calls.c, [...]: Call targetm.calls.function_arg...
[official-gcc.git] / gcc / function.c
blob8a03c5ac42c73eb558874ad8c99884d512599945
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4 2010 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "toplev.h"
55 #include "hashtab.h"
56 #include "ggc.h"
57 #include "tm_p.h"
58 #include "integrate.h"
59 #include "langhooks.h"
60 #include "target.h"
61 #include "cfglayout.h"
62 #include "gimple.h"
63 #include "tree-pass.h"
64 #include "predict.h"
65 #include "df.h"
66 #include "timevar.h"
67 #include "vecprim.h"
69 /* So we can assign to cfun in this file. */
70 #undef cfun
72 #ifndef STACK_ALIGNMENT_NEEDED
73 #define STACK_ALIGNMENT_NEEDED 1
74 #endif
76 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
78 /* Some systems use __main in a way incompatible with its use in gcc, in these
79 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
80 give the same symbol without quotes for an alternative entry point. You
81 must define both, or neither. */
82 #ifndef NAME__MAIN
83 #define NAME__MAIN "__main"
84 #endif
86 /* Round a value to the lowest integer less than it that is a multiple of
87 the required alignment. Avoid using division in case the value is
88 negative. Assume the alignment is a power of two. */
89 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
91 /* Similar, but round to the next highest integer that meets the
92 alignment. */
93 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
95 /* Nonzero if function being compiled doesn't contain any calls
96 (ignoring the prologue and epilogue). This is set prior to
97 local register allocation and is valid for the remaining
98 compiler passes. */
99 int current_function_is_leaf;
101 /* Nonzero if function being compiled doesn't modify the stack pointer
102 (ignoring the prologue and epilogue). This is only valid after
103 pass_stack_ptr_mod has run. */
104 int current_function_sp_is_unchanging;
106 /* Nonzero if the function being compiled is a leaf function which only
107 uses leaf registers. This is valid after reload (specifically after
108 sched2) and is useful only if the port defines LEAF_REGISTERS. */
109 int current_function_uses_only_leaf_regs;
111 /* Nonzero once virtual register instantiation has been done.
112 assign_stack_local uses frame_pointer_rtx when this is nonzero.
113 calls.c:emit_library_call_value_1 uses it to set up
114 post-instantiation libcalls. */
115 int virtuals_instantiated;
117 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
118 static GTY(()) int funcdef_no;
120 /* These variables hold pointers to functions to create and destroy
121 target specific, per-function data structures. */
122 struct machine_function * (*init_machine_status) (void);
124 /* The currently compiled function. */
125 struct function *cfun = 0;
127 /* These hashes record the prologue and epilogue insns. */
128 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
129 htab_t prologue_insn_hash;
130 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
131 htab_t epilogue_insn_hash;
134 htab_t types_used_by_vars_hash = NULL;
135 VEC(tree,gc) *types_used_by_cur_var_decl;
137 /* Forward declarations. */
139 static struct temp_slot *find_temp_slot_from_address (rtx);
140 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
141 static void pad_below (struct args_size *, enum machine_mode, tree);
142 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
143 static int all_blocks (tree, tree *);
144 static tree *get_block_vector (tree, int *);
145 extern tree debug_find_var_in_block_tree (tree, tree);
146 /* We always define `record_insns' even if it's not used so that we
147 can always export `prologue_epilogue_contains'. */
148 static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
149 static bool contains (const_rtx, htab_t);
150 #ifdef HAVE_return
151 static void emit_return_into_block (basic_block);
152 #endif
153 static void prepare_function_start (void);
154 static void do_clobber_return_reg (rtx, void *);
155 static void do_use_return_reg (rtx, void *);
156 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
158 /* Stack of nested functions. */
159 /* Keep track of the cfun stack. */
161 typedef struct function *function_p;
163 DEF_VEC_P(function_p);
164 DEF_VEC_ALLOC_P(function_p,heap);
165 static VEC(function_p,heap) *function_context_stack;
167 /* Save the current context for compilation of a nested function.
168 This is called from language-specific code. */
170 void
171 push_function_context (void)
173 if (cfun == 0)
174 allocate_struct_function (NULL, false);
176 VEC_safe_push (function_p, heap, function_context_stack, cfun);
177 set_cfun (NULL);
180 /* Restore the last saved context, at the end of a nested function.
181 This function is called from language-specific code. */
183 void
184 pop_function_context (void)
186 struct function *p = VEC_pop (function_p, function_context_stack);
187 set_cfun (p);
188 current_function_decl = p->decl;
190 /* Reset variables that have known state during rtx generation. */
191 virtuals_instantiated = 0;
192 generating_concat_p = 1;
195 /* Clear out all parts of the state in F that can safely be discarded
196 after the function has been parsed, but not compiled, to let
197 garbage collection reclaim the memory. */
199 void
200 free_after_parsing (struct function *f)
202 f->language = 0;
205 /* Clear out all parts of the state in F that can safely be discarded
206 after the function has been compiled, to let garbage collection
207 reclaim the memory. */
209 void
210 free_after_compilation (struct function *f)
212 prologue_insn_hash = NULL;
213 epilogue_insn_hash = NULL;
215 if (crtl->emit.regno_pointer_align)
216 free (crtl->emit.regno_pointer_align);
218 memset (crtl, 0, sizeof (struct rtl_data));
219 f->eh = NULL;
220 f->machine = NULL;
221 f->cfg = NULL;
223 regno_reg_rtx = NULL;
224 insn_locators_free ();
227 /* Return size needed for stack frame based on slots so far allocated.
228 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
229 the caller may have to do that. */
231 HOST_WIDE_INT
232 get_frame_size (void)
234 if (FRAME_GROWS_DOWNWARD)
235 return -frame_offset;
236 else
237 return frame_offset;
240 /* Issue an error message and return TRUE if frame OFFSET overflows in
241 the signed target pointer arithmetics for function FUNC. Otherwise
242 return FALSE. */
244 bool
245 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
247 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
249 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
250 /* Leave room for the fixed part of the frame. */
251 - 64 * UNITS_PER_WORD)
253 error_at (DECL_SOURCE_LOCATION (func),
254 "total size of local objects too large");
255 return TRUE;
258 return FALSE;
261 /* Return stack slot alignment in bits for TYPE and MODE. */
263 static unsigned int
264 get_stack_local_alignment (tree type, enum machine_mode mode)
266 unsigned int alignment;
268 if (mode == BLKmode)
269 alignment = BIGGEST_ALIGNMENT;
270 else
271 alignment = GET_MODE_ALIGNMENT (mode);
273 /* Allow the frond-end to (possibly) increase the alignment of this
274 stack slot. */
275 if (! type)
276 type = lang_hooks.types.type_for_mode (mode, 0);
278 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
281 /* Determine whether it is possible to fit a stack slot of size SIZE and
282 alignment ALIGNMENT into an area in the stack frame that starts at
283 frame offset START and has a length of LENGTH. If so, store the frame
284 offset to be used for the stack slot in *POFFSET and return true;
285 return false otherwise. This function will extend the frame size when
286 given a start/length pair that lies at the end of the frame. */
288 static bool
289 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
290 HOST_WIDE_INT size, unsigned int alignment,
291 HOST_WIDE_INT *poffset)
293 HOST_WIDE_INT this_frame_offset;
294 int frame_off, frame_alignment, frame_phase;
296 /* Calculate how many bytes the start of local variables is off from
297 stack alignment. */
298 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
299 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
300 frame_phase = frame_off ? frame_alignment - frame_off : 0;
302 /* Round the frame offset to the specified alignment. */
304 /* We must be careful here, since FRAME_OFFSET might be negative and
305 division with a negative dividend isn't as well defined as we might
306 like. So we instead assume that ALIGNMENT is a power of two and
307 use logical operations which are unambiguous. */
308 if (FRAME_GROWS_DOWNWARD)
309 this_frame_offset
310 = (FLOOR_ROUND (start + length - size - frame_phase,
311 (unsigned HOST_WIDE_INT) alignment)
312 + frame_phase);
313 else
314 this_frame_offset
315 = (CEIL_ROUND (start - frame_phase,
316 (unsigned HOST_WIDE_INT) alignment)
317 + frame_phase);
319 /* See if it fits. If this space is at the edge of the frame,
320 consider extending the frame to make it fit. Our caller relies on
321 this when allocating a new slot. */
322 if (frame_offset == start && this_frame_offset < frame_offset)
323 frame_offset = this_frame_offset;
324 else if (this_frame_offset < start)
325 return false;
326 else if (start + length == frame_offset
327 && this_frame_offset + size > start + length)
328 frame_offset = this_frame_offset + size;
329 else if (this_frame_offset + size > start + length)
330 return false;
332 *poffset = this_frame_offset;
333 return true;
336 /* Create a new frame_space structure describing free space in the stack
337 frame beginning at START and ending at END, and chain it into the
338 function's frame_space_list. */
340 static void
341 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
343 struct frame_space *space = ggc_alloc_frame_space ();
344 space->next = crtl->frame_space_list;
345 crtl->frame_space_list = space;
346 space->start = start;
347 space->length = end - start;
350 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
351 with machine mode MODE.
353 ALIGN controls the amount of alignment for the address of the slot:
354 0 means according to MODE,
355 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
356 -2 means use BITS_PER_UNIT,
357 positive specifies alignment boundary in bits.
359 If REDUCE_ALIGNMENT_OK is true, it is OK to reduce alignment.
361 We do not round to stack_boundary here. */
364 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
365 int align,
366 bool reduce_alignment_ok ATTRIBUTE_UNUSED)
368 rtx x, addr;
369 int bigend_correction = 0;
370 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
371 unsigned int alignment, alignment_in_bits;
373 if (align == 0)
375 alignment = get_stack_local_alignment (NULL, mode);
376 alignment /= BITS_PER_UNIT;
378 else if (align == -1)
380 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
381 size = CEIL_ROUND (size, alignment);
383 else if (align == -2)
384 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
385 else
386 alignment = align / BITS_PER_UNIT;
388 alignment_in_bits = alignment * BITS_PER_UNIT;
390 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
391 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
393 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
394 alignment = alignment_in_bits / BITS_PER_UNIT;
397 if (SUPPORTS_STACK_ALIGNMENT)
399 if (crtl->stack_alignment_estimated < alignment_in_bits)
401 if (!crtl->stack_realign_processed)
402 crtl->stack_alignment_estimated = alignment_in_bits;
403 else
405 /* If stack is realigned and stack alignment value
406 hasn't been finalized, it is OK not to increase
407 stack_alignment_estimated. The bigger alignment
408 requirement is recorded in stack_alignment_needed
409 below. */
410 gcc_assert (!crtl->stack_realign_finalized);
411 if (!crtl->stack_realign_needed)
413 /* It is OK to reduce the alignment as long as the
414 requested size is 0 or the estimated stack
415 alignment >= mode alignment. */
416 gcc_assert (reduce_alignment_ok
417 || size == 0
418 || (crtl->stack_alignment_estimated
419 >= GET_MODE_ALIGNMENT (mode)));
420 alignment_in_bits = crtl->stack_alignment_estimated;
421 alignment = alignment_in_bits / BITS_PER_UNIT;
427 if (crtl->stack_alignment_needed < alignment_in_bits)
428 crtl->stack_alignment_needed = alignment_in_bits;
429 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
430 crtl->max_used_stack_slot_alignment = alignment_in_bits;
432 if (mode != BLKmode || size != 0)
434 struct frame_space **psp;
436 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
438 struct frame_space *space = *psp;
439 if (!try_fit_stack_local (space->start, space->length, size,
440 alignment, &slot_offset))
441 continue;
442 *psp = space->next;
443 if (slot_offset > space->start)
444 add_frame_space (space->start, slot_offset);
445 if (slot_offset + size < space->start + space->length)
446 add_frame_space (slot_offset + size,
447 space->start + space->length);
448 goto found_space;
451 else if (!STACK_ALIGNMENT_NEEDED)
453 slot_offset = frame_offset;
454 goto found_space;
457 old_frame_offset = frame_offset;
459 if (FRAME_GROWS_DOWNWARD)
461 frame_offset -= size;
462 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
464 if (slot_offset > frame_offset)
465 add_frame_space (frame_offset, slot_offset);
466 if (slot_offset + size < old_frame_offset)
467 add_frame_space (slot_offset + size, old_frame_offset);
469 else
471 frame_offset += size;
472 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
474 if (slot_offset > old_frame_offset)
475 add_frame_space (old_frame_offset, slot_offset);
476 if (slot_offset + size < frame_offset)
477 add_frame_space (slot_offset + size, frame_offset);
480 found_space:
481 /* On a big-endian machine, if we are allocating more space than we will use,
482 use the least significant bytes of those that are allocated. */
483 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
484 bigend_correction = size - GET_MODE_SIZE (mode);
486 /* If we have already instantiated virtual registers, return the actual
487 address relative to the frame pointer. */
488 if (virtuals_instantiated)
489 addr = plus_constant (frame_pointer_rtx,
490 trunc_int_for_mode
491 (slot_offset + bigend_correction
492 + STARTING_FRAME_OFFSET, Pmode));
493 else
494 addr = plus_constant (virtual_stack_vars_rtx,
495 trunc_int_for_mode
496 (slot_offset + bigend_correction,
497 Pmode));
499 x = gen_rtx_MEM (mode, addr);
500 set_mem_align (x, alignment_in_bits);
501 MEM_NOTRAP_P (x) = 1;
503 stack_slot_list
504 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
506 if (frame_offset_overflow (frame_offset, current_function_decl))
507 frame_offset = 0;
509 return x;
512 /* Wrap up assign_stack_local_1 with last parameter as false. */
515 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
517 return assign_stack_local_1 (mode, size, align, false);
521 /* In order to evaluate some expressions, such as function calls returning
522 structures in memory, we need to temporarily allocate stack locations.
523 We record each allocated temporary in the following structure.
525 Associated with each temporary slot is a nesting level. When we pop up
526 one level, all temporaries associated with the previous level are freed.
527 Normally, all temporaries are freed after the execution of the statement
528 in which they were created. However, if we are inside a ({...}) grouping,
529 the result may be in a temporary and hence must be preserved. If the
530 result could be in a temporary, we preserve it if we can determine which
531 one it is in. If we cannot determine which temporary may contain the
532 result, all temporaries are preserved. A temporary is preserved by
533 pretending it was allocated at the previous nesting level.
535 Automatic variables are also assigned temporary slots, at the nesting
536 level where they are defined. They are marked a "kept" so that
537 free_temp_slots will not free them. */
539 struct GTY(()) temp_slot {
540 /* Points to next temporary slot. */
541 struct temp_slot *next;
542 /* Points to previous temporary slot. */
543 struct temp_slot *prev;
544 /* The rtx to used to reference the slot. */
545 rtx slot;
546 /* The size, in units, of the slot. */
547 HOST_WIDE_INT size;
548 /* The type of the object in the slot, or zero if it doesn't correspond
549 to a type. We use this to determine whether a slot can be reused.
550 It can be reused if objects of the type of the new slot will always
551 conflict with objects of the type of the old slot. */
552 tree type;
553 /* The alignment (in bits) of the slot. */
554 unsigned int align;
555 /* Nonzero if this temporary is currently in use. */
556 char in_use;
557 /* Nonzero if this temporary has its address taken. */
558 char addr_taken;
559 /* Nesting level at which this slot is being used. */
560 int level;
561 /* Nonzero if this should survive a call to free_temp_slots. */
562 int keep;
563 /* The offset of the slot from the frame_pointer, including extra space
564 for alignment. This info is for combine_temp_slots. */
565 HOST_WIDE_INT base_offset;
566 /* The size of the slot, including extra space for alignment. This
567 info is for combine_temp_slots. */
568 HOST_WIDE_INT full_size;
571 /* A table of addresses that represent a stack slot. The table is a mapping
572 from address RTXen to a temp slot. */
573 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
575 /* Entry for the above hash table. */
576 struct GTY(()) temp_slot_address_entry {
577 hashval_t hash;
578 rtx address;
579 struct temp_slot *temp_slot;
582 /* Removes temporary slot TEMP from LIST. */
584 static void
585 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
587 if (temp->next)
588 temp->next->prev = temp->prev;
589 if (temp->prev)
590 temp->prev->next = temp->next;
591 else
592 *list = temp->next;
594 temp->prev = temp->next = NULL;
597 /* Inserts temporary slot TEMP to LIST. */
599 static void
600 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
602 temp->next = *list;
603 if (*list)
604 (*list)->prev = temp;
605 temp->prev = NULL;
606 *list = temp;
609 /* Returns the list of used temp slots at LEVEL. */
611 static struct temp_slot **
612 temp_slots_at_level (int level)
614 if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
615 VEC_safe_grow_cleared (temp_slot_p, gc, used_temp_slots, level + 1);
617 return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
620 /* Returns the maximal temporary slot level. */
622 static int
623 max_slot_level (void)
625 if (!used_temp_slots)
626 return -1;
628 return VEC_length (temp_slot_p, used_temp_slots) - 1;
631 /* Moves temporary slot TEMP to LEVEL. */
633 static void
634 move_slot_to_level (struct temp_slot *temp, int level)
636 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
637 insert_slot_to_list (temp, temp_slots_at_level (level));
638 temp->level = level;
641 /* Make temporary slot TEMP available. */
643 static void
644 make_slot_available (struct temp_slot *temp)
646 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
647 insert_slot_to_list (temp, &avail_temp_slots);
648 temp->in_use = 0;
649 temp->level = -1;
652 /* Compute the hash value for an address -> temp slot mapping.
653 The value is cached on the mapping entry. */
654 static hashval_t
655 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
657 int do_not_record = 0;
658 return hash_rtx (t->address, GET_MODE (t->address),
659 &do_not_record, NULL, false);
662 /* Return the hash value for an address -> temp slot mapping. */
663 static hashval_t
664 temp_slot_address_hash (const void *p)
666 const struct temp_slot_address_entry *t;
667 t = (const struct temp_slot_address_entry *) p;
668 return t->hash;
671 /* Compare two address -> temp slot mapping entries. */
672 static int
673 temp_slot_address_eq (const void *p1, const void *p2)
675 const struct temp_slot_address_entry *t1, *t2;
676 t1 = (const struct temp_slot_address_entry *) p1;
677 t2 = (const struct temp_slot_address_entry *) p2;
678 return exp_equiv_p (t1->address, t2->address, 0, true);
681 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
682 static void
683 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
685 void **slot;
686 struct temp_slot_address_entry *t = ggc_alloc_temp_slot_address_entry ();
687 t->address = address;
688 t->temp_slot = temp_slot;
689 t->hash = temp_slot_address_compute_hash (t);
690 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
691 *slot = t;
694 /* Remove an address -> temp slot mapping entry if the temp slot is
695 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
696 static int
697 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
699 const struct temp_slot_address_entry *t;
700 t = (const struct temp_slot_address_entry *) *slot;
701 if (! t->temp_slot->in_use)
702 *slot = NULL;
703 return 1;
706 /* Remove all mappings of addresses to unused temp slots. */
707 static void
708 remove_unused_temp_slot_addresses (void)
710 htab_traverse (temp_slot_address_table,
711 remove_unused_temp_slot_addresses_1,
712 NULL);
715 /* Find the temp slot corresponding to the object at address X. */
717 static struct temp_slot *
718 find_temp_slot_from_address (rtx x)
720 struct temp_slot *p;
721 struct temp_slot_address_entry tmp, *t;
723 /* First try the easy way:
724 See if X exists in the address -> temp slot mapping. */
725 tmp.address = x;
726 tmp.temp_slot = NULL;
727 tmp.hash = temp_slot_address_compute_hash (&tmp);
728 t = (struct temp_slot_address_entry *)
729 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
730 if (t)
731 return t->temp_slot;
733 /* If we have a sum involving a register, see if it points to a temp
734 slot. */
735 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
736 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
737 return p;
738 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
739 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
740 return p;
742 /* Last resort: Address is a virtual stack var address. */
743 if (GET_CODE (x) == PLUS
744 && XEXP (x, 0) == virtual_stack_vars_rtx
745 && CONST_INT_P (XEXP (x, 1)))
747 int i;
748 for (i = max_slot_level (); i >= 0; i--)
749 for (p = *temp_slots_at_level (i); p; p = p->next)
751 if (INTVAL (XEXP (x, 1)) >= p->base_offset
752 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
753 return p;
757 return NULL;
760 /* Allocate a temporary stack slot and record it for possible later
761 reuse.
