re PR c++/60474 (Crash in tree_class_check)
[official-gcc.git] / gcc / reload.c
blob851daf30f291a06f3e0926935d420ddfbe28e437
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains subroutines used only from the file reload1.c.
21 It knows how to scan one insn for operands and values
22 that need to be copied into registers to make valid code.
23 It also finds other operands and values which are valid
24 but for which equivalent values in registers exist and
25 ought to be used instead.
27 Before processing the first insn of the function, call `init_reload'.
28 init_reload actually has to be called earlier anyway.
30 To scan an insn, call `find_reloads'. This does two things:
31 1. sets up tables describing which values must be reloaded
32 for this insn, and what kind of hard regs they must be reloaded into;
33 2. optionally record the locations where those values appear in
34 the data, so they can be replaced properly later.
35 This is done only if the second arg to `find_reloads' is nonzero.
37 The third arg to `find_reloads' specifies the number of levels
38 of indirect addressing supported by the machine. If it is zero,
39 indirect addressing is not valid. If it is one, (MEM (REG n))
40 is valid even if (REG n) did not get a hard register; if it is two,
41 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
42 hard register, and similarly for higher values.
44 Then you must choose the hard regs to reload those pseudo regs into,
45 and generate appropriate load insns before this insn and perhaps
46 also store insns after this insn. Set up the array `reload_reg_rtx'
47 to contain the REG rtx's for the registers you used. In some
48 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
49 for certain reloads. Then that tells you which register to use,
50 so you do not need to allocate one. But you still do need to add extra
51 instructions to copy the value into and out of that register.
53 Finally you must call `subst_reloads' to substitute the reload reg rtx's
54 into the locations already recorded.
56 NOTE SIDE EFFECTS:
58 find_reloads can alter the operands of the instruction it is called on.
60 1. Two operands of any sort may be interchanged, if they are in a
61 commutative instruction.
62 This happens only if find_reloads thinks the instruction will compile
63 better that way.
65 2. Pseudo-registers that are equivalent to constants are replaced
66 with those constants if they are not in hard registers.
68 1 happens every time find_reloads is called.
69 2 happens only when REPLACE is 1, which is only when
70 actually doing the reloads, not when just counting them.
72 Using a reload register for several reloads in one insn:
74 When an insn has reloads, it is considered as having three parts:
75 the input reloads, the insn itself after reloading, and the output reloads.
76 Reloads of values used in memory addresses are often needed for only one part.
78 When this is so, reload_when_needed records which part needs the reload.
79 Two reloads for different parts of the insn can share the same reload
80 register.
82 When a reload is used for addresses in multiple parts, or when it is
83 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
84 a register with any other reload. */
86 #define REG_OK_STRICT
88 /* We do not enable this with ENABLE_CHECKING, since it is awfully slow. */
89 #undef DEBUG_RELOAD
91 #include "config.h"
92 #include "system.h"
93 #include "coretypes.h"
94 #include "tm.h"
95 #include "rtl-error.h"
96 #include "tm_p.h"
97 #include "insn-config.h"
98 #include "expr.h"
99 #include "optabs.h"
100 #include "recog.h"
101 #include "df.h"
102 #include "reload.h"
103 #include "regs.h"
104 #include "addresses.h"
105 #include "hard-reg-set.h"
106 #include "flags.h"
107 #include "function.h"
108 #include "params.h"
109 #include "target.h"
110 #include "ira.h"
112 /* True if X is a constant that can be forced into the constant pool.
113 MODE is the mode of the operand, or VOIDmode if not known. */
114 #define CONST_POOL_OK_P(MODE, X) \
115 ((MODE) != VOIDmode \
116 && CONSTANT_P (X) \
117 && GET_CODE (X) != HIGH \
118 && !targetm.cannot_force_const_mem (MODE, X))
120 /* True if C is a non-empty register class that has too few registers
121 to be safely used as a reload target class. */
123 static inline bool
124 small_register_class_p (reg_class_t rclass)
126 return (reg_class_size [(int) rclass] == 1
127 || (reg_class_size [(int) rclass] >= 1
128 && targetm.class_likely_spilled_p (rclass)));
132 /* All reloads of the current insn are recorded here. See reload.h for
133 comments. */
134 int n_reloads;
135 struct reload rld[MAX_RELOADS];
137 /* All the "earlyclobber" operands of the current insn
138 are recorded here. */
139 int n_earlyclobbers;
140 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
142 int reload_n_operands;
144 /* Replacing reloads.
146 If `replace_reloads' is nonzero, then as each reload is recorded
147 an entry is made for it in the table `replacements'.
148 Then later `subst_reloads' can look through that table and
149 perform all the replacements needed. */
151 /* Nonzero means record the places to replace. */
152 static int replace_reloads;
154 /* Each replacement is recorded with a structure like this. */
155 struct replacement
157 rtx *where; /* Location to store in */
158 int what; /* which reload this is for */
159 enum machine_mode mode; /* mode it must have */
162 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
164 /* Number of replacements currently recorded. */
165 static int n_replacements;
167 /* Used to track what is modified by an operand. */
168 struct decomposition
170 int reg_flag; /* Nonzero if referencing a register. */
171 int safe; /* Nonzero if this can't conflict with anything. */
172 rtx base; /* Base address for MEM. */
173 HOST_WIDE_INT start; /* Starting offset or register number. */
174 HOST_WIDE_INT end; /* Ending offset or register number. */
177 #ifdef SECONDARY_MEMORY_NEEDED
179 /* Save MEMs needed to copy from one class of registers to another. One MEM
180 is used per mode, but normally only one or two modes are ever used.
182 We keep two versions, before and after register elimination. The one
183 after register elimination is record separately for each operand. This
184 is done in case the address is not valid to be sure that we separately
185 reload each. */
187 static rtx secondary_memlocs[NUM_MACHINE_MODES];
188 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
189 static int secondary_memlocs_elim_used = 0;
190 #endif
192 /* The instruction we are doing reloads for;
193 so we can test whether a register dies in it. */
194 static rtx this_insn;
196 /* Nonzero if this instruction is a user-specified asm with operands. */
197 static int this_insn_is_asm;
199 /* If hard_regs_live_known is nonzero,
200 we can tell which hard regs are currently live,
201 at least enough to succeed in choosing dummy reloads. */
202 static int hard_regs_live_known;
204 /* Indexed by hard reg number,
205 element is nonnegative if hard reg has been spilled.
206 This vector is passed to `find_reloads' as an argument
207 and is not changed here. */
208 static short *static_reload_reg_p;
210 /* Set to 1 in subst_reg_equivs if it changes anything. */
211 static int subst_reg_equivs_changed;
213 /* On return from push_reload, holds the reload-number for the OUT
214 operand, which can be different for that from the input operand. */
215 static int output_reloadnum;
217 /* Compare two RTX's. */
218 #define MATCHES(x, y) \
219 (x == y || (x != 0 && (REG_P (x) \
220 ? REG_P (y) && REGNO (x) == REGNO (y) \
221 : rtx_equal_p (x, y) && ! side_effects_p (x))))
223 /* Indicates if two reloads purposes are for similar enough things that we
224 can merge their reloads. */
225 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
226 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
227 || ((when1) == (when2) && (op1) == (op2)) \
228 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
229 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
230 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
231 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
232 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
234 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
235 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
236 ((when1) != (when2) \
237 || ! ((op1) == (op2) \
238 || (when1) == RELOAD_FOR_INPUT \
239 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
240 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
242 /* If we are going to reload an address, compute the reload type to
243 use. */
244 #define ADDR_TYPE(type) \
245 ((type) == RELOAD_FOR_INPUT_ADDRESS \
246 ? RELOAD_FOR_INPADDR_ADDRESS \
247 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
248 ? RELOAD_FOR_OUTADDR_ADDRESS \
249 : (type)))
251 static int push_secondary_reload (int, rtx, int, int, enum reg_class,
252 enum machine_mode, enum reload_type,
253 enum insn_code *, secondary_reload_info *);
254 static enum reg_class find_valid_class (enum machine_mode, enum machine_mode,
255 int, unsigned int);
256 static void push_replacement (rtx *, int, enum machine_mode);
257 static void dup_replacements (rtx *, rtx *);
258 static void combine_reloads (void);
259 static int find_reusable_reload (rtx *, rtx, enum reg_class,
260 enum reload_type, int, int);
261 static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
262 enum machine_mode, reg_class_t, int, int);
263 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
264 static struct decomposition decompose (rtx);
265 static int immune_p (rtx, rtx, struct decomposition);
266 static bool alternative_allows_const_pool_ref (rtx, const char *, int);
267 static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
268 int *);
269 static rtx make_memloc (rtx, int);
270 static int maybe_memory_address_addr_space_p (enum machine_mode, rtx,
271 addr_space_t, rtx *);
272 static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
273 int, enum reload_type, int, rtx);
274 static rtx subst_reg_equivs (rtx, rtx);
275 static rtx subst_indexed_address (rtx);
276 static void update_auto_inc_notes (rtx, int, int);
277 static int find_reloads_address_1 (enum machine_mode, addr_space_t, rtx, int,
278 enum rtx_code, enum rtx_code, rtx *,
279 int, enum reload_type,int, rtx);
280 static void find_reloads_address_part (rtx, rtx *, enum reg_class,
281 enum machine_mode, int,
282 enum reload_type, int);
283 static rtx find_reloads_subreg_address (rtx, int, enum reload_type,
284 int, rtx, int *);
285 static void copy_replacements_1 (rtx *, rtx *, int);
286 static int find_inc_amount (rtx, rtx);
287 static int refers_to_mem_for_reload_p (rtx);
288 static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
289 rtx, rtx *);
291 /* Add NEW to reg_equiv_alt_mem_list[REGNO] if it's not present in the
292 list yet. */
294 static void
295 push_reg_equiv_alt_mem (int regno, rtx mem)
297 rtx it;
299 for (it = reg_equiv_alt_mem_list (regno); it; it = XEXP (it, 1))
300 if (rtx_equal_p (XEXP (it, 0), mem))
301 return;
303 reg_equiv_alt_mem_list (regno)
304 = alloc_EXPR_LIST (REG_EQUIV, mem,
305 reg_equiv_alt_mem_list (regno));
308 /* Determine if any secondary reloads are needed for loading (if IN_P is
309 nonzero) or storing (if IN_P is zero) X to or from a reload register of
310 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
311 are needed, push them.
313 Return the reload number of the secondary reload we made, or -1 if
314 we didn't need one. *PICODE is set to the insn_code to use if we do
315 need a secondary reload. */
317 static int
318 push_secondary_reload (int in_p, rtx x, int opnum, int optional,
319 enum reg_class reload_class,
320 enum machine_mode reload_mode, enum reload_type type,
321 enum insn_code *picode, secondary_reload_info *prev_sri)
323 enum reg_class rclass = NO_REGS;
324 enum reg_class scratch_class;
325 enum machine_mode mode = reload_mode;
326 enum insn_code icode = CODE_FOR_nothing;
327 enum insn_code t_icode = CODE_FOR_nothing;
328 enum reload_type secondary_type;
329 int s_reload, t_reload = -1;
330 const char *scratch_constraint;
331 char letter;
332 secondary_reload_info sri;
334 if (type == RELOAD_FOR_INPUT_ADDRESS
335 || type == RELOAD_FOR_OUTPUT_ADDRESS
336 || type == RELOAD_FOR_INPADDR_ADDRESS
337 || type == RELOAD_FOR_OUTADDR_ADDRESS)
338 secondary_type = type;
339 else
340 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
342 *picode = CODE_FOR_nothing;
344 /* If X is a paradoxical SUBREG, use the inner value to determine both the
345 mode and object being reloaded. */
346 if (paradoxical_subreg_p (x))
348 x = SUBREG_REG (x);
349 reload_mode = GET_MODE (x);
352 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
353 is still a pseudo-register by now, it *must* have an equivalent MEM
354 but we don't want to assume that), use that equivalent when seeing if
355 a secondary reload is needed since whether or not a reload is needed
356 might be sensitive to the form of the MEM. */
358 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
359 && reg_equiv_mem (REGNO (x)))
360 x = reg_equiv_mem (REGNO (x));
362 sri.icode = CODE_FOR_nothing;
363 sri.prev_sri = prev_sri;
364 rclass = (enum reg_class) targetm.secondary_reload (in_p, x, reload_class,
365 reload_mode, &sri);
366 icode = (enum insn_code) sri.icode;
368 /* If we don't need any secondary registers, done. */
369 if (rclass == NO_REGS && icode == CODE_FOR_nothing)
370 return -1;
372 if (rclass != NO_REGS)
373 t_reload = push_secondary_reload (in_p, x, opnum, optional, rclass,
374 reload_mode, type, &t_icode, &sri);
376 /* If we will be using an insn, the secondary reload is for a
377 scratch register. */
379 if (icode != CODE_FOR_nothing)
381 /* If IN_P is nonzero, the reload register will be the output in
382 operand 0. If IN_P is zero, the reload register will be the input
383 in operand 1. Outputs should have an initial "=", which we must
384 skip. */
386 /* ??? It would be useful to be able to handle only two, or more than
387 three, operands, but for now we can only handle the case of having
388 exactly three: output, input and one temp/scratch. */
389 gcc_assert (insn_data[(int) icode].n_operands == 3);
391 /* ??? We currently have no way to represent a reload that needs
392 an icode to reload from an intermediate tertiary reload register.
393 We should probably have a new field in struct reload to tag a
394 chain of scratch operand reloads onto. */
395 gcc_assert (rclass == NO_REGS);
397 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
398 gcc_assert (*scratch_constraint == '=');
399 scratch_constraint++;
400 if (*scratch_constraint == '&')
401 scratch_constraint++;
402 letter = *scratch_constraint;
403 scratch_class = (letter == 'r' ? GENERAL_REGS
404 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) letter,
405 scratch_constraint));
407 rclass = scratch_class;
408 mode = insn_data[(int) icode].operand[2].mode;
411 /* This case isn't valid, so fail. Reload is allowed to use the same
412 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
413 in the case of a secondary register, we actually need two different
414 registers for correct code. We fail here to prevent the possibility of
415 silently generating incorrect code later.
417 The convention is that secondary input reloads are valid only if the
418 secondary_class is different from class. If you have such a case, you
419 can not use secondary reloads, you must work around the problem some
420 other way.
422 Allow this when a reload_in/out pattern is being used. I.e. assume
423 that the generated code handles this case. */
425 gcc_assert (!in_p || rclass != reload_class || icode != CODE_FOR_nothing
426 || t_icode != CODE_FOR_nothing);
428 /* See if we can reuse an existing secondary reload. */
429 for (s_reload = 0; s_reload < n_reloads; s_reload++)
430 if (rld[s_reload].secondary_p
431 && (reg_class_subset_p (rclass, rld[s_reload].rclass)
432 || reg_class_subset_p (rld[s_reload].rclass, rclass))
433 && ((in_p && rld[s_reload].inmode == mode)
434 || (! in_p && rld[s_reload].outmode == mode))
435 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
436 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
437 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
438 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
439 && (small_register_class_p (rclass)
440 || targetm.small_register_classes_for_mode_p (VOIDmode))
441 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
442 opnum, rld[s_reload].opnum))
444 if (in_p)
445 rld[s_reload].inmode = mode;
446 if (! in_p)
447 rld[s_reload].outmode = mode;
449 if (reg_class_subset_p (rclass, rld[s_reload].rclass))
450 rld[s_reload].rclass = rclass;
452 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
453 rld[s_reload].optional &= optional;
454 rld[s_reload].secondary_p = 1;
455 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
456 opnum, rld[s_reload].opnum))
457 rld[s_reload].when_needed = RELOAD_OTHER;
459 break;
462 if (s_reload == n_reloads)
464 #ifdef SECONDARY_MEMORY_NEEDED
465 /* If we need a memory location to copy between the two reload regs,
466 set it up now. Note that we do the input case before making
467 the reload and the output case after. This is due to the
468 way reloads are output. */
470 if (in_p && icode == CODE_FOR_nothing
471 && SECONDARY_MEMORY_NEEDED (rclass, reload_class, mode))
473 get_secondary_mem (x, reload_mode, opnum, type);
475 /* We may have just added new reloads. Make sure we add
476 the new reload at the end. */
477 s_reload = n_reloads;
479 #endif
481 /* We need to make a new secondary reload for this register class. */
482 rld[s_reload].in = rld[s_reload].out = 0;
483 rld[s_reload].rclass = rclass;
485 rld[s_reload].inmode = in_p ? mode : VOIDmode;
486 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
487 rld[s_reload].reg_rtx = 0;
488 rld[s_reload].optional = optional;
489 rld[s_reload].inc = 0;
490 /* Maybe we could combine these, but it seems too tricky. */
491 rld[s_reload].nocombine = 1;
492 rld[s_reload].in_reg = 0;
493 rld[s_reload].out_reg = 0;
494 rld[s_reload].opnum = opnum;
495 rld[s_reload].when_needed = secondary_type;
496 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
497 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
498 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
499 rld[s_reload].secondary_out_icode
500 = ! in_p ? t_icode : CODE_FOR_nothing;
501 rld[s_reload].secondary_p = 1;
503 n_reloads++;
505 #ifdef SECONDARY_MEMORY_NEEDED
506 if (! in_p && icode == CODE_FOR_nothing
507 && SECONDARY_MEMORY_NEEDED (reload_class, rclass, mode))
508 get_secondary_mem (x, mode, opnum, type);
509 #endif
512 *picode = icode;
513 return s_reload;
516 /* If a secondary reload is needed, return its class. If both an intermediate
517 register and a scratch register is needed, we return the class of the
518 intermediate register. */
519 reg_class_t
520 secondary_reload_class (bool in_p, reg_class_t rclass, enum machine_mode mode,
521 rtx x)
523 enum insn_code icode;
524 secondary_reload_info sri;
526 sri.icode = CODE_FOR_nothing;
527 sri.prev_sri = NULL;
528 rclass
529 = (enum reg_class) targetm.secondary_reload (in_p, x, rclass, mode, &sri);
530 icode = (enum insn_code) sri.icode;
532 /* If there are no secondary reloads at all, we return NO_REGS.
533 If an intermediate register is needed, we return its class. */
534 if (icode == CODE_FOR_nothing || rclass != NO_REGS)
535 return rclass;
537 /* No intermediate register is needed, but we have a special reload
538 pattern, which we assume for now needs a scratch register. */
539 return scratch_reload_class (icode);
542 /* ICODE is the insn_code of a reload pattern. Check that it has exactly
543 three operands, verify that operand 2 is an output operand, and return
544 its register class.
545 ??? We'd like to be able to handle any pattern with at least 2 operands,
546 for zero or more scratch registers, but that needs more infrastructure. */
547 enum reg_class
548 scratch_reload_class (enum insn_code icode)
550 const char *scratch_constraint;
551 char scratch_letter;
552 enum reg_class rclass;
554 gcc_assert (insn_data[(int) icode].n_operands == 3);
555 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
556 gcc_assert (*scratch_constraint == '=');
557 scratch_constraint++;
558 if (*scratch_constraint == '&')
559 scratch_constraint++;
560 scratch_letter = *scratch_constraint;
561 if (scratch_letter == 'r')
562 return GENERAL_REGS;
563 rclass = REG_CLASS_FROM_CONSTRAINT ((unsigned char) scratch_letter,
564 scratch_constraint);
565 gcc_assert (rclass != NO_REGS);
566 return rclass;
569 #ifdef SECONDARY_MEMORY_NEEDED
571 /* Return a memory location that will be used to copy X in mode MODE.
572 If we haven't already made a location for this mode in this insn,
573 call find_reloads_address on the location being returned. */
576 get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
577 int opnum, enum reload_type type)
579 rtx loc;
580 int mem_valid;
582 /* By default, if MODE is narrower than a word, widen it to a word.
583 This is required because most machines that require these memory
584 locations do not support short load and stores from all registers
585 (e.g., FP registers). */
587 #ifdef SECONDARY_MEMORY_NEEDED_MODE
588 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
589 #else
590 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
591 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
592 #endif
594 /* If we already have made a MEM for this operand in MODE, return it. */
595 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
596 return secondary_memlocs_elim[(int) mode][opnum];
598 /* If this is the first time we've tried to get a MEM for this mode,
599 allocate a new one. `something_changed' in reload will get set
600 by noticing that the frame size has changed. */
602 if (secondary_memlocs[(int) mode] == 0)
604 #ifdef SECONDARY_MEMORY_NEEDED_RTX
605 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
606 #else
607 secondary_memlocs[(int) mode]
608 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
609 #endif
612 /* Get a version of the address doing any eliminations needed. If that
613 didn't give us a new MEM, make a new one if it isn't valid. */
615 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
616 mem_valid = strict_memory_address_addr_space_p (mode, XEXP (loc, 0),
617 MEM_ADDR_SPACE (loc));
619 if (! mem_valid && loc == secondary_memlocs[(int) mode])
620 loc = copy_rtx (loc);
622 /* The only time the call below will do anything is if the stack
623 offset is too large. In that case IND_LEVELS doesn't matter, so we
624 can just pass a zero. Adjust the type to be the address of the
625 corresponding object. If the address was valid, save the eliminated
626 address. If it wasn't valid, we need to make a reload each time, so
627 don't save it. */
629 if (! mem_valid)
631 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
632 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
633 : RELOAD_OTHER);
635 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
636 opnum, type, 0, 0);
639 secondary_memlocs_elim[(int) mode][opnum] = loc;
640 if (secondary_memlocs_elim_used <= (int)mode)
641 secondary_memlocs_elim_used = (int)mode + 1;
642 return loc;
645 /* Clear any secondary memory locations we've made. */
647 void
648 clear_secondary_mem (void)
650 memset (secondary_memlocs, 0, sizeof secondary_memlocs);
652 #endif /* SECONDARY_MEMORY_NEEDED */
655 /* Find the largest class which has at least one register valid in
656 mode INNER, and which for every such register, that register number
657 plus N is also valid in OUTER (if in range) and is cheap to move
658 into REGNO. Such a class must exist. */
660 static enum reg_class
661 find_valid_class (enum machine_mode outer ATTRIBUTE_UNUSED,
662 enum machine_mode inner ATTRIBUTE_UNUSED, int n,
663 unsigned int dest_regno ATTRIBUTE_UNUSED)
665 int best_cost = -1;
666 int rclass;
667 int regno;
668 enum reg_class best_class = NO_REGS;
669 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
670 unsigned int best_size = 0;
671 int cost;
673 for (rclass = 1; rclass < N_REG_CLASSES; rclass++)
675 int bad = 0;
676 int good = 0;
677 for (regno = 0; regno < FIRST_PSEUDO_REGISTER - n && ! bad; regno++)
678 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], regno))
680 if (HARD_REGNO_MODE_OK (regno, inner))
682 good = 1;
683 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], regno + n)
684 && ! HARD_REGNO_MODE_OK (regno + n, outer))
685 bad = 1;
689 if (bad || !good)
690 continue;
691 cost = register_move_cost (outer, (enum reg_class) rclass, dest_class);
693 if ((reg_class_size[rclass] > best_size
694 && (best_cost < 0 || best_cost >= cost))
695 || best_cost > cost)
697 best_class = (enum reg_class) rclass;
698 best_size = reg_class_size[rclass];
699 best_cost = register_move_cost (outer, (enum reg_class) rclass,
700 dest_class);
704 gcc_assert (best_size != 0);
706 return best_class;
709 /* We are trying to reload a subreg of something that is not a register.
710 Find the largest class which contains only registers valid in
711 mode MODE. OUTER is the mode of the subreg, DEST_CLASS the class in
712 which we would eventually like to obtain the object. */
714 static enum reg_class
715 find_valid_class_1 (enum machine_mode outer ATTRIBUTE_UNUSED,
716 enum machine_mode mode ATTRIBUTE_UNUSED,
717 enum reg_class dest_class ATTRIBUTE_UNUSED)
719 int best_cost = -1;
720 int rclass;
721 int regno;
722 enum reg_class best_class = NO_REGS;
723 unsigned int best_size = 0;
724 int cost;
726 for (rclass = 1; rclass < N_REG_CLASSES; rclass++)
728 int bad = 0;
729 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && !bad; regno++)
731 if (in_hard_reg_set_p (reg_class_contents[rclass], mode, regno)
732 && !HARD_REGNO_MODE_OK (regno, mode))
733 bad = 1;
736 if (bad)
737 continue;
739 cost = register_move_cost (outer, (enum reg_class) rclass, dest_class);
741 if ((reg_class_size[rclass] > best_size
742 && (best_cost < 0 || best_cost >= cost))
743 || best_cost > cost)
745 best_class = (enum reg_class) rclass;
746 best_size = reg_class_size[rclass];
747 best_cost = register_move_cost (outer, (enum reg_class) rclass,
748 dest_class);
752 gcc_assert (best_size != 0);
754 #ifdef LIMIT_RELOAD_CLASS
755 best_class = LIMIT_RELOAD_CLASS (mode, best_class);
756 #endif
757 return best_class;
760 /* Return the number of a previously made reload that can be combined with
761 a new one, or n_reloads if none of the existing reloads can be used.
762 OUT, RCLASS, TYPE and OPNUM are the same arguments as passed to
763 push_reload, they determine the kind of the new reload that we try to
764 combine. P_IN points to the corresponding value of IN, which can be
765 modified by this function.
766 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
768 static int
769 find_reusable_reload (rtx *p_in, rtx out, enum reg_class rclass,
770 enum reload_type type, int opnum, int dont_share)
772 rtx in = *p_in;
773 int i;
774 /* We can't merge two reloads if the output of either one is
775 earlyclobbered. */
777 if (earlyclobber_operand_p (out))
778 return n_reloads;
780 /* We can use an existing reload if the class is right
781 and at least one of IN and OUT is a match
782 and the other is at worst neutral.
783 (A zero compared against anything is neutral.)
785 For targets with small register classes, don't use existing reloads
786 unless they are for the same thing since that can cause us to need
787 more reload registers than we otherwise would. */
789 for (i = 0; i < n_reloads; i++)
790 if ((reg_class_subset_p (rclass, rld[i].rclass)
791 || reg_class_subset_p (rld[i].rclass, rclass))
792 /* If the existing reload has a register, it must fit our class. */
793 && (rld[i].reg_rtx == 0
794 || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
795 true_regnum (rld[i].reg_rtx)))
796 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
797 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
798 || (out != 0 && MATCHES (rld[i].out, out)
799 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
800 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
801 && (small_register_class_p (rclass)
802 || targetm.small_register_classes_for_mode_p (VOIDmode))
803 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
804 return i;
806 /* Reloading a plain reg for input can match a reload to postincrement
807 that reg, since the postincrement's value is the right value.
808 Likewise, it can match a preincrement reload, since we regard
809 the preincrementation as happening before any ref in this insn
810 to that register. */
811 for (i = 0; i < n_reloads; i++)
812 if ((reg_class_subset_p (rclass, rld[i].rclass)
813 || reg_class_subset_p (rld[i].rclass, rclass))
814 /* If the existing reload has a register, it must fit our
815 class. */
816 && (rld[i].reg_rtx == 0
817 || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
818 true_regnum (rld[i].reg_rtx)))
819 && out == 0 && rld[i].out == 0 && rld[i].in != 0
820 && ((REG_P (in)
821 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
822 && MATCHES (XEXP (rld[i].in, 0), in))
823 || (REG_P (rld[i].in)
824 && GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
825 && MATCHES (XEXP (in, 0), rld[i].in)))
826 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
827 && (small_register_class_p (rclass)
828 || targetm.small_register_classes_for_mode_p (VOIDmode))
829 && MERGABLE_RELOADS (type, rld[i].when_needed,
830 opnum, rld[i].opnum))
832 /* Make sure reload_in ultimately has the increment,
833 not the plain register. */
834 if (REG_P (in))
835 *p_in = rld[i].in;
836 return i;
838 return n_reloads;
841 /* Return true if X is a SUBREG that will need reloading of its SUBREG_REG
842 expression. MODE is the mode that X will be used in. OUTPUT is true if
843 the function is invoked for the output part of an enclosing reload. */
845 static bool
846 reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, bool output)
848 rtx inner;
850 /* Only SUBREGs are problematical. */
851 if (GET_CODE (x) != SUBREG)
852 return false;
854 inner = SUBREG_REG (x);
856 /* If INNER is a constant or PLUS, then INNER will need reloading. */
857 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
858 return true;
860 /* If INNER is not a hard register, then INNER will not need reloading. */
861 if (!(REG_P (inner) && HARD_REGISTER_P (inner)))
862 return false;
864 /* If INNER is not ok for MODE, then INNER will need reloading. */
865 if (!HARD_REGNO_MODE_OK (subreg_regno (x), mode))
866 return true;
868 /* If this is for an output, and the outer part is a word or smaller,
869 INNER is larger than a word and the number of registers in INNER is
870 not the same as the number of words in INNER, then INNER will need
871 reloading (with an in-out reload). */
872 return (output
873 && GET_MODE_SIZE (mode) <= UNITS_PER_WORD
874 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
875 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
876 != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
879 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
880 requiring an extra reload register. The caller has already found that
881 IN contains some reference to REGNO, so check that we can produce the
882 new value in a single step. E.g. if we have
883 (set (reg r13) (plus (reg r13) (const int 1))), and there is an
884 instruction that adds one to a register, this should succeed.
885 However, if we have something like
886 (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
887 needs to be loaded into a register first, we need a separate reload
888 register.
889 Such PLUS reloads are generated by find_reload_address_part.
890 The out-of-range PLUS expressions are usually introduced in the instruction
891 patterns by register elimination and substituting pseudos without a home
892 by their function-invariant equivalences. */
893 static int
894 can_reload_into (rtx in, int regno, enum machine_mode mode)
896 rtx dst, test_insn;
897 int r = 0;
898 struct recog_data_d save_recog_data;
900 /* For matching constraints, we often get notional input reloads where
901 we want to use the original register as the reload register. I.e.
902 technically this is a non-optional input-output reload, but IN is
903 already a valid register, and has been chosen as the reload register.
904 Speed this up, since it trivially works. */
905 if (REG_P (in))
906 return 1;
908 /* To test MEMs properly, we'd have to take into account all the reloads
909 that are already scheduled, which can become quite complicated.
