use auto_sbitmap in various places
[official-gcc.git] / gcc / recog.c
blobf425e47f498f9407e92fde4ca50803575299bc4e
1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "cfghooks.h"
29 #include "df.h"
30 #include "tm_p.h"
31 #include "insn-config.h"
32 #include "regs.h"
33 #include "emit-rtl.h"
34 #include "recog.h"
35 #include "insn-attr.h"
36 #include "addresses.h"
37 #include "cfgrtl.h"
38 #include "cfgbuild.h"
39 #include "cfgcleanup.h"
40 #include "reload.h"
41 #include "tree-pass.h"
43 #ifndef STACK_POP_CODE
44 #if STACK_GROWS_DOWNWARD
45 #define STACK_POP_CODE POST_INC
46 #else
47 #define STACK_POP_CODE POST_DEC
48 #endif
49 #endif
51 static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx_insn *, bool);
52 static void validate_replace_src_1 (rtx *, void *);
53 static rtx_insn *split_insn (rtx_insn *);
55 struct target_recog default_target_recog;
56 #if SWITCHABLE_TARGET
57 struct target_recog *this_target_recog = &default_target_recog;
58 #endif
60 /* Nonzero means allow operands to be volatile.
61 This should be 0 if you are generating rtl, such as if you are calling
62 the functions in optabs.c and expmed.c (most of the time).
63 This should be 1 if all valid insns need to be recognized,
64 such as in reginfo.c and final.c and reload.c.
66 init_recog and init_recog_no_volatile are responsible for setting this. */
68 int volatile_ok;
70 struct recog_data_d recog_data;
72 /* Contains a vector of operand_alternative structures, such that
73 operand OP of alternative A is at index A * n_operands + OP.
74 Set up by preprocess_constraints. */
75 const operand_alternative *recog_op_alt;
77 /* Used to provide recog_op_alt for asms. */
78 static operand_alternative asm_op_alt[MAX_RECOG_OPERANDS
79 * MAX_RECOG_ALTERNATIVES];
81 /* On return from `constrain_operands', indicate which alternative
82 was satisfied. */
84 int which_alternative;
86 /* Nonzero after end of reload pass.
87 Set to 1 or 0 by toplev.c.
88 Controls the significance of (SUBREG (MEM)). */
90 int reload_completed;
92 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
93 int epilogue_completed;
95 /* Initialize data used by the function `recog'.
96 This must be called once in the compilation of a function
97 before any insn recognition may be done in the function. */
99 void
100 init_recog_no_volatile (void)
102 volatile_ok = 0;
105 void
106 init_recog (void)
108 volatile_ok = 1;
112 /* Return true if labels in asm operands BODY are LABEL_REFs. */
114 static bool
115 asm_labels_ok (rtx body)
117 rtx asmop;
118 int i;
120 asmop = extract_asm_operands (body);
121 if (asmop == NULL_RTX)
122 return true;
124 for (i = 0; i < ASM_OPERANDS_LABEL_LENGTH (asmop); i++)
125 if (GET_CODE (ASM_OPERANDS_LABEL (asmop, i)) != LABEL_REF)
126 return false;
128 return true;
131 /* Check that X is an insn-body for an `asm' with operands
132 and that the operands mentioned in it are legitimate. */
135 check_asm_operands (rtx x)
137 int noperands;
138 rtx *operands;
139 const char **constraints;
140 int i;
142 if (!asm_labels_ok (x))
143 return 0;
145 /* Post-reload, be more strict with things. */
146 if (reload_completed)
148 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
149 rtx_insn *insn = make_insn_raw (x);
150 extract_insn (insn);
151 constrain_operands (1, get_enabled_alternatives (insn));
152 return which_alternative >= 0;
155 noperands = asm_noperands (x);
156 if (noperands < 0)
157 return 0;
158 if (noperands == 0)
159 return 1;
161 operands = XALLOCAVEC (rtx, noperands);
162 constraints = XALLOCAVEC (const char *, noperands);
164 decode_asm_operands (x, operands, NULL, constraints, NULL, NULL);
166 for (i = 0; i < noperands; i++)
168 const char *c = constraints[i];
169 if (c[0] == '%')
170 c++;
171 if (! asm_operand_ok (operands[i], c, constraints))
172 return 0;
175 return 1;
178 /* Static data for the next two routines. */
180 struct change_t
182 rtx object;
183 int old_code;
184 rtx *loc;
185 rtx old;
186 bool unshare;
189 static change_t *changes;
190 static int changes_allocated;
192 static int num_changes = 0;
194 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
195 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
196 the change is simply made.
198 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
199 will be called with the address and mode as parameters. If OBJECT is
200 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
201 the change in place.
203 IN_GROUP is nonzero if this is part of a group of changes that must be
204 performed as a group. In that case, the changes will be stored. The
205 function `apply_change_group' will validate and apply the changes.
207 If IN_GROUP is zero, this is a single change. Try to recognize the insn
208 or validate the memory reference with the change applied. If the result
209 is not valid for the machine, suppress the change and return zero.
210 Otherwise, perform the change and return 1. */
212 static bool
213 validate_change_1 (rtx object, rtx *loc, rtx new_rtx, bool in_group, bool unshare)
215 rtx old = *loc;
217 if (old == new_rtx || rtx_equal_p (old, new_rtx))
218 return 1;
220 gcc_assert (in_group != 0 || num_changes == 0);
222 *loc = new_rtx;
224 /* Save the information describing this change. */
225 if (num_changes >= changes_allocated)
227 if (changes_allocated == 0)
228 /* This value allows for repeated substitutions inside complex
229 indexed addresses, or changes in up to 5 insns. */
230 changes_allocated = MAX_RECOG_OPERANDS * 5;
231 else
232 changes_allocated *= 2;
234 changes = XRESIZEVEC (change_t, changes, changes_allocated);
237 changes[num_changes].object = object;
238 changes[num_changes].loc = loc;
239 changes[num_changes].old = old;
240 changes[num_changes].unshare = unshare;
242 if (object && !MEM_P (object))
244 /* Set INSN_CODE to force rerecognition of insn. Save old code in
245 case invalid. */
246 changes[num_changes].old_code = INSN_CODE (object);
247 INSN_CODE (object) = -1;
250 num_changes++;
252 /* If we are making a group of changes, return 1. Otherwise, validate the
253 change group we made. */
255 if (in_group)
256 return 1;
257 else
258 return apply_change_group ();
261 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
262 UNSHARE to false. */
264 bool
265 validate_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
267 return validate_change_1 (object, loc, new_rtx, in_group, false);
270 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
271 UNSHARE to true. */
273 bool
274 validate_unshare_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
276 return validate_change_1 (object, loc, new_rtx, in_group, true);
280 /* Keep X canonicalized if some changes have made it non-canonical; only
281 modifies the operands of X, not (for example) its code. Simplifications
282 are not the job of this routine.
284 Return true if anything was changed. */
285 bool
286 canonicalize_change_group (rtx_insn *insn, rtx x)
288 if (COMMUTATIVE_P (x)
289 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
291 /* Oops, the caller has made X no longer canonical.
292 Let's redo the changes in the correct order. */
293 rtx tem = XEXP (x, 0);
294 validate_unshare_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
295 validate_unshare_change (insn, &XEXP (x, 1), tem, 1);
296 return true;
298 else
299 return false;
303 /* This subroutine of apply_change_group verifies whether the changes to INSN
304 were valid; i.e. whether INSN can still be recognized.
306 If IN_GROUP is true clobbers which have to be added in order to
307 match the instructions will be added to the current change group.
308 Otherwise the changes will take effect immediately. */
311 insn_invalid_p (rtx_insn *insn, bool in_group)
313 rtx pat = PATTERN (insn);
314 int num_clobbers = 0;
315 /* If we are before reload and the pattern is a SET, see if we can add
316 clobbers. */
317 int icode = recog (pat, insn,
318 (GET_CODE (pat) == SET
319 && ! reload_completed
320 && ! reload_in_progress)
321 ? &num_clobbers : 0);
322 int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
325 /* If this is an asm and the operand aren't legal, then fail. Likewise if
326 this is not an asm and the insn wasn't recognized. */
327 if ((is_asm && ! check_asm_operands (PATTERN (insn)))
328 || (!is_asm && icode < 0))
329 return 1;
331 /* If we have to add CLOBBERs, fail if we have to add ones that reference
332 hard registers since our callers can't know if they are live or not.
333 Otherwise, add them. */
334 if (num_clobbers > 0)
336 rtx newpat;
338 if (added_clobbers_hard_reg_p (icode))
339 return 1;
341 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
342 XVECEXP (newpat, 0, 0) = pat;
343 add_clobbers (newpat, icode);
344 if (in_group)
345 validate_change (insn, &PATTERN (insn), newpat, 1);
346 else
347 PATTERN (insn) = pat = newpat;
350 /* After reload, verify that all constraints are satisfied. */
351 if (reload_completed)
353 extract_insn (insn);
355 if (! constrain_operands (1, get_preferred_alternatives (insn)))
356 return 1;
359 INSN_CODE (insn) = icode;
360 return 0;
363 /* Return number of changes made and not validated yet. */
365 num_changes_pending (void)
367 return num_changes;
370 /* Tentatively apply the changes numbered NUM and up.
371 Return 1 if all changes are valid, zero otherwise. */
374 verify_changes (int num)
376 int i;
377 rtx last_validated = NULL_RTX;
379 /* The changes have been applied and all INSN_CODEs have been reset to force
380 rerecognition.
382 The changes are valid if we aren't given an object, or if we are
383 given a MEM and it still is a valid address, or if this is in insn
384 and it is recognized. In the latter case, if reload has completed,
385 we also require that the operands meet the constraints for
386 the insn. */
388 for (i = num; i < num_changes; i++)
390 rtx object = changes[i].object;
392 /* If there is no object to test or if it is the same as the one we
393 already tested, ignore it. */
394 if (object == 0 || object == last_validated)
395 continue;
397 if (MEM_P (object))
399 if (! memory_address_addr_space_p (GET_MODE (object),
400 XEXP (object, 0),
401 MEM_ADDR_SPACE (object)))
402 break;
404 else if (/* changes[i].old might be zero, e.g. when putting a
405 REG_FRAME_RELATED_EXPR into a previously empty list. */
406 changes[i].old
407 && REG_P (changes[i].old)
408 && asm_noperands (PATTERN (object)) > 0
409 && REG_EXPR (changes[i].old) != NULL_TREE
410 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes[i].old))
411 && DECL_REGISTER (REG_EXPR (changes[i].old)))
413 /* Don't allow changes of hard register operands to inline
414 assemblies if they have been defined as register asm ("x"). */
415 break;
417 else if (DEBUG_INSN_P (object))
418 continue;
419 else if (insn_invalid_p (as_a <rtx_insn *> (object), true))
421 rtx pat = PATTERN (object);
423 /* Perhaps we couldn't recognize the insn because there were
424 extra CLOBBERs at the end. If so, try to re-recognize
425 without the last CLOBBER (later iterations will cause each of
426 them to be eliminated, in turn). But don't do this if we
427 have an ASM_OPERAND. */
428 if (GET_CODE (pat) == PARALLEL
429 && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
430 && asm_noperands (PATTERN (object)) < 0)
432 rtx newpat;
434 if (XVECLEN (pat, 0) == 2)
435 newpat = XVECEXP (pat, 0, 0);
436 else
438 int j;
440 newpat
441 = gen_rtx_PARALLEL (VOIDmode,
442 rtvec_alloc (XVECLEN (pat, 0) - 1));
443 for (j = 0; j < XVECLEN (newpat, 0); j++)
444 XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
447 /* Add a new change to this group to replace the pattern
448 with this new pattern. Then consider this change
449 as having succeeded. The change we added will
450 cause the entire call to fail if things remain invalid.
452 Note that this can lose if a later change than the one
453 we are processing specified &XVECEXP (PATTERN (object), 0, X)
454 but this shouldn't occur. */
456 validate_change (object, &PATTERN (object), newpat, 1);
457 continue;
459 else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
460 || GET_CODE (pat) == VAR_LOCATION)
461 /* If this insn is a CLOBBER or USE, it is always valid, but is
462 never recognized. */
463 continue;
464 else
465 break;
467 last_validated = object;
470 return (i == num_changes);
473 /* A group of changes has previously been issued with validate_change
474 and verified with verify_changes. Call df_insn_rescan for each of
475 the insn changed and clear num_changes. */
477 void
478 confirm_change_group (void)
480 int i;
481 rtx last_object = NULL;
483 for (i = 0; i < num_changes; i++)
485 rtx object = changes[i].object;
487 if (changes[i].unshare)
488 *changes[i].loc = copy_rtx (*changes[i].loc);
490 /* Avoid unnecessary rescanning when multiple changes to same instruction
491 are made. */
492 if (object)
494 if (object != last_object && last_object && INSN_P (last_object))
495 df_insn_rescan (as_a <rtx_insn *> (last_object));
496 last_object = object;
500 if (last_object && INSN_P (last_object))
501 df_insn_rescan (as_a <rtx_insn *> (last_object));
502 num_changes = 0;
505 /* Apply a group of changes previously issued with `validate_change'.
506 If all changes are valid, call confirm_change_group and return 1,
507 otherwise, call cancel_changes and return 0. */
510 apply_change_group (void)
512 if (verify_changes (0))
514 confirm_change_group ();
515 return 1;
517 else
519 cancel_changes (0);
520 return 0;
525 /* Return the number of changes so far in the current group. */
528 num_validated_changes (void)
530 return num_changes;
533 /* Retract the changes numbered NUM and up. */
535 void
536 cancel_changes (int num)
538 int i;
540 /* Back out all the changes. Do this in the opposite order in which
541 they were made. */
542 for (i = num_changes - 1; i >= num; i--)
544 *changes[i].loc = changes[i].old;
545 if (changes[i].object && !MEM_P (changes[i].object))
546 INSN_CODE (changes[i].object) = changes[i].old_code;
548 num_changes = num;
551 /* Reduce conditional compilation elsewhere. */
552 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
553 rtx. */
555 static void
556 simplify_while_replacing (rtx *loc, rtx to, rtx_insn *object,
557 machine_mode op0_mode)
559 rtx x = *loc;
560 enum rtx_code code = GET_CODE (x);
561 rtx new_rtx = NULL_RTX;
563 if (SWAPPABLE_OPERANDS_P (x)
564 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
566 validate_unshare_change (object, loc,
567 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
568 : swap_condition (code),
569 GET_MODE (x), XEXP (x, 1),
570 XEXP (x, 0)), 1);
571 x = *loc;
572 code = GET_CODE (x);
575 /* Canonicalize arithmetics with all constant operands. */
576 switch (GET_RTX_CLASS (code))
578 case RTX_UNARY:
579 if (CONSTANT_P (XEXP (x, 0)))
580 new_rtx = simplify_unary_operation (code, GET_MODE (x), XEXP (x, 0),
581 op0_mode);
582 break;
583 case RTX_COMM_ARITH:
584 case RTX_BIN_ARITH:
585 if (CONSTANT_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
586 new_rtx = simplify_binary_operation (code, GET_MODE (x), XEXP (x, 0),
587 XEXP (x, 1));
588 break;
589 case RTX_COMPARE:
590 case RTX_COMM_COMPARE:
591 if (CONSTANT_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
592 new_rtx = simplify_relational_operation (code, GET_MODE (x), op0_mode,
593 XEXP (x, 0), XEXP (x, 1));
594 break;
595 default:
596 break;
598 if (new_rtx)
600 validate_change (object, loc, new_rtx, 1);
601 return;
604 switch (code)
606 case PLUS:
607 /* If we have a PLUS whose second operand is now a CONST_INT, use
608 simplify_gen_binary to try to simplify it.
