dump_printf: use %T and %G throughout
[official-gcc.git] / gcc / tree-cfg.c
blob87979bc4d753465d56dbc4ee37c55afb70aa85a7
1 /* Control flow functions for trees.
2 Copyright (C) 2001-2018 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "cfghooks.h"
30 #include "tree-pass.h"
31 #include "ssa.h"
32 #include "cgraph.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "trans-mem.h"
37 #include "stor-layout.h"
38 #include "print-tree.h"
39 #include "cfganal.h"
40 #include "gimple-fold.h"
41 #include "tree-eh.h"
42 #include "gimple-iterator.h"
43 #include "gimplify-me.h"
44 #include "gimple-walk.h"
45 #include "tree-cfg.h"
46 #include "tree-ssa-loop-manip.h"
47 #include "tree-ssa-loop-niter.h"
48 #include "tree-into-ssa.h"
49 #include "tree-dfa.h"
50 #include "tree-ssa.h"
51 #include "except.h"
52 #include "cfgloop.h"
53 #include "tree-ssa-propagate.h"
54 #include "value-prof.h"
55 #include "tree-inline.h"
56 #include "tree-ssa-live.h"
57 #include "omp-general.h"
58 #include "omp-expand.h"
59 #include "tree-cfgcleanup.h"
60 #include "gimplify.h"
61 #include "attribs.h"
62 #include "selftest.h"
63 #include "opts.h"
64 #include "asan.h"
66 /* This file contains functions for building the Control Flow Graph (CFG)
67 for a function tree. */
69 /* Local declarations. */
71 /* Initial capacity for the basic block array. */
72 static const int initial_cfg_capacity = 20;
74 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
75 which use a particular edge. The CASE_LABEL_EXPRs are chained together
76 via their CASE_CHAIN field, which we clear after we're done with the
77 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
79 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
80 update the case vector in response to edge redirections.
82 Right now this table is set up and torn down at key points in the
83 compilation process. It would be nice if we could make the table
84 more persistent. The key is getting notification of changes to
85 the CFG (particularly edge removal, creation and redirection). */
87 static hash_map<edge, tree> *edge_to_cases;
89 /* If we record edge_to_cases, this bitmap will hold indexes
90 of basic blocks that end in a GIMPLE_SWITCH which we touched
91 due to edge manipulations. */
93 static bitmap touched_switch_bbs;
95 /* CFG statistics. */
96 struct cfg_stats_d
98 long num_merged_labels;
101 static struct cfg_stats_d cfg_stats;
103 /* Data to pass to replace_block_vars_by_duplicates_1. */
104 struct replace_decls_d
106 hash_map<tree, tree> *vars_map;
107 tree to_context;
110 /* Hash table to store last discriminator assigned for each locus. */
111 struct locus_discrim_map
113 int location_line;
114 int discriminator;
117 /* Hashtable helpers. */
119 struct locus_discrim_hasher : free_ptr_hash <locus_discrim_map>
121 static inline hashval_t hash (const locus_discrim_map *);
122 static inline bool equal (const locus_discrim_map *,
123 const locus_discrim_map *);
126 /* Trivial hash function for a location_t. ITEM is a pointer to
127 a hash table entry that maps a location_t to a discriminator. */
129 inline hashval_t
130 locus_discrim_hasher::hash (const locus_discrim_map *item)
132 return item->location_line;
135 /* Equality function for the locus-to-discriminator map. A and B
136 point to the two hash table entries to compare. */
138 inline bool
139 locus_discrim_hasher::equal (const locus_discrim_map *a,
140 const locus_discrim_map *b)
142 return a->location_line == b->location_line;
145 static hash_table<locus_discrim_hasher> *discriminator_per_locus;
147 /* Basic blocks and flowgraphs. */
148 static void make_blocks (gimple_seq);
150 /* Edges. */
151 static void make_edges (void);
152 static void assign_discriminators (void);
153 static void make_cond_expr_edges (basic_block);
154 static void make_gimple_switch_edges (gswitch *, basic_block);
155 static bool make_goto_expr_edges (basic_block);
156 static void make_gimple_asm_edges (basic_block);
157 static edge gimple_redirect_edge_and_branch (edge, basic_block);
158 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
160 /* Various helpers. */
161 static inline bool stmt_starts_bb_p (gimple *, gimple *);
162 static int gimple_verify_flow_info (void);
163 static void gimple_make_forwarder_block (edge);
164 static gimple *first_non_label_stmt (basic_block);
165 static bool verify_gimple_transaction (gtransaction *);
166 static bool call_can_make_abnormal_goto (gimple *);
168 /* Flowgraph optimization and cleanup. */
169 static void gimple_merge_blocks (basic_block, basic_block);
170 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
171 static void remove_bb (basic_block);
172 static edge find_taken_edge_computed_goto (basic_block, tree);
173 static edge find_taken_edge_cond_expr (const gcond *, tree);
174 static void lower_phi_internal_fn ();
176 void
177 init_empty_tree_cfg_for_function (struct function *fn)
179 /* Initialize the basic block array. */
180 init_flow (fn);
181 profile_status_for_fn (fn) = PROFILE_ABSENT;
182 n_basic_blocks_for_fn (fn) = NUM_FIXED_BLOCKS;
183 last_basic_block_for_fn (fn) = NUM_FIXED_BLOCKS;
184 vec_alloc (basic_block_info_for_fn (fn), initial_cfg_capacity);
185 vec_safe_grow_cleared (basic_block_info_for_fn (fn),
186 initial_cfg_capacity);
188 /* Build a mapping of labels to their associated blocks. */
189 vec_alloc (label_to_block_map_for_fn (fn), initial_cfg_capacity);
190 vec_safe_grow_cleared (label_to_block_map_for_fn (fn),
191 initial_cfg_capacity);
193 SET_BASIC_BLOCK_FOR_FN (fn, ENTRY_BLOCK, ENTRY_BLOCK_PTR_FOR_FN (fn));
194 SET_BASIC_BLOCK_FOR_FN (fn, EXIT_BLOCK, EXIT_BLOCK_PTR_FOR_FN (fn));
196 ENTRY_BLOCK_PTR_FOR_FN (fn)->next_bb
197 = EXIT_BLOCK_PTR_FOR_FN (fn);
198 EXIT_BLOCK_PTR_FOR_FN (fn)->prev_bb
199 = ENTRY_BLOCK_PTR_FOR_FN (fn);
202 void
203 init_empty_tree_cfg (void)
205 init_empty_tree_cfg_for_function (cfun);
208 /*---------------------------------------------------------------------------
209 Create basic blocks
210 ---------------------------------------------------------------------------*/
212 /* Entry point to the CFG builder for trees. SEQ is the sequence of
213 statements to be added to the flowgraph. */
215 static void
216 build_gimple_cfg (gimple_seq seq)
218 /* Register specific gimple functions. */
219 gimple_register_cfg_hooks ();
221 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
223 init_empty_tree_cfg ();
225 make_blocks (seq);
227 /* Make sure there is always at least one block, even if it's empty. */
228 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
229 create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
231 /* Adjust the size of the array. */
232 if (basic_block_info_for_fn (cfun)->length ()
233 < (size_t) n_basic_blocks_for_fn (cfun))
234 vec_safe_grow_cleared (basic_block_info_for_fn (cfun),
235 n_basic_blocks_for_fn (cfun));
237 /* To speed up statement iterator walks, we first purge dead labels. */
238 cleanup_dead_labels ();
240 /* Group case nodes to reduce the number of edges.
241 We do this after cleaning up dead labels because otherwise we miss
242 a lot of obvious case merging opportunities. */
243 group_case_labels ();
245 /* Create the edges of the flowgraph. */
246 discriminator_per_locus = new hash_table<locus_discrim_hasher> (13);
247 make_edges ();
248 assign_discriminators ();
249 lower_phi_internal_fn ();
250 cleanup_dead_labels ();
251 delete discriminator_per_locus;
252 discriminator_per_locus = NULL;
255 /* Look for ANNOTATE calls with loop annotation kind in BB; if found, remove
256 them and propagate the information to LOOP. We assume that the annotations
257 come immediately before the condition in BB, if any. */
259 static void
260 replace_loop_annotate_in_block (basic_block bb, struct loop *loop)
262 gimple_stmt_iterator gsi = gsi_last_bb (bb);
263 gimple *stmt = gsi_stmt (gsi);
265 if (!(stmt && gimple_code (stmt) == GIMPLE_COND))
266 return;
268 for (gsi_prev_nondebug (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
270 stmt = gsi_stmt (gsi);
271 if (gimple_code (stmt) != GIMPLE_CALL)
272 break;
273 if (!gimple_call_internal_p (stmt)
274 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
275 break;
277 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
279 case annot_expr_ivdep_kind:
280 loop->safelen = INT_MAX;
281 break;
282 case annot_expr_unroll_kind:
283 loop->unroll
284 = (unsigned short) tree_to_shwi (gimple_call_arg (stmt, 2));
285 cfun->has_unroll = true;
286 break;
287 case annot_expr_no_vector_kind:
288 loop->dont_vectorize = true;
289 break;
290 case annot_expr_vector_kind:
291 loop->force_vectorize = true;
292 cfun->has_force_vectorize_loops = true;
293 break;
294 case annot_expr_parallel_kind:
295 loop->can_be_parallel = true;
296 loop->safelen = INT_MAX;
297 break;
298 default:
299 gcc_unreachable ();
302 stmt = gimple_build_assign (gimple_call_lhs (stmt),
303 gimple_call_arg (stmt, 0));
304 gsi_replace (&gsi, stmt, true);
308 /* Look for ANNOTATE calls with loop annotation kind; if found, remove
309 them and propagate the information to the loop. We assume that the
310 annotations come immediately before the condition of the loop. */
312 static void
313 replace_loop_annotate (void)
315 struct loop *loop;
316 basic_block bb;
317 gimple_stmt_iterator gsi;
318 gimple *stmt;
320 FOR_EACH_LOOP (loop, 0)
322 /* First look into the header. */
323 replace_loop_annotate_in_block (loop->header, loop);
325 /* Then look into the latch, if any. */
326 if (loop->latch)
327 replace_loop_annotate_in_block (loop->latch, loop);
330 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
331 FOR_EACH_BB_FN (bb, cfun)
333 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
335 stmt = gsi_stmt (gsi);
336 if (gimple_code (stmt) != GIMPLE_CALL)
337 continue;
338 if (!gimple_call_internal_p (stmt)
339 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
340 continue;
342 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
344 case annot_expr_ivdep_kind:
345 case annot_expr_unroll_kind:
346 case annot_expr_no_vector_kind:
347 case annot_expr_vector_kind:
348 case annot_expr_parallel_kind:
349 break;
350 default:
351 gcc_unreachable ();
354 warning_at (gimple_location (stmt), 0, "ignoring loop annotation");
355 stmt = gimple_build_assign (gimple_call_lhs (stmt),
356 gimple_call_arg (stmt, 0));
357 gsi_replace (&gsi, stmt, true);
362 /* Lower internal PHI function from GIMPLE FE. */
364 static void
365 lower_phi_internal_fn ()
367 basic_block bb, pred = NULL;
368 gimple_stmt_iterator gsi;
369 tree lhs;
370 gphi *phi_node;
371 gimple *stmt;
373 /* After edge creation, handle __PHI function from GIMPLE FE. */
374 FOR_EACH_BB_FN (bb, cfun)
376 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
378 stmt = gsi_stmt (gsi);
379 if (! gimple_call_internal_p (stmt, IFN_PHI))
380 break;
382 lhs = gimple_call_lhs (stmt);
383 phi_node = create_phi_node (lhs, bb);
385 /* Add arguments to the PHI node. */
386 for (unsigned i = 0; i < gimple_call_num_args (stmt); ++i)
388 tree arg = gimple_call_arg (stmt, i);
389 if (TREE_CODE (arg) == LABEL_DECL)
390 pred = label_to_block (cfun, arg);
391 else
393 edge e = find_edge (pred, bb);
394 add_phi_arg (phi_node, arg, e, UNKNOWN_LOCATION);
398 gsi_remove (&gsi, true);
403 static unsigned int
404 execute_build_cfg (void)
406 gimple_seq body = gimple_body (current_function_decl);
408 build_gimple_cfg (body);
409 gimple_set_body (current_function_decl, NULL);
410 if (dump_file && (dump_flags & TDF_DETAILS))
412 fprintf (dump_file, "Scope blocks:\n");
413 dump_scope_blocks (dump_file, dump_flags);
415 cleanup_tree_cfg ();
416 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
417 replace_loop_annotate ();
418 return 0;
421 namespace {
423 const pass_data pass_data_build_cfg =
425 GIMPLE_PASS, /* type */
426 "cfg", /* name */
427 OPTGROUP_NONE, /* optinfo_flags */
428 TV_TREE_CFG, /* tv_id */
429 PROP_gimple_leh, /* properties_required */
430 ( PROP_cfg | PROP_loops ), /* properties_provided */
431 0, /* properties_destroyed */
432 0, /* todo_flags_start */
433 0, /* todo_flags_finish */
436 class pass_build_cfg : public gimple_opt_pass
438 public:
439 pass_build_cfg (gcc::context *ctxt)
440 : gimple_opt_pass (pass_data_build_cfg, ctxt)
443 /* opt_pass methods: */
444 virtual unsigned int execute (function *) { return execute_build_cfg (); }
446 }; // class pass_build_cfg
448 } // anon namespace
450 gimple_opt_pass *
451 make_pass_build_cfg (gcc::context *ctxt)
453 return new pass_build_cfg (ctxt);
457 /* Return true if T is a computed goto. */
459 bool
460 computed_goto_p (gimple *t)
462 return (gimple_code (t) == GIMPLE_GOTO
463 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
466 /* Returns true if the sequence of statements STMTS only contains
467 a call to __builtin_unreachable (). */
469 bool
470 gimple_seq_unreachable_p (gimple_seq stmts)
472 if (stmts == NULL
473 /* Return false if -fsanitize=unreachable, we don't want to
474 optimize away those calls, but rather turn them into
475 __ubsan_handle_builtin_unreachable () or __builtin_trap ()
476 later. */
477 || sanitize_flags_p (SANITIZE_UNREACHABLE))
478 return false;
480 gimple_stmt_iterator gsi = gsi_last (stmts);
482 if (!gimple_call_builtin_p (gsi_stmt (gsi), BUILT_IN_UNREACHABLE))
483 return false;
485 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
487 gimple *stmt = gsi_stmt (gsi);
488 if (gimple_code (stmt) != GIMPLE_LABEL
489 && !is_gimple_debug (stmt)
490 && !gimple_clobber_p (stmt))
491 return false;
493 return true;
496 /* Returns true for edge E where e->src ends with a GIMPLE_COND and
497 the other edge points to a bb with just __builtin_unreachable ().
498 I.e. return true for C->M edge in:
499 <bb C>:
501 if (something)
502 goto <bb N>;
503 else
504 goto <bb M>;
505 <bb N>:
506 __builtin_unreachable ();
507 <bb M>: */
509 bool
510 assert_unreachable_fallthru_edge_p (edge e)
512 basic_block pred_bb = e->src;
513 gimple *last = last_stmt (pred_bb);
514 if (last && gimple_code (last) == GIMPLE_COND)
516 basic_block other_bb = EDGE_SUCC (pred_bb, 0)->dest;
517 if (other_bb == e->dest)
518 other_bb = EDGE_SUCC (pred_bb, 1)->dest;
519 if (EDGE_COUNT (other_bb->succs) == 0)
520 return gimple_seq_unreachable_p (bb_seq (other_bb));
522 return false;
526 /* Initialize GF_CALL_CTRL_ALTERING flag, which indicates the call
527 could alter control flow except via eh. We initialize the flag at
528 CFG build time and only ever clear it later. */
530 static void
531 gimple_call_initialize_ctrl_altering (gimple *stmt)
533 int flags = gimple_call_flags (stmt);
535 /* A call alters control flow if it can make an abnormal goto. */
536 if (call_can_make_abnormal_goto (stmt)
537 /* A call also alters control flow if it does not return. */
538 || flags & ECF_NORETURN
539 /* TM ending statements have backedges out of the transaction.
540 Return true so we split the basic block containing them.
541 Note that the TM_BUILTIN test is merely an optimization. */
542 || ((flags & ECF_TM_BUILTIN)
543 && is_tm_ending_fndecl (gimple_call_fndecl (stmt)))
544 /* BUILT_IN_RETURN call is same as return statement. */
545 || gimple_call_builtin_p (stmt, BUILT_IN_RETURN)
546 /* IFN_UNIQUE should be the last insn, to make checking for it
547 as cheap as possible. */
548 || (gimple_call_internal_p (stmt)
549 && gimple_call_internal_unique_p (stmt)))
550 gimple_call_set_ctrl_altering (stmt, true);
551 else
552 gimple_call_set_ctrl_altering (stmt, false);
556 /* Insert SEQ after BB and build a flowgraph. */
558 static basic_block
559 make_blocks_1 (gimple_seq seq, basic_block bb)
561 gimple_stmt_iterator i = gsi_start (seq);
562 gimple *stmt = NULL;
563 gimple *prev_stmt = NULL;
564 bool start_new_block = true;
565 bool first_stmt_of_seq = true;
567 while (!gsi_end_p (i))
569 /* PREV_STMT should only be set to a debug stmt if the debug
570 stmt is before nondebug stmts. Once stmt reaches a nondebug
571 nonlabel, prev_stmt will be set to it, so that
572 stmt_starts_bb_p will know to start a new block if a label is
573 found. However, if stmt was a label after debug stmts only,
574 keep the label in prev_stmt even if we find further debug
575 stmts, for there may be other labels after them, and they
576 should land in the same block. */
577 if (!prev_stmt || !stmt || !is_gimple_debug (stmt))
578 prev_stmt = stmt;
579 stmt = gsi_stmt (i);
581 if (stmt && is_gimple_call (stmt))
582 gimple_call_initialize_ctrl_altering (stmt);
584 /* If the statement starts a new basic block or if we have determined
585 in a previous pass that we need to create a new block for STMT, do
586 so now. */
587 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
589 if (!first_stmt_of_seq)
590 gsi_split_seq_before (&i, &seq);
591 bb = create_basic_block (seq, bb);
592 start_new_block = false;
593 prev_stmt = NULL;
596 /* Now add STMT to BB and create the subgraphs for special statement
597 codes. */
598 gimple_set_bb (stmt, bb);
600 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
601 next iteration. */
602 if (stmt_ends_bb_p (stmt))
604 /* If the stmt can make abnormal goto use a new temporary
605 for the assignment to the LHS. This makes sure the old value
606 of the LHS is available on the abnormal edge. Otherwise
607 we will end up with overlapping life-ranges for abnormal
608 SSA names. */
609 if (gimple_has_lhs (stmt)
610 && stmt_can_make_abnormal_goto (stmt)
611 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
613 tree lhs = gimple_get_lhs (stmt);
614 tree tmp = create_tmp_var (TREE_TYPE (lhs));
615 gimple *s = gimple_build_assign (lhs, tmp);
616 gimple_set_location (s, gimple_location (stmt));
617 gimple_set_block (s, gimple_block (stmt));
618 gimple_set_lhs (stmt, tmp);
619 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
620 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
621 DECL_GIMPLE_REG_P (tmp) = 1;
622 gsi_insert_after (&i, s, GSI_SAME_STMT);
624 start_new_block = true;
627 gsi_next (&i);
628 first_stmt_of_seq = false;
630 return bb;
633 /* Build a flowgraph for the sequence of stmts SEQ. */
635 static void
636 make_blocks (gimple_seq seq)
638 /* Look for debug markers right before labels, and move the debug
639 stmts after the labels. Accepting labels among debug markers
640 adds no value, just complexity; if we wanted to annotate labels
641 with view numbers (so sequencing among markers would matter) or
642 somesuch, we're probably better off still moving the labels, but
643 adding other debug annotations in their original positions or
644 emitting nonbind or bind markers associated with the labels in
645 the original position of the labels.
647 Moving labels would probably be simpler, but we can't do that:
648 moving labels assigns label ids to them, and doing so because of
649 debug markers makes for -fcompare-debug and possibly even codegen
650 differences. So, we have to move the debug stmts instead. To
651 that end, we scan SEQ backwards, marking the position of the
652 latest (earliest we find) label, and moving debug stmts that are
653 not separated from it by nondebug nonlabel stmts after the
654 label. */
655 if (MAY_HAVE_DEBUG_MARKER_STMTS)
657 gimple_stmt_iterator label = gsi_none ();
659 for (gimple_stmt_iterator i = gsi_last (seq); !gsi_end_p (i); gsi_prev (&i))
661 gimple *stmt = gsi_stmt (i);
663 /* If this is the first label we encounter (latest in SEQ)
664 before nondebug stmts, record its position. */
665 if (is_a <glabel *> (stmt))
667 if (gsi_end_p (label))
668 label = i;
669 continue;
672 /* Without a recorded label position to move debug stmts to,
673 there's nothing to do. */
674 if (gsi_end_p (label))
675 continue;
677 /* Move the debug stmt at I after LABEL. */
678 if (is_gimple_debug (stmt))
680 gcc_assert (gimple_debug_nonbind_marker_p (stmt));
681 /* As STMT is removed, I advances to the stmt after
682 STMT, so the gsi_prev in the for "increment"
683 expression gets us to the stmt we're to visit after
684 STMT. LABEL, however, would advance to the moved
685 stmt if we passed it to gsi_move_after, so pass it a
686 copy instead, so as to keep LABEL pointing to the
687 LABEL. */
688 gimple_stmt_iterator copy = label;
689 gsi_move_after (&i, &copy);
690 continue;
693 /* There aren't any (more?) debug stmts before label, so
694 there isn't anything else to move after it. */
695 label = gsi_none ();
699 make_blocks_1 (seq, ENTRY_BLOCK_PTR_FOR_FN (cfun));
702 /* Create and return a new empty basic block after bb AFTER. */
704 static basic_block
705 create_bb (void *h, void *e, basic_block after)
707 basic_block bb;
709 gcc_assert (!e);
711 /* Create and initialize a new basic block. Since alloc_block uses
712 GC allocation that clears memory to allocate a basic block, we do
713 not have to clear the newly allocated basic block here. */
714 bb = alloc_block ();
716 bb->index = last_basic_block_for_fn (cfun);
717 bb->flags = BB_NEW;
718 set_bb_seq (bb, h ? (gimple_seq) h : NULL);
720 /* Add the new block to the linked list of blocks. */
721 link_block (bb, after);
723 /* Grow the basic block array if needed. */
724 if ((size_t) last_basic_block_for_fn (cfun)
725 == basic_block_info_for_fn (cfun)->length ())
727 size_t new_size =
728 (last_basic_block_for_fn (cfun)
729 + (last_basic_block_for_fn (cfun) + 3) / 4);
730 vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size);
733 /* Add the newly created block to the array. */
734 SET_BASIC_BLOCK_FOR_FN (cfun, last_basic_block_for_fn (cfun), bb);
736 n_basic_blocks_for_fn (cfun)++;
737 last_basic_block_for_fn (cfun)++;
739 return bb;
743 /*---------------------------------------------------------------------------
744 Edge creation
745 ---------------------------------------------------------------------------*/
747 /* If basic block BB has an abnormal edge to a basic block
748 containing IFN_ABNORMAL_DISPATCHER internal call, return
749 that the dispatcher's basic block, otherwise return NULL. */
751 basic_block
752 get_abnormal_succ_dispatcher (basic_block bb)
754 edge e;
755 edge_iterator ei;
757 FOR_EACH_EDGE (e, ei, bb->succs)
758 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH)) == EDGE_ABNORMAL)
760 gimple_stmt_iterator gsi
761 = gsi_start_nondebug_after_labels_bb (e->dest);
762 gimple *g = gsi_stmt (gsi);
763 if (g && gimple_call_internal_p (g, IFN_ABNORMAL_DISPATCHER))
764 return e->dest;
766 return NULL;
769 /* Helper function for make_edges. Create a basic block with
770 with ABNORMAL_DISPATCHER internal call in it if needed, and
771 create abnormal edges from BBS to it and from it to FOR_BB
772 if COMPUTED_GOTO is false, otherwise factor the computed gotos. */
774 static void
775 handle_abnormal_edges (basic_block *dispatcher_bbs,
776 basic_block for_bb, int *bb_to_omp_idx,
777 auto_vec<basic_block> *bbs, bool computed_goto)
779 basic_block *dispatcher = dispatcher_bbs + (computed_goto ? 1 : 0);
780 unsigned int idx = 0;
781 basic_block bb;
782 bool inner = false;
784 if (bb_to_omp_idx)
786 dispatcher = dispatcher_bbs + 2 * bb_to_omp_idx[for_bb->index];
787 if (bb_to_omp_idx[for_bb->index] != 0)
788 inner = true;
791 /* If the dispatcher has been created already, then there are basic
792 blocks with abnormal edges to it, so just make a new edge to
793 for_bb. */
794 if (*dispatcher == NULL)
796 /* Check if there are any basic blocks that need to have
797 abnormal edges to this dispatcher. If there are none, return
798 early. */
799 if (bb_to_omp_idx == NULL)
801 if (bbs->is_empty ())
802 return;
804 else
806 FOR_EACH_VEC_ELT (*bbs, idx, bb)
807 if (bb_to_omp_idx[bb->index] == bb_to_omp_idx[for_bb->index])
808 break;
809 if (bb == NULL)
810 return;
813 /* Create the dispatcher bb. */
814 *dispatcher = create_basic_block (NULL, for_bb);
815 if (computed_goto)
817 /* Factor computed gotos into a common computed goto site. Also
818 record the location of that site so that we can un-factor the
819 gotos after we have converted back to normal form. */
820 gimple_stmt_iterator gsi = gsi_start_bb (*dispatcher);
822 /* Create the destination of the factored goto. Each original
823 computed goto will put its desired destination into this
824 variable and jump to the label we create immediately below. */
825 tree var = create_tmp_var (ptr_type_node, "gotovar");
827 /* Build a label for the new block which will contain the
828 factored computed goto. */
829 tree factored_label_decl
830 = create_artificial_label (UNKNOWN_LOCATION);
831 gimple *factored_computed_goto_label
832 = gimple_build_label (factored_label_decl);
833 gsi_insert_after (&gsi, factored_computed_goto_label, GSI_NEW_STMT);
835 /* Build our new computed goto. */
836 gimple *factored_computed_goto = gimple_build_goto (var);
837 gsi_insert_after (&gsi, factored_computed_goto, GSI_NEW_STMT);
839 FOR_EACH_VEC_ELT (*bbs, idx, bb)
841 if (bb_to_omp_idx
842 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
843 continue;
845 gsi = gsi_last_bb (bb);
846 gimple *last = gsi_stmt (gsi);
848 gcc_assert (computed_goto_p (last));
850 /* Copy the original computed goto's destination into VAR. */
851 gimple *assignment
852 = gimple_build_assign (var, gimple_goto_dest (last));
853 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
855 edge e = make_edge (bb, *dispatcher, EDGE_FALLTHRU);
856 e->goto_locus = gimple_location (last);
857 gsi_remove (&gsi, true);
860 else
862 tree arg = inner ? boolean_true_node : boolean_false_node;
863 gimple *g = gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER,
864 1, arg);
865 gimple_stmt_iterator gsi = gsi_after_labels (*dispatcher);
866 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
868 /* Create predecessor edges of the dispatcher. */
869 FOR_EACH_VEC_ELT (*bbs, idx, bb)
871 if (bb_to_omp_idx
872 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
873 continue;
874 make_edge (bb, *dispatcher, EDGE_ABNORMAL);
879 make_edge (*dispatcher, for_bb, EDGE_ABNORMAL);
882 /* Creates outgoing edges for BB. Returns 1 when it ends with an
883 computed goto, returns 2 when it ends with a statement that
884 might return to this function via an nonlocal goto, otherwise
885 return 0. Updates *PCUR_REGION with the OMP region this BB is in. */
887 static int
888 make_edges_bb (basic_block bb, struct omp_region **pcur_region, int *pomp_index)
890 gimple *last = last_stmt (bb);
891 bool fallthru = false;
892 int ret = 0;
894 if (!last)
895 return ret;
897 switch (gimple_code (last))
899 case GIMPLE_GOTO:
900 if (make_goto_expr_edges (bb))
901 ret = 1;
902 fallthru = false;
903 break;
904 case GIMPLE_RETURN:
906 edge e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
907 e->goto_locus = gimple_location (last);
908 fallthru = false;
910 break;
911 case GIMPLE_COND:
912 make_cond_expr_edges (bb);
913 fallthru = false;
914 break;
915 case GIMPLE_SWITCH:
916 make_gimple_switch_edges (as_a <gswitch *> (last), bb);
917 fallthru = false;
918 break;
919 case GIMPLE_RESX:
920 make_eh_edges (last);
921 fallthru = false;
922 break;
923 case GIMPLE_EH_DISPATCH:
924 fallthru = make_eh_dispatch_edges (as_a <geh_dispatch *> (last));
925 break;
927 case GIMPLE_CALL:
928 /* If this function receives a nonlocal goto, then we need to
929 make edges from this call site to all the nonlocal goto
930 handlers. */
931 if (stmt_can_make_abnormal_goto (last))
932 ret = 2;
934 /* If this statement has reachable exception handlers, then
935 create abnormal edges to them. */
936 make_eh_edges (last);
938 /* BUILTIN_RETURN is really a return statement. */
939 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
941 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
942 fallthru = false;
944 /* Some calls are known not to return. */
945 else
946 fallthru = !gimple_call_noreturn_p (last);
947 break;
949 case GIMPLE_ASSIGN:
950 /* A GIMPLE_ASSIGN may throw internally and thus be considered
951 control-altering. */
952 if (is_ctrl_altering_stmt (last))
953 make_eh_edges (last);
954 fallthru = true;
955 break;
957 case GIMPLE_ASM:
958 make_gimple_asm_edges (bb);
959 fallthru = true;
960 break;
962 CASE_GIMPLE_OMP:
963 fallthru = omp_make_gimple_edges (bb, pcur_region, pomp_index);
964 break;
966 case GIMPLE_TRANSACTION:
968 gtransaction *txn = as_a <gtransaction *> (last);
969 tree label1 = gimple_transaction_label_norm (txn);
970 tree label2 = gimple_transaction_label_uninst (txn);
972 if (label1)
973 make_edge (bb, label_to_block (cfun, label1), EDGE_FALLTHRU);
974 if (label2)
975 make_edge (bb, label_to_block (cfun, label2),
976 EDGE_TM_UNINSTRUMENTED | (label1 ? 0 : EDGE_FALLTHRU));
978 tree label3 = gimple_transaction_label_over (txn);
979 if (gimple_transaction_subcode (txn)
980 & (GTMA_HAVE_ABORT | GTMA_IS_OUTER))
981 make_edge (bb, label_to_block (cfun, label3), EDGE_TM_ABORT);
983 fallthru = false;
985 break;
987 default:
988 gcc_assert (!stmt_ends_bb_p (last));
989 fallthru = true;
990 break;
993 if (fallthru)
994 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
996 return ret;
999 /* Join all the blocks in the flowgraph. */
1001 static void
1002 make_edges (void)
1004 basic_block bb;
1005 struct omp_region *cur_region = NULL;
1006 auto_vec<basic_block> ab_edge_goto;
1007 auto_vec<basic_block> ab_edge_call;
1008 int *bb_to_omp_idx = NULL;
1009 int cur_omp_region_idx = 0;
1011 /* Create an edge from entry to the first block with executable
1012 statements in it. */
1013 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun),
1014 BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS),
1015 EDGE_FALLTHRU);
1017 /* Traverse the basic block array placing edges. */
1018 FOR_EACH_BB_FN (bb, cfun)
1020 int mer;
1022 if (bb_to_omp_idx)
1023 bb_to_omp_idx[bb->index] = cur_omp_region_idx;
1025 mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx);
1026 if (mer == 1)
1027 ab_edge_goto.safe_push (bb);
1028 else if (mer == 2)
1029 ab_edge_call.safe_push (bb);
1031 if (cur_region && bb_to_omp_idx == NULL)
1032 bb_to_omp_idx = XCNEWVEC (int, n_basic_blocks_for_fn (cfun));
1035 /* Computed gotos are hell to deal with, especially if there are
1036 lots of them with a large number of destinations. So we factor
1037 them to a common computed goto location before we build the
1038 edge list. After we convert back to normal form, we will un-factor
1039 the computed gotos since factoring introduces an unwanted jump.
1040 For non-local gotos and abnormal edges from calls to calls that return
1041 twice or forced labels, factor the abnormal edges too, by having all
1042 abnormal edges from the calls go to a common artificial basic block
1043 with ABNORMAL_DISPATCHER internal call and abnormal edges from that
1044 basic block to all forced labels and calls returning twice.
1045 We do this per-OpenMP structured block, because those regions
1046 are guaranteed to be single entry single exit by the standard,
1047 so it is not allowed to enter or exit such regions abnormally this way,
1048 thus all computed gotos, non-local gotos and setjmp/longjmp calls
1049 must not transfer control across SESE region boundaries. */
1050 if (!ab_edge_goto.is_empty () || !ab_edge_call.is_empty ())
1052 gimple_stmt_iterator gsi;
1053 basic_block dispatcher_bb_array[2] = { NULL, NULL };
1054 basic_block *dispatcher_bbs = dispatcher_bb_array;
1055 int count = n_basic_blocks_for_fn (cfun);
1057 if (bb_to_omp_idx)
1058 dispatcher_bbs = XCNEWVEC (basic_block, 2 * count);
1060 FOR_EACH_BB_FN (bb, cfun)
1062 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1064 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
1065 tree target;
1067 if (!label_stmt)
1068 break;
1070 target = gimple_label_label (label_stmt);
1072 /* Make an edge to every label block that has been marked as a
1073 potential target for a computed goto or a non-local goto. */
1074 if (FORCED_LABEL (target))
1075 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
1076 &ab_edge_goto, true);
1077 if (DECL_NONLOCAL (target))
1079 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
1080 &ab_edge_call, false);
1081 break;
1085 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
1086 gsi_next_nondebug (&gsi);
1087 if (!gsi_end_p (gsi))
1089 /* Make an edge to every setjmp-like call. */
1090 gimple *call_stmt = gsi_stmt (gsi);
1091 if (is_gimple_call (call_stmt)
1092 && ((gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE)
1093 || gimple_call_builtin_p (call_stmt,
1094 BUILT_IN_SETJMP_RECEIVER)))
1095 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
1096 &ab_edge_call, false);
1100 if (bb_to_omp_idx)
1101 XDELETE (dispatcher_bbs);
1104 XDELETE (bb_to_omp_idx);
1106 omp_free_regions ();
1109 /* Add SEQ after GSI. Start new bb after GSI, and created further bbs as
1110 needed. Returns true if new bbs were created.
