if (beg >= n)
351 return 0;
352 PageGroup *g = page_groups_[beg];
353 CHECK(g);
354 if (g->InRange(addr))
355 return g;
356 return 0;
359 // We have an address between two chunks, and we want to report just one.
360 AsanChunk *ChooseChunk(uptr addr,
361 AsanChunk *left_chunk, AsanChunk *right_chunk) {
362 // Prefer an allocated chunk or a chunk from quarantine.
363 if (left_chunk->chunk_state == CHUNK_AVAILABLE &&
364 right_chunk->chunk_state != CHUNK_AVAILABLE)
365 return right_chunk;
366 if (right_chunk->chunk_state == CHUNK_AVAILABLE &&
367 left_chunk->chunk_state != CHUNK_AVAILABLE)
368 return left_chunk;
369 // Choose based on offset.
370 sptr l_offset = 0, r_offset = 0;
371 CHECK(AsanChunkView(left_chunk).AddrIsAtRight(addr, 1, &l_offset));
372 CHECK(AsanChunkView(right_chunk).AddrIsAtLeft(addr, 1, &r_offset));
373 if (l_offset < r_offset)
374 return left_chunk;
375 return right_chunk;
378 AsanChunk *FindChunkByAddrUnlocked(uptr addr) {
379 PageGroup *g = FindPageGroupUnlocked(addr);
380 if (!g) return 0;
381 CHECK(g->size_of_chunk);
382 uptr offset_from_beg = addr - g->beg;
383 uptr this_chunk_addr = g->beg +
384 (offset_from_beg / g->size_of_chunk) * g->size_of_chunk;
385 CHECK(g->InRange(this_chunk_addr));
386 AsanChunk *m = (AsanChunk*)this_chunk_addr;
387 CHECK(m->chunk_state == CHUNK_ALLOCATED ||
388 m->chunk_state == CHUNK_AVAILABLE ||
389 m->chunk_state == CHUNK_QUARANTINE);
390 sptr offset = 0;
391 AsanChunkView m_view(m);
392 if (m_view.AddrIsInside(addr, 1, &offset))
393 return m;
395 if (m_view.AddrIsAtRight(addr, 1, &offset)) {
396 if (this_chunk_addr == g->last_chunk) // rightmost chunk
397 return m;
398 uptr right_chunk_addr = this_chunk_addr + g->size_of_chunk;
399 CHECK(g->InRange(right_chunk_addr));
400 return ChooseChunk(addr, m, (AsanChunk*)right_chunk_addr);
401 } else {
402 CHECK(m_view.AddrIsAtLeft(addr, 1, &offset));
403 if (this_chunk_addr == g->beg) // leftmost chunk
404 return m;
405 uptr left_chunk_addr = this_chunk_addr - g->size_of_chunk;
406 CHECK(g->InRange(left_chunk_addr));
407 return ChooseChunk(addr, (AsanChunk*)left_chunk_addr, m);
411 void QuarantinePop() {
412 CHECK(quarantine_.size() > 0);
413 AsanChunk *m = quarantine_.Pop();
414 CHECK(m);
415 // if (F_v >= 2) Printf("MallocInfo::pop %p\n", m);
417 CHECK(m->chunk_state == CHUNK_QUARANTINE);
418 m->chunk_state = CHUNK_AVAILABLE;
419 PoisonShadow((uptr)m, m->Size(), kAsanHeapLeftRedzoneMagic);
420 CHECK(m->alloc_tid >= 0);
421 CHECK(m->free_tid >= 0);
423 uptr size_class = m->SizeClass();
424 m->next = free_lists_[size_class];
425 free_lists_[size_class] = m;
427 // Statistics.
428 AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
429 thread_stats.real_frees++;
430 thread_stats.really_freed += m->used_size;
431 thread_stats.really_freed_redzones += m->Size() - m->used_size;
432 thread_stats.really_freed_by_size[m->SizeClass()]++;
435 // Get a list of newly allocated chunks.
436 AsanChunk *GetNewChunks(u8 size_class) {
437 uptr size = SizeClassToSize(size_class);
438 CHECK(IsPowerOfTwo(kMinMmapSize));
439 CHECK(size < kMinMmapSize || (size % kMinMmapSize) == 0);
440 uptr mmap_size = Max(size, kMinMmapSize);
441 uptr n_chunks = mmap_size / size;
442 CHECK(n_chunks * size == mmap_size);
443 uptr PageSize = GetPageSizeCached();
444 if (size < PageSize) {
445 // Size is small, just poison the last chunk.
446 n_chunks--;
447 } else {
448 // Size is large, allocate an extra page at right and poison it.
449 mmap_size += PageSize;
451 CHECK(n_chunks > 0);
452 u8 *mem = MmapNewPagesAndPoisonShadow(mmap_size);
454 // Statistics.
