2014-04-11 Marc Glisse <marc.glisse@inria.fr>
[official-gcc.git] / libgo / go / strconv / ftoa.go
blob1a9c41b85a89d3bb56861bc9a096c17679a7679d
1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 // Binary to decimal floating point conversion.
6 // Algorithm:
7 // 1) store mantissa in multiprecision decimal
8 // 2) shift decimal by exponent
9 // 3) read digits out & format
11 package strconv
13 import "math"
15 // TODO: move elsewhere?
16 type floatInfo struct {
17 mantbits uint
18 expbits uint
19 bias int
22 var float32info = floatInfo{23, 8, -127}
23 var float64info = floatInfo{52, 11, -1023}
25 // FormatFloat converts the floating-point number f to a string,
26 // according to the format fmt and precision prec. It rounds the
27 // result assuming that the original was obtained from a floating-point
28 // value of bitSize bits (32 for float32, 64 for float64).
30 // The format fmt is one of
31 // 'b' (-ddddp±ddd, a binary exponent),
32 // 'e' (-d.dddde±dd, a decimal exponent),
33 // 'E' (-d.ddddE±dd, a decimal exponent),
34 // 'f' (-ddd.dddd, no exponent),
35 // 'g' ('e' for large exponents, 'f' otherwise), or
36 // 'G' ('E' for large exponents, 'f' otherwise).
38 // The precision prec controls the number of digits
39 // (excluding the exponent) printed by the 'e', 'E', 'f', 'g', and 'G' formats.
40 // For 'e', 'E', and 'f' it is the number of digits after the decimal point.
41 // For 'g' and 'G' it is the total number of digits.
42 // The special precision -1 uses the smallest number of digits
43 // necessary such that ParseFloat will return f exactly.
44 func FormatFloat(f float64, fmt byte, prec, bitSize int) string {
45 return string(genericFtoa(make([]byte, 0, max(prec+4, 24)), f, fmt, prec, bitSize))
48 // AppendFloat appends the string form of the floating-point number f,
49 // as generated by FormatFloat, to dst and returns the extended buffer.
50 func AppendFloat(dst []byte, f float64, fmt byte, prec int, bitSize int) []byte {
51 return genericFtoa(dst, f, fmt, prec, bitSize)
54 func genericFtoa(dst []byte, val float64, fmt byte, prec, bitSize int) []byte {
55 var bits uint64
56 var flt *floatInfo
57 switch bitSize {
58 case 32:
59 bits = uint64(math.Float32bits(float32(val)))
60 flt = &float32info
61 case 64:
62 bits = math.Float64bits(val)
63 flt = &float64info
64 default:
65 panic("strconv: illegal AppendFloat/FormatFloat bitSize")
68 neg := bits>>(flt.expbits+flt.mantbits) != 0
69 exp := int(bits>>flt.mantbits) & (1<<flt.expbits - 1)
70 mant := bits & (uint64(1)<<flt.mantbits - 1)
72 switch exp {
73 case 1<<flt.expbits - 1:
74 // Inf, NaN
75 var s string
76 switch {
77 case mant != 0:
78 s = "NaN"
79 case neg:
80 s = "-Inf"
81 default:
82 s = "+Inf"
84 return append(dst, s...)
86 case 0:
87 // denormalized
88 exp++
90 default:
91 // add implicit top bit
92 mant |= uint64(1) << flt.mantbits
94 exp += flt.bias
96 // Pick off easy binary format.
97 if fmt == 'b' {
98 return fmtB(dst, neg, mant, exp, flt)
101 if !optimize {
102 return bigFtoa(dst, prec, fmt, neg, mant, exp, flt)
105 var digs decimalSlice
106 ok := false
107 // Negative precision means "only as much as needed to be exact."
108 shortest := prec < 0
109 if shortest {
110 // Try Grisu3 algorithm.
111 f := new(extFloat)
112 lower, upper := f.AssignComputeBounds(mant, exp, neg, flt)
113 var buf [32]byte
114 digs.d = buf[:]
115 ok = f.ShortestDecimal(&digs, &lower, &upper)
116 if !ok {
117 return bigFtoa(dst, prec, fmt, neg, mant, exp, flt)
119 // Precision for shortest representation mode.
120 switch fmt {
121 case 'e', 'E':
122 prec = digs.nd - 1
123 case 'f':
124 prec = max(digs.nd-digs.dp, 0)
125 case 'g', 'G':
126 prec = digs.nd
128 } else if fmt != 'f' {
129 // Fixed number of digits.
130 digits := prec
131 switch fmt {
132 case 'e', 'E':
133 digits++
134 case 'g', 'G':
135 if prec == 0 {
136 prec = 1
138 digits = prec
140 if digits <= 15 {
141 // try fast algorithm when the number of digits is reasonable.
