2010-04-19 Richard Guenther <rguenther@suse.de>
[official-gcc.git] / gcc / tree-tailcall.c
blob84c7da29844ad6b5a246866a1d588bb4d628dd98
1 /* Tail call optimization on trees.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "hard-reg-set.h"
29 #include "basic-block.h"
30 #include "function.h"
31 #include "tree-flow.h"
32 #include "tree-dump.h"
33 #include "diagnostic.h"
34 #include "except.h"
35 #include "tree-pass.h"
36 #include "flags.h"
37 #include "langhooks.h"
38 #include "dbgcnt.h"
40 /* The file implements the tail recursion elimination. It is also used to
41 analyze the tail calls in general, passing the results to the rtl level
42 where they are used for sibcall optimization.
44 In addition to the standard tail recursion elimination, we handle the most
45 trivial cases of making the call tail recursive by creating accumulators.
46 For example the following function
48 int sum (int n)
50 if (n > 0)
51 return n + sum (n - 1);
52 else
53 return 0;
56 is transformed into
58 int sum (int n)
60 int acc = 0;
62 while (n > 0)
63 acc += n--;
65 return acc;
68 To do this, we maintain two accumulators (a_acc and m_acc) that indicate
69 when we reach the return x statement, we should return a_acc + x * m_acc
70 instead. They are initially initialized to 0 and 1, respectively,
71 so the semantics of the function is obviously preserved. If we are
72 guaranteed that the value of the accumulator never change, we
73 omit the accumulator.
75 There are three cases how the function may exit. The first one is
76 handled in adjust_return_value, the other two in adjust_accumulator_values
77 (the second case is actually a special case of the third one and we
78 present it separately just for clarity):
80 1) Just return x, where x is not in any of the remaining special shapes.
81 We rewrite this to a gimple equivalent of return m_acc * x + a_acc.
83 2) return f (...), where f is the current function, is rewritten in a
84 classical tail-recursion elimination way, into assignment of arguments
85 and jump to the start of the function. Values of the accumulators
86 are unchanged.
88 3) return a + m * f(...), where a and m do not depend on call to f.
89 To preserve the semantics described before we want this to be rewritten
90 in such a way that we finally return
92 a_acc + (a + m * f(...)) * m_acc = (a_acc + a * m_acc) + (m * m_acc) * f(...).
94 I.e. we increase a_acc by a * m_acc, multiply m_acc by m and
95 eliminate the tail call to f. Special cases when the value is just
96 added or just multiplied are obtained by setting a = 0 or m = 1.
98 TODO -- it is possible to do similar tricks for other operations. */
100 /* A structure that describes the tailcall. */
102 struct tailcall
104 /* The iterator pointing to the call statement. */
105 gimple_stmt_iterator call_gsi;
107 /* True if it is a call to the current function. */
108 bool tail_recursion;
110 /* The return value of the caller is mult * f + add, where f is the return
111 value of the call. */
112 tree mult, add;
114 /* Next tailcall in the chain. */
115 struct tailcall *next;
118 /* The variables holding the value of multiplicative and additive
119 accumulator. */
120 static tree m_acc, a_acc;
122 static bool suitable_for_tail_opt_p (void);
123 static bool optimize_tail_call (struct tailcall *, bool);
124 static void eliminate_tail_call (struct tailcall *);
125 static void find_tail_calls (basic_block, struct tailcall **);
127 /* Returns false when the function is not suitable for tail call optimization
128 from some reason (e.g. if it takes variable number of arguments). */
130 static bool
131 suitable_for_tail_opt_p (void)
133 referenced_var_iterator rvi;
134 tree var;
136 if (cfun->stdarg)
137 return false;
139 /* No local variable nor structure field should be call-used. */
140 FOR_EACH_REFERENCED_VAR (var, rvi)
142 if (!is_global_var (var)
143 && is_call_used (var))
144 return false;
147 return true;
149 /* Returns false when the function is not suitable for tail call optimization
150 from some reason (e.g. if it takes variable number of arguments).