455 AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
456 thread_stats.mmaps++;
457 thread_stats.mmaped += mmap_size;
458 thread_stats.mmaped_by_size[size_class] += n_chunks;
460 AsanChunk *res = 0;
461 for (uptr i = 0; i < n_chunks; i++) {
462 AsanChunk *m = (AsanChunk*)(mem + i * size);
463 m->chunk_state = CHUNK_AVAILABLE;
464 m->size_class = size_class;
465 m->next = res;
466 res = m;
468 PageGroup *pg = (PageGroup*)(mem + n_chunks * size);
469 // This memory is already poisoned, no need to poison it again.
470 pg->beg = (uptr)mem;
471 pg->end = pg->beg + mmap_size;
472 pg->size_of_chunk = size;
473 pg->last_chunk = (uptr)(mem + size * (n_chunks - 1));
474 int idx = atomic_fetch_add(&n_page_groups_, 1, memory_order_relaxed);
475 CHECK(idx < (int)ARRAY_SIZE(page_groups_));
476 page_groups_[idx] = pg;
477 return res;
480 AsanChunk *free_lists_[kNumberOfSizeClasses];
481 AsanChunkFifoList quarantine_;
482 BlockingMutex mu_;
484 PageGroup *page_groups_[kMaxAvailableRam / kMinMmapSize];
485 atomic_uint32_t n_page_groups_;
486 int n_sorted_page_groups_;
489 static MallocInfo malloc_info(LINKER_INITIALIZED);
491 void AsanThreadLocalMallocStorage::CommitBack() {
492 malloc_info.SwallowThreadLocalMallocStorage(this, true);
495 AsanChunkView FindHeapChunkByAddress(uptr address) {
496 return AsanChunkView(malloc_info.FindChunkByAddr(address));
499 static u8 *Allocate(uptr alignment, uptr size, StackTrace *stack,
500 AllocType alloc_type) {
501 __asan_init();
502 CHECK(stack);
503 if (size == 0) {
504 size = 1; // TODO(kcc): do something smarter
506 CHECK(IsPowerOfTwo(alignment));
507 uptr rounded_size = RoundUpTo(size, REDZONE);
508 uptr needed_size = rounded_size + REDZONE;
509 if (alignment > REDZONE) {
510 needed_size += alignment;
512 CHECK(IsAligned(needed_size, REDZONE));
513 if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize) {
514 Report("WARNING: AddressSanitizer failed to allocate %p bytes\n",
515 (void*)size);
516 return 0;
519 u8 size_class = SizeToSizeClass(needed_size);
520 uptr size_to_allocate = SizeClassToSize(size_class);
521 CHECK(size_to_allocate >= kMinAllocSize);
522 CHECK(size_to_allocate >= needed_size);
523 CHECK(IsAligned(size_to_allocate, REDZONE));
525 if (flags()->verbosity >= 3) {
526 Printf("Allocate align: %zu size: %zu class: %u real: %zu\n",
527 alignment, size, size_class, size_to_allocate);
530 AsanThread *t = asanThreadRegistry().GetCurrent();
531 AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
532 // Statistics
533 thread_stats.mallocs++;
534 thread_stats.malloced += size;
535 thread_stats.malloced_redzones += size_to_allocate - size;
536 thread_stats.malloced_by_size[size_class]++;
538 AsanChunk *m = 0;
539 if (!t || size_to_allocate >= kMaxSizeForThreadLocalFreeList) {
540 // get directly from global storage.
541 m = malloc_info.AllocateChunks(size_class, 1);
542 thread_stats.malloc_large++;
543 } else {
544 // get from the thread-local storage.