910 And since we've already handled address reloads for this MEM, it
911 should always succeed anyway. */
912 if (MEM_P (in))
913 return 1;
915 /* If we can make a simple SET insn that does the job, everything should
916 be fine. */
917 dst = gen_rtx_REG (mode, regno);
918 test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
919 save_recog_data = recog_data;
920 if (recog_memoized (test_insn) >= 0)
922 extract_insn (test_insn);
923 r = constrain_operands (1);
925 recog_data = save_recog_data;
926 return r;
929 /* Record one reload that needs to be performed.
930 IN is an rtx saying where the data are to be found before this instruction.
931 OUT says where they must be stored after the instruction.
932 (IN is zero for data not read, and OUT is zero for data not written.)
933 INLOC and OUTLOC point to the places in the instructions where
934 IN and OUT were found.
935 If IN and OUT are both nonzero, it means the same register must be used
936 to reload both IN and OUT.
938 RCLASS is a register class required for the reloaded data.
939 INMODE is the machine mode that the instruction requires
940 for the reg that replaces IN and OUTMODE is likewise for OUT.
942 If IN is zero, then OUT's location and mode should be passed as
943 INLOC and INMODE.
945 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
947 OPTIONAL nonzero means this reload does not need to be performed:
948 it can be discarded if that is more convenient.
950 OPNUM and TYPE say what the purpose of this reload is.
952 The return value is the reload-number for this reload.
954 If both IN and OUT are nonzero, in some rare cases we might
955 want to make two separate reloads. (Actually we never do this now.)
956 Therefore, the reload-number for OUT is stored in
957 output_reloadnum when we return; the return value applies to IN.
958 Usually (presently always), when IN and OUT are nonzero,
959 the two reload-numbers are equal, but the caller should be careful to
960 distinguish them. */
963 push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
964 enum reg_class rclass, enum machine_mode inmode,
965 enum machine_mode outmode, int strict_low, int optional,
966 int opnum, enum reload_type type)
968 int i;
969 int dont_share = 0;
970 int dont_remove_subreg = 0;
971 #ifdef LIMIT_RELOAD_CLASS
972 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
973 #endif
974 int secondary_in_reload = -1, secondary_out_reload = -1;
975 enum insn_code secondary_in_icode = CODE_FOR_nothing;
976 enum insn_code secondary_out_icode = CODE_FOR_nothing;
977 enum reg_class subreg_in_class ATTRIBUTE_UNUSED;
978 subreg_in_class = NO_REGS;
980 /* INMODE and/or OUTMODE could be VOIDmode if no mode
981 has been specified for the operand. In that case,
982 use the operand's mode as the mode to reload. */
983 if (inmode == VOIDmode && in != 0)
984 inmode = GET_MODE (in);
985 if (outmode == VOIDmode && out != 0)
986 outmode = GET_MODE (out);
988 /* If find_reloads and friends until now missed to replace a pseudo
989 with a constant of reg_equiv_constant something went wrong
990 beforehand.
991 Note that it can't simply be done here if we missed it earlier
992 since the constant might need to be pushed into the literal pool
993 and the resulting memref would probably need further
994 reloading. */
995 if (in != 0 && REG_P (in))
997 int regno = REGNO (in);
999 gcc_assert (regno < FIRST_PSEUDO_REGISTER
1000 || reg_renumber[regno] >= 0
1001 || reg_equiv_constant (regno) == NULL_RTX);
1004 /* reg_equiv_constant only contains constants which are obviously
1005 not appropriate as destination. So if we would need to replace
1006 the destination pseudo with a constant we are in real
1007 trouble. */
1008 if (out != 0 && REG_P (out))
1010 int regno = REGNO (out);
1012 gcc_assert (regno < FIRST_PSEUDO_REGISTER
1013 || reg_renumber[regno] >= 0
1014 || reg_equiv_constant (regno) == NULL_RTX);
1017 /* If we have a read-write operand with an address side-effect,
1018 change either IN or OUT so the side-effect happens only once. */
1019 if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
1020 switch (GET_CODE (XEXP (in, 0)))
1022 case POST_INC: case POST_DEC: case POST_MODIFY:
1023 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
1024 break;
1026 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
1027 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
1028 break;
1030 default:
1031 break;
1034 /* If we are reloading a (SUBREG constant ...), really reload just the
1035 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
1036 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
1037 a pseudo and hence will become a MEM) with M1 wider than M2 and the
1038 register is a pseudo, also reload the inside expression.
1039 For machines that extend byte loads, do this for any SUBREG of a pseudo
1040 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
1041 M2 is an integral mode that gets extended when loaded.
1042 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1043 where either M1 is not valid for R or M2 is wider than a word but we
1044 only need one register to store an M2-sized quantity in R.
1045 (However, if OUT is nonzero, we need to reload the reg *and*
1046 the subreg, so do nothing here, and let following statement handle it.)
1048 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
1049 we can't handle it here because CONST_INT does not indicate a mode.
1051 Similarly, we must reload the inside expression if we have a
1052 STRICT_LOW_PART (presumably, in == out in this case).
1054 Also reload the inner expression if it does not require a secondary
1055 reload but the SUBREG does.
1057 Finally, reload the inner expression if it is a register that is in
1058 the class whose registers cannot be referenced in a different size
1059 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
1060 cannot reload just the inside since we might end up with the wrong
1061 register class. But if it is inside a STRICT_LOW_PART, we have
1062 no choice, so we hope we do get the right register class there. */
1064 if (in != 0 && GET_CODE (in) == SUBREG
1065 && (subreg_lowpart_p (in) || strict_low)
1066 #ifdef CANNOT_CHANGE_MODE_CLASS
1067 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, rclass)
1068 #endif
1069 && contains_reg_of_mode[(int) rclass][(int) GET_MODE (SUBREG_REG (in))]
1070 && (CONSTANT_P (SUBREG_REG (in))
1071 || GET_CODE (SUBREG_REG (in)) == PLUS
1072 || strict_low
1073 || (((REG_P (SUBREG_REG (in))
1074 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
1075 || MEM_P (SUBREG_REG (in)))
1076 && ((GET_MODE_PRECISION (inmode)
1077 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (in))))
1078 #ifdef LOAD_EXTEND_OP
1079 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1080 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1081 <= UNITS_PER_WORD)
1082 && (GET_MODE_PRECISION (inmode)
1083 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (in))))
1084 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
1085 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != UNKNOWN)
1086 #endif
1087 #ifdef WORD_REGISTER_OPERATIONS
1088 || ((GET_MODE_PRECISION (inmode)
1089 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (in))))
1090 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1091 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1092 / UNITS_PER_WORD)))
1093 #endif
1095 || (REG_P (SUBREG_REG (in))
1096 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1097 /* The case where out is nonzero
1098 is handled differently in the following statement. */
1099 && (out == 0 || subreg_lowpart_p (in))
1100 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1101 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1102 > UNITS_PER_WORD)
1103 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1104 / UNITS_PER_WORD)
1105 != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
1106 [GET_MODE (SUBREG_REG (in))]))
1107 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1108 || (secondary_reload_class (1, rclass, inmode, in) != NO_REGS
1109 && (secondary_reload_class (1, rclass, GET_MODE (SUBREG_REG (in)),
1110 SUBREG_REG (in))
1111 == NO_REGS))
1112 #ifdef CANNOT_CHANGE_MODE_CLASS
1113 || (REG_P (SUBREG_REG (in))
1114 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1115 && REG_CANNOT_CHANGE_MODE_P
1116 (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1117 #endif
1120 #ifdef LIMIT_RELOAD_CLASS
1121 in_subreg_loc = inloc;
1122 #endif
1123 inloc = &SUBREG_REG (in);
1124 in = *inloc;
1125 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1126 if (MEM_P (in))
1127 /* This is supposed to happen only for paradoxical subregs made by
1128 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1129 gcc_assert (GET_MODE_SIZE (GET_MODE (in)) <= GET_MODE_SIZE (inmode));
1130 #endif
1131 inmode = GET_MODE (in);
1134 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1135 where M1 is not valid for R if it was not handled by the code above.
1137 Similar issue for (SUBREG constant ...) if it was not handled by the
1138 code above. This can happen if SUBREG_BYTE != 0.
1140 However, we must reload the inner reg *as well as* the subreg in
1141 that case. */
1143 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, false))
1145 if (REG_P (SUBREG_REG (in)))
1146 subreg_in_class
1147 = find_valid_class (inmode, GET_MODE (SUBREG_REG (in)),
1148 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1149 GET_MODE (SUBREG_REG (in)),
1150 SUBREG_BYTE (in),
1151 GET_MODE (in)),
1152 REGNO (SUBREG_REG (in)));
1153 else if (GET_CODE (SUBREG_REG (in)) == SYMBOL_REF)
1154 subreg_in_class = find_valid_class_1 (inmode,
1155 GET_MODE (SUBREG_REG (in)),
1156 rclass);
1158 /* This relies on the fact that emit_reload_insns outputs the
1159 instructions for input reloads of type RELOAD_OTHER in the same
1160 order as the reloads. Thus if the outer reload is also of type
1161 RELOAD_OTHER, we are guaranteed that this inner reload will be
1162 output before the outer reload. */
1163 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1164 subreg_in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1165 dont_remove_subreg = 1;
1168 /* Similarly for paradoxical and problematical SUBREGs on the output.
1169 Note that there is no reason we need worry about the previous value
1170 of SUBREG_REG (out); even if wider than out, storing in a subreg is
1171 entitled to clobber it all (except in the case of a word mode subreg
1172 or of a STRICT_LOW_PART, in that latter case the constraint should
1173 label it input-output.) */
1174 if (out != 0 && GET_CODE (out) == SUBREG
1175 && (subreg_lowpart_p (out) || strict_low)
1176 #ifdef CANNOT_CHANGE_MODE_CLASS
1177 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, rclass)
1178 #endif
1179 && contains_reg_of_mode[(int) rclass][(int) GET_MODE (SUBREG_REG (out))]
1180 && (CONSTANT_P (SUBREG_REG (out))
1181 || strict_low
1182 || (((REG_P (SUBREG_REG (out))
1183 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1184 || MEM_P (SUBREG_REG (out)))
1185 && ((GET_MODE_PRECISION (outmode)
1186 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (out))))
1187 #ifdef WORD_REGISTER_OPERATIONS
1188 || ((GET_MODE_PRECISION (outmode)
1189 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (out))))
1190 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1191 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1192 / UNITS_PER_WORD)))
1193 #endif
1195 || (REG_P (SUBREG_REG (out))
1196 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1197 /* The case of a word mode subreg
1198 is handled differently in the following statement. */
1199 && ! (GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1200 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1201 > UNITS_PER_WORD))
1202 && ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode))
1203 || (secondary_reload_class (0, rclass, outmode, out) != NO_REGS
1204 && (secondary_reload_class (0, rclass, GET_MODE (SUBREG_REG (out)),
1205 SUBREG_REG (out))
1206 == NO_REGS))
1207 #ifdef CANNOT_CHANGE_MODE_CLASS
1208 || (REG_P (SUBREG_REG (out))
1209 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1210 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1211 GET_MODE (SUBREG_REG (out)),
1212 outmode))
1213 #endif
1216 #ifdef LIMIT_RELOAD_CLASS
1217 out_subreg_loc = outloc;
1218 #endif
1219 outloc = &SUBREG_REG (out);
1220 out = *outloc;
1221 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1222 gcc_assert (!MEM_P (out)
1223 || GET_MODE_SIZE (GET_MODE (out))
1224 <= GET_MODE_SIZE (outmode));
1225 #endif
1226 outmode = GET_MODE (out);
1229 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1230 where either M1 is not valid for R or M2 is wider than a word but we
1231 only need one register to store an M2-sized quantity in R.
1233 However, we must reload the inner reg *as well as* the subreg in
1234 that case and the inner reg is an in-out reload. */
1236 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, true))
1238 enum reg_class in_out_class
1239 = find_valid_class (outmode, GET_MODE (SUBREG_REG (out)),
1240 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1241 GET_MODE (SUBREG_REG (out)),
1242 SUBREG_BYTE (out),
1243 GET_MODE (out)),
1244 REGNO (SUBREG_REG (out)));
1246 /* This relies on the fact that emit_reload_insns outputs the
1247 instructions for output reloads of type RELOAD_OTHER in reverse
1248 order of the reloads. Thus if the outer reload is also of type
1249 RELOAD_OTHER, we are guaranteed that this inner reload will be
1250 output after the outer reload. */
1251 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1252 &SUBREG_REG (out), in_out_class, VOIDmode, VOIDmode,
1253 0, 0, opnum, RELOAD_OTHER);
1254 dont_remove_subreg = 1;
1257 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1258 if (in != 0 && out != 0 && MEM_P (out)
1259 && (REG_P (in) || MEM_P (in) || GET_CODE (in) == PLUS)
1260 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1261 dont_share = 1;
1263 /* If IN is a SUBREG of a hard register, make a new REG. This
1264 simplifies some of the cases below. */
1266 if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
1267 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1268 && ! dont_remove_subreg)
1269 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1271 /* Similarly for OUT. */
1272 if (out != 0 && GET_CODE (out) == SUBREG
1273 && REG_P (SUBREG_REG (out))
1274 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1275 && ! dont_remove_subreg)
1276 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1278 /* Narrow down the class of register wanted if that is
1279 desirable on this machine for efficiency. */
1281 reg_class_t preferred_class = rclass;
1283 if (in != 0)
1284 preferred_class = targetm.preferred_reload_class (in, rclass);
1286 /* Output reloads may need analogous treatment, different in detail. */
1287 if (out != 0)
1288 preferred_class
1289 = targetm.preferred_output_reload_class (out, preferred_class);
1291 /* Discard what the target said if we cannot do it. */
1292 if (preferred_class != NO_REGS
1293 || (optional && type == RELOAD_FOR_OUTPUT))
1294 rclass = (enum reg_class) preferred_class;
1297 /* Make sure we use a class that can handle the actual pseudo
1298 inside any subreg. For example, on the 386, QImode regs
1299 can appear within SImode subregs. Although GENERAL_REGS
1300 can handle SImode, QImode needs a smaller class. */
1301 #ifdef LIMIT_RELOAD_CLASS
1302 if (in_subreg_loc)
1303 rclass = LIMIT_RELOAD_CLASS (inmode, rclass);
1304 else if (in != 0 && GET_CODE (in) == SUBREG)
1305 rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), rclass);
1307 if (out_subreg_loc)
1308 rclass = LIMIT_RELOAD_CLASS (outmode, rclass);
1309 if (out != 0 && GET_CODE (out) == SUBREG)
1310 rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), rclass);
1311 #endif
1313 /* Verify that this class is at least possible for the mode that
1314 is specified. */
1315 if (this_insn_is_asm)
1317 enum machine_mode mode;
1318 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1319 mode = inmode;
1320 else
1321 mode = outmode;
1322 if (mode == VOIDmode)
1324 error_for_asm (this_insn, "cannot reload integer constant "
1325 "operand in %<asm%>");
1326 mode = word_mode;
1327 if (in != 0)
1328 inmode = word_mode;
1329 if (out != 0)
1330 outmode = word_mode;
1332 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1333 if (HARD_REGNO_MODE_OK (i, mode)
1334 && in_hard_reg_set_p (reg_class_contents[(int) rclass], mode, i))
1335 break;
1336 if (i == FIRST_PSEUDO_REGISTER)
1338 error_for_asm (this_insn, "impossible register constraint "
1339 "in %<asm%>");
1340 /* Avoid further trouble with this insn. */
1341 PATTERN (this_insn) = gen_rtx_USE (VOIDmode, const0_rtx);
1342 /* We used to continue here setting class to ALL_REGS, but it triggers
1343 sanity check on i386 for:
1344 void foo(long double d)
1346 asm("" :: "a" (d));
1348 Returning zero here ought to be safe as we take care in
1349 find_reloads to not process the reloads when instruction was
1350 replaced by USE. */
1352 return 0;
1356 /* Optional output reloads are always OK even if we have no register class,
1357 since the function of these reloads is only to have spill_reg_store etc.
1358 set, so that the storing insn can be deleted later. */
1359 gcc_assert (rclass != NO_REGS
1360 || (optional != 0 && type == RELOAD_FOR_OUTPUT));
1362 i = find_reusable_reload (&in, out, rclass, type, opnum, dont_share);
1364 if (i == n_reloads)
1366 /* See if we need a secondary reload register to move between CLASS
1367 and IN or CLASS and OUT. Get the icode and push any required reloads
1368 needed for each of them if so. */
1370 if (in != 0)
1371 secondary_in_reload
1372 = push_secondary_reload (1, in, opnum, optional, rclass, inmode, type,
1373 &secondary_in_icode, NULL);
1374 if (out != 0 && GET_CODE (out) != SCRATCH)
1375 secondary_out_reload
1376 = push_secondary_reload (0, out, opnum, optional, rclass, outmode,
1377 type, &secondary_out_icode, NULL);
1379 /* We found no existing reload suitable for re-use.
1380 So add an additional reload. */
1382 #ifdef SECONDARY_MEMORY_NEEDED
1383 if (subreg_in_class == NO_REGS
1384 && in != 0
1385 && (REG_P (in)
1386 || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
1387 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER)
1388 subreg_in_class = REGNO_REG_CLASS (reg_or_subregno (in));
1389 /* If a memory location is needed for the copy, make one. */
1390 if (subreg_in_class != NO_REGS
1391 && SECONDARY_MEMORY_NEEDED (subreg_in_class, rclass, inmode))
1392 get_secondary_mem (in, inmode, opnum, type);
1393 #endif
1395 i = n_reloads;
1396 rld[i].in = in;
1397 rld[i].out = out;
1398 rld[i].rclass = rclass;
1399 rld[i].inmode = inmode;
1400 rld[i].outmode = outmode;
1401 rld[i].reg_rtx = 0;
1402 rld[i].optional = optional;
1403 rld[i].inc = 0;
1404 rld[i].nocombine = 0;
1405 rld[i].in_reg = inloc ? *inloc : 0;
1406 rld[i].out_reg = outloc ? *outloc : 0;
1407 rld[i].opnum = opnum;
1408 rld[i].when_needed = type;
1409 rld[i].secondary_in_reload = secondary_in_reload;
1410 rld[i].secondary_out_reload = secondary_out_reload;
1411 rld[i].secondary_in_icode = secondary_in_icode;
1412 rld[i].secondary_out_icode = secondary_out_icode;
1413 rld[i].secondary_p = 0;
1415 n_reloads++;
1417 #ifdef SECONDARY_MEMORY_NEEDED
1418 if (out != 0
1419 && (REG_P (out)
1420 || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
1421 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1422 && SECONDARY_MEMORY_NEEDED (rclass,
1423 REGNO_REG_CLASS (reg_or_subregno (out)),
1424 outmode))
1425 get_secondary_mem (out, outmode, opnum, type);
1426 #endif
1428 else
1430 /* We are reusing an existing reload,
1431 but we may have additional information for it.
1432 For example, we may now have both IN and OUT
1433 while the old one may have just one of them. */
1435 /* The modes can be different. If they are, we want to reload in
1436 the larger mode, so that the value is valid for both modes. */
1437 if (inmode != VOIDmode
1438 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1439 rld[i].inmode = inmode;
1440 if (outmode != VOIDmode
1441 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1442 rld[i].outmode = outmode;
1443 if (in != 0)
1445 rtx in_reg = inloc ? *inloc : 0;
1446 /* If we merge reloads for two distinct rtl expressions that
1447 are identical in content, there might be duplicate address
1448 reloads. Remove the extra set now, so that if we later find
1449 that we can inherit this reload, we can get rid of the
1450 address reloads altogether.
1452 Do not do this if both reloads are optional since the result
1453 would be an optional reload which could potentially leave
1454 unresolved address replacements.
1456 It is not sufficient to call transfer_replacements since
1457 choose_reload_regs will remove the replacements for address
1458 reloads of inherited reloads which results in the same
1459 problem. */
1460 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1461 && ! (rld[i].optional && optional))
1463 /* We must keep the address reload with the lower operand
1464 number alive. */
1465 if (opnum > rld[i].opnum)
1467 remove_address_replacements (in);
1468 in = rld[i].in;
1469 in_reg = rld[i].in_reg;
1471 else
1472 remove_address_replacements (rld[i].in);
1474 /* When emitting reloads we don't necessarily look at the in-
1475 and outmode, but also directly at the operands (in and out).
1476 So we can't simply overwrite them with whatever we have found
1477 for this (to-be-merged) reload, we have to "merge" that too.
1478 Reusing another reload already verified that we deal with the
1479 same operands, just possibly in different modes. So we
1480 overwrite the operands only when the new mode is larger.
1481 See also PR33613. */
1482 if (!rld[i].in
1483 || GET_MODE_SIZE (GET_MODE (in))
1484 > GET_MODE_SIZE (GET_MODE (rld[i].in)))
1485 rld[i].in = in;
1486 if (!rld[i].in_reg
1487 || (in_reg
1488 && GET_MODE_SIZE (GET_MODE (in_reg))
1489 > GET_MODE_SIZE (GET_MODE (rld[i].in_reg))))
1490 rld[i].in_reg = in_reg;
1492 if (out != 0)
1494 if (!rld[i].out
1495 || (out
1496 && GET_MODE_SIZE (GET_MODE (out))
1497 > GET_MODE_SIZE (GET_MODE (rld[i].out))))
1498 rld[i].out = out;
1499 if (outloc
1500 && (!rld[i].out_reg
1501 || GET_MODE_SIZE (GET_MODE (*outloc))
1502 > GET_MODE_SIZE (GET_MODE (rld[i].out_reg))))
1503 rld[i].out_reg = *outloc;
1505 if (reg_class_subset_p (rclass, rld[i].rclass))
1506 rld[i].rclass = rclass;
1507 rld[i].optional &= optional;
1508 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1509 opnum, rld[i].opnum))
1510 rld[i].when_needed = RELOAD_OTHER;
1511 rld[i].opnum = MIN (rld[i].opnum, opnum);
1514 /* If the ostensible rtx being reloaded differs from the rtx found
1515 in the location to substitute, this reload is not safe to combine
1516 because we cannot reliably tell whether it appears in the insn. */
1518 if (in != 0 && in != *inloc)
1519 rld[i].nocombine = 1;
1521 #if 0
1522 /* This was replaced by changes in find_reloads_address_1 and the new
1523 function inc_for_reload, which go with a new meaning of reload_inc. */
1525 /* If this is an IN/OUT reload in an insn that sets the CC,
1526 it must be for an autoincrement. It doesn't work to store
1527 the incremented value after the insn because that would clobber the CC.
1528 So we must do the increment of the value reloaded from,
1529 increment it, store it back, then decrement again. */
1530 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1532 out = 0;
1533 rld[i].out = 0;
1534 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1535 /* If we did not find a nonzero amount-to-increment-by,
1536 that contradicts the belief that IN is being incremented
1537 in an address in this insn. */
1538 gcc_assert (rld[i].inc != 0);
1540 #endif
1542 /* If we will replace IN and OUT with the reload-reg,
1543 record where they are located so that substitution need
1544 not do a tree walk. */
1546 if (replace_reloads)
1548 if (inloc != 0)
1550 struct replacement *r = &replacements[n_replacements++];
1551 r->what = i;
1552 r->where = inloc;
1553 r->mode = inmode;
1555 if (outloc != 0 && outloc != inloc)
1557 struct replacement *r = &replacements[n_replacements++];
1558 r->what = i;
1559 r->where = outloc;
1560 r->mode = outmode;
1564 /* If this reload is just being introduced and it has both
1565 an incoming quantity and an outgoing quantity that are
1566 supposed to be made to match, see if either one of the two
1567 can serve as the place to reload into.
1569 If one of them is acceptable, set rld[i].reg_rtx
1570 to that one. */
1572 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1574 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1575 inmode, outmode,
1576 rld[i].rclass, i,
1577 earlyclobber_operand_p (out));
1579 /* If the outgoing register already contains the same value
1580 as the incoming one, we can dispense with loading it.
1581 The easiest way to tell the caller that is to give a phony
1582 value for the incoming operand (same as outgoing one). */
1583 if (rld[i].reg_rtx == out
1584 && (REG_P (in) || CONSTANT_P (in))
1585 && 0 != find_equiv_reg (in, this_insn, NO_REGS, REGNO (out),
1586 static_reload_reg_p, i, inmode))
1587 rld[i].in = out;
1590 /* If this is an input reload and the operand contains a register that
1591 dies in this insn and is used nowhere else, see if it is the right class
1592 to be used for this reload. Use it if so. (This occurs most commonly
1593 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1594 this if it is also an output reload that mentions the register unless
1595 the output is a SUBREG that clobbers an entire register.
1597 Note that the operand might be one of the spill regs, if it is a
1598 pseudo reg and we are in a block where spilling has not taken place.
1599 But if there is no spilling in this block, that is OK.
1600 An explicitly used hard reg cannot be a spill reg. */
1602 if (rld[i].reg_rtx == 0 && in != 0 && hard_regs_live_known)
1604 rtx note;
1605 int regno;
1606 enum machine_mode rel_mode = inmode;
1608 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1609 rel_mode = outmode;
1611 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1612 if (REG_NOTE_KIND (note) == REG_DEAD
1613 && REG_P (XEXP (note, 0))
1614 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1615 && reg_mentioned_p (XEXP (note, 0), in)
1616 /* Check that a former pseudo is valid; see find_dummy_reload. */
1617 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1618 || (! bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
1619 ORIGINAL_REGNO (XEXP (note, 0)))
1620 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] == 1))
1621 && ! refers_to_regno_for_reload_p (regno,
1622 end_hard_regno (rel_mode,
1623 regno),
1624 PATTERN (this_insn), inloc)
1625 /* If this is also an output reload, IN cannot be used as
1626 the reload register if it is set in this insn unless IN
1627 is also OUT. */
1628 && (out == 0 || in == out
1629 || ! hard_reg_set_here_p (regno,
1630 end_hard_regno (rel_mode, regno),
1631 PATTERN (this_insn)))
1632 /* ??? Why is this code so different from the previous?
1633 Is there any simple coherent way to describe the two together?
1634 What's going on here. */
1635 && (in != out
1636 || (GET_CODE (in) == SUBREG
1637 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1638 / UNITS_PER_WORD)
1639 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1640 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1641 /* Make sure the operand fits in the reg that dies. */
1642 && (GET_MODE_SIZE (rel_mode)
1643 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1644 && HARD_REGNO_MODE_OK (regno, inmode)
1645 && HARD_REGNO_MODE_OK (regno, outmode))
1647 unsigned int offs;
1648 unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
1649 hard_regno_nregs[regno][outmode]);
1651 for (offs = 0; offs < nregs; offs++)
1652 if (fixed_regs[regno + offs]
1653 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
1654 regno + offs))
1655 break;
1657 if (offs == nregs
1658 && (! (refers_to_regno_for_reload_p
1659 (regno, end_hard_regno (inmode, regno), in, (rtx *) 0))
1660 || can_reload_into (in, regno, inmode)))
1662 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1663 break;
1668 if (out)
1669 output_reloadnum = i;
1671 return i;
1674 /* Record an additional place we must replace a value
1675 for which we have already recorded a reload.
1676 RELOADNUM is the value returned by push_reload
1677 when the reload was recorded.
1678 This is used in insn patterns that use match_dup. */
1680 static void
1681 push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
1683 if (replace_reloads)
1685 struct replacement *r = &replacements[n_replacements++];
1686 r->what = reloadnum;
1687 r->where = loc;
1688 r->mode = mode;
1692 /* Duplicate any replacement we have recorded to apply at
1693 location ORIG_LOC to also be performed at DUP_LOC.
1694 This is used in insn patterns that use match_dup. */
1696 static void
1697 dup_replacements (rtx *dup_loc, rtx *orig_loc)
1699 int i, n = n_replacements;
1701 for (i = 0; i < n; i++)
1703 struct replacement *r = &replacements[i];
1704 if (r->where == orig_loc)
1705 push_replacement (dup_loc, r->what, r->mode);
1709 /* Transfer all replacements that used to be in reload FROM to be in
1710 reload TO. */
1712 void
1713 transfer_replacements (int to, int from)
1715 int i;
1717 for (i = 0; i < n_replacements; i++)
1718 if (replacements[i].what == from)
1719 replacements[i].what = to;
1722 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1723 or a subpart of it. If we have any replacements registered for IN_RTX,
1724 cancel the reloads that were supposed to load them.
1725 Return nonzero if we canceled any reloads. */
1727 remove_address_replacements (rtx in_rtx)
1729 int i, j;
1730 char reload_flags[MAX_RELOADS];
1731 int something_changed = 0;
1733 memset (reload_flags, 0, sizeof reload_flags);
1734 for (i = 0, j = 0; i < n_replacements; i++)
1736 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1737 reload_flags[replacements[i].what] |= 1;
1738 else
1740 replacements[j++] = replacements[i];
1741 reload_flags[replacements[i].what] |= 2;
1744 /* Note that the following store must be done before the recursive calls. */
1745 n_replacements = j;
1747 for (i = n_reloads - 1; i >= 0; i--)
1749 if (reload_flags[i] == 1)
1751 deallocate_reload_reg (i);
1752 remove_address_replacements (rld[i].in);
1753 rld[i].in = 0;
1754 something_changed = 1;
1757 return something_changed;
1760 /* If there is only one output reload, and it is not for an earlyclobber
1761 operand, try to combine it with a (logically unrelated) input reload
1762 to reduce the number of reload registers needed.
1764 This is safe if the input reload does not appear in
1765 the value being output-reloaded, because this implies
1766 it is not needed any more once the original insn completes.