151 This test must pass in addition to suitable_for_tail_opt_p in order to make
152 tail call discovery happen. */
154 static bool
155 suitable_for_tail_call_opt_p (void)
157 tree param;
159 /* alloca (until we have stack slot life analysis) inhibits
160 sibling call optimizations, but not tail recursion. */
161 if (cfun->calls_alloca)
162 return false;
164 /* If we are using sjlj exceptions, we may need to add a call to
165 _Unwind_SjLj_Unregister at exit of the function. Which means
166 that we cannot do any sibcall transformations. */
167 if (USING_SJLJ_EXCEPTIONS && current_function_has_exception_handlers ())
168 return false;
170 /* Any function that calls setjmp might have longjmp called from
171 any called function. ??? We really should represent this
172 properly in the CFG so that this needn't be special cased. */
173 if (cfun->calls_setjmp)
174 return false;
176 /* ??? It is OK if the argument of a function is taken in some cases,
177 but not in all cases. See PR15387 and PR19616. Revisit for 4.1. */
178 for (param = DECL_ARGUMENTS (current_function_decl);
179 param;
180 param = TREE_CHAIN (param))
181 if (TREE_ADDRESSABLE (param))
182 return false;
184 return true;
187 /* Checks whether the expression EXPR in stmt AT is independent of the
188 statement pointed to by GSI (in a sense that we already know EXPR's value
189 at GSI). We use the fact that we are only called from the chain of
190 basic blocks that have only single successor. Returns the expression
191 containing the value of EXPR at GSI. */
193 static tree
194 independent_of_stmt_p (tree expr, gimple at, gimple_stmt_iterator gsi)
196 basic_block bb, call_bb, at_bb;
197 edge e;
198 edge_iterator ei;
200 if (is_gimple_min_invariant (expr))
201 return expr;
203 if (TREE_CODE (expr) != SSA_NAME)
204 return NULL_TREE;
206 /* Mark the blocks in the chain leading to the end. */
207 at_bb = gimple_bb (at);
208 call_bb = gimple_bb (gsi_stmt (gsi));
209 for (bb = call_bb; bb != at_bb; bb = single_succ (bb))
210 bb->aux = &bb->aux;
211 bb->aux = &bb->aux;
213 while (1)
215 at = SSA_NAME_DEF_STMT (expr);
216 bb = gimple_bb (at);
218 /* The default definition or defined before the chain. */
219 if (!bb || !bb->aux)
220 break;
222 if (bb == call_bb)
224 for (; !gsi_end_p (gsi); gsi_next (&gsi))
225 if (gsi_stmt (gsi) == at)
226 break;
228 if (!gsi_end_p (gsi))
229 expr = NULL_TREE;
230 break;
233 if (gimple_code (at) != GIMPLE_PHI)
235 expr = NULL_TREE;
236 break;
239 FOR_EACH_EDGE (e, ei, bb->preds)
240 if (e->src->aux)
241 break;
242 gcc_assert (e);
244 expr = PHI_ARG_DEF_FROM_EDGE (at, e);
245 if (TREE_CODE (expr) != SSA_NAME)
247 /* The value is a constant. */
248 break;
252 /* Unmark the blocks. */
253 for (bb = call_bb; bb != at_bb; bb = single_succ (bb))
254 bb->aux = NULL;
255 bb->aux = NULL;
257 return expr;
260 /* Simulates the effect of an assignment STMT on the return value of the tail
261 recursive CALL passed in ASS_VAR. M and A are the multiplicative and the
262 additive factor for the real return value. */
264 static bool
265 process_assignment (gimple stmt, gimple_stmt_iterator call, tree *m,
266 tree *a, tree *ass_var)
268 tree op0, op1, non_ass_var;
269 tree dest = gimple_assign_lhs (stmt);
270 enum tree_code code = gimple_assign_rhs_code (stmt);
271 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
272 tree src_var = gimple_assign_rhs1 (stmt);
274 /* See if this is a simple copy operation of an SSA name to the function
275 result. In that case we may have a simple tail call. Ignore type
276 conversions that can never produce extra code between the function
277 call and the function return. */
278 if ((rhs_class == GIMPLE_SINGLE_RHS || gimple_assign_cast_p (stmt))
279 && (TREE_CODE (src_var) == SSA_NAME))
281 /* Reject a tailcall if the type conversion might need
282 additional code. */
283 if (gimple_assign_cast_p (stmt)
284 && TYPE_MODE (TREE_TYPE (dest)) != TYPE_MODE (TREE_TYPE (src_var)))
285 return false;
287 if (src_var != *ass_var)
288 return false;
290 *ass_var = dest;
291 return true;
294 if (rhs_class != GIMPLE_BINARY_RHS)
295 return false;
297 /* Accumulator optimizations will reverse the order of operations.