1111 Note: This is transitional code, and should not be used for new code. We
1112 should be able to get rid of this by rewriting all target va-arg
1113 gimplification hooks to use an interface gimple_build_cond_value as described
1114 in https://gcc.gnu.org/ml/gcc-patches/2015-02/msg01194.html. */
1116 bool
1117 gimple_find_sub_bbs (gimple_seq seq, gimple_stmt_iterator *gsi)
1119 gimple *stmt = gsi_stmt (*gsi);
1120 basic_block bb = gimple_bb (stmt);
1121 basic_block lastbb, afterbb;
1122 int old_num_bbs = n_basic_blocks_for_fn (cfun);
1123 edge e;
1124 lastbb = make_blocks_1 (seq, bb);
1125 if (old_num_bbs == n_basic_blocks_for_fn (cfun))
1126 return false;
1127 e = split_block (bb, stmt);
1128 /* Move e->dest to come after the new basic blocks. */
1129 afterbb = e->dest;
1130 unlink_block (afterbb);
1131 link_block (afterbb, lastbb);
1132 redirect_edge_succ (e, bb->next_bb);
1133 bb = bb->next_bb;
1134 while (bb != afterbb)
1136 struct omp_region *cur_region = NULL;
1137 profile_count cnt = profile_count::zero ();
1138 bool all = true;
1140 int cur_omp_region_idx = 0;
1141 int mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx);
1142 gcc_assert (!mer && !cur_region);
1143 add_bb_to_loop (bb, afterbb->loop_father);
1145 edge e;
1146 edge_iterator ei;
1147 FOR_EACH_EDGE (e, ei, bb->preds)
1149 if (e->count ().initialized_p ())
1150 cnt += e->count ();
1151 else
1152 all = false;
1154 tree_guess_outgoing_edge_probabilities (bb);
1155 if (all || profile_status_for_fn (cfun) == PROFILE_READ)
1156 bb->count = cnt;
1158 bb = bb->next_bb;
1160 return true;
1163 /* Find the next available discriminator value for LOCUS. The
1164 discriminator distinguishes among several basic blocks that
1165 share a common locus, allowing for more accurate sample-based
1166 profiling. */
1168 static int
1169 next_discriminator_for_locus (int line)
1171 struct locus_discrim_map item;
1172 struct locus_discrim_map **slot;
1174 item.location_line = line;
1175 item.discriminator = 0;
1176 slot = discriminator_per_locus->find_slot_with_hash (&item, line, INSERT);
1177 gcc_assert (slot);
1178 if (*slot == HTAB_EMPTY_ENTRY)
1180 *slot = XNEW (struct locus_discrim_map);
1181 gcc_assert (*slot);
1182 (*slot)->location_line = line;
1183 (*slot)->discriminator = 0;
1185 (*slot)->discriminator++;
1186 return (*slot)->discriminator;
1189 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
1191 static bool
1192 same_line_p (location_t locus1, expanded_location *from, location_t locus2)
1194 expanded_location to;
1196 if (locus1 == locus2)
1197 return true;
1199 to = expand_location (locus2);
1201 if (from->line != to.line)
1202 return false;
1203 if (from->file == to.file)
1204 return true;
1205 return (from->file != NULL
1206 && to.file != NULL
1207 && filename_cmp (from->file, to.file) == 0);
1210 /* Assign discriminators to each basic block. */
1212 static void
1213 assign_discriminators (void)
1215 basic_block bb;
1217 FOR_EACH_BB_FN (bb, cfun)
1219 edge e;
1220 edge_iterator ei;
1221 gimple *last = last_stmt (bb);
1222 location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION;
1224 if (locus == UNKNOWN_LOCATION)
1225 continue;
1227 expanded_location locus_e = expand_location (locus);
1229 FOR_EACH_EDGE (e, ei, bb->succs)
1231 gimple *first = first_non_label_stmt (e->dest);
1232 gimple *last = last_stmt (e->dest);
1233 if ((first && same_line_p (locus, &locus_e,
1234 gimple_location (first)))
1235 || (last && same_line_p (locus, &locus_e,
1236 gimple_location (last))))
1238 if (e->dest->discriminator != 0 && bb->discriminator == 0)
1239 bb->discriminator
1240 = next_discriminator_for_locus (locus_e.line);
1241 else
1242 e->dest->discriminator
1243 = next_discriminator_for_locus (locus_e.line);
1249 /* Create the edges for a GIMPLE_COND starting at block BB. */
1251 static void
1252 make_cond_expr_edges (basic_block bb)
1254 gcond *entry = as_a <gcond *> (last_stmt (bb));
1255 gimple *then_stmt, *else_stmt;
1256 basic_block then_bb, else_bb;
1257 tree then_label, else_label;
1258 edge e;
1260 gcc_assert (entry);
1261 gcc_assert (gimple_code (entry) == GIMPLE_COND);
1263 /* Entry basic blocks for each component. */
1264 then_label = gimple_cond_true_label (entry);
1265 else_label = gimple_cond_false_label (entry);
1266 then_bb = label_to_block (cfun, then_label);
1267 else_bb = label_to_block (cfun, else_label);
1268 then_stmt = first_stmt (then_bb);
1269 else_stmt = first_stmt (else_bb);
1271 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
1272 e->goto_locus = gimple_location (then_stmt);
1273 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
1274 if (e)
1275 e->goto_locus = gimple_location (else_stmt);
1277 /* We do not need the labels anymore. */
1278 gimple_cond_set_true_label (entry, NULL_TREE);
1279 gimple_cond_set_false_label (entry, NULL_TREE);
1283 /* Called for each element in the hash table (P) as we delete the
1284 edge to cases hash table.
1286 Clear all the CASE_CHAINs to prevent problems with copying of
1287 SWITCH_EXPRs and structure sharing rules, then free the hash table
1288 element. */
1290 bool
1291 edge_to_cases_cleanup (edge const &, tree const &value, void *)
1293 tree t, next;
1295 for (t = value; t; t = next)
1297 next = CASE_CHAIN (t);
1298 CASE_CHAIN (t) = NULL;
1301 return true;
1304 /* Start recording information mapping edges to case labels. */
1306 void
1307 start_recording_case_labels (void)
1309 gcc_assert (edge_to_cases == NULL);
1310 edge_to_cases = new hash_map<edge, tree>;
1311 touched_switch_bbs = BITMAP_ALLOC (NULL);
1314 /* Return nonzero if we are recording information for case labels. */
1316 static bool
1317 recording_case_labels_p (void)
1319 return (edge_to_cases != NULL);
1322 /* Stop recording information mapping edges to case labels and
1323 remove any information we have recorded. */
1324 void
1325 end_recording_case_labels (void)
1327 bitmap_iterator bi;
1328 unsigned i;
1329 edge_to_cases->traverse<void *, edge_to_cases_cleanup> (NULL);
1330 delete edge_to_cases;
1331 edge_to_cases = NULL;
1332 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
1334 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
1335 if (bb)
1337 gimple *stmt = last_stmt (bb);
1338 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1339 group_case_labels_stmt (as_a <gswitch *> (stmt));
1342 BITMAP_FREE (touched_switch_bbs);
1345 /* If we are inside a {start,end}_recording_cases block, then return
1346 a chain of CASE_LABEL_EXPRs from T which reference E.
1348 Otherwise return NULL. */
1350 static tree
1351 get_cases_for_edge (edge e, gswitch *t)
1353 tree *slot;
1354 size_t i, n;
1356 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
1357 chains available. Return NULL so the caller can detect this case. */
1358 if (!recording_case_labels_p ())
1359 return NULL;
1361 slot = edge_to_cases->get (e);
1362 if (slot)
1363 return *slot;
1365 /* If we did not find E in the hash table, then this must be the first
1366 time we have been queried for information about E & T. Add all the
1367 elements from T to the hash table then perform the query again. */
1369 n = gimple_switch_num_labels (t);
1370 for (i = 0; i < n; i++)
1372 tree elt = gimple_switch_label (t, i);
1373 tree lab = CASE_LABEL (elt);
1374 basic_block label_bb = label_to_block (cfun, lab);
1375 edge this_edge = find_edge (e->src, label_bb);
1377 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
1378 a new chain. */
1379 tree &s = edge_to_cases->get_or_insert (this_edge);
1380 CASE_CHAIN (elt) = s;
1381 s = elt;
1384 return *edge_to_cases->get (e);
1387 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
1389 static void
1390 make_gimple_switch_edges (gswitch *entry, basic_block bb)
1392 size_t i, n;
1394 n = gimple_switch_num_labels (entry);
1396 for (i = 0; i < n; ++i)
1398 basic_block label_bb = gimple_switch_label_bb (cfun, entry, i);
1399 make_edge (bb, label_bb, 0);
1404 /* Return the basic block holding label DEST. */
1406 basic_block
1407 label_to_block (struct function *ifun, tree dest)
1409 int uid = LABEL_DECL_UID (dest);
1411 /* We would die hard when faced by an undefined label. Emit a label to
1412 the very first basic block. This will hopefully make even the dataflow
1413 and undefined variable warnings quite right. */
1414 if (seen_error () && uid < 0)
1416 gimple_stmt_iterator gsi =
1417 gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS));
1418 gimple *stmt;
1420 stmt = gimple_build_label (dest);
1421 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1422 uid = LABEL_DECL_UID (dest);
1424 if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
1425 return NULL;
1426 return (*ifun->cfg->x_label_to_block_map)[uid];
1429 /* Create edges for a goto statement at block BB. Returns true
1430 if abnormal edges should be created. */
1432 static bool
1433 make_goto_expr_edges (basic_block bb)
1435 gimple_stmt_iterator last = gsi_last_bb (bb);
1436 gimple *goto_t = gsi_stmt (last);
1438 /* A simple GOTO creates normal edges. */
1439 if (simple_goto_p (goto_t))
1441 tree dest = gimple_goto_dest (goto_t);
1442 basic_block label_bb = label_to_block (cfun, dest);
1443 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1444 e->goto_locus = gimple_location (goto_t);
1445 gsi_remove (&last, true);
1446 return false;
1449 /* A computed GOTO creates abnormal edges. */
1450 return true;
1453 /* Create edges for an asm statement with labels at block BB. */
1455 static void
1456 make_gimple_asm_edges (basic_block bb)
1458 gasm *stmt = as_a <gasm *> (last_stmt (bb));
1459 int i, n = gimple_asm_nlabels (stmt);
1461 for (i = 0; i < n; ++i)
1463 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1464 basic_block label_bb = label_to_block (cfun, label);
1465 make_edge (bb, label_bb, 0);
1469 /*---------------------------------------------------------------------------
1470 Flowgraph analysis
1471 ---------------------------------------------------------------------------*/
1473 /* Cleanup useless labels in basic blocks. This is something we wish
1474 to do early because it allows us to group case labels before creating
1475 the edges for the CFG, and it speeds up block statement iterators in
1476 all passes later on.
1477 We rerun this pass after CFG is created, to get rid of the labels that
1478 are no longer referenced. After then we do not run it any more, since
1479 (almost) no new labels should be created. */
1481 /* A map from basic block index to the leading label of that block. */
1482 static struct label_record
1484 /* The label. */
1485 tree label;
1487 /* True if the label is referenced from somewhere. */
1488 bool used;
1489 } *label_for_bb;
1491 /* Given LABEL return the first label in the same basic block. */
1493 static tree
1494 main_block_label (tree label)
1496 basic_block bb = label_to_block (cfun, label);
1497 tree main_label = label_for_bb[bb->index].label;
1499 /* label_to_block possibly inserted undefined label into the chain. */
1500 if (!main_label)
1502 label_for_bb[bb->index].label = label;
1503 main_label = label;
1506 label_for_bb[bb->index].used = true;
1507 return main_label;
1510 /* Clean up redundant labels within the exception tree. */
1512 static void
1513 cleanup_dead_labels_eh (void)
1515 eh_landing_pad lp;
1516 eh_region r;
1517 tree lab;
1518 int i;
1520 if (cfun->eh == NULL)
1521 return;
1523 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
1524 if (lp && lp->post_landing_pad)
1526 lab = main_block_label (lp->post_landing_pad);
1527 if (lab != lp->post_landing_pad)
1529 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1530 EH_LANDING_PAD_NR (lab) = lp->index;
1534 FOR_ALL_EH_REGION (r)
1535 switch (r->type)
1537 case ERT_CLEANUP:
1538 case ERT_MUST_NOT_THROW:
1539 break;
1541 case ERT_TRY:
1543 eh_catch c;
1544 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1546 lab = c->label;
1547 if (lab)
1548 c->label = main_block_label (lab);
1551 break;
1553 case ERT_ALLOWED_EXCEPTIONS:
1554 lab = r->u.allowed.label;
1555 if (lab)
1556 r->u.allowed.label = main_block_label (lab);
1557 break;
1562 /* Cleanup redundant labels. This is a three-step process:
1563 1) Find the leading label for each block.
1564 2) Redirect all references to labels to the leading labels.
1565 3) Cleanup all useless labels. */
1567 void
1568 cleanup_dead_labels (void)
1570 basic_block bb;
1571 label_for_bb = XCNEWVEC (struct label_record, last_basic_block_for_fn (cfun));
1573 /* Find a suitable label for each block. We use the first user-defined
1574 label if there is one, or otherwise just the first label we see. */
1575 FOR_EACH_BB_FN (bb, cfun)
1577 gimple_stmt_iterator i;
1579 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1581 tree label;
1582 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i));
1584 if (!label_stmt)
1585 break;
1587 label = gimple_label_label (label_stmt);
1589 /* If we have not yet seen a label for the current block,
1590 remember this one and see if there are more labels. */
1591 if (!label_for_bb[bb->index].label)
1593 label_for_bb[bb->index].label = label;
1594 continue;
1597 /* If we did see a label for the current block already, but it
1598 is an artificially created label, replace it if the current
1599 label is a user defined label. */
1600 if (!DECL_ARTIFICIAL (label)
1601 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1603 label_for_bb[bb->index].label = label;
1604 break;
1609 /* Now redirect all jumps/branches to the selected label.
1610 First do so for each block ending in a control statement. */
1611 FOR_EACH_BB_FN (bb, cfun)
1613 gimple *stmt = last_stmt (bb);
1614 tree label, new_label;
1616 if (!stmt)
1617 continue;
1619 switch (gimple_code (stmt))
1621 case GIMPLE_COND:
1623 gcond *cond_stmt = as_a <gcond *> (stmt);
1624 label = gimple_cond_true_label (cond_stmt);
1625 if (label)
1627 new_label = main_block_label (label);
1628 if (new_label != label)
1629 gimple_cond_set_true_label (cond_stmt, new_label);
1632 label = gimple_cond_false_label (cond_stmt);
1633 if (label)
1635 new_label = main_block_label (label);
1636 if (new_label != label)
1637 gimple_cond_set_false_label (cond_stmt, new_label);
1640 break;
1642 case GIMPLE_SWITCH:
1644 gswitch *switch_stmt = as_a <gswitch *> (stmt);
1645 size_t i, n = gimple_switch_num_labels (switch_stmt);
1647 /* Replace all destination labels. */
1648 for (i = 0; i < n; ++i)
1650 tree case_label = gimple_switch_label (switch_stmt, i);
1651 label = CASE_LABEL (case_label);
1652 new_label = main_block_label (label);
1653 if (new_label != label)
1654 CASE_LABEL (case_label) = new_label;
1656 break;
1659 case GIMPLE_ASM:
1661 gasm *asm_stmt = as_a <gasm *> (stmt);
1662 int i, n = gimple_asm_nlabels (asm_stmt);
1664 for (i = 0; i < n; ++i)
1666 tree cons = gimple_asm_label_op (asm_stmt, i);
1667 tree label = main_block_label (TREE_VALUE (cons));
1668 TREE_VALUE (cons) = label;
1670 break;
1673 /* We have to handle gotos until they're removed, and we don't
1674 remove them until after we've created the CFG edges. */
1675 case GIMPLE_GOTO:
1676 if (!computed_goto_p (stmt))
1678 ggoto *goto_stmt = as_a <ggoto *> (stmt);
1679 label = gimple_goto_dest (goto_stmt);
1680 new_label = main_block_label (label);
1681 if (new_label != label)
1682 gimple_goto_set_dest (goto_stmt, new_label);
1684 break;
1686 case GIMPLE_TRANSACTION:
1688 gtransaction *txn = as_a <gtransaction *> (stmt);
1690 label = gimple_transaction_label_norm (txn);
1691 if (label)
1693 new_label = main_block_label (label);
1694 if (new_label != label)
1695 gimple_transaction_set_label_norm (txn, new_label);
1698 label = gimple_transaction_label_uninst (txn);
1699 if (label)
1701 new_label = main_block_label (label);
1702 if (new_label != label)
1703 gimple_transaction_set_label_uninst (txn, new_label);
1706 label = gimple_transaction_label_over (txn);
1707 if (label)
1709 new_label = main_block_label (label);
1710 if (new_label != label)
1711 gimple_transaction_set_label_over (txn, new_label);
1714 break;
1716 default:
1717 break;
1721 /* Do the same for the exception region tree labels. */
1722 cleanup_dead_labels_eh ();
1724 /* Finally, purge dead labels. All user-defined labels and labels that
1725 can be the target of non-local gotos and labels which have their
1726 address taken are preserved. */
1727 FOR_EACH_BB_FN (bb, cfun)
1729 gimple_stmt_iterator i;
1730 tree label_for_this_bb = label_for_bb[bb->index].label;
1732 if (!label_for_this_bb)
1733 continue;
1735 /* If the main label of the block is unused, we may still remove it. */
1736 if (!label_for_bb[bb->index].used)
1737 label_for_this_bb = NULL;
1739 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1741 tree label;
1742 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i));
1744 if (!label_stmt)
1745 break;
1747 label = gimple_label_label (label_stmt);
1749 if (label == label_for_this_bb
1750 || !DECL_ARTIFICIAL (label)
1751 || DECL_NONLOCAL (label)
1752 || FORCED_LABEL (label))
1753 gsi_next (&i);
1754 else
1755 gsi_remove (&i, true);
1759 free (label_for_bb);
1762 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1763 the ones jumping to the same label.
1764 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1766 bool
1767 group_case_labels_stmt (gswitch *stmt)
1769 int old_size = gimple_switch_num_labels (stmt);
1770 int i, next_index, new_size;
1771 basic_block default_bb = NULL;
1773 default_bb = gimple_switch_default_bb (cfun, stmt);
1775 /* Look for possible opportunities to merge cases. */
1776 new_size = i = 1;
1777 while (i < old_size)
1779 tree base_case, base_high;
1780 basic_block base_bb;
1782 base_case = gimple_switch_label (stmt, i);
1784 gcc_assert (base_case);
1785 base_bb = label_to_block (cfun, CASE_LABEL (base_case));
1787 /* Discard cases that have the same destination as the default case or
1788 whose destiniation blocks have already been removed as unreachable. */
1789 if (base_bb == NULL || base_bb == default_bb)
1791 i++;
1792 continue;
1795 base_high = CASE_HIGH (base_case)
1796 ? CASE_HIGH (base_case)
1797 : CASE_LOW (base_case);
1798 next_index = i + 1;
1800 /* Try to merge case labels. Break out when we reach the end
1801 of the label vector or when we cannot merge the next case
1802 label with the current one. */
1803 while (next_index < old_size)
1805 tree merge_case = gimple_switch_label (stmt, next_index);
1806 basic_block merge_bb = label_to_block (cfun, CASE_LABEL (merge_case));
1807 wide_int bhp1 = wi::to_wide (base_high) + 1;
1809 /* Merge the cases if they jump to the same place,
1810 and their ranges are consecutive. */
1811 if (merge_bb == base_bb
1812 && wi::to_wide (CASE_LOW (merge_case)) == bhp1)
1814 base_high = CASE_HIGH (merge_case) ?
1815 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1816 CASE_HIGH (base_case) = base_high;
1817 next_index++;
1819 else
1820 break;
1823 /* Discard cases that have an unreachable destination block. */
1824 if (EDGE_COUNT (base_bb->succs) == 0
1825 && gimple_seq_unreachable_p (bb_seq (base_bb))
1826 /* Don't optimize this if __builtin_unreachable () is the
1827 implicitly added one by the C++ FE too early, before
1828 -Wreturn-type can be diagnosed. We'll optimize it later
1829 during switchconv pass or any other cfg cleanup. */
1830 && (gimple_in_ssa_p (cfun)
1831 || (LOCATION_LOCUS (gimple_location (last_stmt (base_bb)))
1832 != BUILTINS_LOCATION)))
1834 edge base_edge = find_edge (gimple_bb (stmt), base_bb);
1835 if (base_edge != NULL)
1836 remove_edge_and_dominated_blocks (base_edge);
1837 i = next_index;
1838 continue;
1841 if (new_size < i)
1842 gimple_switch_set_label (stmt, new_size,
1843 gimple_switch_label (stmt, i));
1844 i = next_index;
1845 new_size++;
1848 gcc_assert (new_size <= old_size);
1850 if (new_size < old_size)
1851 gimple_switch_set_num_labels (stmt, new_size);
1853 return new_size < old_size;
1856 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1857 and scan the sorted vector of cases. Combine the ones jumping to the
1858 same label. */
1860 bool
1861 group_case_labels (void)
1863 basic_block bb;
1864 bool changed = false;
1866 FOR_EACH_BB_FN (bb, cfun)
1868 gimple *stmt = last_stmt (bb);
1869 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1870 changed |= group_case_labels_stmt (as_a <gswitch *> (stmt));
1873 return changed;
1876 /* Checks whether we can merge block B into block A. */
1878 static bool
1879 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1881 gimple *stmt;
1883 if (!single_succ_p (a))
1884 return false;
1886 if (single_succ_edge (a)->flags & EDGE_COMPLEX)
1887 return false;
1889 if (single_succ (a) != b)
1890 return false;
1892 if (!single_pred_p (b))
1893 return false;
1895 if (a == ENTRY_BLOCK_PTR_FOR_FN (cfun)
1896 || b == EXIT_BLOCK_PTR_FOR_FN (cfun))
1897 return false;
1899 /* If A ends by a statement causing exceptions or something similar, we
1900 cannot merge the blocks. */
1901 stmt = last_stmt (a);
1902 if (stmt && stmt_ends_bb_p (stmt))
1903 return false;
1905 /* Do not allow a block with only a non-local label to be merged. */
1906 if (stmt)
1907 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
1908 if (DECL_NONLOCAL (gimple_label_label (label_stmt)))
1909 return false;
1911 /* Examine the labels at the beginning of B. */
1912 for (gimple_stmt_iterator gsi = gsi_start_bb (b); !gsi_end_p (gsi);
1913 gsi_next (&gsi))
1915 tree lab;
1916 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
1917 if (!label_stmt)
1918 break;
1919 lab = gimple_label_label (label_stmt);
1921 /* Do not remove user forced labels or for -O0 any user labels. */
1922 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1923 return false;
1926 /* Protect simple loop latches. We only want to avoid merging
1927 the latch with the loop header or with a block in another
1928 loop in this case. */
1929 if (current_loops
1930 && b->loop_father->latch == b
1931 && loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES)
1932 && (b->loop_father->header == a
1933 || b->loop_father != a->loop_father))
1934 return false;
1936 /* It must be possible to eliminate all phi nodes in B. If ssa form
1937 is not up-to-date and a name-mapping is registered, we cannot eliminate
1938 any phis. Symbols marked for renaming are never a problem though. */
1939 for (gphi_iterator gsi = gsi_start_phis (b); !gsi_end_p (gsi);
1940 gsi_next (&gsi))
1942 gphi *phi = gsi.phi ();
1943 /* Technically only new names matter. */
1944 if (name_registered_for_update_p (PHI_RESULT (phi)))
1945 return false;
1948 /* When not optimizing, don't merge if we'd lose goto_locus. */
1949 if (!optimize
1950 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1952 location_t goto_locus = single_succ_edge (a)->goto_locus;
1953 gimple_stmt_iterator prev, next;
1954 prev = gsi_last_nondebug_bb (a);
1955 next = gsi_after_labels (b);
1956 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1957 gsi_next_nondebug (&next);
1958 if ((gsi_end_p (prev)
1959 || gimple_location (gsi_stmt (prev)) != goto_locus)
1960 && (gsi_end_p (next)
1961 || gimple_location (gsi_stmt (next)) != goto_locus))
1962 return false;
1965 return true;
1968 /* Replaces all uses of NAME by VAL. */
1970 void
1971 replace_uses_by (tree name, tree val)
1973 imm_use_iterator imm_iter;
1974 use_operand_p use;
1975 gimple *stmt;
1976 edge e;
1978 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1980 /* Mark the block if we change the last stmt in it. */
1981 if (cfgcleanup_altered_bbs
1982 && stmt_ends_bb_p (stmt))
1983 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1985 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1987 replace_exp (use, val);
1989 if (gimple_code (stmt) == GIMPLE_PHI)
1991 e = gimple_phi_arg_edge (as_a <gphi *> (stmt),
1992 PHI_ARG_INDEX_FROM_USE (use));
1993 if (e->flags & EDGE_ABNORMAL
1994 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val))
1996 /* This can only occur for virtual operands, since
1997 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1998 would prevent replacement. */
1999 gcc_checking_assert (virtual_operand_p (name));
2000 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
2005 if (gimple_code (stmt) != GIMPLE_PHI)
2007 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
2008 gimple *orig_stmt = stmt;
2009 size_t i;
2011 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
2012 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
2013 only change sth from non-invariant to invariant, and only
2014 when propagating constants. */
2015 if (is_gimple_min_invariant (val))
2016 for (i = 0; i < gimple_num_ops (stmt); i++)
2018 tree op = gimple_op (stmt, i);
2019 /* Operands may be empty here. For example, the labels
2020 of a GIMPLE_COND are nulled out following the creation
2021 of the corresponding CFG edges. */
2022 if (op && TREE_CODE (op) == ADDR_EXPR)
2023 recompute_tree_invariant_for_addr_expr (op);
2026 if (fold_stmt (&gsi))
2027 stmt = gsi_stmt (gsi);
2029 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
2030 gimple_purge_dead_eh_edges (gimple_bb (stmt));
2032 update_stmt (stmt);
2036 gcc_checking_assert (has_zero_uses (name));
2038 /* Also update the trees stored in loop structures. */
2039 if (current_loops)
2041 struct loop *loop;
2043 FOR_EACH_LOOP (loop, 0)
2045 substitute_in_loop_info (loop, name, val);
2050 /* Merge block B into block A. */
2052 static void
2053 gimple_merge_blocks (basic_block a, basic_block b)
2055 gimple_stmt_iterator last, gsi;
2056 gphi_iterator psi;
2058 if (dump_file)
2059 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
2061 /* Remove all single-valued PHI nodes from block B of the form
2062 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
2063 gsi = gsi_last_bb (a);
2064 for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
2066 gimple *phi = gsi_stmt (psi);
2067 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
2068 gimple *copy;
2069 bool may_replace_uses = (virtual_operand_p (def)
2070 || may_propagate_copy (def, use));
2072 /* In case we maintain loop closed ssa form, do not propagate arguments
2073 of loop exit phi nodes. */
2074 if (current_loops
2075 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
2076 && !virtual_operand_p (def)
2077 && TREE_CODE (use) == SSA_NAME
2078 && a->loop_father != b->loop_father)
2079 may_replace_uses = false;
2081 if (!may_replace_uses)
2083 gcc_assert (!virtual_operand_p (def));
2085 /* Note that just emitting the copies is fine -- there is no problem
2086 with ordering of phi nodes. This is because A is the single
2087 predecessor of B, therefore results of the phi nodes cannot
2088 appear as arguments of the phi nodes. */
2089 copy = gimple_build_assign (def, use);
2090 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
2091 remove_phi_node (&psi, false);
2093 else
2095 /* If we deal with a PHI for virtual operands, we can simply
2096 propagate these without fussing with folding or updating
2097 the stmt. */
2098 if (virtual_operand_p (def))
2100 imm_use_iterator iter;
2101 use_operand_p use_p;
2102 gimple *stmt;
2104 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
2105 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2106 SET_USE (use_p, use);
2108 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
2109 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
2111 else
2112 replace_uses_by (def, use);
2114 remove_phi_node (&psi, true);
2118 /* Ensure that B follows A. */
2119 move_block_after (b, a);
2121 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
2122 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
2124 /* Remove labels from B and set gimple_bb to A for other statements. */
2125 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
2127 gimple *stmt = gsi_stmt (gsi);
2128 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2130 tree label = gimple_label_label (label_stmt);
2131 int lp_nr;
2133 gsi_remove (&gsi, false);
2135 /* Now that we can thread computed gotos, we might have
2136 a situation where we have a forced label in block B
2137 However, the label at the start of block B might still be
2138 used in other ways (think about the runtime checking for
2139 Fortran assigned gotos). So we can not just delete the
2140 label. Instead we move the label to the start of block A. */
2141 if (FORCED_LABEL (label))
2143 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
2144 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
2146 /* Other user labels keep around in a form of a debug stmt. */
2147 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_BIND_STMTS)
2149 gimple *dbg = gimple_build_debug_bind (label,
2150 integer_zero_node,
2151 stmt);
2152 gimple_debug_bind_reset_value (dbg);
2153 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
2156 lp_nr = EH_LANDING_PAD_NR (label);
2157 if (lp_nr)
2159 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
2160 lp->post_landing_pad = NULL;
2163 else
2165 gimple_set_bb (stmt, a);
2166 gsi_next (&gsi);
2170 /* When merging two BBs, if their counts are different, the larger count
2171 is selected as the new bb count. This is to handle inconsistent
2172 profiles. */
2173 if (a->loop_father == b->loop_father)
2175 a->count = a->count.merge (b->count);
2178 /* Merge the sequences. */
2179 last = gsi_last_bb (a);
2180 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
2181 set_bb_seq (b, NULL);
2183 if (cfgcleanup_altered_bbs)
2184 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
2188 /* Return the one of two successors of BB that is not reachable by a
2189 complex edge, if there is one. Else, return BB. We use
2190 this in optimizations that use post-dominators for their heuristics,
2191 to catch the cases in C++ where function calls are involved. */
2193 basic_block
2194 single_noncomplex_succ (basic_block bb)
2196 edge e0, e1;
2197 if (EDGE_COUNT (bb->succs) != 2)
2198 return bb;
2200 e0 = EDGE_SUCC (bb, 0);
2201 e1 = EDGE_SUCC (bb, 1);
2202 if (e0->flags & EDGE_COMPLEX)
2203 return e1->dest;
2204 if (e1->flags & EDGE_COMPLEX)
2205 return e0->dest;
2207 return bb;
2210 /* T is CALL_EXPR. Set current_function_calls_* flags. */
2212 void
2213 notice_special_calls (gcall *call)
2215 int flags = gimple_call_flags (call);
2217 if (flags & ECF_MAY_BE_ALLOCA)
2218 cfun->calls_alloca = true;
2219 if (flags & ECF_RETURNS_TWICE)
2220 cfun->calls_setjmp = true;
2224 /* Clear flags set by notice_special_calls. Used by dead code removal
2225 to update the flags. */
2227 void
2228 clear_special_calls (void)
2230 cfun->calls_alloca = false;
2231 cfun->calls_setjmp = false;
2234 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
2236 static void
2237 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
2239 /* Since this block is no longer reachable, we can just delete all
2240 of its PHI nodes. */
2241 remove_phi_nodes (bb);
2243 /* Remove edges to BB's successors. */
2244 while (EDGE_COUNT (bb->succs) > 0)
2245 remove_edge (EDGE_SUCC (bb, 0));
2249 /* Remove statements of basic block BB. */
2251 static void
2252 remove_bb (basic_block bb)
2254 gimple_stmt_iterator i;
2256 if (dump_file)
2258 fprintf (dump_file, "Removing basic block %d\n", bb->index);
2259 if (dump_flags & TDF_DETAILS)
2261 dump_bb (dump_file, bb, 0, TDF_BLOCKS);
2262 fprintf (dump_file, "\n");
2266 if (current_loops)
2268 struct loop *loop = bb->loop_father;
2270 /* If a loop gets removed, clean up the information associated
2271 with it. */
2272 if (loop->latch == bb
2273 || loop->header == bb)
2274 free_numbers_of_iterations_estimates (loop);
2277 /* Remove all the instructions in the block. */
2278 if (bb_seq (bb) != NULL)
2280 /* Walk backwards so as to get a chance to substitute all
2281 released DEFs into debug stmts. See
2282 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
2283 details. */
2284 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
2286 gimple *stmt = gsi_stmt (i);
2287 glabel *label_stmt = dyn_cast <glabel *> (stmt);
2288 if (label_stmt
2289 && (FORCED_LABEL (gimple_label_label (label_stmt))
2290 || DECL_NONLOCAL (gimple_label_label (label_stmt))))
2292 basic_block new_bb;
2293 gimple_stmt_iterator new_gsi;
2295 /* A non-reachable non-local label may still be referenced.
2296 But it no longer needs to carry the extra semantics of
2297 non-locality. */
2298 if (DECL_NONLOCAL (gimple_label_label (label_stmt)))
2300 DECL_NONLOCAL (gimple_label_label (label_stmt)) = 0;
2301 FORCED_LABEL (gimple_label_label (label_stmt)) = 1;
2304 new_bb = bb->prev_bb;
2305 /* Don't move any labels into ENTRY block. */
2306 if (new_bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2308 new_bb = single_succ (new_bb);
2309 gcc_assert (new_bb != bb);
2311 new_gsi = gsi_start_bb (new_bb);
2312 gsi_remove (&i, false);
2313 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
2315 else
2317 /* Release SSA definitions. */
2318 release_defs (stmt);
2319 gsi_remove (&i, true);
2322 if (gsi_end_p (i))
2323 i = gsi_last_bb (bb);
2324 else
2325 gsi_prev (&i);
2329 remove_phi_nodes_and_edges_for_unreachable_block (bb);
2330 bb->il.gimple.seq = NULL;
2331 bb->il.gimple.phi_nodes = NULL;
2335 /* Given a basic block BB and a value VAL for use in the final statement
2336 of the block (if a GIMPLE_COND, GIMPLE_SWITCH, or computed goto), return
2337 the edge that will be taken out of the block.
2338 If VAL is NULL_TREE, then the current value of the final statement's
2339 predicate or index is used.
2340 If the value does not match a unique edge, NULL is returned. */
2342 edge
2343 find_taken_edge (basic_block bb, tree val)
2345 gimple *stmt;
2347 stmt = last_stmt (bb);
2349 /* Handle ENTRY and EXIT. */
2350 if (!stmt)
2351 return NULL;
2353 if (gimple_code (stmt) == GIMPLE_COND)
2354 return find_taken_edge_cond_expr (as_a <gcond *> (stmt), val);
2356 if (gimple_code (stmt) == GIMPLE_SWITCH)
2357 return find_taken_edge_switch_expr (as_a <gswitch *> (stmt), val);
2359 if (computed_goto_p (stmt))
2361 /* Only optimize if the argument is a label, if the argument is
2362 not a label then we can not construct a proper CFG.
2364 It may be the case that we only need to allow the LABEL_REF to
2365 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2366 appear inside a LABEL_EXPR just to be safe. */
2367 if (val
2368 && (TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
2369 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
2370 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
2373 /* Otherwise we only know the taken successor edge if it's unique. */
2374 return single_succ_p (bb) ? single_succ_edge (bb) : NULL;
2377 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2378 statement, determine which of the outgoing edges will be taken out of the
2379 block. Return NULL if either edge may be taken. */
2381 static edge
2382 find_taken_edge_computed_goto (basic_block bb, tree val)
2384 basic_block dest;
2385 edge e = NULL;
2387 dest = label_to_block (cfun, val);
2388 if (dest)
2389 e = find_edge (bb, dest);
2391 /* It's possible for find_edge to return NULL here on invalid code
2392 that abuses the labels-as-values extension (e.g. code that attempts to
2393 jump *between* functions via stored labels-as-values; PR 84136).
2394 If so, then we simply return that NULL for the edge.
2395 We don't currently have a way of detecting such invalid code, so we
2396 can't assert that it was the case when a NULL edge occurs here. */
2398 return e;
2401 /* Given COND_STMT and a constant value VAL for use as the predicate,
2402 determine which of the two edges will be taken out of
2403 the statement's block. Return NULL if either edge may be taken.
2404 If VAL is NULL_TREE, then the current value of COND_STMT's predicate
2405 is used. */
2407 static edge
2408 find_taken_edge_cond_expr (const gcond *cond_stmt, tree val)
2410 edge true_edge, false_edge;
2412 if (val == NULL_TREE)
2414 /* Use the current value of the predicate. */
2415 if (gimple_cond_true_p (cond_stmt))
2416 val = integer_one_node;
2417 else if (gimple_cond_false_p (cond_stmt))
2418 val = integer_zero_node;
2419 else
2420 return NULL;
2422 else if (TREE_CODE (val) != INTEGER_CST)
2423 return NULL;
2425 extract_true_false_edges_from_block (gimple_bb (cond_stmt),
2426 &true_edge, &false_edge);
2428 return (integer_zerop (val) ? false_edge : true_edge);
2431 /* Given SWITCH_STMT and an INTEGER_CST VAL for use as the index, determine
2432 which edge will be taken out of the statement's block. Return NULL if any
2433 edge may be taken.
2434 If VAL is NULL_TREE, then the current value of SWITCH_STMT's index
2435 is used. */
2437 edge
2438 find_taken_edge_switch_expr (const gswitch *switch_stmt, tree val)
2440 basic_block dest_bb;
2441 edge e;
2442 tree taken_case;
2444 if (gimple_switch_num_labels (switch_stmt) == 1)
2445 taken_case = gimple_switch_default_label (switch_stmt);
2446 else
2448 if (val == NULL_TREE)
2449 val = gimple_switch_index (switch_stmt);
2450 if (TREE_CODE (val) != INTEGER_CST)
2451 return NULL;
2452 else
2453 taken_case = find_case_label_for_value (switch_stmt, val);
2455 dest_bb = label_to_block (cfun, CASE_LABEL (taken_case));
2457 e = find_edge (gimple_bb (switch_stmt), dest_bb);
2458 gcc_assert (e);
2459 return e;
2463 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2464 We can make optimal use here of the fact that the case labels are
2465 sorted: We can do a binary search for a case matching VAL. */
2467 tree
2468 find_case_label_for_value (const gswitch *switch_stmt, tree val)
2470 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2471 tree default_case = gimple_switch_default_label (switch_stmt);
2473 for (low = 0, high = n; high - low > 1; )
2475 size_t i = (high + low) / 2;
2476 tree t = gimple_switch_label (switch_stmt, i);
2477 int cmp;
2479 /* Cache the result of comparing CASE_LOW and val. */
2480 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2482 if (cmp > 0)
2483 high = i;
2484 else
2485 low = i;
2487 if (CASE_HIGH (t) == NULL)
2489 /* A singe-valued case label. */
2490 if (cmp == 0)
2491 return t;
2493 else
2495 /* A case range. We can only handle integer ranges. */
2496 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2497 return t;
2501 return default_case;
2505 /* Dump a basic block on stderr. */
2507 void
2508 gimple_debug_bb (basic_block bb)
2510 dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
2514 /* Dump basic block with index N on stderr. */
2516 basic_block
2517 gimple_debug_bb_n (int n)
2519 gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun, n));
2520 return BASIC_BLOCK_FOR_FN (cfun, n);
2524 /* Dump the CFG on stderr.
