Tighten up params of create_basic_block_structure
[official-gcc.git] / gcc / final.c
blob1c35c41193c037b370b9bd0d0205c42351558605
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is the final pass of the compiler.
21 It looks at the rtl code for a function and outputs assembler code.
23 Call `final_start_function' to output the assembler code for function entry,
24 `final' to output assembler code for some RTL code,
25 `final_end_function' to output assembler code for function exit.
26 If a function is compiled in several pieces, each piece is
27 output separately with `final'.
29 Some optimizations are also done at this level.
30 Move instructions that were made unnecessary by good register allocation
31 are detected and omitted from the output. (Though most of these
32 are removed by the last jump pass.)
34 Instructions to set the condition codes are omitted when it can be
35 seen that the condition codes already had the desired values.
37 In some cases it is sufficient if the inherited condition codes
38 have related values, but this may require the following insn
39 (the one that tests the condition codes) to be modified.
41 The code for the function prologue and epilogue are generated
42 directly in assembler by the target functions function_prologue and
43 function_epilogue. Those instructions never exist as rtl. */
45 #include "config.h"
46 #include "system.h"
47 #include "coretypes.h"
48 #include "tm.h"
50 #include "tree.h"
51 #include "varasm.h"
52 #include "hard-reg-set.h"
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "regs.h"
56 #include "insn-config.h"
57 #include "insn-attr.h"
58 #include "recog.h"
59 #include "conditions.h"
60 #include "flags.h"
61 #include "output.h"
62 #include "except.h"
63 #include "function.h"
64 #include "rtl-error.h"
65 #include "toplev.h" /* exact_log2, floor_log2 */
66 #include "reload.h"
67 #include "intl.h"
68 #include "basic-block.h"
69 #include "target.h"
70 #include "targhooks.h"
71 #include "debug.h"
72 #include "expr.h"
73 #include "tree-pass.h"
74 #include "cgraph.h"
75 #include "tree-ssa.h"
76 #include "coverage.h"
77 #include "df.h"
78 #include "ggc.h"
79 #include "cfgloop.h"
80 #include "params.h"
81 #include "tree-pretty-print.h" /* for dump_function_header */
82 #include "asan.h"
83 #include "wide-int-print.h"
85 #ifdef XCOFF_DEBUGGING_INFO
86 #include "xcoffout.h" /* Needed for external data
87 declarations for e.g. AIX 4.x. */
88 #endif
90 #include "dwarf2out.h"
92 #ifdef DBX_DEBUGGING_INFO
93 #include "dbxout.h"
94 #endif
96 #ifdef SDB_DEBUGGING_INFO
97 #include "sdbout.h"
98 #endif
100 /* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT.
101 So define a null default for it to save conditionalization later. */
102 #ifndef CC_STATUS_INIT
103 #define CC_STATUS_INIT
104 #endif
106 /* Is the given character a logical line separator for the assembler? */
107 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
108 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
109 #endif
111 #ifndef JUMP_TABLES_IN_TEXT_SECTION
112 #define JUMP_TABLES_IN_TEXT_SECTION 0
113 #endif
115 /* Bitflags used by final_scan_insn. */
116 #define SEEN_NOTE 1
117 #define SEEN_EMITTED 2
119 /* Last insn processed by final_scan_insn. */
120 static rtx_insn *debug_insn;
121 rtx_insn *current_output_insn;
123 /* Line number of last NOTE. */
124 static int last_linenum;
126 /* Last discriminator written to assembly. */
127 static int last_discriminator;
129 /* Discriminator of current block. */
130 static int discriminator;
132 /* Highest line number in current block. */
133 static int high_block_linenum;
135 /* Likewise for function. */
136 static int high_function_linenum;
138 /* Filename of last NOTE. */
139 static const char *last_filename;
141 /* Override filename and line number. */
142 static const char *override_filename;
143 static int override_linenum;
145 /* Whether to force emission of a line note before the next insn. */
146 static bool force_source_line = false;
148 extern const int length_unit_log; /* This is defined in insn-attrtab.c. */
150 /* Nonzero while outputting an `asm' with operands.
151 This means that inconsistencies are the user's fault, so don't die.
152 The precise value is the insn being output, to pass to error_for_asm. */
153 rtx this_is_asm_operands;
155 /* Number of operands of this insn, for an `asm' with operands. */
156 static unsigned int insn_noperands;
158 /* Compare optimization flag. */
160 static rtx last_ignored_compare = 0;
162 /* Assign a unique number to each insn that is output.
163 This can be used to generate unique local labels. */
165 static int insn_counter = 0;
167 #ifdef HAVE_cc0
168 /* This variable contains machine-dependent flags (defined in tm.h)
169 set and examined by output routines
170 that describe how to interpret the condition codes properly. */
172 CC_STATUS cc_status;
174 /* During output of an insn, this contains a copy of cc_status
175 from before the insn. */
177 CC_STATUS cc_prev_status;
178 #endif
180 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
182 static int block_depth;
184 /* Nonzero if have enabled APP processing of our assembler output. */
186 static int app_on;
188 /* If we are outputting an insn sequence, this contains the sequence rtx.
189 Zero otherwise. */
191 rtx final_sequence;
193 #ifdef ASSEMBLER_DIALECT
195 /* Number of the assembler dialect to use, starting at 0. */
196 static int dialect_number;
197 #endif
199 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
200 rtx current_insn_predicate;
202 /* True if printing into -fdump-final-insns= dump. */
203 bool final_insns_dump_p;
205 /* True if profile_function should be called, but hasn't been called yet. */
206 static bool need_profile_function;
208 static int asm_insn_count (rtx);
209 static void profile_function (FILE *);
210 static void profile_after_prologue (FILE *);
211 static bool notice_source_line (rtx_insn *, bool *);
212 static rtx walk_alter_subreg (rtx *, bool *);
213 static void output_asm_name (void);
214 static void output_alternate_entry_point (FILE *, rtx_insn *);
215 static tree get_mem_expr_from_op (rtx, int *);
216 static void output_asm_operand_names (rtx *, int *, int);
217 #ifdef LEAF_REGISTERS
218 static void leaf_renumber_regs (rtx_insn *);
219 #endif
220 #ifdef HAVE_cc0
221 static int alter_cond (rtx);
222 #endif
223 #ifndef ADDR_VEC_ALIGN
224 static int final_addr_vec_align (rtx);
225 #endif
226 static int align_fuzz (rtx, rtx, int, unsigned);
227 static void collect_fn_hard_reg_usage (void);
228 static tree get_call_fndecl (rtx_insn *);
230 /* Initialize data in final at the beginning of a compilation. */
232 void
233 init_final (const char *filename ATTRIBUTE_UNUSED)
235 app_on = 0;
236 final_sequence = 0;
238 #ifdef ASSEMBLER_DIALECT
239 dialect_number = ASSEMBLER_DIALECT;
240 #endif
243 /* Default target function prologue and epilogue assembler output.
245 If not overridden for epilogue code, then the function body itself
246 contains return instructions wherever needed. */
247 void
248 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
249 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
253 void
254 default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED,
255 tree decl ATTRIBUTE_UNUSED,
256 bool new_is_cold ATTRIBUTE_UNUSED)
260 /* Default target hook that outputs nothing to a stream. */
261 void
262 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
266 /* Enable APP processing of subsequent output.
267 Used before the output from an `asm' statement. */
269 void
270 app_enable (void)
272 if (! app_on)
274 fputs (ASM_APP_ON, asm_out_file);
275 app_on = 1;
279 /* Disable APP processing of subsequent output.
280 Called from varasm.c before most kinds of output. */
282 void
283 app_disable (void)
285 if (app_on)
287 fputs (ASM_APP_OFF, asm_out_file);
288 app_on = 0;
292 /* Return the number of slots filled in the current
293 delayed branch sequence (we don't count the insn needing the
294 delay slot). Zero if not in a delayed branch sequence. */
296 #ifdef DELAY_SLOTS
298 dbr_sequence_length (void)
300 if (final_sequence != 0)
301 return XVECLEN (final_sequence, 0) - 1;
302 else
303 return 0;
305 #endif
307 /* The next two pages contain routines used to compute the length of an insn
308 and to shorten branches. */
310 /* Arrays for insn lengths, and addresses. The latter is referenced by
311 `insn_current_length'. */
313 static int *insn_lengths;
315 vec<int> insn_addresses_;
317 /* Max uid for which the above arrays are valid. */
318 static int insn_lengths_max_uid;
320 /* Address of insn being processed. Used by `insn_current_length'. */
321 int insn_current_address;
323 /* Address of insn being processed in previous iteration. */
324 int insn_last_address;
326 /* known invariant alignment of insn being processed. */
327 int insn_current_align;
329 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
330 gives the next following alignment insn that increases the known
331 alignment, or NULL_RTX if there is no such insn.
332 For any alignment obtained this way, we can again index uid_align with
333 its uid to obtain the next following align that in turn increases the
334 alignment, till we reach NULL_RTX; the sequence obtained this way
335 for each insn we'll call the alignment chain of this insn in the following
336 comments. */
338 struct label_alignment
340 short alignment;
341 short max_skip;
344 static rtx *uid_align;
345 static int *uid_shuid;
346 static struct label_alignment *label_align;
348 /* Indicate that branch shortening hasn't yet been done. */
350 void
351 init_insn_lengths (void)
353 if (uid_shuid)
355 free (uid_shuid);
356 uid_shuid = 0;
358 if (insn_lengths)
360 free (insn_lengths);
361 insn_lengths = 0;
362 insn_lengths_max_uid = 0;
364 if (HAVE_ATTR_length)
365 INSN_ADDRESSES_FREE ();
366 if (uid_align)
368 free (uid_align);
369 uid_align = 0;
373 /* Obtain the current length of an insn. If branch shortening has been done,
374 get its actual length. Otherwise, use FALLBACK_FN to calculate the
375 length. */
376 static int
377 get_attr_length_1 (rtx uncast_insn, int (*fallback_fn) (rtx))
379 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
380 rtx body;
381 int i;
382 int length = 0;
384 if (!HAVE_ATTR_length)
385 return 0;
387 if (insn_lengths_max_uid > INSN_UID (insn))
388 return insn_lengths[INSN_UID (insn)];
389 else
390 switch (GET_CODE (insn))
392 case NOTE:
393 case BARRIER:
394 case CODE_LABEL:
395 case DEBUG_INSN:
396 return 0;
398 case CALL_INSN:
399 case JUMP_INSN:
400 length = fallback_fn (insn);
401 break;
403 case INSN:
404 body = PATTERN (insn);
405 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
406 return 0;
408 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
409 length = asm_insn_count (body) * fallback_fn (insn);
410 else if (GET_CODE (body) == SEQUENCE)
411 for (i = 0; i < XVECLEN (body, 0); i++)
412 length += get_attr_length_1 (XVECEXP (body, 0, i), fallback_fn);
413 else
414 length = fallback_fn (insn);
415 break;
417 default:
418 break;
421 #ifdef ADJUST_INSN_LENGTH
422 ADJUST_INSN_LENGTH (insn, length);
423 #endif
424 return length;
427 /* Obtain the current length of an insn. If branch shortening has been done,
428 get its actual length. Otherwise, get its maximum length. */
430 get_attr_length (rtx insn)
432 return get_attr_length_1 (insn, insn_default_length);
435 /* Obtain the current length of an insn. If branch shortening has been done,
436 get its actual length. Otherwise, get its minimum length. */
438 get_attr_min_length (rtx insn)
440 return get_attr_length_1 (insn, insn_min_length);
443 /* Code to handle alignment inside shorten_branches. */
445 /* Here is an explanation how the algorithm in align_fuzz can give
446 proper results:
448 Call a sequence of instructions beginning with alignment point X
449 and continuing until the next alignment point `block X'. When `X'
450 is used in an expression, it means the alignment value of the
451 alignment point.
453 Call the distance between the start of the first insn of block X, and
454 the end of the last insn of block X `IX', for the `inner size of X'.
455 This is clearly the sum of the instruction lengths.
457 Likewise with the next alignment-delimited block following X, which we
458 shall call block Y.
460 Call the distance between the start of the first insn of block X, and
461 the start of the first insn of block Y `OX', for the `outer size of X'.
463 The estimated padding is then OX - IX.
465 OX can be safely estimated as
467 if (X >= Y)
468 OX = round_up(IX, Y)
469 else
470 OX = round_up(IX, X) + Y - X
472 Clearly est(IX) >= real(IX), because that only depends on the
473 instruction lengths, and those being overestimated is a given.
475 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
476 we needn't worry about that when thinking about OX.
478 When X >= Y, the alignment provided by Y adds no uncertainty factor
479 for branch ranges starting before X, so we can just round what we have.
480 But when X < Y, we don't know anything about the, so to speak,
481 `middle bits', so we have to assume the worst when aligning up from an
482 address mod X to one mod Y, which is Y - X. */
484 #ifndef LABEL_ALIGN
485 #define LABEL_ALIGN(LABEL) align_labels_log
486 #endif
488 #ifndef LOOP_ALIGN
489 #define LOOP_ALIGN(LABEL) align_loops_log
490 #endif
492 #ifndef LABEL_ALIGN_AFTER_BARRIER
493 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
494 #endif
496 #ifndef JUMP_ALIGN
497 #define JUMP_ALIGN(LABEL) align_jumps_log
498 #endif
501 default_label_align_after_barrier_max_skip (rtx insn ATTRIBUTE_UNUSED)
503 return 0;
507 default_loop_align_max_skip (rtx insn ATTRIBUTE_UNUSED)
509 return align_loops_max_skip;
513 default_label_align_max_skip (rtx insn ATTRIBUTE_UNUSED)
515 return align_labels_max_skip;
519 default_jump_align_max_skip (rtx insn ATTRIBUTE_UNUSED)
521 return align_jumps_max_skip;
524 #ifndef ADDR_VEC_ALIGN
525 static int
526 final_addr_vec_align (rtx addr_vec)
528 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
530 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
531 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
532 return exact_log2 (align);
536 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
537 #endif
539 #ifndef INSN_LENGTH_ALIGNMENT
540 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
541 #endif
543 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
545 static int min_labelno, max_labelno;
547 #define LABEL_TO_ALIGNMENT(LABEL) \
548 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
550 #define LABEL_TO_MAX_SKIP(LABEL) \
551 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
553 /* For the benefit of port specific code do this also as a function. */
556 label_to_alignment (rtx label)
558 if (CODE_LABEL_NUMBER (label) <= max_labelno)
559 return LABEL_TO_ALIGNMENT (label);
560 return 0;
564 label_to_max_skip (rtx label)
566 if (CODE_LABEL_NUMBER (label) <= max_labelno)
567 return LABEL_TO_MAX_SKIP (label);
568 return 0;
571 /* The differences in addresses
572 between a branch and its target might grow or shrink depending on
573 the alignment the start insn of the range (the branch for a forward
574 branch or the label for a backward branch) starts out on; if these
575 differences are used naively, they can even oscillate infinitely.
576 We therefore want to compute a 'worst case' address difference that
577 is independent of the alignment the start insn of the range end
578 up on, and that is at least as large as the actual difference.
579 The function align_fuzz calculates the amount we have to add to the
580 naively computed difference, by traversing the part of the alignment
581 chain of the start insn of the range that is in front of the end insn
582 of the range, and considering for each alignment the maximum amount
583 that it might contribute to a size increase.
585 For casesi tables, we also want to know worst case minimum amounts of
586 address difference, in case a machine description wants to introduce
587 some common offset that is added to all offsets in a table.
588 For this purpose, align_fuzz with a growth argument of 0 computes the
589 appropriate adjustment. */
591 /* Compute the maximum delta by which the difference of the addresses of
592 START and END might grow / shrink due to a different address for start
593 which changes the size of alignment insns between START and END.
594 KNOWN_ALIGN_LOG is the alignment known for START.
595 GROWTH should be ~0 if the objective is to compute potential code size
596 increase, and 0 if the objective is to compute potential shrink.
597 The return value is undefined for any other value of GROWTH. */
599 static int
600 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
602 int uid = INSN_UID (start);
603 rtx align_label;
604 int known_align = 1 << known_align_log;
605 int end_shuid = INSN_SHUID (end);
606 int fuzz = 0;
608 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
610 int align_addr, new_align;
612 uid = INSN_UID (align_label);
613 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
614 if (uid_shuid[uid] > end_shuid)
615 break;
616 known_align_log = LABEL_TO_ALIGNMENT (align_label);
617 new_align = 1 << known_align_log;
618 if (new_align < known_align)
619 continue;
620 fuzz += (-align_addr ^ growth) & (new_align - known_align);
621 known_align = new_align;
623 return fuzz;
626 /* Compute a worst-case reference address of a branch so that it
627 can be safely used in the presence of aligned labels. Since the
628 size of the branch itself is unknown, the size of the branch is
629 not included in the range. I.e. for a forward branch, the reference
630 address is the end address of the branch as known from the previous
631 branch shortening pass, minus a value to account for possible size
632 increase due to alignment. For a backward branch, it is the start
633 address of the branch as known from the current pass, plus a value
634 to account for possible size increase due to alignment.
635 NB.: Therefore, the maximum offset allowed for backward branches needs
636 to exclude the branch size. */
639 insn_current_reference_address (rtx branch)
641 rtx dest, seq;
642 int seq_uid;
644 if (! INSN_ADDRESSES_SET_P ())
645 return 0;
647 seq = NEXT_INSN (PREV_INSN (branch));
648 seq_uid = INSN_UID (seq);
649 if (!JUMP_P (branch))
650 /* This can happen for example on the PA; the objective is to know the
651 offset to address something in front of the start of the function.
