2010-04-19 Richard Guenther <rguenther@suse.de>
[official-gcc.git] / gcc / recog.c
blob254e83a9769d3f73fb5afeacb480c18411270a40
1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "insn-config.h"
30 #include "insn-attr.h"
31 #include "hard-reg-set.h"
32 #include "recog.h"
33 #include "regs.h"
34 #include "addresses.h"
35 #include "expr.h"
36 #include "function.h"
37 #include "flags.h"
38 #include "real.h"
39 #include "toplev.h"
40 #include "basic-block.h"
41 #include "output.h"
42 #include "reload.h"
43 #include "target.h"
44 #include "timevar.h"
45 #include "tree-pass.h"
46 #include "df.h"
48 #ifndef STACK_PUSH_CODE
49 #ifdef STACK_GROWS_DOWNWARD
50 #define STACK_PUSH_CODE PRE_DEC
51 #else
52 #define STACK_PUSH_CODE PRE_INC
53 #endif
54 #endif
56 #ifndef STACK_POP_CODE
57 #ifdef STACK_GROWS_DOWNWARD
58 #define STACK_POP_CODE POST_INC
59 #else
60 #define STACK_POP_CODE POST_DEC
61 #endif
62 #endif
64 #ifndef HAVE_ATTR_enabled
65 static inline bool
66 get_attr_enabled (rtx insn ATTRIBUTE_UNUSED)
68 return true;
70 #endif
72 static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx, bool);
73 static void validate_replace_src_1 (rtx *, void *);
74 static rtx split_insn (rtx);
76 /* Nonzero means allow operands to be volatile.
77 This should be 0 if you are generating rtl, such as if you are calling
78 the functions in optabs.c and expmed.c (most of the time).
79 This should be 1 if all valid insns need to be recognized,
80 such as in reginfo.c and final.c and reload.c.
82 init_recog and init_recog_no_volatile are responsible for setting this. */
84 int volatile_ok;
86 struct recog_data recog_data;
88 /* Contains a vector of operand_alternative structures for every operand.
89 Set up by preprocess_constraints. */
90 struct operand_alternative recog_op_alt[MAX_RECOG_OPERANDS][MAX_RECOG_ALTERNATIVES];
92 /* On return from `constrain_operands', indicate which alternative
93 was satisfied. */
95 int which_alternative;
97 /* Nonzero after end of reload pass.
98 Set to 1 or 0 by toplev.c.
99 Controls the significance of (SUBREG (MEM)). */
101 int reload_completed;
103 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
104 int epilogue_completed;
106 /* Initialize data used by the function `recog'.
107 This must be called once in the compilation of a function
108 before any insn recognition may be done in the function. */
110 void
111 init_recog_no_volatile (void)
113 volatile_ok = 0;
116 void
117 init_recog (void)
119 volatile_ok = 1;
123 /* Check that X is an insn-body for an `asm' with operands
124 and that the operands mentioned in it are legitimate. */
127 check_asm_operands (rtx x)
129 int noperands;
130 rtx *operands;
131 const char **constraints;
132 int i;
134 /* Post-reload, be more strict with things. */
135 if (reload_completed)
137 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
138 extract_insn (make_insn_raw (x));
139 constrain_operands (1);
140 return which_alternative >= 0;
143 noperands = asm_noperands (x);
144 if (noperands < 0)
145 return 0;
146 if (noperands == 0)
147 return 1;
149 operands = XALLOCAVEC (rtx, noperands);
150 constraints = XALLOCAVEC (const char *, noperands);
152 decode_asm_operands (x, operands, NULL, constraints, NULL, NULL);
154 for (i = 0; i < noperands; i++)
156 const char *c = constraints[i];
157 if (c[0] == '%')
158 c++;
159 if (! asm_operand_ok (operands[i], c, constraints))
160 return 0;
163 return 1;
166 /* Static data for the next two routines. */
168 typedef struct change_t
170 rtx object;
171 int old_code;
172 rtx *loc;
173 rtx old;
174 bool unshare;
175 } change_t;
177 static change_t *changes;
178 static int changes_allocated;
180 static int num_changes = 0;
182 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
183 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
184 the change is simply made.
