1 /* Instruction scheduling pass.
2 Copyright (C) 1992-2024 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4 and currently maintained by, Jim Wilson (wilson@cygnus.com)
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This pass implements list scheduling within basic blocks. It is
23 run twice: (1) after flow analysis, but before register allocation,
24 and (2) after register allocation.
26 The first run performs interblock scheduling, moving insns between
27 different blocks in the same "region", and the second runs only
28 basic block scheduling.
30 Interblock motions performed are useful motions and speculative
31 motions, including speculative loads. Motions requiring code
32 duplication are not supported. The identification of motion type
33 and the check for validity of speculative motions requires
34 construction and analysis of the function's control flow graph.
36 The main entry point for this pass is schedule_insns(), called for
37 each function. The work of the scheduler is organized in three
38 levels: (1) function level: insns are subject to splitting,
39 control-flow-graph is constructed, regions are computed (after
40 reload, each region is of one block), (2) region level: control
41 flow graph attributes required for interblock scheduling are
42 computed (dominators, reachability, etc.), data dependences and
43 priorities are computed, and (3) block level: insns in the block
44 are actually scheduled. */
48 #include "coretypes.h"
55 #include "insn-config.h"
59 #include "insn-attr.h"
62 #include "sched-int.h"
63 #include "sel-sched.h"
64 #include "tree-pass.h"
66 #include "pretty-print.h"
67 #include "print-rtl.h"
69 /* Disable warnings about quoting issues in the pp_xxx calls below
70 that (intentionally) don't follow GCC diagnostic conventions. */
72 # pragma GCC diagnostic push
73 # pragma GCC diagnostic ignored "-Wformat-diag"
76 #ifdef INSN_SCHEDULING
78 /* Some accessor macros for h_i_d members only used within this file. */
79 #define FED_BY_SPEC_LOAD(INSN) (HID (INSN)->fed_by_spec_load)
80 #define IS_LOAD_INSN(INSN) (HID (insn)->is_load_insn)
82 /* nr_inter/spec counts interblock/speculative motion for the function. */
83 static int nr_inter
, nr_spec
;
85 static bool is_cfg_nonregular (void);
87 /* Number of regions in the procedure. */
90 /* Same as above before adding any new regions. */
91 static int nr_regions_initial
= 0;
93 /* Table of region descriptions. */
94 region
*rgn_table
= NULL
;
96 /* Array of lists of regions' blocks. */
97 int *rgn_bb_table
= NULL
;
99 /* Topological order of blocks in the region (if b2 is reachable from
100 b1, block_to_bb[b2] > block_to_bb[b1]). Note: A basic block is
101 always referred to by either block or b, while its topological
102 order name (in the region) is referred to by bb. */
103 int *block_to_bb
= NULL
;
105 /* The number of the region containing a block. */
106 int *containing_rgn
= NULL
;
108 /* ebb_head [i] - is index in rgn_bb_table of the head basic block of i'th ebb.
109 Currently we can get a ebb only through splitting of currently
110 scheduling block, therefore, we don't need ebb_head array for every region,
111 hence, its sufficient to hold it for current one only. */
112 int *ebb_head
= NULL
;
114 /* The minimum probability of reaching a source block so that it will be
115 considered for speculative scheduling. */
116 static int min_spec_prob
;
118 static void find_single_block_region (bool);
119 static void find_rgns (void);
120 static bool too_large (int, int *, int *);
122 /* Blocks of the current region being scheduled. */
123 int current_nr_blocks
;
126 /* A speculative motion requires checking live information on the path
127 from 'source' to 'target'. The split blocks are those to be checked.
128 After a speculative motion, live information should be modified in
131 Lists of split and update blocks for each candidate of the current
132 target are in array bblst_table. */
133 static basic_block
*bblst_table
;
134 static int bblst_size
, bblst_last
;
136 /* Arrays that hold the DFA state at the end of a basic block, to re-use
137 as the initial state at the start of successor blocks. The BB_STATE
138 array holds the actual DFA state, and BB_STATE_ARRAY[I] is a pointer
139 into BB_STATE for basic block I. FIXME: This should be a vec. */
140 static char *bb_state_array
= NULL
;
141 static state_t
*bb_state
= NULL
;
143 /* Target info declarations.
145 The block currently being scheduled is referred to as the "target" block,
146 while other blocks in the region from which insns can be moved to the
147 target are called "source" blocks. The candidate structure holds info
148 about such sources: are they valid? Speculative? Etc. */
151 basic_block
*first_member
;
164 static candidate
*candidate_table
;
165 #define IS_VALID(src) (candidate_table[src].is_valid)
166 #define IS_SPECULATIVE(src) (candidate_table[src].is_speculative)
167 #define IS_SPECULATIVE_INSN(INSN) \
168 (IS_SPECULATIVE (BLOCK_TO_BB (BLOCK_NUM (INSN))))
169 #define SRC_PROB(src) ( candidate_table[src].src_prob )
171 /* The bb being currently scheduled. */
181 static edge
*edgelst_table
;
182 static int edgelst_last
;
184 static void extract_edgelst (sbitmap
, edgelst
*);
186 /* Target info functions. */
187 static void split_edges (int, int, edgelst
*);
188 static void compute_trg_info (int);
189 void debug_candidate (int);
190 void debug_candidates (int);
192 /* Dominators array: dom[i] contains the sbitmap of dominators of
193 bb i in the region. */
196 /* bb 0 is the only region entry. */
197 #define IS_RGN_ENTRY(bb) (!bb)
199 /* Is bb_src dominated by bb_trg. */
200 #define IS_DOMINATED(bb_src, bb_trg) \
201 ( bitmap_bit_p (dom[bb_src], bb_trg) )
203 /* Probability: Prob[i] is an int in [0, REG_BR_PROB_BASE] which is
204 the probability of bb i relative to the region entry. */
207 /* Bit-set of edges, where bit i stands for edge i. */
208 typedef sbitmap edgeset
;
210 /* Number of edges in the region. */
211 static int rgn_nr_edges
;
213 /* Array of size rgn_nr_edges. */
214 static edge
*rgn_edges
;
216 /* Mapping from each edge in the graph to its number in the rgn. */
217 #define EDGE_TO_BIT(edge) ((int)(size_t)(edge)->aux)
218 #define SET_EDGE_TO_BIT(edge,nr) ((edge)->aux = (void *)(size_t)(nr))
220 /* The split edges of a source bb is different for each target
221 bb. In order to compute this efficiently, the 'potential-split edges'
222 are computed for each bb prior to scheduling a region. This is actually
223 the split edges of each bb relative to the region entry.
225 pot_split[bb] is the set of potential split edges of bb. */
226 static edgeset
*pot_split
;
228 /* For every bb, a set of its ancestor edges. */
229 static edgeset
*ancestor_edges
;
231 #define INSN_PROBABILITY(INSN) (SRC_PROB (BLOCK_TO_BB (BLOCK_NUM (INSN))))
233 /* Speculative scheduling functions. */
234 static bool check_live_1 (int, rtx
);
235 static void update_live_1 (int, rtx
);
236 static bool is_pfree (rtx
, int, int);
237 static bool find_conditional_protection (rtx_insn
*, int);
238 static bool is_conditionally_protected (rtx
, int, int);
239 static bool is_prisky (rtx
, int, int);
240 static bool is_exception_free (rtx_insn
*, int, int);
242 static bool sets_likely_spilled (rtx
);
243 static void sets_likely_spilled_1 (rtx
, const_rtx
, void *);
244 static void add_branch_dependences (rtx_insn
*, rtx_insn
*);
245 static void compute_block_dependences (int);
247 static void schedule_region (int);
248 static void concat_insn_mem_list (rtx_insn_list
*, rtx_expr_list
*,
249 rtx_insn_list
**, rtx_expr_list
**);
250 static void propagate_deps (int, class deps_desc
*);
251 static void free_pending_lists (void);
253 /* Functions for construction of the control flow graph. */
255 /* Return true if control flow graph should not be constructed,
258 We decide not to build the control flow graph if there is possibly more
259 than one entry to the function, if computed branches exist, if we
260 have nonlocal gotos, or if we have an unreachable loop. */
263 is_cfg_nonregular (void)
268 /* If we have a label that could be the target of a nonlocal goto, then
269 the cfg is not well structured. */
270 if (nonlocal_goto_handler_labels
)
273 /* If we have any forced labels, then the cfg is not well structured. */
277 /* If we have exception handlers, then we consider the cfg not well
278 structured. ?!? We should be able to handle this now that we
279 compute an accurate cfg for EH. */
280 if (current_function_has_exception_handlers ())
283 /* If we have insns which refer to labels as non-jumped-to operands,
284 then we consider the cfg not well structured. */
285 FOR_EACH_BB_FN (b
, cfun
)
286 FOR_BB_INSNS (b
, insn
)
291 /* If this function has a computed jump, then we consider the cfg
292 not well structured. */
293 if (JUMP_P (insn
) && computed_jump_p (insn
))
299 note
= find_reg_note (insn
, REG_LABEL_OPERAND
, NULL_RTX
);
300 if (note
== NULL_RTX
)
303 /* For that label not to be seen as a referred-to label, this
304 must be a single-set which is feeding a jump *only*. This
305 could be a conditional jump with the label split off for
306 machine-specific reasons or a casesi/tablejump. */
307 next
= next_nonnote_insn (insn
);
310 || (JUMP_LABEL (next
) != XEXP (note
, 0)
311 && find_reg_note (next
, REG_LABEL_TARGET
,
312 XEXP (note
, 0)) == NULL_RTX
)
313 || BLOCK_FOR_INSN (insn
) != BLOCK_FOR_INSN (next
))
316 set
= single_set (insn
);
320 dest
= SET_DEST (set
);
321 if (!REG_P (dest
) || !dead_or_set_p (next
, dest
))
325 /* Unreachable loops with more than one basic block are detected
326 during the DFS traversal in find_rgns.
328 Unreachable loops with a single block are detected here. This
329 test is redundant with the one in find_rgns, but it's much
330 cheaper to go ahead and catch the trivial case here. */
331 FOR_EACH_BB_FN (b
, cfun
)
333 if (EDGE_COUNT (b
->preds
) == 0
334 || (single_pred_p (b
)
335 && single_pred (b
) == b
))
339 /* All the tests passed. Consider the cfg well structured. */
343 /* Extract list of edges from a bitmap containing EDGE_TO_BIT bits. */
346 extract_edgelst (sbitmap set
, edgelst
*el
)
349 sbitmap_iterator sbi
;
351 /* edgelst table space is reused in each call to extract_edgelst. */
354 el
->first_member
= &edgelst_table
[edgelst_last
];
357 /* Iterate over each word in the bitset. */
358 EXECUTE_IF_SET_IN_BITMAP (set
, 0, i
, sbi
)
360 edgelst_table
[edgelst_last
++] = rgn_edges
[i
];
365 /* Functions for the construction of regions. */
367 /* Print the regions, for debugging purposes. Callable from debugger. */
374 fprintf (sched_dump
, "\n;; ------------ REGIONS ----------\n\n");
375 for (rgn
= 0; rgn
< nr_regions
; rgn
++)
377 fprintf (sched_dump
, ";;\trgn %d nr_blocks %d:\n", rgn
,
378 rgn_table
[rgn
].rgn_nr_blocks
);
379 fprintf (sched_dump
, ";;\tbb/block: ");
381 /* We don't have ebb_head initialized yet, so we can't use
383 current_blocks
= RGN_BLOCKS (rgn
);
385 for (bb
= 0; bb
< rgn_table
[rgn
].rgn_nr_blocks
; bb
++)
386 fprintf (sched_dump
, " %d/%d ", bb
, rgn_bb_table
[current_blocks
+ bb
]);
388 fprintf (sched_dump
, "\n\n");
392 /* Print the region's basic blocks. */
395 debug_region (int rgn
)
399 fprintf (stderr
, "\n;; ------------ REGION %d ----------\n\n", rgn
);
400 fprintf (stderr
, ";;\trgn %d nr_blocks %d:\n", rgn
,
401 rgn_table
[rgn
].rgn_nr_blocks
);
402 fprintf (stderr
, ";;\tbb/block: ");
404 /* We don't have ebb_head initialized yet, so we can't use
406 current_blocks
= RGN_BLOCKS (rgn
);
408 for (bb
= 0; bb
< rgn_table
[rgn
].rgn_nr_blocks
; bb
++)
409 fprintf (stderr
, " %d/%d ", bb
, rgn_bb_table
[current_blocks
+ bb
]);
411 fprintf (stderr
, "\n\n");
413 for (bb
= 0; bb
< rgn_table
[rgn
].rgn_nr_blocks
; bb
++)
416 BASIC_BLOCK_FOR_FN (cfun
, rgn_bb_table
[current_blocks
+ bb
]),
417 0, TDF_SLIM
| TDF_BLOCKS
);
418 fprintf (stderr
, "\n");
421 fprintf (stderr
, "\n");
425 /* True when a bb with index BB_INDEX contained in region RGN. */
427 bb_in_region_p (int bb_index
, int rgn
)
431 for (i
= 0; i
< rgn_table
[rgn
].rgn_nr_blocks
; i
++)
432 if (rgn_bb_table
[current_blocks
+ i
] == bb_index
)
438 /* Dump region RGN to file F using dot syntax. */
440 dump_region_dot (FILE *f
, int rgn
)
444 fprintf (f
, "digraph Region_%d {\n", rgn
);
446 /* We don't have ebb_head initialized yet, so we can't use
448 current_blocks
= RGN_BLOCKS (rgn
);
450 for (i
= 0; i
< rgn_table
[rgn
].rgn_nr_blocks
; i
++)
454 int src_bb_num
= rgn_bb_table
[current_blocks
+ i
];
455 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, src_bb_num
);
457 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
458 if (bb_in_region_p (e
->dest
->index
, rgn
))
459 fprintf (f
, "\t%d -> %d\n", src_bb_num
, e
->dest
->index
);
464 /* The same, but first open a file specified by FNAME. */
466 dump_region_dot_file (const char *fname
, int rgn
)
468 FILE *f
= fopen (fname
, "wt");
469 dump_region_dot (f
, rgn
);
473 /* Build a single block region for each basic block in the function.