763 MODE is the machine mode to be given to the returned rtx.
765 SIZE is the size in units of the space required. We do no rounding here
766 since assign_stack_local will do any required rounding.
768 KEEP is 1 if this slot is to be retained after a call to
769 free_temp_slots. Automatic variables for a block are allocated
770 with this flag. KEEP values of 2 or 3 were needed respectively
771 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
772 or for SAVE_EXPRs, but they are now unused.
774 TYPE is the type that will be used for the stack slot. */
777 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
778 int keep, tree type)
780 unsigned int align;
781 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
782 rtx slot;
784 /* If SIZE is -1 it means that somebody tried to allocate a temporary
785 of a variable size. */
786 gcc_assert (size != -1);
788 /* These are now unused. */
789 gcc_assert (keep <= 1);
791 align = get_stack_local_alignment (type, mode);
793 /* Try to find an available, already-allocated temporary of the proper
794 mode which meets the size and alignment requirements. Choose the
795 smallest one with the closest alignment.
797 If assign_stack_temp is called outside of the tree->rtl expansion,
798 we cannot reuse the stack slots (that may still refer to
799 VIRTUAL_STACK_VARS_REGNUM). */
800 if (!virtuals_instantiated)
802 for (p = avail_temp_slots; p; p = p->next)
804 if (p->align >= align && p->size >= size
805 && GET_MODE (p->slot) == mode
806 && objects_must_conflict_p (p->type, type)
807 && (best_p == 0 || best_p->size > p->size
808 || (best_p->size == p->size && best_p->align > p->align)))
810 if (p->align == align && p->size == size)
812 selected = p;
813 cut_slot_from_list (selected, &avail_temp_slots);
814 best_p = 0;
815 break;
817 best_p = p;
822 /* Make our best, if any, the one to use. */
823 if (best_p)
825 selected = best_p;
826 cut_slot_from_list (selected, &avail_temp_slots);
828 /* If there are enough aligned bytes left over, make them into a new
829 temp_slot so that the extra bytes don't get wasted. Do this only
830 for BLKmode slots, so that we can be sure of the alignment. */
831 if (GET_MODE (best_p->slot) == BLKmode)
833 int alignment = best_p->align / BITS_PER_UNIT;
834 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
836 if (best_p->size - rounded_size >= alignment)
838 p = ggc_alloc_temp_slot ();
839 p->in_use = p->addr_taken = 0;
840 p->size = best_p->size - rounded_size;
841 p->base_offset = best_p->base_offset + rounded_size;
842 p->full_size = best_p->full_size - rounded_size;
843 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
844 p->align = best_p->align;
845 p->type = best_p->type;
846 insert_slot_to_list (p, &avail_temp_slots);
848 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
849 stack_slot_list);
851 best_p->size = rounded_size;
852 best_p->full_size = rounded_size;
857 /* If we still didn't find one, make a new temporary. */
858 if (selected == 0)
860 HOST_WIDE_INT frame_offset_old = frame_offset;
862 p = ggc_alloc_temp_slot ();
864 /* We are passing an explicit alignment request to assign_stack_local.
865 One side effect of that is assign_stack_local will not round SIZE
866 to ensure the frame offset remains suitably aligned.
868 So for requests which depended on the rounding of SIZE, we go ahead
869 and round it now. We also make sure ALIGNMENT is at least
870 BIGGEST_ALIGNMENT. */
871 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
872 p->slot = assign_stack_local (mode,
873 (mode == BLKmode
874 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
875 : size),
876 align);
878 p->align = align;
880 /* The following slot size computation is necessary because we don't
881 know the actual size of the temporary slot until assign_stack_local
882 has performed all the frame alignment and size rounding for the
883 requested temporary. Note that extra space added for alignment
884 can be either above or below this stack slot depending on which
885 way the frame grows. We include the extra space if and only if it
886 is above this slot. */
887 if (FRAME_GROWS_DOWNWARD)
888 p->size = frame_offset_old - frame_offset;
889 else
890 p->size = size;
892 /* Now define the fields used by combine_temp_slots. */
893 if (FRAME_GROWS_DOWNWARD)
895 p->base_offset = frame_offset;
896 p->full_size = frame_offset_old - frame_offset;
898 else
900 p->base_offset = frame_offset_old;
901 p->full_size = frame_offset - frame_offset_old;
904 selected = p;
907 p = selected;
908 p->in_use = 1;
909 p->addr_taken = 0;
910 p->type = type;
911 p->level = temp_slot_level;
912 p->keep = keep;
914 pp = temp_slots_at_level (p->level);
915 insert_slot_to_list (p, pp);
916 insert_temp_slot_address (XEXP (p->slot, 0), p);
918 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
919 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
920 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
922 /* If we know the alias set for the memory that will be used, use
923 it. If there's no TYPE, then we don't know anything about the
924 alias set for the memory. */
925 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
926 set_mem_align (slot, align);
928 /* If a type is specified, set the relevant flags. */
929 if (type != 0)
931 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
932 MEM_SET_IN_STRUCT_P (slot, (AGGREGATE_TYPE_P (type)
933 || TREE_CODE (type) == COMPLEX_TYPE));
935 MEM_NOTRAP_P (slot) = 1;
937 return slot;
940 /* Allocate a temporary stack slot and record it for possible later
941 reuse. First three arguments are same as in preceding function. */
944 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
946 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
949 /* Assign a temporary.
950 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
951 and so that should be used in error messages. In either case, we
952 allocate of the given type.
953 KEEP is as for assign_stack_temp.
954 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
955 it is 0 if a register is OK.
956 DONT_PROMOTE is 1 if we should not promote values in register
957 to wider modes. */
960 assign_temp (tree type_or_decl, int keep, int memory_required,
961 int dont_promote ATTRIBUTE_UNUSED)
963 tree type, decl;
964 enum machine_mode mode;
965 #ifdef PROMOTE_MODE
966 int unsignedp;
967 #endif
969 if (DECL_P (type_or_decl))
970 decl = type_or_decl, type = TREE_TYPE (decl);
971 else
972 decl = NULL, type = type_or_decl;
974 mode = TYPE_MODE (type);
975 #ifdef PROMOTE_MODE
976 unsignedp = TYPE_UNSIGNED (type);
977 #endif
979 if (mode == BLKmode || memory_required)
981 HOST_WIDE_INT size = int_size_in_bytes (type);
982 rtx tmp;
984 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
985 problems with allocating the stack space. */
986 if (size == 0)
987 size = 1;
989 /* Unfortunately, we don't yet know how to allocate variable-sized
990 temporaries. However, sometimes we can find a fixed upper limit on
991 the size, so try that instead. */
992 else if (size == -1)
993 size = max_int_size_in_bytes (type);
995 /* The size of the temporary may be too large to fit into an integer. */
996 /* ??? Not sure this should happen except for user silliness, so limit
997 this to things that aren't compiler-generated temporaries. The
998 rest of the time we'll die in assign_stack_temp_for_type. */
999 if (decl && size == -1
1000 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
1002 error ("size of variable %q+D is too large", decl);
1003 size = 1;
1006 tmp = assign_stack_temp_for_type (mode, size, keep, type);
1007 return tmp;
1010 #ifdef PROMOTE_MODE
1011 if (! dont_promote)
1012 mode = promote_mode (type, mode, &unsignedp);
1013 #endif
1015 return gen_reg_rtx (mode);
1018 /* Combine temporary stack slots which are adjacent on the stack.
1020 This allows for better use of already allocated stack space. This is only
1021 done for BLKmode slots because we can be sure that we won't have alignment
1022 problems in this case. */
1024 static void
1025 combine_temp_slots (void)
1027 struct temp_slot *p, *q, *next, *next_q;
1028 int num_slots;
1030 /* We can't combine slots, because the information about which slot
1031 is in which alias set will be lost. */
1032 if (flag_strict_aliasing)
1033 return;
1035 /* If there are a lot of temp slots, don't do anything unless
1036 high levels of optimization. */
1037 if (! flag_expensive_optimizations)
1038 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1039 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1040 return;
1042 for (p = avail_temp_slots; p; p = next)
1044 int delete_p = 0;
1046 next = p->next;
1048 if (GET_MODE (p->slot) != BLKmode)
1049 continue;
1051 for (q = p->next; q; q = next_q)
1053 int delete_q = 0;
1055 next_q = q->next;
1057 if (GET_MODE (q->slot) != BLKmode)
1058 continue;
1060 if (p->base_offset + p->full_size == q->base_offset)
1062 /* Q comes after P; combine Q into P. */
1063 p->size += q->size;
1064 p->full_size += q->full_size;
1065 delete_q = 1;
1067 else if (q->base_offset + q->full_size == p->base_offset)
1069 /* P comes after Q; combine P into Q. */
1070 q->size += p->size;
1071 q->full_size += p->full_size;
1072 delete_p = 1;
1073 break;
1075 if (delete_q)
1076 cut_slot_from_list (q, &avail_temp_slots);
1079 /* Either delete P or advance past it. */
1080 if (delete_p)
1081 cut_slot_from_list (p, &avail_temp_slots);
1085 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1086 slot that previously was known by OLD_RTX. */
1088 void
1089 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1091 struct temp_slot *p;
1093 if (rtx_equal_p (old_rtx, new_rtx))
1094 return;
1096 p = find_temp_slot_from_address (old_rtx);
1098 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1099 NEW_RTX is a register, see if one operand of the PLUS is a
1100 temporary location. If so, NEW_RTX points into it. Otherwise,
1101 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1102 in common between them. If so, try a recursive call on those
1103 values. */
1104 if (p == 0)
1106 if (GET_CODE (old_rtx) != PLUS)
1107 return;
1109 if (REG_P (new_rtx))
1111 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1112 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1113 return;
1115 else if (GET_CODE (new_rtx) != PLUS)
1116 return;
1118 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1119 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1120 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1121 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1122 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1123 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1124 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1125 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1127 return;
1130 /* Otherwise add an alias for the temp's address. */
1131 insert_temp_slot_address (new_rtx, p);
1134 /* If X could be a reference to a temporary slot, mark the fact that its
1135 address was taken. */
1137 void
1138 mark_temp_addr_taken (rtx x)
1140 struct temp_slot *p;
1142 if (x == 0)
1143 return;
1145 /* If X is not in memory or is at a constant address, it cannot be in
1146 a temporary slot. */
1147 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1148 return;
1150 p = find_temp_slot_from_address (XEXP (x, 0));
1151 if (p != 0)
1152 p->addr_taken = 1;
1155 /* If X could be a reference to a temporary slot, mark that slot as
1156 belonging to the to one level higher than the current level. If X
1157 matched one of our slots, just mark that one. Otherwise, we can't
1158 easily predict which it is, so upgrade all of them. Kept slots
1159 need not be touched.
1161 This is called when an ({...}) construct occurs and a statement
1162 returns a value in memory. */
1164 void
1165 preserve_temp_slots (rtx x)
1167 struct temp_slot *p = 0, *next;
1169 /* If there is no result, we still might have some objects whose address
1170 were taken, so we need to make sure they stay around. */
1171 if (x == 0)
1173 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1175 next = p->next;
1177 if (p->addr_taken)
1178 move_slot_to_level (p, temp_slot_level - 1);
1181 return;
1184 /* If X is a register that is being used as a pointer, see if we have
1185 a temporary slot we know it points to. To be consistent with
1186 the code below, we really should preserve all non-kept slots
1187 if we can't find a match, but that seems to be much too costly. */
1188 if (REG_P (x) && REG_POINTER (x))
1189 p = find_temp_slot_from_address (x);
1191 /* If X is not in memory or is at a constant address, it cannot be in
1192 a temporary slot, but it can contain something whose address was
1193 taken. */
1194 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1196 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1198 next = p->next;
1200 if (p->addr_taken)
1201 move_slot_to_level (p, temp_slot_level - 1);
1204 return;
1207 /* First see if we can find a match. */
1208 if (p == 0)
1209 p = find_temp_slot_from_address (XEXP (x, 0));
1211 if (p != 0)
1213 /* Move everything at our level whose address was taken to our new
1214 level in case we used its address. */
1215 struct temp_slot *q;
1217 if (p->level == temp_slot_level)
1219 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1221 next = q->next;
1223 if (p != q && q->addr_taken)
1224 move_slot_to_level (q, temp_slot_level - 1);
1227 move_slot_to_level (p, temp_slot_level - 1);
1228 p->addr_taken = 0;
1230 return;
1233 /* Otherwise, preserve all non-kept slots at this level. */
1234 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1236 next = p->next;
1238 if (!p->keep)
1239 move_slot_to_level (p, temp_slot_level - 1);
1243 /* Free all temporaries used so far. This is normally called at the
1244 end of generating code for a statement. */
1246 void
1247 free_temp_slots (void)
1249 struct temp_slot *p, *next;
1250 bool some_available = false;
1252 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1254 next = p->next;
1256 if (!p->keep)
1258 make_slot_available (p);
1259 some_available = true;
1263 if (some_available)
1265 remove_unused_temp_slot_addresses ();
1266 combine_temp_slots ();
1270 /* Push deeper into the nesting level for stack temporaries. */
1272 void
1273 push_temp_slots (void)
1275 temp_slot_level++;
1278 /* Pop a temporary nesting level. All slots in use in the current level
1279 are freed. */
1281 void
1282 pop_temp_slots (void)
1284 struct temp_slot *p, *next;
1285 bool some_available = false;
1287 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1289 next = p->next;
1290 make_slot_available (p);
1291 some_available = true;
1294 if (some_available)
1296 remove_unused_temp_slot_addresses ();
1297 combine_temp_slots ();
1300 temp_slot_level--;
1303 /* Initialize temporary slots. */
1305 void
1306 init_temp_slots (void)
1308 /* We have not allocated any temporaries yet. */
1309 avail_temp_slots = 0;
1310 used_temp_slots = 0;
1311 temp_slot_level = 0;
1313 /* Set up the table to map addresses to temp slots. */
1314 if (! temp_slot_address_table)
1315 temp_slot_address_table = htab_create_ggc (32,
1316 temp_slot_address_hash,
1317 temp_slot_address_eq,
1318 NULL);
1319 else
1320 htab_empty (temp_slot_address_table);
1323 /* These routines are responsible for converting virtual register references
1324 to the actual hard register references once RTL generation is complete.
1326 The following four variables are used for communication between the
1327 routines. They contain the offsets of the virtual registers from their
1328 respective hard registers. */
1330 static int in_arg_offset;
1331 static int var_offset;
1332 static int dynamic_offset;
1333 static int out_arg_offset;
1334 static int cfa_offset;
1336 /* In most machines, the stack pointer register is equivalent to the bottom
1337 of the stack. */
1339 #ifndef STACK_POINTER_OFFSET
1340 #define STACK_POINTER_OFFSET 0
1341 #endif
1343 /* If not defined, pick an appropriate default for the offset of dynamically
1344 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1345 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1347 #ifndef STACK_DYNAMIC_OFFSET
1349 /* The bottom of the stack points to the actual arguments. If
1350 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1351 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1352 stack space for register parameters is not pushed by the caller, but
1353 rather part of the fixed stack areas and hence not included in
1354 `crtl->outgoing_args_size'. Nevertheless, we must allow
1355 for it when allocating stack dynamic objects. */
1357 #if defined(REG_PARM_STACK_SPACE)
1358 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1359 ((ACCUMULATE_OUTGOING_ARGS \
1360 ? (crtl->outgoing_args_size \
1361 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1362 : REG_PARM_STACK_SPACE (FNDECL))) \
1363 : 0) + (STACK_POINTER_OFFSET))
1364 #else
1365 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1366 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1367 + (STACK_POINTER_OFFSET))
1368 #endif
1369 #endif
1372 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1373 is a virtual register, return the equivalent hard register and set the
1374 offset indirectly through the pointer. Otherwise, return 0. */
1376 static rtx
1377 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1379 rtx new_rtx;
1380 HOST_WIDE_INT offset;
1382 if (x == virtual_incoming_args_rtx)
1384 if (stack_realign_drap)
1386 /* Replace virtual_incoming_args_rtx with internal arg
1387 pointer if DRAP is used to realign stack. */
1388 new_rtx = crtl->args.internal_arg_pointer;
1389 offset = 0;
1391 else
1392 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1394 else if (x == virtual_stack_vars_rtx)
1395 new_rtx = frame_pointer_rtx, offset = var_offset;
1396 else if (x == virtual_stack_dynamic_rtx)
1397 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1398 else if (x == virtual_outgoing_args_rtx)
1399 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1400 else if (x == virtual_cfa_rtx)
1402 #ifdef FRAME_POINTER_CFA_OFFSET
1403 new_rtx = frame_pointer_rtx;
1404 #else
1405 new_rtx = arg_pointer_rtx;
1406 #endif
1407 offset = cfa_offset;
1409 else
1410 return NULL_RTX;
1412 *poffset = offset;
1413 return new_rtx;
1416 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1417 Instantiate any virtual registers present inside of *LOC. The expression
1418 is simplified, as much as possible, but is not to be considered "valid"
1419 in any sense implied by the target. If any change is made, set CHANGED
1420 to true. */
1422 static int
1423 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1425 HOST_WIDE_INT offset;
1426 bool *changed = (bool *) data;
1427 rtx x, new_rtx;
1429 x = *loc;
1430 if (x == 0)
1431 return 0;
1433 switch (GET_CODE (x))
1435 case REG:
1436 new_rtx = instantiate_new_reg (x, &offset);
1437 if (new_rtx)
1439 *loc = plus_constant (new_rtx, offset);
1440 if (changed)
1441 *changed = true;
1443 return -1;
1445 case PLUS:
1446 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1447 if (new_rtx)
1449 new_rtx = plus_constant (new_rtx, offset);
1450 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
1451 if (changed)
1452 *changed = true;
1453 return -1;
1456 /* FIXME -- from old code */
1457 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1458 we can commute the PLUS and SUBREG because pointers into the
1459 frame are well-behaved. */
1460 break;
1462 default:
1463 break;
1466 return 0;
1469 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1470 matches the predicate for insn CODE operand OPERAND. */
1472 static int
1473 safe_insn_predicate (int code, int operand, rtx x)
1475 const struct insn_operand_data *op_data;
1477 if (code < 0)
1478 return true;
1480 op_data = &insn_data[code].operand[operand];
1481 if (op_data->predicate == NULL)
1482 return true;
1484 return op_data->predicate (x, op_data->mode);
1487 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1488 registers present inside of insn. The result will be a valid insn. */
1490 static void
1491 instantiate_virtual_regs_in_insn (rtx insn)
1493 HOST_WIDE_INT offset;
1494 int insn_code, i;
1495 bool any_change = false;
1496 rtx set, new_rtx, x, seq;
1498 /* There are some special cases to be handled first. */
1499 set = single_set (insn);
1500 if (set)
1502 /* We're allowed to assign to a virtual register. This is interpreted
1503 to mean that the underlying register gets assigned the inverse
1504 transformation. This is used, for example, in the handling of
1505 non-local gotos. */
1506 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1507 if (new_rtx)
1509 start_sequence ();
1511 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1512 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1513 GEN_INT (-offset));
1514 x = force_operand (x, new_rtx);
1515 if (x != new_rtx)
1516 emit_move_insn (new_rtx, x);
1518 seq = get_insns ();
1519 end_sequence ();
1521 emit_insn_before (seq, insn);
1522 delete_insn (insn);
1523 return;
1526 /* Handle a straight copy from a virtual register by generating a
1527 new add insn. The difference between this and falling through
1528 to the generic case is avoiding a new pseudo and eliminating a
1529 move insn in the initial rtl stream. */
1530 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1531 if (new_rtx && offset != 0
1532 && REG_P (SET_DEST (set))
1533 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1535 start_sequence ();
1537 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1538 new_rtx, GEN_INT (offset), SET_DEST (set),
1539 1, OPTAB_LIB_WIDEN);
1540 if (x != SET_DEST (set))
1541 emit_move_insn (SET_DEST (set), x);
1543 seq = get_insns ();
1544 end_sequence ();
1546 emit_insn_before (seq, insn);
1547 delete_insn (insn);
1548 return;
1551 extract_insn (insn);
1552 insn_code = INSN_CODE (insn);
1554 /* Handle a plus involving a virtual register by determining if the
1555 operands remain valid if they're modified in place. */
1556 if (GET_CODE (SET_SRC (set)) == PLUS
1557 && recog_data.n_operands >= 3
1558 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1559 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1560 && CONST_INT_P (recog_data.operand[2])
1561 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1563 offset += INTVAL (recog_data.operand[2]);
1565 /* If the sum is zero, then replace with a plain move. */
1566 if (offset == 0
1567 && REG_P (SET_DEST (set))
1568 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1570 start_sequence ();
1571 emit_move_insn (SET_DEST (set), new_rtx);
1572 seq = get_insns ();
1573 end_sequence ();
1575 emit_insn_before (seq, insn);
1576 delete_insn (insn);
1577 return;
1580 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1582 /* Using validate_change and apply_change_group here leaves
1583 recog_data in an invalid state. Since we know exactly what
1584 we want to check, do those two by hand. */
1585 if (safe_insn_predicate (insn_code, 1, new_rtx)
1586 && safe_insn_predicate (insn_code, 2, x))
1588 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1589 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1590 any_change = true;
1592 /* Fall through into the regular operand fixup loop in
1593 order to take care of operands other than 1 and 2. */
1597 else
1599 extract_insn (insn);
1600 insn_code = INSN_CODE (insn);
1603 /* In the general case, we expect virtual registers to appear only in
1604 operands, and then only as either bare registers or inside memories. */
1605 for (i = 0; i < recog_data.n_operands; ++i)
1607 x = recog_data.operand[i];
1608 switch (GET_CODE (x))
1610 case MEM:
1612 rtx addr = XEXP (x, 0);
1613 bool changed = false;
1615 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1616 if (!changed)
1617 continue;
1619 start_sequence ();
1620 x = replace_equiv_address (x, addr);
1621 /* It may happen that the address with the virtual reg
1622 was valid (e.g. based on the virtual stack reg, which might
1623 be acceptable to the predicates with all offsets), whereas
1624 the address now isn't anymore, for instance when the address
1625 is still offsetted, but the base reg isn't virtual-stack-reg
1626 anymore. Below we would do a force_reg on the whole operand,
1627 but this insn might actually only accept memory. Hence,
1628 before doing that last resort, try to reload the address into
1629 a register, so this operand stays a MEM. */
1630 if (!safe_insn_predicate (insn_code, i, x))
1632 addr = force_reg (GET_MODE (addr), addr);
1633 x = replace_equiv_address (x, addr);
1635 seq = get_insns ();
1636 end_sequence ();
1637 if (seq)
1638 emit_insn_before (seq, insn);
1640 break;
1642 case REG:
1643 new_rtx = instantiate_new_reg (x, &offset);
1644 if (new_rtx == NULL)
1645 continue;
1646 if (offset == 0)
1647 x = new_rtx;
1648 else
1650 start_sequence ();
1652 /* Careful, special mode predicates may have stuff in
1653 insn_data[insn_code].operand[i].mode that isn't useful
1654 to us for computing a new value. */
1655 /* ??? Recognize address_operand and/or "p" constraints
1656 to see if (plus new offset) is a valid before we put
1657 this through expand_simple_binop. */
1658 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1659 GEN_INT (offset), NULL_RTX,
1660 1, OPTAB_LIB_WIDEN);
1661 seq = get_insns ();
1662 end_sequence ();
1663 emit_insn_before (seq, insn);
1665 break;
1667 case SUBREG:
1668 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1669 if (new_rtx == NULL)
1670 continue;
1671 if (offset != 0)
1673 start_sequence ();
1674 new_rtx = expand_simple_binop (GET_MODE (new_rtx), PLUS, new_rtx,
1675 GEN_INT (offset), NULL_RTX,
1676 1, OPTAB_LIB_WIDEN);
1677 seq = get_insns ();
1678 end_sequence ();
1679 emit_insn_before (seq, insn);
1681 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1682 GET_MODE (new_rtx), SUBREG_BYTE (x));
1683 gcc_assert (x);
1684 break;
1686 default:
1687 continue;
1690 /* At this point, X contains the new value for the operand.