1768 If that doesn't work, see we can use any of the registers that
1769 die in this insn as a reload register. We can if it is of the right
1770 class and does not appear in the value being output-reloaded. */
1772 static void
1773 combine_reloads (void)
1775 int i, regno;
1776 int output_reload = -1;
1777 int secondary_out = -1;
1778 rtx note;
1780 /* Find the output reload; return unless there is exactly one
1781 and that one is mandatory. */
1783 for (i = 0; i < n_reloads; i++)
1784 if (rld[i].out != 0)
1786 if (output_reload >= 0)
1787 return;
1788 output_reload = i;
1791 if (output_reload < 0 || rld[output_reload].optional)
1792 return;
1794 /* An input-output reload isn't combinable. */
1796 if (rld[output_reload].in != 0)
1797 return;
1799 /* If this reload is for an earlyclobber operand, we can't do anything. */
1800 if (earlyclobber_operand_p (rld[output_reload].out))
1801 return;
1803 /* If there is a reload for part of the address of this operand, we would
1804 need to change it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1805 its life to the point where doing this combine would not lower the
1806 number of spill registers needed. */
1807 for (i = 0; i < n_reloads; i++)
1808 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1809 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1810 && rld[i].opnum == rld[output_reload].opnum)
1811 return;
1813 /* Check each input reload; can we combine it? */
1815 for (i = 0; i < n_reloads; i++)
1816 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1817 /* Life span of this reload must not extend past main insn. */
1818 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1819 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1820 && rld[i].when_needed != RELOAD_OTHER
1821 && (ira_reg_class_max_nregs [(int)rld[i].rclass][(int) rld[i].inmode]
1822 == ira_reg_class_max_nregs [(int) rld[output_reload].rclass]
1823 [(int) rld[output_reload].outmode])
1824 && rld[i].inc == 0
1825 && rld[i].reg_rtx == 0
1826 #ifdef SECONDARY_MEMORY_NEEDED
1827 /* Don't combine two reloads with different secondary
1828 memory locations. */
1829 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1830 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1831 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1832 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1833 #endif
1834 && (targetm.small_register_classes_for_mode_p (VOIDmode)
1835 ? (rld[i].rclass == rld[output_reload].rclass)
1836 : (reg_class_subset_p (rld[i].rclass,
1837 rld[output_reload].rclass)
1838 || reg_class_subset_p (rld[output_reload].rclass,
1839 rld[i].rclass)))
1840 && (MATCHES (rld[i].in, rld[output_reload].out)
1841 /* Args reversed because the first arg seems to be
1842 the one that we imagine being modified
1843 while the second is the one that might be affected. */
1844 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1845 rld[i].in)
1846 /* However, if the input is a register that appears inside
1847 the output, then we also can't share.
1848 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1849 If the same reload reg is used for both reg 69 and the
1850 result to be stored in memory, then that result
1851 will clobber the address of the memory ref. */
1852 && ! (REG_P (rld[i].in)
1853 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1854 rld[output_reload].out))))
1855 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1856 rld[i].when_needed != RELOAD_FOR_INPUT)
1857 && (reg_class_size[(int) rld[i].rclass]
1858 || targetm.small_register_classes_for_mode_p (VOIDmode))
1859 /* We will allow making things slightly worse by combining an
1860 input and an output, but no worse than that. */
1861 && (rld[i].when_needed == RELOAD_FOR_INPUT
1862 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1864 int j;
1866 /* We have found a reload to combine with! */
1867 rld[i].out = rld[output_reload].out;
1868 rld[i].out_reg = rld[output_reload].out_reg;
1869 rld[i].outmode = rld[output_reload].outmode;
1870 /* Mark the old output reload as inoperative. */
1871 rld[output_reload].out = 0;
1872 /* The combined reload is needed for the entire insn. */
1873 rld[i].when_needed = RELOAD_OTHER;
1874 /* If the output reload had a secondary reload, copy it. */
1875 if (rld[output_reload].secondary_out_reload != -1)
1877 rld[i].secondary_out_reload
1878 = rld[output_reload].secondary_out_reload;
1879 rld[i].secondary_out_icode
1880 = rld[output_reload].secondary_out_icode;
1883 #ifdef SECONDARY_MEMORY_NEEDED
1884 /* Copy any secondary MEM. */
1885 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1886 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1887 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1888 #endif
1889 /* If required, minimize the register class. */
1890 if (reg_class_subset_p (rld[output_reload].rclass,
1891 rld[i].rclass))
1892 rld[i].rclass = rld[output_reload].rclass;
1894 /* Transfer all replacements from the old reload to the combined. */
1895 for (j = 0; j < n_replacements; j++)
1896 if (replacements[j].what == output_reload)
1897 replacements[j].what = i;
1899 return;
1902 /* If this insn has only one operand that is modified or written (assumed
1903 to be the first), it must be the one corresponding to this reload. It
1904 is safe to use anything that dies in this insn for that output provided
1905 that it does not occur in the output (we already know it isn't an
1906 earlyclobber. If this is an asm insn, give up. */
1908 if (INSN_CODE (this_insn) == -1)
1909 return;
1911 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1912 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1913 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1914 return;
1916 /* See if some hard register that dies in this insn and is not used in
1917 the output is the right class. Only works if the register we pick
1918 up can fully hold our output reload. */
1919 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1920 if (REG_NOTE_KIND (note) == REG_DEAD
1921 && REG_P (XEXP (note, 0))
1922 && !reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1923 rld[output_reload].out)
1924 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1925 && HARD_REGNO_MODE_OK (regno, rld[output_reload].outmode)
1926 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].rclass],
1927 regno)
1928 && (hard_regno_nregs[regno][rld[output_reload].outmode]
1929 <= hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))])
1930 /* Ensure that a secondary or tertiary reload for this output
1931 won't want this register. */
1932 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1933 || (!(TEST_HARD_REG_BIT
1934 (reg_class_contents[(int) rld[secondary_out].rclass], regno))
1935 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1936 || !(TEST_HARD_REG_BIT
1937 (reg_class_contents[(int) rld[secondary_out].rclass],
1938 regno)))))
1939 && !fixed_regs[regno]
1940 /* Check that a former pseudo is valid; see find_dummy_reload. */
1941 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1942 || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
1943 ORIGINAL_REGNO (XEXP (note, 0)))
1944 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] == 1)))
1946 rld[output_reload].reg_rtx
1947 = gen_rtx_REG (rld[output_reload].outmode, regno);
1948 return;
1952 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1953 See if one of IN and OUT is a register that may be used;
1954 this is desirable since a spill-register won't be needed.
1955 If so, return the register rtx that proves acceptable.
1957 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1958 RCLASS is the register class required for the reload.
1960 If FOR_REAL is >= 0, it is the number of the reload,
1961 and in some cases when it can be discovered that OUT doesn't need
1962 to be computed, clear out rld[FOR_REAL].out.
1964 If FOR_REAL is -1, this should not be done, because this call
1965 is just to see if a register can be found, not to find and install it.
1967 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1968 puts an additional constraint on being able to use IN for OUT since
1969 IN must not appear elsewhere in the insn (it is assumed that IN itself
1970 is safe from the earlyclobber). */
1972 static rtx
1973 find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1974 enum machine_mode inmode, enum machine_mode outmode,
1975 reg_class_t rclass, int for_real, int earlyclobber)
1977 rtx in = real_in;
1978 rtx out = real_out;
1979 int in_offset = 0;
1980 int out_offset = 0;
1981 rtx value = 0;
1983 /* If operands exceed a word, we can't use either of them
1984 unless they have the same size. */
1985 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1986 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1987 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1988 return 0;
1990 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1991 respectively refers to a hard register. */
1993 /* Find the inside of any subregs. */
1994 while (GET_CODE (out) == SUBREG)
1996 if (REG_P (SUBREG_REG (out))
1997 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1998 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1999 GET_MODE (SUBREG_REG (out)),
2000 SUBREG_BYTE (out),
2001 GET_MODE (out));
2002 out = SUBREG_REG (out);
2004 while (GET_CODE (in) == SUBREG)
2006 if (REG_P (SUBREG_REG (in))
2007 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
2008 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
2009 GET_MODE (SUBREG_REG (in)),
2010 SUBREG_BYTE (in),
2011 GET_MODE (in));
2012 in = SUBREG_REG (in);
2015 /* Narrow down the reg class, the same way push_reload will;
2016 otherwise we might find a dummy now, but push_reload won't. */
2018 reg_class_t preferred_class = targetm.preferred_reload_class (in, rclass);
2019 if (preferred_class != NO_REGS)
2020 rclass = (enum reg_class) preferred_class;
2023 /* See if OUT will do. */
2024 if (REG_P (out)
2025 && REGNO (out) < FIRST_PSEUDO_REGISTER)
2027 unsigned int regno = REGNO (out) + out_offset;
2028 unsigned int nwords = hard_regno_nregs[regno][outmode];
2029 rtx saved_rtx;
2031 /* When we consider whether the insn uses OUT,
2032 ignore references within IN. They don't prevent us
2033 from copying IN into OUT, because those refs would
2034 move into the insn that reloads IN.
2036 However, we only ignore IN in its role as this reload.
2037 If the insn uses IN elsewhere and it contains OUT,
2038 that counts. We can't be sure it's the "same" operand
2039 so it might not go through this reload.
2041 We also need to avoid using OUT if it, or part of it, is a
2042 fixed register. Modifying such registers, even transiently,
2043 may have undefined effects on the machine, such as modifying
2044 the stack pointer. */
2045 saved_rtx = *inloc;
2046 *inloc = const0_rtx;
2048 if (regno < FIRST_PSEUDO_REGISTER
2049 && HARD_REGNO_MODE_OK (regno, outmode)
2050 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
2051 PATTERN (this_insn), outloc))
2053 unsigned int i;
2055 for (i = 0; i < nwords; i++)
2056 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
2057 regno + i)
2058 || fixed_regs[regno + i])
2059 break;
2061 if (i == nwords)
2063 if (REG_P (real_out))
2064 value = real_out;
2065 else
2066 value = gen_rtx_REG (outmode, regno);
2070 *inloc = saved_rtx;
2073 /* Consider using IN if OUT was not acceptable
2074 or if OUT dies in this insn (like the quotient in a divmod insn).
2075 We can't use IN unless it is dies in this insn,
2076 which means we must know accurately which hard regs are live.
2077 Also, the result can't go in IN if IN is used within OUT,
2078 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
2079 if (hard_regs_live_known
2080 && REG_P (in)
2081 && REGNO (in) < FIRST_PSEUDO_REGISTER
2082 && (value == 0
2083 || find_reg_note (this_insn, REG_UNUSED, real_out))
2084 && find_reg_note (this_insn, REG_DEAD, real_in)
2085 && !fixed_regs[REGNO (in)]
2086 && HARD_REGNO_MODE_OK (REGNO (in),
2087 /* The only case where out and real_out might
2088 have different modes is where real_out
2089 is a subreg, and in that case, out
2090 has a real mode. */
2091 (GET_MODE (out) != VOIDmode
2092 ? GET_MODE (out) : outmode))
2093 && (ORIGINAL_REGNO (in) < FIRST_PSEUDO_REGISTER
2094 /* However only do this if we can be sure that this input
2095 operand doesn't correspond with an uninitialized pseudo.
2096 global can assign some hardreg to it that is the same as
2097 the one assigned to a different, also live pseudo (as it
2098 can ignore the conflict). We must never introduce writes
2099 to such hardregs, as they would clobber the other live
2100 pseudo. See PR 20973. */
2101 || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
2102 ORIGINAL_REGNO (in))
2103 /* Similarly, only do this if we can be sure that the death
2104 note is still valid. global can assign some hardreg to
2105 the pseudo referenced in the note and simultaneously a
2106 subword of this hardreg to a different, also live pseudo,
2107 because only another subword of the hardreg is actually
2108 used in the insn. This cannot happen if the pseudo has
2109 been assigned exactly one hardreg. See PR 33732. */
2110 && hard_regno_nregs[REGNO (in)][GET_MODE (in)] == 1)))
2112 unsigned int regno = REGNO (in) + in_offset;
2113 unsigned int nwords = hard_regno_nregs[regno][inmode];
2115 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
2116 && ! hard_reg_set_here_p (regno, regno + nwords,
2117 PATTERN (this_insn))
2118 && (! earlyclobber
2119 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
2120 PATTERN (this_insn), inloc)))
2122 unsigned int i;
2124 for (i = 0; i < nwords; i++)
2125 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
2126 regno + i))
2127 break;
2129 if (i == nwords)
2131 /* If we were going to use OUT as the reload reg
2132 and changed our mind, it means OUT is a dummy that
2133 dies here. So don't bother copying value to it. */
2134 if (for_real >= 0 && value == real_out)
2135 rld[for_real].out = 0;
2136 if (REG_P (real_in))
2137 value = real_in;
2138 else
2139 value = gen_rtx_REG (inmode, regno);
2144 return value;
2147 /* This page contains subroutines used mainly for determining
2148 whether the IN or an OUT of a reload can serve as the
2149 reload register. */
2151 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2154 earlyclobber_operand_p (rtx x)
2156 int i;
2158 for (i = 0; i < n_earlyclobbers; i++)
2159 if (reload_earlyclobbers[i] == x)
2160 return 1;
2162 return 0;
2165 /* Return 1 if expression X alters a hard reg in the range
2166 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2167 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2168 X should be the body of an instruction. */
2170 static int
2171 hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2173 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2175 rtx op0 = SET_DEST (x);
2177 while (GET_CODE (op0) == SUBREG)
2178 op0 = SUBREG_REG (op0);
2179 if (REG_P (op0))
2181 unsigned int r = REGNO (op0);
2183 /* See if this reg overlaps range under consideration. */
2184 if (r < end_regno
2185 && end_hard_regno (GET_MODE (op0), r) > beg_regno)
2186 return 1;
2189 else if (GET_CODE (x) == PARALLEL)
2191 int i = XVECLEN (x, 0) - 1;
2193 for (; i >= 0; i--)
2194 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2195 return 1;
2198 return 0;
2201 /* Return 1 if ADDR is a valid memory address for mode MODE
2202 in address space AS, and check that each pseudo reg has the
2203 proper kind of hard reg. */
2206 strict_memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED,
2207 rtx addr, addr_space_t as)
2209 #ifdef GO_IF_LEGITIMATE_ADDRESS
2210 gcc_assert (ADDR_SPACE_GENERIC_P (as));
2211 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2212 return 0;
2214 win:
2215 return 1;
2216 #else
2217 return targetm.addr_space.legitimate_address_p (mode, addr, 1, as);
2218 #endif
2221 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2222 if they are the same hard reg, and has special hacks for
2223 autoincrement and autodecrement.
2224 This is specifically intended for find_reloads to use
2225 in determining whether two operands match.
2226 X is the operand whose number is the lower of the two.
2228 The value is 2 if Y contains a pre-increment that matches
2229 a non-incrementing address in X. */
2231 /* ??? To be completely correct, we should arrange to pass
2232 for X the output operand and for Y the input operand.
2233 For now, we assume that the output operand has the lower number
2234 because that is natural in (SET output (... input ...)). */
2237 operands_match_p (rtx x, rtx y)
2239 int i;
2240 RTX_CODE code = GET_CODE (x);
2241 const char *fmt;
2242 int success_2;
2244 if (x == y)
2245 return 1;
2246 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2247 && (REG_P (y) || (GET_CODE (y) == SUBREG
2248 && REG_P (SUBREG_REG (y)))))
2250 int j;
2252 if (code == SUBREG)
2254 i = REGNO (SUBREG_REG (x));
2255 if (i >= FIRST_PSEUDO_REGISTER)
2256 goto slow;
2257 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2258 GET_MODE (SUBREG_REG (x)),
2259 SUBREG_BYTE (x),
2260 GET_MODE (x));
2262 else
2263 i = REGNO (x);
2265 if (GET_CODE (y) == SUBREG)
2267 j = REGNO (SUBREG_REG (y));
2268 if (j >= FIRST_PSEUDO_REGISTER)
2269 goto slow;
2270 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2271 GET_MODE (SUBREG_REG (y)),
2272 SUBREG_BYTE (y),
2273 GET_MODE (y));
2275 else
2276 j = REGNO (y);
2278 /* On a REG_WORDS_BIG_ENDIAN machine, point to the last register of a
2279 multiple hard register group of scalar integer registers, so that
2280 for example (reg:DI 0) and (reg:SI 1) will be considered the same
2281 register. */
2282 if (REG_WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2283 && SCALAR_INT_MODE_P (GET_MODE (x))
2284 && i < FIRST_PSEUDO_REGISTER)
2285 i += hard_regno_nregs[i][GET_MODE (x)] - 1;
2286 if (REG_WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2287 && SCALAR_INT_MODE_P (GET_MODE (y))
2288 && j < FIRST_PSEUDO_REGISTER)
2289 j += hard_regno_nregs[j][GET_MODE (y)] - 1;
2291 return i == j;
2293 /* If two operands must match, because they are really a single
2294 operand of an assembler insn, then two postincrements are invalid
2295 because the assembler insn would increment only once.
2296 On the other hand, a postincrement matches ordinary indexing
2297 if the postincrement is the output operand. */
2298 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2299 return operands_match_p (XEXP (x, 0), y);
2300 /* Two preincrements are invalid
2301 because the assembler insn would increment only once.
2302 On the other hand, a preincrement matches ordinary indexing
2303 if the preincrement is the input operand.
2304 In this case, return 2, since some callers need to do special
2305 things when this happens. */
2306 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2307 || GET_CODE (y) == PRE_MODIFY)
2308 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2310 slow:
2312 /* Now we have disposed of all the cases in which different rtx codes
2313 can match. */
2314 if (code != GET_CODE (y))
2315 return 0;
2317 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2318 if (GET_MODE (x) != GET_MODE (y))
2319 return 0;
2321 /* MEMs referring to different address space are not equivalent. */
2322 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2323 return 0;
2325 switch (code)
2327 CASE_CONST_UNIQUE:
2328 return 0;
2330 case LABEL_REF:
2331 return XEXP (x, 0) == XEXP (y, 0);
2332 case SYMBOL_REF:
2333 return XSTR (x, 0) == XSTR (y, 0);
2335 default:
2336 break;
2339 /* Compare the elements. If any pair of corresponding elements
2340 fail to match, return 0 for the whole things. */
2342 success_2 = 0;
2343 fmt = GET_RTX_FORMAT (code);
2344 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2346 int val, j;
2347 switch (fmt[i])
2349 case 'w':
2350 if (XWINT (x, i) != XWINT (y, i))
2351 return 0;
2352 break;
2354 case 'i':
2355 if (XINT (x, i) != XINT (y, i))
2356 return 0;
2357 break;
2359 case 'e':
2360 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2361 if (val == 0)
2362 return 0;
2363 /* If any subexpression returns 2,
2364 we should return 2 if we are successful. */
2365 if (val == 2)
2366 success_2 = 1;
2367 break;
2369 case '0':
2370 break;
2372 case 'E':
2373 if (XVECLEN (x, i) != XVECLEN (y, i))
2374 return 0;
2375 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2377 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2378 if (val == 0)
2379 return 0;
2380 if (val == 2)
2381 success_2 = 1;
2383 break;
2385 /* It is believed that rtx's at this level will never
2386 contain anything but integers and other rtx's,
2387 except for within LABEL_REFs and SYMBOL_REFs. */
2388 default:
2389 gcc_unreachable ();
2392 return 1 + success_2;
2395 /* Describe the range of registers or memory referenced by X.
2396 If X is a register, set REG_FLAG and put the first register
2397 number into START and the last plus one into END.
2398 If X is a memory reference, put a base address into BASE
2399 and a range of integer offsets into START and END.
2400 If X is pushing on the stack, we can assume it causes no trouble,
2401 so we set the SAFE field. */
2403 static struct decomposition
2404 decompose (rtx x)
2406 struct decomposition val;
2407 int all_const = 0;
2409 memset (&val, 0, sizeof (val));
2411 switch (GET_CODE (x))
2413 case MEM:
2415 rtx base = NULL_RTX, offset = 0;
2416 rtx addr = XEXP (x, 0);
2418 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2419 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2421 val.base = XEXP (addr, 0);
2422 val.start = -GET_MODE_SIZE (GET_MODE (x));
2423 val.end = GET_MODE_SIZE (GET_MODE (x));
2424 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2425 return val;
2428 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2430 if (GET_CODE (XEXP (addr, 1)) == PLUS
2431 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2432 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2434 val.base = XEXP (addr, 0);
2435 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2436 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2437 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2438 return val;
2442 if (GET_CODE (addr) == CONST)
2444 addr = XEXP (addr, 0);
2445 all_const = 1;
2447 if (GET_CODE (addr) == PLUS)
2449 if (CONSTANT_P (XEXP (addr, 0)))
2451 base = XEXP (addr, 1);
2452 offset = XEXP (addr, 0);
2454 else if (CONSTANT_P (XEXP (addr, 1)))
2456 base = XEXP (addr, 0);
2457 offset = XEXP (addr, 1);
2461 if (offset == 0)
2463 base = addr;
2464 offset = const0_rtx;
2466 if (GET_CODE (offset) == CONST)
2467 offset = XEXP (offset, 0);
2468 if (GET_CODE (offset) == PLUS)
2470 if (CONST_INT_P (XEXP (offset, 0)))
2472 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2473 offset = XEXP (offset, 0);
2475 else if (CONST_INT_P (XEXP (offset, 1)))
2477 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2478 offset = XEXP (offset, 1);
2480 else
2482 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2483 offset = const0_rtx;
2486 else if (!CONST_INT_P (offset))
2488 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2489 offset = const0_rtx;
2492 if (all_const && GET_CODE (base) == PLUS)
2493 base = gen_rtx_CONST (GET_MODE (base), base);
2495 gcc_assert (CONST_INT_P (offset));
2497 val.start = INTVAL (offset);
2498 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2499 val.base = base;
2501 break;
2503 case REG:
2504 val.reg_flag = 1;
2505 val.start = true_regnum (x);
2506 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2508 /* A pseudo with no hard reg. */
2509 val.start = REGNO (x);
2510 val.end = val.start + 1;
2512 else
2513 /* A hard reg. */
2514 val.end = end_hard_regno (GET_MODE (x), val.start);
2515 break;
2517 case SUBREG:
2518 if (!REG_P (SUBREG_REG (x)))
2519 /* This could be more precise, but it's good enough. */
2520 return decompose (SUBREG_REG (x));
2521 val.reg_flag = 1;
2522 val.start = true_regnum (x);
2523 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2524 return decompose (SUBREG_REG (x));
2525 else
2526 /* A hard reg. */
2527 val.end = val.start + subreg_nregs (x);
2528 break;
2530 case SCRATCH:
2531 /* This hasn't been assigned yet, so it can't conflict yet. */
2532 val.safe = 1;
2533 break;
2535 default:
2536 gcc_assert (CONSTANT_P (x));
2537 val.safe = 1;
2538 break;
2540 return val;
2543 /* Return 1 if altering Y will not modify the value of X.
2544 Y is also described by YDATA, which should be decompose (Y). */
2546 static int
2547 immune_p (rtx x, rtx y, struct decomposition ydata)
2549 struct decomposition xdata;
2551 if (ydata.reg_flag)
2552 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2553 if (ydata.safe)
2554 return 1;
2556 gcc_assert (MEM_P (y));
2557 /* If Y is memory and X is not, Y can't affect X. */
2558 if (!MEM_P (x))
2559 return 1;
2561 xdata = decompose (x);
2563 if (! rtx_equal_p (xdata.base, ydata.base))
2565 /* If bases are distinct symbolic constants, there is no overlap. */
2566 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2567 return 1;
2568 /* Constants and stack slots never overlap. */
2569 if (CONSTANT_P (xdata.base)
2570 && (ydata.base == frame_pointer_rtx
2571 || ydata.base == hard_frame_pointer_rtx
2572 || ydata.base == stack_pointer_rtx))
2573 return 1;
2574 if (CONSTANT_P (ydata.base)
2575 && (xdata.base == frame_pointer_rtx
2576 || xdata.base == hard_frame_pointer_rtx
2577 || xdata.base == stack_pointer_rtx))
2578 return 1;
2579 /* If either base is variable, we don't know anything. */
2580 return 0;
2583 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2586 /* Similar, but calls decompose. */
2589 safe_from_earlyclobber (rtx op, rtx clobber)
2591 struct decomposition early_data;
2593 early_data = decompose (clobber);
2594 return immune_p (op, clobber, early_data);
2597 /* Main entry point of this file: search the body of INSN
2598 for values that need reloading and record them with push_reload.
2599 REPLACE nonzero means record also where the values occur
2600 so that subst_reloads can be used.
2602 IND_LEVELS says how many levels of indirection are supported by this
2603 machine; a value of zero means that a memory reference is not a valid
2604 memory address.
2606 LIVE_KNOWN says we have valid information about which hard
2607 regs are live at each point in the program; this is true when
2608 we are called from global_alloc but false when stupid register
2609 allocation has been done.
2611 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2612 which is nonnegative if the reg has been commandeered for reloading into.
2613 It is copied into STATIC_RELOAD_REG_P and referenced from there
2614 by various subroutines.
2616 Return TRUE if some operands need to be changed, because of swapping
2617 commutative operands, reg_equiv_address substitution, or whatever. */
2620 find_reloads (rtx insn, int replace, int ind_levels, int live_known,
2621 short *reload_reg_p)
2623 int insn_code_number;
2624 int i, j;
2625 int noperands;
2626 /* These start out as the constraints for the insn
2627 and they are chewed up as we consider alternatives. */
2628 const char *constraints[MAX_RECOG_OPERANDS];
2629 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2630 a register. */
2631 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2632 char pref_or_nothing[MAX_RECOG_OPERANDS];
2633 /* Nonzero for a MEM operand whose entire address needs a reload.
2634 May be -1 to indicate the entire address may or may not need a reload. */
2635 int address_reloaded[MAX_RECOG_OPERANDS];
2636 /* Nonzero for an address operand that needs to be completely reloaded.
2637 May be -1 to indicate the entire operand may or may not need a reload. */
2638 int address_operand_reloaded[MAX_RECOG_OPERANDS];
2639 /* Value of enum reload_type to use for operand. */
2640 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2641 /* Value of enum reload_type to use within address of operand. */
2642 enum reload_type address_type[MAX_RECOG_OPERANDS];
2643 /* Save the usage of each operand. */
2644 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2645 int no_input_reloads = 0, no_output_reloads = 0;
2646 int n_alternatives;
2647 reg_class_t this_alternative[MAX_RECOG_OPERANDS];
2648 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2649 char this_alternative_win[MAX_RECOG_OPERANDS];
2650 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2651 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2652 int this_alternative_matches[MAX_RECOG_OPERANDS];
2653 reg_class_t goal_alternative[MAX_RECOG_OPERANDS];
2654 int this_alternative_number;
2655 int goal_alternative_number = 0;
2656 int operand_reloadnum[MAX_RECOG_OPERANDS];
2657 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2658 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2659 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2660 char goal_alternative_win[MAX_RECOG_OPERANDS];
2661 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2662 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2663 int goal_alternative_swapped;
2664 int best;
2665 int commutative;
2666 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2667 rtx substed_operand[MAX_RECOG_OPERANDS];
2668 rtx body = PATTERN (insn);
2669 rtx set = single_set (insn);
2670 int goal_earlyclobber = 0, this_earlyclobber;
2671 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2672 int retval = 0;
2674 this_insn = insn;
2675 n_reloads = 0;
2676 n_replacements = 0;
2677 n_earlyclobbers = 0;
2678 replace_reloads = replace;
2679 hard_regs_live_known = live_known;
2680 static_reload_reg_p = reload_reg_p;
2682 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2683 neither are insns that SET cc0. Insns that use CC0 are not allowed
2684 to have any input reloads. */
2685 if (JUMP_P (insn) || CALL_P (insn))
2686 no_output_reloads = 1;
2688 #ifdef HAVE_cc0
2689 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2690 no_input_reloads = 1;
2691 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2692 no_output_reloads = 1;
2693 #endif
2695 #ifdef SECONDARY_MEMORY_NEEDED
2696 /* The eliminated forms of any secondary memory locations are per-insn, so
2697 clear them out here. */
2699 if (secondary_memlocs_elim_used)
2701 memset (secondary_memlocs_elim, 0,
2702 sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2703 secondary_memlocs_elim_used = 0;
2705 #endif
2707 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2708 is cheap to move between them. If it is not, there may not be an insn
2709 to do the copy, so we may need a reload. */
2710 if (GET_CODE (body) == SET
2711 && REG_P (SET_DEST (body))
2712 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2713 && REG_P (SET_SRC (body))
2714 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2715 && register_move_cost (GET_MODE (SET_SRC (body)),
2716 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2717 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2718 return 0;
2720 extract_insn (insn);
2722 noperands = reload_n_operands = recog_data.n_operands;
2723 n_alternatives = recog_data.n_alternatives;
2725 /* Just return "no reloads" if insn has no operands with constraints. */
2726 if (noperands == 0 || n_alternatives == 0)
2727 return 0;
2729 insn_code_number = INSN_CODE (insn);
2730 this_insn_is_asm = insn_code_number < 0;
2732 memcpy (operand_mode, recog_data.operand_mode,
2733 noperands * sizeof (enum machine_mode));
2734 memcpy (constraints, recog_data.constraints,
2735 noperands * sizeof (const char *));
2737 commutative = -1;
2739 /* If we will need to know, later, whether some pair of operands
2740 are the same, we must compare them now and save the result.
2741 Reloading the base and index registers will clobber them
2742 and afterward they will fail to match. */
2744 for (i = 0; i < noperands; i++)
2746 const char *p;
2747 int c;
2748 char *end;
2750 substed_operand[i] = recog_data.operand[i];
2751 p = constraints[i];
2753 modified[i] = RELOAD_READ;
2755 /* Scan this operand's constraint to see if it is an output operand,
2756 an in-out operand, is commutative, or should match another. */
2758 while ((c = *p))
2760 p += CONSTRAINT_LEN (c, p);
2761 switch (c)
2763 case '=':
2764 modified[i] = RELOAD_WRITE;
2765 break;
2766 case '+':
2767 modified[i] = RELOAD_READ_WRITE;
2768 break;
2769 case '%':
2771 /* The last operand should not be marked commutative. */
2772 gcc_assert (i != noperands - 1);
2774 /* We currently only support one commutative pair of
2775 operands. Some existing asm code currently uses more
2776 than one pair. Previously, that would usually work,
2777 but sometimes it would crash the compiler. We
2778 continue supporting that case as well as we can by
2779 silently ignoring all but the first pair. In the
2780 future we may handle it correctly. */
2781 if (commutative < 0)
2782 commutative = i;
2783 else
2784 gcc_assert (this_insn_is_asm);
2786 break;
2787 /* Use of ISDIGIT is tempting here, but it may get expensive because
2788 of locale support we don't want. */
2789 case '0': case '1': case '2': case '3': case '4':
2790 case '5': case '6': case '7': case '8': case '9':
2792 c = strtoul (p - 1, &end, 10);
2793 p = end;
2795 operands_match[c][i]
2796 = operands_match_p (recog_data.operand[c],
2797 recog_data.operand[i]);
2799 /* An operand may not match itself. */
2800 gcc_assert (c != i);
2802 /* If C can be commuted with C+1, and C might need to match I,
2803 then C+1 might also need to match I. */
2804 if (commutative >= 0)
2806 if (c == commutative || c == commutative + 1)
2808 int other = c + (c == commutative ? 1 : -1);
2809 operands_match[other][i]
2810 = operands_match_p (recog_data.operand[other],
2811 recog_data.operand[i]);
2813 if (i == commutative || i == commutative + 1)
2815 int other = i + (i == commutative ? 1 : -1);
2816 operands_match[c][other]
2817 = operands_match_p (recog_data.operand[c],
2818 recog_data.operand[other]);
2820 /* Note that C is supposed to be less than I.