2526 FLAGS are the same used by the tree dumping functions
2527 (see TDF_* in dumpfile.h). */
2529 void
2530 gimple_debug_cfg (dump_flags_t flags)
2532 gimple_dump_cfg (stderr, flags);
2536 /* Dump the program showing basic block boundaries on the given FILE.
2538 FLAGS are the same used by the tree dumping functions (see TDF_* in
2539 tree.h). */
2541 void
2542 gimple_dump_cfg (FILE *file, dump_flags_t flags)
2544 if (flags & TDF_DETAILS)
2546 dump_function_header (file, current_function_decl, flags);
2547 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2548 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
2549 last_basic_block_for_fn (cfun));
2551 brief_dump_cfg (file, flags);
2552 fprintf (file, "\n");
2555 if (flags & TDF_STATS)
2556 dump_cfg_stats (file);
2558 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2562 /* Dump CFG statistics on FILE. */
2564 void
2565 dump_cfg_stats (FILE *file)
2567 static long max_num_merged_labels = 0;
2568 unsigned long size, total = 0;
2569 long num_edges;
2570 basic_block bb;
2571 const char * const fmt_str = "%-30s%-13s%12s\n";
2572 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2573 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2574 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2575 const char *funcname = current_function_name ();
2577 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2579 fprintf (file, "---------------------------------------------------------\n");
2580 fprintf (file, fmt_str, "", " Number of ", "Memory");
2581 fprintf (file, fmt_str, "", " instances ", "used ");
2582 fprintf (file, "---------------------------------------------------------\n");
2584 size = n_basic_blocks_for_fn (cfun) * sizeof (struct basic_block_def);
2585 total += size;
2586 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks_for_fn (cfun),
2587 SCALE (size), LABEL (size));
2589 num_edges = 0;
2590 FOR_EACH_BB_FN (bb, cfun)
2591 num_edges += EDGE_COUNT (bb->succs);
2592 size = num_edges * sizeof (struct edge_def);
2593 total += size;
2594 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2596 fprintf (file, "---------------------------------------------------------\n");
2597 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2598 LABEL (total));
2599 fprintf (file, "---------------------------------------------------------\n");
2600 fprintf (file, "\n");
2602 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2603 max_num_merged_labels = cfg_stats.num_merged_labels;
2605 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2606 cfg_stats.num_merged_labels, max_num_merged_labels);
2608 fprintf (file, "\n");
2612 /* Dump CFG statistics on stderr. Keep extern so that it's always
2613 linked in the final executable. */
2615 DEBUG_FUNCTION void
2616 debug_cfg_stats (void)
2618 dump_cfg_stats (stderr);
2621 /*---------------------------------------------------------------------------
2622 Miscellaneous helpers
2623 ---------------------------------------------------------------------------*/
2625 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2626 flow. Transfers of control flow associated with EH are excluded. */
2628 static bool
2629 call_can_make_abnormal_goto (gimple *t)
2631 /* If the function has no non-local labels, then a call cannot make an
2632 abnormal transfer of control. */
2633 if (!cfun->has_nonlocal_label
2634 && !cfun->calls_setjmp)
2635 return false;
2637 /* Likewise if the call has no side effects. */
2638 if (!gimple_has_side_effects (t))
2639 return false;
2641 /* Likewise if the called function is leaf. */
2642 if (gimple_call_flags (t) & ECF_LEAF)
2643 return false;
2645 return true;
2649 /* Return true if T can make an abnormal transfer of control flow.
2650 Transfers of control flow associated with EH are excluded. */
2652 bool
2653 stmt_can_make_abnormal_goto (gimple *t)
2655 if (computed_goto_p (t))
2656 return true;
2657 if (is_gimple_call (t))
2658 return call_can_make_abnormal_goto (t);
2659 return false;
2663 /* Return true if T represents a stmt that always transfers control. */
2665 bool
2666 is_ctrl_stmt (gimple *t)
2668 switch (gimple_code (t))
2670 case GIMPLE_COND:
2671 case GIMPLE_SWITCH:
2672 case GIMPLE_GOTO:
2673 case GIMPLE_RETURN:
2674 case GIMPLE_RESX:
2675 return true;
2676 default:
2677 return false;
2682 /* Return true if T is a statement that may alter the flow of control
2683 (e.g., a call to a non-returning function). */
2685 bool
2686 is_ctrl_altering_stmt (gimple *t)
2688 gcc_assert (t);
2690 switch (gimple_code (t))
2692 case GIMPLE_CALL:
2693 /* Per stmt call flag indicates whether the call could alter
2694 controlflow. */
2695 if (gimple_call_ctrl_altering_p (t))
2696 return true;
2697 break;
2699 case GIMPLE_EH_DISPATCH:
2700 /* EH_DISPATCH branches to the individual catch handlers at
2701 this level of a try or allowed-exceptions region. It can
2702 fallthru to the next statement as well. */
2703 return true;
2705 case GIMPLE_ASM:
2706 if (gimple_asm_nlabels (as_a <gasm *> (t)) > 0)
2707 return true;
2708 break;
2710 CASE_GIMPLE_OMP:
2711 /* OpenMP directives alter control flow. */
2712 return true;
2714 case GIMPLE_TRANSACTION:
2715 /* A transaction start alters control flow. */
2716 return true;
2718 default:
2719 break;
2722 /* If a statement can throw, it alters control flow. */
2723 return stmt_can_throw_internal (t);
2727 /* Return true if T is a simple local goto. */
2729 bool
2730 simple_goto_p (gimple *t)
2732 return (gimple_code (t) == GIMPLE_GOTO
2733 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2737 /* Return true if STMT should start a new basic block. PREV_STMT is
2738 the statement preceding STMT. It is used when STMT is a label or a
2739 case label. Labels should only start a new basic block if their
2740 previous statement wasn't a label. Otherwise, sequence of labels
2741 would generate unnecessary basic blocks that only contain a single
2742 label. */
2744 static inline bool
2745 stmt_starts_bb_p (gimple *stmt, gimple *prev_stmt)
2747 if (stmt == NULL)
2748 return false;
2750 /* PREV_STMT is only set to a debug stmt if the debug stmt is before
2751 any nondebug stmts in the block. We don't want to start another
2752 block in this case: the debug stmt will already have started the
2753 one STMT would start if we weren't outputting debug stmts. */
2754 if (prev_stmt && is_gimple_debug (prev_stmt))
2755 return false;
2757 /* Labels start a new basic block only if the preceding statement
2758 wasn't a label of the same type. This prevents the creation of
2759 consecutive blocks that have nothing but a single label. */
2760 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2762 /* Nonlocal and computed GOTO targets always start a new block. */
2763 if (DECL_NONLOCAL (gimple_label_label (label_stmt))
2764 || FORCED_LABEL (gimple_label_label (label_stmt)))
2765 return true;
2767 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2769 if (DECL_NONLOCAL (gimple_label_label (
2770 as_a <glabel *> (prev_stmt))))
2771 return true;
2773 cfg_stats.num_merged_labels++;
2774 return false;
2776 else
2777 return true;
2779 else if (gimple_code (stmt) == GIMPLE_CALL)
2781 if (gimple_call_flags (stmt) & ECF_RETURNS_TWICE)
2782 /* setjmp acts similar to a nonlocal GOTO target and thus should
2783 start a new block. */
2784 return true;
2785 if (gimple_call_internal_p (stmt, IFN_PHI)
2786 && prev_stmt
2787 && gimple_code (prev_stmt) != GIMPLE_LABEL
2788 && (gimple_code (prev_stmt) != GIMPLE_CALL
2789 || ! gimple_call_internal_p (prev_stmt, IFN_PHI)))
2790 /* PHI nodes start a new block unless preceeded by a label
2791 or another PHI. */
2792 return true;
2795 return false;
2799 /* Return true if T should end a basic block. */
2801 bool
2802 stmt_ends_bb_p (gimple *t)
2804 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2807 /* Remove block annotations and other data structures. */
2809 void
2810 delete_tree_cfg_annotations (struct function *fn)
2812 vec_free (label_to_block_map_for_fn (fn));
2815 /* Return the virtual phi in BB. */
2817 gphi *
2818 get_virtual_phi (basic_block bb)
2820 for (gphi_iterator gsi = gsi_start_phis (bb);
2821 !gsi_end_p (gsi);
2822 gsi_next (&gsi))
2824 gphi *phi = gsi.phi ();
2826 if (virtual_operand_p (PHI_RESULT (phi)))
2827 return phi;
2830 return NULL;
2833 /* Return the first statement in basic block BB. */
2835 gimple *
2836 first_stmt (basic_block bb)
2838 gimple_stmt_iterator i = gsi_start_bb (bb);
2839 gimple *stmt = NULL;
2841 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2843 gsi_next (&i);
2844 stmt = NULL;
2846 return stmt;
2849 /* Return the first non-label statement in basic block BB. */
2851 static gimple *
2852 first_non_label_stmt (basic_block bb)
2854 gimple_stmt_iterator i = gsi_start_bb (bb);
2855 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2856 gsi_next (&i);
2857 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2860 /* Return the last statement in basic block BB. */
2862 gimple *
2863 last_stmt (basic_block bb)
2865 gimple_stmt_iterator i = gsi_last_bb (bb);
2866 gimple *stmt = NULL;
2868 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2870 gsi_prev (&i);
2871 stmt = NULL;
2873 return stmt;
2876 /* Return the last statement of an otherwise empty block. Return NULL
2877 if the block is totally empty, or if it contains more than one
2878 statement. */
2880 gimple *
2881 last_and_only_stmt (basic_block bb)
2883 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2884 gimple *last, *prev;
2886 if (gsi_end_p (i))
2887 return NULL;
2889 last = gsi_stmt (i);
2890 gsi_prev_nondebug (&i);
2891 if (gsi_end_p (i))
2892 return last;
2894 /* Empty statements should no longer appear in the instruction stream.
2895 Everything that might have appeared before should be deleted by
2896 remove_useless_stmts, and the optimizers should just gsi_remove
2897 instead of smashing with build_empty_stmt.
2899 Thus the only thing that should appear here in a block containing
2900 one executable statement is a label. */
2901 prev = gsi_stmt (i);
2902 if (gimple_code (prev) == GIMPLE_LABEL)
2903 return last;
2904 else
2905 return NULL;
2908 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2910 static void
2911 reinstall_phi_args (edge new_edge, edge old_edge)
2913 edge_var_map *vm;
2914 int i;
2915 gphi_iterator phis;
2917 vec<edge_var_map> *v = redirect_edge_var_map_vector (old_edge);
2918 if (!v)
2919 return;
2921 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2922 v->iterate (i, &vm) && !gsi_end_p (phis);
2923 i++, gsi_next (&phis))
2925 gphi *phi = phis.phi ();
2926 tree result = redirect_edge_var_map_result (vm);
2927 tree arg = redirect_edge_var_map_def (vm);
2929 gcc_assert (result == gimple_phi_result (phi));
2931 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2934 redirect_edge_var_map_clear (old_edge);
2937 /* Returns the basic block after which the new basic block created
2938 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2939 near its "logical" location. This is of most help to humans looking
2940 at debugging dumps. */
2942 basic_block
2943 split_edge_bb_loc (edge edge_in)
2945 basic_block dest = edge_in->dest;
2946 basic_block dest_prev = dest->prev_bb;
2948 if (dest_prev)
2950 edge e = find_edge (dest_prev, dest);
2951 if (e && !(e->flags & EDGE_COMPLEX))
2952 return edge_in->src;
2954 return dest_prev;
2957 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2958 Abort on abnormal edges. */
2960 static basic_block
2961 gimple_split_edge (edge edge_in)
2963 basic_block new_bb, after_bb, dest;
2964 edge new_edge, e;
2966 /* Abnormal edges cannot be split. */
2967 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2969 dest = edge_in->dest;
2971 after_bb = split_edge_bb_loc (edge_in);
2973 new_bb = create_empty_bb (after_bb);
2974 new_bb->count = edge_in->count ();
2976 e = redirect_edge_and_branch (edge_in, new_bb);
2977 gcc_assert (e == edge_in);
2979 new_edge = make_single_succ_edge (new_bb, dest, EDGE_FALLTHRU);
2980 reinstall_phi_args (new_edge, e);
2982 return new_bb;
2986 /* Verify properties of the address expression T whose base should be
2987 TREE_ADDRESSABLE if VERIFY_ADDRESSABLE is true. */
2989 static bool
2990 verify_address (tree t, bool verify_addressable)
2992 bool old_constant;
2993 bool old_side_effects;
2994 bool new_constant;
2995 bool new_side_effects;
2997 old_constant = TREE_CONSTANT (t);
2998 old_side_effects = TREE_SIDE_EFFECTS (t);
3000 recompute_tree_invariant_for_addr_expr (t);
3001 new_side_effects = TREE_SIDE_EFFECTS (t);
3002 new_constant = TREE_CONSTANT (t);
3004 if (old_constant != new_constant)
3006 error ("constant not recomputed when ADDR_EXPR changed");
3007 return true;
3009 if (old_side_effects != new_side_effects)
3011 error ("side effects not recomputed when ADDR_EXPR changed");
3012 return true;
3015 tree base = TREE_OPERAND (t, 0);
3016 while (handled_component_p (base))
3017 base = TREE_OPERAND (base, 0);
3019 if (!(VAR_P (base)
3020 || TREE_CODE (base) == PARM_DECL
3021 || TREE_CODE (base) == RESULT_DECL))
3022 return false;
3024 if (DECL_GIMPLE_REG_P (base))
3026 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
3027 return true;
3030 if (verify_addressable && !TREE_ADDRESSABLE (base))
3032 error ("address taken, but ADDRESSABLE bit not set");
3033 return true;
3036 return false;
3040 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
3041 Returns true if there is an error, otherwise false. */
3043 static bool
3044 verify_types_in_gimple_min_lval (tree expr)
3046 tree op;
3048 if (is_gimple_id (expr))
3049 return false;
3051 if (TREE_CODE (expr) != TARGET_MEM_REF
3052 && TREE_CODE (expr) != MEM_REF)
3054 error ("invalid expression for min lvalue");
3055 return true;
3058 /* TARGET_MEM_REFs are strange beasts. */
3059 if (TREE_CODE (expr) == TARGET_MEM_REF)
3060 return false;
3062 op = TREE_OPERAND (expr, 0);
3063 if (!is_gimple_val (op))
3065 error ("invalid operand in indirect reference");
3066 debug_generic_stmt (op);
3067 return true;
3069 /* Memory references now generally can involve a value conversion. */
3071 return false;
3074 /* Verify if EXPR is a valid GIMPLE reference expression. If
3075 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
3076 if there is an error, otherwise false. */
3078 static bool
3079 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
3081 if (TREE_CODE (expr) == REALPART_EXPR
3082 || TREE_CODE (expr) == IMAGPART_EXPR
3083 || TREE_CODE (expr) == BIT_FIELD_REF)
3085 tree op = TREE_OPERAND (expr, 0);
3086 if (!is_gimple_reg_type (TREE_TYPE (expr)))
3088 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
3089 return true;
3092 if (TREE_CODE (expr) == BIT_FIELD_REF)
3094 tree t1 = TREE_OPERAND (expr, 1);
3095 tree t2 = TREE_OPERAND (expr, 2);
3096 poly_uint64 size, bitpos;
3097 if (!poly_int_tree_p (t1, &size)
3098 || !poly_int_tree_p (t2, &bitpos)
3099 || !types_compatible_p (bitsizetype, TREE_TYPE (t1))
3100 || !types_compatible_p (bitsizetype, TREE_TYPE (t2)))
3102 error ("invalid position or size operand to BIT_FIELD_REF");
3103 return true;
3105 if (INTEGRAL_TYPE_P (TREE_TYPE (expr))
3106 && maybe_ne (TYPE_PRECISION (TREE_TYPE (expr)), size))
3108 error ("integral result type precision does not match "
3109 "field size of BIT_FIELD_REF");
3110 return true;
3112 else if (!INTEGRAL_TYPE_P (TREE_TYPE (expr))
3113 && TYPE_MODE (TREE_TYPE (expr)) != BLKmode
3114 && maybe_ne (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr))),
3115 size))
3117 error ("mode size of non-integral result does not "
3118 "match field size of BIT_FIELD_REF");
3119 return true;
3121 if (!AGGREGATE_TYPE_P (TREE_TYPE (op))
3122 && maybe_gt (size + bitpos,
3123 tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (op)))))
3125 error ("position plus size exceeds size of referenced object in "
3126 "BIT_FIELD_REF");
3127 return true;
3131 if ((TREE_CODE (expr) == REALPART_EXPR
3132 || TREE_CODE (expr) == IMAGPART_EXPR)
3133 && !useless_type_conversion_p (TREE_TYPE (expr),
3134 TREE_TYPE (TREE_TYPE (op))))
3136 error ("type mismatch in real/imagpart reference");
3137 debug_generic_stmt (TREE_TYPE (expr));
3138 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3139 return true;
3141 expr = op;
3144 while (handled_component_p (expr))
3146 if (TREE_CODE (expr) == REALPART_EXPR
3147 || TREE_CODE (expr) == IMAGPART_EXPR
3148 || TREE_CODE (expr) == BIT_FIELD_REF)
3150 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
3151 return true;
3154 tree op = TREE_OPERAND (expr, 0);
3156 if (TREE_CODE (expr) == ARRAY_REF
3157 || TREE_CODE (expr) == ARRAY_RANGE_REF)
3159 if (!is_gimple_val (TREE_OPERAND (expr, 1))
3160 || (TREE_OPERAND (expr, 2)
3161 && !is_gimple_val (TREE_OPERAND (expr, 2)))
3162 || (TREE_OPERAND (expr, 3)
3163 && !is_gimple_val (TREE_OPERAND (expr, 3))))
3165 error ("invalid operands to array reference");
3166 debug_generic_stmt (expr);
3167 return true;
3171 /* Verify if the reference array element types are compatible. */
3172 if (TREE_CODE (expr) == ARRAY_REF
3173 && !useless_type_conversion_p (TREE_TYPE (expr),
3174 TREE_TYPE (TREE_TYPE (op))))
3176 error ("type mismatch in array reference");
3177 debug_generic_stmt (TREE_TYPE (expr));
3178 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3179 return true;
3181 if (TREE_CODE (expr) == ARRAY_RANGE_REF
3182 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
3183 TREE_TYPE (TREE_TYPE (op))))
3185 error ("type mismatch in array range reference");
3186 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
3187 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3188 return true;
3191 if (TREE_CODE (expr) == COMPONENT_REF)
3193 if (TREE_OPERAND (expr, 2)
3194 && !is_gimple_val (TREE_OPERAND (expr, 2)))
3196 error ("invalid COMPONENT_REF offset operator");
3197 return true;
3199 if (!useless_type_conversion_p (TREE_TYPE (expr),
3200 TREE_TYPE (TREE_OPERAND (expr, 1))))
3202 error ("type mismatch in component reference");
3203 debug_generic_stmt (TREE_TYPE (expr));
3204 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
3205 return true;
3209 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
3211 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3212 that their operand is not an SSA name or an invariant when
3213 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3214 bug). Otherwise there is nothing to verify, gross mismatches at
3215 most invoke undefined behavior. */
3216 if (require_lvalue
3217 && (TREE_CODE (op) == SSA_NAME
3218 || is_gimple_min_invariant (op)))
3220 error ("conversion of an SSA_NAME on the left hand side");
3221 debug_generic_stmt (expr);
3222 return true;
3224 else if (TREE_CODE (op) == SSA_NAME
3225 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
3227 error ("conversion of register to a different size");
3228 debug_generic_stmt (expr);
3229 return true;
3231 else if (!handled_component_p (op))
3232 return false;
3235 expr = op;
3238 if (TREE_CODE (expr) == MEM_REF)
3240 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0))
3241 || (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR
3242 && verify_address (TREE_OPERAND (expr, 0), false)))
3244 error ("invalid address operand in MEM_REF");
3245 debug_generic_stmt (expr);
3246 return true;
3248 if (!poly_int_tree_p (TREE_OPERAND (expr, 1))
3249 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
3251 error ("invalid offset operand in MEM_REF");
3252 debug_generic_stmt (expr);
3253 return true;
3256 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3258 if (!TMR_BASE (expr)
3259 || !is_gimple_mem_ref_addr (TMR_BASE (expr))
3260 || (TREE_CODE (TMR_BASE (expr)) == ADDR_EXPR
3261 && verify_address (TMR_BASE (expr), false)))
3263 error ("invalid address operand in TARGET_MEM_REF");
3264 return true;
3266 if (!TMR_OFFSET (expr)
3267 || !poly_int_tree_p (TMR_OFFSET (expr))
3268 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3270 error ("invalid offset operand in TARGET_MEM_REF");
3271 debug_generic_stmt (expr);
3272 return true;
3275 else if (TREE_CODE (expr) == INDIRECT_REF)
3277 error ("INDIRECT_REF in gimple IL");
3278 debug_generic_stmt (expr);
3279 return true;
3282 return ((require_lvalue || !is_gimple_min_invariant (expr))
3283 && verify_types_in_gimple_min_lval (expr));
3286 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3287 list of pointer-to types that is trivially convertible to DEST. */
3289 static bool
3290 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3292 tree src;
3294 if (!TYPE_POINTER_TO (src_obj))
3295 return true;
3297 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3298 if (useless_type_conversion_p (dest, src))
3299 return true;
3301 return false;
3304 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3305 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3307 static bool
3308 valid_fixed_convert_types_p (tree type1, tree type2)
3310 return (FIXED_POINT_TYPE_P (type1)
3311 && (INTEGRAL_TYPE_P (type2)
3312 || SCALAR_FLOAT_TYPE_P (type2)
3313 || FIXED_POINT_TYPE_P (type2)));
3316 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3317 is a problem, otherwise false. */
3319 static bool
3320 verify_gimple_call (gcall *stmt)
3322 tree fn = gimple_call_fn (stmt);
3323 tree fntype, fndecl;
3324 unsigned i;
3326 if (gimple_call_internal_p (stmt))
3328 if (fn)
3330 error ("gimple call has two targets");
3331 debug_generic_stmt (fn);
3332 return true;
3334 /* FIXME : for passing label as arg in internal fn PHI from GIMPLE FE*/
3335 else if (gimple_call_internal_fn (stmt) == IFN_PHI)
3337 return false;
3340 else
3342 if (!fn)
3344 error ("gimple call has no target");
3345 return true;
3349 if (fn && !is_gimple_call_addr (fn))
3351 error ("invalid function in gimple call");
3352 debug_generic_stmt (fn);
3353 return true;
3356 if (fn
3357 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3358 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3359 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3361 error ("non-function in gimple call");
3362 return true;
3365 fndecl = gimple_call_fndecl (stmt);
3366 if (fndecl
3367 && TREE_CODE (fndecl) == FUNCTION_DECL
3368 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3369 && !DECL_PURE_P (fndecl)
3370 && !TREE_READONLY (fndecl))
3372 error ("invalid pure const state for function");
3373 return true;
3376 tree lhs = gimple_call_lhs (stmt);
3377 if (lhs
3378 && (!is_gimple_lvalue (lhs)
3379 || verify_types_in_gimple_reference (lhs, true)))
3381 error ("invalid LHS in gimple call");
3382 return true;
3385 if (gimple_call_ctrl_altering_p (stmt)
3386 && gimple_call_noreturn_p (stmt)
3387 && should_remove_lhs_p (lhs))
3389 error ("LHS in noreturn call");
3390 return true;
3393 fntype = gimple_call_fntype (stmt);
3394 if (fntype
3395 && lhs
3396 && !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (fntype))
3397 /* ??? At least C++ misses conversions at assignments from
3398 void * call results.
3399 For now simply allow arbitrary pointer type conversions. */
3400 && !(POINTER_TYPE_P (TREE_TYPE (lhs))
3401 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3403 error ("invalid conversion in gimple call");
3404 debug_generic_stmt (TREE_TYPE (lhs));
3405 debug_generic_stmt (TREE_TYPE (fntype));
3406 return true;
3409 if (gimple_call_chain (stmt)
3410 && !is_gimple_val (gimple_call_chain (stmt)))
3412 error ("invalid static chain in gimple call");
3413 debug_generic_stmt (gimple_call_chain (stmt));
3414 return true;
3417 /* If there is a static chain argument, the call should either be
3418 indirect, or the decl should have DECL_STATIC_CHAIN set. */
3419 if (gimple_call_chain (stmt)
3420 && fndecl
3421 && !DECL_STATIC_CHAIN (fndecl))
3423 error ("static chain with function that doesn%'t use one");
3424 return true;
3427 if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL))
3429 switch (DECL_FUNCTION_CODE (fndecl))
3431 case BUILT_IN_UNREACHABLE:
3432 case BUILT_IN_TRAP:
3433 if (gimple_call_num_args (stmt) > 0)
3435 /* Built-in unreachable with parameters might not be caught by
3436 undefined behavior sanitizer. Front-ends do check users do not
3437 call them that way but we also produce calls to
3438 __builtin_unreachable internally, for example when IPA figures
3439 out a call cannot happen in a legal program. In such cases,
3440 we must make sure arguments are stripped off. */
3441 error ("__builtin_unreachable or __builtin_trap call with "
3442 "arguments");
3443 return true;
3445 break;
3446 default:
3447 break;
3451 /* ??? The C frontend passes unpromoted arguments in case it
3452 didn't see a function declaration before the call. So for now
3453 leave the call arguments mostly unverified. Once we gimplify
3454 unit-at-a-time we have a chance to fix this. */
3456 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3458 tree arg = gimple_call_arg (stmt, i);
3459 if ((is_gimple_reg_type (TREE_TYPE (arg))
3460 && !is_gimple_val (arg))
3461 || (!is_gimple_reg_type (TREE_TYPE (arg))
3462 && !is_gimple_lvalue (arg)))
3464 error ("invalid argument to gimple call");
3465 debug_generic_expr (arg);
3466 return true;
3470 return false;
3473 /* Verifies the gimple comparison with the result type TYPE and
3474 the operands OP0 and OP1, comparison code is CODE. */
3476 static bool
3477 verify_gimple_comparison (tree type, tree op0, tree op1, enum tree_code code)
3479 tree op0_type = TREE_TYPE (op0);
3480 tree op1_type = TREE_TYPE (op1);
3482 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3484 error ("invalid operands in gimple comparison");
3485 return true;
3488 /* For comparisons we do not have the operations type as the
3489 effective type the comparison is carried out in. Instead
3490 we require that either the first operand is trivially
3491 convertible into the second, or the other way around.
3492 Because we special-case pointers to void we allow
3493 comparisons of pointers with the same mode as well. */
3494 if (!useless_type_conversion_p (op0_type, op1_type)
3495 && !useless_type_conversion_p (op1_type, op0_type)
3496 && (!POINTER_TYPE_P (op0_type)
3497 || !POINTER_TYPE_P (op1_type)
3498 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3500 error ("mismatching comparison operand types");
3501 debug_generic_expr (op0_type);
3502 debug_generic_expr (op1_type);
3503 return true;
3506 /* The resulting type of a comparison may be an effective boolean type. */
3507 if (INTEGRAL_TYPE_P (type)
3508 && (TREE_CODE (type) == BOOLEAN_TYPE
3509 || TYPE_PRECISION (type) == 1))
3511 if ((TREE_CODE (op0_type) == VECTOR_TYPE
3512 || TREE_CODE (op1_type) == VECTOR_TYPE)
3513 && code != EQ_EXPR && code != NE_EXPR
3514 && !VECTOR_BOOLEAN_TYPE_P (op0_type)
3515 && !VECTOR_INTEGER_TYPE_P (op0_type))
3517 error ("unsupported operation or type for vector comparison"
3518 " returning a boolean");
3519 debug_generic_expr (op0_type);
3520 debug_generic_expr (op1_type);
3521 return true;
3524 /* Or a boolean vector type with the same element count
3525 as the comparison operand types. */
3526 else if (TREE_CODE (type) == VECTOR_TYPE
3527 && TREE_CODE (TREE_TYPE (type)) == BOOLEAN_TYPE)
3529 if (TREE_CODE (op0_type) != VECTOR_TYPE
3530 || TREE_CODE (op1_type) != VECTOR_TYPE)
3532 error ("non-vector operands in vector comparison");
3533 debug_generic_expr (op0_type);
3534 debug_generic_expr (op1_type);
3535 return true;
3538 if (maybe_ne (TYPE_VECTOR_SUBPARTS (type),
3539 TYPE_VECTOR_SUBPARTS (op0_type)))
3541 error ("invalid vector comparison resulting type");
3542 debug_generic_expr (type);
3543 return true;
3546 else
3548 error ("bogus comparison result type");
3549 debug_generic_expr (type);
3550 return true;
3553 return false;
3556 /* Verify a gimple assignment statement STMT with an unary rhs.
3557 Returns true if anything is wrong. */
3559 static bool
3560 verify_gimple_assign_unary (gassign *stmt)
3562 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3563 tree lhs = gimple_assign_lhs (stmt);
3564 tree lhs_type = TREE_TYPE (lhs);
3565 tree rhs1 = gimple_assign_rhs1 (stmt);
3566 tree rhs1_type = TREE_TYPE (rhs1);
3568 if (!is_gimple_reg (lhs))
3570 error ("non-register as LHS of unary operation");
3571 return true;
3574 if (!is_gimple_val (rhs1))
3576 error ("invalid operand in unary operation");
3577 return true;
3580 /* First handle conversions. */
3581 switch (rhs_code)
3583 CASE_CONVERT:
3585 /* Allow conversions from pointer type to integral type only if
3586 there is no sign or zero extension involved.
3587 For targets were the precision of ptrofftype doesn't match that
3588 of pointers we need to allow arbitrary conversions to ptrofftype. */
3589 if ((POINTER_TYPE_P (lhs_type)
3590 && INTEGRAL_TYPE_P (rhs1_type))
3591 || (POINTER_TYPE_P (rhs1_type)
3592 && INTEGRAL_TYPE_P (lhs_type)
3593 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3594 || ptrofftype_p (lhs_type))))
3595 return false;
3597 /* Allow conversion from integral to offset type and vice versa. */
3598 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3599 && INTEGRAL_TYPE_P (rhs1_type))
3600 || (INTEGRAL_TYPE_P (lhs_type)
3601 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3602 return false;
3604 /* Otherwise assert we are converting between types of the
3605 same kind. */
3606 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3608 error ("invalid types in nop conversion");
3609 debug_generic_expr (lhs_type);
3610 debug_generic_expr (rhs1_type);
3611 return true;
3614 return false;
3617 case ADDR_SPACE_CONVERT_EXPR:
3619 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3620 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3621 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3623 error ("invalid types in address space conversion");
3624 debug_generic_expr (lhs_type);
3625 debug_generic_expr (rhs1_type);
3626 return true;
3629 return false;
3632 case FIXED_CONVERT_EXPR:
3634 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3635 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3637 error ("invalid types in fixed-point conversion");
3638 debug_generic_expr (lhs_type);
3639 debug_generic_expr (rhs1_type);
3640 return true;
3643 return false;
3646 case FLOAT_EXPR:
3648 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3649 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3650 || !VECTOR_FLOAT_TYPE_P (lhs_type)))
3652 error ("invalid types in conversion to floating point");
3653 debug_generic_expr (lhs_type);
3654 debug_generic_expr (rhs1_type);
3655 return true;
3658 return false;
3661 case FIX_TRUNC_EXPR:
3663 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3664 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3665 || !VECTOR_FLOAT_TYPE_P (rhs1_type)))
3667 error ("invalid types in conversion to integer");
3668 debug_generic_expr (lhs_type);
3669 debug_generic_expr (rhs1_type);
3670 return true;
3673 return false;
3676 case VEC_UNPACK_HI_EXPR:
3677 case VEC_UNPACK_LO_EXPR:
3678 case VEC_UNPACK_FLOAT_HI_EXPR:
3679 case VEC_UNPACK_FLOAT_LO_EXPR:
3680 case VEC_UNPACK_FIX_TRUNC_HI_EXPR:
3681 case VEC_UNPACK_FIX_TRUNC_LO_EXPR:
3682 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3683 || TREE_CODE (lhs_type) != VECTOR_TYPE
3684 || (!INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3685 && !SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs_type)))
3686 || (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3687 && !SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3688 || ((rhs_code == VEC_UNPACK_HI_EXPR
3689 || rhs_code == VEC_UNPACK_LO_EXPR)
3690 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3691 != INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3692 || ((rhs_code == VEC_UNPACK_FLOAT_HI_EXPR
3693 || rhs_code == VEC_UNPACK_FLOAT_LO_EXPR)
3694 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3695 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type))))
3696 || ((rhs_code == VEC_UNPACK_FIX_TRUNC_HI_EXPR
3697 || rhs_code == VEC_UNPACK_FIX_TRUNC_LO_EXPR)
3698 && (INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3699 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs_type))))
3700 || (maybe_ne (GET_MODE_SIZE (element_mode (lhs_type)),
3701 2 * GET_MODE_SIZE (element_mode (rhs1_type)))
3702 && (!VECTOR_BOOLEAN_TYPE_P (lhs_type)
3703 || !VECTOR_BOOLEAN_TYPE_P (rhs1_type)))
3704 || maybe_ne (2 * TYPE_VECTOR_SUBPARTS (lhs_type),
3705 TYPE_VECTOR_SUBPARTS (rhs1_type)))
3707 error ("type mismatch in vector unpack expression");
3708 debug_generic_expr (lhs_type);
3709 debug_generic_expr (rhs1_type);
3710 return true;
3713 return false;
3715 case NEGATE_EXPR:
3716 case ABS_EXPR:
3717 case BIT_NOT_EXPR:
3718 case PAREN_EXPR:
3719 case CONJ_EXPR:
3720 break;
3722 case ABSU_EXPR:
3723 if (!ANY_INTEGRAL_TYPE_P (lhs_type)
3724 || !TYPE_UNSIGNED (lhs_type)
3725 || !ANY_INTEGRAL_TYPE_P (rhs1_type)
3726 || TYPE_UNSIGNED (rhs1_type)
3727 || element_precision (lhs_type) != element_precision (rhs1_type))
3729 error ("invalid types for ABSU_EXPR");
3730 debug_generic_expr (lhs_type);
3731 debug_generic_expr (rhs1_type);
3732 return true;
3734 return false;
3736 case VEC_DUPLICATE_EXPR:
3737 if (TREE_CODE (lhs_type) != VECTOR_TYPE
3738 || !useless_type_conversion_p (TREE_TYPE (lhs_type), rhs1_type))
3740 error ("vec_duplicate should be from a scalar to a like vector");
3741 debug_generic_expr (lhs_type);
3742 debug_generic_expr (rhs1_type);
3743 return true;
3745 return false;
3747 default:
3748 gcc_unreachable ();
3751 /* For the remaining codes assert there is no conversion involved. */
3752 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3754 error ("non-trivial conversion in unary operation");
3755 debug_generic_expr (lhs_type);
3756 debug_generic_expr (rhs1_type);
3757 return true;
3760 return false;
3763 /* Verify a gimple assignment statement STMT with a binary rhs.