186 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
187 will be called with the address and mode as parameters. If OBJECT is
188 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
189 the change in place.
191 IN_GROUP is nonzero if this is part of a group of changes that must be
192 performed as a group. In that case, the changes will be stored. The
193 function `apply_change_group' will validate and apply the changes.
195 If IN_GROUP is zero, this is a single change. Try to recognize the insn
196 or validate the memory reference with the change applied. If the result
197 is not valid for the machine, suppress the change and return zero.
198 Otherwise, perform the change and return 1. */
200 static bool
201 validate_change_1 (rtx object, rtx *loc, rtx new_rtx, bool in_group, bool unshare)
203 rtx old = *loc;
205 if (old == new_rtx || rtx_equal_p (old, new_rtx))
206 return 1;
208 gcc_assert (in_group != 0 || num_changes == 0);
210 *loc = new_rtx;
212 /* Save the information describing this change. */
213 if (num_changes >= changes_allocated)
215 if (changes_allocated == 0)
216 /* This value allows for repeated substitutions inside complex
217 indexed addresses, or changes in up to 5 insns. */
218 changes_allocated = MAX_RECOG_OPERANDS * 5;
219 else
220 changes_allocated *= 2;
222 changes = XRESIZEVEC (change_t, changes, changes_allocated);
225 changes[num_changes].object = object;
226 changes[num_changes].loc = loc;
227 changes[num_changes].old = old;
228 changes[num_changes].unshare = unshare;
230 if (object && !MEM_P (object))
232 /* Set INSN_CODE to force rerecognition of insn. Save old code in
233 case invalid. */
234 changes[num_changes].old_code = INSN_CODE (object);
235 INSN_CODE (object) = -1;
238 num_changes++;
240 /* If we are making a group of changes, return 1. Otherwise, validate the
241 change group we made. */
243 if (in_group)
244 return 1;
245 else
246 return apply_change_group ();
249 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
250 UNSHARE to false. */
252 bool
253 validate_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
255 return validate_change_1 (object, loc, new_rtx, in_group, false);
258 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
259 UNSHARE to true. */
261 bool
262 validate_unshare_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
264 return validate_change_1 (object, loc, new_rtx, in_group, true);
268 /* Keep X canonicalized if some changes have made it non-canonical; only
269 modifies the operands of X, not (for example) its code. Simplifications
270 are not the job of this routine.
272 Return true if anything was changed. */
273 bool
274 canonicalize_change_group (rtx insn, rtx x)
276 if (COMMUTATIVE_P (x)
277 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
279 /* Oops, the caller has made X no longer canonical.
280 Let's redo the changes in the correct order. */
281 rtx tem = XEXP (x, 0);
282 validate_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
283 validate_change (insn, &XEXP (x, 1), tem, 1);
284 return true;
286 else
287 return false;
291 /* This subroutine of apply_change_group verifies whether the changes to INSN
292 were valid; i.e. whether INSN can still be recognized. */
295 insn_invalid_p (rtx insn)
297 rtx pat = PATTERN (insn);
298 int num_clobbers = 0;
299 /* If we are before reload and the pattern is a SET, see if we can add
300 clobbers. */
301 int icode = recog (pat, insn,
302 (GET_CODE (pat) == SET
303 && ! reload_completed && ! reload_in_progress)
304 ? &num_clobbers : 0);
305 int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
308 /* If this is an asm and the operand aren't legal, then fail. Likewise if
309 this is not an asm and the insn wasn't recognized. */
310 if ((is_asm && ! check_asm_operands (PATTERN (insn)))
311 || (!is_asm && icode < 0))
312 return 1;
314 /* If we have to add CLOBBERs, fail if we have to add ones that reference
315 hard registers since our callers can't know if they are live or not.