1691 Validate the new value vs the insn predicate. Note that
1692 asm insns will have insn_code -1 here. */
1693 if (!safe_insn_predicate (insn_code, i, x))
1695 start_sequence ();
1696 if (REG_P (x))
1698 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1699 x = copy_to_reg (x);
1701 else
1702 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1703 seq = get_insns ();
1704 end_sequence ();
1705 if (seq)
1706 emit_insn_before (seq, insn);
1709 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1710 any_change = true;
1713 if (any_change)
1715 /* Propagate operand changes into the duplicates. */
1716 for (i = 0; i < recog_data.n_dups; ++i)
1717 *recog_data.dup_loc[i]
1718 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1720 /* Force re-recognition of the instruction for validation. */
1721 INSN_CODE (insn) = -1;
1724 if (asm_noperands (PATTERN (insn)) >= 0)
1726 if (!check_asm_operands (PATTERN (insn)))
1728 error_for_asm (insn, "impossible constraint in %<asm%>");
1729 delete_insn (insn);
1732 else
1734 if (recog_memoized (insn) < 0)
1735 fatal_insn_not_found (insn);
1739 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1740 do any instantiation required. */
1742 void
1743 instantiate_decl_rtl (rtx x)
1745 rtx addr;
1747 if (x == 0)
1748 return;
1750 /* If this is a CONCAT, recurse for the pieces. */
1751 if (GET_CODE (x) == CONCAT)
1753 instantiate_decl_rtl (XEXP (x, 0));
1754 instantiate_decl_rtl (XEXP (x, 1));
1755 return;
1758 /* If this is not a MEM, no need to do anything. Similarly if the
1759 address is a constant or a register that is not a virtual register. */
1760 if (!MEM_P (x))
1761 return;
1763 addr = XEXP (x, 0);
1764 if (CONSTANT_P (addr)
1765 || (REG_P (addr)
1766 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1767 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1768 return;
1770 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1773 /* Helper for instantiate_decls called via walk_tree: Process all decls
1774 in the given DECL_VALUE_EXPR. */
1776 static tree
1777 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1779 tree t = *tp;
1780 if (! EXPR_P (t))
1782 *walk_subtrees = 0;
1783 if (DECL_P (t) && DECL_RTL_SET_P (t))
1784 instantiate_decl_rtl (DECL_RTL (t));
1786 return NULL;
1789 /* Subroutine of instantiate_decls: Process all decls in the given
1790 BLOCK node and all its subblocks. */
1792 static void
1793 instantiate_decls_1 (tree let)
1795 tree t;
1797 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1799 if (DECL_RTL_SET_P (t))
1800 instantiate_decl_rtl (DECL_RTL (t));
1801 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1803 tree v = DECL_VALUE_EXPR (t);
1804 walk_tree (&v, instantiate_expr, NULL, NULL);
1808 /* Process all subblocks. */
1809 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1810 instantiate_decls_1 (t);
1813 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1814 all virtual registers in their DECL_RTL's. */
1816 static void
1817 instantiate_decls (tree fndecl)
1819 tree decl, t, next;
1821 /* Process all parameters of the function. */
1822 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1824 instantiate_decl_rtl (DECL_RTL (decl));
1825 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1826 if (DECL_HAS_VALUE_EXPR_P (decl))
1828 tree v = DECL_VALUE_EXPR (decl);
1829 walk_tree (&v, instantiate_expr, NULL, NULL);
1833 /* Now process all variables defined in the function or its subblocks. */
1834 instantiate_decls_1 (DECL_INITIAL (fndecl));
1836 t = cfun->local_decls;
1837 cfun->local_decls = NULL_TREE;
1838 for (; t; t = next)
1840 next = TREE_CHAIN (t);
1841 decl = TREE_VALUE (t);
1842 if (DECL_RTL_SET_P (decl))
1843 instantiate_decl_rtl (DECL_RTL (decl));
1844 ggc_free (t);
1848 /* Pass through the INSNS of function FNDECL and convert virtual register
1849 references to hard register references. */
1851 static unsigned int
1852 instantiate_virtual_regs (void)
1854 rtx insn;
1856 /* Compute the offsets to use for this function. */
1857 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1858 var_offset = STARTING_FRAME_OFFSET;
1859 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1860 out_arg_offset = STACK_POINTER_OFFSET;
1861 #ifdef FRAME_POINTER_CFA_OFFSET
1862 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1863 #else
1864 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1865 #endif
1867 /* Initialize recognition, indicating that volatile is OK. */
1868 init_recog ();
1870 /* Scan through all the insns, instantiating every virtual register still
1871 present. */
1872 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1873 if (INSN_P (insn))
1875 /* These patterns in the instruction stream can never be recognized.
1876 Fortunately, they shouldn't contain virtual registers either. */
1877 if (GET_CODE (PATTERN (insn)) == USE
1878 || GET_CODE (PATTERN (insn)) == CLOBBER
1879 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1880 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1881 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1882 continue;
1883 else if (DEBUG_INSN_P (insn))
1884 for_each_rtx (&INSN_VAR_LOCATION (insn),
1885 instantiate_virtual_regs_in_rtx, NULL);
1886 else
1887 instantiate_virtual_regs_in_insn (insn);
1889 if (INSN_DELETED_P (insn))
1890 continue;
1892 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1894 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1895 if (CALL_P (insn))
1896 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1897 instantiate_virtual_regs_in_rtx, NULL);
1900 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1901 instantiate_decls (current_function_decl);
1903 targetm.instantiate_decls ();
1905 /* Indicate that, from now on, assign_stack_local should use
1906 frame_pointer_rtx. */
1907 virtuals_instantiated = 1;
1908 return 0;
1911 struct rtl_opt_pass pass_instantiate_virtual_regs =
1914 RTL_PASS,
1915 "vregs", /* name */
1916 NULL, /* gate */
1917 instantiate_virtual_regs, /* execute */
1918 NULL, /* sub */
1919 NULL, /* next */
1920 0, /* static_pass_number */
1921 TV_NONE, /* tv_id */
1922 0, /* properties_required */
1923 0, /* properties_provided */
1924 0, /* properties_destroyed */
1925 0, /* todo_flags_start */
1926 TODO_dump_func /* todo_flags_finish */
1931 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1932 This means a type for which function calls must pass an address to the
1933 function or get an address back from the function.
1934 EXP may be a type node or an expression (whose type is tested). */
1937 aggregate_value_p (const_tree exp, const_tree fntype)
1939 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1940 int i, regno, nregs;
1941 rtx reg;
1943 if (fntype)
1944 switch (TREE_CODE (fntype))
1946 case CALL_EXPR:
1948 tree fndecl = get_callee_fndecl (fntype);
1949 fntype = (fndecl
1950 ? TREE_TYPE (fndecl)
1951 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
1953 break;
1954 case FUNCTION_DECL:
1955 fntype = TREE_TYPE (fntype);
1956 break;
1957 case FUNCTION_TYPE:
1958 case METHOD_TYPE:
1959 break;
1960 case IDENTIFIER_NODE:
1961 fntype = NULL_TREE;
1962 break;
1963 default:
1964 /* We don't expect other tree types here. */
1965 gcc_unreachable ();
1968 if (VOID_TYPE_P (type))
1969 return 0;
1971 /* If a record should be passed the same as its first (and only) member
1972 don't pass it as an aggregate. */
1973 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
1974 return aggregate_value_p (first_field (type), fntype);
1976 /* If the front end has decided that this needs to be passed by
1977 reference, do so. */
1978 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1979 && DECL_BY_REFERENCE (exp))
1980 return 1;
1982 /* Function types that are TREE_ADDRESSABLE force return in memory. */
1983 if (fntype && TREE_ADDRESSABLE (fntype))
1984 return 1;
1986 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1987 and thus can't be returned in registers. */
1988 if (TREE_ADDRESSABLE (type))
1989 return 1;
1991 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1992 return 1;
1994 if (targetm.calls.return_in_memory (type, fntype))
1995 return 1;
1997 /* Make sure we have suitable call-clobbered regs to return
1998 the value in; if not, we must return it in memory. */
1999 reg = hard_function_value (type, 0, fntype, 0);
2001 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2002 it is OK. */
2003 if (!REG_P (reg))
2004 return 0;
2006 regno = REGNO (reg);
2007 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2008 for (i = 0; i < nregs; i++)
2009 if (! call_used_regs[regno + i])
2010 return 1;
2012 return 0;
2015 /* Return true if we should assign DECL a pseudo register; false if it
2016 should live on the local stack. */
2018 bool
2019 use_register_for_decl (const_tree decl)
2021 if (!targetm.calls.allocate_stack_slots_for_args())
2022 return true;
2024 /* Honor volatile. */
2025 if (TREE_SIDE_EFFECTS (decl))
2026 return false;
2028 /* Honor addressability. */
2029 if (TREE_ADDRESSABLE (decl))
2030 return false;
2032 /* Only register-like things go in registers. */
2033 if (DECL_MODE (decl) == BLKmode)
2034 return false;
2036 /* If -ffloat-store specified, don't put explicit float variables
2037 into registers. */
2038 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2039 propagates values across these stores, and it probably shouldn't. */
2040 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2041 return false;
2043 /* If we're not interested in tracking debugging information for
2044 this decl, then we can certainly put it in a register. */
2045 if (DECL_IGNORED_P (decl))
2046 return true;
2048 if (optimize)
2049 return true;
2051 if (!DECL_REGISTER (decl))
2052 return false;
2054 switch (TREE_CODE (TREE_TYPE (decl)))
2056 case RECORD_TYPE:
2057 case UNION_TYPE:
2058 case QUAL_UNION_TYPE:
2059 /* When not optimizing, disregard register keyword for variables with
2060 types containing methods, otherwise the methods won't be callable
2061 from the debugger. */
2062 if (TYPE_METHODS (TREE_TYPE (decl)))
2063 return false;
2064 break;
2065 default:
2066 break;
2069 return true;
2072 /* Return true if TYPE should be passed by invisible reference. */
2074 bool
2075 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2076 tree type, bool named_arg)
2078 if (type)
2080 /* If this type contains non-trivial constructors, then it is
2081 forbidden for the middle-end to create any new copies. */
2082 if (TREE_ADDRESSABLE (type))
2083 return true;
2085 /* GCC post 3.4 passes *all* variable sized types by reference. */
2086 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2087 return true;
2089 /* If a record type should be passed the same as its first (and only)
2090 member, use the type and mode of that member. */
2091 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2093 type = TREE_TYPE (first_field (type));
2094 mode = TYPE_MODE (type);
2098 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
2101 /* Return true if TYPE, which is passed by reference, should be callee
2102 copied instead of caller copied. */
2104 bool
2105 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2106 tree type, bool named_arg)
2108 if (type && TREE_ADDRESSABLE (type))
2109 return false;
2110 return targetm.calls.callee_copies (ca, mode, type, named_arg);
2113 /* Structures to communicate between the subroutines of assign_parms.
2114 The first holds data persistent across all parameters, the second
2115 is cleared out for each parameter. */
2117 struct assign_parm_data_all
2119 CUMULATIVE_ARGS args_so_far;
2120 struct args_size stack_args_size;
2121 tree function_result_decl;
2122 tree orig_fnargs;
2123 rtx first_conversion_insn;
2124 rtx last_conversion_insn;
2125 HOST_WIDE_INT pretend_args_size;
2126 HOST_WIDE_INT extra_pretend_bytes;
2127 int reg_parm_stack_space;
2130 struct assign_parm_data_one
2132 tree nominal_type;
2133 tree passed_type;
2134 rtx entry_parm;
2135 rtx stack_parm;
2136 enum machine_mode nominal_mode;
2137 enum machine_mode passed_mode;
2138 enum machine_mode promoted_mode;
2139 struct locate_and_pad_arg_data locate;
2140 int partial;
2141 BOOL_BITFIELD named_arg : 1;
2142 BOOL_BITFIELD passed_pointer : 1;
2143 BOOL_BITFIELD on_stack : 1;
2144 BOOL_BITFIELD loaded_in_reg : 1;
2147 /* A subroutine of assign_parms. Initialize ALL. */
2149 static void
2150 assign_parms_initialize_all (struct assign_parm_data_all *all)
2152 tree fntype ATTRIBUTE_UNUSED;
2154 memset (all, 0, sizeof (*all));
2156 fntype = TREE_TYPE (current_function_decl);
2158 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2159 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
2160 #else
2161 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
2162 current_function_decl, -1);
2163 #endif
2165 #ifdef REG_PARM_STACK_SPACE
2166 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2167 #endif
2170 /* If ARGS contains entries with complex types, split the entry into two
2171 entries of the component type. Return a new list of substitutions are
2172 needed, else the old list. */
2174 static void
2175 split_complex_args (VEC(tree, heap) **args)
2177 unsigned i;
2178 tree p;
2180 for (i = 0; VEC_iterate (tree, *args, i, p); ++i)
2182 tree type = TREE_TYPE (p);
2183 if (TREE_CODE (type) == COMPLEX_TYPE
2184 && targetm.calls.split_complex_arg (type))
2186 tree decl;
2187 tree subtype = TREE_TYPE (type);
2188 bool addressable = TREE_ADDRESSABLE (p);
2190 /* Rewrite the PARM_DECL's type with its component. */
2191 p = copy_node (p);
2192 TREE_TYPE (p) = subtype;
2193 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2194 DECL_MODE (p) = VOIDmode;
2195 DECL_SIZE (p) = NULL;
2196 DECL_SIZE_UNIT (p) = NULL;
2197 /* If this arg must go in memory, put it in a pseudo here.
2198 We can't allow it to go in memory as per normal parms,
2199 because the usual place might not have the imag part
2200 adjacent to the real part. */
2201 DECL_ARTIFICIAL (p) = addressable;
2202 DECL_IGNORED_P (p) = addressable;
2203 TREE_ADDRESSABLE (p) = 0;
2204 layout_decl (p, 0);
2205 VEC_replace (tree, *args, i, p);
2207 /* Build a second synthetic decl. */
2208 decl = build_decl (EXPR_LOCATION (p),
2209 PARM_DECL, NULL_TREE, subtype);
2210 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2211 DECL_ARTIFICIAL (decl) = addressable;
2212 DECL_IGNORED_P (decl) = addressable;
2213 layout_decl (decl, 0);
2214 VEC_safe_insert (tree, heap, *args, ++i, decl);
2219 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2220 the hidden struct return argument, and (abi willing) complex args.