142 var buf [24]byte
143 digs.d = buf[:]
144 f := extFloat{mant, exp - int(flt.mantbits), neg}
145 ok = f.FixedDecimal(&digs, digits)
148 if !ok {
149 return bigFtoa(dst, prec, fmt, neg, mant, exp, flt)
151 return formatDigits(dst, shortest, neg, digs, prec, fmt)
154 // bigFtoa uses multiprecision computations to format a float.
155 func bigFtoa(dst []byte, prec int, fmt byte, neg bool, mant uint64, exp int, flt *floatInfo) []byte {
156 d := new(decimal)
157 d.Assign(mant)
158 d.Shift(exp - int(flt.mantbits))
159 var digs decimalSlice
160 shortest := prec < 0
161 if shortest {
162 roundShortest(d, mant, exp, flt)
163 digs = decimalSlice{d: d.d[:], nd: d.nd, dp: d.dp}
164 // Precision for shortest representation mode.
165 switch fmt {
166 case 'e', 'E':
167 prec = digs.nd - 1
168 case 'f':
169 prec = max(digs.nd-digs.dp, 0)
170 case 'g', 'G':
171 prec = digs.nd
173 } else {
174 // Round appropriately.
175 switch fmt {
176 case 'e', 'E':
177 d.Round(prec + 1)
178 case 'f':
179 d.Round(d.dp + prec)
180 case 'g', 'G':
181 if prec == 0 {
182 prec = 1
184 d.Round(prec)
186 digs = decimalSlice{d: d.d[:], nd: d.nd, dp: d.dp}
188 return formatDigits(dst, shortest, neg, digs, prec, fmt)
191 func formatDigits(dst []byte, shortest bool, neg bool, digs decimalSlice, prec int, fmt byte) []byte {
192 switch fmt {
193 case 'e', 'E':
194 return fmtE(dst, neg, digs, prec, fmt)
195 case 'f':
196 return fmtF(dst, neg, digs, prec)
197 case 'g', 'G':
198 // trailing fractional zeros in 'e' form will be trimmed.
199 eprec := prec
200 if eprec > digs.nd && digs.nd >= digs.dp {
201 eprec = digs.nd
203 // %e is used if the exponent from the conversion
204 // is less than -4 or greater than or equal to the precision.
205 // if precision was the shortest possible, use precision 6 for this decision.
206 if shortest {
207 eprec = 6
209 exp := digs.dp - 1
210 if exp < -4 || exp >= eprec {
211 if prec > digs.nd {
212 prec = digs.nd
214 return fmtE(dst, neg, digs, prec-1, fmt+'e'-'g')
216 if prec > digs.dp {
217 prec = digs.nd
219 return fmtF(dst, neg, digs, max(prec-digs.dp, 0))
222 // unknown format
223 return append(dst, '%', fmt)
226 // Round d (= mant * 2^exp) to the shortest number of digits
227 // that will let the original floating point value be precisely
228 // reconstructed. Size is original floating point size (64 or 32).
229 func roundShortest(d *decimal, mant uint64, exp int, flt *floatInfo) {
230 // If mantissa is zero, the number is zero; stop now.
231 if mant == 0 {
232 d.nd = 0
233 return
236 // Compute upper and lower such that any decimal number
237 // between upper and lower (possibly inclusive)
238 // will round to the original floating point number.
240 // We may see at once that the number is already shortest.
242 // Suppose d is not denormal, so that 2^exp <= d < 10^dp.
243 // The closest shorter number is at least 10^(dp-nd) away.
244 // The lower/upper bounds computed below are at distance
245 // at most 2^(exp-mantbits).
247 // So the number is already shortest if 10^(dp-nd) > 2^(exp-mantbits),
248 // or equivalently log2(10)*(dp-nd) > exp-mantbits.
249 // It is true if 332/100*(dp-nd) >= exp-mantbits (log2(10) > 3.32).
250 minexp := flt.bias + 1 // minimum possible exponent
251 if exp > minexp && 332*(d.dp-d.nd) >= 100*(exp-int(flt.mantbits)) {
252 // The number is already shortest.
253 return
256 // d = mant << (exp - mantbits)
257 // Next highest floating point number is mant+1 << exp-mantbits.
258 // Our upper bound is halfway between, mant*2+1 << exp-mantbits-1.
259 upper := new(decimal)
260 upper.Assign(mant*2 + 1)
261 upper.Shift(exp - int(flt.mantbits) - 1)
263 // d = mant << (exp - mantbits)
264 // Next lowest floating point number is mant-1 << exp-mantbits,
265 // unless mant-1 drops the significant bit and exp is not the minimum exp,
266 // in which case the next lowest is mant*2-1 << exp-mantbits-1.
267 // Either way, call it mantlo << explo-mantbits.
268 // Our lower bound is halfway between, mantlo*2+1 << explo-mantbits-1.