298 We can only do that for floating-point types if we're assuming
299 that addition and multiplication are associative. */
300 if (!flag_associative_math)
301 if (FLOAT_TYPE_P (TREE_TYPE (DECL_RESULT (current_function_decl))))
302 return false;
304 /* We only handle the code like
306 x = call ();
307 y = m * x;
308 z = y + a;
309 return z;
311 TODO -- Extend it for cases where the linear transformation of the output
312 is expressed in a more complicated way. */
314 op0 = gimple_assign_rhs1 (stmt);
315 op1 = gimple_assign_rhs2 (stmt);
317 if (op0 == *ass_var
318 && (non_ass_var = independent_of_stmt_p (op1, stmt, call)))
320 else if (op1 == *ass_var
321 && (non_ass_var = independent_of_stmt_p (op0, stmt, call)))
323 else
324 return false;
326 switch (code)
328 case PLUS_EXPR:
329 *a = non_ass_var;
330 *ass_var = dest;
331 return true;
333 case MULT_EXPR:
334 *m = non_ass_var;
335 *ass_var = dest;
336 return true;
338 /* TODO -- Handle other codes (NEGATE_EXPR, MINUS_EXPR,
339 POINTER_PLUS_EXPR). */
341 default:
342 return false;
346 /* Propagate VAR through phis on edge E. */
348 static tree
349 propagate_through_phis (tree var, edge e)
351 basic_block dest = e->dest;
352 gimple_stmt_iterator gsi;
354 for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi))
356 gimple phi = gsi_stmt (gsi);
357 if (PHI_ARG_DEF_FROM_EDGE (phi, e) == var)
358 return PHI_RESULT (phi);
360 return var;
363 /* Finds tailcalls falling into basic block BB. The list of found tailcalls is
364 added to the start of RET. */
366 static void
367 find_tail_calls (basic_block bb, struct tailcall **ret)
369 tree ass_var = NULL_TREE, ret_var, func, param;
370 gimple stmt, call = NULL;
371 gimple_stmt_iterator gsi, agsi;
372 bool tail_recursion;
373 struct tailcall *nw;
374 edge e;
375 tree m, a;
376 basic_block abb;
377 size_t idx;
378 tree var;
379 referenced_var_iterator rvi;
381 if (!single_succ_p (bb))
382 return;
384 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
386 stmt = gsi_stmt (gsi);
388 /* Ignore labels. */
389 if (gimple_code (stmt) == GIMPLE_LABEL || is_gimple_debug (stmt))
390 continue;
392 /* Check for a call. */
393 if (is_gimple_call (stmt))
395 call = stmt;
396 ass_var = gimple_call_lhs (stmt);
397 break;
400 /* If the statement references memory or volatile operands, fail. */
401 if (gimple_references_memory_p (stmt)
402 || gimple_has_volatile_ops (stmt))
403 return;
406 if (gsi_end_p (gsi))
408 edge_iterator ei;
409 /* Recurse to the predecessors. */
410 FOR_EACH_EDGE (e, ei, bb->preds)
411 find_tail_calls (e->src, ret);
413 return;
416 /* If the LHS of our call is not just a simple register, we can't
417 transform this into a tail or sibling call. This situation happens,
418 in (e.g.) "*p = foo()" where foo returns a struct. In this case
419 we won't have a temporary here, but we need to carry out the side
420 effect anyway, so tailcall is impossible.