2221 Return the new parameter list. */
2223 static VEC(tree, heap) *
2224 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2226 tree fndecl = current_function_decl;
2227 tree fntype = TREE_TYPE (fndecl);
2228 VEC(tree, heap) *fnargs = NULL;
2229 tree arg;
2231 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = TREE_CHAIN (arg))
2232 VEC_safe_push (tree, heap, fnargs, arg);
2234 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2236 /* If struct value address is treated as the first argument, make it so. */
2237 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2238 && ! cfun->returns_pcc_struct
2239 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2241 tree type = build_pointer_type (TREE_TYPE (fntype));
2242 tree decl;
2244 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2245 PARM_DECL, NULL_TREE, type);
2246 DECL_ARG_TYPE (decl) = type;
2247 DECL_ARTIFICIAL (decl) = 1;
2248 DECL_IGNORED_P (decl) = 1;
2250 TREE_CHAIN (decl) = all->orig_fnargs;
2251 all->orig_fnargs = decl;
2252 VEC_safe_insert (tree, heap, fnargs, 0, decl);
2254 all->function_result_decl = decl;
2257 /* If the target wants to split complex arguments into scalars, do so. */
2258 if (targetm.calls.split_complex_arg)
2259 split_complex_args (&fnargs);
2261 return fnargs;
2264 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2265 data for the parameter. Incorporate ABI specifics such as pass-by-
2266 reference and type promotion. */
2268 static void
2269 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2270 struct assign_parm_data_one *data)
2272 tree nominal_type, passed_type;
2273 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2274 int unsignedp;
2276 memset (data, 0, sizeof (*data));
2278 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2279 if (!cfun->stdarg)
2280 data->named_arg = 1; /* No variadic parms. */
2281 else if (TREE_CHAIN (parm))
2282 data->named_arg = 1; /* Not the last non-variadic parm. */
2283 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
2284 data->named_arg = 1; /* Only variadic ones are unnamed. */
2285 else
2286 data->named_arg = 0; /* Treat as variadic. */
2288 nominal_type = TREE_TYPE (parm);
2289 passed_type = DECL_ARG_TYPE (parm);
2291 /* Look out for errors propagating this far. Also, if the parameter's
2292 type is void then its value doesn't matter. */
2293 if (TREE_TYPE (parm) == error_mark_node
2294 /* This can happen after weird syntax errors
2295 or if an enum type is defined among the parms. */
2296 || TREE_CODE (parm) != PARM_DECL
2297 || passed_type == NULL
2298 || VOID_TYPE_P (nominal_type))
2300 nominal_type = passed_type = void_type_node;
2301 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2302 goto egress;
2305 /* Find mode of arg as it is passed, and mode of arg as it should be
2306 during execution of this function. */
2307 passed_mode = TYPE_MODE (passed_type);
2308 nominal_mode = TYPE_MODE (nominal_type);
2310 /* If the parm is to be passed as a transparent union or record, use the
2311 type of the first field for the tests below. We have already verified
2312 that the modes are the same. */
2313 if ((TREE_CODE (passed_type) == UNION_TYPE
2314 || TREE_CODE (passed_type) == RECORD_TYPE)
2315 && TYPE_TRANSPARENT_AGGR (passed_type))
2316 passed_type = TREE_TYPE (first_field (passed_type));
2318 /* See if this arg was passed by invisible reference. */
2319 if (pass_by_reference (&all->args_so_far, passed_mode,
2320 passed_type, data->named_arg))
2322 passed_type = nominal_type = build_pointer_type (passed_type);
2323 data->passed_pointer = true;
2324 passed_mode = nominal_mode = Pmode;
2327 /* Find mode as it is passed by the ABI. */
2328 unsignedp = TYPE_UNSIGNED (passed_type);
2329 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2330 TREE_TYPE (current_function_decl), 0);
2332 egress:
2333 data->nominal_type = nominal_type;
2334 data->passed_type = passed_type;
2335 data->nominal_mode = nominal_mode;
2336 data->passed_mode = passed_mode;
2337 data->promoted_mode = promoted_mode;
2340 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2342 static void
2343 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2344 struct assign_parm_data_one *data, bool no_rtl)
2346 int varargs_pretend_bytes = 0;
2348 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2349 data->promoted_mode,
2350 data->passed_type,
2351 &varargs_pretend_bytes, no_rtl);
2353 /* If the back-end has requested extra stack space, record how much is
2354 needed. Do not change pretend_args_size otherwise since it may be
2355 nonzero from an earlier partial argument. */
2356 if (varargs_pretend_bytes > 0)
2357 all->pretend_args_size = varargs_pretend_bytes;
2360 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2361 the incoming location of the current parameter. */
2363 static void
2364 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2365 struct assign_parm_data_one *data)
2367 HOST_WIDE_INT pretend_bytes = 0;
2368 rtx entry_parm;
2369 bool in_regs;
2371 if (data->promoted_mode == VOIDmode)
2373 data->entry_parm = data->stack_parm = const0_rtx;
2374 return;
2377 entry_parm = targetm.calls.function_incoming_arg (&all->args_so_far,
2378 data->promoted_mode,
2379 data->passed_type,
2380 data->named_arg);
2382 if (entry_parm == 0)
2383 data->promoted_mode = data->passed_mode;
2385 /* Determine parm's home in the stack, in case it arrives in the stack
2386 or we should pretend it did. Compute the stack position and rtx where
2387 the argument arrives and its size.
2389 There is one complexity here: If this was a parameter that would
2390 have been passed in registers, but wasn't only because it is
2391 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2392 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2393 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2394 as it was the previous time. */
2395 in_regs = entry_parm != 0;
2396 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2397 in_regs = true;
2398 #endif
2399 if (!in_regs && !data->named_arg)
2401 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2403 rtx tem;
2404 tem = targetm.calls.function_incoming_arg (&all->args_so_far,
2405 data->promoted_mode,
2406 data->passed_type, true);
2407 in_regs = tem != NULL;
2411 /* If this parameter was passed both in registers and in the stack, use
2412 the copy on the stack. */
2413 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2414 data->passed_type))
2415 entry_parm = 0;
2417 if (entry_parm)
2419 int partial;
2421 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2422 data->promoted_mode,
2423 data->passed_type,
2424 data->named_arg);
2425 data->partial = partial;
2427 /* The caller might already have allocated stack space for the
2428 register parameters. */
2429 if (partial != 0 && all->reg_parm_stack_space == 0)
2431 /* Part of this argument is passed in registers and part
2432 is passed on the stack. Ask the prologue code to extend
2433 the stack part so that we can recreate the full value.
2435 PRETEND_BYTES is the size of the registers we need to store.
2436 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2437 stack space that the prologue should allocate.
2439 Internally, gcc assumes that the argument pointer is aligned
2440 to STACK_BOUNDARY bits. This is used both for alignment
2441 optimizations (see init_emit) and to locate arguments that are
2442 aligned to more than PARM_BOUNDARY bits. We must preserve this
2443 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2444 a stack boundary. */
2446 /* We assume at most one partial arg, and it must be the first
2447 argument on the stack. */
2448 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2450 pretend_bytes = partial;
2451 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2453 /* We want to align relative to the actual stack pointer, so
2454 don't include this in the stack size until later. */
2455 all->extra_pretend_bytes = all->pretend_args_size;
2459 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2460 entry_parm ? data->partial : 0, current_function_decl,
2461 &all->stack_args_size, &data->locate);
2463 /* Update parm_stack_boundary if this parameter is passed in the
2464 stack. */
2465 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2466 crtl->parm_stack_boundary = data->locate.boundary;
2468 /* Adjust offsets to include the pretend args. */
2469 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2470 data->locate.slot_offset.constant += pretend_bytes;
2471 data->locate.offset.constant += pretend_bytes;
2473 data->entry_parm = entry_parm;
2476 /* A subroutine of assign_parms. If there is actually space on the stack
2477 for this parm, count it in stack_args_size and return true. */
2479 static bool
2480 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2481 struct assign_parm_data_one *data)
2483 /* Trivially true if we've no incoming register. */
2484 if (data->entry_parm == NULL)
2486 /* Also true if we're partially in registers and partially not,
2487 since we've arranged to drop the entire argument on the stack. */
2488 else if (data->partial != 0)
2490 /* Also true if the target says that it's passed in both registers
2491 and on the stack. */
2492 else if (GET_CODE (data->entry_parm) == PARALLEL
2493 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2495 /* Also true if the target says that there's stack allocated for
2496 all register parameters. */
2497 else if (all->reg_parm_stack_space > 0)
2499 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2500 else
2501 return false;
2503 all->stack_args_size.constant += data->locate.size.constant;
2504 if (data->locate.size.var)
2505 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2507 return true;
2510 /* A subroutine of assign_parms. Given that this parameter is allocated
2511 stack space by the ABI, find it. */
2513 static void
2514 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2516 rtx offset_rtx, stack_parm;
2517 unsigned int align, boundary;
2519 /* If we're passing this arg using a reg, make its stack home the
2520 aligned stack slot. */
2521 if (data->entry_parm)
2522 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2523 else
2524 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2526 stack_parm = crtl->args.internal_arg_pointer;
2527 if (offset_rtx != const0_rtx)
2528 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2529 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2531 if (!data->passed_pointer)
2533 set_mem_attributes (stack_parm, parm, 1);
2534 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2535 while promoted mode's size is needed. */
2536 if (data->promoted_mode != BLKmode
2537 && data->promoted_mode != DECL_MODE (parm))
2539 set_mem_size (stack_parm,
2540 GEN_INT (GET_MODE_SIZE (data->promoted_mode)));
2541 if (MEM_EXPR (stack_parm) && MEM_OFFSET (stack_parm))
2543 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2544 data->promoted_mode);
2545 if (offset)
2546 set_mem_offset (stack_parm,
2547 plus_constant (MEM_OFFSET (stack_parm),
2548 -offset));
2553 boundary = data->locate.boundary;
2554 align = BITS_PER_UNIT;
2556 /* If we're padding upward, we know that the alignment of the slot
2557 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2558 intentionally forcing upward padding. Otherwise we have to come
2559 up with a guess at the alignment based on OFFSET_RTX. */
2560 if (data->locate.where_pad != downward || data->entry_parm)
2561 align = boundary;
2562 else if (CONST_INT_P (offset_rtx))
2564 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2565 align = align & -align;
2567 set_mem_align (stack_parm, align);
2569 if (data->entry_parm)
2570 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2572 data->stack_parm = stack_parm;
2575 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2576 always valid and contiguous. */
2578 static void
2579 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2581 rtx entry_parm = data->entry_parm;
2582 rtx stack_parm = data->stack_parm;
2584 /* If this parm was passed part in regs and part in memory, pretend it
2585 arrived entirely in memory by pushing the register-part onto the stack.
2586 In the special case of a DImode or DFmode that is split, we could put
2587 it together in a pseudoreg directly, but for now that's not worth
2588 bothering with. */
2589 if (data->partial != 0)
2591 /* Handle calls that pass values in multiple non-contiguous
2592 locations. The Irix 6 ABI has examples of this. */
2593 if (GET_CODE (entry_parm) == PARALLEL)
2594 emit_group_store (validize_mem (stack_parm), entry_parm,
2595 data->passed_type,
2596 int_size_in_bytes (data->passed_type));
2597 else
2599 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2600 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2601 data->partial / UNITS_PER_WORD);
2604 entry_parm = stack_parm;
2607 /* If we didn't decide this parm came in a register, by default it came
2608 on the stack. */
2609 else if (entry_parm == NULL)
2610 entry_parm = stack_parm;
2612 /* When an argument is passed in multiple locations, we can't make use
2613 of this information, but we can save some copying if the whole argument
2614 is passed in a single register. */
2615 else if (GET_CODE (entry_parm) == PARALLEL
2616 && data->nominal_mode != BLKmode
2617 && data->passed_mode != BLKmode)
2619 size_t i, len = XVECLEN (entry_parm, 0);
2621 for (i = 0; i < len; i++)
2622 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2623 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2624 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2625 == data->passed_mode)
2626 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2628 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2629 break;
2633 data->entry_parm = entry_parm;
2636 /* A subroutine of assign_parms. Reconstitute any values which were
2637 passed in multiple registers and would fit in a single register. */
2639 static void
2640 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2642 rtx entry_parm = data->entry_parm;
2644 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2645 This can be done with register operations rather than on the
2646 stack, even if we will store the reconstituted parameter on the
2647 stack later. */
2648 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2650 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2651 emit_group_store (parmreg, entry_parm, data->passed_type,
2652 GET_MODE_SIZE (GET_MODE (entry_parm)));
2653 entry_parm = parmreg;
2656 data->entry_parm = entry_parm;
2659 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2660 always valid and properly aligned. */
2662 static void
2663 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2665 rtx stack_parm = data->stack_parm;
2667 /* If we can't trust the parm stack slot to be aligned enough for its
2668 ultimate type, don't use that slot after entry. We'll make another
2669 stack slot, if we need one. */
2670 if (stack_parm
2671 && ((STRICT_ALIGNMENT
2672 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2673 || (data->nominal_type
2674 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2675 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2676 stack_parm = NULL;
2678 /* If parm was passed in memory, and we need to convert it on entry,
2679 don't store it back in that same slot. */
2680 else if (data->entry_parm == stack_parm
2681 && data->nominal_mode != BLKmode
2682 && data->nominal_mode != data->passed_mode)
2683 stack_parm = NULL;
2685 /* If stack protection is in effect for this function, don't leave any
2686 pointers in their passed stack slots. */
2687 else if (crtl->stack_protect_guard
2688 && (flag_stack_protect == 2
2689 || data->passed_pointer
2690 || POINTER_TYPE_P (data->nominal_type)))
2691 stack_parm = NULL;
2693 data->stack_parm = stack_parm;
2696 /* A subroutine of assign_parms. Return true if the current parameter
2697 should be stored as a BLKmode in the current frame. */
2699 static bool
2700 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2702 if (data->nominal_mode == BLKmode)
2703 return true;
2704 if (GET_MODE (data->entry_parm) == BLKmode)
2705 return true;
2707 #ifdef BLOCK_REG_PADDING
2708 /* Only assign_parm_setup_block knows how to deal with register arguments
2709 that are padded at the least significant end. */
2710 if (REG_P (data->entry_parm)
2711 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2712 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2713 == (BYTES_BIG_ENDIAN ? upward : downward)))
2714 return true;
2715 #endif
2717 return false;
2720 /* A subroutine of assign_parms. Arrange for the parameter to be
2721 present and valid in DATA->STACK_RTL. */
2723 static void
2724 assign_parm_setup_block (struct assign_parm_data_all *all,
2725 tree parm, struct assign_parm_data_one *data)
2727 rtx entry_parm = data->entry_parm;
2728 rtx stack_parm = data->stack_parm;
2729 HOST_WIDE_INT size;
2730 HOST_WIDE_INT size_stored;
2732 if (GET_CODE (entry_parm) == PARALLEL)
2733 entry_parm = emit_group_move_into_temps (entry_parm);
2735 size = int_size_in_bytes (data->passed_type);
2736 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2737 if (stack_parm == 0)
2739 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2740 stack_parm = assign_stack_local (BLKmode, size_stored,
2741 DECL_ALIGN (parm));
2742 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2743 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2744 set_mem_attributes (stack_parm, parm, 1);
2747 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2748 calls that pass values in multiple non-contiguous locations. */
2749 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2751 rtx mem;
2753 /* Note that we will be storing an integral number of words.
2754 So we have to be careful to ensure that we allocate an
2755 integral number of words. We do this above when we call
2756 assign_stack_local if space was not allocated in the argument
2757 list. If it was, this will not work if PARM_BOUNDARY is not
2758 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2759 if it becomes a problem. Exception is when BLKmode arrives
2760 with arguments not conforming to word_mode. */
2762 if (data->stack_parm == 0)
2764 else if (GET_CODE (entry_parm) == PARALLEL)
2766 else
2767 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2769 mem = validize_mem (stack_parm);
2771 /* Handle values in multiple non-contiguous locations. */
2772 if (GET_CODE (entry_parm) == PARALLEL)
2774 push_to_sequence2 (all->first_conversion_insn,
2775 all->last_conversion_insn);
2776 emit_group_store (mem, entry_parm, data->passed_type, size);
2777 all->first_conversion_insn = get_insns ();
2778 all->last_conversion_insn = get_last_insn ();
2779 end_sequence ();
2782 else if (size == 0)
2785 /* If SIZE is that of a mode no bigger than a word, just use
2786 that mode's store operation. */
2787 else if (size <= UNITS_PER_WORD)
2789 enum machine_mode mode
2790 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2792 if (mode != BLKmode
2793 #ifdef BLOCK_REG_PADDING
2794 && (size == UNITS_PER_WORD
2795 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2796 != (BYTES_BIG_ENDIAN ? upward : downward)))
2797 #endif
2800 rtx reg;
2802 /* We are really truncating a word_mode value containing
2803 SIZE bytes into a value of mode MODE. If such an
2804 operation requires no actual instructions, we can refer
2805 to the value directly in mode MODE, otherwise we must
2806 start with the register in word_mode and explicitly
2807 convert it. */
2808 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2809 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2810 else
2812 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2813 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2815 emit_move_insn (change_address (mem, mode, 0), reg);
2818 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2819 machine must be aligned to the left before storing
2820 to memory. Note that the previous test doesn't
2821 handle all cases (e.g. SIZE == 3). */
2822 else if (size != UNITS_PER_WORD
2823 #ifdef BLOCK_REG_PADDING
2824 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2825 == downward)
2826 #else
2827 && BYTES_BIG_ENDIAN
2828 #endif
2831 rtx tem, x;
2832 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2833 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2835 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2836 build_int_cst (NULL_TREE, by),
2837 NULL_RTX, 1);
2838 tem = change_address (mem, word_mode, 0);
2839 emit_move_insn (tem, x);
2841 else
2842 move_block_from_reg (REGNO (entry_parm), mem,
2843 size_stored / UNITS_PER_WORD);
2845 else
2846 move_block_from_reg (REGNO (entry_parm), mem,
2847 size_stored / UNITS_PER_WORD);
2849 else if (data->stack_parm == 0)
2851 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2852 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2853 BLOCK_OP_NORMAL);
2854 all->first_conversion_insn = get_insns ();
2855 all->last_conversion_insn = get_last_insn ();
2856 end_sequence ();
2859 data->stack_parm = stack_parm;
2860 SET_DECL_RTL (parm, stack_parm);
2863 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2864 parameter. Get it there. Perform all ABI specified conversions. */
2866 static void
2867 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2868 struct assign_parm_data_one *data)
2870 rtx parmreg;
2871 enum machine_mode promoted_nominal_mode;
2872 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2873 bool did_conversion = false;
2875 /* Store the parm in a pseudoregister during the function, but we may
2876 need to do it in a wider mode. Using 2 here makes the result
2877 consistent with promote_decl_mode and thus expand_expr_real_1. */
2878 promoted_nominal_mode
2879 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2880 TREE_TYPE (current_function_decl), 2);
2882 parmreg = gen_reg_rtx (promoted_nominal_mode);
2884 if (!DECL_ARTIFICIAL (parm))
2885 mark_user_reg (parmreg);
2887 /* If this was an item that we received a pointer to,
2888 set DECL_RTL appropriately. */
2889 if (data->passed_pointer)
2891 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2892 set_mem_attributes (x, parm, 1);
2893 SET_DECL_RTL (parm, x);
2895 else
2896 SET_DECL_RTL (parm, parmreg);
2898 assign_parm_remove_parallels (data);
2900 /* Copy the value into the register, thus bridging between
2901 assign_parm_find_data_types and expand_expr_real_1. */
2902 if (data->nominal_mode != data->passed_mode
2903 || promoted_nominal_mode != data->promoted_mode)
2905 int save_tree_used;
2907 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2908 mode, by the caller. We now have to convert it to
2909 NOMINAL_MODE, if different. However, PARMREG may be in
2910 a different mode than NOMINAL_MODE if it is being stored
2911 promoted.
2913 If ENTRY_PARM is a hard register, it might be in a register
2914 not valid for operating in its mode (e.g., an odd-numbered
2915 register for a DFmode). In that case, moves are the only
2916 thing valid, so we can't do a convert from there. This
2917 occurs when the calling sequence allow such misaligned
2918 usages.