474 This allows for using the same code for interblock and basic block
478 find_single_block_region (bool ebbs_p
)
480 basic_block bb
, ebb_start
;
486 int probability_cutoff
;
487 if (profile_info
&& profile_status_for_fn (cfun
) == PROFILE_READ
)
488 probability_cutoff
= param_tracer_min_branch_probability_feedback
;
490 probability_cutoff
= param_tracer_min_branch_probability
;
491 probability_cutoff
= REG_BR_PROB_BASE
/ 100 * probability_cutoff
;
493 FOR_EACH_BB_FN (ebb_start
, cfun
)
495 RGN_NR_BLOCKS (nr_regions
) = 0;
496 RGN_BLOCKS (nr_regions
) = i
;
497 RGN_DONT_CALC_DEPS (nr_regions
) = 0;
498 RGN_HAS_REAL_EBB (nr_regions
) = 0;
500 for (bb
= ebb_start
; ; bb
= bb
->next_bb
)
504 rgn_bb_table
[i
] = bb
->index
;
505 RGN_NR_BLOCKS (nr_regions
)++;
506 CONTAINING_RGN (bb
->index
) = nr_regions
;
507 BLOCK_TO_BB (bb
->index
) = i
- RGN_BLOCKS (nr_regions
);
510 if (bb
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
511 || LABEL_P (BB_HEAD (bb
->next_bb
)))
514 e
= find_fallthru_edge (bb
->succs
);
517 if (e
->probability
.initialized_p ()
518 && e
->probability
.to_reg_br_prob_base () <= probability_cutoff
)
527 FOR_EACH_BB_FN (bb
, cfun
)
529 rgn_bb_table
[nr_regions
] = bb
->index
;
530 RGN_NR_BLOCKS (nr_regions
) = 1;
531 RGN_BLOCKS (nr_regions
) = nr_regions
;
532 RGN_DONT_CALC_DEPS (nr_regions
) = 0;
533 RGN_HAS_REAL_EBB (nr_regions
) = 0;
535 CONTAINING_RGN (bb
->index
) = nr_regions
;
536 BLOCK_TO_BB (bb
->index
) = 0;
541 /* Estimate number of the insns in the BB. */
543 rgn_estimate_number_of_insns (basic_block bb
)
547 count
= INSN_LUID (BB_END (bb
)) - INSN_LUID (BB_HEAD (bb
));
549 if (MAY_HAVE_DEBUG_INSNS
)
553 FOR_BB_INSNS (bb
, insn
)
554 if (DEBUG_INSN_P (insn
))
561 /* Update number of blocks and the estimate for number of insns
562 in the region. Return true if the region is "too large" for interblock
563 scheduling (compile time considerations). */
566 too_large (int block
, int *num_bbs
, int *num_insns
)
569 (*num_insns
) += (common_sched_info
->estimate_number_of_insns
570 (BASIC_BLOCK_FOR_FN (cfun
, block
)));
572 return ((*num_bbs
> param_max_sched_region_blocks
)
573 || (*num_insns
> param_max_sched_region_insns
));
576 /* Update_loop_relations(blk, hdr): Check if the loop headed by max_hdr[blk]
577 is still an inner loop. Put in max_hdr[blk] the header of the most inner
578 loop containing blk. */
579 #define UPDATE_LOOP_RELATIONS(blk, hdr) \
581 if (max_hdr[blk] == -1) \
582 max_hdr[blk] = hdr; \
583 else if (dfs_nr[max_hdr[blk]] > dfs_nr[hdr]) \
584 bitmap_clear_bit (inner, hdr); \
585 else if (dfs_nr[max_hdr[blk]] < dfs_nr[hdr]) \
587 bitmap_clear_bit (inner,max_hdr[blk]); \
588 max_hdr[blk] = hdr; \
592 /* Find regions for interblock scheduling.
594 A region for scheduling can be:
596 * A loop-free procedure, or
598 * A reducible inner loop, or
600 * A basic block not contained in any other region.
602 ?!? In theory we could build other regions based on extended basic
603 blocks or reverse extended basic blocks. Is it worth the trouble?
605 Loop blocks that form a region are put into the region's block list
606 in topological order.
608 This procedure stores its results into the following global (ick) variables
616 We use dominator relationships to avoid making regions out of non-reducible
619 This procedure needs to be converted to work on pred/succ lists instead
620 of edge tables. That would simplify it somewhat. */
623 haifa_find_rgns (void)
625 int *max_hdr
, *dfs_nr
, *degree
;
627 int node
, child
, loop_head
, i
, head
, tail
;
628 int count
= 0, sp
, idx
= 0;
629 edge_iterator current_edge
;
630 edge_iterator
*stack
;
631 int num_bbs
, num_insns
;
633 bool too_large_failure
;
636 /* Perform a DFS traversal of the cfg. Identify loop headers, inner loops
637 and a mapping from block to its loop header (if the block is contained
640 Store results in HEADER, INNER, and MAX_HDR respectively, these will
641 be used as inputs to the second traversal.
643 STACK, SP and DFS_NR are only used during the first traversal. */
645 /* Allocate and initialize variables for the first traversal. */
646 max_hdr
= XNEWVEC (int, last_basic_block_for_fn (cfun
));
647 dfs_nr
= XCNEWVEC (int, last_basic_block_for_fn (cfun
));
648 stack
= XNEWVEC (edge_iterator
, n_edges_for_fn (cfun
));
650 /* Note if a block is a natural inner loop header. */
651 auto_sbitmap
inner (last_basic_block_for_fn (cfun
));
654 /* Note if a block is a natural loop header. */
655 auto_sbitmap
header (last_basic_block_for_fn (cfun
));
656 bitmap_clear (header
);
658 /* Note if a block is in the block queue. */
659 auto_sbitmap
in_queue (last_basic_block_for_fn (cfun
));
660 bitmap_clear (in_queue
);
662 /* Note if a block is in the block queue. */
663 auto_sbitmap
in_stack (last_basic_block_for_fn (cfun
));
664 bitmap_clear (in_stack
);
666 for (i
= 0; i
< last_basic_block_for_fn (cfun
); i
++)
669 #define EDGE_PASSED(E) (ei_end_p ((E)) || ei_edge ((E))->aux)
670 #define SET_EDGE_PASSED(E) (ei_edge ((E))->aux = ei_edge ((E)))
672 /* DFS traversal to find inner loops in the cfg. */
674 current_edge
= ei_start (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->succs
);
679 if (EDGE_PASSED (current_edge
))
681 /* We have reached a leaf node or a node that was already
682 processed. Pop edges off the stack until we find
683 an edge that has not yet been processed. */
684 while (sp
>= 0 && EDGE_PASSED (current_edge
))
686 /* Pop entry off the stack. */
687 current_edge
= stack
[sp
--];
688 node
= ei_edge (current_edge
)->src
->index
;
689 gcc_assert (node
!= ENTRY_BLOCK
);
690 child
= ei_edge (current_edge
)->dest
->index
;
691 gcc_assert (child
!= EXIT_BLOCK
);
692 bitmap_clear_bit (in_stack
, child
);
693 if (max_hdr
[child
] >= 0 && bitmap_bit_p (in_stack
, max_hdr
[child
]))
694 UPDATE_LOOP_RELATIONS (node
, max_hdr
[child
]);
695 ei_next (¤t_edge
);
698 /* See if have finished the DFS tree traversal. */
699 if (sp
< 0 && EDGE_PASSED (current_edge
))
702 /* Nope, continue the traversal with the popped node. */
706 /* Process a node. */
707 node
= ei_edge (current_edge
)->src
->index
;
708 gcc_assert (node
!= ENTRY_BLOCK
);
709 bitmap_set_bit (in_stack
, node
);
710 dfs_nr
[node
] = ++count
;
712 /* We don't traverse to the exit block. */
713 child
= ei_edge (current_edge
)->dest
->index
;
714 if (child
== EXIT_BLOCK
)
716 SET_EDGE_PASSED (current_edge
);
717 ei_next (¤t_edge
);
721 /* If the successor is in the stack, then we've found a loop.
722 Mark the loop, if it is not a natural loop, then it will
723 be rejected during the second traversal. */
724 if (bitmap_bit_p (in_stack
, child
))
727 bitmap_set_bit (header
, child
);
728 UPDATE_LOOP_RELATIONS (node
, child
);
729 SET_EDGE_PASSED (current_edge
);
730 ei_next (¤t_edge
);
734 /* If the child was already visited, then there is no need to visit
735 it again. Just update the loop relationships and restart
739 if (max_hdr
[child
] >= 0 && bitmap_bit_p (in_stack
, max_hdr
[child
]))
740 UPDATE_LOOP_RELATIONS (node
, max_hdr
[child
]);
741 SET_EDGE_PASSED (current_edge
);
742 ei_next (¤t_edge
);
746 /* Push an entry on the stack and continue DFS traversal. */
747 stack
[++sp
] = current_edge
;
748 SET_EDGE_PASSED (current_edge
);
749 current_edge
= ei_start (ei_edge (current_edge
)->dest
->succs
);
752 /* Reset ->aux field used by EDGE_PASSED. */
753 FOR_ALL_BB_FN (bb
, cfun
)
757 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
762 /* Another check for unreachable blocks. The earlier test in
763 is_cfg_nonregular only finds unreachable blocks that do not
766 The DFS traversal will mark every block that is reachable from
767 the entry node by placing a nonzero value in dfs_nr. Thus if
768 dfs_nr is zero for any block, then it must be unreachable. */
770 FOR_EACH_BB_FN (bb
, cfun
)
771 if (dfs_nr
[bb
->index
] == 0)
777 /* Gross. To avoid wasting memory, the second pass uses the dfs_nr array
778 to hold degree counts. */
781 FOR_EACH_BB_FN (bb
, cfun
)
782 degree
[bb
->index
] = EDGE_COUNT (bb
->preds
);
784 /* Do not perform region scheduling if there are any unreachable
788 int *queue
, *degree1
= NULL
;
789 /* We use EXTENDED_RGN_HEADER as an addition to HEADER and put
790 there basic blocks, which are forced to be region heads.
791 This is done to try to assemble few smaller regions
792 from a too_large region. */
793 sbitmap extended_rgn_header
= NULL
;
794 bool extend_regions_p
;
797 bitmap_set_bit (header
, 0);
799 /* Second traversal:find reducible inner loops and topologically sort
800 block of each region. */
802 queue
= XNEWVEC (int, n_basic_blocks_for_fn (cfun
));
804 extend_regions_p
= param_max_sched_extend_regions_iters
> 0;
805 if (extend_regions_p
)
807 degree1
= XNEWVEC (int, last_basic_block_for_fn (cfun
));
808 extended_rgn_header
=
809 sbitmap_alloc (last_basic_block_for_fn (cfun
));
810 bitmap_clear (extended_rgn_header
);
813 /* Find blocks which are inner loop headers. We still have non-reducible
814 loops to consider at this point. */
815 FOR_EACH_BB_FN (bb
, cfun
)
817 if (bitmap_bit_p (header
, bb
->index
) && bitmap_bit_p (inner
, bb
->index
))
823 /* Now check that the loop is reducible. We do this separate
824 from finding inner loops so that we do not find a reducible
825 loop which contains an inner non-reducible loop.
827 A simple way to find reducible/natural loops is to verify
828 that each block in the loop is dominated by the loop
831 If there exists a block that is not dominated by the loop
832 header, then the block is reachable from outside the loop
833 and thus the loop is not a natural loop. */
834 FOR_EACH_BB_FN (jbb
, cfun
)
836 /* First identify blocks in the loop, except for the loop
838 if (bb
->index
== max_hdr
[jbb
->index
] && bb
!= jbb
)
840 /* Now verify that the block is dominated by the loop
842 if (!dominated_by_p (CDI_DOMINATORS
, jbb
, bb
))
847 /* If we exited the loop early, then I is the header of
848 a non-reducible loop and we should quit processing it
850 if (jbb
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
853 /* I is a header of an inner loop, or block 0 in a subroutine
854 with no loops at all. */
856 too_large_failure
= false;
857 loop_head
= max_hdr
[bb
->index
];
859 if (extend_regions_p
)
860 /* We save degree in case when we meet a too_large region
861 and cancel it. We need a correct degree later when
862 calling extend_rgns. */
863 memcpy (degree1
, degree
,
864 last_basic_block_for_fn (cfun
) * sizeof (int));
866 /* Decrease degree of all I's successors for topological
868 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
869 if (e
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
870 --degree
[e
->dest
->index
];
872 /* Estimate # insns, and count # blocks in the region. */
874 num_insns
= common_sched_info
->estimate_number_of_insns (bb
);
876 /* Find all loop latches (blocks with back edges to the loop
877 header) or all the leaf blocks in the cfg has no loops.
879 Place those blocks into the queue. */
882 FOR_EACH_BB_FN (jbb
, cfun
)
883 /* Leaf nodes have only a single successor which must
885 if (single_succ_p (jbb
)
886 && single_succ (jbb
) == EXIT_BLOCK_PTR_FOR_FN (cfun
))
888 queue
[++tail
] = jbb
->index
;
889 bitmap_set_bit (in_queue
, jbb
->index
);
891 if (too_large (jbb
->index
, &num_bbs
, &num_insns
))
893 too_large_failure
= true;
902 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
904 if (e
->src
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
907 node
= e
->src
->index
;
909 if (max_hdr
[node
] == loop_head
&& node
!= bb
->index
)
911 /* This is a loop latch. */
912 queue
[++tail
] = node
;
913 bitmap_set_bit (in_queue
, node
);
915 if (too_large (node
, &num_bbs
, &num_insns
))
917 too_large_failure
= true;
924 /* Now add all the blocks in the loop to the queue.
926 We know the loop is a natural loop; however the algorithm
927 above will not always mark certain blocks as being in the
935 The algorithm in the DFS traversal may not mark B & D as part
936 of the loop (i.e. they will not have max_hdr set to A).
938 We know they cannot be loop latches (else they would have
939 had max_hdr set since they'd have a backedge to a dominator
940 block). So we don't need them on the initial queue.
942 We know they are part of the loop because they are dominated
943 by the loop header and can be reached by a backwards walk of
944 the edges starting with nodes on the initial queue.
946 It is safe and desirable to include those nodes in the
947 loop/scheduling region. To do so we would need to decrease
948 the degree of a node if it is the target of a backedge
949 within the loop itself as the node is placed in the queue.
951 We do not do this because I'm not sure that the actual
952 scheduling code will properly handle this case. ?!? */
954 while (head
< tail
&& !too_large_failure
)
957 child
= queue
[++head
];
959 FOR_EACH_EDGE (e
, ei
,
960 BASIC_BLOCK_FOR_FN (cfun
, child
)->preds
)
962 node
= e
->src
->index
;
964 /* See discussion above about nodes not marked as in
965 this loop during the initial DFS traversal. */
966 if (e
->src
== ENTRY_BLOCK_PTR_FOR_FN (cfun
)
967 || max_hdr
[node
] != loop_head
)
972 else if (!bitmap_bit_p (in_queue
, node
) && node
!= bb
->index
)
974 queue
[++tail
] = node
;
975 bitmap_set_bit (in_queue
, node
);
977 if (too_large (node
, &num_bbs
, &num_insns
))
979 too_large_failure
= true;
986 if (tail
>= 0 && !too_large_failure
)
988 /* Place the loop header into list of region blocks. */
989 degree
[bb
->index
] = -1;
990 rgn_bb_table
[idx
] = bb
->index
;
991 RGN_NR_BLOCKS (nr_regions
) = num_bbs
;
992 RGN_BLOCKS (nr_regions
) = idx
++;
993 RGN_DONT_CALC_DEPS (nr_regions
) = 0;
994 RGN_HAS_REAL_EBB (nr_regions
) = 0;
995 CONTAINING_RGN (bb
->index
) = nr_regions
;
996 BLOCK_TO_BB (bb
->index
) = count
= 0;
998 /* Remove blocks from queue[] when their in degree
999 becomes zero. Repeat until no blocks are left on the
1000 list. This produces a topological list of blocks in
1006 child
= queue
[head
];
1007 if (degree
[child
] == 0)
1012 rgn_bb_table
[idx
++] = child
;
1013 BLOCK_TO_BB (child
) = ++count
;
1014 CONTAINING_RGN (child
) = nr_regions
;
1015 queue
[head
] = queue
[tail
--];
1017 FOR_EACH_EDGE (e
, ei
,
1018 BASIC_BLOCK_FOR_FN (cfun
,
1020 if (e
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
1021 --degree
[e
->dest
->index
];
1028 else if (extend_regions_p
)
1030 /* Restore DEGREE. */
1036 /* And force successors of BB to be region heads.