609 ??? We may want later to remove this, once simplification is
610 separated from this function. */
611 if (CONST_INT_P (XEXP (x, 1)) && XEXP (x, 1) == to)
612 validate_change (object, loc,
613 simplify_gen_binary
614 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
615 break;
616 case MINUS:
617 if (CONST_SCALAR_INT_P (XEXP (x, 1)))
618 validate_change (object, loc,
619 simplify_gen_binary
620 (PLUS, GET_MODE (x), XEXP (x, 0),
621 simplify_gen_unary (NEG,
622 GET_MODE (x), XEXP (x, 1),
623 GET_MODE (x))), 1);
624 break;
625 case ZERO_EXTEND:
626 case SIGN_EXTEND:
627 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
629 new_rtx = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
630 op0_mode);
631 /* If any of the above failed, substitute in something that
632 we know won't be recognized. */
633 if (!new_rtx)
634 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
635 validate_change (object, loc, new_rtx, 1);
637 break;
638 case SUBREG:
639 /* All subregs possible to simplify should be simplified. */
640 new_rtx = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
641 SUBREG_BYTE (x));
643 /* Subregs of VOIDmode operands are incorrect. */
644 if (!new_rtx && GET_MODE (SUBREG_REG (x)) == VOIDmode)
645 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
646 if (new_rtx)
647 validate_change (object, loc, new_rtx, 1);
648 break;
649 case ZERO_EXTRACT:
650 case SIGN_EXTRACT:
651 /* If we are replacing a register with memory, try to change the memory
652 to be the mode required for memory in extract operations (this isn't
653 likely to be an insertion operation; if it was, nothing bad will
654 happen, we might just fail in some cases). */
656 if (MEM_P (XEXP (x, 0))
657 && CONST_INT_P (XEXP (x, 1))
658 && CONST_INT_P (XEXP (x, 2))
659 && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0),
660 MEM_ADDR_SPACE (XEXP (x, 0)))
661 && !MEM_VOLATILE_P (XEXP (x, 0)))
663 machine_mode wanted_mode = VOIDmode;
664 machine_mode is_mode = GET_MODE (XEXP (x, 0));
665 int pos = INTVAL (XEXP (x, 2));
667 if (GET_CODE (x) == ZERO_EXTRACT && targetm.have_extzv ())
669 wanted_mode = insn_data[targetm.code_for_extzv].operand[1].mode;
670 if (wanted_mode == VOIDmode)
671 wanted_mode = word_mode;
673 else if (GET_CODE (x) == SIGN_EXTRACT && targetm.have_extv ())
675 wanted_mode = insn_data[targetm.code_for_extv].operand[1].mode;
676 if (wanted_mode == VOIDmode)
677 wanted_mode = word_mode;
680 /* If we have a narrower mode, we can do something. */
681 if (wanted_mode != VOIDmode
682 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
684 int offset = pos / BITS_PER_UNIT;
685 rtx newmem;
687 /* If the bytes and bits are counted differently, we
688 must adjust the offset. */
689 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
690 offset =
691 (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
692 offset);
694 gcc_assert (GET_MODE_PRECISION (wanted_mode)
695 == GET_MODE_BITSIZE (wanted_mode));
696 pos %= GET_MODE_BITSIZE (wanted_mode);
698 newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
700 validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
701 validate_change (object, &XEXP (x, 0), newmem, 1);
705 break;
707 default:
708 break;
712 /* Replace every occurrence of FROM in X with TO. Mark each change with
713 validate_change passing OBJECT. */
715 static void
716 validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx_insn *object,
717 bool simplify)
719 int i, j;
720 const char *fmt;
721 rtx x = *loc;
722 enum rtx_code code;
723 machine_mode op0_mode = VOIDmode;
724 int prev_changes = num_changes;
726 if (!x)
727 return;
729 code = GET_CODE (x);
730 fmt = GET_RTX_FORMAT (code);
731 if (fmt[0] == 'e')
732 op0_mode = GET_MODE (XEXP (x, 0));
734 /* X matches FROM if it is the same rtx or they are both referring to the
735 same register in the same mode. Avoid calling rtx_equal_p unless the
736 operands look similar. */
738 if (x == from
739 || (REG_P (x) && REG_P (from)
740 && GET_MODE (x) == GET_MODE (from)
741 && REGNO (x) == REGNO (from))
742 || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
743 && rtx_equal_p (x, from)))
745 validate_unshare_change (object, loc, to, 1);
746 return;
749 /* Call ourself recursively to perform the replacements.
750 We must not replace inside already replaced expression, otherwise we
751 get infinite recursion for replacements like (reg X)->(subreg (reg X))
752 so we must special case shared ASM_OPERANDS. */
754 if (GET_CODE (x) == PARALLEL)
756 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
758 if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
759 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
761 /* Verify that operands are really shared. */
762 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
763 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
764 (x, 0, j))));
765 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
766 from, to, object, simplify);
768 else
769 validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object,
770 simplify);
773 else
774 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
776 if (fmt[i] == 'e')
777 validate_replace_rtx_1 (&XEXP (x, i), from, to, object, simplify);
778 else if (fmt[i] == 'E')
779 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
780 validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object,
781 simplify);
784 /* If we didn't substitute, there is nothing more to do. */
785 if (num_changes == prev_changes)
786 return;
788 /* ??? The regmove is no more, so is this aberration still necessary? */
789 /* Allow substituted expression to have different mode. This is used by
790 regmove to change mode of pseudo register. */
791 if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
792 op0_mode = GET_MODE (XEXP (x, 0));
794 /* Do changes needed to keep rtx consistent. Don't do any other
795 simplifications, as it is not our job. */
796 if (simplify)
797 simplify_while_replacing (loc, to, object, op0_mode);
800 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
801 with TO. After all changes have been made, validate by seeing
802 if INSN is still valid. */
805 validate_replace_rtx_subexp (rtx from, rtx to, rtx_insn *insn, rtx *loc)
807 validate_replace_rtx_1 (loc, from, to, insn, true);
808 return apply_change_group ();
811 /* Try replacing every occurrence of FROM in INSN with TO. After all
812 changes have been made, validate by seeing if INSN is still valid. */
815 validate_replace_rtx (rtx from, rtx to, rtx_insn *insn)
817 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
818 return apply_change_group ();
821 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
822 is a part of INSN. After all changes have been made, validate by seeing if
823 INSN is still valid.
824 validate_replace_rtx (from, to, insn) is equivalent to
825 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
828 validate_replace_rtx_part (rtx from, rtx to, rtx *where, rtx_insn *insn)
830 validate_replace_rtx_1 (where, from, to, insn, true);
831 return apply_change_group ();
834 /* Same as above, but do not simplify rtx afterwards. */
836 validate_replace_rtx_part_nosimplify (rtx from, rtx to, rtx *where,
837 rtx_insn *insn)
839 validate_replace_rtx_1 (where, from, to, insn, false);
840 return apply_change_group ();
844 /* Try replacing every occurrence of FROM in INSN with TO. This also
845 will replace in REG_EQUAL and REG_EQUIV notes. */
847 void
848 validate_replace_rtx_group (rtx from, rtx to, rtx_insn *insn)
850 rtx note;
851 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
852 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
853 if (REG_NOTE_KIND (note) == REG_EQUAL
854 || REG_NOTE_KIND (note) == REG_EQUIV)
855 validate_replace_rtx_1 (&XEXP (note, 0), from, to, insn, true);
858 /* Function called by note_uses to replace used subexpressions. */
859 struct validate_replace_src_data
861 rtx from; /* Old RTX */
862 rtx to; /* New RTX */
863 rtx_insn *insn; /* Insn in which substitution is occurring. */
866 static void
867 validate_replace_src_1 (rtx *x, void *data)
869 struct validate_replace_src_data *d
870 = (struct validate_replace_src_data *) data;
872 validate_replace_rtx_1 (x, d->from, d->to, d->insn, true);
875 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
876 SET_DESTs. */
878 void
879 validate_replace_src_group (rtx from, rtx to, rtx_insn *insn)
881 struct validate_replace_src_data d;
883 d.from = from;
884 d.to = to;
885 d.insn = insn;
886 note_uses (&PATTERN (insn), validate_replace_src_1, &d);
889 /* Try simplify INSN.
890 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
891 pattern and return true if something was simplified. */
893 bool
894 validate_simplify_insn (rtx_insn *insn)
896 int i;
897 rtx pat = NULL;
898 rtx newpat = NULL;
900 pat = PATTERN (insn);
902 if (GET_CODE (pat) == SET)
904 newpat = simplify_rtx (SET_SRC (pat));
905 if (newpat && !rtx_equal_p (SET_SRC (pat), newpat))
906 validate_change (insn, &SET_SRC (pat), newpat, 1);
907 newpat = simplify_rtx (SET_DEST (pat));
908 if (newpat && !rtx_equal_p (SET_DEST (pat), newpat))
909 validate_change (insn, &SET_DEST (pat), newpat, 1);
911 else if (GET_CODE (pat) == PARALLEL)
912 for (i = 0; i < XVECLEN (pat, 0); i++)
914 rtx s = XVECEXP (pat, 0, i);
916 if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
918 newpat = simplify_rtx (SET_SRC (s));
919 if (newpat && !rtx_equal_p (SET_SRC (s), newpat))
920 validate_change (insn, &SET_SRC (s), newpat, 1);
921 newpat = simplify_rtx (SET_DEST (s));
922 if (newpat && !rtx_equal_p (SET_DEST (s), newpat))
923 validate_change (insn, &SET_DEST (s), newpat, 1);
926 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
929 /* Return 1 if the insn using CC0 set by INSN does not contain
930 any ordered tests applied to the condition codes.
931 EQ and NE tests do not count. */
934 next_insn_tests_no_inequality (rtx_insn *insn)
936 rtx_insn *next = next_cc0_user (insn);
938 /* If there is no next insn, we have to take the conservative choice. */
939 if (next == 0)
940 return 0;
942 return (INSN_P (next)
943 && ! inequality_comparisons_p (PATTERN (next)));
946 /* Return 1 if OP is a valid general operand for machine mode MODE.
947 This is either a register reference, a memory reference,
948 or a constant. In the case of a memory reference, the address
949 is checked for general validity for the target machine.
951 Register and memory references must have mode MODE in order to be valid,
952 but some constants have no machine mode and are valid for any mode.
954 If MODE is VOIDmode, OP is checked for validity for whatever mode
955 it has.
957 The main use of this function is as a predicate in match_operand
958 expressions in the machine description. */
961 general_operand (rtx op, machine_mode mode)
963 enum rtx_code code = GET_CODE (op);
965 if (mode == VOIDmode)
966 mode = GET_MODE (op);
968 /* Don't accept CONST_INT or anything similar
969 if the caller wants something floating. */
970 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
971 && GET_MODE_CLASS (mode) != MODE_INT
972 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
973 return 0;
975 if (CONST_INT_P (op)
976 && mode != VOIDmode
977 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
978 return 0;
980 if (CONSTANT_P (op))
981 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
982 || mode == VOIDmode)
983 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
984 && targetm.legitimate_constant_p (mode == VOIDmode
985 ? GET_MODE (op)
986 : mode, op));
988 /* Except for certain constants with VOIDmode, already checked for,
989 OP's mode must match MODE if MODE specifies a mode. */
991 if (GET_MODE (op) != mode)
992 return 0;
994 if (code == SUBREG)
996 rtx sub = SUBREG_REG (op);
998 #ifdef INSN_SCHEDULING
999 /* On machines that have insn scheduling, we want all memory
1000 reference to be explicit, so outlaw paradoxical SUBREGs.
1001 However, we must allow them after reload so that they can
1002 get cleaned up by cleanup_subreg_operands. */
1003 if (!reload_completed && MEM_P (sub)
1004 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub)))
1005 return 0;
1006 #endif
1007 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
1008 may result in incorrect reference. We should simplify all valid
1009 subregs of MEM anyway. But allow this after reload because we
1010 might be called from cleanup_subreg_operands.
1012 ??? This is a kludge. */
1013 if (!reload_completed && SUBREG_BYTE (op) != 0
1014 && MEM_P (sub))
1015 return 0;
1017 #ifdef CANNOT_CHANGE_MODE_CLASS
1018 if (REG_P (sub)
1019 && REGNO (sub) < FIRST_PSEUDO_REGISTER
1020 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
1021 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1022 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT
1023 /* LRA can generate some invalid SUBREGS just for matched
1024 operand reload presentation. LRA needs to treat them as
1025 valid. */
1026 && ! LRA_SUBREG_P (op))
1027 return 0;
1028 #endif
1030 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1031 create such rtl, and we must reject it. */
1032 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
1033 /* LRA can use subreg to store a floating point value in an
1034 integer mode. Although the floating point and the
1035 integer modes need the same number of hard registers, the
1036 size of floating point mode can be less than the integer
1037 mode. */
1038 && ! lra_in_progress
1039 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1040 return 0;
1042 op = sub;
1043 code = GET_CODE (op);
1046 if (code == REG)
1047 return (REGNO (op) >= FIRST_PSEUDO_REGISTER
1048 || in_hard_reg_set_p (operand_reg_set, GET_MODE (op), REGNO (op)));
1050 if (code == MEM)
1052 rtx y = XEXP (op, 0);
1054 if (! volatile_ok && MEM_VOLATILE_P (op))
1055 return 0;
1057 /* Use the mem's mode, since it will be reloaded thus. LRA can
1058 generate move insn with invalid addresses which is made valid
1059 and efficiently calculated by LRA through further numerous
1060 transformations. */
1061 if (lra_in_progress
1062 || memory_address_addr_space_p (GET_MODE (op), y, MEM_ADDR_SPACE (op)))
1063 return 1;
1066 return 0;
1069 /* Return 1 if OP is a valid memory address for a memory reference
1070 of mode MODE.
1072 The main use of this function is as a predicate in match_operand
1073 expressions in the machine description. */
1076 address_operand (rtx op, machine_mode mode)
1078 return memory_address_p (mode, op);
1081 /* Return 1 if OP is a register reference of mode MODE.