2920 In addition, the conversion may involve a call, which could
2921 clobber parameters which haven't been copied to pseudo
2922 registers yet. Therefore, we must first copy the parm to
2923 a pseudo reg here, and save the conversion until after all
2924 parameters have been moved. */
2926 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2928 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2930 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2931 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2933 if (GET_CODE (tempreg) == SUBREG
2934 && GET_MODE (tempreg) == data->nominal_mode
2935 && REG_P (SUBREG_REG (tempreg))
2936 && data->nominal_mode == data->passed_mode
2937 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2938 && GET_MODE_SIZE (GET_MODE (tempreg))
2939 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2941 /* The argument is already sign/zero extended, so note it
2942 into the subreg. */
2943 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2944 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2947 /* TREE_USED gets set erroneously during expand_assignment. */
2948 save_tree_used = TREE_USED (parm);
2949 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
2950 TREE_USED (parm) = save_tree_used;
2951 all->first_conversion_insn = get_insns ();
2952 all->last_conversion_insn = get_last_insn ();
2953 end_sequence ();
2955 did_conversion = true;
2957 else
2958 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2960 /* If we were passed a pointer but the actual value can safely live
2961 in a register, put it in one. */
2962 if (data->passed_pointer
2963 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2964 /* If by-reference argument was promoted, demote it. */
2965 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2966 || use_register_for_decl (parm)))
2968 /* We can't use nominal_mode, because it will have been set to
2969 Pmode above. We must use the actual mode of the parm. */
2970 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2971 mark_user_reg (parmreg);
2973 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2975 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2976 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2978 push_to_sequence2 (all->first_conversion_insn,
2979 all->last_conversion_insn);
2980 emit_move_insn (tempreg, DECL_RTL (parm));
2981 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2982 emit_move_insn (parmreg, tempreg);
2983 all->first_conversion_insn = get_insns ();
2984 all->last_conversion_insn = get_last_insn ();
2985 end_sequence ();
2987 did_conversion = true;
2989 else
2990 emit_move_insn (parmreg, DECL_RTL (parm));
2992 SET_DECL_RTL (parm, parmreg);
2994 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2995 now the parm. */
2996 data->stack_parm = NULL;
2999 /* Mark the register as eliminable if we did no conversion and it was
3000 copied from memory at a fixed offset, and the arg pointer was not
3001 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3002 offset formed an invalid address, such memory-equivalences as we
3003 make here would screw up life analysis for it. */
3004 if (data->nominal_mode == data->passed_mode
3005 && !did_conversion
3006 && data->stack_parm != 0
3007 && MEM_P (data->stack_parm)
3008 && data->locate.offset.var == 0
3009 && reg_mentioned_p (virtual_incoming_args_rtx,
3010 XEXP (data->stack_parm, 0)))
3012 rtx linsn = get_last_insn ();
3013 rtx sinsn, set;
3015 /* Mark complex types separately. */
3016 if (GET_CODE (parmreg) == CONCAT)
3018 enum machine_mode submode
3019 = GET_MODE_INNER (GET_MODE (parmreg));
3020 int regnor = REGNO (XEXP (parmreg, 0));
3021 int regnoi = REGNO (XEXP (parmreg, 1));
3022 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3023 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3024 GET_MODE_SIZE (submode));
3026 /* Scan backwards for the set of the real and
3027 imaginary parts. */
3028 for (sinsn = linsn; sinsn != 0;
3029 sinsn = prev_nonnote_insn (sinsn))
3031 set = single_set (sinsn);
3032 if (set == 0)
3033 continue;
3035 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3036 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3037 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3038 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3041 else if ((set = single_set (linsn)) != 0
3042 && SET_DEST (set) == parmreg)
3043 set_unique_reg_note (linsn, REG_EQUIV, data->stack_parm);
3046 /* For pointer data type, suggest pointer register. */
3047 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3048 mark_reg_pointer (parmreg,
3049 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3052 /* A subroutine of assign_parms. Allocate stack space to hold the current
3053 parameter. Get it there. Perform all ABI specified conversions. */
3055 static void
3056 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3057 struct assign_parm_data_one *data)
3059 /* Value must be stored in the stack slot STACK_PARM during function
3060 execution. */
3061 bool to_conversion = false;
3063 assign_parm_remove_parallels (data);
3065 if (data->promoted_mode != data->nominal_mode)
3067 /* Conversion is required. */
3068 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3070 emit_move_insn (tempreg, validize_mem (data->entry_parm));
3072 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3073 to_conversion = true;
3075 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3076 TYPE_UNSIGNED (TREE_TYPE (parm)));
3078 if (data->stack_parm)
3080 int offset = subreg_lowpart_offset (data->nominal_mode,
3081 GET_MODE (data->stack_parm));
3082 /* ??? This may need a big-endian conversion on sparc64. */
3083 data->stack_parm
3084 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3085 if (offset && MEM_OFFSET (data->stack_parm))
3086 set_mem_offset (data->stack_parm,
3087 plus_constant (MEM_OFFSET (data->stack_parm),
3088 offset));
3092 if (data->entry_parm != data->stack_parm)
3094 rtx src, dest;
3096 if (data->stack_parm == 0)
3098 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3099 GET_MODE (data->entry_parm),
3100 TYPE_ALIGN (data->passed_type));
3101 data->stack_parm
3102 = assign_stack_local (GET_MODE (data->entry_parm),
3103 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3104 align);
3105 set_mem_attributes (data->stack_parm, parm, 1);
3108 dest = validize_mem (data->stack_parm);
3109 src = validize_mem (data->entry_parm);
3111 if (MEM_P (src))
3113 /* Use a block move to handle potentially misaligned entry_parm. */
3114 if (!to_conversion)
3115 push_to_sequence2 (all->first_conversion_insn,
3116 all->last_conversion_insn);
3117 to_conversion = true;
3119 emit_block_move (dest, src,
3120 GEN_INT (int_size_in_bytes (data->passed_type)),
3121 BLOCK_OP_NORMAL);
3123 else
3124 emit_move_insn (dest, src);
3127 if (to_conversion)
3129 all->first_conversion_insn = get_insns ();
3130 all->last_conversion_insn = get_last_insn ();
3131 end_sequence ();
3134 SET_DECL_RTL (parm, data->stack_parm);
3137 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3138 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3140 static void
3141 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3142 VEC(tree, heap) *fnargs)
3144 tree parm;
3145 tree orig_fnargs = all->orig_fnargs;
3146 unsigned i = 0;
3148 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3150 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3151 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3153 rtx tmp, real, imag;
3154 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3156 real = DECL_RTL (VEC_index (tree, fnargs, i));
3157 imag = DECL_RTL (VEC_index (tree, fnargs, i + 1));
3158 if (inner != GET_MODE (real))
3160 real = gen_lowpart_SUBREG (inner, real);
3161 imag = gen_lowpart_SUBREG (inner, imag);
3164 if (TREE_ADDRESSABLE (parm))
3166 rtx rmem, imem;
3167 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3168 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3169 DECL_MODE (parm),
3170 TYPE_ALIGN (TREE_TYPE (parm)));
3172 /* split_complex_arg put the real and imag parts in
3173 pseudos. Move them to memory. */
3174 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3175 set_mem_attributes (tmp, parm, 1);
3176 rmem = adjust_address_nv (tmp, inner, 0);
3177 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3178 push_to_sequence2 (all->first_conversion_insn,
3179 all->last_conversion_insn);
3180 emit_move_insn (rmem, real);
3181 emit_move_insn (imem, imag);
3182 all->first_conversion_insn = get_insns ();
3183 all->last_conversion_insn = get_last_insn ();
3184 end_sequence ();
3186 else
3187 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3188 SET_DECL_RTL (parm, tmp);
3190 real = DECL_INCOMING_RTL (VEC_index (tree, fnargs, i));
3191 imag = DECL_INCOMING_RTL (VEC_index (tree, fnargs, i + 1));
3192 if (inner != GET_MODE (real))
3194 real = gen_lowpart_SUBREG (inner, real);
3195 imag = gen_lowpart_SUBREG (inner, imag);
3197 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3198 set_decl_incoming_rtl (parm, tmp, false);
3199 i++;
3204 /* Assign RTL expressions to the function's parameters. This may involve
3205 copying them into registers and using those registers as the DECL_RTL. */
3207 static void
3208 assign_parms (tree fndecl)
3210 struct assign_parm_data_all all;
3211 tree parm;
3212 VEC(tree, heap) *fnargs;
3213 unsigned i;
3215 crtl->args.internal_arg_pointer
3216 = targetm.calls.internal_arg_pointer ();
3218 assign_parms_initialize_all (&all);
3219 fnargs = assign_parms_augmented_arg_list (&all);
3221 for (i = 0; VEC_iterate (tree, fnargs, i, parm); ++i)
3223 struct assign_parm_data_one data;
3225 /* Extract the type of PARM; adjust it according to ABI. */
3226 assign_parm_find_data_types (&all, parm, &data);
3228 /* Early out for errors and void parameters. */
3229 if (data.passed_mode == VOIDmode)
3231 SET_DECL_RTL (parm, const0_rtx);
3232 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3233 continue;
3236 /* Estimate stack alignment from parameter alignment. */
3237 if (SUPPORTS_STACK_ALIGNMENT)
3239 unsigned int align = FUNCTION_ARG_BOUNDARY (data.promoted_mode,
3240 data.passed_type);
3241 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3242 align);
3243 if (TYPE_ALIGN (data.nominal_type) > align)
3244 align = MINIMUM_ALIGNMENT (data.nominal_type,
3245 TYPE_MODE (data.nominal_type),
3246 TYPE_ALIGN (data.nominal_type));
3247 if (crtl->stack_alignment_estimated < align)
3249 gcc_assert (!crtl->stack_realign_processed);
3250 crtl->stack_alignment_estimated = align;
3254 if (cfun->stdarg && !TREE_CHAIN (parm))
3255 assign_parms_setup_varargs (&all, &data, false);
3257 /* Find out where the parameter arrives in this function. */
3258 assign_parm_find_entry_rtl (&all, &data);
3260 /* Find out where stack space for this parameter might be. */
3261 if (assign_parm_is_stack_parm (&all, &data))
3263 assign_parm_find_stack_rtl (parm, &data);
3264 assign_parm_adjust_entry_rtl (&data);
3267 /* Record permanently how this parm was passed. */
3268 set_decl_incoming_rtl (parm, data.entry_parm, data.passed_pointer);
3270 /* Update info on where next arg arrives in registers. */
3271 targetm.calls.function_arg_advance (&all.args_so_far, data.promoted_mode,
3272 data.passed_type, data.named_arg);
3274 assign_parm_adjust_stack_rtl (&data);
3276 if (assign_parm_setup_block_p (&data))
3277 assign_parm_setup_block (&all, parm, &data);
3278 else if (data.passed_pointer || use_register_for_decl (parm))
3279 assign_parm_setup_reg (&all, parm, &data);
3280 else
3281 assign_parm_setup_stack (&all, parm, &data);
3284 if (targetm.calls.split_complex_arg)
3285 assign_parms_unsplit_complex (&all, fnargs);
3287 VEC_free (tree, heap, fnargs);
3289 /* Output all parameter conversion instructions (possibly including calls)
3290 now that all parameters have been copied out of hard registers. */
3291 emit_insn (all.first_conversion_insn);
3293 /* Estimate reload stack alignment from scalar return mode. */
3294 if (SUPPORTS_STACK_ALIGNMENT)
3296 if (DECL_RESULT (fndecl))
3298 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3299 enum machine_mode mode = TYPE_MODE (type);
3301 if (mode != BLKmode
3302 && mode != VOIDmode
3303 && !AGGREGATE_TYPE_P (type))
3305 unsigned int align = GET_MODE_ALIGNMENT (mode);
3306 if (crtl->stack_alignment_estimated < align)
3308 gcc_assert (!crtl->stack_realign_processed);
3309 crtl->stack_alignment_estimated = align;
3315 /* If we are receiving a struct value address as the first argument, set up
3316 the RTL for the function result. As this might require code to convert
3317 the transmitted address to Pmode, we do this here to ensure that possible
3318 preliminary conversions of the address have been emitted already. */
3319 if (all.function_result_decl)
3321 tree result = DECL_RESULT (current_function_decl);
3322 rtx addr = DECL_RTL (all.function_result_decl);
3323 rtx x;
3325 if (DECL_BY_REFERENCE (result))
3326 x = addr;
3327 else
3329 addr = convert_memory_address (Pmode, addr);
3330 x = gen_rtx_MEM (DECL_MODE (result), addr);
3331 set_mem_attributes (x, result, 1);
3333 SET_DECL_RTL (result, x);
3336 /* We have aligned all the args, so add space for the pretend args. */
3337 crtl->args.pretend_args_size = all.pretend_args_size;
3338 all.stack_args_size.constant += all.extra_pretend_bytes;
3339 crtl->args.size = all.stack_args_size.constant;
3341 /* Adjust function incoming argument size for alignment and
3342 minimum length. */
3344 #ifdef REG_PARM_STACK_SPACE
3345 crtl->args.size = MAX (crtl->args.size,
3346 REG_PARM_STACK_SPACE (fndecl));
3347 #endif
3349 crtl->args.size = CEIL_ROUND (crtl->args.size,
3350 PARM_BOUNDARY / BITS_PER_UNIT);
3352 #ifdef ARGS_GROW_DOWNWARD
3353 crtl->args.arg_offset_rtx
3354 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3355 : expand_expr (size_diffop (all.stack_args_size.var,
3356 size_int (-all.stack_args_size.constant)),
3357 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3358 #else
3359 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3360 #endif
3362 /* See how many bytes, if any, of its args a function should try to pop
3363 on return. */
3365 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3366 TREE_TYPE (fndecl),
3367 crtl->args.size);
3369 /* For stdarg.h function, save info about
3370 regs and stack space used by the named args. */
3372 crtl->args.info = all.args_so_far;
3374 /* Set the rtx used for the function return value. Put this in its
3375 own variable so any optimizers that need this information don't have
3376 to include tree.h. Do this here so it gets done when an inlined
3377 function gets output. */
3379 crtl->return_rtx
3380 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3381 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3383 /* If scalar return value was computed in a pseudo-reg, or was a named
3384 return value that got dumped to the stack, copy that to the hard
3385 return register. */
3386 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3388 tree decl_result = DECL_RESULT (fndecl);
3389 rtx decl_rtl = DECL_RTL (decl_result);
3391 if (REG_P (decl_rtl)
3392 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3393 : DECL_REGISTER (decl_result))
3395 rtx real_decl_rtl;
3397 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3398 fndecl, true);
3399 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3400 /* The delay slot scheduler assumes that crtl->return_rtx
3401 holds the hard register containing the return value, not a
3402 temporary pseudo. */
3403 crtl->return_rtx = real_decl_rtl;
3408 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3409 For all seen types, gimplify their sizes. */
3411 static tree
3412 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3414 tree t = *tp;
3416 *walk_subtrees = 0;
3417 if (TYPE_P (t))
3419 if (POINTER_TYPE_P (t))
3420 *walk_subtrees = 1;
3421 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3422 && !TYPE_SIZES_GIMPLIFIED (t))
3424 gimplify_type_sizes (t, (gimple_seq *) data);
3425 *walk_subtrees = 1;
3429 return NULL;
3432 /* Gimplify the parameter list for current_function_decl. This involves
3433 evaluating SAVE_EXPRs of variable sized parameters and generating code
3434 to implement callee-copies reference parameters. Returns a sequence of
3435 statements to add to the beginning of the function. */
3437 gimple_seq
3438 gimplify_parameters (void)
3440 struct assign_parm_data_all all;
3441 tree parm;
3442 gimple_seq stmts = NULL;
3443 VEC(tree, heap) *fnargs;
3444 unsigned i;
3446 assign_parms_initialize_all (&all);
3447 fnargs = assign_parms_augmented_arg_list (&all);
3449 for (i = 0; VEC_iterate (tree, fnargs, i, parm); ++i)
3451 struct assign_parm_data_one data;
3453 /* Extract the type of PARM; adjust it according to ABI. */
3454 assign_parm_find_data_types (&all, parm, &data);
3456 /* Early out for errors and void parameters. */
3457 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3458 continue;
3460 /* Update info on where next arg arrives in registers. */
3461 targetm.calls.function_arg_advance (&all.args_so_far, data.promoted_mode,
3462 data.passed_type, data.named_arg);
3464 /* ??? Once upon a time variable_size stuffed parameter list
3465 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3466 turned out to be less than manageable in the gimple world.
3467 Now we have to hunt them down ourselves. */
3468 walk_tree_without_duplicates (&data.passed_type,
3469 gimplify_parm_type, &stmts);
3471 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3473 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3474 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3477 if (data.passed_pointer)
3479 tree type = TREE_TYPE (data.passed_type);
3480 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3481 type, data.named_arg))
3483 tree local, t;
3485 /* For constant-sized objects, this is trivial; for
3486 variable-sized objects, we have to play games. */
3487 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3488 && !(flag_stack_check == GENERIC_STACK_CHECK
3489 && compare_tree_int (DECL_SIZE_UNIT (parm),
3490 STACK_CHECK_MAX_VAR_SIZE) > 0))
3492 local = create_tmp_var (type, get_name (parm));
3493 DECL_IGNORED_P (local) = 0;
3494 /* If PARM was addressable, move that flag over
3495 to the local copy, as its address will be taken,
3496 not the PARMs. */
3497 if (TREE_ADDRESSABLE (parm))
3499 TREE_ADDRESSABLE (parm) = 0;
3500 TREE_ADDRESSABLE (local) = 1;
3503 else
3505 tree ptr_type, addr;
3507 ptr_type = build_pointer_type (type);
3508 addr = create_tmp_var (ptr_type, get_name (parm));
3509 DECL_IGNORED_P (addr) = 0;
3510 local = build_fold_indirect_ref (addr);
3512 t = built_in_decls[BUILT_IN_ALLOCA];
3513 t = build_call_expr (t, 1, DECL_SIZE_UNIT (parm));
3514 t = fold_convert (ptr_type, t);
3515 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3516 gimplify_and_add (t, &stmts);
3519 gimplify_assign (local, parm, &stmts);
3521 SET_DECL_VALUE_EXPR (parm, local);
3522 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3527 VEC_free (tree, heap, fnargs);
3529 return stmts;
3532 /* Compute the size and offset from the start of the stacked arguments for a
3533 parm passed in mode PASSED_MODE and with type TYPE.
3535 INITIAL_OFFSET_PTR points to the current offset into the stacked
3536 arguments.
3538 The starting offset and size for this parm are returned in
3539 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3540 nonzero, the offset is that of stack slot, which is returned in
3541 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3542 padding required from the initial offset ptr to the stack slot.
3544 IN_REGS is nonzero if the argument will be passed in registers. It will
3545 never be set if REG_PARM_STACK_SPACE is not defined.
3547 FNDECL is the function in which the argument was defined.
3549 There are two types of rounding that are done. The first, controlled by
3550 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3551 list to be aligned to the specific boundary (in bits). This rounding
3552 affects the initial and starting offsets, but not the argument size.