545 AsanChunk **fl = &t->malloc_storage().free_lists_[size_class];
546 if (!*fl) {
547 uptr n_new_chunks = kMaxSizeForThreadLocalFreeList / size_to_allocate;
548 *fl = malloc_info.AllocateChunks(size_class, n_new_chunks);
549 thread_stats.malloc_small_slow++;
551 m = *fl;
552 *fl = (*fl)->next;
554 CHECK(m);
555 CHECK(m->chunk_state == CHUNK_AVAILABLE);
556 m->chunk_state = CHUNK_ALLOCATED;
557 m->alloc_type = alloc_type;
558 m->next = 0;
559 CHECK(m->Size() == size_to_allocate);
560 uptr addr = (uptr)m + REDZONE;
561 CHECK(addr <= (uptr)m->compressed_free_stack());
563 if (alignment > REDZONE && (addr & (alignment - 1))) {
564 addr = RoundUpTo(addr, alignment);
565 CHECK((addr & (alignment - 1)) == 0);
566 AsanChunk *p = (AsanChunk*)(addr - REDZONE);
567 p->chunk_state = CHUNK_MEMALIGN;
568 p->used_size = (uptr)p - (uptr)m;
569 m->alignment_log = Log2(alignment);
570 CHECK(m->Beg() == addr);
571 } else {
572 m->alignment_log = Log2(REDZONE);
574 CHECK(m == PtrToChunk(addr));
575 m->used_size = size;
576 CHECK(m->Beg() == addr);
577 m->alloc_tid = t ? t->tid() : 0;
578 m->free_tid = kInvalidTid;
579 StackTrace::CompressStack(stack, m->compressed_alloc_stack(),
580 m->compressed_alloc_stack_size());
581 PoisonShadow(addr, rounded_size, 0);
582 if (size < rounded_size) {
583 PoisonHeapPartialRightRedzone(addr + rounded_size - REDZONE,
584 size & (REDZONE - 1));
586 if (size <= (uptr)(flags()->max_malloc_fill_size)) {
587 REAL(memset)((void*)addr, 0, rounded_size);
589 return (u8*)addr;
592 static void Deallocate(u8 *ptr, StackTrace *stack, AllocType alloc_type) {
593 if (!ptr) return;
594 CHECK(stack);
596 if (flags()->debug) {
597 CHECK(malloc_info.FindPageGroup((uptr)ptr));
600 // Printf("Deallocate %p\n", ptr);
601 AsanChunk *m = PtrToChunk((uptr)ptr);
603 // Flip the chunk_state atomically to avoid race on double-free.
604 u8 old_chunk_state = atomic_exchange((atomic_uint8_t*)m, CHUNK_QUARANTINE,
605 memory_order_acq_rel);
607 if (old_chunk_state == CHUNK_QUARANTINE) {
608 ReportDoubleFree((uptr)ptr, stack);
609 } else if (old_chunk_state != CHUNK_ALLOCATED) {
610 ReportFreeNotMalloced((uptr)ptr, stack);
612 CHECK(old_chunk_state == CHUNK_ALLOCATED);
613 if (m->alloc_type != alloc_type && flags()->alloc_dealloc_mismatch)
614 ReportAllocTypeMismatch((uptr)ptr, stack,
615 (AllocType)m->alloc_type, (AllocType)alloc_type);
616 // With REDZONE==16 m->next is in the user area, otherwise it should be 0.
617 CHECK(REDZONE <= 16 || !m->next);
618 CHECK(m->free_tid == kInvalidTid);
619 CHECK(m->alloc_tid >= 0);
620 AsanThread *t = asanThreadRegistry().GetCurrent();
621 m->free_tid = t ? t->tid() : 0;
622 StackTrace::CompressStack(stack, m->compressed_free_stack(),
623 m->compressed_free_stack_size());
624 uptr rounded_size = RoundUpTo(m->used_size, REDZONE);
625 PoisonShadow((uptr)ptr, rounded_size, kAsanHeapFreeMagic);
627 // Statistics.
628 AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
629 thread_stats.frees++;
630 thread_stats.freed += m->used_size;
631 thread_stats.freed_by_size[m->SizeClass()]++;
633 CHECK(m->chunk_state == CHUNK_QUARANTINE);
635 if (t) {
636 AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
637 ms->quarantine_.Push(m);
639 if (ms->quarantine_.size() > kMaxThreadLocalQuarantine) {
640 malloc_info.SwallowThreadLocalMallocStorage(ms, false);
642 } else {
643 malloc_info.BypassThreadLocalQuarantine(m);
647 static u8 *Reallocate(u8 *old_ptr, uptr new_size,
648 StackTrace *stack) {
649 CHECK(old_ptr && new_size);
651 // Statistics.
652 AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
653 thread_stats.reallocs++;
654 thread_stats.realloced += new_size;
656 AsanChunk *m = PtrToChunk((uptr)old_ptr);
657 CHECK(m->chunk_state == CHUNK_ALLOCATED);
658 uptr old_size = m->used_size;
659 uptr memcpy_size = Min(new_size, old_size);
660 u8 *new_ptr = Allocate(0, new_size, stack, FROM_MALLOC);
661 if (new_ptr) {
662 CHECK(REAL(memcpy) != 0);
663 REAL(memcpy)(new_ptr, old_ptr, memcpy_size);
664 Deallocate(old_ptr, stack, FROM_MALLOC);
666 return new_ptr;
669 } // namespace __asan
671 #if !SANITIZER_SUPPORTS_WEAK_HOOKS
672 // Provide default (no-op) implementation of malloc hooks.