3764 Returns true if anything is wrong. */
3766 static bool
3767 verify_gimple_assign_binary (gassign *stmt)
3769 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3770 tree lhs = gimple_assign_lhs (stmt);
3771 tree lhs_type = TREE_TYPE (lhs);
3772 tree rhs1 = gimple_assign_rhs1 (stmt);
3773 tree rhs1_type = TREE_TYPE (rhs1);
3774 tree rhs2 = gimple_assign_rhs2 (stmt);
3775 tree rhs2_type = TREE_TYPE (rhs2);
3777 if (!is_gimple_reg (lhs))
3779 error ("non-register as LHS of binary operation");
3780 return true;
3783 if (!is_gimple_val (rhs1)
3784 || !is_gimple_val (rhs2))
3786 error ("invalid operands in binary operation");
3787 return true;
3790 /* First handle operations that involve different types. */
3791 switch (rhs_code)
3793 case COMPLEX_EXPR:
3795 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3796 || !(INTEGRAL_TYPE_P (rhs1_type)
3797 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3798 || !(INTEGRAL_TYPE_P (rhs2_type)
3799 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3801 error ("type mismatch in complex expression");
3802 debug_generic_expr (lhs_type);
3803 debug_generic_expr (rhs1_type);
3804 debug_generic_expr (rhs2_type);
3805 return true;
3808 return false;
3811 case LSHIFT_EXPR:
3812 case RSHIFT_EXPR:
3813 case LROTATE_EXPR:
3814 case RROTATE_EXPR:
3816 /* Shifts and rotates are ok on integral types, fixed point
3817 types and integer vector types. */
3818 if ((!INTEGRAL_TYPE_P (rhs1_type)
3819 && !FIXED_POINT_TYPE_P (rhs1_type)
3820 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3821 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3822 || (!INTEGRAL_TYPE_P (rhs2_type)
3823 /* Vector shifts of vectors are also ok. */
3824 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3825 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3826 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3827 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3828 || !useless_type_conversion_p (lhs_type, rhs1_type))
3830 error ("type mismatch in shift expression");
3831 debug_generic_expr (lhs_type);
3832 debug_generic_expr (rhs1_type);
3833 debug_generic_expr (rhs2_type);
3834 return true;
3837 return false;
3840 case WIDEN_LSHIFT_EXPR:
3842 if (!INTEGRAL_TYPE_P (lhs_type)
3843 || !INTEGRAL_TYPE_P (rhs1_type)
3844 || TREE_CODE (rhs2) != INTEGER_CST
3845 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3847 error ("type mismatch in widening vector shift expression");
3848 debug_generic_expr (lhs_type);
3849 debug_generic_expr (rhs1_type);
3850 debug_generic_expr (rhs2_type);
3851 return true;
3854 return false;
3857 case VEC_WIDEN_LSHIFT_HI_EXPR:
3858 case VEC_WIDEN_LSHIFT_LO_EXPR:
3860 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3861 || TREE_CODE (lhs_type) != VECTOR_TYPE
3862 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3863 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3864 || TREE_CODE (rhs2) != INTEGER_CST
3865 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3866 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3868 error ("type mismatch in widening vector shift expression");
3869 debug_generic_expr (lhs_type);
3870 debug_generic_expr (rhs1_type);
3871 debug_generic_expr (rhs2_type);
3872 return true;
3875 return false;
3878 case PLUS_EXPR:
3879 case MINUS_EXPR:
3881 tree lhs_etype = lhs_type;
3882 tree rhs1_etype = rhs1_type;
3883 tree rhs2_etype = rhs2_type;
3884 if (TREE_CODE (lhs_type) == VECTOR_TYPE)
3886 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3887 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3889 error ("invalid non-vector operands to vector valued plus");
3890 return true;
3892 lhs_etype = TREE_TYPE (lhs_type);
3893 rhs1_etype = TREE_TYPE (rhs1_type);
3894 rhs2_etype = TREE_TYPE (rhs2_type);
3896 if (POINTER_TYPE_P (lhs_etype)
3897 || POINTER_TYPE_P (rhs1_etype)
3898 || POINTER_TYPE_P (rhs2_etype))
3900 error ("invalid (pointer) operands to plus/minus");
3901 return true;
3904 /* Continue with generic binary expression handling. */
3905 break;
3908 case POINTER_PLUS_EXPR:
3910 if (!POINTER_TYPE_P (rhs1_type)
3911 || !useless_type_conversion_p (lhs_type, rhs1_type)
3912 || !ptrofftype_p (rhs2_type))
3914 error ("type mismatch in pointer plus expression");
3915 debug_generic_stmt (lhs_type);
3916 debug_generic_stmt (rhs1_type);
3917 debug_generic_stmt (rhs2_type);
3918 return true;
3921 return false;
3924 case POINTER_DIFF_EXPR:
3926 if (!POINTER_TYPE_P (rhs1_type)
3927 || !POINTER_TYPE_P (rhs2_type)
3928 /* Because we special-case pointers to void we allow difference
3929 of arbitrary pointers with the same mode. */
3930 || TYPE_MODE (rhs1_type) != TYPE_MODE (rhs2_type)
3931 || TREE_CODE (lhs_type) != INTEGER_TYPE
3932 || TYPE_UNSIGNED (lhs_type)
3933 || TYPE_PRECISION (lhs_type) != TYPE_PRECISION (rhs1_type))
3935 error ("type mismatch in pointer diff expression");
3936 debug_generic_stmt (lhs_type);
3937 debug_generic_stmt (rhs1_type);
3938 debug_generic_stmt (rhs2_type);
3939 return true;
3942 return false;
3945 case TRUTH_ANDIF_EXPR:
3946 case TRUTH_ORIF_EXPR:
3947 case TRUTH_AND_EXPR:
3948 case TRUTH_OR_EXPR:
3949 case TRUTH_XOR_EXPR:
3951 gcc_unreachable ();
3953 case LT_EXPR:
3954 case LE_EXPR:
3955 case GT_EXPR:
3956 case GE_EXPR:
3957 case EQ_EXPR:
3958 case NE_EXPR:
3959 case UNORDERED_EXPR:
3960 case ORDERED_EXPR:
3961 case UNLT_EXPR:
3962 case UNLE_EXPR:
3963 case UNGT_EXPR:
3964 case UNGE_EXPR:
3965 case UNEQ_EXPR:
3966 case LTGT_EXPR:
3967 /* Comparisons are also binary, but the result type is not
3968 connected to the operand types. */
3969 return verify_gimple_comparison (lhs_type, rhs1, rhs2, rhs_code);
3971 case WIDEN_MULT_EXPR:
3972 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3973 return true;
3974 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
3975 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3977 case WIDEN_SUM_EXPR:
3979 if (((TREE_CODE (rhs1_type) != VECTOR_TYPE
3980 || TREE_CODE (lhs_type) != VECTOR_TYPE)
3981 && ((!INTEGRAL_TYPE_P (rhs1_type)
3982 && !SCALAR_FLOAT_TYPE_P (rhs1_type))
3983 || (!INTEGRAL_TYPE_P (lhs_type)
3984 && !SCALAR_FLOAT_TYPE_P (lhs_type))))
3985 || !useless_type_conversion_p (lhs_type, rhs2_type)
3986 || maybe_lt (GET_MODE_SIZE (element_mode (rhs2_type)),
3987 2 * GET_MODE_SIZE (element_mode (rhs1_type))))
3989 error ("type mismatch in widening sum reduction");
3990 debug_generic_expr (lhs_type);
3991 debug_generic_expr (rhs1_type);
3992 debug_generic_expr (rhs2_type);
3993 return true;
3995 return false;
3998 case VEC_WIDEN_MULT_HI_EXPR:
3999 case VEC_WIDEN_MULT_LO_EXPR:
4000 case VEC_WIDEN_MULT_EVEN_EXPR:
4001 case VEC_WIDEN_MULT_ODD_EXPR:
4003 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4004 || TREE_CODE (lhs_type) != VECTOR_TYPE
4005 || !types_compatible_p (rhs1_type, rhs2_type)
4006 || maybe_ne (GET_MODE_SIZE (element_mode (lhs_type)),
4007 2 * GET_MODE_SIZE (element_mode (rhs1_type))))
4009 error ("type mismatch in vector widening multiplication");
4010 debug_generic_expr (lhs_type);
4011 debug_generic_expr (rhs1_type);
4012 debug_generic_expr (rhs2_type);
4013 return true;
4015 return false;
4018 case VEC_PACK_TRUNC_EXPR:
4019 /* ??? We currently use VEC_PACK_TRUNC_EXPR to simply concat
4020 vector boolean types. */
4021 if (VECTOR_BOOLEAN_TYPE_P (lhs_type)
4022 && VECTOR_BOOLEAN_TYPE_P (rhs1_type)
4023 && types_compatible_p (rhs1_type, rhs2_type)
4024 && known_eq (TYPE_VECTOR_SUBPARTS (lhs_type),
4025 2 * TYPE_VECTOR_SUBPARTS (rhs1_type)))
4026 return false;
4028 /* Fallthru. */
4029 case VEC_PACK_SAT_EXPR:
4030 case VEC_PACK_FIX_TRUNC_EXPR:
4032 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4033 || TREE_CODE (lhs_type) != VECTOR_TYPE
4034 || !((rhs_code == VEC_PACK_FIX_TRUNC_EXPR
4035 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type))
4036 && INTEGRAL_TYPE_P (TREE_TYPE (lhs_type)))
4037 || (INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
4038 == INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))))
4039 || !types_compatible_p (rhs1_type, rhs2_type)
4040 || maybe_ne (GET_MODE_SIZE (element_mode (rhs1_type)),
4041 2 * GET_MODE_SIZE (element_mode (lhs_type)))
4042 || maybe_ne (2 * TYPE_VECTOR_SUBPARTS (rhs1_type),
4043 TYPE_VECTOR_SUBPARTS (lhs_type)))
4045 error ("type mismatch in vector pack expression");
4046 debug_generic_expr (lhs_type);
4047 debug_generic_expr (rhs1_type);
4048 debug_generic_expr (rhs2_type);
4049 return true;
4052 return false;
4055 case VEC_PACK_FLOAT_EXPR:
4056 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4057 || TREE_CODE (lhs_type) != VECTOR_TYPE
4058 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
4059 || !SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs_type))
4060 || !types_compatible_p (rhs1_type, rhs2_type)
4061 || maybe_ne (GET_MODE_SIZE (element_mode (rhs1_type)),
4062 2 * GET_MODE_SIZE (element_mode (lhs_type)))
4063 || maybe_ne (2 * TYPE_VECTOR_SUBPARTS (rhs1_type),
4064 TYPE_VECTOR_SUBPARTS (lhs_type)))
4066 error ("type mismatch in vector pack expression");
4067 debug_generic_expr (lhs_type);
4068 debug_generic_expr (rhs1_type);
4069 debug_generic_expr (rhs2_type);
4070 return true;
4073 return false;
4075 case MULT_EXPR:
4076 case MULT_HIGHPART_EXPR:
4077 case TRUNC_DIV_EXPR:
4078 case CEIL_DIV_EXPR:
4079 case FLOOR_DIV_EXPR:
4080 case ROUND_DIV_EXPR:
4081 case TRUNC_MOD_EXPR:
4082 case CEIL_MOD_EXPR:
4083 case FLOOR_MOD_EXPR:
4084 case ROUND_MOD_EXPR:
4085 case RDIV_EXPR:
4086 case EXACT_DIV_EXPR:
4087 case MIN_EXPR:
4088 case MAX_EXPR:
4089 case BIT_IOR_EXPR:
4090 case BIT_XOR_EXPR:
4091 case BIT_AND_EXPR:
4092 /* Continue with generic binary expression handling. */
4093 break;
4095 case VEC_SERIES_EXPR:
4096 if (!useless_type_conversion_p (rhs1_type, rhs2_type))
4098 error ("type mismatch in series expression");
4099 debug_generic_expr (rhs1_type);
4100 debug_generic_expr (rhs2_type);
4101 return true;
4103 if (TREE_CODE (lhs_type) != VECTOR_TYPE
4104 || !useless_type_conversion_p (TREE_TYPE (lhs_type), rhs1_type))
4106 error ("vector type expected in series expression");
4107 debug_generic_expr (lhs_type);
4108 return true;
4110 return false;
4112 default:
4113 gcc_unreachable ();
4116 if (!useless_type_conversion_p (lhs_type, rhs1_type)
4117 || !useless_type_conversion_p (lhs_type, rhs2_type))
4119 error ("type mismatch in binary expression");
4120 debug_generic_stmt (lhs_type);
4121 debug_generic_stmt (rhs1_type);
4122 debug_generic_stmt (rhs2_type);
4123 return true;
4126 return false;
4129 /* Verify a gimple assignment statement STMT with a ternary rhs.
4130 Returns true if anything is wrong. */
4132 static bool
4133 verify_gimple_assign_ternary (gassign *stmt)
4135 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
4136 tree lhs = gimple_assign_lhs (stmt);
4137 tree lhs_type = TREE_TYPE (lhs);
4138 tree rhs1 = gimple_assign_rhs1 (stmt);
4139 tree rhs1_type = TREE_TYPE (rhs1);
4140 tree rhs2 = gimple_assign_rhs2 (stmt);
4141 tree rhs2_type = TREE_TYPE (rhs2);
4142 tree rhs3 = gimple_assign_rhs3 (stmt);
4143 tree rhs3_type = TREE_TYPE (rhs3);
4145 if (!is_gimple_reg (lhs))
4147 error ("non-register as LHS of ternary operation");
4148 return true;
4151 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
4152 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
4153 || !is_gimple_val (rhs2)
4154 || !is_gimple_val (rhs3))
4156 error ("invalid operands in ternary operation");
4157 return true;
4160 /* First handle operations that involve different types. */
4161 switch (rhs_code)
4163 case WIDEN_MULT_PLUS_EXPR:
4164 case WIDEN_MULT_MINUS_EXPR:
4165 if ((!INTEGRAL_TYPE_P (rhs1_type)
4166 && !FIXED_POINT_TYPE_P (rhs1_type))
4167 || !useless_type_conversion_p (rhs1_type, rhs2_type)
4168 || !useless_type_conversion_p (lhs_type, rhs3_type)
4169 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
4170 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
4172 error ("type mismatch in widening multiply-accumulate expression");
4173 debug_generic_expr (lhs_type);
4174 debug_generic_expr (rhs1_type);
4175 debug_generic_expr (rhs2_type);
4176 debug_generic_expr (rhs3_type);
4177 return true;
4179 break;
4181 case VEC_COND_EXPR:
4182 if (!VECTOR_BOOLEAN_TYPE_P (rhs1_type)
4183 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs1_type),
4184 TYPE_VECTOR_SUBPARTS (lhs_type)))
4186 error ("the first argument of a VEC_COND_EXPR must be of a "
4187 "boolean vector type of the same number of elements "
4188 "as the result");
4189 debug_generic_expr (lhs_type);
4190 debug_generic_expr (rhs1_type);
4191 return true;
4193 /* Fallthrough. */
4194 case COND_EXPR:
4195 if (!is_gimple_val (rhs1)
4196 && verify_gimple_comparison (TREE_TYPE (rhs1),
4197 TREE_OPERAND (rhs1, 0),
4198 TREE_OPERAND (rhs1, 1),
4199 TREE_CODE (rhs1)))
4200 return true;
4201 if (!useless_type_conversion_p (lhs_type, rhs2_type)
4202 || !useless_type_conversion_p (lhs_type, rhs3_type))
4204 error ("type mismatch in conditional expression");
4205 debug_generic_expr (lhs_type);
4206 debug_generic_expr (rhs2_type);
4207 debug_generic_expr (rhs3_type);
4208 return true;
4210 break;
4212 case VEC_PERM_EXPR:
4213 if (!useless_type_conversion_p (lhs_type, rhs1_type)
4214 || !useless_type_conversion_p (lhs_type, rhs2_type))
4216 error ("type mismatch in vector permute expression");
4217 debug_generic_expr (lhs_type);
4218 debug_generic_expr (rhs1_type);
4219 debug_generic_expr (rhs2_type);
4220 debug_generic_expr (rhs3_type);
4221 return true;
4224 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4225 || TREE_CODE (rhs2_type) != VECTOR_TYPE
4226 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
4228 error ("vector types expected in vector permute expression");
4229 debug_generic_expr (lhs_type);
4230 debug_generic_expr (rhs1_type);
4231 debug_generic_expr (rhs2_type);
4232 debug_generic_expr (rhs3_type);
4233 return true;
4236 if (maybe_ne (TYPE_VECTOR_SUBPARTS (rhs1_type),
4237 TYPE_VECTOR_SUBPARTS (rhs2_type))
4238 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs2_type),
4239 TYPE_VECTOR_SUBPARTS (rhs3_type))
4240 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs3_type),
4241 TYPE_VECTOR_SUBPARTS (lhs_type)))
4243 error ("vectors with different element number found "
4244 "in vector permute expression");
4245 debug_generic_expr (lhs_type);
4246 debug_generic_expr (rhs1_type);
4247 debug_generic_expr (rhs2_type);
4248 debug_generic_expr (rhs3_type);
4249 return true;
4252 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
4253 || (TREE_CODE (rhs3) != VECTOR_CST
4254 && (GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE
4255 (TREE_TYPE (rhs3_type)))
4256 != GET_MODE_BITSIZE (SCALAR_TYPE_MODE
4257 (TREE_TYPE (rhs1_type))))))
4259 error ("invalid mask type in vector permute expression");
4260 debug_generic_expr (lhs_type);
4261 debug_generic_expr (rhs1_type);
4262 debug_generic_expr (rhs2_type);
4263 debug_generic_expr (rhs3_type);
4264 return true;
4267 return false;
4269 case SAD_EXPR:
4270 if (!useless_type_conversion_p (rhs1_type, rhs2_type)
4271 || !useless_type_conversion_p (lhs_type, rhs3_type)
4272 || 2 * GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type)))
4273 > GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (lhs_type))))
4275 error ("type mismatch in sad expression");
4276 debug_generic_expr (lhs_type);
4277 debug_generic_expr (rhs1_type);
4278 debug_generic_expr (rhs2_type);
4279 debug_generic_expr (rhs3_type);
4280 return true;
4283 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4284 || TREE_CODE (rhs2_type) != VECTOR_TYPE
4285 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
4287 error ("vector types expected in sad expression");
4288 debug_generic_expr (lhs_type);
4289 debug_generic_expr (rhs1_type);
4290 debug_generic_expr (rhs2_type);
4291 debug_generic_expr (rhs3_type);
4292 return true;
4295 return false;
4297 case BIT_INSERT_EXPR:
4298 if (! useless_type_conversion_p (lhs_type, rhs1_type))
4300 error ("type mismatch in BIT_INSERT_EXPR");
4301 debug_generic_expr (lhs_type);
4302 debug_generic_expr (rhs1_type);
4303 return true;
4305 if (! ((INTEGRAL_TYPE_P (rhs1_type)
4306 && INTEGRAL_TYPE_P (rhs2_type))
4307 || (VECTOR_TYPE_P (rhs1_type)
4308 && types_compatible_p (TREE_TYPE (rhs1_type), rhs2_type))))
4310 error ("not allowed type combination in BIT_INSERT_EXPR");
4311 debug_generic_expr (rhs1_type);
4312 debug_generic_expr (rhs2_type);
4313 return true;
4315 if (! tree_fits_uhwi_p (rhs3)
4316 || ! types_compatible_p (bitsizetype, TREE_TYPE (rhs3))
4317 || ! tree_fits_uhwi_p (TYPE_SIZE (rhs2_type)))
4319 error ("invalid position or size in BIT_INSERT_EXPR");
4320 return true;
4322 if (INTEGRAL_TYPE_P (rhs1_type))
4324 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (rhs3);
4325 if (bitpos >= TYPE_PRECISION (rhs1_type)
4326 || (bitpos + TYPE_PRECISION (rhs2_type)
4327 > TYPE_PRECISION (rhs1_type)))
4329 error ("insertion out of range in BIT_INSERT_EXPR");
4330 return true;
4333 else if (VECTOR_TYPE_P (rhs1_type))
4335 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (rhs3);
4336 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (TYPE_SIZE (rhs2_type));
4337 if (bitpos % bitsize != 0)
4339 error ("vector insertion not at element boundary");
4340 return true;
4343 return false;
4345 case DOT_PROD_EXPR:
4347 if (((TREE_CODE (rhs1_type) != VECTOR_TYPE
4348 || TREE_CODE (lhs_type) != VECTOR_TYPE)
4349 && ((!INTEGRAL_TYPE_P (rhs1_type)
4350 && !SCALAR_FLOAT_TYPE_P (rhs1_type))
4351 || (!INTEGRAL_TYPE_P (lhs_type)
4352 && !SCALAR_FLOAT_TYPE_P (lhs_type))))
4353 || !types_compatible_p (rhs1_type, rhs2_type)
4354 || !useless_type_conversion_p (lhs_type, rhs3_type)
4355 || maybe_lt (GET_MODE_SIZE (element_mode (rhs3_type)),
4356 2 * GET_MODE_SIZE (element_mode (rhs1_type))))
4358 error ("type mismatch in dot product reduction");
4359 debug_generic_expr (lhs_type);
4360 debug_generic_expr (rhs1_type);
4361 debug_generic_expr (rhs2_type);
4362 return true;
4364 return false;
4367 case REALIGN_LOAD_EXPR:
4368 /* FIXME. */
4369 return false;
4371 default:
4372 gcc_unreachable ();
4374 return false;
4377 /* Verify a gimple assignment statement STMT with a single rhs.
4378 Returns true if anything is wrong. */
4380 static bool
4381 verify_gimple_assign_single (gassign *stmt)
4383 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
4384 tree lhs = gimple_assign_lhs (stmt);
4385 tree lhs_type = TREE_TYPE (lhs);
4386 tree rhs1 = gimple_assign_rhs1 (stmt);
4387 tree rhs1_type = TREE_TYPE (rhs1);
4388 bool res = false;
4390 if (!useless_type_conversion_p (lhs_type, rhs1_type))
4392 error ("non-trivial conversion at assignment");
4393 debug_generic_expr (lhs_type);
4394 debug_generic_expr (rhs1_type);
4395 return true;
4398 if (gimple_clobber_p (stmt)
4399 && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF))
4401 error ("non-decl/MEM_REF LHS in clobber statement");
4402 debug_generic_expr (lhs);
4403 return true;
4406 if (handled_component_p (lhs)
4407 || TREE_CODE (lhs) == MEM_REF
4408 || TREE_CODE (lhs) == TARGET_MEM_REF)
4409 res |= verify_types_in_gimple_reference (lhs, true);
4411 /* Special codes we cannot handle via their class. */
4412 switch (rhs_code)
4414 case ADDR_EXPR:
4416 tree op = TREE_OPERAND (rhs1, 0);
4417 if (!is_gimple_addressable (op))
4419 error ("invalid operand in unary expression");
4420 return true;
4423 /* Technically there is no longer a need for matching types, but
4424 gimple hygiene asks for this check. In LTO we can end up
4425 combining incompatible units and thus end up with addresses
4426 of globals that change their type to a common one. */
4427 if (!in_lto_p
4428 && !types_compatible_p (TREE_TYPE (op),
4429 TREE_TYPE (TREE_TYPE (rhs1)))
4430 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
4431 TREE_TYPE (op)))
4433 error ("type mismatch in address expression");
4434 debug_generic_stmt (TREE_TYPE (rhs1));
4435 debug_generic_stmt (TREE_TYPE (op));
4436 return true;
4439 return (verify_address (rhs1, true)
4440 || verify_types_in_gimple_reference (op, true));
4443 /* tcc_reference */
4444 case INDIRECT_REF:
4445 error ("INDIRECT_REF in gimple IL");
4446 return true;
4448 case COMPONENT_REF:
4449 case BIT_FIELD_REF:
4450 case ARRAY_REF:
4451 case ARRAY_RANGE_REF:
4452 case VIEW_CONVERT_EXPR:
4453 case REALPART_EXPR:
4454 case IMAGPART_EXPR:
4455 case TARGET_MEM_REF:
4456 case MEM_REF:
4457 if (!is_gimple_reg (lhs)
4458 && is_gimple_reg_type (TREE_TYPE (lhs)))
4460 error ("invalid rhs for gimple memory store");
4461 debug_generic_stmt (lhs);
4462 debug_generic_stmt (rhs1);
4463 return true;
4465 return res || verify_types_in_gimple_reference (rhs1, false);
4467 /* tcc_constant */
4468 case SSA_NAME:
4469 case INTEGER_CST:
4470 case REAL_CST:
4471 case FIXED_CST:
4472 case COMPLEX_CST:
4473 case VECTOR_CST:
4474 case STRING_CST:
4475 return res;
4477 /* tcc_declaration */
4478 case CONST_DECL:
4479 return res;
4480 case VAR_DECL:
4481 case PARM_DECL:
4482 if (!is_gimple_reg (lhs)
4483 && !is_gimple_reg (rhs1)
4484 && is_gimple_reg_type (TREE_TYPE (lhs)))
4486 error ("invalid rhs for gimple memory store");
4487 debug_generic_stmt (lhs);
4488 debug_generic_stmt (rhs1);
4489 return true;
4491 return res;
4493 case CONSTRUCTOR:
4494 if (TREE_CODE (rhs1_type) == VECTOR_TYPE)
4496 unsigned int i;
4497 tree elt_i, elt_v, elt_t = NULL_TREE;
4499 if (CONSTRUCTOR_NELTS (rhs1) == 0)
4500 return res;
4501 /* For vector CONSTRUCTORs we require that either it is empty
4502 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
4503 (then the element count must be correct to cover the whole
4504 outer vector and index must be NULL on all elements, or it is
4505 a CONSTRUCTOR of scalar elements, where we as an exception allow
4506 smaller number of elements (assuming zero filling) and
4507 consecutive indexes as compared to NULL indexes (such
4508 CONSTRUCTORs can appear in the IL from FEs). */
4509 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
4511 if (elt_t == NULL_TREE)
4513 elt_t = TREE_TYPE (elt_v);
4514 if (TREE_CODE (elt_t) == VECTOR_TYPE)
4516 tree elt_t = TREE_TYPE (elt_v);
4517 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4518 TREE_TYPE (elt_t)))
4520 error ("incorrect type of vector CONSTRUCTOR"
4521 " elements");
4522 debug_generic_stmt (rhs1);
4523 return true;
4525 else if (maybe_ne (CONSTRUCTOR_NELTS (rhs1)
4526 * TYPE_VECTOR_SUBPARTS (elt_t),
4527 TYPE_VECTOR_SUBPARTS (rhs1_type)))
4529 error ("incorrect number of vector CONSTRUCTOR"
4530 " elements");
4531 debug_generic_stmt (rhs1);
4532 return true;
4535 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4536 elt_t))
4538 error ("incorrect type of vector CONSTRUCTOR elements");
4539 debug_generic_stmt (rhs1);
4540 return true;
4542 else if (maybe_gt (CONSTRUCTOR_NELTS (rhs1),
4543 TYPE_VECTOR_SUBPARTS (rhs1_type)))
4545 error ("incorrect number of vector CONSTRUCTOR elements");
4546 debug_generic_stmt (rhs1);
4547 return true;
4550 else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
4552 error ("incorrect type of vector CONSTRUCTOR elements");
4553 debug_generic_stmt (rhs1);
4554 return true;
4556 if (elt_i != NULL_TREE
4557 && (TREE_CODE (elt_t) == VECTOR_TYPE
4558 || TREE_CODE (elt_i) != INTEGER_CST
4559 || compare_tree_int (elt_i, i) != 0))
4561 error ("vector CONSTRUCTOR with non-NULL element index");
4562 debug_generic_stmt (rhs1);
4563 return true;
4565 if (!is_gimple_val (elt_v))
4567 error ("vector CONSTRUCTOR element is not a GIMPLE value");
4568 debug_generic_stmt (rhs1);
4569 return true;
4573 else if (CONSTRUCTOR_NELTS (rhs1) != 0)
4575 error ("non-vector CONSTRUCTOR with elements");
4576 debug_generic_stmt (rhs1);
4577 return true;
4579 return res;
4581 case ASSERT_EXPR:
4582 /* FIXME. */
4583 rhs1 = fold (ASSERT_EXPR_COND (rhs1));
4584 if (rhs1 == boolean_false_node)
4586 error ("ASSERT_EXPR with an always-false condition");
4587 debug_generic_stmt (rhs1);
4588 return true;
4590 break;
4592 case OBJ_TYPE_REF:
4593 case WITH_SIZE_EXPR:
4594 /* FIXME. */
4595 return res;
4597 default:;
4600 return res;
4603 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4604 is a problem, otherwise false. */
4606 static bool
4607 verify_gimple_assign (gassign *stmt)
4609 switch (gimple_assign_rhs_class (stmt))
4611 case GIMPLE_SINGLE_RHS:
4612 return verify_gimple_assign_single (stmt);
4614 case GIMPLE_UNARY_RHS:
4615 return verify_gimple_assign_unary (stmt);
4617 case GIMPLE_BINARY_RHS:
4618 return verify_gimple_assign_binary (stmt);
4620 case GIMPLE_TERNARY_RHS:
4621 return verify_gimple_assign_ternary (stmt);
4623 default:
4624 gcc_unreachable ();
4628 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4629 is a problem, otherwise false. */
4631 static bool
4632 verify_gimple_return (greturn *stmt)
4634 tree op = gimple_return_retval (stmt);
4635 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4637 /* We cannot test for present return values as we do not fix up missing
4638 return values from the original source. */
4639 if (op == NULL)
4640 return false;
4642 if (!is_gimple_val (op)
4643 && TREE_CODE (op) != RESULT_DECL)
4645 error ("invalid operand in return statement");
4646 debug_generic_stmt (op);
4647 return true;
4650 if ((TREE_CODE (op) == RESULT_DECL
4651 && DECL_BY_REFERENCE (op))
4652 || (TREE_CODE (op) == SSA_NAME
4653 && SSA_NAME_VAR (op)
4654 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4655 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4656 op = TREE_TYPE (op);
4658 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4660 error ("invalid conversion in return statement");
4661 debug_generic_stmt (restype);
4662 debug_generic_stmt (TREE_TYPE (op));
4663 return true;
4666 return false;
4670 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4671 is a problem, otherwise false. */
4673 static bool
4674 verify_gimple_goto (ggoto *stmt)
4676 tree dest = gimple_goto_dest (stmt);
4678 /* ??? We have two canonical forms of direct goto destinations, a
4679 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4680 if (TREE_CODE (dest) != LABEL_DECL
4681 && (!is_gimple_val (dest)
4682 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4684 error ("goto destination is neither a label nor a pointer");
4685 return true;
4688 return false;
4691 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4692 is a problem, otherwise false. */
4694 static bool
4695 verify_gimple_switch (gswitch *stmt)
4697 unsigned int i, n;
4698 tree elt, prev_upper_bound = NULL_TREE;
4699 tree index_type, elt_type = NULL_TREE;
4701 if (!is_gimple_val (gimple_switch_index (stmt)))
4703 error ("invalid operand to switch statement");
4704 debug_generic_stmt (gimple_switch_index (stmt));
4705 return true;
4708 index_type = TREE_TYPE (gimple_switch_index (stmt));
4709 if (! INTEGRAL_TYPE_P (index_type))
4711 error ("non-integral type switch statement");
4712 debug_generic_expr (index_type);
4713 return true;
4716 elt = gimple_switch_label (stmt, 0);
4717 if (CASE_LOW (elt) != NULL_TREE
4718 || CASE_HIGH (elt) != NULL_TREE
4719 || CASE_CHAIN (elt) != NULL_TREE)
4721 error ("invalid default case label in switch statement");
4722 debug_generic_expr (elt);
4723 return true;
4726 n = gimple_switch_num_labels (stmt);
4727 for (i = 1; i < n; i++)
4729 elt = gimple_switch_label (stmt, i);
4731 if (CASE_CHAIN (elt))
4733 error ("invalid CASE_CHAIN");
4734 debug_generic_expr (elt);
4735 return true;
4737 if (! CASE_LOW (elt))
4739 error ("invalid case label in switch statement");
4740 debug_generic_expr (elt);
4741 return true;
4743 if (CASE_HIGH (elt)
4744 && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
4746 error ("invalid case range in switch statement");
4747 debug_generic_expr (elt);
4748 return true;
4751 if (elt_type)
4753 if (TREE_TYPE (CASE_LOW (elt)) != elt_type
4754 || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
4756 error ("type mismatch for case label in switch statement");
4757 debug_generic_expr (elt);
4758 return true;
4761 else
4763 elt_type = TREE_TYPE (CASE_LOW (elt));
4764 if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
4766 error ("type precision mismatch in switch statement");
4767 return true;
4771 if (prev_upper_bound)
4773 if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
4775 error ("case labels not sorted in switch statement");
4776 return true;
4780 prev_upper_bound = CASE_HIGH (elt);
4781 if (! prev_upper_bound)
4782 prev_upper_bound = CASE_LOW (elt);
4785 return false;
4788 /* Verify a gimple debug statement STMT.
4789 Returns true if anything is wrong. */
4791 static bool
4792 verify_gimple_debug (gimple *stmt ATTRIBUTE_UNUSED)
4794 /* There isn't much that could be wrong in a gimple debug stmt. A
4795 gimple debug bind stmt, for example, maps a tree, that's usually
4796 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4797 component or member of an aggregate type, to another tree, that
4798 can be an arbitrary expression. These stmts expand into debug
4799 insns, and are converted to debug notes by var-tracking.c. */
4800 return false;
4803 /* Verify a gimple label statement STMT.
4804 Returns true if anything is wrong. */
4806 static bool
4807 verify_gimple_label (glabel *stmt)
4809 tree decl = gimple_label_label (stmt);
4810 int uid;
4811 bool err = false;
4813 if (TREE_CODE (decl) != LABEL_DECL)
4814 return true;
4815 if (!DECL_NONLOCAL (decl) && !FORCED_LABEL (decl)
4816 && DECL_CONTEXT (decl) != current_function_decl)
4818 error ("label's context is not the current function decl");
4819 err |= true;
4822 uid = LABEL_DECL_UID (decl);
4823 if (cfun->cfg
4824 && (uid == -1
4825 || (*label_to_block_map_for_fn (cfun))[uid] != gimple_bb (stmt)))
4827 error ("incorrect entry in label_to_block_map");
4828 err |= true;
4831 uid = EH_LANDING_PAD_NR (decl);
4832 if (uid)
4834 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4835 if (decl != lp->post_landing_pad)
4837 error ("incorrect setting of landing pad number");
4838 err |= true;
4842 return err;
4845 /* Verify a gimple cond statement STMT.