316 Otherwise, add them. */
317 if (num_clobbers > 0)
319 rtx newpat;
321 if (added_clobbers_hard_reg_p (icode))
322 return 1;
324 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
325 XVECEXP (newpat, 0, 0) = pat;
326 add_clobbers (newpat, icode);
327 PATTERN (insn) = pat = newpat;
330 /* After reload, verify that all constraints are satisfied. */
331 if (reload_completed)
333 extract_insn (insn);
335 if (! constrain_operands (1))
336 return 1;
339 INSN_CODE (insn) = icode;
340 return 0;
343 /* Return number of changes made and not validated yet. */
345 num_changes_pending (void)
347 return num_changes;
350 /* Tentatively apply the changes numbered NUM and up.
351 Return 1 if all changes are valid, zero otherwise. */
354 verify_changes (int num)
356 int i;
357 rtx last_validated = NULL_RTX;
359 /* The changes have been applied and all INSN_CODEs have been reset to force
360 rerecognition.
362 The changes are valid if we aren't given an object, or if we are
363 given a MEM and it still is a valid address, or if this is in insn
364 and it is recognized. In the latter case, if reload has completed,
365 we also require that the operands meet the constraints for
366 the insn. */
368 for (i = num; i < num_changes; i++)
370 rtx object = changes[i].object;
372 /* If there is no object to test or if it is the same as the one we
373 already tested, ignore it. */
374 if (object == 0 || object == last_validated)
375 continue;
377 if (MEM_P (object))
379 if (! memory_address_addr_space_p (GET_MODE (object),
380 XEXP (object, 0),
381 MEM_ADDR_SPACE (object)))
382 break;
384 else if (REG_P (changes[i].old)
385 && asm_noperands (PATTERN (object)) > 0
386 && REG_EXPR (changes[i].old) != NULL_TREE
387 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes[i].old))
388 && DECL_REGISTER (REG_EXPR (changes[i].old)))
390 /* Don't allow changes of hard register operands to inline
391 assemblies if they have been defined as register asm ("x"). */
392 break;
394 else if (DEBUG_INSN_P (object))
395 continue;
396 else if (insn_invalid_p (object))
398 rtx pat = PATTERN (object);
400 /* Perhaps we couldn't recognize the insn because there were
401 extra CLOBBERs at the end. If so, try to re-recognize
402 without the last CLOBBER (later iterations will cause each of
403 them to be eliminated, in turn). But don't do this if we
404 have an ASM_OPERAND. */
405 if (GET_CODE (pat) == PARALLEL
406 && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
407 && asm_noperands (PATTERN (object)) < 0)
409 rtx newpat;
411 if (XVECLEN (pat, 0) == 2)
412 newpat = XVECEXP (pat, 0, 0);
413 else
415 int j;
417 newpat
418 = gen_rtx_PARALLEL (VOIDmode,
419 rtvec_alloc (XVECLEN (pat, 0) - 1));
420 for (j = 0; j < XVECLEN (newpat, 0); j++)
421 XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
424 /* Add a new change to this group to replace the pattern
425 with this new pattern. Then consider this change
426 as having succeeded. The change we added will
427 cause the entire call to fail if things remain invalid.
429 Note that this can lose if a later change than the one
430 we are processing specified &XVECEXP (PATTERN (object), 0, X)
431 but this shouldn't occur. */
433 validate_change (object, &PATTERN (object), newpat, 1);
434 continue;
436 else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
437 || GET_CODE (pat) == VAR_LOCATION)
438 /* If this insn is a CLOBBER or USE, it is always valid, but is
439 never recognized. */
440 continue;
441 else
442 break;
444 last_validated = object;
447 return (i == num_changes);
450 /* A group of changes has previously been issued with validate_change
451 and verified with verify_changes. Call df_insn_rescan for each of
452 the insn changed and clear num_changes. */
454 void
455 confirm_change_group (void)
457 int i;
458 rtx last_object = NULL;
460 for (i = 0; i < num_changes; i++)
462 rtx object = changes[i].object;
464 if (changes[i].unshare)
465 *changes[i].loc = copy_rtx (*changes[i].loc);
467 /* Avoid unnecessary rescanning when multiple changes to same instruction
468 are made. */
469 if (object)
471 if (object != last_object && last_object && INSN_P (last_object))
472 df_insn_rescan (last_object);
473 last_object = object;
477 if (last_object && INSN_P (last_object))
478 df_insn_rescan (last_object);
479 num_changes = 0;
482 /* Apply a group of changes previously issued with `validate_change'.
