Add Paolo Bonzini to vector ChangeLog.
[official-gcc.git] / gcc / reload.c
blobc56a499a4e73e204807fd805499b12231530547d
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
29 Before processing the first insn of the function, call `init_reload'.
30 init_reload actually has to be called earlier anyway.
32 To scan an insn, call `find_reloads'. This does two things:
33 1. sets up tables describing which values must be reloaded
34 for this insn, and what kind of hard regs they must be reloaded into;
35 2. optionally record the locations where those values appear in
36 the data, so they can be replaced properly later.
37 This is done only if the second arg to `find_reloads' is nonzero.
39 The third arg to `find_reloads' specifies the number of levels
40 of indirect addressing supported by the machine. If it is zero,
41 indirect addressing is not valid. If it is one, (MEM (REG n))
42 is valid even if (REG n) did not get a hard register; if it is two,
43 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
44 hard register, and similarly for higher values.
46 Then you must choose the hard regs to reload those pseudo regs into,
47 and generate appropriate load insns before this insn and perhaps
48 also store insns after this insn. Set up the array `reload_reg_rtx'
49 to contain the REG rtx's for the registers you used. In some
50 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
51 for certain reloads. Then that tells you which register to use,
52 so you do not need to allocate one. But you still do need to add extra
53 instructions to copy the value into and out of that register.
55 Finally you must call `subst_reloads' to substitute the reload reg rtx's
56 into the locations already recorded.
58 NOTE SIDE EFFECTS:
60 find_reloads can alter the operands of the instruction it is called on.
62 1. Two operands of any sort may be interchanged, if they are in a
63 commutative instruction.
64 This happens only if find_reloads thinks the instruction will compile
65 better that way.
67 2. Pseudo-registers that are equivalent to constants are replaced
68 with those constants if they are not in hard registers.
70 1 happens every time find_reloads is called.
71 2 happens only when REPLACE is 1, which is only when
72 actually doing the reloads, not when just counting them.
74 Using a reload register for several reloads in one insn:
76 When an insn has reloads, it is considered as having three parts:
77 the input reloads, the insn itself after reloading, and the output reloads.
78 Reloads of values used in memory addresses are often needed for only one part.
80 When this is so, reload_when_needed records which part needs the reload.
81 Two reloads for different parts of the insn can share the same reload
82 register.
84 When a reload is used for addresses in multiple parts, or when it is
85 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
86 a register with any other reload. */
88 #define REG_OK_STRICT
90 #include "config.h"
91 #include "system.h"
92 #include "coretypes.h"
93 #include "tm.h"
94 #include "rtl.h"
95 #include "tm_p.h"
96 #include "insn-config.h"
97 #include "expr.h"
98 #include "optabs.h"
99 #include "recog.h"
100 #include "reload.h"
101 #include "regs.h"
102 #include "hard-reg-set.h"
103 #include "flags.h"
104 #include "real.h"
105 #include "output.h"
106 #include "function.h"
107 #include "toplev.h"
108 #include "params.h"
109 #include "target.h"
111 /* True if X is a constant that can be forced into the constant pool. */
112 #define CONST_POOL_OK_P(X) \
113 (CONSTANT_P (X) \
114 && GET_CODE (X) != HIGH \
115 && !targetm.cannot_force_const_mem (X))
117 /* All reloads of the current insn are recorded here. See reload.h for
118 comments. */
119 int n_reloads;
120 struct reload rld[MAX_RELOADS];
122 /* All the "earlyclobber" operands of the current insn
123 are recorded here. */
124 int n_earlyclobbers;
125 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
127 int reload_n_operands;
129 /* Replacing reloads.
131 If `replace_reloads' is nonzero, then as each reload is recorded
132 an entry is made for it in the table `replacements'.
133 Then later `subst_reloads' can look through that table and
134 perform all the replacements needed. */
136 /* Nonzero means record the places to replace. */
137 static int replace_reloads;
139 /* Each replacement is recorded with a structure like this. */
140 struct replacement
142 rtx *where; /* Location to store in */
143 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
144 a SUBREG; 0 otherwise. */
145 int what; /* which reload this is for */
146 enum machine_mode mode; /* mode it must have */
149 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
151 /* Number of replacements currently recorded. */
152 static int n_replacements;
154 /* Used to track what is modified by an operand. */
155 struct decomposition
157 int reg_flag; /* Nonzero if referencing a register. */
158 int safe; /* Nonzero if this can't conflict with anything. */
159 rtx base; /* Base address for MEM. */
160 HOST_WIDE_INT start; /* Starting offset or register number. */
161 HOST_WIDE_INT end; /* Ending offset or register number. */
164 #ifdef SECONDARY_MEMORY_NEEDED
166 /* Save MEMs needed to copy from one class of registers to another. One MEM
167 is used per mode, but normally only one or two modes are ever used.
169 We keep two versions, before and after register elimination. The one
170 after register elimination is record separately for each operand. This
171 is done in case the address is not valid to be sure that we separately
172 reload each. */
174 static rtx secondary_memlocs[NUM_MACHINE_MODES];
175 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
176 static int secondary_memlocs_elim_used = 0;
177 #endif
179 /* The instruction we are doing reloads for;
180 so we can test whether a register dies in it. */
181 static rtx this_insn;
183 /* Nonzero if this instruction is a user-specified asm with operands. */
184 static int this_insn_is_asm;
186 /* If hard_regs_live_known is nonzero,
187 we can tell which hard regs are currently live,
188 at least enough to succeed in choosing dummy reloads. */
189 static int hard_regs_live_known;
191 /* Indexed by hard reg number,
192 element is nonnegative if hard reg has been spilled.
193 This vector is passed to `find_reloads' as an argument
194 and is not changed here. */
195 static short *static_reload_reg_p;
197 /* Set to 1 in subst_reg_equivs if it changes anything. */
198 static int subst_reg_equivs_changed;
200 /* On return from push_reload, holds the reload-number for the OUT
201 operand, which can be different for that from the input operand. */
202 static int output_reloadnum;
204 /* Compare two RTX's. */
205 #define MATCHES(x, y) \
206 (x == y || (x != 0 && (REG_P (x) \
207 ? REG_P (y) && REGNO (x) == REGNO (y) \
208 : rtx_equal_p (x, y) && ! side_effects_p (x))))
210 /* Indicates if two reloads purposes are for similar enough things that we
211 can merge their reloads. */
212 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
213 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
214 || ((when1) == (when2) && (op1) == (op2)) \
215 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
216 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
217 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
218 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
219 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
221 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
222 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
223 ((when1) != (when2) \
224 || ! ((op1) == (op2) \
225 || (when1) == RELOAD_FOR_INPUT \
226 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
227 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
229 /* If we are going to reload an address, compute the reload type to
230 use. */
231 #define ADDR_TYPE(type) \
232 ((type) == RELOAD_FOR_INPUT_ADDRESS \
233 ? RELOAD_FOR_INPADDR_ADDRESS \
234 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
235 ? RELOAD_FOR_OUTADDR_ADDRESS \
236 : (type)))
238 #ifdef HAVE_SECONDARY_RELOADS
239 static int push_secondary_reload (int, rtx, int, int, enum reg_class,
240 enum machine_mode, enum reload_type,
241 enum insn_code *);
242 #endif
243 static enum reg_class find_valid_class (enum machine_mode, int, unsigned int);
244 static int reload_inner_reg_of_subreg (rtx, enum machine_mode, int);
245 static void push_replacement (rtx *, int, enum machine_mode);
246 static void dup_replacements (rtx *, rtx *);
247 static void combine_reloads (void);
248 static int find_reusable_reload (rtx *, rtx, enum reg_class,
249 enum reload_type, int, int);
250 static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
251 enum machine_mode, enum reg_class, int, int);
252 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
253 static struct decomposition decompose (rtx);
254 static int immune_p (rtx, rtx, struct decomposition);
255 static int alternative_allows_memconst (const char *, int);
256 static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
257 int *);
258 static rtx make_memloc (rtx, int);
259 static int maybe_memory_address_p (enum machine_mode, rtx, rtx *);
260 static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
261 int, enum reload_type, int, rtx);
262 static rtx subst_reg_equivs (rtx, rtx);
263 static rtx subst_indexed_address (rtx);
264 static void update_auto_inc_notes (rtx, int, int);
265 static int find_reloads_address_1 (enum machine_mode, rtx, int, rtx *,
266 int, enum reload_type,int, rtx);
267 static void find_reloads_address_part (rtx, rtx *, enum reg_class,
268 enum machine_mode, int,
269 enum reload_type, int);
270 static rtx find_reloads_subreg_address (rtx, int, int, enum reload_type,
271 int, rtx);
272 static void copy_replacements_1 (rtx *, rtx *, int);
273 static int find_inc_amount (rtx, rtx);
274 static int refers_to_mem_for_reload_p (rtx);
275 static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
276 rtx, rtx *);
278 #ifdef HAVE_SECONDARY_RELOADS
280 /* Determine if any secondary reloads are needed for loading (if IN_P is
281 nonzero) or storing (if IN_P is zero) X to or from a reload register of
282 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
283 are needed, push them.
285 Return the reload number of the secondary reload we made, or -1 if
286 we didn't need one. *PICODE is set to the insn_code to use if we do
287 need a secondary reload. */
289 static int
290 push_secondary_reload (int in_p, rtx x, int opnum, int optional,
291 enum reg_class reload_class,
292 enum machine_mode reload_mode, enum reload_type type,
293 enum insn_code *picode)
295 enum reg_class class = NO_REGS;
296 enum machine_mode mode = reload_mode;
297 enum insn_code icode = CODE_FOR_nothing;
298 enum reg_class t_class = NO_REGS;
299 enum machine_mode t_mode = VOIDmode;
300 enum insn_code t_icode = CODE_FOR_nothing;
301 enum reload_type secondary_type;
302 int s_reload, t_reload = -1;
304 if (type == RELOAD_FOR_INPUT_ADDRESS
305 || type == RELOAD_FOR_OUTPUT_ADDRESS
306 || type == RELOAD_FOR_INPADDR_ADDRESS
307 || type == RELOAD_FOR_OUTADDR_ADDRESS)
308 secondary_type = type;
309 else
310 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
312 *picode = CODE_FOR_nothing;
314 /* If X is a paradoxical SUBREG, use the inner value to determine both the
315 mode and object being reloaded. */
316 if (GET_CODE (x) == SUBREG
317 && (GET_MODE_SIZE (GET_MODE (x))
318 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
320 x = SUBREG_REG (x);
321 reload_mode = GET_MODE (x);
324 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
325 is still a pseudo-register by now, it *must* have an equivalent MEM
326 but we don't want to assume that), use that equivalent when seeing if
327 a secondary reload is needed since whether or not a reload is needed
328 might be sensitive to the form of the MEM. */
330 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
331 && reg_equiv_mem[REGNO (x)] != 0)
332 x = reg_equiv_mem[REGNO (x)];
334 #ifdef SECONDARY_INPUT_RELOAD_CLASS
335 if (in_p)
336 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
337 #endif
339 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
340 if (! in_p)
341 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
342 #endif
344 /* If we don't need any secondary registers, done. */
345 if (class == NO_REGS)
346 return -1;
348 /* Get a possible insn to use. If the predicate doesn't accept X, don't
349 use the insn. */
351 icode = (in_p ? reload_in_optab[(int) reload_mode]
352 : reload_out_optab[(int) reload_mode]);
354 if (icode != CODE_FOR_nothing
355 && insn_data[(int) icode].operand[in_p].predicate
356 && (! (insn_data[(int) icode].operand[in_p].predicate) (x, reload_mode)))
357 icode = CODE_FOR_nothing;
359 /* If we will be using an insn, see if it can directly handle the reload
360 register we will be using. If it can, the secondary reload is for a
361 scratch register. If it can't, we will use the secondary reload for
362 an intermediate register and require a tertiary reload for the scratch
363 register. */
365 if (icode != CODE_FOR_nothing)
367 /* If IN_P is nonzero, the reload register will be the output in
368 operand 0. If IN_P is zero, the reload register will be the input
369 in operand 1. Outputs should have an initial "=", which we must
370 skip. */
372 enum reg_class insn_class;
374 if (insn_data[(int) icode].operand[!in_p].constraint[0] == 0)
375 insn_class = ALL_REGS;
376 else
378 const char *insn_constraint
379 = &insn_data[(int) icode].operand[!in_p].constraint[in_p];
380 char insn_letter = *insn_constraint;
381 insn_class
382 = (insn_letter == 'r' ? GENERAL_REGS
383 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) insn_letter,
384 insn_constraint));
386 gcc_assert (insn_class != NO_REGS);
387 gcc_assert (!in_p
388 || insn_data[(int) icode].operand[!in_p].constraint[0]
389 == '=');
392 /* The scratch register's constraint must start with "=&". */
393 gcc_assert (insn_data[(int) icode].operand[2].constraint[0] == '='
394 && insn_data[(int) icode].operand[2].constraint[1] == '&');
396 if (reg_class_subset_p (reload_class, insn_class))
397 mode = insn_data[(int) icode].operand[2].mode;
398 else
400 const char *t_constraint
401 = &insn_data[(int) icode].operand[2].constraint[2];
402 char t_letter = *t_constraint;
403 class = insn_class;
404 t_mode = insn_data[(int) icode].operand[2].mode;
405 t_class = (t_letter == 'r' ? GENERAL_REGS
406 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) t_letter,
407 t_constraint));
408 t_icode = icode;
409 icode = CODE_FOR_nothing;
413 /* This case isn't valid, so fail. Reload is allowed to use the same
414 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
415 in the case of a secondary register, we actually need two different
416 registers for correct code. We fail here to prevent the possibility of
417 silently generating incorrect code later.
419 The convention is that secondary input reloads are valid only if the
420 secondary_class is different from class. If you have such a case, you
421 can not use secondary reloads, you must work around the problem some
422 other way.
424 Allow this when a reload_in/out pattern is being used. I.e. assume
425 that the generated code handles this case. */
427 gcc_assert (!in_p || class != reload_class || icode != CODE_FOR_nothing
428 || t_icode != CODE_FOR_nothing);
430 /* If we need a tertiary reload, see if we have one we can reuse or else
431 make a new one. */
433 if (t_class != NO_REGS)
435 for (t_reload = 0; t_reload < n_reloads; t_reload++)
436 if (rld[t_reload].secondary_p
437 && (reg_class_subset_p (t_class, rld[t_reload].class)
438 || reg_class_subset_p (rld[t_reload].class, t_class))
439 && ((in_p && rld[t_reload].inmode == t_mode)
440 || (! in_p && rld[t_reload].outmode == t_mode))
441 && ((in_p && (rld[t_reload].secondary_in_icode
442 == CODE_FOR_nothing))
443 || (! in_p &&(rld[t_reload].secondary_out_icode
444 == CODE_FOR_nothing)))
445 && (reg_class_size[(int) t_class] == 1 || SMALL_REGISTER_CLASSES)
446 && MERGABLE_RELOADS (secondary_type,
447 rld[t_reload].when_needed,
448 opnum, rld[t_reload].opnum))
450 if (in_p)
451 rld[t_reload].inmode = t_mode;
452 if (! in_p)
453 rld[t_reload].outmode = t_mode;
455 if (reg_class_subset_p (t_class, rld[t_reload].class))
456 rld[t_reload].class = t_class;
458 rld[t_reload].opnum = MIN (rld[t_reload].opnum, opnum);
459 rld[t_reload].optional &= optional;
460 rld[t_reload].secondary_p = 1;
461 if (MERGE_TO_OTHER (secondary_type, rld[t_reload].when_needed,
462 opnum, rld[t_reload].opnum))
463 rld[t_reload].when_needed = RELOAD_OTHER;
466 if (t_reload == n_reloads)
468 /* We need to make a new tertiary reload for this register class. */
469 rld[t_reload].in = rld[t_reload].out = 0;
470 rld[t_reload].class = t_class;
471 rld[t_reload].inmode = in_p ? t_mode : VOIDmode;
472 rld[t_reload].outmode = ! in_p ? t_mode : VOIDmode;
473 rld[t_reload].reg_rtx = 0;
474 rld[t_reload].optional = optional;
475 rld[t_reload].inc = 0;
476 /* Maybe we could combine these, but it seems too tricky. */
477 rld[t_reload].nocombine = 1;
478 rld[t_reload].in_reg = 0;
479 rld[t_reload].out_reg = 0;
480 rld[t_reload].opnum = opnum;
481 rld[t_reload].when_needed = secondary_type;
482 rld[t_reload].secondary_in_reload = -1;
483 rld[t_reload].secondary_out_reload = -1;
484 rld[t_reload].secondary_in_icode = CODE_FOR_nothing;
485 rld[t_reload].secondary_out_icode = CODE_FOR_nothing;
486 rld[t_reload].secondary_p = 1;
488 n_reloads++;
492 /* See if we can reuse an existing secondary reload. */
493 for (s_reload = 0; s_reload < n_reloads; s_reload++)
494 if (rld[s_reload].secondary_p
495 && (reg_class_subset_p (class, rld[s_reload].class)
496 || reg_class_subset_p (rld[s_reload].class, class))
497 && ((in_p && rld[s_reload].inmode == mode)
498 || (! in_p && rld[s_reload].outmode == mode))
499 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
500 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
501 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
502 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
503 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
504 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
505 opnum, rld[s_reload].opnum))
507 if (in_p)
508 rld[s_reload].inmode = mode;
509 if (! in_p)
510 rld[s_reload].outmode = mode;
512 if (reg_class_subset_p (class, rld[s_reload].class))
513 rld[s_reload].class = class;
515 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
516 rld[s_reload].optional &= optional;
517 rld[s_reload].secondary_p = 1;
518 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
519 opnum, rld[s_reload].opnum))
520 rld[s_reload].when_needed = RELOAD_OTHER;
523 if (s_reload == n_reloads)
525 #ifdef SECONDARY_MEMORY_NEEDED
526 /* If we need a memory location to copy between the two reload regs,
527 set it up now. Note that we do the input case before making
528 the reload and the output case after. This is due to the
529 way reloads are output. */
531 if (in_p && icode == CODE_FOR_nothing
532 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
534 get_secondary_mem (x, reload_mode, opnum, type);
536 /* We may have just added new reloads. Make sure we add
537 the new reload at the end. */
538 s_reload = n_reloads;
540 #endif
542 /* We need to make a new secondary reload for this register class. */
543 rld[s_reload].in = rld[s_reload].out = 0;
544 rld[s_reload].class = class;
546 rld[s_reload].inmode = in_p ? mode : VOIDmode;
547 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
548 rld[s_reload].reg_rtx = 0;
549 rld[s_reload].optional = optional;
550 rld[s_reload].inc = 0;
551 /* Maybe we could combine these, but it seems too tricky. */
552 rld[s_reload].nocombine = 1;
553 rld[s_reload].in_reg = 0;
554 rld[s_reload].out_reg = 0;
555 rld[s_reload].opnum = opnum;
556 rld[s_reload].when_needed = secondary_type;
557 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
558 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
559 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
560 rld[s_reload].secondary_out_icode
561 = ! in_p ? t_icode : CODE_FOR_nothing;
562 rld[s_reload].secondary_p = 1;
564 n_reloads++;
566 #ifdef SECONDARY_MEMORY_NEEDED
567 if (! in_p && icode == CODE_FOR_nothing
568 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
569 get_secondary_mem (x, mode, opnum, type);
570 #endif
573 *picode = icode;
574 return s_reload;
576 #endif /* HAVE_SECONDARY_RELOADS */
578 #ifdef SECONDARY_MEMORY_NEEDED
580 /* Return a memory location that will be used to copy X in mode MODE.
581 If we haven't already made a location for this mode in this insn,
582 call find_reloads_address on the location being returned. */
585 get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
586 int opnum, enum reload_type type)
588 rtx loc;
589 int mem_valid;
591 /* By default, if MODE is narrower than a word, widen it to a word.
592 This is required because most machines that require these memory
593 locations do not support short load and stores from all registers
594 (e.g., FP registers). */
596 #ifdef SECONDARY_MEMORY_NEEDED_MODE
597 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
598 #else
599 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
600 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
601 #endif
603 /* If we already have made a MEM for this operand in MODE, return it. */
604 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
605 return secondary_memlocs_elim[(int) mode][opnum];
607 /* If this is the first time we've tried to get a MEM for this mode,
608 allocate a new one. `something_changed' in reload will get set
609 by noticing that the frame size has changed. */
611 if (secondary_memlocs[(int) mode] == 0)
613 #ifdef SECONDARY_MEMORY_NEEDED_RTX
614 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
615 #else
616 secondary_memlocs[(int) mode]
617 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
618 #endif
621 /* Get a version of the address doing any eliminations needed. If that
622 didn't give us a new MEM, make a new one if it isn't valid. */
624 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
625 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
627 if (! mem_valid && loc == secondary_memlocs[(int) mode])
628 loc = copy_rtx (loc);
630 /* The only time the call below will do anything is if the stack
631 offset is too large. In that case IND_LEVELS doesn't matter, so we
632 can just pass a zero. Adjust the type to be the address of the
633 corresponding object. If the address was valid, save the eliminated
634 address. If it wasn't valid, we need to make a reload each time, so
635 don't save it. */
637 if (! mem_valid)
639 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
640 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
641 : RELOAD_OTHER);
643 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
644 opnum, type, 0, 0);
647 secondary_memlocs_elim[(int) mode][opnum] = loc;
648 if (secondary_memlocs_elim_used <= (int)mode)
649 secondary_memlocs_elim_used = (int)mode + 1;
650 return loc;
653 /* Clear any secondary memory locations we've made. */
655 void
656 clear_secondary_mem (void)
658 memset (secondary_memlocs, 0, sizeof secondary_memlocs);
660 #endif /* SECONDARY_MEMORY_NEEDED */
662 /* Find the largest class for which every register number plus N is valid in
663 M1 (if in range) and is cheap to move into REGNO.
664 Abort if no such class exists. */
666 static enum reg_class
667 find_valid_class (enum machine_mode m1 ATTRIBUTE_UNUSED, int n,
668 unsigned int dest_regno ATTRIBUTE_UNUSED)
670 int best_cost = -1;
671 int class;
672 int regno;
673 enum reg_class best_class = NO_REGS;
674 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
675 unsigned int best_size = 0;
676 int cost;
678 for (class = 1; class < N_REG_CLASSES; class++)
680 int bad = 0;
681 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && ! bad; regno++)
682 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
683 && TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
684 && ! HARD_REGNO_MODE_OK (regno + n, m1))
685 bad = 1;
687 if (bad)
688 continue;
689 cost = REGISTER_MOVE_COST (m1, class, dest_class);
691 if ((reg_class_size[class] > best_size
692 && (best_cost < 0 || best_cost >= cost))
693 || best_cost > cost)
695 best_class = class;
696 best_size = reg_class_size[class];
697 best_cost = REGISTER_MOVE_COST (m1, class, dest_class);
701 gcc_assert (best_size != 0);
703 return best_class;
706 /* Return the number of a previously made reload that can be combined with
707 a new one, or n_reloads if none of the existing reloads can be used.
708 OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
709 push_reload, they determine the kind of the new reload that we try to
710 combine. P_IN points to the corresponding value of IN, which can be
711 modified by this function.
712 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
714 static int
715 find_reusable_reload (rtx *p_in, rtx out, enum reg_class class,
716 enum reload_type type, int opnum, int dont_share)
718 rtx in = *p_in;
719 int i;
720 /* We can't merge two reloads if the output of either one is
721 earlyclobbered. */
723 if (earlyclobber_operand_p (out))
724 return n_reloads;
726 /* We can use an existing reload if the class is right
727 and at least one of IN and OUT is a match
728 and the other is at worst neutral.
729 (A zero compared against anything is neutral.)
731 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
732 for the same thing since that can cause us to need more reload registers
733 than we otherwise would. */
735 for (i = 0; i < n_reloads; i++)
736 if ((reg_class_subset_p (class, rld[i].class)
737 || reg_class_subset_p (rld[i].class, class))
738 /* If the existing reload has a register, it must fit our class. */
739 && (rld[i].reg_rtx == 0
740 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
741 true_regnum (rld[i].reg_rtx)))
742 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
743 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
744 || (out != 0 && MATCHES (rld[i].out, out)
745 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
746 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
747 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
748 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
749 return i;
751 /* Reloading a plain reg for input can match a reload to postincrement
752 that reg, since the postincrement's value is the right value.
753 Likewise, it can match a preincrement reload, since we regard
754 the preincrementation as happening before any ref in this insn
755 to that register. */
756 for (i = 0; i < n_reloads; i++)
757 if ((reg_class_subset_p (class, rld[i].class)
758 || reg_class_subset_p (rld[i].class, class))
759 /* If the existing reload has a register, it must fit our
760 class. */
761 && (rld[i].reg_rtx == 0
762 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
763 true_regnum (rld[i].reg_rtx)))
764 && out == 0 && rld[i].out == 0 && rld[i].in != 0
765 && ((REG_P (in)
766 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
767 && MATCHES (XEXP (rld[i].in, 0), in))
768 || (REG_P (rld[i].in)
769 && GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
770 && MATCHES (XEXP (in, 0), rld[i].in)))
771 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
772 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
773 && MERGABLE_RELOADS (type, rld[i].when_needed,
774 opnum, rld[i].opnum))
776 /* Make sure reload_in ultimately has the increment,
777 not the plain register. */
778 if (REG_P (in))
779 *p_in = rld[i].in;
780 return i;
782 return n_reloads;
785 /* Return nonzero if X is a SUBREG which will require reloading of its
786 SUBREG_REG expression. */
788 static int
789 reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, int output)
791 rtx inner;
793 /* Only SUBREGs are problematical. */
794 if (GET_CODE (x) != SUBREG)
795 return 0;
797 inner = SUBREG_REG (x);
799 /* If INNER is a constant or PLUS, then INNER must be reloaded. */
800 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
801 return 1;
803 /* If INNER is not a hard register, then INNER will not need to
804 be reloaded. */
805 if (!REG_P (inner)
806 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
807 return 0;
809 /* If INNER is not ok for MODE, then INNER will need reloading. */
810 if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
811 return 1;
813 /* If the outer part is a word or smaller, INNER larger than a
814 word and the number of regs for INNER is not the same as the
815 number of words in INNER, then INNER will need reloading. */
816 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
817 && output
818 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
819 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
820 != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
823 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
824 requiring an extra reload register. The caller has already found that
825 IN contains some reference to REGNO, so check that we can produce the
826 new value in a single step. E.g. if we have
827 (set (reg r13) (plus (reg r13) (const int 1))), and there is an
828 instruction that adds one to a register, this should succeed.
829 However, if we have something like
830 (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
831 needs to be loaded into a register first, we need a separate reload
832 register.
833 Such PLUS reloads are generated by find_reload_address_part.
834 The out-of-range PLUS expressions are usually introduced in the instruction
835 patterns by register elimination and substituting pseudos without a home
836 by their function-invariant equivalences. */
837 static int
838 can_reload_into (rtx in, int regno, enum machine_mode mode)
840 rtx dst, test_insn;
841 int r = 0;
842 struct recog_data save_recog_data;
844 /* For matching constraints, we often get notional input reloads where
845 we want to use the original register as the reload register. I.e.
846 technically this is a non-optional input-output reload, but IN is
847 already a valid register, and has been chosen as the reload register.