652 Thus, we can treat it like a backward branch.
653 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
654 any alignment we'd encounter, so we skip the call to align_fuzz. */
655 return insn_current_address;
656 dest = JUMP_LABEL (branch);
658 /* BRANCH has no proper alignment chain set, so use SEQ.
659 BRANCH also has no INSN_SHUID. */
660 if (INSN_SHUID (seq) < INSN_SHUID (dest))
662 /* Forward branch. */
663 return (insn_last_address + insn_lengths[seq_uid]
664 - align_fuzz (seq, dest, length_unit_log, ~0));
666 else
668 /* Backward branch. */
669 return (insn_current_address
670 + align_fuzz (dest, seq, length_unit_log, ~0));
674 /* Compute branch alignments based on frequency information in the
675 CFG. */
677 unsigned int
678 compute_alignments (void)
680 int log, max_skip, max_log;
681 basic_block bb;
682 int freq_max = 0;
683 int freq_threshold = 0;
685 if (label_align)
687 free (label_align);
688 label_align = 0;
691 max_labelno = max_label_num ();
692 min_labelno = get_first_label_num ();
693 label_align = XCNEWVEC (struct label_alignment, max_labelno - min_labelno + 1);
695 /* If not optimizing or optimizing for size, don't assign any alignments. */
696 if (! optimize || optimize_function_for_size_p (cfun))
697 return 0;
699 if (dump_file)
701 dump_reg_info (dump_file);
702 dump_flow_info (dump_file, TDF_DETAILS);
703 flow_loops_dump (dump_file, NULL, 1);
705 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
706 FOR_EACH_BB_FN (bb, cfun)
707 if (bb->frequency > freq_max)
708 freq_max = bb->frequency;
709 freq_threshold = freq_max / PARAM_VALUE (PARAM_ALIGN_THRESHOLD);
711 if (dump_file)
712 fprintf (dump_file, "freq_max: %i\n",freq_max);
713 FOR_EACH_BB_FN (bb, cfun)
715 rtx_insn *label = BB_HEAD (bb);
716 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
717 edge e;
718 edge_iterator ei;
720 if (!LABEL_P (label)
721 || optimize_bb_for_size_p (bb))
723 if (dump_file)
724 fprintf (dump_file,
725 "BB %4i freq %4i loop %2i loop_depth %2i skipped.\n",
726 bb->index, bb->frequency, bb->loop_father->num,
727 bb_loop_depth (bb));
728 continue;
730 max_log = LABEL_ALIGN (label);
731 max_skip = targetm.asm_out.label_align_max_skip (label);
733 FOR_EACH_EDGE (e, ei, bb->preds)
735 if (e->flags & EDGE_FALLTHRU)
736 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
737 else
738 branch_frequency += EDGE_FREQUENCY (e);
740 if (dump_file)
742 fprintf (dump_file, "BB %4i freq %4i loop %2i loop_depth"
743 " %2i fall %4i branch %4i",
744 bb->index, bb->frequency, bb->loop_father->num,
745 bb_loop_depth (bb),
746 fallthru_frequency, branch_frequency);
747 if (!bb->loop_father->inner && bb->loop_father->num)
748 fprintf (dump_file, " inner_loop");
749 if (bb->loop_father->header == bb)
750 fprintf (dump_file, " loop_header");
751 fprintf (dump_file, "\n");
754 /* There are two purposes to align block with no fallthru incoming edge:
755 1) to avoid fetch stalls when branch destination is near cache boundary
756 2) to improve cache efficiency in case the previous block is not executed
757 (so it does not need to be in the cache).
759 We to catch first case, we align frequently executed blocks.
760 To catch the second, we align blocks that are executed more frequently
761 than the predecessor and the predecessor is likely to not be executed
762 when function is called. */
764 if (!has_fallthru
765 && (branch_frequency > freq_threshold
766 || (bb->frequency > bb->prev_bb->frequency * 10
767 && (bb->prev_bb->frequency
768 <= ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency / 2))))
770 log = JUMP_ALIGN (label);
771 if (dump_file)
772 fprintf (dump_file, " jump alignment added.\n");
773 if (max_log < log)
775 max_log = log;
776 max_skip = targetm.asm_out.jump_align_max_skip (label);
779 /* In case block is frequent and reached mostly by non-fallthru edge,
780 align it. It is most likely a first block of loop. */
781 if (has_fallthru
782 && !(single_succ_p (bb)
783 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun))
784 && optimize_bb_for_speed_p (bb)
785 && branch_frequency + fallthru_frequency > freq_threshold
786 && (branch_frequency
787 > fallthru_frequency * PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS)))
789 log = LOOP_ALIGN (label);
790 if (dump_file)
791 fprintf (dump_file, " internal loop alignment added.\n");
792 if (max_log < log)
794 max_log = log;
795 max_skip = targetm.asm_out.loop_align_max_skip (label);
798 LABEL_TO_ALIGNMENT (label) = max_log;
799 LABEL_TO_MAX_SKIP (label) = max_skip;
802 loop_optimizer_finalize ();
803 free_dominance_info (CDI_DOMINATORS);
804 return 0;
807 /* Grow the LABEL_ALIGN array after new labels are created. */
809 static void
810 grow_label_align (void)
812 int old = max_labelno;
813 int n_labels;
814 int n_old_labels;
816 max_labelno = max_label_num ();
818 n_labels = max_labelno - min_labelno + 1;
819 n_old_labels = old - min_labelno + 1;
821 label_align = XRESIZEVEC (struct label_alignment, label_align, n_labels);
823 /* Range of labels grows monotonically in the function. Failing here
824 means that the initialization of array got lost. */
825 gcc_assert (n_old_labels <= n_labels);
827 memset (label_align + n_old_labels, 0,
828 (n_labels - n_old_labels) * sizeof (struct label_alignment));
831 /* Update the already computed alignment information. LABEL_PAIRS is a vector
832 made up of pairs of labels for which the alignment information of the first
833 element will be copied from that of the second element. */
835 void
836 update_alignments (vec<rtx> &label_pairs)
838 unsigned int i = 0;
839 rtx iter, label = NULL_RTX;
841 if (max_labelno != max_label_num ())
842 grow_label_align ();
844 FOR_EACH_VEC_ELT (label_pairs, i, iter)
845 if (i & 1)
847 LABEL_TO_ALIGNMENT (label) = LABEL_TO_ALIGNMENT (iter);
848 LABEL_TO_MAX_SKIP (label) = LABEL_TO_MAX_SKIP (iter);
850 else
851 label = iter;
854 namespace {
856 const pass_data pass_data_compute_alignments =
858 RTL_PASS, /* type */
859 "alignments", /* name */
860 OPTGROUP_NONE, /* optinfo_flags */
861 TV_NONE, /* tv_id */
862 0, /* properties_required */
863 0, /* properties_provided */
864 0, /* properties_destroyed */
865 0, /* todo_flags_start */
866 0, /* todo_flags_finish */
869 class pass_compute_alignments : public rtl_opt_pass
871 public:
872 pass_compute_alignments (gcc::context *ctxt)
873 : rtl_opt_pass (pass_data_compute_alignments, ctxt)
876 /* opt_pass methods: */
877 virtual unsigned int execute (function *) { return compute_alignments (); }
879 }; // class pass_compute_alignments
881 } // anon namespace
883 rtl_opt_pass *
884 make_pass_compute_alignments (gcc::context *ctxt)
886 return new pass_compute_alignments (ctxt);
890 /* Make a pass over all insns and compute their actual lengths by shortening
891 any branches of variable length if possible. */
893 /* shorten_branches might be called multiple times: for example, the SH
894 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
895 In order to do this, it needs proper length information, which it obtains
896 by calling shorten_branches. This cannot be collapsed with
897 shorten_branches itself into a single pass unless we also want to integrate
898 reorg.c, since the branch splitting exposes new instructions with delay
899 slots. */
901 void
902 shorten_branches (rtx_insn *first)
904 rtx_insn *insn;
905 int max_uid;
906 int i;
907 int max_log;
908 int max_skip;
909 #define MAX_CODE_ALIGN 16
910 rtx_insn *seq;
911 int something_changed = 1;
912 char *varying_length;
913 rtx body;
914 int uid;
915 rtx align_tab[MAX_CODE_ALIGN];
917 /* Compute maximum UID and allocate label_align / uid_shuid. */
918 max_uid = get_max_uid ();
920 /* Free uid_shuid before reallocating it. */
921 free (uid_shuid);
923 uid_shuid = XNEWVEC (int, max_uid);
925 if (max_labelno != max_label_num ())
926 grow_label_align ();
928 /* Initialize label_align and set up uid_shuid to be strictly
929 monotonically rising with insn order. */
930 /* We use max_log here to keep track of the maximum alignment we want to
931 impose on the next CODE_LABEL (or the current one if we are processing
932 the CODE_LABEL itself). */
934 max_log = 0;
935 max_skip = 0;
937 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
939 int log;
941 INSN_SHUID (insn) = i++;
942 if (INSN_P (insn))
943 continue;
945 if (LABEL_P (insn))
947 rtx_insn *next;
948 bool next_is_jumptable;
950 /* Merge in alignments computed by compute_alignments. */
951 log = LABEL_TO_ALIGNMENT (insn);
952 if (max_log < log)
954 max_log = log;
955 max_skip = LABEL_TO_MAX_SKIP (insn);
958 next = next_nonnote_insn (insn);
959 next_is_jumptable = next && JUMP_TABLE_DATA_P (next);
960 if (!next_is_jumptable)
962 log = LABEL_ALIGN (insn);
963 if (max_log < log)
965 max_log = log;
966 max_skip = targetm.asm_out.label_align_max_skip (insn);
969 /* ADDR_VECs only take room if read-only data goes into the text
970 section. */
971 if ((JUMP_TABLES_IN_TEXT_SECTION
972 || readonly_data_section == text_section)
973 && next_is_jumptable)
975 log = ADDR_VEC_ALIGN (next);
976 if (max_log < log)
978 max_log = log;
979 max_skip = targetm.asm_out.label_align_max_skip (insn);
982 LABEL_TO_ALIGNMENT (insn) = max_log;
983 LABEL_TO_MAX_SKIP (insn) = max_skip;
984 max_log = 0;
985 max_skip = 0;
987 else if (BARRIER_P (insn))
989 rtx_insn *label;
991 for (label = insn; label && ! INSN_P (label);
992 label = NEXT_INSN (label))
993 if (LABEL_P (label))
995 log = LABEL_ALIGN_AFTER_BARRIER (insn);
996 if (max_log < log)
998 max_log = log;
999 max_skip = targetm.asm_out.label_align_after_barrier_max_skip (label);
1001 break;
1005 if (!HAVE_ATTR_length)
1006 return;
1008 /* Allocate the rest of the arrays. */
1009 insn_lengths = XNEWVEC (int, max_uid);
1010 insn_lengths_max_uid = max_uid;
1011 /* Syntax errors can lead to labels being outside of the main insn stream.
1012 Initialize insn_addresses, so that we get reproducible results. */
1013 INSN_ADDRESSES_ALLOC (max_uid);
1015 varying_length = XCNEWVEC (char, max_uid);
1017 /* Initialize uid_align. We scan instructions
1018 from end to start, and keep in align_tab[n] the last seen insn
1019 that does an alignment of at least n+1, i.e. the successor
1020 in the alignment chain for an insn that does / has a known
1021 alignment of n. */
1022 uid_align = XCNEWVEC (rtx, max_uid);
1024 for (i = MAX_CODE_ALIGN; --i >= 0;)
1025 align_tab[i] = NULL_RTX;
1026 seq = get_last_insn ();
1027 for (; seq; seq = PREV_INSN (seq))
1029 int uid = INSN_UID (seq);
1030 int log;
1031 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
1032 uid_align[uid] = align_tab[0];
1033 if (log)
1035 /* Found an alignment label. */
1036 uid_align[uid] = align_tab[log];
1037 for (i = log - 1; i >= 0; i--)
1038 align_tab[i] = seq;
1042 /* When optimizing, we start assuming minimum length, and keep increasing
1043 lengths as we find the need for this, till nothing changes.
1044 When not optimizing, we start assuming maximum lengths, and
1045 do a single pass to update the lengths. */
1046 bool increasing = optimize != 0;
1048 #ifdef CASE_VECTOR_SHORTEN_MODE
1049 if (optimize)
1051 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1052 label fields. */
1054 int min_shuid = INSN_SHUID (get_insns ()) - 1;
1055 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
1056 int rel;
1058 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
1060 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
1061 int len, i, min, max, insn_shuid;
1062 int min_align;
1063 addr_diff_vec_flags flags;
1065 if (! JUMP_TABLE_DATA_P (insn)
1066 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1067 continue;
1068 pat = PATTERN (insn);
1069 len = XVECLEN (pat, 1);
1070 gcc_assert (len > 0);
1071 min_align = MAX_CODE_ALIGN;
1072 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1074 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1075 int shuid = INSN_SHUID (lab);
1076 if (shuid < min)
1078 min = shuid;
1079 min_lab = lab;
1081 if (shuid > max)
1083 max = shuid;
1084 max_lab = lab;
1086 if (min_align > LABEL_TO_ALIGNMENT (lab))
1087 min_align = LABEL_TO_ALIGNMENT (lab);
1089 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
1090 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
1091 insn_shuid = INSN_SHUID (insn);
1092 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1093 memset (&flags, 0, sizeof (flags));
1094 flags.min_align = min_align;
1095 flags.base_after_vec = rel > insn_shuid;
1096 flags.min_after_vec = min > insn_shuid;
1097 flags.max_after_vec = max > insn_shuid;
1098 flags.min_after_base = min > rel;
1099 flags.max_after_base = max > rel;
1100 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1102 if (increasing)
1103 PUT_MODE (pat, CASE_VECTOR_SHORTEN_MODE (0, 0, pat));
1106 #endif /* CASE_VECTOR_SHORTEN_MODE */
1108 /* Compute initial lengths, addresses, and varying flags for each insn. */
1109 int (*length_fun) (rtx) = increasing ? insn_min_length : insn_default_length;
1111 for (insn_current_address = 0, insn = first;
1112 insn != 0;
1113 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1115 uid = INSN_UID (insn);
1117 insn_lengths[uid] = 0;
1119 if (LABEL_P (insn))
1121 int log = LABEL_TO_ALIGNMENT (insn);
1122 if (log)
1124 int align = 1 << log;
1125 int new_address = (insn_current_address + align - 1) & -align;
1126 insn_lengths[uid] = new_address - insn_current_address;
1130 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1132 if (NOTE_P (insn) || BARRIER_P (insn)
1133 || LABEL_P (insn) || DEBUG_INSN_P (insn))
1134 continue;
1135 if (INSN_DELETED_P (insn))
1136 continue;
1138 body = PATTERN (insn);
1139 if (JUMP_TABLE_DATA_P (insn))
1141 /* This only takes room if read-only data goes into the text
1142 section. */
1143 if (JUMP_TABLES_IN_TEXT_SECTION
1144 || readonly_data_section == text_section)
1145 insn_lengths[uid] = (XVECLEN (body,
1146 GET_CODE (body) == ADDR_DIFF_VEC)
1147 * GET_MODE_SIZE (GET_MODE (body)));
1148 /* Alignment is handled by ADDR_VEC_ALIGN. */
1150 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1151 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1152 else if (GET_CODE (body) == SEQUENCE)
1154 int i;
1155 int const_delay_slots;
1156 #ifdef DELAY_SLOTS
1157 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1158 #else
1159 const_delay_slots = 0;
1160 #endif
1161 int (*inner_length_fun) (rtx)
1162 = const_delay_slots ? length_fun : insn_default_length;
1163 /* Inside a delay slot sequence, we do not do any branch shortening
1164 if the shortening could change the number of delay slots
1165 of the branch. */
1166 for (i = 0; i < XVECLEN (body, 0); i++)
1168 rtx inner_insn = XVECEXP (body, 0, i);
1169 int inner_uid = INSN_UID (inner_insn);
1170 int inner_length;
1172 if (GET_CODE (body) == ASM_INPUT
1173 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1174 inner_length = (asm_insn_count (PATTERN (inner_insn))
1175 * insn_default_length (inner_insn));
1176 else
1177 inner_length = inner_length_fun (inner_insn);
1179 insn_lengths[inner_uid] = inner_length;
1180 if (const_delay_slots)
1182 if ((varying_length[inner_uid]
1183 = insn_variable_length_p (inner_insn)) != 0)
1184 varying_length[uid] = 1;
1185 INSN_ADDRESSES (inner_uid) = (insn_current_address
1186 + insn_lengths[uid]);
1188 else
1189 varying_length[inner_uid] = 0;
1190 insn_lengths[uid] += inner_length;
1193 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1195 insn_lengths[uid] = length_fun (insn);
1196 varying_length[uid] = insn_variable_length_p (insn);
1199 /* If needed, do any adjustment. */
1200 #ifdef ADJUST_INSN_LENGTH
1201 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1202 if (insn_lengths[uid] < 0)
1203 fatal_insn ("negative insn length", insn);
1204 #endif
1207 /* Now loop over all the insns finding varying length insns. For each,
1208 get the current insn length. If it has changed, reflect the change.