483 If all changes are valid, call confirm_change_group and return 1,
484 otherwise, call cancel_changes and return 0. */
487 apply_change_group (void)
489 if (verify_changes (0))
491 confirm_change_group ();
492 return 1;
494 else
496 cancel_changes (0);
497 return 0;
502 /* Return the number of changes so far in the current group. */
505 num_validated_changes (void)
507 return num_changes;
510 /* Retract the changes numbered NUM and up. */
512 void
513 cancel_changes (int num)
515 int i;
517 /* Back out all the changes. Do this in the opposite order in which
518 they were made. */
519 for (i = num_changes - 1; i >= num; i--)
521 *changes[i].loc = changes[i].old;
522 if (changes[i].object && !MEM_P (changes[i].object))
523 INSN_CODE (changes[i].object) = changes[i].old_code;
525 num_changes = num;
528 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
529 rtx. */
531 static void
532 simplify_while_replacing (rtx *loc, rtx to, rtx object,
533 enum machine_mode op0_mode)
535 rtx x = *loc;
536 enum rtx_code code = GET_CODE (x);
537 rtx new_rtx;
539 if (SWAPPABLE_OPERANDS_P (x)
540 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
542 validate_unshare_change (object, loc,
543 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
544 : swap_condition (code),
545 GET_MODE (x), XEXP (x, 1),
546 XEXP (x, 0)), 1);
547 x = *loc;
548 code = GET_CODE (x);
551 switch (code)
553 case PLUS:
554 /* If we have a PLUS whose second operand is now a CONST_INT, use
555 simplify_gen_binary to try to simplify it.
556 ??? We may want later to remove this, once simplification is
557 separated from this function. */
558 if (CONST_INT_P (XEXP (x, 1)) && XEXP (x, 1) == to)
559 validate_change (object, loc,
560 simplify_gen_binary
561 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
562 break;
563 case MINUS:
564 if (CONST_INT_P (XEXP (x, 1))
565 || GET_CODE (XEXP (x, 1)) == CONST_DOUBLE)
566 validate_change (object, loc,
567 simplify_gen_binary
568 (PLUS, GET_MODE (x), XEXP (x, 0),
569 simplify_gen_unary (NEG,
570 GET_MODE (x), XEXP (x, 1),
571 GET_MODE (x))), 1);
572 break;
573 case ZERO_EXTEND:
574 case SIGN_EXTEND:
575 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
577 new_rtx = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
578 op0_mode);
579 /* If any of the above failed, substitute in something that
580 we know won't be recognized. */
581 if (!new_rtx)
582 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
583 validate_change (object, loc, new_rtx, 1);
585 break;
586 case SUBREG:
587 /* All subregs possible to simplify should be simplified. */
588 new_rtx = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
589 SUBREG_BYTE (x));
591 /* Subregs of VOIDmode operands are incorrect. */
592 if (!new_rtx && GET_MODE (SUBREG_REG (x)) == VOIDmode)
593 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
594 if (new_rtx)
595 validate_change (object, loc, new_rtx, 1);
596 break;
597 case ZERO_EXTRACT:
598 case SIGN_EXTRACT:
599 /* If we are replacing a register with memory, try to change the memory
600 to be the mode required for memory in extract operations (this isn't
601 likely to be an insertion operation; if it was, nothing bad will
602 happen, we might just fail in some cases). */
604 if (MEM_P (XEXP (x, 0))
605 && CONST_INT_P (XEXP (x, 1))
606 && CONST_INT_P (XEXP (x, 2))
607 && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0))
608 && !MEM_VOLATILE_P (XEXP (x, 0)))
610 enum machine_mode wanted_mode = VOIDmode;
611 enum machine_mode is_mode = GET_MODE (XEXP (x, 0));
612 int pos = INTVAL (XEXP (x, 2));
614 if (GET_CODE (x) == ZERO_EXTRACT)
616 enum machine_mode new_mode
617 = mode_for_extraction (EP_extzv, 1);
618 if (new_mode != MAX_MACHINE_MODE)
619 wanted_mode = new_mode;
621 else if (GET_CODE (x) == SIGN_EXTRACT)
623 enum machine_mode new_mode
624 = mode_for_extraction (EP_extv, 1);
625 if (new_mode != MAX_MACHINE_MODE)
626 wanted_mode = new_mode;
629 /* If we have a narrower mode, we can do something. */