2821 No need to consider altering both C and I because in
2822 that case we would alter one into the other. */
2829 /* Examine each operand that is a memory reference or memory address
2830 and reload parts of the addresses into index registers.
2831 Also here any references to pseudo regs that didn't get hard regs
2832 but are equivalent to constants get replaced in the insn itself
2833 with those constants. Nobody will ever see them again.
2835 Finally, set up the preferred classes of each operand. */
2837 for (i = 0; i < noperands; i++)
2839 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2841 address_reloaded[i] = 0;
2842 address_operand_reloaded[i] = 0;
2843 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2844 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2845 : RELOAD_OTHER);
2846 address_type[i]
2847 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2848 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2849 : RELOAD_OTHER);
2851 if (*constraints[i] == 0)
2852 /* Ignore things like match_operator operands. */
2854 else if (constraints[i][0] == 'p'
2855 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
2857 address_operand_reloaded[i]
2858 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2859 recog_data.operand[i],
2860 recog_data.operand_loc[i],
2861 i, operand_type[i], ind_levels, insn);
2863 /* If we now have a simple operand where we used to have a
2864 PLUS or MULT, re-recognize and try again. */
2865 if ((OBJECT_P (*recog_data.operand_loc[i])
2866 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2867 && (GET_CODE (recog_data.operand[i]) == MULT
2868 || GET_CODE (recog_data.operand[i]) == PLUS))
2870 INSN_CODE (insn) = -1;
2871 retval = find_reloads (insn, replace, ind_levels, live_known,
2872 reload_reg_p);
2873 return retval;
2876 recog_data.operand[i] = *recog_data.operand_loc[i];
2877 substed_operand[i] = recog_data.operand[i];
2879 /* Address operands are reloaded in their existing mode,
2880 no matter what is specified in the machine description. */
2881 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2883 /* If the address is a single CONST_INT pick address mode
2884 instead otherwise we will later not know in which mode
2885 the reload should be performed. */
2886 if (operand_mode[i] == VOIDmode)
2887 operand_mode[i] = Pmode;
2890 else if (code == MEM)
2892 address_reloaded[i]
2893 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2894 recog_data.operand_loc[i],
2895 XEXP (recog_data.operand[i], 0),
2896 &XEXP (recog_data.operand[i], 0),
2897 i, address_type[i], ind_levels, insn);
2898 recog_data.operand[i] = *recog_data.operand_loc[i];
2899 substed_operand[i] = recog_data.operand[i];
2901 else if (code == SUBREG)
2903 rtx reg = SUBREG_REG (recog_data.operand[i]);
2904 rtx op
2905 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2906 ind_levels,
2907 set != 0
2908 && &SET_DEST (set) == recog_data.operand_loc[i],
2909 insn,
2910 &address_reloaded[i]);
2912 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2913 that didn't get a hard register, emit a USE with a REG_EQUAL
2914 note in front so that we might inherit a previous, possibly
2915 wider reload. */
2917 if (replace
2918 && MEM_P (op)
2919 && REG_P (reg)
2920 && (GET_MODE_SIZE (GET_MODE (reg))
2921 >= GET_MODE_SIZE (GET_MODE (op)))
2922 && reg_equiv_constant (REGNO (reg)) == 0)
2923 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2924 insn),
2925 REG_EQUAL, reg_equiv_memory_loc (REGNO (reg)));
2927 substed_operand[i] = recog_data.operand[i] = op;
2929 else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
2930 /* We can get a PLUS as an "operand" as a result of register
2931 elimination. See eliminate_regs and gen_reload. We handle
2932 a unary operator by reloading the operand. */
2933 substed_operand[i] = recog_data.operand[i]
2934 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2935 ind_levels, 0, insn,
2936 &address_reloaded[i]);
2937 else if (code == REG)
2939 /* This is equivalent to calling find_reloads_toplev.
2940 The code is duplicated for speed.
2941 When we find a pseudo always equivalent to a constant,
2942 we replace it by the constant. We must be sure, however,
2943 that we don't try to replace it in the insn in which it
2944 is being set. */
2945 int regno = REGNO (recog_data.operand[i]);
2946 if (reg_equiv_constant (regno) != 0
2947 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2949 /* Record the existing mode so that the check if constants are
2950 allowed will work when operand_mode isn't specified. */
2952 if (operand_mode[i] == VOIDmode)
2953 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2955 substed_operand[i] = recog_data.operand[i]
2956 = reg_equiv_constant (regno);
2958 if (reg_equiv_memory_loc (regno) != 0
2959 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
2960 /* We need not give a valid is_set_dest argument since the case
2961 of a constant equivalence was checked above. */
2962 substed_operand[i] = recog_data.operand[i]
2963 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2964 ind_levels, 0, insn,
2965 &address_reloaded[i]);
2967 /* If the operand is still a register (we didn't replace it with an
2968 equivalent), get the preferred class to reload it into. */
2969 code = GET_CODE (recog_data.operand[i]);
2970 preferred_class[i]
2971 = ((code == REG && REGNO (recog_data.operand[i])
2972 >= FIRST_PSEUDO_REGISTER)
2973 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2974 : NO_REGS);
2975 pref_or_nothing[i]
2976 = (code == REG
2977 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2978 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2981 /* If this is simply a copy from operand 1 to operand 0, merge the
2982 preferred classes for the operands. */
2983 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2984 && recog_data.operand[1] == SET_SRC (set))
2986 preferred_class[0] = preferred_class[1]
2987 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2988 pref_or_nothing[0] |= pref_or_nothing[1];
2989 pref_or_nothing[1] |= pref_or_nothing[0];
2992 /* Now see what we need for pseudo-regs that didn't get hard regs
2993 or got the wrong kind of hard reg. For this, we must consider
2994 all the operands together against the register constraints. */
2996 best = MAX_RECOG_OPERANDS * 2 + 600;
2998 goal_alternative_swapped = 0;
3000 /* The constraints are made of several alternatives.
3001 Each operand's constraint looks like foo,bar,... with commas
3002 separating the alternatives. The first alternatives for all
3003 operands go together, the second alternatives go together, etc.
3005 First loop over alternatives. */
3007 for (this_alternative_number = 0;
3008 this_alternative_number < n_alternatives;
3009 this_alternative_number++)
3011 int swapped;
3013 if (!recog_data.alternative_enabled_p[this_alternative_number])
3015 int i;
3017 for (i = 0; i < recog_data.n_operands; i++)
3018 constraints[i] = skip_alternative (constraints[i]);
3020 continue;
3023 /* If insn is commutative (it's safe to exchange a certain pair
3024 of operands) then we need to try each alternative twice, the
3025 second time matching those two operands as if we had
3026 exchanged them. To do this, really exchange them in
3027 operands. */
3028 for (swapped = 0; swapped < (commutative >= 0 ? 2 : 1); swapped++)
3030 /* Loop over operands for one constraint alternative. */
3031 /* LOSERS counts those that don't fit this alternative
3032 and would require loading. */
3033 int losers = 0;
3034 /* BAD is set to 1 if it some operand can't fit this alternative
3035 even after reloading. */
3036 int bad = 0;
3037 /* REJECT is a count of how undesirable this alternative says it is
3038 if any reloading is required. If the alternative matches exactly
3039 then REJECT is ignored, but otherwise it gets this much
3040 counted against it in addition to the reloading needed. Each
3041 ? counts three times here since we want the disparaging caused by
3042 a bad register class to only count 1/3 as much. */
3043 int reject = 0;
3045 if (swapped)
3047 enum reg_class tclass;
3048 int t;
3050 recog_data.operand[commutative] = substed_operand[commutative + 1];
3051 recog_data.operand[commutative + 1] = substed_operand[commutative];
3052 /* Swap the duplicates too. */
3053 for (i = 0; i < recog_data.n_dups; i++)
3054 if (recog_data.dup_num[i] == commutative
3055 || recog_data.dup_num[i] == commutative + 1)
3056 *recog_data.dup_loc[i]
3057 = recog_data.operand[(int) recog_data.dup_num[i]];
3059 tclass = preferred_class[commutative];
3060 preferred_class[commutative] = preferred_class[commutative + 1];
3061 preferred_class[commutative + 1] = tclass;
3063 t = pref_or_nothing[commutative];
3064 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3065 pref_or_nothing[commutative + 1] = t;
3067 t = address_reloaded[commutative];
3068 address_reloaded[commutative] = address_reloaded[commutative + 1];
3069 address_reloaded[commutative + 1] = t;
3072 this_earlyclobber = 0;
3074 for (i = 0; i < noperands; i++)
3076 const char *p = constraints[i];
3077 char *end;
3078 int len;
3079 int win = 0;
3080 int did_match = 0;
3081 /* 0 => this operand can be reloaded somehow for this alternative. */
3082 int badop = 1;
3083 /* 0 => this operand can be reloaded if the alternative allows regs. */
3084 int winreg = 0;
3085 int c;
3086 int m;
3087 rtx operand = recog_data.operand[i];
3088 int offset = 0;
3089 /* Nonzero means this is a MEM that must be reloaded into a reg
3090 regardless of what the constraint says. */
3091 int force_reload = 0;
3092 int offmemok = 0;
3093 /* Nonzero if a constant forced into memory would be OK for this
3094 operand. */
3095 int constmemok = 0;
3096 int earlyclobber = 0;
3098 /* If the predicate accepts a unary operator, it means that
3099 we need to reload the operand, but do not do this for
3100 match_operator and friends. */
3101 if (UNARY_P (operand) && *p != 0)
3102 operand = XEXP (operand, 0);
3104 /* If the operand is a SUBREG, extract
3105 the REG or MEM (or maybe even a constant) within.
3106 (Constants can occur as a result of reg_equiv_constant.) */
3108 while (GET_CODE (operand) == SUBREG)
3110 /* Offset only matters when operand is a REG and
3111 it is a hard reg. This is because it is passed
3112 to reg_fits_class_p if it is a REG and all pseudos
3113 return 0 from that function. */
3114 if (REG_P (SUBREG_REG (operand))
3115 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
3117 if (simplify_subreg_regno (REGNO (SUBREG_REG (operand)),
3118 GET_MODE (SUBREG_REG (operand)),
3119 SUBREG_BYTE (operand),
3120 GET_MODE (operand)) < 0)
3121 force_reload = 1;
3122 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
3123 GET_MODE (SUBREG_REG (operand)),
3124 SUBREG_BYTE (operand),
3125 GET_MODE (operand));
3127 operand = SUBREG_REG (operand);
3128 /* Force reload if this is a constant or PLUS or if there may
3129 be a problem accessing OPERAND in the outer mode. */
3130 if (CONSTANT_P (operand)
3131 || GET_CODE (operand) == PLUS
3132 /* We must force a reload of paradoxical SUBREGs
3133 of a MEM because the alignment of the inner value
3134 may not be enough to do the outer reference. On
3135 big-endian machines, it may also reference outside
3136 the object.
3138 On machines that extend byte operations and we have a
3139 SUBREG where both the inner and outer modes are no wider
3140 than a word and the inner mode is narrower, is integral,
3141 and gets extended when loaded from memory, combine.c has
3142 made assumptions about the behavior of the machine in such
3143 register access. If the data is, in fact, in memory we
3144 must always load using the size assumed to be in the
3145 register and let the insn do the different-sized
3146 accesses.
3148 This is doubly true if WORD_REGISTER_OPERATIONS. In
3149 this case eliminate_regs has left non-paradoxical
3150 subregs for push_reload to see. Make sure it does
3151 by forcing the reload.
3153 ??? When is it right at this stage to have a subreg
3154 of a mem that is _not_ to be handled specially? IMO
3155 those should have been reduced to just a mem. */
3156 || ((MEM_P (operand)
3157 || (REG_P (operand)
3158 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3159 #ifndef WORD_REGISTER_OPERATIONS
3160 && (((GET_MODE_BITSIZE (GET_MODE (operand))
3161 < BIGGEST_ALIGNMENT)
3162 && (GET_MODE_SIZE (operand_mode[i])
3163 > GET_MODE_SIZE (GET_MODE (operand))))
3164 || BYTES_BIG_ENDIAN
3165 #ifdef LOAD_EXTEND_OP
3166 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3167 && (GET_MODE_SIZE (GET_MODE (operand))
3168 <= UNITS_PER_WORD)
3169 && (GET_MODE_SIZE (operand_mode[i])
3170 > GET_MODE_SIZE (GET_MODE (operand)))
3171 && INTEGRAL_MODE_P (GET_MODE (operand))
3172 && LOAD_EXTEND_OP (GET_MODE (operand)) != UNKNOWN)
3173 #endif
3175 #endif
3178 force_reload = 1;
3181 this_alternative[i] = NO_REGS;
3182 this_alternative_win[i] = 0;
3183 this_alternative_match_win[i] = 0;
3184 this_alternative_offmemok[i] = 0;
3185 this_alternative_earlyclobber[i] = 0;
3186 this_alternative_matches[i] = -1;
3188 /* An empty constraint or empty alternative
3189 allows anything which matched the pattern. */
3190 if (*p == 0 || *p == ',')
3191 win = 1, badop = 0;
3193 /* Scan this alternative's specs for this operand;
3194 set WIN if the operand fits any letter in this alternative.
3195 Otherwise, clear BADOP if this operand could
3196 fit some letter after reloads,
3197 or set WINREG if this operand could fit after reloads
3198 provided the constraint allows some registers. */
3201 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
3203 case '\0':
3204 len = 0;
3205 break;
3206 case ',':
3207 c = '\0';
3208 break;
3210 case '=': case '+': case '*':
3211 break;
3213 case '%':
3214 /* We only support one commutative marker, the first
3215 one. We already set commutative above. */
3216 break;
3218 case '?':
3219 reject += 6;
3220 break;
3222 case '!':
3223 reject = 600;
3224 break;
3226 case '#':
3227 /* Ignore rest of this alternative as far as
3228 reloading is concerned. */
3230 p++;
3231 while (*p && *p != ',');
3232 len = 0;
3233 break;
3235 case '0': case '1': case '2': case '3': case '4':
3236 case '5': case '6': case '7': case '8': case '9':
3237 m = strtoul (p, &end, 10);
3238 p = end;
3239 len = 0;
3241 this_alternative_matches[i] = m;
3242 /* We are supposed to match a previous operand.
3243 If we do, we win if that one did.
3244 If we do not, count both of the operands as losers.
3245 (This is too conservative, since most of the time
3246 only a single reload insn will be needed to make
3247 the two operands win. As a result, this alternative
3248 may be rejected when it is actually desirable.) */
3249 if ((swapped && (m != commutative || i != commutative + 1))
3250 /* If we are matching as if two operands were swapped,
3251 also pretend that operands_match had been computed
3252 with swapped.
3253 But if I is the second of those and C is the first,
3254 don't exchange them, because operands_match is valid
3255 only on one side of its diagonal. */
3256 ? (operands_match
3257 [(m == commutative || m == commutative + 1)
3258 ? 2 * commutative + 1 - m : m]
3259 [(i == commutative || i == commutative + 1)
3260 ? 2 * commutative + 1 - i : i])
3261 : operands_match[m][i])
3263 /* If we are matching a non-offsettable address where an
3264 offsettable address was expected, then we must reject
3265 this combination, because we can't reload it. */
3266 if (this_alternative_offmemok[m]
3267 && MEM_P (recog_data.operand[m])
3268 && this_alternative[m] == NO_REGS
3269 && ! this_alternative_win[m])
3270 bad = 1;
3272 did_match = this_alternative_win[m];
3274 else
3276 /* Operands don't match. */
3277 rtx value;
3278 int loc1, loc2;
3279 /* Retroactively mark the operand we had to match
3280 as a loser, if it wasn't already. */
3281 if (this_alternative_win[m])
3282 losers++;
3283 this_alternative_win[m] = 0;
3284 if (this_alternative[m] == NO_REGS)
3285 bad = 1;
3286 /* But count the pair only once in the total badness of
3287 this alternative, if the pair can be a dummy reload.
3288 The pointers in operand_loc are not swapped; swap
3289 them by hand if necessary. */
3290 if (swapped && i == commutative)
3291 loc1 = commutative + 1;
3292 else if (swapped && i == commutative + 1)
3293 loc1 = commutative;
3294 else
3295 loc1 = i;
3296 if (swapped && m == commutative)
3297 loc2 = commutative + 1;
3298 else if (swapped && m == commutative + 1)
3299 loc2 = commutative;
3300 else
3301 loc2 = m;
3302 value
3303 = find_dummy_reload (recog_data.operand[i],
3304 recog_data.operand[m],
3305 recog_data.operand_loc[loc1],
3306 recog_data.operand_loc[loc2],
3307 operand_mode[i], operand_mode[m],
3308 this_alternative[m], -1,
3309 this_alternative_earlyclobber[m]);
3311 if (value != 0)
3312 losers--;
3314 /* This can be fixed with reloads if the operand
3315 we are supposed to match can be fixed with reloads. */
3316 badop = 0;
3317 this_alternative[i] = this_alternative[m];
3319 /* If we have to reload this operand and some previous
3320 operand also had to match the same thing as this
3321 operand, we don't know how to do that. So reject this
3322 alternative. */
3323 if (! did_match || force_reload)
3324 for (j = 0; j < i; j++)
3325 if (this_alternative_matches[j]
3326 == this_alternative_matches[i])
3328 badop = 1;
3329 break;
3331 break;
3333 case 'p':
3334 /* All necessary reloads for an address_operand
3335 were handled in find_reloads_address. */
3336 this_alternative[i]
3337 = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
3338 ADDRESS, SCRATCH);
3339 win = 1;
3340 badop = 0;
3341 break;
3343 case TARGET_MEM_CONSTRAINT:
3344 if (force_reload)
3345 break;
3346 if (MEM_P (operand)
3347 || (REG_P (operand)
3348 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3349 && reg_renumber[REGNO (operand)] < 0))
3350 win = 1;
3351 if (CONST_POOL_OK_P (operand_mode[i], operand))
3352 badop = 0;
3353 constmemok = 1;
3354 break;
3356 case '<':
3357 if (MEM_P (operand)
3358 && ! address_reloaded[i]
3359 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3360 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3361 win = 1;
3362 break;
3364 case '>':
3365 if (MEM_P (operand)
3366 && ! address_reloaded[i]
3367 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3368 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3369 win = 1;
3370 break;
3372 /* Memory operand whose address is not offsettable. */
3373 case 'V':
3374 if (force_reload)
3375 break;
3376 if (MEM_P (operand)
3377 && ! (ind_levels ? offsettable_memref_p (operand)
3378 : offsettable_nonstrict_memref_p (operand))
3379 /* Certain mem addresses will become offsettable
3380 after they themselves are reloaded. This is important;
3381 we don't want our own handling of unoffsettables
3382 to override the handling of reg_equiv_address. */
3383 && !(REG_P (XEXP (operand, 0))
3384 && (ind_levels == 0
3385 || reg_equiv_address (REGNO (XEXP (operand, 0))) != 0)))
3386 win = 1;
3387 break;
3389 /* Memory operand whose address is offsettable. */
3390 case 'o':
3391 if (force_reload)
3392 break;
3393 if ((MEM_P (operand)
3394 /* If IND_LEVELS, find_reloads_address won't reload a
3395 pseudo that didn't get a hard reg, so we have to
3396 reject that case. */
3397 && ((ind_levels ? offsettable_memref_p (operand)
3398 : offsettable_nonstrict_memref_p (operand))
3399 /* A reloaded address is offsettable because it is now
3400 just a simple register indirect. */
3401 || address_reloaded[i] == 1))
3402 || (REG_P (operand)
3403 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3404 && reg_renumber[REGNO (operand)] < 0
3405 /* If reg_equiv_address is nonzero, we will be
3406 loading it into a register; hence it will be
3407 offsettable, but we cannot say that reg_equiv_mem
3408 is offsettable without checking. */
3409 && ((reg_equiv_mem (REGNO (operand)) != 0
3410 && offsettable_memref_p (reg_equiv_mem (REGNO (operand))))
3411 || (reg_equiv_address (REGNO (operand)) != 0))))
3412 win = 1;
3413 if (CONST_POOL_OK_P (operand_mode[i], operand)
3414 || MEM_P (operand))
3415 badop = 0;
3416 constmemok = 1;
3417 offmemok = 1;
3418 break;
3420 case '&':
3421 /* Output operand that is stored before the need for the
3422 input operands (and their index registers) is over. */
3423 earlyclobber = 1, this_earlyclobber = 1;
3424 break;
3426 case 'E':
3427 case 'F':
3428 if (CONST_DOUBLE_AS_FLOAT_P (operand)
3429 || (GET_CODE (operand) == CONST_VECTOR
3430 && (GET_MODE_CLASS (GET_MODE (operand))
3431 == MODE_VECTOR_FLOAT)))
3432 win = 1;
3433 break;
3435 case 'G':
3436 case 'H':
3437 if (CONST_DOUBLE_AS_FLOAT_P (operand)
3438 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
3439 win = 1;
3440 break;
3442 case 's':
3443 if (CONST_SCALAR_INT_P (operand))
3444 break;
3445 case 'i':
3446 if (CONSTANT_P (operand)
3447 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand)))
3448 win = 1;
3449 break;
3451 case 'n':
3452 if (CONST_SCALAR_INT_P (operand))
3453 win = 1;
3454 break;
3456 case 'I':
3457 case 'J':
3458 case 'K':
3459 case 'L':
3460 case 'M':
3461 case 'N':
3462 case 'O':
3463 case 'P':
3464 if (CONST_INT_P (operand)
3465 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
3466 win = 1;
3467 break;
3469 case 'X':
3470 force_reload = 0;
3471 win = 1;
3472 break;
3474 case 'g':
3475 if (! force_reload
3476 /* A PLUS is never a valid operand, but reload can make
3477 it from a register when eliminating registers. */
3478 && GET_CODE (operand) != PLUS
3479 /* A SCRATCH is not a valid operand. */
3480 && GET_CODE (operand) != SCRATCH
3481 && (! CONSTANT_P (operand)
3482 || ! flag_pic
3483 || LEGITIMATE_PIC_OPERAND_P (operand))
3484 && (GENERAL_REGS == ALL_REGS
3485 || !REG_P (operand)
3486 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3487 && reg_renumber[REGNO (operand)] < 0)))
3488 win = 1;
3489 /* Drop through into 'r' case. */
3491 case 'r':
3492 this_alternative[i]
3493 = reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3494 goto reg;
3496 default:
3497 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
3499 #ifdef EXTRA_CONSTRAINT_STR
3500 if (EXTRA_MEMORY_CONSTRAINT (c, p))
3502 if (force_reload)
3503 break;
3504 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3505 win = 1;
3506 /* If the address was already reloaded,
3507 we win as well. */
3508 else if (MEM_P (operand)
3509 && address_reloaded[i] == 1)
3510 win = 1;
3511 /* Likewise if the address will be reloaded because
3512 reg_equiv_address is nonzero. For reg_equiv_mem
3513 we have to check. */
3514 else if (REG_P (operand)
3515 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3516 && reg_renumber[REGNO (operand)] < 0
3517 && ((reg_equiv_mem (REGNO (operand)) != 0
3518 && EXTRA_CONSTRAINT_STR (reg_equiv_mem (REGNO (operand)), c, p))
3519 || (reg_equiv_address (REGNO (operand)) != 0)))
3520 win = 1;
3522 /* If we didn't already win, we can reload
3523 constants via force_const_mem, and other
3524 MEMs by reloading the address like for 'o'. */
3525 if (CONST_POOL_OK_P (operand_mode[i], operand)
3526 || MEM_P (operand))
3527 badop = 0;
3528 constmemok = 1;
3529 offmemok = 1;
3530 break;
3532 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
3534 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3535 win = 1;
3537 /* If we didn't already win, we can reload
3538 the address into a base register. */
3539 this_alternative[i]
3540 = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
3541 ADDRESS, SCRATCH);
3542 badop = 0;
3543 break;
3546 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3547 win = 1;
3548 #endif
3549 break;
3552 this_alternative[i]
3553 = (reg_class_subunion
3554 [this_alternative[i]]
3555 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
3556 reg:
3557 if (GET_MODE (operand) == BLKmode)
3558 break;
3559 winreg = 1;
3560 if (REG_P (operand)
3561 && reg_fits_class_p (operand, this_alternative[i],
3562 offset, GET_MODE (recog_data.operand[i])))
3563 win = 1;
3564 break;
3566 while ((p += len), c);
3568 if (swapped == (commutative >= 0 ? 1 : 0))
3569 constraints[i] = p;
3571 /* If this operand could be handled with a reg,
3572 and some reg is allowed, then this operand can be handled. */
3573 if (winreg && this_alternative[i] != NO_REGS
3574 && (win || !class_only_fixed_regs[this_alternative[i]]))
3575 badop = 0;
3577 /* Record which operands fit this alternative. */
3578 this_alternative_earlyclobber[i] = earlyclobber;
3579 if (win && ! force_reload)
3580 this_alternative_win[i] = 1;
3581 else if (did_match && ! force_reload)
3582 this_alternative_match_win[i] = 1;
3583 else
3585 int const_to_mem = 0;
3587 this_alternative_offmemok[i] = offmemok;
3588 losers++;
3589 if (badop)
3590 bad = 1;
3591 /* Alternative loses if it has no regs for a reg operand. */
3592 if (REG_P (operand)
3593 && this_alternative[i] == NO_REGS
3594 && this_alternative_matches[i] < 0)
3595 bad = 1;
3597 /* If this is a constant that is reloaded into the desired
3598 class by copying it to memory first, count that as another
3599 reload. This is consistent with other code and is
3600 required to avoid choosing another alternative when
3601 the constant is moved into memory by this function on
3602 an early reload pass. Note that the test here is
3603 precisely the same as in the code below that calls
3604 force_const_mem. */
3605 if (CONST_POOL_OK_P (operand_mode[i], operand)
3606 && ((targetm.preferred_reload_class (operand,
3607 this_alternative[i])
3608 == NO_REGS)
3609 || no_input_reloads))
3611 const_to_mem = 1;
3612 if (this_alternative[i] != NO_REGS)
3613 losers++;
3616 /* Alternative loses if it requires a type of reload not
3617 permitted for this insn. We can always reload SCRATCH
3618 and objects with a REG_UNUSED note. */
3619 if (GET_CODE (operand) != SCRATCH
3620 && modified[i] != RELOAD_READ && no_output_reloads
3621 && ! find_reg_note (insn, REG_UNUSED, operand))
3622 bad = 1;
3623 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3624 && ! const_to_mem)
3625 bad = 1;
3627 /* If we can't reload this value at all, reject this
3628 alternative. Note that we could also lose due to
3629 LIMIT_RELOAD_CLASS, but we don't check that
3630 here. */
3632 if (! CONSTANT_P (operand) && this_alternative[i] != NO_REGS)
3634 if (targetm.preferred_reload_class (operand,
3635 this_alternative[i])
3636 == NO_REGS)
3637 reject = 600;
3639 if (operand_type[i] == RELOAD_FOR_OUTPUT
3640 && (targetm.preferred_output_reload_class (operand,
3641 this_alternative[i])
3642 == NO_REGS))
3643 reject = 600;
3646 /* We prefer to reload pseudos over reloading other things,
3647 since such reloads may be able to be eliminated later.
3648 If we are reloading a SCRATCH, we won't be generating any
3649 insns, just using a register, so it is also preferred.
3650 So bump REJECT in other cases. Don't do this in the
3651 case where we are forcing a constant into memory and
3652 it will then win since we don't want to have a different
3653 alternative match then. */
3654 if (! (REG_P (operand)
3655 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3656 && GET_CODE (operand) != SCRATCH
3657 && ! (const_to_mem && constmemok))
3658 reject += 2;
3660 /* Input reloads can be inherited more often than output
3661 reloads can be removed, so penalize output reloads. */
3662 if (operand_type[i] != RELOAD_FOR_INPUT
3663 && GET_CODE (operand) != SCRATCH)
3664 reject++;
3667 /* If this operand is a pseudo register that didn't get
3668 a hard reg and this alternative accepts some
3669 register, see if the class that we want is a subset
3670 of the preferred class for this register. If not,
3671 but it intersects that class, use the preferred class
3672 instead. If it does not intersect the preferred
3673 class, show that usage of this alternative should be
3674 discouraged; it will be discouraged more still if the
3675 register is `preferred or nothing'. We do this
3676 because it increases the chance of reusing our spill
3677 register in a later insn and avoiding a pair of
3678 memory stores and loads.
3680 Don't bother with this if this alternative will
3681 accept this operand.
3683 Don't do this for a multiword operand, since it is
3684 only a small win and has the risk of requiring more
3685 spill registers, which could cause a large loss.