3554 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3555 optionally rounds the size of the parm to PARM_BOUNDARY. The
3556 initial offset is not affected by this rounding, while the size always
3557 is and the starting offset may be. */
3559 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3560 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3561 callers pass in the total size of args so far as
3562 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3564 void
3565 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3566 int partial, tree fndecl ATTRIBUTE_UNUSED,
3567 struct args_size *initial_offset_ptr,
3568 struct locate_and_pad_arg_data *locate)
3570 tree sizetree;
3571 enum direction where_pad;
3572 unsigned int boundary;
3573 int reg_parm_stack_space = 0;
3574 int part_size_in_regs;
3576 #ifdef REG_PARM_STACK_SPACE
3577 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3579 /* If we have found a stack parm before we reach the end of the
3580 area reserved for registers, skip that area. */
3581 if (! in_regs)
3583 if (reg_parm_stack_space > 0)
3585 if (initial_offset_ptr->var)
3587 initial_offset_ptr->var
3588 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3589 ssize_int (reg_parm_stack_space));
3590 initial_offset_ptr->constant = 0;
3592 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3593 initial_offset_ptr->constant = reg_parm_stack_space;
3596 #endif /* REG_PARM_STACK_SPACE */
3598 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3600 sizetree
3601 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3602 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3603 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3604 locate->where_pad = where_pad;
3606 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3607 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3608 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3610 locate->boundary = boundary;
3612 if (SUPPORTS_STACK_ALIGNMENT)
3614 /* stack_alignment_estimated can't change after stack has been
3615 realigned. */
3616 if (crtl->stack_alignment_estimated < boundary)
3618 if (!crtl->stack_realign_processed)
3619 crtl->stack_alignment_estimated = boundary;
3620 else
3622 /* If stack is realigned and stack alignment value
3623 hasn't been finalized, it is OK not to increase
3624 stack_alignment_estimated. The bigger alignment
3625 requirement is recorded in stack_alignment_needed
3626 below. */
3627 gcc_assert (!crtl->stack_realign_finalized
3628 && crtl->stack_realign_needed);
3633 /* Remember if the outgoing parameter requires extra alignment on the
3634 calling function side. */
3635 if (crtl->stack_alignment_needed < boundary)
3636 crtl->stack_alignment_needed = boundary;
3637 if (crtl->preferred_stack_boundary < boundary)
3638 crtl->preferred_stack_boundary = boundary;
3640 #ifdef ARGS_GROW_DOWNWARD
3641 locate->slot_offset.constant = -initial_offset_ptr->constant;
3642 if (initial_offset_ptr->var)
3643 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3644 initial_offset_ptr->var);
3647 tree s2 = sizetree;
3648 if (where_pad != none
3649 && (!host_integerp (sizetree, 1)
3650 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3651 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3652 SUB_PARM_SIZE (locate->slot_offset, s2);
3655 locate->slot_offset.constant += part_size_in_regs;
3657 if (!in_regs
3658 #ifdef REG_PARM_STACK_SPACE
3659 || REG_PARM_STACK_SPACE (fndecl) > 0
3660 #endif
3662 pad_to_arg_alignment (&locate->slot_offset, boundary,
3663 &locate->alignment_pad);
3665 locate->size.constant = (-initial_offset_ptr->constant
3666 - locate->slot_offset.constant);
3667 if (initial_offset_ptr->var)
3668 locate->size.var = size_binop (MINUS_EXPR,
3669 size_binop (MINUS_EXPR,
3670 ssize_int (0),
3671 initial_offset_ptr->var),
3672 locate->slot_offset.var);
3674 /* Pad_below needs the pre-rounded size to know how much to pad
3675 below. */
3676 locate->offset = locate->slot_offset;
3677 if (where_pad == downward)
3678 pad_below (&locate->offset, passed_mode, sizetree);
3680 #else /* !ARGS_GROW_DOWNWARD */
3681 if (!in_regs
3682 #ifdef REG_PARM_STACK_SPACE
3683 || REG_PARM_STACK_SPACE (fndecl) > 0
3684 #endif
3686 pad_to_arg_alignment (initial_offset_ptr, boundary,
3687 &locate->alignment_pad);
3688 locate->slot_offset = *initial_offset_ptr;
3690 #ifdef PUSH_ROUNDING
3691 if (passed_mode != BLKmode)
3692 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3693 #endif
3695 /* Pad_below needs the pre-rounded size to know how much to pad below
3696 so this must be done before rounding up. */
3697 locate->offset = locate->slot_offset;
3698 if (where_pad == downward)
3699 pad_below (&locate->offset, passed_mode, sizetree);
3701 if (where_pad != none
3702 && (!host_integerp (sizetree, 1)
3703 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3704 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3706 ADD_PARM_SIZE (locate->size, sizetree);
3708 locate->size.constant -= part_size_in_regs;
3709 #endif /* ARGS_GROW_DOWNWARD */
3711 #ifdef FUNCTION_ARG_OFFSET
3712 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3713 #endif
3716 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3717 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3719 static void
3720 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3721 struct args_size *alignment_pad)
3723 tree save_var = NULL_TREE;
3724 HOST_WIDE_INT save_constant = 0;
3725 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3726 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3728 #ifdef SPARC_STACK_BOUNDARY_HACK
3729 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3730 the real alignment of %sp. However, when it does this, the
3731 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3732 if (SPARC_STACK_BOUNDARY_HACK)
3733 sp_offset = 0;
3734 #endif
3736 if (boundary > PARM_BOUNDARY)
3738 save_var = offset_ptr->var;
3739 save_constant = offset_ptr->constant;
3742 alignment_pad->var = NULL_TREE;
3743 alignment_pad->constant = 0;
3745 if (boundary > BITS_PER_UNIT)
3747 if (offset_ptr->var)
3749 tree sp_offset_tree = ssize_int (sp_offset);
3750 tree offset = size_binop (PLUS_EXPR,
3751 ARGS_SIZE_TREE (*offset_ptr),
3752 sp_offset_tree);
3753 #ifdef ARGS_GROW_DOWNWARD
3754 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3755 #else
3756 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3757 #endif
3759 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3760 /* ARGS_SIZE_TREE includes constant term. */
3761 offset_ptr->constant = 0;
3762 if (boundary > PARM_BOUNDARY)
3763 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3764 save_var);
3766 else
3768 offset_ptr->constant = -sp_offset +
3769 #ifdef ARGS_GROW_DOWNWARD
3770 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3771 #else
3772 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3773 #endif
3774 if (boundary > PARM_BOUNDARY)
3775 alignment_pad->constant = offset_ptr->constant - save_constant;
3780 static void
3781 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3783 if (passed_mode != BLKmode)
3785 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3786 offset_ptr->constant
3787 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3788 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3789 - GET_MODE_SIZE (passed_mode));
3791 else
3793 if (TREE_CODE (sizetree) != INTEGER_CST
3794 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3796 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3797 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3798 /* Add it in. */
3799 ADD_PARM_SIZE (*offset_ptr, s2);
3800 SUB_PARM_SIZE (*offset_ptr, sizetree);
3806 /* True if register REGNO was alive at a place where `setjmp' was
3807 called and was set more than once or is an argument. Such regs may
3808 be clobbered by `longjmp'. */
3810 static bool
3811 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3813 /* There appear to be cases where some local vars never reach the
3814 backend but have bogus regnos. */
3815 if (regno >= max_reg_num ())
3816 return false;
3818 return ((REG_N_SETS (regno) > 1
3819 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3820 && REGNO_REG_SET_P (setjmp_crosses, regno));
3823 /* Walk the tree of blocks describing the binding levels within a
3824 function and warn about variables the might be killed by setjmp or
3825 vfork. This is done after calling flow_analysis before register
3826 allocation since that will clobber the pseudo-regs to hard
3827 regs. */
3829 static void
3830 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3832 tree decl, sub;
3834 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3836 if (TREE_CODE (decl) == VAR_DECL
3837 && DECL_RTL_SET_P (decl)
3838 && REG_P (DECL_RTL (decl))
3839 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3840 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3841 " %<longjmp%> or %<vfork%>", decl);
3844 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
3845 setjmp_vars_warning (setjmp_crosses, sub);
3848 /* Do the appropriate part of setjmp_vars_warning
3849 but for arguments instead of local variables. */
3851 static void
3852 setjmp_args_warning (bitmap setjmp_crosses)
3854 tree decl;
3855 for (decl = DECL_ARGUMENTS (current_function_decl);
3856 decl; decl = TREE_CHAIN (decl))
3857 if (DECL_RTL (decl) != 0
3858 && REG_P (DECL_RTL (decl))
3859 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3860 warning (OPT_Wclobbered,
3861 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3862 decl);
3865 /* Generate warning messages for variables live across setjmp. */
3867 void
3868 generate_setjmp_warnings (void)
3870 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3872 if (n_basic_blocks == NUM_FIXED_BLOCKS
3873 || bitmap_empty_p (setjmp_crosses))
3874 return;
3876 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
3877 setjmp_args_warning (setjmp_crosses);
3881 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3882 and create duplicate blocks. */
3883 /* ??? Need an option to either create block fragments or to create
3884 abstract origin duplicates of a source block. It really depends
3885 on what optimization has been performed. */
3887 void
3888 reorder_blocks (void)
3890 tree block = DECL_INITIAL (current_function_decl);
3891 VEC(tree,heap) *block_stack;
3893 if (block == NULL_TREE)
3894 return;
3896 block_stack = VEC_alloc (tree, heap, 10);
3898 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3899 clear_block_marks (block);
3901 /* Prune the old trees away, so that they don't get in the way. */
3902 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3903 BLOCK_CHAIN (block) = NULL_TREE;
3905 /* Recreate the block tree from the note nesting. */
3906 reorder_blocks_1 (get_insns (), block, &block_stack);
3907 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3909 VEC_free (tree, heap, block_stack);
3912 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3914 void
3915 clear_block_marks (tree block)
3917 while (block)
3919 TREE_ASM_WRITTEN (block) = 0;
3920 clear_block_marks (BLOCK_SUBBLOCKS (block));
3921 block = BLOCK_CHAIN (block);
3925 static void
3926 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
3928 rtx insn;
3930 for (insn = insns; insn; insn = NEXT_INSN (insn))
3932 if (NOTE_P (insn))
3934 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
3936 tree block = NOTE_BLOCK (insn);
3937 tree origin;
3939 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3940 ? BLOCK_FRAGMENT_ORIGIN (block)
3941 : block);
3943 /* If we have seen this block before, that means it now
3944 spans multiple address regions. Create a new fragment. */
3945 if (TREE_ASM_WRITTEN (block))
3947 tree new_block = copy_node (block);
3949 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3950 BLOCK_FRAGMENT_CHAIN (new_block)
3951 = BLOCK_FRAGMENT_CHAIN (origin);
3952 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3954 NOTE_BLOCK (insn) = new_block;
3955 block = new_block;
3958 BLOCK_SUBBLOCKS (block) = 0;
3959 TREE_ASM_WRITTEN (block) = 1;
3960 /* When there's only one block for the entire function,
3961 current_block == block and we mustn't do this, it
3962 will cause infinite recursion. */
3963 if (block != current_block)
3965 if (block != origin)
3966 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block);
3968 BLOCK_SUPERCONTEXT (block) = current_block;
3969 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3970 BLOCK_SUBBLOCKS (current_block) = block;
3971 current_block = origin;
3973 VEC_safe_push (tree, heap, *p_block_stack, block);
3975 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
3977 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
3978 BLOCK_SUBBLOCKS (current_block)
3979 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3980 current_block = BLOCK_SUPERCONTEXT (current_block);
3986 /* Reverse the order of elements in the chain T of blocks,
3987 and return the new head of the chain (old last element). */
3989 tree
3990 blocks_nreverse (tree t)
3992 tree prev = 0, decl, next;
3993 for (decl = t; decl; decl = next)
3995 next = BLOCK_CHAIN (decl);
3996 BLOCK_CHAIN (decl) = prev;
3997 prev = decl;
3999 return prev;
4002 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4003 non-NULL, list them all into VECTOR, in a depth-first preorder
4004 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4005 blocks. */
4007 static int
4008 all_blocks (tree block, tree *vector)
4010 int n_blocks = 0;
4012 while (block)
4014 TREE_ASM_WRITTEN (block) = 0;
4016 /* Record this block. */
4017 if (vector)
4018 vector[n_blocks] = block;
4020 ++n_blocks;
4022 /* Record the subblocks, and their subblocks... */
4023 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4024 vector ? vector + n_blocks : 0);
4025 block = BLOCK_CHAIN (block);
4028 return n_blocks;
4031 /* Return a vector containing all the blocks rooted at BLOCK. The
4032 number of elements in the vector is stored in N_BLOCKS_P. The
4033 vector is dynamically allocated; it is the caller's responsibility
4034 to call `free' on the pointer returned. */
4036 static tree *
4037 get_block_vector (tree block, int *n_blocks_p)
4039 tree *block_vector;
4041 *n_blocks_p = all_blocks (block, NULL);
4042 block_vector = XNEWVEC (tree, *n_blocks_p);
4043 all_blocks (block, block_vector);
4045 return block_vector;
4048 static GTY(()) int next_block_index = 2;
4050 /* Set BLOCK_NUMBER for all the blocks in FN. */
4052 void
4053 number_blocks (tree fn)
4055 int i;
4056 int n_blocks;
4057 tree *block_vector;
4059 /* For SDB and XCOFF debugging output, we start numbering the blocks
4060 from 1 within each function, rather than keeping a running
4061 count. */
4062 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4063 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4064 next_block_index = 1;
4065 #endif
4067 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4069 /* The top-level BLOCK isn't numbered at all. */
4070 for (i = 1; i < n_blocks; ++i)
4071 /* We number the blocks from two. */
4072 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4074 free (block_vector);
4076 return;
4079 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4081 DEBUG_FUNCTION tree
4082 debug_find_var_in_block_tree (tree var, tree block)
4084 tree t;
4086 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4087 if (t == var)
4088 return block;
4090 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4092 tree ret = debug_find_var_in_block_tree (var, t);
4093 if (ret)
4094 return ret;
4097 return NULL_TREE;
4100 /* Keep track of whether we're in a dummy function context. If we are,
4101 we don't want to invoke the set_current_function hook, because we'll
4102 get into trouble if the hook calls target_reinit () recursively or
4103 when the initial initialization is not yet complete. */
4105 static bool in_dummy_function;
4107 /* Invoke the target hook when setting cfun. Update the optimization options
4108 if the function uses different options than the default. */
4110 static void
4111 invoke_set_current_function_hook (tree fndecl)
4113 if (!in_dummy_function)
4115 tree opts = ((fndecl)
4116 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4117 : optimization_default_node);
4119 if (!opts)
4120 opts = optimization_default_node;
4122 /* Change optimization options if needed. */
4123 if (optimization_current_node != opts)
4125 optimization_current_node = opts;
4126 cl_optimization_restore (TREE_OPTIMIZATION (opts));
4129 targetm.set_current_function (fndecl);
4133 /* cfun should never be set directly; use this function. */
4135 void
4136 set_cfun (struct function *new_cfun)
4138 if (cfun != new_cfun)
4140 cfun = new_cfun;
4141 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4145 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4147 static VEC(function_p,heap) *cfun_stack;
4149 /* Push the current cfun onto the stack, and set cfun to new_cfun. */
4151 void
4152 push_cfun (struct function *new_cfun)
4154 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4155 set_cfun (new_cfun);
4158 /* Pop cfun from the stack. */
4160 void
4161 pop_cfun (void)
4163 struct function *new_cfun = VEC_pop (function_p, cfun_stack);
4164 set_cfun (new_cfun);
4167 /* Return value of funcdef and increase it. */
4169 get_next_funcdef_no (void)
4171 return funcdef_no++;
4174 /* Allocate a function structure for FNDECL and set its contents
4175 to the defaults. Set cfun to the newly-allocated object.
4176 Some of the helper functions invoked during initialization assume
4177 that cfun has already been set. Therefore, assign the new object
4178 directly into cfun and invoke the back end hook explicitly at the
4179 very end, rather than initializing a temporary and calling set_cfun
4180 on it.
4182 ABSTRACT_P is true if this is a function that will never be seen by
4183 the middle-end. Such functions are front-end concepts (like C++
4184 function templates) that do not correspond directly to functions
4185 placed in object files. */
4187 void
4188 allocate_struct_function (tree fndecl, bool abstract_p)
4190 tree result;
4191 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4193 cfun = ggc_alloc_cleared_function ();
4195 init_eh_for_function ();
4197 if (init_machine_status)
4198 cfun->machine = (*init_machine_status) ();
4200 #ifdef OVERRIDE_ABI_FORMAT
4201 OVERRIDE_ABI_FORMAT (fndecl);
4202 #endif
4204 invoke_set_current_function_hook (fndecl);
4206 if (fndecl != NULL_TREE)
4208 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4209 cfun->decl = fndecl;
4210 current_function_funcdef_no = get_next_funcdef_no ();
4212 result = DECL_RESULT (fndecl);
4213 if (!abstract_p && aggregate_value_p (result, fndecl))
4215 #ifdef PCC_STATIC_STRUCT_RETURN
4216 cfun->returns_pcc_struct = 1;
4217 #endif
4218 cfun->returns_struct = 1;
4221 cfun->stdarg
4222 = (fntype
4223 && TYPE_ARG_TYPES (fntype) != 0
4224 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4225 != void_type_node));
4227 /* Assume all registers in stdarg functions need to be saved. */
4228 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4229 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4231 /* ??? This could be set on a per-function basis by the front-end
4232 but is this worth the hassle? */
4233 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4237 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4238 instead of just setting it. */
4240 void
4241 push_struct_function (tree fndecl)
4243 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4244 allocate_struct_function (fndecl, false);
4247 /* Reset crtl and other non-struct-function variables to defaults as
4248 appropriate for emitting rtl at the start of a function. */
4250 static void
4251 prepare_function_start (void)
4253 gcc_assert (!crtl->emit.x_last_insn);
4254 init_temp_slots ();
4255 init_emit ();
4256 init_varasm_status ();
4257 init_expr ();
4258 default_rtl_profile ();
4260 cse_not_expected = ! optimize;
4262 /* Caller save not needed yet. */
4263 caller_save_needed = 0;
4265 /* We haven't done register allocation yet. */
4266 reg_renumber = 0;
4268 /* Indicate that we have not instantiated virtual registers yet. */
4269 virtuals_instantiated = 0;
4271 /* Indicate that we want CONCATs now. */
4272 generating_concat_p = 1;
4274 /* Indicate we have no need of a frame pointer yet. */
4275 frame_pointer_needed = 0;
4278 /* Initialize the rtl expansion mechanism so that we can do simple things
4279 like generate sequences. This is used to provide a context during global
4280 initialization of some passes. You must call expand_dummy_function_end
4281 to exit this context. */
4283 void
4284 init_dummy_function_start (void)
4286 gcc_assert (!in_dummy_function);
4287 in_dummy_function = true;
4288 push_struct_function (NULL_TREE);
4289 prepare_function_start ();
4292 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4293 and initialize static variables for generating RTL for the statements
4294 of the function. */
4296 void
4297 init_function_start (tree subr)
4299 if (subr && DECL_STRUCT_FUNCTION (subr))
4300 set_cfun (DECL_STRUCT_FUNCTION (subr));
4301 else
4302 allocate_struct_function (subr, false);
4303 prepare_function_start ();
4305 /* Warn if this value is an aggregate type,
4306 regardless of which calling convention we are using for it. */
4307 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4308 warning (OPT_Waggregate_return, "function returns an aggregate");
4311 /* Make sure all values used by the optimization passes have sane defaults. */
4312 unsigned int
4313 init_function_for_compilation (void)
4315 reg_renumber = 0;
4316 return 0;
4319 struct rtl_opt_pass pass_init_function =
4322 RTL_PASS,
4323 "*init_function", /* name */
4324 NULL, /* gate */
4325 init_function_for_compilation, /* execute */
4326 NULL, /* sub */
4327 NULL, /* next */
4328 0, /* static_pass_number */
4329 TV_NONE, /* tv_id */
4330 0, /* properties_required */
4331 0, /* properties_provided */
4332 0, /* properties_destroyed */
4333 0, /* todo_flags_start */
4334 0 /* todo_flags_finish */
4339 void
4340 expand_main_function (void)
4342 #if (defined(INVOKE__main) \
4343 || (!defined(HAS_INIT_SECTION) \
4344 && !defined(INIT_SECTION_ASM_OP) \
4345 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4346 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4347 #endif
4350 /* Expand code to initialize the stack_protect_guard. This is invoked at
4351 the beginning of a function to be protected. */
4353 #ifndef HAVE_stack_protect_set
4354 # define HAVE_stack_protect_set 0
4355 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
4356 #endif
4358 void
4359 stack_protect_prologue (void)
4361 tree guard_decl = targetm.stack_protect_guard ();
4362 rtx x, y;
4364 x = expand_normal (crtl->stack_protect_guard);
4365 y = expand_normal (guard_decl);
4367 /* Allow the target to copy from Y to X without leaking Y into a
4368 register. */
4369 if (HAVE_stack_protect_set)
4371 rtx insn = gen_stack_protect_set (x, y);
4372 if (insn)
4374 emit_insn (insn);
4375 return;
4379 /* Otherwise do a straight move. */
4380 emit_move_insn (x, y);
4383 /* Expand code to verify the stack_protect_guard. This is invoked at
4384 the end of a function to be protected. */
4386 #ifndef HAVE_stack_protect_test
4387 # define HAVE_stack_protect_test 0
4388 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4389 #endif
4391 void
4392 stack_protect_epilogue (void)
4394 tree guard_decl = targetm.stack_protect_guard ();
4395 rtx label = gen_label_rtx ();
4396 rtx x, y, tmp;
4398 x = expand_normal (crtl->stack_protect_guard);
4399 y = expand_normal (guard_decl);
4401 /* Allow the target to compare Y with X without leaking either into
4402 a register. */
4403 switch (HAVE_stack_protect_test != 0)
4405 case 1:
4406 tmp = gen_stack_protect_test (x, y, label);
4407 if (tmp)
4409 emit_insn (tmp);
4410 break;
4412 /* FALLTHRU */
4414 default:
4415 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4416 break;
4419 /* The noreturn predictor has been moved to the tree level. The rtl-level
4420 predictors estimate this branch about 20%, which isn't enough to get
4421 things moved out of line. Since this is the only extant case of adding
4422 a noreturn function at the rtl level, it doesn't seem worth doing ought
4423 except adding the prediction by hand. */
4424 tmp = get_last_insn ();
4425 if (JUMP_P (tmp))
4426 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4428 expand_expr_stmt (targetm.stack_protect_fail ());
4429 emit_label (label);
4432 /* Start the RTL for a new function, and set variables used for
4433 emitting RTL.