1209 When nothing changes for a full pass, we are done. */
1211 while (something_changed)
1213 something_changed = 0;
1214 insn_current_align = MAX_CODE_ALIGN - 1;
1215 for (insn_current_address = 0, insn = first;
1216 insn != 0;
1217 insn = NEXT_INSN (insn))
1219 int new_length;
1220 #ifdef ADJUST_INSN_LENGTH
1221 int tmp_length;
1222 #endif
1223 int length_align;
1225 uid = INSN_UID (insn);
1227 if (LABEL_P (insn))
1229 int log = LABEL_TO_ALIGNMENT (insn);
1231 #ifdef CASE_VECTOR_SHORTEN_MODE
1232 /* If the mode of a following jump table was changed, we
1233 may need to update the alignment of this label. */
1234 rtx_insn *next;
1235 bool next_is_jumptable;
1237 next = next_nonnote_insn (insn);
1238 next_is_jumptable = next && JUMP_TABLE_DATA_P (next);
1239 if ((JUMP_TABLES_IN_TEXT_SECTION
1240 || readonly_data_section == text_section)
1241 && next_is_jumptable)
1243 int newlog = ADDR_VEC_ALIGN (next);
1244 if (newlog != log)
1246 log = newlog;
1247 LABEL_TO_ALIGNMENT (insn) = log;
1248 something_changed = 1;
1251 #endif
1253 if (log > insn_current_align)
1255 int align = 1 << log;
1256 int new_address= (insn_current_address + align - 1) & -align;
1257 insn_lengths[uid] = new_address - insn_current_address;
1258 insn_current_align = log;
1259 insn_current_address = new_address;
1261 else
1262 insn_lengths[uid] = 0;
1263 INSN_ADDRESSES (uid) = insn_current_address;
1264 continue;
1267 length_align = INSN_LENGTH_ALIGNMENT (insn);
1268 if (length_align < insn_current_align)
1269 insn_current_align = length_align;
1271 insn_last_address = INSN_ADDRESSES (uid);
1272 INSN_ADDRESSES (uid) = insn_current_address;
1274 #ifdef CASE_VECTOR_SHORTEN_MODE
1275 if (optimize
1276 && JUMP_TABLE_DATA_P (insn)
1277 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1279 rtx body = PATTERN (insn);
1280 int old_length = insn_lengths[uid];
1281 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1282 rtx min_lab = XEXP (XEXP (body, 2), 0);
1283 rtx max_lab = XEXP (XEXP (body, 3), 0);
1284 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1285 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1286 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1287 rtx prev;
1288 int rel_align = 0;
1289 addr_diff_vec_flags flags;
1290 enum machine_mode vec_mode;
1292 /* Avoid automatic aggregate initialization. */
1293 flags = ADDR_DIFF_VEC_FLAGS (body);
1295 /* Try to find a known alignment for rel_lab. */
1296 for (prev = rel_lab;
1297 prev
1298 && ! insn_lengths[INSN_UID (prev)]
1299 && ! (varying_length[INSN_UID (prev)] & 1);
1300 prev = PREV_INSN (prev))
1301 if (varying_length[INSN_UID (prev)] & 2)
1303 rel_align = LABEL_TO_ALIGNMENT (prev);
1304 break;
1307 /* See the comment on addr_diff_vec_flags in rtl.h for the
1308 meaning of the flags values. base: REL_LAB vec: INSN */
1309 /* Anything after INSN has still addresses from the last
1310 pass; adjust these so that they reflect our current
1311 estimate for this pass. */
1312 if (flags.base_after_vec)
1313 rel_addr += insn_current_address - insn_last_address;
1314 if (flags.min_after_vec)
1315 min_addr += insn_current_address - insn_last_address;
1316 if (flags.max_after_vec)
1317 max_addr += insn_current_address - insn_last_address;
1318 /* We want to know the worst case, i.e. lowest possible value
1319 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1320 its offset is positive, and we have to be wary of code shrink;
1321 otherwise, it is negative, and we have to be vary of code
1322 size increase. */
1323 if (flags.min_after_base)
1325 /* If INSN is between REL_LAB and MIN_LAB, the size
1326 changes we are about to make can change the alignment
1327 within the observed offset, therefore we have to break
1328 it up into two parts that are independent. */
1329 if (! flags.base_after_vec && flags.min_after_vec)
1331 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1332 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1334 else
1335 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1337 else
1339 if (flags.base_after_vec && ! flags.min_after_vec)
1341 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1342 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1344 else
1345 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1347 /* Likewise, determine the highest lowest possible value
1348 for the offset of MAX_LAB. */
1349 if (flags.max_after_base)
1351 if (! flags.base_after_vec && flags.max_after_vec)
1353 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1354 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1356 else
1357 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1359 else
1361 if (flags.base_after_vec && ! flags.max_after_vec)
1363 max_addr += align_fuzz (max_lab, insn, 0, 0);
1364 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1366 else
1367 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1369 vec_mode = CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1370 max_addr - rel_addr, body);
1371 if (!increasing
1372 || (GET_MODE_SIZE (vec_mode)
1373 >= GET_MODE_SIZE (GET_MODE (body))))
1374 PUT_MODE (body, vec_mode);
1375 if (JUMP_TABLES_IN_TEXT_SECTION
1376 || readonly_data_section == text_section)
1378 insn_lengths[uid]
1379 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1380 insn_current_address += insn_lengths[uid];
1381 if (insn_lengths[uid] != old_length)
1382 something_changed = 1;
1385 continue;
1387 #endif /* CASE_VECTOR_SHORTEN_MODE */
1389 if (! (varying_length[uid]))
1391 if (NONJUMP_INSN_P (insn)
1392 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1394 int i;
1396 body = PATTERN (insn);
1397 for (i = 0; i < XVECLEN (body, 0); i++)
1399 rtx inner_insn = XVECEXP (body, 0, i);
1400 int inner_uid = INSN_UID (inner_insn);
1402 INSN_ADDRESSES (inner_uid) = insn_current_address;
1404 insn_current_address += insn_lengths[inner_uid];
1407 else
1408 insn_current_address += insn_lengths[uid];
1410 continue;
1413 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1415 int i;
1417 body = PATTERN (insn);
1418 new_length = 0;
1419 for (i = 0; i < XVECLEN (body, 0); i++)
1421 rtx inner_insn = XVECEXP (body, 0, i);
1422 int inner_uid = INSN_UID (inner_insn);
1423 int inner_length;
1425 INSN_ADDRESSES (inner_uid) = insn_current_address;
1427 /* insn_current_length returns 0 for insns with a
1428 non-varying length. */
1429 if (! varying_length[inner_uid])
1430 inner_length = insn_lengths[inner_uid];
1431 else
1432 inner_length = insn_current_length (inner_insn);
1434 if (inner_length != insn_lengths[inner_uid])
1436 if (!increasing || inner_length > insn_lengths[inner_uid])
1438 insn_lengths[inner_uid] = inner_length;
1439 something_changed = 1;
1441 else
1442 inner_length = insn_lengths[inner_uid];
1444 insn_current_address += inner_length;
1445 new_length += inner_length;
1448 else
1450 new_length = insn_current_length (insn);
1451 insn_current_address += new_length;
1454 #ifdef ADJUST_INSN_LENGTH
1455 /* If needed, do any adjustment. */
1456 tmp_length = new_length;
1457 ADJUST_INSN_LENGTH (insn, new_length);
1458 insn_current_address += (new_length - tmp_length);
1459 #endif
1461 if (new_length != insn_lengths[uid]
1462 && (!increasing || new_length > insn_lengths[uid]))
1464 insn_lengths[uid] = new_length;
1465 something_changed = 1;
1467 else
1468 insn_current_address += insn_lengths[uid] - new_length;
1470 /* For a non-optimizing compile, do only a single pass. */
1471 if (!increasing)
1472 break;
1475 free (varying_length);
1478 /* Given the body of an INSN known to be generated by an ASM statement, return
1479 the number of machine instructions likely to be generated for this insn.
1480 This is used to compute its length. */
1482 static int
1483 asm_insn_count (rtx body)
1485 const char *templ;
1487 if (GET_CODE (body) == ASM_INPUT)
1488 templ = XSTR (body, 0);
1489 else
1490 templ = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
1492 return asm_str_count (templ);
1495 /* Return the number of machine instructions likely to be generated for the
1496 inline-asm template. */
1498 asm_str_count (const char *templ)
1500 int count = 1;
1502 if (!*templ)
1503 return 0;
1505 for (; *templ; templ++)
1506 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ, templ)
1507 || *templ == '\n')
1508 count++;
1510 return count;
1513 /* ??? This is probably the wrong place for these. */
1514 /* Structure recording the mapping from source file and directory
1515 names at compile time to those to be embedded in debug
1516 information. */
1517 typedef struct debug_prefix_map
1519 const char *old_prefix;
1520 const char *new_prefix;
1521 size_t old_len;
1522 size_t new_len;
1523 struct debug_prefix_map *next;
1524 } debug_prefix_map;
1526 /* Linked list of such structures. */
1527 static debug_prefix_map *debug_prefix_maps;
1530 /* Record a debug file prefix mapping. ARG is the argument to
1531 -fdebug-prefix-map and must be of the form OLD=NEW. */
1533 void
1534 add_debug_prefix_map (const char *arg)
1536 debug_prefix_map *map;
1537 const char *p;
1539 p = strchr (arg, '=');
1540 if (!p)
1542 error ("invalid argument %qs to -fdebug-prefix-map", arg);
1543 return;
1545 map = XNEW (debug_prefix_map);
1546 map->old_prefix = xstrndup (arg, p - arg);
1547 map->old_len = p - arg;
1548 p++;
1549 map->new_prefix = xstrdup (p);
1550 map->new_len = strlen (p);
1551 map->next = debug_prefix_maps;
1552 debug_prefix_maps = map;
1555 /* Perform user-specified mapping of debug filename prefixes. Return
1556 the new name corresponding to FILENAME. */
1558 const char *
1559 remap_debug_filename (const char *filename)
1561 debug_prefix_map *map;
1562 char *s;
1563 const char *name;
1564 size_t name_len;
1566 for (map = debug_prefix_maps; map; map = map->next)
1567 if (filename_ncmp (filename, map->old_prefix, map->old_len) == 0)
1568 break;
1569 if (!map)
1570 return filename;
1571 name = filename + map->old_len;
1572 name_len = strlen (name) + 1;
1573 s = (char *) alloca (name_len + map->new_len);
1574 memcpy (s, map->new_prefix, map->new_len);
1575 memcpy (s + map->new_len, name, name_len);
1576 return ggc_strdup (s);
1579 /* Return true if DWARF2 debug info can be emitted for DECL. */
1581 static bool
1582 dwarf2_debug_info_emitted_p (tree decl)
1584 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1585 return false;
1587 if (DECL_IGNORED_P (decl))
1588 return false;
1590 return true;
1593 /* Return scope resulting from combination of S1 and S2. */
1594 static tree
1595 choose_inner_scope (tree s1, tree s2)
1597 if (!s1)
1598 return s2;
1599 if (!s2)
1600 return s1;
1601 if (BLOCK_NUMBER (s1) > BLOCK_NUMBER (s2))
1602 return s1;
1603 return s2;
1606 /* Emit lexical block notes needed to change scope from S1 to S2. */
1608 static void
1609 change_scope (rtx_insn *orig_insn, tree s1, tree s2)
1611 rtx_insn *insn = orig_insn;
1612 tree com = NULL_TREE;
1613 tree ts1 = s1, ts2 = s2;
1614 tree s;
1616 while (ts1 != ts2)
1618 gcc_assert (ts1 && ts2);
1619 if (BLOCK_NUMBER (ts1) > BLOCK_NUMBER (ts2))
1620 ts1 = BLOCK_SUPERCONTEXT (ts1);
1621 else if (BLOCK_NUMBER (ts1) < BLOCK_NUMBER (ts2))
1622 ts2 = BLOCK_SUPERCONTEXT (ts2);
1623 else
1625 ts1 = BLOCK_SUPERCONTEXT (ts1);
1626 ts2 = BLOCK_SUPERCONTEXT (ts2);
1629 com = ts1;
1631 /* Close scopes. */
1632 s = s1;
1633 while (s != com)
1635 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1636 NOTE_BLOCK (note) = s;
1637 s = BLOCK_SUPERCONTEXT (s);
1640 /* Open scopes. */
1641 s = s2;
1642 while (s != com)
1644 insn = emit_note_before (NOTE_INSN_BLOCK_BEG, insn);
1645 NOTE_BLOCK (insn) = s;
1646 s = BLOCK_SUPERCONTEXT (s);
1650 /* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
1651 on the scope tree and the newly reordered instructions. */
1653 static void
1654 reemit_insn_block_notes (void)
1656 tree cur_block = DECL_INITIAL (cfun->decl);
1657 rtx_insn *insn;
1658 rtx_note *note;
1660 insn = get_insns ();
1661 for (; insn; insn = NEXT_INSN (insn))
1663 tree this_block;
1665 /* Prevent lexical blocks from straddling section boundaries. */
1666 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
1668 for (tree s = cur_block; s != DECL_INITIAL (cfun->decl);
1669 s = BLOCK_SUPERCONTEXT (s))
1671 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1672 NOTE_BLOCK (note) = s;
1673 note = emit_note_after (NOTE_INSN_BLOCK_BEG, insn);
1674 NOTE_BLOCK (note) = s;
1678 if (!active_insn_p (insn))
1679 continue;
1681 /* Avoid putting scope notes between jump table and its label. */
1682 if (JUMP_TABLE_DATA_P (insn))
1683 continue;
1685 this_block = insn_scope (insn);
1686 /* For sequences compute scope resulting from merging all scopes
1687 of instructions nested inside. */
1688 if (GET_CODE (PATTERN (insn)) == SEQUENCE)
1690 int i;
1691 rtx body = PATTERN (insn);
1693 this_block = NULL;
1694 for (i = 0; i < XVECLEN (body, 0); i++)
1695 this_block = choose_inner_scope (this_block,
1696 insn_scope (XVECEXP (body, 0, i)));
1698 if (! this_block)
1700 if (INSN_LOCATION (insn) == UNKNOWN_LOCATION)
1701 continue;
1702 else
1703 this_block = DECL_INITIAL (cfun->decl);
1706 if (this_block != cur_block)
1708 change_scope (insn, cur_block, this_block);
1709 cur_block = this_block;
1713 /* change_scope emits before the insn, not after. */
1714 note = emit_note (NOTE_INSN_DELETED);
1715 change_scope (note, cur_block, DECL_INITIAL (cfun->decl));
1716 delete_insn (note);
1718 reorder_blocks ();
1721 /* Output assembler code for the start of a function,
1722 and initialize some of the variables in this file
1723 for the new function. The label for the function and associated
1724 assembler pseudo-ops have already been output in `assemble_start_function'.
1726 FIRST is the first insn of the rtl for the function being compiled.
1727 FILE is the file to write assembler code to.
1728 OPTIMIZE_P is nonzero if we should eliminate redundant
1729 test and compare insns. */
1731 void
1732 final_start_function (rtx_insn *first, FILE *file,
1733 int optimize_p ATTRIBUTE_UNUSED)
1735 block_depth = 0;
1737 this_is_asm_operands = 0;
1739 need_profile_function = false;
1741 last_filename = LOCATION_FILE (prologue_location);
1742 last_linenum = LOCATION_LINE (prologue_location);
1743 last_discriminator = discriminator = 0;
1745 high_block_linenum = high_function_linenum = last_linenum;
1747 if (flag_sanitize & SANITIZE_ADDRESS)
1748 asan_function_start ();
1750 if (!DECL_IGNORED_P (current_function_decl))
1751 debug_hooks->begin_prologue (last_linenum, last_filename);
1753 if (!dwarf2_debug_info_emitted_p (current_function_decl))
1754 dwarf2out_begin_prologue (0, NULL);
1756 #ifdef LEAF_REG_REMAP
1757 if (crtl->uses_only_leaf_regs)
1758 leaf_renumber_regs (first);
1759 #endif
1761 /* The Sun386i and perhaps other machines don't work right
1762 if the profiling code comes after the prologue. */
1763 if (targetm.profile_before_prologue () && crtl->profile)
1765 if (targetm.asm_out.function_prologue
1766 == default_function_pro_epilogue
1767 #ifdef HAVE_prologue
1768 && HAVE_prologue
1769 #endif
1772 rtx_insn *insn;
1773 for (insn = first; insn; insn = NEXT_INSN (insn))
1774 if (!NOTE_P (insn))
1776 insn = NULL;
1777 break;
1779 else if (NOTE_KIND (insn) == NOTE_INSN_BASIC_BLOCK
1780 || NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
1781 break;
1782 else if (NOTE_KIND (insn) == NOTE_INSN_DELETED
1783 || NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION)
1784 continue;
1785 else
1787 insn = NULL;
1788 break;
1791 if (insn)
1792 need_profile_function = true;
1793 else
1794 profile_function (file);
1796 else
1797 profile_function (file);
1800 /* If debugging, assign block numbers to all of the blocks in this
1801 function. */
1802 if (write_symbols)
1804 reemit_insn_block_notes ();
1805 number_blocks (current_function_decl);
1806 /* We never actually put out begin/end notes for the top-level
1807 block in the function. But, conceptually, that block is
1808 always needed. */
1809 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1812 if (warn_frame_larger_than
1813 && get_frame_size () > frame_larger_than_size)
1815 /* Issue a warning */
1816 warning (OPT_Wframe_larger_than_,
1817 "the frame size of %wd bytes is larger than %wd bytes",
1818 get_frame_size (), frame_larger_than_size);
1821 /* First output the function prologue: code to set up the stack frame. */
1822 targetm.asm_out.function_prologue (file, get_frame_size ());
1824 /* If the machine represents the prologue as RTL, the profiling code must
1825 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1826 #ifdef HAVE_prologue
1827 if (! HAVE_prologue)
1828 #endif
1829 profile_after_prologue (file);
1832 static void
1833 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1835 if (!targetm.profile_before_prologue () && crtl->profile)
1836 profile_function (file);
1839 static void
1840 profile_function (FILE *file ATTRIBUTE_UNUSED)
1842 #ifndef NO_PROFILE_COUNTERS
1843 # define NO_PROFILE_COUNTERS 0
1844 #endif
1845 #ifdef ASM_OUTPUT_REG_PUSH
1846 rtx sval = NULL, chain = NULL;
1848 if (cfun->returns_struct)
1849 sval = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl),
1850 true);
1851 if (cfun->static_chain_decl)
1852 chain = targetm.calls.static_chain (current_function_decl, true);
1853 #endif /* ASM_OUTPUT_REG_PUSH */
1855 if (! NO_PROFILE_COUNTERS)
1857 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1858 switch_to_section (data_section);
1859 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1860 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1861 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1864 switch_to_section (current_function_section ());
1866 #ifdef ASM_OUTPUT_REG_PUSH
1867 if (sval && REG_P (sval))
1868 ASM_OUTPUT_REG_PUSH (file, REGNO (sval));
1869 if (chain && REG_P (chain))
1870 ASM_OUTPUT_REG_PUSH (file, REGNO (chain));
1871 #endif
1873 FUNCTION_PROFILER (file, current_function_funcdef_no);
1875 #ifdef ASM_OUTPUT_REG_PUSH
1876 if (chain && REG_P (chain))
1877 ASM_OUTPUT_REG_POP (file, REGNO (chain));
1878 if (sval && REG_P (sval))
1879 ASM_OUTPUT_REG_POP (file, REGNO (sval));
1880 #endif
1883 /* Output assembler code for the end of a function.