3687 Don't do this if the preferred class has only one
3688 register because we might otherwise exhaust the
3689 class. */
3691 if (! win && ! did_match
3692 && this_alternative[i] != NO_REGS
3693 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3694 && reg_class_size [(int) preferred_class[i]] > 0
3695 && ! small_register_class_p (preferred_class[i]))
3697 if (! reg_class_subset_p (this_alternative[i],
3698 preferred_class[i]))
3700 /* Since we don't have a way of forming the intersection,
3701 we just do something special if the preferred class
3702 is a subset of the class we have; that's the most
3703 common case anyway. */
3704 if (reg_class_subset_p (preferred_class[i],
3705 this_alternative[i]))
3706 this_alternative[i] = preferred_class[i];
3707 else
3708 reject += (2 + 2 * pref_or_nothing[i]);
3713 /* Now see if any output operands that are marked "earlyclobber"
3714 in this alternative conflict with any input operands
3715 or any memory addresses. */
3717 for (i = 0; i < noperands; i++)
3718 if (this_alternative_earlyclobber[i]
3719 && (this_alternative_win[i] || this_alternative_match_win[i]))
3721 struct decomposition early_data;
3723 early_data = decompose (recog_data.operand[i]);
3725 gcc_assert (modified[i] != RELOAD_READ);
3727 if (this_alternative[i] == NO_REGS)
3729 this_alternative_earlyclobber[i] = 0;
3730 gcc_assert (this_insn_is_asm);
3731 error_for_asm (this_insn,
3732 "%<&%> constraint used with no register class");
3735 for (j = 0; j < noperands; j++)
3736 /* Is this an input operand or a memory ref? */
3737 if ((MEM_P (recog_data.operand[j])
3738 || modified[j] != RELOAD_WRITE)
3739 && j != i
3740 /* Ignore things like match_operator operands. */
3741 && !recog_data.is_operator[j]
3742 /* Don't count an input operand that is constrained to match
3743 the early clobber operand. */
3744 && ! (this_alternative_matches[j] == i
3745 && rtx_equal_p (recog_data.operand[i],
3746 recog_data.operand[j]))
3747 /* Is it altered by storing the earlyclobber operand? */
3748 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3749 early_data))
3751 /* If the output is in a non-empty few-regs class,
3752 it's costly to reload it, so reload the input instead. */
3753 if (small_register_class_p (this_alternative[i])
3754 && (REG_P (recog_data.operand[j])
3755 || GET_CODE (recog_data.operand[j]) == SUBREG))
3757 losers++;
3758 this_alternative_win[j] = 0;
3759 this_alternative_match_win[j] = 0;
3761 else
3762 break;
3764 /* If an earlyclobber operand conflicts with something,
3765 it must be reloaded, so request this and count the cost. */
3766 if (j != noperands)
3768 losers++;
3769 this_alternative_win[i] = 0;
3770 this_alternative_match_win[j] = 0;
3771 for (j = 0; j < noperands; j++)
3772 if (this_alternative_matches[j] == i
3773 && this_alternative_match_win[j])
3775 this_alternative_win[j] = 0;
3776 this_alternative_match_win[j] = 0;
3777 losers++;
3782 /* If one alternative accepts all the operands, no reload required,
3783 choose that alternative; don't consider the remaining ones. */
3784 if (losers == 0)
3786 /* Unswap these so that they are never swapped at `finish'. */
3787 if (swapped)
3789 recog_data.operand[commutative] = substed_operand[commutative];
3790 recog_data.operand[commutative + 1]
3791 = substed_operand[commutative + 1];
3793 for (i = 0; i < noperands; i++)
3795 goal_alternative_win[i] = this_alternative_win[i];
3796 goal_alternative_match_win[i] = this_alternative_match_win[i];
3797 goal_alternative[i] = this_alternative[i];
3798 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3799 goal_alternative_matches[i] = this_alternative_matches[i];
3800 goal_alternative_earlyclobber[i]
3801 = this_alternative_earlyclobber[i];
3803 goal_alternative_number = this_alternative_number;
3804 goal_alternative_swapped = swapped;
3805 goal_earlyclobber = this_earlyclobber;
3806 goto finish;
3809 /* REJECT, set by the ! and ? constraint characters and when a register
3810 would be reloaded into a non-preferred class, discourages the use of
3811 this alternative for a reload goal. REJECT is incremented by six
3812 for each ? and two for each non-preferred class. */
3813 losers = losers * 6 + reject;
3815 /* If this alternative can be made to work by reloading,
3816 and it needs less reloading than the others checked so far,
3817 record it as the chosen goal for reloading. */
3818 if (! bad)
3820 if (best > losers)
3822 for (i = 0; i < noperands; i++)
3824 goal_alternative[i] = this_alternative[i];
3825 goal_alternative_win[i] = this_alternative_win[i];
3826 goal_alternative_match_win[i]
3827 = this_alternative_match_win[i];
3828 goal_alternative_offmemok[i]
3829 = this_alternative_offmemok[i];
3830 goal_alternative_matches[i] = this_alternative_matches[i];
3831 goal_alternative_earlyclobber[i]
3832 = this_alternative_earlyclobber[i];
3834 goal_alternative_swapped = swapped;
3835 best = losers;
3836 goal_alternative_number = this_alternative_number;
3837 goal_earlyclobber = this_earlyclobber;
3841 if (swapped)
3843 enum reg_class tclass;
3844 int t;
3846 /* If the commutative operands have been swapped, swap
3847 them back in order to check the next alternative. */
3848 recog_data.operand[commutative] = substed_operand[commutative];
3849 recog_data.operand[commutative + 1] = substed_operand[commutative + 1];
3850 /* Unswap the duplicates too. */
3851 for (i = 0; i < recog_data.n_dups; i++)
3852 if (recog_data.dup_num[i] == commutative
3853 || recog_data.dup_num[i] == commutative + 1)
3854 *recog_data.dup_loc[i]
3855 = recog_data.operand[(int) recog_data.dup_num[i]];
3857 /* Unswap the operand related information as well. */
3858 tclass = preferred_class[commutative];
3859 preferred_class[commutative] = preferred_class[commutative + 1];
3860 preferred_class[commutative + 1] = tclass;
3862 t = pref_or_nothing[commutative];
3863 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3864 pref_or_nothing[commutative + 1] = t;
3866 t = address_reloaded[commutative];
3867 address_reloaded[commutative] = address_reloaded[commutative + 1];
3868 address_reloaded[commutative + 1] = t;
3873 /* The operands don't meet the constraints.
3874 goal_alternative describes the alternative
3875 that we could reach by reloading the fewest operands.
3876 Reload so as to fit it. */
3878 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3880 /* No alternative works with reloads?? */
3881 if (insn_code_number >= 0)
3882 fatal_insn ("unable to generate reloads for:", insn);
3883 error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
3884 /* Avoid further trouble with this insn. */
3885 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3886 n_reloads = 0;
3887 return 0;
3890 /* Jump to `finish' from above if all operands are valid already.
3891 In that case, goal_alternative_win is all 1. */
3892 finish:
3894 /* Right now, for any pair of operands I and J that are required to match,
3895 with I < J,
3896 goal_alternative_matches[J] is I.
3897 Set up goal_alternative_matched as the inverse function:
3898 goal_alternative_matched[I] = J. */
3900 for (i = 0; i < noperands; i++)
3901 goal_alternative_matched[i] = -1;
3903 for (i = 0; i < noperands; i++)
3904 if (! goal_alternative_win[i]
3905 && goal_alternative_matches[i] >= 0)
3906 goal_alternative_matched[goal_alternative_matches[i]] = i;
3908 for (i = 0; i < noperands; i++)
3909 goal_alternative_win[i] |= goal_alternative_match_win[i];
3911 /* If the best alternative is with operands 1 and 2 swapped,
3912 consider them swapped before reporting the reloads. Update the
3913 operand numbers of any reloads already pushed. */
3915 if (goal_alternative_swapped)
3917 rtx tem;
3919 tem = substed_operand[commutative];
3920 substed_operand[commutative] = substed_operand[commutative + 1];
3921 substed_operand[commutative + 1] = tem;
3922 tem = recog_data.operand[commutative];
3923 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3924 recog_data.operand[commutative + 1] = tem;
3925 tem = *recog_data.operand_loc[commutative];
3926 *recog_data.operand_loc[commutative]
3927 = *recog_data.operand_loc[commutative + 1];
3928 *recog_data.operand_loc[commutative + 1] = tem;
3930 for (i = 0; i < n_reloads; i++)
3932 if (rld[i].opnum == commutative)
3933 rld[i].opnum = commutative + 1;
3934 else if (rld[i].opnum == commutative + 1)
3935 rld[i].opnum = commutative;
3939 for (i = 0; i < noperands; i++)
3941 operand_reloadnum[i] = -1;
3943 /* If this is an earlyclobber operand, we need to widen the scope.
3944 The reload must remain valid from the start of the insn being
3945 reloaded until after the operand is stored into its destination.
3946 We approximate this with RELOAD_OTHER even though we know that we
3947 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3949 One special case that is worth checking is when we have an
3950 output that is earlyclobber but isn't used past the insn (typically
3951 a SCRATCH). In this case, we only need have the reload live
3952 through the insn itself, but not for any of our input or output
3953 reloads.
3954 But we must not accidentally narrow the scope of an existing
3955 RELOAD_OTHER reload - leave these alone.
3957 In any case, anything needed to address this operand can remain
3958 however they were previously categorized. */
3960 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3961 operand_type[i]
3962 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3963 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3966 /* Any constants that aren't allowed and can't be reloaded
3967 into registers are here changed into memory references. */
3968 for (i = 0; i < noperands; i++)
3969 if (! goal_alternative_win[i])
3971 rtx op = recog_data.operand[i];
3972 rtx subreg = NULL_RTX;
3973 rtx plus = NULL_RTX;
3974 enum machine_mode mode = operand_mode[i];
3976 /* Reloads of SUBREGs of CONSTANT RTXs are handled later in
3977 push_reload so we have to let them pass here. */
3978 if (GET_CODE (op) == SUBREG)
3980 subreg = op;
3981 op = SUBREG_REG (op);
3982 mode = GET_MODE (op);
3985 if (GET_CODE (op) == PLUS)
3987 plus = op;
3988 op = XEXP (op, 1);
3991 if (CONST_POOL_OK_P (mode, op)
3992 && ((targetm.preferred_reload_class (op, goal_alternative[i])
3993 == NO_REGS)
3994 || no_input_reloads))
3996 int this_address_reloaded;
3997 rtx tem = force_const_mem (mode, op);
3999 /* If we stripped a SUBREG or a PLUS above add it back. */
4000 if (plus != NULL_RTX)
4001 tem = gen_rtx_PLUS (mode, XEXP (plus, 0), tem);
4003 if (subreg != NULL_RTX)
4004 tem = gen_rtx_SUBREG (operand_mode[i], tem, SUBREG_BYTE (subreg));
4006 this_address_reloaded = 0;
4007 substed_operand[i] = recog_data.operand[i]
4008 = find_reloads_toplev (tem, i, address_type[i], ind_levels,
4009 0, insn, &this_address_reloaded);
4011 /* If the alternative accepts constant pool refs directly
4012 there will be no reload needed at all. */
4013 if (plus == NULL_RTX
4014 && subreg == NULL_RTX
4015 && alternative_allows_const_pool_ref (this_address_reloaded == 0
4016 ? substed_operand[i]
4017 : NULL,
4018 recog_data.constraints[i],
4019 goal_alternative_number))
4020 goal_alternative_win[i] = 1;
4024 /* Record the values of the earlyclobber operands for the caller. */
4025 if (goal_earlyclobber)
4026 for (i = 0; i < noperands; i++)
4027 if (goal_alternative_earlyclobber[i])
4028 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
4030 /* Now record reloads for all the operands that need them. */
4031 for (i = 0; i < noperands; i++)
4032 if (! goal_alternative_win[i])
4034 /* Operands that match previous ones have already been handled. */
4035 if (goal_alternative_matches[i] >= 0)
4037 /* Handle an operand with a nonoffsettable address
4038 appearing where an offsettable address will do
4039 by reloading the address into a base register.
4041 ??? We can also do this when the operand is a register and
4042 reg_equiv_mem is not offsettable, but this is a bit tricky,
4043 so we don't bother with it. It may not be worth doing. */
4044 else if (goal_alternative_matched[i] == -1
4045 && goal_alternative_offmemok[i]
4046 && MEM_P (recog_data.operand[i]))
4048 /* If the address to be reloaded is a VOIDmode constant,
4049 use the default address mode as mode of the reload register,
4050 as would have been done by find_reloads_address. */
4051 addr_space_t as = MEM_ADDR_SPACE (recog_data.operand[i]);
4052 enum machine_mode address_mode;
4054 address_mode = get_address_mode (recog_data.operand[i]);
4055 operand_reloadnum[i]
4056 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
4057 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
4058 base_reg_class (VOIDmode, as, MEM, SCRATCH),
4059 address_mode,
4060 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
4061 rld[operand_reloadnum[i]].inc
4062 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
4064 /* If this operand is an output, we will have made any
4065 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
4066 now we are treating part of the operand as an input, so
4067 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
4069 if (modified[i] == RELOAD_WRITE)
4071 for (j = 0; j < n_reloads; j++)
4073 if (rld[j].opnum == i)
4075 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
4076 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
4077 else if (rld[j].when_needed
4078 == RELOAD_FOR_OUTADDR_ADDRESS)
4079 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
4084 else if (goal_alternative_matched[i] == -1)
4086 operand_reloadnum[i]
4087 = push_reload ((modified[i] != RELOAD_WRITE
4088 ? recog_data.operand[i] : 0),
4089 (modified[i] != RELOAD_READ
4090 ? recog_data.operand[i] : 0),
4091 (modified[i] != RELOAD_WRITE
4092 ? recog_data.operand_loc[i] : 0),
4093 (modified[i] != RELOAD_READ
4094 ? recog_data.operand_loc[i] : 0),
4095 (enum reg_class) goal_alternative[i],
4096 (modified[i] == RELOAD_WRITE
4097 ? VOIDmode : operand_mode[i]),
4098 (modified[i] == RELOAD_READ
4099 ? VOIDmode : operand_mode[i]),
4100 (insn_code_number < 0 ? 0
4101 : insn_data[insn_code_number].operand[i].strict_low),
4102 0, i, operand_type[i]);
4104 /* In a matching pair of operands, one must be input only
4105 and the other must be output only.
4106 Pass the input operand as IN and the other as OUT. */
4107 else if (modified[i] == RELOAD_READ
4108 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
4110 operand_reloadnum[i]
4111 = push_reload (recog_data.operand[i],
4112 recog_data.operand[goal_alternative_matched[i]],
4113 recog_data.operand_loc[i],
4114 recog_data.operand_loc[goal_alternative_matched[i]],
4115 (enum reg_class) goal_alternative[i],
4116 operand_mode[i],
4117 operand_mode[goal_alternative_matched[i]],
4118 0, 0, i, RELOAD_OTHER);
4119 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
4121 else if (modified[i] == RELOAD_WRITE
4122 && modified[goal_alternative_matched[i]] == RELOAD_READ)
4124 operand_reloadnum[goal_alternative_matched[i]]
4125 = push_reload (recog_data.operand[goal_alternative_matched[i]],
4126 recog_data.operand[i],
4127 recog_data.operand_loc[goal_alternative_matched[i]],
4128 recog_data.operand_loc[i],
4129 (enum reg_class) goal_alternative[i],
4130 operand_mode[goal_alternative_matched[i]],
4131 operand_mode[i],
4132 0, 0, i, RELOAD_OTHER);
4133 operand_reloadnum[i] = output_reloadnum;
4135 else
4137 gcc_assert (insn_code_number < 0);
4138 error_for_asm (insn, "inconsistent operand constraints "
4139 "in an %<asm%>");
4140 /* Avoid further trouble with this insn. */
4141 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
4142 n_reloads = 0;
4143 return 0;
4146 else if (goal_alternative_matched[i] < 0
4147 && goal_alternative_matches[i] < 0
4148 && address_operand_reloaded[i] != 1
4149 && optimize)
4151 /* For each non-matching operand that's a MEM or a pseudo-register
4152 that didn't get a hard register, make an optional reload.
4153 This may get done even if the insn needs no reloads otherwise. */
4155 rtx operand = recog_data.operand[i];
4157 while (GET_CODE (operand) == SUBREG)
4158 operand = SUBREG_REG (operand);
4159 if ((MEM_P (operand)
4160 || (REG_P (operand)
4161 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4162 /* If this is only for an output, the optional reload would not
4163 actually cause us to use a register now, just note that
4164 something is stored here. */
4165 && (goal_alternative[i] != NO_REGS
4166 || modified[i] == RELOAD_WRITE)
4167 && ! no_input_reloads
4168 /* An optional output reload might allow to delete INSN later.
4169 We mustn't make in-out reloads on insns that are not permitted
4170 output reloads.
4171 If this is an asm, we can't delete it; we must not even call
4172 push_reload for an optional output reload in this case,
4173 because we can't be sure that the constraint allows a register,
4174 and push_reload verifies the constraints for asms. */
4175 && (modified[i] == RELOAD_READ
4176 || (! no_output_reloads && ! this_insn_is_asm)))
4177 operand_reloadnum[i]
4178 = push_reload ((modified[i] != RELOAD_WRITE
4179 ? recog_data.operand[i] : 0),
4180 (modified[i] != RELOAD_READ
4181 ? recog_data.operand[i] : 0),
4182 (modified[i] != RELOAD_WRITE
4183 ? recog_data.operand_loc[i] : 0),
4184 (modified[i] != RELOAD_READ
4185 ? recog_data.operand_loc[i] : 0),
4186 (enum reg_class) goal_alternative[i],
4187 (modified[i] == RELOAD_WRITE
4188 ? VOIDmode : operand_mode[i]),
4189 (modified[i] == RELOAD_READ
4190 ? VOIDmode : operand_mode[i]),
4191 (insn_code_number < 0 ? 0
4192 : insn_data[insn_code_number].operand[i].strict_low),
4193 1, i, operand_type[i]);
4194 /* If a memory reference remains (either as a MEM or a pseudo that
4195 did not get a hard register), yet we can't make an optional
4196 reload, check if this is actually a pseudo register reference;
4197 we then need to emit a USE and/or a CLOBBER so that reload
4198 inheritance will do the right thing. */
4199 else if (replace
4200 && (MEM_P (operand)
4201 || (REG_P (operand)
4202 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
4203 && reg_renumber [REGNO (operand)] < 0)))
4205 operand = *recog_data.operand_loc[i];
4207 while (GET_CODE (operand) == SUBREG)
4208 operand = SUBREG_REG (operand);
4209 if (REG_P (operand))
4211 if (modified[i] != RELOAD_WRITE)
4212 /* We mark the USE with QImode so that we recognize
4213 it as one that can be safely deleted at the end
4214 of reload. */
4215 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
4216 insn), QImode);
4217 if (modified[i] != RELOAD_READ)
4218 emit_insn_after (gen_clobber (operand), insn);
4222 else if (goal_alternative_matches[i] >= 0
4223 && goal_alternative_win[goal_alternative_matches[i]]
4224 && modified[i] == RELOAD_READ
4225 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
4226 && ! no_input_reloads && ! no_output_reloads
4227 && optimize)
4229 /* Similarly, make an optional reload for a pair of matching
4230 objects that are in MEM or a pseudo that didn't get a hard reg. */
4232 rtx operand = recog_data.operand[i];
4234 while (GET_CODE (operand) == SUBREG)
4235 operand = SUBREG_REG (operand);
4236 if ((MEM_P (operand)
4237 || (REG_P (operand)
4238 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4239 && (goal_alternative[goal_alternative_matches[i]] != NO_REGS))
4240 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
4241 = push_reload (recog_data.operand[goal_alternative_matches[i]],
4242 recog_data.operand[i],
4243 recog_data.operand_loc[goal_alternative_matches[i]],
4244 recog_data.operand_loc[i],
4245 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
4246 operand_mode[goal_alternative_matches[i]],
4247 operand_mode[i],
4248 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
4251 /* Perform whatever substitutions on the operands we are supposed
4252 to make due to commutativity or replacement of registers
4253 with equivalent constants or memory slots. */
4255 for (i = 0; i < noperands; i++)
4257 /* We only do this on the last pass through reload, because it is
4258 possible for some data (like reg_equiv_address) to be changed during
4259 later passes. Moreover, we lose the opportunity to get a useful
4260 reload_{in,out}_reg when we do these replacements. */
4262 if (replace)
4264 rtx substitution = substed_operand[i];
4266 *recog_data.operand_loc[i] = substitution;
4268 /* If we're replacing an operand with a LABEL_REF, we need to
4269 make sure that there's a REG_LABEL_OPERAND note attached to
4270 this instruction. */
4271 if (GET_CODE (substitution) == LABEL_REF
4272 && !find_reg_note (insn, REG_LABEL_OPERAND,
4273 XEXP (substitution, 0))
4274 /* For a JUMP_P, if it was a branch target it must have
4275 already been recorded as such. */
4276 && (!JUMP_P (insn)
4277 || !label_is_jump_target_p (XEXP (substitution, 0),
4278 insn)))
4280 add_reg_note (insn, REG_LABEL_OPERAND, XEXP (substitution, 0));
4281 if (LABEL_P (XEXP (substitution, 0)))
4282 ++LABEL_NUSES (XEXP (substitution, 0));
4286 else
4287 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4290 /* If this insn pattern contains any MATCH_DUP's, make sure that
4291 they will be substituted if the operands they match are substituted.
4292 Also do now any substitutions we already did on the operands.
4294 Don't do this if we aren't making replacements because we might be
4295 propagating things allocated by frame pointer elimination into places
4296 it doesn't expect. */
4298 if (insn_code_number >= 0 && replace)
4299 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4301 int opno = recog_data.dup_num[i];
4302 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4303 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4306 #if 0
4307 /* This loses because reloading of prior insns can invalidate the equivalence
4308 (or at least find_equiv_reg isn't smart enough to find it any more),
4309 causing this insn to need more reload regs than it needed before.
4310 It may be too late to make the reload regs available.
4311 Now this optimization is done safely in choose_reload_regs. */
4313 /* For each reload of a reg into some other class of reg,
4314 search for an existing equivalent reg (same value now) in the right class.
4315 We can use it as long as we don't need to change its contents. */
4316 for (i = 0; i < n_reloads; i++)
4317 if (rld[i].reg_rtx == 0
4318 && rld[i].in != 0
4319 && REG_P (rld[i].in)
4320 && rld[i].out == 0)
4322 rld[i].reg_rtx
4323 = find_equiv_reg (rld[i].in, insn, rld[i].rclass, -1,
4324 static_reload_reg_p, 0, rld[i].inmode);
4325 /* Prevent generation of insn to load the value
4326 because the one we found already has the value. */
4327 if (rld[i].reg_rtx)
4328 rld[i].in = rld[i].reg_rtx;
4330 #endif
4332 /* If we detected error and replaced asm instruction by USE, forget about the
4333 reloads. */
4334 if (GET_CODE (PATTERN (insn)) == USE
4335 && CONST_INT_P (XEXP (PATTERN (insn), 0)))
4336 n_reloads = 0;
4338 /* Perhaps an output reload can be combined with another
4339 to reduce needs by one. */
4340 if (!goal_earlyclobber)
4341 combine_reloads ();
4343 /* If we have a pair of reloads for parts of an address, they are reloading
4344 the same object, the operands themselves were not reloaded, and they
4345 are for two operands that are supposed to match, merge the reloads and
4346 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4348 for (i = 0; i < n_reloads; i++)
4350 int k;
4352 for (j = i + 1; j < n_reloads; j++)
4353 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4354 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4355 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4356 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4357 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4358 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4359 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4360 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4361 && rtx_equal_p (rld[i].in, rld[j].in)
4362 && (operand_reloadnum[rld[i].opnum] < 0
4363 || rld[operand_reloadnum[rld[i].opnum]].optional)
4364 && (operand_reloadnum[rld[j].opnum] < 0
4365 || rld[operand_reloadnum[rld[j].opnum]].optional)
4366 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4367 || (goal_alternative_matches[rld[j].opnum]
4368 == rld[i].opnum)))
4370 for (k = 0; k < n_replacements; k++)
4371 if (replacements[k].what == j)
4372 replacements[k].what = i;
4374 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4375 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4376 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4377 else
4378 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4379 rld[j].in = 0;
4383 /* Scan all the reloads and update their type.
4384 If a reload is for the address of an operand and we didn't reload
4385 that operand, change the type. Similarly, change the operand number
4386 of a reload when two operands match. If a reload is optional, treat it
4387 as though the operand isn't reloaded.
4389 ??? This latter case is somewhat odd because if we do the optional
4390 reload, it means the object is hanging around. Thus we need only
4391 do the address reload if the optional reload was NOT done.
4393 Change secondary reloads to be the address type of their operand, not
4394 the normal type.
4396 If an operand's reload is now RELOAD_OTHER, change any
4397 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4398 RELOAD_FOR_OTHER_ADDRESS. */
4400 for (i = 0; i < n_reloads; i++)
4402 if (rld[i].secondary_p
4403 && rld[i].when_needed == operand_type[rld[i].opnum])
4404 rld[i].when_needed = address_type[rld[i].opnum];
4406 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4407 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4408 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4409 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4410 && (operand_reloadnum[rld[i].opnum] < 0
4411 || rld[operand_reloadnum[rld[i].opnum]].optional))
4413 /* If we have a secondary reload to go along with this reload,
4414 change its type to RELOAD_FOR_OPADDR_ADDR. */
4416 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4417 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4418 && rld[i].secondary_in_reload != -1)
4420 int secondary_in_reload = rld[i].secondary_in_reload;
4422 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4424 /* If there's a tertiary reload we have to change it also. */
4425 if (secondary_in_reload > 0
4426 && rld[secondary_in_reload].secondary_in_reload != -1)
4427 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4428 = RELOAD_FOR_OPADDR_ADDR;
4431 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4432 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4433 && rld[i].secondary_out_reload != -1)
4435 int secondary_out_reload = rld[i].secondary_out_reload;
4437 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4439 /* If there's a tertiary reload we have to change it also. */
4440 if (secondary_out_reload
4441 && rld[secondary_out_reload].secondary_out_reload != -1)
4442 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4443 = RELOAD_FOR_OPADDR_ADDR;
4446 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4447 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4448 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4449 else
4450 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4453 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4454 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4455 && operand_reloadnum[rld[i].opnum] >= 0
4456 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4457 == RELOAD_OTHER))
4458 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4460 if (goal_alternative_matches[rld[i].opnum] >= 0)
4461 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4464 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4465 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4466 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4468 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4469 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4470 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4471 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4472 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4473 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4474 This is complicated by the fact that a single operand can have more
4475 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4476 choose_reload_regs without affecting code quality, and cases that
4477 actually fail are extremely rare, so it turns out to be better to fix
4478 the problem here by not generating cases that choose_reload_regs will
4479 fail for. */
4480 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4481 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4482 a single operand.
4483 We can reduce the register pressure by exploiting that a
4484 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4485 does not conflict with any of them, if it is only used for the first of
4486 the RELOAD_FOR_X_ADDRESS reloads. */
4488 int first_op_addr_num = -2;
4489 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4490 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4491 int need_change = 0;
4492 /* We use last_op_addr_reload and the contents of the above arrays
4493 first as flags - -2 means no instance encountered, -1 means exactly
4494 one instance encountered.
4495 If more than one instance has been encountered, we store the reload
4496 number of the first reload of the kind in question; reload numbers
4497 are known to be non-negative. */
4498 for (i = 0; i < noperands; i++)
4499 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4500 for (i = n_reloads - 1; i >= 0; i--)
4502 switch (rld[i].when_needed)
4504 case RELOAD_FOR_OPERAND_ADDRESS:
4505 if (++first_op_addr_num >= 0)
4507 first_op_addr_num = i;
4508 need_change = 1;
4510 break;
4511 case RELOAD_FOR_INPUT_ADDRESS:
4512 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4514 first_inpaddr_num[rld[i].opnum] = i;
4515 need_change = 1;
4517 break;
4518 case RELOAD_FOR_OUTPUT_ADDRESS:
4519 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4521 first_outpaddr_num[rld[i].opnum] = i;
4522 need_change = 1;
4524 break;
4525 default:
4526 break;
4530 if (need_change)
4532 for (i = 0; i < n_reloads; i++)
4534 int first_num;
4535 enum reload_type type;
4537 switch (rld[i].when_needed)
4539 case RELOAD_FOR_OPADDR_ADDR:
4540 first_num = first_op_addr_num;
4541 type = RELOAD_FOR_OPERAND_ADDRESS;
4542 break;
4543 case RELOAD_FOR_INPADDR_ADDRESS:
4544 first_num = first_inpaddr_num[rld[i].opnum];
4545 type = RELOAD_FOR_INPUT_ADDRESS;
4546 break;
4547 case RELOAD_FOR_OUTADDR_ADDRESS:
4548 first_num = first_outpaddr_num[rld[i].opnum];
4549 type = RELOAD_FOR_OUTPUT_ADDRESS;
4550 break;
4551 default:
4552 continue;
4554 if (first_num < 0)
4555 continue;
4556 else if (i > first_num)
4557 rld[i].when_needed = type;
4558 else
4560 /* Check if the only TYPE reload that uses reload I is
4561 reload FIRST_NUM. */
4562 for (j = n_reloads - 1; j > first_num; j--)
4564 if (rld[j].when_needed == type
4565 && (rld[i].secondary_p
4566 ? rld[j].secondary_in_reload == i
4567 : reg_mentioned_p (rld[i].in, rld[j].in)))
4569 rld[i].when_needed = type;
4570 break;
4578 /* See if we have any reloads that are now allowed to be merged
4579 because we've changed when the reload is needed to
4580 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4581 check for the most common cases. */
4583 for (i = 0; i < n_reloads; i++)
4584 if (rld[i].in != 0 && rld[i].out == 0
4585 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4586 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4587 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4588 for (j = 0; j < n_reloads; j++)
4589 if (i != j && rld[j].in != 0 && rld[j].out == 0
4590 && rld[j].when_needed == rld[i].when_needed
4591 && MATCHES (rld[i].in, rld[j].in)
4592 && rld[i].rclass == rld[j].rclass
4593 && !rld[i].nocombine && !rld[j].nocombine
4594 && rld[i].reg_rtx == rld[j].reg_rtx)
4596 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4597 transfer_replacements (i, j);
4598 rld[j].in = 0;
4601 #ifdef HAVE_cc0
4602 /* If we made any reloads for addresses, see if they violate a
4603 "no input reloads" requirement for this insn. But loads that we
4604 do after the insn (such as for output addresses) are fine. */
4605 if (no_input_reloads)
4606 for (i = 0; i < n_reloads; i++)
4607 gcc_assert (rld[i].in == 0
4608 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS
4609 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS);
4610 #endif
4612 /* Compute reload_mode and reload_nregs. */
4613 for (i = 0; i < n_reloads; i++)
4615 rld[i].mode
4616 = (rld[i].inmode == VOIDmode
4617 || (GET_MODE_SIZE (rld[i].outmode)
4618 > GET_MODE_SIZE (rld[i].inmode)))
4619 ? rld[i].outmode : rld[i].inmode;
4621 rld[i].nregs = ira_reg_class_max_nregs [rld[i].rclass][rld[i].mode];
4624 /* Special case a simple move with an input reload and a
4625 destination of a hard reg, if the hard reg is ok, use it. */
4626 for (i = 0; i < n_reloads; i++)
4627 if (rld[i].when_needed == RELOAD_FOR_INPUT
4628 && GET_CODE (PATTERN (insn)) == SET
4629 && REG_P (SET_DEST (PATTERN (insn)))
4630 && (SET_SRC (PATTERN (insn)) == rld[i].in
4631 || SET_SRC (PATTERN (insn)) == rld[i].in_reg)
4632 && !elimination_target_reg_p (SET_DEST (PATTERN (insn))))
4634 rtx dest = SET_DEST (PATTERN (insn));
4635 unsigned int regno = REGNO (dest);
4637 if (regno < FIRST_PSEUDO_REGISTER
4638 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno)
4639 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4641 int nr = hard_regno_nregs[regno][rld[i].mode];
4642 int ok = 1, nri;
4644 for (nri = 1; nri < nr; nri ++)
4645 if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno + nri))
4647 ok = 0;
4648 break;
4651 if (ok)
4652 rld[i].reg_rtx = dest;
4656 return retval;
4659 /* Return true if alternative number ALTNUM in constraint-string
4660 CONSTRAINT is guaranteed to accept a reloaded constant-pool reference.
4661 MEM gives the reference if it didn't need any reloads, otherwise it
4662 is null. */
4664 static bool
4665 alternative_allows_const_pool_ref (rtx mem ATTRIBUTE_UNUSED,
4666 const char *constraint, int altnum)
4668 int c;
4670 /* Skip alternatives before the one requested. */
4671 while (altnum > 0)
4673 while (*constraint++ != ',')
4675 altnum--;
4677 /* Scan the requested alternative for TARGET_MEM_CONSTRAINT or 'o'.