848 Speed this up, since it trivially works. */
849 if (REG_P (in))
850 return 1;
852 /* To test MEMs properly, we'd have to take into account all the reloads
853 that are already scheduled, which can become quite complicated.
854 And since we've already handled address reloads for this MEM, it
855 should always succeed anyway. */
856 if (MEM_P (in))
857 return 1;
859 /* If we can make a simple SET insn that does the job, everything should
860 be fine. */
861 dst = gen_rtx_REG (mode, regno);
862 test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
863 save_recog_data = recog_data;
864 if (recog_memoized (test_insn) >= 0)
866 extract_insn (test_insn);
867 r = constrain_operands (1);
869 recog_data = save_recog_data;
870 return r;
873 /* Record one reload that needs to be performed.
874 IN is an rtx saying where the data are to be found before this instruction.
875 OUT says where they must be stored after the instruction.
876 (IN is zero for data not read, and OUT is zero for data not written.)
877 INLOC and OUTLOC point to the places in the instructions where
878 IN and OUT were found.
879 If IN and OUT are both nonzero, it means the same register must be used
880 to reload both IN and OUT.
882 CLASS is a register class required for the reloaded data.
883 INMODE is the machine mode that the instruction requires
884 for the reg that replaces IN and OUTMODE is likewise for OUT.
886 If IN is zero, then OUT's location and mode should be passed as
887 INLOC and INMODE.
889 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
891 OPTIONAL nonzero means this reload does not need to be performed:
892 it can be discarded if that is more convenient.
894 OPNUM and TYPE say what the purpose of this reload is.
896 The return value is the reload-number for this reload.
898 If both IN and OUT are nonzero, in some rare cases we might
899 want to make two separate reloads. (Actually we never do this now.)
900 Therefore, the reload-number for OUT is stored in
901 output_reloadnum when we return; the return value applies to IN.
902 Usually (presently always), when IN and OUT are nonzero,
903 the two reload-numbers are equal, but the caller should be careful to
904 distinguish them. */
907 push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
908 enum reg_class class, enum machine_mode inmode,
909 enum machine_mode outmode, int strict_low, int optional,
910 int opnum, enum reload_type type)
912 int i;
913 int dont_share = 0;
914 int dont_remove_subreg = 0;
915 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
916 int secondary_in_reload = -1, secondary_out_reload = -1;
917 enum insn_code secondary_in_icode = CODE_FOR_nothing;
918 enum insn_code secondary_out_icode = CODE_FOR_nothing;
920 /* INMODE and/or OUTMODE could be VOIDmode if no mode
921 has been specified for the operand. In that case,
922 use the operand's mode as the mode to reload. */
923 if (inmode == VOIDmode && in != 0)
924 inmode = GET_MODE (in);
925 if (outmode == VOIDmode && out != 0)
926 outmode = GET_MODE (out);
928 /* If IN is a pseudo register everywhere-equivalent to a constant, and
929 it is not in a hard register, reload straight from the constant,
930 since we want to get rid of such pseudo registers.
931 Often this is done earlier, but not always in find_reloads_address. */
932 if (in != 0 && REG_P (in))
934 int regno = REGNO (in);
936 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
937 && reg_equiv_constant[regno] != 0)
938 in = reg_equiv_constant[regno];
941 /* Likewise for OUT. Of course, OUT will never be equivalent to
942 an actual constant, but it might be equivalent to a memory location
943 (in the case of a parameter). */
944 if (out != 0 && REG_P (out))
946 int regno = REGNO (out);
948 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
949 && reg_equiv_constant[regno] != 0)
950 out = reg_equiv_constant[regno];
953 /* If we have a read-write operand with an address side-effect,
954 change either IN or OUT so the side-effect happens only once. */
955 if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
956 switch (GET_CODE (XEXP (in, 0)))
958 case POST_INC: case POST_DEC: case POST_MODIFY:
959 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
960 break;
962 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
963 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
964 break;
966 default:
967 break;
970 /* If we are reloading a (SUBREG constant ...), really reload just the
971 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
972 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
973 a pseudo and hence will become a MEM) with M1 wider than M2 and the
974 register is a pseudo, also reload the inside expression.
975 For machines that extend byte loads, do this for any SUBREG of a pseudo
976 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
977 M2 is an integral mode that gets extended when loaded.
978 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
979 either M1 is not valid for R or M2 is wider than a word but we only
980 need one word to store an M2-sized quantity in R.
981 (However, if OUT is nonzero, we need to reload the reg *and*
982 the subreg, so do nothing here, and let following statement handle it.)
984 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
985 we can't handle it here because CONST_INT does not indicate a mode.
987 Similarly, we must reload the inside expression if we have a
988 STRICT_LOW_PART (presumably, in == out in the cas).
990 Also reload the inner expression if it does not require a secondary
991 reload but the SUBREG does.
993 Finally, reload the inner expression if it is a register that is in
994 the class whose registers cannot be referenced in a different size
995 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
996 cannot reload just the inside since we might end up with the wrong
997 register class. But if it is inside a STRICT_LOW_PART, we have
998 no choice, so we hope we do get the right register class there. */
1000 if (in != 0 && GET_CODE (in) == SUBREG
1001 && (subreg_lowpart_p (in) || strict_low)
1002 #ifdef CANNOT_CHANGE_MODE_CLASS
1003 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, class)
1004 #endif
1005 && (CONSTANT_P (SUBREG_REG (in))
1006 || GET_CODE (SUBREG_REG (in)) == PLUS
1007 || strict_low
1008 || (((REG_P (SUBREG_REG (in))
1009 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
1010 || MEM_P (SUBREG_REG (in)))
1011 && ((GET_MODE_SIZE (inmode)
1012 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1013 #ifdef LOAD_EXTEND_OP
1014 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1015 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1016 <= UNITS_PER_WORD)
1017 && (GET_MODE_SIZE (inmode)
1018 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1019 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
1020 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != UNKNOWN)
1021 #endif
1022 #ifdef WORD_REGISTER_OPERATIONS
1023 || ((GET_MODE_SIZE (inmode)
1024 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1025 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1026 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1027 / UNITS_PER_WORD)))
1028 #endif
1030 || (REG_P (SUBREG_REG (in))
1031 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1032 /* The case where out is nonzero
1033 is handled differently in the following statement. */
1034 && (out == 0 || subreg_lowpart_p (in))
1035 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1036 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1037 > UNITS_PER_WORD)
1038 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1039 / UNITS_PER_WORD)
1040 != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
1041 [GET_MODE (SUBREG_REG (in))]))
1042 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1043 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1044 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
1045 && (SECONDARY_INPUT_RELOAD_CLASS (class,
1046 GET_MODE (SUBREG_REG (in)),
1047 SUBREG_REG (in))
1048 == NO_REGS))
1049 #endif
1050 #ifdef CANNOT_CHANGE_MODE_CLASS
1051 || (REG_P (SUBREG_REG (in))
1052 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1053 && REG_CANNOT_CHANGE_MODE_P
1054 (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1055 #endif
1058 in_subreg_loc = inloc;
1059 inloc = &SUBREG_REG (in);
1060 in = *inloc;
1061 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1062 if (MEM_P (in))
1063 /* This is supposed to happen only for paradoxical subregs made by
1064 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1065 gcc_assert (GET_MODE_SIZE (GET_MODE (in)) <= GET_MODE_SIZE (inmode));
1066 #endif
1067 inmode = GET_MODE (in);
1070 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1071 either M1 is not valid for R or M2 is wider than a word but we only
1072 need one word to store an M2-sized quantity in R.
1074 However, we must reload the inner reg *as well as* the subreg in
1075 that case. */
1077 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1078 code above. This can happen if SUBREG_BYTE != 0. */
1080 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, 0))
1082 enum reg_class in_class = class;
1084 if (REG_P (SUBREG_REG (in)))
1085 in_class
1086 = find_valid_class (inmode,
1087 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1088 GET_MODE (SUBREG_REG (in)),
1089 SUBREG_BYTE (in),
1090 GET_MODE (in)),
1091 REGNO (SUBREG_REG (in)));
1093 /* This relies on the fact that emit_reload_insns outputs the
1094 instructions for input reloads of type RELOAD_OTHER in the same
1095 order as the reloads. Thus if the outer reload is also of type
1096 RELOAD_OTHER, we are guaranteed that this inner reload will be
1097 output before the outer reload. */
1098 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1099 in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1100 dont_remove_subreg = 1;
1103 /* Similarly for paradoxical and problematical SUBREGs on the output.
1104 Note that there is no reason we need worry about the previous value
1105 of SUBREG_REG (out); even if wider than out,
1106 storing in a subreg is entitled to clobber it all
1107 (except in the case of STRICT_LOW_PART,
1108 and in that case the constraint should label it input-output.) */
1109 if (out != 0 && GET_CODE (out) == SUBREG
1110 && (subreg_lowpart_p (out) || strict_low)
1111 #ifdef CANNOT_CHANGE_MODE_CLASS
1112 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, class)
1113 #endif
1114 && (CONSTANT_P (SUBREG_REG (out))
1115 || strict_low
1116 || (((REG_P (SUBREG_REG (out))
1117 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1118 || MEM_P (SUBREG_REG (out)))
1119 && ((GET_MODE_SIZE (outmode)
1120 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1121 #ifdef WORD_REGISTER_OPERATIONS
1122 || ((GET_MODE_SIZE (outmode)
1123 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1124 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1125 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1126 / UNITS_PER_WORD)))
1127 #endif
1129 || (REG_P (SUBREG_REG (out))
1130 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1131 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1132 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1133 > UNITS_PER_WORD)
1134 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1135 / UNITS_PER_WORD)
1136 != (int) hard_regno_nregs[REGNO (SUBREG_REG (out))]
1137 [GET_MODE (SUBREG_REG (out))]))
1138 || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1139 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1140 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
1141 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1142 GET_MODE (SUBREG_REG (out)),
1143 SUBREG_REG (out))
1144 == NO_REGS))
1145 #endif
1146 #ifdef CANNOT_CHANGE_MODE_CLASS
1147 || (REG_P (SUBREG_REG (out))
1148 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1149 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1150 GET_MODE (SUBREG_REG (out)),
1151 outmode))
1152 #endif
1155 out_subreg_loc = outloc;
1156 outloc = &SUBREG_REG (out);
1157 out = *outloc;
1158 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1159 gcc_assert (!MEM_P (out)
1160 || GET_MODE_SIZE (GET_MODE (out))
1161 <= GET_MODE_SIZE (outmode));
1162 #endif
1163 outmode = GET_MODE (out);
1166 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1167 either M1 is not valid for R or M2 is wider than a word but we only
1168 need one word to store an M2-sized quantity in R.
1170 However, we must reload the inner reg *as well as* the subreg in
1171 that case. In this case, the inner reg is an in-out reload. */
1173 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, 1))
1175 /* This relies on the fact that emit_reload_insns outputs the
1176 instructions for output reloads of type RELOAD_OTHER in reverse
1177 order of the reloads. Thus if the outer reload is also of type
1178 RELOAD_OTHER, we are guaranteed that this inner reload will be
1179 output after the outer reload. */
1180 dont_remove_subreg = 1;
1181 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1182 &SUBREG_REG (out),
1183 find_valid_class (outmode,
1184 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1185 GET_MODE (SUBREG_REG (out)),
1186 SUBREG_BYTE (out),
1187 GET_MODE (out)),
1188 REGNO (SUBREG_REG (out))),
1189 VOIDmode, VOIDmode, 0, 0,
1190 opnum, RELOAD_OTHER);
1193 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1194 if (in != 0 && out != 0 && MEM_P (out)
1195 && (REG_P (in) || MEM_P (in))
1196 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1197 dont_share = 1;
1199 /* If IN is a SUBREG of a hard register, make a new REG. This
1200 simplifies some of the cases below. */
1202 if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
1203 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1204 && ! dont_remove_subreg)
1205 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1207 /* Similarly for OUT. */
1208 if (out != 0 && GET_CODE (out) == SUBREG
1209 && REG_P (SUBREG_REG (out))
1210 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1211 && ! dont_remove_subreg)
1212 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1214 /* Narrow down the class of register wanted if that is
1215 desirable on this machine for efficiency. */
1216 if (in != 0)
1217 class = PREFERRED_RELOAD_CLASS (in, class);
1219 /* Output reloads may need analogous treatment, different in detail. */
1220 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1221 if (out != 0)
1222 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1223 #endif
1225 /* Make sure we use a class that can handle the actual pseudo
1226 inside any subreg. For example, on the 386, QImode regs
1227 can appear within SImode subregs. Although GENERAL_REGS
1228 can handle SImode, QImode needs a smaller class. */
1229 #ifdef LIMIT_RELOAD_CLASS
1230 if (in_subreg_loc)
1231 class = LIMIT_RELOAD_CLASS (inmode, class);
1232 else if (in != 0 && GET_CODE (in) == SUBREG)
1233 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1235 if (out_subreg_loc)
1236 class = LIMIT_RELOAD_CLASS (outmode, class);
1237 if (out != 0 && GET_CODE (out) == SUBREG)
1238 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1239 #endif
1241 /* Verify that this class is at least possible for the mode that
1242 is specified. */
1243 if (this_insn_is_asm)
1245 enum machine_mode mode;
1246 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1247 mode = inmode;
1248 else
1249 mode = outmode;
1250 if (mode == VOIDmode)
1252 error_for_asm (this_insn, "cannot reload integer constant "
1253 "operand in %<asm%>");
1254 mode = word_mode;
1255 if (in != 0)
1256 inmode = word_mode;
1257 if (out != 0)
1258 outmode = word_mode;
1260 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1261 if (HARD_REGNO_MODE_OK (i, mode)
1262 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1264 int nregs = hard_regno_nregs[i][mode];
1266 int j;
1267 for (j = 1; j < nregs; j++)
1268 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1269 break;
1270 if (j == nregs)
1271 break;
1273 if (i == FIRST_PSEUDO_REGISTER)
1275 error_for_asm (this_insn, "impossible register constraint "
1276 "in %<asm%>");
1277 class = ALL_REGS;
1281 /* Optional output reloads are always OK even if we have no register class,
1282 since the function of these reloads is only to have spill_reg_store etc.
1283 set, so that the storing insn can be deleted later. */
1284 gcc_assert (class != NO_REGS
1285 || (optional != 0 && type == RELOAD_FOR_OUTPUT));
1287 i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
1289 if (i == n_reloads)
1291 /* See if we need a secondary reload register to move between CLASS
1292 and IN or CLASS and OUT. Get the icode and push any required reloads
1293 needed for each of them if so. */
1295 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1296 if (in != 0)
1297 secondary_in_reload
1298 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1299 &secondary_in_icode);
1300 #endif
1302 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1303 if (out != 0 && GET_CODE (out) != SCRATCH)
1304 secondary_out_reload
1305 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1306 type, &secondary_out_icode);
1307 #endif
1309 /* We found no existing reload suitable for re-use.
1310 So add an additional reload. */
1312 #ifdef SECONDARY_MEMORY_NEEDED
1313 /* If a memory location is needed for the copy, make one. */
1314 if (in != 0 && (REG_P (in) || GET_CODE (in) == SUBREG)
1315 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
1316 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
1317 class, inmode))
1318 get_secondary_mem (in, inmode, opnum, type);
1319 #endif
1321 i = n_reloads;
1322 rld[i].in = in;
1323 rld[i].out = out;
1324 rld[i].class = class;
1325 rld[i].inmode = inmode;
1326 rld[i].outmode = outmode;
1327 rld[i].reg_rtx = 0;
1328 rld[i].optional = optional;
1329 rld[i].inc = 0;
1330 rld[i].nocombine = 0;
1331 rld[i].in_reg = inloc ? *inloc : 0;
1332 rld[i].out_reg = outloc ? *outloc : 0;
1333 rld[i].opnum = opnum;
1334 rld[i].when_needed = type;
1335 rld[i].secondary_in_reload = secondary_in_reload;
1336 rld[i].secondary_out_reload = secondary_out_reload;
1337 rld[i].secondary_in_icode = secondary_in_icode;
1338 rld[i].secondary_out_icode = secondary_out_icode;
1339 rld[i].secondary_p = 0;
1341 n_reloads++;
1343 #ifdef SECONDARY_MEMORY_NEEDED
1344 if (out != 0 && (REG_P (out) || GET_CODE (out) == SUBREG)
1345 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1346 && SECONDARY_MEMORY_NEEDED (class,
1347 REGNO_REG_CLASS (reg_or_subregno (out)),
1348 outmode))
1349 get_secondary_mem (out, outmode, opnum, type);
1350 #endif
1352 else
1354 /* We are reusing an existing reload,
1355 but we may have additional information for it.
1356 For example, we may now have both IN and OUT
1357 while the old one may have just one of them. */
1359 /* The modes can be different. If they are, we want to reload in
1360 the larger mode, so that the value is valid for both modes. */
1361 if (inmode != VOIDmode
1362 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1363 rld[i].inmode = inmode;
1364 if (outmode != VOIDmode
1365 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1366 rld[i].outmode = outmode;
1367 if (in != 0)
1369 rtx in_reg = inloc ? *inloc : 0;
1370 /* If we merge reloads for two distinct rtl expressions that
1371 are identical in content, there might be duplicate address
1372 reloads. Remove the extra set now, so that if we later find
1373 that we can inherit this reload, we can get rid of the
1374 address reloads altogether.
1376 Do not do this if both reloads are optional since the result
1377 would be an optional reload which could potentially leave
1378 unresolved address replacements.
1380 It is not sufficient to call transfer_replacements since
1381 choose_reload_regs will remove the replacements for address
1382 reloads of inherited reloads which results in the same
1383 problem. */
1384 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1385 && ! (rld[i].optional && optional))
1387 /* We must keep the address reload with the lower operand
1388 number alive. */
1389 if (opnum > rld[i].opnum)
1391 remove_address_replacements (in);
1392 in = rld[i].in;
1393 in_reg = rld[i].in_reg;
1395 else
1396 remove_address_replacements (rld[i].in);
1398 rld[i].in = in;
1399 rld[i].in_reg = in_reg;
1401 if (out != 0)
1403 rld[i].out = out;
1404 rld[i].out_reg = outloc ? *outloc : 0;
1406 if (reg_class_subset_p (class, rld[i].class))
1407 rld[i].class = class;
1408 rld[i].optional &= optional;
1409 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1410 opnum, rld[i].opnum))
1411 rld[i].when_needed = RELOAD_OTHER;
1412 rld[i].opnum = MIN (rld[i].opnum, opnum);
1415 /* If the ostensible rtx being reloaded differs from the rtx found
1416 in the location to substitute, this reload is not safe to combine
1417 because we cannot reliably tell whether it appears in the insn. */
1419 if (in != 0 && in != *inloc)
1420 rld[i].nocombine = 1;
1422 #if 0
1423 /* This was replaced by changes in find_reloads_address_1 and the new
1424 function inc_for_reload, which go with a new meaning of reload_inc. */
1426 /* If this is an IN/OUT reload in an insn that sets the CC,
1427 it must be for an autoincrement. It doesn't work to store
1428 the incremented value after the insn because that would clobber the CC.
1429 So we must do the increment of the value reloaded from,
1430 increment it, store it back, then decrement again. */
1431 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1433 out = 0;
1434 rld[i].out = 0;
1435 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1436 /* If we did not find a nonzero amount-to-increment-by,
1437 that contradicts the belief that IN is being incremented
1438 in an address in this insn. */
1439 gcc_assert (rld[i].inc != 0);
1441 #endif
1443 /* If we will replace IN and OUT with the reload-reg,
1444 record where they are located so that substitution need
1445 not do a tree walk. */
1447 if (replace_reloads)
1449 if (inloc != 0)
1451 struct replacement *r = &replacements[n_replacements++];
1452 r->what = i;
1453 r->subreg_loc = in_subreg_loc;
1454 r->where = inloc;
1455 r->mode = inmode;
1457 if (outloc != 0 && outloc != inloc)
1459 struct replacement *r = &replacements[n_replacements++];
1460 r->what = i;
1461 r->where = outloc;
1462 r->subreg_loc = out_subreg_loc;
1463 r->mode = outmode;
1467 /* If this reload is just being introduced and it has both
1468 an incoming quantity and an outgoing quantity that are
1469 supposed to be made to match, see if either one of the two
1470 can serve as the place to reload into.
1472 If one of them is acceptable, set rld[i].reg_rtx
1473 to that one. */
1475 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1477 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1478 inmode, outmode,
1479 rld[i].class, i,
1480 earlyclobber_operand_p (out));
1482 /* If the outgoing register already contains the same value
1483 as the incoming one, we can dispense with loading it.
1484 The easiest way to tell the caller that is to give a phony
1485 value for the incoming operand (same as outgoing one). */
1486 if (rld[i].reg_rtx == out
1487 && (REG_P (in) || CONSTANT_P (in))
1488 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1489 static_reload_reg_p, i, inmode))
1490 rld[i].in = out;
1493 /* If this is an input reload and the operand contains a register that
1494 dies in this insn and is used nowhere else, see if it is the right class
1495 to be used for this reload. Use it if so. (This occurs most commonly
1496 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1497 this if it is also an output reload that mentions the register unless
1498 the output is a SUBREG that clobbers an entire register.
1500 Note that the operand might be one of the spill regs, if it is a
1501 pseudo reg and we are in a block where spilling has not taken place.
1502 But if there is no spilling in this block, that is OK.
1503 An explicitly used hard reg cannot be a spill reg. */
1505 if (rld[i].reg_rtx == 0 && in != 0)
1507 rtx note;
1508 int regno;
1509 enum machine_mode rel_mode = inmode;
1511 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1512 rel_mode = outmode;
1514 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1515 if (REG_NOTE_KIND (note) == REG_DEAD
1516 && REG_P (XEXP (note, 0))
1517 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1518 && reg_mentioned_p (XEXP (note, 0), in)
1519 && ! refers_to_regno_for_reload_p (regno,
1520 (regno
1521 + hard_regno_nregs[regno]
1522 [rel_mode]),
1523 PATTERN (this_insn), inloc)
1524 /* If this is also an output reload, IN cannot be used as
1525 the reload register if it is set in this insn unless IN
1526 is also OUT. */
1527 && (out == 0 || in == out
1528 || ! hard_reg_set_here_p (regno,
1529 (regno
1530 + hard_regno_nregs[regno]
1531 [rel_mode]),
1532 PATTERN (this_insn)))
1533 /* ??? Why is this code so different from the previous?
1534 Is there any simple coherent way to describe the two together?
1535 What's going on here. */
1536 && (in != out
1537 || (GET_CODE (in) == SUBREG
1538 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1539 / UNITS_PER_WORD)
1540 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1541 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1542 /* Make sure the operand fits in the reg that dies. */
1543 && (GET_MODE_SIZE (rel_mode)
1544 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1545 && HARD_REGNO_MODE_OK (regno, inmode)
1546 && HARD_REGNO_MODE_OK (regno, outmode))
1548 unsigned int offs;
1549 unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
1550 hard_regno_nregs[regno][outmode]);
1552 for (offs = 0; offs < nregs; offs++)
1553 if (fixed_regs[regno + offs]
1554 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1555 regno + offs))
1556 break;
1558 if (offs == nregs
1559 && (! (refers_to_regno_for_reload_p
1560 (regno, (regno + hard_regno_nregs[regno][inmode]),
1561 in, (rtx *)0))
1562 || can_reload_into (in, regno, inmode)))
1564 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1565 break;
1570 if (out)
1571 output_reloadnum = i;
1573 return i;
1576 /* Record an additional place we must replace a value
1577 for which we have already recorded a reload.
1578 RELOADNUM is the value returned by push_reload
1579 when the reload was recorded.
1580 This is used in insn patterns that use match_dup. */
1582 static void
1583 push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
1585 if (replace_reloads)
1587 struct replacement *r = &replacements[n_replacements++];
1588 r->what = reloadnum;
1589 r->where = loc;
1590 r->subreg_loc = 0;
1591 r->mode = mode;
1595 /* Duplicate any replacement we have recorded to apply at
1596 location ORIG_LOC to also be performed at DUP_LOC.
1597 This is used in insn patterns that use match_dup. */
1599 static void
1600 dup_replacements (rtx *dup_loc, rtx *orig_loc)
1602 int i, n = n_replacements;
1604 for (i = 0; i < n; i++)
1606 struct replacement *r = &replacements[i];
1607 if (r->where == orig_loc)
1608 push_replacement (dup_loc, r->what, r->mode);
1612 /* Transfer all replacements that used to be in reload FROM to be in
1613 reload TO. */
1615 void
1616 transfer_replacements (int to, int from)
1618 int i;
1620 for (i = 0; i < n_replacements; i++)
1621 if (replacements[i].what == from)
1622 replacements[i].what = to;
1625 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1626 or a subpart of it. If we have any replacements registered for IN_RTX,
1627 cancel the reloads that were supposed to load them.
1628 Return nonzero if we canceled any reloads. */
1630 remove_address_replacements (rtx in_rtx)
1632 int i, j;
1633 char reload_flags[MAX_RELOADS];
1634 int something_changed = 0;
1636 memset (reload_flags, 0, sizeof reload_flags);
1637 for (i = 0, j = 0; i < n_replacements; i++)
1639 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1640 reload_flags[replacements[i].what] |= 1;
1641 else
1643 replacements[j++] = replacements[i];
1644 reload_flags[replacements[i].what] |= 2;
1647 /* Note that the following store must be done before the recursive calls. */
1648 n_replacements = j;
1650 for (i = n_reloads - 1; i >= 0; i--)
1652 if (reload_flags[i] == 1)
1654 deallocate_reload_reg (i);
1655 remove_address_replacements (rld[i].in);
1656 rld[i].in = 0;
1657 something_changed = 1;
1660 return something_changed;
1663 /* If there is only one output reload, and it is not for an earlyclobber
1664 operand, try to combine it with a (logically unrelated) input reload
1665 to reduce the number of reload registers needed.
1667 This is safe if the input reload does not appear in
1668 the value being output-reloaded, because this implies
1669 it is not needed any more once the original insn completes.
1671 If that doesn't work, see we can use any of the registers that
1672 die in this insn as a reload register. We can if it is of the right
1673 class and does not appear in the value being output-reloaded. */
1675 static void
1676 combine_reloads (void)
1678 int i;
1679 int output_reload = -1;
1680 int secondary_out = -1;
1681 rtx note;
1683 /* Find the output reload; return unless there is exactly one
1684 and that one is mandatory. */
1686 for (i = 0; i < n_reloads; i++)
1687 if (rld[i].out != 0)
1689 if (output_reload >= 0)
1690 return;
1691 output_reload = i;
1694 if (output_reload < 0 || rld[output_reload].optional)
1695 return;
1697 /* An input-output reload isn't combinable. */
1699 if (rld[output_reload].in != 0)
1700 return;
1702 /* If this reload is for an earlyclobber operand, we can't do anything. */
1703 if (earlyclobber_operand_p (rld[output_reload].out))
1704 return;
1706 /* If there is a reload for part of the address of this operand, we would
1707 need to chnage it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1708 its life to the point where doing this combine would not lower the
1709 number of spill registers needed. */
1710 for (i = 0; i < n_reloads; i++)
1711 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1712 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1713 && rld[i].opnum == rld[output_reload].opnum)
1714 return;
1716 /* Check each input reload; can we combine it? */
1718 for (i = 0; i < n_reloads; i++)
1719 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1720 /* Life span of this reload must not extend past main insn. */
1721 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1722 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1723 && rld[i].when_needed != RELOAD_OTHER
1724 && (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
1725 == CLASS_MAX_NREGS (rld[output_reload].class,
1726 rld[output_reload].outmode))
1727 && rld[i].inc == 0
1728 && rld[i].reg_rtx == 0
1729 #ifdef SECONDARY_MEMORY_NEEDED
1730 /* Don't combine two reloads with different secondary
1731 memory locations. */
1732 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1733 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1734 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1735 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1736 #endif
1737 && (SMALL_REGISTER_CLASSES
1738 ? (rld[i].class == rld[output_reload].class)
1739 : (reg_class_subset_p (rld[i].class,
1740 rld[output_reload].class)
1741 || reg_class_subset_p (rld[output_reload].class,
1742 rld[i].class)))
1743 && (MATCHES (rld[i].in, rld[output_reload].out)
1744 /* Args reversed because the first arg seems to be
1745 the one that we imagine being modified
1746 while the second is the one that might be affected. */
1747 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1748 rld[i].in)
1749 /* However, if the input is a register that appears inside
1750 the output, then we also can't share.