422 ??? In some situations (when the struct is returned in memory via
423 invisible argument) we could deal with this, e.g. by passing 'p'
424 itself as that argument to foo, but it's too early to do this here,
425 and expand_call() will not handle it anyway. If it ever can, then
426 we need to revisit this here, to allow that situation. */
427 if (ass_var && !is_gimple_reg (ass_var))
428 return;
430 /* We found the call, check whether it is suitable. */
431 tail_recursion = false;
432 func = gimple_call_fndecl (call);
433 if (func == current_function_decl)
435 tree arg;
436 for (param = DECL_ARGUMENTS (func), idx = 0;
437 param && idx < gimple_call_num_args (call);
438 param = TREE_CHAIN (param), idx ++)
440 arg = gimple_call_arg (call, idx);
441 if (param != arg)
443 /* Make sure there are no problems with copying. The parameter
444 have a copyable type and the two arguments must have reasonably
445 equivalent types. The latter requirement could be relaxed if
446 we emitted a suitable type conversion statement. */
447 if (!is_gimple_reg_type (TREE_TYPE (param))
448 || !useless_type_conversion_p (TREE_TYPE (param),
449 TREE_TYPE (arg)))
450 break;
452 /* The parameter should be a real operand, so that phi node
453 created for it at the start of the function has the meaning
454 of copying the value. This test implies is_gimple_reg_type
455 from the previous condition, however this one could be
456 relaxed by being more careful with copying the new value
457 of the parameter (emitting appropriate GIMPLE_ASSIGN and
458 updating the virtual operands). */
459 if (!is_gimple_reg (param))
460 break;
463 if (idx == gimple_call_num_args (call) && !param)
464 tail_recursion = true;
467 /* Make sure the tail invocation of this function does not refer
468 to local variables. */
469 FOR_EACH_REFERENCED_VAR (var, rvi)
471 if (!is_global_var (var)
472 && ref_maybe_used_by_stmt_p (call, var))
473 return;
476 /* Now check the statements after the call. None of them has virtual
477 operands, so they may only depend on the call through its return
478 value. The return value should also be dependent on each of them,
479 since we are running after dce. */
480 m = NULL_TREE;
481 a = NULL_TREE;
483 abb = bb;
484 agsi = gsi;
485 while (1)
487 tree tmp_a = NULL_TREE;
488 tree tmp_m = NULL_TREE;
489 gsi_next (&agsi);
491 while (gsi_end_p (agsi))
493 ass_var = propagate_through_phis (ass_var, single_succ_edge (abb));
494 abb = single_succ (abb);
495 agsi = gsi_start_bb (abb);
498 stmt = gsi_stmt (agsi);
500 if (gimple_code (stmt) == GIMPLE_LABEL)
501 continue;
503 if (gimple_code (stmt) == GIMPLE_RETURN)
504 break;
506 if (is_gimple_debug (stmt))
507 continue;
509 if (gimple_code (stmt) != GIMPLE_ASSIGN)
510 return;
512 /* This is a gimple assign. */
513 if (! process_assignment (stmt, gsi, &tmp_m, &tmp_a, &ass_var))
514 return;
516 if (tmp_a)
518 if (a)
519 a = fold_build2 (PLUS_EXPR, TREE_TYPE (tmp_a), a, tmp_a);
520 else
521 a = tmp_a;
523 if (tmp_m)
525 if (m)
526 m = fold_build2 (MULT_EXPR, TREE_TYPE (tmp_m), m, tmp_m);
527 else
528 m = tmp_m;
530 if (a)
531 a = fold_build2 (MULT_EXPR, TREE_TYPE (tmp_m), a, tmp_m);
535 /* See if this is a tail call we can handle. */
536 ret_var = gimple_return_retval (stmt);
538 /* We may proceed if there either is no return value, or the return value
539 is identical to the call's return. */
540 if (ret_var
541 && (ret_var != ass_var))
542 return;
544 /* If this is not a tail recursive call, we cannot handle addends or
545 multiplicands. */
546 if (!tail_recursion && (m || a))
547 return;
549 nw = XNEW (struct tailcall);
551 nw->call_gsi = gsi;
553 nw->tail_recursion = tail_recursion;
555 nw->mult = m;
556 nw->add = a;
558 nw->next = *ret;
559 *ret = nw;
562 /* Helper to insert PHI_ARGH to the phi of VAR in the destination of edge E. */
564 static void
565 add_successor_phi_arg (edge e, tree var, tree phi_arg)
567 gimple_stmt_iterator gsi;
569 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