1884 For clarity, args are same as those of `final_start_function'
1885 even though not all of them are needed. */
1887 void
1888 final_end_function (void)
1890 app_disable ();
1892 if (!DECL_IGNORED_P (current_function_decl))
1893 debug_hooks->end_function (high_function_linenum);
1895 /* Finally, output the function epilogue:
1896 code to restore the stack frame and return to the caller. */
1897 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1899 /* And debug output. */
1900 if (!DECL_IGNORED_P (current_function_decl))
1901 debug_hooks->end_epilogue (last_linenum, last_filename);
1903 if (!dwarf2_debug_info_emitted_p (current_function_decl)
1904 && dwarf2out_do_frame ())
1905 dwarf2out_end_epilogue (last_linenum, last_filename);
1909 /* Dumper helper for basic block information. FILE is the assembly
1910 output file, and INSN is the instruction being emitted. */
1912 static void
1913 dump_basic_block_info (FILE *file, rtx_insn *insn, basic_block *start_to_bb,
1914 basic_block *end_to_bb, int bb_map_size, int *bb_seqn)
1916 basic_block bb;
1918 if (!flag_debug_asm)
1919 return;
1921 if (INSN_UID (insn) < bb_map_size
1922 && (bb = start_to_bb[INSN_UID (insn)]) != NULL)
1924 edge e;
1925 edge_iterator ei;
1927 fprintf (file, "%s BLOCK %d", ASM_COMMENT_START, bb->index);
1928 if (bb->frequency)
1929 fprintf (file, " freq:%d", bb->frequency);
1930 if (bb->count)
1931 fprintf (file, " count:%"PRId64,
1932 bb->count);
1933 fprintf (file, " seq:%d", (*bb_seqn)++);
1934 fprintf (file, "\n%s PRED:", ASM_COMMENT_START);
1935 FOR_EACH_EDGE (e, ei, bb->preds)
1937 dump_edge_info (file, e, TDF_DETAILS, 0);
1939 fprintf (file, "\n");
1941 if (INSN_UID (insn) < bb_map_size
1942 && (bb = end_to_bb[INSN_UID (insn)]) != NULL)
1944 edge e;
1945 edge_iterator ei;
1947 fprintf (asm_out_file, "%s SUCC:", ASM_COMMENT_START);
1948 FOR_EACH_EDGE (e, ei, bb->succs)
1950 dump_edge_info (asm_out_file, e, TDF_DETAILS, 1);
1952 fprintf (file, "\n");
1956 /* Output assembler code for some insns: all or part of a function.
1957 For description of args, see `final_start_function', above. */
1959 void
1960 final (rtx_insn *first, FILE *file, int optimize_p)
1962 rtx_insn *insn, *next;
1963 int seen = 0;
1965 /* Used for -dA dump. */
1966 basic_block *start_to_bb = NULL;
1967 basic_block *end_to_bb = NULL;
1968 int bb_map_size = 0;
1969 int bb_seqn = 0;
1971 last_ignored_compare = 0;
1973 #ifdef HAVE_cc0
1974 for (insn = first; insn; insn = NEXT_INSN (insn))
1976 /* If CC tracking across branches is enabled, record the insn which
1977 jumps to each branch only reached from one place. */
1978 if (optimize_p && JUMP_P (insn))
1980 rtx lab = JUMP_LABEL (insn);
1981 if (lab && LABEL_P (lab) && LABEL_NUSES (lab) == 1)
1983 LABEL_REFS (lab) = insn;
1987 #endif
1989 init_recog ();
1991 CC_STATUS_INIT;
1993 if (flag_debug_asm)
1995 basic_block bb;
1997 bb_map_size = get_max_uid () + 1;
1998 start_to_bb = XCNEWVEC (basic_block, bb_map_size);
1999 end_to_bb = XCNEWVEC (basic_block, bb_map_size);
2001 /* There is no cfg for a thunk. */
2002 if (!cfun->is_thunk)
2003 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2005 start_to_bb[INSN_UID (BB_HEAD (bb))] = bb;
2006 end_to_bb[INSN_UID (BB_END (bb))] = bb;
2010 /* Output the insns. */
2011 for (insn = first; insn;)
2013 if (HAVE_ATTR_length)
2015 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
2017 /* This can be triggered by bugs elsewhere in the compiler if
2018 new insns are created after init_insn_lengths is called. */
2019 gcc_assert (NOTE_P (insn));
2020 insn_current_address = -1;
2022 else
2023 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
2026 dump_basic_block_info (file, insn, start_to_bb, end_to_bb,
2027 bb_map_size, &bb_seqn);
2028 insn = final_scan_insn (insn, file, optimize_p, 0, &seen);
2031 if (flag_debug_asm)
2033 free (start_to_bb);
2034 free (end_to_bb);
2037 /* Remove CFI notes, to avoid compare-debug failures. */
2038 for (insn = first; insn; insn = next)
2040 next = NEXT_INSN (insn);
2041 if (NOTE_P (insn)
2042 && (NOTE_KIND (insn) == NOTE_INSN_CFI
2043 || NOTE_KIND (insn) == NOTE_INSN_CFI_LABEL))
2044 delete_insn (insn);
2048 const char *
2049 get_insn_template (int code, rtx insn)
2051 switch (insn_data[code].output_format)
2053 case INSN_OUTPUT_FORMAT_SINGLE:
2054 return insn_data[code].output.single;
2055 case INSN_OUTPUT_FORMAT_MULTI:
2056 return insn_data[code].output.multi[which_alternative];
2057 case INSN_OUTPUT_FORMAT_FUNCTION:
2058 gcc_assert (insn);
2059 return (*insn_data[code].output.function) (recog_data.operand,
2060 as_a <rtx_insn *> (insn));
2062 default:
2063 gcc_unreachable ();
2067 /* Emit the appropriate declaration for an alternate-entry-point
2068 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
2069 LABEL_KIND != LABEL_NORMAL.
2071 The case fall-through in this function is intentional. */
2072 static void
2073 output_alternate_entry_point (FILE *file, rtx_insn *insn)
2075 const char *name = LABEL_NAME (insn);
2077 switch (LABEL_KIND (insn))
2079 case LABEL_WEAK_ENTRY:
2080 #ifdef ASM_WEAKEN_LABEL
2081 ASM_WEAKEN_LABEL (file, name);
2082 #endif
2083 case LABEL_GLOBAL_ENTRY:
2084 targetm.asm_out.globalize_label (file, name);
2085 case LABEL_STATIC_ENTRY:
2086 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
2087 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
2088 #endif
2089 ASM_OUTPUT_LABEL (file, name);
2090 break;
2092 case LABEL_NORMAL:
2093 default:
2094 gcc_unreachable ();
2098 /* Given a CALL_INSN, find and return the nested CALL. */
2099 static rtx
2100 call_from_call_insn (rtx_call_insn *insn)
2102 rtx x;
2103 gcc_assert (CALL_P (insn));
2104 x = PATTERN (insn);
2106 while (GET_CODE (x) != CALL)
2108 switch (GET_CODE (x))
2110 default:
2111 gcc_unreachable ();
2112 case COND_EXEC:
2113 x = COND_EXEC_CODE (x);
2114 break;
2115 case PARALLEL:
2116 x = XVECEXP (x, 0, 0);
2117 break;
2118 case SET:
2119 x = XEXP (x, 1);
2120 break;
2123 return x;
2126 /* The final scan for one insn, INSN.
2127 Args are same as in `final', except that INSN
2128 is the insn being scanned.
2129 Value returned is the next insn to be scanned.
2131 NOPEEPHOLES is the flag to disallow peephole processing (currently
2132 used for within delayed branch sequence output).
2134 SEEN is used to track the end of the prologue, for emitting
2135 debug information. We force the emission of a line note after
2136 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG. */
2138 rtx_insn *
2139 final_scan_insn (rtx uncast_insn, FILE *file, int optimize_p ATTRIBUTE_UNUSED,
2140 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
2142 #ifdef HAVE_cc0
2143 rtx set;
2144 #endif
2145 rtx_insn *next;
2147 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
2149 insn_counter++;
2151 /* Ignore deleted insns. These can occur when we split insns (due to a
2152 template of "#") while not optimizing. */
2153 if (INSN_DELETED_P (insn))
2154 return NEXT_INSN (insn);
2156 switch (GET_CODE (insn))
2158 case NOTE:
2159 switch (NOTE_KIND (insn))
2161 case NOTE_INSN_DELETED:
2162 break;
2164 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
2165 in_cold_section_p = !in_cold_section_p;
2167 if (dwarf2out_do_frame ())
2168 dwarf2out_switch_text_section ();
2169 else if (!DECL_IGNORED_P (current_function_decl))
2170 debug_hooks->switch_text_section ();
2172 switch_to_section (current_function_section ());
2173 targetm.asm_out.function_switched_text_sections (asm_out_file,
2174 current_function_decl,
2175 in_cold_section_p);
2176 /* Emit a label for the split cold section. Form label name by
2177 suffixing "cold" to the original function's name. */
2178 if (in_cold_section_p)
2180 tree cold_function_name
2181 = clone_function_name (current_function_decl, "cold");
2182 ASM_OUTPUT_LABEL (asm_out_file,
2183 IDENTIFIER_POINTER (cold_function_name));
2185 break;
2187 case NOTE_INSN_BASIC_BLOCK:
2188 if (need_profile_function)
2190 profile_function (asm_out_file);
2191 need_profile_function = false;
2194 if (targetm.asm_out.unwind_emit)
2195 targetm.asm_out.unwind_emit (asm_out_file, insn);
2197 discriminator = NOTE_BASIC_BLOCK (insn)->discriminator;
2199 break;
2201 case NOTE_INSN_EH_REGION_BEG:
2202 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
2203 NOTE_EH_HANDLER (insn));
2204 break;
2206 case NOTE_INSN_EH_REGION_END:
2207 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
2208 NOTE_EH_HANDLER (insn));
2209 break;
2211 case NOTE_INSN_PROLOGUE_END:
2212 targetm.asm_out.function_end_prologue (file);
2213 profile_after_prologue (file);
2215 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2217 *seen |= SEEN_EMITTED;
2218 force_source_line = true;
2220 else
2221 *seen |= SEEN_NOTE;
2223 break;
2225 case NOTE_INSN_EPILOGUE_BEG:
2226 if (!DECL_IGNORED_P (current_function_decl))
2227 (*debug_hooks->begin_epilogue) (last_linenum, last_filename);
2228 targetm.asm_out.function_begin_epilogue (file);
2229 break;
2231 case NOTE_INSN_CFI:
2232 dwarf2out_emit_cfi (NOTE_CFI (insn));
2233 break;
2235 case NOTE_INSN_CFI_LABEL:
2236 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LCFI",
2237 NOTE_LABEL_NUMBER (insn));
2238 break;
2240 case NOTE_INSN_FUNCTION_BEG:
2241 if (need_profile_function)
2243 profile_function (asm_out_file);
2244 need_profile_function = false;
2247 app_disable ();
2248 if (!DECL_IGNORED_P (current_function_decl))
2249 debug_hooks->end_prologue (last_linenum, last_filename);
2251 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2253 *seen |= SEEN_EMITTED;
2254 force_source_line = true;
2256 else
2257 *seen |= SEEN_NOTE;
2259 break;
2261 case NOTE_INSN_BLOCK_BEG:
2262 if (debug_info_level == DINFO_LEVEL_NORMAL
2263 || debug_info_level == DINFO_LEVEL_VERBOSE
2264 || write_symbols == DWARF2_DEBUG
2265 || write_symbols == VMS_AND_DWARF2_DEBUG
2266 || write_symbols == VMS_DEBUG)
2268 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2270 app_disable ();
2271 ++block_depth;
2272 high_block_linenum = last_linenum;
2274 /* Output debugging info about the symbol-block beginning. */
2275 if (!DECL_IGNORED_P (current_function_decl))
2276 debug_hooks->begin_block (last_linenum, n);
2278 /* Mark this block as output. */
2279 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
2281 if (write_symbols == DBX_DEBUG
2282 || write_symbols == SDB_DEBUG)
2284 location_t *locus_ptr
2285 = block_nonartificial_location (NOTE_BLOCK (insn));
2287 if (locus_ptr != NULL)
2289 override_filename = LOCATION_FILE (*locus_ptr);
2290 override_linenum = LOCATION_LINE (*locus_ptr);
2293 break;
2295 case NOTE_INSN_BLOCK_END:
2296 if (debug_info_level == DINFO_LEVEL_NORMAL
2297 || debug_info_level == DINFO_LEVEL_VERBOSE
2298 || write_symbols == DWARF2_DEBUG
2299 || write_symbols == VMS_AND_DWARF2_DEBUG
2300 || write_symbols == VMS_DEBUG)
2302 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2304 app_disable ();
2306 /* End of a symbol-block. */
2307 --block_depth;
2308 gcc_assert (block_depth >= 0);
2310 if (!DECL_IGNORED_P (current_function_decl))
2311 debug_hooks->end_block (high_block_linenum, n);
2313 if (write_symbols == DBX_DEBUG
2314 || write_symbols == SDB_DEBUG)
2316 tree outer_block = BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn));
2317 location_t *locus_ptr
2318 = block_nonartificial_location (outer_block);
2320 if (locus_ptr != NULL)
2322 override_filename = LOCATION_FILE (*locus_ptr);
2323 override_linenum = LOCATION_LINE (*locus_ptr);
2325 else
2327 override_filename = NULL;
2328 override_linenum = 0;
2331 break;
2333 case NOTE_INSN_DELETED_LABEL:
2334 /* Emit the label. We may have deleted the CODE_LABEL because
2335 the label could be proved to be unreachable, though still
2336 referenced (in the form of having its address taken. */
2337 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2338 break;
2340 case NOTE_INSN_DELETED_DEBUG_LABEL:
2341 /* Similarly, but need to use different namespace for it. */
2342 if (CODE_LABEL_NUMBER (insn) != -1)
2343 ASM_OUTPUT_DEBUG_LABEL (file, "LDL", CODE_LABEL_NUMBER (insn));
2344 break;
2346 case NOTE_INSN_VAR_LOCATION:
2347 case NOTE_INSN_CALL_ARG_LOCATION:
2348 if (!DECL_IGNORED_P (current_function_decl))
2349 debug_hooks->var_location (insn);
2350 break;
2352 default:
2353 gcc_unreachable ();
2354 break;
2356 break;
2358 case BARRIER:
2359 break;
2361 case CODE_LABEL:
2362 /* The target port might emit labels in the output function for
2363 some insn, e.g. sh.c output_branchy_insn. */
2364 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2366 int align = LABEL_TO_ALIGNMENT (insn);
2367 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2368 int max_skip = LABEL_TO_MAX_SKIP (insn);
2369 #endif
2371 if (align && NEXT_INSN (insn))
2373 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2374 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
2375 #else
2376 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2377 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
2378 #else
2379 ASM_OUTPUT_ALIGN (file, align);
2380 #endif
2381 #endif
2384 CC_STATUS_INIT;
2386 if (!DECL_IGNORED_P (current_function_decl) && LABEL_NAME (insn))
2387 debug_hooks->label (as_a <rtx_code_label *> (insn));
2389 app_disable ();
2391 next = next_nonnote_insn (insn);
2392 /* If this label is followed by a jump-table, make sure we put
2393 the label in the read-only section. Also possibly write the
2394 label and jump table together. */
2395 if (next != 0 && JUMP_TABLE_DATA_P (next))
2397 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2398 /* In this case, the case vector is being moved by the
2399 target, so don't output the label at all. Leave that
2400 to the back end macros. */
2401 #else
2402 if (! JUMP_TABLES_IN_TEXT_SECTION)
2404 int log_align;
2406 switch_to_section (targetm.asm_out.function_rodata_section
2407 (current_function_decl));
2409 #ifdef ADDR_VEC_ALIGN
2410 log_align = ADDR_VEC_ALIGN (next);
2411 #else
2412 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2413 #endif
2414 ASM_OUTPUT_ALIGN (file, log_align);
2416 else
2417 switch_to_section (current_function_section ());
2419 #ifdef ASM_OUTPUT_CASE_LABEL
2420 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
2421 next);
2422 #else
2423 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2424 #endif
2425 #endif
2426 break;
2428 if (LABEL_ALT_ENTRY_P (insn))
2429 output_alternate_entry_point (file, insn);
2430 else
2431 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2432 break;
2434 default:
2436 rtx body = PATTERN (insn);
2437 int insn_code_number;
2438 const char *templ;
2439 bool is_stmt;
2441 /* Reset this early so it is correct for ASM statements. */
2442 current_insn_predicate = NULL_RTX;
2444 /* An INSN, JUMP_INSN or CALL_INSN.
