2010-04-19 Richard Guenther <rguenther@suse.de>
[official-gcc.git] / gcc / tree-ssa-loop-niter.c
blob48e20454857f91f73502cc83b9533764ed37b91a
1 /* Functions to determine/estimate number of iterations of a loop.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008 Free Software Foundation,
3 Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "hard-reg-set.h"
29 #include "basic-block.h"
30 #include "output.h"
31 #include "diagnostic.h"
32 #include "intl.h"
33 #include "tree-flow.h"
34 #include "tree-dump.h"
35 #include "cfgloop.h"
36 #include "tree-pass.h"
37 #include "ggc.h"
38 #include "tree-chrec.h"
39 #include "tree-scalar-evolution.h"
40 #include "tree-data-ref.h"
41 #include "params.h"
42 #include "flags.h"
43 #include "toplev.h"
44 #include "tree-inline.h"
45 #include "gmp.h"
47 #define SWAP(X, Y) do { affine_iv *tmp = (X); (X) = (Y); (Y) = tmp; } while (0)
49 /* The maximum number of dominator BBs we search for conditions
50 of loop header copies we use for simplifying a conditional
51 expression. */
52 #define MAX_DOMINATORS_TO_WALK 8
56 Analysis of number of iterations of an affine exit test.
60 /* Bounds on some value, BELOW <= X <= UP. */
62 typedef struct
64 mpz_t below, up;
65 } bounds;
68 /* Splits expression EXPR to a variable part VAR and constant OFFSET. */
70 static void
71 split_to_var_and_offset (tree expr, tree *var, mpz_t offset)
73 tree type = TREE_TYPE (expr);
74 tree op0, op1;
75 double_int off;
76 bool negate = false;
78 *var = expr;
79 mpz_set_ui (offset, 0);
81 switch (TREE_CODE (expr))
83 case MINUS_EXPR:
84 negate = true;
85 /* Fallthru. */
87 case PLUS_EXPR:
88 case POINTER_PLUS_EXPR:
89 op0 = TREE_OPERAND (expr, 0);
90 op1 = TREE_OPERAND (expr, 1);
92 if (TREE_CODE (op1) != INTEGER_CST)
93 break;
95 *var = op0;
96 /* Always sign extend the offset. */
97 off = tree_to_double_int (op1);
98 if (negate)
99 off = double_int_neg (off);
100 off = double_int_sext (off, TYPE_PRECISION (type));
101 mpz_set_double_int (offset, off, false);
102 break;
104 case INTEGER_CST:
105 *var = build_int_cst_type (type, 0);
106 off = tree_to_double_int (expr);
107 mpz_set_double_int (offset, off, TYPE_UNSIGNED (type));
108 break;
110 default:
111 break;
115 /* Stores estimate on the minimum/maximum value of the expression VAR + OFF
116 in TYPE to MIN and MAX. */
118 static void
119 determine_value_range (tree type, tree var, mpz_t off,
120 mpz_t min, mpz_t max)
122 /* If the expression is a constant, we know its value exactly. */
123 if (integer_zerop (var))
125 mpz_set (min, off);
126 mpz_set (max, off);
127 return;
130 /* If the computation may wrap, we know nothing about the value, except for
131 the range of the type. */
132 get_type_static_bounds (type, min, max);
133 if (!nowrap_type_p (type))
134 return;
136 /* Since the addition of OFF does not wrap, if OFF is positive, then we may
137 add it to MIN, otherwise to MAX. */
138 if (mpz_sgn (off) < 0)
139 mpz_add (max, max, off);
140 else
141 mpz_add (min, min, off);
144 /* Stores the bounds on the difference of the values of the expressions
145 (var + X) and (var + Y), computed in TYPE, to BNDS. */
147 static void
148 bound_difference_of_offsetted_base (tree type, mpz_t x, mpz_t y,
149 bounds *bnds)
151 int rel = mpz_cmp (x, y);
152 bool may_wrap = !nowrap_type_p (type);
153 mpz_t m;
155 /* If X == Y, then the expressions are always equal.
156 If X > Y, there are the following possibilities:
157 a) neither of var + X and var + Y overflow or underflow, or both of
158 them do. Then their difference is X - Y.
159 b) var + X overflows, and var + Y does not. Then the values of the
160 expressions are var + X - M and var + Y, where M is the range of
161 the type, and their difference is X - Y - M.
162 c) var + Y underflows and var + X does not. Their difference again
163 is M - X + Y.
164 Therefore, if the arithmetics in type does not overflow, then the
165 bounds are (X - Y, X - Y), otherwise they are (X - Y - M, X - Y)
166 Similarly, if X < Y, the bounds are either (X - Y, X - Y) or
167 (X - Y, X - Y + M). */
169 if (rel == 0)
171 mpz_set_ui (bnds->below, 0);
172 mpz_set_ui (bnds->up, 0);
173 return;
176 mpz_init (m);
177 mpz_set_double_int (m, double_int_mask (TYPE_PRECISION (type)), true);
178 mpz_add_ui (m, m, 1);
179 mpz_sub (bnds->up, x, y);
180 mpz_set (bnds->below, bnds->up);
182 if (may_wrap)
184 if (rel > 0)
185 mpz_sub (bnds->below, bnds->below, m);
186 else
187 mpz_add (bnds->up, bnds->up, m);
190 mpz_clear (m);
193 /* From condition C0 CMP C1 derives information regarding the
194 difference of values of VARX + OFFX and VARY + OFFY, computed in TYPE,
195 and stores it to BNDS. */
197 static void
198 refine_bounds_using_guard (tree type, tree varx, mpz_t offx,
199 tree vary, mpz_t offy,
200 tree c0, enum tree_code cmp, tree c1,
201 bounds *bnds)
203 tree varc0, varc1, tmp, ctype;
204 mpz_t offc0, offc1, loffx, loffy, bnd;
205 bool lbound = false;
206 bool no_wrap = nowrap_type_p (type);
207 bool x_ok, y_ok;
209 switch (cmp)
211 case LT_EXPR:
212 case LE_EXPR:
213 case GT_EXPR:
214 case GE_EXPR:
215 STRIP_SIGN_NOPS (c0);
216 STRIP_SIGN_NOPS (c1);
217 ctype = TREE_TYPE (c0);
218 if (!useless_type_conversion_p (ctype, type))
219 return;
221 break;
223 case EQ_EXPR:
224 /* We could derive quite precise information from EQ_EXPR, however, such
225 a guard is unlikely to appear, so we do not bother with handling
226 it. */
227 return;
229 case NE_EXPR:
230 /* NE_EXPR comparisons do not contain much of useful information, except for
231 special case of comparing with the bounds of the type. */
232 if (TREE_CODE (c1) != INTEGER_CST
233 || !INTEGRAL_TYPE_P (type))
234 return;
236 /* Ensure that the condition speaks about an expression in the same type
237 as X and Y. */
238 ctype = TREE_TYPE (c0);
239 if (TYPE_PRECISION (ctype) != TYPE_PRECISION (type))
240 return;
241 c0 = fold_convert (type, c0);
242 c1 = fold_convert (type, c1);
244 if (TYPE_MIN_VALUE (type)
245 && operand_equal_p (c1, TYPE_MIN_VALUE (type), 0))
247 cmp = GT_EXPR;
248 break;
250 if (TYPE_MAX_VALUE (type)
251 && operand_equal_p (c1, TYPE_MAX_VALUE (type), 0))
253 cmp = LT_EXPR;
254 break;
257 return;
258 default:
259 return;
262 mpz_init (offc0);
263 mpz_init (offc1);
264 split_to_var_and_offset (expand_simple_operations (c0), &varc0, offc0);
265 split_to_var_and_offset (expand_simple_operations (c1), &varc1, offc1);
267 /* We are only interested in comparisons of expressions based on VARX and
268 VARY. TODO -- we might also be able to derive some bounds from
269 expressions containing just one of the variables. */
271 if (operand_equal_p (varx, varc1, 0))
273 tmp = varc0; varc0 = varc1; varc1 = tmp;
274 mpz_swap (offc0, offc1);
275 cmp = swap_tree_comparison (cmp);
278 if (!operand_equal_p (varx, varc0, 0)
279 || !operand_equal_p (vary, varc1, 0))
280 goto end;
282 mpz_init_set (loffx, offx);
283 mpz_init_set (loffy, offy);
285 if (cmp == GT_EXPR || cmp == GE_EXPR)
287 tmp = varx; varx = vary; vary = tmp;
288 mpz_swap (offc0, offc1);
289 mpz_swap (loffx, loffy);
290 cmp = swap_tree_comparison (cmp);
291 lbound = true;
294 /* If there is no overflow, the condition implies that
296 (VARX + OFFX) cmp (VARY + OFFY) + (OFFX - OFFY + OFFC1 - OFFC0).
298 The overflows and underflows may complicate things a bit; each
299 overflow decreases the appropriate offset by M, and underflow
300 increases it by M. The above inequality would not necessarily be
301 true if
303 -- VARX + OFFX underflows and VARX + OFFC0 does not, or
304 VARX + OFFC0 overflows, but VARX + OFFX does not.
305 This may only happen if OFFX < OFFC0.
306 -- VARY + OFFY overflows and VARY + OFFC1 does not, or
307 VARY + OFFC1 underflows and VARY + OFFY does not.
308 This may only happen if OFFY > OFFC1. */
310 if (no_wrap)
312 x_ok = true;
313 y_ok = true;
315 else
317 x_ok = (integer_zerop (varx)
318 || mpz_cmp (loffx, offc0) >= 0);
319 y_ok = (integer_zerop (vary)
320 || mpz_cmp (loffy, offc1) <= 0);
323 if (x_ok && y_ok)
325 mpz_init (bnd);
326 mpz_sub (bnd, loffx, loffy);
327 mpz_add (bnd, bnd, offc1);
328 mpz_sub (bnd, bnd, offc0);
330 if (cmp == LT_EXPR)
331 mpz_sub_ui (bnd, bnd, 1);
333 if (lbound)
335 mpz_neg (bnd, bnd);
336 if (mpz_cmp (bnds->below, bnd) < 0)
337 mpz_set (bnds->below, bnd);
339 else
341 if (mpz_cmp (bnd, bnds->up) < 0)
342 mpz_set (bnds->up, bnd);
344 mpz_clear (bnd);
347 mpz_clear (loffx);
348 mpz_clear (loffy);
349 end:
350 mpz_clear (offc0);
351 mpz_clear (offc1);
354 /* Stores the bounds on the value of the expression X - Y in LOOP to BNDS.
355 The subtraction is considered to be performed in arbitrary precision,
356 without overflows.