570 if (PHI_RESULT (gsi_stmt (gsi)) == var)
571 break;
573 gcc_assert (!gsi_end_p (gsi));
574 add_phi_arg (gsi_stmt (gsi), phi_arg, e, UNKNOWN_LOCATION);
577 /* Creates a GIMPLE statement which computes the operation specified by
578 CODE, OP0 and OP1 to a new variable with name LABEL and inserts the
579 statement in the position specified by GSI and UPDATE. Returns the
580 tree node of the statement's result. */
582 static tree
583 adjust_return_value_with_ops (enum tree_code code, const char *label,
584 tree acc, tree op1, gimple_stmt_iterator gsi)
587 tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl));
588 tree tmp = create_tmp_var (ret_type, label);
589 gimple stmt;
590 tree result;
592 if (TREE_CODE (ret_type) == COMPLEX_TYPE
593 || TREE_CODE (ret_type) == VECTOR_TYPE)
594 DECL_GIMPLE_REG_P (tmp) = 1;
595 add_referenced_var (tmp);
597 if (types_compatible_p (TREE_TYPE (acc), TREE_TYPE (op1)))
598 stmt = gimple_build_assign_with_ops (code, tmp, acc, op1);
599 else
601 tree rhs = fold_convert (TREE_TYPE (acc),
602 fold_build2 (code,
603 TREE_TYPE (op1),
604 fold_convert (TREE_TYPE (op1), acc),
605 op1));
606 rhs = force_gimple_operand_gsi (&gsi, rhs,
607 false, NULL, true, GSI_CONTINUE_LINKING);
608 stmt = gimple_build_assign (NULL_TREE, rhs);
611 result = make_ssa_name (tmp, stmt);
612 gimple_assign_set_lhs (stmt, result);
613 update_stmt (stmt);
614 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
615 return result;
618 /* Creates a new GIMPLE statement that adjusts the value of accumulator ACC by
619 the computation specified by CODE and OP1 and insert the statement
620 at the position specified by GSI as a new statement. Returns new SSA name
621 of updated accumulator. */
623 static tree
624 update_accumulator_with_ops (enum tree_code code, tree acc, tree op1,
625 gimple_stmt_iterator gsi)
627 gimple stmt;
628 tree var;
629 if (types_compatible_p (TREE_TYPE (acc), TREE_TYPE (op1)))
630 stmt = gimple_build_assign_with_ops (code, SSA_NAME_VAR (acc), acc, op1);
631 else
633 tree rhs = fold_convert (TREE_TYPE (acc),
634 fold_build2 (code,
635 TREE_TYPE (op1),
636 fold_convert (TREE_TYPE (op1), acc),
637 op1));
638 rhs = force_gimple_operand_gsi (&gsi, rhs,
639 false, NULL, false, GSI_CONTINUE_LINKING);
640 stmt = gimple_build_assign (NULL_TREE, rhs);
642 var = make_ssa_name (SSA_NAME_VAR (acc), stmt);
643 gimple_assign_set_lhs (stmt, var);
644 update_stmt (stmt);
645 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
646 return var;
649 /* Adjust the accumulator values according to A and M after GSI, and update
650 the phi nodes on edge BACK. */
652 static void
653 adjust_accumulator_values (gimple_stmt_iterator gsi, tree m, tree a, edge back)
655 tree var, a_acc_arg, m_acc_arg;
657 if (m)
658 m = force_gimple_operand_gsi (&gsi, m, true, NULL, true, GSI_SAME_STMT);
659 if (a)
660 a = force_gimple_operand_gsi (&gsi, a, true, NULL, true, GSI_SAME_STMT);
662 a_acc_arg = a_acc;
663 m_acc_arg = m_acc;
664 if (a)
666 if (m_acc)
668 if (integer_onep (a))
669 var = m_acc;
670 else
671 var = adjust_return_value_with_ops (MULT_EXPR, "acc_tmp", m_acc,
672 a, gsi);
674 else
675 var = a;
677 a_acc_arg = update_accumulator_with_ops (PLUS_EXPR, a_acc, var, gsi);
680 if (m)
681 m_acc_arg = update_accumulator_with_ops (MULT_EXPR, m_acc, m, gsi);
683 if (a_acc)
684 add_successor_phi_arg (back, a_acc, a_acc_arg);
686 if (m_acc)
687 add_successor_phi_arg (back, m_acc, m_acc_arg);
690 /* Adjust value of the return at the end of BB according to M and A
691 accumulators. */
693 static void
694 adjust_return_value (basic_block bb, tree m, tree a)
696 tree retval;
697 gimple ret_stmt = gimple_seq_last_stmt (bb_seq (bb));
698 gimple_stmt_iterator gsi = gsi_last_bb (bb);
700 gcc_assert (gimple_code (ret_stmt) == GIMPLE_RETURN);
702 retval = gimple_return_retval (ret_stmt);
703 if (!retval || retval == error_mark_node)
704 return;
706 if (m)
707 retval = adjust_return_value_with_ops (MULT_EXPR, "mul_tmp", m_acc, retval,
708 gsi);
