2014-04-11 Marc Glisse <marc.glisse@inria.fr>
[official-gcc.git] / libgo / go / time / time.go
blobc504df74013a88678d47279b5823fd49e8a8f2a2
1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 // Package time provides functionality for measuring and displaying time.
6 //
7 // The calendrical calculations always assume a Gregorian calendar.
8 package time
10 import "errors"
12 // A Time represents an instant in time with nanosecond precision.
14 // Programs using times should typically store and pass them as values,
15 // not pointers. That is, time variables and struct fields should be of
16 // type time.Time, not *time.Time. A Time value can be used by
17 // multiple goroutines simultaneously.
19 // Time instants can be compared using the Before, After, and Equal methods.
20 // The Sub method subtracts two instants, producing a Duration.
21 // The Add method adds a Time and a Duration, producing a Time.
23 // The zero value of type Time is January 1, year 1, 00:00:00.000000000 UTC.
24 // As this time is unlikely to come up in practice, the IsZero method gives
25 // a simple way of detecting a time that has not been initialized explicitly.
27 // Each Time has associated with it a Location, consulted when computing the
28 // presentation form of the time, such as in the Format, Hour, and Year methods.
29 // The methods Local, UTC, and In return a Time with a specific location.
30 // Changing the location in this way changes only the presentation; it does not
31 // change the instant in time being denoted and therefore does not affect the
32 // computations described in earlier paragraphs.
34 type Time struct {
35 // sec gives the number of seconds elapsed since
36 // January 1, year 1 00:00:00 UTC.
37 sec int64
39 // nsec specifies a non-negative nanosecond
40 // offset within the second named by Seconds.
41 // It must be in the range [0, 999999999].
43 // It is declared as uintptr instead of int32 or uint32
44 // to avoid garbage collector aliasing in the case where
45 // on a 64-bit system the int32 or uint32 field is written
46 // over the low half of a pointer, creating another pointer.
47 // TODO(rsc): When the garbage collector is completely
48 // precise, change back to int32.
49 nsec uintptr
51 // loc specifies the Location that should be used to
52 // determine the minute, hour, month, day, and year
53 // that correspond to this Time.
54 // Only the zero Time has a nil Location.
55 // In that case it is interpreted to mean UTC.
56 loc *Location
59 // After reports whether the time instant t is after u.
60 func (t Time) After(u Time) bool {
61 return t.sec > u.sec || t.sec == u.sec && t.nsec > u.nsec
64 // Before reports whether the time instant t is before u.
65 func (t Time) Before(u Time) bool {
66 return t.sec < u.sec || t.sec == u.sec && t.nsec < u.nsec
69 // Equal reports whether t and u represent the same time instant.
70 // Two times can be equal even if they are in different locations.
71 // For example, 6:00 +0200 CEST and 4:00 UTC are Equal.
72 // This comparison is different from using t == u, which also compares
73 // the locations.
74 func (t Time) Equal(u Time) bool {
75 return t.sec == u.sec && t.nsec == u.nsec
78 // A Month specifies a month of the year (January = 1, ...).
79 type Month int
81 const (
82 January Month = 1 + iota
83 February
84 March
85 April
86 May
87 June
88 July
89 August
90 September
91 October
92 November
93 December
96 var months = [...]string{
97 "January",
98 "February",
99 "March",
100 "April",
101 "May",
102 "June",
103 "July",
104 "August",
105 "September",
106 "October",
107 "November",
108 "December",
111 // String returns the English name of the month ("January", "February", ...).
112 func (m Month) String() string { return months[m-1] }
114 // A Weekday specifies a day of the week (Sunday = 0, ...).
115 type Weekday int
117 const (
118 Sunday Weekday = iota
119 Monday
120 Tuesday
121 Wednesday
122 Thursday
123 Friday
124 Saturday
127 var days = [...]string{
128 "Sunday",
129 "Monday",
130 "Tuesday",
131 "Wednesday",
132 "Thursday",
133 "Friday",
134 "Saturday",
137 // String returns the English name of the day ("Sunday", "Monday", ...).
138 func (d Weekday) String() string { return days[d] }
140 // Computations on time.
142 // The zero value for a Time is defined to be
143 // January 1, year 1, 00:00:00.000000000 UTC
144 // which (1) looks like a zero, or as close as you can get in a date
145 // (1-1-1 00:00:00 UTC), (2) is unlikely enough to arise in practice to
146 // be a suitable "not set" sentinel, unlike Jan 1 1970, and (3) has a
147 // non-negative year even in time zones west of UTC, unlike 1-1-0
148 // 00:00:00 UTC, which would be 12-31-(-1) 19:00:00 in New York.
150 // The zero Time value does not force a specific epoch for the time
151 // representation. For example, to use the Unix epoch internally, we
152 // could define that to distinguish a zero value from Jan 1 1970, that
153 // time would be represented by sec=-1, nsec=1e9. However, it does
154 // suggest a representation, namely using 1-1-1 00:00:00 UTC as the
155 // epoch, and that's what we do.