2445 First check for special kinds that recog doesn't recognize. */
2447 if (GET_CODE (body) == USE /* These are just declarations. */
2448 || GET_CODE (body) == CLOBBER)
2449 break;
2451 #ifdef HAVE_cc0
2453 /* If there is a REG_CC_SETTER note on this insn, it means that
2454 the setting of the condition code was done in the delay slot
2455 of the insn that branched here. So recover the cc status
2456 from the insn that set it. */
2458 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2459 if (note)
2461 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2462 cc_prev_status = cc_status;
2465 #endif
2467 /* Detect insns that are really jump-tables
2468 and output them as such. */
2470 if (JUMP_TABLE_DATA_P (insn))
2472 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2473 int vlen, idx;
2474 #endif
2476 if (! JUMP_TABLES_IN_TEXT_SECTION)
2477 switch_to_section (targetm.asm_out.function_rodata_section
2478 (current_function_decl));
2479 else
2480 switch_to_section (current_function_section ());
2482 app_disable ();
2484 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2485 if (GET_CODE (body) == ADDR_VEC)
2487 #ifdef ASM_OUTPUT_ADDR_VEC
2488 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2489 #else
2490 gcc_unreachable ();
2491 #endif
2493 else
2495 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2496 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2497 #else
2498 gcc_unreachable ();
2499 #endif
2501 #else
2502 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2503 for (idx = 0; idx < vlen; idx++)
2505 if (GET_CODE (body) == ADDR_VEC)
2507 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2508 ASM_OUTPUT_ADDR_VEC_ELT
2509 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2510 #else
2511 gcc_unreachable ();
2512 #endif
2514 else
2516 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2517 ASM_OUTPUT_ADDR_DIFF_ELT
2518 (file,
2519 body,
2520 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2521 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2522 #else
2523 gcc_unreachable ();
2524 #endif
2527 #ifdef ASM_OUTPUT_CASE_END
2528 ASM_OUTPUT_CASE_END (file,
2529 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2530 insn);
2531 #endif
2532 #endif
2534 switch_to_section (current_function_section ());
2536 break;
2538 /* Output this line note if it is the first or the last line
2539 note in a row. */
2540 if (!DECL_IGNORED_P (current_function_decl)
2541 && notice_source_line (insn, &is_stmt))
2542 (*debug_hooks->source_line) (last_linenum, last_filename,
2543 last_discriminator, is_stmt);
2545 if (GET_CODE (body) == ASM_INPUT)
2547 const char *string = XSTR (body, 0);
2549 /* There's no telling what that did to the condition codes. */
2550 CC_STATUS_INIT;
2552 if (string[0])
2554 expanded_location loc;
2556 app_enable ();
2557 loc = expand_location (ASM_INPUT_SOURCE_LOCATION (body));
2558 if (*loc.file && loc.line)
2559 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2560 ASM_COMMENT_START, loc.line, loc.file);
2561 fprintf (asm_out_file, "\t%s\n", string);
2562 #if HAVE_AS_LINE_ZERO
2563 if (*loc.file && loc.line)
2564 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2565 #endif
2567 break;
2570 /* Detect `asm' construct with operands. */
2571 if (asm_noperands (body) >= 0)
2573 unsigned int noperands = asm_noperands (body);
2574 rtx *ops = XALLOCAVEC (rtx, noperands);
2575 const char *string;
2576 location_t loc;
2577 expanded_location expanded;
2579 /* There's no telling what that did to the condition codes. */
2580 CC_STATUS_INIT;
2582 /* Get out the operand values. */
2583 string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc);
2584 /* Inhibit dying on what would otherwise be compiler bugs. */
2585 insn_noperands = noperands;
2586 this_is_asm_operands = insn;
2587 expanded = expand_location (loc);
2589 #ifdef FINAL_PRESCAN_INSN
2590 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2591 #endif
2593 /* Output the insn using them. */
2594 if (string[0])
2596 app_enable ();
2597 if (expanded.file && expanded.line)
2598 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2599 ASM_COMMENT_START, expanded.line, expanded.file);
2600 output_asm_insn (string, ops);
2601 #if HAVE_AS_LINE_ZERO
2602 if (expanded.file && expanded.line)
2603 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2604 #endif
2607 if (targetm.asm_out.final_postscan_insn)
2608 targetm.asm_out.final_postscan_insn (file, insn, ops,
2609 insn_noperands);
2611 this_is_asm_operands = 0;
2612 break;
2615 app_disable ();
2617 if (GET_CODE (body) == SEQUENCE)
2619 /* A delayed-branch sequence */
2620 int i;
2622 final_sequence = body;
2624 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2625 force the restoration of a comparison that was previously
2626 thought unnecessary. If that happens, cancel this sequence
2627 and cause that insn to be restored. */
2629 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, 1, seen);
2630 if (next != XVECEXP (body, 0, 1))
2632 final_sequence = 0;
2633 return next;
2636 for (i = 1; i < XVECLEN (body, 0); i++)
2638 rtx insn = XVECEXP (body, 0, i);
2639 rtx_insn *next = NEXT_INSN (insn);
2640 /* We loop in case any instruction in a delay slot gets
2641 split. */
2643 insn = final_scan_insn (insn, file, 0, 1, seen);
2644 while (insn != next);
2646 #ifdef DBR_OUTPUT_SEQEND
2647 DBR_OUTPUT_SEQEND (file);
2648 #endif
2649 final_sequence = 0;
2651 /* If the insn requiring the delay slot was a CALL_INSN, the
2652 insns in the delay slot are actually executed before the
2653 called function. Hence we don't preserve any CC-setting
2654 actions in these insns and the CC must be marked as being
2655 clobbered by the function. */
2656 if (CALL_P (XVECEXP (body, 0, 0)))
2658 CC_STATUS_INIT;
2660 break;
2663 /* We have a real machine instruction as rtl. */
2665 body = PATTERN (insn);
2667 #ifdef HAVE_cc0
2668 set = single_set (insn);
2670 /* Check for redundant test and compare instructions
2671 (when the condition codes are already set up as desired).
2672 This is done only when optimizing; if not optimizing,
2673 it should be possible for the user to alter a variable
2674 with the debugger in between statements
2675 and the next statement should reexamine the variable
2676 to compute the condition codes. */
2678 if (optimize_p)
2680 if (set
2681 && GET_CODE (SET_DEST (set)) == CC0
2682 && insn != last_ignored_compare)
2684 rtx src1, src2;
2685 if (GET_CODE (SET_SRC (set)) == SUBREG)
2686 SET_SRC (set) = alter_subreg (&SET_SRC (set), true);
2688 src1 = SET_SRC (set);
2689 src2 = NULL_RTX;
2690 if (GET_CODE (SET_SRC (set)) == COMPARE)
2692 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2693 XEXP (SET_SRC (set), 0)
2694 = alter_subreg (&XEXP (SET_SRC (set), 0), true);
2695 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2696 XEXP (SET_SRC (set), 1)
2697 = alter_subreg (&XEXP (SET_SRC (set), 1), true);
2698 if (XEXP (SET_SRC (set), 1)
2699 == CONST0_RTX (GET_MODE (XEXP (SET_SRC (set), 0))))
2700 src2 = XEXP (SET_SRC (set), 0);
2702 if ((cc_status.value1 != 0
2703 && rtx_equal_p (src1, cc_status.value1))
2704 || (cc_status.value2 != 0
2705 && rtx_equal_p (src1, cc_status.value2))
2706 || (src2 != 0 && cc_status.value1 != 0
2707 && rtx_equal_p (src2, cc_status.value1))
2708 || (src2 != 0 && cc_status.value2 != 0
2709 && rtx_equal_p (src2, cc_status.value2)))
2711 /* Don't delete insn if it has an addressing side-effect. */
2712 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2713 /* or if anything in it is volatile. */
2714 && ! volatile_refs_p (PATTERN (insn)))
2716 /* We don't really delete the insn; just ignore it. */
2717 last_ignored_compare = insn;
2718 break;
2724 /* If this is a conditional branch, maybe modify it
2725 if the cc's are in a nonstandard state
2726 so that it accomplishes the same thing that it would
2727 do straightforwardly if the cc's were set up normally. */
2729 if (cc_status.flags != 0
2730 && JUMP_P (insn)
2731 && GET_CODE (body) == SET
2732 && SET_DEST (body) == pc_rtx
2733 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2734 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2735 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2737 /* This function may alter the contents of its argument
2738 and clear some of the cc_status.flags bits.
2739 It may also return 1 meaning condition now always true
2740 or -1 meaning condition now always false
2741 or 2 meaning condition nontrivial but altered. */
2742 int result = alter_cond (XEXP (SET_SRC (body), 0));
2743 /* If condition now has fixed value, replace the IF_THEN_ELSE
2744 with its then-operand or its else-operand. */
2745 if (result == 1)
2746 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2747 if (result == -1)
2748 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2750 /* The jump is now either unconditional or a no-op.
2751 If it has become a no-op, don't try to output it.
2752 (It would not be recognized.) */
2753 if (SET_SRC (body) == pc_rtx)
2755 delete_insn (insn);
2756 break;
2758 else if (ANY_RETURN_P (SET_SRC (body)))
2759 /* Replace (set (pc) (return)) with (return). */
2760 PATTERN (insn) = body = SET_SRC (body);
2762 /* Rerecognize the instruction if it has changed. */
2763 if (result != 0)
2764 INSN_CODE (insn) = -1;
2767 /* If this is a conditional trap, maybe modify it if the cc's
2768 are in a nonstandard state so that it accomplishes the same
2769 thing that it would do straightforwardly if the cc's were
2770 set up normally. */
2771 if (cc_status.flags != 0
2772 && NONJUMP_INSN_P (insn)
2773 && GET_CODE (body) == TRAP_IF
2774 && COMPARISON_P (TRAP_CONDITION (body))
2775 && XEXP (TRAP_CONDITION (body), 0) == cc0_rtx)
2777 /* This function may alter the contents of its argument
2778 and clear some of the cc_status.flags bits.
2779 It may also return 1 meaning condition now always true
2780 or -1 meaning condition now always false
2781 or 2 meaning condition nontrivial but altered. */
2782 int result = alter_cond (TRAP_CONDITION (body));
2784 /* If TRAP_CONDITION has become always false, delete the
2785 instruction. */
2786 if (result == -1)
2788 delete_insn (insn);
2789 break;
2792 /* If TRAP_CONDITION has become always true, replace
2793 TRAP_CONDITION with const_true_rtx. */
2794 if (result == 1)
2795 TRAP_CONDITION (body) = const_true_rtx;
2797 /* Rerecognize the instruction if it has changed. */
2798 if (result != 0)
2799 INSN_CODE (insn) = -1;
2802 /* Make same adjustments to instructions that examine the
2803 condition codes without jumping and instructions that
2804 handle conditional moves (if this machine has either one). */
2806 if (cc_status.flags != 0
2807 && set != 0)
2809 rtx cond_rtx, then_rtx, else_rtx;
2811 if (!JUMP_P (insn)
2812 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2814 cond_rtx = XEXP (SET_SRC (set), 0);
2815 then_rtx = XEXP (SET_SRC (set), 1);
2816 else_rtx = XEXP (SET_SRC (set), 2);
2818 else
2820 cond_rtx = SET_SRC (set);
2821 then_rtx = const_true_rtx;
2822 else_rtx = const0_rtx;
2825 if (COMPARISON_P (cond_rtx)
2826 && XEXP (cond_rtx, 0) == cc0_rtx)
2828 int result;
2829 result = alter_cond (cond_rtx);
2830 if (result == 1)
2831 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2832 else if (result == -1)
2833 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2834 else if (result == 2)
2835 INSN_CODE (insn) = -1;
2836 if (SET_DEST (set) == SET_SRC (set))
2837 delete_insn (insn);
2841 #endif
2843 #ifdef HAVE_peephole
2844 /* Do machine-specific peephole optimizations if desired. */
2846 if (optimize_p && !flag_no_peephole && !nopeepholes)
2848 rtx_insn *next = peephole (insn);
2849 /* When peepholing, if there were notes within the peephole,
2850 emit them before the peephole. */
2851 if (next != 0 && next != NEXT_INSN (insn))
2853 rtx_insn *note, *prev = PREV_INSN (insn);
2855 for (note = NEXT_INSN (insn); note != next;
2856 note = NEXT_INSN (note))
2857 final_scan_insn (note, file, optimize_p, nopeepholes, seen);
2859 /* Put the notes in the proper position for a later
2860 rescan. For example, the SH target can do this
2861 when generating a far jump in a delayed branch
2862 sequence. */
2863 note = NEXT_INSN (insn);
2864 SET_PREV_INSN (note) = prev;
2865 SET_NEXT_INSN (prev) = note;
2866 SET_NEXT_INSN (PREV_INSN (next)) = insn;
2867 SET_PREV_INSN (insn) = PREV_INSN (next);
2868 SET_NEXT_INSN (insn) = next;
2869 SET_PREV_INSN (next) = insn;
2872 /* PEEPHOLE might have changed this. */
2873 body = PATTERN (insn);
2875 #endif
2877 /* Try to recognize the instruction.
2878 If successful, verify that the operands satisfy the
2879 constraints for the instruction. Crash if they don't,
2880 since `reload' should have changed them so that they do. */
2882 insn_code_number = recog_memoized (insn);
2883 cleanup_subreg_operands (insn);
2885 /* Dump the insn in the assembly for debugging (-dAP).
2886 If the final dump is requested as slim RTL, dump slim
2887 RTL to the assembly file also. */
2888 if (flag_dump_rtl_in_asm)
2890 print_rtx_head = ASM_COMMENT_START;
2891 if (! (dump_flags & TDF_SLIM))
2892 print_rtl_single (asm_out_file, insn);
2893 else
2894 dump_insn_slim (asm_out_file, insn);
2895 print_rtx_head = "";
2898 if (! constrain_operands_cached (1))
2899 fatal_insn_not_found (insn);
2901 /* Some target machines need to prescan each insn before
2902 it is output. */
2904 #ifdef FINAL_PRESCAN_INSN
2905 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2906 #endif
2908 if (targetm.have_conditional_execution ()
2909 && GET_CODE (PATTERN (insn)) == COND_EXEC)
2910 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2912 #ifdef HAVE_cc0
2913 cc_prev_status = cc_status;
2915 /* Update `cc_status' for this instruction.
2916 The instruction's output routine may change it further.
2917 If the output routine for a jump insn needs to depend
2918 on the cc status, it should look at cc_prev_status. */
2920 NOTICE_UPDATE_CC (body, insn);
2921 #endif
2923 current_output_insn = debug_insn = insn;
2925 /* Find the proper template for this insn. */
2926 templ = get_insn_template (insn_code_number, insn);
2928 /* If the C code returns 0, it means that it is a jump insn
2929 which follows a deleted test insn, and that test insn
2930 needs to be reinserted. */
2931 if (templ == 0)
2933 rtx_insn *prev;
2935 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
2937 /* We have already processed the notes between the setter and
2938 the user. Make sure we don't process them again, this is
2939 particularly important if one of the notes is a block
2940 scope note or an EH note. */
2941 for (prev = insn;
2942 prev != last_ignored_compare;
2943 prev = PREV_INSN (prev))
2945 if (NOTE_P (prev))
2946 delete_insn (prev); /* Use delete_note. */
2949 return prev;
2952 /* If the template is the string "#", it means that this insn must
2953 be split. */
2954 if (templ[0] == '#' && templ[1] == '\0')
2956 rtx_insn *new_rtx = try_split (body, insn, 0);
2958 /* If we didn't split the insn, go away. */
2959 if (new_rtx == insn && PATTERN (new_rtx) == body)
2960 fatal_insn ("could not split insn", insn);
2962 /* If we have a length attribute, this instruction should have
2963 been split in shorten_branches, to ensure that we would have
2964 valid length info for the splitees. */
2965 gcc_assert (!HAVE_ATTR_length);
2967 return new_rtx;
2970 /* ??? This will put the directives in the wrong place if
2971 get_insn_template outputs assembly directly. However calling it
2972 before get_insn_template breaks if the insns is split. */
2973 if (targetm.asm_out.unwind_emit_before_insn
2974 && targetm.asm_out.unwind_emit)
2975 targetm.asm_out.unwind_emit (asm_out_file, insn);
2977 if (rtx_call_insn *call_insn = dyn_cast <rtx_call_insn *> (insn))
2979 rtx x = call_from_call_insn (call_insn);
2980 x = XEXP (x, 0);
2981 if (x && MEM_P (x) && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2983 tree t;
2984 x = XEXP (x, 0);
2985 t = SYMBOL_REF_DECL (x);
2986 if (t)
2987 assemble_external (t);
2989 if (!DECL_IGNORED_P (current_function_decl))
2990 debug_hooks->var_location (insn);
2993 /* Output assembler code from the template. */
2994 output_asm_insn (templ, recog_data.operand);
2996 /* Some target machines need to postscan each insn after
2997 it is output. */
2998 if (targetm.asm_out.final_postscan_insn)
2999 targetm.asm_out.final_postscan_insn (file, insn, recog_data.operand,
3000 recog_data.n_operands);
3002 if (!targetm.asm_out.unwind_emit_before_insn
3003 && targetm.asm_out.unwind_emit)
3004 targetm.asm_out.unwind_emit (asm_out_file, insn);
3006 current_output_insn = debug_insn = 0;
3009 return NEXT_INSN (insn);
3012 /* Return whether a source line note needs to be emitted before INSN.