4846 Returns true if anything is wrong. */
4848 static bool
4849 verify_gimple_cond (gcond *stmt)
4851 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4853 error ("invalid comparison code in gimple cond");
4854 return true;
4856 if (!(!gimple_cond_true_label (stmt)
4857 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4858 || !(!gimple_cond_false_label (stmt)
4859 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4861 error ("invalid labels in gimple cond");
4862 return true;
4865 return verify_gimple_comparison (boolean_type_node,
4866 gimple_cond_lhs (stmt),
4867 gimple_cond_rhs (stmt),
4868 gimple_cond_code (stmt));
4871 /* Verify the GIMPLE statement STMT. Returns true if there is an
4872 error, otherwise false. */
4874 static bool
4875 verify_gimple_stmt (gimple *stmt)
4877 switch (gimple_code (stmt))
4879 case GIMPLE_ASSIGN:
4880 return verify_gimple_assign (as_a <gassign *> (stmt));
4882 case GIMPLE_LABEL:
4883 return verify_gimple_label (as_a <glabel *> (stmt));
4885 case GIMPLE_CALL:
4886 return verify_gimple_call (as_a <gcall *> (stmt));
4888 case GIMPLE_COND:
4889 return verify_gimple_cond (as_a <gcond *> (stmt));
4891 case GIMPLE_GOTO:
4892 return verify_gimple_goto (as_a <ggoto *> (stmt));
4894 case GIMPLE_SWITCH:
4895 return verify_gimple_switch (as_a <gswitch *> (stmt));
4897 case GIMPLE_RETURN:
4898 return verify_gimple_return (as_a <greturn *> (stmt));
4900 case GIMPLE_ASM:
4901 return false;
4903 case GIMPLE_TRANSACTION:
4904 return verify_gimple_transaction (as_a <gtransaction *> (stmt));
4906 /* Tuples that do not have tree operands. */
4907 case GIMPLE_NOP:
4908 case GIMPLE_PREDICT:
4909 case GIMPLE_RESX:
4910 case GIMPLE_EH_DISPATCH:
4911 case GIMPLE_EH_MUST_NOT_THROW:
4912 return false;
4914 CASE_GIMPLE_OMP:
4915 /* OpenMP directives are validated by the FE and never operated
4916 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4917 non-gimple expressions when the main index variable has had
4918 its address taken. This does not affect the loop itself
4919 because the header of an GIMPLE_OMP_FOR is merely used to determine
4920 how to setup the parallel iteration. */
4921 return false;
4923 case GIMPLE_DEBUG:
4924 return verify_gimple_debug (stmt);
4926 default:
4927 gcc_unreachable ();
4931 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4932 and false otherwise. */
4934 static bool
4935 verify_gimple_phi (gphi *phi)
4937 bool err = false;
4938 unsigned i;
4939 tree phi_result = gimple_phi_result (phi);
4940 bool virtual_p;
4942 if (!phi_result)
4944 error ("invalid PHI result");
4945 return true;
4948 virtual_p = virtual_operand_p (phi_result);
4949 if (TREE_CODE (phi_result) != SSA_NAME
4950 || (virtual_p
4951 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4953 error ("invalid PHI result");
4954 err = true;
4957 for (i = 0; i < gimple_phi_num_args (phi); i++)
4959 tree t = gimple_phi_arg_def (phi, i);
4961 if (!t)
4963 error ("missing PHI def");
4964 err |= true;
4965 continue;
4967 /* Addressable variables do have SSA_NAMEs but they
4968 are not considered gimple values. */
4969 else if ((TREE_CODE (t) == SSA_NAME
4970 && virtual_p != virtual_operand_p (t))
4971 || (virtual_p
4972 && (TREE_CODE (t) != SSA_NAME
4973 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4974 || (!virtual_p
4975 && !is_gimple_val (t)))
4977 error ("invalid PHI argument");
4978 debug_generic_expr (t);
4979 err |= true;
4981 #ifdef ENABLE_TYPES_CHECKING
4982 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4984 error ("incompatible types in PHI argument %u", i);
4985 debug_generic_stmt (TREE_TYPE (phi_result));
4986 debug_generic_stmt (TREE_TYPE (t));
4987 err |= true;
4989 #endif
4992 return err;
4995 /* Verify the GIMPLE statements inside the sequence STMTS. */
4997 static bool
4998 verify_gimple_in_seq_2 (gimple_seq stmts)
5000 gimple_stmt_iterator ittr;
5001 bool err = false;
5003 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
5005 gimple *stmt = gsi_stmt (ittr);
5007 switch (gimple_code (stmt))
5009 case GIMPLE_BIND:
5010 err |= verify_gimple_in_seq_2 (
5011 gimple_bind_body (as_a <gbind *> (stmt)));
5012 break;
5014 case GIMPLE_TRY:
5015 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
5016 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
5017 break;
5019 case GIMPLE_EH_FILTER:
5020 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
5021 break;
5023 case GIMPLE_EH_ELSE:
5025 geh_else *eh_else = as_a <geh_else *> (stmt);
5026 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (eh_else));
5027 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (eh_else));
5029 break;
5031 case GIMPLE_CATCH:
5032 err |= verify_gimple_in_seq_2 (gimple_catch_handler (
5033 as_a <gcatch *> (stmt)));
5034 break;
5036 case GIMPLE_TRANSACTION:
5037 err |= verify_gimple_transaction (as_a <gtransaction *> (stmt));
5038 break;
5040 default:
5042 bool err2 = verify_gimple_stmt (stmt);
5043 if (err2)
5044 debug_gimple_stmt (stmt);
5045 err |= err2;
5050 return err;
5053 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
5054 is a problem, otherwise false. */
5056 static bool
5057 verify_gimple_transaction (gtransaction *stmt)
5059 tree lab;
5061 lab = gimple_transaction_label_norm (stmt);
5062 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
5063 return true;
5064 lab = gimple_transaction_label_uninst (stmt);
5065 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
5066 return true;
5067 lab = gimple_transaction_label_over (stmt);
5068 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
5069 return true;
5071 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
5075 /* Verify the GIMPLE statements inside the statement list STMTS. */
5077 DEBUG_FUNCTION void
5078 verify_gimple_in_seq (gimple_seq stmts)
5080 timevar_push (TV_TREE_STMT_VERIFY);
5081 if (verify_gimple_in_seq_2 (stmts))
5082 internal_error ("verify_gimple failed");
5083 timevar_pop (TV_TREE_STMT_VERIFY);
5086 /* Return true when the T can be shared. */
5088 static bool
5089 tree_node_can_be_shared (tree t)
5091 if (IS_TYPE_OR_DECL_P (t)
5092 || TREE_CODE (t) == SSA_NAME
5093 || TREE_CODE (t) == IDENTIFIER_NODE
5094 || TREE_CODE (t) == CASE_LABEL_EXPR
5095 || is_gimple_min_invariant (t))
5096 return true;
5098 if (t == error_mark_node)
5099 return true;
5101 return false;
5104 /* Called via walk_tree. Verify tree sharing. */
5106 static tree
5107 verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data)
5109 hash_set<void *> *visited = (hash_set<void *> *) data;
5111 if (tree_node_can_be_shared (*tp))
5113 *walk_subtrees = false;
5114 return NULL;
5117 if (visited->add (*tp))
5118 return *tp;
5120 return NULL;
5123 /* Called via walk_gimple_stmt. Verify tree sharing. */
5125 static tree
5126 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
5128 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5129 return verify_node_sharing_1 (tp, walk_subtrees, wi->info);
5132 static bool eh_error_found;
5133 bool
5134 verify_eh_throw_stmt_node (gimple *const &stmt, const int &,
5135 hash_set<gimple *> *visited)
5137 if (!visited->contains (stmt))
5139 error ("dead STMT in EH table");
5140 debug_gimple_stmt (stmt);
5141 eh_error_found = true;
5143 return true;
5146 /* Verify if the location LOCs block is in BLOCKS. */
5148 static bool
5149 verify_location (hash_set<tree> *blocks, location_t loc)
5151 tree block = LOCATION_BLOCK (loc);
5152 if (block != NULL_TREE
5153 && !blocks->contains (block))
5155 error ("location references block not in block tree");
5156 return true;
5158 if (block != NULL_TREE)
5159 return verify_location (blocks, BLOCK_SOURCE_LOCATION (block));
5160 return false;
5163 /* Called via walk_tree. Verify that expressions have no blocks. */
5165 static tree
5166 verify_expr_no_block (tree *tp, int *walk_subtrees, void *)
5168 if (!EXPR_P (*tp))
5170 *walk_subtrees = false;
5171 return NULL;
5174 location_t loc = EXPR_LOCATION (*tp);
5175 if (LOCATION_BLOCK (loc) != NULL)
5176 return *tp;
5178 return NULL;
5181 /* Called via walk_tree. Verify locations of expressions. */
5183 static tree
5184 verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data)
5186 hash_set<tree> *blocks = (hash_set<tree> *) data;
5187 tree t = *tp;
5189 /* ??? This doesn't really belong here but there's no good place to
5190 stick this remainder of old verify_expr. */
5191 /* ??? This barfs on debug stmts which contain binds to vars with
5192 different function context. */
5193 #if 0
5194 if (VAR_P (t)
5195 || TREE_CODE (t) == PARM_DECL
5196 || TREE_CODE (t) == RESULT_DECL)
5198 tree context = decl_function_context (t);
5199 if (context != cfun->decl
5200 && !SCOPE_FILE_SCOPE_P (context)
5201 && !TREE_STATIC (t)
5202 && !DECL_EXTERNAL (t))
5204 error ("local declaration from a different function");
5205 return t;
5208 #endif
5210 if (VAR_P (t) && DECL_HAS_DEBUG_EXPR_P (t))
5212 tree x = DECL_DEBUG_EXPR (t);
5213 tree addr = walk_tree (&x, verify_expr_no_block, NULL, NULL);
5214 if (addr)
5215 return addr;
5217 if ((VAR_P (t)
5218 || TREE_CODE (t) == PARM_DECL
5219 || TREE_CODE (t) == RESULT_DECL)
5220 && DECL_HAS_VALUE_EXPR_P (t))
5222 tree x = DECL_VALUE_EXPR (t);
5223 tree addr = walk_tree (&x, verify_expr_no_block, NULL, NULL);
5224 if (addr)
5225 return addr;
5228 if (!EXPR_P (t))
5230 *walk_subtrees = false;
5231 return NULL;
5234 location_t loc = EXPR_LOCATION (t);
5235 if (verify_location (blocks, loc))
5236 return t;
5238 return NULL;
5241 /* Called via walk_gimple_op. Verify locations of expressions. */
5243 static tree
5244 verify_expr_location (tree *tp, int *walk_subtrees, void *data)
5246 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5247 return verify_expr_location_1 (tp, walk_subtrees, wi->info);
5250 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
5252 static void
5253 collect_subblocks (hash_set<tree> *blocks, tree block)
5255 tree t;
5256 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
5258 blocks->add (t);
5259 collect_subblocks (blocks, t);
5263 /* Verify the GIMPLE statements in the CFG of FN. */
5265 DEBUG_FUNCTION void
5266 verify_gimple_in_cfg (struct function *fn, bool verify_nothrow)
5268 basic_block bb;
5269 bool err = false;
5271 timevar_push (TV_TREE_STMT_VERIFY);
5272 hash_set<void *> visited;
5273 hash_set<gimple *> visited_throwing_stmts;
5275 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
5276 hash_set<tree> blocks;
5277 if (DECL_INITIAL (fn->decl))
5279 blocks.add (DECL_INITIAL (fn->decl));
5280 collect_subblocks (&blocks, DECL_INITIAL (fn->decl));
5283 FOR_EACH_BB_FN (bb, fn)
5285 gimple_stmt_iterator gsi;
5286 edge_iterator ei;
5287 edge e;
5289 for (gphi_iterator gpi = gsi_start_phis (bb);
5290 !gsi_end_p (gpi);
5291 gsi_next (&gpi))
5293 gphi *phi = gpi.phi ();
5294 bool err2 = false;
5295 unsigned i;
5297 if (gimple_bb (phi) != bb)
5299 error ("gimple_bb (phi) is set to a wrong basic block");
5300 err2 = true;
5303 err2 |= verify_gimple_phi (phi);
5305 /* Only PHI arguments have locations. */
5306 if (gimple_location (phi) != UNKNOWN_LOCATION)
5308 error ("PHI node with location");
5309 err2 = true;
5312 for (i = 0; i < gimple_phi_num_args (phi); i++)
5314 tree arg = gimple_phi_arg_def (phi, i);
5315 tree addr = walk_tree (&arg, verify_node_sharing_1,
5316 &visited, NULL);
5317 if (addr)
5319 error ("incorrect sharing of tree nodes");
5320 debug_generic_expr (addr);
5321 err2 |= true;
5323 location_t loc = gimple_phi_arg_location (phi, i);
5324 if (virtual_operand_p (gimple_phi_result (phi))
5325 && loc != UNKNOWN_LOCATION)
5327 error ("virtual PHI with argument locations");
5328 err2 = true;
5330 addr = walk_tree (&arg, verify_expr_location_1, &blocks, NULL);
5331 if (addr)
5333 debug_generic_expr (addr);
5334 err2 = true;
5336 err2 |= verify_location (&blocks, loc);
5339 if (err2)
5340 debug_gimple_stmt (phi);
5341 err |= err2;
5344 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5346 gimple *stmt = gsi_stmt (gsi);
5347 bool err2 = false;
5348 struct walk_stmt_info wi;
5349 tree addr;
5350 int lp_nr;
5352 if (gimple_bb (stmt) != bb)
5354 error ("gimple_bb (stmt) is set to a wrong basic block");
5355 err2 = true;
5358 err2 |= verify_gimple_stmt (stmt);
5359 err2 |= verify_location (&blocks, gimple_location (stmt));
5361 memset (&wi, 0, sizeof (wi));
5362 wi.info = (void *) &visited;
5363 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
5364 if (addr)
5366 error ("incorrect sharing of tree nodes");
5367 debug_generic_expr (addr);
5368 err2 |= true;
5371 memset (&wi, 0, sizeof (wi));
5372 wi.info = (void *) &blocks;
5373 addr = walk_gimple_op (stmt, verify_expr_location, &wi);
5374 if (addr)
5376 debug_generic_expr (addr);
5377 err2 |= true;
5380 /* If the statement is marked as part of an EH region, then it is
5381 expected that the statement could throw. Verify that when we
5382 have optimizations that simplify statements such that we prove
5383 that they cannot throw, that we update other data structures
5384 to match. */
5385 lp_nr = lookup_stmt_eh_lp (stmt);
5386 if (lp_nr != 0)
5387 visited_throwing_stmts.add (stmt);
5388 if (lp_nr > 0)
5390 if (!stmt_could_throw_p (stmt))
5392 if (verify_nothrow)
5394 error ("statement marked for throw, but doesn%'t");
5395 err2 |= true;
5398 else if (!gsi_one_before_end_p (gsi))
5400 error ("statement marked for throw in middle of block");
5401 err2 |= true;
5405 if (err2)
5406 debug_gimple_stmt (stmt);
5407 err |= err2;
5410 FOR_EACH_EDGE (e, ei, bb->succs)
5411 if (e->goto_locus != UNKNOWN_LOCATION)
5412 err |= verify_location (&blocks, e->goto_locus);
5415 hash_map<gimple *, int> *eh_table = get_eh_throw_stmt_table (cfun);
5416 eh_error_found = false;
5417 if (eh_table)
5418 eh_table->traverse<hash_set<gimple *> *, verify_eh_throw_stmt_node>
5419 (&visited_throwing_stmts);
5421 if (err || eh_error_found)
5422 internal_error ("verify_gimple failed");
5424 verify_histograms ();
5425 timevar_pop (TV_TREE_STMT_VERIFY);
5429 /* Verifies that the flow information is OK. */
5431 static int
5432 gimple_verify_flow_info (void)
5434 int err = 0;
5435 basic_block bb;
5436 gimple_stmt_iterator gsi;
5437 gimple *stmt;
5438 edge e;
5439 edge_iterator ei;
5441 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
5442 || ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
5444 error ("ENTRY_BLOCK has IL associated with it");
5445 err = 1;
5448 if (EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
5449 || EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
5451 error ("EXIT_BLOCK has IL associated with it");
5452 err = 1;
5455 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5456 if (e->flags & EDGE_FALLTHRU)
5458 error ("fallthru to exit from bb %d", e->src->index);
5459 err = 1;
5462 FOR_EACH_BB_FN (bb, cfun)
5464 bool found_ctrl_stmt = false;
5466 stmt = NULL;
5468 /* Skip labels on the start of basic block. */
5469 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5471 tree label;
5472 gimple *prev_stmt = stmt;
5474 stmt = gsi_stmt (gsi);
5476 if (gimple_code (stmt) != GIMPLE_LABEL)
5477 break;
5479 label = gimple_label_label (as_a <glabel *> (stmt));
5480 if (prev_stmt && DECL_NONLOCAL (label))
5482 error ("nonlocal label ");
5483 print_generic_expr (stderr, label);
5484 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5485 bb->index);
5486 err = 1;
5489 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
5491 error ("EH landing pad label ");
5492 print_generic_expr (stderr, label);
5493 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5494 bb->index);
5495 err = 1;
5498 if (label_to_block (cfun, label) != bb)
5500 error ("label ");
5501 print_generic_expr (stderr, label);
5502 fprintf (stderr, " to block does not match in bb %d",
5503 bb->index);
5504 err = 1;
5507 if (decl_function_context (label) != current_function_decl)
5509 error ("label ");
5510 print_generic_expr (stderr, label);
5511 fprintf (stderr, " has incorrect context in bb %d",
5512 bb->index);
5513 err = 1;
5517 /* Verify that body of basic block BB is free of control flow. */
5518 for (; !gsi_end_p (gsi); gsi_next (&gsi))
5520 gimple *stmt = gsi_stmt (gsi);
5522 if (found_ctrl_stmt)
5524 error ("control flow in the middle of basic block %d",
5525 bb->index);
5526 err = 1;
5529 if (stmt_ends_bb_p (stmt))
5530 found_ctrl_stmt = true;
5532 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
5534 error ("label ");
5535 print_generic_expr (stderr, gimple_label_label (label_stmt));
5536 fprintf (stderr, " in the middle of basic block %d", bb->index);
5537 err = 1;
5541 gsi = gsi_last_nondebug_bb (bb);
5542 if (gsi_end_p (gsi))
5543 continue;
5545 stmt = gsi_stmt (gsi);
5547 if (gimple_code (stmt) == GIMPLE_LABEL)
5548 continue;
5550 err |= verify_eh_edges (stmt);
5552 if (is_ctrl_stmt (stmt))
5554 FOR_EACH_EDGE (e, ei, bb->succs)
5555 if (e->flags & EDGE_FALLTHRU)
5557 error ("fallthru edge after a control statement in bb %d",
5558 bb->index);
5559 err = 1;
5563 if (gimple_code (stmt) != GIMPLE_COND)
5565 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
5566 after anything else but if statement. */
5567 FOR_EACH_EDGE (e, ei, bb->succs)
5568 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
5570 error ("true/false edge after a non-GIMPLE_COND in bb %d",
5571 bb->index);
5572 err = 1;
5576 switch (gimple_code (stmt))
5578 case GIMPLE_COND:
5580 edge true_edge;
5581 edge false_edge;
5583 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
5585 if (!true_edge
5586 || !false_edge
5587 || !(true_edge->flags & EDGE_TRUE_VALUE)
5588 || !(false_edge->flags & EDGE_FALSE_VALUE)
5589 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5590 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5591 || EDGE_COUNT (bb->succs) >= 3)
5593 error ("wrong outgoing edge flags at end of bb %d",
5594 bb->index);
5595 err = 1;
5598 break;
5600 case GIMPLE_GOTO:
5601 if (simple_goto_p (stmt))
5603 error ("explicit goto at end of bb %d", bb->index);
5604 err = 1;
5606 else
5608 /* FIXME. We should double check that the labels in the
5609 destination blocks have their address taken. */
5610 FOR_EACH_EDGE (e, ei, bb->succs)
5611 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
5612 | EDGE_FALSE_VALUE))
5613 || !(e->flags & EDGE_ABNORMAL))
5615 error ("wrong outgoing edge flags at end of bb %d",
5616 bb->index);
5617 err = 1;
5620 break;
5622 case GIMPLE_CALL:
5623 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
5624 break;
5625 /* fallthru */
5626 case GIMPLE_RETURN:
5627 if (!single_succ_p (bb)
5628 || (single_succ_edge (bb)->flags
5629 & (EDGE_FALLTHRU | EDGE_ABNORMAL
5630 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5632 error ("wrong outgoing edge flags at end of bb %d", bb->index);
5633 err = 1;
5635 if (single_succ (bb) != EXIT_BLOCK_PTR_FOR_FN (cfun))
5637 error ("return edge does not point to exit in bb %d",
5638 bb->index);
5639 err = 1;
5641 break;
5643 case GIMPLE_SWITCH:
5645 gswitch *switch_stmt = as_a <gswitch *> (stmt);
5646 tree prev;
5647 edge e;
5648 size_t i, n;
5650 n = gimple_switch_num_labels (switch_stmt);
5652 /* Mark all the destination basic blocks. */
5653 for (i = 0; i < n; ++i)
5655 basic_block label_bb = gimple_switch_label_bb (cfun, switch_stmt, i);
5656 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
5657 label_bb->aux = (void *)1;
5660 /* Verify that the case labels are sorted. */
5661 prev = gimple_switch_label (switch_stmt, 0);
5662 for (i = 1; i < n; ++i)
5664 tree c = gimple_switch_label (switch_stmt, i);
5665 if (!CASE_LOW (c))
5667 error ("found default case not at the start of "
5668 "case vector");
5669 err = 1;
5670 continue;
5672 if (CASE_LOW (prev)
5673 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
5675 error ("case labels not sorted: ");
5676 print_generic_expr (stderr, prev);
5677 fprintf (stderr," is greater than ");
5678 print_generic_expr (stderr, c);
5679 fprintf (stderr," but comes before it.\n");
5680 err = 1;
5682 prev = c;
5684 /* VRP will remove the default case if it can prove it will
5685 never be executed. So do not verify there always exists
5686 a default case here. */
5688 FOR_EACH_EDGE (e, ei, bb->succs)
5690 if (!e->dest->aux)
5692 error ("extra outgoing edge %d->%d",
5693 bb->index, e->dest->index);
5694 err = 1;
5697 e->dest->aux = (void *)2;
5698 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
5699 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5701 error ("wrong outgoing edge flags at end of bb %d",
5702 bb->index);
5703 err = 1;
5707 /* Check that we have all of them. */
5708 for (i = 0; i < n; ++i)
5710 basic_block label_bb = gimple_switch_label_bb (cfun,
5711 switch_stmt, i);
5713 if (label_bb->aux != (void *)2)
5715 error ("missing edge %i->%i", bb->index, label_bb->index);
5716 err = 1;
5720 FOR_EACH_EDGE (e, ei, bb->succs)
5721 e->dest->aux = (void *)0;
5723 break;
5725 case GIMPLE_EH_DISPATCH:
5726 err |= verify_eh_dispatch_edge (as_a <geh_dispatch *> (stmt));
5727 break;
5729 default:
5730 break;
5734 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
5735 verify_dominators (CDI_DOMINATORS);
5737 return err;
5741 /* Updates phi nodes after creating a forwarder block joined
5742 by edge FALLTHRU. */
5744 static void
5745 gimple_make_forwarder_block (edge fallthru)
5747 edge e;
5748 edge_iterator ei;
5749 basic_block dummy, bb;
5750 tree var;
5751 gphi_iterator gsi;
5753 dummy = fallthru->src;
5754 bb = fallthru->dest;
5756 if (single_pred_p (bb))
5757 return;
5759 /* If we redirected a branch we must create new PHI nodes at the
5760 start of BB. */
5761 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
5763 gphi *phi, *new_phi;
5765 phi = gsi.phi ();
5766 var = gimple_phi_result (phi);
5767 new_phi = create_phi_node (var, bb);
5768 gimple_phi_set_result (phi, copy_ssa_name (var, phi));
5769 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
5770 UNKNOWN_LOCATION);
5773 /* Add the arguments we have stored on edges. */
5774 FOR_EACH_EDGE (e, ei, bb->preds)
5776 if (e == fallthru)
5777 continue;
5779 flush_pending_stmts (e);
5784 /* Return a non-special label in the head of basic block BLOCK.
5785 Create one if it doesn't exist. */
5787 tree
5788 gimple_block_label (basic_block bb)
5790 gimple_stmt_iterator i, s = gsi_start_bb (bb);
5791 bool first = true;
5792 tree label;
5793 glabel *stmt;
5795 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
5797 stmt = dyn_cast <glabel *> (gsi_stmt (i));
5798 if (!stmt)
5799 break;
5800 label = gimple_label_label (stmt);
5801 if (!DECL_NONLOCAL (label))
5803 if (!first)
5804 gsi_move_before (&i, &s);
5805 return label;
5809 label = create_artificial_label (UNKNOWN_LOCATION);
5810 stmt = gimple_build_label (label);
5811 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
5812 return label;
5816 /* Attempt to perform edge redirection by replacing a possibly complex
5817 jump instruction by a goto or by removing the jump completely.
5818 This can apply only if all edges now point to the same block. The
5819 parameters and return values are equivalent to
5820 redirect_edge_and_branch. */
5822 static edge
5823 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
5825 basic_block src = e->src;
5826 gimple_stmt_iterator i;
5827 gimple *stmt;
5829 /* We can replace or remove a complex jump only when we have exactly
5830 two edges. */
5831 if (EDGE_COUNT (src->succs) != 2
5832 /* Verify that all targets will be TARGET. Specifically, the
5833 edge that is not E must also go to TARGET. */
5834 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
5835 return NULL;
5837 i = gsi_last_bb (src);
5838 if (gsi_end_p (i))
5839 return NULL;
5841 stmt = gsi_stmt (i);
5843 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
5845 gsi_remove (&i, true);
5846 e = ssa_redirect_edge (e, target);
5847 e->flags = EDGE_FALLTHRU;
5848 return e;
5851 return NULL;
5855 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5856 edge representing the redirected branch. */
5858 static edge
5859 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5861 basic_block bb = e->src;
5862 gimple_stmt_iterator gsi;
5863 edge ret;
5864 gimple *stmt;
5866 if (e->flags & EDGE_ABNORMAL)
5867 return NULL;
5869 if (e->dest == dest)
5870 return NULL;
5872 if (e->flags & EDGE_EH)
5873 return redirect_eh_edge (e, dest);
5875 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5877 ret = gimple_try_redirect_by_replacing_jump (e, dest);
5878 if (ret)
5879 return ret;
5882 gsi = gsi_last_nondebug_bb (bb);
5883 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
5885 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
5887 case GIMPLE_COND:
5888 /* For COND_EXPR, we only need to redirect the edge. */
5889 break;
5891 case GIMPLE_GOTO:
5892 /* No non-abnormal edges should lead from a non-simple goto, and
5893 simple ones should be represented implicitly. */
5894 gcc_unreachable ();
5896 case GIMPLE_SWITCH:
5898 gswitch *switch_stmt = as_a <gswitch *> (stmt);
5899 tree label = gimple_block_label (dest);
5900 tree cases = get_cases_for_edge (e, switch_stmt);
5902 /* If we have a list of cases associated with E, then use it
5903 as it's a lot faster than walking the entire case vector. */
5904 if (cases)
5906 edge e2 = find_edge (e->src, dest);
5907 tree last, first;
5909 first = cases;
5910 while (cases)
5912 last = cases;
5913 CASE_LABEL (cases) = label;
5914 cases = CASE_CHAIN (cases);
5917 /* If there was already an edge in the CFG, then we need
5918 to move all the cases associated with E to E2. */
5919 if (e2)
5921 tree cases2 = get_cases_for_edge (e2, switch_stmt);
5923 CASE_CHAIN (last) = CASE_CHAIN (cases2);
5924 CASE_CHAIN (cases2) = first;
5926 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
5928 else
5930 size_t i, n = gimple_switch_num_labels (switch_stmt);
5932 for (i = 0; i < n; i++)
5934 tree elt = gimple_switch_label (switch_stmt, i);
5935 if (label_to_block (cfun, CASE_LABEL (elt)) == e->dest)
5936 CASE_LABEL (elt) = label;
5940 break;
5942 case GIMPLE_ASM:
5944 gasm *asm_stmt = as_a <gasm *> (stmt);
5945 int i, n = gimple_asm_nlabels (asm_stmt);
5946 tree label = NULL;
5948 for (i = 0; i < n; ++i)
5950 tree cons = gimple_asm_label_op (asm_stmt, i);
5951 if (label_to_block (cfun, TREE_VALUE (cons)) == e->dest)
5953 if (!label)
5954 label = gimple_block_label (dest);
5955 TREE_VALUE (cons) = label;
5959 /* If we didn't find any label matching the former edge in the
5960 asm labels, we must be redirecting the fallthrough
5961 edge. */
5962 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
5964 break;
5966 case GIMPLE_RETURN:
5967 gsi_remove (&gsi, true);
5968 e->flags |= EDGE_FALLTHRU;
5969 break;
5971 case GIMPLE_OMP_RETURN:
5972 case GIMPLE_OMP_CONTINUE:
5973 case GIMPLE_OMP_SECTIONS_SWITCH:
5974 case GIMPLE_OMP_FOR:
5975 /* The edges from OMP constructs can be simply redirected. */
5976 break;
5978 case GIMPLE_EH_DISPATCH:
5979 if (!(e->flags & EDGE_FALLTHRU))
5980 redirect_eh_dispatch_edge (as_a <geh_dispatch *> (stmt), e, dest);
5981 break;
5983 case GIMPLE_TRANSACTION:
5984 if (e->flags & EDGE_TM_ABORT)
5985 gimple_transaction_set_label_over (as_a <gtransaction *> (stmt),
5986 gimple_block_label (dest));
5987 else if (e->flags & EDGE_TM_UNINSTRUMENTED)
5988 gimple_transaction_set_label_uninst (as_a <gtransaction *> (stmt),
5989 gimple_block_label (dest));
5990 else
5991 gimple_transaction_set_label_norm (as_a <gtransaction *> (stmt),
5992 gimple_block_label (dest));
5993 break;
5995 default:
5996 /* Otherwise it must be a fallthru edge, and we don't need to
5997 do anything besides redirecting it. */
5998 gcc_assert (e->flags & EDGE_FALLTHRU);
5999 break;
6002 /* Update/insert PHI nodes as necessary. */
6004 /* Now update the edges in the CFG. */
6005 e = ssa_redirect_edge (e, dest);
6007 return e;
6010 /* Returns true if it is possible to remove edge E by redirecting
6011 it to the destination of the other edge from E->src. */
6013 static bool
6014 gimple_can_remove_branch_p (const_edge e)
6016 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
6017 return false;
6019 return true;
6022 /* Simple wrapper, as we can always redirect fallthru edges. */
6024 static basic_block
6025 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
6027 e = gimple_redirect_edge_and_branch (e, dest);
6028 gcc_assert (e);
6030 return NULL;
6034 /* Splits basic block BB after statement STMT (but at least after the
6035 labels). If STMT is NULL, BB is split just after the labels. */
6037 static basic_block
6038 gimple_split_block (basic_block bb, void *stmt)
6040 gimple_stmt_iterator gsi;
6041 gimple_stmt_iterator gsi_tgt;
6042 gimple_seq list;
6043 basic_block new_bb;
6044 edge e;
6045 edge_iterator ei;
6047 new_bb = create_empty_bb (bb);
6049 /* Redirect the outgoing edges. */
6050 new_bb->succs = bb->succs;
6051 bb->succs = NULL;
6052 FOR_EACH_EDGE (e, ei, new_bb->succs)
6053 e->src = new_bb;
6055 /* Get a stmt iterator pointing to the first stmt to move. */
6056 if (!stmt || gimple_code ((gimple *) stmt) == GIMPLE_LABEL)
6057 gsi = gsi_after_labels (bb);
6058 else
6060 gsi = gsi_for_stmt ((gimple *) stmt);
6061 gsi_next (&gsi);
6064 /* Move everything from GSI to the new basic block. */
6065 if (gsi_end_p (gsi))
6066 return new_bb;
6068 /* Split the statement list - avoid re-creating new containers as this
6069 brings ugly quadratic memory consumption in the inliner.
6070 (We are still quadratic since we need to update stmt BB pointers,
6071 sadly.) */
6072 gsi_split_seq_before (&gsi, &list);
6073 set_bb_seq (new_bb, list);
6074 for (gsi_tgt = gsi_start (list);
6075 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
6076 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
6078 return new_bb;
6082 /* Moves basic block BB after block AFTER. */
6084 static bool
6085 gimple_move_block_after (basic_block bb, basic_block after)
6087 if (bb->prev_bb == after)
6088 return true;
6090 unlink_block (bb);
6091 link_block (bb, after);
6093 return true;
6097 /* Return TRUE if block BB has no executable statements, otherwise return
6098 FALSE. */
6100 static bool
6101 gimple_empty_block_p (basic_block bb)
6103 /* BB must have no executable statements. */
6104 gimple_stmt_iterator gsi = gsi_after_labels (bb);
6105 if (phi_nodes (bb))
6106 return false;
6107 if (gsi_end_p (gsi))
6108 return true;
6109 if (is_gimple_debug (gsi_stmt (gsi)))
6110 gsi_next_nondebug (&gsi);
6111 return gsi_end_p (gsi);
6115 /* Split a basic block if it ends with a conditional branch and if the
6116 other part of the block is not empty. */
6118 static basic_block
6119 gimple_split_block_before_cond_jump (basic_block bb)
6121 gimple *last, *split_point;
6122 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6123 if (gsi_end_p (gsi))
6124 return NULL;
6125 last = gsi_stmt (gsi);
6126 if (gimple_code (last) != GIMPLE_COND
6127 && gimple_code (last) != GIMPLE_SWITCH)
6128 return NULL;
6129 gsi_prev (&gsi);
6130 split_point = gsi_stmt (gsi);
6131 return split_block (bb, split_point)->dest;
6135 /* Return true if basic_block can be duplicated. */
6137 static bool
6138 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
6140 return true;
6143 /* Create a duplicate of the basic block BB. NOTE: This does not
6144 preserve SSA form. */
6146 static basic_block
6147 gimple_duplicate_bb (basic_block bb)
6149 basic_block new_bb;
6150 gimple_stmt_iterator gsi_tgt;
6152 new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
6154 /* Copy the PHI nodes. We ignore PHI node arguments here because
6155 the incoming edges have not been setup yet. */
6156 for (gphi_iterator gpi = gsi_start_phis (bb);
6157 !gsi_end_p (gpi);
6158 gsi_next (&gpi))
6160 gphi *phi, *copy;
6161 phi = gpi.phi ();
6162 copy = create_phi_node (NULL_TREE, new_bb);
6163 create_new_def_for (gimple_phi_result (phi), copy,
6164 gimple_phi_result_ptr (copy));
6165 gimple_set_uid (copy, gimple_uid (phi));
6168 gsi_tgt = gsi_start_bb (new_bb);
6169 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
6170 !gsi_end_p (gsi);
6171 gsi_next (&gsi))
6173 def_operand_p def_p;
6174 ssa_op_iter op_iter;
6175 tree lhs;
6176 gimple *stmt, *copy;
6178 stmt = gsi_stmt (gsi);
6179 if (gimple_code (stmt) == GIMPLE_LABEL)
6180 continue;
6182 /* Don't duplicate label debug stmts. */
6183 if (gimple_debug_bind_p (stmt)
6184 && TREE_CODE (gimple_debug_bind_get_var (stmt))
6185 == LABEL_DECL)
6186 continue;
6188 /* Create a new copy of STMT and duplicate STMT's virtual
6189 operands. */
6190 copy = gimple_copy (stmt);
6191 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
6193 maybe_duplicate_eh_stmt (copy, stmt);
6194 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
6196 /* When copying around a stmt writing into a local non-user
6197 aggregate, make sure it won't share stack slot with other
6198 vars. */
6199 lhs = gimple_get_lhs (stmt);
6200 if (lhs && TREE_CODE (lhs) != SSA_NAME)
6202 tree base = get_base_address (lhs);
6203 if (base
6204 && (VAR_P (base) || TREE_CODE (base) == RESULT_DECL)
6205 && DECL_IGNORED_P (base)
6206 && !TREE_STATIC (base)
6207 && !DECL_EXTERNAL (base)
6208 && (!VAR_P (base) || !DECL_HAS_VALUE_EXPR_P (base)))
6209 DECL_NONSHAREABLE (base) = 1;
6212 /* Create new names for all the definitions created by COPY and
6213 add replacement mappings for each new name. */
6214 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
6215 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
6218 return new_bb;
6221 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
6223 static void
6224 add_phi_args_after_copy_edge (edge e_copy)
6226 basic_block bb, bb_copy = e_copy->src, dest;
6227 edge e;
6228 edge_iterator ei;
6229 gphi *phi, *phi_copy;
6230 tree def;
6231 gphi_iterator psi, psi_copy;
6233 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
6234 return;
6236 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
6238 if (e_copy->dest->flags & BB_DUPLICATED)
6239 dest = get_bb_original (e_copy->dest);
6240 else
6241 dest = e_copy->dest;
6243 e = find_edge (bb, dest);
6244 if (!e)
6246 /* During loop unrolling the target of the latch edge is copied.
6247 In this case we are not looking for edge to dest, but to
6248 duplicated block whose original was dest. */
6249 FOR_EACH_EDGE (e, ei, bb->succs)
6251 if ((e->dest->flags & BB_DUPLICATED)
6252 && get_bb_original (e->dest) == dest)
6253 break;
6256 gcc_assert (e != NULL);
6259 for (psi = gsi_start_phis (e->dest),
6260 psi_copy = gsi_start_phis (e_copy->dest);
6261 !gsi_end_p (psi);
6262 gsi_next (&psi), gsi_next (&psi_copy))
6264 phi = psi.phi ();
6265 phi_copy = psi_copy.phi ();
6266 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
6267 add_phi_arg (phi_copy, def, e_copy,
6268 gimple_phi_arg_location_from_edge (phi, e));
6273 /* Basic block BB_COPY was created by code duplication. Add phi node
6274 arguments for edges going out of BB_COPY. The blocks that were
6275 duplicated have BB_DUPLICATED set. */
6277 void
6278 add_phi_args_after_copy_bb (basic_block bb_copy)
6280 edge e_copy;
6281 edge_iterator ei;
6283 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
6285 add_phi_args_after_copy_edge (e_copy);
6289 /* Blocks in REGION_COPY array of length N_REGION were created by
6290 duplication of basic blocks. Add phi node arguments for edges
6291 going from these blocks. If E_COPY is not NULL, also add
6292 phi node arguments for its destination.*/
6294 void
6295 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
6296 edge e_copy)
6298 unsigned i;
6300 for (i = 0; i < n_region; i++)
6301 region_copy[i]->flags |= BB_DUPLICATED;
6303 for (i = 0; i < n_region; i++)
6304 add_phi_args_after_copy_bb (region_copy[i]);
6305 if (e_copy)
6306 add_phi_args_after_copy_edge (e_copy);
6308 for (i = 0; i < n_region; i++)
6309 region_copy[i]->flags &= ~BB_DUPLICATED;
6312 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
6313 important exit edge EXIT. By important we mean that no SSA name defined
6314 inside region is live over the other exit edges of the region. All entry
6315 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
6316 to the duplicate of the region. Dominance and loop information is
6317 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
6318 UPDATE_DOMINANCE is false then we assume that the caller will update the
6319 dominance information after calling this function. The new basic
6320 blocks are stored to REGION_COPY in the same order as they had in REGION,
6321 provided that REGION_COPY is not NULL.