157 // The Add and Sub computations are oblivious to the choice of epoch.
159 // The presentation computations - year, month, minute, and so on - all
160 // rely heavily on division and modulus by positive constants. For
161 // calendrical calculations we want these divisions to round down, even
162 // for negative values, so that the remainder is always positive, but
163 // Go's division (like most hardware division instructions) rounds to
164 // zero. We can still do those computations and then adjust the result
165 // for a negative numerator, but it's annoying to write the adjustment
166 // over and over. Instead, we can change to a different epoch so long
167 // ago that all the times we care about will be positive, and then round
168 // to zero and round down coincide. These presentation routines already
169 // have to add the zone offset, so adding the translation to the
170 // alternate epoch is cheap. For example, having a non-negative time t
171 // means that we can write
173 // sec = t % 60
175 // instead of
177 // sec = t % 60
178 // if sec < 0 {
179 // sec += 60
180 // }
182 // everywhere.
184 // The calendar runs on an exact 400 year cycle: a 400-year calendar
185 // printed for 1970-2469 will apply as well to 2470-2869. Even the days
186 // of the week match up. It simplifies the computations to choose the
187 // cycle boundaries so that the exceptional years are always delayed as
188 // long as possible. That means choosing a year equal to 1 mod 400, so
189 // that the first leap year is the 4th year, the first missed leap year
190 // is the 100th year, and the missed missed leap year is the 400th year.
191 // So we'd prefer instead to print a calendar for 2001-2400 and reuse it
192 // for 2401-2800.
194 // Finally, it's convenient if the delta between the Unix epoch and
195 // long-ago epoch is representable by an int64 constant.
197 // These three considerations—choose an epoch as early as possible, that
198 // uses a year equal to 1 mod 400, and that is no more than 2⁶³ seconds
199 // earlier than 1970—bring us to the year -292277022399. We refer to
200 // this year as the absolute zero year, and to times measured as a uint64
201 // seconds since this year as absolute times.
203 // Times measured as an int64 seconds since the year 1—the representation
204 // used for Time's sec field—are called internal times.
206 // Times measured as an int64 seconds since the year 1970 are called Unix
207 // times.
209 // It is tempting to just use the year 1 as the absolute epoch, defining
210 // that the routines are only valid for years >= 1. However, the
211 // routines would then be invalid when displaying the epoch in time zones
212 // west of UTC, since it is year 0. It doesn't seem tenable to say that
213 // printing the zero time correctly isn't supported in half the time
214 // zones. By comparison, it's reasonable to mishandle some times in
215 // the year -292277022399.
217 // All this is opaque to clients of the API and can be changed if a
218 // better implementation presents itself.
220 const (
221 // The unsigned zero year for internal calculations.
222 // Must be 1 mod 400, and times before it will not compute correctly,
223 // but otherwise can be changed at will.
224 absoluteZeroYear = -292277022399
226 // The year of the zero Time.
227 // Assumed by the unixToInternal computation below.
228 internalYear = 1
230 // The year of the zero Unix time.
231 unixYear = 1970
233 // Offsets to convert between internal and absolute or Unix times.
234 absoluteToInternal int64 = (absoluteZeroYear - internalYear) * 365.2425 * secondsPerDay
235 internalToAbsolute = -absoluteToInternal
237 unixToInternal int64 = (1969*365 + 1969/4 - 1969/100 + 1969/400) * secondsPerDay
238 internalToUnix int64 = -unixToInternal
241 // IsZero reports whether t represents the zero time instant,
242 // January 1, year 1, 00:00:00 UTC.
243 func (t Time) IsZero() bool {
244 return t.sec == 0 && t.nsec == 0
247 // abs returns the time t as an absolute time, adjusted by the zone offset.
248 // It is called when computing a presentation property like Month or Hour.
249 func (t Time) abs() uint64 {
250 l := t.loc
251 // Avoid function calls when possible.
252 if l == nil || l == &localLoc {
253 l = l.get()
255 sec := t.sec + internalToUnix
256 if l != &utcLoc {
257 if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd {
258 sec += int64(l.cacheZone.offset)
259 } else {
260 _, offset, _, _, _ := l.lookup(sec)
261 sec += int64(offset)
264 return uint64(sec + (unixToInternal + internalToAbsolute))
267 // locabs is a combination of the Zone and abs methods,
268 // extracting both return values from a single zone lookup.
269 func (t Time) locabs() (name string, offset int, abs uint64) {
270 l := t.loc
271 if l == nil || l == &localLoc {
272 l = l.get()
274 // Avoid function call if we hit the local time cache.
275 sec := t.sec + internalToUnix
276 if l != &utcLoc {
277 if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd {
278 name = l.cacheZone.name
279 offset = l.cacheZone.offset
280 } else {
281 name, offset, _, _, _ = l.lookup(sec)
283 sec += int64(offset)
284 } else {
285 name = "UTC"
287 abs = uint64(sec + (unixToInternal + internalToAbsolute))
288 return
291 // Date returns the year, month, and day in which t occurs.