3013 Sets IS_STMT to TRUE if the line should be marked as a possible
3014 breakpoint location. */
3016 static bool
3017 notice_source_line (rtx_insn *insn, bool *is_stmt)
3019 const char *filename;
3020 int linenum;
3022 if (override_filename)
3024 filename = override_filename;
3025 linenum = override_linenum;
3027 else if (INSN_HAS_LOCATION (insn))
3029 expanded_location xloc = insn_location (insn);
3030 filename = xloc.file;
3031 linenum = xloc.line;
3033 else
3035 filename = NULL;
3036 linenum = 0;
3039 if (filename == NULL)
3040 return false;
3042 if (force_source_line
3043 || filename != last_filename
3044 || last_linenum != linenum)
3046 force_source_line = false;
3047 last_filename = filename;
3048 last_linenum = linenum;
3049 last_discriminator = discriminator;
3050 *is_stmt = true;
3051 high_block_linenum = MAX (last_linenum, high_block_linenum);
3052 high_function_linenum = MAX (last_linenum, high_function_linenum);
3053 return true;
3056 if (SUPPORTS_DISCRIMINATOR && last_discriminator != discriminator)
3058 /* If the discriminator changed, but the line number did not,
3059 output the line table entry with is_stmt false so the
3060 debugger does not treat this as a breakpoint location. */
3061 last_discriminator = discriminator;
3062 *is_stmt = false;
3063 return true;
3066 return false;
3069 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3070 directly to the desired hard register. */
3072 void
3073 cleanup_subreg_operands (rtx insn)
3075 int i;
3076 bool changed = false;
3077 extract_insn_cached (insn);
3078 for (i = 0; i < recog_data.n_operands; i++)
3080 /* The following test cannot use recog_data.operand when testing
3081 for a SUBREG: the underlying object might have been changed
3082 already if we are inside a match_operator expression that
3083 matches the else clause. Instead we test the underlying
3084 expression directly. */
3085 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
3087 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i], true);
3088 changed = true;
3090 else if (GET_CODE (recog_data.operand[i]) == PLUS
3091 || GET_CODE (recog_data.operand[i]) == MULT
3092 || MEM_P (recog_data.operand[i]))
3093 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i], &changed);
3096 for (i = 0; i < recog_data.n_dups; i++)
3098 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
3100 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i], true);
3101 changed = true;
3103 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
3104 || GET_CODE (*recog_data.dup_loc[i]) == MULT
3105 || MEM_P (*recog_data.dup_loc[i]))
3106 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i], &changed);
3108 if (changed)
3109 df_insn_rescan (insn);
3112 /* If X is a SUBREG, try to replace it with a REG or a MEM, based on
3113 the thing it is a subreg of. Do it anyway if FINAL_P. */
3116 alter_subreg (rtx *xp, bool final_p)
3118 rtx x = *xp;
3119 rtx y = SUBREG_REG (x);
3121 /* simplify_subreg does not remove subreg from volatile references.
3122 We are required to. */
3123 if (MEM_P (y))
3125 int offset = SUBREG_BYTE (x);
3127 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
3128 contains 0 instead of the proper offset. See simplify_subreg. */
3129 if (offset == 0
3130 && GET_MODE_SIZE (GET_MODE (y)) < GET_MODE_SIZE (GET_MODE (x)))
3132 int difference = GET_MODE_SIZE (GET_MODE (y))
3133 - GET_MODE_SIZE (GET_MODE (x));
3134 if (WORDS_BIG_ENDIAN)
3135 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3136 if (BYTES_BIG_ENDIAN)
3137 offset += difference % UNITS_PER_WORD;
3140 if (final_p)
3141 *xp = adjust_address (y, GET_MODE (x), offset);
3142 else
3143 *xp = adjust_address_nv (y, GET_MODE (x), offset);
3145 else
3147 rtx new_rtx = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
3148 SUBREG_BYTE (x));
3150 if (new_rtx != 0)
3151 *xp = new_rtx;
3152 else if (final_p && REG_P (y))
3154 /* Simplify_subreg can't handle some REG cases, but we have to. */
3155 unsigned int regno;
3156 HOST_WIDE_INT offset;
3158 regno = subreg_regno (x);
3159 if (subreg_lowpart_p (x))
3160 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3161 else
3162 offset = SUBREG_BYTE (x);
3163 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, offset);
3167 return *xp;
3170 /* Do alter_subreg on all the SUBREGs contained in X. */
3172 static rtx
3173 walk_alter_subreg (rtx *xp, bool *changed)
3175 rtx x = *xp;
3176 switch (GET_CODE (x))
3178 case PLUS:
3179 case MULT:
3180 case AND:
3181 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3182 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1), changed);
3183 break;
3185 case MEM:
3186 case ZERO_EXTEND:
3187 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3188 break;
3190 case SUBREG:
3191 *changed = true;
3192 return alter_subreg (xp, true);
3194 default:
3195 break;
3198 return *xp;
3201 #ifdef HAVE_cc0
3203 /* Given BODY, the body of a jump instruction, alter the jump condition
3204 as required by the bits that are set in cc_status.flags.
3205 Not all of the bits there can be handled at this level in all cases.
3207 The value is normally 0.
3208 1 means that the condition has become always true.
3209 -1 means that the condition has become always false.
3210 2 means that COND has been altered. */
3212 static int
3213 alter_cond (rtx cond)
3215 int value = 0;
3217 if (cc_status.flags & CC_REVERSED)
3219 value = 2;
3220 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
3223 if (cc_status.flags & CC_INVERTED)
3225 value = 2;
3226 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
3229 if (cc_status.flags & CC_NOT_POSITIVE)
3230 switch (GET_CODE (cond))
3232 case LE:
3233 case LEU:
3234 case GEU:
3235 /* Jump becomes unconditional. */
3236 return 1;
3238 case GT:
3239 case GTU:
3240 case LTU:
3241 /* Jump becomes no-op. */
3242 return -1;
3244 case GE:
3245 PUT_CODE (cond, EQ);
3246 value = 2;
3247 break;
3249 case LT:
3250 PUT_CODE (cond, NE);
3251 value = 2;
3252 break;
3254 default:
3255 break;
3258 if (cc_status.flags & CC_NOT_NEGATIVE)
3259 switch (GET_CODE (cond))
3261 case GE:
3262 case GEU:
3263 /* Jump becomes unconditional. */
3264 return 1;
3266 case LT:
3267 case LTU:
3268 /* Jump becomes no-op. */
3269 return -1;
3271 case LE:
3272 case LEU:
3273 PUT_CODE (cond, EQ);
3274 value = 2;
3275 break;
3277 case GT:
3278 case GTU:
3279 PUT_CODE (cond, NE);
3280 value = 2;
3281 break;
3283 default:
3284 break;
3287 if (cc_status.flags & CC_NO_OVERFLOW)
3288 switch (GET_CODE (cond))
3290 case GEU:
3291 /* Jump becomes unconditional. */
3292 return 1;
3294 case LEU:
3295 PUT_CODE (cond, EQ);
3296 value = 2;
3297 break;
3299 case GTU:
3300 PUT_CODE (cond, NE);
3301 value = 2;
3302 break;
3304 case LTU:
3305 /* Jump becomes no-op. */
3306 return -1;
3308 default:
3309 break;
3312 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3313 switch (GET_CODE (cond))
3315 default:
3316 gcc_unreachable ();
3318 case NE:
3319 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3320 value = 2;
3321 break;
3323 case EQ:
3324 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3325 value = 2;
3326 break;
3329 if (cc_status.flags & CC_NOT_SIGNED)
3330 /* The flags are valid if signed condition operators are converted
3331 to unsigned. */
3332 switch (GET_CODE (cond))
3334 case LE:
3335 PUT_CODE (cond, LEU);
3336 value = 2;
3337 break;
3339 case LT:
3340 PUT_CODE (cond, LTU);
3341 value = 2;
3342 break;
3344 case GT:
3345 PUT_CODE (cond, GTU);
3346 value = 2;
3347 break;
3349 case GE:
3350 PUT_CODE (cond, GEU);
3351 value = 2;
3352 break;
3354 default:
3355 break;
3358 return value;
3360 #endif
3362 /* Report inconsistency between the assembler template and the operands.
3363 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3365 void
3366 output_operand_lossage (const char *cmsgid, ...)
3368 char *fmt_string;
3369 char *new_message;
3370 const char *pfx_str;
3371 va_list ap;
3373 va_start (ap, cmsgid);
3375 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
3376 asprintf (&fmt_string, "%s%s", pfx_str, _(cmsgid));
3377 vasprintf (&new_message, fmt_string, ap);
3379 if (this_is_asm_operands)
3380 error_for_asm (this_is_asm_operands, "%s", new_message);
3381 else
3382 internal_error ("%s", new_message);
3384 free (fmt_string);
3385 free (new_message);
3386 va_end (ap);
3389 /* Output of assembler code from a template, and its subroutines. */
3391 /* Annotate the assembly with a comment describing the pattern and
3392 alternative used. */
3394 static void
3395 output_asm_name (void)
3397 if (debug_insn)
3399 int num = INSN_CODE (debug_insn);
3400 fprintf (asm_out_file, "\t%s %d\t%s",
3401 ASM_COMMENT_START, INSN_UID (debug_insn),
3402 insn_data[num].name);
3403 if (insn_data[num].n_alternatives > 1)
3404 fprintf (asm_out_file, "/%d", which_alternative + 1);
3406 if (HAVE_ATTR_length)
3407 fprintf (asm_out_file, "\t[length = %d]",
3408 get_attr_length (debug_insn));
3410 /* Clear this so only the first assembler insn
3411 of any rtl insn will get the special comment for -dp. */
3412 debug_insn = 0;
3416 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3417 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3418 corresponds to the address of the object and 0 if to the object. */
3420 static tree
3421 get_mem_expr_from_op (rtx op, int *paddressp)
3423 tree expr;
3424 int inner_addressp;
3426 *paddressp = 0;
3428 if (REG_P (op))
3429 return REG_EXPR (op);
3430 else if (!MEM_P (op))
3431 return 0;
3433 if (MEM_EXPR (op) != 0)
3434 return MEM_EXPR (op);
3436 /* Otherwise we have an address, so indicate it and look at the address. */
3437 *paddressp = 1;
3438 op = XEXP (op, 0);
3440 /* First check if we have a decl for the address, then look at the right side
3441 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3442 But don't allow the address to itself be indirect. */
3443 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
3444 return expr;
3445 else if (GET_CODE (op) == PLUS
3446 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
3447 return expr;
3449 while (UNARY_P (op)
3450 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
3451 op = XEXP (op, 0);
3453 expr = get_mem_expr_from_op (op, &inner_addressp);
3454 return inner_addressp ? 0 : expr;
3457 /* Output operand names for assembler instructions. OPERANDS is the
3458 operand vector, OPORDER is the order to write the operands, and NOPS
3459 is the number of operands to write. */
3461 static void
3462 output_asm_operand_names (rtx *operands, int *oporder, int nops)
3464 int wrote = 0;
3465 int i;
3467 for (i = 0; i < nops; i++)
3469 int addressp;
3470 rtx op = operands[oporder[i]];
3471 tree expr = get_mem_expr_from_op (op, &addressp);
3473 fprintf (asm_out_file, "%c%s",
3474 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
3475 wrote = 1;
3476 if (expr)
3478 fprintf (asm_out_file, "%s",
3479 addressp ? "*" : "");
3480 print_mem_expr (asm_out_file, expr);
3481 wrote = 1;
3483 else if (REG_P (op) && ORIGINAL_REGNO (op)
3484 && ORIGINAL_REGNO (op) != REGNO (op))
3485 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
3489 #ifdef ASSEMBLER_DIALECT
3490 /* Helper function to parse assembler dialects in the asm string.
3491 This is called from output_asm_insn and asm_fprintf. */
3492 static const char *
3493 do_assembler_dialects (const char *p, int *dialect)
3495 char c = *(p - 1);
3497 switch (c)
3499 case '{':
3501 int i;
3503 if (*dialect)
3504 output_operand_lossage ("nested assembly dialect alternatives");
3505 else
3506 *dialect = 1;
3508 /* If we want the first dialect, do nothing. Otherwise, skip
3509 DIALECT_NUMBER of strings ending with '|'. */
3510 for (i = 0; i < dialect_number; i++)
3512 while (*p && *p != '}')
3514 if (*p == '|')
3516 p++;
3517 break;
3520 /* Skip over any character after a percent sign. */
3521 if (*p == '%')
3522 p++;
3523 if (*p)
3524 p++;
3527 if (*p == '}')
3528 break;
3531 if (*p == '\0')
3532 output_operand_lossage ("unterminated assembly dialect alternative");
3534 break;
3536 case '|':
3537 if (*dialect)
3539 /* Skip to close brace. */
3542 if (*p == '\0')
3544 output_operand_lossage ("unterminated assembly dialect alternative");
3545 break;
3548 /* Skip over any character after a percent sign. */
3549 if (*p == '%' && p[1])
3551 p += 2;
3552 continue;
3555 if (*p++ == '}')
3556 break;
3558 while (1);
3560 *dialect = 0;
3562 else
3563 putc (c, asm_out_file);
3564 break;
3566 case '}':
3567 if (! *dialect)
3568 putc (c, asm_out_file);
3569 *dialect = 0;
3570 break;
3571 default:
3572 gcc_unreachable ();
3575 return p;
3577 #endif
3579 /* Output text from TEMPLATE to the assembler output file,
3580 obeying %-directions to substitute operands taken from
3581 the vector OPERANDS.
3583 %N (for N a digit) means print operand N in usual manner.
3584 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3585 and print the label name with no punctuation.
3586 %cN means require operand N to be a constant
3587 and print the constant expression with no punctuation.
3588 %aN means expect operand N to be a memory address
3589 (not a memory reference!) and print a reference
3590 to that address.
3591 %nN means expect operand N to be a constant
3592 and print a constant expression for minus the value
3593 of the operand, with no other punctuation. */
3595 void
3596 output_asm_insn (const char *templ, rtx *operands)
3598 const char *p;
3599 int c;
3600 #ifdef ASSEMBLER_DIALECT
3601 int dialect = 0;
3602 #endif
3603 int oporder[MAX_RECOG_OPERANDS];
3604 char opoutput[MAX_RECOG_OPERANDS];
3605 int ops = 0;
3607 /* An insn may return a null string template
3608 in a case where no assembler code is needed. */
3609 if (*templ == 0)
3610 return;
3612 memset (opoutput, 0, sizeof opoutput);
3613 p = templ;
3614 putc ('\t', asm_out_file);
3616 #ifdef ASM_OUTPUT_OPCODE
3617 ASM_OUTPUT_OPCODE (asm_out_file, p);
3618 #endif
3620 while ((c = *p++))
3621 switch (c)
3623 case '\n':
3624 if (flag_verbose_asm)
3625 output_asm_operand_names (operands, oporder, ops);
3626 if (flag_print_asm_name)
3627 output_asm_name ();
3629 ops = 0;
3630 memset (opoutput, 0, sizeof opoutput);
3632 putc (c, asm_out_file);
3633 #ifdef ASM_OUTPUT_OPCODE
3634 while ((c = *p) == '\t')
3636 putc (c, asm_out_file);
3637 p++;
3639 ASM_OUTPUT_OPCODE (asm_out_file, p);
3640 #endif
3641 break;
3643 #ifdef ASSEMBLER_DIALECT
3644 case '{':
3645 case '}':
3646 case '|':
3647 p = do_assembler_dialects (p, &dialect);
3648 break;
3649 #endif
3651 case '%':
3652 /* %% outputs a single %. %{, %} and %| print {, } and | respectively
3653 if ASSEMBLER_DIALECT defined and these characters have a special
3654 meaning as dialect delimiters.*/
3655 if (*p == '%'
3656 #ifdef ASSEMBLER_DIALECT
3657 || *p == '{' || *p == '}' || *p == '|'
3658 #endif
3661 putc (*p, asm_out_file);
3662 p++;
3664 /* %= outputs a number which is unique to each insn in the entire
3665 compilation. This is useful for making local labels that are
3666 referred to more than once in a given insn. */
3667 else if (*p == '=')
3669 p++;
3670 fprintf (asm_out_file, "%d", insn_counter);
3672 /* % followed by a letter and some digits
3673 outputs an operand in a special way depending on the letter.