673 extern "C" {
674 SANITIZER_WEAK_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE
675 void __asan_malloc_hook(void *ptr, uptr size) {
676 (void)ptr;
677 (void)size;
679 SANITIZER_WEAK_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE
680 void __asan_free_hook(void *ptr) {
681 (void)ptr;
683 } // extern "C"
684 #endif
686 namespace __asan {
688 void InitializeAllocator() { }
690 void PrintInternalAllocatorStats() {
693 SANITIZER_INTERFACE_ATTRIBUTE
694 void *asan_memalign(uptr alignment, uptr size, StackTrace *stack,
695 AllocType alloc_type) {
696 void *ptr = (void*)Allocate(alignment, size, stack, alloc_type);
697 ASAN_MALLOC_HOOK(ptr, size);
698 return ptr;
701 SANITIZER_INTERFACE_ATTRIBUTE
702 void asan_free(void *ptr, StackTrace *stack, AllocType alloc_type) {
703 ASAN_FREE_HOOK(ptr);
704 Deallocate((u8*)ptr, stack, alloc_type);
707 SANITIZER_INTERFACE_ATTRIBUTE
708 void *asan_malloc(uptr size, StackTrace *stack) {
709 void *ptr = (void*)Allocate(0, size, stack, FROM_MALLOC);
710 ASAN_MALLOC_HOOK(ptr, size);
711 return ptr;
714 void *asan_calloc(uptr nmemb, uptr size, StackTrace *stack) {
715 if (__sanitizer::CallocShouldReturnNullDueToOverflow(size, nmemb)) return 0;
716 void *ptr = (void*)Allocate(0, nmemb * size, stack, FROM_MALLOC);
717 if (ptr)
718 REAL(memset)(ptr, 0, nmemb * size);
719 ASAN_MALLOC_HOOK(ptr, size);
720 return ptr;
723 void *asan_realloc(void *p, uptr size, StackTrace *stack) {
724 if (p == 0) {
725 void *ptr = (void*)Allocate(0, size, stack, FROM_MALLOC);
726 ASAN_MALLOC_HOOK(ptr, size);
727 return ptr;
728 } else if (size == 0) {
729 ASAN_FREE_HOOK(p);
730 Deallocate((u8*)p, stack, FROM_MALLOC);
731 return 0;
733 return Reallocate((u8*)p, size, stack);
736 void *asan_valloc(uptr size, StackTrace *stack) {
737 void *ptr = (void*)Allocate(GetPageSizeCached(), size, stack, FROM_MALLOC);
738 ASAN_MALLOC_HOOK(ptr, size);
739 return ptr;
742 void *asan_pvalloc(uptr size, StackTrace *stack) {
743 uptr PageSize = GetPageSizeCached();
744 size = RoundUpTo(size, PageSize);
745 if (size == 0) {
746 // pvalloc(0) should allocate one page.
747 size = PageSize;
749 void *ptr = (void*)Allocate(PageSize, size, stack, FROM_MALLOC);
750 ASAN_MALLOC_HOOK(ptr, size);
751 return ptr;
754 int asan_posix_memalign(void **memptr, uptr alignment, uptr size,
755 StackTrace *stack) {
756 void *ptr = Allocate(alignment, size, stack, FROM_MALLOC);
757 CHECK(IsAligned((uptr)ptr, alignment));
758 ASAN_MALLOC_HOOK(ptr, size);
759 *memptr = ptr;
760 return 0;
763 uptr asan_malloc_usable_size(void *ptr, StackTrace *stack) {
764 CHECK(stack);
765 if (ptr == 0) return 0;
766 uptr usable_size = malloc_info.AllocationSize((uptr)ptr);
767 if (flags()->check_malloc_usable_size && (usable_size == 0)) {
768 ReportMallocUsableSizeNotOwned((uptr)ptr, stack);
770 return usable_size;
773 uptr asan_mz_size(const void *ptr) {
774 return malloc_info.AllocationSize((uptr)ptr);
777 void asan_mz_force_lock() {
778 malloc_info.ForceLock();
781 void asan_mz_force_unlock() {
782 malloc_info.ForceUnlock();
785 } // namespace __asan
787 // ---------------------- Interface ---------------- {{{1
788 using namespace __asan; // NOLINT
790 // ASan allocator doesn't reserve extra bytes, so normally we would
791 // just return "size".
792 uptr __asan_get_estimated_allocated_size(uptr size) {
793 if (size == 0) return 1;
794 return Min(size, kMaxAllowedMallocSize);
797 bool __asan_get_ownership(const void *p) {
798 return malloc_info.AllocationSize((uptr)p) > 0;
801 uptr __asan_get_allocated_size(const void *p) {
802 if (p == 0) return 0;
803 uptr allocated_size = malloc_info.AllocationSize((uptr)p);
804 // Die if p is not malloced or if it is already freed.
805 if (allocated_size == 0) {
806 GET_STACK_TRACE_FATAL_HERE;
807 ReportAsanGetAllocatedSizeNotOwned((uptr)p, &stack);
809 return allocated_size;
811 #endif // ASAN_ALLOCATOR_VERSION