292 func (t Time) Date() (year int, month Month, day int) {
293 year, month, day, _ = t.date(true)
294 return
297 // Year returns the year in which t occurs.
298 func (t Time) Year() int {
299 year, _, _, _ := t.date(false)
300 return year
303 // Month returns the month of the year specified by t.
304 func (t Time) Month() Month {
305 _, month, _, _ := t.date(true)
306 return month
309 // Day returns the day of the month specified by t.
310 func (t Time) Day() int {
311 _, _, day, _ := t.date(true)
312 return day
315 // Weekday returns the day of the week specified by t.
316 func (t Time) Weekday() Weekday {
317 return absWeekday(t.abs())
320 // absWeekday is like Weekday but operates on an absolute time.
321 func absWeekday(abs uint64) Weekday {
322 // January 1 of the absolute year, like January 1 of 2001, was a Monday.
323 sec := (abs + uint64(Monday)*secondsPerDay) % secondsPerWeek
324 return Weekday(int(sec) / secondsPerDay)
327 // ISOWeek returns the ISO 8601 year and week number in which t occurs.
328 // Week ranges from 1 to 53. Jan 01 to Jan 03 of year n might belong to
329 // week 52 or 53 of year n-1, and Dec 29 to Dec 31 might belong to week 1
330 // of year n+1.
331 func (t Time) ISOWeek() (year, week int) {
332 year, month, day, yday := t.date(true)
333 wday := int(t.Weekday()+6) % 7 // weekday but Monday = 0.
334 const (
335 Mon int = iota
344 // Calculate week as number of Mondays in year up to
345 // and including today, plus 1 because the first week is week 0.
346 // Putting the + 1 inside the numerator as a + 7 keeps the
347 // numerator from being negative, which would cause it to
348 // round incorrectly.
349 week = (yday - wday + 7) / 7
351 // The week number is now correct under the assumption
352 // that the first Monday of the year is in week 1.
353 // If Jan 1 is a Tuesday, Wednesday, or Thursday, the first Monday
354 // is actually in week 2.
355 jan1wday := (wday - yday + 7*53) % 7
356 if Tue <= jan1wday && jan1wday <= Thu {
357 week++
360 // If the week number is still 0, we're in early January but in
361 // the last week of last year.
362 if week == 0 {
363 year--
364 week = 52
365 // A year has 53 weeks when Jan 1 or Dec 31 is a Thursday,
366 // meaning Jan 1 of the next year is a Friday
367 // or it was a leap year and Jan 1 of the next year is a Saturday.
368 if jan1wday == Fri || (jan1wday == Sat && isLeap(year)) {
369 week++
373 // December 29 to 31 are in week 1 of next year if
374 // they are after the last Thursday of the year and
375 // December 31 is a Monday, Tuesday, or Wednesday.
376 if month == December && day >= 29 && wday < Thu {
377 if dec31wday := (wday + 31 - day) % 7; Mon <= dec31wday && dec31wday <= Wed {
378 year++
379 week = 1
383 return
386 // Clock returns the hour, minute, and second within the day specified by t.
387 func (t Time) Clock() (hour, min, sec int) {
388 return absClock(t.abs())
391 // absClock is like clock but operates on an absolute time.
392 func absClock(abs uint64) (hour, min, sec int) {
393 sec = int(abs % secondsPerDay)
394 hour = sec / secondsPerHour
395 sec -= hour * secondsPerHour
396 min = sec / secondsPerMinute
397 sec -= min * secondsPerMinute
398 return
401 // Hour returns the hour within the day specified by t, in the range [0, 23].
402 func (t Time) Hour() int {
403 return int(t.abs()%secondsPerDay) / secondsPerHour
406 // Minute returns the minute offset within the hour specified by t, in the range [0, 59].
407 func (t Time) Minute() int {
408 return int(t.abs()%secondsPerHour) / secondsPerMinute
411 // Second returns the second offset within the minute specified by t, in the range [0, 59].
412 func (t Time) Second() int {
413 return int(t.abs() % secondsPerMinute)
416 // Nanosecond returns the nanosecond offset within the second specified by t,
417 // in the range [0, 999999999].
418 func (t Time) Nanosecond() int {
419 return int(t.nsec)
422 // YearDay returns the day of the year specified by t, in the range [1,365] for non-leap years,
423 // and [1,366] in leap years.
424 func (t Time) YearDay() int {
425 _, _, _, yday := t.date(false)
426 return yday + 1
429 // A Duration represents the elapsed time between two instants
430 // as an int64 nanosecond count. The representation limits the
431 // largest representable duration to approximately 290 years.
432 type Duration int64
434 const (
435 minDuration Duration = -1 << 63
436 maxDuration Duration = 1<<63 - 1
439 // Common durations. There is no definition for units of Day or larger
440 // to avoid confusion across daylight savings time zone transitions.