4678 If one of them is present, this alternative accepts the result of
4679 passing a constant-pool reference through find_reloads_toplev.
4681 The same is true of extra memory constraints if the address
4682 was reloaded into a register. However, the target may elect
4683 to disallow the original constant address, forcing it to be
4684 reloaded into a register instead. */
4685 for (; (c = *constraint) && c != ',' && c != '#';
4686 constraint += CONSTRAINT_LEN (c, constraint))
4688 if (c == TARGET_MEM_CONSTRAINT || c == 'o')
4689 return true;
4690 #ifdef EXTRA_CONSTRAINT_STR
4691 if (EXTRA_MEMORY_CONSTRAINT (c, constraint)
4692 && (mem == NULL || EXTRA_CONSTRAINT_STR (mem, c, constraint)))
4693 return true;
4694 #endif
4696 return false;
4699 /* Scan X for memory references and scan the addresses for reloading.
4700 Also checks for references to "constant" regs that we want to eliminate
4701 and replaces them with the values they stand for.
4702 We may alter X destructively if it contains a reference to such.
4703 If X is just a constant reg, we return the equivalent value
4704 instead of X.
4706 IND_LEVELS says how many levels of indirect addressing this machine
4707 supports.
4709 OPNUM and TYPE identify the purpose of the reload.
4711 IS_SET_DEST is true if X is the destination of a SET, which is not
4712 appropriate to be replaced by a constant.
4714 INSN, if nonzero, is the insn in which we do the reload. It is used
4715 to determine if we may generate output reloads, and where to put USEs
4716 for pseudos that we have to replace with stack slots.
4718 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4719 result of find_reloads_address. */
4721 static rtx
4722 find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4723 int ind_levels, int is_set_dest, rtx insn,
4724 int *address_reloaded)
4726 RTX_CODE code = GET_CODE (x);
4728 const char *fmt = GET_RTX_FORMAT (code);
4729 int i;
4730 int copied;
4732 if (code == REG)
4734 /* This code is duplicated for speed in find_reloads. */
4735 int regno = REGNO (x);
4736 if (reg_equiv_constant (regno) != 0 && !is_set_dest)
4737 x = reg_equiv_constant (regno);
4738 #if 0
4739 /* This creates (subreg (mem...)) which would cause an unnecessary
4740 reload of the mem. */
4741 else if (reg_equiv_mem (regno) != 0)
4742 x = reg_equiv_mem (regno);
4743 #endif
4744 else if (reg_equiv_memory_loc (regno)
4745 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
4747 rtx mem = make_memloc (x, regno);
4748 if (reg_equiv_address (regno)
4749 || ! rtx_equal_p (mem, reg_equiv_mem (regno)))
4751 /* If this is not a toplevel operand, find_reloads doesn't see
4752 this substitution. We have to emit a USE of the pseudo so
4753 that delete_output_reload can see it. */
4754 if (replace_reloads && recog_data.operand[opnum] != x)
4755 /* We mark the USE with QImode so that we recognize it
4756 as one that can be safely deleted at the end of
4757 reload. */
4758 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4759 QImode);
4760 x = mem;
4761 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4762 opnum, type, ind_levels, insn);
4763 if (!rtx_equal_p (x, mem))
4764 push_reg_equiv_alt_mem (regno, x);
4765 if (address_reloaded)
4766 *address_reloaded = i;
4769 return x;
4771 if (code == MEM)
4773 rtx tem = x;
4775 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4776 opnum, type, ind_levels, insn);
4777 if (address_reloaded)
4778 *address_reloaded = i;
4780 return tem;
4783 if (code == SUBREG && REG_P (SUBREG_REG (x)))
4785 /* Check for SUBREG containing a REG that's equivalent to a
4786 constant. If the constant has a known value, truncate it
4787 right now. Similarly if we are extracting a single-word of a
4788 multi-word constant. If the constant is symbolic, allow it
4789 to be substituted normally. push_reload will strip the
4790 subreg later. The constant must not be VOIDmode, because we
4791 will lose the mode of the register (this should never happen
4792 because one of the cases above should handle it). */
4794 int regno = REGNO (SUBREG_REG (x));
4795 rtx tem;
4797 if (regno >= FIRST_PSEUDO_REGISTER
4798 && reg_renumber[regno] < 0
4799 && reg_equiv_constant (regno) != 0)
4801 tem =
4802 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant (regno),
4803 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4804 gcc_assert (tem);
4805 if (CONSTANT_P (tem)
4806 && !targetm.legitimate_constant_p (GET_MODE (x), tem))
4808 tem = force_const_mem (GET_MODE (x), tem);
4809 i = find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4810 &XEXP (tem, 0), opnum, type,
4811 ind_levels, insn);
4812 if (address_reloaded)
4813 *address_reloaded = i;
4815 return tem;
4818 /* If the subreg contains a reg that will be converted to a mem,
4819 attempt to convert the whole subreg to a (narrower or wider)
4820 memory reference instead. If this succeeds, we're done --
4821 otherwise fall through to check whether the inner reg still
4822 needs address reloads anyway. */
4824 if (regno >= FIRST_PSEUDO_REGISTER
4825 && reg_equiv_memory_loc (regno) != 0)
4827 tem = find_reloads_subreg_address (x, opnum, type, ind_levels,
4828 insn, address_reloaded);
4829 if (tem)
4830 return tem;
4834 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4836 if (fmt[i] == 'e')
4838 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4839 ind_levels, is_set_dest, insn,
4840 address_reloaded);
4841 /* If we have replaced a reg with it's equivalent memory loc -
4842 that can still be handled here e.g. if it's in a paradoxical
4843 subreg - we must make the change in a copy, rather than using
4844 a destructive change. This way, find_reloads can still elect
4845 not to do the change. */
4846 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4848 x = shallow_copy_rtx (x);
4849 copied = 1;
4851 XEXP (x, i) = new_part;
4854 return x;
4857 /* Return a mem ref for the memory equivalent of reg REGNO.
4858 This mem ref is not shared with anything. */
4860 static rtx
4861 make_memloc (rtx ad, int regno)
4863 /* We must rerun eliminate_regs, in case the elimination
4864 offsets have changed. */
4865 rtx tem
4866 = XEXP (eliminate_regs (reg_equiv_memory_loc (regno), VOIDmode, NULL_RTX),
4869 /* If TEM might contain a pseudo, we must copy it to avoid
4870 modifying it when we do the substitution for the reload. */
4871 if (rtx_varies_p (tem, 0))
4872 tem = copy_rtx (tem);
4874 tem = replace_equiv_address_nv (reg_equiv_memory_loc (regno), tem);
4875 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4877 /* Copy the result if it's still the same as the equivalence, to avoid
4878 modifying it when we do the substitution for the reload. */
4879 if (tem == reg_equiv_memory_loc (regno))
4880 tem = copy_rtx (tem);
4881 return tem;
4884 /* Returns true if AD could be turned into a valid memory reference
4885 to mode MODE in address space AS by reloading the part pointed to
4886 by PART into a register. */
4888 static int
4889 maybe_memory_address_addr_space_p (enum machine_mode mode, rtx ad,
4890 addr_space_t as, rtx *part)
4892 int retv;
4893 rtx tem = *part;
4894 rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4896 *part = reg;
4897 retv = memory_address_addr_space_p (mode, ad, as);
4898 *part = tem;
4900 return retv;
4903 /* Record all reloads needed for handling memory address AD
4904 which appears in *LOC in a memory reference to mode MODE
4905 which itself is found in location *MEMREFLOC.
4906 Note that we take shortcuts assuming that no multi-reg machine mode
4907 occurs as part of an address.
4909 OPNUM and TYPE specify the purpose of this reload.
4911 IND_LEVELS says how many levels of indirect addressing this machine
4912 supports.
4914 INSN, if nonzero, is the insn in which we do the reload. It is used
4915 to determine if we may generate output reloads, and where to put USEs
4916 for pseudos that we have to replace with stack slots.
4918 Value is one if this address is reloaded or replaced as a whole; it is
4919 zero if the top level of this address was not reloaded or replaced, and
4920 it is -1 if it may or may not have been reloaded or replaced.
4922 Note that there is no verification that the address will be valid after
4923 this routine does its work. Instead, we rely on the fact that the address
4924 was valid when reload started. So we need only undo things that reload
4925 could have broken. These are wrong register types, pseudos not allocated
4926 to a hard register, and frame pointer elimination. */
4928 static int
4929 find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
4930 rtx *loc, int opnum, enum reload_type type,
4931 int ind_levels, rtx insn)
4933 addr_space_t as = memrefloc? MEM_ADDR_SPACE (*memrefloc)
4934 : ADDR_SPACE_GENERIC;
4935 int regno;
4936 int removed_and = 0;
4937 int op_index;
4938 rtx tem;
4940 /* If the address is a register, see if it is a legitimate address and
4941 reload if not. We first handle the cases where we need not reload
4942 or where we must reload in a non-standard way. */
4944 if (REG_P (ad))
4946 regno = REGNO (ad);
4948 if (reg_equiv_constant (regno) != 0)
4950 find_reloads_address_part (reg_equiv_constant (regno), loc,
4951 base_reg_class (mode, as, MEM, SCRATCH),
4952 GET_MODE (ad), opnum, type, ind_levels);
4953 return 1;
4956 tem = reg_equiv_memory_loc (regno);
4957 if (tem != 0)
4959 if (reg_equiv_address (regno) != 0 || num_not_at_initial_offset)
4961 tem = make_memloc (ad, regno);
4962 if (! strict_memory_address_addr_space_p (GET_MODE (tem),
4963 XEXP (tem, 0),
4964 MEM_ADDR_SPACE (tem)))
4966 rtx orig = tem;
4968 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4969 &XEXP (tem, 0), opnum,
4970 ADDR_TYPE (type), ind_levels, insn);
4971 if (!rtx_equal_p (tem, orig))
4972 push_reg_equiv_alt_mem (regno, tem);
4974 /* We can avoid a reload if the register's equivalent memory
4975 expression is valid as an indirect memory address.
4976 But not all addresses are valid in a mem used as an indirect
4977 address: only reg or reg+constant. */
4979 if (ind_levels > 0
4980 && strict_memory_address_addr_space_p (mode, tem, as)
4981 && (REG_P (XEXP (tem, 0))
4982 || (GET_CODE (XEXP (tem, 0)) == PLUS
4983 && REG_P (XEXP (XEXP (tem, 0), 0))
4984 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4986 /* TEM is not the same as what we'll be replacing the
4987 pseudo with after reload, put a USE in front of INSN
4988 in the final reload pass. */
4989 if (replace_reloads
4990 && num_not_at_initial_offset
4991 && ! rtx_equal_p (tem, reg_equiv_mem (regno)))
4993 *loc = tem;
4994 /* We mark the USE with QImode so that we
4995 recognize it as one that can be safely
4996 deleted at the end of reload. */
4997 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4998 insn), QImode);
5000 /* This doesn't really count as replacing the address
5001 as a whole, since it is still a memory access. */
5003 return 0;
5005 ad = tem;
5009 /* The only remaining case where we can avoid a reload is if this is a
5010 hard register that is valid as a base register and which is not the
5011 subject of a CLOBBER in this insn. */
5013 else if (regno < FIRST_PSEUDO_REGISTER
5014 && regno_ok_for_base_p (regno, mode, as, MEM, SCRATCH)
5015 && ! regno_clobbered_p (regno, this_insn, mode, 0))
5016 return 0;
5018 /* If we do not have one of the cases above, we must do the reload. */
5019 push_reload (ad, NULL_RTX, loc, (rtx*) 0,
5020 base_reg_class (mode, as, MEM, SCRATCH),
5021 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
5022 return 1;
5025 if (strict_memory_address_addr_space_p (mode, ad, as))
5027 /* The address appears valid, so reloads are not needed.
5028 But the address may contain an eliminable register.
5029 This can happen because a machine with indirect addressing
5030 may consider a pseudo register by itself a valid address even when
5031 it has failed to get a hard reg.
5032 So do a tree-walk to find and eliminate all such regs. */
5034 /* But first quickly dispose of a common case. */
5035 if (GET_CODE (ad) == PLUS
5036 && CONST_INT_P (XEXP (ad, 1))
5037 && REG_P (XEXP (ad, 0))
5038 && reg_equiv_constant (REGNO (XEXP (ad, 0))) == 0)
5039 return 0;
5041 subst_reg_equivs_changed = 0;
5042 *loc = subst_reg_equivs (ad, insn);
5044 if (! subst_reg_equivs_changed)
5045 return 0;
5047 /* Check result for validity after substitution. */
5048 if (strict_memory_address_addr_space_p (mode, ad, as))
5049 return 0;
5052 #ifdef LEGITIMIZE_RELOAD_ADDRESS
5055 if (memrefloc && ADDR_SPACE_GENERIC_P (as))
5057 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
5058 ind_levels, win);
5060 break;
5061 win:
5062 *memrefloc = copy_rtx (*memrefloc);
5063 XEXP (*memrefloc, 0) = ad;
5064 move_replacements (&ad, &XEXP (*memrefloc, 0));
5065 return -1;
5067 while (0);
5068 #endif
5070 /* The address is not valid. We have to figure out why. First see if
5071 we have an outer AND and remove it if so. Then analyze what's inside. */
5073 if (GET_CODE (ad) == AND)
5075 removed_and = 1;
5076 loc = &XEXP (ad, 0);
5077 ad = *loc;
5080 /* One possibility for why the address is invalid is that it is itself
5081 a MEM. This can happen when the frame pointer is being eliminated, a
5082 pseudo is not allocated to a hard register, and the offset between the
5083 frame and stack pointers is not its initial value. In that case the
5084 pseudo will have been replaced by a MEM referring to the
5085 stack pointer. */
5086 if (MEM_P (ad))
5088 /* First ensure that the address in this MEM is valid. Then, unless
5089 indirect addresses are valid, reload the MEM into a register. */
5090 tem = ad;
5091 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
5092 opnum, ADDR_TYPE (type),
5093 ind_levels == 0 ? 0 : ind_levels - 1, insn);
5095 /* If tem was changed, then we must create a new memory reference to
5096 hold it and store it back into memrefloc. */
5097 if (tem != ad && memrefloc)
5099 *memrefloc = copy_rtx (*memrefloc);
5100 copy_replacements (tem, XEXP (*memrefloc, 0));
5101 loc = &XEXP (*memrefloc, 0);
5102 if (removed_and)
5103 loc = &XEXP (*loc, 0);
5106 /* Check similar cases as for indirect addresses as above except
5107 that we can allow pseudos and a MEM since they should have been
5108 taken care of above. */
5110 if (ind_levels == 0
5111 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
5112 || MEM_P (XEXP (tem, 0))
5113 || ! (REG_P (XEXP (tem, 0))
5114 || (GET_CODE (XEXP (tem, 0)) == PLUS
5115 && REG_P (XEXP (XEXP (tem, 0), 0))
5116 && CONST_INT_P (XEXP (XEXP (tem, 0), 1)))))
5118 /* Must use TEM here, not AD, since it is the one that will
5119 have any subexpressions reloaded, if needed. */
5120 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
5121 base_reg_class (mode, as, MEM, SCRATCH), GET_MODE (tem),
5122 VOIDmode, 0,
5123 0, opnum, type);
5124 return ! removed_and;
5126 else
5127 return 0;
5130 /* If we have address of a stack slot but it's not valid because the
5131 displacement is too large, compute the sum in a register.
5132 Handle all base registers here, not just fp/ap/sp, because on some
5133 targets (namely SH) we can also get too large displacements from
5134 big-endian corrections. */
5135 else if (GET_CODE (ad) == PLUS
5136 && REG_P (XEXP (ad, 0))
5137 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
5138 && CONST_INT_P (XEXP (ad, 1))
5139 && (regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, as, PLUS,
5140 CONST_INT)
5141 /* Similarly, if we were to reload the base register and the
5142 mem+offset address is still invalid, then we want to reload
5143 the whole address, not just the base register. */
5144 || ! maybe_memory_address_addr_space_p
5145 (mode, ad, as, &(XEXP (ad, 0)))))
5148 /* Unshare the MEM rtx so we can safely alter it. */
5149 if (memrefloc)
5151 *memrefloc = copy_rtx (*memrefloc);
5152 loc = &XEXP (*memrefloc, 0);
5153 if (removed_and)
5154 loc = &XEXP (*loc, 0);
5157 if (double_reg_address_ok
5158 && regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, as,
5159 PLUS, CONST_INT))
5161 /* Unshare the sum as well. */
5162 *loc = ad = copy_rtx (ad);
5164 /* Reload the displacement into an index reg.
5165 We assume the frame pointer or arg pointer is a base reg. */
5166 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
5167 INDEX_REG_CLASS, GET_MODE (ad), opnum,
5168 type, ind_levels);
5169 return 0;
5171 else
5173 /* If the sum of two regs is not necessarily valid,
5174 reload the sum into a base reg.
5175 That will at least work. */
5176 find_reloads_address_part (ad, loc,
5177 base_reg_class (mode, as, MEM, SCRATCH),
5178 GET_MODE (ad), opnum, type, ind_levels);
5180 return ! removed_and;
5183 /* If we have an indexed stack slot, there are three possible reasons why
5184 it might be invalid: The index might need to be reloaded, the address
5185 might have been made by frame pointer elimination and hence have a
5186 constant out of range, or both reasons might apply.
5188 We can easily check for an index needing reload, but even if that is the
5189 case, we might also have an invalid constant. To avoid making the
5190 conservative assumption and requiring two reloads, we see if this address
5191 is valid when not interpreted strictly. If it is, the only problem is
5192 that the index needs a reload and find_reloads_address_1 will take care
5193 of it.
5195 Handle all base registers here, not just fp/ap/sp, because on some
5196 targets (namely SPARC) we can also get invalid addresses from preventive
5197 subreg big-endian corrections made by find_reloads_toplev. We
5198 can also get expressions involving LO_SUM (rather than PLUS) from
5199 find_reloads_subreg_address.
5201 If we decide to do something, it must be that `double_reg_address_ok'
5202 is true. We generate a reload of the base register + constant and
5203 rework the sum so that the reload register will be added to the index.
5204 This is safe because we know the address isn't shared.
5206 We check for the base register as both the first and second operand of
5207 the innermost PLUS and/or LO_SUM. */
5209 for (op_index = 0; op_index < 2; ++op_index)
5211 rtx operand, addend;
5212 enum rtx_code inner_code;
5214 if (GET_CODE (ad) != PLUS)
5215 continue;
5217 inner_code = GET_CODE (XEXP (ad, 0));
5218 if (!(GET_CODE (ad) == PLUS
5219 && CONST_INT_P (XEXP (ad, 1))
5220 && (inner_code == PLUS || inner_code == LO_SUM)))
5221 continue;
5223 operand = XEXP (XEXP (ad, 0), op_index);
5224 if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
5225 continue;
5227 addend = XEXP (XEXP (ad, 0), 1 - op_index);
5229 if ((regno_ok_for_base_p (REGNO (operand), mode, as, inner_code,
5230 GET_CODE (addend))
5231 || operand == frame_pointer_rtx
5232 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
5233 || operand == hard_frame_pointer_rtx
5234 #endif
5235 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
5236 || operand == arg_pointer_rtx
5237 #endif
5238 || operand == stack_pointer_rtx)
5239 && ! maybe_memory_address_addr_space_p
5240 (mode, ad, as, &XEXP (XEXP (ad, 0), 1 - op_index)))
5242 rtx offset_reg;
5243 enum reg_class cls;
5245 offset_reg = plus_constant (GET_MODE (ad), operand,
5246 INTVAL (XEXP (ad, 1)));
5248 /* Form the adjusted address. */
5249 if (GET_CODE (XEXP (ad, 0)) == PLUS)
5250 ad = gen_rtx_PLUS (GET_MODE (ad),
5251 op_index == 0 ? offset_reg : addend,
5252 op_index == 0 ? addend : offset_reg);
5253 else
5254 ad = gen_rtx_LO_SUM (GET_MODE (ad),
5255 op_index == 0 ? offset_reg : addend,
5256 op_index == 0 ? addend : offset_reg);
5257 *loc = ad;
5259 cls = base_reg_class (mode, as, MEM, GET_CODE (addend));
5260 find_reloads_address_part (XEXP (ad, op_index),
5261 &XEXP (ad, op_index), cls,
5262 GET_MODE (ad), opnum, type, ind_levels);
5263 find_reloads_address_1 (mode, as,
5264 XEXP (ad, 1 - op_index), 1, GET_CODE (ad),
5265 GET_CODE (XEXP (ad, op_index)),
5266 &XEXP (ad, 1 - op_index), opnum,
5267 type, 0, insn);
5269 return 0;
5273 /* See if address becomes valid when an eliminable register
5274 in a sum is replaced. */
5276 tem = ad;
5277 if (GET_CODE (ad) == PLUS)
5278 tem = subst_indexed_address (ad);
5279 if (tem != ad && strict_memory_address_addr_space_p (mode, tem, as))
5281 /* Ok, we win that way. Replace any additional eliminable
5282 registers. */
5284 subst_reg_equivs_changed = 0;
5285 tem = subst_reg_equivs (tem, insn);
5287 /* Make sure that didn't make the address invalid again. */
5289 if (! subst_reg_equivs_changed
5290 || strict_memory_address_addr_space_p (mode, tem, as))
5292 *loc = tem;
5293 return 0;
5297 /* If constants aren't valid addresses, reload the constant address
5298 into a register. */
5299 if (CONSTANT_P (ad) && ! strict_memory_address_addr_space_p (mode, ad, as))
5301 enum machine_mode address_mode = GET_MODE (ad);
5302 if (address_mode == VOIDmode)
5303 address_mode = targetm.addr_space.address_mode (as);
5305 /* If AD is an address in the constant pool, the MEM rtx may be shared.
5306 Unshare it so we can safely alter it. */
5307 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
5308 && CONSTANT_POOL_ADDRESS_P (ad))
5310 *memrefloc = copy_rtx (*memrefloc);
5311 loc = &XEXP (*memrefloc, 0);
5312 if (removed_and)
5313 loc = &XEXP (*loc, 0);
5316 find_reloads_address_part (ad, loc,
5317 base_reg_class (mode, as, MEM, SCRATCH),
5318 address_mode, opnum, type, ind_levels);
5319 return ! removed_and;
5322 return find_reloads_address_1 (mode, as, ad, 0, MEM, SCRATCH, loc,
5323 opnum, type, ind_levels, insn);
5326 /* Find all pseudo regs appearing in AD
5327 that are eliminable in favor of equivalent values
5328 and do not have hard regs; replace them by their equivalents.
5329 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
5330 front of it for pseudos that we have to replace with stack slots. */
5332 static rtx
5333 subst_reg_equivs (rtx ad, rtx insn)
5335 RTX_CODE code = GET_CODE (ad);
5336 int i;
5337 const char *fmt;
5339 switch (code)
5341 case HIGH:
5342 case CONST:
5343 CASE_CONST_ANY:
5344 case SYMBOL_REF:
5345 case LABEL_REF:
5346 case PC:
5347 case CC0:
5348 return ad;
5350 case REG:
5352 int regno = REGNO (ad);
5354 if (reg_equiv_constant (regno) != 0)
5356 subst_reg_equivs_changed = 1;
5357 return reg_equiv_constant (regno);
5359 if (reg_equiv_memory_loc (regno) && num_not_at_initial_offset)
5361 rtx mem = make_memloc (ad, regno);
5362 if (! rtx_equal_p (mem, reg_equiv_mem (regno)))
5364 subst_reg_equivs_changed = 1;
5365 /* We mark the USE with QImode so that we recognize it
5366 as one that can be safely deleted at the end of
5367 reload. */
5368 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5369 QImode);
5370 return mem;
5374 return ad;
5376 case PLUS:
5377 /* Quickly dispose of a common case. */
5378 if (XEXP (ad, 0) == frame_pointer_rtx
5379 && CONST_INT_P (XEXP (ad, 1)))
5380 return ad;
5381 break;
5383 default:
5384 break;
5387 fmt = GET_RTX_FORMAT (code);
5388 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5389 if (fmt[i] == 'e')
5390 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5391 return ad;
5394 /* Compute the sum of X and Y, making canonicalizations assumed in an
5395 address, namely: sum constant integers, surround the sum of two
5396 constants with a CONST, put the constant as the second operand, and
5397 group the constant on the outermost sum.
5399 This routine assumes both inputs are already in canonical form. */
5402 form_sum (enum machine_mode mode, rtx x, rtx y)
5404 rtx tem;
5406 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
5407 gcc_assert (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode);
5409 if (CONST_INT_P (x))
5410 return plus_constant (mode, y, INTVAL (x));
5411 else if (CONST_INT_P (y))
5412 return plus_constant (mode, x, INTVAL (y));
5413 else if (CONSTANT_P (x))
5414 tem = x, x = y, y = tem;
5416 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5417 return form_sum (mode, XEXP (x, 0), form_sum (mode, XEXP (x, 1), y));
5419 /* Note that if the operands of Y are specified in the opposite
5420 order in the recursive calls below, infinite recursion will occur. */
5421 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5422 return form_sum (mode, form_sum (mode, x, XEXP (y, 0)), XEXP (y, 1));
5424 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5425 constant will have been placed second. */
5426 if (CONSTANT_P (x) && CONSTANT_P (y))
5428 if (GET_CODE (x) == CONST)
5429 x = XEXP (x, 0);
5430 if (GET_CODE (y) == CONST)
5431 y = XEXP (y, 0);
5433 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5436 return gen_rtx_PLUS (mode, x, y);
5439 /* If ADDR is a sum containing a pseudo register that should be
5440 replaced with a constant (from reg_equiv_constant),
5441 return the result of doing so, and also apply the associative
5442 law so that the result is more likely to be a valid address.
5443 (But it is not guaranteed to be one.)
5445 Note that at most one register is replaced, even if more are
5446 replaceable. Also, we try to put the result into a canonical form
5447 so it is more likely to be a valid address.
5449 In all other cases, return ADDR. */
5451 static rtx
5452 subst_indexed_address (rtx addr)
5454 rtx op0 = 0, op1 = 0, op2 = 0;
5455 rtx tem;
5456 int regno;
5458 if (GET_CODE (addr) == PLUS)
5460 /* Try to find a register to replace. */
5461 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5462 if (REG_P (op0)
5463 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5464 && reg_renumber[regno] < 0
5465 && reg_equiv_constant (regno) != 0)
5466 op0 = reg_equiv_constant (regno);
5467 else if (REG_P (op1)
5468 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5469 && reg_renumber[regno] < 0
5470 && reg_equiv_constant (regno) != 0)
5471 op1 = reg_equiv_constant (regno);
5472 else if (GET_CODE (op0) == PLUS
5473 && (tem = subst_indexed_address (op0)) != op0)
5474 op0 = tem;
5475 else if (GET_CODE (op1) == PLUS
5476 && (tem = subst_indexed_address (op1)) != op1)
5477 op1 = tem;
5478 else
5479 return addr;
5481 /* Pick out up to three things to add. */
5482 if (GET_CODE (op1) == PLUS)
5483 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5484 else if (GET_CODE (op0) == PLUS)
5485 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5487 /* Compute the sum. */
5488 if (op2 != 0)
5489 op1 = form_sum (GET_MODE (addr), op1, op2);
5490 if (op1 != 0)
5491 op0 = form_sum (GET_MODE (addr), op0, op1);
5493 return op0;
5495 return addr;
5498 /* Update the REG_INC notes for an insn. It updates all REG_INC
5499 notes for the instruction which refer to REGNO the to refer
5500 to the reload number.