3674 Letters `acln' are implemented directly.
3675 Other letters are passed to `output_operand' so that
3676 the TARGET_PRINT_OPERAND hook can define them. */
3677 else if (ISALPHA (*p))
3679 int letter = *p++;
3680 unsigned long opnum;
3681 char *endptr;
3683 opnum = strtoul (p, &endptr, 10);
3685 if (endptr == p)
3686 output_operand_lossage ("operand number missing "
3687 "after %%-letter");
3688 else if (this_is_asm_operands && opnum >= insn_noperands)
3689 output_operand_lossage ("operand number out of range");
3690 else if (letter == 'l')
3691 output_asm_label (operands[opnum]);
3692 else if (letter == 'a')
3693 output_address (operands[opnum]);
3694 else if (letter == 'c')
3696 if (CONSTANT_ADDRESS_P (operands[opnum]))
3697 output_addr_const (asm_out_file, operands[opnum]);
3698 else
3699 output_operand (operands[opnum], 'c');
3701 else if (letter == 'n')
3703 if (CONST_INT_P (operands[opnum]))
3704 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3705 - INTVAL (operands[opnum]));
3706 else
3708 putc ('-', asm_out_file);
3709 output_addr_const (asm_out_file, operands[opnum]);
3712 else
3713 output_operand (operands[opnum], letter);
3715 if (!opoutput[opnum])
3716 oporder[ops++] = opnum;
3717 opoutput[opnum] = 1;
3719 p = endptr;
3720 c = *p;
3722 /* % followed by a digit outputs an operand the default way. */
3723 else if (ISDIGIT (*p))
3725 unsigned long opnum;
3726 char *endptr;
3728 opnum = strtoul (p, &endptr, 10);
3729 if (this_is_asm_operands && opnum >= insn_noperands)
3730 output_operand_lossage ("operand number out of range");
3731 else
3732 output_operand (operands[opnum], 0);
3734 if (!opoutput[opnum])
3735 oporder[ops++] = opnum;
3736 opoutput[opnum] = 1;
3738 p = endptr;
3739 c = *p;
3741 /* % followed by punctuation: output something for that
3742 punctuation character alone, with no operand. The
3743 TARGET_PRINT_OPERAND hook decides what is actually done. */
3744 else if (targetm.asm_out.print_operand_punct_valid_p ((unsigned char) *p))
3745 output_operand (NULL_RTX, *p++);
3746 else
3747 output_operand_lossage ("invalid %%-code");
3748 break;
3750 default:
3751 putc (c, asm_out_file);
3754 /* Write out the variable names for operands, if we know them. */
3755 if (flag_verbose_asm)
3756 output_asm_operand_names (operands, oporder, ops);
3757 if (flag_print_asm_name)
3758 output_asm_name ();
3760 putc ('\n', asm_out_file);
3763 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3765 void
3766 output_asm_label (rtx x)
3768 char buf[256];
3770 if (GET_CODE (x) == LABEL_REF)
3771 x = XEXP (x, 0);
3772 if (LABEL_P (x)
3773 || (NOTE_P (x)
3774 && NOTE_KIND (x) == NOTE_INSN_DELETED_LABEL))
3775 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3776 else
3777 output_operand_lossage ("'%%l' operand isn't a label");
3779 assemble_name (asm_out_file, buf);
3782 /* Helper rtx-iteration-function for mark_symbol_refs_as_used and
3783 output_operand. Marks SYMBOL_REFs as referenced through use of
3784 assemble_external. */
3786 static int
3787 mark_symbol_ref_as_used (rtx *xp, void *dummy ATTRIBUTE_UNUSED)
3789 rtx x = *xp;
3791 /* If we have a used symbol, we may have to emit assembly
3792 annotations corresponding to whether the symbol is external, weak
3793 or has non-default visibility. */
3794 if (GET_CODE (x) == SYMBOL_REF)
3796 tree t;
3798 t = SYMBOL_REF_DECL (x);
3799 if (t)
3800 assemble_external (t);
3802 return -1;
3805 return 0;
3808 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external. */
3810 void
3811 mark_symbol_refs_as_used (rtx x)
3813 for_each_rtx (&x, mark_symbol_ref_as_used, NULL);
3816 /* Print operand X using machine-dependent assembler syntax.
3817 CODE is a non-digit that preceded the operand-number in the % spec,
3818 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3819 between the % and the digits.
3820 When CODE is a non-letter, X is 0.
3822 The meanings of the letters are machine-dependent and controlled
3823 by TARGET_PRINT_OPERAND. */
3825 void
3826 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3828 if (x && GET_CODE (x) == SUBREG)
3829 x = alter_subreg (&x, true);
3831 /* X must not be a pseudo reg. */
3832 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3834 targetm.asm_out.print_operand (asm_out_file, x, code);
3836 if (x == NULL_RTX)
3837 return;
3839 for_each_rtx (&x, mark_symbol_ref_as_used, NULL);
3842 /* Print a memory reference operand for address X using
3843 machine-dependent assembler syntax. */
3845 void
3846 output_address (rtx x)
3848 bool changed = false;
3849 walk_alter_subreg (&x, &changed);
3850 targetm.asm_out.print_operand_address (asm_out_file, x);
3853 /* Print an integer constant expression in assembler syntax.
3854 Addition and subtraction are the only arithmetic
3855 that may appear in these expressions. */
3857 void
3858 output_addr_const (FILE *file, rtx x)
3860 char buf[256];
3862 restart:
3863 switch (GET_CODE (x))
3865 case PC:
3866 putc ('.', file);
3867 break;
3869 case SYMBOL_REF:
3870 if (SYMBOL_REF_DECL (x))
3871 assemble_external (SYMBOL_REF_DECL (x));
3872 #ifdef ASM_OUTPUT_SYMBOL_REF
3873 ASM_OUTPUT_SYMBOL_REF (file, x);
3874 #else
3875 assemble_name (file, XSTR (x, 0));
3876 #endif
3877 break;
3879 case LABEL_REF:
3880 x = XEXP (x, 0);
3881 /* Fall through. */
3882 case CODE_LABEL:
3883 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3884 #ifdef ASM_OUTPUT_LABEL_REF
3885 ASM_OUTPUT_LABEL_REF (file, buf);
3886 #else
3887 assemble_name (file, buf);
3888 #endif
3889 break;
3891 case CONST_INT:
3892 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3893 break;
3895 case CONST:
3896 /* This used to output parentheses around the expression,
3897 but that does not work on the 386 (either ATT or BSD assembler). */
3898 output_addr_const (file, XEXP (x, 0));
3899 break;
3901 case CONST_WIDE_INT:
3902 /* We do not know the mode here so we have to use a round about
3903 way to build a wide-int to get it printed properly. */
3905 wide_int w = wide_int::from_array (&CONST_WIDE_INT_ELT (x, 0),
3906 CONST_WIDE_INT_NUNITS (x),
3907 CONST_WIDE_INT_NUNITS (x)
3908 * HOST_BITS_PER_WIDE_INT,
3909 false);
3910 print_decs (w, file);
3912 break;
3914 case CONST_DOUBLE:
3915 if (CONST_DOUBLE_AS_INT_P (x))
3917 /* We can use %d if the number is one word and positive. */
3918 if (CONST_DOUBLE_HIGH (x))
3919 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3920 (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (x),
3921 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
3922 else if (CONST_DOUBLE_LOW (x) < 0)
3923 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
3924 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
3925 else
3926 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3928 else
3929 /* We can't handle floating point constants;
3930 PRINT_OPERAND must handle them. */
3931 output_operand_lossage ("floating constant misused");
3932 break;
3934 case CONST_FIXED:
3935 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_FIXED_VALUE_LOW (x));
3936 break;
3938 case PLUS:
3939 /* Some assemblers need integer constants to appear last (eg masm). */
3940 if (CONST_INT_P (XEXP (x, 0)))
3942 output_addr_const (file, XEXP (x, 1));
3943 if (INTVAL (XEXP (x, 0)) >= 0)
3944 fprintf (file, "+");
3945 output_addr_const (file, XEXP (x, 0));
3947 else
3949 output_addr_const (file, XEXP (x, 0));
3950 if (!CONST_INT_P (XEXP (x, 1))
3951 || INTVAL (XEXP (x, 1)) >= 0)
3952 fprintf (file, "+");
3953 output_addr_const (file, XEXP (x, 1));
3955 break;
3957 case MINUS:
3958 /* Avoid outputting things like x-x or x+5-x,
3959 since some assemblers can't handle that. */
3960 x = simplify_subtraction (x);
3961 if (GET_CODE (x) != MINUS)
3962 goto restart;
3964 output_addr_const (file, XEXP (x, 0));
3965 fprintf (file, "-");
3966 if ((CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0)
3967 || GET_CODE (XEXP (x, 1)) == PC
3968 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3969 output_addr_const (file, XEXP (x, 1));
3970 else
3972 fputs (targetm.asm_out.open_paren, file);
3973 output_addr_const (file, XEXP (x, 1));
3974 fputs (targetm.asm_out.close_paren, file);
3976 break;
3978 case ZERO_EXTEND:
3979 case SIGN_EXTEND:
3980 case SUBREG:
3981 case TRUNCATE:
3982 output_addr_const (file, XEXP (x, 0));
3983 break;
3985 default:
3986 if (targetm.asm_out.output_addr_const_extra (file, x))
3987 break;
3989 output_operand_lossage ("invalid expression as operand");
3993 /* Output a quoted string. */
3995 void
3996 output_quoted_string (FILE *asm_file, const char *string)
3998 #ifdef OUTPUT_QUOTED_STRING
3999 OUTPUT_QUOTED_STRING (asm_file, string);
4000 #else
4001 char c;
4003 putc ('\"', asm_file);
4004 while ((c = *string++) != 0)
4006 if (ISPRINT (c))
4008 if (c == '\"' || c == '\\')
4009 putc ('\\', asm_file);
4010 putc (c, asm_file);
4012 else
4013 fprintf (asm_file, "\\%03o", (unsigned char) c);
4015 putc ('\"', asm_file);
4016 #endif
4019 /* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */
4021 void
4022 fprint_whex (FILE *f, unsigned HOST_WIDE_INT value)
4024 char buf[2 + CHAR_BIT * sizeof (value) / 4];
4025 if (value == 0)
4026 putc ('0', f);
4027 else
4029 char *p = buf + sizeof (buf);
4031 *--p = "0123456789abcdef"[value % 16];
4032 while ((value /= 16) != 0);
4033 *--p = 'x';
4034 *--p = '0';
4035 fwrite (p, 1, buf + sizeof (buf) - p, f);
4039 /* Internal function that prints an unsigned long in decimal in reverse.
4040 The output string IS NOT null-terminated. */
4042 static int
4043 sprint_ul_rev (char *s, unsigned long value)
4045 int i = 0;
4048 s[i] = "0123456789"[value % 10];
4049 value /= 10;
4050 i++;
4051 /* alternate version, without modulo */
4052 /* oldval = value; */
4053 /* value /= 10; */
4054 /* s[i] = "0123456789" [oldval - 10*value]; */
4055 /* i++ */
4057 while (value != 0);
4058 return i;
4061 /* Write an unsigned long as decimal to a file, fast. */
4063 void
4064 fprint_ul (FILE *f, unsigned long value)
4066 /* python says: len(str(2**64)) == 20 */
4067 char s[20];
4068 int i;
4070 i = sprint_ul_rev (s, value);
4072 /* It's probably too small to bother with string reversal and fputs. */
4075 i--;
4076 putc (s[i], f);
4078 while (i != 0);
4081 /* Write an unsigned long as decimal to a string, fast.
4082 s must be wide enough to not overflow, at least 21 chars.
4083 Returns the length of the string (without terminating '\0'). */
4086 sprint_ul (char *s, unsigned long value)
4088 int len;
4089 char tmp_c;
4090 int i;
4091 int j;
4093 len = sprint_ul_rev (s, value);
4094 s[len] = '\0';
4096 /* Reverse the string. */
4097 i = 0;
4098 j = len - 1;
4099 while (i < j)
4101 tmp_c = s[i];
4102 s[i] = s[j];
4103 s[j] = tmp_c;
4104 i++; j--;
4107 return len;
4110 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
4111 %R prints the value of REGISTER_PREFIX.
4112 %L prints the value of LOCAL_LABEL_PREFIX.
4113 %U prints the value of USER_LABEL_PREFIX.
4114 %I prints the value of IMMEDIATE_PREFIX.
4115 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
4116 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
4118 We handle alternate assembler dialects here, just like output_asm_insn. */
4120 void
4121 asm_fprintf (FILE *file, const char *p, ...)
4123 char buf[10];
4124 char *q, c;
4125 #ifdef ASSEMBLER_DIALECT
4126 int dialect = 0;
4127 #endif
4128 va_list argptr;
4130 va_start (argptr, p);
4132 buf[0] = '%';
4134 while ((c = *p++))
4135 switch (c)
4137 #ifdef ASSEMBLER_DIALECT
4138 case '{':
4139 case '}':
4140 case '|':
4141 p = do_assembler_dialects (p, &dialect);
4142 break;
4143 #endif
4145 case '%':
4146 c = *p++;
4147 q = &buf[1];
4148 while (strchr ("-+ #0", c))
4150 *q++ = c;
4151 c = *p++;
4153 while (ISDIGIT (c) || c == '.')
4155 *q++ = c;
4156 c = *p++;
4158 switch (c)
4160 case '%':
4161 putc ('%', file);
4162 break;
4164 case 'd': case 'i': case 'u':
4165 case 'x': case 'X': case 'o':
4166 case 'c':
4167 *q++ = c;
4168 *q = 0;
4169 fprintf (file, buf, va_arg (argptr, int));
4170 break;
4172 case 'w':
4173 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
4174 'o' cases, but we do not check for those cases. It
4175 means that the value is a HOST_WIDE_INT, which may be
4176 either `long' or `long long'. */
4177 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
4178 q += strlen (HOST_WIDE_INT_PRINT);
4179 *q++ = *p++;
4180 *q = 0;
4181 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
4182 break;
4184 case 'l':
4185 *q++ = c;
4186 #ifdef HAVE_LONG_LONG
4187 if (*p == 'l')
4189 *q++ = *p++;
4190 *q++ = *p++;
4191 *q = 0;
4192 fprintf (file, buf, va_arg (argptr, long long));
4194 else
4195 #endif
4197 *q++ = *p++;
4198 *q = 0;
4199 fprintf (file, buf, va_arg (argptr, long));
4202 break;
4204 case 's':
4205 *q++ = c;
4206 *q = 0;
4207 fprintf (file, buf, va_arg (argptr, char *));
4208 break;
4210 case 'O':
4211 #ifdef ASM_OUTPUT_OPCODE
4212 ASM_OUTPUT_OPCODE (asm_out_file, p);
4213 #endif
4214 break;
4216 case 'R':
4217 #ifdef REGISTER_PREFIX
4218 fprintf (file, "%s", REGISTER_PREFIX);
4219 #endif
4220 break;
4222 case 'I':
4223 #ifdef IMMEDIATE_PREFIX
4224 fprintf (file, "%s", IMMEDIATE_PREFIX);
4225 #endif
4226 break;
4228 case 'L':
4229 #ifdef LOCAL_LABEL_PREFIX
4230 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
4231 #endif
4232 break;
4234 case 'U':
4235 fputs (user_label_prefix, file);
4236 break;
4238 #ifdef ASM_FPRINTF_EXTENSIONS
4239 /* Uppercase letters are reserved for general use by asm_fprintf
4240 and so are not available to target specific code. In order to
4241 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
4242 they are defined here. As they get turned into real extensions
4243 to asm_fprintf they should be removed from this list. */
4244 case 'A': case 'B': case 'C': case 'D': case 'E':
4245 case 'F': case 'G': case 'H': case 'J': case 'K':
4246 case 'M': case 'N': case 'P': case 'Q': case 'S':
4247 case 'T': case 'V': case 'W': case 'Y': case 'Z':
4248 break;
4250 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
4251 #endif
4252 default:
4253 gcc_unreachable ();
4255 break;
4257 default:
4258 putc (c, file);
4260 va_end (argptr);
4263 /* Return nonzero if this function has no function calls. */
4266 leaf_function_p (void)
4268 rtx_insn *insn;
4270 /* Some back-ends (e.g. s390) want leaf functions to stay leaf
4271 functions even if they call mcount. */
4272 if (crtl->profile && !targetm.keep_leaf_when_profiled ())
4273 return 0;
4275 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4277 if (CALL_P (insn)
4278 && ! SIBLING_CALL_P (insn))
4279 return 0;
4280 if (NONJUMP_INSN_P (insn)
4281 && GET_CODE (PATTERN (insn)) == SEQUENCE
4282 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
4283 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
4284 return 0;
4287 return 1;
4290 /* Return 1 if branch is a forward branch.
4291 Uses insn_shuid array, so it works only in the final pass. May be used by
4292 output templates to customary add branch prediction hints.