442 // To count the number of units in a Duration, divide:
443 // second := time.Second
444 // fmt.Print(int64(second/time.Millisecond)) // prints 1000
446 // To convert an integer number of units to a Duration, multiply:
447 // seconds := 10
448 // fmt.Print(time.Duration(seconds)*time.Second) // prints 10s
450 const (
451 Nanosecond Duration = 1
452 Microsecond = 1000 * Nanosecond
453 Millisecond = 1000 * Microsecond
454 Second = 1000 * Millisecond
455 Minute = 60 * Second
456 Hour = 60 * Minute
459 // String returns a string representing the duration in the form "72h3m0.5s".
460 // Leading zero units are omitted. As a special case, durations less than one
461 // second format use a smaller unit (milli-, micro-, or nanoseconds) to ensure
462 // that the leading digit is non-zero. The zero duration formats as 0,
463 // with no unit.
464 func (d Duration) String() string {
465 // Largest time is 2540400h10m10.000000000s
466 var buf [32]byte
467 w := len(buf)
469 u := uint64(d)
470 neg := d < 0
471 if neg {
472 u = -u
475 if u < uint64(Second) {
476 // Special case: if duration is smaller than a second,
477 // use smaller units, like 1.2ms
478 var (
479 prec int
480 unit byte
482 switch {
483 case u == 0:
484 return "0"
485 case u < uint64(Microsecond):
486 // print nanoseconds
487 prec = 0
488 unit = 'n'
489 case u < uint64(Millisecond):
490 // print microseconds
491 prec = 3
492 unit = 'u'
493 default:
494 // print milliseconds
495 prec = 6
496 unit = 'm'
498 w -= 2
499 buf[w] = unit
500 buf[w+1] = 's'
501 w, u = fmtFrac(buf[:w], u, prec)
502 w = fmtInt(buf[:w], u)
503 } else {
505 buf[w] = 's'
507 w, u = fmtFrac(buf[:w], u, 9)
509 // u is now integer seconds
510 w = fmtInt(buf[:w], u%60)
511 u /= 60
513 // u is now integer minutes
514 if u > 0 {
516 buf[w] = 'm'
517 w = fmtInt(buf[:w], u%60)
518 u /= 60
520 // u is now integer hours
521 // Stop at hours because days can be different lengths.
522 if u > 0 {
524 buf[w] = 'h'
525 w = fmtInt(buf[:w], u)
530 if neg {
532 buf[w] = '-'
535 return string(buf[w:])
538 // fmtFrac formats the fraction of v/10**prec (e.g., ".12345") into the
539 // tail of buf, omitting trailing zeros. it omits the decimal
540 // point too when the fraction is 0. It returns the index where the
541 // output bytes begin and the value v/10**prec.
542 func fmtFrac(buf []byte, v uint64, prec int) (nw int, nv uint64) {
543 // Omit trailing zeros up to and including decimal point.
544 w := len(buf)
545 print := false
546 for i := 0; i < prec; i++ {
547 digit := v % 10
548 print = print || digit != 0
549 if print {
551 buf[w] = byte(digit) + '0'
553 v /= 10
555 if print {
557 buf[w] = '.'
559 return w, v
562 // fmtInt formats v into the tail of buf.
563 // It returns the index where the output begins.
564 func fmtInt(buf []byte, v uint64) int {
565 w := len(buf)
566 if v == 0 {
568 buf[w] = '0'
569 } else {
570 for v > 0 {
572 buf[w] = byte(v%10) + '0'
573 v /= 10
576 return w
579 // Nanoseconds returns the duration as an integer nanosecond count.
580 func (d Duration) Nanoseconds() int64 { return int64(d) }
582 // These methods return float64 because the dominant
583 // use case is for printing a floating point number like 1.5s, and
584 // a truncation to integer would make them not useful in those cases.
585 // Splitting the integer and fraction ourselves guarantees that
586 // converting the returned float64 to an integer rounds the same
587 // way that a pure integer conversion would have, even in cases
588 // where, say, float64(d.Nanoseconds())/1e9 would have rounded
589 // differently.
591 // Seconds returns the duration as a floating point number of seconds.
592 func (d Duration) Seconds() float64 {
593 sec := d / Second
594 nsec := d % Second
595 return float64(sec) + float64(nsec)*1e-9
598 // Minutes returns the duration as a floating point number of minutes.
599 func (d Duration) Minutes() float64 {
600 min := d / Minute
601 nsec := d % Minute
602 return float64(min) + float64(nsec)*(1e-9/60)
605 // Hours returns the duration as a floating point number of hours.
606 func (d Duration) Hours() float64 {
607 hour := d / Hour
608 nsec := d % Hour
609 return float64(hour) + float64(nsec)*(1e-9/60/60)
612 // Add returns the time t+d.