1751 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1752 If the same reload reg is used for both reg 69 and the
1753 result to be stored in memory, then that result
1754 will clobber the address of the memory ref. */
1755 && ! (REG_P (rld[i].in)
1756 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1757 rld[output_reload].out))))
1758 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1759 rld[i].when_needed != RELOAD_FOR_INPUT)
1760 && (reg_class_size[(int) rld[i].class]
1761 || SMALL_REGISTER_CLASSES)
1762 /* We will allow making things slightly worse by combining an
1763 input and an output, but no worse than that. */
1764 && (rld[i].when_needed == RELOAD_FOR_INPUT
1765 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1767 int j;
1769 /* We have found a reload to combine with! */
1770 rld[i].out = rld[output_reload].out;
1771 rld[i].out_reg = rld[output_reload].out_reg;
1772 rld[i].outmode = rld[output_reload].outmode;
1773 /* Mark the old output reload as inoperative. */
1774 rld[output_reload].out = 0;
1775 /* The combined reload is needed for the entire insn. */
1776 rld[i].when_needed = RELOAD_OTHER;
1777 /* If the output reload had a secondary reload, copy it. */
1778 if (rld[output_reload].secondary_out_reload != -1)
1780 rld[i].secondary_out_reload
1781 = rld[output_reload].secondary_out_reload;
1782 rld[i].secondary_out_icode
1783 = rld[output_reload].secondary_out_icode;
1786 #ifdef SECONDARY_MEMORY_NEEDED
1787 /* Copy any secondary MEM. */
1788 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1789 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1790 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1791 #endif
1792 /* If required, minimize the register class. */
1793 if (reg_class_subset_p (rld[output_reload].class,
1794 rld[i].class))
1795 rld[i].class = rld[output_reload].class;
1797 /* Transfer all replacements from the old reload to the combined. */
1798 for (j = 0; j < n_replacements; j++)
1799 if (replacements[j].what == output_reload)
1800 replacements[j].what = i;
1802 return;
1805 /* If this insn has only one operand that is modified or written (assumed
1806 to be the first), it must be the one corresponding to this reload. It
1807 is safe to use anything that dies in this insn for that output provided
1808 that it does not occur in the output (we already know it isn't an
1809 earlyclobber. If this is an asm insn, give up. */
1811 if (INSN_CODE (this_insn) == -1)
1812 return;
1814 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1815 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1816 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1817 return;
1819 /* See if some hard register that dies in this insn and is not used in
1820 the output is the right class. Only works if the register we pick
1821 up can fully hold our output reload. */
1822 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1823 if (REG_NOTE_KIND (note) == REG_DEAD
1824 && REG_P (XEXP (note, 0))
1825 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1826 rld[output_reload].out)
1827 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1828 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1829 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
1830 REGNO (XEXP (note, 0)))
1831 && (hard_regno_nregs[REGNO (XEXP (note, 0))][rld[output_reload].outmode]
1832 <= hard_regno_nregs[REGNO (XEXP (note, 0))][GET_MODE (XEXP (note, 0))])
1833 /* Ensure that a secondary or tertiary reload for this output
1834 won't want this register. */
1835 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1836 || (! (TEST_HARD_REG_BIT
1837 (reg_class_contents[(int) rld[secondary_out].class],
1838 REGNO (XEXP (note, 0))))
1839 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1840 || ! (TEST_HARD_REG_BIT
1841 (reg_class_contents[(int) rld[secondary_out].class],
1842 REGNO (XEXP (note, 0)))))))
1843 && ! fixed_regs[REGNO (XEXP (note, 0))])
1845 rld[output_reload].reg_rtx
1846 = gen_rtx_REG (rld[output_reload].outmode,
1847 REGNO (XEXP (note, 0)));
1848 return;
1852 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1853 See if one of IN and OUT is a register that may be used;
1854 this is desirable since a spill-register won't be needed.
1855 If so, return the register rtx that proves acceptable.
1857 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1858 CLASS is the register class required for the reload.
1860 If FOR_REAL is >= 0, it is the number of the reload,
1861 and in some cases when it can be discovered that OUT doesn't need
1862 to be computed, clear out rld[FOR_REAL].out.
1864 If FOR_REAL is -1, this should not be done, because this call
1865 is just to see if a register can be found, not to find and install it.
1867 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1868 puts an additional constraint on being able to use IN for OUT since
1869 IN must not appear elsewhere in the insn (it is assumed that IN itself
1870 is safe from the earlyclobber). */
1872 static rtx
1873 find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1874 enum machine_mode inmode, enum machine_mode outmode,
1875 enum reg_class class, int for_real, int earlyclobber)
1877 rtx in = real_in;
1878 rtx out = real_out;
1879 int in_offset = 0;
1880 int out_offset = 0;
1881 rtx value = 0;
1883 /* If operands exceed a word, we can't use either of them
1884 unless they have the same size. */
1885 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1886 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1887 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1888 return 0;
1890 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1891 respectively refers to a hard register. */
1893 /* Find the inside of any subregs. */
1894 while (GET_CODE (out) == SUBREG)
1896 if (REG_P (SUBREG_REG (out))
1897 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1898 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1899 GET_MODE (SUBREG_REG (out)),
1900 SUBREG_BYTE (out),
1901 GET_MODE (out));
1902 out = SUBREG_REG (out);
1904 while (GET_CODE (in) == SUBREG)
1906 if (REG_P (SUBREG_REG (in))
1907 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1908 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1909 GET_MODE (SUBREG_REG (in)),
1910 SUBREG_BYTE (in),
1911 GET_MODE (in));
1912 in = SUBREG_REG (in);
1915 /* Narrow down the reg class, the same way push_reload will;
1916 otherwise we might find a dummy now, but push_reload won't. */
1917 class = PREFERRED_RELOAD_CLASS (in, class);
1919 /* See if OUT will do. */
1920 if (REG_P (out)
1921 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1923 unsigned int regno = REGNO (out) + out_offset;
1924 unsigned int nwords = hard_regno_nregs[regno][outmode];
1925 rtx saved_rtx;
1927 /* When we consider whether the insn uses OUT,
1928 ignore references within IN. They don't prevent us
1929 from copying IN into OUT, because those refs would
1930 move into the insn that reloads IN.
1932 However, we only ignore IN in its role as this reload.
1933 If the insn uses IN elsewhere and it contains OUT,
1934 that counts. We can't be sure it's the "same" operand
1935 so it might not go through this reload. */
1936 saved_rtx = *inloc;
1937 *inloc = const0_rtx;
1939 if (regno < FIRST_PSEUDO_REGISTER
1940 && HARD_REGNO_MODE_OK (regno, outmode)
1941 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1942 PATTERN (this_insn), outloc))
1944 unsigned int i;
1946 for (i = 0; i < nwords; i++)
1947 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1948 regno + i))
1949 break;
1951 if (i == nwords)
1953 if (REG_P (real_out))
1954 value = real_out;
1955 else
1956 value = gen_rtx_REG (outmode, regno);
1960 *inloc = saved_rtx;
1963 /* Consider using IN if OUT was not acceptable
1964 or if OUT dies in this insn (like the quotient in a divmod insn).
1965 We can't use IN unless it is dies in this insn,
1966 which means we must know accurately which hard regs are live.
1967 Also, the result can't go in IN if IN is used within OUT,
1968 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1969 if (hard_regs_live_known
1970 && REG_P (in)
1971 && REGNO (in) < FIRST_PSEUDO_REGISTER
1972 && (value == 0
1973 || find_reg_note (this_insn, REG_UNUSED, real_out))
1974 && find_reg_note (this_insn, REG_DEAD, real_in)
1975 && !fixed_regs[REGNO (in)]
1976 && HARD_REGNO_MODE_OK (REGNO (in),
1977 /* The only case where out and real_out might
1978 have different modes is where real_out
1979 is a subreg, and in that case, out
1980 has a real mode. */
1981 (GET_MODE (out) != VOIDmode
1982 ? GET_MODE (out) : outmode)))
1984 unsigned int regno = REGNO (in) + in_offset;
1985 unsigned int nwords = hard_regno_nregs[regno][inmode];
1987 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
1988 && ! hard_reg_set_here_p (regno, regno + nwords,
1989 PATTERN (this_insn))
1990 && (! earlyclobber
1991 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
1992 PATTERN (this_insn), inloc)))
1994 unsigned int i;
1996 for (i = 0; i < nwords; i++)
1997 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1998 regno + i))
1999 break;
2001 if (i == nwords)
2003 /* If we were going to use OUT as the reload reg
2004 and changed our mind, it means OUT is a dummy that
2005 dies here. So don't bother copying value to it. */
2006 if (for_real >= 0 && value == real_out)
2007 rld[for_real].out = 0;
2008 if (REG_P (real_in))
2009 value = real_in;
2010 else
2011 value = gen_rtx_REG (inmode, regno);
2016 return value;
2019 /* This page contains subroutines used mainly for determining
2020 whether the IN or an OUT of a reload can serve as the
2021 reload register. */
2023 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2026 earlyclobber_operand_p (rtx x)
2028 int i;
2030 for (i = 0; i < n_earlyclobbers; i++)
2031 if (reload_earlyclobbers[i] == x)
2032 return 1;
2034 return 0;
2037 /* Return 1 if expression X alters a hard reg in the range
2038 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2039 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2040 X should be the body of an instruction. */
2042 static int
2043 hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2045 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2047 rtx op0 = SET_DEST (x);
2049 while (GET_CODE (op0) == SUBREG)
2050 op0 = SUBREG_REG (op0);
2051 if (REG_P (op0))
2053 unsigned int r = REGNO (op0);
2055 /* See if this reg overlaps range under consideration. */
2056 if (r < end_regno
2057 && r + hard_regno_nregs[r][GET_MODE (op0)] > beg_regno)
2058 return 1;
2061 else if (GET_CODE (x) == PARALLEL)
2063 int i = XVECLEN (x, 0) - 1;
2065 for (; i >= 0; i--)
2066 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2067 return 1;
2070 return 0;
2073 /* Return 1 if ADDR is a valid memory address for mode MODE,
2074 and check that each pseudo reg has the proper kind of
2075 hard reg. */
2078 strict_memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx addr)
2080 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2081 return 0;
2083 win:
2084 return 1;
2087 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2088 if they are the same hard reg, and has special hacks for
2089 autoincrement and autodecrement.
2090 This is specifically intended for find_reloads to use
2091 in determining whether two operands match.
2092 X is the operand whose number is the lower of the two.
2094 The value is 2 if Y contains a pre-increment that matches
2095 a non-incrementing address in X. */
2097 /* ??? To be completely correct, we should arrange to pass
2098 for X the output operand and for Y the input operand.
2099 For now, we assume that the output operand has the lower number
2100 because that is natural in (SET output (... input ...)). */
2103 operands_match_p (rtx x, rtx y)
2105 int i;
2106 RTX_CODE code = GET_CODE (x);
2107 const char *fmt;
2108 int success_2;
2110 if (x == y)
2111 return 1;
2112 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2113 && (REG_P (y) || (GET_CODE (y) == SUBREG
2114 && REG_P (SUBREG_REG (y)))))
2116 int j;
2118 if (code == SUBREG)
2120 i = REGNO (SUBREG_REG (x));
2121 if (i >= FIRST_PSEUDO_REGISTER)
2122 goto slow;
2123 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2124 GET_MODE (SUBREG_REG (x)),
2125 SUBREG_BYTE (x),
2126 GET_MODE (x));
2128 else
2129 i = REGNO (x);
2131 if (GET_CODE (y) == SUBREG)
2133 j = REGNO (SUBREG_REG (y));
2134 if (j >= FIRST_PSEUDO_REGISTER)
2135 goto slow;
2136 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2137 GET_MODE (SUBREG_REG (y)),
2138 SUBREG_BYTE (y),
2139 GET_MODE (y));
2141 else
2142 j = REGNO (y);
2144 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2145 multiple hard register group, so that for example (reg:DI 0) and
2146 (reg:SI 1) will be considered the same register. */
2147 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2148 && i < FIRST_PSEUDO_REGISTER)
2149 i += hard_regno_nregs[i][GET_MODE (x)] - 1;
2150 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2151 && j < FIRST_PSEUDO_REGISTER)
2152 j += hard_regno_nregs[j][GET_MODE (y)] - 1;
2154 return i == j;
2156 /* If two operands must match, because they are really a single
2157 operand of an assembler insn, then two postincrements are invalid
2158 because the assembler insn would increment only once.
2159 On the other hand, a postincrement matches ordinary indexing
2160 if the postincrement is the output operand. */
2161 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2162 return operands_match_p (XEXP (x, 0), y);
2163 /* Two preincrements are invalid
2164 because the assembler insn would increment only once.
2165 On the other hand, a preincrement matches ordinary indexing
2166 if the preincrement is the input operand.
2167 In this case, return 2, since some callers need to do special
2168 things when this happens. */
2169 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2170 || GET_CODE (y) == PRE_MODIFY)
2171 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2173 slow:
2175 /* Now we have disposed of all the cases
2176 in which different rtx codes can match. */
2177 if (code != GET_CODE (y))
2178 return 0;
2179 if (code == LABEL_REF)
2180 return XEXP (x, 0) == XEXP (y, 0);
2181 if (code == SYMBOL_REF)
2182 return XSTR (x, 0) == XSTR (y, 0);
2184 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2186 if (GET_MODE (x) != GET_MODE (y))
2187 return 0;
2189 /* Compare the elements. If any pair of corresponding elements
2190 fail to match, return 0 for the whole things. */
2192 success_2 = 0;
2193 fmt = GET_RTX_FORMAT (code);
2194 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2196 int val, j;
2197 switch (fmt[i])
2199 case 'w':
2200 if (XWINT (x, i) != XWINT (y, i))
2201 return 0;
2202 break;
2204 case 'i':
2205 if (XINT (x, i) != XINT (y, i))
2206 return 0;
2207 break;
2209 case 'e':
2210 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2211 if (val == 0)
2212 return 0;
2213 /* If any subexpression returns 2,
2214 we should return 2 if we are successful. */
2215 if (val == 2)
2216 success_2 = 1;
2217 break;
2219 case '0':
2220 break;
2222 case 'E':
2223 if (XVECLEN (x, i) != XVECLEN (y, i))
2224 return 0;
2225 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2227 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2228 if (val == 0)
2229 return 0;
2230 if (val == 2)
2231 success_2 = 1;
2233 break;
2235 /* It is believed that rtx's at this level will never
2236 contain anything but integers and other rtx's,
2237 except for within LABEL_REFs and SYMBOL_REFs. */
2238 default:
2239 gcc_unreachable ();
2242 return 1 + success_2;
2245 /* Describe the range of registers or memory referenced by X.
2246 If X is a register, set REG_FLAG and put the first register
2247 number into START and the last plus one into END.
2248 If X is a memory reference, put a base address into BASE
2249 and a range of integer offsets into START and END.
2250 If X is pushing on the stack, we can assume it causes no trouble,
2251 so we set the SAFE field. */
2253 static struct decomposition
2254 decompose (rtx x)
2256 struct decomposition val;
2257 int all_const = 0;
2259 memset (&val, 0, sizeof (val));
2261 switch (GET_CODE (x))
2263 case MEM:
2265 rtx base = NULL_RTX, offset = 0;
2266 rtx addr = XEXP (x, 0);
2268 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2269 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2271 val.base = XEXP (addr, 0);
2272 val.start = -GET_MODE_SIZE (GET_MODE (x));
2273 val.end = GET_MODE_SIZE (GET_MODE (x));
2274 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2275 return val;
2278 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2280 if (GET_CODE (XEXP (addr, 1)) == PLUS
2281 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2282 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2284 val.base = XEXP (addr, 0);
2285 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2286 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2287 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2288 return val;
2292 if (GET_CODE (addr) == CONST)
2294 addr = XEXP (addr, 0);
2295 all_const = 1;
2297 if (GET_CODE (addr) == PLUS)
2299 if (CONSTANT_P (XEXP (addr, 0)))
2301 base = XEXP (addr, 1);
2302 offset = XEXP (addr, 0);
2304 else if (CONSTANT_P (XEXP (addr, 1)))
2306 base = XEXP (addr, 0);
2307 offset = XEXP (addr, 1);
2311 if (offset == 0)
2313 base = addr;
2314 offset = const0_rtx;
2316 if (GET_CODE (offset) == CONST)
2317 offset = XEXP (offset, 0);
2318 if (GET_CODE (offset) == PLUS)
2320 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2322 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2323 offset = XEXP (offset, 0);
2325 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2327 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2328 offset = XEXP (offset, 1);
2330 else
2332 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2333 offset = const0_rtx;
2336 else if (GET_CODE (offset) != CONST_INT)
2338 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2339 offset = const0_rtx;
2342 if (all_const && GET_CODE (base) == PLUS)
2343 base = gen_rtx_CONST (GET_MODE (base), base);
2345 gcc_assert (GET_CODE (offset) == CONST_INT);
2347 val.start = INTVAL (offset);
2348 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2349 val.base = base;
2351 break;
2353 case REG:
2354 val.reg_flag = 1;
2355 val.start = true_regnum (x);
2356 if (val.start < 0)
2358 /* A pseudo with no hard reg. */
2359 val.start = REGNO (x);
2360 val.end = val.start + 1;
2362 else
2363 /* A hard reg. */
2364 val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
2365 break;
2367 case SUBREG:
2368 if (!REG_P (SUBREG_REG (x)))
2369 /* This could be more precise, but it's good enough. */
2370 return decompose (SUBREG_REG (x));
2371 val.reg_flag = 1;
2372 val.start = true_regnum (x);
2373 if (val.start < 0)
2374 return decompose (SUBREG_REG (x));
2375 else
2376 /* A hard reg. */
2377 val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
2378 break;
2380 case SCRATCH:
2381 /* This hasn't been assigned yet, so it can't conflict yet. */
2382 val.safe = 1;
2383 break;
2385 default:
2386 gcc_assert (CONSTANT_P (x));
2387 val.safe = 1;
2388 break;
2390 return val;
2393 /* Return 1 if altering Y will not modify the value of X.
2394 Y is also described by YDATA, which should be decompose (Y). */
2396 static int
2397 immune_p (rtx x, rtx y, struct decomposition ydata)
2399 struct decomposition xdata;
2401 if (ydata.reg_flag)
2402 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2403 if (ydata.safe)
2404 return 1;
2406 gcc_assert (MEM_P (y));
2407 /* If Y is memory and X is not, Y can't affect X. */
2408 if (!MEM_P (x))
2409 return 1;
2411 xdata = decompose (x);
2413 if (! rtx_equal_p (xdata.base, ydata.base))
2415 /* If bases are distinct symbolic constants, there is no overlap. */
2416 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2417 return 1;
2418 /* Constants and stack slots never overlap. */
2419 if (CONSTANT_P (xdata.base)
2420 && (ydata.base == frame_pointer_rtx
2421 || ydata.base == hard_frame_pointer_rtx
2422 || ydata.base == stack_pointer_rtx))
2423 return 1;
2424 if (CONSTANT_P (ydata.base)
2425 && (xdata.base == frame_pointer_rtx
2426 || xdata.base == hard_frame_pointer_rtx
2427 || xdata.base == stack_pointer_rtx))
2428 return 1;
2429 /* If either base is variable, we don't know anything. */
2430 return 0;
2433 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2436 /* Similar, but calls decompose. */
2439 safe_from_earlyclobber (rtx op, rtx clobber)
2441 struct decomposition early_data;
2443 early_data = decompose (clobber);
2444 return immune_p (op, clobber, early_data);
2447 /* Main entry point of this file: search the body of INSN
2448 for values that need reloading and record them with push_reload.
2449 REPLACE nonzero means record also where the values occur
2450 so that subst_reloads can be used.
2452 IND_LEVELS says how many levels of indirection are supported by this
2453 machine; a value of zero means that a memory reference is not a valid
2454 memory address.
2456 LIVE_KNOWN says we have valid information about which hard
2457 regs are live at each point in the program; this is true when
2458 we are called from global_alloc but false when stupid register
2459 allocation has been done.
2461 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2462 which is nonnegative if the reg has been commandeered for reloading into.
2463 It is copied into STATIC_RELOAD_REG_P and referenced from there
2464 by various subroutines.
2466 Return TRUE if some operands need to be changed, because of swapping
2467 commutative operands, reg_equiv_address substitution, or whatever. */
2470 find_reloads (rtx insn, int replace, int ind_levels, int live_known,
2471 short *reload_reg_p)
2473 int insn_code_number;
2474 int i, j;
2475 int noperands;
2476 /* These start out as the constraints for the insn
2477 and they are chewed up as we consider alternatives. */
2478 char *constraints[MAX_RECOG_OPERANDS];
2479 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2480 a register. */
2481 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2482 char pref_or_nothing[MAX_RECOG_OPERANDS];
2483 /* Nonzero for a MEM operand whose entire address needs a reload.
2484 May be -1 to indicate the entire address may or may not need a reload. */
2485 int address_reloaded[MAX_RECOG_OPERANDS];
2486 /* Nonzero for an address operand that needs to be completely reloaded.
2487 May be -1 to indicate the entire operand may or may not need a reload. */
2488 int address_operand_reloaded[MAX_RECOG_OPERANDS];
2489 /* Value of enum reload_type to use for operand. */
2490 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2491 /* Value of enum reload_type to use within address of operand. */
2492 enum reload_type address_type[MAX_RECOG_OPERANDS];
2493 /* Save the usage of each operand. */
2494 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2495 int no_input_reloads = 0, no_output_reloads = 0;
2496 int n_alternatives;
2497 int this_alternative[MAX_RECOG_OPERANDS];
2498 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2499 char this_alternative_win[MAX_RECOG_OPERANDS];
2500 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2501 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2502 int this_alternative_matches[MAX_RECOG_OPERANDS];
2503 int swapped;
2504 int goal_alternative[MAX_RECOG_OPERANDS];
2505 int this_alternative_number;
2506 int goal_alternative_number = 0;
2507 int operand_reloadnum[MAX_RECOG_OPERANDS];
2508 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2509 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2510 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2511 char goal_alternative_win[MAX_RECOG_OPERANDS];
2512 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2513 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2514 int goal_alternative_swapped;
2515 int best;
2516 int commutative;
2517 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2518 rtx substed_operand[MAX_RECOG_OPERANDS];
2519 rtx body = PATTERN (insn);
2520 rtx set = single_set (insn);
2521 int goal_earlyclobber = 0, this_earlyclobber;
2522 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2523 int retval = 0;
2525 this_insn = insn;
2526 n_reloads = 0;
2527 n_replacements = 0;
2528 n_earlyclobbers = 0;
2529 replace_reloads = replace;
2530 hard_regs_live_known = live_known;
2531 static_reload_reg_p = reload_reg_p;
2533 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2534 neither are insns that SET cc0. Insns that use CC0 are not allowed
2535 to have any input reloads. */
2536 if (JUMP_P (insn) || CALL_P (insn))
2537 no_output_reloads = 1;
2539 #ifdef HAVE_cc0
2540 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2541 no_input_reloads = 1;
2542 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2543 no_output_reloads = 1;
2544 #endif
2546 #ifdef SECONDARY_MEMORY_NEEDED
2547 /* The eliminated forms of any secondary memory locations are per-insn, so
2548 clear them out here. */
2550 if (secondary_memlocs_elim_used)
2552 memset (secondary_memlocs_elim, 0,
2553 sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2554 secondary_memlocs_elim_used = 0;
2556 #endif
2558 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2559 is cheap to move between them. If it is not, there may not be an insn
2560 to do the copy, so we may need a reload. */
2561 if (GET_CODE (body) == SET
2562 && REG_P (SET_DEST (body))
2563 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2564 && REG_P (SET_SRC (body))
2565 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2566 && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2567 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2568 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2569 return 0;
2571 extract_insn (insn);
2573 noperands = reload_n_operands = recog_data.n_operands;
2574 n_alternatives = recog_data.n_alternatives;
2576 /* Just return "no reloads" if insn has no operands with constraints. */
2577 if (noperands == 0 || n_alternatives == 0)
2578 return 0;
2580 insn_code_number = INSN_CODE (insn);
2581 this_insn_is_asm = insn_code_number < 0;
2583 memcpy (operand_mode, recog_data.operand_mode,
2584 noperands * sizeof (enum machine_mode));
2585 memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
2587 commutative = -1;
2589 /* If we will need to know, later, whether some pair of operands
2590 are the same, we must compare them now and save the result.
2591 Reloading the base and index registers will clobber them
2592 and afterward they will fail to match. */
2594 for (i = 0; i < noperands; i++)
2596 char *p;
2597 int c;
2599 substed_operand[i] = recog_data.operand[i];
2600 p = constraints[i];
2602 modified[i] = RELOAD_READ;
2604 /* Scan this operand's constraint to see if it is an output operand,
2605 an in-out operand, is commutative, or should match another. */
2607 while ((c = *p))
2609 p += CONSTRAINT_LEN (c, p);
2610 switch (c)
2612 case '=':
2613 modified[i] = RELOAD_WRITE;
2614 break;
2615 case '+':
2616 modified[i] = RELOAD_READ_WRITE;
2617 break;
2618 case '%':
2620 /* The last operand should not be marked commutative. */
2621 gcc_assert (i != noperands - 1);
2623 /* We currently only support one commutative pair of
2624 operands. Some existing asm code currently uses more
2625 than one pair. Previously, that would usually work,
2626 but sometimes it would crash the compiler. We
2627 continue supporting that case as well as we can by
2628 silently ignoring all but the first pair. In the
2629 future we may handle it correctly. */
2630 if (commutative < 0)
2631 commutative = i;
2632 else
2633 gcc_assert (this_insn_is_asm);
2635 break;
2636 /* Use of ISDIGIT is tempting here, but it may get expensive because
2637 of locale support we don't want. */
2638 case '0': case '1': case '2': case '3': case '4':
2639 case '5': case '6': case '7': case '8': case '9':
2641 c = strtoul (p - 1, &p, 10);
2643 operands_match[c][i]
2644 = operands_match_p (recog_data.operand[c],
2645 recog_data.operand[i]);
2647 /* An operand may not match itself. */
2648 gcc_assert (c != i);
2650 /* If C can be commuted with C+1, and C might need to match I,
2651 then C+1 might also need to match I. */
2652 if (commutative >= 0)
2654 if (c == commutative || c == commutative + 1)
2656 int other = c + (c == commutative ? 1 : -1);
2657 operands_match[other][i]
2658 = operands_match_p (recog_data.operand[other],
2659 recog_data.operand[i]);
2661 if (i == commutative || i == commutative + 1)
2663 int other = i + (i == commutative ? 1 : -1);
2664 operands_match[c][other]
2665 = operands_match_p (recog_data.operand[c],
2666 recog_data.operand[other]);
2668 /* Note that C is supposed to be less than I.