709 if (a)
710 retval = adjust_return_value_with_ops (PLUS_EXPR, "acc_tmp", a_acc, retval,
711 gsi);
712 gimple_return_set_retval (ret_stmt, retval);
713 update_stmt (ret_stmt);
716 /* Subtract COUNT and FREQUENCY from the basic block and it's
717 outgoing edge. */
718 static void
719 decrease_profile (basic_block bb, gcov_type count, int frequency)
721 edge e;
722 bb->count -= count;
723 if (bb->count < 0)
724 bb->count = 0;
725 bb->frequency -= frequency;
726 if (bb->frequency < 0)
727 bb->frequency = 0;
728 if (!single_succ_p (bb))
730 gcc_assert (!EDGE_COUNT (bb->succs));
731 return;
733 e = single_succ_edge (bb);
734 e->count -= count;
735 if (e->count < 0)
736 e->count = 0;
739 /* Returns true if argument PARAM of the tail recursive call needs to be copied
740 when the call is eliminated. */
742 static bool
743 arg_needs_copy_p (tree param)
745 tree def;
747 if (!is_gimple_reg (param) || !var_ann (param))
748 return false;
750 /* Parameters that are only defined but never used need not be copied. */
751 def = gimple_default_def (cfun, param);
752 if (!def)
753 return false;
755 return true;
758 /* Eliminates tail call described by T. TMP_VARS is a list of
759 temporary variables used to copy the function arguments. */
761 static void
762 eliminate_tail_call (struct tailcall *t)
764 tree param, rslt;
765 gimple stmt, call;
766 tree arg;
767 size_t idx;
768 basic_block bb, first;
769 edge e;
770 gimple phi;
771 gimple_stmt_iterator gsi;
772 gimple orig_stmt;
774 stmt = orig_stmt = gsi_stmt (t->call_gsi);
775 bb = gsi_bb (t->call_gsi);
777 if (dump_file && (dump_flags & TDF_DETAILS))
779 fprintf (dump_file, "Eliminated tail recursion in bb %d : ",
780 bb->index);
781 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
782 fprintf (dump_file, "\n");
785 gcc_assert (is_gimple_call (stmt));
787 first = single_succ (ENTRY_BLOCK_PTR);
789 /* Remove the code after call_gsi that will become unreachable. The
790 possibly unreachable code in other blocks is removed later in
791 cfg cleanup. */
792 gsi = t->call_gsi;
793 gsi_next (&gsi);
794 while (!gsi_end_p (gsi))
796 gimple t = gsi_stmt (gsi);
797 /* Do not remove the return statement, so that redirect_edge_and_branch
798 sees how the block ends. */
799 if (gimple_code (t) == GIMPLE_RETURN)
800 break;
802 gsi_remove (&gsi, true);
803 release_defs (t);
806 /* Number of executions of function has reduced by the tailcall. */
807 e = single_succ_edge (gsi_bb (t->call_gsi));
808 decrease_profile (EXIT_BLOCK_PTR, e->count, EDGE_FREQUENCY (e));
809 decrease_profile (ENTRY_BLOCK_PTR, e->count, EDGE_FREQUENCY (e));
810 if (e->dest != EXIT_BLOCK_PTR)
811 decrease_profile (e->dest, e->count, EDGE_FREQUENCY (e));
813 /* Replace the call by a jump to the start of function. */
814 e = redirect_edge_and_branch (single_succ_edge (gsi_bb (t->call_gsi)),
815 first);
816 gcc_assert (e);
817 PENDING_STMT (e) = NULL;
819 /* Add phi node entries for arguments. The ordering of the phi nodes should
820 be the same as the ordering of the arguments. */
821 for (param = DECL_ARGUMENTS (current_function_decl),
822 idx = 0, gsi = gsi_start_phis (first);
823 param;
824 param = TREE_CHAIN (param), idx++)
826 if (!arg_needs_copy_p (param))
827 continue;
829 arg = gimple_call_arg (stmt, idx);
830 phi = gsi_stmt (gsi);
831 gcc_assert (param == SSA_NAME_VAR (PHI_RESULT (phi)));
833 add_phi_arg (phi, arg, e, gimple_location (stmt));
834 gsi_next (&gsi);
837 /* Update the values of accumulators. */
838 adjust_accumulator_values (t->call_gsi, t->mult, t->add, e);
840 call = gsi_stmt (t->call_gsi);
841 rslt = gimple_call_lhs (call);
842 if (rslt != NULL_TREE)
844 /* Result of the call will no longer be defined. So adjust the
845 SSA_NAME_DEF_STMT accordingly. */
846 SSA_NAME_DEF_STMT (rslt) = gimple_build_nop ();
849 gsi_remove (&t->call_gsi, true);
850 release_defs (call);
853 /* Add phi nodes for the virtual operands defined in the function to the
854 header of the loop created by tail recursion elimination.