613 func (t Time) Add(d Duration) Time {
614 t.sec += int64(d / 1e9)
615 nsec := int32(t.nsec) + int32(d%1e9)
616 if nsec >= 1e9 {
617 t.sec++
618 nsec -= 1e9
619 } else if nsec < 0 {
620 t.sec--
621 nsec += 1e9
623 t.nsec = uintptr(nsec)
624 return t
627 // Sub returns the duration t-u. If the result exceeds the maximum (or minimum)
628 // value that can be stored in a Duration, the maximum (or minimum) duration
629 // will be returned.
630 // To compute t-d for a duration d, use t.Add(-d).
631 func (t Time) Sub(u Time) Duration {
632 d := Duration(t.sec-u.sec)*Second + Duration(int32(t.nsec)-int32(u.nsec))
633 // Check for overflow or underflow.
634 switch {
635 case u.Add(d).Equal(t):
636 return d // d is correct
637 case t.Before(u):
638 return minDuration // t - u is negative out of range
639 default:
640 return maxDuration // t - u is positive out of range
644 // Since returns the time elapsed since t.
645 // It is shorthand for time.Now().Sub(t).
646 func Since(t Time) Duration {
647 return Now().Sub(t)
650 // AddDate returns the time corresponding to adding the
651 // given number of years, months, and days to t.
652 // For example, AddDate(-1, 2, 3) applied to January 1, 2011
653 // returns March 4, 2010.
655 // AddDate normalizes its result in the same way that Date does,
656 // so, for example, adding one month to October 31 yields
657 // December 1, the normalized form for November 31.
658 func (t Time) AddDate(years int, months int, days int) Time {
659 year, month, day := t.Date()
660 hour, min, sec := t.Clock()
661 return Date(year+years, month+Month(months), day+days, hour, min, sec, int(t.nsec), t.loc)
664 const (
665 secondsPerMinute = 60
666 secondsPerHour = 60 * 60
667 secondsPerDay = 24 * secondsPerHour
668 secondsPerWeek = 7 * secondsPerDay
669 daysPer400Years = 365*400 + 97
670 daysPer100Years = 365*100 + 24
671 daysPer4Years = 365*4 + 1
674 // date computes the year, day of year, and when full=true,
675 // the month and day in which t occurs.
676 func (t Time) date(full bool) (year int, month Month, day int, yday int) {
677 return absDate(t.abs(), full)
680 // absDate is like date but operates on an absolute time.
681 func absDate(abs uint64, full bool) (year int, month Month, day int, yday int) {
682 // Split into time and day.
683 d := abs / secondsPerDay
685 // Account for 400 year cycles.
686 n := d / daysPer400Years
687 y := 400 * n
688 d -= daysPer400Years * n
690 // Cut off 100-year cycles.
691 // The last cycle has one extra leap year, so on the last day
692 // of that year, day / daysPer100Years will be 4 instead of 3.
693 // Cut it back down to 3 by subtracting n>>2.
694 n = d / daysPer100Years
695 n -= n >> 2
696 y += 100 * n
697 d -= daysPer100Years * n
699 // Cut off 4-year cycles.
700 // The last cycle has a missing leap year, which does not
701 // affect the computation.
702 n = d / daysPer4Years
703 y += 4 * n
704 d -= daysPer4Years * n
706 // Cut off years within a 4-year cycle.
707 // The last year is a leap year, so on the last day of that year,
708 // day / 365 will be 4 instead of 3. Cut it back down to 3
709 // by subtracting n>>2.
710 n = d / 365
711 n -= n >> 2
712 y += n
713 d -= 365 * n
715 year = int(int64(y) + absoluteZeroYear)
716 yday = int(d)
718 if !full {
719 return
722 day = yday
723 if isLeap(year) {
724 // Leap year
725 switch {
726 case day > 31+29-1:
727 // After leap day; pretend it wasn't there.
728 day--
729 case day == 31+29-1:
730 // Leap day.
731 month = February
732 day = 29
733 return
737 // Estimate month on assumption that every month has 31 days.
738 // The estimate may be too low by at most one month, so adjust.
739 month = Month(day / 31)
740 end := int(daysBefore[month+1])
741 var begin int
742 if day >= end {
743 month++
744 begin = end
745 } else {
746 begin = int(daysBefore[month])
749 month++ // because January is 1
750 day = day - begin + 1
751 return
754 // daysBefore[m] counts the number of days in a non-leap year
755 // before month m begins. There is an entry for m=12, counting
756 // the number of days before January of next year (365).
757 var daysBefore = [...]int32{
760 31 + 28,
761 31 + 28 + 31,
762 31 + 28 + 31 + 30,
763 31 + 28 + 31 + 30 + 31,
764 31 + 28 + 31 + 30 + 31 + 30,
765 31 + 28 + 31 + 30 + 31 + 30 + 31,
766 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31,
767 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30,
768 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31,
769 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30,
770 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 + 31,
773 func daysIn(m Month, year int) int {
774 if m == February && isLeap(year) {
775 return 29
777 return int(daysBefore[m] - daysBefore[m-1])
780 // Provided by package runtime.