2669 No need to consider altering both C and I because in
2670 that case we would alter one into the other. */
2677 /* Examine each operand that is a memory reference or memory address
2678 and reload parts of the addresses into index registers.
2679 Also here any references to pseudo regs that didn't get hard regs
2680 but are equivalent to constants get replaced in the insn itself
2681 with those constants. Nobody will ever see them again.
2683 Finally, set up the preferred classes of each operand. */
2685 for (i = 0; i < noperands; i++)
2687 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2689 address_reloaded[i] = 0;
2690 address_operand_reloaded[i] = 0;
2691 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2692 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2693 : RELOAD_OTHER);
2694 address_type[i]
2695 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2696 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2697 : RELOAD_OTHER);
2699 if (*constraints[i] == 0)
2700 /* Ignore things like match_operator operands. */
2702 else if (constraints[i][0] == 'p'
2703 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
2705 address_operand_reloaded[i]
2706 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2707 recog_data.operand[i],
2708 recog_data.operand_loc[i],
2709 i, operand_type[i], ind_levels, insn);
2711 /* If we now have a simple operand where we used to have a
2712 PLUS or MULT, re-recognize and try again. */
2713 if ((OBJECT_P (*recog_data.operand_loc[i])
2714 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2715 && (GET_CODE (recog_data.operand[i]) == MULT
2716 || GET_CODE (recog_data.operand[i]) == PLUS))
2718 INSN_CODE (insn) = -1;
2719 retval = find_reloads (insn, replace, ind_levels, live_known,
2720 reload_reg_p);
2721 return retval;
2724 recog_data.operand[i] = *recog_data.operand_loc[i];
2725 substed_operand[i] = recog_data.operand[i];
2727 /* Address operands are reloaded in their existing mode,
2728 no matter what is specified in the machine description. */
2729 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2731 else if (code == MEM)
2733 address_reloaded[i]
2734 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2735 recog_data.operand_loc[i],
2736 XEXP (recog_data.operand[i], 0),
2737 &XEXP (recog_data.operand[i], 0),
2738 i, address_type[i], ind_levels, insn);
2739 recog_data.operand[i] = *recog_data.operand_loc[i];
2740 substed_operand[i] = recog_data.operand[i];
2742 else if (code == SUBREG)
2744 rtx reg = SUBREG_REG (recog_data.operand[i]);
2745 rtx op
2746 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2747 ind_levels,
2748 set != 0
2749 && &SET_DEST (set) == recog_data.operand_loc[i],
2750 insn,
2751 &address_reloaded[i]);
2753 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2754 that didn't get a hard register, emit a USE with a REG_EQUAL
2755 note in front so that we might inherit a previous, possibly
2756 wider reload. */
2758 if (replace
2759 && MEM_P (op)
2760 && REG_P (reg)
2761 && (GET_MODE_SIZE (GET_MODE (reg))
2762 >= GET_MODE_SIZE (GET_MODE (op))))
2763 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2764 insn),
2765 REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
2767 substed_operand[i] = recog_data.operand[i] = op;
2769 else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
2770 /* We can get a PLUS as an "operand" as a result of register
2771 elimination. See eliminate_regs and gen_reload. We handle
2772 a unary operator by reloading the operand. */
2773 substed_operand[i] = recog_data.operand[i]
2774 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2775 ind_levels, 0, insn,
2776 &address_reloaded[i]);
2777 else if (code == REG)
2779 /* This is equivalent to calling find_reloads_toplev.
2780 The code is duplicated for speed.
2781 When we find a pseudo always equivalent to a constant,
2782 we replace it by the constant. We must be sure, however,
2783 that we don't try to replace it in the insn in which it
2784 is being set. */
2785 int regno = REGNO (recog_data.operand[i]);
2786 if (reg_equiv_constant[regno] != 0
2787 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2789 /* Record the existing mode so that the check if constants are
2790 allowed will work when operand_mode isn't specified. */
2792 if (operand_mode[i] == VOIDmode)
2793 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2795 substed_operand[i] = recog_data.operand[i]
2796 = reg_equiv_constant[regno];
2798 if (reg_equiv_memory_loc[regno] != 0
2799 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2800 /* We need not give a valid is_set_dest argument since the case
2801 of a constant equivalence was checked above. */
2802 substed_operand[i] = recog_data.operand[i]
2803 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2804 ind_levels, 0, insn,
2805 &address_reloaded[i]);
2807 /* If the operand is still a register (we didn't replace it with an
2808 equivalent), get the preferred class to reload it into. */
2809 code = GET_CODE (recog_data.operand[i]);
2810 preferred_class[i]
2811 = ((code == REG && REGNO (recog_data.operand[i])
2812 >= FIRST_PSEUDO_REGISTER)
2813 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2814 : NO_REGS);
2815 pref_or_nothing[i]
2816 = (code == REG
2817 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2818 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2821 /* If this is simply a copy from operand 1 to operand 0, merge the
2822 preferred classes for the operands. */
2823 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2824 && recog_data.operand[1] == SET_SRC (set))
2826 preferred_class[0] = preferred_class[1]
2827 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2828 pref_or_nothing[0] |= pref_or_nothing[1];
2829 pref_or_nothing[1] |= pref_or_nothing[0];
2832 /* Now see what we need for pseudo-regs that didn't get hard regs
2833 or got the wrong kind of hard reg. For this, we must consider
2834 all the operands together against the register constraints. */
2836 best = MAX_RECOG_OPERANDS * 2 + 600;
2838 swapped = 0;
2839 goal_alternative_swapped = 0;
2840 try_swapped:
2842 /* The constraints are made of several alternatives.
2843 Each operand's constraint looks like foo,bar,... with commas
2844 separating the alternatives. The first alternatives for all
2845 operands go together, the second alternatives go together, etc.
2847 First loop over alternatives. */
2849 for (this_alternative_number = 0;
2850 this_alternative_number < n_alternatives;
2851 this_alternative_number++)
2853 /* Loop over operands for one constraint alternative. */
2854 /* LOSERS counts those that don't fit this alternative
2855 and would require loading. */
2856 int losers = 0;
2857 /* BAD is set to 1 if it some operand can't fit this alternative
2858 even after reloading. */
2859 int bad = 0;
2860 /* REJECT is a count of how undesirable this alternative says it is
2861 if any reloading is required. If the alternative matches exactly
2862 then REJECT is ignored, but otherwise it gets this much
2863 counted against it in addition to the reloading needed. Each
2864 ? counts three times here since we want the disparaging caused by
2865 a bad register class to only count 1/3 as much. */
2866 int reject = 0;
2868 this_earlyclobber = 0;
2870 for (i = 0; i < noperands; i++)
2872 char *p = constraints[i];
2873 char *end;
2874 int len;
2875 int win = 0;
2876 int did_match = 0;
2877 /* 0 => this operand can be reloaded somehow for this alternative. */
2878 int badop = 1;
2879 /* 0 => this operand can be reloaded if the alternative allows regs. */
2880 int winreg = 0;
2881 int c;
2882 int m;
2883 rtx operand = recog_data.operand[i];
2884 int offset = 0;
2885 /* Nonzero means this is a MEM that must be reloaded into a reg
2886 regardless of what the constraint says. */
2887 int force_reload = 0;
2888 int offmemok = 0;
2889 /* Nonzero if a constant forced into memory would be OK for this
2890 operand. */
2891 int constmemok = 0;
2892 int earlyclobber = 0;
2894 /* If the predicate accepts a unary operator, it means that
2895 we need to reload the operand, but do not do this for
2896 match_operator and friends. */
2897 if (UNARY_P (operand) && *p != 0)
2898 operand = XEXP (operand, 0);
2900 /* If the operand is a SUBREG, extract
2901 the REG or MEM (or maybe even a constant) within.
2902 (Constants can occur as a result of reg_equiv_constant.) */
2904 while (GET_CODE (operand) == SUBREG)
2906 /* Offset only matters when operand is a REG and
2907 it is a hard reg. This is because it is passed
2908 to reg_fits_class_p if it is a REG and all pseudos
2909 return 0 from that function. */
2910 if (REG_P (SUBREG_REG (operand))
2911 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
2913 if (!subreg_offset_representable_p
2914 (REGNO (SUBREG_REG (operand)),
2915 GET_MODE (SUBREG_REG (operand)),
2916 SUBREG_BYTE (operand),
2917 GET_MODE (operand)))
2918 force_reload = 1;
2919 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
2920 GET_MODE (SUBREG_REG (operand)),
2921 SUBREG_BYTE (operand),
2922 GET_MODE (operand));
2924 operand = SUBREG_REG (operand);
2925 /* Force reload if this is a constant or PLUS or if there may
2926 be a problem accessing OPERAND in the outer mode. */
2927 if (CONSTANT_P (operand)
2928 || GET_CODE (operand) == PLUS
2929 /* We must force a reload of paradoxical SUBREGs
2930 of a MEM because the alignment of the inner value
2931 may not be enough to do the outer reference. On
2932 big-endian machines, it may also reference outside
2933 the object.
2935 On machines that extend byte operations and we have a
2936 SUBREG where both the inner and outer modes are no wider
2937 than a word and the inner mode is narrower, is integral,
2938 and gets extended when loaded from memory, combine.c has
2939 made assumptions about the behavior of the machine in such
2940 register access. If the data is, in fact, in memory we
2941 must always load using the size assumed to be in the
2942 register and let the insn do the different-sized
2943 accesses.
2945 This is doubly true if WORD_REGISTER_OPERATIONS. In
2946 this case eliminate_regs has left non-paradoxical
2947 subregs for push_reload to see. Make sure it does
2948 by forcing the reload.
2950 ??? When is it right at this stage to have a subreg
2951 of a mem that is _not_ to be handled specially? IMO
2952 those should have been reduced to just a mem. */
2953 || ((MEM_P (operand)
2954 || (REG_P (operand)
2955 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
2956 #ifndef WORD_REGISTER_OPERATIONS
2957 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2958 < BIGGEST_ALIGNMENT)
2959 && (GET_MODE_SIZE (operand_mode[i])
2960 > GET_MODE_SIZE (GET_MODE (operand))))
2961 || BYTES_BIG_ENDIAN
2962 #ifdef LOAD_EXTEND_OP
2963 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2964 && (GET_MODE_SIZE (GET_MODE (operand))
2965 <= UNITS_PER_WORD)
2966 && (GET_MODE_SIZE (operand_mode[i])
2967 > GET_MODE_SIZE (GET_MODE (operand)))
2968 && INTEGRAL_MODE_P (GET_MODE (operand))
2969 && LOAD_EXTEND_OP (GET_MODE (operand)) != UNKNOWN)
2970 #endif
2972 #endif
2975 force_reload = 1;
2978 this_alternative[i] = (int) NO_REGS;
2979 this_alternative_win[i] = 0;
2980 this_alternative_match_win[i] = 0;
2981 this_alternative_offmemok[i] = 0;
2982 this_alternative_earlyclobber[i] = 0;
2983 this_alternative_matches[i] = -1;
2985 /* An empty constraint or empty alternative
2986 allows anything which matched the pattern. */
2987 if (*p == 0 || *p == ',')
2988 win = 1, badop = 0;
2990 /* Scan this alternative's specs for this operand;
2991 set WIN if the operand fits any letter in this alternative.
2992 Otherwise, clear BADOP if this operand could
2993 fit some letter after reloads,
2994 or set WINREG if this operand could fit after reloads
2995 provided the constraint allows some registers. */
2998 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
3000 case '\0':
3001 len = 0;
3002 break;
3003 case ',':
3004 c = '\0';
3005 break;
3007 case '=': case '+': case '*':
3008 break;
3010 case '%':
3011 /* We only support one commutative marker, the first
3012 one. We already set commutative above. */
3013 break;
3015 case '?':
3016 reject += 6;
3017 break;
3019 case '!':
3020 reject = 600;
3021 break;
3023 case '#':
3024 /* Ignore rest of this alternative as far as
3025 reloading is concerned. */
3027 p++;
3028 while (*p && *p != ',');
3029 len = 0;
3030 break;
3032 case '0': case '1': case '2': case '3': case '4':
3033 case '5': case '6': case '7': case '8': case '9':
3034 m = strtoul (p, &end, 10);
3035 p = end;
3036 len = 0;
3038 this_alternative_matches[i] = m;
3039 /* We are supposed to match a previous operand.
3040 If we do, we win if that one did.
3041 If we do not, count both of the operands as losers.
3042 (This is too conservative, since most of the time
3043 only a single reload insn will be needed to make
3044 the two operands win. As a result, this alternative
3045 may be rejected when it is actually desirable.) */
3046 if ((swapped && (m != commutative || i != commutative + 1))
3047 /* If we are matching as if two operands were swapped,
3048 also pretend that operands_match had been computed
3049 with swapped.
3050 But if I is the second of those and C is the first,
3051 don't exchange them, because operands_match is valid
3052 only on one side of its diagonal. */
3053 ? (operands_match
3054 [(m == commutative || m == commutative + 1)
3055 ? 2 * commutative + 1 - m : m]
3056 [(i == commutative || i == commutative + 1)
3057 ? 2 * commutative + 1 - i : i])
3058 : operands_match[m][i])
3060 /* If we are matching a non-offsettable address where an
3061 offsettable address was expected, then we must reject
3062 this combination, because we can't reload it. */
3063 if (this_alternative_offmemok[m]
3064 && MEM_P (recog_data.operand[m])
3065 && this_alternative[m] == (int) NO_REGS
3066 && ! this_alternative_win[m])
3067 bad = 1;
3069 did_match = this_alternative_win[m];
3071 else
3073 /* Operands don't match. */
3074 rtx value;
3075 int loc1, loc2;
3076 /* Retroactively mark the operand we had to match
3077 as a loser, if it wasn't already. */
3078 if (this_alternative_win[m])
3079 losers++;
3080 this_alternative_win[m] = 0;
3081 if (this_alternative[m] == (int) NO_REGS)
3082 bad = 1;
3083 /* But count the pair only once in the total badness of
3084 this alternative, if the pair can be a dummy reload.
3085 The pointers in operand_loc are not swapped; swap
3086 them by hand if necessary. */
3087 if (swapped && i == commutative)
3088 loc1 = commutative + 1;
3089 else if (swapped && i == commutative + 1)
3090 loc1 = commutative;
3091 else
3092 loc1 = i;
3093 if (swapped && m == commutative)
3094 loc2 = commutative + 1;
3095 else if (swapped && m == commutative + 1)
3096 loc2 = commutative;
3097 else
3098 loc2 = m;
3099 value
3100 = find_dummy_reload (recog_data.operand[i],
3101 recog_data.operand[m],
3102 recog_data.operand_loc[loc1],
3103 recog_data.operand_loc[loc2],
3104 operand_mode[i], operand_mode[m],
3105 this_alternative[m], -1,
3106 this_alternative_earlyclobber[m]);
3108 if (value != 0)
3109 losers--;
3111 /* This can be fixed with reloads if the operand
3112 we are supposed to match can be fixed with reloads. */
3113 badop = 0;
3114 this_alternative[i] = this_alternative[m];
3116 /* If we have to reload this operand and some previous
3117 operand also had to match the same thing as this
3118 operand, we don't know how to do that. So reject this
3119 alternative. */
3120 if (! did_match || force_reload)
3121 for (j = 0; j < i; j++)
3122 if (this_alternative_matches[j]
3123 == this_alternative_matches[i])
3124 badop = 1;
3125 break;
3127 case 'p':
3128 /* All necessary reloads for an address_operand
3129 were handled in find_reloads_address. */
3130 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3131 win = 1;
3132 badop = 0;
3133 break;
3135 case 'm':
3136 if (force_reload)
3137 break;
3138 if (MEM_P (operand)
3139 || (REG_P (operand)
3140 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3141 && reg_renumber[REGNO (operand)] < 0))
3142 win = 1;
3143 if (CONST_POOL_OK_P (operand))
3144 badop = 0;
3145 constmemok = 1;
3146 break;
3148 case '<':
3149 if (MEM_P (operand)
3150 && ! address_reloaded[i]
3151 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3152 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3153 win = 1;
3154 break;
3156 case '>':
3157 if (MEM_P (operand)
3158 && ! address_reloaded[i]
3159 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3160 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3161 win = 1;
3162 break;
3164 /* Memory operand whose address is not offsettable. */
3165 case 'V':
3166 if (force_reload)
3167 break;
3168 if (MEM_P (operand)
3169 && ! (ind_levels ? offsettable_memref_p (operand)
3170 : offsettable_nonstrict_memref_p (operand))
3171 /* Certain mem addresses will become offsettable
3172 after they themselves are reloaded. This is important;
3173 we don't want our own handling of unoffsettables
3174 to override the handling of reg_equiv_address. */
3175 && !(REG_P (XEXP (operand, 0))
3176 && (ind_levels == 0
3177 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3178 win = 1;
3179 break;
3181 /* Memory operand whose address is offsettable. */
3182 case 'o':
3183 if (force_reload)
3184 break;
3185 if ((MEM_P (operand)
3186 /* If IND_LEVELS, find_reloads_address won't reload a
3187 pseudo that didn't get a hard reg, so we have to
3188 reject that case. */
3189 && ((ind_levels ? offsettable_memref_p (operand)
3190 : offsettable_nonstrict_memref_p (operand))
3191 /* A reloaded address is offsettable because it is now
3192 just a simple register indirect. */
3193 || address_reloaded[i] == 1))
3194 || (REG_P (operand)
3195 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3196 && reg_renumber[REGNO (operand)] < 0
3197 /* If reg_equiv_address is nonzero, we will be
3198 loading it into a register; hence it will be
3199 offsettable, but we cannot say that reg_equiv_mem
3200 is offsettable without checking. */
3201 && ((reg_equiv_mem[REGNO (operand)] != 0
3202 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3203 || (reg_equiv_address[REGNO (operand)] != 0))))
3204 win = 1;
3205 if (CONST_POOL_OK_P (operand)
3206 || MEM_P (operand))
3207 badop = 0;
3208 constmemok = 1;
3209 offmemok = 1;
3210 break;
3212 case '&':
3213 /* Output operand that is stored before the need for the
3214 input operands (and their index registers) is over. */
3215 earlyclobber = 1, this_earlyclobber = 1;
3216 break;
3218 case 'E':
3219 case 'F':
3220 if (GET_CODE (operand) == CONST_DOUBLE
3221 || (GET_CODE (operand) == CONST_VECTOR
3222 && (GET_MODE_CLASS (GET_MODE (operand))
3223 == MODE_VECTOR_FLOAT)))
3224 win = 1;
3225 break;
3227 case 'G':
3228 case 'H':
3229 if (GET_CODE (operand) == CONST_DOUBLE
3230 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
3231 win = 1;
3232 break;
3234 case 's':
3235 if (GET_CODE (operand) == CONST_INT
3236 || (GET_CODE (operand) == CONST_DOUBLE
3237 && GET_MODE (operand) == VOIDmode))
3238 break;
3239 case 'i':
3240 if (CONSTANT_P (operand)
3241 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand)))
3242 win = 1;
3243 break;
3245 case 'n':
3246 if (GET_CODE (operand) == CONST_INT
3247 || (GET_CODE (operand) == CONST_DOUBLE
3248 && GET_MODE (operand) == VOIDmode))
3249 win = 1;
3250 break;
3252 case 'I':
3253 case 'J':
3254 case 'K':
3255 case 'L':
3256 case 'M':
3257 case 'N':
3258 case 'O':
3259 case 'P':
3260 if (GET_CODE (operand) == CONST_INT
3261 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
3262 win = 1;
3263 break;
3265 case 'X':
3266 win = 1;
3267 break;
3269 case 'g':
3270 if (! force_reload
3271 /* A PLUS is never a valid operand, but reload can make
3272 it from a register when eliminating registers. */
3273 && GET_CODE (operand) != PLUS
3274 /* A SCRATCH is not a valid operand. */
3275 && GET_CODE (operand) != SCRATCH
3276 && (! CONSTANT_P (operand)
3277 || ! flag_pic
3278 || LEGITIMATE_PIC_OPERAND_P (operand))
3279 && (GENERAL_REGS == ALL_REGS
3280 || !REG_P (operand)
3281 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3282 && reg_renumber[REGNO (operand)] < 0)))
3283 win = 1;
3284 /* Drop through into 'r' case. */
3286 case 'r':
3287 this_alternative[i]
3288 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3289 goto reg;
3291 default:
3292 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
3294 #ifdef EXTRA_CONSTRAINT_STR
3295 if (EXTRA_MEMORY_CONSTRAINT (c, p))
3297 if (force_reload)
3298 break;
3299 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3300 win = 1;
3301 /* If the address was already reloaded,
3302 we win as well. */
3303 else if (MEM_P (operand)
3304 && address_reloaded[i] == 1)
3305 win = 1;
3306 /* Likewise if the address will be reloaded because
3307 reg_equiv_address is nonzero. For reg_equiv_mem
3308 we have to check. */
3309 else if (REG_P (operand)
3310 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3311 && reg_renumber[REGNO (operand)] < 0
3312 && ((reg_equiv_mem[REGNO (operand)] != 0
3313 && EXTRA_CONSTRAINT_STR (reg_equiv_mem[REGNO (operand)], c, p))
3314 || (reg_equiv_address[REGNO (operand)] != 0)))
3315 win = 1;
3317 /* If we didn't already win, we can reload
3318 constants via force_const_mem, and other
3319 MEMs by reloading the address like for 'o'. */
3320 if (CONST_POOL_OK_P (operand)
3321 || MEM_P (operand))
3322 badop = 0;
3323 constmemok = 1;
3324 offmemok = 1;
3325 break;
3327 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
3329 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3330 win = 1;
3332 /* If we didn't already win, we can reload
3333 the address into a base register. */
3334 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3335 badop = 0;
3336 break;
3339 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3340 win = 1;
3341 #endif
3342 break;
3345 this_alternative[i]
3346 = (int) (reg_class_subunion
3347 [this_alternative[i]]
3348 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
3349 reg:
3350 if (GET_MODE (operand) == BLKmode)
3351 break;
3352 winreg = 1;
3353 if (REG_P (operand)
3354 && reg_fits_class_p (operand, this_alternative[i],
3355 offset, GET_MODE (recog_data.operand[i])))
3356 win = 1;
3357 break;
3359 while ((p += len), c);
3361 constraints[i] = p;
3363 /* If this operand could be handled with a reg,
3364 and some reg is allowed, then this operand can be handled. */
3365 if (winreg && this_alternative[i] != (int) NO_REGS)
3366 badop = 0;
3368 /* Record which operands fit this alternative. */
3369 this_alternative_earlyclobber[i] = earlyclobber;
3370 if (win && ! force_reload)
3371 this_alternative_win[i] = 1;
3372 else if (did_match && ! force_reload)
3373 this_alternative_match_win[i] = 1;
3374 else
3376 int const_to_mem = 0;
3378 this_alternative_offmemok[i] = offmemok;
3379 losers++;
3380 if (badop)
3381 bad = 1;
3382 /* Alternative loses if it has no regs for a reg operand. */
3383 if (REG_P (operand)
3384 && this_alternative[i] == (int) NO_REGS
3385 && this_alternative_matches[i] < 0)
3386 bad = 1;
3388 /* If this is a constant that is reloaded into the desired
3389 class by copying it to memory first, count that as another
3390 reload. This is consistent with other code and is
3391 required to avoid choosing another alternative when
3392 the constant is moved into memory by this function on
3393 an early reload pass. Note that the test here is
3394 precisely the same as in the code below that calls
3395 force_const_mem. */
3396 if (CONST_POOL_OK_P (operand)
3397 && ((PREFERRED_RELOAD_CLASS (operand,
3398 (enum reg_class) this_alternative[i])
3399 == NO_REGS)
3400 || no_input_reloads)
3401 && operand_mode[i] != VOIDmode)
3403 const_to_mem = 1;
3404 if (this_alternative[i] != (int) NO_REGS)
3405 losers++;
3408 /* If we can't reload this value at all, reject this
3409 alternative. Note that we could also lose due to
3410 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3411 here. */
3413 if (! CONSTANT_P (operand)
3414 && (enum reg_class) this_alternative[i] != NO_REGS
3415 && (PREFERRED_RELOAD_CLASS (operand,
3416 (enum reg_class) this_alternative[i])
3417 == NO_REGS))
3418 bad = 1;
3420 /* Alternative loses if it requires a type of reload not
3421 permitted for this insn. We can always reload SCRATCH
3422 and objects with a REG_UNUSED note. */
3423 else if (GET_CODE (operand) != SCRATCH
3424 && modified[i] != RELOAD_READ && no_output_reloads
3425 && ! find_reg_note (insn, REG_UNUSED, operand))
3426 bad = 1;
3427 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3428 && ! const_to_mem)
3429 bad = 1;
3431 /* We prefer to reload pseudos over reloading other things,
3432 since such reloads may be able to be eliminated later.
3433 If we are reloading a SCRATCH, we won't be generating any
3434 insns, just using a register, so it is also preferred.
3435 So bump REJECT in other cases. Don't do this in the
3436 case where we are forcing a constant into memory and
3437 it will then win since we don't want to have a different
3438 alternative match then. */
3439 if (! (REG_P (operand)
3440 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3441 && GET_CODE (operand) != SCRATCH
3442 && ! (const_to_mem && constmemok))
3443 reject += 2;
3445 /* Input reloads can be inherited more often than output
3446 reloads can be removed, so penalize output reloads. */
3447 if (operand_type[i] != RELOAD_FOR_INPUT
3448 && GET_CODE (operand) != SCRATCH)
3449 reject++;
3452 /* If this operand is a pseudo register that didn't get a hard
3453 reg and this alternative accepts some register, see if the
3454 class that we want is a subset of the preferred class for this
3455 register. If not, but it intersects that class, use the
3456 preferred class instead. If it does not intersect the preferred
3457 class, show that usage of this alternative should be discouraged;
3458 it will be discouraged more still if the register is `preferred
3459 or nothing'. We do this because it increases the chance of
3460 reusing our spill register in a later insn and avoiding a pair
3461 of memory stores and loads.
3463 Don't bother with this if this alternative will accept this
3464 operand.
3466 Don't do this for a multiword operand, since it is only a
3467 small win and has the risk of requiring more spill registers,
3468 which could cause a large loss.