269 var mantlo uint64
270 var explo int
271 if mant > 1<<flt.mantbits || exp == minexp {
272 mantlo = mant - 1
273 explo = exp
274 } else {
275 mantlo = mant*2 - 1
276 explo = exp - 1
278 lower := new(decimal)
279 lower.Assign(mantlo*2 + 1)
280 lower.Shift(explo - int(flt.mantbits) - 1)
282 // The upper and lower bounds are possible outputs only if
283 // the original mantissa is even, so that IEEE round-to-even
284 // would round to the original mantissa and not the neighbors.
285 inclusive := mant%2 == 0
287 // Now we can figure out the minimum number of digits required.
288 // Walk along until d has distinguished itself from upper and lower.
289 for i := 0; i < d.nd; i++ {
290 var l, m, u byte // lower, middle, upper digits
291 if i < lower.nd {
292 l = lower.d[i]
293 } else {
294 l = '0'
296 m = d.d[i]
297 if i < upper.nd {
298 u = upper.d[i]
299 } else {
300 u = '0'
303 // Okay to round down (truncate) if lower has a different digit
304 // or if lower is inclusive and is exactly the result of rounding down.
305 okdown := l != m || (inclusive && l == m && i+1 == lower.nd)
307 // Okay to round up if upper has a different digit and
308 // either upper is inclusive or upper is bigger than the result of rounding up.
309 okup := m != u && (inclusive || m+1 < u || i+1 < upper.nd)
311 // If it's okay to do either, then round to the nearest one.
312 // If it's okay to do only one, do it.
313 switch {
314 case okdown && okup:
315 d.Round(i + 1)
316 return
317 case okdown:
318 d.RoundDown(i + 1)
319 return
320 case okup:
321 d.RoundUp(i + 1)
322 return
327 type decimalSlice struct {
328 d []byte
329 nd, dp int
330 neg bool
333 // %e: -d.ddddde±dd
334 func fmtE(dst []byte, neg bool, d decimalSlice, prec int, fmt byte) []byte {
335 // sign
336 if neg {
337 dst = append(dst, '-')
340 // first digit
341 ch := byte('0')
342 if d.nd != 0 {
343 ch = d.d[0]
345 dst = append(dst, ch)
347 // .moredigits
348 if prec > 0 {
349 dst = append(dst, '.')
350 i := 1
351 m := d.nd + prec + 1 - max(d.nd, prec+1)
352 for i < m {
353 dst = append(dst, d.d[i])
356 for i <= prec {
357 dst = append(dst, '0')
362 // e±
363 dst = append(dst, fmt)
364 exp := d.dp - 1
365 if d.nd == 0 { // special case: 0 has exponent 0
366 exp = 0
368 if exp < 0 {
369 ch = '-'
370 exp = -exp
371 } else {
372 ch = '+'
374 dst = append(dst, ch)
376 // dddd
377 var buf [3]byte
378 i := len(buf)
379 for exp >= 10 {
381 buf[i] = byte(exp%10 + '0')
382 exp /= 10
384 // exp < 10
386 buf[i] = byte(exp + '0')
388 switch i {
389 case 0:
390 dst = append(dst, buf[0], buf[1], buf[2])
391 case 1:
392 dst = append(dst, buf[1], buf[2])
393 case 2:
394 // leading zeroes
395 dst = append(dst, '0', buf[2])
397 return dst
400 // %f: -ddddddd.ddddd
401 func fmtF(dst []byte, neg bool, d decimalSlice, prec int) []byte {
402 // sign
403 if neg {
404 dst = append(dst, '-')
407 // integer, padded with zeros as needed.
408 if d.dp > 0 {
409 var i int
410 for i = 0; i < d.dp && i < d.nd; i++ {
411 dst = append(dst, d.d[i])
413 for ; i < d.dp; i++ {
414 dst = append(dst, '0')
416 } else {
417 dst = append(dst, '0')
420 // fraction
421 if prec > 0 {
422 dst = append(dst, '.')
423 for i := 0; i < prec; i++ {
424 ch := byte('0')
425 if j := d.dp + i; 0 <= j && j < d.nd {
426 ch = d.d[j]
428 dst = append(dst, ch)
432 return dst
435 // %b: -ddddddddp+ddd
436 func fmtB(dst []byte, neg bool, mant uint64, exp int, flt *floatInfo) []byte {
437 var buf [50]byte
438 w := len(buf)
439 exp -= int(flt.mantbits)
440 esign := byte('+')
441 if exp < 0 {
442 esign = '-'
443 exp = -exp
445 n := 0
446 for exp > 0 || n < 1 {
449 buf[w] = byte(exp%10 + '0')
450 exp /= 10
453 buf[w] = esign
455 buf[w] = 'p'
456 n = 0
457 for mant > 0 || n < 1 {
460 buf[w] = byte(mant%10 + '0')
461 mant /= 10
463 if neg {
465 buf[w] = '-'
467 return append(dst, buf[w:]...)
470 func max(a, b int) int {
471 if a > b {
472 return a
474 return b