781 func now() (sec int64, nsec int32)
783 // Now returns the current local time.
784 func Now() Time {
785 sec, nsec := now()
786 return Time{sec + unixToInternal, uintptr(nsec), Local}
789 // UTC returns t with the location set to UTC.
790 func (t Time) UTC() Time {
791 t.loc = UTC
792 return t
795 // Local returns t with the location set to local time.
796 func (t Time) Local() Time {
797 t.loc = Local
798 return t
801 // In returns t with the location information set to loc.
803 // In panics if loc is nil.
804 func (t Time) In(loc *Location) Time {
805 if loc == nil {
806 panic("time: missing Location in call to Time.In")
808 t.loc = loc
809 return t
812 // Location returns the time zone information associated with t.
813 func (t Time) Location() *Location {
814 l := t.loc
815 if l == nil {
816 l = UTC
818 return l
821 // Zone computes the time zone in effect at time t, returning the abbreviated
822 // name of the zone (such as "CET") and its offset in seconds east of UTC.
823 func (t Time) Zone() (name string, offset int) {
824 name, offset, _, _, _ = t.loc.lookup(t.sec + internalToUnix)
825 return
828 // Unix returns t as a Unix time, the number of seconds elapsed
829 // since January 1, 1970 UTC.
830 func (t Time) Unix() int64 {
831 return t.sec + internalToUnix
834 // UnixNano returns t as a Unix time, the number of nanoseconds elapsed
835 // since January 1, 1970 UTC. The result is undefined if the Unix time
836 // in nanoseconds cannot be represented by an int64. Note that this
837 // means the result of calling UnixNano on the zero Time is undefined.
838 func (t Time) UnixNano() int64 {
839 return (t.sec+internalToUnix)*1e9 + int64(t.nsec)
842 const timeBinaryVersion byte = 1
844 // MarshalBinary implements the encoding.BinaryMarshaler interface.
845 func (t Time) MarshalBinary() ([]byte, error) {
846 var offsetMin int16 // minutes east of UTC. -1 is UTC.
848 if t.Location() == &utcLoc {
849 offsetMin = -1
850 } else {
851 _, offset := t.Zone()
852 if offset%60 != 0 {
853 return nil, errors.New("Time.MarshalBinary: zone offset has fractional minute")
855 offset /= 60
856 if offset < -32768 || offset == -1 || offset > 32767 {
857 return nil, errors.New("Time.MarshalBinary: unexpected zone offset")
859 offsetMin = int16(offset)
862 enc := []byte{
863 timeBinaryVersion, // byte 0 : version
864 byte(t.sec >> 56), // bytes 1-8: seconds
865 byte(t.sec >> 48),
866 byte(t.sec >> 40),
867 byte(t.sec >> 32),
868 byte(t.sec >> 24),
869 byte(t.sec >> 16),
870 byte(t.sec >> 8),
871 byte(t.sec),
872 byte(t.nsec >> 24), // bytes 9-12: nanoseconds
873 byte(t.nsec >> 16),
874 byte(t.nsec >> 8),
875 byte(t.nsec),
876 byte(offsetMin >> 8), // bytes 13-14: zone offset in minutes
877 byte(offsetMin),
880 return enc, nil
883 // UnmarshalBinary implements the encoding.BinaryUnmarshaler interface.
884 func (t *Time) UnmarshalBinary(data []byte) error {
885 buf := data
886 if len(buf) == 0 {
887 return errors.New("Time.UnmarshalBinary: no data")
890 if buf[0] != timeBinaryVersion {
891 return errors.New("Time.UnmarshalBinary: unsupported version")
894 if len(buf) != /*version*/ 1+ /*sec*/ 8+ /*nsec*/ 4+ /*zone offset*/ 2 {
895 return errors.New("Time.UnmarshalBinary: invalid length")
898 buf = buf[1:]
899 t.sec = int64(buf[7]) | int64(buf[6])<<8 | int64(buf[5])<<16 | int64(buf[4])<<24 |
900 int64(buf[3])<<32 | int64(buf[2])<<40 | int64(buf[1])<<48 | int64(buf[0])<<56
902 buf = buf[8:]
903 t.nsec = uintptr(int32(buf[3]) | int32(buf[2])<<8 | int32(buf[1])<<16 | int32(buf[0])<<24)
905 buf = buf[4:]
906 offset := int(int16(buf[1])|int16(buf[0])<<8) * 60
908 if offset == -1*60 {
909 t.loc = &utcLoc
910 } else if _, localoff, _, _, _ := Local.lookup(t.sec + internalToUnix); offset == localoff {
911 t.loc = Local
912 } else {
913 t.loc = FixedZone("", offset)
916 return nil
919 // TODO(rsc): Remove GobEncoder, GobDecoder, MarshalJSON, UnmarshalJSON in Go 2.
