2014-04-11 Marc Glisse <marc.glisse@inria.fr>
[official-gcc.git] / libgo / go / math / exp.go
blob51330c21dc8cdc05749bbff3bbc259ea1578c76d
1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 package math
7 // Exp returns e**x, the base-e exponential of x.
8 //
9 // Special cases are:
10 // Exp(+Inf) = +Inf
11 // Exp(NaN) = NaN
12 // Very large values overflow to 0 or +Inf.
13 // Very small values underflow to 1.
15 //extern exp
16 func libc_exp(float64) float64
18 func Exp(x float64) float64 {
19 return libc_exp(x)
22 // The original C code, the long comment, and the constants
23 // below are from FreeBSD's /usr/src/lib/msun/src/e_exp.c
24 // and came with this notice. The go code is a simplified
25 // version of the original C.
27 // ====================================================
28 // Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
30 // Permission to use, copy, modify, and distribute this
31 // software is freely granted, provided that this notice
32 // is preserved.
33 // ====================================================
36 // exp(x)
37 // Returns the exponential of x.
39 // Method
40 // 1. Argument reduction:
41 // Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
42 // Given x, find r and integer k such that
44 // x = k*ln2 + r, |r| <= 0.5*ln2.
46 // Here r will be represented as r = hi-lo for better
47 // accuracy.
49 // 2. Approximation of exp(r) by a special rational function on
50 // the interval [0,0.34658]:
51 // Write
52 // R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
53 // We use a special Remes algorithm on [0,0.34658] to generate
54 // a polynomial of degree 5 to approximate R. The maximum error
55 // of this polynomial approximation is bounded by 2**-59. In
56 // other words,
57 // R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
58 // (where z=r*r, and the values of P1 to P5 are listed below)
59 // and
60 // | 5 | -59
61 // | 2.0+P1*z+...+P5*z - R(z) | <= 2
62 // | |
63 // The computation of exp(r) thus becomes
64 // 2*r
65 // exp(r) = 1 + -------
66 // R - r
67 // r*R1(r)
68 // = 1 + r + ----------- (for better accuracy)
69 // 2 - R1(r)
70 // where
71 // 2 4 10
72 // R1(r) = r - (P1*r + P2*r + ... + P5*r ).
74 // 3. Scale back to obtain exp(x):
75 // From step 1, we have
76 // exp(x) = 2**k * exp(r)
78 // Special cases:
79 // exp(INF) is INF, exp(NaN) is NaN;
80 // exp(-INF) is 0, and
81 // for finite argument, only exp(0)=1 is exact.
83 // Accuracy:
84 // according to an error analysis, the error is always less than
85 // 1 ulp (unit in the last place).
87 // Misc. info.
88 // For IEEE double
89 // if x > 7.09782712893383973096e+02 then exp(x) overflow
90 // if x < -7.45133219101941108420e+02 then exp(x) underflow
92 // Constants:
93 // The hexadecimal values are the intended ones for the following
94 // constants. The decimal values may be used, provided that the
95 // compiler will convert from decimal to binary accurately enough
96 // to produce the hexadecimal values shown.
98 func exp(x float64) float64 {
99 const (
100 Ln2Hi = 6.93147180369123816490e-01
101 Ln2Lo = 1.90821492927058770002e-10
102 Log2e = 1.44269504088896338700e+00
104 Overflow = 7.09782712893383973096e+02
105 Underflow = -7.45133219101941108420e+02
106 NearZero = 1.0 / (1 << 28) // 2**-28
109 // special cases
110 switch {
111 case IsNaN(x) || IsInf(x, 1):
112 return x
113 case IsInf(x, -1):
114 return 0
115 case x > Overflow:
116 return Inf(1)
117 case x < Underflow:
118 return 0
119 case -NearZero < x && x < NearZero:
120 return 1 + x
123 // reduce; computed as r = hi - lo for extra precision.
124 var k int
125 switch {
126 case x < 0:
127 k = int(Log2e*x - 0.5)
128 case x > 0:
129 k = int(Log2e*x + 0.5)
131 hi := x - float64(k)*Ln2Hi
132 lo := float64(k) * Ln2Lo
134 // compute
135 return expmulti(hi, lo, k)
138 // Exp2 returns 2**x, the base-2 exponential of x.
140 // Special cases are the same as Exp.
141 func Exp2(x float64) float64 {
142 return exp2(x)
145 func exp2(x float64) float64 {
146 const (
147 Ln2Hi = 6.93147180369123816490e-01
148 Ln2Lo = 1.90821492927058770002e-10
150 Overflow = 1.0239999999999999e+03
151 Underflow = -1.0740e+03
154 // special cases
155 switch {
156 case IsNaN(x) || IsInf(x, 1):
157 return x
158 case IsInf(x, -1):
159 return 0
160 case x > Overflow:
161 return Inf(1)
162 case x < Underflow:
163 return 0
166 // argument reduction; x = r×lg(e) + k with |r| ≤ ln(2)/2.
167 // computed as r = hi - lo for extra precision.
168 var k int
169 switch {
170 case x > 0:
171 k = int(x + 0.5)
172 case x < 0:
173 k = int(x - 0.5)
175 t := x - float64(k)
176 hi := t * Ln2Hi
177 lo := -t * Ln2Lo
179 // compute
180 return expmulti(hi, lo, k)
183 // exp1 returns e**r × 2**k where r = hi - lo and |r| ≤ ln(2)/2.
184 func expmulti(hi, lo float64, k int) float64 {
185 const (
186 P1 = 1.66666666666666019037e-01 /* 0x3FC55555; 0x5555553E */
187 P2 = -2.77777777770155933842e-03 /* 0xBF66C16C; 0x16BEBD93 */
188 P3 = 6.61375632143793436117e-05 /* 0x3F11566A; 0xAF25DE2C */
189 P4 = -1.65339022054652515390e-06 /* 0xBEBBBD41; 0xC5D26BF1 */
190 P5 = 4.13813679705723846039e-08 /* 0x3E663769; 0x72BEA4D0 */
193 r := hi - lo
194 t := r * r
195 c := r - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))))
196 y := 1 - ((lo - (r*c)/(2-c)) - hi)
197 // TODO(rsc): make sure Ldexp can handle boundary k
198 return Ldexp(y, k)