5502 INSN is the insn for which any REG_INC notes need updating.
5504 REGNO is the register number which has been reloaded.
5506 RELOADNUM is the reload number. */
5508 static void
5509 update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5510 int reloadnum ATTRIBUTE_UNUSED)
5512 #ifdef AUTO_INC_DEC
5513 rtx link;
5515 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5516 if (REG_NOTE_KIND (link) == REG_INC
5517 && (int) REGNO (XEXP (link, 0)) == regno)
5518 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5519 #endif
5522 /* Record the pseudo registers we must reload into hard registers in a
5523 subexpression of a would-be memory address, X referring to a value
5524 in mode MODE. (This function is not called if the address we find
5525 is strictly valid.)
5527 CONTEXT = 1 means we are considering regs as index regs,
5528 = 0 means we are considering them as base regs.
5529 OUTER_CODE is the code of the enclosing RTX, typically a MEM, a PLUS,
5530 or an autoinc code.
5531 If CONTEXT == 0 and OUTER_CODE is a PLUS or LO_SUM, then INDEX_CODE
5532 is the code of the index part of the address. Otherwise, pass SCRATCH
5533 for this argument.
5534 OPNUM and TYPE specify the purpose of any reloads made.
5536 IND_LEVELS says how many levels of indirect addressing are
5537 supported at this point in the address.
5539 INSN, if nonzero, is the insn in which we do the reload. It is used
5540 to determine if we may generate output reloads.
5542 We return nonzero if X, as a whole, is reloaded or replaced. */
5544 /* Note that we take shortcuts assuming that no multi-reg machine mode
5545 occurs as part of an address.
5546 Also, this is not fully machine-customizable; it works for machines
5547 such as VAXen and 68000's and 32000's, but other possible machines
5548 could have addressing modes that this does not handle right.
5549 If you add push_reload calls here, you need to make sure gen_reload
5550 handles those cases gracefully. */
5552 static int
5553 find_reloads_address_1 (enum machine_mode mode, addr_space_t as,
5554 rtx x, int context,
5555 enum rtx_code outer_code, enum rtx_code index_code,
5556 rtx *loc, int opnum, enum reload_type type,
5557 int ind_levels, rtx insn)
5559 #define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE, AS, OUTER, INDEX) \
5560 ((CONTEXT) == 0 \
5561 ? regno_ok_for_base_p (REGNO, MODE, AS, OUTER, INDEX) \
5562 : REGNO_OK_FOR_INDEX_P (REGNO))
5564 enum reg_class context_reg_class;
5565 RTX_CODE code = GET_CODE (x);
5566 bool reloaded_inner_of_autoinc = false;
5568 if (context == 1)
5569 context_reg_class = INDEX_REG_CLASS;
5570 else
5571 context_reg_class = base_reg_class (mode, as, outer_code, index_code);
5573 switch (code)
5575 case PLUS:
5577 rtx orig_op0 = XEXP (x, 0);
5578 rtx orig_op1 = XEXP (x, 1);
5579 RTX_CODE code0 = GET_CODE (orig_op0);
5580 RTX_CODE code1 = GET_CODE (orig_op1);
5581 rtx op0 = orig_op0;
5582 rtx op1 = orig_op1;
5584 if (GET_CODE (op0) == SUBREG)
5586 op0 = SUBREG_REG (op0);
5587 code0 = GET_CODE (op0);
5588 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5589 op0 = gen_rtx_REG (word_mode,
5590 (REGNO (op0) +
5591 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5592 GET_MODE (SUBREG_REG (orig_op0)),
5593 SUBREG_BYTE (orig_op0),
5594 GET_MODE (orig_op0))));
5597 if (GET_CODE (op1) == SUBREG)
5599 op1 = SUBREG_REG (op1);
5600 code1 = GET_CODE (op1);
5601 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5602 /* ??? Why is this given op1's mode and above for
5603 ??? op0 SUBREGs we use word_mode? */
5604 op1 = gen_rtx_REG (GET_MODE (op1),
5605 (REGNO (op1) +
5606 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5607 GET_MODE (SUBREG_REG (orig_op1)),
5608 SUBREG_BYTE (orig_op1),
5609 GET_MODE (orig_op1))));
5611 /* Plus in the index register may be created only as a result of
5612 register rematerialization for expression like &localvar*4. Reload it.
5613 It may be possible to combine the displacement on the outer level,
5614 but it is probably not worthwhile to do so. */
5615 if (context == 1)
5617 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5618 opnum, ADDR_TYPE (type), ind_levels, insn);
5619 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5620 context_reg_class,
5621 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5622 return 1;
5625 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5626 || code0 == ZERO_EXTEND || code1 == MEM)
5628 find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5629 &XEXP (x, 0), opnum, type, ind_levels,
5630 insn);
5631 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, code0,
5632 &XEXP (x, 1), opnum, type, ind_levels,
5633 insn);
5636 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5637 || code1 == ZERO_EXTEND || code0 == MEM)
5639 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, code1,
5640 &XEXP (x, 0), opnum, type, ind_levels,
5641 insn);
5642 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5643 &XEXP (x, 1), opnum, type, ind_levels,
5644 insn);
5647 else if (code0 == CONST_INT || code0 == CONST
5648 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5649 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, code0,
5650 &XEXP (x, 1), opnum, type, ind_levels,
5651 insn);
5653 else if (code1 == CONST_INT || code1 == CONST
5654 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5655 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, code1,
5656 &XEXP (x, 0), opnum, type, ind_levels,
5657 insn);
5659 else if (code0 == REG && code1 == REG)
5661 if (REGNO_OK_FOR_INDEX_P (REGNO (op1))
5662 && regno_ok_for_base_p (REGNO (op0), mode, as, PLUS, REG))
5663 return 0;
5664 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0))
5665 && regno_ok_for_base_p (REGNO (op1), mode, as, PLUS, REG))
5666 return 0;
5667 else if (regno_ok_for_base_p (REGNO (op0), mode, as, PLUS, REG))
5668 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5669 &XEXP (x, 1), opnum, type, ind_levels,
5670 insn);
5671 else if (REGNO_OK_FOR_INDEX_P (REGNO (op1)))
5672 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5673 &XEXP (x, 0), opnum, type, ind_levels,
5674 insn);
5675 else if (regno_ok_for_base_p (REGNO (op1), mode, as, PLUS, REG))
5676 find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5677 &XEXP (x, 0), opnum, type, ind_levels,
5678 insn);
5679 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0)))
5680 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, REG,
5681 &XEXP (x, 1), opnum, type, ind_levels,
5682 insn);
5683 else
5685 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5686 &XEXP (x, 0), opnum, type, ind_levels,
5687 insn);
5688 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5689 &XEXP (x, 1), opnum, type, ind_levels,
5690 insn);
5694 else if (code0 == REG)
5696 find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5697 &XEXP (x, 0), opnum, type, ind_levels,
5698 insn);
5699 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, REG,
5700 &XEXP (x, 1), opnum, type, ind_levels,
5701 insn);
5704 else if (code1 == REG)
5706 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5707 &XEXP (x, 1), opnum, type, ind_levels,
5708 insn);
5709 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5710 &XEXP (x, 0), opnum, type, ind_levels,
5711 insn);
5715 return 0;
5717 case POST_MODIFY:
5718 case PRE_MODIFY:
5720 rtx op0 = XEXP (x, 0);
5721 rtx op1 = XEXP (x, 1);
5722 enum rtx_code index_code;
5723 int regno;
5724 int reloadnum;
5726 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5727 return 0;
5729 /* Currently, we only support {PRE,POST}_MODIFY constructs
5730 where a base register is {inc,dec}remented by the contents
5731 of another register or by a constant value. Thus, these
5732 operands must match. */
5733 gcc_assert (op0 == XEXP (op1, 0));
5735 /* Require index register (or constant). Let's just handle the
5736 register case in the meantime... If the target allows
5737 auto-modify by a constant then we could try replacing a pseudo
5738 register with its equivalent constant where applicable.
5740 We also handle the case where the register was eliminated
5741 resulting in a PLUS subexpression.
5743 If we later decide to reload the whole PRE_MODIFY or
5744 POST_MODIFY, inc_for_reload might clobber the reload register
5745 before reading the index. The index register might therefore
5746 need to live longer than a TYPE reload normally would, so be
5747 conservative and class it as RELOAD_OTHER. */
5748 if ((REG_P (XEXP (op1, 1))
5749 && !REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5750 || GET_CODE (XEXP (op1, 1)) == PLUS)
5751 find_reloads_address_1 (mode, as, XEXP (op1, 1), 1, code, SCRATCH,
5752 &XEXP (op1, 1), opnum, RELOAD_OTHER,
5753 ind_levels, insn);
5755 gcc_assert (REG_P (XEXP (op1, 0)));
5757 regno = REGNO (XEXP (op1, 0));
5758 index_code = GET_CODE (XEXP (op1, 1));
5760 /* A register that is incremented cannot be constant! */
5761 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5762 || reg_equiv_constant (regno) == 0);
5764 /* Handle a register that is equivalent to a memory location
5765 which cannot be addressed directly. */
5766 if (reg_equiv_memory_loc (regno) != 0
5767 && (reg_equiv_address (regno) != 0
5768 || num_not_at_initial_offset))
5770 rtx tem = make_memloc (XEXP (x, 0), regno);
5772 if (reg_equiv_address (regno)
5773 || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
5775 rtx orig = tem;
5777 /* First reload the memory location's address.
5778 We can't use ADDR_TYPE (type) here, because we need to
5779 write back the value after reading it, hence we actually
5780 need two registers. */
5781 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5782 &XEXP (tem, 0), opnum,
5783 RELOAD_OTHER,
5784 ind_levels, insn);
5786 if (!rtx_equal_p (tem, orig))
5787 push_reg_equiv_alt_mem (regno, tem);
5789 /* Then reload the memory location into a base
5790 register. */
5791 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5792 &XEXP (op1, 0),
5793 base_reg_class (mode, as,
5794 code, index_code),
5795 GET_MODE (x), GET_MODE (x), 0,
5796 0, opnum, RELOAD_OTHER);
5798 update_auto_inc_notes (this_insn, regno, reloadnum);
5799 return 0;
5803 if (reg_renumber[regno] >= 0)
5804 regno = reg_renumber[regno];
5806 /* We require a base register here... */
5807 if (!regno_ok_for_base_p (regno, GET_MODE (x), as, code, index_code))
5809 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5810 &XEXP (op1, 0), &XEXP (x, 0),
5811 base_reg_class (mode, as,
5812 code, index_code),
5813 GET_MODE (x), GET_MODE (x), 0, 0,
5814 opnum, RELOAD_OTHER);
5816 update_auto_inc_notes (this_insn, regno, reloadnum);
5817 return 0;
5820 return 0;
5822 case POST_INC:
5823 case POST_DEC:
5824 case PRE_INC:
5825 case PRE_DEC:
5826 if (REG_P (XEXP (x, 0)))
5828 int regno = REGNO (XEXP (x, 0));
5829 int value = 0;
5830 rtx x_orig = x;
5832 /* A register that is incremented cannot be constant! */
5833 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5834 || reg_equiv_constant (regno) == 0);
5836 /* Handle a register that is equivalent to a memory location
5837 which cannot be addressed directly. */
5838 if (reg_equiv_memory_loc (regno) != 0
5839 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
5841 rtx tem = make_memloc (XEXP (x, 0), regno);
5842 if (reg_equiv_address (regno)
5843 || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
5845 rtx orig = tem;
5847 /* First reload the memory location's address.
5848 We can't use ADDR_TYPE (type) here, because we need to
5849 write back the value after reading it, hence we actually
5850 need two registers. */
5851 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5852 &XEXP (tem, 0), opnum, type,
5853 ind_levels, insn);
5854 reloaded_inner_of_autoinc = true;
5855 if (!rtx_equal_p (tem, orig))
5856 push_reg_equiv_alt_mem (regno, tem);
5857 /* Put this inside a new increment-expression. */
5858 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5859 /* Proceed to reload that, as if it contained a register. */
5863 /* If we have a hard register that is ok in this incdec context,
5864 don't make a reload. If the register isn't nice enough for
5865 autoincdec, we can reload it. But, if an autoincrement of a
5866 register that we here verified as playing nice, still outside
5867 isn't "valid", it must be that no autoincrement is "valid".
5868 If that is true and something made an autoincrement anyway,
5869 this must be a special context where one is allowed.
5870 (For example, a "push" instruction.)
5871 We can't improve this address, so leave it alone. */
5873 /* Otherwise, reload the autoincrement into a suitable hard reg
5874 and record how much to increment by. */
5876 if (reg_renumber[regno] >= 0)
5877 regno = reg_renumber[regno];
5878 if (regno >= FIRST_PSEUDO_REGISTER
5879 || !REG_OK_FOR_CONTEXT (context, regno, mode, as, code,
5880 index_code))
5882 int reloadnum;
5884 /* If we can output the register afterwards, do so, this
5885 saves the extra update.
5886 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5887 CALL_INSN - and it does not set CC0.
5888 But don't do this if we cannot directly address the
5889 memory location, since this will make it harder to
5890 reuse address reloads, and increases register pressure.
5891 Also don't do this if we can probably update x directly. */
5892 rtx equiv = (MEM_P (XEXP (x, 0))
5893 ? XEXP (x, 0)
5894 : reg_equiv_mem (regno));
5895 enum insn_code icode = optab_handler (add_optab, GET_MODE (x));
5896 if (insn && NONJUMP_INSN_P (insn) && equiv
5897 && memory_operand (equiv, GET_MODE (equiv))
5898 #ifdef HAVE_cc0
5899 && ! sets_cc0_p (PATTERN (insn))
5900 #endif
5901 && ! (icode != CODE_FOR_nothing
5902 && insn_operand_matches (icode, 0, equiv)
5903 && insn_operand_matches (icode, 1, equiv))
5904 /* Using RELOAD_OTHER means we emit this and the reload we
5905 made earlier in the wrong order. */
5906 && !reloaded_inner_of_autoinc)
5908 /* We use the original pseudo for loc, so that
5909 emit_reload_insns() knows which pseudo this
5910 reload refers to and updates the pseudo rtx, not
5911 its equivalent memory location, as well as the
5912 corresponding entry in reg_last_reload_reg. */
5913 loc = &XEXP (x_orig, 0);
5914 x = XEXP (x, 0);
5915 reloadnum
5916 = push_reload (x, x, loc, loc,
5917 context_reg_class,
5918 GET_MODE (x), GET_MODE (x), 0, 0,
5919 opnum, RELOAD_OTHER);
5921 else
5923 reloadnum
5924 = push_reload (x, x, loc, (rtx*) 0,
5925 context_reg_class,
5926 GET_MODE (x), GET_MODE (x), 0, 0,
5927 opnum, type);
5928 rld[reloadnum].inc
5929 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5931 value = 1;
5934 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5935 reloadnum);
5937 return value;
5939 return 0;
5941 case TRUNCATE:
5942 case SIGN_EXTEND:
5943 case ZERO_EXTEND:
5944 /* Look for parts to reload in the inner expression and reload them
5945 too, in addition to this operation. Reloading all inner parts in
5946 addition to this one shouldn't be necessary, but at this point,
5947 we don't know if we can possibly omit any part that *can* be
5948 reloaded. Targets that are better off reloading just either part
5949 (or perhaps even a different part of an outer expression), should
5950 define LEGITIMIZE_RELOAD_ADDRESS. */
5951 find_reloads_address_1 (GET_MODE (XEXP (x, 0)), as, XEXP (x, 0),
5952 context, code, SCRATCH, &XEXP (x, 0), opnum,
5953 type, ind_levels, insn);
5954 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5955 context_reg_class,
5956 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5957 return 1;
5959 case MEM:
5960 /* This is probably the result of a substitution, by eliminate_regs, of
5961 an equivalent address for a pseudo that was not allocated to a hard
5962 register. Verify that the specified address is valid and reload it
5963 into a register.
5965 Since we know we are going to reload this item, don't decrement for
5966 the indirection level.
5968 Note that this is actually conservative: it would be slightly more
5969 efficient to use the value of SPILL_INDIRECT_LEVELS from
5970 reload1.c here. */
5972 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5973 opnum, ADDR_TYPE (type), ind_levels, insn);
5974 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5975 context_reg_class,
5976 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5977 return 1;
5979 case REG:
5981 int regno = REGNO (x);
5983 if (reg_equiv_constant (regno) != 0)
5985 find_reloads_address_part (reg_equiv_constant (regno), loc,
5986 context_reg_class,
5987 GET_MODE (x), opnum, type, ind_levels);
5988 return 1;
5991 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5992 that feeds this insn. */
5993 if (reg_equiv_mem (regno) != 0)
5995 push_reload (reg_equiv_mem (regno), NULL_RTX, loc, (rtx*) 0,
5996 context_reg_class,
5997 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5998 return 1;
6000 #endif
6002 if (reg_equiv_memory_loc (regno)
6003 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
6005 rtx tem = make_memloc (x, regno);
6006 if (reg_equiv_address (regno) != 0
6007 || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
6009 x = tem;
6010 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
6011 &XEXP (x, 0), opnum, ADDR_TYPE (type),
6012 ind_levels, insn);
6013 if (!rtx_equal_p (x, tem))
6014 push_reg_equiv_alt_mem (regno, x);
6018 if (reg_renumber[regno] >= 0)
6019 regno = reg_renumber[regno];
6021 if (regno >= FIRST_PSEUDO_REGISTER
6022 || !REG_OK_FOR_CONTEXT (context, regno, mode, as, outer_code,
6023 index_code))
6025 push_reload (x, NULL_RTX, loc, (rtx*) 0,
6026 context_reg_class,
6027 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6028 return 1;
6031 /* If a register appearing in an address is the subject of a CLOBBER
6032 in this insn, reload it into some other register to be safe.
6033 The CLOBBER is supposed to make the register unavailable
6034 from before this insn to after it. */
6035 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
6037 push_reload (x, NULL_RTX, loc, (rtx*) 0,
6038 context_reg_class,
6039 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6040 return 1;
6043 return 0;
6045 case SUBREG:
6046 if (REG_P (SUBREG_REG (x)))
6048 /* If this is a SUBREG of a hard register and the resulting register
6049 is of the wrong class, reload the whole SUBREG. This avoids
6050 needless copies if SUBREG_REG is multi-word. */
6051 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6053 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
6055 if (!REG_OK_FOR_CONTEXT (context, regno, mode, as, outer_code,
6056 index_code))
6058 push_reload (x, NULL_RTX, loc, (rtx*) 0,
6059 context_reg_class,
6060 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6061 return 1;
6064 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
6065 is larger than the class size, then reload the whole SUBREG. */
6066 else
6068 enum reg_class rclass = context_reg_class;
6069 if (ira_reg_class_max_nregs [rclass][GET_MODE (SUBREG_REG (x))]
6070 > reg_class_size[(int) rclass])
6072 /* If the inner register will be replaced by a memory
6073 reference, we can do this only if we can replace the
6074 whole subreg by a (narrower) memory reference. If
6075 this is not possible, fall through and reload just
6076 the inner register (including address reloads). */
6077 if (reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
6079 rtx tem = find_reloads_subreg_address (x, opnum,
6080 ADDR_TYPE (type),
6081 ind_levels, insn,
6082 NULL);
6083 if (tem)
6085 push_reload (tem, NULL_RTX, loc, (rtx*) 0, rclass,
6086 GET_MODE (tem), VOIDmode, 0, 0,
6087 opnum, type);
6088 return 1;
6091 else
6093 push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
6094 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6095 return 1;
6100 break;
6102 default:
6103 break;
6107 const char *fmt = GET_RTX_FORMAT (code);
6108 int i;
6110 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6112 if (fmt[i] == 'e')
6113 /* Pass SCRATCH for INDEX_CODE, since CODE can never be a PLUS once
6114 we get here. */
6115 find_reloads_address_1 (mode, as, XEXP (x, i), context,
6116 code, SCRATCH, &XEXP (x, i),
6117 opnum, type, ind_levels, insn);
6121 #undef REG_OK_FOR_CONTEXT
6122 return 0;
6125 /* X, which is found at *LOC, is a part of an address that needs to be
6126 reloaded into a register of class RCLASS. If X is a constant, or if
6127 X is a PLUS that contains a constant, check that the constant is a
6128 legitimate operand and that we are supposed to be able to load
6129 it into the register.
6131 If not, force the constant into memory and reload the MEM instead.
6133 MODE is the mode to use, in case X is an integer constant.
6135 OPNUM and TYPE describe the purpose of any reloads made.
6137 IND_LEVELS says how many levels of indirect addressing this machine
6138 supports. */
6140 static void
6141 find_reloads_address_part (rtx x, rtx *loc, enum reg_class rclass,
6142 enum machine_mode mode, int opnum,
6143 enum reload_type type, int ind_levels)
6145 if (CONSTANT_P (x)
6146 && (!targetm.legitimate_constant_p (mode, x)
6147 || targetm.preferred_reload_class (x, rclass) == NO_REGS))
6149 x = force_const_mem (mode, x);
6150 find_reloads_address (mode, &x, XEXP (x, 0), &XEXP (x, 0),
6151 opnum, type, ind_levels, 0);
6154 else if (GET_CODE (x) == PLUS
6155 && CONSTANT_P (XEXP (x, 1))
6156 && (!targetm.legitimate_constant_p (GET_MODE (x), XEXP (x, 1))
6157 || targetm.preferred_reload_class (XEXP (x, 1), rclass)
6158 == NO_REGS))
6160 rtx tem;
6162 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
6163 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
6164 find_reloads_address (mode, &XEXP (x, 1), XEXP (tem, 0), &XEXP (tem, 0),
6165 opnum, type, ind_levels, 0);
6168 push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
6169 mode, VOIDmode, 0, 0, opnum, type);
6172 /* X, a subreg of a pseudo, is a part of an address that needs to be
6173 reloaded, and the pseusdo is equivalent to a memory location.
6175 Attempt to replace the whole subreg by a (possibly narrower or wider)
6176 memory reference. If this is possible, return this new memory
6177 reference, and push all required address reloads. Otherwise,
6178 return NULL.
6180 OPNUM and TYPE identify the purpose of the reload.
6182 IND_LEVELS says how many levels of indirect addressing are
6183 supported at this point in the address.
6185 INSN, if nonzero, is the insn in which we do the reload. It is used
6186 to determine where to put USEs for pseudos that we have to replace with
6187 stack slots. */
6189 static rtx
6190 find_reloads_subreg_address (rtx x, int opnum, enum reload_type type,
6191 int ind_levels, rtx insn, int *address_reloaded)
6193 enum machine_mode outer_mode = GET_MODE (x);
6194 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
6195 int regno = REGNO (SUBREG_REG (x));
6196 int reloaded = 0;
6197 rtx tem, orig;
6198 int offset;
6200 gcc_assert (reg_equiv_memory_loc (regno) != 0);
6202 /* We cannot replace the subreg with a modified memory reference if:
6204 - we have a paradoxical subreg that implicitly acts as a zero or
6205 sign extension operation due to LOAD_EXTEND_OP;
6207 - we have a subreg that is implicitly supposed to act on the full
6208 register due to WORD_REGISTER_OPERATIONS (see also eliminate_regs);
6210 - the address of the equivalent memory location is mode-dependent; or
6212 - we have a paradoxical subreg and the resulting memory is not
6213 sufficiently aligned to allow access in the wider mode.
6215 In addition, we choose not to perform the replacement for *any*
6216 paradoxical subreg, even if it were possible in principle. This
6217 is to avoid generating wider memory references than necessary.
6219 This corresponds to how previous versions of reload used to handle
6220 paradoxical subregs where no address reload was required. */
6222 if (paradoxical_subreg_p (x))
6223 return NULL;
6225 #ifdef WORD_REGISTER_OPERATIONS
6226 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode)
6227 && ((GET_MODE_SIZE (outer_mode) - 1) / UNITS_PER_WORD
6228 == (GET_MODE_SIZE (inner_mode) - 1) / UNITS_PER_WORD))
6229 return NULL;
6230 #endif
6232 /* Since we don't attempt to handle paradoxical subregs, we can just
6233 call into simplify_subreg, which will handle all remaining checks
6234 for us. */
6235 orig = make_memloc (SUBREG_REG (x), regno);
6236 offset = SUBREG_BYTE (x);
6237 tem = simplify_subreg (outer_mode, orig, inner_mode, offset);
6238 if (!tem || !MEM_P (tem))
6239 return NULL;
6241 /* Now push all required address reloads, if any. */
6242 reloaded = find_reloads_address (GET_MODE (tem), &tem,
6243 XEXP (tem, 0), &XEXP (tem, 0),
6244 opnum, type, ind_levels, insn);
6245 /* ??? Do we need to handle nonzero offsets somehow? */
6246 if (!offset && !rtx_equal_p (tem, orig))
6247 push_reg_equiv_alt_mem (regno, tem);
6249 /* For some processors an address may be valid in the original mode but
6250 not in a smaller mode. For example, ARM accepts a scaled index register
6251 in SImode but not in HImode. Note that this is only a problem if the
6252 address in reg_equiv_mem is already invalid in the new mode; other
6253 cases would be fixed by find_reloads_address as usual.
6255 ??? We attempt to handle such cases here by doing an additional reload
6256 of the full address after the usual processing by find_reloads_address.
6257 Note that this may not work in the general case, but it seems to cover
6258 the cases where this situation currently occurs. A more general fix
6259 might be to reload the *value* instead of the address, but this would
6260 not be expected by the callers of this routine as-is.
6262 If find_reloads_address already completed replaced the address, there
6263 is nothing further to do. */
6264 if (reloaded == 0
6265 && reg_equiv_mem (regno) != 0
6266 && !strict_memory_address_addr_space_p
6267 (GET_MODE (x), XEXP (reg_equiv_mem (regno), 0),
6268 MEM_ADDR_SPACE (reg_equiv_mem (regno))))
6270 push_reload (XEXP (tem, 0), NULL_RTX, &XEXP (tem, 0), (rtx*) 0,
6271 base_reg_class (GET_MODE (tem), MEM_ADDR_SPACE (tem),
6272 MEM, SCRATCH),
6273 GET_MODE (XEXP (tem, 0)), VOIDmode, 0, 0, opnum, type);
6274 reloaded = 1;
6277 /* If this is not a toplevel operand, find_reloads doesn't see this
6278 substitution. We have to emit a USE of the pseudo so that
6279 delete_output_reload can see it. */
6280 if (replace_reloads && recog_data.operand[opnum] != x)
6281 /* We mark the USE with QImode so that we recognize it as one that
6282 can be safely deleted at the end of reload. */
6283 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, SUBREG_REG (x)), insn),
6284 QImode);
6286 if (address_reloaded)
6287 *address_reloaded = reloaded;
6289 return tem;
6292 /* Substitute into the current INSN the registers into which we have reloaded
6293 the things that need reloading. The array `replacements'
6294 contains the locations of all pointers that must be changed
6295 and says what to replace them with.
6297 Return the rtx that X translates into; usually X, but modified. */
6299 void
6300 subst_reloads (rtx insn)
6302 int i;
6304 for (i = 0; i < n_replacements; i++)
6306 struct replacement *r = &replacements[i];
6307 rtx reloadreg = rld[r->what].reg_rtx;
6308 if (reloadreg)
6310 #ifdef DEBUG_RELOAD
6311 /* This checking takes a very long time on some platforms
6312 causing the gcc.c-torture/compile/limits-fnargs.c test
6313 to time out during testing. See PR 31850.
6315 Internal consistency test. Check that we don't modify
6316 anything in the equivalence arrays. Whenever something from
6317 those arrays needs to be reloaded, it must be unshared before
6318 being substituted into; the equivalence must not be modified.
6319 Otherwise, if the equivalence is used after that, it will
6320 have been modified, and the thing substituted (probably a
6321 register) is likely overwritten and not a usable equivalence. */
6322 int check_regno;
6324 for (check_regno = 0; check_regno < max_regno; check_regno++)
6326 #define CHECK_MODF(ARRAY) \
6327 gcc_assert (!(*reg_equivs)[check_regno].ARRAY \
6328 || !loc_mentioned_in_p (r->where, \
6329 (*reg_equivs)[check_regno].ARRAY))
6331 CHECK_MODF (constant);
6332 CHECK_MODF (memory_loc);
6333 CHECK_MODF (address);
6334 CHECK_MODF (mem);
6335 #undef CHECK_MODF
6337 #endif /* DEBUG_RELOAD */
6339 /* If we're replacing a LABEL_REF with a register, there must
6340 already be an indication (to e.g. flow) which label this
6341 register refers to. */
6342 gcc_assert (GET_CODE (*r->where) != LABEL_REF
6343 || !JUMP_P (insn)
6344 || find_reg_note (insn,
6345 REG_LABEL_OPERAND,
6346 XEXP (*r->where, 0))
6347 || label_is_jump_target_p (XEXP (*r->where, 0), insn));
6349 /* Encapsulate RELOADREG so its machine mode matches what
6350 used to be there. Note that gen_lowpart_common will
6351 do the wrong thing if RELOADREG is multi-word. RELOADREG
6352 will always be a REG here. */
6353 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
6354 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6356 *r->where = reloadreg;
6358 /* If reload got no reg and isn't optional, something's wrong. */
6359 else
6360 gcc_assert (rld[r->what].optional);
6364 /* Make a copy of any replacements being done into X and move those
6365 copies to locations in Y, a copy of X. */
6367 void
6368 copy_replacements (rtx x, rtx y)
6370 copy_replacements_1 (&x, &y, n_replacements);
6373 static void
6374 copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
6376 int i, j;
6377 rtx x, y;
6378 struct replacement *r;
6379 enum rtx_code code;
6380 const char *fmt;
6382 for (j = 0; j < orig_replacements; j++)
6383 if (replacements[j].where == px)
6385 r = &replacements[n_replacements++];
6386 r->where = py;
6387 r->what = replacements[j].what;
6388 r->mode = replacements[j].mode;
6391 x = *px;
6392 y = *py;
6393 code = GET_CODE (x);
6394 fmt = GET_RTX_FORMAT (code);
6396 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6398 if (fmt[i] == 'e')
6399 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6400 else if (fmt[i] == 'E')
6401 for (j = XVECLEN (x, i); --j >= 0; )
6402 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6403 orig_replacements);
6407 /* Change any replacements being done to *X to be done to *Y. */
6409 void
6410 move_replacements (rtx *x, rtx *y)
6412 int i;
6414 for (i = 0; i < n_replacements; i++)
6415 if (replacements[i].where == x)
6416 replacements[i].where = y;
6419 /* If LOC was scheduled to be replaced by something, return the replacement.