1082 If MODE is VOIDmode, accept a register in any mode.
1084 The main use of this function is as a predicate in match_operand
1085 expressions in the machine description. */
1088 register_operand (rtx op, machine_mode mode)
1090 if (GET_CODE (op) == SUBREG)
1092 rtx sub = SUBREG_REG (op);
1094 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1095 because it is guaranteed to be reloaded into one.
1096 Just make sure the MEM is valid in itself.
1097 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1098 but currently it does result from (SUBREG (REG)...) where the
1099 reg went on the stack.) */
1100 if (!REG_P (sub) && (reload_completed || !MEM_P (sub)))
1101 return 0;
1103 else if (!REG_P (op))
1104 return 0;
1105 return general_operand (op, mode);
1108 /* Return 1 for a register in Pmode; ignore the tested mode. */
1111 pmode_register_operand (rtx op, machine_mode mode ATTRIBUTE_UNUSED)
1113 return register_operand (op, Pmode);
1116 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1117 or a hard register. */
1120 scratch_operand (rtx op, machine_mode mode)
1122 if (GET_MODE (op) != mode && mode != VOIDmode)
1123 return 0;
1125 return (GET_CODE (op) == SCRATCH
1126 || (REG_P (op)
1127 && (lra_in_progress
1128 || (REGNO (op) < FIRST_PSEUDO_REGISTER
1129 && REGNO_REG_CLASS (REGNO (op)) != NO_REGS))));
1132 /* Return 1 if OP is a valid immediate operand for mode MODE.
1134 The main use of this function is as a predicate in match_operand
1135 expressions in the machine description. */
1138 immediate_operand (rtx op, machine_mode mode)
1140 /* Don't accept CONST_INT or anything similar
1141 if the caller wants something floating. */
1142 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1143 && GET_MODE_CLASS (mode) != MODE_INT
1144 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1145 return 0;
1147 if (CONST_INT_P (op)
1148 && mode != VOIDmode
1149 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1150 return 0;
1152 return (CONSTANT_P (op)
1153 && (GET_MODE (op) == mode || mode == VOIDmode
1154 || GET_MODE (op) == VOIDmode)
1155 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1156 && targetm.legitimate_constant_p (mode == VOIDmode
1157 ? GET_MODE (op)
1158 : mode, op));
1161 /* Returns 1 if OP is an operand that is a CONST_INT of mode MODE. */
1164 const_int_operand (rtx op, machine_mode mode)
1166 if (!CONST_INT_P (op))
1167 return 0;
1169 if (mode != VOIDmode
1170 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1171 return 0;
1173 return 1;
1176 #if TARGET_SUPPORTS_WIDE_INT
1177 /* Returns 1 if OP is an operand that is a CONST_INT or CONST_WIDE_INT
1178 of mode MODE. */
1180 const_scalar_int_operand (rtx op, machine_mode mode)
1182 if (!CONST_SCALAR_INT_P (op))
1183 return 0;
1185 if (CONST_INT_P (op))
1186 return const_int_operand (op, mode);
1188 if (mode != VOIDmode)
1190 int prec = GET_MODE_PRECISION (mode);
1191 int bitsize = GET_MODE_BITSIZE (mode);
1193 if (CONST_WIDE_INT_NUNITS (op) * HOST_BITS_PER_WIDE_INT > bitsize)
1194 return 0;
1196 if (prec == bitsize)
1197 return 1;
1198 else
1200 /* Multiword partial int. */
1201 HOST_WIDE_INT x
1202 = CONST_WIDE_INT_ELT (op, CONST_WIDE_INT_NUNITS (op) - 1);
1203 return (sext_hwi (x, prec & (HOST_BITS_PER_WIDE_INT - 1)) == x);
1206 return 1;
1209 /* Returns 1 if OP is an operand that is a constant integer or constant
1210 floating-point number of MODE. */
1213 const_double_operand (rtx op, machine_mode mode)
1215 return (GET_CODE (op) == CONST_DOUBLE)
1216 && (GET_MODE (op) == mode || mode == VOIDmode);
1218 #else
1219 /* Returns 1 if OP is an operand that is a constant integer or constant
1220 floating-point number of MODE. */
1223 const_double_operand (rtx op, machine_mode mode)
1225 /* Don't accept CONST_INT or anything similar
1226 if the caller wants something floating. */
1227 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1228 && GET_MODE_CLASS (mode) != MODE_INT
1229 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1230 return 0;
1232 return ((CONST_DOUBLE_P (op) || CONST_INT_P (op))
1233 && (mode == VOIDmode || GET_MODE (op) == mode
1234 || GET_MODE (op) == VOIDmode));
1236 #endif
1237 /* Return 1 if OP is a general operand that is not an immediate
1238 operand of mode MODE. */
1241 nonimmediate_operand (rtx op, machine_mode mode)
1243 return (general_operand (op, mode) && ! CONSTANT_P (op));
1246 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1249 nonmemory_operand (rtx op, machine_mode mode)
1251 if (CONSTANT_P (op))
1252 return immediate_operand (op, mode);
1253 return register_operand (op, mode);
1256 /* Return 1 if OP is a valid operand that stands for pushing a
1257 value of mode MODE onto the stack.
1259 The main use of this function is as a predicate in match_operand
1260 expressions in the machine description. */
1263 push_operand (rtx op, machine_mode mode)
1265 unsigned int rounded_size = GET_MODE_SIZE (mode);
1267 #ifdef PUSH_ROUNDING
1268 rounded_size = PUSH_ROUNDING (rounded_size);
1269 #endif
1271 if (!MEM_P (op))
1272 return 0;
1274 if (mode != VOIDmode && GET_MODE (op) != mode)
1275 return 0;
1277 op = XEXP (op, 0);
1279 if (rounded_size == GET_MODE_SIZE (mode))
1281 if (GET_CODE (op) != STACK_PUSH_CODE)
1282 return 0;
1284 else
1286 if (GET_CODE (op) != PRE_MODIFY
1287 || GET_CODE (XEXP (op, 1)) != PLUS
1288 || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1289 || !CONST_INT_P (XEXP (XEXP (op, 1), 1))
1290 || INTVAL (XEXP (XEXP (op, 1), 1))
1291 != ((STACK_GROWS_DOWNWARD ? -1 : 1) * (int) rounded_size))
1292 return 0;
1295 return XEXP (op, 0) == stack_pointer_rtx;
1298 /* Return 1 if OP is a valid operand that stands for popping a
1299 value of mode MODE off the stack.
1301 The main use of this function is as a predicate in match_operand
1302 expressions in the machine description. */
1305 pop_operand (rtx op, machine_mode mode)
1307 if (!MEM_P (op))
1308 return 0;
1310 if (mode != VOIDmode && GET_MODE (op) != mode)
1311 return 0;
1313 op = XEXP (op, 0);
1315 if (GET_CODE (op) != STACK_POP_CODE)
1316 return 0;
1318 return XEXP (op, 0) == stack_pointer_rtx;
1321 /* Return 1 if ADDR is a valid memory address
1322 for mode MODE in address space AS. */
1325 memory_address_addr_space_p (machine_mode mode ATTRIBUTE_UNUSED,
1326 rtx addr, addr_space_t as)
1328 #ifdef GO_IF_LEGITIMATE_ADDRESS
1329 gcc_assert (ADDR_SPACE_GENERIC_P (as));
1330 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1331 return 0;
1333 win:
1334 return 1;
1335 #else
1336 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
1337 #endif
1340 /* Return 1 if OP is a valid memory reference with mode MODE,
1341 including a valid address.
1343 The main use of this function is as a predicate in match_operand
1344 expressions in the machine description. */
1347 memory_operand (rtx op, machine_mode mode)
1349 rtx inner;
1351 if (! reload_completed)
1352 /* Note that no SUBREG is a memory operand before end of reload pass,
1353 because (SUBREG (MEM...)) forces reloading into a register. */
1354 return MEM_P (op) && general_operand (op, mode);
1356 if (mode != VOIDmode && GET_MODE (op) != mode)
1357 return 0;
1359 inner = op;
1360 if (GET_CODE (inner) == SUBREG)
1361 inner = SUBREG_REG (inner);
1363 return (MEM_P (inner) && general_operand (op, mode));
1366 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1367 that is, a memory reference whose address is a general_operand. */
1370 indirect_operand (rtx op, machine_mode mode)
1372 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1373 if (! reload_completed
1374 && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
1376 int offset = SUBREG_BYTE (op);
1377 rtx inner = SUBREG_REG (op);
1379 if (mode != VOIDmode && GET_MODE (op) != mode)
1380 return 0;
1382 /* The only way that we can have a general_operand as the resulting
1383 address is if OFFSET is zero and the address already is an operand
1384 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1385 operand. */
1387 return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
1388 || (GET_CODE (XEXP (inner, 0)) == PLUS
1389 && CONST_INT_P (XEXP (XEXP (inner, 0), 1))
1390 && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
1391 && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
1394 return (MEM_P (op)
1395 && memory_operand (op, mode)
1396 && general_operand (XEXP (op, 0), Pmode));
1399 /* Return 1 if this is an ordered comparison operator (not including
1400 ORDERED and UNORDERED). */
1403 ordered_comparison_operator (rtx op, machine_mode mode)
1405 if (mode != VOIDmode && GET_MODE (op) != mode)
1406 return false;
1407 switch (GET_CODE (op))
1409 case EQ:
1410 case NE:
1411 case LT:
1412 case LTU:
1413 case LE:
1414 case LEU:
1415 case GT:
1416 case GTU:
1417 case GE:
1418 case GEU:
1419 return true;
1420 default:
1421 return false;
1425 /* Return 1 if this is a comparison operator. This allows the use of
1426 MATCH_OPERATOR to recognize all the branch insns. */
1429 comparison_operator (rtx op, machine_mode mode)
1431 return ((mode == VOIDmode || GET_MODE (op) == mode)
1432 && COMPARISON_P (op));
1435 /* If BODY is an insn body that uses ASM_OPERANDS, return it. */
1438 extract_asm_operands (rtx body)
1440 rtx tmp;
1441 switch (GET_CODE (body))
1443 case ASM_OPERANDS:
1444 return body;
1446 case SET:
1447 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1448 tmp = SET_SRC (body);
1449 if (GET_CODE (tmp) == ASM_OPERANDS)
1450 return tmp;
1451 break;
1453 case PARALLEL:
1454 tmp = XVECEXP (body, 0, 0);
1455 if (GET_CODE (tmp) == ASM_OPERANDS)
1456 return tmp;
1457 if (GET_CODE (tmp) == SET)
1459 tmp = SET_SRC (tmp);
1460 if (GET_CODE (tmp) == ASM_OPERANDS)
1461 return tmp;
1463 break;
1465 default:
1466 break;
1468 return NULL;
1471 /* If BODY is an insn body that uses ASM_OPERANDS,
1472 return the number of operands (both input and output) in the insn.
1473 If BODY is an insn body that uses ASM_INPUT with CLOBBERS in PARALLEL,
1474 return 0.
1475 Otherwise return -1. */
1478 asm_noperands (const_rtx body)
1480 rtx asm_op = extract_asm_operands (CONST_CAST_RTX (body));
1481 int i, n_sets = 0;
1483 if (asm_op == NULL)
1485 if (GET_CODE (body) == PARALLEL && XVECLEN (body, 0) >= 2
1486 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_INPUT)
1488 /* body is [(asm_input ...) (clobber (reg ...))...]. */
1489 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1490 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1491 return -1;
1492 return 0;
1494 return -1;
1497 if (GET_CODE (body) == SET)
1498 n_sets = 1;
1499 else if (GET_CODE (body) == PARALLEL)
1501 if (GET_CODE (XVECEXP (body, 0, 0)) == SET)
1503 /* Multiple output operands, or 1 output plus some clobbers:
1504 body is
1505 [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1506 /* Count backwards through CLOBBERs to determine number of SETs. */
1507 for (i = XVECLEN (body, 0); i > 0; i--)
1509 if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1510 break;
1511 if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1512 return -1;
1515 /* N_SETS is now number of output operands. */
1516 n_sets = i;
1518 /* Verify that all the SETs we have
1519 came from a single original asm_operands insn
1520 (so that invalid combinations are blocked). */
1521 for (i = 0; i < n_sets; i++)
1523 rtx elt = XVECEXP (body, 0, i);
1524 if (GET_CODE (elt) != SET)
1525 return -1;
1526 if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1527 return -1;
1528 /* If these ASM_OPERANDS rtx's came from different original insns
1529 then they aren't allowed together. */
1530 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1531 != ASM_OPERANDS_INPUT_VEC (asm_op))
1532 return -1;
1535 else
1537 /* 0 outputs, but some clobbers:
1538 body is [(asm_operands ...) (clobber (reg ...))...]. */
1539 /* Make sure all the other parallel things really are clobbers. */
1540 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1541 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1542 return -1;
1546 return (ASM_OPERANDS_INPUT_LENGTH (asm_op)
1547 + ASM_OPERANDS_LABEL_LENGTH (asm_op) + n_sets);
1550 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1551 copy its operands (both input and output) into the vector OPERANDS,
1552 the locations of the operands within the insn into the vector OPERAND_LOCS,
1553 and the constraints for the operands into CONSTRAINTS.
1554 Write the modes of the operands into MODES.
1555 Write the location info into LOC.
1556 Return the assembler-template.
1557 If BODY is an insn body that uses ASM_INPUT with CLOBBERS in PARALLEL,
1558 return the basic assembly string.
1560 If LOC, MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1561 we don't store that info. */
1563 const char *
1564 decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
1565 const char **constraints, machine_mode *modes,
1566 location_t *loc)
1568 int nbase = 0, n, i;
1569 rtx asmop;
1571 switch (GET_CODE (body))
1573 case ASM_OPERANDS:
1574 /* Zero output asm: BODY is (asm_operands ...). */
1575 asmop = body;
1576 break;
1578 case SET:
1579 /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */
1580 asmop = SET_SRC (body);
1582 /* The output is in the SET.