630 if (wanted_mode != VOIDmode
631 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
633 int offset = pos / BITS_PER_UNIT;
634 rtx newmem;
636 /* If the bytes and bits are counted differently, we
637 must adjust the offset. */
638 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
639 offset =
640 (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
641 offset);
643 pos %= GET_MODE_BITSIZE (wanted_mode);
645 newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
647 validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
648 validate_change (object, &XEXP (x, 0), newmem, 1);
652 break;
654 default:
655 break;
659 /* Replace every occurrence of FROM in X with TO. Mark each change with
660 validate_change passing OBJECT. */
662 static void
663 validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx object,
664 bool simplify)
666 int i, j;
667 const char *fmt;
668 rtx x = *loc;
669 enum rtx_code code;
670 enum machine_mode op0_mode = VOIDmode;
671 int prev_changes = num_changes;
673 if (!x)
674 return;
676 code = GET_CODE (x);
677 fmt = GET_RTX_FORMAT (code);
678 if (fmt[0] == 'e')
679 op0_mode = GET_MODE (XEXP (x, 0));
681 /* X matches FROM if it is the same rtx or they are both referring to the
682 same register in the same mode. Avoid calling rtx_equal_p unless the
683 operands look similar. */
685 if (x == from
686 || (REG_P (x) && REG_P (from)
687 && GET_MODE (x) == GET_MODE (from)
688 && REGNO (x) == REGNO (from))
689 || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
690 && rtx_equal_p (x, from)))
692 validate_unshare_change (object, loc, to, 1);
693 return;
696 /* Call ourself recursively to perform the replacements.
697 We must not replace inside already replaced expression, otherwise we
698 get infinite recursion for replacements like (reg X)->(subreg (reg X))
699 done by regmove, so we must special case shared ASM_OPERANDS. */
701 if (GET_CODE (x) == PARALLEL)
703 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
705 if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
706 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
708 /* Verify that operands are really shared. */
709 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
710 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
711 (x, 0, j))));
712 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
713 from, to, object, simplify);
715 else
716 validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object,
717 simplify);
720 else
721 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
723 if (fmt[i] == 'e')
724 validate_replace_rtx_1 (&XEXP (x, i), from, to, object, simplify);
725 else if (fmt[i] == 'E')
726 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
727 validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object,
728 simplify);
731 /* If we didn't substitute, there is nothing more to do. */
732 if (num_changes == prev_changes)
733 return;
735 /* Allow substituted expression to have different mode. This is used by
736 regmove to change mode of pseudo register. */
737 if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
738 op0_mode = GET_MODE (XEXP (x, 0));
740 /* Do changes needed to keep rtx consistent. Don't do any other
741 simplifications, as it is not our job. */
742 if (simplify)
743 simplify_while_replacing (loc, to, object, op0_mode);
746 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
747 with TO. After all changes have been made, validate by seeing
748 if INSN is still valid. */
751 validate_replace_rtx_subexp (rtx from, rtx to, rtx insn, rtx *loc)
753 validate_replace_rtx_1 (loc, from, to, insn, true);
754 return apply_change_group ();
757 /* Try replacing every occurrence of FROM in INSN with TO. After all
758 changes have been made, validate by seeing if INSN is still valid. */
761 validate_replace_rtx (rtx from, rtx to, rtx insn)
763 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
764 return apply_change_group ();