3470 Don't do this if the preferred class has only one register
3471 because we might otherwise exhaust the class. */
3473 if (! win && ! did_match
3474 && this_alternative[i] != (int) NO_REGS
3475 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3476 && reg_class_size[(int) preferred_class[i]] > 1)
3478 if (! reg_class_subset_p (this_alternative[i],
3479 preferred_class[i]))
3481 /* Since we don't have a way of forming the intersection,
3482 we just do something special if the preferred class
3483 is a subset of the class we have; that's the most
3484 common case anyway. */
3485 if (reg_class_subset_p (preferred_class[i],
3486 this_alternative[i]))
3487 this_alternative[i] = (int) preferred_class[i];
3488 else
3489 reject += (2 + 2 * pref_or_nothing[i]);
3494 /* Now see if any output operands that are marked "earlyclobber"
3495 in this alternative conflict with any input operands
3496 or any memory addresses. */
3498 for (i = 0; i < noperands; i++)
3499 if (this_alternative_earlyclobber[i]
3500 && (this_alternative_win[i] || this_alternative_match_win[i]))
3502 struct decomposition early_data;
3504 early_data = decompose (recog_data.operand[i]);
3506 gcc_assert (modified[i] != RELOAD_READ);
3508 if (this_alternative[i] == NO_REGS)
3510 this_alternative_earlyclobber[i] = 0;
3511 gcc_assert (this_insn_is_asm);
3512 error_for_asm (this_insn,
3513 "%<&%> constraint used with no register class");
3516 for (j = 0; j < noperands; j++)
3517 /* Is this an input operand or a memory ref? */
3518 if ((MEM_P (recog_data.operand[j])
3519 || modified[j] != RELOAD_WRITE)
3520 && j != i
3521 /* Ignore things like match_operator operands. */
3522 && *recog_data.constraints[j] != 0
3523 /* Don't count an input operand that is constrained to match
3524 the early clobber operand. */
3525 && ! (this_alternative_matches[j] == i
3526 && rtx_equal_p (recog_data.operand[i],
3527 recog_data.operand[j]))
3528 /* Is it altered by storing the earlyclobber operand? */
3529 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3530 early_data))
3532 /* If the output is in a single-reg class,
3533 it's costly to reload it, so reload the input instead. */
3534 if (reg_class_size[this_alternative[i]] == 1
3535 && (REG_P (recog_data.operand[j])
3536 || GET_CODE (recog_data.operand[j]) == SUBREG))
3538 losers++;
3539 this_alternative_win[j] = 0;
3540 this_alternative_match_win[j] = 0;
3542 else
3543 break;
3545 /* If an earlyclobber operand conflicts with something,
3546 it must be reloaded, so request this and count the cost. */
3547 if (j != noperands)
3549 losers++;
3550 this_alternative_win[i] = 0;
3551 this_alternative_match_win[j] = 0;
3552 for (j = 0; j < noperands; j++)
3553 if (this_alternative_matches[j] == i
3554 && this_alternative_match_win[j])
3556 this_alternative_win[j] = 0;
3557 this_alternative_match_win[j] = 0;
3558 losers++;
3563 /* If one alternative accepts all the operands, no reload required,
3564 choose that alternative; don't consider the remaining ones. */
3565 if (losers == 0)
3567 /* Unswap these so that they are never swapped at `finish'. */
3568 if (commutative >= 0)
3570 recog_data.operand[commutative] = substed_operand[commutative];
3571 recog_data.operand[commutative + 1]
3572 = substed_operand[commutative + 1];
3574 for (i = 0; i < noperands; i++)
3576 goal_alternative_win[i] = this_alternative_win[i];
3577 goal_alternative_match_win[i] = this_alternative_match_win[i];
3578 goal_alternative[i] = this_alternative[i];
3579 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3580 goal_alternative_matches[i] = this_alternative_matches[i];
3581 goal_alternative_earlyclobber[i]
3582 = this_alternative_earlyclobber[i];
3584 goal_alternative_number = this_alternative_number;
3585 goal_alternative_swapped = swapped;
3586 goal_earlyclobber = this_earlyclobber;
3587 goto finish;
3590 /* REJECT, set by the ! and ? constraint characters and when a register
3591 would be reloaded into a non-preferred class, discourages the use of
3592 this alternative for a reload goal. REJECT is incremented by six
3593 for each ? and two for each non-preferred class. */
3594 losers = losers * 6 + reject;
3596 /* If this alternative can be made to work by reloading,
3597 and it needs less reloading than the others checked so far,
3598 record it as the chosen goal for reloading. */
3599 if (! bad && best > losers)
3601 for (i = 0; i < noperands; i++)
3603 goal_alternative[i] = this_alternative[i];
3604 goal_alternative_win[i] = this_alternative_win[i];
3605 goal_alternative_match_win[i] = this_alternative_match_win[i];
3606 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3607 goal_alternative_matches[i] = this_alternative_matches[i];
3608 goal_alternative_earlyclobber[i]
3609 = this_alternative_earlyclobber[i];
3611 goal_alternative_swapped = swapped;
3612 best = losers;
3613 goal_alternative_number = this_alternative_number;
3614 goal_earlyclobber = this_earlyclobber;
3618 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3619 then we need to try each alternative twice,
3620 the second time matching those two operands
3621 as if we had exchanged them.
3622 To do this, really exchange them in operands.
3624 If we have just tried the alternatives the second time,
3625 return operands to normal and drop through. */
3627 if (commutative >= 0)
3629 swapped = !swapped;
3630 if (swapped)
3632 enum reg_class tclass;
3633 int t;
3635 recog_data.operand[commutative] = substed_operand[commutative + 1];
3636 recog_data.operand[commutative + 1] = substed_operand[commutative];
3637 /* Swap the duplicates too. */
3638 for (i = 0; i < recog_data.n_dups; i++)
3639 if (recog_data.dup_num[i] == commutative
3640 || recog_data.dup_num[i] == commutative + 1)
3641 *recog_data.dup_loc[i]
3642 = recog_data.operand[(int) recog_data.dup_num[i]];
3644 tclass = preferred_class[commutative];
3645 preferred_class[commutative] = preferred_class[commutative + 1];
3646 preferred_class[commutative + 1] = tclass;
3648 t = pref_or_nothing[commutative];
3649 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3650 pref_or_nothing[commutative + 1] = t;
3652 memcpy (constraints, recog_data.constraints,
3653 noperands * sizeof (char *));
3654 goto try_swapped;
3656 else
3658 recog_data.operand[commutative] = substed_operand[commutative];
3659 recog_data.operand[commutative + 1]
3660 = substed_operand[commutative + 1];
3661 /* Unswap the duplicates too. */
3662 for (i = 0; i < recog_data.n_dups; i++)
3663 if (recog_data.dup_num[i] == commutative
3664 || recog_data.dup_num[i] == commutative + 1)
3665 *recog_data.dup_loc[i]
3666 = recog_data.operand[(int) recog_data.dup_num[i]];
3670 /* The operands don't meet the constraints.
3671 goal_alternative describes the alternative
3672 that we could reach by reloading the fewest operands.
3673 Reload so as to fit it. */
3675 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3677 /* No alternative works with reloads?? */
3678 if (insn_code_number >= 0)
3679 fatal_insn ("unable to generate reloads for:", insn);
3680 error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
3681 /* Avoid further trouble with this insn. */
3682 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3683 n_reloads = 0;
3684 return 0;
3687 /* Jump to `finish' from above if all operands are valid already.
3688 In that case, goal_alternative_win is all 1. */
3689 finish:
3691 /* Right now, for any pair of operands I and J that are required to match,
3692 with I < J,
3693 goal_alternative_matches[J] is I.
3694 Set up goal_alternative_matched as the inverse function:
3695 goal_alternative_matched[I] = J. */
3697 for (i = 0; i < noperands; i++)
3698 goal_alternative_matched[i] = -1;
3700 for (i = 0; i < noperands; i++)
3701 if (! goal_alternative_win[i]
3702 && goal_alternative_matches[i] >= 0)
3703 goal_alternative_matched[goal_alternative_matches[i]] = i;
3705 for (i = 0; i < noperands; i++)
3706 goal_alternative_win[i] |= goal_alternative_match_win[i];
3708 /* If the best alternative is with operands 1 and 2 swapped,
3709 consider them swapped before reporting the reloads. Update the
3710 operand numbers of any reloads already pushed. */
3712 if (goal_alternative_swapped)
3714 rtx tem;
3716 tem = substed_operand[commutative];
3717 substed_operand[commutative] = substed_operand[commutative + 1];
3718 substed_operand[commutative + 1] = tem;
3719 tem = recog_data.operand[commutative];
3720 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3721 recog_data.operand[commutative + 1] = tem;
3722 tem = *recog_data.operand_loc[commutative];
3723 *recog_data.operand_loc[commutative]
3724 = *recog_data.operand_loc[commutative + 1];
3725 *recog_data.operand_loc[commutative + 1] = tem;
3727 for (i = 0; i < n_reloads; i++)
3729 if (rld[i].opnum == commutative)
3730 rld[i].opnum = commutative + 1;
3731 else if (rld[i].opnum == commutative + 1)
3732 rld[i].opnum = commutative;
3736 for (i = 0; i < noperands; i++)
3738 operand_reloadnum[i] = -1;
3740 /* If this is an earlyclobber operand, we need to widen the scope.
3741 The reload must remain valid from the start of the insn being
3742 reloaded until after the operand is stored into its destination.
3743 We approximate this with RELOAD_OTHER even though we know that we
3744 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3746 One special case that is worth checking is when we have an
3747 output that is earlyclobber but isn't used past the insn (typically
3748 a SCRATCH). In this case, we only need have the reload live
3749 through the insn itself, but not for any of our input or output
3750 reloads.
3751 But we must not accidentally narrow the scope of an existing
3752 RELOAD_OTHER reload - leave these alone.
3754 In any case, anything needed to address this operand can remain
3755 however they were previously categorized. */
3757 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3758 operand_type[i]
3759 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3760 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3763 /* Any constants that aren't allowed and can't be reloaded
3764 into registers are here changed into memory references. */
3765 for (i = 0; i < noperands; i++)
3766 if (! goal_alternative_win[i]
3767 && CONST_POOL_OK_P (recog_data.operand[i])
3768 && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
3769 (enum reg_class) goal_alternative[i])
3770 == NO_REGS)
3771 || no_input_reloads)
3772 && operand_mode[i] != VOIDmode)
3774 substed_operand[i] = recog_data.operand[i]
3775 = find_reloads_toplev (force_const_mem (operand_mode[i],
3776 recog_data.operand[i]),
3777 i, address_type[i], ind_levels, 0, insn,
3778 NULL);
3779 if (alternative_allows_memconst (recog_data.constraints[i],
3780 goal_alternative_number))
3781 goal_alternative_win[i] = 1;
3784 /* Likewise any invalid constants appearing as operand of a PLUS
3785 that is to be reloaded. */
3786 for (i = 0; i < noperands; i++)
3787 if (! goal_alternative_win[i]
3788 && GET_CODE (recog_data.operand[i]) == PLUS
3789 && CONST_POOL_OK_P (XEXP (recog_data.operand[i], 1))
3790 && (PREFERRED_RELOAD_CLASS (XEXP (recog_data.operand[i], 1),
3791 (enum reg_class) goal_alternative[i])
3792 == NO_REGS)
3793 && operand_mode[i] != VOIDmode)
3795 rtx tem = force_const_mem (operand_mode[i],
3796 XEXP (recog_data.operand[i], 1));
3797 tem = gen_rtx_PLUS (operand_mode[i],
3798 XEXP (recog_data.operand[i], 0), tem);
3800 substed_operand[i] = recog_data.operand[i]
3801 = find_reloads_toplev (tem, i, address_type[i],
3802 ind_levels, 0, insn, NULL);
3805 /* Record the values of the earlyclobber operands for the caller. */
3806 if (goal_earlyclobber)
3807 for (i = 0; i < noperands; i++)
3808 if (goal_alternative_earlyclobber[i])
3809 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3811 /* Now record reloads for all the operands that need them. */
3812 for (i = 0; i < noperands; i++)
3813 if (! goal_alternative_win[i])
3815 /* Operands that match previous ones have already been handled. */
3816 if (goal_alternative_matches[i] >= 0)
3818 /* Handle an operand with a nonoffsettable address
3819 appearing where an offsettable address will do
3820 by reloading the address into a base register.
3822 ??? We can also do this when the operand is a register and
3823 reg_equiv_mem is not offsettable, but this is a bit tricky,
3824 so we don't bother with it. It may not be worth doing. */
3825 else if (goal_alternative_matched[i] == -1
3826 && goal_alternative_offmemok[i]
3827 && MEM_P (recog_data.operand[i]))
3829 operand_reloadnum[i]
3830 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3831 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
3832 MODE_BASE_REG_CLASS (VOIDmode),
3833 GET_MODE (XEXP (recog_data.operand[i], 0)),
3834 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3835 rld[operand_reloadnum[i]].inc
3836 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3838 /* If this operand is an output, we will have made any
3839 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3840 now we are treating part of the operand as an input, so
3841 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3843 if (modified[i] == RELOAD_WRITE)
3845 for (j = 0; j < n_reloads; j++)
3847 if (rld[j].opnum == i)
3849 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3850 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3851 else if (rld[j].when_needed
3852 == RELOAD_FOR_OUTADDR_ADDRESS)
3853 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
3858 else if (goal_alternative_matched[i] == -1)
3860 operand_reloadnum[i]
3861 = push_reload ((modified[i] != RELOAD_WRITE
3862 ? recog_data.operand[i] : 0),
3863 (modified[i] != RELOAD_READ
3864 ? recog_data.operand[i] : 0),
3865 (modified[i] != RELOAD_WRITE
3866 ? recog_data.operand_loc[i] : 0),
3867 (modified[i] != RELOAD_READ
3868 ? recog_data.operand_loc[i] : 0),
3869 (enum reg_class) goal_alternative[i],
3870 (modified[i] == RELOAD_WRITE
3871 ? VOIDmode : operand_mode[i]),
3872 (modified[i] == RELOAD_READ
3873 ? VOIDmode : operand_mode[i]),
3874 (insn_code_number < 0 ? 0
3875 : insn_data[insn_code_number].operand[i].strict_low),
3876 0, i, operand_type[i]);
3878 /* In a matching pair of operands, one must be input only
3879 and the other must be output only.
3880 Pass the input operand as IN and the other as OUT. */
3881 else if (modified[i] == RELOAD_READ
3882 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3884 operand_reloadnum[i]
3885 = push_reload (recog_data.operand[i],
3886 recog_data.operand[goal_alternative_matched[i]],
3887 recog_data.operand_loc[i],
3888 recog_data.operand_loc[goal_alternative_matched[i]],
3889 (enum reg_class) goal_alternative[i],
3890 operand_mode[i],
3891 operand_mode[goal_alternative_matched[i]],
3892 0, 0, i, RELOAD_OTHER);
3893 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3895 else if (modified[i] == RELOAD_WRITE
3896 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3898 operand_reloadnum[goal_alternative_matched[i]]
3899 = push_reload (recog_data.operand[goal_alternative_matched[i]],
3900 recog_data.operand[i],
3901 recog_data.operand_loc[goal_alternative_matched[i]],
3902 recog_data.operand_loc[i],
3903 (enum reg_class) goal_alternative[i],
3904 operand_mode[goal_alternative_matched[i]],
3905 operand_mode[i],
3906 0, 0, i, RELOAD_OTHER);
3907 operand_reloadnum[i] = output_reloadnum;
3909 else
3911 gcc_assert (insn_code_number < 0);
3912 error_for_asm (insn, "inconsistent operand constraints "
3913 "in an %<asm%>");
3914 /* Avoid further trouble with this insn. */
3915 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3916 n_reloads = 0;
3917 return 0;
3920 else if (goal_alternative_matched[i] < 0
3921 && goal_alternative_matches[i] < 0
3922 && address_operand_reloaded[i] != 1
3923 && optimize)
3925 /* For each non-matching operand that's a MEM or a pseudo-register
3926 that didn't get a hard register, make an optional reload.
3927 This may get done even if the insn needs no reloads otherwise. */
3929 rtx operand = recog_data.operand[i];
3931 while (GET_CODE (operand) == SUBREG)
3932 operand = SUBREG_REG (operand);
3933 if ((MEM_P (operand)
3934 || (REG_P (operand)
3935 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3936 /* If this is only for an output, the optional reload would not
3937 actually cause us to use a register now, just note that
3938 something is stored here. */
3939 && ((enum reg_class) goal_alternative[i] != NO_REGS
3940 || modified[i] == RELOAD_WRITE)
3941 && ! no_input_reloads
3942 /* An optional output reload might allow to delete INSN later.
3943 We mustn't make in-out reloads on insns that are not permitted
3944 output reloads.
3945 If this is an asm, we can't delete it; we must not even call
3946 push_reload for an optional output reload in this case,
3947 because we can't be sure that the constraint allows a register,
3948 and push_reload verifies the constraints for asms. */
3949 && (modified[i] == RELOAD_READ
3950 || (! no_output_reloads && ! this_insn_is_asm)))
3951 operand_reloadnum[i]
3952 = push_reload ((modified[i] != RELOAD_WRITE
3953 ? recog_data.operand[i] : 0),
3954 (modified[i] != RELOAD_READ
3955 ? recog_data.operand[i] : 0),
3956 (modified[i] != RELOAD_WRITE
3957 ? recog_data.operand_loc[i] : 0),
3958 (modified[i] != RELOAD_READ
3959 ? recog_data.operand_loc[i] : 0),
3960 (enum reg_class) goal_alternative[i],
3961 (modified[i] == RELOAD_WRITE
3962 ? VOIDmode : operand_mode[i]),
3963 (modified[i] == RELOAD_READ
3964 ? VOIDmode : operand_mode[i]),
3965 (insn_code_number < 0 ? 0
3966 : insn_data[insn_code_number].operand[i].strict_low),
3967 1, i, operand_type[i]);
3968 /* If a memory reference remains (either as a MEM or a pseudo that
3969 did not get a hard register), yet we can't make an optional
3970 reload, check if this is actually a pseudo register reference;
3971 we then need to emit a USE and/or a CLOBBER so that reload
3972 inheritance will do the right thing. */
3973 else if (replace
3974 && (MEM_P (operand)
3975 || (REG_P (operand)
3976 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3977 && reg_renumber [REGNO (operand)] < 0)))
3979 operand = *recog_data.operand_loc[i];
3981 while (GET_CODE (operand) == SUBREG)
3982 operand = SUBREG_REG (operand);
3983 if (REG_P (operand))
3985 if (modified[i] != RELOAD_WRITE)
3986 /* We mark the USE with QImode so that we recognize
3987 it as one that can be safely deleted at the end
3988 of reload. */
3989 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
3990 insn), QImode);
3991 if (modified[i] != RELOAD_READ)
3992 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
3996 else if (goal_alternative_matches[i] >= 0
3997 && goal_alternative_win[goal_alternative_matches[i]]
3998 && modified[i] == RELOAD_READ
3999 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
4000 && ! no_input_reloads && ! no_output_reloads
4001 && optimize)
4003 /* Similarly, make an optional reload for a pair of matching
4004 objects that are in MEM or a pseudo that didn't get a hard reg. */
4006 rtx operand = recog_data.operand[i];
4008 while (GET_CODE (operand) == SUBREG)
4009 operand = SUBREG_REG (operand);
4010 if ((MEM_P (operand)
4011 || (REG_P (operand)
4012 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4013 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
4014 != NO_REGS))
4015 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
4016 = push_reload (recog_data.operand[goal_alternative_matches[i]],
4017 recog_data.operand[i],
4018 recog_data.operand_loc[goal_alternative_matches[i]],
4019 recog_data.operand_loc[i],
4020 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
4021 operand_mode[goal_alternative_matches[i]],
4022 operand_mode[i],
4023 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
4026 /* Perform whatever substitutions on the operands we are supposed
4027 to make due to commutativity or replacement of registers
4028 with equivalent constants or memory slots. */
4030 for (i = 0; i < noperands; i++)
4032 /* We only do this on the last pass through reload, because it is
4033 possible for some data (like reg_equiv_address) to be changed during
4034 later passes. Moreover, we loose the opportunity to get a useful
4035 reload_{in,out}_reg when we do these replacements. */
4037 if (replace)
4039 rtx substitution = substed_operand[i];
4041 *recog_data.operand_loc[i] = substitution;
4043 /* If we're replacing an operand with a LABEL_REF, we need
4044 to make sure that there's a REG_LABEL note attached to
4045 this instruction. */
4046 if (!JUMP_P (insn)
4047 && GET_CODE (substitution) == LABEL_REF
4048 && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
4049 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
4050 XEXP (substitution, 0),
4051 REG_NOTES (insn));
4053 else
4054 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4057 /* If this insn pattern contains any MATCH_DUP's, make sure that
4058 they will be substituted if the operands they match are substituted.
4059 Also do now any substitutions we already did on the operands.
4061 Don't do this if we aren't making replacements because we might be
4062 propagating things allocated by frame pointer elimination into places
4063 it doesn't expect. */
4065 if (insn_code_number >= 0 && replace)
4066 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4068 int opno = recog_data.dup_num[i];
4069 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4070 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4073 #if 0
4074 /* This loses because reloading of prior insns can invalidate the equivalence
4075 (or at least find_equiv_reg isn't smart enough to find it any more),
4076 causing this insn to need more reload regs than it needed before.
4077 It may be too late to make the reload regs available.
4078 Now this optimization is done safely in choose_reload_regs. */
4080 /* For each reload of a reg into some other class of reg,
4081 search for an existing equivalent reg (same value now) in the right class.
4082 We can use it as long as we don't need to change its contents. */
4083 for (i = 0; i < n_reloads; i++)
4084 if (rld[i].reg_rtx == 0
4085 && rld[i].in != 0
4086 && REG_P (rld[i].in)
4087 && rld[i].out == 0)
4089 rld[i].reg_rtx
4090 = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
4091 static_reload_reg_p, 0, rld[i].inmode);
4092 /* Prevent generation of insn to load the value
4093 because the one we found already has the value. */
4094 if (rld[i].reg_rtx)
4095 rld[i].in = rld[i].reg_rtx;
4097 #endif
4099 /* Perhaps an output reload can be combined with another
4100 to reduce needs by one. */
4101 if (!goal_earlyclobber)
4102 combine_reloads ();
4104 /* If we have a pair of reloads for parts of an address, they are reloading
4105 the same object, the operands themselves were not reloaded, and they
4106 are for two operands that are supposed to match, merge the reloads and
4107 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4109 for (i = 0; i < n_reloads; i++)
4111 int k;
4113 for (j = i + 1; j < n_reloads; j++)
4114 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4115 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4116 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4117 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4118 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4119 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4120 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4121 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4122 && rtx_equal_p (rld[i].in, rld[j].in)
4123 && (operand_reloadnum[rld[i].opnum] < 0
4124 || rld[operand_reloadnum[rld[i].opnum]].optional)
4125 && (operand_reloadnum[rld[j].opnum] < 0
4126 || rld[operand_reloadnum[rld[j].opnum]].optional)
4127 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4128 || (goal_alternative_matches[rld[j].opnum]
4129 == rld[i].opnum)))
4131 for (k = 0; k < n_replacements; k++)
4132 if (replacements[k].what == j)
4133 replacements[k].what = i;
4135 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4136 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4137 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4138 else
4139 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4140 rld[j].in = 0;
4144 /* Scan all the reloads and update their type.
4145 If a reload is for the address of an operand and we didn't reload
4146 that operand, change the type. Similarly, change the operand number
4147 of a reload when two operands match. If a reload is optional, treat it
4148 as though the operand isn't reloaded.
4150 ??? This latter case is somewhat odd because if we do the optional
4151 reload, it means the object is hanging around. Thus we need only
4152 do the address reload if the optional reload was NOT done.
4154 Change secondary reloads to be the address type of their operand, not
4155 the normal type.
4157 If an operand's reload is now RELOAD_OTHER, change any
4158 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4159 RELOAD_FOR_OTHER_ADDRESS. */
4161 for (i = 0; i < n_reloads; i++)
4163 if (rld[i].secondary_p
4164 && rld[i].when_needed == operand_type[rld[i].opnum])
4165 rld[i].when_needed = address_type[rld[i].opnum];
4167 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4168 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4169 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4170 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4171 && (operand_reloadnum[rld[i].opnum] < 0
4172 || rld[operand_reloadnum[rld[i].opnum]].optional))
4174 /* If we have a secondary reload to go along with this reload,
4175 change its type to RELOAD_FOR_OPADDR_ADDR. */
4177 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4178 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4179 && rld[i].secondary_in_reload != -1)
4181 int secondary_in_reload = rld[i].secondary_in_reload;
4183 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4185 /* If there's a tertiary reload we have to change it also. */
4186 if (secondary_in_reload > 0
4187 && rld[secondary_in_reload].secondary_in_reload != -1)
4188 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4189 = RELOAD_FOR_OPADDR_ADDR;
4192 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4193 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4194 && rld[i].secondary_out_reload != -1)
4196 int secondary_out_reload = rld[i].secondary_out_reload;
4198 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4200 /* If there's a tertiary reload we have to change it also. */
4201 if (secondary_out_reload
4202 && rld[secondary_out_reload].secondary_out_reload != -1)
4203 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4204 = RELOAD_FOR_OPADDR_ADDR;
4207 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4208 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4209 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4210 else
4211 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4214 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4215 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4216 && operand_reloadnum[rld[i].opnum] >= 0
4217 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4218 == RELOAD_OTHER))
4219 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4221 if (goal_alternative_matches[rld[i].opnum] >= 0)
4222 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4225 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4226 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4227 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4229 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4230 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4231 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4232 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4233 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4234 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4235 This is complicated by the fact that a single operand can have more
4236 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4237 choose_reload_regs without affecting code quality, and cases that
4238 actually fail are extremely rare, so it turns out to be better to fix
4239 the problem here by not generating cases that choose_reload_regs will
4240 fail for. */
4241 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4242 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4243 a single operand.
4244 We can reduce the register pressure by exploiting that a
4245 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4246 does not conflict with any of them, if it is only used for the first of
4247 the RELOAD_FOR_X_ADDRESS reloads. */
4249 int first_op_addr_num = -2;
4250 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4251 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4252 int need_change = 0;
4253 /* We use last_op_addr_reload and the contents of the above arrays
4254 first as flags - -2 means no instance encountered, -1 means exactly
4255 one instance encountered.