6322 The function returns false if it is unable to copy the region,
6323 true otherwise. */
6325 bool
6326 gimple_duplicate_sese_region (edge entry, edge exit,
6327 basic_block *region, unsigned n_region,
6328 basic_block *region_copy,
6329 bool update_dominance)
6331 unsigned i;
6332 bool free_region_copy = false, copying_header = false;
6333 struct loop *loop = entry->dest->loop_father;
6334 edge exit_copy;
6335 vec<basic_block> doms = vNULL;
6336 edge redirected;
6337 profile_count total_count = profile_count::uninitialized ();
6338 profile_count entry_count = profile_count::uninitialized ();
6340 if (!can_copy_bbs_p (region, n_region))
6341 return false;
6343 /* Some sanity checking. Note that we do not check for all possible
6344 missuses of the functions. I.e. if you ask to copy something weird,
6345 it will work, but the state of structures probably will not be
6346 correct. */
6347 for (i = 0; i < n_region; i++)
6349 /* We do not handle subloops, i.e. all the blocks must belong to the
6350 same loop. */
6351 if (region[i]->loop_father != loop)
6352 return false;
6354 if (region[i] != entry->dest
6355 && region[i] == loop->header)
6356 return false;
6359 /* In case the function is used for loop header copying (which is the primary
6360 use), ensure that EXIT and its copy will be new latch and entry edges. */
6361 if (loop->header == entry->dest)
6363 copying_header = true;
6365 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
6366 return false;
6368 for (i = 0; i < n_region; i++)
6369 if (region[i] != exit->src
6370 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
6371 return false;
6374 initialize_original_copy_tables ();
6376 if (copying_header)
6377 set_loop_copy (loop, loop_outer (loop));
6378 else
6379 set_loop_copy (loop, loop);
6381 if (!region_copy)
6383 region_copy = XNEWVEC (basic_block, n_region);
6384 free_region_copy = true;
6387 /* Record blocks outside the region that are dominated by something
6388 inside. */
6389 if (update_dominance)
6391 doms.create (0);
6392 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6395 if (entry->dest->count.initialized_p ())
6397 total_count = entry->dest->count;
6398 entry_count = entry->count ();
6399 /* Fix up corner cases, to avoid division by zero or creation of negative
6400 frequencies. */
6401 if (entry_count > total_count)
6402 entry_count = total_count;
6405 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
6406 split_edge_bb_loc (entry), update_dominance);
6407 if (total_count.initialized_p () && entry_count.initialized_p ())
6409 scale_bbs_frequencies_profile_count (region, n_region,
6410 total_count - entry_count,
6411 total_count);
6412 scale_bbs_frequencies_profile_count (region_copy, n_region, entry_count,
6413 total_count);
6416 if (copying_header)
6418 loop->header = exit->dest;
6419 loop->latch = exit->src;
6422 /* Redirect the entry and add the phi node arguments. */
6423 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
6424 gcc_assert (redirected != NULL);
6425 flush_pending_stmts (entry);
6427 /* Concerning updating of dominators: We must recount dominators
6428 for entry block and its copy. Anything that is outside of the
6429 region, but was dominated by something inside needs recounting as
6430 well. */
6431 if (update_dominance)
6433 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
6434 doms.safe_push (get_bb_original (entry->dest));
6435 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6436 doms.release ();
6439 /* Add the other PHI node arguments. */
6440 add_phi_args_after_copy (region_copy, n_region, NULL);
6442 if (free_region_copy)
6443 free (region_copy);
6445 free_original_copy_tables ();
6446 return true;
6449 /* Checks if BB is part of the region defined by N_REGION BBS. */
6450 static bool
6451 bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
6453 unsigned int n;
6455 for (n = 0; n < n_region; n++)
6457 if (bb == bbs[n])
6458 return true;
6460 return false;
6463 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
6464 are stored to REGION_COPY in the same order in that they appear
6465 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
6466 the region, EXIT an exit from it. The condition guarding EXIT
6467 is moved to ENTRY. Returns true if duplication succeeds, false
6468 otherwise.
6470 For example,
6472 some_code;
6473 if (cond)
6475 else
6478 is transformed to
6480 if (cond)
6482 some_code;
6485 else
6487 some_code;
6492 bool
6493 gimple_duplicate_sese_tail (edge entry, edge exit,
6494 basic_block *region, unsigned n_region,
6495 basic_block *region_copy)
6497 unsigned i;
6498 bool free_region_copy = false;
6499 struct loop *loop = exit->dest->loop_father;
6500 struct loop *orig_loop = entry->dest->loop_father;
6501 basic_block switch_bb, entry_bb, nentry_bb;
6502 vec<basic_block> doms;
6503 profile_count total_count = profile_count::uninitialized (),
6504 exit_count = profile_count::uninitialized ();
6505 edge exits[2], nexits[2], e;
6506 gimple_stmt_iterator gsi;
6507 gimple *cond_stmt;
6508 edge sorig, snew;
6509 basic_block exit_bb;
6510 gphi_iterator psi;
6511 gphi *phi;
6512 tree def;
6513 struct loop *target, *aloop, *cloop;
6515 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
6516 exits[0] = exit;
6517 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
6519 if (!can_copy_bbs_p (region, n_region))
6520 return false;
6522 initialize_original_copy_tables ();
6523 set_loop_copy (orig_loop, loop);
6525 target= loop;
6526 for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
6528 if (bb_part_of_region_p (aloop->header, region, n_region))
6530 cloop = duplicate_loop (aloop, target);
6531 duplicate_subloops (aloop, cloop);
6535 if (!region_copy)
6537 region_copy = XNEWVEC (basic_block, n_region);
6538 free_region_copy = true;
6541 gcc_assert (!need_ssa_update_p (cfun));
6543 /* Record blocks outside the region that are dominated by something
6544 inside. */
6545 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6547 total_count = exit->src->count;
6548 exit_count = exit->count ();
6549 /* Fix up corner cases, to avoid division by zero or creation of negative
6550 frequencies. */
6551 if (exit_count > total_count)
6552 exit_count = total_count;
6554 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
6555 split_edge_bb_loc (exit), true);
6556 if (total_count.initialized_p () && exit_count.initialized_p ())
6558 scale_bbs_frequencies_profile_count (region, n_region,
6559 total_count - exit_count,
6560 total_count);
6561 scale_bbs_frequencies_profile_count (region_copy, n_region, exit_count,
6562 total_count);
6565 /* Create the switch block, and put the exit condition to it. */
6566 entry_bb = entry->dest;
6567 nentry_bb = get_bb_copy (entry_bb);
6568 if (!last_stmt (entry->src)
6569 || !stmt_ends_bb_p (last_stmt (entry->src)))
6570 switch_bb = entry->src;
6571 else
6572 switch_bb = split_edge (entry);
6573 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
6575 gsi = gsi_last_bb (switch_bb);
6576 cond_stmt = last_stmt (exit->src);
6577 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
6578 cond_stmt = gimple_copy (cond_stmt);
6580 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
6582 sorig = single_succ_edge (switch_bb);
6583 sorig->flags = exits[1]->flags;
6584 sorig->probability = exits[1]->probability;
6585 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
6586 snew->probability = exits[0]->probability;
6589 /* Register the new edge from SWITCH_BB in loop exit lists. */
6590 rescan_loop_exit (snew, true, false);
6592 /* Add the PHI node arguments. */
6593 add_phi_args_after_copy (region_copy, n_region, snew);
6595 /* Get rid of now superfluous conditions and associated edges (and phi node
6596 arguments). */
6597 exit_bb = exit->dest;
6599 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
6600 PENDING_STMT (e) = NULL;
6602 /* The latch of ORIG_LOOP was copied, and so was the backedge
6603 to the original header. We redirect this backedge to EXIT_BB. */
6604 for (i = 0; i < n_region; i++)
6605 if (get_bb_original (region_copy[i]) == orig_loop->latch)
6607 gcc_assert (single_succ_edge (region_copy[i]));
6608 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
6609 PENDING_STMT (e) = NULL;
6610 for (psi = gsi_start_phis (exit_bb);
6611 !gsi_end_p (psi);
6612 gsi_next (&psi))
6614 phi = psi.phi ();
6615 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
6616 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
6619 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
6620 PENDING_STMT (e) = NULL;
6622 /* Anything that is outside of the region, but was dominated by something
6623 inside needs to update dominance info. */
6624 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6625 doms.release ();
6626 /* Update the SSA web. */
6627 update_ssa (TODO_update_ssa);
6629 if (free_region_copy)
6630 free (region_copy);
6632 free_original_copy_tables ();
6633 return true;
6636 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6637 adding blocks when the dominator traversal reaches EXIT. This
6638 function silently assumes that ENTRY strictly dominates EXIT. */
6640 void
6641 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
6642 vec<basic_block> *bbs_p)
6644 basic_block son;
6646 for (son = first_dom_son (CDI_DOMINATORS, entry);
6647 son;
6648 son = next_dom_son (CDI_DOMINATORS, son))
6650 bbs_p->safe_push (son);
6651 if (son != exit)
6652 gather_blocks_in_sese_region (son, exit, bbs_p);
6656 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6657 The duplicates are recorded in VARS_MAP. */
6659 static void
6660 replace_by_duplicate_decl (tree *tp, hash_map<tree, tree> *vars_map,
6661 tree to_context)
6663 tree t = *tp, new_t;
6664 struct function *f = DECL_STRUCT_FUNCTION (to_context);
6666 if (DECL_CONTEXT (t) == to_context)
6667 return;
6669 bool existed;
6670 tree &loc = vars_map->get_or_insert (t, &existed);
6672 if (!existed)
6674 if (SSA_VAR_P (t))
6676 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
6677 add_local_decl (f, new_t);
6679 else
6681 gcc_assert (TREE_CODE (t) == CONST_DECL);
6682 new_t = copy_node (t);
6684 DECL_CONTEXT (new_t) = to_context;
6686 loc = new_t;
6688 else
6689 new_t = loc;
6691 *tp = new_t;
6695 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6696 VARS_MAP maps old ssa names and var_decls to the new ones. */
6698 static tree
6699 replace_ssa_name (tree name, hash_map<tree, tree> *vars_map,
6700 tree to_context)
6702 tree new_name;
6704 gcc_assert (!virtual_operand_p (name));
6706 tree *loc = vars_map->get (name);
6708 if (!loc)
6710 tree decl = SSA_NAME_VAR (name);
6711 if (decl)
6713 gcc_assert (!SSA_NAME_IS_DEFAULT_DEF (name));
6714 replace_by_duplicate_decl (&decl, vars_map, to_context);
6715 new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6716 decl, SSA_NAME_DEF_STMT (name));
6718 else
6719 new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6720 name, SSA_NAME_DEF_STMT (name));
6722 /* Now that we've used the def stmt to define new_name, make sure it
6723 doesn't define name anymore. */
6724 SSA_NAME_DEF_STMT (name) = NULL;
6726 vars_map->put (name, new_name);
6728 else
6729 new_name = *loc;
6731 return new_name;
6734 struct move_stmt_d
6736 tree orig_block;
6737 tree new_block;
6738 tree from_context;
6739 tree to_context;
6740 hash_map<tree, tree> *vars_map;
6741 htab_t new_label_map;
6742 hash_map<void *, void *> *eh_map;
6743 bool remap_decls_p;
6746 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6747 contained in *TP if it has been ORIG_BLOCK previously and change the
6748 DECL_CONTEXT of every local variable referenced in *TP. */
6750 static tree
6751 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
6753 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6754 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6755 tree t = *tp;
6757 if (EXPR_P (t))
6759 tree block = TREE_BLOCK (t);
6760 if (block == NULL_TREE)
6762 else if (block == p->orig_block
6763 || p->orig_block == NULL_TREE)
6765 /* tree_node_can_be_shared says we can share invariant
6766 addresses but unshare_expr copies them anyways. Make sure
6767 to unshare before adjusting the block in place - we do not
6768 always see a copy here. */
6769 if (TREE_CODE (t) == ADDR_EXPR
6770 && is_gimple_min_invariant (t))
6771 *tp = t = unshare_expr (t);
6772 TREE_SET_BLOCK (t, p->new_block);
6774 else if (flag_checking)
6776 while (block && TREE_CODE (block) == BLOCK && block != p->orig_block)
6777 block = BLOCK_SUPERCONTEXT (block);
6778 gcc_assert (block == p->orig_block);
6781 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
6783 if (TREE_CODE (t) == SSA_NAME)
6784 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
6785 else if (TREE_CODE (t) == PARM_DECL
6786 && gimple_in_ssa_p (cfun))
6787 *tp = *(p->vars_map->get (t));
6788 else if (TREE_CODE (t) == LABEL_DECL)
6790 if (p->new_label_map)
6792 struct tree_map in, *out;
6793 in.base.from = t;
6794 out = (struct tree_map *)
6795 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
6796 if (out)
6797 *tp = t = out->to;
6800 /* For FORCED_LABELs we can end up with references from other
6801 functions if some SESE regions are outlined. It is UB to
6802 jump in between them, but they could be used just for printing
6803 addresses etc. In that case, DECL_CONTEXT on the label should
6804 be the function containing the glabel stmt with that LABEL_DECL,
6805 rather than whatever function a reference to the label was seen
6806 last time. */
6807 if (!FORCED_LABEL (t) && !DECL_NONLOCAL (t))
6808 DECL_CONTEXT (t) = p->to_context;
6810 else if (p->remap_decls_p)
6812 /* Replace T with its duplicate. T should no longer appear in the
6813 parent function, so this looks wasteful; however, it may appear
6814 in referenced_vars, and more importantly, as virtual operands of
6815 statements, and in alias lists of other variables. It would be
6816 quite difficult to expunge it from all those places. ??? It might
6817 suffice to do this for addressable variables. */
6818 if ((VAR_P (t) && !is_global_var (t))
6819 || TREE_CODE (t) == CONST_DECL)
6820 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
6822 *walk_subtrees = 0;
6824 else if (TYPE_P (t))
6825 *walk_subtrees = 0;
6827 return NULL_TREE;
6830 /* Helper for move_stmt_r. Given an EH region number for the source
6831 function, map that to the duplicate EH regio number in the dest. */
6833 static int
6834 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
6836 eh_region old_r, new_r;
6838 old_r = get_eh_region_from_number (old_nr);
6839 new_r = static_cast<eh_region> (*p->eh_map->get (old_r));
6841 return new_r->index;
6844 /* Similar, but operate on INTEGER_CSTs. */
6846 static tree
6847 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
6849 int old_nr, new_nr;
6851 old_nr = tree_to_shwi (old_t_nr);
6852 new_nr = move_stmt_eh_region_nr (old_nr, p);
6854 return build_int_cst (integer_type_node, new_nr);
6857 /* Like move_stmt_op, but for gimple statements.
6859 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6860 contained in the current statement in *GSI_P and change the
6861 DECL_CONTEXT of every local variable referenced in the current
6862 statement. */
6864 static tree
6865 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
6866 struct walk_stmt_info *wi)
6868 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6869 gimple *stmt = gsi_stmt (*gsi_p);
6870 tree block = gimple_block (stmt);
6872 if (block == p->orig_block
6873 || (p->orig_block == NULL_TREE
6874 && block != NULL_TREE))
6875 gimple_set_block (stmt, p->new_block);
6877 switch (gimple_code (stmt))
6879 case GIMPLE_CALL:
6880 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6882 tree r, fndecl = gimple_call_fndecl (stmt);
6883 if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL))
6884 switch (DECL_FUNCTION_CODE (fndecl))
6886 case BUILT_IN_EH_COPY_VALUES:
6887 r = gimple_call_arg (stmt, 1);
6888 r = move_stmt_eh_region_tree_nr (r, p);
6889 gimple_call_set_arg (stmt, 1, r);
6890 /* FALLTHRU */
6892 case BUILT_IN_EH_POINTER:
6893 case BUILT_IN_EH_FILTER:
6894 r = gimple_call_arg (stmt, 0);
6895 r = move_stmt_eh_region_tree_nr (r, p);
6896 gimple_call_set_arg (stmt, 0, r);
6897 break;
6899 default:
6900 break;
6903 break;
6905 case GIMPLE_RESX:
6907 gresx *resx_stmt = as_a <gresx *> (stmt);
6908 int r = gimple_resx_region (resx_stmt);
6909 r = move_stmt_eh_region_nr (r, p);
6910 gimple_resx_set_region (resx_stmt, r);
6912 break;
6914 case GIMPLE_EH_DISPATCH:
6916 geh_dispatch *eh_dispatch_stmt = as_a <geh_dispatch *> (stmt);
6917 int r = gimple_eh_dispatch_region (eh_dispatch_stmt);
6918 r = move_stmt_eh_region_nr (r, p);
6919 gimple_eh_dispatch_set_region (eh_dispatch_stmt, r);
6921 break;
6923 case GIMPLE_OMP_RETURN:
6924 case GIMPLE_OMP_CONTINUE:
6925 break;
6927 case GIMPLE_LABEL:
6929 /* For FORCED_LABEL, move_stmt_op doesn't adjust DECL_CONTEXT,
6930 so that such labels can be referenced from other regions.
6931 Make sure to update it when seeing a GIMPLE_LABEL though,
6932 that is the owner of the label. */
6933 walk_gimple_op (stmt, move_stmt_op, wi);
6934 *handled_ops_p = true;
6935 tree label = gimple_label_label (as_a <glabel *> (stmt));
6936 if (FORCED_LABEL (label) || DECL_NONLOCAL (label))
6937 DECL_CONTEXT (label) = p->to_context;
6939 break;
6941 default:
6942 if (is_gimple_omp (stmt))
6944 /* Do not remap variables inside OMP directives. Variables
6945 referenced in clauses and directive header belong to the
6946 parent function and should not be moved into the child
6947 function. */
6948 bool save_remap_decls_p = p->remap_decls_p;
6949 p->remap_decls_p = false;
6950 *handled_ops_p = true;
6952 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
6953 move_stmt_op, wi);
6955 p->remap_decls_p = save_remap_decls_p;
6957 break;
6960 return NULL_TREE;
6963 /* Move basic block BB from function CFUN to function DEST_FN. The
6964 block is moved out of the original linked list and placed after
6965 block AFTER in the new list. Also, the block is removed from the
6966 original array of blocks and placed in DEST_FN's array of blocks.
6967 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6968 updated to reflect the moved edges.
6970 The local variables are remapped to new instances, VARS_MAP is used
6971 to record the mapping. */
6973 static void
6974 move_block_to_fn (struct function *dest_cfun, basic_block bb,
6975 basic_block after, bool update_edge_count_p,
6976 struct move_stmt_d *d)
6978 struct control_flow_graph *cfg;
6979 edge_iterator ei;
6980 edge e;
6981 gimple_stmt_iterator si;
6982 unsigned old_len, new_len;
6984 /* Remove BB from dominance structures. */
6985 delete_from_dominance_info (CDI_DOMINATORS, bb);
6987 /* Move BB from its current loop to the copy in the new function. */
6988 if (current_loops)
6990 struct loop *new_loop = (struct loop *)bb->loop_father->aux;
6991 if (new_loop)
6992 bb->loop_father = new_loop;
6995 /* Link BB to the new linked list. */
6996 move_block_after (bb, after);
6998 /* Update the edge count in the corresponding flowgraphs. */
6999 if (update_edge_count_p)
7000 FOR_EACH_EDGE (e, ei, bb->succs)
7002 cfun->cfg->x_n_edges--;
7003 dest_cfun->cfg->x_n_edges++;
7006 /* Remove BB from the original basic block array. */
7007 (*cfun->cfg->x_basic_block_info)[bb->index] = NULL;
7008 cfun->cfg->x_n_basic_blocks--;
7010 /* Grow DEST_CFUN's basic block array if needed. */
7011 cfg = dest_cfun->cfg;
7012 cfg->x_n_basic_blocks++;
7013 if (bb->index >= cfg->x_last_basic_block)
7014 cfg->x_last_basic_block = bb->index + 1;
7016 old_len = vec_safe_length (cfg->x_basic_block_info);
7017 if ((unsigned) cfg->x_last_basic_block >= old_len)
7019 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
7020 vec_safe_grow_cleared (cfg->x_basic_block_info, new_len);
7023 (*cfg->x_basic_block_info)[bb->index] = bb;
7025 /* Remap the variables in phi nodes. */
7026 for (gphi_iterator psi = gsi_start_phis (bb);
7027 !gsi_end_p (psi); )
7029 gphi *phi = psi.phi ();
7030 use_operand_p use;
7031 tree op = PHI_RESULT (phi);
7032 ssa_op_iter oi;
7033 unsigned i;
7035 if (virtual_operand_p (op))
7037 /* Remove the phi nodes for virtual operands (alias analysis will be
7038 run for the new function, anyway). */
7039 remove_phi_node (&psi, true);
7040 continue;
7043 SET_PHI_RESULT (phi,
7044 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
7045 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
7047 op = USE_FROM_PTR (use);
7048 if (TREE_CODE (op) == SSA_NAME)
7049 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
7052 for (i = 0; i < EDGE_COUNT (bb->preds); i++)
7054 location_t locus = gimple_phi_arg_location (phi, i);
7055 tree block = LOCATION_BLOCK (locus);
7057 if (locus == UNKNOWN_LOCATION)
7058 continue;
7059 if (d->orig_block == NULL_TREE || block == d->orig_block)
7061 locus = set_block (locus, d->new_block);
7062 gimple_phi_arg_set_location (phi, i, locus);
7066 gsi_next (&psi);
7069 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
7071 gimple *stmt = gsi_stmt (si);
7072 struct walk_stmt_info wi;
7074 memset (&wi, 0, sizeof (wi));
7075 wi.info = d;
7076 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
7078 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
7080 tree label = gimple_label_label (label_stmt);
7081 int uid = LABEL_DECL_UID (label);
7083 gcc_assert (uid > -1);
7085 old_len = vec_safe_length (cfg->x_label_to_block_map);
7086 if (old_len <= (unsigned) uid)
7088 new_len = 3 * uid / 2 + 1;
7089 vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len);
7092 (*cfg->x_label_to_block_map)[uid] = bb;
7093 (*cfun->cfg->x_label_to_block_map)[uid] = NULL;
7095 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
7097 if (uid >= dest_cfun->cfg->last_label_uid)
7098 dest_cfun->cfg->last_label_uid = uid + 1;
7101 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
7102 remove_stmt_from_eh_lp_fn (cfun, stmt);
7104 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
7105 gimple_remove_stmt_histograms (cfun, stmt);
7107 /* We cannot leave any operands allocated from the operand caches of
7108 the current function. */
7109 free_stmt_operands (cfun, stmt);
7110 push_cfun (dest_cfun);
7111 update_stmt (stmt);
7112 pop_cfun ();
7115 FOR_EACH_EDGE (e, ei, bb->succs)
7116 if (e->goto_locus != UNKNOWN_LOCATION)
7118 tree block = LOCATION_BLOCK (e->goto_locus);
7119 if (d->orig_block == NULL_TREE
7120 || block == d->orig_block)
7121 e->goto_locus = set_block (e->goto_locus, d->new_block);
7125 /* Examine the statements in BB (which is in SRC_CFUN); find and return
7126 the outermost EH region. Use REGION as the incoming base EH region. */
7128 static eh_region
7129 find_outermost_region_in_block (struct function *src_cfun,
7130 basic_block bb, eh_region region)
7132 gimple_stmt_iterator si;
7134 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
7136 gimple *stmt = gsi_stmt (si);
7137 eh_region stmt_region;
7138 int lp_nr;
7140 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
7141 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
7142 if (stmt_region)
7144 if (region == NULL)
7145 region = stmt_region;
7146 else if (stmt_region != region)
7148 region = eh_region_outermost (src_cfun, stmt_region, region);
7149 gcc_assert (region != NULL);
7154 return region;
7157 static tree
7158 new_label_mapper (tree decl, void *data)
7160 htab_t hash = (htab_t) data;
7161 struct tree_map *m;
7162 void **slot;
7164 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
7166 m = XNEW (struct tree_map);
7167 m->hash = DECL_UID (decl);
7168 m->base.from = decl;
7169 m->to = create_artificial_label (UNKNOWN_LOCATION);
7170 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
7171 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
7172 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
7174 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
7175 gcc_assert (*slot == NULL);
7177 *slot = m;
7179 return m->to;
7182 /* Tree walker to replace the decls used inside value expressions by
7183 duplicates. */
7185 static tree
7186 replace_block_vars_by_duplicates_1 (tree *tp, int *walk_subtrees, void *data)
7188 struct replace_decls_d *rd = (struct replace_decls_d *)data;
7190 switch (TREE_CODE (*tp))
7192 case VAR_DECL:
7193 case PARM_DECL:
7194 case RESULT_DECL:
7195 replace_by_duplicate_decl (tp, rd->vars_map, rd->to_context);
7196 break;
7197 default:
7198 break;
7201 if (IS_TYPE_OR_DECL_P (*tp))
7202 *walk_subtrees = false;
7204 return NULL;
7207 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
7208 subblocks. */
7210 static void
7211 replace_block_vars_by_duplicates (tree block, hash_map<tree, tree> *vars_map,
7212 tree to_context)
7214 tree *tp, t;
7216 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
7218 t = *tp;
7219 if (!VAR_P (t) && TREE_CODE (t) != CONST_DECL)
7220 continue;
7221 replace_by_duplicate_decl (&t, vars_map, to_context);
7222 if (t != *tp)
7224 if (VAR_P (*tp) && DECL_HAS_VALUE_EXPR_P (*tp))
7226 tree x = DECL_VALUE_EXPR (*tp);
7227 struct replace_decls_d rd = { vars_map, to_context };
7228 unshare_expr (x);
7229 walk_tree (&x, replace_block_vars_by_duplicates_1, &rd, NULL);
7230 SET_DECL_VALUE_EXPR (t, x);
7231 DECL_HAS_VALUE_EXPR_P (t) = 1;
7233 DECL_CHAIN (t) = DECL_CHAIN (*tp);
7234 *tp = t;
7238 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
7239 replace_block_vars_by_duplicates (block, vars_map, to_context);
7242 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
7243 from FN1 to FN2. */
7245 static void
7246 fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2,
7247 struct loop *loop)
7249 /* Discard it from the old loop array. */
7250 (*get_loops (fn1))[loop->num] = NULL;
7252 /* Place it in the new loop array, assigning it a new number. */
7253 loop->num = number_of_loops (fn2);
7254 vec_safe_push (loops_for_fn (fn2)->larray, loop);
7256 /* Recurse to children. */
7257 for (loop = loop->inner; loop; loop = loop->next)
7258 fixup_loop_arrays_after_move (fn1, fn2, loop);
7261 /* Verify that the blocks in BBS_P are a single-entry, single-exit region
7262 delimited by ENTRY_BB and EXIT_BB, possibly containing noreturn blocks. */
7264 DEBUG_FUNCTION void
7265 verify_sese (basic_block entry, basic_block exit, vec<basic_block> *bbs_p)
7267 basic_block bb;
7268 edge_iterator ei;
7269 edge e;
7270 bitmap bbs = BITMAP_ALLOC (NULL);
7271 int i;
7273 gcc_assert (entry != NULL);
7274 gcc_assert (entry != exit);
7275 gcc_assert (bbs_p != NULL);
7277 gcc_assert (bbs_p->length () > 0);
7279 FOR_EACH_VEC_ELT (*bbs_p, i, bb)
7280 bitmap_set_bit (bbs, bb->index);
7282 gcc_assert (bitmap_bit_p (bbs, entry->index));
7283 gcc_assert (exit == NULL || bitmap_bit_p (bbs, exit->index));
7285 FOR_EACH_VEC_ELT (*bbs_p, i, bb)
7287 if (bb == entry)
7289 gcc_assert (single_pred_p (entry));
7290 gcc_assert (!bitmap_bit_p (bbs, single_pred (entry)->index));
7292 else
7293 for (ei = ei_start (bb->preds); !ei_end_p (ei); ei_next (&ei))
7295 e = ei_edge (ei);
7296 gcc_assert (bitmap_bit_p (bbs, e->src->index));
7299 if (bb == exit)
7301 gcc_assert (single_succ_p (exit));
7302 gcc_assert (!bitmap_bit_p (bbs, single_succ (exit)->index));
7304 else
7305 for (ei = ei_start (bb->succs); !ei_end_p (ei); ei_next (&ei))
7307 e = ei_edge (ei);
7308 gcc_assert (bitmap_bit_p (bbs, e->dest->index));
7312 BITMAP_FREE (bbs);
7315 /* If FROM is an SSA_NAME, mark the version in bitmap DATA. */
7317 bool
7318 gather_ssa_name_hash_map_from (tree const &from, tree const &, void *data)
7320 bitmap release_names = (bitmap)data;
7322 if (TREE_CODE (from) != SSA_NAME)
7323 return true;
7325 bitmap_set_bit (release_names, SSA_NAME_VERSION (from));
7326 return true;
7329 /* Return LOOP_DIST_ALIAS call if present in BB. */
7331 static gimple *
7332 find_loop_dist_alias (basic_block bb)
7334 gimple *g = last_stmt (bb);
7335 if (g == NULL || gimple_code (g) != GIMPLE_COND)
7336 return NULL;
7338 gimple_stmt_iterator gsi = gsi_for_stmt (g);
7339 gsi_prev (&gsi);
7340 if (gsi_end_p (gsi))
7341 return NULL;
7343 g = gsi_stmt (gsi);
7344 if (gimple_call_internal_p (g, IFN_LOOP_DIST_ALIAS))
7345 return g;
7346 return NULL;
7349 /* Fold loop internal call G like IFN_LOOP_VECTORIZED/IFN_LOOP_DIST_ALIAS
7350 to VALUE and update any immediate uses of it's LHS. */
7352 void
7353 fold_loop_internal_call (gimple *g, tree value)
7355 tree lhs = gimple_call_lhs (g);
7356 use_operand_p use_p;
7357 imm_use_iterator iter;
7358 gimple *use_stmt;
7359 gimple_stmt_iterator gsi = gsi_for_stmt (g);
7361 update_call_from_tree (&gsi, value);
7362 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
7364 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
7365 SET_USE (use_p, value);
7366 update_stmt (use_stmt);
7370 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
7371 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
7372 single basic block in the original CFG and the new basic block is
7373 returned. DEST_CFUN must not have a CFG yet.
7375 Note that the region need not be a pure SESE region. Blocks inside
7376 the region may contain calls to abort/exit. The only restriction
7377 is that ENTRY_BB should be the only entry point and it must
7378 dominate EXIT_BB.
7380 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
7381 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
7382 to the new function.
7384 All local variables referenced in the region are assumed to be in
7385 the corresponding BLOCK_VARS and unexpanded variable lists
7386 associated with DEST_CFUN.
7388 TODO: investigate whether we can reuse gimple_duplicate_sese_region to
7389 reimplement move_sese_region_to_fn by duplicating the region rather than
7390 moving it. */
7392 basic_block
7393 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
7394 basic_block exit_bb, tree orig_block)
7396 vec<basic_block> bbs, dom_bbs;
7397 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
7398 basic_block after, bb, *entry_pred, *exit_succ, abb;
7399 struct function *saved_cfun = cfun;
7400 int *entry_flag, *exit_flag;
7401 profile_probability *entry_prob, *exit_prob;
7402 unsigned i, num_entry_edges, num_exit_edges, num_nodes;
7403 edge e;
7404 edge_iterator ei;
7405 htab_t new_label_map;
7406 hash_map<void *, void *> *eh_map;
7407 struct loop *loop = entry_bb->loop_father;
7408 struct loop *loop0 = get_loop (saved_cfun, 0);
7409 struct move_stmt_d d;
7411 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
7412 region. */
7413 gcc_assert (entry_bb != exit_bb
7414 && (!exit_bb
7415 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
7417 /* Collect all the blocks in the region. Manually add ENTRY_BB
7418 because it won't be added by dfs_enumerate_from. */
7419 bbs.create (0);
7420 bbs.safe_push (entry_bb);
7421 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
7423 if (flag_checking)
7424 verify_sese (entry_bb, exit_bb, &bbs);
7426 /* The blocks that used to be dominated by something in BBS will now be
7427 dominated by the new block. */
7428 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
7429 bbs.address (),
7430 bbs.length ());
7432 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
7433 the predecessor edges to ENTRY_BB and the successor edges to
7434 EXIT_BB so that we can re-attach them to the new basic block that
7435 will replace the region. */
7436 num_entry_edges = EDGE_COUNT (entry_bb->preds);
7437 entry_pred = XNEWVEC (basic_block, num_entry_edges);
7438 entry_flag = XNEWVEC (int, num_entry_edges);
7439 entry_prob = XNEWVEC (profile_probability, num_entry_edges);
7440 i = 0;
7441 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
7443 entry_prob[i] = e->probability;
7444 entry_flag[i] = e->flags;
7445 entry_pred[i++] = e->src;
7446 remove_edge (e);
7449 if (exit_bb)
7451 num_exit_edges = EDGE_COUNT (exit_bb->succs);
7452 exit_succ = XNEWVEC (basic_block, num_exit_edges);
7453 exit_flag = XNEWVEC (int, num_exit_edges);
7454 exit_prob = XNEWVEC (profile_probability, num_exit_edges);
7455 i = 0;
7456 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
7458 exit_prob[i] = e->probability;
7459 exit_flag[i] = e->flags;
7460 exit_succ[i++] = e->dest;
7461 remove_edge (e);
7464 else
7466 num_exit_edges = 0;
7467 exit_succ = NULL;
7468 exit_flag = NULL;
7469 exit_prob = NULL;
7472 /* Switch context to the child function to initialize DEST_FN's CFG. */
7473 gcc_assert (dest_cfun->cfg == NULL);
7474 push_cfun (dest_cfun);
7476 init_empty_tree_cfg ();
7478 /* Initialize EH information for the new function. */
7479 eh_map = NULL;
7480 new_label_map = NULL;
7481 if (saved_cfun->eh)
7483 eh_region region = NULL;
7485 FOR_EACH_VEC_ELT (bbs, i, bb)
7486 region = find_outermost_region_in_block (saved_cfun, bb, region);
7488 init_eh_for_function ();
7489 if (region != NULL)
7491 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
7492 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
7493 new_label_mapper, new_label_map);
7497 /* Initialize an empty loop tree. */
7498 struct loops *loops = ggc_cleared_alloc<struct loops> ();
7499 init_loops_structure (dest_cfun, loops, 1);
7500 loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES;
7501 set_loops_for_fn (dest_cfun, loops);
7503 vec<loop_p, va_gc> *larray = get_loops (saved_cfun)->copy ();
7505 /* Move the outlined loop tree part. */
7506 num_nodes = bbs.length ();
7507 FOR_EACH_VEC_ELT (bbs, i, bb)
7509 if (bb->loop_father->header == bb)
7511 struct loop *this_loop = bb->loop_father;
7512 struct loop *outer = loop_outer (this_loop);
7513 if (outer == loop
7514 /* If the SESE region contains some bbs ending with
7515 a noreturn call, those are considered to belong
7516 to the outermost loop in saved_cfun, rather than
7517 the entry_bb's loop_father. */
7518 || outer == loop0)
7520 if (outer != loop)
7521 num_nodes -= this_loop->num_nodes;
7522 flow_loop_tree_node_remove (bb->loop_father);
7523 flow_loop_tree_node_add (get_loop (dest_cfun, 0), this_loop);
7524 fixup_loop_arrays_after_move (saved_cfun, cfun, this_loop);
7527 else if (bb->loop_father == loop0 && loop0 != loop)
7528 num_nodes--;
7530 /* Remove loop exits from the outlined region. */
7531 if (loops_for_fn (saved_cfun)->exits)
7532 FOR_EACH_EDGE (e, ei, bb->succs)
7534 struct loops *l = loops_for_fn (saved_cfun);
7535 loop_exit **slot
7536 = l->exits->find_slot_with_hash (e, htab_hash_pointer (e),
7537 NO_INSERT);
7538 if (slot)
7539 l->exits->clear_slot (slot);
7543 /* Adjust the number of blocks in the tree root of the outlined part. */
7544 get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2;
7546 /* Setup a mapping to be used by move_block_to_fn. */
7547 loop->aux = current_loops->tree_root;
7548 loop0->aux = current_loops->tree_root;
7550 /* Fix up orig_loop_num. If the block referenced in it has been moved
7551 to dest_cfun, update orig_loop_num field, otherwise clear it. */
7552 struct loop *dloop;
7553 signed char *moved_orig_loop_num = NULL;
7554 FOR_EACH_LOOP_FN (dest_cfun, dloop, 0)
7555 if (dloop->orig_loop_num)
7557 if (moved_orig_loop_num == NULL)
7558 moved_orig_loop_num
7559 = XCNEWVEC (signed char, vec_safe_length (larray));
7560 if ((*larray)[dloop->orig_loop_num] != NULL
7561 && get_loop (saved_cfun, dloop->orig_loop_num) == NULL)
7563 if (moved_orig_loop_num[dloop->orig_loop_num] >= 0
7564 && moved_orig_loop_num[dloop->orig_loop_num] < 2)
7565 moved_orig_loop_num[dloop->orig_loop_num]++;
7566 dloop->orig_loop_num = (*larray)[dloop->orig_loop_num]->num;
7568 else
7570 moved_orig_loop_num[dloop->orig_loop_num] = -1;
7571 dloop->orig_loop_num = 0;
7574 pop_cfun ();
7576 if (moved_orig_loop_num)
7578 FOR_EACH_VEC_ELT (bbs, i, bb)
7580 gimple *g = find_loop_dist_alias (bb);
7581 if (g == NULL)
7582 continue;
7584 int orig_loop_num = tree_to_shwi (gimple_call_arg (g, 0));
7585 gcc_assert (orig_loop_num
7586 && (unsigned) orig_loop_num < vec_safe_length (larray));
7587 if (moved_orig_loop_num[orig_loop_num] == 2)
7589 /* If we have moved both loops with this orig_loop_num into
7590 dest_cfun and the LOOP_DIST_ALIAS call is being moved there
7591 too, update the first argument. */
7592 gcc_assert ((*larray)[dloop->orig_loop_num] != NULL
7593 && (get_loop (saved_cfun, dloop->orig_loop_num)
7594 == NULL));
7595 tree t = build_int_cst (integer_type_node,
7596 (*larray)[dloop->orig_loop_num]->num);
7597 gimple_call_set_arg (g, 0, t);
7598 update_stmt (g);
7599 /* Make sure the following loop will not update it. */
7600 moved_orig_loop_num[orig_loop_num] = 0;
7602 else
7603 /* Otherwise at least one of the loops stayed in saved_cfun.