1037 This may provide several smaller regions instead
1038 of one too_large region. */
1039 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1040 if (e
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
1041 bitmap_set_bit (extended_rgn_header
, e
->dest
->index
);
1047 if (extend_regions_p
)
1051 bitmap_ior (header
, header
, extended_rgn_header
);
1052 sbitmap_free (extended_rgn_header
);
1054 extend_rgns (degree
, &idx
, header
, max_hdr
);
1058 /* Any block that did not end up in a region is placed into a region
1060 FOR_EACH_BB_FN (bb
, cfun
)
1061 if (degree
[bb
->index
] >= 0)
1063 rgn_bb_table
[idx
] = bb
->index
;
1064 RGN_NR_BLOCKS (nr_regions
) = 1;
1065 RGN_BLOCKS (nr_regions
) = idx
++;
1066 RGN_DONT_CALC_DEPS (nr_regions
) = 0;
1067 RGN_HAS_REAL_EBB (nr_regions
) = 0;
1068 CONTAINING_RGN (bb
->index
) = nr_regions
++;
1069 BLOCK_TO_BB (bb
->index
) = 0;
1078 /* Wrapper function.
1079 If FLAG_SEL_SCHED_PIPELINING is set, then use custom function to form
1080 regions. Otherwise just call find_rgns_haifa. */
1084 if (sel_sched_p () && flag_sel_sched_pipelining
)
1090 static int gather_region_statistics (int **);
1091 static void print_region_statistics (int *, int, int *, int);
1093 /* Calculate the histogram that shows the number of regions having the
1094 given number of basic blocks, and store it in the RSP array. Return
1095 the size of this array. */
1097 gather_region_statistics (int **rsp
)
1099 int i
, *a
= 0, a_sz
= 0;
1101 /* a[i] is the number of regions that have (i + 1) basic blocks. */
1102 for (i
= 0; i
< nr_regions
; i
++)
1104 int nr_blocks
= RGN_NR_BLOCKS (i
);
1106 gcc_assert (nr_blocks
>= 1);
1108 if (nr_blocks
> a_sz
)
1110 a
= XRESIZEVEC (int, a
, nr_blocks
);
1113 while (a_sz
!= nr_blocks
);
1123 /* Print regions statistics. S1 and S2 denote the data before and after
1124 calling extend_rgns, respectively. */
1126 print_region_statistics (int *s1
, int s1_sz
, int *s2
, int s2_sz
)
1130 /* We iterate until s2_sz because extend_rgns does not decrease
1131 the maximal region size. */
1132 for (i
= 1; i
< s2_sz
; i
++)
1146 fprintf (sched_dump
, ";; Region extension statistics: size %d: " \
1147 "was %d + %d more\n", i
+ 1, n1
, n2
- n1
);
1152 DEGREE - Array of incoming edge count, considering only
1153 the edges, that don't have their sources in formed regions yet.
1154 IDXP - pointer to the next available index in rgn_bb_table.
1155 HEADER - set of all region heads.
1156 LOOP_HDR - mapping from block to the containing loop
1157 (two blocks can reside within one region if they have
1158 the same loop header). */
1160 extend_rgns (int *degree
, int *idxp
, sbitmap header
, int *loop_hdr
)
1162 int *order
, i
, idx
= *idxp
, iter
= 0, max_iter
, *max_hdr
;
1163 int nblocks
= n_basic_blocks_for_fn (cfun
) - NUM_FIXED_BLOCKS
;
1164 bool rescan
= false;
1166 max_iter
= param_max_sched_extend_regions_iters
;
1168 max_hdr
= XNEWVEC (int, last_basic_block_for_fn (cfun
));
1170 order
= XNEWVEC (int, last_basic_block_for_fn (cfun
));
1171 post_order_compute (order
, false, false);
1173 for (i
= nblocks
- 1; i
>= 0; i
--)
1176 if (degree
[bbn
] >= 0)
1182 /* This block already was processed in find_rgns. */
1186 /* The idea is to topologically walk through CFG in top-down order.
1187 During the traversal, if all the predecessors of a node are
1188 marked to be in the same region (they all have the same max_hdr),
1189 then current node is also marked to be a part of that region.
1190 Otherwise the node starts its own region.
1191 CFG should be traversed until no further changes are made. On each
1192 iteration the set of the region heads is extended (the set of those
1193 blocks that have max_hdr[bbi] == bbi). This set is upper bounded by the
1194 set of all basic blocks, thus the algorithm is guaranteed to
1197 while (rescan
&& iter
< max_iter
)
1201 for (i
= nblocks
- 1; i
>= 0; i
--)
1207 if (max_hdr
[bbn
] != -1 && !bitmap_bit_p (header
, bbn
))
1211 FOR_EACH_EDGE (e
, ei
, BASIC_BLOCK_FOR_FN (cfun
, bbn
)->preds
)
1213 int predn
= e
->src
->index
;
1215 if (predn
!= ENTRY_BLOCK
1216 /* If pred wasn't processed in find_rgns. */
1217 && max_hdr
[predn
] != -1
1218 /* And pred and bb reside in the same loop.
1219 (Or out of any loop). */
1220 && loop_hdr
[bbn
] == loop_hdr
[predn
])
1223 /* Then bb extends the containing region of pred. */
1224 hdr
= max_hdr
[predn
];
1225 else if (hdr
!= max_hdr
[predn
])
1226 /* Too bad, there are at least two predecessors
1227 that reside in different regions. Thus, BB should
1228 begin its own region. */
1235 /* BB starts its own region. */
1244 /* If BB start its own region,
1245 update set of headers with BB. */
1246 bitmap_set_bit (header
, bbn
);
1250 gcc_assert (hdr
!= -1);
1259 /* Statistics were gathered on the SPEC2000 package of tests with
1260 mainline weekly snapshot gcc-4.1-20051015 on ia64.
1262 Statistics for SPECint:
1263 1 iteration : 1751 cases (38.7%)
1264 2 iterations: 2770 cases (61.3%)
1265 Blocks wrapped in regions by find_rgns without extension: 18295 blocks
1266 Blocks wrapped in regions by 2 iterations in extend_rgns: 23821 blocks
1267 (We don't count single block regions here).
1269 Statistics for SPECfp:
1270 1 iteration : 621 cases (35.9%)
1271 2 iterations: 1110 cases (64.1%)
1272 Blocks wrapped in regions by find_rgns without extension: 6476 blocks
1273 Blocks wrapped in regions by 2 iterations in extend_rgns: 11155 blocks
1274 (We don't count single block regions here).
1276 By default we do at most 2 iterations.
1277 This can be overridden with max-sched-extend-regions-iters parameter:
1278 0 - disable region extension,
1279 N > 0 - do at most N iterations. */
1281 if (sched_verbose
&& iter
!= 0)
1282 fprintf (sched_dump
, ";; Region extension iterations: %d%s\n", iter
,
1283 rescan
? "... failed" : "");
1285 if (!rescan
&& iter
!= 0)
1287 int *s1
= NULL
, s1_sz
= 0;
1289 /* Save the old statistics for later printout. */
1290 if (sched_verbose
>= 6)
1291 s1_sz
= gather_region_statistics (&s1
);
1293 /* We have succeeded. Now assemble the regions. */
1294 for (i
= nblocks
- 1; i
>= 0; i
--)
1298 if (max_hdr
[bbn
] == bbn
)
1299 /* BBN is a region head. */
1303 int num_bbs
= 0, j
, num_insns
= 0, large
;
1305 large
= too_large (bbn
, &num_bbs
, &num_insns
);
1308 rgn_bb_table
[idx
] = bbn
;
1309 RGN_BLOCKS (nr_regions
) = idx
++;
1310 RGN_DONT_CALC_DEPS (nr_regions
) = 0;
1311 RGN_HAS_REAL_EBB (nr_regions
) = 0;
1312 CONTAINING_RGN (bbn
) = nr_regions
;
1313 BLOCK_TO_BB (bbn
) = 0;
1315 FOR_EACH_EDGE (e
, ei
, BASIC_BLOCK_FOR_FN (cfun
, bbn
)->succs
)
1316 if (e
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
1317 degree
[e
->dest
->index
]--;
1320 /* Here we check whether the region is too_large. */
1321 for (j
= i
- 1; j
>= 0; j
--)
1323 int succn
= order
[j
];
1324 if (max_hdr
[succn
] == bbn
)
1326 if ((large
= too_large (succn
, &num_bbs
, &num_insns
)))
1332 /* If the region is too_large, then wrap every block of
1333 the region into single block region.
1334 Here we wrap region head only. Other blocks are
1335 processed in the below cycle. */
1337 RGN_NR_BLOCKS (nr_regions
) = 1;
1343 for (j
= i
- 1; j
>= 0; j
--)
1345 int succn
= order
[j
];
1347 if (max_hdr
[succn
] == bbn
)
1348 /* This cycle iterates over all basic blocks, that
1349 are supposed to be in the region with head BBN,
1350 and wraps them into that region (or in single
1353 gcc_assert (degree
[succn
] == 0);
1356 rgn_bb_table
[idx
] = succn
;
1357 BLOCK_TO_BB (succn
) = large
? 0 : num_bbs
++;
1358 CONTAINING_RGN (succn
) = nr_regions
;
1361 /* Wrap SUCCN into single block region. */
1363 RGN_BLOCKS (nr_regions
) = idx
;
1364 RGN_NR_BLOCKS (nr_regions
) = 1;
1365 RGN_DONT_CALC_DEPS (nr_regions
) = 0;
1366 RGN_HAS_REAL_EBB (nr_regions
) = 0;
1372 FOR_EACH_EDGE (e
, ei
,
1373 BASIC_BLOCK_FOR_FN (cfun
, succn
)->succs
)
1374 if (e
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
1375 degree
[e
->dest
->index
]--;
1381 RGN_NR_BLOCKS (nr_regions
) = num_bbs
;
1387 if (sched_verbose
>= 6)
1391 /* Get the new statistics and print the comparison with the
1392 one before calling this function. */
1393 s2_sz
= gather_region_statistics (&s2
);
1394 print_region_statistics (s1
, s1_sz
, s2
, s2_sz
);
1406 /* Functions for regions scheduling information. */
1408 /* Compute dominators, probability, and potential-split-edges of bb.
1409 Assume that these values were already computed for bb's predecessors. */
1412 compute_dom_prob_ps (int bb
)
1414 edge_iterator in_ei
;
1417 /* We shouldn't have any real ebbs yet. */
1418 gcc_assert (ebb_head
[bb
] == bb
+ current_blocks
);
1420 if (IS_RGN_ENTRY (bb
))
1422 bitmap_set_bit (dom
[bb
], 0);
1423 prob
[bb
] = REG_BR_PROB_BASE
;
1429 /* Initialize dom[bb] to '111..1'. */
1430 bitmap_ones (dom
[bb
]);
1432 FOR_EACH_EDGE (in_edge
, in_ei
,
1433 BASIC_BLOCK_FOR_FN (cfun
, BB_TO_BLOCK (bb
))->preds
)
1437 edge_iterator out_ei
;
1439 if (in_edge
->src
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
1442 pred_bb
= BLOCK_TO_BB (in_edge
->src
->index
);
1443 bitmap_and (dom
[bb
], dom
[bb
], dom
[pred_bb
]);
1444 bitmap_ior (ancestor_edges
[bb
],
1445 ancestor_edges
[bb
], ancestor_edges
[pred_bb
]);
1447 bitmap_set_bit (ancestor_edges
[bb
], EDGE_TO_BIT (in_edge
));
1449 bitmap_ior (pot_split
[bb
], pot_split
[bb
], pot_split
[pred_bb
]);
1451 FOR_EACH_EDGE (out_edge
, out_ei
, in_edge
->src
->succs
)
1452 bitmap_set_bit (pot_split
[bb
], EDGE_TO_BIT (out_edge
));
1454 prob
[bb
] += combine_probabilities
1456 in_edge
->probability
.initialized_p ()
1457 ? in_edge
->probability
.to_reg_br_prob_base ()
1459 // The rounding divide in combine_probabilities can result in an extra
1460 // probability increment propagating along 50-50 edges. Eventually when
1461 // the edges re-merge, the accumulated probability can go slightly above
1462 // REG_BR_PROB_BASE.
1463 if (prob
[bb
] > REG_BR_PROB_BASE
)
1464 prob
[bb
] = REG_BR_PROB_BASE
;
1467 bitmap_set_bit (dom
[bb
], bb
);
1468 bitmap_and_compl (pot_split
[bb
], pot_split
[bb
], ancestor_edges
[bb
]);
1470 if (sched_verbose
>= 2)
1471 fprintf (sched_dump
, ";; bb_prob(%d, %d) = %3d\n", bb
, BB_TO_BLOCK (bb
),
1472 (100 * prob
[bb
]) / REG_BR_PROB_BASE
);
1475 /* Functions for target info. */
1477 /* Compute in BL the list of split-edges of bb_src relatively to bb_trg.
1478 Note that bb_trg dominates bb_src. */
1481 split_edges (int bb_src
, int bb_trg
, edgelst
*bl
)
1483 auto_sbitmap
src (SBITMAP_SIZE (pot_split
[bb_src
]));
1484 bitmap_copy (src
, pot_split
[bb_src
]);
1486 bitmap_and_compl (src
, src
, pot_split
[bb_trg
]);
1487 extract_edgelst (src
, bl
);
1490 /* Find the valid candidate-source-blocks for the target block TRG, compute
1491 their probability, and check if they are speculative or not.
1492 For speculative sources, compute their update-blocks and split-blocks. */
1495 compute_trg_info (int trg
)
1498 edgelst el
= { NULL
, 0 };
1499 int i
, j
, k
, update_idx
;
1504 candidate_table
= XNEWVEC (candidate
, current_nr_blocks
);
1507 /* bblst_table holds split blocks and update blocks for each block after
1508 the current one in the region. split blocks and update blocks are
1509 the TO blocks of region edges, so there can be at most rgn_nr_edges
1511 bblst_size
= (current_nr_blocks
- target_bb
) * rgn_nr_edges
;
1512 bblst_table
= XNEWVEC (basic_block
, bblst_size
);
1515 edgelst_table
= XNEWVEC (edge
, rgn_nr_edges
);
1517 /* Define some of the fields for the target bb as well. */
1518 sp
= candidate_table
+ trg
;
1520 sp
->is_speculative
= 0;
1521 sp
->src_prob
= REG_BR_PROB_BASE
;
1523 auto_sbitmap
visited (last_basic_block_for_fn (cfun
));
1525 for (i
= trg
+ 1; i
< current_nr_blocks
; i
++)
1527 sp
= candidate_table
+ i
;
1529 sp
->is_valid
= IS_DOMINATED (i
, trg
);
1532 int tf
= prob
[trg
], cf
= prob
[i
];
1534 /* In CFGs with low probability edges TF can possibly be zero. */
1535 sp
->src_prob
= (tf
? GCOV_COMPUTE_SCALE (cf
, tf
) : 0);
1536 sp
->is_valid
= (sp
->src_prob
>= min_spec_prob
);
1541 split_edges (i
, trg
, &el
);
1542 sp
->is_speculative
= (el
.nr_members
) ? 1 : 0;
1543 if (sp
->is_speculative
&& !flag_schedule_speculative
)
1549 /* Compute split blocks and store them in bblst_table.