1583 Its constraint is in the ASM_OPERANDS itself. */
1584 if (operands)
1585 operands[0] = SET_DEST (body);
1586 if (operand_locs)
1587 operand_locs[0] = &SET_DEST (body);
1588 if (constraints)
1589 constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1590 if (modes)
1591 modes[0] = GET_MODE (SET_DEST (body));
1592 nbase = 1;
1593 break;
1595 case PARALLEL:
1597 int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
1599 asmop = XVECEXP (body, 0, 0);
1600 if (GET_CODE (asmop) == SET)
1602 asmop = SET_SRC (asmop);
1604 /* At least one output, plus some CLOBBERs. The outputs are in
1605 the SETs. Their constraints are in the ASM_OPERANDS itself. */
1606 for (i = 0; i < nparallel; i++)
1608 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1609 break; /* Past last SET */
1610 if (operands)
1611 operands[i] = SET_DEST (XVECEXP (body, 0, i));
1612 if (operand_locs)
1613 operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1614 if (constraints)
1615 constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1616 if (modes)
1617 modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1619 nbase = i;
1621 else if (GET_CODE (asmop) == ASM_INPUT)
1623 if (loc)
1624 *loc = ASM_INPUT_SOURCE_LOCATION (asmop);
1625 return XSTR (asmop, 0);
1627 break;
1630 default:
1631 gcc_unreachable ();
1634 n = ASM_OPERANDS_INPUT_LENGTH (asmop);
1635 for (i = 0; i < n; i++)
1637 if (operand_locs)
1638 operand_locs[nbase + i] = &ASM_OPERANDS_INPUT (asmop, i);
1639 if (operands)
1640 operands[nbase + i] = ASM_OPERANDS_INPUT (asmop, i);
1641 if (constraints)
1642 constraints[nbase + i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1643 if (modes)
1644 modes[nbase + i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1646 nbase += n;
1648 n = ASM_OPERANDS_LABEL_LENGTH (asmop);
1649 for (i = 0; i < n; i++)
1651 if (operand_locs)
1652 operand_locs[nbase + i] = &ASM_OPERANDS_LABEL (asmop, i);
1653 if (operands)
1654 operands[nbase + i] = ASM_OPERANDS_LABEL (asmop, i);
1655 if (constraints)
1656 constraints[nbase + i] = "";
1657 if (modes)
1658 modes[nbase + i] = Pmode;
1661 if (loc)
1662 *loc = ASM_OPERANDS_SOURCE_LOCATION (asmop);
1664 return ASM_OPERANDS_TEMPLATE (asmop);
1667 /* Parse inline assembly string STRING and determine which operands are
1668 referenced by % markers. For the first NOPERANDS operands, set USED[I]
1669 to true if operand I is referenced.
1671 This is intended to distinguish barrier-like asms such as:
1673 asm ("" : "=m" (...));
1675 from real references such as:
1677 asm ("sw\t$0, %0" : "=m" (...)); */
1679 void
1680 get_referenced_operands (const char *string, bool *used,
1681 unsigned int noperands)
1683 memset (used, 0, sizeof (bool) * noperands);
1684 const char *p = string;
1685 while (*p)
1686 switch (*p)
1688 case '%':
1689 p += 1;
1690 /* A letter followed by a digit indicates an operand number. */
1691 if (ISALPHA (p[0]) && ISDIGIT (p[1]))
1692 p += 1;
1693 if (ISDIGIT (*p))
1695 char *endptr;
1696 unsigned long opnum = strtoul (p, &endptr, 10);
1697 if (endptr != p && opnum < noperands)
1698 used[opnum] = true;
1699 p = endptr;
1701 else
1702 p += 1;
1703 break;
1705 default:
1706 p++;
1707 break;
1711 /* Check if an asm_operand matches its constraints.
1712 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1715 asm_operand_ok (rtx op, const char *constraint, const char **constraints)
1717 int result = 0;
1718 bool incdec_ok = false;
1720 /* Use constrain_operands after reload. */
1721 gcc_assert (!reload_completed);
1723 /* Empty constraint string is the same as "X,...,X", i.e. X for as
1724 many alternatives as required to match the other operands. */
1725 if (*constraint == '\0')
1726 result = 1;
1728 while (*constraint)
1730 enum constraint_num cn;
1731 char c = *constraint;
1732 int len;
1733 switch (c)
1735 case ',':
1736 constraint++;
1737 continue;
1739 case '0': case '1': case '2': case '3': case '4':
1740 case '5': case '6': case '7': case '8': case '9':
1741 /* If caller provided constraints pointer, look up
1742 the matching constraint. Otherwise, our caller should have
1743 given us the proper matching constraint, but we can't
1744 actually fail the check if they didn't. Indicate that
1745 results are inconclusive. */
1746 if (constraints)
1748 char *end;
1749 unsigned long match;
1751 match = strtoul (constraint, &end, 10);
1752 if (!result)
1753 result = asm_operand_ok (op, constraints[match], NULL);
1754 constraint = (const char *) end;
1756 else
1759 constraint++;
1760 while (ISDIGIT (*constraint));
1761 if (! result)
1762 result = -1;
1764 continue;
1766 /* The rest of the compiler assumes that reloading the address
1767 of a MEM into a register will make it fit an 'o' constraint.
1768 That is, if it sees a MEM operand for an 'o' constraint,
1769 it assumes that (mem (base-reg)) will fit.
1771 That assumption fails on targets that don't have offsettable
1772 addresses at all. We therefore need to treat 'o' asm
1773 constraints as a special case and only accept operands that
1774 are already offsettable, thus proving that at least one
1775 offsettable address exists. */
1776 case 'o': /* offsettable */
1777 if (offsettable_nonstrict_memref_p (op))
1778 result = 1;
1779 break;
1781 case 'g':
1782 if (general_operand (op, VOIDmode))
1783 result = 1;
1784 break;
1786 case '<':
1787 case '>':
1788 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed
1789 to exist, excepting those that expand_call created. Further,
1790 on some machines which do not have generalized auto inc/dec,
1791 an inc/dec is not a memory_operand.
1793 Match any memory and hope things are resolved after reload. */
1794 incdec_ok = true;
1795 default:
1796 cn = lookup_constraint (constraint);
1797 switch (get_constraint_type (cn))
1799 case CT_REGISTER:
1800 if (!result
1801 && reg_class_for_constraint (cn) != NO_REGS
1802 && GET_MODE (op) != BLKmode
1803 && register_operand (op, VOIDmode))
1804 result = 1;
1805 break;
1807 case CT_CONST_INT:
1808 if (!result
1809 && CONST_INT_P (op)
1810 && insn_const_int_ok_for_constraint (INTVAL (op), cn))
1811 result = 1;
1812 break;
1814 case CT_MEMORY:
1815 case CT_SPECIAL_MEMORY:
1816 /* Every memory operand can be reloaded to fit. */
1817 result = result || memory_operand (op, VOIDmode);
1818 break;
1820 case CT_ADDRESS:
1821 /* Every address operand can be reloaded to fit. */
1822 result = result || address_operand (op, VOIDmode);
1823 break;
1825 case CT_FIXED_FORM:
1826 result = result || constraint_satisfied_p (op, cn);
1827 break;
1829 break;
1831 len = CONSTRAINT_LEN (c, constraint);
1833 constraint++;
1834 while (--len && *constraint);
1835 if (len)
1836 return 0;
1839 /* For operands without < or > constraints reject side-effects. */
1840 if (AUTO_INC_DEC && !incdec_ok && result && MEM_P (op))
1841 switch (GET_CODE (XEXP (op, 0)))
1843 case PRE_INC:
1844 case POST_INC:
1845 case PRE_DEC:
1846 case POST_DEC:
1847 case PRE_MODIFY:
1848 case POST_MODIFY:
1849 return 0;
1850 default:
1851 break;
1854 return result;
1857 /* Given an rtx *P, if it is a sum containing an integer constant term,
1858 return the location (type rtx *) of the pointer to that constant term.
1859 Otherwise, return a null pointer. */
1861 rtx *
1862 find_constant_term_loc (rtx *p)
1864 rtx *tem;
1865 enum rtx_code code = GET_CODE (*p);
1867 /* If *P IS such a constant term, P is its location. */
1869 if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1870 || code == CONST)
1871 return p;
1873 /* Otherwise, if not a sum, it has no constant term. */
1875 if (GET_CODE (*p) != PLUS)
1876 return 0;
1878 /* If one of the summands is constant, return its location. */
1880 if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1881 && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1882 return p;
1884 /* Otherwise, check each summand for containing a constant term. */
1886 if (XEXP (*p, 0) != 0)
1888 tem = find_constant_term_loc (&XEXP (*p, 0));
1889 if (tem != 0)
1890 return tem;
1893 if (XEXP (*p, 1) != 0)
1895 tem = find_constant_term_loc (&XEXP (*p, 1));
1896 if (tem != 0)
1897 return tem;
1900 return 0;
1903 /* Return 1 if OP is a memory reference
1904 whose address contains no side effects
1905 and remains valid after the addition
1906 of a positive integer less than the
1907 size of the object being referenced.
1909 We assume that the original address is valid and do not check it.
1911 This uses strict_memory_address_p as a subroutine, so
1912 don't use it before reload. */
1915 offsettable_memref_p (rtx op)
1917 return ((MEM_P (op))
1918 && offsettable_address_addr_space_p (1, GET_MODE (op), XEXP (op, 0),
1919 MEM_ADDR_SPACE (op)));
1922 /* Similar, but don't require a strictly valid mem ref:
1923 consider pseudo-regs valid as index or base regs. */
1926 offsettable_nonstrict_memref_p (rtx op)
1928 return ((MEM_P (op))
1929 && offsettable_address_addr_space_p (0, GET_MODE (op), XEXP (op, 0),
1930 MEM_ADDR_SPACE (op)));
1933 /* Return 1 if Y is a memory address which contains no side effects
1934 and would remain valid for address space AS after the addition of
1935 a positive integer less than the size of that mode.
1937 We assume that the original address is valid and do not check it.
1938 We do check that it is valid for narrower modes.
1940 If STRICTP is nonzero, we require a strictly valid address,
1941 for the sake of use in reload.c. */
1944 offsettable_address_addr_space_p (int strictp, machine_mode mode, rtx y,
1945 addr_space_t as)
1947 enum rtx_code ycode = GET_CODE (y);
1948 rtx z;
1949 rtx y1 = y;
1950 rtx *y2;
1951 int (*addressp) (machine_mode, rtx, addr_space_t) =
1952 (strictp ? strict_memory_address_addr_space_p
1953 : memory_address_addr_space_p);
1954 unsigned int mode_sz = GET_MODE_SIZE (mode);
1956 if (CONSTANT_ADDRESS_P (y))
1957 return 1;
1959 /* Adjusting an offsettable address involves changing to a narrower mode.
1960 Make sure that's OK. */
1962 if (mode_dependent_address_p (y, as))
1963 return 0;
1965 machine_mode address_mode = GET_MODE (y);
1966 if (address_mode == VOIDmode)
1967 address_mode = targetm.addr_space.address_mode (as);
1968 #ifdef POINTERS_EXTEND_UNSIGNED
1969 machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
1970 #endif
1972 /* ??? How much offset does an offsettable BLKmode reference need?
1973 Clearly that depends on the situation in which it's being used.
1974 However, the current situation in which we test 0xffffffff is
1975 less than ideal. Caveat user. */
1976 if (mode_sz == 0)
1977 mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
1979 /* If the expression contains a constant term,
1980 see if it remains valid when max possible offset is added. */
1982 if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
1984 int good;
1986 y1 = *y2;
1987 *y2 = plus_constant (address_mode, *y2, mode_sz - 1);
1988 /* Use QImode because an odd displacement may be automatically invalid
1989 for any wider mode. But it should be valid for a single byte. */
1990 good = (*addressp) (QImode, y, as);
1992 /* In any case, restore old contents of memory. */
1993 *y2 = y1;
1994 return good;
1997 if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
1998 return 0;
2000 /* The offset added here is chosen as the maximum offset that
2001 any instruction could need to add when operating on something
2002 of the specified mode. We assume that if Y and Y+c are
2003 valid addresses then so is Y+d for all 0<d<c. adjust_address will
2004 go inside a LO_SUM here, so we do so as well. */
2005 if (GET_CODE (y) == LO_SUM
2006 && mode != BLKmode
2007 && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
2008 z = gen_rtx_LO_SUM (address_mode, XEXP (y, 0),
2009 plus_constant (address_mode, XEXP (y, 1),
2010 mode_sz - 1));
2011 #ifdef POINTERS_EXTEND_UNSIGNED
2012 /* Likewise for a ZERO_EXTEND from pointer_mode. */
2013 else if (POINTERS_EXTEND_UNSIGNED > 0
2014 && GET_CODE (y) == ZERO_EXTEND
2015 && GET_MODE (XEXP (y, 0)) == pointer_mode)
2016 z = gen_rtx_ZERO_EXTEND (address_mode,
2017 plus_constant (pointer_mode, XEXP (y, 0),
2018 mode_sz - 1));
2019 #endif
2020 else
2021 z = plus_constant (address_mode, y, mode_sz - 1);
2023 /* Use QImode because an odd displacement may be automatically invalid
2024 for any wider mode. But it should be valid for a single byte. */
2025 return (*addressp) (QImode, z, as);
2028 /* Return 1 if ADDR is an address-expression whose effect depends
2029 on the mode of the memory reference it is used in.