6420 Otherwise, return *LOC. */
6423 find_replacement (rtx *loc)
6425 struct replacement *r;
6427 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6429 rtx reloadreg = rld[r->what].reg_rtx;
6431 if (reloadreg && r->where == loc)
6433 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6434 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6436 return reloadreg;
6438 else if (reloadreg && GET_CODE (*loc) == SUBREG
6439 && r->where == &SUBREG_REG (*loc))
6441 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6442 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6444 return simplify_gen_subreg (GET_MODE (*loc), reloadreg,
6445 GET_MODE (SUBREG_REG (*loc)),
6446 SUBREG_BYTE (*loc));
6450 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6451 what's inside and make a new rtl if so. */
6452 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6453 || GET_CODE (*loc) == MULT)
6455 rtx x = find_replacement (&XEXP (*loc, 0));
6456 rtx y = find_replacement (&XEXP (*loc, 1));
6458 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6459 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6462 return *loc;
6465 /* Return nonzero if register in range [REGNO, ENDREGNO)
6466 appears either explicitly or implicitly in X
6467 other than being stored into (except for earlyclobber operands).
6469 References contained within the substructure at LOC do not count.
6470 LOC may be zero, meaning don't ignore anything.
6472 This is similar to refers_to_regno_p in rtlanal.c except that we
6473 look at equivalences for pseudos that didn't get hard registers. */
6475 static int
6476 refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6477 rtx x, rtx *loc)
6479 int i;
6480 unsigned int r;
6481 RTX_CODE code;
6482 const char *fmt;
6484 if (x == 0)
6485 return 0;
6487 repeat:
6488 code = GET_CODE (x);
6490 switch (code)
6492 case REG:
6493 r = REGNO (x);
6495 /* If this is a pseudo, a hard register must not have been allocated.
6496 X must therefore either be a constant or be in memory. */
6497 if (r >= FIRST_PSEUDO_REGISTER)
6499 if (reg_equiv_memory_loc (r))
6500 return refers_to_regno_for_reload_p (regno, endregno,
6501 reg_equiv_memory_loc (r),
6502 (rtx*) 0);
6504 gcc_assert (reg_equiv_constant (r) || reg_equiv_invariant (r));
6505 return 0;
6508 return (endregno > r
6509 && regno < r + (r < FIRST_PSEUDO_REGISTER
6510 ? hard_regno_nregs[r][GET_MODE (x)]
6511 : 1));
6513 case SUBREG:
6514 /* If this is a SUBREG of a hard reg, we can see exactly which
6515 registers are being modified. Otherwise, handle normally. */
6516 if (REG_P (SUBREG_REG (x))
6517 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6519 unsigned int inner_regno = subreg_regno (x);
6520 unsigned int inner_endregno
6521 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6522 ? subreg_nregs (x) : 1);
6524 return endregno > inner_regno && regno < inner_endregno;
6526 break;
6528 case CLOBBER:
6529 case SET:
6530 if (&SET_DEST (x) != loc
6531 /* Note setting a SUBREG counts as referring to the REG it is in for
6532 a pseudo but not for hard registers since we can
6533 treat each word individually. */
6534 && ((GET_CODE (SET_DEST (x)) == SUBREG
6535 && loc != &SUBREG_REG (SET_DEST (x))
6536 && REG_P (SUBREG_REG (SET_DEST (x)))
6537 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6538 && refers_to_regno_for_reload_p (regno, endregno,
6539 SUBREG_REG (SET_DEST (x)),
6540 loc))
6541 /* If the output is an earlyclobber operand, this is
6542 a conflict. */
6543 || ((!REG_P (SET_DEST (x))
6544 || earlyclobber_operand_p (SET_DEST (x)))
6545 && refers_to_regno_for_reload_p (regno, endregno,
6546 SET_DEST (x), loc))))
6547 return 1;
6549 if (code == CLOBBER || loc == &SET_SRC (x))
6550 return 0;
6551 x = SET_SRC (x);
6552 goto repeat;
6554 default:
6555 break;
6558 /* X does not match, so try its subexpressions. */
6560 fmt = GET_RTX_FORMAT (code);
6561 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6563 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6565 if (i == 0)
6567 x = XEXP (x, 0);
6568 goto repeat;
6570 else
6571 if (refers_to_regno_for_reload_p (regno, endregno,
6572 XEXP (x, i), loc))
6573 return 1;
6575 else if (fmt[i] == 'E')
6577 int j;
6578 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6579 if (loc != &XVECEXP (x, i, j)
6580 && refers_to_regno_for_reload_p (regno, endregno,
6581 XVECEXP (x, i, j), loc))
6582 return 1;
6585 return 0;
6588 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6589 we check if any register number in X conflicts with the relevant register
6590 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6591 contains a MEM (we don't bother checking for memory addresses that can't
6592 conflict because we expect this to be a rare case.
6594 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6595 that we look at equivalences for pseudos that didn't get hard registers. */
6598 reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6600 int regno, endregno;
6602 /* Overly conservative. */
6603 if (GET_CODE (x) == STRICT_LOW_PART
6604 || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
6605 x = XEXP (x, 0);
6607 /* If either argument is a constant, then modifying X can not affect IN. */
6608 if (CONSTANT_P (x) || CONSTANT_P (in))
6609 return 0;
6610 else if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
6611 return refers_to_mem_for_reload_p (in);
6612 else if (GET_CODE (x) == SUBREG)
6614 regno = REGNO (SUBREG_REG (x));
6615 if (regno < FIRST_PSEUDO_REGISTER)
6616 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6617 GET_MODE (SUBREG_REG (x)),
6618 SUBREG_BYTE (x),
6619 GET_MODE (x));
6620 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6621 ? subreg_nregs (x) : 1);
6623 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6625 else if (REG_P (x))
6627 regno = REGNO (x);
6629 /* If this is a pseudo, it must not have been assigned a hard register.
6630 Therefore, it must either be in memory or be a constant. */
6632 if (regno >= FIRST_PSEUDO_REGISTER)
6634 if (reg_equiv_memory_loc (regno))
6635 return refers_to_mem_for_reload_p (in);
6636 gcc_assert (reg_equiv_constant (regno));
6637 return 0;
6640 endregno = END_HARD_REGNO (x);
6642 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6644 else if (MEM_P (x))
6645 return refers_to_mem_for_reload_p (in);
6646 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6647 || GET_CODE (x) == CC0)
6648 return reg_mentioned_p (x, in);
6649 else
6651 gcc_assert (GET_CODE (x) == PLUS);
6653 /* We actually want to know if X is mentioned somewhere inside IN.
6654 We must not say that (plus (sp) (const_int 124)) is in
6655 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6656 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6657 into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
6658 while (MEM_P (in))
6659 in = XEXP (in, 0);
6660 if (REG_P (in))
6661 return 0;
6662 else if (GET_CODE (in) == PLUS)
6663 return (rtx_equal_p (x, in)
6664 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6665 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6666 else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6667 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6670 gcc_unreachable ();
6673 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6674 registers. */
6676 static int
6677 refers_to_mem_for_reload_p (rtx x)
6679 const char *fmt;
6680 int i;
6682 if (MEM_P (x))
6683 return 1;
6685 if (REG_P (x))
6686 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6687 && reg_equiv_memory_loc (REGNO (x)));
6689 fmt = GET_RTX_FORMAT (GET_CODE (x));
6690 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6691 if (fmt[i] == 'e'
6692 && (MEM_P (XEXP (x, i))
6693 || refers_to_mem_for_reload_p (XEXP (x, i))))
6694 return 1;
6696 return 0;
6699 /* Check the insns before INSN to see if there is a suitable register
6700 containing the same value as GOAL.
6701 If OTHER is -1, look for a register in class RCLASS.
6702 Otherwise, just see if register number OTHER shares GOAL's value.
6704 Return an rtx for the register found, or zero if none is found.
6706 If RELOAD_REG_P is (short *)1,
6707 we reject any hard reg that appears in reload_reg_rtx
6708 because such a hard reg is also needed coming into this insn.
6710 If RELOAD_REG_P is any other nonzero value,
6711 it is a vector indexed by hard reg number
6712 and we reject any hard reg whose element in the vector is nonnegative
6713 as well as any that appears in reload_reg_rtx.
6715 If GOAL is zero, then GOALREG is a register number; we look
6716 for an equivalent for that register.
6718 MODE is the machine mode of the value we want an equivalence for.
6719 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6721 This function is used by jump.c as well as in the reload pass.
6723 If GOAL is the sum of the stack pointer and a constant, we treat it
6724 as if it were a constant except that sp is required to be unchanging. */
6727 find_equiv_reg (rtx goal, rtx insn, enum reg_class rclass, int other,
6728 short *reload_reg_p, int goalreg, enum machine_mode mode)
6730 rtx p = insn;
6731 rtx goaltry, valtry, value, where;
6732 rtx pat;
6733 int regno = -1;
6734 int valueno;
6735 int goal_mem = 0;
6736 int goal_const = 0;
6737 int goal_mem_addr_varies = 0;
6738 int need_stable_sp = 0;
6739 int nregs;
6740 int valuenregs;
6741 int num = 0;
6743 if (goal == 0)
6744 regno = goalreg;
6745 else if (REG_P (goal))
6746 regno = REGNO (goal);
6747 else if (MEM_P (goal))
6749 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6750 if (MEM_VOLATILE_P (goal))
6751 return 0;
6752 if (flag_float_store && SCALAR_FLOAT_MODE_P (GET_MODE (goal)))
6753 return 0;
6754 /* An address with side effects must be reexecuted. */
6755 switch (code)
6757 case POST_INC:
6758 case PRE_INC:
6759 case POST_DEC:
6760 case PRE_DEC:
6761 case POST_MODIFY:
6762 case PRE_MODIFY:
6763 return 0;
6764 default:
6765 break;
6767 goal_mem = 1;
6769 else if (CONSTANT_P (goal))
6770 goal_const = 1;
6771 else if (GET_CODE (goal) == PLUS
6772 && XEXP (goal, 0) == stack_pointer_rtx
6773 && CONSTANT_P (XEXP (goal, 1)))
6774 goal_const = need_stable_sp = 1;
6775 else if (GET_CODE (goal) == PLUS
6776 && XEXP (goal, 0) == frame_pointer_rtx
6777 && CONSTANT_P (XEXP (goal, 1)))
6778 goal_const = 1;
6779 else
6780 return 0;
6782 num = 0;
6783 /* Scan insns back from INSN, looking for one that copies
6784 a value into or out of GOAL.
6785 Stop and give up if we reach a label. */
6787 while (1)
6789 p = PREV_INSN (p);
6790 if (p && DEBUG_INSN_P (p))
6791 continue;
6792 num++;
6793 if (p == 0 || LABEL_P (p)
6794 || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
6795 return 0;
6797 /* Don't reuse register contents from before a setjmp-type
6798 function call; on the second return (from the longjmp) it
6799 might have been clobbered by a later reuse. It doesn't
6800 seem worthwhile to actually go and see if it is actually
6801 reused even if that information would be readily available;
6802 just don't reuse it across the setjmp call. */
6803 if (CALL_P (p) && find_reg_note (p, REG_SETJMP, NULL_RTX))
6804 return 0;
6806 if (NONJUMP_INSN_P (p)
6807 /* If we don't want spill regs ... */
6808 && (! (reload_reg_p != 0
6809 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6810 /* ... then ignore insns introduced by reload; they aren't
6811 useful and can cause results in reload_as_needed to be
6812 different from what they were when calculating the need for
6813 spills. If we notice an input-reload insn here, we will
6814 reject it below, but it might hide a usable equivalent.
6815 That makes bad code. It may even fail: perhaps no reg was
6816 spilled for this insn because it was assumed we would find
6817 that equivalent. */
6818 || INSN_UID (p) < reload_first_uid))
6820 rtx tem;
6821 pat = single_set (p);
6823 /* First check for something that sets some reg equal to GOAL. */
6824 if (pat != 0
6825 && ((regno >= 0
6826 && true_regnum (SET_SRC (pat)) == regno
6827 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6829 (regno >= 0
6830 && true_regnum (SET_DEST (pat)) == regno
6831 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6833 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6834 /* When looking for stack pointer + const,
6835 make sure we don't use a stack adjust. */
6836 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6837 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6838 || (goal_mem
6839 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6840 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6841 || (goal_mem
6842 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6843 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6844 /* If we are looking for a constant,
6845 and something equivalent to that constant was copied
6846 into a reg, we can use that reg. */
6847 || (goal_const && REG_NOTES (p) != 0
6848 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6849 && ((rtx_equal_p (XEXP (tem, 0), goal)
6850 && (valueno
6851 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6852 || (REG_P (SET_DEST (pat))
6853 && CONST_DOUBLE_AS_FLOAT_P (XEXP (tem, 0))
6854 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6855 && CONST_INT_P (goal)
6856 && 0 != (goaltry
6857 = operand_subword (XEXP (tem, 0), 0, 0,
6858 VOIDmode))
6859 && rtx_equal_p (goal, goaltry)
6860 && (valtry
6861 = operand_subword (SET_DEST (pat), 0, 0,
6862 VOIDmode))
6863 && (valueno = true_regnum (valtry)) >= 0)))
6864 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6865 NULL_RTX))
6866 && REG_P (SET_DEST (pat))
6867 && CONST_DOUBLE_AS_FLOAT_P (XEXP (tem, 0))
6868 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6869 && CONST_INT_P (goal)
6870 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6871 VOIDmode))
6872 && rtx_equal_p (goal, goaltry)
6873 && (valtry
6874 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6875 && (valueno = true_regnum (valtry)) >= 0)))
6877 if (other >= 0)
6879 if (valueno != other)
6880 continue;
6882 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6883 continue;
6884 else if (!in_hard_reg_set_p (reg_class_contents[(int) rclass],
6885 mode, valueno))
6886 continue;
6887 value = valtry;
6888 where = p;
6889 break;
6894 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6895 (or copying VALUE into GOAL, if GOAL is also a register).
6896 Now verify that VALUE is really valid. */
6898 /* VALUENO is the register number of VALUE; a hard register. */
6900 /* Don't try to re-use something that is killed in this insn. We want
6901 to be able to trust REG_UNUSED notes. */
6902 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6903 return 0;
6905 /* If we propose to get the value from the stack pointer or if GOAL is
6906 a MEM based on the stack pointer, we need a stable SP. */
6907 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6908 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6909 goal)))
6910 need_stable_sp = 1;
6912 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6913 if (GET_MODE (value) != mode)
6914 return 0;
6916 /* Reject VALUE if it was loaded from GOAL
6917 and is also a register that appears in the address of GOAL. */
6919 if (goal_mem && value == SET_DEST (single_set (where))
6920 && refers_to_regno_for_reload_p (valueno, end_hard_regno (mode, valueno),
6921 goal, (rtx*) 0))
6922 return 0;
6924 /* Reject registers that overlap GOAL. */
6926 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6927 nregs = hard_regno_nregs[regno][mode];
6928 else
6929 nregs = 1;
6930 valuenregs = hard_regno_nregs[valueno][mode];
6932 if (!goal_mem && !goal_const
6933 && regno + nregs > valueno && regno < valueno + valuenregs)
6934 return 0;
6936 /* Reject VALUE if it is one of the regs reserved for reloads.
6937 Reload1 knows how to reuse them anyway, and it would get
6938 confused if we allocated one without its knowledge.
6939 (Now that insns introduced by reload are ignored above,
6940 this case shouldn't happen, but I'm not positive.) */
6942 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6944 int i;
6945 for (i = 0; i < valuenregs; ++i)
6946 if (reload_reg_p[valueno + i] >= 0)
6947 return 0;
6950 /* Reject VALUE if it is a register being used for an input reload
6951 even if it is not one of those reserved. */
6953 if (reload_reg_p != 0)
6955 int i;
6956 for (i = 0; i < n_reloads; i++)
6957 if (rld[i].reg_rtx != 0 && rld[i].in)
6959 int regno1 = REGNO (rld[i].reg_rtx);
6960 int nregs1 = hard_regno_nregs[regno1]
6961 [GET_MODE (rld[i].reg_rtx)];
6962 if (regno1 < valueno + valuenregs
6963 && regno1 + nregs1 > valueno)
6964 return 0;
6968 if (goal_mem)
6969 /* We must treat frame pointer as varying here,
6970 since it can vary--in a nonlocal goto as generated by expand_goto. */
6971 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6973 /* Now verify that the values of GOAL and VALUE remain unaltered
6974 until INSN is reached. */
6976 p = insn;
6977 while (1)
6979 p = PREV_INSN (p);
6980 if (p == where)
6981 return value;
6983 /* Don't trust the conversion past a function call
6984 if either of the two is in a call-clobbered register, or memory. */
6985 if (CALL_P (p))
6987 int i;
6989 if (goal_mem || need_stable_sp)
6990 return 0;
6992 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6993 for (i = 0; i < nregs; ++i)
6994 if (call_used_regs[regno + i]
6995 || HARD_REGNO_CALL_PART_CLOBBERED (regno + i, mode))
6996 return 0;
6998 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6999 for (i = 0; i < valuenregs; ++i)
7000 if (call_used_regs[valueno + i]
7001 || HARD_REGNO_CALL_PART_CLOBBERED (valueno + i, mode))
7002 return 0;
7005 if (INSN_P (p))
7007 pat = PATTERN (p);
7009 /* Watch out for unspec_volatile, and volatile asms. */
7010 if (volatile_insn_p (pat))
7011 return 0;
7013 /* If this insn P stores in either GOAL or VALUE, return 0.
7014 If GOAL is a memory ref and this insn writes memory, return 0.
7015 If GOAL is a memory ref and its address is not constant,
7016 and this insn P changes a register used in GOAL, return 0. */
7018 if (GET_CODE (pat) == COND_EXEC)
7019 pat = COND_EXEC_CODE (pat);
7020 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
7022 rtx dest = SET_DEST (pat);
7023 while (GET_CODE (dest) == SUBREG
7024 || GET_CODE (dest) == ZERO_EXTRACT
7025 || GET_CODE (dest) == STRICT_LOW_PART)
7026 dest = XEXP (dest, 0);
7027 if (REG_P (dest))
7029 int xregno = REGNO (dest);
7030 int xnregs;
7031 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
7032 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
7033 else
7034 xnregs = 1;
7035 if (xregno < regno + nregs && xregno + xnregs > regno)
7036 return 0;
7037 if (xregno < valueno + valuenregs
7038 && xregno + xnregs > valueno)
7039 return 0;
7040 if (goal_mem_addr_varies
7041 && reg_overlap_mentioned_for_reload_p (dest, goal))
7042 return 0;
7043 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
7044 return 0;
7046 else if (goal_mem && MEM_P (dest)
7047 && ! push_operand (dest, GET_MODE (dest)))
7048 return 0;
7049 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
7050 && reg_equiv_memory_loc (regno) != 0)
7051 return 0;
7052 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
7053 return 0;
7055 else if (GET_CODE (pat) == PARALLEL)
7057 int i;
7058 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
7060 rtx v1 = XVECEXP (pat, 0, i);
7061 if (GET_CODE (v1) == COND_EXEC)
7062 v1 = COND_EXEC_CODE (v1);
7063 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
7065 rtx dest = SET_DEST (v1);
7066 while (GET_CODE (dest) == SUBREG
7067 || GET_CODE (dest) == ZERO_EXTRACT
7068 || GET_CODE (dest) == STRICT_LOW_PART)
7069 dest = XEXP (dest, 0);
7070 if (REG_P (dest))
7072 int xregno = REGNO (dest);
7073 int xnregs;
7074 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
7075 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
7076 else
7077 xnregs = 1;
7078 if (xregno < regno + nregs
7079 && xregno + xnregs > regno)
7080 return 0;
7081 if (xregno < valueno + valuenregs
7082 && xregno + xnregs > valueno)
7083 return 0;
7084 if (goal_mem_addr_varies
7085 && reg_overlap_mentioned_for_reload_p (dest,
7086 goal))
7087 return 0;
7088 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
7089 return 0;
7091 else if (goal_mem && MEM_P (dest)
7092 && ! push_operand (dest, GET_MODE (dest)))
7093 return 0;
7094 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
7095 && reg_equiv_memory_loc (regno) != 0)
7096 return 0;
7097 else if (need_stable_sp
7098 && push_operand (dest, GET_MODE (dest)))
7099 return 0;
7104 if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
7106 rtx link;
7108 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
7109 link = XEXP (link, 1))
7111 pat = XEXP (link, 0);
7112 if (GET_CODE (pat) == CLOBBER)
7114 rtx dest = SET_DEST (pat);
7116 if (REG_P (dest))
7118 int xregno = REGNO (dest);
7119 int xnregs
7120 = hard_regno_nregs[xregno][GET_MODE (dest)];
7122 if (xregno < regno + nregs
7123 && xregno + xnregs > regno)
7124 return 0;
7125 else if (xregno < valueno + valuenregs
7126 && xregno + xnregs > valueno)
7127 return 0;
7128 else if (goal_mem_addr_varies
7129 && reg_overlap_mentioned_for_reload_p (dest,
7130 goal))
7131 return 0;
7134 else if (goal_mem && MEM_P (dest)
7135 && ! push_operand (dest, GET_MODE (dest)))
7136 return 0;
7137 else if (need_stable_sp
7138 && push_operand (dest, GET_MODE (dest)))
7139 return 0;
7144 #ifdef AUTO_INC_DEC
7145 /* If this insn auto-increments or auto-decrements
7146 either regno or valueno, return 0 now.
7147 If GOAL is a memory ref and its address is not constant,
7148 and this insn P increments a register used in GOAL, return 0. */
7150 rtx link;
7152 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
7153 if (REG_NOTE_KIND (link) == REG_INC
7154 && REG_P (XEXP (link, 0)))
7156 int incno = REGNO (XEXP (link, 0));
7157 if (incno < regno + nregs && incno >= regno)
7158 return 0;
7159 if (incno < valueno + valuenregs && incno >= valueno)
7160 return 0;
7161 if (goal_mem_addr_varies
7162 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
7163 goal))
7164 return 0;
7167 #endif
7172 /* Find a place where INCED appears in an increment or decrement operator
7173 within X, and return the amount INCED is incremented or decremented by.
7174 The value is always positive. */
7176 static int
7177 find_inc_amount (rtx x, rtx inced)
7179 enum rtx_code code = GET_CODE (x);
7180 const char *fmt;
7181 int i;
7183 if (code == MEM)
7185 rtx addr = XEXP (x, 0);
7186 if ((GET_CODE (addr) == PRE_DEC
7187 || GET_CODE (addr) == POST_DEC
7188 || GET_CODE (addr) == PRE_INC
7189 || GET_CODE (addr) == POST_INC)
7190 && XEXP (addr, 0) == inced)
7191 return GET_MODE_SIZE (GET_MODE (x));
7192 else if ((GET_CODE (addr) == PRE_MODIFY
7193 || GET_CODE (addr) == POST_MODIFY)
7194 && GET_CODE (XEXP (addr, 1)) == PLUS
7195 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
7196 && XEXP (addr, 0) == inced
7197 && CONST_INT_P (XEXP (XEXP (addr, 1), 1)))
7199 i = INTVAL (XEXP (XEXP (addr, 1), 1));
7200 return i < 0 ? -i : i;
7204 fmt = GET_RTX_FORMAT (code);
7205 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7207 if (fmt[i] == 'e')
7209 int tem = find_inc_amount (XEXP (x, i), inced);
7210 if (tem != 0)
7211 return tem;
7213 if (fmt[i] == 'E')
7215 int j;
7216 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7218 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
7219 if (tem != 0)
7220 return tem;
7225 return 0;
7228 /* Return 1 if registers from REGNO to ENDREGNO are the subjects of a
7229 REG_INC note in insn INSN. REGNO must refer to a hard register. */
7231 #ifdef AUTO_INC_DEC
7232 static int
7233 reg_inc_found_and_valid_p (unsigned int regno, unsigned int endregno,
7234 rtx insn)
7236 rtx link;
7238 gcc_assert (insn);
7240 if (! INSN_P (insn))
7241 return 0;
7243 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
7244 if (REG_NOTE_KIND (link) == REG_INC)
7246 unsigned int test = (int) REGNO (XEXP (link, 0));
7247 if (test >= regno && test < endregno)
7248 return 1;
7250 return 0;
7252 #else
7254 #define reg_inc_found_and_valid_p(regno,endregno,insn) 0
7256 #endif
7258 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
7259 If SETS is 1, also consider SETs. If SETS is 2, enable checking
7260 REG_INC. REGNO must refer to a hard register. */
7263 regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
7264 int sets)
7266 unsigned int nregs, endregno;
7268 /* regno must be a hard register. */
7269 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
7271 nregs = hard_regno_nregs[regno][mode];
7272 endregno = regno + nregs;
7274 if ((GET_CODE (PATTERN (insn)) == CLOBBER
7275 || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7276 && REG_P (XEXP (PATTERN (insn), 0)))
7278 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
7280 return test >= regno && test < endregno;
7283 if (sets == 2 && reg_inc_found_and_valid_p (regno, endregno, insn))
7284 return 1;
7286 if (GET_CODE (PATTERN (insn)) == PARALLEL)
7288 int i = XVECLEN (PATTERN (insn), 0) - 1;
7290 for (; i >= 0; i--)
7292 rtx elt = XVECEXP (PATTERN (insn), 0, i);
7293 if ((GET_CODE (elt) == CLOBBER
7294 || (sets == 1 && GET_CODE (elt) == SET))
7295 && REG_P (XEXP (elt, 0)))
7297 unsigned int test = REGNO (XEXP (elt, 0));
7299 if (test >= regno && test < endregno)
7300 return 1;
7302 if (sets == 2
7303 && reg_inc_found_and_valid_p (regno, endregno, elt))
7304 return 1;
7308 return 0;
7311 /* Find the low part, with mode MODE, of a hard regno RELOADREG. */
7313 reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
7315 int regno;
7317 if (GET_MODE (reloadreg) == mode)
7318 return reloadreg;
7320 regno = REGNO (reloadreg);
7322 if (REG_WORDS_BIG_ENDIAN)
7323 regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
7324 - (int) hard_regno_nregs[regno][mode];
7326 return gen_rtx_REG (mode, regno);
7329 static const char *const reload_when_needed_name[] =
7331 "RELOAD_FOR_INPUT",
7332 "RELOAD_FOR_OUTPUT",
7333 "RELOAD_FOR_INSN",
7334 "RELOAD_FOR_INPUT_ADDRESS",
7335 "RELOAD_FOR_INPADDR_ADDRESS",
7336 "RELOAD_FOR_OUTPUT_ADDRESS",
7337 "RELOAD_FOR_OUTADDR_ADDRESS",
7338 "RELOAD_FOR_OPERAND_ADDRESS",
7339 "RELOAD_FOR_OPADDR_ADDR",
7340 "RELOAD_OTHER",
7341 "RELOAD_FOR_OTHER_ADDRESS"
7344 /* These functions are used to print the variables set by 'find_reloads' */
7346 DEBUG_FUNCTION void
7347 debug_reload_to_stream (FILE *f)
7349 int r;
7350 const char *prefix;
7352 if (! f)
7353 f = stderr;
7354 for (r = 0; r < n_reloads; r++)
7356 fprintf (f, "Reload %d: ", r);
7358 if (rld[r].in != 0)
7360 fprintf (f, "reload_in (%s) = ",
7361 GET_MODE_NAME (rld[r].inmode));
7362 print_inline_rtx (f, rld[r].in, 24);
7363 fprintf (f, "\n\t");
7366 if (rld[r].out != 0)
7368 fprintf (f, "reload_out (%s) = ",
7369 GET_MODE_NAME (rld[r].outmode));
7370 print_inline_rtx (f, rld[r].out, 24);
7371 fprintf (f, "\n\t");
7374 fprintf (f, "%s, ", reg_class_names[(int) rld[r].rclass]);
7376 fprintf (f, "%s (opnum = %d)",
7377 reload_when_needed_name[(int) rld[r].when_needed],
7378 rld[r].opnum);
7380 if (rld[r].optional)
7381 fprintf (f, ", optional");
7383 if (rld[r].nongroup)
7384 fprintf (f, ", nongroup");
7386 if (rld[r].inc != 0)
7387 fprintf (f, ", inc by %d", rld[r].inc);
7389 if (rld[r].nocombine)
7390 fprintf (f, ", can't combine");
7392 if (rld[r].secondary_p)
7393 fprintf (f, ", secondary_reload_p");
7395 if (rld[r].in_reg != 0)
7397 fprintf (f, "\n\treload_in_reg: ");
7398 print_inline_rtx (f, rld[r].in_reg, 24);
7401 if (rld[r].out_reg != 0)
7403 fprintf (f, "\n\treload_out_reg: ");
7404 print_inline_rtx (f, rld[r].out_reg, 24);
7407 if (rld[r].reg_rtx != 0)
7409 fprintf (f, "\n\treload_reg_rtx: ");
7410 print_inline_rtx (f, rld[r].reg_rtx, 24);
7413 prefix = "\n\t";
7414 if (rld[r].secondary_in_reload != -1)
7416 fprintf (f, "%ssecondary_in_reload = %d",
7417 prefix, rld[r].secondary_in_reload);
7418 prefix = ", ";
7421 if (rld[r].secondary_out_reload != -1)
7422 fprintf (f, "%ssecondary_out_reload = %d\n",
7423 prefix, rld[r].secondary_out_reload);
7425 prefix = "\n\t";
7426 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7428 fprintf (f, "%ssecondary_in_icode = %s", prefix,
7429 insn_data[rld[r].secondary_in_icode].name);
7430 prefix = ", ";
7433 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7434 fprintf (f, "%ssecondary_out_icode = %s", prefix,
7435 insn_data[rld[r].secondary_out_icode].name);
7437 fprintf (f, "\n");
7441 DEBUG_FUNCTION void
7442 debug_reload (void)
7444 debug_reload_to_stream (stderr);