1550 The TO block of every split edge is a split block. */
1551 sp
->split_bbs
.first_member
= &bblst_table
[bblst_last
];
1552 sp
->split_bbs
.nr_members
= el
.nr_members
;
1553 for (j
= 0; j
< el
.nr_members
; bblst_last
++, j
++)
1554 bblst_table
[bblst_last
] = el
.first_member
[j
]->dest
;
1555 sp
->update_bbs
.first_member
= &bblst_table
[bblst_last
];
1557 /* Compute update blocks and store them in bblst_table.
1558 For every split edge, look at the FROM block, and check
1559 all out edges. For each out edge that is not a split edge,
1560 add the TO block to the update block list. This list can end
1561 up with a lot of duplicates. We need to weed them out to avoid
1562 overrunning the end of the bblst_table. */
1565 bitmap_clear (visited
);
1566 for (j
= 0; j
< el
.nr_members
; j
++)
1568 block
= el
.first_member
[j
]->src
;
1569 FOR_EACH_EDGE (e
, ei
, block
->succs
)
1571 if (!bitmap_bit_p (visited
, e
->dest
->index
))
1573 for (k
= 0; k
< el
.nr_members
; k
++)
1574 if (e
== el
.first_member
[k
])
1577 if (k
>= el
.nr_members
)
1579 bblst_table
[bblst_last
++] = e
->dest
;
1580 bitmap_set_bit (visited
, e
->dest
->index
);
1586 sp
->update_bbs
.nr_members
= update_idx
;
1588 /* Make sure we didn't overrun the end of bblst_table. */
1589 gcc_assert (bblst_last
<= bblst_size
);
1593 sp
->split_bbs
.nr_members
= sp
->update_bbs
.nr_members
= 0;
1595 sp
->is_speculative
= 0;
1601 /* Free the computed target info. */
1603 free_trg_info (void)
1605 free (candidate_table
);
1607 free (edgelst_table
);
1610 /* Print candidates info, for debugging purposes. Callable from debugger. */
1613 debug_candidate (int i
)
1615 if (!candidate_table
[i
].is_valid
)
1618 if (candidate_table
[i
].is_speculative
)
1621 fprintf (sched_dump
, "src b %d bb %d speculative \n", BB_TO_BLOCK (i
), i
);
1623 fprintf (sched_dump
, "split path: ");
1624 for (j
= 0; j
< candidate_table
[i
].split_bbs
.nr_members
; j
++)
1626 int b
= candidate_table
[i
].split_bbs
.first_member
[j
]->index
;
1628 fprintf (sched_dump
, " %d ", b
);
1630 fprintf (sched_dump
, "\n");
1632 fprintf (sched_dump
, "update path: ");
1633 for (j
= 0; j
< candidate_table
[i
].update_bbs
.nr_members
; j
++)
1635 int b
= candidate_table
[i
].update_bbs
.first_member
[j
]->index
;
1637 fprintf (sched_dump
, " %d ", b
);
1639 fprintf (sched_dump
, "\n");
1643 fprintf (sched_dump
, " src %d equivalent\n", BB_TO_BLOCK (i
));
1647 /* Print candidates info, for debugging purposes. Callable from debugger. */
1650 debug_candidates (int trg
)
1654 fprintf (sched_dump
, "----------- candidate table: target: b=%d bb=%d ---\n",
1655 BB_TO_BLOCK (trg
), trg
);
1656 for (i
= trg
+ 1; i
< current_nr_blocks
; i
++)
1657 debug_candidate (i
);
1660 /* Functions for speculative scheduling. */
1662 static bitmap_head not_in_df
;
1664 /* Return false if x is a set of a register alive in the beginning of one
1665 of the split-blocks of src, otherwise return true. */
1668 check_live_1 (int src
, rtx x
)
1672 rtx reg
= SET_DEST (x
);
1677 while (GET_CODE (reg
) == SUBREG
1678 || GET_CODE (reg
) == ZERO_EXTRACT
1679 || GET_CODE (reg
) == STRICT_LOW_PART
)
1680 reg
= XEXP (reg
, 0);
1682 if (GET_CODE (reg
) == PARALLEL
)
1686 for (i
= XVECLEN (reg
, 0) - 1; i
>= 0; i
--)
1687 if (XEXP (XVECEXP (reg
, 0, i
), 0) != 0)
1688 if (check_live_1 (src
, XEXP (XVECEXP (reg
, 0, i
), 0)))
1697 regno
= REGNO (reg
);
1699 if (regno
< FIRST_PSEUDO_REGISTER
&& global_regs
[regno
])
1701 /* Global registers are assumed live. */
1706 if (regno
< FIRST_PSEUDO_REGISTER
)
1708 /* Check for hard registers. */
1709 int j
= REG_NREGS (reg
);
1712 for (i
= 0; i
< candidate_table
[src
].split_bbs
.nr_members
; i
++)
1714 basic_block b
= candidate_table
[src
].split_bbs
.first_member
[i
];
1715 int t
= bitmap_bit_p (¬_in_df
, b
->index
);
1717 /* We can have split blocks, that were recently generated.
1718 Such blocks are always outside current region. */
1719 gcc_assert (!t
|| (CONTAINING_RGN (b
->index
)
1720 != CONTAINING_RGN (BB_TO_BLOCK (src
))));
1722 if (t
|| REGNO_REG_SET_P (df_get_live_in (b
), regno
+ j
))
1729 /* Check for pseudo registers. */
1730 for (i
= 0; i
< candidate_table
[src
].split_bbs
.nr_members
; i
++)
1732 basic_block b
= candidate_table
[src
].split_bbs
.first_member
[i
];
1733 int t
= bitmap_bit_p (¬_in_df
, b
->index
);
1735 gcc_assert (!t
|| (CONTAINING_RGN (b
->index
)
1736 != CONTAINING_RGN (BB_TO_BLOCK (src
))));
1738 if (t
|| REGNO_REG_SET_P (df_get_live_in (b
), regno
))
1747 /* If x is a set of a register R, mark that R is alive in the beginning
1748 of every update-block of src. */
1751 update_live_1 (int src
, rtx x
)
1755 rtx reg
= SET_DEST (x
);
1760 while (GET_CODE (reg
) == SUBREG
1761 || GET_CODE (reg
) == ZERO_EXTRACT
1762 || GET_CODE (reg
) == STRICT_LOW_PART
)
1763 reg
= XEXP (reg
, 0);
1765 if (GET_CODE (reg
) == PARALLEL
)
1769 for (i
= XVECLEN (reg
, 0) - 1; i
>= 0; i
--)
1770 if (XEXP (XVECEXP (reg
, 0, i
), 0) != 0)
1771 update_live_1 (src
, XEXP (XVECEXP (reg
, 0, i
), 0));
1779 /* Global registers are always live, so the code below does not apply
1782 regno
= REGNO (reg
);
1784 if (! HARD_REGISTER_NUM_P (regno
)
1785 || !global_regs
[regno
])
1787 for (i
= 0; i
< candidate_table
[src
].update_bbs
.nr_members
; i
++)
1789 basic_block b
= candidate_table
[src
].update_bbs
.first_member
[i
];
1790 bitmap_set_range (df_get_live_in (b
), regno
, REG_NREGS (reg
));
1795 /* Return true if insn can be speculatively moved from block src to trg,
1796 otherwise return false. Called before first insertion of insn to
1797 ready-list or before the scheduling. */
1800 check_live (rtx_insn
*insn
, int src
)
1802 /* Find the registers set by instruction. */
1803 if (GET_CODE (PATTERN (insn
)) == SET
1804 || GET_CODE (PATTERN (insn
)) == CLOBBER
)
1805 return check_live_1 (src
, PATTERN (insn
));
1806 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
1809 for (j
= XVECLEN (PATTERN (insn
), 0) - 1; j
>= 0; j
--)
1810 if ((GET_CODE (XVECEXP (PATTERN (insn
), 0, j
)) == SET
1811 || GET_CODE (XVECEXP (PATTERN (insn
), 0, j
)) == CLOBBER
)
1812 && !check_live_1 (src
, XVECEXP (PATTERN (insn
), 0, j
)))
1821 /* Update the live registers info after insn was moved speculatively from
1822 block src to trg. */
1825 update_live (rtx_insn
*insn
, int src
)
1827 /* Find the registers set by instruction. */
1828 if (GET_CODE (PATTERN (insn
)) == SET
1829 || GET_CODE (PATTERN (insn
)) == CLOBBER
)
1830 update_live_1 (src
, PATTERN (insn
));
1831 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
1834 for (j
= XVECLEN (PATTERN (insn
), 0) - 1; j
>= 0; j
--)
1835 if (GET_CODE (XVECEXP (PATTERN (insn
), 0, j
)) == SET
1836 || GET_CODE (XVECEXP (PATTERN (insn
), 0, j
)) == CLOBBER
)
1837 update_live_1 (src
, XVECEXP (PATTERN (insn
), 0, j
));
1841 /* True if block bb_to is equal to, or reachable from block bb_from. */
1842 #define IS_REACHABLE(bb_from, bb_to) \
1844 || IS_RGN_ENTRY (bb_from) \
1846 (ancestor_edges[bb_to], \
1847 EDGE_TO_BIT (single_pred_edge \
1848 (BASIC_BLOCK_FOR_FN (cfun, \
1849 BB_TO_BLOCK (bb_from)))))))
1851 /* Turns on the fed_by_spec_load flag for insns fed by load_insn. */
1854 set_spec_fed (rtx load_insn
)
1856 sd_iterator_def sd_it
;
1859 FOR_EACH_DEP (load_insn
, SD_LIST_FORW
, sd_it
, dep
)
1860 if (DEP_TYPE (dep
) == REG_DEP_TRUE
)
1861 FED_BY_SPEC_LOAD (DEP_CON (dep
)) = 1;
1864 /* On the path from the insn to load_insn_bb, find a conditional
1865 branch depending on insn, that guards the speculative load. */
1868 find_conditional_protection (rtx_insn
*insn
, int load_insn_bb
)
1870 sd_iterator_def sd_it
;
1873 /* Iterate through DEF-USE forward dependences. */
1874 FOR_EACH_DEP (insn
, SD_LIST_FORW
, sd_it
, dep
)
1876 rtx_insn
*next
= DEP_CON (dep
);
1878 if ((CONTAINING_RGN (BLOCK_NUM (next
)) ==
1879 CONTAINING_RGN (BB_TO_BLOCK (load_insn_bb
)))
1880 && IS_REACHABLE (INSN_BB (next
), load_insn_bb
)
1881 && load_insn_bb
!= INSN_BB (next
)
1882 && DEP_TYPE (dep
) == REG_DEP_TRUE
1884 || find_conditional_protection (next
, load_insn_bb
)))
1888 } /* find_conditional_protection */
1890 /* Returns true if the same insn1 that participates in the computation
1891 of load_insn's address is feeding a conditional branch that is
1892 guarding on load_insn. This is true if we find two DEF-USE
1894 insn1 -> ... -> conditional-branch
1895 insn1 -> ... -> load_insn,
1896 and if a flow path exists:
1897 insn1 -> ... -> conditional-branch -> ... -> load_insn,
1898 and if insn1 is on the path
1899 region-entry -> ... -> bb_trg -> ... load_insn.
1901 Locate insn1 by climbing on INSN_BACK_DEPS from load_insn.
1902 Locate the branch by following INSN_FORW_DEPS from insn1. */
1905 is_conditionally_protected (rtx load_insn
, int bb_src
, int bb_trg
)
1907 sd_iterator_def sd_it
;
1910 FOR_EACH_DEP (load_insn
, SD_LIST_BACK
, sd_it
, dep
)
1912 rtx_insn
*insn1
= DEP_PRO (dep
);
1914 /* Must be a DEF-USE dependence upon non-branch. */
1915 if (DEP_TYPE (dep
) != REG_DEP_TRUE
1919 /* Must exist a path: region-entry -> ... -> bb_trg -> ... load_insn. */
1920 if (INSN_BB (insn1
) == bb_src
1921 || (CONTAINING_RGN (BLOCK_NUM (insn1
))
1922 != CONTAINING_RGN (BB_TO_BLOCK (bb_src
)))
1923 || (!IS_REACHABLE (bb_trg
, INSN_BB (insn1
))
1924 && !IS_REACHABLE (INSN_BB (insn1
), bb_trg
)))
1927 /* Now search for the conditional-branch. */
1928 if (find_conditional_protection (insn1
, bb_src
))
1931 /* Recursive step: search another insn1, "above" current insn1. */
1932 return is_conditionally_protected (insn1
, bb_src
, bb_trg
);
1935 /* The chain does not exist. */
1937 } /* is_conditionally_protected */
1939 /* Returns true if a clue for "similar load" 'insn2' is found, and hence
1940 load_insn can move speculatively from bb_src to bb_trg. All the
1941 following must hold:
1943 (1) both loads have 1 base register (PFREE_CANDIDATEs).
1944 (2) load_insn and load1 have a def-use dependence upon
1945 the same insn 'insn1'.
1946 (3) either load2 is in bb_trg, or:
1947 - there's only one split-block, and
1948 - load1 is on the escape path, and
1950 From all these we can conclude that the two loads access memory
1951 addresses that differ at most by a constant, and hence if moving
1952 load_insn would cause an exception, it would have been caused by
1956 is_pfree (rtx load_insn
, int bb_src
, int bb_trg
)
1958 sd_iterator_def back_sd_it
;
1960 candidate
*candp
= candidate_table
+ bb_src
;
1962 if (candp
->split_bbs
.nr_members
!= 1)
1963 /* Must have exactly one escape block. */
1966 FOR_EACH_DEP (load_insn
, SD_LIST_BACK
, back_sd_it
, back_dep
)
1968 rtx_insn
*insn1
= DEP_PRO (back_dep
);
1970 if (DEP_TYPE (back_dep
) == REG_DEP_TRUE
)
1971 /* Found a DEF-USE dependence (insn1, load_insn). */
1973 sd_iterator_def fore_sd_it
;
1976 FOR_EACH_DEP (insn1
, SD_LIST_FORW
, fore_sd_it
, fore_dep
)
1978 rtx_insn
*insn2
= DEP_CON (fore_dep
);
1980 if (DEP_TYPE (fore_dep
) == REG_DEP_TRUE
)
1982 /* Found a DEF-USE dependence (insn1, insn2). */
1983 if (haifa_classify_insn (insn2
) != PFREE_CANDIDATE
)
1984 /* insn2 not guaranteed to be a 1 base reg load. */
1987 if (INSN_BB (insn2
) == bb_trg
)
1988 /* insn2 is the similar load, in the target block. */
1991 if (*(candp
->split_bbs
.first_member
) == BLOCK_FOR_INSN (insn2
))
1992 /* insn2 is a similar load, in a split-block. */
1999 /* Couldn't find a similar load. */
2003 /* Return true if load_insn is prisky (i.e. if load_insn is fed by
2004 a load moved speculatively, or if load_insn is protected by
2005 a compare on load_insn's address). */
2008 is_prisky (rtx load_insn
, int bb_src
, int bb_trg
)
2010 if (FED_BY_SPEC_LOAD (load_insn
))
2013 if (sd_lists_empty_p (load_insn
, SD_LIST_BACK
))
2014 /* Dependence may 'hide' out of the region. */
2017 if (is_conditionally_protected (load_insn
, bb_src
, bb_trg
))
2023 /* Insn is a candidate to be moved speculatively from bb_src to bb_trg.