7604 Remove the LOOP_DIST_ALIAS call. */
7605 fold_loop_internal_call (g, gimple_call_arg (g, 1));
7607 FOR_EACH_BB_FN (bb, saved_cfun)
7609 gimple *g = find_loop_dist_alias (bb);
7610 if (g == NULL)
7611 continue;
7612 int orig_loop_num = tree_to_shwi (gimple_call_arg (g, 0));
7613 gcc_assert (orig_loop_num
7614 && (unsigned) orig_loop_num < vec_safe_length (larray));
7615 if (moved_orig_loop_num[orig_loop_num])
7616 /* LOOP_DIST_ALIAS call remained in saved_cfun, if at least one
7617 of the corresponding loops was moved, remove it. */
7618 fold_loop_internal_call (g, gimple_call_arg (g, 1));
7620 XDELETEVEC (moved_orig_loop_num);
7622 ggc_free (larray);
7624 /* Move blocks from BBS into DEST_CFUN. */
7625 gcc_assert (bbs.length () >= 2);
7626 after = dest_cfun->cfg->x_entry_block_ptr;
7627 hash_map<tree, tree> vars_map;
7629 memset (&d, 0, sizeof (d));
7630 d.orig_block = orig_block;
7631 d.new_block = DECL_INITIAL (dest_cfun->decl);
7632 d.from_context = cfun->decl;
7633 d.to_context = dest_cfun->decl;
7634 d.vars_map = &vars_map;
7635 d.new_label_map = new_label_map;
7636 d.eh_map = eh_map;
7637 d.remap_decls_p = true;
7639 if (gimple_in_ssa_p (cfun))
7640 for (tree arg = DECL_ARGUMENTS (d.to_context); arg; arg = DECL_CHAIN (arg))
7642 tree narg = make_ssa_name_fn (dest_cfun, arg, gimple_build_nop ());
7643 set_ssa_default_def (dest_cfun, arg, narg);
7644 vars_map.put (arg, narg);
7647 FOR_EACH_VEC_ELT (bbs, i, bb)
7649 /* No need to update edge counts on the last block. It has
7650 already been updated earlier when we detached the region from
7651 the original CFG. */
7652 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
7653 after = bb;
7656 loop->aux = NULL;
7657 loop0->aux = NULL;
7658 /* Loop sizes are no longer correct, fix them up. */
7659 loop->num_nodes -= num_nodes;
7660 for (struct loop *outer = loop_outer (loop);
7661 outer; outer = loop_outer (outer))
7662 outer->num_nodes -= num_nodes;
7663 loop0->num_nodes -= bbs.length () - num_nodes;
7665 if (saved_cfun->has_simduid_loops || saved_cfun->has_force_vectorize_loops)
7667 struct loop *aloop;
7668 for (i = 0; vec_safe_iterate (loops->larray, i, &aloop); i++)
7669 if (aloop != NULL)
7671 if (aloop->simduid)
7673 replace_by_duplicate_decl (&aloop->simduid, d.vars_map,
7674 d.to_context);
7675 dest_cfun->has_simduid_loops = true;
7677 if (aloop->force_vectorize)
7678 dest_cfun->has_force_vectorize_loops = true;
7682 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
7683 if (orig_block)
7685 tree block;
7686 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7687 == NULL_TREE);
7688 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7689 = BLOCK_SUBBLOCKS (orig_block);
7690 for (block = BLOCK_SUBBLOCKS (orig_block);
7691 block; block = BLOCK_CHAIN (block))
7692 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
7693 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
7696 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
7697 &vars_map, dest_cfun->decl);
7699 if (new_label_map)
7700 htab_delete (new_label_map);
7701 if (eh_map)
7702 delete eh_map;
7704 if (gimple_in_ssa_p (cfun))
7706 /* We need to release ssa-names in a defined order, so first find them,
7707 and then iterate in ascending version order. */
7708 bitmap release_names = BITMAP_ALLOC (NULL);
7709 vars_map.traverse<void *, gather_ssa_name_hash_map_from> (release_names);
7710 bitmap_iterator bi;
7711 unsigned i;
7712 EXECUTE_IF_SET_IN_BITMAP (release_names, 0, i, bi)
7713 release_ssa_name (ssa_name (i));
7714 BITMAP_FREE (release_names);
7717 /* Rewire the entry and exit blocks. The successor to the entry
7718 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
7719 the child function. Similarly, the predecessor of DEST_FN's
7720 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
7721 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
7722 various CFG manipulation function get to the right CFG.
7724 FIXME, this is silly. The CFG ought to become a parameter to
7725 these helpers. */
7726 push_cfun (dest_cfun);
7727 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count = entry_bb->count;
7728 make_single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), entry_bb, EDGE_FALLTHRU);
7729 if (exit_bb)
7731 make_single_succ_edge (exit_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
7732 EXIT_BLOCK_PTR_FOR_FN (cfun)->count = exit_bb->count;
7734 else
7735 EXIT_BLOCK_PTR_FOR_FN (cfun)->count = profile_count::zero ();
7736 pop_cfun ();
7738 /* Back in the original function, the SESE region has disappeared,
7739 create a new basic block in its place. */
7740 bb = create_empty_bb (entry_pred[0]);
7741 if (current_loops)
7742 add_bb_to_loop (bb, loop);
7743 for (i = 0; i < num_entry_edges; i++)
7745 e = make_edge (entry_pred[i], bb, entry_flag[i]);
7746 e->probability = entry_prob[i];
7749 for (i = 0; i < num_exit_edges; i++)
7751 e = make_edge (bb, exit_succ[i], exit_flag[i]);
7752 e->probability = exit_prob[i];
7755 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
7756 FOR_EACH_VEC_ELT (dom_bbs, i, abb)
7757 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
7758 dom_bbs.release ();
7760 if (exit_bb)
7762 free (exit_prob);
7763 free (exit_flag);
7764 free (exit_succ);
7766 free (entry_prob);
7767 free (entry_flag);
7768 free (entry_pred);
7769 bbs.release ();
7771 return bb;
7774 /* Dump default def DEF to file FILE using FLAGS and indentation
7775 SPC. */
7777 static void
7778 dump_default_def (FILE *file, tree def, int spc, dump_flags_t flags)
7780 for (int i = 0; i < spc; ++i)
7781 fprintf (file, " ");
7782 dump_ssaname_info_to_file (file, def, spc);
7784 print_generic_expr (file, TREE_TYPE (def), flags);
7785 fprintf (file, " ");
7786 print_generic_expr (file, def, flags);
7787 fprintf (file, " = ");
7788 print_generic_expr (file, SSA_NAME_VAR (def), flags);
7789 fprintf (file, ";\n");
7792 /* Print no_sanitize attribute to FILE for a given attribute VALUE. */
7794 static void
7795 print_no_sanitize_attr_value (FILE *file, tree value)
7797 unsigned int flags = tree_to_uhwi (value);
7798 bool first = true;
7799 for (int i = 0; sanitizer_opts[i].name != NULL; ++i)
7801 if ((sanitizer_opts[i].flag & flags) == sanitizer_opts[i].flag)
7803 if (!first)
7804 fprintf (file, " | ");
7805 fprintf (file, "%s", sanitizer_opts[i].name);
7806 first = false;
7811 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
7814 void
7815 dump_function_to_file (tree fndecl, FILE *file, dump_flags_t flags)
7817 tree arg, var, old_current_fndecl = current_function_decl;
7818 struct function *dsf;
7819 bool ignore_topmost_bind = false, any_var = false;
7820 basic_block bb;
7821 tree chain;
7822 bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
7823 && decl_is_tm_clone (fndecl));
7824 struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
7826 if (DECL_ATTRIBUTES (fndecl) != NULL_TREE)
7828 fprintf (file, "__attribute__((");
7830 bool first = true;
7831 tree chain;
7832 for (chain = DECL_ATTRIBUTES (fndecl); chain;
7833 first = false, chain = TREE_CHAIN (chain))
7835 if (!first)
7836 fprintf (file, ", ");
7838 tree name = get_attribute_name (chain);
7839 print_generic_expr (file, name, dump_flags);
7840 if (TREE_VALUE (chain) != NULL_TREE)
7842 fprintf (file, " (");
7844 if (strstr (IDENTIFIER_POINTER (name), "no_sanitize"))
7845 print_no_sanitize_attr_value (file, TREE_VALUE (chain));
7846 else
7847 print_generic_expr (file, TREE_VALUE (chain), dump_flags);
7848 fprintf (file, ")");
7852 fprintf (file, "))\n");
7855 current_function_decl = fndecl;
7856 if (flags & TDF_GIMPLE)
7858 print_generic_expr (file, TREE_TYPE (TREE_TYPE (fndecl)),
7859 dump_flags | TDF_SLIM);
7860 fprintf (file, " __GIMPLE ()\n%s (", function_name (fun));
7862 else
7863 fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : "");
7865 arg = DECL_ARGUMENTS (fndecl);
7866 while (arg)
7868 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
7869 fprintf (file, " ");
7870 print_generic_expr (file, arg, dump_flags);
7871 if (DECL_CHAIN (arg))
7872 fprintf (file, ", ");
7873 arg = DECL_CHAIN (arg);
7875 fprintf (file, ")\n");
7877 dsf = DECL_STRUCT_FUNCTION (fndecl);
7878 if (dsf && (flags & TDF_EH))
7879 dump_eh_tree (file, dsf);
7881 if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
7883 dump_node (fndecl, TDF_SLIM | flags, file);
7884 current_function_decl = old_current_fndecl;
7885 return;
7888 /* When GIMPLE is lowered, the variables are no longer available in
7889 BIND_EXPRs, so display them separately. */
7890 if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
7892 unsigned ix;
7893 ignore_topmost_bind = true;
7895 fprintf (file, "{\n");
7896 if (gimple_in_ssa_p (fun)
7897 && (flags & TDF_ALIAS))
7899 for (arg = DECL_ARGUMENTS (fndecl); arg != NULL;
7900 arg = DECL_CHAIN (arg))
7902 tree def = ssa_default_def (fun, arg);
7903 if (def)
7904 dump_default_def (file, def, 2, flags);
7907 tree res = DECL_RESULT (fun->decl);
7908 if (res != NULL_TREE
7909 && DECL_BY_REFERENCE (res))
7911 tree def = ssa_default_def (fun, res);
7912 if (def)
7913 dump_default_def (file, def, 2, flags);
7916 tree static_chain = fun->static_chain_decl;
7917 if (static_chain != NULL_TREE)
7919 tree def = ssa_default_def (fun, static_chain);
7920 if (def)
7921 dump_default_def (file, def, 2, flags);
7925 if (!vec_safe_is_empty (fun->local_decls))
7926 FOR_EACH_LOCAL_DECL (fun, ix, var)
7928 print_generic_decl (file, var, flags);
7929 fprintf (file, "\n");
7931 any_var = true;
7934 tree name;
7936 if (gimple_in_ssa_p (cfun))
7937 FOR_EACH_SSA_NAME (ix, name, cfun)
7939 if (!SSA_NAME_VAR (name))
7941 fprintf (file, " ");
7942 print_generic_expr (file, TREE_TYPE (name), flags);
7943 fprintf (file, " ");
7944 print_generic_expr (file, name, flags);
7945 fprintf (file, ";\n");
7947 any_var = true;
7952 if (fun && fun->decl == fndecl
7953 && fun->cfg
7954 && basic_block_info_for_fn (fun))
7956 /* If the CFG has been built, emit a CFG-based dump. */
7957 if (!ignore_topmost_bind)
7958 fprintf (file, "{\n");
7960 if (any_var && n_basic_blocks_for_fn (fun))
7961 fprintf (file, "\n");
7963 FOR_EACH_BB_FN (bb, fun)
7964 dump_bb (file, bb, 2, flags);
7966 fprintf (file, "}\n");
7968 else if (fun->curr_properties & PROP_gimple_any)
7970 /* The function is now in GIMPLE form but the CFG has not been
7971 built yet. Emit the single sequence of GIMPLE statements
7972 that make up its body. */
7973 gimple_seq body = gimple_body (fndecl);
7975 if (gimple_seq_first_stmt (body)
7976 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
7977 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
7978 print_gimple_seq (file, body, 0, flags);
7979 else
7981 if (!ignore_topmost_bind)
7982 fprintf (file, "{\n");
7984 if (any_var)
7985 fprintf (file, "\n");
7987 print_gimple_seq (file, body, 2, flags);
7988 fprintf (file, "}\n");
7991 else
7993 int indent;
7995 /* Make a tree based dump. */
7996 chain = DECL_SAVED_TREE (fndecl);
7997 if (chain && TREE_CODE (chain) == BIND_EXPR)
7999 if (ignore_topmost_bind)
8001 chain = BIND_EXPR_BODY (chain);
8002 indent = 2;
8004 else
8005 indent = 0;
8007 else
8009 if (!ignore_topmost_bind)
8011 fprintf (file, "{\n");
8012 /* No topmost bind, pretend it's ignored for later. */
8013 ignore_topmost_bind = true;
8015 indent = 2;
8018 if (any_var)
8019 fprintf (file, "\n");
8021 print_generic_stmt_indented (file, chain, flags, indent);
8022 if (ignore_topmost_bind)
8023 fprintf (file, "}\n");
8026 if (flags & TDF_ENUMERATE_LOCALS)
8027 dump_enumerated_decls (file, flags);
8028 fprintf (file, "\n\n");
8030 current_function_decl = old_current_fndecl;
8033 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
8035 DEBUG_FUNCTION void
8036 debug_function (tree fn, dump_flags_t flags)
8038 dump_function_to_file (fn, stderr, flags);
8042 /* Print on FILE the indexes for the predecessors of basic_block BB. */
8044 static void
8045 print_pred_bbs (FILE *file, basic_block bb)
8047 edge e;
8048 edge_iterator ei;
8050 FOR_EACH_EDGE (e, ei, bb->preds)
8051 fprintf (file, "bb_%d ", e->src->index);
8055 /* Print on FILE the indexes for the successors of basic_block BB. */
8057 static void
8058 print_succ_bbs (FILE *file, basic_block bb)
8060 edge e;
8061 edge_iterator ei;
8063 FOR_EACH_EDGE (e, ei, bb->succs)
8064 fprintf (file, "bb_%d ", e->dest->index);
8067 /* Print to FILE the basic block BB following the VERBOSITY level. */
8069 void
8070 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
8072 char *s_indent = (char *) alloca ((size_t) indent + 1);
8073 memset ((void *) s_indent, ' ', (size_t) indent);
8074 s_indent[indent] = '\0';
8076 /* Print basic_block's header. */
8077 if (verbosity >= 2)
8079 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
8080 print_pred_bbs (file, bb);
8081 fprintf (file, "}, succs = {");
8082 print_succ_bbs (file, bb);
8083 fprintf (file, "})\n");
8086 /* Print basic_block's body. */
8087 if (verbosity >= 3)
8089 fprintf (file, "%s {\n", s_indent);
8090 dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
8091 fprintf (file, "%s }\n", s_indent);
8095 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
8097 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
8098 VERBOSITY level this outputs the contents of the loop, or just its
8099 structure. */
8101 static void
8102 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
8104 char *s_indent;
8105 basic_block bb;
8107 if (loop == NULL)
8108 return;
8110 s_indent = (char *) alloca ((size_t) indent + 1);
8111 memset ((void *) s_indent, ' ', (size_t) indent);
8112 s_indent[indent] = '\0';
8114 /* Print loop's header. */
8115 fprintf (file, "%sloop_%d (", s_indent, loop->num);
8116 if (loop->header)
8117 fprintf (file, "header = %d", loop->header->index);
8118 else
8120 fprintf (file, "deleted)\n");
8121 return;
8123 if (loop->latch)
8124 fprintf (file, ", latch = %d", loop->latch->index);
8125 else
8126 fprintf (file, ", multiple latches");
8127 fprintf (file, ", niter = ");
8128 print_generic_expr (file, loop->nb_iterations);
8130 if (loop->any_upper_bound)
8132 fprintf (file, ", upper_bound = ");
8133 print_decu (loop->nb_iterations_upper_bound, file);
8135 if (loop->any_likely_upper_bound)
8137 fprintf (file, ", likely_upper_bound = ");
8138 print_decu (loop->nb_iterations_likely_upper_bound, file);
8141 if (loop->any_estimate)
8143 fprintf (file, ", estimate = ");
8144 print_decu (loop->nb_iterations_estimate, file);
8146 if (loop->unroll)
8147 fprintf (file, ", unroll = %d", loop->unroll);
8148 fprintf (file, ")\n");
8150 /* Print loop's body. */
8151 if (verbosity >= 1)
8153 fprintf (file, "%s{\n", s_indent);
8154 FOR_EACH_BB_FN (bb, cfun)
8155 if (bb->loop_father == loop)
8156 print_loops_bb (file, bb, indent, verbosity);
8158 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
8159 fprintf (file, "%s}\n", s_indent);
8163 /* Print the LOOP and its sibling loops on FILE, indented INDENT
8164 spaces. Following VERBOSITY level this outputs the contents of the
8165 loop, or just its structure. */
8167 static void
8168 print_loop_and_siblings (FILE *file, struct loop *loop, int indent,
8169 int verbosity)
8171 if (loop == NULL)
8172 return;
8174 print_loop (file, loop, indent, verbosity);
8175 print_loop_and_siblings (file, loop->next, indent, verbosity);
8178 /* Follow a CFG edge from the entry point of the program, and on entry
8179 of a loop, pretty print the loop structure on FILE. */
8181 void
8182 print_loops (FILE *file, int verbosity)
8184 basic_block bb;
8186 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
8187 fprintf (file, "\nLoops in function: %s\n", current_function_name ());
8188 if (bb && bb->loop_father)
8189 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
8192 /* Dump a loop. */
8194 DEBUG_FUNCTION void
8195 debug (struct loop &ref)
8197 print_loop (stderr, &ref, 0, /*verbosity*/0);
8200 DEBUG_FUNCTION void
8201 debug (struct loop *ptr)
8203 if (ptr)
8204 debug (*ptr);
8205 else
8206 fprintf (stderr, "<nil>\n");
8209 /* Dump a loop verbosely. */
8211 DEBUG_FUNCTION void
8212 debug_verbose (struct loop &ref)
8214 print_loop (stderr, &ref, 0, /*verbosity*/3);
8217 DEBUG_FUNCTION void
8218 debug_verbose (struct loop *ptr)
8220 if (ptr)
8221 debug (*ptr);
8222 else
8223 fprintf (stderr, "<nil>\n");
8227 /* Debugging loops structure at tree level, at some VERBOSITY level. */
8229 DEBUG_FUNCTION void
8230 debug_loops (int verbosity)
8232 print_loops (stderr, verbosity);
8235 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
8237 DEBUG_FUNCTION void
8238 debug_loop (struct loop *loop, int verbosity)
8240 print_loop (stderr, loop, 0, verbosity);
8243 /* Print on stderr the code of loop number NUM, at some VERBOSITY
8244 level. */
8246 DEBUG_FUNCTION void
8247 debug_loop_num (unsigned num, int verbosity)
8249 debug_loop (get_loop (cfun, num), verbosity);
8252 /* Return true if BB ends with a call, possibly followed by some
8253 instructions that must stay with the call. Return false,
8254 otherwise. */
8256 static bool
8257 gimple_block_ends_with_call_p (basic_block bb)
8259 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
8260 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
8264 /* Return true if BB ends with a conditional branch. Return false,
8265 otherwise. */
8267 static bool
8268 gimple_block_ends_with_condjump_p (const_basic_block bb)
8270 gimple *stmt = last_stmt (CONST_CAST_BB (bb));
8271 return (stmt && gimple_code (stmt) == GIMPLE_COND);
8275 /* Return true if statement T may terminate execution of BB in ways not
8276 explicitly represtented in the CFG. */
8278 bool
8279 stmt_can_terminate_bb_p (gimple *t)
8281 tree fndecl = NULL_TREE;
8282 int call_flags = 0;
8284 /* Eh exception not handled internally terminates execution of the whole
8285 function. */
8286 if (stmt_can_throw_external (t))
8287 return true;
8289 /* NORETURN and LONGJMP calls already have an edge to exit.
8290 CONST and PURE calls do not need one.
8291 We don't currently check for CONST and PURE here, although
8292 it would be a good idea, because those attributes are
8293 figured out from the RTL in mark_constant_function, and
8294 the counter incrementation code from -fprofile-arcs
8295 leads to different results from -fbranch-probabilities. */
8296 if (is_gimple_call (t))
8298 fndecl = gimple_call_fndecl (t);
8299 call_flags = gimple_call_flags (t);
8302 if (is_gimple_call (t)
8303 && fndecl
8304 && fndecl_built_in_p (fndecl)
8305 && (call_flags & ECF_NOTHROW)
8306 && !(call_flags & ECF_RETURNS_TWICE)
8307 /* fork() doesn't really return twice, but the effect of
8308 wrapping it in __gcov_fork() which calls __gcov_flush()
8309 and clears the counters before forking has the same
8310 effect as returning twice. Force a fake edge. */
8311 && !fndecl_built_in_p (fndecl, BUILT_IN_FORK))
8312 return false;
8314 if (is_gimple_call (t))
8316 edge_iterator ei;
8317 edge e;
8318 basic_block bb;
8320 if (call_flags & (ECF_PURE | ECF_CONST)
8321 && !(call_flags & ECF_LOOPING_CONST_OR_PURE))
8322 return false;
8324 /* Function call may do longjmp, terminate program or do other things.
8325 Special case noreturn that have non-abnormal edges out as in this case
8326 the fact is sufficiently represented by lack of edges out of T. */
8327 if (!(call_flags & ECF_NORETURN))
8328 return true;
8330 bb = gimple_bb (t);
8331 FOR_EACH_EDGE (e, ei, bb->succs)
8332 if ((e->flags & EDGE_FAKE) == 0)
8333 return true;
8336 if (gasm *asm_stmt = dyn_cast <gasm *> (t))
8337 if (gimple_asm_volatile_p (asm_stmt) || gimple_asm_input_p (asm_stmt))
8338 return true;
8340 return false;
8344 /* Add fake edges to the function exit for any non constant and non
8345 noreturn calls (or noreturn calls with EH/abnormal edges),
8346 volatile inline assembly in the bitmap of blocks specified by BLOCKS
8347 or to the whole CFG if BLOCKS is zero. Return the number of blocks
8348 that were split.
8350 The goal is to expose cases in which entering a basic block does
8351 not imply that all subsequent instructions must be executed. */
8353 static int
8354 gimple_flow_call_edges_add (sbitmap blocks)
8356 int i;
8357 int blocks_split = 0;
8358 int last_bb = last_basic_block_for_fn (cfun);
8359 bool check_last_block = false;
8361 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
8362 return 0;
8364 if (! blocks)
8365 check_last_block = true;
8366 else
8367 check_last_block = bitmap_bit_p (blocks,
8368 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index);
8370 /* In the last basic block, before epilogue generation, there will be
8371 a fallthru edge to EXIT. Special care is required if the last insn
8372 of the last basic block is a call because make_edge folds duplicate
8373 edges, which would result in the fallthru edge also being marked
8374 fake, which would result in the fallthru edge being removed by
8375 remove_fake_edges, which would result in an invalid CFG.
8377 Moreover, we can't elide the outgoing fake edge, since the block
8378 profiler needs to take this into account in order to solve the minimal
8379 spanning tree in the case that the call doesn't return.
8381 Handle this by adding a dummy instruction in a new last basic block. */
8382 if (check_last_block)
8384 basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
8385 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
8386 gimple *t = NULL;
8388 if (!gsi_end_p (gsi))
8389 t = gsi_stmt (gsi);
8391 if (t && stmt_can_terminate_bb_p (t))
8393 edge e;
8395 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
8396 if (e)
8398 gsi_insert_on_edge (e, gimple_build_nop ());
8399 gsi_commit_edge_inserts ();
8404 /* Now add fake edges to the function exit for any non constant
8405 calls since there is no way that we can determine if they will
8406 return or not... */
8407 for (i = 0; i < last_bb; i++)
8409 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8410 gimple_stmt_iterator gsi;
8411 gimple *stmt, *last_stmt;
8413 if (!bb)
8414 continue;
8416 if (blocks && !bitmap_bit_p (blocks, i))
8417 continue;
8419 gsi = gsi_last_nondebug_bb (bb);
8420 if (!gsi_end_p (gsi))
8422 last_stmt = gsi_stmt (gsi);
8425 stmt = gsi_stmt (gsi);
8426 if (stmt_can_terminate_bb_p (stmt))
8428 edge e;
8430 /* The handling above of the final block before the
8431 epilogue should be enough to verify that there is
8432 no edge to the exit block in CFG already.
8433 Calling make_edge in such case would cause us to
8434 mark that edge as fake and remove it later. */
8435 if (flag_checking && stmt == last_stmt)
8437 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
8438 gcc_assert (e == NULL);
8441 /* Note that the following may create a new basic block
8442 and renumber the existing basic blocks. */
8443 if (stmt != last_stmt)
8445 e = split_block (bb, stmt);
8446 if (e)
8447 blocks_split++;
8449 e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
8450 e->probability = profile_probability::guessed_never ();
8452 gsi_prev (&gsi);
8454 while (!gsi_end_p (gsi));
8458 if (blocks_split)
8459 checking_verify_flow_info ();
8461 return blocks_split;
8464 /* Removes edge E and all the blocks dominated by it, and updates dominance
8465 information. The IL in E->src needs to be updated separately.
8466 If dominance info is not available, only the edge E is removed.*/
8468 void
8469 remove_edge_and_dominated_blocks (edge e)
8471 vec<basic_block> bbs_to_remove = vNULL;
8472 vec<basic_block> bbs_to_fix_dom = vNULL;
8473 edge f;
8474 edge_iterator ei;
8475 bool none_removed = false;
8476 unsigned i;
8477 basic_block bb, dbb;
8478 bitmap_iterator bi;
8480 /* If we are removing a path inside a non-root loop that may change
8481 loop ownership of blocks or remove loops. Mark loops for fixup. */
8482 if (current_loops
8483 && loop_outer (e->src->loop_father) != NULL
8484 && e->src->loop_father == e->dest->loop_father)
8485 loops_state_set (LOOPS_NEED_FIXUP);
8487 if (!dom_info_available_p (CDI_DOMINATORS))
8489 remove_edge (e);
8490 return;
8493 /* No updating is needed for edges to exit. */
8494 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
8496 if (cfgcleanup_altered_bbs)
8497 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
8498 remove_edge (e);
8499 return;
8502 /* First, we find the basic blocks to remove. If E->dest has a predecessor
8503 that is not dominated by E->dest, then this set is empty. Otherwise,
8504 all the basic blocks dominated by E->dest are removed.
8506 Also, to DF_IDOM we store the immediate dominators of the blocks in
8507 the dominance frontier of E (i.e., of the successors of the
8508 removed blocks, if there are any, and of E->dest otherwise). */
8509 FOR_EACH_EDGE (f, ei, e->dest->preds)
8511 if (f == e)
8512 continue;
8514 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
8516 none_removed = true;
8517 break;
8521 auto_bitmap df, df_idom;
8522 if (none_removed)
8523 bitmap_set_bit (df_idom,
8524 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
8525 else
8527 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
8528 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
8530 FOR_EACH_EDGE (f, ei, bb->succs)
8532 if (f->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
8533 bitmap_set_bit (df, f->dest->index);
8536 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
8537 bitmap_clear_bit (df, bb->index);
8539 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
8541 bb = BASIC_BLOCK_FOR_FN (cfun, i);
8542 bitmap_set_bit (df_idom,
8543 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
8547 if (cfgcleanup_altered_bbs)
8549 /* Record the set of the altered basic blocks. */
8550 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
8551 bitmap_ior_into (cfgcleanup_altered_bbs, df);
8554 /* Remove E and the cancelled blocks. */
8555 if (none_removed)
8556 remove_edge (e);
8557 else
8559 /* Walk backwards so as to get a chance to substitute all
8560 released DEFs into debug stmts. See
8561 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
8562 details. */
8563 for (i = bbs_to_remove.length (); i-- > 0; )
8564 delete_basic_block (bbs_to_remove[i]);
8567 /* Update the dominance information. The immediate dominator may change only
8568 for blocks whose immediate dominator belongs to DF_IDOM:
8570 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
8571 removal. Let Z the arbitrary block such that idom(Z) = Y and
8572 Z dominates X after the removal. Before removal, there exists a path P
8573 from Y to X that avoids Z. Let F be the last edge on P that is
8574 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
8575 dominates W, and because of P, Z does not dominate W), and W belongs to
8576 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
8577 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
8579 bb = BASIC_BLOCK_FOR_FN (cfun, i);
8580 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
8581 dbb;
8582 dbb = next_dom_son (CDI_DOMINATORS, dbb))
8583 bbs_to_fix_dom.safe_push (dbb);
8586 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
8588 bbs_to_remove.release ();
8589 bbs_to_fix_dom.release ();
8592 /* Purge dead EH edges from basic block BB. */
8594 bool
8595 gimple_purge_dead_eh_edges (basic_block bb)
8597 bool changed = false;
8598 edge e;
8599 edge_iterator ei;
8600 gimple *stmt = last_stmt (bb);
8602 if (stmt && stmt_can_throw_internal (stmt))
8603 return false;
8605 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
8607 if (e->flags & EDGE_EH)
8609 remove_edge_and_dominated_blocks (e);
8610 changed = true;
8612 else
8613 ei_next (&ei);
8616 return changed;
8619 /* Purge dead EH edges from basic block listed in BLOCKS. */
8621 bool
8622 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
8624 bool changed = false;
8625 unsigned i;
8626 bitmap_iterator bi;
8628 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
8630 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8632 /* Earlier gimple_purge_dead_eh_edges could have removed
8633 this basic block already. */
8634 gcc_assert (bb || changed);
8635 if (bb != NULL)
8636 changed |= gimple_purge_dead_eh_edges (bb);
8639 return changed;
8642 /* Purge dead abnormal call edges from basic block BB. */
8644 bool
8645 gimple_purge_dead_abnormal_call_edges (basic_block bb)
8647 bool changed = false;
8648 edge e;
8649 edge_iterator ei;
8650 gimple *stmt = last_stmt (bb);
8652 if (!cfun->has_nonlocal_label
8653 && !cfun->calls_setjmp)
8654 return false;
8656 if (stmt && stmt_can_make_abnormal_goto (stmt))
8657 return false;
8659 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
8661 if (e->flags & EDGE_ABNORMAL)
8663 if (e->flags & EDGE_FALLTHRU)
8664 e->flags &= ~EDGE_ABNORMAL;
8665 else
8666 remove_edge_and_dominated_blocks (e);
8667 changed = true;
8669 else
8670 ei_next (&ei);
8673 return changed;
8676 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
8678 bool
8679 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
8681 bool changed = false;
8682 unsigned i;
8683 bitmap_iterator bi;
8685 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
8687 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8689 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
8690 this basic block already. */
8691 gcc_assert (bb || changed);
8692 if (bb != NULL)
8693 changed |= gimple_purge_dead_abnormal_call_edges (bb);
8696 return changed;
8699 /* This function is called whenever a new edge is created or
8700 redirected. */
8702 static void
8703 gimple_execute_on_growing_pred (edge e)
8705 basic_block bb = e->dest;
8707 if (!gimple_seq_empty_p (phi_nodes (bb)))
8708 reserve_phi_args_for_new_edge (bb);
8711 /* This function is called immediately before edge E is removed from
8712 the edge vector E->dest->preds. */
8714 static void
8715 gimple_execute_on_shrinking_pred (edge e)
8717 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
8718 remove_phi_args (e);
8721 /*---------------------------------------------------------------------------
8722 Helper functions for Loop versioning
8723 ---------------------------------------------------------------------------*/
8725 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
8726 of 'first'. Both of them are dominated by 'new_head' basic block. When
8727 'new_head' was created by 'second's incoming edge it received phi arguments
8728 on the edge by split_edge(). Later, additional edge 'e' was created to
8729 connect 'new_head' and 'first'. Now this routine adds phi args on this
8730 additional edge 'e' that new_head to second edge received as part of edge
8731 splitting. */
8733 static void
8734 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
8735 basic_block new_head, edge e)
8737 gphi *phi1, *phi2;
8738 gphi_iterator psi1, psi2;
8739 tree def;
8740 edge e2 = find_edge (new_head, second);
8742 /* Because NEW_HEAD has been created by splitting SECOND's incoming
8743 edge, we should always have an edge from NEW_HEAD to SECOND. */
8744 gcc_assert (e2 != NULL);
8746 /* Browse all 'second' basic block phi nodes and add phi args to
8747 edge 'e' for 'first' head. PHI args are always in correct order. */
8749 for (psi2 = gsi_start_phis (second),
8750 psi1 = gsi_start_phis (first);
8751 !gsi_end_p (psi2) && !gsi_end_p (psi1);
8752 gsi_next (&psi2), gsi_next (&psi1))
8754 phi1 = psi1.phi ();
8755 phi2 = psi2.phi ();
8756 def = PHI_ARG_DEF (phi2, e2->dest_idx);
8757 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
8762 /* Adds a if else statement to COND_BB with condition COND_EXPR.
8763 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
8764 the destination of the ELSE part. */
8766 static void
8767 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
8768 basic_block second_head ATTRIBUTE_UNUSED,
8769 basic_block cond_bb, void *cond_e)
8771 gimple_stmt_iterator gsi;
8772 gimple *new_cond_expr;
8773 tree cond_expr = (tree) cond_e;
8774 edge e0;
8776 /* Build new conditional expr */
8777 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
8778 NULL_TREE, NULL_TREE);
8780 /* Add new cond in cond_bb. */
8781 gsi = gsi_last_bb (cond_bb);
8782 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
8784 /* Adjust edges appropriately to connect new head with first head
8785 as well as second head. */
8786 e0 = single_succ_edge (cond_bb);
8787 e0->flags &= ~EDGE_FALLTHRU;
8788 e0->flags |= EDGE_FALSE_VALUE;
8792 /* Do book-keeping of basic block BB for the profile consistency checker.
8793 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
8794 then do post-pass accounting. Store the counting in RECORD. */
8795 static void
8796 gimple_account_profile_record (basic_block bb, int after_pass,
8797 struct profile_record *record)
8799 gimple_stmt_iterator i;
8800 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
8802 record->size[after_pass]
8803 += estimate_num_insns (gsi_stmt (i), &eni_size_weights);
8804 if (bb->count.initialized_p ())
8805 record->time[after_pass]
8806 += estimate_num_insns (gsi_stmt (i),
8807 &eni_time_weights) * bb->count.to_gcov_type ();
8808 else if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
8809 record->time[after_pass]
8810 += estimate_num_insns (gsi_stmt (i),
8811 &eni_time_weights) * bb->count.to_frequency (cfun);
8815 struct cfg_hooks gimple_cfg_hooks = {
8816 "gimple",
8817 gimple_verify_flow_info,
8818 gimple_dump_bb, /* dump_bb */
8819 gimple_dump_bb_for_graph, /* dump_bb_for_graph */
8820 create_bb, /* create_basic_block */
8821 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
8822 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
8823 gimple_can_remove_branch_p, /* can_remove_branch_p */
8824 remove_bb, /* delete_basic_block */
8825 gimple_split_block, /* split_block */
8826 gimple_move_block_after, /* move_block_after */
8827 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
8828 gimple_merge_blocks, /* merge_blocks */
8829 gimple_predict_edge, /* predict_edge */
8830 gimple_predicted_by_p, /* predicted_by_p */
8831 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
8832 gimple_duplicate_bb, /* duplicate_block */
8833 gimple_split_edge, /* split_edge */
8834 gimple_make_forwarder_block, /* make_forward_block */
8835 NULL, /* tidy_fallthru_edge */
8836 NULL, /* force_nonfallthru */
8837 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
8838 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
8839 gimple_flow_call_edges_add, /* flow_call_edges_add */
8840 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
8841 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
8842 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
8843 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
8844 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
8845 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
8846 flush_pending_stmts, /* flush_pending_stmts */
8847 gimple_empty_block_p, /* block_empty_p */
8848 gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
8849 gimple_account_profile_record,
8853 /* Split all critical edges. */
8855 unsigned int
8856 split_critical_edges (void)
8858 basic_block bb;
8859 edge e;
8860 edge_iterator ei;
8862 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
8863 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
8864 mappings around the calls to split_edge. */
8865 start_recording_case_labels ();
8866 FOR_ALL_BB_FN (bb, cfun)
8868 FOR_EACH_EDGE (e, ei, bb->succs)
8870 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
8871 split_edge (e);
8872 /* PRE inserts statements to edges and expects that
8873 since split_critical_edges was done beforehand, committing edge
8874 insertions will not split more edges. In addition to critical
8875 edges we must split edges that have multiple successors and
8876 end by control flow statements, such as RESX.