4434 SUBR is the FUNCTION_DECL node.
4435 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4436 the function's parameters, which must be run at any return statement. */
4438 void
4439 expand_function_start (tree subr)
4441 /* Make sure volatile mem refs aren't considered
4442 valid operands of arithmetic insns. */
4443 init_recog_no_volatile ();
4445 crtl->profile
4446 = (profile_flag
4447 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4449 crtl->limit_stack
4450 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4452 /* Make the label for return statements to jump to. Do not special
4453 case machines with special return instructions -- they will be
4454 handled later during jump, ifcvt, or epilogue creation. */
4455 return_label = gen_label_rtx ();
4457 /* Initialize rtx used to return the value. */
4458 /* Do this before assign_parms so that we copy the struct value address
4459 before any library calls that assign parms might generate. */
4461 /* Decide whether to return the value in memory or in a register. */
4462 if (aggregate_value_p (DECL_RESULT (subr), subr))
4464 /* Returning something that won't go in a register. */
4465 rtx value_address = 0;
4467 #ifdef PCC_STATIC_STRUCT_RETURN
4468 if (cfun->returns_pcc_struct)
4470 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4471 value_address = assemble_static_space (size);
4473 else
4474 #endif
4476 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4477 /* Expect to be passed the address of a place to store the value.
4478 If it is passed as an argument, assign_parms will take care of
4479 it. */
4480 if (sv)
4482 value_address = gen_reg_rtx (Pmode);
4483 emit_move_insn (value_address, sv);
4486 if (value_address)
4488 rtx x = value_address;
4489 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4491 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4492 set_mem_attributes (x, DECL_RESULT (subr), 1);
4494 SET_DECL_RTL (DECL_RESULT (subr), x);
4497 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4498 /* If return mode is void, this decl rtl should not be used. */
4499 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4500 else
4502 /* Compute the return values into a pseudo reg, which we will copy
4503 into the true return register after the cleanups are done. */
4504 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4505 if (TYPE_MODE (return_type) != BLKmode
4506 && targetm.calls.return_in_msb (return_type))
4507 /* expand_function_end will insert the appropriate padding in
4508 this case. Use the return value's natural (unpadded) mode
4509 within the function proper. */
4510 SET_DECL_RTL (DECL_RESULT (subr),
4511 gen_reg_rtx (TYPE_MODE (return_type)));
4512 else
4514 /* In order to figure out what mode to use for the pseudo, we
4515 figure out what the mode of the eventual return register will
4516 actually be, and use that. */
4517 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4519 /* Structures that are returned in registers are not
4520 aggregate_value_p, so we may see a PARALLEL or a REG. */
4521 if (REG_P (hard_reg))
4522 SET_DECL_RTL (DECL_RESULT (subr),
4523 gen_reg_rtx (GET_MODE (hard_reg)));
4524 else
4526 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4527 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4531 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4532 result to the real return register(s). */
4533 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4536 /* Initialize rtx for parameters and local variables.
4537 In some cases this requires emitting insns. */
4538 assign_parms (subr);
4540 /* If function gets a static chain arg, store it. */
4541 if (cfun->static_chain_decl)
4543 tree parm = cfun->static_chain_decl;
4544 rtx local, chain, insn;
4546 local = gen_reg_rtx (Pmode);
4547 chain = targetm.calls.static_chain (current_function_decl, true);
4549 set_decl_incoming_rtl (parm, chain, false);
4550 SET_DECL_RTL (parm, local);
4551 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4553 insn = emit_move_insn (local, chain);
4555 /* Mark the register as eliminable, similar to parameters. */
4556 if (MEM_P (chain)
4557 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
4558 set_unique_reg_note (insn, REG_EQUIV, chain);
4561 /* If the function receives a non-local goto, then store the
4562 bits we need to restore the frame pointer. */
4563 if (cfun->nonlocal_goto_save_area)
4565 tree t_save;
4566 rtx r_save;
4568 /* ??? We need to do this save early. Unfortunately here is
4569 before the frame variable gets declared. Help out... */
4570 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4571 if (!DECL_RTL_SET_P (var))
4572 expand_decl (var);
4574 t_save = build4 (ARRAY_REF, ptr_type_node,
4575 cfun->nonlocal_goto_save_area,
4576 integer_zero_node, NULL_TREE, NULL_TREE);
4577 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4578 r_save = convert_memory_address (Pmode, r_save);
4580 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4581 update_nonlocal_goto_save_area ();
4584 /* The following was moved from init_function_start.
4585 The move is supposed to make sdb output more accurate. */
4586 /* Indicate the beginning of the function body,
4587 as opposed to parm setup. */
4588 emit_note (NOTE_INSN_FUNCTION_BEG);
4590 gcc_assert (NOTE_P (get_last_insn ()));
4592 parm_birth_insn = get_last_insn ();
4594 if (crtl->profile)
4596 #ifdef PROFILE_HOOK
4597 PROFILE_HOOK (current_function_funcdef_no);
4598 #endif
4601 /* After the display initializations is where the stack checking
4602 probe should go. */
4603 if(flag_stack_check)
4604 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4606 /* Make sure there is a line number after the function entry setup code. */
4607 force_next_line_note ();
4610 /* Undo the effects of init_dummy_function_start. */
4611 void
4612 expand_dummy_function_end (void)
4614 gcc_assert (in_dummy_function);
4616 /* End any sequences that failed to be closed due to syntax errors. */
4617 while (in_sequence_p ())
4618 end_sequence ();
4620 /* Outside function body, can't compute type's actual size
4621 until next function's body starts. */
4623 free_after_parsing (cfun);
4624 free_after_compilation (cfun);
4625 pop_cfun ();
4626 in_dummy_function = false;
4629 /* Call DOIT for each hard register used as a return value from
4630 the current function. */
4632 void
4633 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4635 rtx outgoing = crtl->return_rtx;
4637 if (! outgoing)
4638 return;
4640 if (REG_P (outgoing))
4641 (*doit) (outgoing, arg);
4642 else if (GET_CODE (outgoing) == PARALLEL)
4644 int i;
4646 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4648 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4650 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4651 (*doit) (x, arg);
4656 static void
4657 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4659 emit_clobber (reg);
4662 void
4663 clobber_return_register (void)
4665 diddle_return_value (do_clobber_return_reg, NULL);
4667 /* In case we do use pseudo to return value, clobber it too. */
4668 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4670 tree decl_result = DECL_RESULT (current_function_decl);
4671 rtx decl_rtl = DECL_RTL (decl_result);
4672 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4674 do_clobber_return_reg (decl_rtl, NULL);
4679 static void
4680 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4682 emit_use (reg);
4685 static void
4686 use_return_register (void)
4688 diddle_return_value (do_use_return_reg, NULL);
4691 /* Possibly warn about unused parameters. */
4692 void
4693 do_warn_unused_parameter (tree fn)
4695 tree decl;
4697 for (decl = DECL_ARGUMENTS (fn);
4698 decl; decl = TREE_CHAIN (decl))
4699 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4700 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4701 && !TREE_NO_WARNING (decl))
4702 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4705 static GTY(()) rtx initial_trampoline;
4707 /* Generate RTL for the end of the current function. */
4709 void
4710 expand_function_end (void)
4712 rtx clobber_after;
4714 /* If arg_pointer_save_area was referenced only from a nested
4715 function, we will not have initialized it yet. Do that now. */
4716 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
4717 get_arg_pointer_save_area ();
4719 /* If we are doing generic stack checking and this function makes calls,
4720 do a stack probe at the start of the function to ensure we have enough
4721 space for another stack frame. */
4722 if (flag_stack_check == GENERIC_STACK_CHECK)
4724 rtx insn, seq;
4726 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4727 if (CALL_P (insn))
4729 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
4730 start_sequence ();
4731 if (STACK_CHECK_MOVING_SP)
4732 anti_adjust_stack_and_probe (max_frame_size, true);
4733 else
4734 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
4735 seq = get_insns ();
4736 end_sequence ();
4737 emit_insn_before (seq, stack_check_probe_note);
4738 break;
4742 /* End any sequences that failed to be closed due to syntax errors. */
4743 while (in_sequence_p ())
4744 end_sequence ();
4746 clear_pending_stack_adjust ();
4747 do_pending_stack_adjust ();
4749 /* Output a linenumber for the end of the function.
4750 SDB depends on this. */
4751 force_next_line_note ();
4752 set_curr_insn_source_location (input_location);
4754 /* Before the return label (if any), clobber the return
4755 registers so that they are not propagated live to the rest of
4756 the function. This can only happen with functions that drop
4757 through; if there had been a return statement, there would
4758 have either been a return rtx, or a jump to the return label.
4760 We delay actual code generation after the current_function_value_rtx
4761 is computed. */
4762 clobber_after = get_last_insn ();
4764 /* Output the label for the actual return from the function. */
4765 emit_label (return_label);
4767 if (USING_SJLJ_EXCEPTIONS)
4769 /* Let except.c know where it should emit the call to unregister
4770 the function context for sjlj exceptions. */
4771 if (flag_exceptions)
4772 sjlj_emit_function_exit_after (get_last_insn ());
4774 else
4776 /* We want to ensure that instructions that may trap are not
4777 moved into the epilogue by scheduling, because we don't
4778 always emit unwind information for the epilogue. */
4779 if (cfun->can_throw_non_call_exceptions)
4780 emit_insn (gen_blockage ());
4783 /* If this is an implementation of throw, do what's necessary to
4784 communicate between __builtin_eh_return and the epilogue. */
4785 expand_eh_return ();
4787 /* If scalar return value was computed in a pseudo-reg, or was a named
4788 return value that got dumped to the stack, copy that to the hard
4789 return register. */
4790 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4792 tree decl_result = DECL_RESULT (current_function_decl);
4793 rtx decl_rtl = DECL_RTL (decl_result);
4795 if (REG_P (decl_rtl)
4796 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4797 : DECL_REGISTER (decl_result))
4799 rtx real_decl_rtl = crtl->return_rtx;
4801 /* This should be set in assign_parms. */
4802 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4804 /* If this is a BLKmode structure being returned in registers,
4805 then use the mode computed in expand_return. Note that if
4806 decl_rtl is memory, then its mode may have been changed,
4807 but that crtl->return_rtx has not. */
4808 if (GET_MODE (real_decl_rtl) == BLKmode)
4809 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4811 /* If a non-BLKmode return value should be padded at the least
4812 significant end of the register, shift it left by the appropriate
4813 amount. BLKmode results are handled using the group load/store
4814 machinery. */
4815 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4816 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4818 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4819 REGNO (real_decl_rtl)),
4820 decl_rtl);
4821 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4823 /* If a named return value dumped decl_return to memory, then
4824 we may need to re-do the PROMOTE_MODE signed/unsigned
4825 extension. */
4826 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4828 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4829 promote_function_mode (TREE_TYPE (decl_result),
4830 GET_MODE (decl_rtl), &unsignedp,
4831 TREE_TYPE (current_function_decl), 1);
4833 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4835 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4837 /* If expand_function_start has created a PARALLEL for decl_rtl,
4838 move the result to the real return registers. Otherwise, do
4839 a group load from decl_rtl for a named return. */
4840 if (GET_CODE (decl_rtl) == PARALLEL)
4841 emit_group_move (real_decl_rtl, decl_rtl);
4842 else
4843 emit_group_load (real_decl_rtl, decl_rtl,
4844 TREE_TYPE (decl_result),
4845 int_size_in_bytes (TREE_TYPE (decl_result)));
4847 /* In the case of complex integer modes smaller than a word, we'll
4848 need to generate some non-trivial bitfield insertions. Do that
4849 on a pseudo and not the hard register. */
4850 else if (GET_CODE (decl_rtl) == CONCAT
4851 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
4852 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
4854 int old_generating_concat_p;
4855 rtx tmp;
4857 old_generating_concat_p = generating_concat_p;
4858 generating_concat_p = 0;
4859 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
4860 generating_concat_p = old_generating_concat_p;
4862 emit_move_insn (tmp, decl_rtl);
4863 emit_move_insn (real_decl_rtl, tmp);
4865 else
4866 emit_move_insn (real_decl_rtl, decl_rtl);
4870 /* If returning a structure, arrange to return the address of the value
4871 in a place where debuggers expect to find it.
4873 If returning a structure PCC style,
4874 the caller also depends on this value.
4875 And cfun->returns_pcc_struct is not necessarily set. */
4876 if (cfun->returns_struct
4877 || cfun->returns_pcc_struct)
4879 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4880 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4881 rtx outgoing;
4883 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4884 type = TREE_TYPE (type);
4885 else
4886 value_address = XEXP (value_address, 0);
4888 outgoing = targetm.calls.function_value (build_pointer_type (type),
4889 current_function_decl, true);
4891 /* Mark this as a function return value so integrate will delete the
4892 assignment and USE below when inlining this function. */
4893 REG_FUNCTION_VALUE_P (outgoing) = 1;
4895 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4896 value_address = convert_memory_address (GET_MODE (outgoing),
4897 value_address);
4899 emit_move_insn (outgoing, value_address);
4901 /* Show return register used to hold result (in this case the address
4902 of the result. */
4903 crtl->return_rtx = outgoing;
4906 /* Emit the actual code to clobber return register. */
4908 rtx seq;
4910 start_sequence ();
4911 clobber_return_register ();
4912 seq = get_insns ();
4913 end_sequence ();
4915 emit_insn_after (seq, clobber_after);
4918 /* Output the label for the naked return from the function. */
4919 if (naked_return_label)
4920 emit_label (naked_return_label);
4922 /* @@@ This is a kludge. We want to ensure that instructions that
4923 may trap are not moved into the epilogue by scheduling, because
4924 we don't always emit unwind information for the epilogue. */
4925 if (!USING_SJLJ_EXCEPTIONS && cfun->can_throw_non_call_exceptions)
4926 emit_insn (gen_blockage ());
4928 /* If stack protection is enabled for this function, check the guard. */
4929 if (crtl->stack_protect_guard)
4930 stack_protect_epilogue ();
4932 /* If we had calls to alloca, and this machine needs
4933 an accurate stack pointer to exit the function,
4934 insert some code to save and restore the stack pointer. */
4935 if (! EXIT_IGNORE_STACK
4936 && cfun->calls_alloca)
4938 rtx tem = 0;
4940 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4941 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4944 /* ??? This should no longer be necessary since stupid is no longer with
4945 us, but there are some parts of the compiler (eg reload_combine, and
4946 sh mach_dep_reorg) that still try and compute their own lifetime info
4947 instead of using the general framework. */
4948 use_return_register ();
4952 get_arg_pointer_save_area (void)
4954 rtx ret = arg_pointer_save_area;
4956 if (! ret)
4958 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
4959 arg_pointer_save_area = ret;
4962 if (! crtl->arg_pointer_save_area_init)
4964 rtx seq;
4966 /* Save the arg pointer at the beginning of the function. The
4967 generated stack slot may not be a valid memory address, so we
4968 have to check it and fix it if necessary. */
4969 start_sequence ();
4970 emit_move_insn (validize_mem (ret),
4971 crtl->args.internal_arg_pointer);
4972 seq = get_insns ();
4973 end_sequence ();
4975 push_topmost_sequence ();
4976 emit_insn_after (seq, entry_of_function ());
4977 pop_topmost_sequence ();
4980 return ret;
4983 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
4984 for the first time. */
4986 static void
4987 record_insns (rtx insns, rtx end, htab_t *hashp)
4989 rtx tmp;
4990 htab_t hash = *hashp;
4992 if (hash == NULL)
4993 *hashp = hash
4994 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
4996 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
4998 void **slot = htab_find_slot (hash, tmp, INSERT);
4999 gcc_assert (*slot == NULL);
5000 *slot = tmp;
5004 /* INSN has been duplicated as COPY, as part of duping a basic block.
5005 If INSN is an epilogue insn, then record COPY as epilogue as well. */
5007 void
5008 maybe_copy_epilogue_insn (rtx insn, rtx copy)
5010 void **slot;
5012 if (epilogue_insn_hash == NULL
5013 || htab_find (epilogue_insn_hash, insn) == NULL)
5014 return;
5016 slot = htab_find_slot (epilogue_insn_hash, copy, INSERT);
5017 gcc_assert (*slot == NULL);
5018 *slot = copy;
5021 /* Set the locator of the insn chain starting at INSN to LOC. */
5022 static void
5023 set_insn_locators (rtx insn, int loc)
5025 while (insn != NULL_RTX)
5027 if (INSN_P (insn))
5028 INSN_LOCATOR (insn) = loc;
5029 insn = NEXT_INSN (insn);
5033 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5034 we can be running after reorg, SEQUENCE rtl is possible. */
5036 static bool
5037 contains (const_rtx insn, htab_t hash)
5039 if (hash == NULL)
5040 return false;
5042 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5044 int i;
5045 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
5046 if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
5047 return true;
5048 return false;
5051 return htab_find (hash, insn) != NULL;
5055 prologue_epilogue_contains (const_rtx insn)
5057 if (contains (insn, prologue_insn_hash))
5058 return 1;
5059 if (contains (insn, epilogue_insn_hash))
5060 return 1;
5061 return 0;
5064 #ifdef HAVE_return
5065 /* Insert gen_return at the end of block BB. This also means updating
5066 block_for_insn appropriately. */
5068 static void
5069 emit_return_into_block (basic_block bb)
5071 emit_jump_insn_after (gen_return (), BB_END (bb));
5073 #endif /* HAVE_return */
5075 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5076 this into place with notes indicating where the prologue ends and where
5077 the epilogue begins. Update the basic block information when possible. */
5079 static void
5080 thread_prologue_and_epilogue_insns (void)
5082 int inserted = 0;
5083 edge e;
5084 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
5085 rtx seq;
5086 #endif
5087 #if defined (HAVE_epilogue) || defined(HAVE_return)
5088 rtx epilogue_end = NULL_RTX;
5089 #endif
5090 edge_iterator ei;
5092 rtl_profile_for_bb (ENTRY_BLOCK_PTR);
5093 #ifdef HAVE_prologue
5094 if (HAVE_prologue)
5096 start_sequence ();
5097 seq = gen_prologue ();
5098 emit_insn (seq);
5100 /* Insert an explicit USE for the frame pointer
5101 if the profiling is on and the frame pointer is required. */
5102 if (crtl->profile && frame_pointer_needed)
5103 emit_use (hard_frame_pointer_rtx);
5105 /* Retain a map of the prologue insns. */
5106 record_insns (seq, NULL, &prologue_insn_hash);
5107 emit_note (NOTE_INSN_PROLOGUE_END);
5109 #ifndef PROFILE_BEFORE_PROLOGUE
5110 /* Ensure that instructions are not moved into the prologue when
5111 profiling is on. The call to the profiling routine can be
5112 emitted within the live range of a call-clobbered register. */
5113 if (crtl->profile)
5114 emit_insn (gen_blockage ());
5115 #endif
5117 seq = get_insns ();
5118 end_sequence ();
5119 set_insn_locators (seq, prologue_locator);
5121 /* Can't deal with multiple successors of the entry block
5122 at the moment. Function should always have at least one
5123 entry point. */
5124 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5126 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
5127 inserted = 1;
5129 #endif
5131 /* If the exit block has no non-fake predecessors, we don't need
5132 an epilogue. */
5133 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5134 if ((e->flags & EDGE_FAKE) == 0)
5135 break;
5136 if (e == NULL)
5137 goto epilogue_done;
5139 rtl_profile_for_bb (EXIT_BLOCK_PTR);
5140 #ifdef HAVE_return
5141 if (optimize && HAVE_return)
5143 /* If we're allowed to generate a simple return instruction,
5144 then by definition we don't need a full epilogue. Examine
5145 the block that falls through to EXIT. If it does not
5146 contain any code, examine its predecessors and try to
5147 emit (conditional) return instructions. */
5149 basic_block last;
5150 rtx label;
5152 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5153 if (e->flags & EDGE_FALLTHRU)
5154 break;
5155 if (e == NULL)
5156 goto epilogue_done;
5157 last = e->src;
5159 /* Verify that there are no active instructions in the last block. */
5160 label = BB_END (last);
5161 while (label && !LABEL_P (label))
5163 if (active_insn_p (label))
5164 break;
5165 label = PREV_INSN (label);
5168 if (BB_HEAD (last) == label && LABEL_P (label))
5170 edge_iterator ei2;
5172 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5174 basic_block bb = e->src;
5175 rtx jump;
5177 if (bb == ENTRY_BLOCK_PTR)
5179 ei_next (&ei2);
5180 continue;
5183 jump = BB_END (bb);
5184 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5186 ei_next (&ei2);
5187 continue;
5190 /* If we have an unconditional jump, we can replace that
5191 with a simple return instruction. */
5192 if (simplejump_p (jump))
5194 emit_return_into_block (bb);
5195 delete_insn (jump);
5198 /* If we have a conditional jump, we can try to replace
5199 that with a conditional return instruction. */
5200 else if (condjump_p (jump))
5202 if (! redirect_jump (jump, 0, 0))
5204 ei_next (&ei2);
5205 continue;
5208 /* If this block has only one successor, it both jumps
5209 and falls through to the fallthru block, so we can't
5210 delete the edge. */
5211 if (single_succ_p (bb))
5213 ei_next (&ei2);
5214 continue;
5217 else
5219 ei_next (&ei2);
5220 continue;
5223 /* Fix up the CFG for the successful change we just made. */
5224 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5227 /* Emit a return insn for the exit fallthru block. Whether
5228 this is still reachable will be determined later. */
5230 emit_barrier_after (BB_END (last));
5231 emit_return_into_block (last);
5232 epilogue_end = BB_END (last);
5233 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
5234 goto epilogue_done;
5237 #endif
5239 /* A small fib -- epilogue is not yet completed, but we wish to re-use
5240 this marker for the splits of EH_RETURN patterns, and nothing else
5241 uses the flag in the meantime. */
5242 epilogue_completed = 1;
5244 #ifdef HAVE_eh_return
5245 /* Find non-fallthru edges that end with EH_RETURN instructions. On
5246 some targets, these get split to a special version of the epilogue
5247 code. In order to be able to properly annotate these with unwind
5248 info, try to split them now. If we get a valid split, drop an
5249 EPILOGUE_BEG note and mark the insns as epilogue insns. */
5250 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5252 rtx prev, last, trial;
5254 if (e->flags & EDGE_FALLTHRU)
5255 continue;
5256 last = BB_END (e->src);
5257 if (!eh_returnjump_p (last))
5258 continue;
5260 prev = PREV_INSN (last);
5261 trial = try_split (PATTERN (last), last, 1);
5262 if (trial == last)
5263 continue;
5265 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
5266 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
5268 #endif
5270 /* Find the edge that falls through to EXIT. Other edges may exist
5271 due to RETURN instructions, but those don't need epilogues.