2024 Return true if insn is exception-free (and the motion is valid)
2025 and false otherwise. */
2028 is_exception_free (rtx_insn
*insn
, int bb_src
, int bb_trg
)
2030 int insn_class
= haifa_classify_insn (insn
);
2032 /* Handle non-load insns. */
2043 if (!flag_schedule_speculative_load
)
2045 IS_LOAD_INSN (insn
) = 1;
2052 case PFREE_CANDIDATE
:
2053 if (is_pfree (insn
, bb_src
, bb_trg
))
2055 /* Don't 'break' here: PFREE-candidate is also PRISKY-candidate. */
2057 case PRISKY_CANDIDATE
:
2058 if (!flag_schedule_speculative_load_dangerous
2059 || is_prisky (insn
, bb_src
, bb_trg
))
2065 return flag_schedule_speculative_load_dangerous
;
2068 /* The number of insns from the current block scheduled so far. */
2069 static int sched_target_n_insns
;
2070 /* The number of insns from the current block to be scheduled in total. */
2071 static int target_n_insns
;
2072 /* The number of insns from the entire region scheduled so far. */
2073 static int sched_n_insns
;
2075 /* Implementations of the sched_info functions for region scheduling. */
2076 static void init_ready_list (void);
2077 static bool can_schedule_ready_p (rtx_insn
*);
2078 static void begin_schedule_ready (rtx_insn
*);
2079 static ds_t
new_ready (rtx_insn
*, ds_t
);
2080 static bool schedule_more_p (void);
2081 static const char *rgn_print_insn (const rtx_insn
*, int);
2082 static int rgn_rank (rtx_insn
*, rtx_insn
*);
2083 static void compute_jump_reg_dependencies (rtx
, regset
);
2085 /* Functions for speculative scheduling. */
2086 static void rgn_add_remove_insn (rtx_insn
*, int);
2087 static void rgn_add_block (basic_block
, basic_block
);
2088 static void rgn_fix_recovery_cfg (int, int, int);
2089 static basic_block
advance_target_bb (basic_block
, rtx_insn
*);
2091 /* Return true if there are more insns that should be scheduled. */
2094 schedule_more_p (void)
2096 return sched_target_n_insns
< target_n_insns
;
2099 /* Add all insns that are initially ready to the ready list READY. Called
2100 once before scheduling a set of insns. */
2103 init_ready_list (void)
2105 rtx_insn
*prev_head
= current_sched_info
->prev_head
;
2106 rtx_insn
*next_tail
= current_sched_info
->next_tail
;
2111 sched_target_n_insns
= 0;
2114 /* Print debugging information. */
2115 if (sched_verbose
>= 5)
2116 debug_rgn_dependencies (target_bb
);
2118 /* Prepare current target block info. */
2119 if (current_nr_blocks
> 1)
2120 compute_trg_info (target_bb
);
2122 /* Initialize ready list with all 'ready' insns in target block.
2123 Count number of insns in the target block being scheduled. */
2124 for (insn
= NEXT_INSN (prev_head
); insn
!= next_tail
; insn
= NEXT_INSN (insn
))
2126 gcc_assert (TODO_SPEC (insn
) == HARD_DEP
|| TODO_SPEC (insn
) == DEP_POSTPONED
);
2127 TODO_SPEC (insn
) = HARD_DEP
;
2131 gcc_assert (!(TODO_SPEC (insn
) & BEGIN_CONTROL
));
2134 /* Add to ready list all 'ready' insns in valid source blocks.
2135 For speculative insns, check-live, exception-free, and
2137 for (bb_src
= target_bb
+ 1; bb_src
< current_nr_blocks
; bb_src
++)
2138 if (IS_VALID (bb_src
))
2141 rtx_insn
*src_next_tail
;
2142 rtx_insn
*tail
, *head
;
2144 get_ebb_head_tail (EBB_FIRST_BB (bb_src
), EBB_LAST_BB (bb_src
),
2146 src_next_tail
= NEXT_INSN (tail
);
2149 for (insn
= src_head
; insn
!= src_next_tail
; insn
= NEXT_INSN (insn
))
2152 gcc_assert (TODO_SPEC (insn
) == HARD_DEP
|| TODO_SPEC (insn
) == DEP_POSTPONED
);
2153 TODO_SPEC (insn
) = HARD_DEP
;
2159 /* Called after taking INSN from the ready list. Returns true if this
2160 insn can be scheduled, nonzero if we should silently discard it. */
2163 can_schedule_ready_p (rtx_insn
*insn
)
2165 /* An interblock motion? */
2166 if (INSN_BB (insn
) != target_bb
&& IS_SPECULATIVE_INSN (insn
))
2168 /* Cannot schedule this insn unless all operands are live. */
2169 if (!check_live (insn
, INSN_BB (insn
)))
2172 /* Should not move expensive instructions speculatively. */
2173 if (GET_CODE (PATTERN (insn
)) != CLOBBER
2174 && !targetm
.sched
.can_speculate_insn (insn
))
2181 /* Updates counter and other information. Split from can_schedule_ready_p ()
2182 because when we schedule insn speculatively then insn passed to
2183 can_schedule_ready_p () differs from the one passed to
2184 begin_schedule_ready (). */
2186 begin_schedule_ready (rtx_insn
*insn
)
2188 /* An interblock motion? */
2189 if (INSN_BB (insn
) != target_bb
)
2191 if (IS_SPECULATIVE_INSN (insn
))
2193 gcc_assert (check_live (insn
, INSN_BB (insn
)));
2195 update_live (insn
, INSN_BB (insn
));
2197 /* For speculative load, mark insns fed by it. */
2198 if (IS_LOAD_INSN (insn
) || FED_BY_SPEC_LOAD (insn
))
2199 set_spec_fed (insn
);
2207 /* In block motion. */
2208 sched_target_n_insns
++;
2213 /* Called after INSN has all its hard dependencies resolved and the speculation
2214 of type TS is enough to overcome them all.
2215 Return nonzero if it should be moved to the ready list or the queue, or zero
2216 if we should silently discard it. */
2218 new_ready (rtx_insn
*next
, ds_t ts
)
2220 if (INSN_BB (next
) != target_bb
)
2222 int not_ex_free
= 0;
2224 /* For speculative insns, before inserting to ready/queue,
2225 check live, exception-free, and issue-delay. */
2226 if (!IS_VALID (INSN_BB (next
))
2228 || (IS_SPECULATIVE_INSN (next
)
2229 && ((recog_memoized (next
) >= 0
2230 && min_insn_conflict_delay (curr_state
, next
, next
)
2231 > param_max_sched_insn_conflict_delay
)
2232 || IS_SPECULATION_CHECK_P (next
)
2233 || !check_live (next
, INSN_BB (next
))
2234 || (not_ex_free
= !is_exception_free (next
, INSN_BB (next
),
2238 /* We are here because is_exception_free () == false.
2239 But we possibly can handle that with control speculation. */
2240 && sched_deps_info
->generate_spec_deps
2241 && spec_info
->mask
& BEGIN_CONTROL
)
2245 /* Add control speculation to NEXT's dependency type. */
2246 new_ds
= set_dep_weak (ts
, BEGIN_CONTROL
, MAX_DEP_WEAK
);
2248 /* Check if NEXT can be speculated with new dependency type. */
2249 if (sched_insn_is_legitimate_for_speculation_p (next
, new_ds
))
2250 /* Here we got new control-speculative instruction. */
2253 /* NEXT isn't ready yet. */
2257 /* NEXT isn't ready yet. */
2265 /* Return a string that contains the insn uid and optionally anything else
2266 necessary to identify this insn in an output. It's valid to use a
2267 static buffer for this. The ALIGNED parameter should cause the string
2268 to be formatted so that multiple output lines will line up nicely. */
2271 rgn_print_insn (const rtx_insn
*insn
, int aligned
)
2273 static char tmp
[80];
2276 sprintf (tmp
, "b%3d: i%4d", INSN_BB (insn
), INSN_UID (insn
));
2279 if (current_nr_blocks
> 1 && INSN_BB (insn
) != target_bb
)
2280 sprintf (tmp
, "%d/b%d", INSN_UID (insn
), INSN_BB (insn
));
2282 sprintf (tmp
, "%d", INSN_UID (insn
));
2287 /* Compare priority of two insns. Return a positive number if the second
2288 insn is to be preferred for scheduling, and a negative one if the first
2289 is to be preferred. Zero if they are equally good. */
2292 rgn_rank (rtx_insn
*insn1
, rtx_insn
*insn2
)
2294 /* Some comparison make sense in interblock scheduling only. */
2295 if (INSN_BB (insn1
) != INSN_BB (insn2
))
2297 int spec_val
, prob_val
;
2299 /* Prefer an inblock motion on an interblock motion. */
2300 if ((INSN_BB (insn2
) == target_bb
) && (INSN_BB (insn1
) != target_bb
))
2302 if ((INSN_BB (insn1
) == target_bb
) && (INSN_BB (insn2
) != target_bb
))
2305 /* Prefer a useful motion on a speculative one. */
2306 spec_val
= IS_SPECULATIVE_INSN (insn1
) - IS_SPECULATIVE_INSN (insn2
);
2310 /* Prefer a more probable (speculative) insn. */
2311 prob_val
= INSN_PROBABILITY (insn2
) - INSN_PROBABILITY (insn1
);
2318 /* NEXT is an instruction that depends on INSN (a backward dependence);
2319 return true if we should include this dependence in priority
2323 contributes_to_priority (rtx_insn
*next
, rtx_insn
*insn
)
2325 /* NEXT and INSN reside in one ebb. */
2326 return BLOCK_TO_BB (BLOCK_NUM (next
)) == BLOCK_TO_BB (BLOCK_NUM (insn
));
2329 /* INSN is a JUMP_INSN. Store the set of registers that must be
2330 considered as used by this jump in USED. */
2333 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED
,
2334 regset used ATTRIBUTE_UNUSED
)
2336 /* Nothing to do here, since we postprocess jumps in
2337 add_branch_dependences. */
2340 /* This variable holds common_sched_info hooks and data relevant to
2341 the interblock scheduler. */
2342 static struct common_sched_info_def rgn_common_sched_info
;
2345 /* This holds data for the dependence analysis relevant to
2346 the interblock scheduler. */
2347 static struct sched_deps_info_def rgn_sched_deps_info
;
2349 /* This holds constant data used for initializing the above structure
2350 for the Haifa scheduler. */
2351 static const struct sched_deps_info_def rgn_const_sched_deps_info
=
2353 compute_jump_reg_dependencies
,
2354 NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
2358 /* Same as above, but for the selective scheduler. */
2359 static const struct sched_deps_info_def rgn_const_sel_sched_deps_info
=
2361 compute_jump_reg_dependencies
,
2362 NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
2366 /* Return true if scheduling INSN will trigger finish of scheduling
2369 rgn_insn_finishes_block_p (rtx_insn
*insn
)
2371 if (INSN_BB (insn
) == target_bb
2372 && sched_target_n_insns
+ 1 == target_n_insns
)
2373 /* INSN is the last not-scheduled instruction in the current block. */
2379 /* Used in schedule_insns to initialize current_sched_info for scheduling
2380 regions (or single basic blocks). */
2382 static const struct haifa_sched_info rgn_const_sched_info
=
2385 can_schedule_ready_p
,
2390 contributes_to_priority
,
2391 rgn_insn_finishes_block_p
,
2397 rgn_add_remove_insn
,
2398 begin_schedule_ready
,
2405 /* This variable holds the data and hooks needed to the Haifa scheduler backend
2406 for the interblock scheduler frontend. */
2407 static struct haifa_sched_info rgn_sched_info
;
2409 /* Returns maximum priority that an insn was assigned to. */
2412 get_rgn_sched_max_insns_priority (void)
2414 return rgn_sched_info
.sched_max_insns_priority
;
2417 /* Determine if PAT sets a TARGET_CLASS_LIKELY_SPILLED_P register. */
2420 sets_likely_spilled (rtx pat
)
2423 note_pattern_stores (pat
, sets_likely_spilled_1
, &ret
);
2428 sets_likely_spilled_1 (rtx x
, const_rtx pat
, void *data
)
2430 bool *ret
= (bool *) data
;
2432 if (GET_CODE (pat
) == SET
2434 && HARD_REGISTER_P (x
)
2435 && targetm
.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (x
))))
2439 /* A bitmap to note insns that participate in any dependency. Used in
2440 add_branch_dependences. */
2441 static sbitmap insn_referenced
;
2443 /* Add dependences so that branches are scheduled to run last in their
2446 add_branch_dependences (rtx_insn
*head
, rtx_insn
*tail
)
2448 rtx_insn
*insn
, *last
;
2450 /* For all branches, calls, uses, clobbers, and instructions
2451 that can throw exceptions, force them to remain in order at the end of
2452 the block by adding dependencies and giving the last a high priority.
2453 There may be notes present, and prev_head may also be a note.
2455 Branches must obviously remain at the end. Calls should remain at the
2456 end since moving them results in worse register allocation. Uses remain
2457 at the end to ensure proper register allocation.
2459 Predecessors of SCHED_GROUP_P instructions at the end remain at the end.
2461 COND_EXEC insns cannot be moved past a branch (see e.g. PR17808).
2463 Insns setting TARGET_CLASS_LIKELY_SPILLED_P registers (usually return
2464 values) are not moved before reload because we can wind up with register
2465 allocation failures. */
2467 while (tail
!= head
&& DEBUG_INSN_P (tail
))
2468 tail
= PREV_INSN (tail
);
2472 while (CALL_P (insn
)
2473 || JUMP_P (insn
) || JUMP_TABLE_DATA_P (insn
)
2474 || (NONJUMP_INSN_P (insn
)
2475 && (GET_CODE (PATTERN (insn
)) == USE
2476 || GET_CODE (PATTERN (insn
)) == CLOBBER
2477 || can_throw_internal (insn
)
2478 || (!reload_completed
2479 && sets_likely_spilled (PATTERN (insn
)))))
2481 || (last
!= 0 && SCHED_GROUP_P (last
)))
2486 && sd_find_dep_between (insn
, last
, false) == NULL
)
2488 if (! sched_insns_conditions_mutex_p (last
, insn
))
2489 add_dependence (last
, insn
, REG_DEP_ANTI
);
2490 bitmap_set_bit (insn_referenced
, INSN_LUID (insn
));
2493 CANT_MOVE (insn
) = 1;
2498 /* Don't overrun the bounds of the basic block. */
2503 insn
= PREV_INSN (insn
);
2504 while (insn
!= head
&& DEBUG_INSN_P (insn
));
2507 /* Selective scheduling handles control dependencies by itself, and
2508 CANT_MOVE flags ensure that other insns will be kept in place. */
2512 /* Make sure these insns are scheduled last in their block. */
2515 while (insn
!= head
)
2517 insn
= prev_nonnote_insn (insn
);
2519 if (bitmap_bit_p (insn_referenced
, INSN_LUID (insn
))
2520 || DEBUG_INSN_P (insn
))
2523 if (! sched_insns_conditions_mutex_p (last
, insn
))
2524 add_dependence (last
, insn
, REG_DEP_ANTI
);
2527 if (!targetm
.have_conditional_execution ())
2530 /* Finally, if the block ends in a jump, and we are doing intra-block
2531 scheduling, make sure that the branch depends on any COND_EXEC insns
2532 inside the block to avoid moving the COND_EXECs past the branch insn.