4256 If more than one instance has been encountered, we store the reload
4257 number of the first reload of the kind in question; reload numbers
4258 are known to be non-negative. */
4259 for (i = 0; i < noperands; i++)
4260 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4261 for (i = n_reloads - 1; i >= 0; i--)
4263 switch (rld[i].when_needed)
4265 case RELOAD_FOR_OPERAND_ADDRESS:
4266 if (++first_op_addr_num >= 0)
4268 first_op_addr_num = i;
4269 need_change = 1;
4271 break;
4272 case RELOAD_FOR_INPUT_ADDRESS:
4273 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4275 first_inpaddr_num[rld[i].opnum] = i;
4276 need_change = 1;
4278 break;
4279 case RELOAD_FOR_OUTPUT_ADDRESS:
4280 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4282 first_outpaddr_num[rld[i].opnum] = i;
4283 need_change = 1;
4285 break;
4286 default:
4287 break;
4291 if (need_change)
4293 for (i = 0; i < n_reloads; i++)
4295 int first_num;
4296 enum reload_type type;
4298 switch (rld[i].when_needed)
4300 case RELOAD_FOR_OPADDR_ADDR:
4301 first_num = first_op_addr_num;
4302 type = RELOAD_FOR_OPERAND_ADDRESS;
4303 break;
4304 case RELOAD_FOR_INPADDR_ADDRESS:
4305 first_num = first_inpaddr_num[rld[i].opnum];
4306 type = RELOAD_FOR_INPUT_ADDRESS;
4307 break;
4308 case RELOAD_FOR_OUTADDR_ADDRESS:
4309 first_num = first_outpaddr_num[rld[i].opnum];
4310 type = RELOAD_FOR_OUTPUT_ADDRESS;
4311 break;
4312 default:
4313 continue;
4315 if (first_num < 0)
4316 continue;
4317 else if (i > first_num)
4318 rld[i].when_needed = type;
4319 else
4321 /* Check if the only TYPE reload that uses reload I is
4322 reload FIRST_NUM. */
4323 for (j = n_reloads - 1; j > first_num; j--)
4325 if (rld[j].when_needed == type
4326 && (rld[i].secondary_p
4327 ? rld[j].secondary_in_reload == i
4328 : reg_mentioned_p (rld[i].in, rld[j].in)))
4330 rld[i].when_needed = type;
4331 break;
4339 /* See if we have any reloads that are now allowed to be merged
4340 because we've changed when the reload is needed to
4341 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4342 check for the most common cases. */
4344 for (i = 0; i < n_reloads; i++)
4345 if (rld[i].in != 0 && rld[i].out == 0
4346 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4347 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4348 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4349 for (j = 0; j < n_reloads; j++)
4350 if (i != j && rld[j].in != 0 && rld[j].out == 0
4351 && rld[j].when_needed == rld[i].when_needed
4352 && MATCHES (rld[i].in, rld[j].in)
4353 && rld[i].class == rld[j].class
4354 && !rld[i].nocombine && !rld[j].nocombine
4355 && rld[i].reg_rtx == rld[j].reg_rtx)
4357 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4358 transfer_replacements (i, j);
4359 rld[j].in = 0;
4362 #ifdef HAVE_cc0
4363 /* If we made any reloads for addresses, see if they violate a
4364 "no input reloads" requirement for this insn. But loads that we
4365 do after the insn (such as for output addresses) are fine. */
4366 if (no_input_reloads)
4367 for (i = 0; i < n_reloads; i++)
4368 gcc_assert (rld[i].in == 0
4369 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS
4370 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS);
4371 #endif
4373 /* Compute reload_mode and reload_nregs. */
4374 for (i = 0; i < n_reloads; i++)
4376 rld[i].mode
4377 = (rld[i].inmode == VOIDmode
4378 || (GET_MODE_SIZE (rld[i].outmode)
4379 > GET_MODE_SIZE (rld[i].inmode)))
4380 ? rld[i].outmode : rld[i].inmode;
4382 rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
4385 /* Special case a simple move with an input reload and a
4386 destination of a hard reg, if the hard reg is ok, use it. */
4387 for (i = 0; i < n_reloads; i++)
4388 if (rld[i].when_needed == RELOAD_FOR_INPUT
4389 && GET_CODE (PATTERN (insn)) == SET
4390 && REG_P (SET_DEST (PATTERN (insn)))
4391 && SET_SRC (PATTERN (insn)) == rld[i].in)
4393 rtx dest = SET_DEST (PATTERN (insn));
4394 unsigned int regno = REGNO (dest);
4396 if (regno < FIRST_PSEUDO_REGISTER
4397 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno)
4398 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4400 int nr = hard_regno_nregs[regno][rld[i].mode];
4401 int ok = 1, nri;
4403 for (nri = 1; nri < nr; nri ++)
4404 if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno + nri))
4405 ok = 0;
4407 if (ok)
4408 rld[i].reg_rtx = dest;
4412 return retval;
4415 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4416 accepts a memory operand with constant address. */
4418 static int
4419 alternative_allows_memconst (const char *constraint, int altnum)
4421 int c;
4422 /* Skip alternatives before the one requested. */
4423 while (altnum > 0)
4425 while (*constraint++ != ',');
4426 altnum--;
4428 /* Scan the requested alternative for 'm' or 'o'.
4429 If one of them is present, this alternative accepts memory constants. */
4430 for (; (c = *constraint) && c != ',' && c != '#';
4431 constraint += CONSTRAINT_LEN (c, constraint))
4432 if (c == 'm' || c == 'o' || EXTRA_MEMORY_CONSTRAINT (c, constraint))
4433 return 1;
4434 return 0;
4437 /* Scan X for memory references and scan the addresses for reloading.
4438 Also checks for references to "constant" regs that we want to eliminate
4439 and replaces them with the values they stand for.
4440 We may alter X destructively if it contains a reference to such.
4441 If X is just a constant reg, we return the equivalent value
4442 instead of X.
4444 IND_LEVELS says how many levels of indirect addressing this machine
4445 supports.
4447 OPNUM and TYPE identify the purpose of the reload.
4449 IS_SET_DEST is true if X is the destination of a SET, which is not
4450 appropriate to be replaced by a constant.
4452 INSN, if nonzero, is the insn in which we do the reload. It is used
4453 to determine if we may generate output reloads, and where to put USEs
4454 for pseudos that we have to replace with stack slots.
4456 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4457 result of find_reloads_address. */
4459 static rtx
4460 find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4461 int ind_levels, int is_set_dest, rtx insn,
4462 int *address_reloaded)
4464 RTX_CODE code = GET_CODE (x);
4466 const char *fmt = GET_RTX_FORMAT (code);
4467 int i;
4468 int copied;
4470 if (code == REG)
4472 /* This code is duplicated for speed in find_reloads. */
4473 int regno = REGNO (x);
4474 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4475 x = reg_equiv_constant[regno];
4476 #if 0
4477 /* This creates (subreg (mem...)) which would cause an unnecessary
4478 reload of the mem. */
4479 else if (reg_equiv_mem[regno] != 0)
4480 x = reg_equiv_mem[regno];
4481 #endif
4482 else if (reg_equiv_memory_loc[regno]
4483 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4485 rtx mem = make_memloc (x, regno);
4486 if (reg_equiv_address[regno]
4487 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4489 /* If this is not a toplevel operand, find_reloads doesn't see
4490 this substitution. We have to emit a USE of the pseudo so
4491 that delete_output_reload can see it. */
4492 if (replace_reloads && recog_data.operand[opnum] != x)
4493 /* We mark the USE with QImode so that we recognize it
4494 as one that can be safely deleted at the end of
4495 reload. */
4496 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4497 QImode);
4498 x = mem;
4499 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4500 opnum, type, ind_levels, insn);
4501 if (address_reloaded)
4502 *address_reloaded = i;
4505 return x;
4507 if (code == MEM)
4509 rtx tem = x;
4511 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4512 opnum, type, ind_levels, insn);
4513 if (address_reloaded)
4514 *address_reloaded = i;
4516 return tem;
4519 if (code == SUBREG && REG_P (SUBREG_REG (x)))
4521 /* Check for SUBREG containing a REG that's equivalent to a constant.
4522 If the constant has a known value, truncate it right now.
4523 Similarly if we are extracting a single-word of a multi-word
4524 constant. If the constant is symbolic, allow it to be substituted
4525 normally. push_reload will strip the subreg later. If the
4526 constant is VOIDmode, abort because we will lose the mode of
4527 the register (this should never happen because one of the cases
4528 above should handle it). */
4530 int regno = REGNO (SUBREG_REG (x));
4531 rtx tem;
4533 if (subreg_lowpart_p (x)
4534 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4535 && reg_equiv_constant[regno] != 0
4536 && (tem = gen_lowpart_common (GET_MODE (x),
4537 reg_equiv_constant[regno])) != 0)
4538 return tem;
4540 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4541 && reg_equiv_constant[regno] != 0)
4543 tem =
4544 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant[regno],
4545 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4546 gcc_assert (tem);
4547 return tem;
4550 /* If the subreg contains a reg that will be converted to a mem,
4551 convert the subreg to a narrower memref now.
4552 Otherwise, we would get (subreg (mem ...) ...),
4553 which would force reload of the mem.
4555 We also need to do this if there is an equivalent MEM that is
4556 not offsettable. In that case, alter_subreg would produce an
4557 invalid address on big-endian machines.
4559 For machines that extend byte loads, we must not reload using
4560 a wider mode if we have a paradoxical SUBREG. find_reloads will
4561 force a reload in that case. So we should not do anything here. */
4563 else if (regno >= FIRST_PSEUDO_REGISTER
4564 #ifdef LOAD_EXTEND_OP
4565 && (GET_MODE_SIZE (GET_MODE (x))
4566 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4567 #endif
4568 && (reg_equiv_address[regno] != 0
4569 || (reg_equiv_mem[regno] != 0
4570 && (! strict_memory_address_p (GET_MODE (x),
4571 XEXP (reg_equiv_mem[regno], 0))
4572 || ! offsettable_memref_p (reg_equiv_mem[regno])
4573 || num_not_at_initial_offset))))
4574 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4575 insn);
4578 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4580 if (fmt[i] == 'e')
4582 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4583 ind_levels, is_set_dest, insn,
4584 address_reloaded);
4585 /* If we have replaced a reg with it's equivalent memory loc -
4586 that can still be handled here e.g. if it's in a paradoxical
4587 subreg - we must make the change in a copy, rather than using
4588 a destructive change. This way, find_reloads can still elect
4589 not to do the change. */
4590 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4592 x = shallow_copy_rtx (x);
4593 copied = 1;
4595 XEXP (x, i) = new_part;
4598 return x;
4601 /* Return a mem ref for the memory equivalent of reg REGNO.
4602 This mem ref is not shared with anything. */
4604 static rtx
4605 make_memloc (rtx ad, int regno)
4607 /* We must rerun eliminate_regs, in case the elimination
4608 offsets have changed. */
4609 rtx tem
4610 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4612 /* If TEM might contain a pseudo, we must copy it to avoid
4613 modifying it when we do the substitution for the reload. */
4614 if (rtx_varies_p (tem, 0))
4615 tem = copy_rtx (tem);
4617 tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
4618 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4620 /* Copy the result if it's still the same as the equivalence, to avoid
4621 modifying it when we do the substitution for the reload. */
4622 if (tem == reg_equiv_memory_loc[regno])
4623 tem = copy_rtx (tem);
4624 return tem;
4627 /* Returns true if AD could be turned into a valid memory reference
4628 to mode MODE by reloading the part pointed to by PART into a
4629 register. */
4631 static int
4632 maybe_memory_address_p (enum machine_mode mode, rtx ad, rtx *part)
4634 int retv;
4635 rtx tem = *part;
4636 rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4638 *part = reg;
4639 retv = memory_address_p (mode, ad);
4640 *part = tem;
4642 return retv;
4645 /* Record all reloads needed for handling memory address AD
4646 which appears in *LOC in a memory reference to mode MODE
4647 which itself is found in location *MEMREFLOC.
4648 Note that we take shortcuts assuming that no multi-reg machine mode
4649 occurs as part of an address.
4651 OPNUM and TYPE specify the purpose of this reload.
4653 IND_LEVELS says how many levels of indirect addressing this machine
4654 supports.
4656 INSN, if nonzero, is the insn in which we do the reload. It is used
4657 to determine if we may generate output reloads, and where to put USEs
4658 for pseudos that we have to replace with stack slots.
4660 Value is one if this address is reloaded or replaced as a whole; it is
4661 zero if the top level of this address was not reloaded or replaced, and
4662 it is -1 if it may or may not have been reloaded or replaced.
4664 Note that there is no verification that the address will be valid after
4665 this routine does its work. Instead, we rely on the fact that the address
4666 was valid when reload started. So we need only undo things that reload
4667 could have broken. These are wrong register types, pseudos not allocated
4668 to a hard register, and frame pointer elimination. */
4670 static int
4671 find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
4672 rtx *loc, int opnum, enum reload_type type,
4673 int ind_levels, rtx insn)
4675 int regno;
4676 int removed_and = 0;
4677 int op_index;
4678 rtx tem;
4680 /* If the address is a register, see if it is a legitimate address and
4681 reload if not. We first handle the cases where we need not reload
4682 or where we must reload in a non-standard way. */
4684 if (REG_P (ad))
4686 regno = REGNO (ad);
4688 /* If the register is equivalent to an invariant expression, substitute
4689 the invariant, and eliminate any eliminable register references. */
4690 tem = reg_equiv_constant[regno];
4691 if (tem != 0
4692 && (tem = eliminate_regs (tem, mode, insn))
4693 && strict_memory_address_p (mode, tem))
4695 *loc = ad = tem;
4696 return 0;
4699 tem = reg_equiv_memory_loc[regno];
4700 if (tem != 0)
4702 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4704 tem = make_memloc (ad, regno);
4705 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4707 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4708 &XEXP (tem, 0), opnum,
4709 ADDR_TYPE (type), ind_levels, insn);
4711 /* We can avoid a reload if the register's equivalent memory
4712 expression is valid as an indirect memory address.
4713 But not all addresses are valid in a mem used as an indirect
4714 address: only reg or reg+constant. */
4716 if (ind_levels > 0
4717 && strict_memory_address_p (mode, tem)
4718 && (REG_P (XEXP (tem, 0))
4719 || (GET_CODE (XEXP (tem, 0)) == PLUS
4720 && REG_P (XEXP (XEXP (tem, 0), 0))
4721 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4723 /* TEM is not the same as what we'll be replacing the
4724 pseudo with after reload, put a USE in front of INSN
4725 in the final reload pass. */
4726 if (replace_reloads
4727 && num_not_at_initial_offset
4728 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4730 *loc = tem;
4731 /* We mark the USE with QImode so that we
4732 recognize it as one that can be safely
4733 deleted at the end of reload. */
4734 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4735 insn), QImode);
4737 /* This doesn't really count as replacing the address
4738 as a whole, since it is still a memory access. */
4740 return 0;
4742 ad = tem;
4746 /* The only remaining case where we can avoid a reload is if this is a
4747 hard register that is valid as a base register and which is not the
4748 subject of a CLOBBER in this insn. */
4750 else if (regno < FIRST_PSEUDO_REGISTER
4751 && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
4752 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4753 return 0;
4755 /* If we do not have one of the cases above, we must do the reload. */
4756 push_reload (ad, NULL_RTX, loc, (rtx*) 0, MODE_BASE_REG_CLASS (mode),
4757 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4758 return 1;
4761 if (strict_memory_address_p (mode, ad))
4763 /* The address appears valid, so reloads are not needed.
4764 But the address may contain an eliminable register.
4765 This can happen because a machine with indirect addressing
4766 may consider a pseudo register by itself a valid address even when
4767 it has failed to get a hard reg.
4768 So do a tree-walk to find and eliminate all such regs. */
4770 /* But first quickly dispose of a common case. */
4771 if (GET_CODE (ad) == PLUS
4772 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4773 && REG_P (XEXP (ad, 0))
4774 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4775 return 0;
4777 subst_reg_equivs_changed = 0;
4778 *loc = subst_reg_equivs (ad, insn);
4780 if (! subst_reg_equivs_changed)
4781 return 0;
4783 /* Check result for validity after substitution. */
4784 if (strict_memory_address_p (mode, ad))
4785 return 0;
4788 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4791 if (memrefloc)
4793 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4794 ind_levels, win);
4796 break;
4797 win:
4798 *memrefloc = copy_rtx (*memrefloc);
4799 XEXP (*memrefloc, 0) = ad;
4800 move_replacements (&ad, &XEXP (*memrefloc, 0));
4801 return -1;
4803 while (0);
4804 #endif
4806 /* The address is not valid. We have to figure out why. First see if
4807 we have an outer AND and remove it if so. Then analyze what's inside. */
4809 if (GET_CODE (ad) == AND)
4811 removed_and = 1;
4812 loc = &XEXP (ad, 0);
4813 ad = *loc;
4816 /* One possibility for why the address is invalid is that it is itself
4817 a MEM. This can happen when the frame pointer is being eliminated, a
4818 pseudo is not allocated to a hard register, and the offset between the
4819 frame and stack pointers is not its initial value. In that case the
4820 pseudo will have been replaced by a MEM referring to the
4821 stack pointer. */
4822 if (MEM_P (ad))
4824 /* First ensure that the address in this MEM is valid. Then, unless
4825 indirect addresses are valid, reload the MEM into a register. */
4826 tem = ad;
4827 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4828 opnum, ADDR_TYPE (type),
4829 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4831 /* If tem was changed, then we must create a new memory reference to
4832 hold it and store it back into memrefloc. */
4833 if (tem != ad && memrefloc)
4835 *memrefloc = copy_rtx (*memrefloc);
4836 copy_replacements (tem, XEXP (*memrefloc, 0));
4837 loc = &XEXP (*memrefloc, 0);
4838 if (removed_and)
4839 loc = &XEXP (*loc, 0);
4842 /* Check similar cases as for indirect addresses as above except
4843 that we can allow pseudos and a MEM since they should have been
4844 taken care of above. */
4846 if (ind_levels == 0
4847 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4848 || MEM_P (XEXP (tem, 0))
4849 || ! (REG_P (XEXP (tem, 0))
4850 || (GET_CODE (XEXP (tem, 0)) == PLUS
4851 && REG_P (XEXP (XEXP (tem, 0), 0))
4852 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4854 /* Must use TEM here, not AD, since it is the one that will
4855 have any subexpressions reloaded, if needed. */
4856 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
4857 MODE_BASE_REG_CLASS (mode), GET_MODE (tem),
4858 VOIDmode, 0,
4859 0, opnum, type);
4860 return ! removed_and;
4862 else
4863 return 0;
4866 /* If we have address of a stack slot but it's not valid because the
4867 displacement is too large, compute the sum in a register.
4868 Handle all base registers here, not just fp/ap/sp, because on some
4869 targets (namely SH) we can also get too large displacements from
4870 big-endian corrections. */
4871 else if (GET_CODE (ad) == PLUS
4872 && REG_P (XEXP (ad, 0))
4873 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4874 && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
4875 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4877 /* Unshare the MEM rtx so we can safely alter it. */
4878 if (memrefloc)
4880 *memrefloc = copy_rtx (*memrefloc);
4881 loc = &XEXP (*memrefloc, 0);
4882 if (removed_and)
4883 loc = &XEXP (*loc, 0);
4886 if (double_reg_address_ok)
4888 /* Unshare the sum as well. */
4889 *loc = ad = copy_rtx (ad);
4891 /* Reload the displacement into an index reg.
4892 We assume the frame pointer or arg pointer is a base reg. */
4893 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4894 INDEX_REG_CLASS, GET_MODE (ad), opnum,
4895 type, ind_levels);
4896 return 0;
4898 else
4900 /* If the sum of two regs is not necessarily valid,
4901 reload the sum into a base reg.
4902 That will at least work. */
4903 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
4904 Pmode, opnum, type, ind_levels);
4906 return ! removed_and;
4909 /* If we have an indexed stack slot, there are three possible reasons why
4910 it might be invalid: The index might need to be reloaded, the address
4911 might have been made by frame pointer elimination and hence have a
4912 constant out of range, or both reasons might apply.
4914 We can easily check for an index needing reload, but even if that is the
4915 case, we might also have an invalid constant. To avoid making the
4916 conservative assumption and requiring two reloads, we see if this address
4917 is valid when not interpreted strictly. If it is, the only problem is
4918 that the index needs a reload and find_reloads_address_1 will take care
4919 of it.
4921 Handle all base registers here, not just fp/ap/sp, because on some
4922 targets (namely SPARC) we can also get invalid addresses from preventive
4923 subreg big-endian corrections made by find_reloads_toplev. We
4924 can also get expressions involving LO_SUM (rather than PLUS) from
4925 find_reloads_subreg_address.
4927 If we decide to do something, it must be that `double_reg_address_ok'
4928 is true. We generate a reload of the base register + constant and
4929 rework the sum so that the reload register will be added to the index.
4930 This is safe because we know the address isn't shared.
4932 We check for the base register as both the first and second operand of
4933 the innermost PLUS and/or LO_SUM. */
4935 for (op_index = 0; op_index < 2; ++op_index)
4937 rtx operand;
4939 if (!(GET_CODE (ad) == PLUS
4940 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4941 && (GET_CODE (XEXP (ad, 0)) == PLUS
4942 || GET_CODE (XEXP (ad, 0)) == LO_SUM)))
4943 continue;
4945 operand = XEXP (XEXP (ad, 0), op_index);
4946 if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
4947 continue;
4949 if ((REG_MODE_OK_FOR_BASE_P (operand, mode)
4950 || operand == frame_pointer_rtx
4951 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4952 || operand == hard_frame_pointer_rtx
4953 #endif
4954 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4955 || operand == arg_pointer_rtx
4956 #endif
4957 || operand == stack_pointer_rtx)
4958 && ! maybe_memory_address_p (mode, ad,
4959 &XEXP (XEXP (ad, 0), 1 - op_index)))
4961 rtx offset_reg;
4962 rtx addend;
4964 offset_reg = plus_constant (operand, INTVAL (XEXP (ad, 1)));
4965 addend = XEXP (XEXP (ad, 0), 1 - op_index);
4967 /* Form the adjusted address. */
4968 if (GET_CODE (XEXP (ad, 0)) == PLUS)
4969 ad = gen_rtx_PLUS (GET_MODE (ad),
4970 op_index == 0 ? offset_reg : addend,
4971 op_index == 0 ? addend : offset_reg);
4972 else
4973 ad = gen_rtx_LO_SUM (GET_MODE (ad),
4974 op_index == 0 ? offset_reg : addend,
4975 op_index == 0 ? addend : offset_reg);
4976 *loc = ad;
4978 find_reloads_address_part (XEXP (ad, op_index),
4979 &XEXP (ad, op_index),
4980 MODE_BASE_REG_CLASS (mode),
4981 GET_MODE (ad), opnum, type, ind_levels);
4982 find_reloads_address_1 (mode,
4983 XEXP (ad, 1 - op_index), 1,
4984 &XEXP (ad, 1 - op_index), opnum,
4985 type, 0, insn);
4987 return 0;
4991 /* See if address becomes valid when an eliminable register
4992 in a sum is replaced. */
4994 tem = ad;
4995 if (GET_CODE (ad) == PLUS)
4996 tem = subst_indexed_address (ad);
4997 if (tem != ad && strict_memory_address_p (mode, tem))
4999 /* Ok, we win that way. Replace any additional eliminable
5000 registers. */
5002 subst_reg_equivs_changed = 0;
5003 tem = subst_reg_equivs (tem, insn);
5005 /* Make sure that didn't make the address invalid again. */
5007 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
5009 *loc = tem;
5010 return 0;
5014 /* If constants aren't valid addresses, reload the constant address
5015 into a register. */
5016 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
5018 /* If AD is an address in the constant pool, the MEM rtx may be shared.
5019 Unshare it so we can safely alter it. */
5020 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
5021 && CONSTANT_POOL_ADDRESS_P (ad))
5023 *memrefloc = copy_rtx (*memrefloc);
5024 loc = &XEXP (*memrefloc, 0);
5025 if (removed_and)
5026 loc = &XEXP (*loc, 0);
5029 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
5030 Pmode, opnum, type, ind_levels);
5031 return ! removed_and;
5034 return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
5035 insn);
5038 /* Find all pseudo regs appearing in AD
5039 that are eliminable in favor of equivalent values
5040 and do not have hard regs; replace them by their equivalents.
5041 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
5042 front of it for pseudos that we have to replace with stack slots. */
5044 static rtx
5045 subst_reg_equivs (rtx ad, rtx insn)
5047 RTX_CODE code = GET_CODE (ad);
5048 int i;
5049 const char *fmt;
5051 switch (code)
5053 case HIGH:
5054 case CONST_INT:
5055 case CONST:
5056 case CONST_DOUBLE:
5057 case CONST_VECTOR:
5058 case SYMBOL_REF:
5059 case LABEL_REF:
5060 case PC:
5061 case CC0:
5062 return ad;
5064 case REG:
5066 int regno = REGNO (ad);
5068 if (reg_equiv_constant[regno] != 0)
5070 subst_reg_equivs_changed = 1;
5071 return reg_equiv_constant[regno];
5073 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
5075 rtx mem = make_memloc (ad, regno);
5076 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
5078 subst_reg_equivs_changed = 1;
5079 /* We mark the USE with QImode so that we recognize it
5080 as one that can be safely deleted at the end of
5081 reload. */
5082 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5083 QImode);
5084 return mem;
5088 return ad;
5090 case PLUS:
5091 /* Quickly dispose of a common case. */
5092 if (XEXP (ad, 0) == frame_pointer_rtx
5093 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
5094 return ad;
5095 break;
5097 default:
5098 break;
5101 fmt = GET_RTX_FORMAT (code);
5102 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5103 if (fmt[i] == 'e')
5104 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5105 return ad;
5108 /* Compute the sum of X and Y, making canonicalizations assumed in an
5109 address, namely: sum constant integers, surround the sum of two
5110 constants with a CONST, put the constant as the second operand, and
5111 group the constant on the outermost sum.
5113 This routine assumes both inputs are already in canonical form. */
5116 form_sum (rtx x, rtx y)
5118 rtx tem;
5119 enum machine_mode mode = GET_MODE (x);
5121 if (mode == VOIDmode)
5122 mode = GET_MODE (y);
5124 if (mode == VOIDmode)
5125 mode = Pmode;
5127 if (GET_CODE (x) == CONST_INT)
5128 return plus_constant (y, INTVAL (x));
5129 else if (GET_CODE (y) == CONST_INT)
5130 return plus_constant (x, INTVAL (y));
5131 else if (CONSTANT_P (x))
5132 tem = x, x = y, y = tem;
5134 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5135 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
5137 /* Note that if the operands of Y are specified in the opposite
5138 order in the recursive calls below, infinite recursion will occur. */
5139 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5140 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
5142 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5143 constant will have been placed second. */
5144 if (CONSTANT_P (x) && CONSTANT_P (y))
5146 if (GET_CODE (x) == CONST)
5147 x = XEXP (x, 0);
5148 if (GET_CODE (y) == CONST)
5149 y = XEXP (y, 0);
5151 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5154 return gen_rtx_PLUS (mode, x, y);
5157 /* If ADDR is a sum containing a pseudo register that should be
5158 replaced with a constant (from reg_equiv_constant),
5159 return the result of doing so, and also apply the associative
5160 law so that the result is more likely to be a valid address.
5161 (But it is not guaranteed to be one.)
5163 Note that at most one register is replaced, even if more are
5164 replaceable. Also, we try to put the result into a canonical form
5165 so it is more likely to be a valid address.
5167 In all other cases, return ADDR. */
5169 static rtx
5170 subst_indexed_address (rtx addr)
5172 rtx op0 = 0, op1 = 0, op2 = 0;
5173 rtx tem;
5174 int regno;
5176 if (GET_CODE (addr) == PLUS)
5178 /* Try to find a register to replace. */
5179 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5180 if (REG_P (op0)
5181 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5182 && reg_renumber[regno] < 0
5183 && reg_equiv_constant[regno] != 0)
5184 op0 = reg_equiv_constant[regno];
5185 else if (REG_P (op1)
5186 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5187 && reg_renumber[regno] < 0
5188 && reg_equiv_constant[regno] != 0)
5189 op1 = reg_equiv_constant[regno];
5190 else if (GET_CODE (op0) == PLUS
5191 && (tem = subst_indexed_address (op0)) != op0)
5192 op0 = tem;
5193 else if (GET_CODE (op1) == PLUS
5194 && (tem = subst_indexed_address (op1)) != op1)
5195 op1 = tem;
5196 else
5197 return addr;
5199 /* Pick out up to three things to add. */
5200 if (GET_CODE (op1) == PLUS)
5201 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5202 else if (GET_CODE (op0) == PLUS)
5203 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5205 /* Compute the sum. */
5206 if (op2 != 0)
5207 op1 = form_sum (op1, op2);
5208 if (op1 != 0)
5209 op0 = form_sum (op0, op1);
5211 return op0;
5213 return addr;
5216 /* Update the REG_INC notes for an insn. It updates all REG_INC
5217 notes for the instruction which refer to REGNO the to refer
5218 to the reload number.