856 Originally, we used to add phi nodes only for call clobbered variables,
857 as the value of the non-call clobbered ones obviously cannot be used
858 or changed within the recursive call. However, the local variables
859 from multiple calls now share the same location, so the virtual ssa form
860 requires us to say that the location dies on further iterations of the loop,
861 which requires adding phi nodes.
863 static void
864 add_virtual_phis (void)
866 referenced_var_iterator rvi;
867 tree var;
869 /* The problematic part is that there is no way how to know what
870 to put into phi nodes (there in fact does not have to be such
871 ssa name available). A solution would be to have an artificial
872 use/kill for all virtual operands in EXIT node. Unless we have
873 this, we cannot do much better than to rebuild the ssa form for
874 possibly affected virtual ssa names from scratch. */
876 FOR_EACH_REFERENCED_VAR (var, rvi)
878 if (!is_gimple_reg (var) && gimple_default_def (cfun, var) != NULL_TREE)
879 mark_sym_for_renaming (var);
883 /* Optimizes the tailcall described by T. If OPT_TAILCALLS is true, also
884 mark the tailcalls for the sibcall optimization. */
886 static bool
887 optimize_tail_call (struct tailcall *t, bool opt_tailcalls)
889 if (t->tail_recursion)
891 eliminate_tail_call (t);
892 return true;
895 if (opt_tailcalls)
897 gimple stmt = gsi_stmt (t->call_gsi);
899 gimple_call_set_tail (stmt, true);
900 if (dump_file && (dump_flags & TDF_DETAILS))
902 fprintf (dump_file, "Found tail call ");
903 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
904 fprintf (dump_file, " in bb %i\n", (gsi_bb (t->call_gsi))->index);
908 return false;
911 /* Creates a tail-call accumulator of the same type as the return type of the
912 current function. LABEL is the name used to creating the temporary
913 variable for the accumulator. The accumulator will be inserted in the
914 phis of a basic block BB with single predecessor with an initial value
915 INIT converted to the current function return type. */
917 static tree
918 create_tailcall_accumulator (const char *label, basic_block bb, tree init)
920 tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl));
921 tree tmp = create_tmp_var (ret_type, label);
922 gimple phi;
924 if (TREE_CODE (ret_type) == COMPLEX_TYPE
925 || TREE_CODE (ret_type) == VECTOR_TYPE)
926 DECL_GIMPLE_REG_P (tmp) = 1;
927 add_referenced_var (tmp);
928 phi = create_phi_node (tmp, bb);
929 /* RET_TYPE can be a float when -ffast-maths is enabled. */
930 add_phi_arg (phi, fold_convert (ret_type, init), single_pred_edge (bb),
931 UNKNOWN_LOCATION);
932 return PHI_RESULT (phi);
935 /* Optimizes tail calls in the function, turning the tail recursion
936 into iteration. */
938 static unsigned int
939 tree_optimize_tail_calls_1 (bool opt_tailcalls)
941 edge e;
942 bool phis_constructed = false;
943 struct tailcall *tailcalls = NULL, *act, *next;
944 bool changed = false;
945 basic_block first = single_succ (ENTRY_BLOCK_PTR);
946 tree param;
947 gimple stmt;
948 edge_iterator ei;
950 if (!suitable_for_tail_opt_p ())
951 return 0;
952 if (opt_tailcalls)
953 opt_tailcalls = suitable_for_tail_call_opt_p ();
955 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
957 /* Only traverse the normal exits, i.e. those that end with return