4295 final_forward_branch_p (rtx_insn *insn)
4297 int insn_id, label_id;
4299 gcc_assert (uid_shuid);
4300 insn_id = INSN_SHUID (insn);
4301 label_id = INSN_SHUID (JUMP_LABEL (insn));
4302 /* We've hit some insns that does not have id information available. */
4303 gcc_assert (insn_id && label_id);
4304 return insn_id < label_id;
4307 /* On some machines, a function with no call insns
4308 can run faster if it doesn't create its own register window.
4309 When output, the leaf function should use only the "output"
4310 registers. Ordinarily, the function would be compiled to use
4311 the "input" registers to find its arguments; it is a candidate
4312 for leaf treatment if it uses only the "input" registers.
4313 Leaf function treatment means renumbering so the function
4314 uses the "output" registers instead. */
4316 #ifdef LEAF_REGISTERS
4318 /* Return 1 if this function uses only the registers that can be
4319 safely renumbered. */
4322 only_leaf_regs_used (void)
4324 int i;
4325 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
4327 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4328 if ((df_regs_ever_live_p (i) || global_regs[i])
4329 && ! permitted_reg_in_leaf_functions[i])
4330 return 0;
4332 if (crtl->uses_pic_offset_table
4333 && pic_offset_table_rtx != 0
4334 && REG_P (pic_offset_table_rtx)
4335 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4336 return 0;
4338 return 1;
4341 /* Scan all instructions and renumber all registers into those
4342 available in leaf functions. */
4344 static void
4345 leaf_renumber_regs (rtx_insn *first)
4347 rtx_insn *insn;
4349 /* Renumber only the actual patterns.
4350 The reg-notes can contain frame pointer refs,
4351 and renumbering them could crash, and should not be needed. */
4352 for (insn = first; insn; insn = NEXT_INSN (insn))
4353 if (INSN_P (insn))
4354 leaf_renumber_regs_insn (PATTERN (insn));
4357 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4358 available in leaf functions. */
4360 void
4361 leaf_renumber_regs_insn (rtx in_rtx)
4363 int i, j;
4364 const char *format_ptr;
4366 if (in_rtx == 0)
4367 return;
4369 /* Renumber all input-registers into output-registers.
4370 renumbered_regs would be 1 for an output-register;
4371 they */
4373 if (REG_P (in_rtx))
4375 int newreg;
4377 /* Don't renumber the same reg twice. */
4378 if (in_rtx->used)
4379 return;
4381 newreg = REGNO (in_rtx);
4382 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4383 to reach here as part of a REG_NOTE. */
4384 if (newreg >= FIRST_PSEUDO_REGISTER)
4386 in_rtx->used = 1;
4387 return;
4389 newreg = LEAF_REG_REMAP (newreg);
4390 gcc_assert (newreg >= 0);
4391 df_set_regs_ever_live (REGNO (in_rtx), false);
4392 df_set_regs_ever_live (newreg, true);
4393 SET_REGNO (in_rtx, newreg);
4394 in_rtx->used = 1;
4397 if (INSN_P (in_rtx))
4399 /* Inside a SEQUENCE, we find insns.
4400 Renumber just the patterns of these insns,
4401 just as we do for the top-level insns. */
4402 leaf_renumber_regs_insn (PATTERN (in_rtx));
4403 return;
4406 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4408 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4409 switch (*format_ptr++)
4411 case 'e':
4412 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4413 break;
4415 case 'E':
4416 if (NULL != XVEC (in_rtx, i))
4418 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4419 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4421 break;
4423 case 'S':
4424 case 's':
4425 case '0':
4426 case 'i':
4427 case 'w':
4428 case 'n':
4429 case 'u':
4430 break;
4432 default:
4433 gcc_unreachable ();
4436 #endif
4438 /* Turn the RTL into assembly. */
4439 static unsigned int
4440 rest_of_handle_final (void)
4442 rtx x;
4443 const char *fnname;
4445 /* Get the function's name, as described by its RTL. This may be
4446 different from the DECL_NAME name used in the source file. */
4448 x = DECL_RTL (current_function_decl);
4449 gcc_assert (MEM_P (x));
4450 x = XEXP (x, 0);
4451 gcc_assert (GET_CODE (x) == SYMBOL_REF);
4452 fnname = XSTR (x, 0);
4454 assemble_start_function (current_function_decl, fnname);
4455 final_start_function (get_insns (), asm_out_file, optimize);
4456 final (get_insns (), asm_out_file, optimize);
4457 if (flag_use_caller_save)
4458 collect_fn_hard_reg_usage ();
4459 final_end_function ();
4461 /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
4462 directive that closes the procedure descriptor. Similarly, for x64 SEH.
4463 Otherwise it's not strictly necessary, but it doesn't hurt either. */
4464 output_function_exception_table (fnname);
4466 assemble_end_function (current_function_decl, fnname);
4468 user_defined_section_attribute = false;
4470 /* Free up reg info memory. */
4471 free_reg_info ();
4473 if (! quiet_flag)
4474 fflush (asm_out_file);
4476 /* Write DBX symbols if requested. */
4478 /* Note that for those inline functions where we don't initially
4479 know for certain that we will be generating an out-of-line copy,
4480 the first invocation of this routine (rest_of_compilation) will
4481 skip over this code by doing a `goto exit_rest_of_compilation;'.
4482 Later on, wrapup_global_declarations will (indirectly) call
4483 rest_of_compilation again for those inline functions that need
4484 to have out-of-line copies generated. During that call, we
4485 *will* be routed past here. */
4487 timevar_push (TV_SYMOUT);
4488 if (!DECL_IGNORED_P (current_function_decl))
4489 debug_hooks->function_decl (current_function_decl);
4490 timevar_pop (TV_SYMOUT);
4492 /* Release the blocks that are linked to DECL_INITIAL() to free the memory. */
4493 DECL_INITIAL (current_function_decl) = error_mark_node;
4495 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4496 && targetm.have_ctors_dtors)
4497 targetm.asm_out.constructor (XEXP (DECL_RTL (current_function_decl), 0),
4498 decl_init_priority_lookup
4499 (current_function_decl));
4500 if (DECL_STATIC_DESTRUCTOR (current_function_decl)
4501 && targetm.have_ctors_dtors)
4502 targetm.asm_out.destructor (XEXP (DECL_RTL (current_function_decl), 0),
4503 decl_fini_priority_lookup
4504 (current_function_decl));
4505 return 0;
4508 namespace {
4510 const pass_data pass_data_final =
4512 RTL_PASS, /* type */
4513 "final", /* name */
4514 OPTGROUP_NONE, /* optinfo_flags */
4515 TV_FINAL, /* tv_id */
4516 0, /* properties_required */
4517 0, /* properties_provided */
4518 0, /* properties_destroyed */
4519 0, /* todo_flags_start */
4520 0, /* todo_flags_finish */
4523 class pass_final : public rtl_opt_pass
4525 public:
4526 pass_final (gcc::context *ctxt)
4527 : rtl_opt_pass (pass_data_final, ctxt)
4530 /* opt_pass methods: */
4531 virtual unsigned int execute (function *) { return rest_of_handle_final (); }
4533 }; // class pass_final
4535 } // anon namespace
4537 rtl_opt_pass *
4538 make_pass_final (gcc::context *ctxt)
4540 return new pass_final (ctxt);
4544 static unsigned int
4545 rest_of_handle_shorten_branches (void)
4547 /* Shorten branches. */
4548 shorten_branches (get_insns ());
4549 return 0;
4552 namespace {
4554 const pass_data pass_data_shorten_branches =
4556 RTL_PASS, /* type */
4557 "shorten", /* name */
4558 OPTGROUP_NONE, /* optinfo_flags */
4559 TV_SHORTEN_BRANCH, /* tv_id */
4560 0, /* properties_required */
4561 0, /* properties_provided */
4562 0, /* properties_destroyed */
4563 0, /* todo_flags_start */
4564 0, /* todo_flags_finish */
4567 class pass_shorten_branches : public rtl_opt_pass
4569 public:
4570 pass_shorten_branches (gcc::context *ctxt)
4571 : rtl_opt_pass (pass_data_shorten_branches, ctxt)
4574 /* opt_pass methods: */
4575 virtual unsigned int execute (function *)
4577 return rest_of_handle_shorten_branches ();
4580 }; // class pass_shorten_branches
4582 } // anon namespace
4584 rtl_opt_pass *
4585 make_pass_shorten_branches (gcc::context *ctxt)
4587 return new pass_shorten_branches (ctxt);
4591 static unsigned int
4592 rest_of_clean_state (void)
4594 rtx_insn *insn, *next;
4595 FILE *final_output = NULL;
4596 int save_unnumbered = flag_dump_unnumbered;
4597 int save_noaddr = flag_dump_noaddr;
4599 if (flag_dump_final_insns)
4601 final_output = fopen (flag_dump_final_insns, "a");
4602 if (!final_output)
4604 error ("could not open final insn dump file %qs: %m",
4605 flag_dump_final_insns);
4606 flag_dump_final_insns = NULL;
4608 else
4610 flag_dump_noaddr = flag_dump_unnumbered = 1;
4611 if (flag_compare_debug_opt || flag_compare_debug)
4612 dump_flags |= TDF_NOUID;
4613 dump_function_header (final_output, current_function_decl,
4614 dump_flags);
4615 final_insns_dump_p = true;
4617 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4618 if (LABEL_P (insn))
4619 INSN_UID (insn) = CODE_LABEL_NUMBER (insn);
4620 else
4622 if (NOTE_P (insn))
4623 set_block_for_insn (insn, NULL);
4624 INSN_UID (insn) = 0;
4629 /* It is very important to decompose the RTL instruction chain here:
4630 debug information keeps pointing into CODE_LABEL insns inside the function
4631 body. If these remain pointing to the other insns, we end up preserving
4632 whole RTL chain and attached detailed debug info in memory. */
4633 for (insn = get_insns (); insn; insn = next)
4635 next = NEXT_INSN (insn);
4636 SET_NEXT_INSN (insn) = NULL;
4637 SET_PREV_INSN (insn) = NULL;
4639 if (final_output
4640 && (!NOTE_P (insn) ||
4641 (NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION
4642 && NOTE_KIND (insn) != NOTE_INSN_CALL_ARG_LOCATION
4643 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_BEG
4644 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_END
4645 && NOTE_KIND (insn) != NOTE_INSN_DELETED_DEBUG_LABEL)))
4646 print_rtl_single (final_output, insn);
4649 if (final_output)
4651 flag_dump_noaddr = save_noaddr;
4652 flag_dump_unnumbered = save_unnumbered;
4653 final_insns_dump_p = false;
4655 if (fclose (final_output))
4657 error ("could not close final insn dump file %qs: %m",
4658 flag_dump_final_insns);
4659 flag_dump_final_insns = NULL;
4663 /* In case the function was not output,
4664 don't leave any temporary anonymous types
4665 queued up for sdb output. */
4666 #ifdef SDB_DEBUGGING_INFO
4667 if (write_symbols == SDB_DEBUG)
4668 sdbout_types (NULL_TREE);
4669 #endif
4671 flag_rerun_cse_after_global_opts = 0;
4672 reload_completed = 0;
4673 epilogue_completed = 0;
4674 #ifdef STACK_REGS
4675 regstack_completed = 0;
4676 #endif
4678 /* Clear out the insn_length contents now that they are no
4679 longer valid. */
4680 init_insn_lengths ();
4682 /* Show no temporary slots allocated. */
4683 init_temp_slots ();
4685 free_bb_for_insn ();
4687 delete_tree_ssa ();
4689 /* We can reduce stack alignment on call site only when we are sure that
4690 the function body just produced will be actually used in the final
4691 executable. */
4692 if (decl_binds_to_current_def_p (current_function_decl))
4694 unsigned int pref = crtl->preferred_stack_boundary;
4695 if (crtl->stack_alignment_needed > crtl->preferred_stack_boundary)
4696 pref = crtl->stack_alignment_needed;
4697 cgraph_node::rtl_info (current_function_decl)
4698 ->preferred_incoming_stack_boundary = pref;
4701 /* Make sure volatile mem refs aren't considered valid operands for
4702 arithmetic insns. We must call this here if this is a nested inline
4703 function, since the above code leaves us in the init_recog state,
4704 and the function context push/pop code does not save/restore volatile_ok.
4706 ??? Maybe it isn't necessary for expand_start_function to call this
4707 anymore if we do it here? */
4709 init_recog_no_volatile ();
4711 /* We're done with this function. Free up memory if we can. */
4712 free_after_parsing (cfun);
4713 free_after_compilation (cfun);
4714 return 0;
4717 namespace {
4719 const pass_data pass_data_clean_state =
4721 RTL_PASS, /* type */
4722 "*clean_state", /* name */
4723 OPTGROUP_NONE, /* optinfo_flags */
4724 TV_FINAL, /* tv_id */
4725 0, /* properties_required */
4726 0, /* properties_provided */
4727 PROP_rtl, /* properties_destroyed */
4728 0, /* todo_flags_start */
4729 0, /* todo_flags_finish */
4732 class pass_clean_state : public rtl_opt_pass
4734 public:
4735 pass_clean_state (gcc::context *ctxt)
4736 : rtl_opt_pass (pass_data_clean_state, ctxt)
4739 /* opt_pass methods: */
4740 virtual unsigned int execute (function *)
4742 return rest_of_clean_state ();
4745 }; // class pass_clean_state
4747 } // anon namespace
4749 rtl_opt_pass *
4750 make_pass_clean_state (gcc::context *ctxt)
4752 return new pass_clean_state (ctxt);
4755 /* Return true if INSN is a call to the the current function. */
4757 static bool
4758 self_recursive_call_p (rtx_insn *insn)
4760 tree fndecl = get_call_fndecl (insn);
4761 return (fndecl == current_function_decl
4762 && decl_binds_to_current_def_p (fndecl));
4765 /* Collect hard register usage for the current function. */
4767 static void
4768 collect_fn_hard_reg_usage (void)
4770 rtx_insn *insn;
4771 #ifdef STACK_REGS
4772 int i;
4773 #endif
4774 struct cgraph_rtl_info *node;
4775 HARD_REG_SET function_used_regs;
4777 /* ??? To be removed when all the ports have been fixed. */
4778 if (!targetm.call_fusage_contains_non_callee_clobbers)
4779 return;
4781 CLEAR_HARD_REG_SET (function_used_regs);
4783 for (insn = get_insns (); insn != NULL_RTX; insn = next_insn (insn))
4785 HARD_REG_SET insn_used_regs;
4787 if (!NONDEBUG_INSN_P (insn))
4788 continue;
4790 if (CALL_P (insn)
4791 && !self_recursive_call_p (insn))
4793 if (!get_call_reg_set_usage (insn, &insn_used_regs,
4794 call_used_reg_set))
4795 return;
4797 IOR_HARD_REG_SET (function_used_regs, insn_used_regs);
4800 find_all_hard_reg_sets (insn, &insn_used_regs, false);
4801 IOR_HARD_REG_SET (function_used_regs, insn_used_regs);
4804 /* Be conservative - mark fixed and global registers as used. */
4805 IOR_HARD_REG_SET (function_used_regs, fixed_reg_set);
4807 #ifdef STACK_REGS
4808 /* Handle STACK_REGS conservatively, since the df-framework does not
4809 provide accurate information for them. */
4811 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
4812 SET_HARD_REG_BIT (function_used_regs, i);
4813 #endif
4815 /* The information we have gathered is only interesting if it exposes a
4816 register from the call_used_regs that is not used in this function. */
4817 if (hard_reg_set_subset_p (call_used_reg_set, function_used_regs))
4818 return;
4820 node = cgraph_node::rtl_info (current_function_decl);
4821 gcc_assert (node != NULL);
4823 COPY_HARD_REG_SET (node->function_used_regs, function_used_regs);
4824 node->function_used_regs_valid = 1;
4827 /* Get the declaration of the function called by INSN. */
4829 static tree
4830 get_call_fndecl (rtx_insn *insn)
4832 rtx note, datum;
4834 note = find_reg_note (insn, REG_CALL_DECL, NULL_RTX);
4835 if (note == NULL_RTX)
4836 return NULL_TREE;
4838 datum = XEXP (note, 0);
4839 if (datum != NULL_RTX)
4840 return SYMBOL_REF_DECL (datum);
4842 return NULL_TREE;
4845 /* Return the cgraph_rtl_info of the function called by INSN. Returns NULL for
4846 call targets that can be overwritten. */
4848 static struct cgraph_rtl_info *
4849 get_call_cgraph_rtl_info (rtx_insn *insn)
4851 tree fndecl;
4853 if (insn == NULL_RTX)
4854 return NULL;
4856 fndecl = get_call_fndecl (insn);
4857 if (fndecl == NULL_TREE
4858 || !decl_binds_to_current_def_p (fndecl))
4859 return NULL;
4861 return cgraph_node::rtl_info (fndecl);
4864 /* Find hard registers used by function call instruction INSN, and return them
4865 in REG_SET. Return DEFAULT_SET in REG_SET if not found. */
4867 bool
4868 get_call_reg_set_usage (rtx uncast_insn, HARD_REG_SET *reg_set,
4869 HARD_REG_SET default_set)
4871 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
4872 if (flag_use_caller_save)
4874 struct cgraph_rtl_info *node = get_call_cgraph_rtl_info (insn);
4875 if (node != NULL
4876 && node->function_used_regs_valid)
4878 COPY_HARD_REG_SET (*reg_set, node->function_used_regs);
4879 AND_HARD_REG_SET (*reg_set, default_set);
4880 return true;
4884 COPY_HARD_REG_SET (*reg_set, default_set);
4885 return false;