2534 We only have to do this after reload, because (1) before reload there
2535 are no COND_EXEC insns, and (2) the region scheduler is an intra-block
2536 scheduler after reload.
2538 FIXME: We could in some cases move COND_EXEC insns past the branch if
2539 this scheduler would be a little smarter. Consider this code:
2547 On a target with a one cycle stall on a memory access the optimal
2556 We don't want to put the 'X += 12' before the branch because it just
2557 wastes a cycle of execution time when the branch is taken.
2559 Note that in the example "!C" will always be true. That is another
2560 possible improvement for handling COND_EXECs in this scheduler: it
2561 could remove always-true predicates. */
2563 if (!reload_completed
|| ! (JUMP_P (tail
) || JUMP_TABLE_DATA_P (tail
)))
2567 while (insn
!= head
)
2569 insn
= PREV_INSN (insn
);
2571 /* Note that we want to add this dependency even when
2572 sched_insns_conditions_mutex_p returns true. The whole point
2573 is that we _want_ this dependency, even if these insns really
2575 if (INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == COND_EXEC
)
2576 add_dependence (tail
, insn
, REG_DEP_ANTI
);
2580 /* Data structures for the computation of data dependences in a regions. We
2581 keep one `deps' structure for every basic block. Before analyzing the
2582 data dependences for a bb, its variables are initialized as a function of
2583 the variables of its predecessors. When the analysis for a bb completes,
2584 we save the contents to the corresponding bb_deps[bb] variable. */
2586 static class deps_desc
*bb_deps
;
2589 concat_insn_mem_list (rtx_insn_list
*copy_insns
,
2590 rtx_expr_list
*copy_mems
,
2591 rtx_insn_list
**old_insns_p
,
2592 rtx_expr_list
**old_mems_p
)
2594 rtx_insn_list
*new_insns
= *old_insns_p
;
2595 rtx_expr_list
*new_mems
= *old_mems_p
;
2599 new_insns
= alloc_INSN_LIST (copy_insns
->insn (), new_insns
);
2600 new_mems
= alloc_EXPR_LIST (VOIDmode
, copy_mems
->element (), new_mems
);
2601 copy_insns
= copy_insns
->next ();
2602 copy_mems
= copy_mems
->next ();
2605 *old_insns_p
= new_insns
;
2606 *old_mems_p
= new_mems
;
2609 /* Join PRED_DEPS to the SUCC_DEPS. */
2611 deps_join (class deps_desc
*succ_deps
, class deps_desc
*pred_deps
)
2614 reg_set_iterator rsi
;
2616 /* The reg_last lists are inherited by successor. */
2617 EXECUTE_IF_SET_IN_REG_SET (&pred_deps
->reg_last_in_use
, 0, reg
, rsi
)
2619 struct deps_reg
*pred_rl
= &pred_deps
->reg_last
[reg
];
2620 struct deps_reg
*succ_rl
= &succ_deps
->reg_last
[reg
];
2622 succ_rl
->uses
= concat_INSN_LIST (pred_rl
->uses
, succ_rl
->uses
);
2623 succ_rl
->sets
= concat_INSN_LIST (pred_rl
->sets
, succ_rl
->sets
);
2624 succ_rl
->implicit_sets
2625 = concat_INSN_LIST (pred_rl
->implicit_sets
, succ_rl
->implicit_sets
);
2626 succ_rl
->clobbers
= concat_INSN_LIST (pred_rl
->clobbers
,
2628 succ_rl
->uses_length
+= pred_rl
->uses_length
;
2629 succ_rl
->clobbers_length
+= pred_rl
->clobbers_length
;
2631 IOR_REG_SET (&succ_deps
->reg_last_in_use
, &pred_deps
->reg_last_in_use
);
2633 /* Mem read/write lists are inherited by successor. */
2634 concat_insn_mem_list (pred_deps
->pending_read_insns
,
2635 pred_deps
->pending_read_mems
,
2636 &succ_deps
->pending_read_insns
,
2637 &succ_deps
->pending_read_mems
);
2638 concat_insn_mem_list (pred_deps
->pending_write_insns
,
2639 pred_deps
->pending_write_mems
,
2640 &succ_deps
->pending_write_insns
,
2641 &succ_deps
->pending_write_mems
);
2643 succ_deps
->pending_jump_insns
2644 = concat_INSN_LIST (pred_deps
->pending_jump_insns
,
2645 succ_deps
->pending_jump_insns
);
2646 succ_deps
->last_pending_memory_flush
2647 = concat_INSN_LIST (pred_deps
->last_pending_memory_flush
,
2648 succ_deps
->last_pending_memory_flush
);
2650 succ_deps
->pending_read_list_length
+= pred_deps
->pending_read_list_length
;
2651 succ_deps
->pending_write_list_length
+= pred_deps
->pending_write_list_length
;
2652 succ_deps
->pending_flush_length
+= pred_deps
->pending_flush_length
;
2654 /* last_function_call is inherited by successor. */
2655 succ_deps
->last_function_call
2656 = concat_INSN_LIST (pred_deps
->last_function_call
,
2657 succ_deps
->last_function_call
);
2659 /* last_function_call_may_noreturn is inherited by successor. */
2660 succ_deps
->last_function_call_may_noreturn
2661 = concat_INSN_LIST (pred_deps
->last_function_call_may_noreturn
,
2662 succ_deps
->last_function_call_may_noreturn
);
2664 /* sched_before_next_call is inherited by successor. */
2665 succ_deps
->sched_before_next_call
2666 = concat_INSN_LIST (pred_deps
->sched_before_next_call
,
2667 succ_deps
->sched_before_next_call
);
2670 /* After computing the dependencies for block BB, propagate the dependencies
2671 found in TMP_DEPS to the successors of the block. */
2673 propagate_deps (int bb
, class deps_desc
*pred_deps
)
2675 basic_block block
= BASIC_BLOCK_FOR_FN (cfun
, BB_TO_BLOCK (bb
));
2679 /* bb's structures are inherited by its successors. */
2680 FOR_EACH_EDGE (e
, ei
, block
->succs
)
2682 /* Only bbs "below" bb, in the same region, are interesting. */
2683 if (e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
2684 || CONTAINING_RGN (block
->index
) != CONTAINING_RGN (e
->dest
->index
)
2685 || BLOCK_TO_BB (e
->dest
->index
) <= bb
)
2688 deps_join (bb_deps
+ BLOCK_TO_BB (e
->dest
->index
), pred_deps
);
2691 /* These lists should point to the right place, for correct
2693 bb_deps
[bb
].pending_read_insns
= pred_deps
->pending_read_insns
;
2694 bb_deps
[bb
].pending_read_mems
= pred_deps
->pending_read_mems
;
2695 bb_deps
[bb
].pending_write_insns
= pred_deps
->pending_write_insns
;
2696 bb_deps
[bb
].pending_write_mems
= pred_deps
->pending_write_mems
;
2697 bb_deps
[bb
].pending_jump_insns
= pred_deps
->pending_jump_insns
;
2699 /* Can't allow these to be freed twice. */
2700 pred_deps
->pending_read_insns
= 0;
2701 pred_deps
->pending_read_mems
= 0;
2702 pred_deps
->pending_write_insns
= 0;
2703 pred_deps
->pending_write_mems
= 0;
2704 pred_deps
->pending_jump_insns
= 0;
2707 /* Compute dependences inside bb. In a multiple blocks region:
2708 (1) a bb is analyzed after its predecessors, and (2) the lists in
2709 effect at the end of bb (after analyzing for bb) are inherited by
2712 Specifically for reg-reg data dependences, the block insns are
2713 scanned by sched_analyze () top-to-bottom. Three lists are
2714 maintained by sched_analyze (): reg_last[].sets for register DEFs,
2715 reg_last[].implicit_sets for implicit hard register DEFs, and
2716 reg_last[].uses for register USEs.
2718 When analysis is completed for bb, we update for its successors:
2719 ; - DEFS[succ] = Union (DEFS [succ], DEFS [bb])
2720 ; - IMPLICIT_DEFS[succ] = Union (IMPLICIT_DEFS [succ], IMPLICIT_DEFS [bb])
2721 ; - USES[succ] = Union (USES [succ], DEFS [bb])
2723 The mechanism for computing mem-mem data dependence is very
2724 similar, and the result is interblock dependences in the region. */
2727 compute_block_dependences (int bb
)
2729 rtx_insn
*head
, *tail
;
2730 class deps_desc tmp_deps
;
2732 tmp_deps
= bb_deps
[bb
];
2734 /* Do the analysis for this block. */
2735 gcc_assert (EBB_FIRST_BB (bb
) == EBB_LAST_BB (bb
));
2736 get_ebb_head_tail (EBB_FIRST_BB (bb
), EBB_LAST_BB (bb
), &head
, &tail
);
2738 sched_analyze (&tmp_deps
, head
, tail
);
2740 add_branch_dependences (head
, tail
);
2742 if (current_nr_blocks
> 1)
2743 propagate_deps (bb
, &tmp_deps
);
2745 /* Free up the INSN_LISTs. */
2746 free_deps (&tmp_deps
);
2748 if (targetm
.sched
.dependencies_evaluation_hook
)
2749 targetm
.sched
.dependencies_evaluation_hook (head
, tail
);
2752 /* Free dependencies of instructions inside BB. */
2754 free_block_dependencies (int bb
)
2759 get_ebb_head_tail (EBB_FIRST_BB (bb
), EBB_LAST_BB (bb
), &head
, &tail
);
2761 if (no_real_insns_p (head
, tail
))
2764 sched_free_deps (head
, tail
, true);
2767 /* Remove all INSN_LISTs and EXPR_LISTs from the pending lists and add
2768 them to the unused_*_list variables, so that they can be reused. */
2771 free_pending_lists (void)
2775 for (bb
= 0; bb
< current_nr_blocks
; bb
++)
2777 free_INSN_LIST_list (&bb_deps
[bb
].pending_read_insns
);
2778 free_INSN_LIST_list (&bb_deps
[bb
].pending_write_insns
);
2779 free_EXPR_LIST_list (&bb_deps
[bb
].pending_read_mems
);
2780 free_EXPR_LIST_list (&bb_deps
[bb
].pending_write_mems
);
2781 free_INSN_LIST_list (&bb_deps
[bb
].pending_jump_insns
);
2785 /* Print dependences for debugging starting from FROM_BB.
2786 Callable from debugger. */
2787 /* Print dependences for debugging starting from FROM_BB.
2788 Callable from debugger. */
2790 debug_rgn_dependencies (int from_bb
)
2794 fprintf (sched_dump
,
2795 ";; --------------- forward dependences: ------------ \n");
2797 for (bb
= from_bb
; bb
< current_nr_blocks
; bb
++)
2799 rtx_insn
*head
, *tail
;
2801 get_ebb_head_tail (EBB_FIRST_BB (bb
), EBB_LAST_BB (bb
), &head
, &tail
);
2802 fprintf (sched_dump
, "\n;; --- Region Dependences --- b %d bb %d \n",
2803 BB_TO_BLOCK (bb
), bb
);
2805 debug_dependencies (head
, tail
);
2809 /* Print dependencies information for instructions between HEAD and TAIL.
2810 ??? This function would probably fit best in haifa-sched.cc. */
2811 void debug_dependencies (rtx_insn
*head
, rtx_insn
*tail
)
2814 rtx_insn
*next_tail
= NEXT_INSN (tail
);
2816 fprintf (sched_dump
, ";; %7s%6s%6s%6s%6s%6s%14s\n",
2817 "insn", "code", "bb", "dep", "prio", "cost",
2819 fprintf (sched_dump
, ";; %7s%6s%6s%6s%6s%6s%14s\n",
2820 "----", "----", "--", "---", "----", "----",
2823 for (insn
= head
; insn
!= next_tail
; insn
= NEXT_INSN (insn
))
2825 if (! INSN_P (insn
))
2828 fprintf (sched_dump
, ";; %6d ", INSN_UID (insn
));
2831 n
= NOTE_KIND (insn
);
2832 fprintf (sched_dump
, "%s\n", GET_NOTE_INSN_NAME (n
));
2835 fprintf (sched_dump
, " {%s}\n", GET_RTX_NAME (GET_CODE (insn
)));
2839 fprintf (sched_dump
,
2840 ";; %s%5d%6d%6d%6d%6d%6d ",
2841 (SCHED_GROUP_P (insn
) ? "+" : " "),
2845 sched_emulate_haifa_p
? -1 : sd_lists_size (insn
, SD_LIST_BACK
),
2846 (sel_sched_p () ? (sched_emulate_haifa_p
? -1
2847 : INSN_PRIORITY (insn
))
2848 : INSN_PRIORITY (insn
)),
2849 (sel_sched_p () ? (sched_emulate_haifa_p
? -1
2850 : insn_sched_cost (insn
))
2851 : insn_sched_cost (insn
)));
2853 if (recog_memoized (insn
) < 0)
2854 fprintf (sched_dump
, "nothing");
2856 print_reservation (sched_dump
, insn
);
2858 fprintf (sched_dump
, "\t: ");
2860 sd_iterator_def sd_it
;
2863 FOR_EACH_DEP (insn
, SD_LIST_FORW
, sd_it
, dep
)
2864 fprintf (sched_dump
, "%d%s%s ", INSN_UID (DEP_CON (dep
)),
2865 DEP_NONREG (dep
) ? "n" : "",
2866 DEP_MULTIPLE (dep
) ? "m" : "");
2868 fprintf (sched_dump
, "\n");
2871 fprintf (sched_dump
, "\n");
2874 /* Dump dependency graph for the current region to a file using dot syntax. */
2877 dump_rgn_dependencies_dot (FILE *file
)
2879 rtx_insn
*head
, *tail
, *con
, *pro
;
2880 sd_iterator_def sd_it
;
2885 pp
.buffer
->stream
= file
;
2886 pp_printf (&pp
, "digraph SchedDG {\n");
2888 for (bb
= 0; bb
< current_nr_blocks
; ++bb
)
2890 /* Begin subgraph (basic block). */
2891 pp_printf (&pp
, "subgraph cluster_block_%d {\n", bb
);
2892 pp_printf (&pp
, "\t" "color=blue;" "\n");
2893 pp_printf (&pp
, "\t" "style=bold;" "\n");
2894 pp_printf (&pp
, "\t" "label=\"BB #%d\";\n", BB_TO_BLOCK (bb
));
2896 /* Setup head and tail (no support for EBBs). */
2897 gcc_assert (EBB_FIRST_BB (bb
) == EBB_LAST_BB (bb
));
2898 get_ebb_head_tail (EBB_FIRST_BB (bb
), EBB_LAST_BB (bb
), &head
, &tail
);
2899 tail
= NEXT_INSN (tail
);
2901 /* Dump all insns. */
2902 for (con
= head
; con
!= tail
; con
= NEXT_INSN (con
))
2907 /* Pretty print the insn. */
2908 pp_printf (&pp
, "\t%d [label=\"{", INSN_UID (con
));
2909 pp_write_text_to_stream (&pp
);
2910 print_insn (&pp
, con
, /*verbose=*/false);
2911 pp_write_text_as_dot_label_to_stream (&pp
, /*for_record=*/true);
2912 pp_write_text_to_stream (&pp
);
2914 /* Dump instruction attributes. */
2915 pp_printf (&pp
, "|{ uid:%d | luid:%d | prio:%d }}\",shape=record]\n",
2916 INSN_UID (con
), INSN_LUID (con
), INSN_PRIORITY (con
));
2918 /* Dump all deps. */
2919 FOR_EACH_DEP (con
, SD_LIST_BACK
, sd_it
, dep
)
2923 pro
= DEP_PRO (dep
);
2925 switch (DEP_TYPE (dep
))
2931 case REG_DEP_OUTPUT
:
2935 case REG_DEP_CONTROL
:
2942 pp_printf (&pp
, "\t%d -> %d [color=%s",
2943 INSN_UID (pro
), INSN_UID (con
), color
);
2944 if (int cost
= dep_cost (dep
))
2945 pp_printf (&pp
, ",label=%d", cost
);
2946 pp_printf (&pp
, ",weight=%d", weight
);
2947 pp_printf (&pp
, "];\n");
2950 pp_printf (&pp
, "}\n");
2953 pp_printf (&pp
, "}\n");
2957 /* Dump dependency graph for the current region to a file using dot syntax. */
2960 dump_rgn_dependencies_dot (const char *fname
)
2964 fp
= fopen (fname
, "w");
2971 dump_rgn_dependencies_dot (fp
);
2976 /* Returns true if all the basic blocks of the current region have
2977 NOTE_DISABLE_SCHED_OF_BLOCK which means not to schedule that region. */
2979 sched_is_disabled_for_current_region_p (void)
2983 for (bb
= 0; bb
< current_nr_blocks
; bb
++)
2984 if (!(BASIC_BLOCK_FOR_FN (cfun
,
2985 BB_TO_BLOCK (bb
))->flags
& BB_DISABLE_SCHEDULE
))
2991 /* Free all region dependencies saved in INSN_BACK_DEPS and
2992 INSN_RESOLVED_BACK_DEPS. The Haifa scheduler does this on the fly
2993 when scheduling, so this function is supposed to be called from
2994 the selective scheduling only. */
2996 free_rgn_deps (void)
3000 for (bb
= 0; bb
< current_nr_blocks
; bb
++)
3002 rtx_insn
*head
, *tail
;
3004 gcc_assert (EBB_FIRST_BB (bb
) == EBB_LAST_BB (bb
));
3005 get_ebb_head_tail (EBB_FIRST_BB (bb
), EBB_LAST_BB (bb
), &head
, &tail
);
3007 sched_free_deps (head
, tail
, false);
3011 static int rgn_n_insns
;
3013 /* Compute insn priority for a current region. */
3015 compute_priorities (void)
3019 current_sched_info
->sched_max_insns_priority
= 0;
3020 for (bb
= 0; bb
< current_nr_blocks
; bb
++)
3022 rtx_insn
*head
, *tail
;
3024 gcc_assert (EBB_FIRST_BB (bb
) == EBB_LAST_BB (bb
));
3025 get_ebb_head_tail (EBB_FIRST_BB (bb
), EBB_LAST_BB (bb
), &head
, &tail
);
3027 if (no_real_insns_p (head
, tail
))
3030 rgn_n_insns
+= set_priorities (head
, tail
);
3032 current_sched_info
->sched_max_insns_priority
++;
3035 /* (Re-)initialize the arrays of DFA states at the end of each basic block.