8877 Go ahead and split them too. This matches the logic in
8878 gimple_find_edge_insert_loc. */
8879 else if ((!single_pred_p (e->dest)
8880 || !gimple_seq_empty_p (phi_nodes (e->dest))
8881 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
8882 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
8883 && !(e->flags & EDGE_ABNORMAL))
8885 gimple_stmt_iterator gsi;
8887 gsi = gsi_last_bb (e->src);
8888 if (!gsi_end_p (gsi)
8889 && stmt_ends_bb_p (gsi_stmt (gsi))
8890 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
8891 && !gimple_call_builtin_p (gsi_stmt (gsi),
8892 BUILT_IN_RETURN)))
8893 split_edge (e);
8897 end_recording_case_labels ();
8898 return 0;
8901 namespace {
8903 const pass_data pass_data_split_crit_edges =
8905 GIMPLE_PASS, /* type */
8906 "crited", /* name */
8907 OPTGROUP_NONE, /* optinfo_flags */
8908 TV_TREE_SPLIT_EDGES, /* tv_id */
8909 PROP_cfg, /* properties_required */
8910 PROP_no_crit_edges, /* properties_provided */
8911 0, /* properties_destroyed */
8912 0, /* todo_flags_start */
8913 0, /* todo_flags_finish */
8916 class pass_split_crit_edges : public gimple_opt_pass
8918 public:
8919 pass_split_crit_edges (gcc::context *ctxt)
8920 : gimple_opt_pass (pass_data_split_crit_edges, ctxt)
8923 /* opt_pass methods: */
8924 virtual unsigned int execute (function *) { return split_critical_edges (); }
8926 opt_pass * clone () { return new pass_split_crit_edges (m_ctxt); }
8927 }; // class pass_split_crit_edges
8929 } // anon namespace
8931 gimple_opt_pass *
8932 make_pass_split_crit_edges (gcc::context *ctxt)
8934 return new pass_split_crit_edges (ctxt);
8938 /* Insert COND expression which is GIMPLE_COND after STMT
8939 in basic block BB with appropriate basic block split
8940 and creation of a new conditionally executed basic block.
8941 Update profile so the new bb is visited with probability PROB.
8942 Return created basic block. */
8943 basic_block
8944 insert_cond_bb (basic_block bb, gimple *stmt, gimple *cond,
8945 profile_probability prob)
8947 edge fall = split_block (bb, stmt);
8948 gimple_stmt_iterator iter = gsi_last_bb (bb);
8949 basic_block new_bb;
8951 /* Insert cond statement. */
8952 gcc_assert (gimple_code (cond) == GIMPLE_COND);
8953 if (gsi_end_p (iter))
8954 gsi_insert_before (&iter, cond, GSI_CONTINUE_LINKING);
8955 else
8956 gsi_insert_after (&iter, cond, GSI_CONTINUE_LINKING);
8958 /* Create conditionally executed block. */
8959 new_bb = create_empty_bb (bb);
8960 edge e = make_edge (bb, new_bb, EDGE_TRUE_VALUE);
8961 e->probability = prob;
8962 new_bb->count = e->count ();
8963 make_single_succ_edge (new_bb, fall->dest, EDGE_FALLTHRU);
8965 /* Fix edge for split bb. */
8966 fall->flags = EDGE_FALSE_VALUE;
8967 fall->probability -= e->probability;
8969 /* Update dominance info. */
8970 if (dom_info_available_p (CDI_DOMINATORS))
8972 set_immediate_dominator (CDI_DOMINATORS, new_bb, bb);
8973 set_immediate_dominator (CDI_DOMINATORS, fall->dest, bb);
8976 /* Update loop info. */
8977 if (current_loops)
8978 add_bb_to_loop (new_bb, bb->loop_father);
8980 return new_bb;
8983 /* Build a ternary operation and gimplify it. Emit code before GSI.
8984 Return the gimple_val holding the result. */
8986 tree
8987 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
8988 tree type, tree a, tree b, tree c)
8990 tree ret;
8991 location_t loc = gimple_location (gsi_stmt (*gsi));
8993 ret = fold_build3_loc (loc, code, type, a, b, c);
8994 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8995 GSI_SAME_STMT);
8998 /* Build a binary operation and gimplify it. Emit code before GSI.
8999 Return the gimple_val holding the result. */
9001 tree
9002 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
9003 tree type, tree a, tree b)
9005 tree ret;
9007 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
9008 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
9009 GSI_SAME_STMT);
9012 /* Build a unary operation and gimplify it. Emit code before GSI.
9013 Return the gimple_val holding the result. */
9015 tree
9016 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
9017 tree a)
9019 tree ret;
9021 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
9022 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
9023 GSI_SAME_STMT);
9028 /* Given a basic block B which ends with a conditional and has
9029 precisely two successors, determine which of the edges is taken if
9030 the conditional is true and which is taken if the conditional is
9031 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
9033 void
9034 extract_true_false_edges_from_block (basic_block b,
9035 edge *true_edge,
9036 edge *false_edge)
9038 edge e = EDGE_SUCC (b, 0);
9040 if (e->flags & EDGE_TRUE_VALUE)
9042 *true_edge = e;
9043 *false_edge = EDGE_SUCC (b, 1);
9045 else
9047 *false_edge = e;
9048 *true_edge = EDGE_SUCC (b, 1);
9053 /* From a controlling predicate in the immediate dominator DOM of
9054 PHIBLOCK determine the edges into PHIBLOCK that are chosen if the
9055 predicate evaluates to true and false and store them to
9056 *TRUE_CONTROLLED_EDGE and *FALSE_CONTROLLED_EDGE if
9057 they are non-NULL. Returns true if the edges can be determined,
9058 else return false. */
9060 bool
9061 extract_true_false_controlled_edges (basic_block dom, basic_block phiblock,
9062 edge *true_controlled_edge,
9063 edge *false_controlled_edge)
9065 basic_block bb = phiblock;
9066 edge true_edge, false_edge, tem;
9067 edge e0 = NULL, e1 = NULL;
9069 /* We have to verify that one edge into the PHI node is dominated
9070 by the true edge of the predicate block and the other edge
9071 dominated by the false edge. This ensures that the PHI argument
9072 we are going to take is completely determined by the path we
9073 take from the predicate block.
9074 We can only use BB dominance checks below if the destination of
9075 the true/false edges are dominated by their edge, thus only
9076 have a single predecessor. */
9077 extract_true_false_edges_from_block (dom, &true_edge, &false_edge);
9078 tem = EDGE_PRED (bb, 0);
9079 if (tem == true_edge
9080 || (single_pred_p (true_edge->dest)
9081 && (tem->src == true_edge->dest
9082 || dominated_by_p (CDI_DOMINATORS,
9083 tem->src, true_edge->dest))))
9084 e0 = tem;
9085 else if (tem == false_edge
9086 || (single_pred_p (false_edge->dest)
9087 && (tem->src == false_edge->dest
9088 || dominated_by_p (CDI_DOMINATORS,
9089 tem->src, false_edge->dest))))
9090 e1 = tem;
9091 else
9092 return false;
9093 tem = EDGE_PRED (bb, 1);
9094 if (tem == true_edge
9095 || (single_pred_p (true_edge->dest)
9096 && (tem->src == true_edge->dest
9097 || dominated_by_p (CDI_DOMINATORS,
9098 tem->src, true_edge->dest))))
9099 e0 = tem;
9100 else if (tem == false_edge
9101 || (single_pred_p (false_edge->dest)
9102 && (tem->src == false_edge->dest
9103 || dominated_by_p (CDI_DOMINATORS,
9104 tem->src, false_edge->dest))))
9105 e1 = tem;
9106 else
9107 return false;
9108 if (!e0 || !e1)
9109 return false;
9111 if (true_controlled_edge)
9112 *true_controlled_edge = e0;
9113 if (false_controlled_edge)
9114 *false_controlled_edge = e1;
9116 return true;
9119 /* Generate a range test LHS CODE RHS that determines whether INDEX is in the
9120 range [low, high]. Place associated stmts before *GSI. */
9122 void
9123 generate_range_test (basic_block bb, tree index, tree low, tree high,
9124 tree *lhs, tree *rhs)
9126 tree type = TREE_TYPE (index);
9127 tree utype = unsigned_type_for (type);
9129 low = fold_convert (utype, low);
9130 high = fold_convert (utype, high);
9132 gimple_seq seq = NULL;
9133 index = gimple_convert (&seq, utype, index);
9134 *lhs = gimple_build (&seq, MINUS_EXPR, utype, index, low);
9135 *rhs = const_binop (MINUS_EXPR, utype, high, low);
9137 gimple_stmt_iterator gsi = gsi_last_bb (bb);
9138 gsi_insert_seq_before (&gsi, seq, GSI_SAME_STMT);
9141 /* Return the basic block that belongs to label numbered INDEX
9142 of a switch statement. */
9144 basic_block
9145 gimple_switch_label_bb (function *ifun, gswitch *gs, unsigned index)
9147 return label_to_block (ifun, CASE_LABEL (gimple_switch_label (gs, index)));
9150 /* Return the default basic block of a switch statement. */
9152 basic_block
9153 gimple_switch_default_bb (function *ifun, gswitch *gs)
9155 return gimple_switch_label_bb (ifun, gs, 0);
9158 /* Return the edge that belongs to label numbered INDEX
9159 of a switch statement. */
9161 edge
9162 gimple_switch_edge (function *ifun, gswitch *gs, unsigned index)
9164 return find_edge (gimple_bb (gs), gimple_switch_label_bb (ifun, gs, index));
9167 /* Return the default edge of a switch statement. */
9169 edge
9170 gimple_switch_default_edge (function *ifun, gswitch *gs)
9172 return gimple_switch_edge (ifun, gs, 0);
9176 /* Emit return warnings. */
9178 namespace {
9180 const pass_data pass_data_warn_function_return =
9182 GIMPLE_PASS, /* type */
9183 "*warn_function_return", /* name */
9184 OPTGROUP_NONE, /* optinfo_flags */
9185 TV_NONE, /* tv_id */
9186 PROP_cfg, /* properties_required */
9187 0, /* properties_provided */
9188 0, /* properties_destroyed */
9189 0, /* todo_flags_start */
9190 0, /* todo_flags_finish */
9193 class pass_warn_function_return : public gimple_opt_pass
9195 public:
9196 pass_warn_function_return (gcc::context *ctxt)
9197 : gimple_opt_pass (pass_data_warn_function_return, ctxt)
9200 /* opt_pass methods: */
9201 virtual unsigned int execute (function *);
9203 }; // class pass_warn_function_return
9205 unsigned int
9206 pass_warn_function_return::execute (function *fun)
9208 source_location location;
9209 gimple *last;
9210 edge e;
9211 edge_iterator ei;
9213 if (!targetm.warn_func_return (fun->decl))
9214 return 0;
9216 /* If we have a path to EXIT, then we do return. */
9217 if (TREE_THIS_VOLATILE (fun->decl)
9218 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun)->preds) > 0)
9220 location = UNKNOWN_LOCATION;
9221 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (fun)->preds);
9222 (e = ei_safe_edge (ei)); )
9224 last = last_stmt (e->src);
9225 if ((gimple_code (last) == GIMPLE_RETURN
9226 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
9227 && location == UNKNOWN_LOCATION
9228 && ((location = LOCATION_LOCUS (gimple_location (last)))
9229 != UNKNOWN_LOCATION)
9230 && !optimize)
9231 break;
9232 /* When optimizing, replace return stmts in noreturn functions
9233 with __builtin_unreachable () call. */
9234 if (optimize && gimple_code (last) == GIMPLE_RETURN)
9236 tree fndecl = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
9237 gimple *new_stmt = gimple_build_call (fndecl, 0);
9238 gimple_set_location (new_stmt, gimple_location (last));
9239 gimple_stmt_iterator gsi = gsi_for_stmt (last);
9240 gsi_replace (&gsi, new_stmt, true);
9241 remove_edge (e);
9243 else
9244 ei_next (&ei);
9246 if (location == UNKNOWN_LOCATION)
9247 location = cfun->function_end_locus;
9248 warning_at (location, 0, "%<noreturn%> function does return");
9251 /* If we see "return;" in some basic block, then we do reach the end
9252 without returning a value. */
9253 else if (warn_return_type > 0
9254 && !TREE_NO_WARNING (fun->decl)
9255 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (fun->decl))))
9257 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (fun)->preds)
9259 gimple *last = last_stmt (e->src);
9260 greturn *return_stmt = dyn_cast <greturn *> (last);
9261 if (return_stmt
9262 && gimple_return_retval (return_stmt) == NULL
9263 && !gimple_no_warning_p (last))
9265 location = gimple_location (last);
9266 if (LOCATION_LOCUS (location) == UNKNOWN_LOCATION)
9267 location = fun->function_end_locus;
9268 warning_at (location, OPT_Wreturn_type,
9269 "control reaches end of non-void function");
9270 TREE_NO_WARNING (fun->decl) = 1;
9271 break;
9274 /* The C++ FE turns fallthrough from the end of non-void function
9275 into __builtin_unreachable () call with BUILTINS_LOCATION.
9276 Recognize those too. */
9277 basic_block bb;
9278 if (!TREE_NO_WARNING (fun->decl))
9279 FOR_EACH_BB_FN (bb, fun)
9280 if (EDGE_COUNT (bb->succs) == 0)
9282 gimple *last = last_stmt (bb);
9283 const enum built_in_function ubsan_missing_ret
9284 = BUILT_IN_UBSAN_HANDLE_MISSING_RETURN;
9285 if (last
9286 && ((LOCATION_LOCUS (gimple_location (last))
9287 == BUILTINS_LOCATION
9288 && gimple_call_builtin_p (last, BUILT_IN_UNREACHABLE))
9289 || gimple_call_builtin_p (last, ubsan_missing_ret)))
9291 gimple_stmt_iterator gsi = gsi_for_stmt (last);
9292 gsi_prev_nondebug (&gsi);
9293 gimple *prev = gsi_stmt (gsi);
9294 if (prev == NULL)
9295 location = UNKNOWN_LOCATION;
9296 else
9297 location = gimple_location (prev);
9298 if (LOCATION_LOCUS (location) == UNKNOWN_LOCATION)
9299 location = fun->function_end_locus;
9300 warning_at (location, OPT_Wreturn_type,
9301 "control reaches end of non-void function");
9302 TREE_NO_WARNING (fun->decl) = 1;
9303 break;
9307 return 0;
9310 } // anon namespace
9312 gimple_opt_pass *
9313 make_pass_warn_function_return (gcc::context *ctxt)
9315 return new pass_warn_function_return (ctxt);
9318 /* Walk a gimplified function and warn for functions whose return value is
9319 ignored and attribute((warn_unused_result)) is set. This is done before
9320 inlining, so we don't have to worry about that. */
9322 static void
9323 do_warn_unused_result (gimple_seq seq)
9325 tree fdecl, ftype;
9326 gimple_stmt_iterator i;
9328 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
9330 gimple *g = gsi_stmt (i);
9332 switch (gimple_code (g))
9334 case GIMPLE_BIND:
9335 do_warn_unused_result (gimple_bind_body (as_a <gbind *>(g)));
9336 break;
9337 case GIMPLE_TRY:
9338 do_warn_unused_result (gimple_try_eval (g));
9339 do_warn_unused_result (gimple_try_cleanup (g));
9340 break;
9341 case GIMPLE_CATCH:
9342 do_warn_unused_result (gimple_catch_handler (
9343 as_a <gcatch *> (g)));
9344 break;
9345 case GIMPLE_EH_FILTER:
9346 do_warn_unused_result (gimple_eh_filter_failure (g));
9347 break;
9349 case GIMPLE_CALL:
9350 if (gimple_call_lhs (g))
9351 break;
9352 if (gimple_call_internal_p (g))
9353 break;
9355 /* This is a naked call, as opposed to a GIMPLE_CALL with an
9356 LHS. All calls whose value is ignored should be
9357 represented like this. Look for the attribute. */
9358 fdecl = gimple_call_fndecl (g);
9359 ftype = gimple_call_fntype (g);
9361 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
9363 location_t loc = gimple_location (g);
9365 if (fdecl)
9366 warning_at (loc, OPT_Wunused_result,
9367 "ignoring return value of %qD, "
9368 "declared with attribute warn_unused_result",
9369 fdecl);
9370 else
9371 warning_at (loc, OPT_Wunused_result,
9372 "ignoring return value of function "
9373 "declared with attribute warn_unused_result");
9375 break;
9377 default:
9378 /* Not a container, not a call, or a call whose value is used. */
9379 break;
9384 namespace {
9386 const pass_data pass_data_warn_unused_result =
9388 GIMPLE_PASS, /* type */
9389 "*warn_unused_result", /* name */
9390 OPTGROUP_NONE, /* optinfo_flags */
9391 TV_NONE, /* tv_id */
9392 PROP_gimple_any, /* properties_required */
9393 0, /* properties_provided */
9394 0, /* properties_destroyed */
9395 0, /* todo_flags_start */
9396 0, /* todo_flags_finish */
9399 class pass_warn_unused_result : public gimple_opt_pass
9401 public:
9402 pass_warn_unused_result (gcc::context *ctxt)
9403 : gimple_opt_pass (pass_data_warn_unused_result, ctxt)
9406 /* opt_pass methods: */
9407 virtual bool gate (function *) { return flag_warn_unused_result; }
9408 virtual unsigned int execute (function *)
9410 do_warn_unused_result (gimple_body (current_function_decl));
9411 return 0;
9414 }; // class pass_warn_unused_result
9416 } // anon namespace
9418 gimple_opt_pass *
9419 make_pass_warn_unused_result (gcc::context *ctxt)
9421 return new pass_warn_unused_result (ctxt);
9424 /* IPA passes, compilation of earlier functions or inlining
9425 might have changed some properties, such as marked functions nothrow,
9426 pure, const or noreturn.
9427 Remove redundant edges and basic blocks, and create new ones if necessary.
9429 This pass can't be executed as stand alone pass from pass manager, because
9430 in between inlining and this fixup the verify_flow_info would fail. */
9432 unsigned int
9433 execute_fixup_cfg (void)
9435 basic_block bb;
9436 gimple_stmt_iterator gsi;
9437 int todo = 0;
9438 cgraph_node *node = cgraph_node::get (current_function_decl);
9439 profile_count num = node->count;
9440 profile_count den = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count;
9441 bool scale = num.initialized_p () && !(num == den);
9443 if (scale)
9445 profile_count::adjust_for_ipa_scaling (&num, &den);
9446 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count = node->count;
9447 EXIT_BLOCK_PTR_FOR_FN (cfun)->count
9448 = EXIT_BLOCK_PTR_FOR_FN (cfun)->count.apply_scale (num, den);
9451 FOR_EACH_BB_FN (bb, cfun)
9453 if (scale)
9454 bb->count = bb->count.apply_scale (num, den);
9455 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
9457 gimple *stmt = gsi_stmt (gsi);
9458 tree decl = is_gimple_call (stmt)
9459 ? gimple_call_fndecl (stmt)
9460 : NULL;
9461 if (decl)
9463 int flags = gimple_call_flags (stmt);
9464 if (flags & (ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE))
9466 if (gimple_purge_dead_abnormal_call_edges (bb))
9467 todo |= TODO_cleanup_cfg;
9469 if (gimple_in_ssa_p (cfun))
9471 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9472 update_stmt (stmt);
9476 if (flags & ECF_NORETURN
9477 && fixup_noreturn_call (stmt))
9478 todo |= TODO_cleanup_cfg;
9481 /* Remove stores to variables we marked write-only.
9482 Keep access when store has side effect, i.e. in case when source
9483 is volatile. */
9484 if (gimple_store_p (stmt)
9485 && !gimple_has_side_effects (stmt))
9487 tree lhs = get_base_address (gimple_get_lhs (stmt));
9489 if (VAR_P (lhs)
9490 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
9491 && varpool_node::get (lhs)->writeonly)
9493 unlink_stmt_vdef (stmt);
9494 gsi_remove (&gsi, true);
9495 release_defs (stmt);
9496 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9497 continue;
9500 /* For calls we can simply remove LHS when it is known
9501 to be write-only. */
9502 if (is_gimple_call (stmt)
9503 && gimple_get_lhs (stmt))
9505 tree lhs = get_base_address (gimple_get_lhs (stmt));
9507 if (VAR_P (lhs)
9508 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
9509 && varpool_node::get (lhs)->writeonly)
9511 gimple_call_set_lhs (stmt, NULL);
9512 update_stmt (stmt);
9513 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9517 if (maybe_clean_eh_stmt (stmt)
9518 && gimple_purge_dead_eh_edges (bb))
9519 todo |= TODO_cleanup_cfg;
9520 gsi_next (&gsi);
9523 /* If we have a basic block with no successors that does not
9524 end with a control statement or a noreturn call end it with
9525 a call to __builtin_unreachable. This situation can occur
9526 when inlining a noreturn call that does in fact return. */
9527 if (EDGE_COUNT (bb->succs) == 0)
9529 gimple *stmt = last_stmt (bb);
9530 if (!stmt
9531 || (!is_ctrl_stmt (stmt)
9532 && (!is_gimple_call (stmt)
9533 || !gimple_call_noreturn_p (stmt))))
9535 if (stmt && is_gimple_call (stmt))
9536 gimple_call_set_ctrl_altering (stmt, false);
9537 tree fndecl = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
9538 stmt = gimple_build_call (fndecl, 0);
9539 gimple_stmt_iterator gsi = gsi_last_bb (bb);
9540 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
9541 if (!cfun->after_inlining)
9543 gcall *call_stmt = dyn_cast <gcall *> (stmt);
9544 node->create_edge (cgraph_node::get_create (fndecl),
9545 call_stmt, bb->count);
9550 if (scale)
9551 compute_function_frequency ();
9553 if (current_loops
9554 && (todo & TODO_cleanup_cfg))
9555 loops_state_set (LOOPS_NEED_FIXUP);
9557 return todo;
9560 namespace {
9562 const pass_data pass_data_fixup_cfg =
9564 GIMPLE_PASS, /* type */
9565 "fixup_cfg", /* name */
9566 OPTGROUP_NONE, /* optinfo_flags */
9567 TV_NONE, /* tv_id */
9568 PROP_cfg, /* properties_required */
9569 0, /* properties_provided */
9570 0, /* properties_destroyed */
9571 0, /* todo_flags_start */
9572 0, /* todo_flags_finish */
9575 class pass_fixup_cfg : public gimple_opt_pass
9577 public:
9578 pass_fixup_cfg (gcc::context *ctxt)
9579 : gimple_opt_pass (pass_data_fixup_cfg, ctxt)
9582 /* opt_pass methods: */
9583 opt_pass * clone () { return new pass_fixup_cfg (m_ctxt); }
9584 virtual unsigned int execute (function *) { return execute_fixup_cfg (); }
9586 }; // class pass_fixup_cfg
9588 } // anon namespace
9590 gimple_opt_pass *
9591 make_pass_fixup_cfg (gcc::context *ctxt)
9593 return new pass_fixup_cfg (ctxt);
9596 /* Garbage collection support for edge_def. */
9598 extern void gt_ggc_mx (tree&);
9599 extern void gt_ggc_mx (gimple *&);
9600 extern void gt_ggc_mx (rtx&);
9601 extern void gt_ggc_mx (basic_block&);
9603 static void
9604 gt_ggc_mx (rtx_insn *& x)
9606 if (x)
9607 gt_ggc_mx_rtx_def ((void *) x);
9610 void
9611 gt_ggc_mx (edge_def *e)
9613 tree block = LOCATION_BLOCK (e->goto_locus);
9614 gt_ggc_mx (e->src);
9615 gt_ggc_mx (e->dest);
9616 if (current_ir_type () == IR_GIMPLE)
9617 gt_ggc_mx (e->insns.g);
9618 else
9619 gt_ggc_mx (e->insns.r);
9620 gt_ggc_mx (block);
9623 /* PCH support for edge_def. */
9625 extern void gt_pch_nx (tree&);
9626 extern void gt_pch_nx (gimple *&);
9627 extern void gt_pch_nx (rtx&);
9628 extern void gt_pch_nx (basic_block&);
9630 static void
9631 gt_pch_nx (rtx_insn *& x)
9633 if (x)
9634 gt_pch_nx_rtx_def ((void *) x);
9637 void
9638 gt_pch_nx (edge_def *e)
9640 tree block = LOCATION_BLOCK (e->goto_locus);
9641 gt_pch_nx (e->src);
9642 gt_pch_nx (e->dest);
9643 if (current_ir_type () == IR_GIMPLE)
9644 gt_pch_nx (e->insns.g);
9645 else
9646 gt_pch_nx (e->insns.r);
9647 gt_pch_nx (block);
9650 void
9651 gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
9653 tree block = LOCATION_BLOCK (e->goto_locus);
9654 op (&(e->src), cookie);
9655 op (&(e->dest), cookie);
9656 if (current_ir_type () == IR_GIMPLE)
9657 op (&(e->insns.g), cookie);
9658 else
9659 op (&(e->insns.r), cookie);
9660 op (&(block), cookie);
9663 #if CHECKING_P
9665 namespace selftest {
9667 /* Helper function for CFG selftests: create a dummy function decl
9668 and push it as cfun. */
9670 static tree
9671 push_fndecl (const char *name)
9673 tree fn_type = build_function_type_array (integer_type_node, 0, NULL);
9674 /* FIXME: this uses input_location: */
9675 tree fndecl = build_fn_decl (name, fn_type);
9676 tree retval = build_decl (UNKNOWN_LOCATION, RESULT_DECL,
9677 NULL_TREE, integer_type_node);
9678 DECL_RESULT (fndecl) = retval;
9679 push_struct_function (fndecl);
9680 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9681 ASSERT_TRUE (fun != NULL);
9682 init_empty_tree_cfg_for_function (fun);
9683 ASSERT_EQ (2, n_basic_blocks_for_fn (fun));
9684 ASSERT_EQ (0, n_edges_for_fn (fun));
9685 return fndecl;
9688 /* These tests directly create CFGs.
9689 Compare with the static fns within tree-cfg.c:
9690 - build_gimple_cfg
9691 - make_blocks: calls create_basic_block (seq, bb);
9692 - make_edges. */
9694 /* Verify a simple cfg of the form:
9695 ENTRY -> A -> B -> C -> EXIT. */
9697 static void
9698 test_linear_chain ()
9700 gimple_register_cfg_hooks ();
9702 tree fndecl = push_fndecl ("cfg_test_linear_chain");
9703 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9705 /* Create some empty blocks. */
9706 basic_block bb_a = create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun));
9707 basic_block bb_b = create_empty_bb (bb_a);
9708 basic_block bb_c = create_empty_bb (bb_b);
9710 ASSERT_EQ (5, n_basic_blocks_for_fn (fun));
9711 ASSERT_EQ (0, n_edges_for_fn (fun));
9713 /* Create some edges: a simple linear chain of BBs. */
9714 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), bb_a, EDGE_FALLTHRU);
9715 make_edge (bb_a, bb_b, 0);
9716 make_edge (bb_b, bb_c, 0);
9717 make_edge (bb_c, EXIT_BLOCK_PTR_FOR_FN (fun), 0);
9719 /* Verify the edges. */
9720 ASSERT_EQ (4, n_edges_for_fn (fun));
9721 ASSERT_EQ (NULL, ENTRY_BLOCK_PTR_FOR_FN (fun)->preds);
9722 ASSERT_EQ (1, ENTRY_BLOCK_PTR_FOR_FN (fun)->succs->length ());
9723 ASSERT_EQ (1, bb_a->preds->length ());
9724 ASSERT_EQ (1, bb_a->succs->length ());
9725 ASSERT_EQ (1, bb_b->preds->length ());
9726 ASSERT_EQ (1, bb_b->succs->length ());
9727 ASSERT_EQ (1, bb_c->preds->length ());
9728 ASSERT_EQ (1, bb_c->succs->length ());
9729 ASSERT_EQ (1, EXIT_BLOCK_PTR_FOR_FN (fun)->preds->length ());
9730 ASSERT_EQ (NULL, EXIT_BLOCK_PTR_FOR_FN (fun)->succs);
9732 /* Verify the dominance information
9733 Each BB in our simple chain should be dominated by the one before
9734 it. */
9735 calculate_dominance_info (CDI_DOMINATORS);
9736 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_b));
9737 ASSERT_EQ (bb_b, get_immediate_dominator (CDI_DOMINATORS, bb_c));
9738 vec<basic_block> dom_by_b = get_dominated_by (CDI_DOMINATORS, bb_b);
9739 ASSERT_EQ (1, dom_by_b.length ());
9740 ASSERT_EQ (bb_c, dom_by_b[0]);
9741 free_dominance_info (CDI_DOMINATORS);
9742 dom_by_b.release ();
9744 /* Similarly for post-dominance: each BB in our chain is post-dominated
9745 by the one after it. */
9746 calculate_dominance_info (CDI_POST_DOMINATORS);
9747 ASSERT_EQ (bb_b, get_immediate_dominator (CDI_POST_DOMINATORS, bb_a));
9748 ASSERT_EQ (bb_c, get_immediate_dominator (CDI_POST_DOMINATORS, bb_b));
9749 vec<basic_block> postdom_by_b = get_dominated_by (CDI_POST_DOMINATORS, bb_b);
9750 ASSERT_EQ (1, postdom_by_b.length ());
9751 ASSERT_EQ (bb_a, postdom_by_b[0]);
9752 free_dominance_info (CDI_POST_DOMINATORS);
9753 postdom_by_b.release ();
9755 pop_cfun ();
9758 /* Verify a simple CFG of the form:
9759 ENTRY
9763 /t \f
9769 EXIT. */
9771 static void
9772 test_diamond ()
9774 gimple_register_cfg_hooks ();
9776 tree fndecl = push_fndecl ("cfg_test_diamond");
9777 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9779 /* Create some empty blocks. */
9780 basic_block bb_a = create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun));
9781 basic_block bb_b = create_empty_bb (bb_a);
9782 basic_block bb_c = create_empty_bb (bb_a);
9783 basic_block bb_d = create_empty_bb (bb_b);
9785 ASSERT_EQ (6, n_basic_blocks_for_fn (fun));
9786 ASSERT_EQ (0, n_edges_for_fn (fun));
9788 /* Create the edges. */
9789 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), bb_a, EDGE_FALLTHRU);
9790 make_edge (bb_a, bb_b, EDGE_TRUE_VALUE);
9791 make_edge (bb_a, bb_c, EDGE_FALSE_VALUE);
9792 make_edge (bb_b, bb_d, 0);
9793 make_edge (bb_c, bb_d, 0);
9794 make_edge (bb_d, EXIT_BLOCK_PTR_FOR_FN (fun), 0);
9796 /* Verify the edges. */
9797 ASSERT_EQ (6, n_edges_for_fn (fun));
9798 ASSERT_EQ (1, bb_a->preds->length ());
9799 ASSERT_EQ (2, bb_a->succs->length ());
9800 ASSERT_EQ (1, bb_b->preds->length ());
9801 ASSERT_EQ (1, bb_b->succs->length ());
9802 ASSERT_EQ (1, bb_c->preds->length ());
9803 ASSERT_EQ (1, bb_c->succs->length ());
9804 ASSERT_EQ (2, bb_d->preds->length ());
9805 ASSERT_EQ (1, bb_d->succs->length ());
9807 /* Verify the dominance information. */
9808 calculate_dominance_info (CDI_DOMINATORS);
9809 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_b));
9810 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_c));
9811 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_d));
9812 vec<basic_block> dom_by_a = get_dominated_by (CDI_DOMINATORS, bb_a);
9813 ASSERT_EQ (3, dom_by_a.length ()); /* B, C, D, in some order. */
9814 dom_by_a.release ();
9815 vec<basic_block> dom_by_b = get_dominated_by (CDI_DOMINATORS, bb_b);
9816 ASSERT_EQ (0, dom_by_b.length ());
9817 dom_by_b.release ();
9818 free_dominance_info (CDI_DOMINATORS);
9820 /* Similarly for post-dominance. */
9821 calculate_dominance_info (CDI_POST_DOMINATORS);
9822 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_a));
9823 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_b));
9824 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_c));
9825 vec<basic_block> postdom_by_d = get_dominated_by (CDI_POST_DOMINATORS, bb_d);
9826 ASSERT_EQ (3, postdom_by_d.length ()); /* A, B, C in some order. */
9827 postdom_by_d.release ();
9828 vec<basic_block> postdom_by_b = get_dominated_by (CDI_POST_DOMINATORS, bb_b);
9829 ASSERT_EQ (0, postdom_by_b.length ());
9830 postdom_by_b.release ();
9831 free_dominance_info (CDI_POST_DOMINATORS);
9833 pop_cfun ();
9836 /* Verify that we can handle a CFG containing a "complete" aka
9837 fully-connected subgraph (where A B C D below all have edges
9838 pointing to each other node, also to themselves).
9839 e.g.:
9840 ENTRY EXIT
9846 A<--->B
9847 ^^ ^^
9848 | \ / |
9849 | X |
9850 | / \ |
9851 VV VV
9852 C<--->D
9855 static void
9856 test_fully_connected ()
9858 gimple_register_cfg_hooks ();
9860 tree fndecl = push_fndecl ("cfg_fully_connected");
9861 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9863 const int n = 4;
9865 /* Create some empty blocks. */
9866 auto_vec <basic_block> subgraph_nodes;
9867 for (int i = 0; i < n; i++)
9868 subgraph_nodes.safe_push (create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun)));
9870 ASSERT_EQ (n + 2, n_basic_blocks_for_fn (fun));
9871 ASSERT_EQ (0, n_edges_for_fn (fun));
9873 /* Create the edges. */
9874 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), subgraph_nodes[0], EDGE_FALLTHRU);
9875 make_edge (subgraph_nodes[0], EXIT_BLOCK_PTR_FOR_FN (fun), 0);
9876 for (int i = 0; i < n; i++)
9877 for (int j = 0; j < n; j++)
9878 make_edge (subgraph_nodes[i], subgraph_nodes[j], 0);
9880 /* Verify the edges. */
9881 ASSERT_EQ (2 + (n * n), n_edges_for_fn (fun));
9882 /* The first one is linked to ENTRY/EXIT as well as itself and
9883 everything else. */
9884 ASSERT_EQ (n + 1, subgraph_nodes[0]->preds->length ());
9885 ASSERT_EQ (n + 1, subgraph_nodes[0]->succs->length ());
9886 /* The other ones in the subgraph are linked to everything in
9887 the subgraph (including themselves). */
9888 for (int i = 1; i < n; i++)
9890 ASSERT_EQ (n, subgraph_nodes[i]->preds->length ());
9891 ASSERT_EQ (n, subgraph_nodes[i]->succs->length ());
9894 /* Verify the dominance information. */
9895 calculate_dominance_info (CDI_DOMINATORS);
9896 /* The initial block in the subgraph should be dominated by ENTRY. */
9897 ASSERT_EQ (ENTRY_BLOCK_PTR_FOR_FN (fun),
9898 get_immediate_dominator (CDI_DOMINATORS,
9899 subgraph_nodes[0]));
9900 /* Every other block in the subgraph should be dominated by the
9901 initial block. */
9902 for (int i = 1; i < n; i++)
9903 ASSERT_EQ (subgraph_nodes[0],
9904 get_immediate_dominator (CDI_DOMINATORS,
9905 subgraph_nodes[i]));
9906 free_dominance_info (CDI_DOMINATORS);
9908 /* Similarly for post-dominance. */
9909 calculate_dominance_info (CDI_POST_DOMINATORS);
9910 /* The initial block in the subgraph should be postdominated by EXIT. */
9911 ASSERT_EQ (EXIT_BLOCK_PTR_FOR_FN (fun),
9912 get_immediate_dominator (CDI_POST_DOMINATORS,
9913 subgraph_nodes[0]));
9914 /* Every other block in the subgraph should be postdominated by the
9915 initial block, since that leads to EXIT. */
9916 for (int i = 1; i < n; i++)
9917 ASSERT_EQ (subgraph_nodes[0],
9918 get_immediate_dominator (CDI_POST_DOMINATORS,
9919 subgraph_nodes[i]));
9920 free_dominance_info (CDI_POST_DOMINATORS);
9922 pop_cfun ();
9925 /* Run all of the selftests within this file. */
9927 void
9928 tree_cfg_c_tests ()
9930 test_linear_chain ();
9931 test_diamond ();
9932 test_fully_connected ();
9935 } // namespace selftest
9937 /* TODO: test the dominator/postdominator logic with various graphs/nodes:
9938 - loop
9939 - nested loops
9940 - switch statement (a block with many out-edges)
9941 - something that jumps to itself
9942 - etc */
9944 #endif /* CHECKING_P */