920 // The same semantics will be provided by the generic MarshalBinary, MarshalText,
921 // UnmarshalBinary, UnmarshalText.
923 // GobEncode implements the gob.GobEncoder interface.
924 func (t Time) GobEncode() ([]byte, error) {
925 return t.MarshalBinary()
928 // GobDecode implements the gob.GobDecoder interface.
929 func (t *Time) GobDecode(data []byte) error {
930 return t.UnmarshalBinary(data)
933 // MarshalJSON implements the json.Marshaler interface.
934 // The time is a quoted string in RFC 3339 format, with sub-second precision added if present.
935 func (t Time) MarshalJSON() ([]byte, error) {
936 if y := t.Year(); y < 0 || y >= 10000 {
937 return nil, errors.New("Time.MarshalJSON: year outside of range [0,9999]")
939 return []byte(t.Format(`"` + RFC3339Nano + `"`)), nil
942 // UnmarshalJSON implements the json.Unmarshaler interface.
943 // The time is expected to be a quoted string in RFC 3339 format.
944 func (t *Time) UnmarshalJSON(data []byte) (err error) {
945 // Fractional seconds are handled implicitly by Parse.
946 *t, err = Parse(`"`+RFC3339+`"`, string(data))
947 return
950 // MarshalText implements the encoding.TextMarshaler interface.
951 // The time is formatted in RFC 3339 format, with sub-second precision added if present.
952 func (t Time) MarshalText() ([]byte, error) {
953 if y := t.Year(); y < 0 || y >= 10000 {
954 return nil, errors.New("Time.MarshalText: year outside of range [0,9999]")
956 return []byte(t.Format(RFC3339Nano)), nil
959 // UnmarshalText implements the encoding.TextUnmarshaler interface.
960 // The time is expected to be in RFC 3339 format.
961 func (t *Time) UnmarshalText(data []byte) (err error) {
962 // Fractional seconds are handled implicitly by Parse.
963 *t, err = Parse(RFC3339, string(data))
964 return
967 // Unix returns the local Time corresponding to the given Unix time,
968 // sec seconds and nsec nanoseconds since January 1, 1970 UTC.
969 // It is valid to pass nsec outside the range [0, 999999999].
970 func Unix(sec int64, nsec int64) Time {
971 if nsec < 0 || nsec >= 1e9 {
972 n := nsec / 1e9
973 sec += n
974 nsec -= n * 1e9
975 if nsec < 0 {
976 nsec += 1e9
977 sec--
980 return Time{sec + unixToInternal, uintptr(nsec), Local}
983 func isLeap(year int) bool {
984 return year%4 == 0 && (year%100 != 0 || year%400 == 0)
987 // norm returns nhi, nlo such that
988 // hi * base + lo == nhi * base + nlo
989 // 0 <= nlo < base
990 func norm(hi, lo, base int) (nhi, nlo int) {
991 if lo < 0 {
992 n := (-lo-1)/base + 1
993 hi -= n
994 lo += n * base
996 if lo >= base {
997 n := lo / base
998 hi += n
999 lo -= n * base
1001 return hi, lo
1004 // Date returns the Time corresponding to
1005 // yyyy-mm-dd hh:mm:ss + nsec nanoseconds
1006 // in the appropriate zone for that time in the given location.
1008 // The month, day, hour, min, sec, and nsec values may be outside
1009 // their usual ranges and will be normalized during the conversion.
1010 // For example, October 32 converts to November 1.
1012 // A daylight savings time transition skips or repeats times.
1013 // For example, in the United States, March 13, 2011 2:15am never occurred,
1014 // while November 6, 2011 1:15am occurred twice. In such cases, the
1015 // choice of time zone, and therefore the time, is not well-defined.
1016 // Date returns a time that is correct in one of the two zones involved
1017 // in the transition, but it does not guarantee which.
1019 // Date panics if loc is nil.
1020 func Date(year int, month Month, day, hour, min, sec, nsec int, loc *Location) Time {
1021 if loc == nil {
1022 panic("time: missing Location in call to Date")
1025 // Normalize month, overflowing into year.
1026 m := int(month) - 1
1027 year, m = norm(year, m, 12)
1028 month = Month(m) + 1
1030 // Normalize nsec, sec, min, hour, overflowing into day.
1031 sec, nsec = norm(sec, nsec, 1e9)
1032 min, sec = norm(min, sec, 60)
1033 hour, min = norm(hour, min, 60)
1034 day, hour = norm(day, hour, 24)
1036 y := uint64(int64(year) - absoluteZeroYear)
1038 // Compute days since the absolute epoch.
1040 // Add in days from 400-year cycles.
1041 n := y / 400
1042 y -= 400 * n
1043 d := daysPer400Years * n
1045 // Add in 100-year cycles.
1046 n = y / 100
1047 y -= 100 * n
1048 d += daysPer100Years * n
1050 // Add in 4-year cycles.