767 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
768 is a part of INSN. After all changes have been made, validate by seeing if
769 INSN is still valid.
770 validate_replace_rtx (from, to, insn) is equivalent to
771 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
774 validate_replace_rtx_part (rtx from, rtx to, rtx *where, rtx insn)
776 validate_replace_rtx_1 (where, from, to, insn, true);
777 return apply_change_group ();
780 /* Same as above, but do not simplify rtx afterwards. */
782 validate_replace_rtx_part_nosimplify (rtx from, rtx to, rtx *where,
783 rtx insn)
785 validate_replace_rtx_1 (where, from, to, insn, false);
786 return apply_change_group ();
790 /* Try replacing every occurrence of FROM in INSN with TO. This also
791 will replace in REG_EQUAL and REG_EQUIV notes. */
793 void
794 validate_replace_rtx_group (rtx from, rtx to, rtx insn)
796 rtx note;
797 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
798 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
799 if (REG_NOTE_KIND (note) == REG_EQUAL
800 || REG_NOTE_KIND (note) == REG_EQUIV)
801 validate_replace_rtx_1 (&XEXP (note, 0), from, to, insn, true);
804 /* Function called by note_uses to replace used subexpressions. */
805 struct validate_replace_src_data
807 rtx from; /* Old RTX */
808 rtx to; /* New RTX */
809 rtx insn; /* Insn in which substitution is occurring. */
812 static void
813 validate_replace_src_1 (rtx *x, void *data)
815 struct validate_replace_src_data *d
816 = (struct validate_replace_src_data *) data;
818 validate_replace_rtx_1 (x, d->from, d->to, d->insn, true);
821 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
822 SET_DESTs. */
824 void
825 validate_replace_src_group (rtx from, rtx to, rtx insn)
827 struct validate_replace_src_data d;
829 d.from = from;
830 d.to = to;
831 d.insn = insn;
832 note_uses (&PATTERN (insn), validate_replace_src_1, &d);
835 /* Try simplify INSN.
836 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
837 pattern and return true if something was simplified. */
839 bool
840 validate_simplify_insn (rtx insn)
842 int i;
843 rtx pat = NULL;
844 rtx newpat = NULL;
846 pat = PATTERN (insn);
848 if (GET_CODE (pat) == SET)
850 newpat = simplify_rtx (SET_SRC (pat));
851 if (newpat && !rtx_equal_p (SET_SRC (pat), newpat))
852 validate_change (insn, &SET_SRC (pat), newpat, 1);
853 newpat = simplify_rtx (SET_DEST (pat));
854 if (newpat && !rtx_equal_p (SET_DEST (pat), newpat))
855 validate_change (insn, &SET_DEST (pat), newpat, 1);
857 else if (GET_CODE (pat) == PARALLEL)
858 for (i = 0; i < XVECLEN (pat, 0); i++)
860 rtx s = XVECEXP (pat, 0, i);
862 if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
864 newpat = simplify_rtx (SET_SRC (s));
865 if (newpat && !rtx_equal_p (SET_SRC (s), newpat))
866 validate_change (insn, &SET_SRC (s), newpat, 1);
867 newpat = simplify_rtx (SET_DEST (s));
868 if (newpat && !rtx_equal_p (SET_DEST (s), newpat))
869 validate_change (insn, &SET_DEST (s), newpat, 1);
872 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
875 #ifdef HAVE_cc0
876 /* Return 1 if the insn using CC0 set by INSN does not contain
877 any ordered tests applied to the condition codes.