2031 ADDRSPACE is the address space associated with the address.
2033 Autoincrement addressing is a typical example of mode-dependence
2034 because the amount of the increment depends on the mode. */
2036 bool
2037 mode_dependent_address_p (rtx addr, addr_space_t addrspace)
2039 /* Auto-increment addressing with anything other than post_modify
2040 or pre_modify always introduces a mode dependency. Catch such
2041 cases now instead of deferring to the target. */
2042 if (GET_CODE (addr) == PRE_INC
2043 || GET_CODE (addr) == POST_INC
2044 || GET_CODE (addr) == PRE_DEC
2045 || GET_CODE (addr) == POST_DEC)
2046 return true;
2048 return targetm.mode_dependent_address_p (addr, addrspace);
2051 /* Return true if boolean attribute ATTR is supported. */
2053 static bool
2054 have_bool_attr (bool_attr attr)
2056 switch (attr)
2058 case BA_ENABLED:
2059 return HAVE_ATTR_enabled;
2060 case BA_PREFERRED_FOR_SIZE:
2061 return HAVE_ATTR_enabled || HAVE_ATTR_preferred_for_size;
2062 case BA_PREFERRED_FOR_SPEED:
2063 return HAVE_ATTR_enabled || HAVE_ATTR_preferred_for_speed;
2065 gcc_unreachable ();
2068 /* Return the value of ATTR for instruction INSN. */
2070 static bool
2071 get_bool_attr (rtx_insn *insn, bool_attr attr)
2073 switch (attr)
2075 case BA_ENABLED:
2076 return get_attr_enabled (insn);
2077 case BA_PREFERRED_FOR_SIZE:
2078 return get_attr_enabled (insn) && get_attr_preferred_for_size (insn);
2079 case BA_PREFERRED_FOR_SPEED:
2080 return get_attr_enabled (insn) && get_attr_preferred_for_speed (insn);
2082 gcc_unreachable ();
2085 /* Like get_bool_attr_mask, but don't use the cache. */
2087 static alternative_mask
2088 get_bool_attr_mask_uncached (rtx_insn *insn, bool_attr attr)
2090 /* Temporarily install enough information for get_attr_<foo> to assume
2091 that the insn operands are already cached. As above, the attribute
2092 mustn't depend on the values of operands, so we don't provide their
2093 real values here. */
2094 rtx_insn *old_insn = recog_data.insn;
2095 int old_alternative = which_alternative;
2097 recog_data.insn = insn;
2098 alternative_mask mask = ALL_ALTERNATIVES;
2099 int n_alternatives = insn_data[INSN_CODE (insn)].n_alternatives;
2100 for (int i = 0; i < n_alternatives; i++)
2102 which_alternative = i;
2103 if (!get_bool_attr (insn, attr))
2104 mask &= ~ALTERNATIVE_BIT (i);
2107 recog_data.insn = old_insn;
2108 which_alternative = old_alternative;
2109 return mask;
2112 /* Return the mask of operand alternatives that are allowed for INSN
2113 by boolean attribute ATTR. This mask depends only on INSN and on
2114 the current target; it does not depend on things like the values of
2115 operands. */
2117 static alternative_mask
2118 get_bool_attr_mask (rtx_insn *insn, bool_attr attr)
2120 /* Quick exit for asms and for targets that don't use these attributes. */
2121 int code = INSN_CODE (insn);
2122 if (code < 0 || !have_bool_attr (attr))
2123 return ALL_ALTERNATIVES;
2125 /* Calling get_attr_<foo> can be expensive, so cache the mask
2126 for speed. */
2127 if (!this_target_recog->x_bool_attr_masks[code][attr])
2128 this_target_recog->x_bool_attr_masks[code][attr]
2129 = get_bool_attr_mask_uncached (insn, attr);
2130 return this_target_recog->x_bool_attr_masks[code][attr];
2133 /* Return the set of alternatives of INSN that are allowed by the current
2134 target. */
2136 alternative_mask
2137 get_enabled_alternatives (rtx_insn *insn)
2139 return get_bool_attr_mask (insn, BA_ENABLED);
2142 /* Return the set of alternatives of INSN that are allowed by the current
2143 target and are preferred for the current size/speed optimization
2144 choice. */
2146 alternative_mask
2147 get_preferred_alternatives (rtx_insn *insn)
2149 if (optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn)))
2150 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SPEED);
2151 else
2152 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SIZE);
2155 /* Return the set of alternatives of INSN that are allowed by the current
2156 target and are preferred for the size/speed optimization choice
2157 associated with BB. Passing a separate BB is useful if INSN has not
2158 been emitted yet or if we are considering moving it to a different
2159 block. */
2161 alternative_mask
2162 get_preferred_alternatives (rtx_insn *insn, basic_block bb)
2164 if (optimize_bb_for_speed_p (bb))
2165 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SPEED);
2166 else
2167 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SIZE);
2170 /* Assert that the cached boolean attributes for INSN are still accurate.
2171 The backend is required to define these attributes in a way that only
2172 depends on the current target (rather than operands, compiler phase,
2173 etc.). */
2175 bool
2176 check_bool_attrs (rtx_insn *insn)
2178 int code = INSN_CODE (insn);
2179 if (code >= 0)
2180 for (int i = 0; i <= BA_LAST; ++i)
2182 enum bool_attr attr = (enum bool_attr) i;
2183 if (this_target_recog->x_bool_attr_masks[code][attr])
2184 gcc_assert (this_target_recog->x_bool_attr_masks[code][attr]
2185 == get_bool_attr_mask_uncached (insn, attr));
2187 return true;
2190 /* Like extract_insn, but save insn extracted and don't extract again, when
2191 called again for the same insn expecting that recog_data still contain the
2192 valid information. This is used primary by gen_attr infrastructure that
2193 often does extract insn again and again. */
2194 void
2195 extract_insn_cached (rtx_insn *insn)
2197 if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
2198 return;
2199 extract_insn (insn);
2200 recog_data.insn = insn;
2203 /* Do uncached extract_insn, constrain_operands and complain about failures.
2204 This should be used when extracting a pre-existing constrained instruction
2205 if the caller wants to know which alternative was chosen. */
2206 void
2207 extract_constrain_insn (rtx_insn *insn)
2209 extract_insn (insn);
2210 if (!constrain_operands (reload_completed, get_enabled_alternatives (insn)))
2211 fatal_insn_not_found (insn);
2214 /* Do cached extract_insn, constrain_operands and complain about failures.
2215 Used by insn_attrtab. */
2216 void
2217 extract_constrain_insn_cached (rtx_insn *insn)
2219 extract_insn_cached (insn);
2220 if (which_alternative == -1
2221 && !constrain_operands (reload_completed,
2222 get_enabled_alternatives (insn)))
2223 fatal_insn_not_found (insn);
2226 /* Do cached constrain_operands on INSN and complain about failures. */
2228 constrain_operands_cached (rtx_insn *insn, int strict)
2230 if (which_alternative == -1)
2231 return constrain_operands (strict, get_enabled_alternatives (insn));
2232 else
2233 return 1;
2236 /* Analyze INSN and fill in recog_data. */
2238 void
2239 extract_insn (rtx_insn *insn)
2241 int i;
2242 int icode;
2243 int noperands;
2244 rtx body = PATTERN (insn);
2246 recog_data.n_operands = 0;
2247 recog_data.n_alternatives = 0;
2248 recog_data.n_dups = 0;
2249 recog_data.is_asm = false;
2251 switch (GET_CODE (body))
2253 case USE:
2254 case CLOBBER:
2255 case ASM_INPUT:
2256 case ADDR_VEC:
2257 case ADDR_DIFF_VEC:
2258 case VAR_LOCATION:
2259 return;
2261 case SET:
2262 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2263 goto asm_insn;
2264 else
2265 goto normal_insn;
2266 case PARALLEL:
2267 if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2268 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2269 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS
2270 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_INPUT)
2271 goto asm_insn;
2272 else
2273 goto normal_insn;
2274 case ASM_OPERANDS:
2275 asm_insn:
2276 recog_data.n_operands = noperands = asm_noperands (body);
2277 if (noperands >= 0)
2279 /* This insn is an `asm' with operands. */
2281 /* expand_asm_operands makes sure there aren't too many operands. */
2282 gcc_assert (noperands <= MAX_RECOG_OPERANDS);
2284 /* Now get the operand values and constraints out of the insn. */
2285 decode_asm_operands (body, recog_data.operand,
2286 recog_data.operand_loc,
2287 recog_data.constraints,
2288 recog_data.operand_mode, NULL);
2289 memset (recog_data.is_operator, 0, sizeof recog_data.is_operator);
2290 if (noperands > 0)
2292 const char *p = recog_data.constraints[0];
2293 recog_data.n_alternatives = 1;
2294 while (*p)
2295 recog_data.n_alternatives += (*p++ == ',');
2297 recog_data.is_asm = true;
2298 break;
2300 fatal_insn_not_found (insn);
2302 default:
2303 normal_insn:
2304 /* Ordinary insn: recognize it, get the operands via insn_extract
2305 and get the constraints. */
2307 icode = recog_memoized (insn);
2308 if (icode < 0)
2309 fatal_insn_not_found (insn);
2311 recog_data.n_operands = noperands = insn_data[icode].n_operands;
2312 recog_data.n_alternatives = insn_data[icode].n_alternatives;
2313 recog_data.n_dups = insn_data[icode].n_dups;
2315 insn_extract (insn);
2317 for (i = 0; i < noperands; i++)
2319 recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2320 recog_data.is_operator[i] = insn_data[icode].operand[i].is_operator;
2321 recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2322 /* VOIDmode match_operands gets mode from their real operand. */
2323 if (recog_data.operand_mode[i] == VOIDmode)
2324 recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2327 for (i = 0; i < noperands; i++)
2328 recog_data.operand_type[i]
2329 = (recog_data.constraints[i][0] == '=' ? OP_OUT
2330 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2331 : OP_IN);
2333 gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
2335 recog_data.insn = NULL;
2336 which_alternative = -1;
2339 /* Fill in OP_ALT_BASE for an instruction that has N_OPERANDS operands,
2340 N_ALTERNATIVES alternatives and constraint strings CONSTRAINTS.
2341 OP_ALT_BASE has N_ALTERNATIVES * N_OPERANDS entries and CONSTRAINTS
2342 has N_OPERANDS entries. */
2344 void
2345 preprocess_constraints (int n_operands, int n_alternatives,
2346 const char **constraints,
2347 operand_alternative *op_alt_base)
2349 for (int i = 0; i < n_operands; i++)
2351 int j;
2352 struct operand_alternative *op_alt;
2353 const char *p = constraints[i];
2355 op_alt = op_alt_base;
2357 for (j = 0; j < n_alternatives; j++, op_alt += n_operands)
2359 op_alt[i].cl = NO_REGS;
2360 op_alt[i].constraint = p;
2361 op_alt[i].matches = -1;
2362 op_alt[i].matched = -1;
2364 if (*p == '\0' || *p == ',')
2366 op_alt[i].anything_ok = 1;
2367 continue;
2370 for (;;)
2372 char c = *p;
2373 if (c == '#')
2375 c = *++p;
2376 while (c != ',' && c != '\0');
2377 if (c == ',' || c == '\0')
2379 p++;
2380 break;
2383 switch (c)
2385 case '?':
2386 op_alt[i].reject += 6;
2387 break;
2388 case '!':
2389 op_alt[i].reject += 600;
2390 break;
2391 case '&':
2392 op_alt[i].earlyclobber = 1;
2393 break;
2395 case '0': case '1': case '2': case '3': case '4':
2396 case '5': case '6': case '7': case '8': case '9':
2398 char *end;
2399 op_alt[i].matches = strtoul (p, &end, 10);
2400 op_alt[op_alt[i].matches].matched = i;
2401 p = end;
2403 continue;
2405 case 'X':
2406 op_alt[i].anything_ok = 1;
2407 break;
2409 case 'g':
2410 op_alt[i].cl =
2411 reg_class_subunion[(int) op_alt[i].cl][(int) GENERAL_REGS];
2412 break;
2414 default:
2415 enum constraint_num cn = lookup_constraint (p);
2416 enum reg_class cl;
2417 switch (get_constraint_type (cn))
2419 case CT_REGISTER:
2420 cl = reg_class_for_constraint (cn);
2421 if (cl != NO_REGS)
2422 op_alt[i].cl = reg_class_subunion[op_alt[i].cl][cl];
2423 break;
2425 case CT_CONST_INT:
2426 break;
2428 case CT_MEMORY:
2429 case CT_SPECIAL_MEMORY:
2430 op_alt[i].memory_ok = 1;
2431 break;
2433 case CT_ADDRESS:
2434 op_alt[i].is_address = 1;
2435 op_alt[i].cl
2436 = (reg_class_subunion
2437 [(int) op_alt[i].cl]
2438 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2439 ADDRESS, SCRATCH)]);
2440 break;
2442 case CT_FIXED_FORM:
2443 break;
2445 break;
2447 p += CONSTRAINT_LEN (c, p);
2453 /* Return an array of operand_alternative instructions for
2454 instruction ICODE. */
2456 const operand_alternative *
2457 preprocess_insn_constraints (unsigned int icode)
2459 gcc_checking_assert (IN_RANGE (icode, 0, NUM_INSN_CODES - 1));
2460 if (this_target_recog->x_op_alt[icode])
2461 return this_target_recog->x_op_alt[icode];
2463 int n_operands = insn_data[icode].n_operands;
2464 if (n_operands == 0)
2465 return 0;
2466 /* Always provide at least one alternative so that which_op_alt ()
2467 works correctly. If the instruction has 0 alternatives (i.e. all
2468 constraint strings are empty) then each operand in this alternative
2469 will have anything_ok set. */
2470 int n_alternatives = MAX (insn_data[icode].n_alternatives, 1);
2471 int n_entries = n_operands * n_alternatives;
2473 operand_alternative *op_alt = XCNEWVEC (operand_alternative, n_entries);
2474 const char **constraints = XALLOCAVEC (const char *, n_operands);
2476 for (int i = 0; i < n_operands; ++i)
2477 constraints[i] = insn_data[icode].operand[i].constraint;
2478 preprocess_constraints (n_operands, n_alternatives, constraints, op_alt);
2480 this_target_recog->x_op_alt[icode] = op_alt;
2481 return op_alt;
2484 /* After calling extract_insn, you can use this function to extract some
2485 information from the constraint strings into a more usable form.
2486 The collected data is stored in recog_op_alt. */
2488 void
2489 preprocess_constraints (rtx_insn *insn)
2491 int icode = INSN_CODE (insn);
2492 if (icode >= 0)
2493 recog_op_alt = preprocess_insn_constraints (icode);
2494 else
2496 int n_operands = recog_data.n_operands;
2497 int n_alternatives = recog_data.n_alternatives;
2498 int n_entries = n_operands * n_alternatives;
2499 memset (asm_op_alt, 0, n_entries * sizeof (operand_alternative));
2500 preprocess_constraints (n_operands, n_alternatives,
2501 recog_data.constraints, asm_op_alt);
2502 recog_op_alt = asm_op_alt;
2506 /* Check the operands of an insn against the insn's operand constraints
2507 and return 1 if they match any of the alternatives in ALTERNATIVES.
2509 The information about the insn's operands, constraints, operand modes
2510 etc. is obtained from the global variables set up by extract_insn.
2512 WHICH_ALTERNATIVE is set to a number which indicates which
2513 alternative of constraints was matched: 0 for the first alternative,
2514 1 for the next, etc.
2516 In addition, when two operands are required to match
2517 and it happens that the output operand is (reg) while the
2518 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2519 make the output operand look like the input.
2520 This is because the output operand is the one the template will print.
2522 This is used in final, just before printing the assembler code and by
2523 the routines that determine an insn's attribute.