5272 There really shouldn't be a mixture -- either all should have
5273 been converted or none, however... */
5275 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5276 if (e->flags & EDGE_FALLTHRU)
5277 break;
5278 if (e == NULL)
5279 goto epilogue_done;
5281 #ifdef HAVE_epilogue
5282 if (HAVE_epilogue)
5284 start_sequence ();
5285 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5286 seq = gen_epilogue ();
5287 emit_jump_insn (seq);
5289 /* Retain a map of the epilogue insns. */
5290 record_insns (seq, NULL, &epilogue_insn_hash);
5291 set_insn_locators (seq, epilogue_locator);
5293 seq = get_insns ();
5294 end_sequence ();
5296 insert_insn_on_edge (seq, e);
5297 inserted = 1;
5299 else
5300 #endif
5302 basic_block cur_bb;
5304 if (! next_active_insn (BB_END (e->src)))
5305 goto epilogue_done;
5306 /* We have a fall-through edge to the exit block, the source is not
5307 at the end of the function, and there will be an assembler epilogue
5308 at the end of the function.
5309 We can't use force_nonfallthru here, because that would try to
5310 use return. Inserting a jump 'by hand' is extremely messy, so
5311 we take advantage of cfg_layout_finalize using
5312 fixup_fallthru_exit_predecessor. */
5313 cfg_layout_initialize (0);
5314 FOR_EACH_BB (cur_bb)
5315 if (cur_bb->index >= NUM_FIXED_BLOCKS
5316 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5317 cur_bb->aux = cur_bb->next_bb;
5318 cfg_layout_finalize ();
5320 epilogue_done:
5321 default_rtl_profile ();
5323 if (inserted)
5325 commit_edge_insertions ();
5327 /* The epilogue insns we inserted may cause the exit edge to no longer
5328 be fallthru. */
5329 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5331 if (((e->flags & EDGE_FALLTHRU) != 0)
5332 && returnjump_p (BB_END (e->src)))
5333 e->flags &= ~EDGE_FALLTHRU;
5337 #ifdef HAVE_sibcall_epilogue
5338 /* Emit sibling epilogues before any sibling call sites. */
5339 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5341 basic_block bb = e->src;
5342 rtx insn = BB_END (bb);
5344 if (!CALL_P (insn)
5345 || ! SIBLING_CALL_P (insn))
5347 ei_next (&ei);
5348 continue;
5351 start_sequence ();
5352 emit_note (NOTE_INSN_EPILOGUE_BEG);
5353 emit_insn (gen_sibcall_epilogue ());
5354 seq = get_insns ();
5355 end_sequence ();
5357 /* Retain a map of the epilogue insns. Used in life analysis to
5358 avoid getting rid of sibcall epilogue insns. Do this before we
5359 actually emit the sequence. */
5360 record_insns (seq, NULL, &epilogue_insn_hash);
5361 set_insn_locators (seq, epilogue_locator);
5363 emit_insn_before (seq, insn);
5364 ei_next (&ei);
5366 #endif
5368 #ifdef HAVE_epilogue
5369 if (epilogue_end)
5371 rtx insn, next;
5373 /* Similarly, move any line notes that appear after the epilogue.
5374 There is no need, however, to be quite so anal about the existence
5375 of such a note. Also possibly move
5376 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5377 info generation. */
5378 for (insn = epilogue_end; insn; insn = next)
5380 next = NEXT_INSN (insn);
5381 if (NOTE_P (insn)
5382 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
5383 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5386 #endif
5388 /* Threading the prologue and epilogue changes the artificial refs
5389 in the entry and exit blocks. */
5390 epilogue_completed = 1;
5391 df_update_entry_exit_and_calls ();
5394 /* Reposition the prologue-end and epilogue-begin notes after
5395 instruction scheduling. */
5397 void
5398 reposition_prologue_and_epilogue_notes (void)
5400 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
5401 || defined (HAVE_sibcall_epilogue)
5402 /* Since the hash table is created on demand, the fact that it is
5403 non-null is a signal that it is non-empty. */
5404 if (prologue_insn_hash != NULL)
5406 size_t len = htab_elements (prologue_insn_hash);
5407 rtx insn, last = NULL, note = NULL;
5409 /* Scan from the beginning until we reach the last prologue insn. */
5410 /* ??? While we do have the CFG intact, there are two problems:
5411 (1) The prologue can contain loops (typically probing the stack),
5412 which means that the end of the prologue isn't in the first bb.
5413 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
5414 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5416 if (NOTE_P (insn))
5418 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
5419 note = insn;
5421 else if (contains (insn, prologue_insn_hash))
5423 last = insn;
5424 if (--len == 0)
5425 break;
5429 if (last)
5431 if (note == NULL)
5433 /* Scan forward looking for the PROLOGUE_END note. It should
5434 be right at the beginning of the block, possibly with other
5435 insn notes that got moved there. */
5436 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
5438 if (NOTE_P (note)
5439 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
5440 break;
5444 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5445 if (LABEL_P (last))
5446 last = NEXT_INSN (last);
5447 reorder_insns (note, note, last);
5451 if (epilogue_insn_hash != NULL)
5453 edge_iterator ei;
5454 edge e;
5456 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5458 rtx insn, first = NULL, note = NULL;
5459 basic_block bb = e->src;
5461 /* Scan from the beginning until we reach the first epilogue insn. */
5462 FOR_BB_INSNS (bb, insn)
5464 if (NOTE_P (insn))
5466 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
5468 note = insn;
5469 if (first != NULL)
5470 break;
5473 else if (first == NULL && contains (insn, epilogue_insn_hash))
5475 first = insn;
5476 if (note != NULL)
5477 break;
5481 if (note)
5483 /* If the function has a single basic block, and no real
5484 epilogue insns (e.g. sibcall with no cleanup), the
5485 epilogue note can get scheduled before the prologue
5486 note. If we have frame related prologue insns, having
5487 them scanned during the epilogue will result in a crash.
5488 In this case re-order the epilogue note to just before
5489 the last insn in the block. */
5490 if (first == NULL)
5491 first = BB_END (bb);
5493 if (PREV_INSN (first) != note)
5494 reorder_insns (note, note, PREV_INSN (first));
5498 #endif /* HAVE_prologue or HAVE_epilogue */
5501 /* Returns the name of the current function. */
5502 const char *
5503 current_function_name (void)
5505 if (cfun == NULL)
5506 return "<none>";
5507 return lang_hooks.decl_printable_name (cfun->decl, 2);
5511 static unsigned int
5512 rest_of_handle_check_leaf_regs (void)
5514 #ifdef LEAF_REGISTERS
5515 current_function_uses_only_leaf_regs
5516 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5517 #endif
5518 return 0;
5521 /* Insert a TYPE into the used types hash table of CFUN. */
5523 static void
5524 used_types_insert_helper (tree type, struct function *func)
5526 if (type != NULL && func != NULL)
5528 void **slot;
5530 if (func->used_types_hash == NULL)
5531 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
5532 htab_eq_pointer, NULL);
5533 slot = htab_find_slot (func->used_types_hash, type, INSERT);
5534 if (*slot == NULL)
5535 *slot = type;
5539 /* Given a type, insert it into the used hash table in cfun. */
5540 void
5541 used_types_insert (tree t)
5543 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
5544 if (TYPE_NAME (t))
5545 break;
5546 else
5547 t = TREE_TYPE (t);
5548 if (TYPE_NAME (t) == NULL_TREE
5549 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
5550 t = TYPE_MAIN_VARIANT (t);
5551 if (debug_info_level > DINFO_LEVEL_NONE)
5553 if (cfun)
5554 used_types_insert_helper (t, cfun);
5555 else
5556 /* So this might be a type referenced by a global variable.
5557 Record that type so that we can later decide to emit its debug
5558 information. */
5559 VEC_safe_push (tree, gc, types_used_by_cur_var_decl, t);
5563 /* Helper to Hash a struct types_used_by_vars_entry. */
5565 static hashval_t
5566 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
5568 gcc_assert (entry && entry->var_decl && entry->type);
5570 return iterative_hash_object (entry->type,
5571 iterative_hash_object (entry->var_decl, 0));
5574 /* Hash function of the types_used_by_vars_entry hash table. */
5576 hashval_t
5577 types_used_by_vars_do_hash (const void *x)
5579 const struct types_used_by_vars_entry *entry =
5580 (const struct types_used_by_vars_entry *) x;
5582 return hash_types_used_by_vars_entry (entry);
5585 /*Equality function of the types_used_by_vars_entry hash table. */
5588 types_used_by_vars_eq (const void *x1, const void *x2)
5590 const struct types_used_by_vars_entry *e1 =
5591 (const struct types_used_by_vars_entry *) x1;
5592 const struct types_used_by_vars_entry *e2 =
5593 (const struct types_used_by_vars_entry *)x2;
5595 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
5598 /* Inserts an entry into the types_used_by_vars_hash hash table. */
5600 void
5601 types_used_by_var_decl_insert (tree type, tree var_decl)
5603 if (type != NULL && var_decl != NULL)
5605 void **slot;
5606 struct types_used_by_vars_entry e;
5607 e.var_decl = var_decl;
5608 e.type = type;
5609 if (types_used_by_vars_hash == NULL)
5610 types_used_by_vars_hash =
5611 htab_create_ggc (37, types_used_by_vars_do_hash,
5612 types_used_by_vars_eq, NULL);
5613 slot = htab_find_slot_with_hash (types_used_by_vars_hash, &e,
5614 hash_types_used_by_vars_entry (&e), INSERT);
5615 if (*slot == NULL)
5617 struct types_used_by_vars_entry *entry;
5618 entry = ggc_alloc_types_used_by_vars_entry ();
5619 entry->type = type;
5620 entry->var_decl = var_decl;
5621 *slot = entry;
5626 struct rtl_opt_pass pass_leaf_regs =
5629 RTL_PASS,
5630 "*leaf_regs", /* name */
5631 NULL, /* gate */
5632 rest_of_handle_check_leaf_regs, /* execute */
5633 NULL, /* sub */
5634 NULL, /* next */
5635 0, /* static_pass_number */
5636 TV_NONE, /* tv_id */
5637 0, /* properties_required */
5638 0, /* properties_provided */
5639 0, /* properties_destroyed */
5640 0, /* todo_flags_start */
5641 0 /* todo_flags_finish */
5645 static unsigned int
5646 rest_of_handle_thread_prologue_and_epilogue (void)
5648 if (optimize)
5649 cleanup_cfg (CLEANUP_EXPENSIVE);
5650 /* On some machines, the prologue and epilogue code, or parts thereof,
5651 can be represented as RTL. Doing so lets us schedule insns between
5652 it and the rest of the code and also allows delayed branch
5653 scheduling to operate in the epilogue. */
5655 thread_prologue_and_epilogue_insns ();
5656 return 0;
5659 struct rtl_opt_pass pass_thread_prologue_and_epilogue =
5662 RTL_PASS,
5663 "pro_and_epilogue", /* name */
5664 NULL, /* gate */
5665 rest_of_handle_thread_prologue_and_epilogue, /* execute */
5666 NULL, /* sub */
5667 NULL, /* next */
5668 0, /* static_pass_number */
5669 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
5670 0, /* properties_required */
5671 0, /* properties_provided */
5672 0, /* properties_destroyed */
5673 TODO_verify_flow, /* todo_flags_start */
5674 TODO_dump_func |
5675 TODO_df_verify |
5676 TODO_df_finish | TODO_verify_rtl_sharing |
5677 TODO_ggc_collect /* todo_flags_finish */
5682 /* This mini-pass fixes fall-out from SSA in asm statements that have
5683 in-out constraints. Say you start with
5685 orig = inout;
5686 asm ("": "+mr" (inout));
5687 use (orig);
5689 which is transformed very early to use explicit output and match operands:
5691 orig = inout;
5692 asm ("": "=mr" (inout) : "0" (inout));
5693 use (orig);
5695 Or, after SSA and copyprop,
5697 asm ("": "=mr" (inout_2) : "0" (inout_1));
5698 use (inout_1);
5700 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
5701 they represent two separate values, so they will get different pseudo
5702 registers during expansion. Then, since the two operands need to match
5703 per the constraints, but use different pseudo registers, reload can
5704 only register a reload for these operands. But reloads can only be
5705 satisfied by hardregs, not by memory, so we need a register for this
5706 reload, just because we are presented with non-matching operands.
5707 So, even though we allow memory for this operand, no memory can be
5708 used for it, just because the two operands don't match. This can
5709 cause reload failures on register-starved targets.
5711 So it's a symptom of reload not being able to use memory for reloads
5712 or, alternatively it's also a symptom of both operands not coming into
5713 reload as matching (in which case the pseudo could go to memory just
5714 fine, as the alternative allows it, and no reload would be necessary).
5715 We fix the latter problem here, by transforming
5717 asm ("": "=mr" (inout_2) : "0" (inout_1));
5719 back to
5721 inout_2 = inout_1;
5722 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
5724 static void
5725 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
5727 int i;
5728 bool changed = false;
5729 rtx op = SET_SRC (p_sets[0]);
5730 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
5731 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
5732 bool *output_matched = XALLOCAVEC (bool, noutputs);
5734 memset (output_matched, 0, noutputs * sizeof (bool));
5735 for (i = 0; i < ninputs; i++)
5737 rtx input, output, insns;
5738 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
5739 char *end;
5740 int match, j;
5742 if (*constraint == '%')
5743 constraint++;
5745 match = strtoul (constraint, &end, 10);
5746 if (end == constraint)
5747 continue;
5749 gcc_assert (match < noutputs);
5750 output = SET_DEST (p_sets[match]);
5751 input = RTVEC_ELT (inputs, i);
5752 /* Only do the transformation for pseudos. */
5753 if (! REG_P (output)
5754 || rtx_equal_p (output, input)
5755 || (GET_MODE (input) != VOIDmode
5756 && GET_MODE (input) != GET_MODE (output)))
5757 continue;
5759 /* We can't do anything if the output is also used as input,
5760 as we're going to overwrite it. */
5761 for (j = 0; j < ninputs; j++)
5762 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
5763 break;
5764 if (j != ninputs)
5765 continue;
5767 /* Avoid changing the same input several times. For
5768 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
5769 only change in once (to out1), rather than changing it
5770 first to out1 and afterwards to out2. */
5771 if (i > 0)
5773 for (j = 0; j < noutputs; j++)
5774 if (output_matched[j] && input == SET_DEST (p_sets[j]))
5775 break;
5776 if (j != noutputs)
5777 continue;
5779 output_matched[match] = true;
5781 start_sequence ();
5782 emit_move_insn (output, input);
5783 insns = get_insns ();
5784 end_sequence ();
5785 emit_insn_before (insns, insn);
5787 /* Now replace all mentions of the input with output. We can't
5788 just replace the occurrence in inputs[i], as the register might
5789 also be used in some other input (or even in an address of an
5790 output), which would mean possibly increasing the number of
5791 inputs by one (namely 'output' in addition), which might pose
5792 a too complicated problem for reload to solve. E.g. this situation:
5794 asm ("" : "=r" (output), "=m" (input) : "0" (input))
5796 Here 'input' is used in two occurrences as input (once for the
5797 input operand, once for the address in the second output operand).
5798 If we would replace only the occurrence of the input operand (to
5799 make the matching) we would be left with this:
5801 output = input
5802 asm ("" : "=r" (output), "=m" (input) : "0" (output))
5804 Now we suddenly have two different input values (containing the same
5805 value, but different pseudos) where we formerly had only one.
5806 With more complicated asms this might lead to reload failures
5807 which wouldn't have happen without this pass. So, iterate over
5808 all operands and replace all occurrences of the register used. */
5809 for (j = 0; j < noutputs; j++)
5810 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
5811 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
5812 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
5813 input, output);
5814 for (j = 0; j < ninputs; j++)
5815 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
5816 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
5817 input, output);
5819 changed = true;
5822 if (changed)
5823 df_insn_rescan (insn);
5826 static unsigned
5827 rest_of_match_asm_constraints (void)
5829 basic_block bb;
5830 rtx insn, pat, *p_sets;
5831 int noutputs;
5833 if (!crtl->has_asm_statement)
5834 return 0;
5836 df_set_flags (DF_DEFER_INSN_RESCAN);
5837 FOR_EACH_BB (bb)
5839 FOR_BB_INSNS (bb, insn)
5841 if (!INSN_P (insn))
5842 continue;
5844 pat = PATTERN (insn);
5845 if (GET_CODE (pat) == PARALLEL)
5846 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
5847 else if (GET_CODE (pat) == SET)
5848 p_sets = &PATTERN (insn), noutputs = 1;
5849 else
5850 continue;
5852 if (GET_CODE (*p_sets) == SET
5853 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
5854 match_asm_constraints_1 (insn, p_sets, noutputs);
5858 return TODO_df_finish;
5861 struct rtl_opt_pass pass_match_asm_constraints =
5864 RTL_PASS,
5865 "asmcons", /* name */
5866 NULL, /* gate */
5867 rest_of_match_asm_constraints, /* execute */
5868 NULL, /* sub */
5869 NULL, /* next */
5870 0, /* static_pass_number */
5871 TV_NONE, /* tv_id */
5872 0, /* properties_required */
5873 0, /* properties_provided */
5874 0, /* properties_destroyed */
5875 0, /* todo_flags_start */
5876 TODO_dump_func /* todo_flags_finish */
5881 #include "gt-function.h"