5220 INSN is the insn for which any REG_INC notes need updating.
5222 REGNO is the register number which has been reloaded.
5224 RELOADNUM is the reload number. */
5226 static void
5227 update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5228 int reloadnum ATTRIBUTE_UNUSED)
5230 #ifdef AUTO_INC_DEC
5231 rtx link;
5233 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5234 if (REG_NOTE_KIND (link) == REG_INC
5235 && (int) REGNO (XEXP (link, 0)) == regno)
5236 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5237 #endif
5240 /* Record the pseudo registers we must reload into hard registers in a
5241 subexpression of a would-be memory address, X referring to a value
5242 in mode MODE. (This function is not called if the address we find
5243 is strictly valid.)
5245 CONTEXT = 1 means we are considering regs as index regs,
5246 = 0 means we are considering them as base regs, = 2 means we
5247 are considering them as base regs for REG + REG.
5249 OPNUM and TYPE specify the purpose of any reloads made.
5251 IND_LEVELS says how many levels of indirect addressing are
5252 supported at this point in the address.
5254 INSN, if nonzero, is the insn in which we do the reload. It is used
5255 to determine if we may generate output reloads.
5257 We return nonzero if X, as a whole, is reloaded or replaced. */
5259 /* Note that we take shortcuts assuming that no multi-reg machine mode
5260 occurs as part of an address.
5261 Also, this is not fully machine-customizable; it works for machines
5262 such as VAXen and 68000's and 32000's, but other possible machines
5263 could have addressing modes that this does not handle right. */
5265 static int
5266 find_reloads_address_1 (enum machine_mode mode, rtx x, int context,
5267 rtx *loc, int opnum, enum reload_type type,
5268 int ind_levels, rtx insn)
5270 #define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE) \
5271 ((CONTEXT) == 2 \
5272 ? REGNO_MODE_OK_FOR_REG_BASE_P (REGNO, MODE) \
5273 : (CONTEXT) == 1 \
5274 ? REGNO_OK_FOR_INDEX_P (REGNO) \
5275 : REGNO_MODE_OK_FOR_BASE_P (REGNO, MODE))
5277 enum reg_class context_reg_class;
5278 RTX_CODE code = GET_CODE (x);
5280 if (context == 2)
5281 context_reg_class = MODE_BASE_REG_REG_CLASS (mode);
5282 else if (context == 1)
5283 context_reg_class = INDEX_REG_CLASS;
5284 else
5285 context_reg_class = MODE_BASE_REG_CLASS (mode);
5287 switch (code)
5289 case PLUS:
5291 rtx orig_op0 = XEXP (x, 0);
5292 rtx orig_op1 = XEXP (x, 1);
5293 RTX_CODE code0 = GET_CODE (orig_op0);
5294 RTX_CODE code1 = GET_CODE (orig_op1);
5295 rtx op0 = orig_op0;
5296 rtx op1 = orig_op1;
5298 if (GET_CODE (op0) == SUBREG)
5300 op0 = SUBREG_REG (op0);
5301 code0 = GET_CODE (op0);
5302 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5303 op0 = gen_rtx_REG (word_mode,
5304 (REGNO (op0) +
5305 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5306 GET_MODE (SUBREG_REG (orig_op0)),
5307 SUBREG_BYTE (orig_op0),
5308 GET_MODE (orig_op0))));
5311 if (GET_CODE (op1) == SUBREG)
5313 op1 = SUBREG_REG (op1);
5314 code1 = GET_CODE (op1);
5315 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5316 /* ??? Why is this given op1's mode and above for
5317 ??? op0 SUBREGs we use word_mode? */
5318 op1 = gen_rtx_REG (GET_MODE (op1),
5319 (REGNO (op1) +
5320 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5321 GET_MODE (SUBREG_REG (orig_op1)),
5322 SUBREG_BYTE (orig_op1),
5323 GET_MODE (orig_op1))));
5325 /* Plus in the index register may be created only as a result of
5326 register remateralization for expression like &localvar*4. Reload it.
5327 It may be possible to combine the displacement on the outer level,
5328 but it is probably not worthwhile to do so. */
5329 if (context == 1)
5331 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5332 opnum, ADDR_TYPE (type), ind_levels, insn);
5333 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5334 context_reg_class,
5335 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5336 return 1;
5339 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5340 || code0 == ZERO_EXTEND || code1 == MEM)
5342 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5343 type, ind_levels, insn);
5344 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5345 type, ind_levels, insn);
5348 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5349 || code1 == ZERO_EXTEND || code0 == MEM)
5351 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5352 type, ind_levels, insn);
5353 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5354 type, ind_levels, insn);
5357 else if (code0 == CONST_INT || code0 == CONST
5358 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5359 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5360 type, ind_levels, insn);
5362 else if (code1 == CONST_INT || code1 == CONST
5363 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5364 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5365 type, ind_levels, insn);
5367 else if (code0 == REG && code1 == REG)
5369 if (REG_OK_FOR_INDEX_P (op0)
5370 && REG_MODE_OK_FOR_REG_BASE_P (op1, mode))
5371 return 0;
5372 else if (REG_OK_FOR_INDEX_P (op1)
5373 && REG_MODE_OK_FOR_REG_BASE_P (op0, mode))
5374 return 0;
5375 else if (REG_MODE_OK_FOR_REG_BASE_P (op1, mode))
5376 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5377 type, ind_levels, insn);
5378 else if (REG_MODE_OK_FOR_REG_BASE_P (op0, mode))
5379 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5380 type, ind_levels, insn);
5381 else if (REG_OK_FOR_INDEX_P (op1))
5382 find_reloads_address_1 (mode, orig_op0, 2, &XEXP (x, 0), opnum,
5383 type, ind_levels, insn);
5384 else if (REG_OK_FOR_INDEX_P (op0))
5385 find_reloads_address_1 (mode, orig_op1, 2, &XEXP (x, 1), opnum,
5386 type, ind_levels, insn);
5387 else
5389 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5390 type, ind_levels, insn);
5391 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5392 type, ind_levels, insn);
5396 else if (code0 == REG)
5398 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5399 type, ind_levels, insn);
5400 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5401 type, ind_levels, insn);
5404 else if (code1 == REG)
5406 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5407 type, ind_levels, insn);
5408 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5409 type, ind_levels, insn);
5413 return 0;
5415 case POST_MODIFY:
5416 case PRE_MODIFY:
5418 rtx op0 = XEXP (x, 0);
5419 rtx op1 = XEXP (x, 1);
5420 int regno;
5421 int reloadnum;
5423 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5424 return 0;
5426 /* Currently, we only support {PRE,POST}_MODIFY constructs
5427 where a base register is {inc,dec}remented by the contents
5428 of another register or by a constant value. Thus, these
5429 operands must match. */
5430 gcc_assert (op0 == XEXP (op1, 0));
5432 /* Require index register (or constant). Let's just handle the
5433 register case in the meantime... If the target allows
5434 auto-modify by a constant then we could try replacing a pseudo
5435 register with its equivalent constant where applicable. */
5436 if (REG_P (XEXP (op1, 1)))
5437 if (!REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5438 find_reloads_address_1 (mode, XEXP (op1, 1), 1, &XEXP (op1, 1),
5439 opnum, type, ind_levels, insn);
5441 gcc_assert (REG_P (XEXP (op1, 0)));
5443 regno = REGNO (XEXP (op1, 0));
5445 /* A register that is incremented cannot be constant! */
5446 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5447 || reg_equiv_constant[regno] == 0);
5449 /* Handle a register that is equivalent to a memory location
5450 which cannot be addressed directly. */
5451 if (reg_equiv_memory_loc[regno] != 0
5452 && (reg_equiv_address[regno] != 0
5453 || num_not_at_initial_offset))
5455 rtx tem = make_memloc (XEXP (x, 0), regno);
5457 if (reg_equiv_address[regno]
5458 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5460 /* First reload the memory location's address.
5461 We can't use ADDR_TYPE (type) here, because we need to
5462 write back the value after reading it, hence we actually
5463 need two registers. */
5464 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5465 &XEXP (tem, 0), opnum,
5466 RELOAD_OTHER,
5467 ind_levels, insn);
5469 /* Then reload the memory location into a base
5470 register. */
5471 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5472 &XEXP (op1, 0),
5473 MODE_BASE_REG_CLASS (mode),
5474 GET_MODE (x), GET_MODE (x), 0,
5475 0, opnum, RELOAD_OTHER);
5477 update_auto_inc_notes (this_insn, regno, reloadnum);
5478 return 0;
5482 if (reg_renumber[regno] >= 0)
5483 regno = reg_renumber[regno];
5485 /* We require a base register here... */
5486 if (!REGNO_MODE_OK_FOR_BASE_P (regno, GET_MODE (x)))
5488 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5489 &XEXP (op1, 0), &XEXP (x, 0),
5490 MODE_BASE_REG_CLASS (mode),
5491 GET_MODE (x), GET_MODE (x), 0, 0,
5492 opnum, RELOAD_OTHER);
5494 update_auto_inc_notes (this_insn, regno, reloadnum);
5495 return 0;
5498 return 0;
5500 case POST_INC:
5501 case POST_DEC:
5502 case PRE_INC:
5503 case PRE_DEC:
5504 if (REG_P (XEXP (x, 0)))
5506 int regno = REGNO (XEXP (x, 0));
5507 int value = 0;
5508 rtx x_orig = x;
5510 /* A register that is incremented cannot be constant! */
5511 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5512 || reg_equiv_constant[regno] == 0);
5514 /* Handle a register that is equivalent to a memory location
5515 which cannot be addressed directly. */
5516 if (reg_equiv_memory_loc[regno] != 0
5517 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5519 rtx tem = make_memloc (XEXP (x, 0), regno);
5520 if (reg_equiv_address[regno]
5521 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5523 /* First reload the memory location's address.
5524 We can't use ADDR_TYPE (type) here, because we need to
5525 write back the value after reading it, hence we actually
5526 need two registers. */
5527 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5528 &XEXP (tem, 0), opnum, type,
5529 ind_levels, insn);
5530 /* Put this inside a new increment-expression. */
5531 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5532 /* Proceed to reload that, as if it contained a register. */
5536 /* If we have a hard register that is ok as an index,
5537 don't make a reload. If an autoincrement of a nice register
5538 isn't "valid", it must be that no autoincrement is "valid".
5539 If that is true and something made an autoincrement anyway,
5540 this must be a special context where one is allowed.
5541 (For example, a "push" instruction.)
5542 We can't improve this address, so leave it alone. */
5544 /* Otherwise, reload the autoincrement into a suitable hard reg
5545 and record how much to increment by. */
5547 if (reg_renumber[regno] >= 0)
5548 regno = reg_renumber[regno];
5549 if (regno >= FIRST_PSEUDO_REGISTER
5550 || !REG_OK_FOR_CONTEXT (context, regno, mode))
5552 int reloadnum;
5554 /* If we can output the register afterwards, do so, this
5555 saves the extra update.
5556 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5557 CALL_INSN - and it does not set CC0.
5558 But don't do this if we cannot directly address the
5559 memory location, since this will make it harder to
5560 reuse address reloads, and increases register pressure.
5561 Also don't do this if we can probably update x directly. */
5562 rtx equiv = (MEM_P (XEXP (x, 0))
5563 ? XEXP (x, 0)
5564 : reg_equiv_mem[regno]);
5565 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5566 if (insn && NONJUMP_INSN_P (insn) && equiv
5567 && memory_operand (equiv, GET_MODE (equiv))
5568 #ifdef HAVE_cc0
5569 && ! sets_cc0_p (PATTERN (insn))
5570 #endif
5571 && ! (icode != CODE_FOR_nothing
5572 && ((*insn_data[icode].operand[0].predicate)
5573 (equiv, Pmode))
5574 && ((*insn_data[icode].operand[1].predicate)
5575 (equiv, Pmode))))
5577 /* We use the original pseudo for loc, so that
5578 emit_reload_insns() knows which pseudo this
5579 reload refers to and updates the pseudo rtx, not
5580 its equivalent memory location, as well as the
5581 corresponding entry in reg_last_reload_reg. */
5582 loc = &XEXP (x_orig, 0);
5583 x = XEXP (x, 0);
5584 reloadnum
5585 = push_reload (x, x, loc, loc,
5586 context_reg_class,
5587 GET_MODE (x), GET_MODE (x), 0, 0,
5588 opnum, RELOAD_OTHER);
5590 else
5592 reloadnum
5593 = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5594 context_reg_class,
5595 GET_MODE (x), GET_MODE (x), 0, 0,
5596 opnum, type);
5597 rld[reloadnum].inc
5598 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5600 value = 1;
5603 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5604 reloadnum);
5606 return value;
5609 else if (MEM_P (XEXP (x, 0)))
5611 /* This is probably the result of a substitution, by eliminate_regs,
5612 of an equivalent address for a pseudo that was not allocated to a
5613 hard register. Verify that the specified address is valid and
5614 reload it into a register. */
5615 /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE. */
5616 rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
5617 rtx link;
5618 int reloadnum;
5620 /* Since we know we are going to reload this item, don't decrement
5621 for the indirection level.
5623 Note that this is actually conservative: it would be slightly
5624 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5625 reload1.c here. */
5626 /* We can't use ADDR_TYPE (type) here, because we need to
5627 write back the value after reading it, hence we actually
5628 need two registers. */
5629 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5630 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5631 opnum, type, ind_levels, insn);
5633 reloadnum = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5634 context_reg_class,
5635 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5636 rld[reloadnum].inc
5637 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5639 link = FIND_REG_INC_NOTE (this_insn, tem);
5640 if (link != 0)
5641 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5643 return 1;
5645 return 0;
5647 case MEM:
5648 /* This is probably the result of a substitution, by eliminate_regs, of
5649 an equivalent address for a pseudo that was not allocated to a hard
5650 register. Verify that the specified address is valid and reload it
5651 into a register.
5653 Since we know we are going to reload this item, don't decrement for
5654 the indirection level.
5656 Note that this is actually conservative: it would be slightly more
5657 efficient to use the value of SPILL_INDIRECT_LEVELS from
5658 reload1.c here. */
5660 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5661 opnum, ADDR_TYPE (type), ind_levels, insn);
5662 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5663 context_reg_class,
5664 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5665 return 1;
5667 case REG:
5669 int regno = REGNO (x);
5671 if (reg_equiv_constant[regno] != 0)
5673 find_reloads_address_part (reg_equiv_constant[regno], loc,
5674 context_reg_class,
5675 GET_MODE (x), opnum, type, ind_levels);
5676 return 1;
5679 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5680 that feeds this insn. */
5681 if (reg_equiv_mem[regno] != 0)
5683 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
5684 context_reg_class,
5685 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5686 return 1;
5688 #endif
5690 if (reg_equiv_memory_loc[regno]
5691 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5693 rtx tem = make_memloc (x, regno);
5694 if (reg_equiv_address[regno] != 0
5695 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5697 x = tem;
5698 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5699 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5700 ind_levels, insn);
5704 if (reg_renumber[regno] >= 0)
5705 regno = reg_renumber[regno];
5707 if (regno >= FIRST_PSEUDO_REGISTER
5708 || !REG_OK_FOR_CONTEXT (context, regno, mode))
5710 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5711 context_reg_class,
5712 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5713 return 1;
5716 /* If a register appearing in an address is the subject of a CLOBBER
5717 in this insn, reload it into some other register to be safe.
5718 The CLOBBER is supposed to make the register unavailable
5719 from before this insn to after it. */
5720 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5722 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5723 context_reg_class,
5724 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5725 return 1;
5728 return 0;
5730 case SUBREG:
5731 if (REG_P (SUBREG_REG (x)))
5733 /* If this is a SUBREG of a hard register and the resulting register
5734 is of the wrong class, reload the whole SUBREG. This avoids
5735 needless copies if SUBREG_REG is multi-word. */
5736 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5738 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
5740 if (! REG_OK_FOR_CONTEXT (context, regno, mode))
5742 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5743 context_reg_class,
5744 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5745 return 1;
5748 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5749 is larger than the class size, then reload the whole SUBREG. */
5750 else
5752 enum reg_class class = context_reg_class;
5753 if ((unsigned) CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5754 > reg_class_size[class])
5756 x = find_reloads_subreg_address (x, 0, opnum, type,
5757 ind_levels, insn);
5758 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5759 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5760 return 1;
5764 break;
5766 default:
5767 break;
5771 const char *fmt = GET_RTX_FORMAT (code);
5772 int i;
5774 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5776 if (fmt[i] == 'e')
5777 find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
5778 opnum, type, ind_levels, insn);
5782 #undef REG_OK_FOR_CONTEXT
5783 return 0;
5786 /* X, which is found at *LOC, is a part of an address that needs to be
5787 reloaded into a register of class CLASS. If X is a constant, or if
5788 X is a PLUS that contains a constant, check that the constant is a
5789 legitimate operand and that we are supposed to be able to load
5790 it into the register.
5792 If not, force the constant into memory and reload the MEM instead.
5794 MODE is the mode to use, in case X is an integer constant.
5796 OPNUM and TYPE describe the purpose of any reloads made.
5798 IND_LEVELS says how many levels of indirect addressing this machine
5799 supports. */
5801 static void
5802 find_reloads_address_part (rtx x, rtx *loc, enum reg_class class,
5803 enum machine_mode mode, int opnum,
5804 enum reload_type type, int ind_levels)
5806 if (CONSTANT_P (x)
5807 && (! LEGITIMATE_CONSTANT_P (x)
5808 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5810 rtx tem;
5812 tem = x = force_const_mem (mode, x);
5813 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5814 opnum, type, ind_levels, 0);
5817 else if (GET_CODE (x) == PLUS
5818 && CONSTANT_P (XEXP (x, 1))
5819 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5820 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5822 rtx tem;
5824 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5825 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5826 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5827 opnum, type, ind_levels, 0);
5830 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5831 mode, VOIDmode, 0, 0, opnum, type);
5834 /* X, a subreg of a pseudo, is a part of an address that needs to be
5835 reloaded.
5837 If the pseudo is equivalent to a memory location that cannot be directly
5838 addressed, make the necessary address reloads.
5840 If address reloads have been necessary, or if the address is changed
5841 by register elimination, return the rtx of the memory location;
5842 otherwise, return X.
5844 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
5845 memory location.
5847 OPNUM and TYPE identify the purpose of the reload.
5849 IND_LEVELS says how many levels of indirect addressing are
5850 supported at this point in the address.
5852 INSN, if nonzero, is the insn in which we do the reload. It is used
5853 to determine where to put USEs for pseudos that we have to replace with
5854 stack slots. */
5856 static rtx
5857 find_reloads_subreg_address (rtx x, int force_replace, int opnum,
5858 enum reload_type type, int ind_levels, rtx insn)
5860 int regno = REGNO (SUBREG_REG (x));
5862 if (reg_equiv_memory_loc[regno])
5864 /* If the address is not directly addressable, or if the address is not
5865 offsettable, then it must be replaced. */
5866 if (! force_replace
5867 && (reg_equiv_address[regno]
5868 || ! offsettable_memref_p (reg_equiv_mem[regno])))
5869 force_replace = 1;
5871 if (force_replace || num_not_at_initial_offset)
5873 rtx tem = make_memloc (SUBREG_REG (x), regno);
5875 /* If the address changes because of register elimination, then
5876 it must be replaced. */
5877 if (force_replace
5878 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5880 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
5881 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
5882 int offset;
5884 /* For big-endian paradoxical subregs, SUBREG_BYTE does not
5885 hold the correct (negative) byte offset. */
5886 if (BYTES_BIG_ENDIAN && outer_size > inner_size)
5887 offset = inner_size - outer_size;
5888 else
5889 offset = SUBREG_BYTE (x);
5891 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
5892 PUT_MODE (tem, GET_MODE (x));
5894 /* If this was a paradoxical subreg that we replaced, the
5895 resulting memory must be sufficiently aligned to allow
5896 us to widen the mode of the memory. */
5897 if (outer_size > inner_size && STRICT_ALIGNMENT)
5899 rtx base;
5901 base = XEXP (tem, 0);
5902 if (GET_CODE (base) == PLUS)
5904 if (GET_CODE (XEXP (base, 1)) == CONST_INT
5905 && INTVAL (XEXP (base, 1)) % outer_size != 0)
5906 return x;
5907 base = XEXP (base, 0);
5909 if (!REG_P (base)
5910 || (REGNO_POINTER_ALIGN (REGNO (base))
5911 < outer_size * BITS_PER_UNIT))
5912 return x;
5915 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5916 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
5917 ind_levels, insn);
5919 /* If this is not a toplevel operand, find_reloads doesn't see
5920 this substitution. We have to emit a USE of the pseudo so
5921 that delete_output_reload can see it. */
5922 if (replace_reloads && recog_data.operand[opnum] != x)
5923 /* We mark the USE with QImode so that we recognize it
5924 as one that can be safely deleted at the end of
5925 reload. */
5926 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
5927 SUBREG_REG (x)),
5928 insn), QImode);
5929 x = tem;
5933 return x;
5936 /* Substitute into the current INSN the registers into which we have reloaded
5937 the things that need reloading. The array `replacements'
5938 contains the locations of all pointers that must be changed
5939 and says what to replace them with.
5941 Return the rtx that X translates into; usually X, but modified. */
5943 void
5944 subst_reloads (rtx insn)
5946 int i;
5948 for (i = 0; i < n_replacements; i++)
5950 struct replacement *r = &replacements[i];
5951 rtx reloadreg = rld[r->what].reg_rtx;
5952 if (reloadreg)
5954 #ifdef ENABLE_CHECKING
5955 /* Internal consistency test. Check that we don't modify
5956 anything in the equivalence arrays. Whenever something from
5957 those arrays needs to be reloaded, it must be unshared before
5958 being substituted into; the equivalence must not be modified.
5959 Otherwise, if the equivalence is used after that, it will
5960 have been modified, and the thing substituted (probably a
5961 register) is likely overwritten and not a usable equivalence. */
5962 int check_regno;
5964 for (check_regno = 0; check_regno < max_regno; check_regno++)
5966 #define CHECK_MODF(ARRAY) \
5967 gcc_assert (!ARRAY[check_regno] \
5968 || !loc_mentioned_in_p (r->where, \
5969 ARRAY[check_regno]))
5971 CHECK_MODF (reg_equiv_constant);
5972 CHECK_MODF (reg_equiv_memory_loc);
5973 CHECK_MODF (reg_equiv_address);
5974 CHECK_MODF (reg_equiv_mem);
5975 #undef CHECK_MODF
5977 #endif /* ENABLE_CHECKING */
5979 /* If we're replacing a LABEL_REF with a register, add a
5980 REG_LABEL note to indicate to flow which label this
5981 register refers to. */
5982 if (GET_CODE (*r->where) == LABEL_REF
5983 && JUMP_P (insn))
5984 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
5985 XEXP (*r->where, 0),
5986 REG_NOTES (insn));
5988 /* Encapsulate RELOADREG so its machine mode matches what
5989 used to be there. Note that gen_lowpart_common will
5990 do the wrong thing if RELOADREG is multi-word. RELOADREG
5991 will always be a REG here. */
5992 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
5993 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
5995 /* If we are putting this into a SUBREG and RELOADREG is a
5996 SUBREG, we would be making nested SUBREGs, so we have to fix
5997 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
5999 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
6001 if (GET_MODE (*r->subreg_loc)
6002 == GET_MODE (SUBREG_REG (reloadreg)))
6003 *r->subreg_loc = SUBREG_REG (reloadreg);
6004 else
6006 int final_offset =
6007 SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
6009 /* When working with SUBREGs the rule is that the byte
6010 offset must be a multiple of the SUBREG's mode. */
6011 final_offset = (final_offset /
6012 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6013 final_offset = (final_offset *
6014 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6016 *r->where = SUBREG_REG (reloadreg);
6017 SUBREG_BYTE (*r->subreg_loc) = final_offset;
6020 else
6021 *r->where = reloadreg;
6023 /* If reload got no reg and isn't optional, something's wrong. */
6024 else
6025 gcc_assert (rld[r->what].optional);
6029 /* Make a copy of any replacements being done into X and move those
6030 copies to locations in Y, a copy of X. */
6032 void
6033 copy_replacements (rtx x, rtx y)
6035 /* We can't support X being a SUBREG because we might then need to know its
6036 location if something inside it was replaced. */
6037 gcc_assert (GET_CODE (x) != SUBREG);
6039 copy_replacements_1 (&x, &y, n_replacements);
6042 static void
6043 copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
6045 int i, j;
6046 rtx x, y;
6047 struct replacement *r;
6048 enum rtx_code code;
6049 const char *fmt;
6051 for (j = 0; j < orig_replacements; j++)
6053 if (replacements[j].subreg_loc == px)
6055 r = &replacements[n_replacements++];
6056 r->where = replacements[j].where;
6057 r->subreg_loc = py;
6058 r->what = replacements[j].what;
6059 r->mode = replacements[j].mode;
6061 else if (replacements[j].where == px)
6063 r = &replacements[n_replacements++];
6064 r->where = py;
6065 r->subreg_loc = 0;
6066 r->what = replacements[j].what;
6067 r->mode = replacements[j].mode;
6071 x = *px;
6072 y = *py;
6073 code = GET_CODE (x);
6074 fmt = GET_RTX_FORMAT (code);
6076 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6078 if (fmt[i] == 'e')
6079 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6080 else if (fmt[i] == 'E')
6081 for (j = XVECLEN (x, i); --j >= 0; )
6082 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6083 orig_replacements);
6087 /* Change any replacements being done to *X to be done to *Y. */
6089 void
6090 move_replacements (rtx *x, rtx *y)
6092 int i;
6094 for (i = 0; i < n_replacements; i++)
6095 if (replacements[i].subreg_loc == x)
6096 replacements[i].subreg_loc = y;
6097 else if (replacements[i].where == x)
6099 replacements[i].where = y;
6100 replacements[i].subreg_loc = 0;
6104 /* If LOC was scheduled to be replaced by something, return the replacement.
6105 Otherwise, return *LOC. */
6108 find_replacement (rtx *loc)
6110 struct replacement *r;
6112 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6114 rtx reloadreg = rld[r->what].reg_rtx;
6116 if (reloadreg && r->where == loc)
6118 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6119 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
6121 return reloadreg;
6123 else if (reloadreg && r->subreg_loc == loc)
6125 /* RELOADREG must be either a REG or a SUBREG.
6127 ??? Is it actually still ever a SUBREG? If so, why? */
6129 if (REG_P (reloadreg))
6130 return gen_rtx_REG (GET_MODE (*loc),
6131 (REGNO (reloadreg) +
6132 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
6133 GET_MODE (SUBREG_REG (*loc)),
6134 SUBREG_BYTE (*loc),
6135 GET_MODE (*loc))));
6136 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
6137 return reloadreg;
6138 else
6140 int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
6142 /* When working with SUBREGs the rule is that the byte
6143 offset must be a multiple of the SUBREG's mode. */
6144 final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
6145 final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
6146 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
6147 final_offset);
6152 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6153 what's inside and make a new rtl if so. */
6154 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6155 || GET_CODE (*loc) == MULT)
6157 rtx x = find_replacement (&XEXP (*loc, 0));
6158 rtx y = find_replacement (&XEXP (*loc, 1));
6160 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6161 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6164 return *loc;
6167 /* Return nonzero if register in range [REGNO, ENDREGNO)
6168 appears either explicitly or implicitly in X
6169 other than being stored into (except for earlyclobber operands).