2525 If STRICT is a positive nonzero value, it means that we have been
2526 called after reload has been completed. In that case, we must
2527 do all checks strictly. If it is zero, it means that we have been called
2528 before reload has completed. In that case, we first try to see if we can
2529 find an alternative that matches strictly. If not, we try again, this
2530 time assuming that reload will fix up the insn. This provides a "best
2531 guess" for the alternative and is used to compute attributes of insns prior
2532 to reload. A negative value of STRICT is used for this internal call. */
2534 struct funny_match
2536 int this_op, other;
2540 constrain_operands (int strict, alternative_mask alternatives)
2542 const char *constraints[MAX_RECOG_OPERANDS];
2543 int matching_operands[MAX_RECOG_OPERANDS];
2544 int earlyclobber[MAX_RECOG_OPERANDS];
2545 int c;
2547 struct funny_match funny_match[MAX_RECOG_OPERANDS];
2548 int funny_match_index;
2550 which_alternative = 0;
2551 if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2552 return 1;
2554 for (c = 0; c < recog_data.n_operands; c++)
2556 constraints[c] = recog_data.constraints[c];
2557 matching_operands[c] = -1;
2562 int seen_earlyclobber_at = -1;
2563 int opno;
2564 int lose = 0;
2565 funny_match_index = 0;
2567 if (!TEST_BIT (alternatives, which_alternative))
2569 int i;
2571 for (i = 0; i < recog_data.n_operands; i++)
2572 constraints[i] = skip_alternative (constraints[i]);
2574 which_alternative++;
2575 continue;
2578 for (opno = 0; opno < recog_data.n_operands; opno++)
2580 rtx op = recog_data.operand[opno];
2581 machine_mode mode = GET_MODE (op);
2582 const char *p = constraints[opno];
2583 int offset = 0;
2584 int win = 0;
2585 int val;
2586 int len;
2588 earlyclobber[opno] = 0;
2590 /* A unary operator may be accepted by the predicate, but it
2591 is irrelevant for matching constraints. */
2592 if (UNARY_P (op))
2593 op = XEXP (op, 0);
2595 if (GET_CODE (op) == SUBREG)
2597 if (REG_P (SUBREG_REG (op))
2598 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2599 offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2600 GET_MODE (SUBREG_REG (op)),
2601 SUBREG_BYTE (op),
2602 GET_MODE (op));
2603 op = SUBREG_REG (op);
2606 /* An empty constraint or empty alternative
2607 allows anything which matched the pattern. */
2608 if (*p == 0 || *p == ',')
2609 win = 1;
2612 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
2614 case '\0':
2615 len = 0;
2616 break;
2617 case ',':
2618 c = '\0';
2619 break;
2621 case '#':
2622 /* Ignore rest of this alternative as far as
2623 constraint checking is concerned. */
2625 p++;
2626 while (*p && *p != ',');
2627 len = 0;
2628 break;
2630 case '&':
2631 earlyclobber[opno] = 1;
2632 if (seen_earlyclobber_at < 0)
2633 seen_earlyclobber_at = opno;
2634 break;
2636 case '0': case '1': case '2': case '3': case '4':
2637 case '5': case '6': case '7': case '8': case '9':
2639 /* This operand must be the same as a previous one.
2640 This kind of constraint is used for instructions such
2641 as add when they take only two operands.
2643 Note that the lower-numbered operand is passed first.
2645 If we are not testing strictly, assume that this
2646 constraint will be satisfied. */
2648 char *end;
2649 int match;
2651 match = strtoul (p, &end, 10);
2652 p = end;
2654 if (strict < 0)
2655 val = 1;
2656 else
2658 rtx op1 = recog_data.operand[match];
2659 rtx op2 = recog_data.operand[opno];
2661 /* A unary operator may be accepted by the predicate,
2662 but it is irrelevant for matching constraints. */
2663 if (UNARY_P (op1))
2664 op1 = XEXP (op1, 0);
2665 if (UNARY_P (op2))
2666 op2 = XEXP (op2, 0);
2668 val = operands_match_p (op1, op2);
2671 matching_operands[opno] = match;
2672 matching_operands[match] = opno;
2674 if (val != 0)
2675 win = 1;
2677 /* If output is *x and input is *--x, arrange later
2678 to change the output to *--x as well, since the
2679 output op is the one that will be printed. */
2680 if (val == 2 && strict > 0)
2682 funny_match[funny_match_index].this_op = opno;
2683 funny_match[funny_match_index++].other = match;
2686 len = 0;
2687 break;
2689 case 'p':
2690 /* p is used for address_operands. When we are called by
2691 gen_reload, no one will have checked that the address is
2692 strictly valid, i.e., that all pseudos requiring hard regs
2693 have gotten them. */
2694 if (strict <= 0
2695 || (strict_memory_address_p (recog_data.operand_mode[opno],
2696 op)))
2697 win = 1;
2698 break;
2700 /* No need to check general_operand again;
2701 it was done in insn-recog.c. Well, except that reload
2702 doesn't check the validity of its replacements, but
2703 that should only matter when there's a bug. */
2704 case 'g':
2705 /* Anything goes unless it is a REG and really has a hard reg
2706 but the hard reg is not in the class GENERAL_REGS. */
2707 if (REG_P (op))
2709 if (strict < 0
2710 || GENERAL_REGS == ALL_REGS
2711 || (reload_in_progress
2712 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2713 || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2714 win = 1;
2716 else if (strict < 0 || general_operand (op, mode))
2717 win = 1;
2718 break;
2720 default:
2722 enum constraint_num cn = lookup_constraint (p);
2723 enum reg_class cl = reg_class_for_constraint (cn);
2724 if (cl != NO_REGS)
2726 if (strict < 0
2727 || (strict == 0
2728 && REG_P (op)
2729 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2730 || (strict == 0 && GET_CODE (op) == SCRATCH)
2731 || (REG_P (op)
2732 && reg_fits_class_p (op, cl, offset, mode)))
2733 win = 1;
2736 else if (constraint_satisfied_p (op, cn))
2737 win = 1;
2739 else if (insn_extra_memory_constraint (cn)
2740 /* Every memory operand can be reloaded to fit. */
2741 && ((strict < 0 && MEM_P (op))
2742 /* Before reload, accept what reload can turn
2743 into a mem. */
2744 || (strict < 0 && CONSTANT_P (op))
2745 /* Before reload, accept a pseudo,
2746 since LRA can turn it into a mem. */
2747 || (strict < 0 && targetm.lra_p () && REG_P (op)
2748 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2749 /* During reload, accept a pseudo */
2750 || (reload_in_progress && REG_P (op)
2751 && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
2752 win = 1;
2753 else if (insn_extra_address_constraint (cn)
2754 /* Every address operand can be reloaded to fit. */
2755 && strict < 0)
2756 win = 1;
2757 /* Cater to architectures like IA-64 that define extra memory
2758 constraints without using define_memory_constraint. */
2759 else if (reload_in_progress
2760 && REG_P (op)
2761 && REGNO (op) >= FIRST_PSEUDO_REGISTER
2762 && reg_renumber[REGNO (op)] < 0
2763 && reg_equiv_mem (REGNO (op)) != 0
2764 && constraint_satisfied_p
2765 (reg_equiv_mem (REGNO (op)), cn))
2766 win = 1;
2767 break;
2770 while (p += len, c);
2772 constraints[opno] = p;
2773 /* If this operand did not win somehow,
2774 this alternative loses. */
2775 if (! win)
2776 lose = 1;
2778 /* This alternative won; the operands are ok.
2779 Change whichever operands this alternative says to change. */
2780 if (! lose)
2782 int opno, eopno;
2784 /* See if any earlyclobber operand conflicts with some other
2785 operand. */
2787 if (strict > 0 && seen_earlyclobber_at >= 0)
2788 for (eopno = seen_earlyclobber_at;
2789 eopno < recog_data.n_operands;
2790 eopno++)
2791 /* Ignore earlyclobber operands now in memory,
2792 because we would often report failure when we have
2793 two memory operands, one of which was formerly a REG. */
2794 if (earlyclobber[eopno]
2795 && REG_P (recog_data.operand[eopno]))
2796 for (opno = 0; opno < recog_data.n_operands; opno++)
2797 if ((MEM_P (recog_data.operand[opno])
2798 || recog_data.operand_type[opno] != OP_OUT)
2799 && opno != eopno
2800 /* Ignore things like match_operator operands. */
2801 && *recog_data.constraints[opno] != 0
2802 && ! (matching_operands[opno] == eopno
2803 && operands_match_p (recog_data.operand[opno],
2804 recog_data.operand[eopno]))
2805 && ! safe_from_earlyclobber (recog_data.operand[opno],
2806 recog_data.operand[eopno]))
2807 lose = 1;
2809 if (! lose)
2811 while (--funny_match_index >= 0)
2813 recog_data.operand[funny_match[funny_match_index].other]
2814 = recog_data.operand[funny_match[funny_match_index].this_op];
2817 /* For operands without < or > constraints reject side-effects. */
2818 if (AUTO_INC_DEC && recog_data.is_asm)
2820 for (opno = 0; opno < recog_data.n_operands; opno++)
2821 if (MEM_P (recog_data.operand[opno]))
2822 switch (GET_CODE (XEXP (recog_data.operand[opno], 0)))
2824 case PRE_INC:
2825 case POST_INC:
2826 case PRE_DEC:
2827 case POST_DEC:
2828 case PRE_MODIFY:
2829 case POST_MODIFY:
2830 if (strchr (recog_data.constraints[opno], '<') == NULL
2831 && strchr (recog_data.constraints[opno], '>')
2832 == NULL)
2833 return 0;
2834 break;
2835 default:
2836 break;
2840 return 1;
2844 which_alternative++;
2846 while (which_alternative < recog_data.n_alternatives);
2848 which_alternative = -1;
2849 /* If we are about to reject this, but we are not to test strictly,
2850 try a very loose test. Only return failure if it fails also. */
2851 if (strict == 0)
2852 return constrain_operands (-1, alternatives);
2853 else
2854 return 0;
2857 /* Return true iff OPERAND (assumed to be a REG rtx)
2858 is a hard reg in class CLASS when its regno is offset by OFFSET
2859 and changed to mode MODE.
2860 If REG occupies multiple hard regs, all of them must be in CLASS. */
2862 bool
2863 reg_fits_class_p (const_rtx operand, reg_class_t cl, int offset,
2864 machine_mode mode)
2866 unsigned int regno = REGNO (operand);
2868 if (cl == NO_REGS)
2869 return false;
2871 /* Regno must not be a pseudo register. Offset may be negative. */
2872 return (HARD_REGISTER_NUM_P (regno)
2873 && HARD_REGISTER_NUM_P (regno + offset)
2874 && in_hard_reg_set_p (reg_class_contents[(int) cl], mode,
2875 regno + offset));
2878 /* Split single instruction. Helper function for split_all_insns and
2879 split_all_insns_noflow. Return last insn in the sequence if successful,
2880 or NULL if unsuccessful. */
2882 static rtx_insn *
2883 split_insn (rtx_insn *insn)
2885 /* Split insns here to get max fine-grain parallelism. */
2886 rtx_insn *first = PREV_INSN (insn);
2887 rtx_insn *last = try_split (PATTERN (insn), insn, 1);
2888 rtx insn_set, last_set, note;
2890 if (last == insn)
2891 return NULL;
2893 /* If the original instruction was a single set that was known to be
2894 equivalent to a constant, see if we can say the same about the last
2895 instruction in the split sequence. The two instructions must set
2896 the same destination. */
2897 insn_set = single_set (insn);
2898 if (insn_set)
2900 last_set = single_set (last);
2901 if (last_set && rtx_equal_p (SET_DEST (last_set), SET_DEST (insn_set)))
2903 note = find_reg_equal_equiv_note (insn);
2904 if (note && CONSTANT_P (XEXP (note, 0)))
2905 set_unique_reg_note (last, REG_EQUAL, XEXP (note, 0));
2906 else if (CONSTANT_P (SET_SRC (insn_set)))
2907 set_unique_reg_note (last, REG_EQUAL,
2908 copy_rtx (SET_SRC (insn_set)));
2912 /* try_split returns the NOTE that INSN became. */
2913 SET_INSN_DELETED (insn);
2915 /* ??? Coddle to md files that generate subregs in post-reload
2916 splitters instead of computing the proper hard register. */
2917 if (reload_completed && first != last)
2919 first = NEXT_INSN (first);
2920 for (;;)
2922 if (INSN_P (first))
2923 cleanup_subreg_operands (first);
2924 if (first == last)
2925 break;
2926 first = NEXT_INSN (first);
2930 return last;
2933 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2935 void
2936 split_all_insns (void)
2938 bool changed;
2939 basic_block bb;
2941 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
2942 bitmap_clear (blocks);
2943 changed = false;
2945 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2947 rtx_insn *insn, *next;
2948 bool finish = false;
2950 rtl_profile_for_bb (bb);
2951 for (insn = BB_HEAD (bb); !finish ; insn = next)
2953 /* Can't use `next_real_insn' because that might go across
2954 CODE_LABELS and short-out basic blocks. */
2955 next = NEXT_INSN (insn);
2956 finish = (insn == BB_END (bb));
2957 if (INSN_P (insn))
2959 rtx set = single_set (insn);
2961 /* Don't split no-op move insns. These should silently
2962 disappear later in final. Splitting such insns would
2963 break the code that handles LIBCALL blocks. */
2964 if (set && set_noop_p (set))
2966 /* Nops get in the way while scheduling, so delete them
2967 now if register allocation has already been done. It
2968 is too risky to try to do this before register
2969 allocation, and there are unlikely to be very many
2970 nops then anyways. */
2971 if (reload_completed)
2972 delete_insn_and_edges (insn);
2974 else
2976 if (split_insn (insn))
2978 bitmap_set_bit (blocks, bb->index);
2979 changed = true;
2986 default_rtl_profile ();
2987 if (changed)
2988 find_many_sub_basic_blocks (blocks);
2990 checking_verify_flow_info ();
2993 /* Same as split_all_insns, but do not expect CFG to be available.
2994 Used by machine dependent reorg passes. */
2996 unsigned int
2997 split_all_insns_noflow (void)
2999 rtx_insn *next, *insn;
3001 for (insn = get_insns (); insn; insn = next)
3003 next = NEXT_INSN (insn);
3004 if (INSN_P (insn))
3006 /* Don't split no-op move insns. These should silently
3007 disappear later in final. Splitting such insns would
3008 break the code that handles LIBCALL blocks. */
3009 rtx set = single_set (insn);
3010 if (set && set_noop_p (set))
3012 /* Nops get in the way while scheduling, so delete them
3013 now if register allocation has already been done. It
3014 is too risky to try to do this before register
3015 allocation, and there are unlikely to be very many
3016 nops then anyways.
3018 ??? Should we use delete_insn when the CFG isn't valid? */
3019 if (reload_completed)
3020 delete_insn_and_edges (insn);
3022 else
3023 split_insn (insn);
3026 return 0;
3029 struct peep2_insn_data
3031 rtx_insn *insn;
3032 regset live_before;
3035 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
3036 static int peep2_current;
3038 static bool peep2_do_rebuild_jump_labels;
3039 static bool peep2_do_cleanup_cfg;
3041 /* The number of instructions available to match a peep2. */
3042 int peep2_current_count;
3044 /* A marker indicating the last insn of the block. The live_before regset
3045 for this element is correct, indicating DF_LIVE_OUT for the block. */
3046 #define PEEP2_EOB invalid_insn_rtx
3048 /* Wrap N to fit into the peep2_insn_data buffer. */
3050 static int
3051 peep2_buf_position (int n)
3053 if (n >= MAX_INSNS_PER_PEEP2 + 1)
3054 n -= MAX_INSNS_PER_PEEP2 + 1;
3055 return n;
3058 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
3059 does not exist. Used by the recognizer to find the next insn to match
3060 in a multi-insn pattern. */
3062 rtx_insn *
3063 peep2_next_insn (int n)
3065 gcc_assert (n <= peep2_current_count);
3067 n = peep2_buf_position (peep2_current + n);
3069 return peep2_insn_data[n].insn;
3072 /* Return true if REGNO is dead before the Nth non-note insn
3073 after `current'. */
3076 peep2_regno_dead_p (int ofs, int regno)
3078 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3080 ofs = peep2_buf_position (peep2_current + ofs);
3082 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3084 return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
3087 /* Similarly for a REG. */
3090 peep2_reg_dead_p (int ofs, rtx reg)
3092 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3094 ofs = peep2_buf_position (peep2_current + ofs);
3096 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3098 unsigned int end_regno = END_REGNO (reg);
3099 for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
3100 if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno))
3101 return 0;
3102 return 1;
3105 /* Regno offset to be used in the register search. */
3106 static int search_ofs;
3108 /* Try to find a hard register of mode MODE, matching the register class in
3109 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
3110 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
3111 in which case the only condition is that the register must be available
3112 before CURRENT_INSN.