3037 SAVED_LAST_BASIC_BLOCK is the previous length of the arrays. It must be
3038 zero for the first call to this function, to allocate the arrays for the
3041 This function is called once during initialization of the scheduler, and
3042 called again to resize the arrays if new basic blocks have been created,
3043 for example for speculation recovery code. */
3046 realloc_bb_state_array (int saved_last_basic_block
)
3048 char *old_bb_state_array
= bb_state_array
;
3049 size_t lbb
= (size_t) last_basic_block_for_fn (cfun
);
3050 size_t slbb
= (size_t) saved_last_basic_block
;
3052 /* Nothing to do if nothing changed since the last time this was called. */
3053 if (saved_last_basic_block
== last_basic_block_for_fn (cfun
))
3056 /* The selective scheduler doesn't use the state arrays. */
3059 gcc_assert (bb_state_array
== NULL
&& bb_state
== NULL
);
3063 gcc_checking_assert (saved_last_basic_block
== 0
3064 || (bb_state_array
!= NULL
&& bb_state
!= NULL
));
3066 bb_state_array
= XRESIZEVEC (char, bb_state_array
, lbb
* dfa_state_size
);
3067 bb_state
= XRESIZEVEC (state_t
, bb_state
, lbb
);
3069 /* If BB_STATE_ARRAY has moved, fixup all the state pointers array.
3070 Otherwise only fixup the newly allocated ones. For the state
3071 array itself, only initialize the new entries. */
3072 bool bb_state_array_moved
= (bb_state_array
!= old_bb_state_array
);
3073 for (size_t i
= bb_state_array_moved
? 0 : slbb
; i
< lbb
; i
++)
3074 bb_state
[i
] = (state_t
) (bb_state_array
+ i
* dfa_state_size
);
3075 for (size_t i
= slbb
; i
< lbb
; i
++)
3076 state_reset (bb_state
[i
]);
3079 /* Free the arrays of DFA states at the end of each basic block. */
3082 free_bb_state_array (void)
3084 free (bb_state_array
);
3086 bb_state_array
= NULL
;
3090 /* If LAST_BB falls through to another block B, record that B should
3091 start with DFA start STATE. */
3094 save_state_for_fallthru_edge (basic_block last_bb
, state_t state
)
3096 edge f
= find_fallthru_edge (last_bb
->succs
);
3098 && (!f
->probability
.initialized_p ()
3099 || (f
->probability
.to_reg_br_prob_base () * 100
3101 >= param_sched_state_edge_prob_cutoff
)))
3103 memcpy (bb_state
[f
->dest
->index
], state
,
3105 if (sched_verbose
>= 5)
3106 fprintf (sched_dump
, "saving state for edge %d->%d\n",
3107 f
->src
->index
, f
->dest
->index
);
3111 /* Schedule a region. A region is either an inner loop, a loop-free
3112 subroutine, or a single basic block. Each bb in the region is
3113 scheduled after its flow predecessors. */
3116 schedule_region (int rgn
)
3119 int sched_rgn_n_insns
= 0;
3123 /* Do not support register pressure sensitive scheduling for the new regions
3124 as we don't update the liveness info for them. */
3125 if (sched_pressure
!= SCHED_PRESSURE_NONE
3126 && rgn
>= nr_regions_initial
)
3128 free_global_sched_pressure_data ();
3129 sched_pressure
= SCHED_PRESSURE_NONE
;
3132 rgn_setup_region (rgn
);
3134 /* Don't schedule region that is marked by
3135 NOTE_DISABLE_SCHED_OF_BLOCK. */
3136 if (sched_is_disabled_for_current_region_p ())
3139 sched_rgn_compute_dependencies (rgn
);
3141 sched_rgn_local_init (rgn
);
3143 /* Set priorities. */
3144 compute_priorities ();
3146 sched_extend_ready_list (rgn_n_insns
);
3148 if (sched_pressure
== SCHED_PRESSURE_WEIGHTED
)
3150 sched_init_region_reg_pressure_info ();
3151 for (bb
= 0; bb
< current_nr_blocks
; bb
++)
3153 basic_block first_bb
, last_bb
;
3154 rtx_insn
*head
, *tail
;
3156 first_bb
= EBB_FIRST_BB (bb
);
3157 last_bb
= EBB_LAST_BB (bb
);
3159 get_ebb_head_tail (first_bb
, last_bb
, &head
, &tail
);
3161 if (no_real_insns_p (head
, tail
))
3163 gcc_assert (first_bb
== last_bb
);
3166 sched_setup_bb_reg_pressure_info (first_bb
, PREV_INSN (head
));
3170 /* Now we can schedule all blocks. */
3171 for (bb
= 0; bb
< current_nr_blocks
; bb
++)
3173 basic_block first_bb
, last_bb
, curr_bb
;
3174 rtx_insn
*head
, *tail
;
3176 first_bb
= EBB_FIRST_BB (bb
);
3177 last_bb
= EBB_LAST_BB (bb
);
3179 get_ebb_head_tail (first_bb
, last_bb
, &head
, &tail
);
3181 if (no_real_insns_p (head
, tail
))
3183 gcc_assert (first_bb
== last_bb
);
3184 save_state_for_fallthru_edge (last_bb
, bb_state
[first_bb
->index
]);
3188 current_sched_info
->prev_head
= PREV_INSN (head
);
3189 current_sched_info
->next_tail
= NEXT_INSN (tail
);
3191 remove_notes (head
, tail
);
3193 unlink_bb_notes (first_bb
, last_bb
);
3197 gcc_assert (flag_schedule_interblock
|| current_nr_blocks
== 1);
3198 current_sched_info
->queue_must_finish_empty
= current_nr_blocks
== 1;
3201 int saved_last_basic_block
= last_basic_block_for_fn (cfun
);
3203 schedule_block (&curr_bb
, bb_state
[first_bb
->index
]);
3204 gcc_assert (EBB_FIRST_BB (bb
) == first_bb
);
3205 sched_rgn_n_insns
+= sched_n_insns
;
3206 realloc_bb_state_array (saved_last_basic_block
);
3207 save_state_for_fallthru_edge (last_bb
, curr_state
);
3210 if (current_nr_blocks
> 1)
3214 /* Sanity check: verify that all region insns were scheduled. */
3215 gcc_assert (sched_rgn_n_insns
== rgn_n_insns
);
3217 sched_finish_ready_list ();
3219 /* Done with this region. */
3220 sched_rgn_local_finish ();
3222 /* Free dependencies. */
3223 for (bb
= 0; bb
< current_nr_blocks
; ++bb
)
3224 free_block_dependencies (bb
);
3226 gcc_assert (haifa_recovery_bb_ever_added_p
3227 || deps_pools_are_empty_p ());
3230 /* Initialize data structures for region scheduling. */
3233 sched_rgn_init (bool single_blocks_p
)
3235 min_spec_prob
= ((param_min_spec_prob
* REG_BR_PROB_BASE
)
3243 CONTAINING_RGN (ENTRY_BLOCK
) = -1;
3244 CONTAINING_RGN (EXIT_BLOCK
) = -1;
3246 realloc_bb_state_array (0);
3248 /* Compute regions for scheduling. */
3250 || n_basic_blocks_for_fn (cfun
) == NUM_FIXED_BLOCKS
+ 1
3251 || !flag_schedule_interblock
3252 || is_cfg_nonregular ())
3254 find_single_block_region (sel_sched_p ());
3258 /* Compute the dominators and post dominators. */
3259 if (!sel_sched_p ())
3260 calculate_dominance_info (CDI_DOMINATORS
);
3265 if (sched_verbose
>= 3)
3268 /* For now. This will move as more and more of haifa is converted
3269 to using the cfg code. */
3270 if (!sel_sched_p ())
3271 free_dominance_info (CDI_DOMINATORS
);
3274 gcc_assert (nr_regions
> 0 && nr_regions
<= n_basic_blocks_for_fn (cfun
));
3276 RGN_BLOCKS (nr_regions
) = (RGN_BLOCKS (nr_regions
- 1)
3277 + RGN_NR_BLOCKS (nr_regions
- 1));
3278 nr_regions_initial
= nr_regions
;
3281 /* Free data structures for region scheduling. */
3283 sched_rgn_finish (void)
3285 free_bb_state_array ();
3287 /* Reposition the prologue and epilogue notes in case we moved the
3288 prologue/epilogue insns. */
3289 if (reload_completed
)
3290 reposition_prologue_and_epilogue_notes ();
3294 if (reload_completed
== 0
3295 && flag_schedule_interblock
)
3297 fprintf (sched_dump
,
3298 "\n;; Procedure interblock/speculative motions == %d/%d \n",
3302 gcc_assert (nr_inter
<= 0);
3303 fprintf (sched_dump
, "\n\n");
3311 free (rgn_bb_table
);
3312 rgn_bb_table
= NULL
;
3317 free (containing_rgn
);
3318 containing_rgn
= NULL
;
3324 /* Setup global variables like CURRENT_BLOCKS and CURRENT_NR_BLOCK to
3325 point to the region RGN. */
3327 rgn_setup_region (int rgn
)
3331 /* Set variables for the current region. */
3332 current_nr_blocks
= RGN_NR_BLOCKS (rgn
);
3333 current_blocks
= RGN_BLOCKS (rgn
);
3335 /* EBB_HEAD is a region-scope structure. But we realloc it for
3336 each region to save time/memory/something else.
3337 See comments in add_block1, for what reasons we allocate +1 element. */
3338 ebb_head
= XRESIZEVEC (int, ebb_head
, current_nr_blocks
+ 1);
3339 for (bb
= 0; bb
<= current_nr_blocks
; bb
++)
3340 ebb_head
[bb
] = current_blocks
+ bb
;
3343 /* Compute instruction dependencies in region RGN. */
3345 sched_rgn_compute_dependencies (int rgn
)
3347 if (!RGN_DONT_CALC_DEPS (rgn
))
3352 sched_emulate_haifa_p
= 1;
3354 init_deps_global ();
3356 /* Initializations for region data dependence analysis. */
3357 bb_deps
= XNEWVEC (class deps_desc
, current_nr_blocks
);
3358 for (bb
= 0; bb
< current_nr_blocks
; bb
++)
3359 init_deps (bb_deps
+ bb
, false);
3361 /* Initialize bitmap used in add_branch_dependences. */
3362 insn_referenced
= sbitmap_alloc (sched_max_luid
);
3363 bitmap_clear (insn_referenced
);
3365 /* Compute backward dependencies. */
3366 for (bb
= 0; bb
< current_nr_blocks
; bb
++)
3367 compute_block_dependences (bb
);
3369 sbitmap_free (insn_referenced
);
3370 free_pending_lists ();
3371 finish_deps_global ();
3374 /* We don't want to recalculate this twice. */
3375 RGN_DONT_CALC_DEPS (rgn
) = 1;
3378 sched_emulate_haifa_p
= 0;
3381 /* (This is a recovery block. It is always a single block region.)