6171 References contained within the substructure at LOC do not count.
6172 LOC may be zero, meaning don't ignore anything.
6174 This is similar to refers_to_regno_p in rtlanal.c except that we
6175 look at equivalences for pseudos that didn't get hard registers. */
6177 static int
6178 refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6179 rtx x, rtx *loc)
6181 int i;
6182 unsigned int r;
6183 RTX_CODE code;
6184 const char *fmt;
6186 if (x == 0)
6187 return 0;
6189 repeat:
6190 code = GET_CODE (x);
6192 switch (code)
6194 case REG:
6195 r = REGNO (x);
6197 /* If this is a pseudo, a hard register must not have been allocated.
6198 X must therefore either be a constant or be in memory. */
6199 if (r >= FIRST_PSEUDO_REGISTER)
6201 if (reg_equiv_memory_loc[r])
6202 return refers_to_regno_for_reload_p (regno, endregno,
6203 reg_equiv_memory_loc[r],
6204 (rtx*) 0);
6206 gcc_assert (reg_equiv_constant[r]);
6207 return 0;
6210 return (endregno > r
6211 && regno < r + (r < FIRST_PSEUDO_REGISTER
6212 ? hard_regno_nregs[r][GET_MODE (x)]
6213 : 1));
6215 case SUBREG:
6216 /* If this is a SUBREG of a hard reg, we can see exactly which
6217 registers are being modified. Otherwise, handle normally. */
6218 if (REG_P (SUBREG_REG (x))
6219 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6221 unsigned int inner_regno = subreg_regno (x);
6222 unsigned int inner_endregno
6223 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6224 ? hard_regno_nregs[inner_regno][GET_MODE (x)] : 1);
6226 return endregno > inner_regno && regno < inner_endregno;
6228 break;
6230 case CLOBBER:
6231 case SET:
6232 if (&SET_DEST (x) != loc
6233 /* Note setting a SUBREG counts as referring to the REG it is in for
6234 a pseudo but not for hard registers since we can
6235 treat each word individually. */
6236 && ((GET_CODE (SET_DEST (x)) == SUBREG
6237 && loc != &SUBREG_REG (SET_DEST (x))
6238 && REG_P (SUBREG_REG (SET_DEST (x)))
6239 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6240 && refers_to_regno_for_reload_p (regno, endregno,
6241 SUBREG_REG (SET_DEST (x)),
6242 loc))
6243 /* If the output is an earlyclobber operand, this is
6244 a conflict. */
6245 || ((!REG_P (SET_DEST (x))
6246 || earlyclobber_operand_p (SET_DEST (x)))
6247 && refers_to_regno_for_reload_p (regno, endregno,
6248 SET_DEST (x), loc))))
6249 return 1;
6251 if (code == CLOBBER || loc == &SET_SRC (x))
6252 return 0;
6253 x = SET_SRC (x);
6254 goto repeat;
6256 default:
6257 break;
6260 /* X does not match, so try its subexpressions. */
6262 fmt = GET_RTX_FORMAT (code);
6263 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6265 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6267 if (i == 0)
6269 x = XEXP (x, 0);
6270 goto repeat;
6272 else
6273 if (refers_to_regno_for_reload_p (regno, endregno,
6274 XEXP (x, i), loc))
6275 return 1;
6277 else if (fmt[i] == 'E')
6279 int j;
6280 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6281 if (loc != &XVECEXP (x, i, j)
6282 && refers_to_regno_for_reload_p (regno, endregno,
6283 XVECEXP (x, i, j), loc))
6284 return 1;
6287 return 0;
6290 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6291 we check if any register number in X conflicts with the relevant register
6292 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6293 contains a MEM (we don't bother checking for memory addresses that can't
6294 conflict because we expect this to be a rare case.
6296 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6297 that we look at equivalences for pseudos that didn't get hard registers. */
6300 reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6302 int regno, endregno;
6304 /* Overly conservative. */
6305 if (GET_CODE (x) == STRICT_LOW_PART
6306 || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
6307 x = XEXP (x, 0);
6309 /* If either argument is a constant, then modifying X can not affect IN. */
6310 if (CONSTANT_P (x) || CONSTANT_P (in))
6311 return 0;
6312 else if (GET_CODE (x) == SUBREG)
6314 regno = REGNO (SUBREG_REG (x));
6315 if (regno < FIRST_PSEUDO_REGISTER)
6316 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6317 GET_MODE (SUBREG_REG (x)),
6318 SUBREG_BYTE (x),
6319 GET_MODE (x));
6321 else if (REG_P (x))
6323 regno = REGNO (x);
6325 /* If this is a pseudo, it must not have been assigned a hard register.
6326 Therefore, it must either be in memory or be a constant. */
6328 if (regno >= FIRST_PSEUDO_REGISTER)
6330 if (reg_equiv_memory_loc[regno])
6331 return refers_to_mem_for_reload_p (in);
6332 gcc_assert (reg_equiv_constant[regno]);
6333 return 0;
6336 else if (MEM_P (x))
6337 return refers_to_mem_for_reload_p (in);
6338 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6339 || GET_CODE (x) == CC0)
6340 return reg_mentioned_p (x, in);
6341 else
6343 gcc_assert (GET_CODE (x) == PLUS);
6345 /* We actually want to know if X is mentioned somewhere inside IN.
6346 We must not say that (plus (sp) (const_int 124)) is in
6347 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6348 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6349 into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
6350 while (MEM_P (in))
6351 in = XEXP (in, 0);
6352 if (REG_P (in))
6353 return 0;
6354 else if (GET_CODE (in) == PLUS)
6355 return (reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6356 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6357 else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6358 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6361 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6362 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
6364 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6367 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6368 registers. */
6370 static int
6371 refers_to_mem_for_reload_p (rtx x)
6373 const char *fmt;
6374 int i;
6376 if (MEM_P (x))
6377 return 1;
6379 if (REG_P (x))
6380 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6381 && reg_equiv_memory_loc[REGNO (x)]);
6383 fmt = GET_RTX_FORMAT (GET_CODE (x));
6384 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6385 if (fmt[i] == 'e'
6386 && (MEM_P (XEXP (x, i))
6387 || refers_to_mem_for_reload_p (XEXP (x, i))))
6388 return 1;
6390 return 0;
6393 /* Check the insns before INSN to see if there is a suitable register
6394 containing the same value as GOAL.
6395 If OTHER is -1, look for a register in class CLASS.
6396 Otherwise, just see if register number OTHER shares GOAL's value.
6398 Return an rtx for the register found, or zero if none is found.
6400 If RELOAD_REG_P is (short *)1,
6401 we reject any hard reg that appears in reload_reg_rtx
6402 because such a hard reg is also needed coming into this insn.
6404 If RELOAD_REG_P is any other nonzero value,
6405 it is a vector indexed by hard reg number
6406 and we reject any hard reg whose element in the vector is nonnegative
6407 as well as any that appears in reload_reg_rtx.
6409 If GOAL is zero, then GOALREG is a register number; we look
6410 for an equivalent for that register.
6412 MODE is the machine mode of the value we want an equivalence for.
6413 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6415 This function is used by jump.c as well as in the reload pass.
6417 If GOAL is the sum of the stack pointer and a constant, we treat it
6418 as if it were a constant except that sp is required to be unchanging. */
6421 find_equiv_reg (rtx goal, rtx insn, enum reg_class class, int other,
6422 short *reload_reg_p, int goalreg, enum machine_mode mode)
6424 rtx p = insn;
6425 rtx goaltry, valtry, value, where;
6426 rtx pat;
6427 int regno = -1;
6428 int valueno;
6429 int goal_mem = 0;
6430 int goal_const = 0;
6431 int goal_mem_addr_varies = 0;
6432 int need_stable_sp = 0;
6433 int nregs;
6434 int valuenregs;
6435 int num = 0;
6437 if (goal == 0)
6438 regno = goalreg;
6439 else if (REG_P (goal))
6440 regno = REGNO (goal);
6441 else if (MEM_P (goal))
6443 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6444 if (MEM_VOLATILE_P (goal))
6445 return 0;
6446 if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
6447 return 0;
6448 /* An address with side effects must be reexecuted. */
6449 switch (code)
6451 case POST_INC:
6452 case PRE_INC:
6453 case POST_DEC:
6454 case PRE_DEC:
6455 case POST_MODIFY:
6456 case PRE_MODIFY:
6457 return 0;
6458 default:
6459 break;
6461 goal_mem = 1;
6463 else if (CONSTANT_P (goal))
6464 goal_const = 1;
6465 else if (GET_CODE (goal) == PLUS
6466 && XEXP (goal, 0) == stack_pointer_rtx
6467 && CONSTANT_P (XEXP (goal, 1)))
6468 goal_const = need_stable_sp = 1;
6469 else if (GET_CODE (goal) == PLUS
6470 && XEXP (goal, 0) == frame_pointer_rtx
6471 && CONSTANT_P (XEXP (goal, 1)))
6472 goal_const = 1;
6473 else
6474 return 0;
6476 num = 0;
6477 /* Scan insns back from INSN, looking for one that copies
6478 a value into or out of GOAL.
6479 Stop and give up if we reach a label. */
6481 while (1)
6483 p = PREV_INSN (p);
6484 num++;
6485 if (p == 0 || LABEL_P (p)
6486 || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
6487 return 0;
6489 if (NONJUMP_INSN_P (p)
6490 /* If we don't want spill regs ... */
6491 && (! (reload_reg_p != 0
6492 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6493 /* ... then ignore insns introduced by reload; they aren't
6494 useful and can cause results in reload_as_needed to be
6495 different from what they were when calculating the need for
6496 spills. If we notice an input-reload insn here, we will
6497 reject it below, but it might hide a usable equivalent.
6498 That makes bad code. It may even abort: perhaps no reg was
6499 spilled for this insn because it was assumed we would find
6500 that equivalent. */
6501 || INSN_UID (p) < reload_first_uid))
6503 rtx tem;
6504 pat = single_set (p);
6506 /* First check for something that sets some reg equal to GOAL. */
6507 if (pat != 0
6508 && ((regno >= 0
6509 && true_regnum (SET_SRC (pat)) == regno
6510 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6512 (regno >= 0
6513 && true_regnum (SET_DEST (pat)) == regno
6514 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6516 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6517 /* When looking for stack pointer + const,
6518 make sure we don't use a stack adjust. */
6519 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6520 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6521 || (goal_mem
6522 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6523 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6524 || (goal_mem
6525 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6526 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6527 /* If we are looking for a constant,
6528 and something equivalent to that constant was copied
6529 into a reg, we can use that reg. */
6530 || (goal_const && REG_NOTES (p) != 0
6531 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6532 && ((rtx_equal_p (XEXP (tem, 0), goal)
6533 && (valueno
6534 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6535 || (REG_P (SET_DEST (pat))
6536 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6537 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6538 == MODE_FLOAT)
6539 && GET_CODE (goal) == CONST_INT
6540 && 0 != (goaltry
6541 = operand_subword (XEXP (tem, 0), 0, 0,
6542 VOIDmode))
6543 && rtx_equal_p (goal, goaltry)
6544 && (valtry
6545 = operand_subword (SET_DEST (pat), 0, 0,
6546 VOIDmode))
6547 && (valueno = true_regnum (valtry)) >= 0)))
6548 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6549 NULL_RTX))
6550 && REG_P (SET_DEST (pat))
6551 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6552 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6553 == MODE_FLOAT)
6554 && GET_CODE (goal) == CONST_INT
6555 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6556 VOIDmode))
6557 && rtx_equal_p (goal, goaltry)
6558 && (valtry
6559 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6560 && (valueno = true_regnum (valtry)) >= 0)))
6562 if (other >= 0)
6564 if (valueno != other)
6565 continue;
6567 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6568 continue;
6569 else
6571 int i;
6573 for (i = hard_regno_nregs[valueno][mode] - 1; i >= 0; i--)
6574 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
6575 valueno + i))
6576 break;
6577 if (i >= 0)
6578 continue;
6580 value = valtry;
6581 where = p;
6582 break;
6587 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6588 (or copying VALUE into GOAL, if GOAL is also a register).
6589 Now verify that VALUE is really valid. */
6591 /* VALUENO is the register number of VALUE; a hard register. */
6593 /* Don't try to re-use something that is killed in this insn. We want
6594 to be able to trust REG_UNUSED notes. */
6595 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6596 return 0;
6598 /* If we propose to get the value from the stack pointer or if GOAL is
6599 a MEM based on the stack pointer, we need a stable SP. */
6600 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6601 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6602 goal)))
6603 need_stable_sp = 1;
6605 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6606 if (GET_MODE (value) != mode)
6607 return 0;
6609 /* Reject VALUE if it was loaded from GOAL
6610 and is also a register that appears in the address of GOAL. */
6612 if (goal_mem && value == SET_DEST (single_set (where))
6613 && refers_to_regno_for_reload_p (valueno,
6614 (valueno
6615 + hard_regno_nregs[valueno][mode]),
6616 goal, (rtx*) 0))
6617 return 0;
6619 /* Reject registers that overlap GOAL. */
6621 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6622 nregs = hard_regno_nregs[regno][mode];
6623 else
6624 nregs = 1;
6625 valuenregs = hard_regno_nregs[valueno][mode];
6627 if (!goal_mem && !goal_const
6628 && regno + nregs > valueno && regno < valueno + valuenregs)
6629 return 0;
6631 /* Reject VALUE if it is one of the regs reserved for reloads.
6632 Reload1 knows how to reuse them anyway, and it would get
6633 confused if we allocated one without its knowledge.
6634 (Now that insns introduced by reload are ignored above,
6635 this case shouldn't happen, but I'm not positive.) */
6637 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6639 int i;
6640 for (i = 0; i < valuenregs; ++i)
6641 if (reload_reg_p[valueno + i] >= 0)
6642 return 0;
6645 /* Reject VALUE if it is a register being used for an input reload
6646 even if it is not one of those reserved. */
6648 if (reload_reg_p != 0)
6650 int i;
6651 for (i = 0; i < n_reloads; i++)
6652 if (rld[i].reg_rtx != 0 && rld[i].in)
6654 int regno1 = REGNO (rld[i].reg_rtx);
6655 int nregs1 = hard_regno_nregs[regno1]
6656 [GET_MODE (rld[i].reg_rtx)];
6657 if (regno1 < valueno + valuenregs
6658 && regno1 + nregs1 > valueno)
6659 return 0;
6663 if (goal_mem)
6664 /* We must treat frame pointer as varying here,
6665 since it can vary--in a nonlocal goto as generated by expand_goto. */
6666 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6668 /* Now verify that the values of GOAL and VALUE remain unaltered
6669 until INSN is reached. */
6671 p = insn;
6672 while (1)
6674 p = PREV_INSN (p);
6675 if (p == where)
6676 return value;
6678 /* Don't trust the conversion past a function call
6679 if either of the two is in a call-clobbered register, or memory. */
6680 if (CALL_P (p))
6682 int i;
6684 if (goal_mem || need_stable_sp)
6685 return 0;
6687 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6688 for (i = 0; i < nregs; ++i)
6689 if (call_used_regs[regno + i])
6690 return 0;
6692 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6693 for (i = 0; i < valuenregs; ++i)
6694 if (call_used_regs[valueno + i])
6695 return 0;
6696 #ifdef NON_SAVING_SETJMP
6697 if (NON_SAVING_SETJMP && find_reg_note (p, REG_SETJMP, NULL))
6698 return 0;
6699 #endif
6702 if (INSN_P (p))
6704 pat = PATTERN (p);
6706 /* Watch out for unspec_volatile, and volatile asms. */
6707 if (volatile_insn_p (pat))
6708 return 0;
6710 /* If this insn P stores in either GOAL or VALUE, return 0.
6711 If GOAL is a memory ref and this insn writes memory, return 0.
6712 If GOAL is a memory ref and its address is not constant,
6713 and this insn P changes a register used in GOAL, return 0. */
6715 if (GET_CODE (pat) == COND_EXEC)
6716 pat = COND_EXEC_CODE (pat);
6717 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6719 rtx dest = SET_DEST (pat);
6720 while (GET_CODE (dest) == SUBREG
6721 || GET_CODE (dest) == ZERO_EXTRACT
6722 || GET_CODE (dest) == SIGN_EXTRACT
6723 || GET_CODE (dest) == STRICT_LOW_PART)
6724 dest = XEXP (dest, 0);
6725 if (REG_P (dest))
6727 int xregno = REGNO (dest);
6728 int xnregs;
6729 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6730 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6731 else
6732 xnregs = 1;
6733 if (xregno < regno + nregs && xregno + xnregs > regno)
6734 return 0;
6735 if (xregno < valueno + valuenregs
6736 && xregno + xnregs > valueno)
6737 return 0;
6738 if (goal_mem_addr_varies
6739 && reg_overlap_mentioned_for_reload_p (dest, goal))
6740 return 0;
6741 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6742 return 0;
6744 else if (goal_mem && MEM_P (dest)
6745 && ! push_operand (dest, GET_MODE (dest)))
6746 return 0;
6747 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6748 && reg_equiv_memory_loc[regno] != 0)
6749 return 0;
6750 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6751 return 0;
6753 else if (GET_CODE (pat) == PARALLEL)
6755 int i;
6756 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6758 rtx v1 = XVECEXP (pat, 0, i);
6759 if (GET_CODE (v1) == COND_EXEC)
6760 v1 = COND_EXEC_CODE (v1);
6761 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6763 rtx dest = SET_DEST (v1);
6764 while (GET_CODE (dest) == SUBREG
6765 || GET_CODE (dest) == ZERO_EXTRACT
6766 || GET_CODE (dest) == SIGN_EXTRACT
6767 || GET_CODE (dest) == STRICT_LOW_PART)
6768 dest = XEXP (dest, 0);
6769 if (REG_P (dest))
6771 int xregno = REGNO (dest);
6772 int xnregs;
6773 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6774 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6775 else
6776 xnregs = 1;
6777 if (xregno < regno + nregs
6778 && xregno + xnregs > regno)
6779 return 0;
6780 if (xregno < valueno + valuenregs
6781 && xregno + xnregs > valueno)
6782 return 0;
6783 if (goal_mem_addr_varies
6784 && reg_overlap_mentioned_for_reload_p (dest,
6785 goal))
6786 return 0;
6787 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6788 return 0;
6790 else if (goal_mem && MEM_P (dest)
6791 && ! push_operand (dest, GET_MODE (dest)))
6792 return 0;
6793 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6794 && reg_equiv_memory_loc[regno] != 0)
6795 return 0;
6796 else if (need_stable_sp
6797 && push_operand (dest, GET_MODE (dest)))
6798 return 0;
6803 if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
6805 rtx link;
6807 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6808 link = XEXP (link, 1))
6810 pat = XEXP (link, 0);
6811 if (GET_CODE (pat) == CLOBBER)
6813 rtx dest = SET_DEST (pat);
6815 if (REG_P (dest))
6817 int xregno = REGNO (dest);
6818 int xnregs
6819 = hard_regno_nregs[xregno][GET_MODE (dest)];
6821 if (xregno < regno + nregs
6822 && xregno + xnregs > regno)
6823 return 0;
6824 else if (xregno < valueno + valuenregs
6825 && xregno + xnregs > valueno)
6826 return 0;
6827 else if (goal_mem_addr_varies
6828 && reg_overlap_mentioned_for_reload_p (dest,
6829 goal))
6830 return 0;
6833 else if (goal_mem && MEM_P (dest)
6834 && ! push_operand (dest, GET_MODE (dest)))
6835 return 0;
6836 else if (need_stable_sp
6837 && push_operand (dest, GET_MODE (dest)))
6838 return 0;
6843 #ifdef AUTO_INC_DEC
6844 /* If this insn auto-increments or auto-decrements
6845 either regno or valueno, return 0 now.
6846 If GOAL is a memory ref and its address is not constant,
6847 and this insn P increments a register used in GOAL, return 0. */
6849 rtx link;
6851 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6852 if (REG_NOTE_KIND (link) == REG_INC
6853 && REG_P (XEXP (link, 0)))
6855 int incno = REGNO (XEXP (link, 0));
6856 if (incno < regno + nregs && incno >= regno)
6857 return 0;
6858 if (incno < valueno + valuenregs && incno >= valueno)
6859 return 0;
6860 if (goal_mem_addr_varies
6861 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6862 goal))
6863 return 0;
6866 #endif
6871 /* Find a place where INCED appears in an increment or decrement operator
6872 within X, and return the amount INCED is incremented or decremented by.
6873 The value is always positive. */
6875 static int
6876 find_inc_amount (rtx x, rtx inced)
6878 enum rtx_code code = GET_CODE (x);
6879 const char *fmt;
6880 int i;
6882 if (code == MEM)
6884 rtx addr = XEXP (x, 0);
6885 if ((GET_CODE (addr) == PRE_DEC
6886 || GET_CODE (addr) == POST_DEC
6887 || GET_CODE (addr) == PRE_INC
6888 || GET_CODE (addr) == POST_INC)
6889 && XEXP (addr, 0) == inced)
6890 return GET_MODE_SIZE (GET_MODE (x));
6891 else if ((GET_CODE (addr) == PRE_MODIFY
6892 || GET_CODE (addr) == POST_MODIFY)
6893 && GET_CODE (XEXP (addr, 1)) == PLUS
6894 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
6895 && XEXP (addr, 0) == inced
6896 && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
6898 i = INTVAL (XEXP (XEXP (addr, 1), 1));
6899 return i < 0 ? -i : i;
6903 fmt = GET_RTX_FORMAT (code);
6904 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6906 if (fmt[i] == 'e')
6908 int tem = find_inc_amount (XEXP (x, i), inced);
6909 if (tem != 0)
6910 return tem;
6912 if (fmt[i] == 'E')
6914 int j;
6915 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6917 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
6918 if (tem != 0)
6919 return tem;
6924 return 0;
6927 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
6928 If SETS is nonzero, also consider SETs. */
6931 regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
6932 int sets)
6934 unsigned int nregs = hard_regno_nregs[regno][mode];
6935 unsigned int endregno = regno + nregs;
6937 if ((GET_CODE (PATTERN (insn)) == CLOBBER
6938 || (sets && GET_CODE (PATTERN (insn)) == SET))
6939 && REG_P (XEXP (PATTERN (insn), 0)))
6941 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
6943 return test >= regno && test < endregno;
6946 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6948 int i = XVECLEN (PATTERN (insn), 0) - 1;
6950 for (; i >= 0; i--)
6952 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6953 if ((GET_CODE (elt) == CLOBBER
6954 || (sets && GET_CODE (PATTERN (insn)) == SET))
6955 && REG_P (XEXP (elt, 0)))
6957 unsigned int test = REGNO (XEXP (elt, 0));
6959 if (test >= regno && test < endregno)
6960 return 1;
6965 return 0;
6968 /* Find the low part, with mode MODE, of a hard regno RELOADREG. */
6970 reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
6972 int regno;
6974 if (GET_MODE (reloadreg) == mode)
6975 return reloadreg;
6977 regno = REGNO (reloadreg);
6979 if (WORDS_BIG_ENDIAN)
6980 regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
6981 - (int) hard_regno_nregs[regno][mode];
6983 return gen_rtx_REG (mode, regno);
6986 static const char *const reload_when_needed_name[] =
6988 "RELOAD_FOR_INPUT",
6989 "RELOAD_FOR_OUTPUT",
6990 "RELOAD_FOR_INSN",
6991 "RELOAD_FOR_INPUT_ADDRESS",
6992 "RELOAD_FOR_INPADDR_ADDRESS",
6993 "RELOAD_FOR_OUTPUT_ADDRESS",
6994 "RELOAD_FOR_OUTADDR_ADDRESS",
6995 "RELOAD_FOR_OPERAND_ADDRESS",
6996 "RELOAD_FOR_OPADDR_ADDR",
6997 "RELOAD_OTHER",
6998 "RELOAD_FOR_OTHER_ADDRESS"
7001 static const char * const reg_class_names[] = REG_CLASS_NAMES;
7003 /* These functions are used to print the variables set by 'find_reloads' */
7005 void
7006 debug_reload_to_stream (FILE *f)
7008 int r;
7009 const char *prefix;
7011 if (! f)
7012 f = stderr;
7013 for (r = 0; r < n_reloads; r++)
7015 fprintf (f, "Reload %d: ", r);
7017 if (rld[r].in != 0)
7019 fprintf (f, "reload_in (%s) = ",
7020 GET_MODE_NAME (rld[r].inmode));
7021 print_inline_rtx (f, rld[r].in, 24);
7022 fprintf (f, "\n\t");
7025 if (rld[r].out != 0)
7027 fprintf (f, "reload_out (%s) = ",
7028 GET_MODE_NAME (rld[r].outmode));
7029 print_inline_rtx (f, rld[r].out, 24);
7030 fprintf (f, "\n\t");
7033 fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
7035 fprintf (f, "%s (opnum = %d)",
7036 reload_when_needed_name[(int) rld[r].when_needed],
7037 rld[r].opnum);
7039 if (rld[r].optional)
7040 fprintf (f, ", optional");
7042 if (rld[r].nongroup)
7043 fprintf (f, ", nongroup");
7045 if (rld[r].inc != 0)
7046 fprintf (f, ", inc by %d", rld[r].inc);
7048 if (rld[r].nocombine)
7049 fprintf (f, ", can't combine");
7051 if (rld[r].secondary_p)
7052 fprintf (f, ", secondary_reload_p");
7054 if (rld[r].in_reg != 0)
7056 fprintf (f, "\n\treload_in_reg: ");
7057 print_inline_rtx (f, rld[r].in_reg, 24);
7060 if (rld[r].out_reg != 0)
7062 fprintf (f, "\n\treload_out_reg: ");
7063 print_inline_rtx (f, rld[r].out_reg, 24);
7066 if (rld[r].reg_rtx != 0)
7068 fprintf (f, "\n\treload_reg_rtx: ");
7069 print_inline_rtx (f, rld[r].reg_rtx, 24);
7072 prefix = "\n\t";
7073 if (rld[r].secondary_in_reload != -1)
7075 fprintf (f, "%ssecondary_in_reload = %d",
7076 prefix, rld[r].secondary_in_reload);
7077 prefix = ", ";
7080 if (rld[r].secondary_out_reload != -1)
7081 fprintf (f, "%ssecondary_out_reload = %d\n",
7082 prefix, rld[r].secondary_out_reload);
7084 prefix = "\n\t";
7085 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7087 fprintf (f, "%ssecondary_in_icode = %s", prefix,
7088 insn_data[rld[r].secondary_in_icode].name);
7089 prefix = ", ";
7092 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7093 fprintf (f, "%ssecondary_out_icode = %s", prefix,
7094 insn_data[rld[r].secondary_out_icode].name);
7096 fprintf (f, "\n");
7100 void
7101 debug_reload (void)
7103 debug_reload_to_stream (stderr);