3113 Registers that already have bits set in REG_SET will not be considered.
3115 If an appropriate register is available, it will be returned and the
3116 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3117 returned. */
3120 peep2_find_free_register (int from, int to, const char *class_str,
3121 machine_mode mode, HARD_REG_SET *reg_set)
3123 enum reg_class cl;
3124 HARD_REG_SET live;
3125 df_ref def;
3126 int i;
3128 gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
3129 gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
3131 from = peep2_buf_position (peep2_current + from);
3132 to = peep2_buf_position (peep2_current + to);
3134 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3135 REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
3137 while (from != to)
3139 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3141 /* Don't use registers set or clobbered by the insn. */
3142 FOR_EACH_INSN_DEF (def, peep2_insn_data[from].insn)
3143 SET_HARD_REG_BIT (live, DF_REF_REGNO (def));
3145 from = peep2_buf_position (from + 1);
3148 cl = reg_class_for_constraint (lookup_constraint (class_str));
3150 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3152 int raw_regno, regno, success, j;
3154 /* Distribute the free registers as much as possible. */
3155 raw_regno = search_ofs + i;
3156 if (raw_regno >= FIRST_PSEUDO_REGISTER)
3157 raw_regno -= FIRST_PSEUDO_REGISTER;
3158 #ifdef REG_ALLOC_ORDER
3159 regno = reg_alloc_order[raw_regno];
3160 #else
3161 regno = raw_regno;
3162 #endif
3164 /* Can it support the mode we need? */
3165 if (! HARD_REGNO_MODE_OK (regno, mode))
3166 continue;
3168 success = 1;
3169 for (j = 0; success && j < hard_regno_nregs[regno][mode]; j++)
3171 /* Don't allocate fixed registers. */
3172 if (fixed_regs[regno + j])
3174 success = 0;
3175 break;
3177 /* Don't allocate global registers. */
3178 if (global_regs[regno + j])
3180 success = 0;
3181 break;
3183 /* Make sure the register is of the right class. */
3184 if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno + j))
3186 success = 0;
3187 break;
3189 /* And that we don't create an extra save/restore. */
3190 if (! call_used_regs[regno + j] && ! df_regs_ever_live_p (regno + j))
3192 success = 0;
3193 break;
3196 if (! targetm.hard_regno_scratch_ok (regno + j))
3198 success = 0;
3199 break;
3202 /* And we don't clobber traceback for noreturn functions. */
3203 if ((regno + j == FRAME_POINTER_REGNUM
3204 || regno + j == HARD_FRAME_POINTER_REGNUM)
3205 && (! reload_completed || frame_pointer_needed))
3207 success = 0;
3208 break;
3211 if (TEST_HARD_REG_BIT (*reg_set, regno + j)
3212 || TEST_HARD_REG_BIT (live, regno + j))
3214 success = 0;
3215 break;
3219 if (success)
3221 add_to_hard_reg_set (reg_set, mode, regno);
3223 /* Start the next search with the next register. */
3224 if (++raw_regno >= FIRST_PSEUDO_REGISTER)
3225 raw_regno = 0;
3226 search_ofs = raw_regno;
3228 return gen_rtx_REG (mode, regno);
3232 search_ofs = 0;
3233 return NULL_RTX;
3236 /* Forget all currently tracked instructions, only remember current
3237 LIVE regset. */
3239 static void
3240 peep2_reinit_state (regset live)
3242 int i;
3244 /* Indicate that all slots except the last holds invalid data. */
3245 for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3246 peep2_insn_data[i].insn = NULL;
3247 peep2_current_count = 0;
3249 /* Indicate that the last slot contains live_after data. */
3250 peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3251 peep2_current = MAX_INSNS_PER_PEEP2;
3253 COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3256 /* While scanning basic block BB, we found a match of length MATCH_LEN,
3257 starting at INSN. Perform the replacement, removing the old insns and
3258 replacing them with ATTEMPT. Returns the last insn emitted, or NULL
3259 if the replacement is rejected. */
3261 static rtx_insn *
3262 peep2_attempt (basic_block bb, rtx_insn *insn, int match_len, rtx_insn *attempt)
3264 int i;
3265 rtx_insn *last, *before_try, *x;
3266 rtx eh_note, as_note;
3267 rtx_insn *old_insn;
3268 rtx_insn *new_insn;
3269 bool was_call = false;
3271 /* If we are splitting an RTX_FRAME_RELATED_P insn, do not allow it to
3272 match more than one insn, or to be split into more than one insn. */
3273 old_insn = peep2_insn_data[peep2_current].insn;
3274 if (RTX_FRAME_RELATED_P (old_insn))
3276 bool any_note = false;
3277 rtx note;
3279 if (match_len != 0)
3280 return NULL;
3282 /* Look for one "active" insn. I.e. ignore any "clobber" insns that
3283 may be in the stream for the purpose of register allocation. */
3284 if (active_insn_p (attempt))
3285 new_insn = attempt;
3286 else
3287 new_insn = next_active_insn (attempt);
3288 if (next_active_insn (new_insn))
3289 return NULL;
3291 /* We have a 1-1 replacement. Copy over any frame-related info. */
3292 RTX_FRAME_RELATED_P (new_insn) = 1;
3294 /* Allow the backend to fill in a note during the split. */
3295 for (note = REG_NOTES (new_insn); note ; note = XEXP (note, 1))
3296 switch (REG_NOTE_KIND (note))
3298 case REG_FRAME_RELATED_EXPR:
3299 case REG_CFA_DEF_CFA:
3300 case REG_CFA_ADJUST_CFA:
3301 case REG_CFA_OFFSET:
3302 case REG_CFA_REGISTER:
3303 case REG_CFA_EXPRESSION:
3304 case REG_CFA_RESTORE:
3305 case REG_CFA_SET_VDRAP:
3306 any_note = true;
3307 break;
3308 default:
3309 break;
3312 /* If the backend didn't supply a note, copy one over. */
3313 if (!any_note)
3314 for (note = REG_NOTES (old_insn); note ; note = XEXP (note, 1))
3315 switch (REG_NOTE_KIND (note))
3317 case REG_FRAME_RELATED_EXPR:
3318 case REG_CFA_DEF_CFA:
3319 case REG_CFA_ADJUST_CFA:
3320 case REG_CFA_OFFSET:
3321 case REG_CFA_REGISTER:
3322 case REG_CFA_EXPRESSION:
3323 case REG_CFA_RESTORE:
3324 case REG_CFA_SET_VDRAP:
3325 add_reg_note (new_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3326 any_note = true;
3327 break;
3328 default:
3329 break;
3332 /* If there still isn't a note, make sure the unwind info sees the
3333 same expression as before the split. */
3334 if (!any_note)
3336 rtx old_set, new_set;
3338 /* The old insn had better have been simple, or annotated. */
3339 old_set = single_set (old_insn);
3340 gcc_assert (old_set != NULL);
3342 new_set = single_set (new_insn);
3343 if (!new_set || !rtx_equal_p (new_set, old_set))
3344 add_reg_note (new_insn, REG_FRAME_RELATED_EXPR, old_set);
3347 /* Copy prologue/epilogue status. This is required in order to keep
3348 proper placement of EPILOGUE_BEG and the DW_CFA_remember_state. */
3349 maybe_copy_prologue_epilogue_insn (old_insn, new_insn);
3352 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3353 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3354 cfg-related call notes. */
3355 for (i = 0; i <= match_len; ++i)
3357 int j;
3358 rtx note;
3360 j = peep2_buf_position (peep2_current + i);
3361 old_insn = peep2_insn_data[j].insn;
3362 if (!CALL_P (old_insn))
3363 continue;
3364 was_call = true;
3366 new_insn = attempt;
3367 while (new_insn != NULL_RTX)
3369 if (CALL_P (new_insn))
3370 break;
3371 new_insn = NEXT_INSN (new_insn);
3374 gcc_assert (new_insn != NULL_RTX);
3376 CALL_INSN_FUNCTION_USAGE (new_insn)
3377 = CALL_INSN_FUNCTION_USAGE (old_insn);
3378 SIBLING_CALL_P (new_insn) = SIBLING_CALL_P (old_insn);
3380 for (note = REG_NOTES (old_insn);
3381 note;
3382 note = XEXP (note, 1))
3383 switch (REG_NOTE_KIND (note))
3385 case REG_NORETURN:
3386 case REG_SETJMP:
3387 case REG_TM:
3388 add_reg_note (new_insn, REG_NOTE_KIND (note),
3389 XEXP (note, 0));
3390 break;
3391 default:
3392 /* Discard all other reg notes. */
3393 break;
3396 /* Croak if there is another call in the sequence. */
3397 while (++i <= match_len)
3399 j = peep2_buf_position (peep2_current + i);
3400 old_insn = peep2_insn_data[j].insn;
3401 gcc_assert (!CALL_P (old_insn));
3403 break;
3406 /* If we matched any instruction that had a REG_ARGS_SIZE, then
3407 move those notes over to the new sequence. */
3408 as_note = NULL;
3409 for (i = match_len; i >= 0; --i)
3411 int j = peep2_buf_position (peep2_current + i);
3412 old_insn = peep2_insn_data[j].insn;
3414 as_note = find_reg_note (old_insn, REG_ARGS_SIZE, NULL);
3415 if (as_note)
3416 break;
3419 i = peep2_buf_position (peep2_current + match_len);
3420 eh_note = find_reg_note (peep2_insn_data[i].insn, REG_EH_REGION, NULL_RTX);
3422 /* Replace the old sequence with the new. */
3423 rtx_insn *peepinsn = peep2_insn_data[i].insn;
3424 last = emit_insn_after_setloc (attempt,
3425 peep2_insn_data[i].insn,
3426 INSN_LOCATION (peepinsn));
3427 before_try = PREV_INSN (insn);
3428 delete_insn_chain (insn, peep2_insn_data[i].insn, false);
3430 /* Re-insert the EH_REGION notes. */
3431 if (eh_note || (was_call && nonlocal_goto_handler_labels))
3433 edge eh_edge;
3434 edge_iterator ei;
3436 FOR_EACH_EDGE (eh_edge, ei, bb->succs)
3437 if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3438 break;
3440 if (eh_note)
3441 copy_reg_eh_region_note_backward (eh_note, last, before_try);
3443 if (eh_edge)
3444 for (x = last; x != before_try; x = PREV_INSN (x))
3445 if (x != BB_END (bb)
3446 && (can_throw_internal (x)
3447 || can_nonlocal_goto (x)))
3449 edge nfte, nehe;
3450 int flags;
3452 nfte = split_block (bb, x);
3453 flags = (eh_edge->flags
3454 & (EDGE_EH | EDGE_ABNORMAL));
3455 if (CALL_P (x))
3456 flags |= EDGE_ABNORMAL_CALL;
3457 nehe = make_edge (nfte->src, eh_edge->dest,
3458 flags);
3460 nehe->probability = eh_edge->probability;
3461 nfte->probability
3462 = REG_BR_PROB_BASE - nehe->probability;
3464 peep2_do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3465 bb = nfte->src;
3466 eh_edge = nehe;
3469 /* Converting possibly trapping insn to non-trapping is
3470 possible. Zap dummy outgoing edges. */
3471 peep2_do_cleanup_cfg |= purge_dead_edges (bb);
3474 /* Re-insert the ARGS_SIZE notes. */
3475 if (as_note)
3476 fixup_args_size_notes (before_try, last, INTVAL (XEXP (as_note, 0)));
3478 /* If we generated a jump instruction, it won't have
3479 JUMP_LABEL set. Recompute after we're done. */
3480 for (x = last; x != before_try; x = PREV_INSN (x))
3481 if (JUMP_P (x))
3483 peep2_do_rebuild_jump_labels = true;
3484 break;
3487 return last;
3490 /* After performing a replacement in basic block BB, fix up the life
3491 information in our buffer. LAST is the last of the insns that we
3492 emitted as a replacement. PREV is the insn before the start of
3493 the replacement. MATCH_LEN is the number of instructions that were
3494 matched, and which now need to be replaced in the buffer. */
3496 static void
3497 peep2_update_life (basic_block bb, int match_len, rtx_insn *last,
3498 rtx_insn *prev)
3500 int i = peep2_buf_position (peep2_current + match_len + 1);
3501 rtx_insn *x;
3502 regset_head live;
3504 INIT_REG_SET (&live);
3505 COPY_REG_SET (&live, peep2_insn_data[i].live_before);
3507 gcc_assert (peep2_current_count >= match_len + 1);
3508 peep2_current_count -= match_len + 1;
3510 x = last;
3513 if (INSN_P (x))
3515 df_insn_rescan (x);
3516 if (peep2_current_count < MAX_INSNS_PER_PEEP2)
3518 peep2_current_count++;
3519 if (--i < 0)
3520 i = MAX_INSNS_PER_PEEP2;
3521 peep2_insn_data[i].insn = x;
3522 df_simulate_one_insn_backwards (bb, x, &live);
3523 COPY_REG_SET (peep2_insn_data[i].live_before, &live);
3526 x = PREV_INSN (x);
3528 while (x != prev);
3529 CLEAR_REG_SET (&live);
3531 peep2_current = i;
3534 /* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
3535 Return true if we added it, false otherwise. The caller will try to match
3536 peepholes against the buffer if we return false; otherwise it will try to
3537 add more instructions to the buffer. */
3539 static bool
3540 peep2_fill_buffer (basic_block bb, rtx_insn *insn, regset live)
3542 int pos;
3544 /* Once we have filled the maximum number of insns the buffer can hold,
3545 allow the caller to match the insns against peepholes. We wait until
3546 the buffer is full in case the target has similar peepholes of different
3547 length; we always want to match the longest if possible. */
3548 if (peep2_current_count == MAX_INSNS_PER_PEEP2)
3549 return false;
3551 /* If an insn has RTX_FRAME_RELATED_P set, do not allow it to be matched with
3552 any other pattern, lest it change the semantics of the frame info. */
3553 if (RTX_FRAME_RELATED_P (insn))
3555 /* Let the buffer drain first. */
3556 if (peep2_current_count > 0)
3557 return false;
3558 /* Now the insn will be the only thing in the buffer. */
3561 pos = peep2_buf_position (peep2_current + peep2_current_count);
3562 peep2_insn_data[pos].insn = insn;
3563 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3564 peep2_current_count++;
3566 df_simulate_one_insn_forwards (bb, insn, live);
3567 return true;
3570 /* Perform the peephole2 optimization pass. */
3572 static void
3573 peephole2_optimize (void)
3575 rtx_insn *insn;
3576 bitmap live;
3577 int i;
3578 basic_block bb;
3580 peep2_do_cleanup_cfg = false;