878 EQ and NE tests do not count. */
881 next_insn_tests_no_inequality (rtx insn)
883 rtx next = next_cc0_user (insn);
885 /* If there is no next insn, we have to take the conservative choice. */
886 if (next == 0)
887 return 0;
889 return (INSN_P (next)
890 && ! inequality_comparisons_p (PATTERN (next)));
892 #endif
894 /* Return 1 if OP is a valid general operand for machine mode MODE.
895 This is either a register reference, a memory reference,
896 or a constant. In the case of a memory reference, the address
897 is checked for general validity for the target machine.
899 Register and memory references must have mode MODE in order to be valid,
900 but some constants have no machine mode and are valid for any mode.
902 If MODE is VOIDmode, OP is checked for validity for whatever mode
903 it has.
905 The main use of this function is as a predicate in match_operand
906 expressions in the machine description.
908 For an explanation of this function's behavior for registers of
909 class NO_REGS, see the comment for `register_operand'. */
912 general_operand (rtx op, enum machine_mode mode)
914 enum rtx_code code = GET_CODE (op);
916 if (mode == VOIDmode)
917 mode = GET_MODE (op);
919 /* Don't accept CONST_INT or anything similar
920 if the caller wants something floating. */
921 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
922 && GET_MODE_CLASS (mode) != MODE_INT
923 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
924 return 0;
926 if (CONST_INT_P (op)
927 && mode != VOIDmode
928 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
929 return 0;
931 if (CONSTANT_P (op))
932 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
933 || mode == VOIDmode)
934 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
935 && LEGITIMATE_CONSTANT_P (op));
937 /* Except for certain constants with VOIDmode, already checked for,
938 OP's mode must match MODE if MODE specifies a mode. */
940 if (GET_MODE (op) != mode)
941 return 0;
943 if (code == SUBREG)
945 rtx sub = SUBREG_REG (op);
947 #ifdef INSN_SCHEDULING
948 /* On machines that have insn scheduling, we want all memory
949 reference to be explicit, so outlaw paradoxical SUBREGs.
950 However, we must allow them after reload so that they can
951 get cleaned up by cleanup_subreg_operands. */
952 if (!reload_completed && MEM_P (sub)
953 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub)))
954 return 0;
955 #endif
956 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
957 may result in incorrect reference. We should simplify all valid
958 subregs of MEM anyway. But allow this after reload because we
959 might be called from cleanup_subreg_operands.
961 ??? This is a kludge. */
962 if (!reload_completed && SUBREG_BYTE (op) != 0
963 && MEM_P (sub))
964 return 0;
966 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
967 create such rtl, and we must reject it. */
968 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
969 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
970 return 0;
972 op = sub;
973 code = GET_CODE (op);
976 if (code == REG)
977 /* A register whose class is NO_REGS is not a general operand. */
978 return (REGNO (op) >= FIRST_PSEUDO_REGISTER
979 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS);
981 if (code == MEM)
983 rtx y = XEXP (op, 0);
985 if (! volatile_ok && MEM_VOLATILE_P (op))
986 return 0;
988 /* Use the mem's mode, since it will be reloaded thus. */
989 if (memory_address_addr_space_p (GET_MODE (op), y, MEM_ADDR_SPACE (op)))
990 return 1;
993 return 0;
996 /* Return 1 if OP is a valid memory address for a memory reference
997 of mode MODE.
999 The main use of this function is as a predicate in match_operand
1000 expressions in the machine description. */
1003 address_operand (rtx op, enum machine_mode mode)
1005 return memory_address_p (mode, op);
1008 /* Return 1 if OP is a register reference of mode MODE.
1009 If MODE is VOIDmode, accept a register in any mode.
1011 The main use of this function is as a predicate in match_operand
1012 expressions in the machine description.
1014 As a special exception, registers whose class is NO_REGS are
1015 not accepted by `register_operand'. The reason for this change
1016 is to allow the representation of special architecture artifacts
1017 (such as a condition code register) without extending the rtl
1018 definitions. Since registers of class NO_REGS cannot be used
1019 as registers in any case where register classes are examined,
1020 it is most consistent to keep this function from accepting them. */
1023 register_operand (rtx op, enum machine_mode mode)
1025 if (GET_MODE (op) != mode && mode != VOIDmode)
1026 return 0;
1028 if (GET_CODE (op) == SUBREG)
1030 rtx sub = SUBREG_REG (op);
1032 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1033 because it is guaranteed to be reloaded into one.