358 We do not attempt to be too clever regarding the value ranges of X and
359 Y; most of the time, they are just integers or ssa names offsetted by
360 integer. However, we try to use the information contained in the
361 comparisons before the loop (usually created by loop header copying). */
363 static void
364 bound_difference (struct loop *loop, tree x, tree y, bounds *bnds)
366 tree type = TREE_TYPE (x);
367 tree varx, vary;
368 mpz_t offx, offy;
369 mpz_t minx, maxx, miny, maxy;
370 int cnt = 0;
371 edge e;
372 basic_block bb;
373 tree c0, c1;
374 gimple cond;
375 enum tree_code cmp;
377 /* Get rid of unnecessary casts, but preserve the value of
378 the expressions. */
379 STRIP_SIGN_NOPS (x);
380 STRIP_SIGN_NOPS (y);
382 mpz_init (bnds->below);
383 mpz_init (bnds->up);
384 mpz_init (offx);
385 mpz_init (offy);
386 split_to_var_and_offset (x, &varx, offx);
387 split_to_var_and_offset (y, &vary, offy);
389 if (!integer_zerop (varx)
390 && operand_equal_p (varx, vary, 0))
392 /* Special case VARX == VARY -- we just need to compare the
393 offsets. The matters are a bit more complicated in the
394 case addition of offsets may wrap. */
395 bound_difference_of_offsetted_base (type, offx, offy, bnds);
397 else
399 /* Otherwise, use the value ranges to determine the initial
400 estimates on below and up. */
401 mpz_init (minx);
402 mpz_init (maxx);
403 mpz_init (miny);
404 mpz_init (maxy);
405 determine_value_range (type, varx, offx, minx, maxx);
406 determine_value_range (type, vary, offy, miny, maxy);
408 mpz_sub (bnds->below, minx, maxy);
409 mpz_sub (bnds->up, maxx, miny);
410 mpz_clear (minx);
411 mpz_clear (maxx);
412 mpz_clear (miny);
413 mpz_clear (maxy);
416 /* If both X and Y are constants, we cannot get any more precise. */
417 if (integer_zerop (varx) && integer_zerop (vary))
418 goto end;
420 /* Now walk the dominators of the loop header and use the entry
421 guards to refine the estimates. */
422 for (bb = loop->header;
423 bb != ENTRY_BLOCK_PTR && cnt < MAX_DOMINATORS_TO_WALK;
424 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
426 if (!single_pred_p (bb))
427 continue;
428 e = single_pred_edge (bb);
430 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
431 continue;
433 cond = last_stmt (e->src);
434 c0 = gimple_cond_lhs (cond);
435 cmp = gimple_cond_code (cond);
436 c1 = gimple_cond_rhs (cond);
438 if (e->flags & EDGE_FALSE_VALUE)
439 cmp = invert_tree_comparison (cmp, false);
441 refine_bounds_using_guard (type, varx, offx, vary, offy,
442 c0, cmp, c1, bnds);
443 ++cnt;
446 end:
447 mpz_clear (offx);
448 mpz_clear (offy);
451 /* Update the bounds in BNDS that restrict the value of X to the bounds
452 that restrict the value of X + DELTA. X can be obtained as a
453 difference of two values in TYPE. */
455 static void
456 bounds_add (bounds *bnds, double_int delta, tree type)
458 mpz_t mdelta, max;
460 mpz_init (mdelta);
461 mpz_set_double_int (mdelta, delta, false);
463 mpz_init (max);
464 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)), true);
466 mpz_add (bnds->up, bnds->up, mdelta);
467 mpz_add (bnds->below, bnds->below, mdelta);
469 if (mpz_cmp (bnds->up, max) > 0)
470 mpz_set (bnds->up, max);
472 mpz_neg (max, max);
473 if (mpz_cmp (bnds->below, max) < 0)
474 mpz_set (bnds->below, max);
476 mpz_clear (mdelta);
477 mpz_clear (max);
480 /* Update the bounds in BNDS that restrict the value of X to the bounds
481 that restrict the value of -X. */
483 static void
484 bounds_negate (bounds *bnds)
486 mpz_t tmp;
488 mpz_init_set (tmp, bnds->up);
489 mpz_neg (bnds->up, bnds->below);
490 mpz_neg (bnds->below, tmp);
491 mpz_clear (tmp);
494 /* Returns inverse of X modulo 2^s, where MASK = 2^s-1. */
496 static tree
497 inverse (tree x, tree mask)
499 tree type = TREE_TYPE (x);
500 tree rslt;
501 unsigned ctr = tree_floor_log2 (mask);
503 if (TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT)
505 unsigned HOST_WIDE_INT ix;
506 unsigned HOST_WIDE_INT imask;
507 unsigned HOST_WIDE_INT irslt = 1;
509 gcc_assert (cst_and_fits_in_hwi (x));
510 gcc_assert (cst_and_fits_in_hwi (mask));
512 ix = int_cst_value (x);
513 imask = int_cst_value (mask);
515 for (; ctr; ctr--)
517 irslt *= ix;
518 ix *= ix;
520 irslt &= imask;
522 rslt = build_int_cst_type (type, irslt);
524 else
526 rslt = build_int_cst (type, 1);
527 for (; ctr; ctr--)
529 rslt = int_const_binop (MULT_EXPR, rslt, x, 0);
530 x = int_const_binop (MULT_EXPR, x, x, 0);
532 rslt = int_const_binop (BIT_AND_EXPR, rslt, mask, 0);
535 return rslt;
538 /* Derives the upper bound BND on the number of executions of loop with exit
539 condition S * i <> C, assuming that this exit is taken. If
540 NO_OVERFLOW is true, then the control variable of the loop does not
541 overflow. If NO_OVERFLOW is true or BNDS.below >= 0, then BNDS.up
542 contains the upper bound on the value of C. */
544 static void
545 number_of_iterations_ne_max (mpz_t bnd, bool no_overflow, tree c, tree s,
546 bounds *bnds)
548 double_int max;
549 mpz_t d;
551 /* If the control variable does not overflow, the number of iterations is
552 at most c / s. Otherwise it is at most the period of the control
553 variable. */
554 if (!no_overflow && !multiple_of_p (TREE_TYPE (c), c, s))
556 max = double_int_mask (TYPE_PRECISION (TREE_TYPE (c))
557 - tree_low_cst (num_ending_zeros (s), 1));
558 mpz_set_double_int (bnd, max, true);
559 return;
562 /* Determine the upper bound on C. */
563 if (no_overflow || mpz_sgn (bnds->below) >= 0)
564 mpz_set (bnd, bnds->up);
565 else if (TREE_CODE (c) == INTEGER_CST)
566 mpz_set_double_int (bnd, tree_to_double_int (c), true);
567 else
568 mpz_set_double_int (bnd, double_int_mask (TYPE_PRECISION (TREE_TYPE (c))),
569 true);
571 mpz_init (d);
572 mpz_set_double_int (d, tree_to_double_int (s), true);
573 mpz_fdiv_q (bnd, bnd, d);
574 mpz_clear (d);
577 /* Determines number of iterations of loop whose ending condition
578 is IV <> FINAL. TYPE is the type of the iv. The number of
579 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
580 we know that the exit must be taken eventually, i.e., that the IV
581 ever reaches the value FINAL (we derived this earlier, and possibly set
582 NITER->assumptions to make sure this is the case). BNDS contains the
583 bounds on the difference FINAL - IV->base. */
585 static bool
586 number_of_iterations_ne (tree type, affine_iv *iv, tree final,
587 struct tree_niter_desc *niter, bool exit_must_be_taken,
588 bounds *bnds)
590 tree niter_type = unsigned_type_for (type);
591 tree s, c, d, bits, assumption, tmp, bound;
592 mpz_t max;
594 niter->control = *iv;
595 niter->bound = final;
596 niter->cmp = NE_EXPR;
598 /* Rearrange the terms so that we get inequality S * i <> C, with S
599 positive. Also cast everything to the unsigned type. If IV does
600 not overflow, BNDS bounds the value of C. Also, this is the
601 case if the computation |FINAL - IV->base| does not overflow, i.e.,
602 if BNDS->below in the result is nonnegative. */
603 if (tree_int_cst_sign_bit (iv->step))
605 s = fold_convert (niter_type,
606 fold_build1 (NEGATE_EXPR, type, iv->step));
607 c = fold_build2 (MINUS_EXPR, niter_type,
608 fold_convert (niter_type, iv->base),
609 fold_convert (niter_type, final));
610 bounds_negate (bnds);
612 else
614 s = fold_convert (niter_type, iv->step);
615 c = fold_build2 (MINUS_EXPR, niter_type,
616 fold_convert (niter_type, final),
617 fold_convert (niter_type, iv->base));
620 mpz_init (max);
621 number_of_iterations_ne_max (max, iv->no_overflow, c, s, bnds);
622 niter->max = mpz_get_double_int (niter_type, max, false);
623 mpz_clear (max);
625 /* First the trivial cases -- when the step is 1. */
626 if (integer_onep (s))
628 niter->niter = c;
629 return true;
632 /* Let nsd (step, size of mode) = d. If d does not divide c, the loop
633 is infinite. Otherwise, the number of iterations is
634 (inverse(s/d) * (c/d)) mod (size of mode/d). */
635 bits = num_ending_zeros (s);
636 bound = build_low_bits_mask (niter_type,
637 (TYPE_PRECISION (niter_type)
638 - tree_low_cst (bits, 1)));
640 d = fold_binary_to_constant (LSHIFT_EXPR, niter_type,
641 build_int_cst (niter_type, 1), bits);
642 s = fold_binary_to_constant (RSHIFT_EXPR, niter_type, s, bits);
644 if (!exit_must_be_taken)
646 /* If we cannot assume that the exit is taken eventually, record the
647 assumptions for divisibility of c. */
648 assumption = fold_build2 (FLOOR_MOD_EXPR, niter_type, c, d);
649 assumption = fold_build2 (EQ_EXPR, boolean_type_node,
650 assumption, build_int_cst (niter_type, 0));
651 if (!integer_nonzerop (assumption))
652 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
653 niter->assumptions, assumption);
656 c = fold_build2 (EXACT_DIV_EXPR, niter_type, c, d);
657 tmp = fold_build2 (MULT_EXPR, niter_type, c, inverse (s, bound));
658 niter->niter = fold_build2 (BIT_AND_EXPR, niter_type, tmp, bound);
659 return true;
662 /* Checks whether we can determine the final value of the control variable
663 of the loop with ending condition IV0 < IV1 (computed in TYPE).
664 DELTA is the difference IV1->base - IV0->base, STEP is the absolute value
665 of the step. The assumptions necessary to ensure that the computation
666 of the final value does not overflow are recorded in NITER. If we
667 find the final value, we adjust DELTA and return TRUE. Otherwise
668 we return false. BNDS bounds the value of IV1->base - IV0->base,
669 and will be updated by the same amount as DELTA. EXIT_MUST_BE_TAKEN is
670 true if we know that the exit must be taken eventually. */
672 static bool
673 number_of_iterations_lt_to_ne (tree type, affine_iv *iv0, affine_iv *iv1,
674 struct tree_niter_desc *niter,
675 tree *delta, tree step,
676 bool exit_must_be_taken, bounds *bnds)
678 tree niter_type = TREE_TYPE (step);
679 tree mod = fold_build2 (FLOOR_MOD_EXPR, niter_type, *delta, step);
680 tree tmod;
681 mpz_t mmod;
682 tree assumption = boolean_true_node, bound, noloop;
683 bool ret = false, fv_comp_no_overflow;
684 tree type1 = type;
685 if (POINTER_TYPE_P (type))
686 type1 = sizetype;
688 if (TREE_CODE (mod) != INTEGER_CST)
689 return false;
690 if (integer_nonzerop (mod))
691 mod = fold_build2 (MINUS_EXPR, niter_type, step, mod);
692 tmod = fold_convert (type1, mod);
694 mpz_init (mmod);
695 mpz_set_double_int (mmod, tree_to_double_int (mod), true);
696 mpz_neg (mmod, mmod);
698 /* If the induction variable does not overflow and the exit is taken,
699 then the computation of the final value does not overflow. This is
700 also obviously the case if the new final value is equal to the
701 current one. Finally, we postulate this for pointer type variables,
702 as the code cannot rely on the object to that the pointer points being
703 placed at the end of the address space (and more pragmatically,
704 TYPE_{MIN,MAX}_VALUE is not defined for pointers). */
705 if (integer_zerop (mod) || POINTER_TYPE_P (type))
706 fv_comp_no_overflow = true;
707 else if (!exit_must_be_taken)
708 fv_comp_no_overflow = false;
709 else
710 fv_comp_no_overflow =
711 (iv0->no_overflow && integer_nonzerop (iv0->step))
712 || (iv1->no_overflow && integer_nonzerop (iv1->step));
714 if (integer_nonzerop (iv0->step))
716 /* The final value of the iv is iv1->base + MOD, assuming that this
717 computation does not overflow, and that
718 iv0->base <= iv1->base + MOD. */
719 if (!fv_comp_no_overflow)
721 bound = fold_build2 (MINUS_EXPR, type1,
722 TYPE_MAX_VALUE (type1), tmod);
723 assumption = fold_build2 (LE_EXPR, boolean_type_node,
724 iv1->base, bound);
725 if (integer_zerop (assumption))
726 goto end;
728 if (mpz_cmp (mmod, bnds->below) < 0)
729 noloop = boolean_false_node;
730 else if (POINTER_TYPE_P (type))
731 noloop = fold_build2 (GT_EXPR, boolean_type_node,
732 iv0->base,
733 fold_build2 (POINTER_PLUS_EXPR, type,
734 iv1->base, tmod));
735 else
736 noloop = fold_build2 (GT_EXPR, boolean_type_node,
737 iv0->base,
738 fold_build2 (PLUS_EXPR, type1,
739 iv1->base, tmod));
741 else
743 /* The final value of the iv is iv0->base - MOD, assuming that this
744 computation does not overflow, and that
745 iv0->base - MOD <= iv1->base. */
746 if (!fv_comp_no_overflow)
748 bound = fold_build2 (PLUS_EXPR, type1,
749 TYPE_MIN_VALUE (type1), tmod);
750 assumption = fold_build2 (GE_EXPR, boolean_type_node,
751 iv0->base, bound);
752 if (integer_zerop (assumption))
753 goto end;
755 if (mpz_cmp (mmod, bnds->below) < 0)
756 noloop = boolean_false_node;
757 else if (POINTER_TYPE_P (type))
758 noloop = fold_build2 (GT_EXPR, boolean_type_node,
759 fold_build2 (POINTER_PLUS_EXPR, type,
760 iv0->base,
761 fold_build1 (NEGATE_EXPR,
762 type1, tmod)),
763 iv1->base);
764 else
765 noloop = fold_build2 (GT_EXPR, boolean_type_node,
766 fold_build2 (MINUS_EXPR, type1,
767 iv0->base, tmod),
768 iv1->base);
771 if (!integer_nonzerop (assumption))
772 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
773 niter->assumptions,
774 assumption);
775 if (!integer_zerop (noloop))
776 niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
777 niter->may_be_zero,
778 noloop);
779 bounds_add (bnds, tree_to_double_int (mod), type);
780 *delta = fold_build2 (PLUS_EXPR, niter_type, *delta, mod);
782 ret = true;
783 end:
784 mpz_clear (mmod);
785 return ret;
788 /* Add assertions to NITER that ensure that the control variable of the loop
789 with ending condition IV0 < IV1 does not overflow. Types of IV0 and IV1
790 are TYPE. Returns false if we can prove that there is an overflow, true
791 otherwise. STEP is the absolute value of the step. */
793 static bool
794 assert_no_overflow_lt (tree type, affine_iv *iv0, affine_iv *iv1,
795 struct tree_niter_desc *niter, tree step)
797 tree bound, d, assumption, diff;
798 tree niter_type = TREE_TYPE (step);
800 if (integer_nonzerop (iv0->step))
802 /* for (i = iv0->base; i < iv1->base; i += iv0->step) */
803 if (iv0->no_overflow)
804 return true;
806 /* If iv0->base is a constant, we can determine the last value before
807 overflow precisely; otherwise we conservatively assume
808 MAX - STEP + 1. */
810 if (TREE_CODE (iv0->base) == INTEGER_CST)
812 d = fold_build2 (MINUS_EXPR, niter_type,
813 fold_convert (niter_type, TYPE_MAX_VALUE (type)),
814 fold_convert (niter_type, iv0->base));
815 diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
817 else
818 diff = fold_build2 (MINUS_EXPR, niter_type, step,
819 build_int_cst (niter_type, 1));
820 bound = fold_build2 (MINUS_EXPR, type,
821 TYPE_MAX_VALUE (type), fold_convert (type, diff));
822 assumption = fold_build2 (LE_EXPR, boolean_type_node,
823 iv1->base, bound);
825 else
827 /* for (i = iv1->base; i > iv0->base; i += iv1->step) */
828 if (iv1->no_overflow)
829 return true;
831 if (TREE_CODE (iv1->base) == INTEGER_CST)
833 d = fold_build2 (MINUS_EXPR, niter_type,
834 fold_convert (niter_type, iv1->base),
835 fold_convert (niter_type, TYPE_MIN_VALUE (type)));
836 diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
838 else
839 diff = fold_build2 (MINUS_EXPR, niter_type, step,
840 build_int_cst (niter_type, 1));
841 bound = fold_build2 (PLUS_EXPR, type,
842 TYPE_MIN_VALUE (type), fold_convert (type, diff));
843 assumption = fold_build2 (GE_EXPR, boolean_type_node,
844 iv0->base, bound);
847 if (integer_zerop (assumption))
848 return false;
849 if (!integer_nonzerop (assumption))
850 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
851 niter->assumptions, assumption);
853 iv0->no_overflow = true;
854 iv1->no_overflow = true;
855 return true;
858 /* Add an assumption to NITER that a loop whose ending condition
859 is IV0 < IV1 rolls. TYPE is the type of the control iv. BNDS
860 bounds the value of IV1->base - IV0->base. */
862 static void
863 assert_loop_rolls_lt (tree type, affine_iv *iv0, affine_iv *iv1,
864 struct tree_niter_desc *niter, bounds *bnds)
866 tree assumption = boolean_true_node, bound, diff;
867 tree mbz, mbzl, mbzr, type1;
868 bool rolls_p, no_overflow_p;
869 double_int dstep;
870 mpz_t mstep, max;
872 /* We are going to compute the number of iterations as
873 (iv1->base - iv0->base + step - 1) / step, computed in the unsigned
874 variant of TYPE. This formula only works if
876 -step + 1 <= (iv1->base - iv0->base) <= MAX - step + 1
878 (where MAX is the maximum value of the unsigned variant of TYPE, and
879 the computations in this formula are performed in full precision
880 (without overflows).
882 Usually, for loops with exit condition iv0->base + step * i < iv1->base,
883 we have a condition of form iv0->base - step < iv1->base before the loop,
884 and for loops iv0->base < iv1->base - step * i the condition
885 iv0->base < iv1->base + step, due to loop header copying, which enable us
886 to prove the lower bound.
888 The upper bound is more complicated. Unless the expressions for initial
889 and final value themselves contain enough information, we usually cannot
890 derive it from the context. */
892 /* First check whether the answer does not follow from the bounds we gathered
893 before. */
894 if (integer_nonzerop (iv0->step))
895 dstep = tree_to_double_int (iv0->step);
896 else
898 dstep = double_int_sext (tree_to_double_int (iv1->step),
899 TYPE_PRECISION (type));
900 dstep = double_int_neg (dstep);
903 mpz_init (mstep);
904 mpz_set_double_int (mstep, dstep, true);
905 mpz_neg (mstep, mstep);
906 mpz_add_ui (mstep, mstep, 1);
908 rolls_p = mpz_cmp (mstep, bnds->below) <= 0;
910 mpz_init (max);
911 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)), true);
912 mpz_add (max, max, mstep);
913 no_overflow_p = (mpz_cmp (bnds->up, max) <= 0
914 /* For pointers, only values lying inside a single object
915 can be compared or manipulated by pointer arithmetics.
916 Gcc in general does not allow or handle objects larger
917 than half of the address space, hence the upper bound
918 is satisfied for pointers. */
919 || POINTER_TYPE_P (type));
920 mpz_clear (mstep);
921 mpz_clear (max);
923 if (rolls_p && no_overflow_p)
924 return;
926 type1 = type;
927 if (POINTER_TYPE_P (type))
928 type1 = sizetype;
930 /* Now the hard part; we must formulate the assumption(s) as expressions, and
931 we must be careful not to introduce overflow. */
933 if (integer_nonzerop (iv0->step))
935 diff = fold_build2 (MINUS_EXPR, type1,
936 iv0->step, build_int_cst (type1, 1));
938 /* We need to know that iv0->base >= MIN + iv0->step - 1. Since
939 0 address never belongs to any object, we can assume this for
940 pointers. */
941 if (!POINTER_TYPE_P (type))
943 bound = fold_build2 (PLUS_EXPR, type1,
944 TYPE_MIN_VALUE (type), diff);
945 assumption = fold_build2 (GE_EXPR, boolean_type_node,
946 iv0->base, bound);
949 /* And then we can compute iv0->base - diff, and compare it with
950 iv1->base. */
951 mbzl = fold_build2 (MINUS_EXPR, type1,
952 fold_convert (type1, iv0->base), diff);
953 mbzr = fold_convert (type1, iv1->base);
955 else
957 diff = fold_build2 (PLUS_EXPR, type1,
958 iv1->step, build_int_cst (type1, 1));
960 if (!POINTER_TYPE_P (type))
962 bound = fold_build2 (PLUS_EXPR, type1,
963 TYPE_MAX_VALUE (type), diff);
964 assumption = fold_build2 (LE_EXPR, boolean_type_node,
965 iv1->base, bound);
968 mbzl = fold_convert (type1, iv0->base);
969 mbzr = fold_build2 (MINUS_EXPR, type1,
970 fold_convert (type1, iv1->base), diff);
973 if (!integer_nonzerop (assumption))
974 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
975 niter->assumptions, assumption);
976 if (!rolls_p)
978 mbz = fold_build2 (GT_EXPR, boolean_type_node, mbzl, mbzr);
979 niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
980 niter->may_be_zero, mbz);
984 /* Determines number of iterations of loop whose ending condition
985 is IV0 < IV1. TYPE is the type of the iv. The number of
986 iterations is stored to NITER. BNDS bounds the difference
987 IV1->base - IV0->base. EXIT_MUST_BE_TAKEN is true if we know
988 that the exit must be taken eventually. */
990 static bool
991 number_of_iterations_lt (tree type, affine_iv *iv0, affine_iv *iv1,
992 struct tree_niter_desc *niter,
993 bool exit_must_be_taken, bounds *bnds)
995 tree niter_type = unsigned_type_for (type);
996 tree delta, step, s;
997 mpz_t mstep, tmp;
999 if (integer_nonzerop (iv0->step))
1001 niter->control = *iv0;
1002 niter->cmp = LT_EXPR;
1003 niter->bound = iv1->base;
1005 else
1007 niter->control = *iv1;
1008 niter->cmp = GT_EXPR;
1009 niter->bound = iv0->base;
1012 delta = fold_build2 (MINUS_EXPR, niter_type,
1013 fold_convert (niter_type, iv1->base),
1014 fold_convert (niter_type, iv0->base));
1016 /* First handle the special case that the step is +-1. */
1017 if ((integer_onep (iv0->step) && integer_zerop (iv1->step))
1018 || (integer_all_onesp (iv1->step) && integer_zerop (iv0->step)))
1020 /* for (i = iv0->base; i < iv1->base; i++)
1024 for (i = iv1->base; i > iv0->base; i--).
1026 In both cases # of iterations is iv1->base - iv0->base, assuming that
1027 iv1->base >= iv0->base.
1029 First try to derive a lower bound on the value of
1030 iv1->base - iv0->base, computed in full precision. If the difference
1031 is nonnegative, we are done, otherwise we must record the
1032 condition. */
1034 if (mpz_sgn (bnds->below) < 0)
1035 niter->may_be_zero = fold_build2 (LT_EXPR, boolean_type_node,
1036 iv1->base, iv0->base);
1037 niter->niter = delta;
1038 niter->max = mpz_get_double_int (niter_type, bnds->up, false);
1039 return true;
1042 if (integer_nonzerop (iv0->step))
1043 step = fold_convert (niter_type, iv0->step);
1044 else
1045 step = fold_convert (niter_type,
1046 fold_build1 (NEGATE_EXPR, type, iv1->step));
1048 /* If we can determine the final value of the control iv exactly, we can
1049 transform the condition to != comparison. In particular, this will be
1050 the case if DELTA is constant. */
1051 if (number_of_iterations_lt_to_ne (type, iv0, iv1, niter, &delta, step,
1052 exit_must_be_taken, bnds))
1054 affine_iv zps;
1056 zps.base = build_int_cst (niter_type, 0);
1057 zps.step = step;
1058 /* number_of_iterations_lt_to_ne will add assumptions that ensure that
1059 zps does not overflow. */
1060 zps.no_overflow = true;
1062 return number_of_iterations_ne (type, &zps, delta, niter, true, bnds);
1065 /* Make sure that the control iv does not overflow. */
1066 if (!assert_no_overflow_lt (type, iv0, iv1, niter, step))
1067 return false;
1069 /* We determine the number of iterations as (delta + step - 1) / step. For
1070 this to work, we must know that iv1->base >= iv0->base - step + 1,
1071 otherwise the loop does not roll. */
1072 assert_loop_rolls_lt (type, iv0, iv1, niter, bnds);
1074 s = fold_build2 (MINUS_EXPR, niter_type,
1075 step, build_int_cst (niter_type, 1));
1076 delta = fold_build2 (PLUS_EXPR, niter_type, delta, s);
1077 niter->niter = fold_build2 (FLOOR_DIV_EXPR, niter_type, delta, step);
1079 mpz_init (mstep);
1080 mpz_init (tmp);
1081 mpz_set_double_int (mstep, tree_to_double_int (step), true);
1082 mpz_add (tmp, bnds->up, mstep);
1083 mpz_sub_ui (tmp, tmp, 1);
1084 mpz_fdiv_q (tmp, tmp, mstep);
1085 niter->max = mpz_get_double_int (niter_type, tmp, false);
1086 mpz_clear (mstep);
1087 mpz_clear (tmp);
1089 return true;
1092 /* Determines number of iterations of loop whose ending condition
1093 is IV0 <= IV1. TYPE is the type of the iv. The number of
1094 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
1095 we know that this condition must eventually become false (we derived this
1096 earlier, and possibly set NITER->assumptions to make sure this
1097 is the case). BNDS bounds the difference IV1->base - IV0->base. */
1099 static bool
1100 number_of_iterations_le (tree type, affine_iv *iv0, affine_iv *iv1,
1101 struct tree_niter_desc *niter, bool exit_must_be_taken,
1102 bounds *bnds)
1104 tree assumption;
1105 tree type1 = type;
1106 if (POINTER_TYPE_P (type))
1107 type1 = sizetype;
1109 /* Say that IV0 is the control variable. Then IV0 <= IV1 iff
1110 IV0 < IV1 + 1, assuming that IV1 is not equal to the greatest
1111 value of the type. This we must know anyway, since if it is
1112 equal to this value, the loop rolls forever. We do not check
1113 this condition for pointer type ivs, as the code cannot rely on
1114 the object to that the pointer points being placed at the end of
1115 the address space (and more pragmatically, TYPE_{MIN,MAX}_VALUE is
1116 not defined for pointers). */
1118 if (!exit_must_be_taken && !POINTER_TYPE_P (type))
1120 if (integer_nonzerop (iv0->step))
1121 assumption = fold_build2 (NE_EXPR, boolean_type_node,
1122 iv1->base, TYPE_MAX_VALUE (type));
1123 else
1124 assumption = fold_build2 (NE_EXPR, boolean_type_node,
1125 iv0->base, TYPE_MIN_VALUE (type));
1127 if (integer_zerop (assumption))
1128 return false;
1129 if (!integer_nonzerop (assumption))
1130 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1131 niter->assumptions, assumption);
1134 if (integer_nonzerop (iv0->step))
1136 if (POINTER_TYPE_P (type))
1137 iv1->base = fold_build2 (POINTER_PLUS_EXPR, type, iv1->base,
1138 build_int_cst (type1, 1));
1139 else
1140 iv1->base = fold_build2 (PLUS_EXPR, type1, iv1->base,
1141 build_int_cst (type1, 1));
1143 else if (POINTER_TYPE_P (type))
1144 iv0->base = fold_build2 (POINTER_PLUS_EXPR, type, iv0->base,
1145 fold_build1 (NEGATE_EXPR, type1,
1146 build_int_cst (type1, 1)));
1147 else
1148 iv0->base = fold_build2 (MINUS_EXPR, type1,
1149 iv0->base, build_int_cst (type1, 1));
1151 bounds_add (bnds, double_int_one, type1);
1153 return number_of_iterations_lt (type, iv0, iv1, niter, exit_must_be_taken,
1154 bnds);
1157 /* Dumps description of affine induction variable IV to FILE. */
1159 static void
1160 dump_affine_iv (FILE *file, affine_iv *iv)
1162 if (!integer_zerop (iv->step))
1163 fprintf (file, "[");
1165 print_generic_expr (dump_file, iv->base, TDF_SLIM);
1167 if (!integer_zerop (iv->step))
1169 fprintf (file, ", + , ");
1170 print_generic_expr (dump_file, iv->step, TDF_SLIM);
1171 fprintf (file, "]%s", iv->no_overflow ? "(no_overflow)" : "");
1175 /* Determine the number of iterations according to condition (for staying
1176 inside loop) which compares two induction variables using comparison
1177 operator CODE. The induction variable on left side of the comparison
1178 is IV0, the right-hand side is IV1. Both induction variables must have
1179 type TYPE, which must be an integer or pointer type. The steps of the
1180 ivs must be constants (or NULL_TREE, which is interpreted as constant zero).
1182 LOOP is the loop whose number of iterations we are determining.
1184 ONLY_EXIT is true if we are sure this is the only way the loop could be
1185 exited (including possibly non-returning function calls, exceptions, etc.)
1186 -- in this case we can use the information whether the control induction
1187 variables can overflow or not in a more efficient way.
1189 The results (number of iterations and assumptions as described in
1190 comments at struct tree_niter_desc in tree-flow.h) are stored to NITER.
1191 Returns false if it fails to determine number of iterations, true if it
1192 was determined (possibly with some assumptions). */
1194 static bool
1195 number_of_iterations_cond (struct loop *loop,
1196 tree type, affine_iv *iv0, enum tree_code code,
1197 affine_iv *iv1, struct tree_niter_desc *niter,
1198 bool only_exit)
1200 bool exit_must_be_taken = false, ret;
1201 bounds bnds;
1203 /* The meaning of these assumptions is this:
1204 if !assumptions
1205 then the rest of information does not have to be valid
1206 if may_be_zero then the loop does not roll, even if
1207 niter != 0. */
1208 niter->assumptions = boolean_true_node;
1209 niter->may_be_zero = boolean_false_node;
1210 niter->niter = NULL_TREE;
1211 niter->max = double_int_zero;
1213 niter->bound = NULL_TREE;
1214 niter->cmp = ERROR_MARK;
1216 /* Make < comparison from > ones, and for NE_EXPR comparisons, ensure that
1217 the control variable is on lhs. */
1218 if (code == GE_EXPR || code == GT_EXPR
1219 || (code == NE_EXPR && integer_zerop (iv0->step)))
1221 SWAP (iv0, iv1);
1222 code = swap_tree_comparison (code);
1225 if (POINTER_TYPE_P (type))
1227 /* Comparison of pointers is undefined unless both iv0 and iv1 point
1228 to the same object. If they do, the control variable cannot wrap
1229 (as wrap around the bounds of memory will never return a pointer
1230 that would be guaranteed to point to the same object, even if we
1231 avoid undefined behavior by casting to size_t and back). */
1232 iv0->no_overflow = true;
1233 iv1->no_overflow = true;
1236 /* If the control induction variable does not overflow and the only exit
1237 from the loop is the one that we analyze, we know it must be taken
1238 eventually. */
1239 if (only_exit)
1241 if (!integer_zerop (iv0->step) && iv0->no_overflow)
1242 exit_must_be_taken = true;
1243 else if (!integer_zerop (iv1->step) && iv1->no_overflow)
1244 exit_must_be_taken = true;
1247 /* We can handle the case when neither of the sides of the comparison is
1248 invariant, provided that the test is NE_EXPR. This rarely occurs in
1249 practice, but it is simple enough to manage. */
1250 if (!integer_zerop (iv0->step) && !integer_zerop (iv1->step))
1252 if (code != NE_EXPR)
1253 return false;
1255 iv0->step = fold_binary_to_constant (MINUS_EXPR, type,
1256 iv0->step, iv1->step);
1257 iv0->no_overflow = false;
1258 iv1->step = build_int_cst (type, 0);
1259 iv1->no_overflow = true;
1262 /* If the result of the comparison is a constant, the loop is weird. More
1263 precise handling would be possible, but the situation is not common enough
1264 to waste time on it. */
1265 if (integer_zerop (iv0->step) && integer_zerop (iv1->step))
1266 return false;
1268 /* Ignore loops of while (i-- < 10) type. */
1269 if (code != NE_EXPR)
1271 if (iv0->step && tree_int_cst_sign_bit (iv0->step))
1272 return false;
1274 if (!integer_zerop (iv1->step) && !tree_int_cst_sign_bit (iv1->step))
1275 return false;
1278 /* If the loop exits immediately, there is nothing to do. */
1279 if (integer_zerop (fold_build2 (code, boolean_type_node, iv0->base, iv1->base)))
1281 niter->niter = build_int_cst (unsigned_type_for (type), 0);
1282 niter->max = double_int_zero;
1283 return true;
1286 /* OK, now we know we have a senseful loop. Handle several cases, depending
1287 on what comparison operator is used. */
1288 bound_difference (loop, iv1->base, iv0->base, &bnds);
1290 if (dump_file && (dump_flags & TDF_DETAILS))
1292 fprintf (dump_file,
1293 "Analyzing # of iterations of loop %d\n", loop->num);
1295 fprintf (dump_file, " exit condition ");
1296 dump_affine_iv (dump_file, iv0);
1297 fprintf (dump_file, " %s ",
1298 code == NE_EXPR ? "!="
1299 : code == LT_EXPR ? "<"
1300 : "<=");
1301 dump_affine_iv (dump_file, iv1);
1302 fprintf (dump_file, "\n");
1304 fprintf (dump_file, " bounds on difference of bases: ");
1305 mpz_out_str (dump_file, 10, bnds.below);
1306 fprintf (dump_file, " ... ");
1307 mpz_out_str (dump_file, 10, bnds.up);
1308 fprintf (dump_file, "\n");
1311 switch (code)
1313 case NE_EXPR:
1314 gcc_assert (integer_zerop (iv1->step));
1315 ret = number_of_iterations_ne (type, iv0, iv1->base, niter,
1316 exit_must_be_taken, &bnds);
1317 break;
1319 case LT_EXPR:
1320 ret = number_of_iterations_lt (type, iv0, iv1, niter, exit_must_be_taken,
1321 &bnds);
1322 break;
1324 case LE_EXPR:
1325 ret = number_of_iterations_le (type, iv0, iv1, niter, exit_must_be_taken,
1326 &bnds);
1327 break;
1329 default:
1330 gcc_unreachable ();
1333 mpz_clear (bnds.up);
1334 mpz_clear (bnds.below);
1336 if (dump_file && (dump_flags & TDF_DETAILS))
1338 if (ret)
1340 fprintf (dump_file, " result:\n");
1341 if (!integer_nonzerop (niter->assumptions))
1343 fprintf (dump_file, " under assumptions ");
1344 print_generic_expr (dump_file, niter->assumptions, TDF_SLIM);
1345 fprintf (dump_file, "\n");
1348 if (!integer_zerop (niter->may_be_zero))
1350 fprintf (dump_file, " zero if ");
1351 print_generic_expr (dump_file, niter->may_be_zero, TDF_SLIM);
1352 fprintf (dump_file, "\n");
1355 fprintf (dump_file, " # of iterations ");
1356 print_generic_expr (dump_file, niter->niter, TDF_SLIM);
1357 fprintf (dump_file, ", bounded by ");
1358 dump_double_int (dump_file, niter->max, true);
1359 fprintf (dump_file, "\n");
1361 else
1362 fprintf (dump_file, " failed\n\n");
1364 return ret;
1367 /* Substitute NEW for OLD in EXPR and fold the result. */
1369 static tree
1370 simplify_replace_tree (tree expr, tree old, tree new_tree)
1372 unsigned i, n;
1373 tree ret = NULL_TREE, e, se;
1375 if (!expr)
1376 return NULL_TREE;
1378 if (expr == old
1379 || operand_equal_p (expr, old, 0))
1380 return unshare_expr (new_tree);
1382 if (!EXPR_P (expr))
1383 return expr;
1385 n = TREE_OPERAND_LENGTH (expr);
1386 for (i = 0; i < n; i++)
1388 e = TREE_OPERAND (expr, i);
1389 se = simplify_replace_tree (e, old, new_tree);
1390 if (e == se)
1391 continue;
1393 if (!ret)
1394 ret = copy_node (expr);
1396 TREE_OPERAND (ret, i) = se;
1399 return (ret ? fold (ret) : expr);
1402 /* Expand definitions of ssa names in EXPR as long as they are simple
1403 enough, and return the new expression. */
1405 tree
1406 expand_simple_operations (tree expr)
1408 unsigned i, n;
1409 tree ret = NULL_TREE, e, ee, e1;
1410 enum tree_code code;
1411 gimple stmt;
1413 if (expr == NULL_TREE)
1414 return expr;
1416 if (is_gimple_min_invariant (expr))
1417 return expr;
1419 code = TREE_CODE (expr);
1420 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
1422 n = TREE_OPERAND_LENGTH (expr);
1423 for (i = 0; i < n; i++)
1425 e = TREE_OPERAND (expr, i);
1426 ee = expand_simple_operations (e);
1427 if (e == ee)
1428 continue;
1430 if (!ret)
1431 ret = copy_node (expr);
1433 TREE_OPERAND (ret, i) = ee;
1436 if (!ret)
1437 return expr;
1439 fold_defer_overflow_warnings ();
1440 ret = fold (ret);
1441 fold_undefer_and_ignore_overflow_warnings ();
1442 return ret;
1445 if (TREE_CODE (expr) != SSA_NAME)
1446 return expr;
1448 stmt = SSA_NAME_DEF_STMT (expr);
1449 if (gimple_code (stmt) == GIMPLE_PHI)
1451 basic_block src, dest;
1453 if (gimple_phi_num_args (stmt) != 1)
1454 return expr;
1455 e = PHI_ARG_DEF (stmt, 0);
1457 /* Avoid propagating through loop exit phi nodes, which
1458 could break loop-closed SSA form restrictions. */
1459 dest = gimple_bb (stmt);
1460 src = single_pred (dest);
1461 if (TREE_CODE (e) == SSA_NAME
1462 && src->loop_father != dest->loop_father)
1463 return expr;
1465 return expand_simple_operations (e);
1467 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1468 return expr;
1470 e = gimple_assign_rhs1 (stmt);
1471 code = gimple_assign_rhs_code (stmt);
1472 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1474 if (is_gimple_min_invariant (e))
1475 return e;
1477 if (code == SSA_NAME)
1478 return expand_simple_operations (e);
1480 return expr;
1483 switch (code)
1485 CASE_CONVERT:
1486 /* Casts are simple. */
1487 ee = expand_simple_operations (e);
1488 return fold_build1 (code, TREE_TYPE (expr), ee);
1490 case PLUS_EXPR:
1491 case MINUS_EXPR:
1492 case POINTER_PLUS_EXPR:
1493 /* And increments and decrements by a constant are simple. */
1494 e1 = gimple_assign_rhs2 (stmt);
1495 if (!is_gimple_min_invariant (e1))
1496 return expr;
1498 ee = expand_simple_operations (e);
1499 return fold_build2 (code, TREE_TYPE (expr), ee, e1);
1501 default:
1502 return expr;
1506 /* Tries to simplify EXPR using the condition COND. Returns the simplified
1507 expression (or EXPR unchanged, if no simplification was possible). */
1509 static tree
1510 tree_simplify_using_condition_1 (tree cond, tree expr)
1512 bool changed;
1513 tree e, te, e0, e1, e2, notcond;
1514 enum tree_code code = TREE_CODE (expr);
1516 if (code == INTEGER_CST)
1517 return expr;
1519 if (code == TRUTH_OR_EXPR
1520 || code == TRUTH_AND_EXPR
1521 || code == COND_EXPR)
1523 changed = false;
1525 e0 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 0));
1526 if (TREE_OPERAND (expr, 0) != e0)
1527 changed = true;
1529 e1 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 1));
1530 if (TREE_OPERAND (expr, 1) != e1)
1531 changed = true;
1533 if (code == COND_EXPR)
1535 e2 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 2));
1536 if (TREE_OPERAND (expr, 2) != e2)
1537 changed = true;
1539 else
1540 e2 = NULL_TREE;
1542 if (changed)
1544 if (code == COND_EXPR)
1545 expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
1546 else
1547 expr = fold_build2 (code, boolean_type_node, e0, e1);
1550 return expr;
1553 /* In case COND is equality, we may be able to simplify EXPR by copy/constant
1554 propagation, and vice versa. Fold does not handle this, since it is
1555 considered too expensive. */
1556 if (TREE_CODE (cond) == EQ_EXPR)
1558 e0 = TREE_OPERAND (cond, 0);
1559 e1 = TREE_OPERAND (cond, 1);
1561 /* We know that e0 == e1. Check whether we cannot simplify expr
1562 using this fact. */
1563 e = simplify_replace_tree (expr, e0, e1);
1564 if (integer_zerop (e) || integer_nonzerop (e))
1565 return e;
1567 e = simplify_replace_tree (expr, e1, e0);
1568 if (integer_zerop (e) || integer_nonzerop (e))
1569 return e;
1571 if (TREE_CODE (expr) == EQ_EXPR)
1573 e0 = TREE_OPERAND (expr, 0);
1574 e1 = TREE_OPERAND (expr, 1);
1576 /* If e0 == e1 (EXPR) implies !COND, then EXPR cannot be true. */
1577 e = simplify_replace_tree (cond, e0, e1);
1578 if (integer_zerop (e))
1579 return e;
1580 e = simplify_replace_tree (cond, e1, e0);
1581 if (integer_zerop (e))
1582 return e;
1584 if (TREE_CODE (expr) == NE_EXPR)
1586 e0 = TREE_OPERAND (expr, 0);
1587 e1 = TREE_OPERAND (expr, 1);
1589 /* If e0 == e1 (!EXPR) implies !COND, then EXPR must be true. */
1590 e = simplify_replace_tree (cond, e0, e1);
1591 if (integer_zerop (e))
1592 return boolean_true_node;
1593 e = simplify_replace_tree (cond, e1, e0);
1594 if (integer_zerop (e))
1595 return boolean_true_node;
1598 te = expand_simple_operations (expr);
1600 /* Check whether COND ==> EXPR. */
1601 notcond = invert_truthvalue (cond);
1602 e = fold_binary (TRUTH_OR_EXPR, boolean_type_node, notcond, te);
1603 if (e && integer_nonzerop (e))
1604 return e;
1606 /* Check whether COND ==> not EXPR. */
1607 e = fold_binary (TRUTH_AND_EXPR, boolean_type_node, cond, te);
1608 if (e && integer_zerop (e))
1609 return e;
1611 return expr;
1614 /* Tries to simplify EXPR using the condition COND. Returns the simplified
1615 expression (or EXPR unchanged, if no simplification was possible).
1616 Wrapper around tree_simplify_using_condition_1 that ensures that chains
1617 of simple operations in definitions of ssa names in COND are expanded,
1618 so that things like casts or incrementing the value of the bound before
1619 the loop do not cause us to fail. */
1621 static tree
1622 tree_simplify_using_condition (tree cond, tree expr)
1624 cond = expand_simple_operations (cond);
1626 return tree_simplify_using_condition_1 (cond, expr);
1629 /* Tries to simplify EXPR using the conditions on entry to LOOP.
1630 Returns the simplified expression (or EXPR unchanged, if no
1631 simplification was possible).*/
1633 static tree
1634 simplify_using_initial_conditions (struct loop *loop, tree expr)
1636 edge e;
1637 basic_block bb;
1638 gimple stmt;
1639 tree cond;
1640 int cnt = 0;
1642 if (TREE_CODE (expr) == INTEGER_CST)
1643 return expr;
1645 /* Limit walking the dominators to avoid quadraticness in
1646 the number of BBs times the number of loops in degenerate
1647 cases. */
1648 for (bb = loop->header;
1649 bb != ENTRY_BLOCK_PTR && cnt < MAX_DOMINATORS_TO_WALK;
1650 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
1652 if (!single_pred_p (bb))
1653 continue;
1654 e = single_pred_edge (bb);
1656 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
1657 continue;
1659 stmt = last_stmt (e->src);
1660 cond = fold_build2 (gimple_cond_code (stmt),
1661 boolean_type_node,
1662 gimple_cond_lhs (stmt),
1663 gimple_cond_rhs (stmt));
1664 if (e->flags & EDGE_FALSE_VALUE)
1665 cond = invert_truthvalue (cond);
1666 expr = tree_simplify_using_condition (cond, expr);
1667 ++cnt;
1670 return expr;
1673 /* Tries to simplify EXPR using the evolutions of the loop invariants
1674 in the superloops of LOOP. Returns the simplified expression
1675 (or EXPR unchanged, if no simplification was possible). */
1677 static tree
1678 simplify_using_outer_evolutions (struct loop *loop, tree expr)
1680 enum tree_code code = TREE_CODE (expr);
1681 bool changed;
1682 tree e, e0, e1, e2;
1684 if (is_gimple_min_invariant (expr))
1685 return expr;
1687 if (code == TRUTH_OR_EXPR
1688 || code == TRUTH_AND_EXPR
1689 || code == COND_EXPR)
1691 changed = false;
1693 e0 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 0));
1694 if (TREE_OPERAND (expr, 0) != e0)
1695 changed = true;
1697 e1 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 1));
1698 if (TREE_OPERAND (expr, 1) != e1)
1699 changed = true;
1701 if (code == COND_EXPR)
1703 e2 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 2));
1704 if (TREE_OPERAND (expr, 2) != e2)
1705 changed = true;
1707 else
1708 e2 = NULL_TREE;
1710 if (changed)
1712 if (code == COND_EXPR)
1713 expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
1714 else
1715 expr = fold_build2 (code, boolean_type_node, e0, e1);
1718 return expr;
1721 e = instantiate_parameters (loop, expr);
1722 if (is_gimple_min_invariant (e))
1723 return e;
1725 return expr;
1728 /* Returns true if EXIT is the only possible exit from LOOP. */
1730 bool
1731 loop_only_exit_p (const struct loop *loop, const_edge exit)
1733 basic_block *body;
1734 gimple_stmt_iterator bsi;
1735 unsigned i;
1736 gimple call;
1738 if (exit != single_exit (loop))
1739 return false;
1741 body = get_loop_body (loop);
1742 for (i = 0; i < loop->num_nodes; i++)
1744 for (bsi = gsi_start_bb (body[i]); !gsi_end_p (bsi); gsi_next (&bsi))
1746 call = gsi_stmt (bsi);
1747 if (gimple_code (call) != GIMPLE_CALL)
1748 continue;
1750 if (gimple_has_side_effects (call))
1752 free (body);
1753 return false;
1758 free (body);
1759 return true;
1762 /* Stores description of number of iterations of LOOP derived from
1763 EXIT (an exit edge of the LOOP) in NITER. Returns true if some
1764 useful information could be derived (and fields of NITER has
1765 meaning described in comments at struct tree_niter_desc
1766 declaration), false otherwise. If WARN is true and
1767 -Wunsafe-loop-optimizations was given, warn if the optimizer is going to use
1768 potentially unsafe assumptions. */
1770 bool
1771 number_of_iterations_exit (struct loop *loop, edge exit,
1772 struct tree_niter_desc *niter,
1773 bool warn)
1775 gimple stmt;
1776 tree type;
1777 tree op0, op1;
1778 enum tree_code code;
1779 affine_iv iv0, iv1;
1781 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
1782 return false;
1784 niter->assumptions = boolean_false_node;
1785 stmt = last_stmt (exit->src);
1786 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1787 return false;
1789 /* We want the condition for staying inside loop. */
1790 code = gimple_cond_code (stmt);
1791 if (exit->flags & EDGE_TRUE_VALUE)
1792 code = invert_tree_comparison (code, false);
1794 switch (code)
1796 case GT_EXPR:
1797 case GE_EXPR:
1798 case NE_EXPR:
1799 case LT_EXPR:
1800 case LE_EXPR:
1801 break;
1803 default:
1804 return false;
1807 op0 = gimple_cond_lhs (stmt);
1808 op1 = gimple_cond_rhs (stmt);
1809 type = TREE_TYPE (op0);
1811 if (TREE_CODE (type) != INTEGER_TYPE
1812 && !POINTER_TYPE_P (type))
1813 return false;
1815 if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, false))
1816 return false;
1817 if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, false))
1818 return false;
1820 /* We don't want to see undefined signed overflow warnings while
1821 computing the number of iterations. */
1822 fold_defer_overflow_warnings ();
1824 iv0.base = expand_simple_operations (iv0.base);
1825 iv1.base = expand_simple_operations (iv1.base);
1826 if (!number_of_iterations_cond (loop, type, &iv0, code, &iv1, niter,
1827 loop_only_exit_p (loop, exit)))
1829 fold_undefer_and_ignore_overflow_warnings ();
1830 return false;
1833 if (optimize >= 3)
1835 niter->assumptions = simplify_using_outer_evolutions (loop,
1836 niter->assumptions);
1837 niter->may_be_zero = simplify_using_outer_evolutions (loop,
1838 niter->may_be_zero);
1839 niter->niter = simplify_using_outer_evolutions (loop, niter->niter);
1842 niter->assumptions
1843 = simplify_using_initial_conditions (loop,
1844 niter->assumptions);
1845 niter->may_be_zero
1846 = simplify_using_initial_conditions (loop,
1847 niter->may_be_zero);
1849 fold_undefer_and_ignore_overflow_warnings ();
1851 if (integer_onep (niter->assumptions))
1852 return true;
1854 /* With -funsafe-loop-optimizations we assume that nothing bad can happen.
1855 But if we can prove that there is overflow or some other source of weird
1856 behavior, ignore the loop even with -funsafe-loop-optimizations. */
1857 if (integer_zerop (niter->assumptions))
1858 return false;
1860 if (flag_unsafe_loop_optimizations)
1861 niter->assumptions = boolean_true_node;
1863 if (warn)
1865 const char *wording;
1866 location_t loc = gimple_location (stmt);
1868 /* We can provide a more specific warning if one of the operator is
1869 constant and the other advances by +1 or -1. */
1870 if (!integer_zerop (iv1.step)
1871 ? (integer_zerop (iv0.step)
1872 && (integer_onep (iv1.step) || integer_all_onesp (iv1.step)))
1873 : (integer_onep (iv0.step) || integer_all_onesp (iv0.step)))
1874 wording =
1875 flag_unsafe_loop_optimizations
1876 ? N_("assuming that the loop is not infinite")
1877 : N_("cannot optimize possibly infinite loops");
1878 else
1879 wording =
1880 flag_unsafe_loop_optimizations
1881 ? N_("assuming that the loop counter does not overflow")
1882 : N_("cannot optimize loop, the loop counter may overflow");
1884 warning_at ((LOCATION_LINE (loc) > 0) ? loc : input_location,
1885 OPT_Wunsafe_loop_optimizations, "%s", gettext (wording));
1888 return flag_unsafe_loop_optimizations;
1891 /* Try to determine the number of iterations of LOOP. If we succeed,
1892 expression giving number of iterations is returned and *EXIT is
1893 set to the edge from that the information is obtained. Otherwise
1894 chrec_dont_know is returned. */
1896 tree
1897 find_loop_niter (struct loop *loop, edge *exit)
1899 unsigned i;
1900 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
1901 edge ex;
1902 tree niter = NULL_TREE, aniter;
1903 struct tree_niter_desc desc;
1905 *exit = NULL;
1906 for (i = 0; VEC_iterate (edge, exits, i, ex); i++)
1908 if (!just_once_each_iteration_p (loop, ex->src))
1909 continue;
1911 if (!number_of_iterations_exit (loop, ex, &desc, false))
1912 continue;
1914 if (integer_nonzerop (desc.may_be_zero))
1916 /* We exit in the first iteration through this exit.
1917 We won't find anything better. */
1918 niter = build_int_cst (unsigned_type_node, 0);
1919 *exit = ex;
1920 break;
1923 if (!integer_zerop (desc.may_be_zero))
1924 continue;
1926 aniter = desc.niter;
1928 if (!niter)
1930 /* Nothing recorded yet. */
1931 niter = aniter;
1932 *exit = ex;
1933 continue;
1936 /* Prefer constants, the lower the better. */
1937 if (TREE_CODE (aniter) != INTEGER_CST)
1938 continue;
1940 if (TREE_CODE (niter) != INTEGER_CST)
1942 niter = aniter;
1943 *exit = ex;
1944 continue;
1947 if (tree_int_cst_lt (aniter, niter))
1949 niter = aniter;
1950 *exit = ex;
1951 continue;
1954 VEC_free (edge, heap, exits);
1956 return niter ? niter : chrec_dont_know;
1959 /* Return true if loop is known to have bounded number of iterations. */
1961 bool
1962 finite_loop_p (struct loop *loop)
1964 unsigned i;
1965 VEC (edge, heap) *exits;
1966 edge ex;
1967 struct tree_niter_desc desc;
1968 bool finite = false;
1970 if (flag_unsafe_loop_optimizations)
1971 return true;
1972 if ((TREE_READONLY (current_function_decl)
1973 || DECL_PURE_P (current_function_decl))
1974 && !DECL_LOOPING_CONST_OR_PURE_P (current_function_decl))
1976 if (dump_file && (dump_flags & TDF_DETAILS))
1977 fprintf (dump_file, "Found loop %i to be finite: it is within pure or const function.\n",
1978 loop->num);
1979 return true;
1982 exits = get_loop_exit_edges (loop);
1983 for (i = 0; VEC_iterate (edge, exits, i, ex); i++)
1985 if (!just_once_each_iteration_p (loop, ex->src))
1986 continue;
1988 if (number_of_iterations_exit (loop, ex, &desc, false))
1990 if (dump_file && (dump_flags & TDF_DETAILS))
1992 fprintf (dump_file, "Found loop %i to be finite: iterating ", loop->num);
1993 print_generic_expr (dump_file, desc.niter, TDF_SLIM);
1994 fprintf (dump_file, " times\n");
1996 finite = true;
1997 break;
2000 VEC_free (edge, heap, exits);
2001 return finite;
2006 Analysis of a number of iterations of a loop by a brute-force evaluation.
2010 /* Bound on the number of iterations we try to evaluate. */
2012 #define MAX_ITERATIONS_TO_TRACK \
2013 ((unsigned) PARAM_VALUE (PARAM_MAX_ITERATIONS_TO_TRACK))
2015 /* Returns the loop phi node of LOOP such that ssa name X is derived from its
2016 result by a chain of operations such that all but exactly one of their
2017 operands are constants. */
2019 static gimple
2020 chain_of_csts_start (struct loop *loop, tree x)
2022 gimple stmt = SSA_NAME_DEF_STMT (x);
2023 tree use;
2024 basic_block bb = gimple_bb (stmt);
2025 enum tree_code code;
2027 if (!bb
2028 || !flow_bb_inside_loop_p (loop, bb))
2029 return NULL;
2031 if (gimple_code (stmt) == GIMPLE_PHI)
2033 if (bb == loop->header)
2034 return stmt;
2036 return NULL;
2039 if (gimple_code (stmt) != GIMPLE_ASSIGN)
2040 return NULL;
2042 code = gimple_assign_rhs_code (stmt);
2043 if (gimple_references_memory_p (stmt)
2044 || TREE_CODE_CLASS (code) == tcc_reference
2045 || (code == ADDR_EXPR
2046 && !is_gimple_min_invariant (gimple_assign_rhs1 (stmt))))
2047 return NULL;
2049 use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
2050 if (use == NULL_TREE)
2051 return NULL;
2053 return chain_of_csts_start (loop, use);
2056 /* Determines whether the expression X is derived from a result of a phi node
2057 in header of LOOP such that
2059 * the derivation of X consists only from operations with constants
2060 * the initial value of the phi node is constant
2061 * the value of the phi node in the next iteration can be derived from the
2062 value in the current iteration by a chain of operations with constants.
2064 If such phi node exists, it is returned, otherwise NULL is returned. */
2066 static gimple
2067 get_base_for (struct loop *loop, tree x)
2069 gimple phi;
2070 tree init, next;
2072 if (is_gimple_min_invariant (x))
2073 return NULL;
2075 phi = chain_of_csts_start (loop, x);
2076 if (!phi)
2077 return NULL;
2079 init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2080 next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
2082 if (TREE_CODE (next) != SSA_NAME)
2083 return NULL;
2085 if (!is_gimple_min_invariant (init))
2086 return NULL;
2088 if (chain_of_csts_start (loop, next) != phi)
2089 return NULL;
2091 return phi;
2094 /* Given an expression X, then
2096 * if X is NULL_TREE, we return the constant BASE.
2097 * otherwise X is a SSA name, whose value in the considered loop is derived
2098 by a chain of operations with constant from a result of a phi node in
2099 the header of the loop. Then we return value of X when the value of the
2100 result of this phi node is given by the constant BASE. */
2102 static tree
2103 get_val_for (tree x, tree base)
2105 gimple stmt;
2107 gcc_assert (is_gimple_min_invariant (base));
2109 if (!x)
2110 return base;
2112 stmt = SSA_NAME_DEF_STMT (x);
2113 if (gimple_code (stmt) == GIMPLE_PHI)
2114 return base;
2116 gcc_assert (is_gimple_assign (stmt));
2118 /* STMT must be either an assignment of a single SSA name or an
2119 expression involving an SSA name and a constant. Try to fold that
2120 expression using the value for the SSA name. */
2121 if (gimple_assign_ssa_name_copy_p (stmt))
2122 return get_val_for (gimple_assign_rhs1 (stmt), base);
2123 else if (gimple_assign_rhs_class (stmt) == GIMPLE_UNARY_RHS
2124 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
2126 return fold_build1 (gimple_assign_rhs_code (stmt),
2127 gimple_expr_type (stmt),
2128 get_val_for (gimple_assign_rhs1 (stmt), base));
2130 else if (gimple_assign_rhs_class (stmt) == GIMPLE_BINARY_RHS)
2132 tree rhs1 = gimple_assign_rhs1 (stmt);
2133 tree rhs2 = gimple_assign_rhs2 (stmt);
2134 if (TREE_CODE (rhs1) == SSA_NAME)
2135 rhs1 = get_val_for (rhs1, base);
2136 else if (TREE_CODE (rhs2) == SSA_NAME)
2137 rhs2 = get_val_for (rhs2, base);
2138 else
2139 gcc_unreachable ();
2140 return fold_build2 (gimple_assign_rhs_code (stmt),
2141 gimple_expr_type (stmt), rhs1, rhs2);
2143 else
2144 gcc_unreachable ();
2148 /* Tries to count the number of iterations of LOOP till it exits by EXIT
2149 by brute force -- i.e. by determining the value of the operands of the
2150 condition at EXIT in first few iterations of the loop (assuming that
2151 these values are constant) and determining the first one in that the
2152 condition is not satisfied. Returns the constant giving the number
2153 of the iterations of LOOP if successful, chrec_dont_know otherwise. */
2155 tree
2156 loop_niter_by_eval (struct loop *loop, edge exit)
2158 tree acnd;
2159 tree op[2], val[2], next[2], aval[2];
2160 gimple phi, cond;
2161 unsigned i, j;
2162 enum tree_code cmp;
2164 cond = last_stmt (exit->src);
2165 if (!cond || gimple_code (cond) != GIMPLE_COND)
2166 return chrec_dont_know;
2168 cmp = gimple_cond_code (cond);
2169 if (exit->flags & EDGE_TRUE_VALUE)
2170 cmp = invert_tree_comparison (cmp, false);
2172 switch (cmp)
2174 case EQ_EXPR:
2175 case NE_EXPR:
2176 case GT_EXPR:
2177 case GE_EXPR:
2178 case LT_EXPR:
2179 case LE_EXPR:
2180 op[0] = gimple_cond_lhs (cond);
2181 op[1] = gimple_cond_rhs (cond);
2182 break;
2184 default:
2185 return chrec_dont_know;
2188 for (j = 0; j < 2; j++)
2190 if (is_gimple_min_invariant (op[j]))
2192 val[j] = op[j];
2193 next[j] = NULL_TREE;
2194 op[j] = NULL_TREE;
2196 else
2198 phi = get_base_for (loop, op[j]);
2199 if (!phi)
2200 return chrec_dont_know;
2201 val[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2202 next[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
2206 /* Don't issue signed overflow warnings. */
2207 fold_defer_overflow_warnings ();
2209 for (i = 0; i < MAX_ITERATIONS_TO_TRACK; i++)
2211 for (j = 0; j < 2; j++)
2212 aval[j] = get_val_for (op[j], val[j]);
2214 acnd = fold_binary (cmp, boolean_type_node, aval[0], aval[1]);
2215 if (acnd && integer_zerop (acnd))
2217 fold_undefer_and_ignore_overflow_warnings ();
2218 if (dump_file && (dump_flags & TDF_DETAILS))
2219 fprintf (dump_file,
2220 "Proved that loop %d iterates %d times using brute force.\n",
2221 loop->num, i);
2222 return build_int_cst (unsigned_type_node, i);
2225 for (j = 0; j < 2; j++)
2227 val[j] = get_val_for (next[j], val[j]);
2228 if (!is_gimple_min_invariant (val[j]))
2230 fold_undefer_and_ignore_overflow_warnings ();
2231 return chrec_dont_know;
2236 fold_undefer_and_ignore_overflow_warnings ();
2238 return chrec_dont_know;
2241 /* Finds the exit of the LOOP by that the loop exits after a constant
2242 number of iterations and stores the exit edge to *EXIT. The constant
2243 giving the number of iterations of LOOP is returned. The number of
2244 iterations is determined using loop_niter_by_eval (i.e. by brute force
2245 evaluation). If we are unable to find the exit for that loop_niter_by_eval
2246 determines the number of iterations, chrec_dont_know is returned. */
2248 tree
2249 find_loop_niter_by_eval (struct loop *loop, edge *exit)
2251 unsigned i;
2252 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
2253 edge ex;
2254 tree niter = NULL_TREE, aniter;
2256 *exit = NULL;
2258 /* Loops with multiple exits are expensive to handle and less important. */
2259 if (!flag_expensive_optimizations
2260 && VEC_length (edge, exits) > 1)
2261 return chrec_dont_know;
2263 for (i = 0; VEC_iterate (edge, exits, i, ex); i++)
2265 if (!just_once_each_iteration_p (loop, ex->src))
2266 continue;
2268 aniter = loop_niter_by_eval (loop, ex);
2269 if (chrec_contains_undetermined (aniter))
2270 continue;
2272 if (niter
2273 && !tree_int_cst_lt (aniter, niter))
2274 continue;
2276 niter = aniter;
2277 *exit = ex;
2279 VEC_free (edge, heap, exits);
2281 return niter ? niter : chrec_dont_know;
2286 Analysis of upper bounds on number of iterations of a loop.
2290 static double_int derive_constant_upper_bound_ops (tree, tree,
2291 enum tree_code, tree);
2293 /* Returns a constant upper bound on the value of the right-hand side of
2294 an assignment statement STMT. */
2296 static double_int
2297 derive_constant_upper_bound_assign (gimple stmt)
2299 enum tree_code code = gimple_assign_rhs_code (stmt);
2300 tree op0 = gimple_assign_rhs1 (stmt);
2301 tree op1 = gimple_assign_rhs2 (stmt);
2303 return derive_constant_upper_bound_ops (TREE_TYPE (gimple_assign_lhs (stmt)),
2304 op0, code, op1);
2307 /* Returns a constant upper bound on the value of expression VAL. VAL
2308 is considered to be unsigned. If its type is signed, its value must
2309 be nonnegative. */
2311 static double_int
2312 derive_constant_upper_bound (tree val)
2314 enum tree_code code;
2315 tree op0, op1;
2317 extract_ops_from_tree (val, &code, &op0, &op1);
2318 return derive_constant_upper_bound_ops (TREE_TYPE (val), op0, code, op1);
2321 /* Returns a constant upper bound on the value of expression OP0 CODE OP1,
2322 whose type is TYPE. The expression is considered to be unsigned. If
2323 its type is signed, its value must be nonnegative. */
2325 static double_int
2326 derive_constant_upper_bound_ops (tree type, tree op0,
2327 enum tree_code code, tree op1)
2329 tree subtype, maxt;
2330 double_int bnd, max, mmax, cst;
2331 gimple stmt;
2333 if (INTEGRAL_TYPE_P (type))
2334 maxt = TYPE_MAX_VALUE (type);
2335 else
2336 maxt = upper_bound_in_type (type, type);
2338 max = tree_to_double_int (maxt);
2340 switch (code)
2342 case INTEGER_CST:
2343 return tree_to_double_int (op0);
2345 CASE_CONVERT:
2346 subtype = TREE_TYPE (op0);
2347 if (!TYPE_UNSIGNED (subtype)
2348 /* If TYPE is also signed, the fact that VAL is nonnegative implies
2349 that OP0 is nonnegative. */
2350 && TYPE_UNSIGNED (type)
2351 && !tree_expr_nonnegative_p (op0))
2353 /* If we cannot prove that the casted expression is nonnegative,
2354 we cannot establish more useful upper bound than the precision
2355 of the type gives us. */
2356 return max;
2359 /* We now know that op0 is an nonnegative value. Try deriving an upper
2360 bound for it. */
2361 bnd = derive_constant_upper_bound (op0);
2363 /* If the bound does not fit in TYPE, max. value of TYPE could be
2364 attained. */
2365 if (double_int_ucmp (max, bnd) < 0)
2366 return max;
2368 return bnd;
2370 case PLUS_EXPR:
2371 case POINTER_PLUS_EXPR:
2372 case MINUS_EXPR:
2373 if (TREE_CODE (op1) != INTEGER_CST
2374 || !tree_expr_nonnegative_p (op0))
2375 return max;
2377 /* Canonicalize to OP0 - CST. Consider CST to be signed, in order to
2378 choose the most logical way how to treat this constant regardless
2379 of the signedness of the type. */
2380 cst = tree_to_double_int (op1);
2381 cst = double_int_sext (cst, TYPE_PRECISION (type));
2382 if (code != MINUS_EXPR)
2383 cst = double_int_neg (cst);
2385 bnd = derive_constant_upper_bound (op0);
2387 if (double_int_negative_p (cst))
2389 cst = double_int_neg (cst);
2390 /* Avoid CST == 0x80000... */
2391 if (double_int_negative_p (cst))
2392 return max;;
2394 /* OP0 + CST. We need to check that
2395 BND <= MAX (type) - CST. */
2397 mmax = double_int_add (max, double_int_neg (cst));
2398 if (double_int_ucmp (bnd, mmax) > 0)
2399 return max;
2401 return double_int_add (bnd, cst);
2403 else
2405 /* OP0 - CST, where CST >= 0.
2407 If TYPE is signed, we have already verified that OP0 >= 0, and we
2408 know that the result is nonnegative. This implies that
2409 VAL <= BND - CST.
2411 If TYPE is unsigned, we must additionally know that OP0 >= CST,
2412 otherwise the operation underflows.
2415 /* This should only happen if the type is unsigned; however, for
2416 buggy programs that use overflowing signed arithmetics even with
2417 -fno-wrapv, this condition may also be true for signed values. */
2418 if (double_int_ucmp (bnd, cst) < 0)
2419 return max;
2421 if (TYPE_UNSIGNED (type))
2423 tree tem = fold_binary (GE_EXPR, boolean_type_node, op0,
2424 double_int_to_tree (type, cst));
2425 if (!tem || integer_nonzerop (tem))
2426 return max;
2429 bnd = double_int_add (bnd, double_int_neg (cst));
2432 return bnd;
2434 case FLOOR_DIV_EXPR:
2435 case EXACT_DIV_EXPR:
2436 if (TREE_CODE (op1) != INTEGER_CST
2437 || tree_int_cst_sign_bit (op1))
2438 return max;
2440 bnd = derive_constant_upper_bound (op0);
2441 return double_int_udiv (bnd, tree_to_double_int (op1), FLOOR_DIV_EXPR);
2443 case BIT_AND_EXPR:
2444 if (TREE_CODE (op1) != INTEGER_CST
2445 || tree_int_cst_sign_bit (op1))
2446 return max;
2447 return tree_to_double_int (op1);
2449 case SSA_NAME:
2450 stmt = SSA_NAME_DEF_STMT (op0);
2451 if (gimple_code (stmt) != GIMPLE_ASSIGN
2452 || gimple_assign_lhs (stmt) != op0)
2453 return max;
2454 return derive_constant_upper_bound_assign (stmt);
2456 default:
2457 return max;
2461 /* Records that every statement in LOOP is executed I_BOUND times.
2462 REALISTIC is true if I_BOUND is expected to be close to the real number
2463 of iterations. UPPER is true if we are sure the loop iterates at most
2464 I_BOUND times. */
2466 static void
2467 record_niter_bound (struct loop *loop, double_int i_bound, bool realistic,
2468 bool upper)
2470 /* Update the bounds only when there is no previous estimation, or when the current
2471 estimation is smaller. */
2472 if (upper
2473 && (!loop->any_upper_bound
2474 || double_int_ucmp (i_bound, loop->nb_iterations_upper_bound) < 0))
2476 loop->any_upper_bound = true;
2477 loop->nb_iterations_upper_bound = i_bound;
2479 if (realistic
2480 && (!loop->any_estimate
2481 || double_int_ucmp (i_bound, loop->nb_iterations_estimate) < 0))
2483 loop->any_estimate = true;
2484 loop->nb_iterations_estimate = i_bound;
2488 /* Records that AT_STMT is executed at most BOUND + 1 times in LOOP. IS_EXIT
2489 is true if the loop is exited immediately after STMT, and this exit
2490 is taken at last when the STMT is executed BOUND + 1 times.
2491 REALISTIC is true if BOUND is expected to be close to the real number
2492 of iterations. UPPER is true if we are sure the loop iterates at most
2493 BOUND times. I_BOUND is an unsigned double_int upper estimate on BOUND. */
2495 static void
2496 record_estimate (struct loop *loop, tree bound, double_int i_bound,
2497 gimple at_stmt, bool is_exit, bool realistic, bool upper)
2499 double_int delta;
2500 edge exit;
2502 if (dump_file && (dump_flags & TDF_DETAILS))
2504 fprintf (dump_file, "Statement %s", is_exit ? "(exit)" : "");
2505 print_gimple_stmt (dump_file, at_stmt, 0, TDF_SLIM);
2506 fprintf (dump_file, " is %sexecuted at most ",
2507 upper ? "" : "probably ");
2508 print_generic_expr (dump_file, bound, TDF_SLIM);
2509 fprintf (dump_file, " (bounded by ");
2510 dump_double_int (dump_file, i_bound, true);
2511 fprintf (dump_file, ") + 1 times in loop %d.\n", loop->num);
2514 /* If the I_BOUND is just an estimate of BOUND, it rarely is close to the
2515 real number of iterations. */
2516 if (TREE_CODE (bound) != INTEGER_CST)
2517 realistic = false;
2518 if (!upper && !realistic)
2519 return;
2521 /* If we have a guaranteed upper bound, record it in the appropriate
2522 list. */
2523 if (upper)
2525 struct nb_iter_bound *elt = GGC_NEW (struct nb_iter_bound);
2527 elt->bound = i_bound;
2528 elt->stmt = at_stmt;
2529 elt->is_exit = is_exit;
2530 elt->next = loop->bounds;
2531 loop->bounds = elt;
2534 /* Update the number of iteration estimates according to the bound.
2535 If at_stmt is an exit, then every statement in the loop is
2536 executed at most BOUND + 1 times. If it is not an exit, then
2537 some of the statements before it could be executed BOUND + 2
2538 times, if an exit of LOOP is before stmt. */
2539 exit = single_exit (loop);
2540 if (is_exit
2541 || (exit != NULL
2542 && dominated_by_p (CDI_DOMINATORS,
2543 exit->src, gimple_bb (at_stmt))))
2544 delta = double_int_one;
2545 else
2546 delta = double_int_two;
2547 i_bound = double_int_add (i_bound, delta);
2549 /* If an overflow occurred, ignore the result. */
2550 if (double_int_ucmp (i_bound, delta) < 0)
2551 return;
2553 record_niter_bound (loop, i_bound, realistic, upper);
2556 /* Record the estimate on number of iterations of LOOP based on the fact that
2557 the induction variable BASE + STEP * i evaluated in STMT does not wrap and
2558 its values belong to the range <LOW, HIGH>. REALISTIC is true if the
2559 estimated number of iterations is expected to be close to the real one.
2560 UPPER is true if we are sure the induction variable does not wrap. */
2562 static void
2563 record_nonwrapping_iv (struct loop *loop, tree base, tree step, gimple stmt,
2564 tree low, tree high, bool realistic, bool upper)
2566 tree niter_bound, extreme, delta;
2567 tree type = TREE_TYPE (base), unsigned_type;
2568 double_int max;
2570 if (TREE_CODE (step) != INTEGER_CST || integer_zerop (step))
2571 return;
2573 if (dump_file && (dump_flags & TDF_DETAILS))
2575 fprintf (dump_file, "Induction variable (");
2576 print_generic_expr (dump_file, TREE_TYPE (base), TDF_SLIM);
2577 fprintf (dump_file, ") ");
2578 print_generic_expr (dump_file, base, TDF_SLIM);
2579 fprintf (dump_file, " + ");
2580 print_generic_expr (dump_file, step, TDF_SLIM);
2581 fprintf (dump_file, " * iteration does not wrap in statement ");
2582 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2583 fprintf (dump_file, " in loop %d.\n", loop->num);
2586 unsigned_type = unsigned_type_for (type);
2587 base = fold_convert (unsigned_type, base);
2588 step = fold_convert (unsigned_type, step);
2590 if (tree_int_cst_sign_bit (step))
2592 extreme = fold_convert (unsigned_type, low);
2593 if (TREE_CODE (base) != INTEGER_CST)
2594 base = fold_convert (unsigned_type, high);
2595 delta = fold_build2 (MINUS_EXPR, unsigned_type, base, extreme);
2596 step = fold_build1 (NEGATE_EXPR, unsigned_type, step);
2598 else
2600 extreme = fold_convert (unsigned_type, high);
2601 if (TREE_CODE (base) != INTEGER_CST)
2602 base = fold_convert (unsigned_type, low);
2603 delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, base);
2606 /* STMT is executed at most NITER_BOUND + 1 times, since otherwise the value
2607 would get out of the range. */
2608 niter_bound = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step);
2609 max = derive_constant_upper_bound (niter_bound);
2610 record_estimate (loop, niter_bound, max, stmt, false, realistic, upper);
2613 /* Returns true if REF is a reference to an array at the end of a dynamically
2614 allocated structure. If this is the case, the array may be allocated larger
2615 than its upper bound implies. */
2617 bool
2618 array_at_struct_end_p (tree ref)
2620 tree base = get_base_address (ref);
2621 tree parent, field;
2623 /* Unless the reference is through a pointer, the size of the array matches
2624 its declaration. */
2625 if (!base || !INDIRECT_REF_P (base))
2626 return false;
2628 for (;handled_component_p (ref); ref = parent)
2630 parent = TREE_OPERAND (ref, 0);
2632 if (TREE_CODE (ref) == COMPONENT_REF)
2634 /* All fields of a union are at its end. */
2635 if (TREE_CODE (TREE_TYPE (parent)) == UNION_TYPE)
2636 continue;
2638 /* Unless the field is at the end of the struct, we are done. */
2639 field = TREE_OPERAND (ref, 1);
2640 if (TREE_CHAIN (field))
2641 return false;
2644 /* The other options are ARRAY_REF, ARRAY_RANGE_REF, VIEW_CONVERT_EXPR.
2645 In all these cases, we might be accessing the last element, and
2646 although in practice this will probably never happen, it is legal for
2647 the indices of this last element to exceed the bounds of the array.
2648 Therefore, continue checking. */
2651 gcc_assert (INDIRECT_REF_P (ref));
2652 return true;
2655 /* Determine information about number of iterations a LOOP from the index
2656 IDX of a data reference accessed in STMT. RELIABLE is true if STMT is
2657 guaranteed to be executed in every iteration of LOOP. Callback for
2658 for_each_index. */
2660 struct ilb_data
2662 struct loop *loop;
2663 gimple stmt;
2664 bool reliable;
2667 static bool
2668 idx_infer_loop_bounds (tree base, tree *idx, void *dta)
2670 struct ilb_data *data = (struct ilb_data *) dta;
2671 tree ev, init, step;
2672 tree low, high, type, next;
2673 bool sign, upper = data->reliable, at_end = false;
2674 struct loop *loop = data->loop;
2676 if (TREE_CODE (base) != ARRAY_REF)
2677 return true;
2679 /* For arrays at the end of the structure, we are not guaranteed that they
2680 do not really extend over their declared size. However, for arrays of
2681 size greater than one, this is unlikely to be intended. */
2682 if (array_at_struct_end_p (base))
2684 at_end = true;
2685 upper = false;
2688 ev = instantiate_parameters (loop, analyze_scalar_evolution (loop, *idx));
2689 init = initial_condition (ev);
2690 step = evolution_part_in_loop_num (ev, loop->num);
2692 if (!init
2693 || !step
2694 || TREE_CODE (step) != INTEGER_CST
2695 || integer_zerop (step)
2696 || tree_contains_chrecs (init, NULL)
2697 || chrec_contains_symbols_defined_in_loop (init, loop->num))
2698 return true;
2700 low = array_ref_low_bound (base);
2701 high = array_ref_up_bound (base);
2703 /* The case of nonconstant bounds could be handled, but it would be
2704 complicated. */
2705 if (TREE_CODE (low) != INTEGER_CST
2706 || !high
2707 || TREE_CODE (high) != INTEGER_CST)
2708 return true;
2709 sign = tree_int_cst_sign_bit (step);
2710 type = TREE_TYPE (step);
2712 /* The array of length 1 at the end of a structure most likely extends
2713 beyond its bounds. */
2714 if (at_end
2715 && operand_equal_p (low, high, 0))
2716 return true;
2718 /* In case the relevant bound of the array does not fit in type, or
2719 it does, but bound + step (in type) still belongs into the range of the
2720 array, the index may wrap and still stay within the range of the array
2721 (consider e.g. if the array is indexed by the full range of
2722 unsigned char).
2724 To make things simpler, we require both bounds to fit into type, although
2725 there are cases where this would not be strictly necessary. */
2726 if (!int_fits_type_p (high, type)
2727 || !int_fits_type_p (low, type))
2728 return true;
2729 low = fold_convert (type, low);
2730 high = fold_convert (type, high);
2732 if (sign)
2733 next = fold_binary (PLUS_EXPR, type, low, step);
2734 else
2735 next = fold_binary (PLUS_EXPR, type, high, step);
2737 if (tree_int_cst_compare (low, next) <= 0
2738 && tree_int_cst_compare (next, high) <= 0)
2739 return true;
2741 record_nonwrapping_iv (loop, init, step, data->stmt, low, high, true, upper);
2742 return true;
2745 /* Determine information about number of iterations a LOOP from the bounds
2746 of arrays in the data reference REF accessed in STMT. RELIABLE is true if
2747 STMT is guaranteed to be executed in every iteration of LOOP.*/
2749 static void
2750 infer_loop_bounds_from_ref (struct loop *loop, gimple stmt, tree ref,
2751 bool reliable)
2753 struct ilb_data data;
2755 data.loop = loop;
2756 data.stmt = stmt;
2757 data.reliable = reliable;
2758 for_each_index (&ref, idx_infer_loop_bounds, &data);
2761 /* Determine information about number of iterations of a LOOP from the way
2762 arrays are used in STMT. RELIABLE is true if STMT is guaranteed to be
2763 executed in every iteration of LOOP. */
2765 static void
2766 infer_loop_bounds_from_array (struct loop *loop, gimple stmt, bool reliable)
2768 if (is_gimple_assign (stmt))
2770 tree op0 = gimple_assign_lhs (stmt);
2771 tree op1 = gimple_assign_rhs1 (stmt);
2773 /* For each memory access, analyze its access function
2774 and record a bound on the loop iteration domain. */
2775 if (REFERENCE_CLASS_P (op0))
2776 infer_loop_bounds_from_ref (loop, stmt, op0, reliable);
2778 if (REFERENCE_CLASS_P (op1))
2779 infer_loop_bounds_from_ref (loop, stmt, op1, reliable);
2781 else if (is_gimple_call (stmt))
2783 tree arg, lhs;
2784 unsigned i, n = gimple_call_num_args (stmt);
2786 lhs = gimple_call_lhs (stmt);
2787 if (lhs && REFERENCE_CLASS_P (lhs))
2788 infer_loop_bounds_from_ref (loop, stmt, lhs, reliable);
2790 for (i = 0; i < n; i++)
2792 arg = gimple_call_arg (stmt, i);
2793 if (REFERENCE_CLASS_P (arg))
2794 infer_loop_bounds_from_ref (loop, stmt, arg, reliable);
2799 /* Determine information about number of iterations of a LOOP from the fact
2800 that signed arithmetics in STMT does not overflow. */
2802 static void
2803 infer_loop_bounds_from_signedness (struct loop *loop, gimple stmt)
2805 tree def, base, step, scev, type, low, high;
2807 if (gimple_code (stmt) != GIMPLE_ASSIGN)
2808 return;
2810 def = gimple_assign_lhs (stmt);
2812 if (TREE_CODE (def) != SSA_NAME)
2813 return;
2815 type = TREE_TYPE (def);
2816 if (!INTEGRAL_TYPE_P (type)
2817 || !TYPE_OVERFLOW_UNDEFINED (type))
2818 return;
2820 scev = instantiate_parameters (loop, analyze_scalar_evolution (loop, def));
2821 if (chrec_contains_undetermined (scev))
2822 return;
2824 base = initial_condition_in_loop_num (scev, loop->num);
2825 step = evolution_part_in_loop_num (scev, loop->num);
2827 if (!base || !step
2828 || TREE_CODE (step) != INTEGER_CST
2829 || tree_contains_chrecs (base, NULL)
2830 || chrec_contains_symbols_defined_in_loop (base, loop->num))
2831 return;
2833 low = lower_bound_in_type (type, type);
2834 high = upper_bound_in_type (type, type);
2836 record_nonwrapping_iv (loop, base, step, stmt, low, high, false, true);
2839 /* The following analyzers are extracting informations on the bounds
2840 of LOOP from the following undefined behaviors:
2842 - data references should not access elements over the statically
2843 allocated size,
2845 - signed variables should not overflow when flag_wrapv is not set.
2848 static void
2849 infer_loop_bounds_from_undefined (struct loop *loop)
2851 unsigned i;
2852 basic_block *bbs;
2853 gimple_stmt_iterator bsi;
2854 basic_block bb;
2855 bool reliable;
2857 bbs = get_loop_body (loop);
2859 for (i = 0; i < loop->num_nodes; i++)
2861 bb = bbs[i];
2863 /* If BB is not executed in each iteration of the loop, we cannot
2864 use the operations in it to infer reliable upper bound on the
2865 # of iterations of the loop. However, we can use it as a guess. */
2866 reliable = dominated_by_p (CDI_DOMINATORS, loop->latch, bb);
2868 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2870 gimple stmt = gsi_stmt (bsi);
2872 infer_loop_bounds_from_array (loop, stmt, reliable);
2874 if (reliable)
2875 infer_loop_bounds_from_signedness (loop, stmt);
2880 free (bbs);
2883 /* Converts VAL to double_int. */
2885 static double_int
2886 gcov_type_to_double_int (gcov_type val)
2888 double_int ret;
2890 ret.low = (unsigned HOST_WIDE_INT) val;
2891 /* If HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_WIDEST_INT, avoid shifting by
2892 the size of type. */
2893 val >>= HOST_BITS_PER_WIDE_INT - 1;
2894 val >>= 1;
2895 ret.high = (unsigned HOST_WIDE_INT) val;
2897 return ret;
2900 /* Records estimates on numbers of iterations of LOOP. */
2902 void
2903 estimate_numbers_of_iterations_loop (struct loop *loop)
2905 VEC (edge, heap) *exits;
2906 tree niter, type;
2907 unsigned i;
2908 struct tree_niter_desc niter_desc;
2909 edge ex;
2910 double_int bound;
2912 /* Give up if we already have tried to compute an estimation. */
2913 if (loop->estimate_state != EST_NOT_COMPUTED)
2914 return;
2915 loop->estimate_state = EST_AVAILABLE;
2916 loop->any_upper_bound = false;
2917 loop->any_estimate = false;
2919 exits = get_loop_exit_edges (loop);
2920 for (i = 0; VEC_iterate (edge, exits, i, ex); i++)
2922 if (!number_of_iterations_exit (loop, ex, &niter_desc, false))
2923 continue;
2925 niter = niter_desc.niter;
2926 type = TREE_TYPE (niter);
2927 if (TREE_CODE (niter_desc.may_be_zero) != INTEGER_CST)
2928 niter = build3 (COND_EXPR, type, niter_desc.may_be_zero,
2929 build_int_cst (type, 0),
2930 niter);
2931 record_estimate (loop, niter, niter_desc.max,
2932 last_stmt (ex->src),
2933 true, true, true);
2935 VEC_free (edge, heap, exits);
2937 infer_loop_bounds_from_undefined (loop);
2939 /* If we have a measured profile, use it to estimate the number of
2940 iterations. */
2941 if (loop->header->count != 0)
2943 gcov_type nit = expected_loop_iterations_unbounded (loop) + 1;
2944 bound = gcov_type_to_double_int (nit);
2945 record_niter_bound (loop, bound, true, false);
2948 /* If an upper bound is smaller than the realistic estimate of the
2949 number of iterations, use the upper bound instead. */
2950 if (loop->any_upper_bound
2951 && loop->any_estimate
2952 && double_int_ucmp (loop->nb_iterations_upper_bound,
2953 loop->nb_iterations_estimate) < 0)
2954 loop->nb_iterations_estimate = loop->nb_iterations_upper_bound;
2957 /* Records estimates on numbers of iterations of loops. */
2959 void
2960 estimate_numbers_of_iterations (void)
2962 loop_iterator li;
2963 struct loop *loop;
2965 /* We don't want to issue signed overflow warnings while getting
2966 loop iteration estimates. */
2967 fold_defer_overflow_warnings ();
2969 FOR_EACH_LOOP (li, loop, 0)
2971 estimate_numbers_of_iterations_loop (loop);
2974 fold_undefer_and_ignore_overflow_warnings ();
2977 /* Returns true if statement S1 dominates statement S2. */
2979 bool
2980 stmt_dominates_stmt_p (gimple s1, gimple s2)
2982 basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
2984 if (!bb1
2985 || s1 == s2)
2986 return true;
2988 if (bb1 == bb2)
2990 gimple_stmt_iterator bsi;
2992 if (gimple_code (s2) == GIMPLE_PHI)
2993 return false;
2995 if (gimple_code (s1) == GIMPLE_PHI)
2996 return true;
2998 for (bsi = gsi_start_bb (bb1); gsi_stmt (bsi) != s2; gsi_next (&bsi))
2999 if (gsi_stmt (bsi) == s1)
3000 return true;
3002 return false;
3005 return dominated_by_p (CDI_DOMINATORS, bb2, bb1);
3008 /* Returns true when we can prove that the number of executions of
3009 STMT in the loop is at most NITER, according to the bound on
3010 the number of executions of the statement NITER_BOUND->stmt recorded in
3011 NITER_BOUND. If STMT is NULL, we must prove this bound for all
3012 statements in the loop. */
3014 static bool
3015 n_of_executions_at_most (gimple stmt,
3016 struct nb_iter_bound *niter_bound,
3017 tree niter)
3019 double_int bound = niter_bound->bound;
3020 tree nit_type = TREE_TYPE (niter), e;
3021 enum tree_code cmp;
3023 gcc_assert (TYPE_UNSIGNED (nit_type));
3025 /* If the bound does not even fit into NIT_TYPE, it cannot tell us that
3026 the number of iterations is small. */
3027 if (!double_int_fits_to_tree_p (nit_type, bound))
3028 return false;
3030 /* We know that NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
3031 times. This means that:
3033 -- if NITER_BOUND->is_exit is true, then everything before
3034 NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
3035 times, and everything after it at most NITER_BOUND->bound times.
3037 -- If NITER_BOUND->is_exit is false, then if we can prove that when STMT
3038 is executed, then NITER_BOUND->stmt is executed as well in the same
3039 iteration (we conclude that if both statements belong to the same
3040 basic block, or if STMT is after NITER_BOUND->stmt), then STMT
3041 is executed at most NITER_BOUND->bound + 1 times. Otherwise STMT is
3042 executed at most NITER_BOUND->bound + 2 times. */
3044 if (niter_bound->is_exit)
3046 if (stmt
3047 && stmt != niter_bound->stmt
3048 && stmt_dominates_stmt_p (niter_bound->stmt, stmt))
3049 cmp = GE_EXPR;
3050 else
3051 cmp = GT_EXPR;
3053 else
3055 if (!stmt
3056 || (gimple_bb (stmt) != gimple_bb (niter_bound->stmt)
3057 && !stmt_dominates_stmt_p (niter_bound->stmt, stmt)))
3059 bound = double_int_add (bound, double_int_one);
3060 if (double_int_zero_p (bound)
3061 || !double_int_fits_to_tree_p (nit_type, bound))
3062 return false;
3064 cmp = GT_EXPR;
3067 e = fold_binary (cmp, boolean_type_node,
3068 niter, double_int_to_tree (nit_type, bound));
3069 return e && integer_nonzerop (e);
3072 /* Returns true if the arithmetics in TYPE can be assumed not to wrap. */
3074 bool
3075 nowrap_type_p (tree type)
3077 if (INTEGRAL_TYPE_P (type)
3078 && TYPE_OVERFLOW_UNDEFINED (type))
3079 return true;
3081 if (POINTER_TYPE_P (type))
3082 return true;
3084 return false;
3087 /* Return false only when the induction variable BASE + STEP * I is
3088 known to not overflow: i.e. when the number of iterations is small
3089 enough with respect to the step and initial condition in order to
3090 keep the evolution confined in TYPEs bounds. Return true when the
3091 iv is known to overflow or when the property is not computable.
3093 USE_OVERFLOW_SEMANTICS is true if this function should assume that
3094 the rules for overflow of the given language apply (e.g., that signed
3095 arithmetics in C does not overflow). */
3097 bool
3098 scev_probably_wraps_p (tree base, tree step,
3099 gimple at_stmt, struct loop *loop,
3100 bool use_overflow_semantics)
3102 struct nb_iter_bound *bound;
3103 tree delta, step_abs;
3104 tree unsigned_type, valid_niter;
3105 tree type = TREE_TYPE (step);
3107 /* FIXME: We really need something like
3108 http://gcc.gnu.org/ml/gcc-patches/2005-06/msg02025.html.
3110 We used to test for the following situation that frequently appears
3111 during address arithmetics:
3113 D.1621_13 = (long unsigned intD.4) D.1620_12;
3114 D.1622_14 = D.1621_13 * 8;
3115 D.1623_15 = (doubleD.29 *) D.1622_14;
3117 And derived that the sequence corresponding to D_14
3118 can be proved to not wrap because it is used for computing a
3119 memory access; however, this is not really the case -- for example,
3120 if D_12 = (unsigned char) [254,+,1], then D_14 has values
3121 2032, 2040, 0, 8, ..., but the code is still legal. */
3123 if (chrec_contains_undetermined (base)
3124 || chrec_contains_undetermined (step))
3125 return true;
3127 if (integer_zerop (step))
3128 return false;
3130 /* If we can use the fact that signed and pointer arithmetics does not
3131 wrap, we are done. */
3132 if (use_overflow_semantics && nowrap_type_p (TREE_TYPE (base)))
3133 return false;
3135 /* To be able to use estimates on number of iterations of the loop,
3136 we must have an upper bound on the absolute value of the step. */
3137 if (TREE_CODE (step) != INTEGER_CST)
3138 return true;
3140 /* Don't issue signed overflow warnings. */
3141 fold_defer_overflow_warnings ();
3143 /* Otherwise, compute the number of iterations before we reach the
3144 bound of the type, and verify that the loop is exited before this
3145 occurs. */
3146 unsigned_type = unsigned_type_for (type);
3147 base = fold_convert (unsigned_type, base);
3149 if (tree_int_cst_sign_bit (step))
3151 tree extreme = fold_convert (unsigned_type,
3152 lower_bound_in_type (type, type));
3153 delta = fold_build2 (MINUS_EXPR, unsigned_type, base, extreme);
3154 step_abs = fold_build1 (NEGATE_EXPR, unsigned_type,
3155 fold_convert (unsigned_type, step));
3157 else
3159 tree extreme = fold_convert (unsigned_type,
3160 upper_bound_in_type (type, type));
3161 delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, base);
3162 step_abs = fold_convert (unsigned_type, step);
3165 valid_niter = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step_abs);
3167 estimate_numbers_of_iterations_loop (loop);
3168 for (bound = loop->bounds; bound; bound = bound->next)
3170 if (n_of_executions_at_most (at_stmt, bound, valid_niter))
3172 fold_undefer_and_ignore_overflow_warnings ();
3173 return false;
3177 fold_undefer_and_ignore_overflow_warnings ();
3179 /* At this point we still don't have a proof that the iv does not
3180 overflow: give up. */
3181 return true;
3184 /* Frees the information on upper bounds on numbers of iterations of LOOP. */
3186 void
3187 free_numbers_of_iterations_estimates_loop (struct loop *loop)
3189 struct nb_iter_bound *bound, *next;
3191 loop->nb_iterations = NULL;
3192 loop->estimate_state = EST_NOT_COMPUTED;
3193 for (bound = loop->bounds; bound; bound = next)
3195 next = bound->next;
3196 ggc_free (bound);
3199 loop->bounds = NULL;
3202 /* Frees the information on upper bounds on numbers of iterations of loops. */
3204 void
3205 free_numbers_of_iterations_estimates (void)
3207 loop_iterator li;
3208 struct loop *loop;
3210 FOR_EACH_LOOP (li, loop, 0)
3212 free_numbers_of_iterations_estimates_loop (loop);
3216 /* Substitute value VAL for ssa name NAME inside expressions held
3217 at LOOP. */
3219 void
3220 substitute_in_loop_info (struct loop *loop, tree name, tree val)
3222 loop->nb_iterations = simplify_replace_tree (loop->nb_iterations, name, val);