3581 peep2_do_rebuild_jump_labels = false;
3583 df_set_flags (DF_LR_RUN_DCE);
3584 df_note_add_problem ();
3585 df_analyze ();
3587 /* Initialize the regsets we're going to use. */
3588 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3589 peep2_insn_data[i].live_before = BITMAP_ALLOC (&reg_obstack);
3590 search_ofs = 0;
3591 live = BITMAP_ALLOC (&reg_obstack);
3593 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3595 bool past_end = false;
3596 int pos;
3598 rtl_profile_for_bb (bb);
3600 /* Start up propagation. */
3601 bitmap_copy (live, DF_LR_IN (bb));
3602 df_simulate_initialize_forwards (bb, live);
3603 peep2_reinit_state (live);
3605 insn = BB_HEAD (bb);
3606 for (;;)
3608 rtx_insn *attempt, *head;
3609 int match_len;
3611 if (!past_end && !NONDEBUG_INSN_P (insn))
3613 next_insn:
3614 insn = NEXT_INSN (insn);
3615 if (insn == NEXT_INSN (BB_END (bb)))
3616 past_end = true;
3617 continue;
3619 if (!past_end && peep2_fill_buffer (bb, insn, live))
3620 goto next_insn;
3622 /* If we did not fill an empty buffer, it signals the end of the
3623 block. */
3624 if (peep2_current_count == 0)
3625 break;
3627 /* The buffer filled to the current maximum, so try to match. */
3629 pos = peep2_buf_position (peep2_current + peep2_current_count);
3630 peep2_insn_data[pos].insn = PEEP2_EOB;
3631 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3633 /* Match the peephole. */
3634 head = peep2_insn_data[peep2_current].insn;
3635 attempt = peephole2_insns (PATTERN (head), head, &match_len);
3636 if (attempt != NULL)
3638 rtx_insn *last = peep2_attempt (bb, head, match_len, attempt);
3639 if (last)
3641 peep2_update_life (bb, match_len, last, PREV_INSN (attempt));
3642 continue;
3646 /* No match: advance the buffer by one insn. */
3647 peep2_current = peep2_buf_position (peep2_current + 1);
3648 peep2_current_count--;
3652 default_rtl_profile ();
3653 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3654 BITMAP_FREE (peep2_insn_data[i].live_before);
3655 BITMAP_FREE (live);
3656 if (peep2_do_rebuild_jump_labels)
3657 rebuild_jump_labels (get_insns ());
3658 if (peep2_do_cleanup_cfg)
3659 cleanup_cfg (CLEANUP_CFG_CHANGED);
3662 /* Common predicates for use with define_bypass. */
3664 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3665 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3666 must be either a single_set or a PARALLEL with SETs inside. */
3669 store_data_bypass_p (rtx_insn *out_insn, rtx_insn *in_insn)
3671 rtx out_set, in_set;
3672 rtx out_pat, in_pat;
3673 rtx out_exp, in_exp;
3674 int i, j;
3676 in_set = single_set (in_insn);
3677 if (in_set)
3679 if (!MEM_P (SET_DEST (in_set)))
3680 return false;
3682 out_set = single_set (out_insn);
3683 if (out_set)
3685 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set)))
3686 return false;
3688 else
3690 out_pat = PATTERN (out_insn);
3692 if (GET_CODE (out_pat) != PARALLEL)
3693 return false;
3695 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3697 out_exp = XVECEXP (out_pat, 0, i);
3699 if (GET_CODE (out_exp) == CLOBBER)
3700 continue;
3702 gcc_assert (GET_CODE (out_exp) == SET);
3704 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_set)))
3705 return false;
3709 else
3711 in_pat = PATTERN (in_insn);
3712 gcc_assert (GET_CODE (in_pat) == PARALLEL);
3714 for (i = 0; i < XVECLEN (in_pat, 0); i++)
3716 in_exp = XVECEXP (in_pat, 0, i);
3718 if (GET_CODE (in_exp) == CLOBBER)
3719 continue;
3721 gcc_assert (GET_CODE (in_exp) == SET);
3723 if (!MEM_P (SET_DEST (in_exp)))
3724 return false;
3726 out_set = single_set (out_insn);
3727 if (out_set)
3729 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_exp)))
3730 return false;
3732 else
3734 out_pat = PATTERN (out_insn);
3735 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3737 for (j = 0; j < XVECLEN (out_pat, 0); j++)
3739 out_exp = XVECEXP (out_pat, 0, j);
3741 if (GET_CODE (out_exp) == CLOBBER)
3742 continue;
3744 gcc_assert (GET_CODE (out_exp) == SET);
3746 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_exp)))
3747 return false;
3753 return true;
3756 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3757 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3758 or multiple set; IN_INSN should be single_set for truth, but for convenience
3759 of insn categorization may be any JUMP or CALL insn. */
3762 if_test_bypass_p (rtx_insn *out_insn, rtx_insn *in_insn)
3764 rtx out_set, in_set;
3766 in_set = single_set (in_insn);
3767 if (! in_set)
3769 gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
3770 return false;
3773 if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3774 return false;
3775 in_set = SET_SRC (in_set);
3777 out_set = single_set (out_insn);
3778 if (out_set)
3780 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3781 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3782 return false;
3784 else
3786 rtx out_pat;
3787 int i;
3789 out_pat = PATTERN (out_insn);
3790 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3792 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3794 rtx exp = XVECEXP (out_pat, 0, i);
3796 if (GET_CODE (exp) == CLOBBER)
3797 continue;
3799 gcc_assert (GET_CODE (exp) == SET);
3801 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3802 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3803 return false;
3807 return true;
3810 static unsigned int
3811 rest_of_handle_peephole2 (void)
3813 if (HAVE_peephole2)
3814 peephole2_optimize ();
3816 return 0;
3819 namespace {
3821 const pass_data pass_data_peephole2 =
3823 RTL_PASS, /* type */
3824 "peephole2", /* name */
3825 OPTGROUP_NONE, /* optinfo_flags */
3826 TV_PEEPHOLE2, /* tv_id */
3827 0, /* properties_required */
3828 0, /* properties_provided */
3829 0, /* properties_destroyed */
3830 0, /* todo_flags_start */
3831 TODO_df_finish, /* todo_flags_finish */
3834 class pass_peephole2 : public rtl_opt_pass
3836 public:
3837 pass_peephole2 (gcc::context *ctxt)
3838 : rtl_opt_pass (pass_data_peephole2, ctxt)
3841 /* opt_pass methods: */
3842 /* The epiphany backend creates a second instance of this pass, so we need
3843 a clone method. */
3844 opt_pass * clone () { return new pass_peephole2 (m_ctxt); }
3845 virtual bool gate (function *) { return (optimize > 0 && flag_peephole2); }
3846 virtual unsigned int execute (function *)
3848 return rest_of_handle_peephole2 ();
3851 }; // class pass_peephole2
3853 } // anon namespace
3855 rtl_opt_pass *
3856 make_pass_peephole2 (gcc::context *ctxt)
3858 return new pass_peephole2 (ctxt);
3861 namespace {
3863 const pass_data pass_data_split_all_insns =
3865 RTL_PASS, /* type */
3866 "split1", /* name */
3867 OPTGROUP_NONE, /* optinfo_flags */
3868 TV_NONE, /* tv_id */
3869 0, /* properties_required */
3870 0, /* properties_provided */
3871 0, /* properties_destroyed */
3872 0, /* todo_flags_start */
3873 0, /* todo_flags_finish */
3876 class pass_split_all_insns : public rtl_opt_pass
3878 public:
3879 pass_split_all_insns (gcc::context *ctxt)
3880 : rtl_opt_pass (pass_data_split_all_insns, ctxt)
3883 /* opt_pass methods: */
3884 /* The epiphany backend creates a second instance of this pass, so
3885 we need a clone method. */
3886 opt_pass * clone () { return new pass_split_all_insns (m_ctxt); }
3887 virtual unsigned int execute (function *)
3889 split_all_insns ();
3890 return 0;
3893 }; // class pass_split_all_insns
3895 } // anon namespace
3897 rtl_opt_pass *
3898 make_pass_split_all_insns (gcc::context *ctxt)
3900 return new pass_split_all_insns (ctxt);
3903 static unsigned int
3904 rest_of_handle_split_after_reload (void)
3906 /* If optimizing, then go ahead and split insns now. */
3907 #ifndef STACK_REGS
3908 if (optimize > 0)
3909 #endif
3910 split_all_insns ();
3911 return 0;
3914 namespace {
3916 const pass_data pass_data_split_after_reload =
3918 RTL_PASS, /* type */
3919 "split2", /* name */
3920 OPTGROUP_NONE, /* optinfo_flags */
3921 TV_NONE, /* tv_id */
3922 0, /* properties_required */
3923 0, /* properties_provided */
3924 0, /* properties_destroyed */
3925 0, /* todo_flags_start */
3926 0, /* todo_flags_finish */
3929 class pass_split_after_reload : public rtl_opt_pass
3931 public:
3932 pass_split_after_reload (gcc::context *ctxt)
3933 : rtl_opt_pass (pass_data_split_after_reload, ctxt)
3936 /* opt_pass methods: */
3937 virtual unsigned int execute (function *)
3939 return rest_of_handle_split_after_reload ();
3942 }; // class pass_split_after_reload
3944 } // anon namespace
3946 rtl_opt_pass *
3947 make_pass_split_after_reload (gcc::context *ctxt)
3949 return new pass_split_after_reload (ctxt);
3952 namespace {
3954 const pass_data pass_data_split_before_regstack =
3956 RTL_PASS, /* type */
3957 "split3", /* name */
3958 OPTGROUP_NONE, /* optinfo_flags */
3959 TV_NONE, /* tv_id */
3960 0, /* properties_required */
3961 0, /* properties_provided */
3962 0, /* properties_destroyed */
3963 0, /* todo_flags_start */
3964 0, /* todo_flags_finish */
3967 class pass_split_before_regstack : public rtl_opt_pass
3969 public:
3970 pass_split_before_regstack (gcc::context *ctxt)
3971 : rtl_opt_pass (pass_data_split_before_regstack, ctxt)
3974 /* opt_pass methods: */
3975 virtual bool gate (function *);
3976 virtual unsigned int execute (function *)
3978 split_all_insns ();
3979 return 0;
3982 }; // class pass_split_before_regstack
3984 bool
3985 pass_split_before_regstack::gate (function *)
3987 #if HAVE_ATTR_length && defined (STACK_REGS)
3988 /* If flow2 creates new instructions which need splitting
3989 and scheduling after reload is not done, they might not be
3990 split until final which doesn't allow splitting
3991 if HAVE_ATTR_length. */
3992 # ifdef INSN_SCHEDULING
3993 return (optimize && !flag_schedule_insns_after_reload);
3994 # else
3995 return (optimize);
3996 # endif
3997 #else
3998 return 0;
3999 #endif
4002 } // anon namespace
4004 rtl_opt_pass *
4005 make_pass_split_before_regstack (gcc::context *ctxt)
4007 return new pass_split_before_regstack (ctxt);
4010 static unsigned int
4011 rest_of_handle_split_before_sched2 (void)
4013 #ifdef INSN_SCHEDULING
4014 split_all_insns ();
4015 #endif
4016 return 0;
4019 namespace {
4021 const pass_data pass_data_split_before_sched2 =
4023 RTL_PASS, /* type */
4024 "split4", /* name */
4025 OPTGROUP_NONE, /* optinfo_flags */
4026 TV_NONE, /* tv_id */
4027 0, /* properties_required */
4028 0, /* properties_provided */
4029 0, /* properties_destroyed */
4030 0, /* todo_flags_start */
4031 0, /* todo_flags_finish */
4034 class pass_split_before_sched2 : public rtl_opt_pass
4036 public:
4037 pass_split_before_sched2 (gcc::context *ctxt)
4038 : rtl_opt_pass (pass_data_split_before_sched2, ctxt)
4041 /* opt_pass methods: */
4042 virtual bool gate (function *)
4044 #ifdef INSN_SCHEDULING
4045 return optimize > 0 && flag_schedule_insns_after_reload;
4046 #else
4047 return false;
4048 #endif
4051 virtual unsigned int execute (function *)
4053 return rest_of_handle_split_before_sched2 ();
4056 }; // class pass_split_before_sched2
4058 } // anon namespace
4060 rtl_opt_pass *
4061 make_pass_split_before_sched2 (gcc::context *ctxt)
4063 return new pass_split_before_sched2 (ctxt);
4066 namespace {
4068 const pass_data pass_data_split_for_shorten_branches =
4070 RTL_PASS, /* type */
4071 "split5", /* name */
4072 OPTGROUP_NONE, /* optinfo_flags */
4073 TV_NONE, /* tv_id */
4074 0, /* properties_required */
4075 0, /* properties_provided */
4076 0, /* properties_destroyed */
4077 0, /* todo_flags_start */
4078 0, /* todo_flags_finish */
4081 class pass_split_for_shorten_branches : public rtl_opt_pass
4083 public:
4084 pass_split_for_shorten_branches (gcc::context *ctxt)
4085 : rtl_opt_pass (pass_data_split_for_shorten_branches, ctxt)
4088 /* opt_pass methods: */
4089 virtual bool gate (function *)
4091 /* The placement of the splitting that we do for shorten_branches
4092 depends on whether regstack is used by the target or not. */
4093 #if HAVE_ATTR_length && !defined (STACK_REGS)
4094 return true;
4095 #else
4096 return false;
4097 #endif
4100 virtual unsigned int execute (function *)
4102 return split_all_insns_noflow ();
4105 }; // class pass_split_for_shorten_branches
4107 } // anon namespace
4109 rtl_opt_pass *
4110 make_pass_split_for_shorten_branches (gcc::context *ctxt)
4112 return new pass_split_for_shorten_branches (ctxt);
4115 /* (Re)initialize the target information after a change in target. */
4117 void
4118 recog_init ()
4120 /* The information is zero-initialized, so we don't need to do anything
4121 first time round. */
4122 if (!this_target_recog->x_initialized)
4124 this_target_recog->x_initialized = true;
4125 return;
4127 memset (this_target_recog->x_bool_attr_masks, 0,
4128 sizeof (this_target_recog->x_bool_attr_masks));
4129 for (unsigned int i = 0; i < NUM_INSN_CODES; ++i)
4130 if (this_target_recog->x_op_alt[i])
4132 free (this_target_recog->x_op_alt[i]);
4133 this_target_recog->x_op_alt[i] = 0;