3382 OR (We use selective scheduling.) */
3383 gcc_assert (current_nr_blocks
== 1 || sel_sched_p ());
3386 /* Init region data structures. Returns true if this region should
3387 not be scheduled. */
3389 sched_rgn_local_init (int rgn
)
3393 /* Compute interblock info: probabilities, split-edges, dominators, etc. */
3394 if (current_nr_blocks
> 1)
3400 prob
= XNEWVEC (int, current_nr_blocks
);
3402 dom
= sbitmap_vector_alloc (current_nr_blocks
, current_nr_blocks
);
3403 bitmap_vector_clear (dom
, current_nr_blocks
);
3405 /* Use ->aux to implement EDGE_TO_BIT mapping. */
3407 FOR_EACH_BB_FN (block
, cfun
)
3409 if (CONTAINING_RGN (block
->index
) != rgn
)
3411 FOR_EACH_EDGE (e
, ei
, block
->succs
)
3412 SET_EDGE_TO_BIT (e
, rgn_nr_edges
++);
3415 rgn_edges
= XNEWVEC (edge
, rgn_nr_edges
);
3417 FOR_EACH_BB_FN (block
, cfun
)
3419 if (CONTAINING_RGN (block
->index
) != rgn
)
3421 FOR_EACH_EDGE (e
, ei
, block
->succs
)
3422 rgn_edges
[rgn_nr_edges
++] = e
;
3426 pot_split
= sbitmap_vector_alloc (current_nr_blocks
, rgn_nr_edges
);
3427 bitmap_vector_clear (pot_split
, current_nr_blocks
);
3428 ancestor_edges
= sbitmap_vector_alloc (current_nr_blocks
, rgn_nr_edges
);
3429 bitmap_vector_clear (ancestor_edges
, current_nr_blocks
);
3431 /* Compute probabilities, dominators, split_edges. */
3432 for (bb
= 0; bb
< current_nr_blocks
; bb
++)
3433 compute_dom_prob_ps (bb
);
3435 /* Cleanup ->aux used for EDGE_TO_BIT mapping. */
3436 /* We don't need them anymore. But we want to avoid duplication of
3437 aux fields in the newly created edges. */
3438 FOR_EACH_BB_FN (block
, cfun
)
3440 if (CONTAINING_RGN (block
->index
) != rgn
)
3442 FOR_EACH_EDGE (e
, ei
, block
->succs
)
3448 /* Free data computed for the finished region. */
3450 sched_rgn_local_free (void)
3453 sbitmap_vector_free (dom
);
3454 sbitmap_vector_free (pot_split
);
3455 sbitmap_vector_free (ancestor_edges
);
3459 /* Free data computed for the finished region. */
3461 sched_rgn_local_finish (void)
3463 if (current_nr_blocks
> 1 && !sel_sched_p ())
3465 sched_rgn_local_free ();
3469 /* Setup scheduler infos. */
3471 rgn_setup_common_sched_info (void)
3473 memcpy (&rgn_common_sched_info
, &haifa_common_sched_info
,
3474 sizeof (rgn_common_sched_info
));
3476 rgn_common_sched_info
.fix_recovery_cfg
= rgn_fix_recovery_cfg
;
3477 rgn_common_sched_info
.add_block
= rgn_add_block
;
3478 rgn_common_sched_info
.estimate_number_of_insns
3479 = rgn_estimate_number_of_insns
;
3480 rgn_common_sched_info
.sched_pass_id
= SCHED_RGN_PASS
;
3482 common_sched_info
= &rgn_common_sched_info
;
3485 /* Setup all *_sched_info structures (for the Haifa frontend
3486 and for the dependence analysis) in the interblock scheduler. */
3488 rgn_setup_sched_infos (void)
3490 if (!sel_sched_p ())
3491 memcpy (&rgn_sched_deps_info
, &rgn_const_sched_deps_info
,
3492 sizeof (rgn_sched_deps_info
));
3494 memcpy (&rgn_sched_deps_info
, &rgn_const_sel_sched_deps_info
,
3495 sizeof (rgn_sched_deps_info
));
3497 sched_deps_info
= &rgn_sched_deps_info
;
3499 memcpy (&rgn_sched_info
, &rgn_const_sched_info
, sizeof (rgn_sched_info
));
3500 current_sched_info
= &rgn_sched_info
;
3503 /* The one entry point in this file. */
3505 schedule_insns (void)
3509 /* Taking care of this degenerate case makes the rest of
3510 this code simpler. */
3511 if (n_basic_blocks_for_fn (cfun
) == NUM_FIXED_BLOCKS
)
3514 rgn_setup_common_sched_info ();
3515 rgn_setup_sched_infos ();
3517 haifa_sched_init ();
3518 sched_rgn_init (reload_completed
);
3520 bitmap_initialize (¬_in_df
, &bitmap_default_obstack
);
3522 /* Schedule every region in the subroutine. */
3523 for (rgn
= 0; rgn
< nr_regions
; rgn
++)
3524 if (dbg_cnt (sched_region
))
3525 schedule_region (rgn
);
3528 sched_rgn_finish ();
3529 bitmap_release (¬_in_df
);
3531 haifa_sched_finish ();
3534 /* INSN has been added to/removed from current region. */
3536 rgn_add_remove_insn (rtx_insn
*insn
, int remove_p
)
3543 if (INSN_BB (insn
) == target_bb
)
3552 /* Extend internal data structures. */
3554 extend_regions (void)
3556 rgn_table
= XRESIZEVEC (region
, rgn_table
, n_basic_blocks_for_fn (cfun
));
3557 rgn_bb_table
= XRESIZEVEC (int, rgn_bb_table
,
3558 n_basic_blocks_for_fn (cfun
));
3559 block_to_bb
= XRESIZEVEC (int, block_to_bb
,
3560 last_basic_block_for_fn (cfun
));
3561 containing_rgn
= XRESIZEVEC (int, containing_rgn
,
3562 last_basic_block_for_fn (cfun
));
3566 rgn_make_new_region_out_of_new_block (basic_block bb
)
3570 i
= RGN_BLOCKS (nr_regions
);
3571 /* I - first free position in rgn_bb_table. */
3573 rgn_bb_table
[i
] = bb
->index
;
3574 RGN_NR_BLOCKS (nr_regions
) = 1;
3575 RGN_HAS_REAL_EBB (nr_regions
) = 0;
3576 RGN_DONT_CALC_DEPS (nr_regions
) = 0;
3577 CONTAINING_RGN (bb
->index
) = nr_regions
;
3578 BLOCK_TO_BB (bb
->index
) = 0;
3582 RGN_BLOCKS (nr_regions
) = i
+ 1;
3585 /* BB was added to ebb after AFTER. */
3587 rgn_add_block (basic_block bb
, basic_block after
)
3590 bitmap_set_bit (¬_in_df
, bb
->index
);
3592 if (after
== 0 || after
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
3594 rgn_make_new_region_out_of_new_block (bb
);
3595 RGN_DONT_CALC_DEPS (nr_regions
- 1) = (after
3596 == EXIT_BLOCK_PTR_FOR_FN (cfun
));
3602 /* We need to fix rgn_table, block_to_bb, containing_rgn
3605 BLOCK_TO_BB (bb
->index
) = BLOCK_TO_BB (after
->index
);
3607 /* We extend ebb_head to one more position to
3608 easily find the last position of the last ebb in
3609 the current region. Thus, ebb_head[BLOCK_TO_BB (after) + 1]
3610 is _always_ valid for access. */
3612 i
= BLOCK_TO_BB (after
->index
) + 1;
3613 pos
= ebb_head
[i
] - 1;
3614 /* Now POS is the index of the last block in the region. */
3616 /* Find index of basic block AFTER. */
3617 for (; rgn_bb_table
[pos
] != after
->index
; pos
--)
3621 gcc_assert (pos
> ebb_head
[i
- 1]);
3623 /* i - ebb right after "AFTER". */
3624 /* ebb_head[i] - VALID. */
3626 /* Source position: ebb_head[i]
3627 Destination position: ebb_head[i] + 1
3629 RGN_BLOCKS (nr_regions) - 1
3630 Number of elements to copy: (last_position) - (source_position) + 1
3633 memmove (rgn_bb_table
+ pos
+ 1,
3635 ((RGN_BLOCKS (nr_regions
) - 1) - (pos
) + 1)
3636 * sizeof (*rgn_bb_table
));
3638 rgn_bb_table
[pos
] = bb
->index
;
3640 for (; i
<= current_nr_blocks
; i
++)
3643 i
= CONTAINING_RGN (after
->index
);
3644 CONTAINING_RGN (bb
->index
) = i
;
3646 RGN_HAS_REAL_EBB (i
) = 1;
3648 for (++i
; i
<= nr_regions
; i
++)
3653 /* Fix internal data after interblock movement of jump instruction.
3654 For parameter meaning please refer to
3655 sched-int.h: struct sched_info: fix_recovery_cfg. */
3657 rgn_fix_recovery_cfg (int bbi
, int check_bbi
, int check_bb_nexti
)
3659 int old_pos
, new_pos
, i
;
3661 BLOCK_TO_BB (check_bb_nexti
) = BLOCK_TO_BB (bbi
);
3663 for (old_pos
= ebb_head
[BLOCK_TO_BB (check_bbi
) + 1] - 1;
3664 rgn_bb_table
[old_pos
] != check_bb_nexti
;
3667 gcc_assert (old_pos
> ebb_head
[BLOCK_TO_BB (check_bbi
)]);
3669 for (new_pos
= ebb_head
[BLOCK_TO_BB (bbi
) + 1] - 1;
3670 rgn_bb_table
[new_pos
] != bbi
;
3674 gcc_assert (new_pos
> ebb_head
[BLOCK_TO_BB (bbi
)]);
3676 gcc_assert (new_pos
< old_pos
);
3678 memmove (rgn_bb_table
+ new_pos
+ 1,
3679 rgn_bb_table
+ new_pos
,
3680 (old_pos
- new_pos
) * sizeof (*rgn_bb_table
));
3682 rgn_bb_table
[new_pos
] = check_bb_nexti
;
3684 for (i
= BLOCK_TO_BB (bbi
) + 1; i
<= BLOCK_TO_BB (check_bbi
); i
++)
3688 /* Return next block in ebb chain. For parameter meaning please refer to
3689 sched-int.h: struct sched_info: advance_target_bb. */
3691 advance_target_bb (basic_block bb
, rtx_insn
*insn
)
3696 gcc_assert (BLOCK_TO_BB (bb
->index
) == target_bb
3697 && BLOCK_TO_BB (bb
->next_bb
->index
) == target_bb
);
3703 /* Run instruction scheduler. */
3705 rest_of_handle_live_range_shrinkage (void)
3707 #ifdef INSN_SCHEDULING
3710 initialize_live_range_shrinkage ();
3711 saved
= flag_schedule_interblock
;
3712 flag_schedule_interblock
= false;
3714 flag_schedule_interblock
= saved
;
3715 finish_live_range_shrinkage ();
3720 /* Run instruction scheduler. */
3722 rest_of_handle_sched (void)
3724 #ifdef INSN_SCHEDULING
3725 if (flag_selective_scheduling
3726 && ! maybe_skip_selective_scheduling ())
3727 run_selective_scheduling ();
3734 /* Run second scheduling pass after reload. */
3736 rest_of_handle_sched2 (void)
3738 #ifdef INSN_SCHEDULING
3739 if (flag_selective_scheduling2
3740 && ! maybe_skip_selective_scheduling ())
3741 run_selective_scheduling ();
3744 /* Do control and data sched analysis again,
3745 and write some more of the results to dump file. */
3746 if (flag_sched2_use_superblocks
)
3756 rest_of_handle_sched_fusion (void)
3758 #ifdef INSN_SCHEDULING
3759 sched_fusion
= true;
3761 sched_fusion
= false;
3768 const pass_data pass_data_live_range_shrinkage
=
3770 RTL_PASS
, /* type */
3771 "lr_shrinkage", /* name */
3772 OPTGROUP_NONE
, /* optinfo_flags */
3773 TV_LIVE_RANGE_SHRINKAGE
, /* tv_id */
3774 0, /* properties_required */
3775 0, /* properties_provided */
3776 0, /* properties_destroyed */
3777 0, /* todo_flags_start */
3778 TODO_df_finish
, /* todo_flags_finish */
3781 class pass_live_range_shrinkage
: public rtl_opt_pass
3784 pass_live_range_shrinkage(gcc::context
*ctxt
)
3785 : rtl_opt_pass(pass_data_live_range_shrinkage
, ctxt
)
3788 /* opt_pass methods: */
3789 bool gate (function
*) final override
3791 #ifdef INSN_SCHEDULING
3792 return flag_live_range_shrinkage
;
3798 unsigned int execute (function
*) final override
3800 return rest_of_handle_live_range_shrinkage ();
3803 }; // class pass_live_range_shrinkage
3808 make_pass_live_range_shrinkage (gcc::context
*ctxt
)
3810 return new pass_live_range_shrinkage (ctxt
);
3815 const pass_data pass_data_sched
=
3817 RTL_PASS
, /* type */
3818 "sched1", /* name */
3819 OPTGROUP_NONE
, /* optinfo_flags */
3820 TV_SCHED
, /* tv_id */
3821 0, /* properties_required */
3822 0, /* properties_provided */
3823 0, /* properties_destroyed */
3824 0, /* todo_flags_start */
3825 TODO_df_finish
, /* todo_flags_finish */
3828 class pass_sched
: public rtl_opt_pass
3831 pass_sched (gcc::context
*ctxt
)
3832 : rtl_opt_pass (pass_data_sched
, ctxt
)
3835 /* opt_pass methods: */
3836 bool gate (function
*) final override
;
3837 unsigned int execute (function
*) final override
3839 return rest_of_handle_sched ();
3842 }; // class pass_sched
3845 pass_sched::gate (function
*)
3847 #ifdef INSN_SCHEDULING
3848 return optimize
> 0 && flag_schedule_insns
&& dbg_cnt (sched_func
);
3857 make_pass_sched (gcc::context
*ctxt
)
3859 return new pass_sched (ctxt
);
3864 const pass_data pass_data_sched2
=
3866 RTL_PASS
, /* type */
3867 "sched2", /* name */
3868 OPTGROUP_NONE
, /* optinfo_flags */
3869 TV_SCHED2
, /* tv_id */
3870 0, /* properties_required */
3871 0, /* properties_provided */
3872 0, /* properties_destroyed */
3873 0, /* todo_flags_start */
3874 TODO_df_finish
, /* todo_flags_finish */
3877 class pass_sched2
: public rtl_opt_pass
3880 pass_sched2 (gcc::context
*ctxt
)
3881 : rtl_opt_pass (pass_data_sched2
, ctxt
)
3884 /* opt_pass methods: */
3885 bool gate (function
*) final override
;
3886 unsigned int execute (function
*) final override
3888 return rest_of_handle_sched2 ();
3891 }; // class pass_sched2
3894 pass_sched2::gate (function
*)
3896 #ifdef INSN_SCHEDULING
3897 return optimize
> 0 && flag_schedule_insns_after_reload
3898 && !targetm
.delay_sched2
&& dbg_cnt (sched2_func
);
3907 make_pass_sched2 (gcc::context
*ctxt
)
3909 return new pass_sched2 (ctxt
);
3914 const pass_data pass_data_sched_fusion
=
3916 RTL_PASS
, /* type */
3917 "sched_fusion", /* name */
3918 OPTGROUP_NONE
, /* optinfo_flags */
3919 TV_SCHED_FUSION
, /* tv_id */
3920 0, /* properties_required */
3921 0, /* properties_provided */
3922 0, /* properties_destroyed */
3923 0, /* todo_flags_start */
3924 TODO_df_finish
, /* todo_flags_finish */
3927 class pass_sched_fusion
: public rtl_opt_pass
3930 pass_sched_fusion (gcc::context
*ctxt
)
3931 : rtl_opt_pass (pass_data_sched_fusion
, ctxt
)
3934 /* opt_pass methods: */
3935 bool gate (function
*) final override
;
3936 unsigned int execute (function
*) final override
3938 return rest_of_handle_sched_fusion ();
3941 }; // class pass_sched2
3944 pass_sched_fusion::gate (function
*)
3946 #ifdef INSN_SCHEDULING
3947 /* Scheduling fusion relies on peephole2 to do real fusion work,
3948 so only enable it if peephole2 is in effect. */
3949 return (optimize
> 0 && flag_peephole2
3950 && flag_schedule_fusion
&& targetm
.sched
.fusion_priority
!= NULL
);
3959 make_pass_sched_fusion (gcc::context
*ctxt
)
3961 return new pass_sched_fusion (ctxt
);
3965 # pragma GCC diagnostic pop