1051 n = y / 4
1052 y -= 4 * n
1053 d += daysPer4Years * n
1055 // Add in non-leap years.
1056 n = y
1057 d += 365 * n
1059 // Add in days before this month.
1060 d += uint64(daysBefore[month-1])
1061 if isLeap(year) && month >= March {
1062 d++ // February 29
1065 // Add in days before today.
1066 d += uint64(day - 1)
1068 // Add in time elapsed today.
1069 abs := d * secondsPerDay
1070 abs += uint64(hour*secondsPerHour + min*secondsPerMinute + sec)
1072 unix := int64(abs) + (absoluteToInternal + internalToUnix)
1074 // Look for zone offset for t, so we can adjust to UTC.
1075 // The lookup function expects UTC, so we pass t in the
1076 // hope that it will not be too close to a zone transition,
1077 // and then adjust if it is.
1078 _, offset, _, start, end := loc.lookup(unix)
1079 if offset != 0 {
1080 switch utc := unix - int64(offset); {
1081 case utc < start:
1082 _, offset, _, _, _ = loc.lookup(start - 1)
1083 case utc >= end:
1084 _, offset, _, _, _ = loc.lookup(end)
1086 unix -= int64(offset)
1089 return Time{unix + unixToInternal, uintptr(nsec), loc}
1092 // Truncate returns the result of rounding t down to a multiple of d (since the zero time).
1093 // If d <= 0, Truncate returns t unchanged.
1094 func (t Time) Truncate(d Duration) Time {
1095 if d <= 0 {
1096 return t
1098 _, r := div(t, d)
1099 return t.Add(-r)
1102 // Round returns the result of rounding t to the nearest multiple of d (since the zero time).
1103 // The rounding behavior for halfway values is to round up.
1104 // If d <= 0, Round returns t unchanged.
1105 func (t Time) Round(d Duration) Time {
1106 if d <= 0 {
1107 return t
1109 _, r := div(t, d)
1110 if r+r < d {
1111 return t.Add(-r)
1113 return t.Add(d - r)
1116 // div divides t by d and returns the quotient parity and remainder.
1117 // We don't use the quotient parity anymore (round half up instead of round to even)
1118 // but it's still here in case we change our minds.
1119 func div(t Time, d Duration) (qmod2 int, r Duration) {
1120 neg := false
1121 nsec := int32(t.nsec)
1122 if t.sec < 0 {
1123 // Operate on absolute value.
1124 neg = true
1125 t.sec = -t.sec
1126 nsec = -nsec
1127 if nsec < 0 {
1128 nsec += 1e9
1129 t.sec-- // t.sec >= 1 before the -- so safe
1133 switch {
1134 // Special case: 2d divides 1 second.
1135 case d < Second && Second%(d+d) == 0:
1136 qmod2 = int(nsec/int32(d)) & 1
1137 r = Duration(nsec % int32(d))
1139 // Special case: d is a multiple of 1 second.
1140 case d%Second == 0:
1141 d1 := int64(d / Second)
1142 qmod2 = int(t.sec/d1) & 1
1143 r = Duration(t.sec%d1)*Second + Duration(nsec)
1145 // General case.
1146 // This could be faster if more cleverness were applied,
1147 // but it's really only here to avoid special case restrictions in the API.
1148 // No one will care about these cases.
1149 default:
1150 // Compute nanoseconds as 128-bit number.
1151 sec := uint64(t.sec)
1152 tmp := (sec >> 32) * 1e9
1153 u1 := tmp >> 32
1154 u0 := tmp << 32
1155 tmp = uint64(sec&0xFFFFFFFF) * 1e9
1156 u0x, u0 := u0, u0+tmp
1157 if u0 < u0x {
1158 u1++
1160 u0x, u0 = u0, u0+uint64(nsec)
1161 if u0 < u0x {
1162 u1++
1165 // Compute remainder by subtracting r<<k for decreasing k.
1166 // Quotient parity is whether we subtract on last round.
1167 d1 := uint64(d)
1168 for d1>>63 != 1 {
1169 d1 <<= 1
1171 d0 := uint64(0)
1172 for {
1173 qmod2 = 0
1174 if u1 > d1 || u1 == d1 && u0 >= d0 {
1175 // subtract
1176 qmod2 = 1
1177 u0x, u0 = u0, u0-d0
1178 if u0 > u0x {
1179 u1--
1181 u1 -= d1
1183 if d1 == 0 && d0 == uint64(d) {
1184 break
1186 d0 >>= 1
1187 d0 |= (d1 & 1) << 63
1188 d1 >>= 1
1190 r = Duration(u0)
1193 if neg && r != 0 {
1194 // If input was negative and not an exact multiple of d, we computed q, r such that
1195 // q*d + r = -t
1196 // But the right answers are given by -(q-1), d-r:
1197 // q*d + r = -t
1198 // -q*d - r = t
1199 // -(q-1)*d + (d - r) = t
1200 qmod2 ^= 1
1201 r = d - r
1203 return