958 statement. */
959 stmt = last_stmt (e->src);
961 if (stmt
962 && gimple_code (stmt) == GIMPLE_RETURN)
963 find_tail_calls (e->src, &tailcalls);
966 /* Construct the phi nodes and accumulators if necessary. */
967 a_acc = m_acc = NULL_TREE;
968 for (act = tailcalls; act; act = act->next)
970 if (!act->tail_recursion)
971 continue;
973 if (!phis_constructed)
975 /* Ensure that there is only one predecessor of the block
976 or if there are existing degenerate PHI nodes. */
977 if (!single_pred_p (first)
978 || !gimple_seq_empty_p (phi_nodes (first)))
979 first = split_edge (single_succ_edge (ENTRY_BLOCK_PTR));
981 /* Copy the args if needed. */
982 for (param = DECL_ARGUMENTS (current_function_decl);
983 param;
984 param = TREE_CHAIN (param))
985 if (arg_needs_copy_p (param))
987 tree name = gimple_default_def (cfun, param);
988 tree new_name = make_ssa_name (param, SSA_NAME_DEF_STMT (name));
989 gimple phi;
991 set_default_def (param, new_name);
992 phi = create_phi_node (name, first);
993 SSA_NAME_DEF_STMT (name) = phi;
994 add_phi_arg (phi, new_name, single_pred_edge (first),
995 EXPR_LOCATION (param));
997 phis_constructed = true;
1000 if (act->add && !a_acc)
1001 a_acc = create_tailcall_accumulator ("add_acc", first,
1002 integer_zero_node);
1004 if (act->mult && !m_acc)
1005 m_acc = create_tailcall_accumulator ("mult_acc", first,
1006 integer_one_node);
1009 for (; tailcalls; tailcalls = next)
1011 next = tailcalls->next;
1012 changed |= optimize_tail_call (tailcalls, opt_tailcalls);
1013 free (tailcalls);
1016 if (a_acc || m_acc)
1018 /* Modify the remaining return statements. */
1019 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1021 stmt = last_stmt (e->src);
1023 if (stmt
1024 && gimple_code (stmt) == GIMPLE_RETURN)
1025 adjust_return_value (e->src, m_acc, a_acc);
1029 if (changed)
1030 free_dominance_info (CDI_DOMINATORS);
1032 if (phis_constructed)
1033 add_virtual_phis ();
1034 if (changed)
1035 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
1036 return 0;
1039 static unsigned int
1040 execute_tail_recursion (void)
1042 return tree_optimize_tail_calls_1 (false);
1045 static bool
1046 gate_tail_calls (void)
1048 return flag_optimize_sibling_calls != 0 && dbg_cnt (tail_call);
1051 static unsigned int
1052 execute_tail_calls (void)
1054 return tree_optimize_tail_calls_1 (true);
1057 struct gimple_opt_pass pass_tail_recursion =
1060 GIMPLE_PASS,
1061 "tailr", /* name */
1062 gate_tail_calls, /* gate */
1063 execute_tail_recursion, /* execute */
1064 NULL, /* sub */
1065 NULL, /* next */
1066 0, /* static_pass_number */
1067 TV_NONE, /* tv_id */
1068 PROP_cfg | PROP_ssa, /* properties_required */
1069 0, /* properties_provided */
1070 0, /* properties_destroyed */
1071 0, /* todo_flags_start */
1072 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
1076 struct gimple_opt_pass pass_tail_calls =
1079 GIMPLE_PASS,
1080 "tailc", /* name */
1081 gate_tail_calls, /* gate */
1082 execute_tail_calls, /* execute */
1083 NULL, /* sub */
1084 NULL, /* next */
1085 0, /* static_pass_number */
1086 TV_NONE, /* tv_id */
1087 PROP_cfg | PROP_ssa, /* properties_required */
1088 0, /* properties_provided */
1089 0, /* properties_destroyed */
1090 0, /* todo_flags_start */
1091 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */