2014-04-11 Marc Glisse <marc.glisse@inria.fr>
[official-gcc.git] / libgo / go / math / big / int.go
blob7bbb152d79cac16bc9cac3f3ca35a2f55306a19b
1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 // This file implements signed multi-precision integers.
7 package big
9 import (
10 "errors"
11 "fmt"
12 "io"
13 "math/rand"
14 "strings"
17 // An Int represents a signed multi-precision integer.
18 // The zero value for an Int represents the value 0.
19 type Int struct {
20 neg bool // sign
21 abs nat // absolute value of the integer
24 var intOne = &Int{false, natOne}
26 // Sign returns:
28 // -1 if x < 0
29 // 0 if x == 0
30 // +1 if x > 0
32 func (x *Int) Sign() int {
33 if len(x.abs) == 0 {
34 return 0
36 if x.neg {
37 return -1
39 return 1
42 // SetInt64 sets z to x and returns z.
43 func (z *Int) SetInt64(x int64) *Int {
44 neg := false
45 if x < 0 {
46 neg = true
47 x = -x
49 z.abs = z.abs.setUint64(uint64(x))
50 z.neg = neg
51 return z
54 // SetUint64 sets z to x and returns z.
55 func (z *Int) SetUint64(x uint64) *Int {
56 z.abs = z.abs.setUint64(x)
57 z.neg = false
58 return z
61 // NewInt allocates and returns a new Int set to x.
62 func NewInt(x int64) *Int {
63 return new(Int).SetInt64(x)
66 // Set sets z to x and returns z.
67 func (z *Int) Set(x *Int) *Int {
68 if z != x {
69 z.abs = z.abs.set(x.abs)
70 z.neg = x.neg
72 return z
75 // Bits provides raw (unchecked but fast) access to x by returning its
76 // absolute value as a little-endian Word slice. The result and x share
77 // the same underlying array.
78 // Bits is intended to support implementation of missing low-level Int
79 // functionality outside this package; it should be avoided otherwise.
80 func (x *Int) Bits() []Word {
81 return x.abs
84 // SetBits provides raw (unchecked but fast) access to z by setting its
85 // value to abs, interpreted as a little-endian Word slice, and returning
86 // z. The result and abs share the same underlying array.
87 // SetBits is intended to support implementation of missing low-level Int
88 // functionality outside this package; it should be avoided otherwise.
89 func (z *Int) SetBits(abs []Word) *Int {
90 z.abs = nat(abs).norm()
91 z.neg = false
92 return z
95 // Abs sets z to |x| (the absolute value of x) and returns z.
96 func (z *Int) Abs(x *Int) *Int {
97 z.Set(x)
98 z.neg = false
99 return z
102 // Neg sets z to -x and returns z.
103 func (z *Int) Neg(x *Int) *Int {
104 z.Set(x)
105 z.neg = len(z.abs) > 0 && !z.neg // 0 has no sign
106 return z
109 // Add sets z to the sum x+y and returns z.
110 func (z *Int) Add(x, y *Int) *Int {
111 neg := x.neg
112 if x.neg == y.neg {
113 // x + y == x + y
114 // (-x) + (-y) == -(x + y)
115 z.abs = z.abs.add(x.abs, y.abs)
116 } else {
117 // x + (-y) == x - y == -(y - x)
118 // (-x) + y == y - x == -(x - y)
119 if x.abs.cmp(y.abs) >= 0 {
120 z.abs = z.abs.sub(x.abs, y.abs)
121 } else {
122 neg = !neg
123 z.abs = z.abs.sub(y.abs, x.abs)
126 z.neg = len(z.abs) > 0 && neg // 0 has no sign
127 return z
130 // Sub sets z to the difference x-y and returns z.
131 func (z *Int) Sub(x, y *Int) *Int {
132 neg := x.neg
133 if x.neg != y.neg {
134 // x - (-y) == x + y
135 // (-x) - y == -(x + y)
136 z.abs = z.abs.add(x.abs, y.abs)
137 } else {
138 // x - y == x - y == -(y - x)
139 // (-x) - (-y) == y - x == -(x - y)
140 if x.abs.cmp(y.abs) >= 0 {
141 z.abs = z.abs.sub(x.abs, y.abs)
142 } else {
143 neg = !neg
144 z.abs = z.abs.sub(y.abs, x.abs)
147 z.neg = len(z.abs) > 0 && neg // 0 has no sign
148 return z
151 // Mul sets z to the product x*y and returns z.
152 func (z *Int) Mul(x, y *Int) *Int {
153 // x * y == x * y
154 // x * (-y) == -(x * y)
155 // (-x) * y == -(x * y)
156 // (-x) * (-y) == x * y
157 z.abs = z.abs.mul(x.abs, y.abs)
158 z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign
159 return z
162 // MulRange sets z to the product of all integers
163 // in the range [a, b] inclusively and returns z.
164 // If a > b (empty range), the result is 1.
165 func (z *Int) MulRange(a, b int64) *Int {
166 switch {
167 case a > b:
168 return z.SetInt64(1) // empty range
169 case a <= 0 && b >= 0:
170 return z.SetInt64(0) // range includes 0
172 // a <= b && (b < 0 || a > 0)
174 neg := false
175 if a < 0 {
176 neg = (b-a)&1 == 0
177 a, b = -b, -a
180 z.abs = z.abs.mulRange(uint64(a), uint64(b))
181 z.neg = neg
182 return z
185 // Binomial sets z to the binomial coefficient of (n, k) and returns z.
186 func (z *Int) Binomial(n, k int64) *Int {
187 var a, b Int
188 a.MulRange(n-k+1, n)
189 b.MulRange(1, k)
190 return z.Quo(&a, &b)
193 // Quo sets z to the quotient x/y for y != 0 and returns z.
194 // If y == 0, a division-by-zero run-time panic occurs.
195 // Quo implements truncated division (like Go); see QuoRem for more details.
196 func (z *Int) Quo(x, y *Int) *Int {
197 z.abs, _ = z.abs.div(nil, x.abs, y.abs)
198 z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign
199 return z
202 // Rem sets z to the remainder x%y for y != 0 and returns z.
203 // If y == 0, a division-by-zero run-time panic occurs.
204 // Rem implements truncated modulus (like Go); see QuoRem for more details.
205 func (z *Int) Rem(x, y *Int) *Int {
206 _, z.abs = nat(nil).div(z.abs, x.abs, y.abs)
207 z.neg = len(z.abs) > 0 && x.neg // 0 has no sign
208 return z
211 // QuoRem sets z to the quotient x/y and r to the remainder x%y
212 // and returns the pair (z, r) for y != 0.
213 // If y == 0, a division-by-zero run-time panic occurs.
215 // QuoRem implements T-division and modulus (like Go):
217 // q = x/y with the result truncated to zero
218 // r = x - y*q
220 // (See Daan Leijen, ``Division and Modulus for Computer Scientists''.)
221 // See DivMod for Euclidean division and modulus (unlike Go).
223 func (z *Int) QuoRem(x, y, r *Int) (*Int, *Int) {
224 z.abs, r.abs = z.abs.div(r.abs, x.abs, y.abs)
225 z.neg, r.neg = len(z.abs) > 0 && x.neg != y.neg, len(r.abs) > 0 && x.neg // 0 has no sign
226 return z, r
229 // Div sets z to the quotient x/y for y != 0 and returns z.
230 // If y == 0, a division-by-zero run-time panic occurs.
231 // Div implements Euclidean division (unlike Go); see DivMod for more details.
232 func (z *Int) Div(x, y *Int) *Int {
233 y_neg := y.neg // z may be an alias for y
234 var r Int
235 z.QuoRem(x, y, &r)
236 if r.neg {
237 if y_neg {
238 z.Add(z, intOne)
239 } else {
240 z.Sub(z, intOne)
243 return z
246 // Mod sets z to the modulus x%y for y != 0 and returns z.
247 // If y == 0, a division-by-zero run-time panic occurs.
248 // Mod implements Euclidean modulus (unlike Go); see DivMod for more details.
249 func (z *Int) Mod(x, y *Int) *Int {
250 y0 := y // save y
251 if z == y || alias(z.abs, y.abs) {
252 y0 = new(Int).Set(y)
254 var q Int
255 q.QuoRem(x, y, z)
256 if z.neg {
257 if y0.neg {
258 z.Sub(z, y0)
259 } else {
260 z.Add(z, y0)
263 return z
266 // DivMod sets z to the quotient x div y and m to the modulus x mod y
267 // and returns the pair (z, m) for y != 0.
268 // If y == 0, a division-by-zero run-time panic occurs.
270 // DivMod implements Euclidean division and modulus (unlike Go):
272 // q = x div y such that
273 // m = x - y*q with 0 <= m < |q|
275 // (See Raymond T. Boute, ``The Euclidean definition of the functions
276 // div and mod''. ACM Transactions on Programming Languages and
277 // Systems (TOPLAS), 14(2):127-144, New York, NY, USA, 4/1992.
278 // ACM press.)
279 // See QuoRem for T-division and modulus (like Go).
281 func (z *Int) DivMod(x, y, m *Int) (*Int, *Int) {
282 y0 := y // save y
283 if z == y || alias(z.abs, y.abs) {
284 y0 = new(Int).Set(y)
286 z.QuoRem(x, y, m)
287 if m.neg {
288 if y0.neg {
289 z.Add(z, intOne)
290 m.Sub(m, y0)
291 } else {
292 z.Sub(z, intOne)
293 m.Add(m, y0)
296 return z, m
299 // Cmp compares x and y and returns:
301 // -1 if x < y
302 // 0 if x == y
303 // +1 if x > y
305 func (x *Int) Cmp(y *Int) (r int) {
306 // x cmp y == x cmp y
307 // x cmp (-y) == x
308 // (-x) cmp y == y
309 // (-x) cmp (-y) == -(x cmp y)
310 switch {
311 case x.neg == y.neg:
312 r = x.abs.cmp(y.abs)
313 if x.neg {
314 r = -r
316 case x.neg:
317 r = -1
318 default:
319 r = 1
321 return
324 func (x *Int) String() string {
325 switch {
326 case x == nil:
327 return "<nil>"
328 case x.neg:
329 return "-" + x.abs.decimalString()
331 return x.abs.decimalString()
334 func charset(ch rune) string {
335 switch ch {
336 case 'b':
337 return lowercaseDigits[0:2]
338 case 'o':
339 return lowercaseDigits[0:8]
340 case 'd', 's', 'v':
341 return lowercaseDigits[0:10]
342 case 'x':
343 return lowercaseDigits[0:16]
344 case 'X':
345 return uppercaseDigits[0:16]
347 return "" // unknown format
350 // write count copies of text to s
351 func writeMultiple(s fmt.State, text string, count int) {
352 if len(text) > 0 {
353 b := []byte(text)
354 for ; count > 0; count-- {
355 s.Write(b)
360 // Format is a support routine for fmt.Formatter. It accepts
361 // the formats 'b' (binary), 'o' (octal), 'd' (decimal), 'x'
362 // (lowercase hexadecimal), and 'X' (uppercase hexadecimal).
363 // Also supported are the full suite of package fmt's format
364 // verbs for integral types, including '+', '-', and ' '
365 // for sign control, '#' for leading zero in octal and for
366 // hexadecimal, a leading "0x" or "0X" for "%#x" and "%#X"
367 // respectively, specification of minimum digits precision,
368 // output field width, space or zero padding, and left or
369 // right justification.
371 func (x *Int) Format(s fmt.State, ch rune) {
372 cs := charset(ch)
374 // special cases
375 switch {
376 case cs == "":
377 // unknown format
378 fmt.Fprintf(s, "%%!%c(big.Int=%s)", ch, x.String())
379 return
380 case x == nil:
381 fmt.Fprint(s, "<nil>")
382 return
385 // determine sign character
386 sign := ""
387 switch {
388 case x.neg:
389 sign = "-"
390 case s.Flag('+'): // supersedes ' ' when both specified
391 sign = "+"
392 case s.Flag(' '):
393 sign = " "
396 // determine prefix characters for indicating output base
397 prefix := ""
398 if s.Flag('#') {
399 switch ch {
400 case 'o': // octal
401 prefix = "0"
402 case 'x': // hexadecimal
403 prefix = "0x"
404 case 'X':
405 prefix = "0X"
409 // determine digits with base set by len(cs) and digit characters from cs
410 digits := x.abs.string(cs)
412 // number of characters for the three classes of number padding
413 var left int // space characters to left of digits for right justification ("%8d")
414 var zeroes int // zero characters (actually cs[0]) as left-most digits ("%.8d")
415 var right int // space characters to right of digits for left justification ("%-8d")
417 // determine number padding from precision: the least number of digits to output
418 precision, precisionSet := s.Precision()
419 if precisionSet {
420 switch {
421 case len(digits) < precision:
422 zeroes = precision - len(digits) // count of zero padding
423 case digits == "0" && precision == 0:
424 return // print nothing if zero value (x == 0) and zero precision ("." or ".0")
428 // determine field pad from width: the least number of characters to output
429 length := len(sign) + len(prefix) + zeroes + len(digits)
430 if width, widthSet := s.Width(); widthSet && length < width { // pad as specified
431 switch d := width - length; {
432 case s.Flag('-'):
433 // pad on the right with spaces; supersedes '0' when both specified
434 right = d
435 case s.Flag('0') && !precisionSet:
436 // pad with zeroes unless precision also specified
437 zeroes = d
438 default:
439 // pad on the left with spaces
440 left = d
444 // print number as [left pad][sign][prefix][zero pad][digits][right pad]
445 writeMultiple(s, " ", left)
446 writeMultiple(s, sign, 1)
447 writeMultiple(s, prefix, 1)
448 writeMultiple(s, "0", zeroes)
449 writeMultiple(s, digits, 1)
450 writeMultiple(s, " ", right)
453 // scan sets z to the integer value corresponding to the longest possible prefix
454 // read from r representing a signed integer number in a given conversion base.
455 // It returns z, the actual conversion base used, and an error, if any. In the
456 // error case, the value of z is undefined but the returned value is nil. The
457 // syntax follows the syntax of integer literals in Go.
459 // The base argument must be 0 or a value from 2 through MaxBase. If the base
460 // is 0, the string prefix determines the actual conversion base. A prefix of
461 // ``0x'' or ``0X'' selects base 16; the ``0'' prefix selects base 8, and a
462 // ``0b'' or ``0B'' prefix selects base 2. Otherwise the selected base is 10.
464 func (z *Int) scan(r io.RuneScanner, base int) (*Int, int, error) {
465 // determine sign
466 ch, _, err := r.ReadRune()
467 if err != nil {
468 return nil, 0, err
470 neg := false
471 switch ch {
472 case '-':
473 neg = true
474 case '+': // nothing to do
475 default:
476 r.UnreadRune()
479 // determine mantissa
480 z.abs, base, err = z.abs.scan(r, base)
481 if err != nil {
482 return nil, base, err
484 z.neg = len(z.abs) > 0 && neg // 0 has no sign
486 return z, base, nil
489 // Scan is a support routine for fmt.Scanner; it sets z to the value of
490 // the scanned number. It accepts the formats 'b' (binary), 'o' (octal),
491 // 'd' (decimal), 'x' (lowercase hexadecimal), and 'X' (uppercase hexadecimal).
492 func (z *Int) Scan(s fmt.ScanState, ch rune) error {
493 s.SkipSpace() // skip leading space characters
494 base := 0
495 switch ch {
496 case 'b':
497 base = 2
498 case 'o':
499 base = 8
500 case 'd':
501 base = 10
502 case 'x', 'X':
503 base = 16
504 case 's', 'v':
505 // let scan determine the base
506 default:
507 return errors.New("Int.Scan: invalid verb")
509 _, _, err := z.scan(s, base)
510 return err
513 // Int64 returns the int64 representation of x.
514 // If x cannot be represented in an int64, the result is undefined.
515 func (x *Int) Int64() int64 {
516 v := int64(x.Uint64())
517 if x.neg {
518 v = -v
520 return v
523 // Uint64 returns the uint64 representation of x.
524 // If x cannot be represented in a uint64, the result is undefined.
525 func (x *Int) Uint64() uint64 {
526 if len(x.abs) == 0 {
527 return 0
529 v := uint64(x.abs[0])
530 if _W == 32 && len(x.abs) > 1 {
531 v |= uint64(x.abs[1]) << 32
533 return v
536 // SetString sets z to the value of s, interpreted in the given base,
537 // and returns z and a boolean indicating success. If SetString fails,
538 // the value of z is undefined but the returned value is nil.
540 // The base argument must be 0 or a value from 2 through MaxBase. If the base
541 // is 0, the string prefix determines the actual conversion base. A prefix of
542 // ``0x'' or ``0X'' selects base 16; the ``0'' prefix selects base 8, and a
543 // ``0b'' or ``0B'' prefix selects base 2. Otherwise the selected base is 10.
545 func (z *Int) SetString(s string, base int) (*Int, bool) {
546 r := strings.NewReader(s)
547 _, _, err := z.scan(r, base)
548 if err != nil {
549 return nil, false
551 _, _, err = r.ReadRune()
552 if err != io.EOF {
553 return nil, false
555 return z, true // err == io.EOF => scan consumed all of s
558 // SetBytes interprets buf as the bytes of a big-endian unsigned
559 // integer, sets z to that value, and returns z.
560 func (z *Int) SetBytes(buf []byte) *Int {
561 z.abs = z.abs.setBytes(buf)
562 z.neg = false
563 return z
566 // Bytes returns the absolute value of x as a big-endian byte slice.
567 func (x *Int) Bytes() []byte {
568 buf := make([]byte, len(x.abs)*_S)
569 return buf[x.abs.bytes(buf):]
572 // BitLen returns the length of the absolute value of x in bits.
573 // The bit length of 0 is 0.
574 func (x *Int) BitLen() int {
575 return x.abs.bitLen()
578 // Exp sets z = x**y mod |m| (i.e. the sign of m is ignored), and returns z.
579 // If y <= 0, the result is 1; if m == nil or m == 0, z = x**y.
580 // See Knuth, volume 2, section 4.6.3.
581 func (z *Int) Exp(x, y, m *Int) *Int {
582 if y.neg || len(y.abs) == 0 {
583 return z.SetInt64(1)
585 // y > 0
587 var mWords nat
588 if m != nil {
589 mWords = m.abs // m.abs may be nil for m == 0
592 z.abs = z.abs.expNN(x.abs, y.abs, mWords)
593 z.neg = len(z.abs) > 0 && x.neg && y.abs[0]&1 == 1 // 0 has no sign
594 return z
597 // GCD sets z to the greatest common divisor of a and b, which both must
598 // be > 0, and returns z.
599 // If x and y are not nil, GCD sets x and y such that z = a*x + b*y.
600 // If either a or b is <= 0, GCD sets z = x = y = 0.
601 func (z *Int) GCD(x, y, a, b *Int) *Int {
602 if a.Sign() <= 0 || b.Sign() <= 0 {
603 z.SetInt64(0)
604 if x != nil {
605 x.SetInt64(0)
607 if y != nil {
608 y.SetInt64(0)
610 return z
612 if x == nil && y == nil {
613 return z.binaryGCD(a, b)
616 A := new(Int).Set(a)
617 B := new(Int).Set(b)
619 X := new(Int)
620 Y := new(Int).SetInt64(1)
622 lastX := new(Int).SetInt64(1)
623 lastY := new(Int)
625 q := new(Int)
626 temp := new(Int)
628 for len(B.abs) > 0 {
629 r := new(Int)
630 q, r = q.QuoRem(A, B, r)
632 A, B = B, r
634 temp.Set(X)
635 X.Mul(X, q)
636 X.neg = !X.neg
637 X.Add(X, lastX)
638 lastX.Set(temp)
640 temp.Set(Y)
641 Y.Mul(Y, q)
642 Y.neg = !Y.neg
643 Y.Add(Y, lastY)
644 lastY.Set(temp)
647 if x != nil {
648 *x = *lastX
651 if y != nil {
652 *y = *lastY
655 *z = *A
656 return z
659 // binaryGCD sets z to the greatest common divisor of a and b, which both must
660 // be > 0, and returns z.
661 // See Knuth, The Art of Computer Programming, Vol. 2, Section 4.5.2, Algorithm B.
662 func (z *Int) binaryGCD(a, b *Int) *Int {
663 u := z
664 v := new(Int)
666 // use one Euclidean iteration to ensure that u and v are approx. the same size
667 switch {
668 case len(a.abs) > len(b.abs):
669 u.Set(b)
670 v.Rem(a, b)
671 case len(a.abs) < len(b.abs):
672 u.Set(a)
673 v.Rem(b, a)
674 default:
675 u.Set(a)
676 v.Set(b)
679 // v might be 0 now
680 if len(v.abs) == 0 {
681 return u
683 // u > 0 && v > 0
685 // determine largest k such that u = u' << k, v = v' << k
686 k := u.abs.trailingZeroBits()
687 if vk := v.abs.trailingZeroBits(); vk < k {
688 k = vk
690 u.Rsh(u, k)
691 v.Rsh(v, k)
693 // determine t (we know that u > 0)
694 t := new(Int)
695 if u.abs[0]&1 != 0 {
696 // u is odd
697 t.Neg(v)
698 } else {
699 t.Set(u)
702 for len(t.abs) > 0 {
703 // reduce t
704 t.Rsh(t, t.abs.trailingZeroBits())
705 if t.neg {
706 v, t = t, v
707 v.neg = len(v.abs) > 0 && !v.neg // 0 has no sign
708 } else {
709 u, t = t, u
711 t.Sub(u, v)
714 return z.Lsh(u, k)
717 // ProbablyPrime performs n Miller-Rabin tests to check whether x is prime.
718 // If it returns true, x is prime with probability 1 - 1/4^n.
719 // If it returns false, x is not prime.
720 func (x *Int) ProbablyPrime(n int) bool {
721 return !x.neg && x.abs.probablyPrime(n)
724 // Rand sets z to a pseudo-random number in [0, n) and returns z.
725 func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int {
726 z.neg = false
727 if n.neg == true || len(n.abs) == 0 {
728 z.abs = nil
729 return z
731 z.abs = z.abs.random(rnd, n.abs, n.abs.bitLen())
732 return z
735 // ModInverse sets z to the multiplicative inverse of g in the group ℤ/pℤ (where
736 // p is a prime) and returns z.
737 func (z *Int) ModInverse(g, p *Int) *Int {
738 var d Int
739 d.GCD(z, nil, g, p)
740 // x and y are such that g*x + p*y = d. Since p is prime, d = 1. Taking
741 // that modulo p results in g*x = 1, therefore x is the inverse element.
742 if z.neg {
743 z.Add(z, p)
745 return z
748 // Lsh sets z = x << n and returns z.
749 func (z *Int) Lsh(x *Int, n uint) *Int {
750 z.abs = z.abs.shl(x.abs, n)
751 z.neg = x.neg
752 return z
755 // Rsh sets z = x >> n and returns z.
756 func (z *Int) Rsh(x *Int, n uint) *Int {
757 if x.neg {
758 // (-x) >> s == ^(x-1) >> s == ^((x-1) >> s) == -(((x-1) >> s) + 1)
759 t := z.abs.sub(x.abs, natOne) // no underflow because |x| > 0
760 t = t.shr(t, n)
761 z.abs = t.add(t, natOne)
762 z.neg = true // z cannot be zero if x is negative
763 return z
766 z.abs = z.abs.shr(x.abs, n)
767 z.neg = false
768 return z
771 // Bit returns the value of the i'th bit of x. That is, it
772 // returns (x>>i)&1. The bit index i must be >= 0.
773 func (x *Int) Bit(i int) uint {
774 if i == 0 {
775 // optimization for common case: odd/even test of x
776 if len(x.abs) > 0 {
777 return uint(x.abs[0] & 1) // bit 0 is same for -x
779 return 0
781 if i < 0 {
782 panic("negative bit index")
784 if x.neg {
785 t := nat(nil).sub(x.abs, natOne)
786 return t.bit(uint(i)) ^ 1
789 return x.abs.bit(uint(i))
792 // SetBit sets z to x, with x's i'th bit set to b (0 or 1).
793 // That is, if b is 1 SetBit sets z = x | (1 << i);
794 // if b is 0 SetBit sets z = x &^ (1 << i). If b is not 0 or 1,
795 // SetBit will panic.
796 func (z *Int) SetBit(x *Int, i int, b uint) *Int {
797 if i < 0 {
798 panic("negative bit index")
800 if x.neg {
801 t := z.abs.sub(x.abs, natOne)
802 t = t.setBit(t, uint(i), b^1)
803 z.abs = t.add(t, natOne)
804 z.neg = len(z.abs) > 0
805 return z
807 z.abs = z.abs.setBit(x.abs, uint(i), b)
808 z.neg = false
809 return z
812 // And sets z = x & y and returns z.
813 func (z *Int) And(x, y *Int) *Int {
814 if x.neg == y.neg {
815 if x.neg {
816 // (-x) & (-y) == ^(x-1) & ^(y-1) == ^((x-1) | (y-1)) == -(((x-1) | (y-1)) + 1)
817 x1 := nat(nil).sub(x.abs, natOne)
818 y1 := nat(nil).sub(y.abs, natOne)
819 z.abs = z.abs.add(z.abs.or(x1, y1), natOne)
820 z.neg = true // z cannot be zero if x and y are negative
821 return z
824 // x & y == x & y
825 z.abs = z.abs.and(x.abs, y.abs)
826 z.neg = false
827 return z
830 // x.neg != y.neg
831 if x.neg {
832 x, y = y, x // & is symmetric
835 // x & (-y) == x & ^(y-1) == x &^ (y-1)
836 y1 := nat(nil).sub(y.abs, natOne)
837 z.abs = z.abs.andNot(x.abs, y1)
838 z.neg = false
839 return z
842 // AndNot sets z = x &^ y and returns z.
843 func (z *Int) AndNot(x, y *Int) *Int {
844 if x.neg == y.neg {
845 if x.neg {
846 // (-x) &^ (-y) == ^(x-1) &^ ^(y-1) == ^(x-1) & (y-1) == (y-1) &^ (x-1)
847 x1 := nat(nil).sub(x.abs, natOne)
848 y1 := nat(nil).sub(y.abs, natOne)
849 z.abs = z.abs.andNot(y1, x1)
850 z.neg = false
851 return z
854 // x &^ y == x &^ y
855 z.abs = z.abs.andNot(x.abs, y.abs)
856 z.neg = false
857 return z
860 if x.neg {
861 // (-x) &^ y == ^(x-1) &^ y == ^(x-1) & ^y == ^((x-1) | y) == -(((x-1) | y) + 1)
862 x1 := nat(nil).sub(x.abs, natOne)
863 z.abs = z.abs.add(z.abs.or(x1, y.abs), natOne)
864 z.neg = true // z cannot be zero if x is negative and y is positive
865 return z
868 // x &^ (-y) == x &^ ^(y-1) == x & (y-1)
869 y1 := nat(nil).add(y.abs, natOne)
870 z.abs = z.abs.and(x.abs, y1)
871 z.neg = false
872 return z
875 // Or sets z = x | y and returns z.
876 func (z *Int) Or(x, y *Int) *Int {
877 if x.neg == y.neg {
878 if x.neg {
879 // (-x) | (-y) == ^(x-1) | ^(y-1) == ^((x-1) & (y-1)) == -(((x-1) & (y-1)) + 1)
880 x1 := nat(nil).sub(x.abs, natOne)
881 y1 := nat(nil).sub(y.abs, natOne)
882 z.abs = z.abs.add(z.abs.and(x1, y1), natOne)
883 z.neg = true // z cannot be zero if x and y are negative
884 return z
887 // x | y == x | y
888 z.abs = z.abs.or(x.abs, y.abs)
889 z.neg = false
890 return z
893 // x.neg != y.neg
894 if x.neg {
895 x, y = y, x // | is symmetric
898 // x | (-y) == x | ^(y-1) == ^((y-1) &^ x) == -(^((y-1) &^ x) + 1)
899 y1 := nat(nil).sub(y.abs, natOne)
900 z.abs = z.abs.add(z.abs.andNot(y1, x.abs), natOne)
901 z.neg = true // z cannot be zero if one of x or y is negative
902 return z
905 // Xor sets z = x ^ y and returns z.
906 func (z *Int) Xor(x, y *Int) *Int {
907 if x.neg == y.neg {
908 if x.neg {
909 // (-x) ^ (-y) == ^(x-1) ^ ^(y-1) == (x-1) ^ (y-1)
910 x1 := nat(nil).sub(x.abs, natOne)
911 y1 := nat(nil).sub(y.abs, natOne)
912 z.abs = z.abs.xor(x1, y1)
913 z.neg = false
914 return z
917 // x ^ y == x ^ y
918 z.abs = z.abs.xor(x.abs, y.abs)
919 z.neg = false
920 return z
923 // x.neg != y.neg
924 if x.neg {
925 x, y = y, x // ^ is symmetric
928 // x ^ (-y) == x ^ ^(y-1) == ^(x ^ (y-1)) == -((x ^ (y-1)) + 1)
929 y1 := nat(nil).sub(y.abs, natOne)
930 z.abs = z.abs.add(z.abs.xor(x.abs, y1), natOne)
931 z.neg = true // z cannot be zero if only one of x or y is negative
932 return z
935 // Not sets z = ^x and returns z.
936 func (z *Int) Not(x *Int) *Int {
937 if x.neg {
938 // ^(-x) == ^(^(x-1)) == x-1
939 z.abs = z.abs.sub(x.abs, natOne)
940 z.neg = false
941 return z
944 // ^x == -x-1 == -(x+1)
945 z.abs = z.abs.add(x.abs, natOne)
946 z.neg = true // z cannot be zero if x is positive
947 return z
950 // Gob codec version. Permits backward-compatible changes to the encoding.
951 const intGobVersion byte = 1
953 // GobEncode implements the gob.GobEncoder interface.
954 func (x *Int) GobEncode() ([]byte, error) {
955 if x == nil {
956 return nil, nil
958 buf := make([]byte, 1+len(x.abs)*_S) // extra byte for version and sign bit
959 i := x.abs.bytes(buf) - 1 // i >= 0
960 b := intGobVersion << 1 // make space for sign bit
961 if x.neg {
962 b |= 1
964 buf[i] = b
965 return buf[i:], nil
968 // GobDecode implements the gob.GobDecoder interface.
969 func (z *Int) GobDecode(buf []byte) error {
970 if len(buf) == 0 {
971 // Other side sent a nil or default value.
972 *z = Int{}
973 return nil
975 b := buf[0]
976 if b>>1 != intGobVersion {
977 return errors.New(fmt.Sprintf("Int.GobDecode: encoding version %d not supported", b>>1))
979 z.neg = b&1 != 0
980 z.abs = z.abs.setBytes(buf[1:])
981 return nil
984 // MarshalJSON implements the json.Marshaler interface.
985 func (x *Int) MarshalJSON() ([]byte, error) {
986 // TODO(gri): get rid of the []byte/string conversions
987 return []byte(x.String()), nil
990 // UnmarshalJSON implements the json.Unmarshaler interface.
991 func (z *Int) UnmarshalJSON(x []byte) error {
992 // TODO(gri): get rid of the []byte/string conversions
993 _, ok := z.SetString(string(x), 0)
994 if !ok {
995 return fmt.Errorf("math/big: cannot unmarshal %s into a *big.Int", x)
997 return nil