1034 Just make sure the MEM is valid in itself.
1035 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1036 but currently it does result from (SUBREG (REG)...) where the
1037 reg went on the stack.) */
1038 if (! reload_completed && MEM_P (sub))
1039 return general_operand (op, mode);
1041 #ifdef CANNOT_CHANGE_MODE_CLASS
1042 if (REG_P (sub)
1043 && REGNO (sub) < FIRST_PSEUDO_REGISTER
1044 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
1045 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1046 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT)
1047 return 0;
1048 #endif
1050 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1051 create such rtl, and we must reject it. */
1052 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
1053 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1054 return 0;
1056 op = sub;
1059 /* We don't consider registers whose class is NO_REGS
1060 to be a register operand. */
1061 return (REG_P (op)
1062 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1063 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
1066 /* Return 1 for a register in Pmode; ignore the tested mode. */
1069 pmode_register_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
1071 return register_operand (op, Pmode);
1074 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1075 or a hard register. */
1078 scratch_operand (rtx op, enum machine_mode mode)
1080 if (GET_MODE (op) != mode && mode != VOIDmode)
1081 return 0;
1083 return (GET_CODE (op) == SCRATCH
1084 || (REG_P (op)
1085 && REGNO (op) < FIRST_PSEUDO_REGISTER));
1088 /* Return 1 if OP is a valid immediate operand for mode MODE.
1090 The main use of this function is as a predicate in match_operand
1091 expressions in the machine description. */
1094 immediate_operand (rtx op, enum machine_mode mode)
1096 /* Don't accept CONST_INT or anything similar
1097 if the caller wants something floating. */
1098 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1099 && GET_MODE_CLASS (mode) != MODE_INT
1100 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1101 return 0;
1103 if (CONST_INT_P (op)
1104 && mode != VOIDmode
1105 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1106 return 0;
1108 return (CONSTANT_P (op)
1109 && (GET_MODE (op) == mode || mode == VOIDmode
1110 || GET_MODE (op) == VOIDmode)
1111 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1112 && LEGITIMATE_CONSTANT_P (op));
1115 /* Returns 1 if OP is an operand that is a CONST_INT. */
1118 const_int_operand (rtx op, enum machine_mode mode)
1120 if (!CONST_INT_P (op))
1121 return 0;
1123 if (mode != VOIDmode
1124 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1125 return 0;
1127 return 1;
1130 /* Returns 1 if OP is an operand that is a constant integer or constant
1131 floating-point number. */
1134 const_double_operand (rtx op, enum machine_mode mode)
1136 /* Don't accept CONST_INT or anything similar
1137 if the caller wants something floating. */
1138 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1139 && GET_MODE_CLASS (mode) != MODE_INT
1140 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1141 return 0;
1143 return ((GET_CODE (op) == CONST_DOUBLE || CONST_INT_P (op))
1144 && (mode == VOIDmode || GET_MODE (op) == mode
1145 || GET_MODE (op) == VOIDmode));
1148 /* Return 1 if OP is a general operand that is not an immediate operand. */
1151 nonimmediate_operand (rtx op, enum machine_mode mode)
1153 return (general_operand (op, mode) && ! CONSTANT_P (op));
1156 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1159 nonmemory_operand (rtx op, enum machine_mode mode)
1161 if (CONSTANT_P (op))
1163 /* Don't accept CONST_INT or anything similar
1164 if the caller wants something floating. */
1165 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1166 && GET_MODE_CLASS (mode) != MODE_INT
1167 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1168 return 0;
1170 if (CONST_INT_P (op)
1171 && mode != VOIDmode
1172 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1173 return 0;
1175 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
1176 || mode == VOIDmode)
1177 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1178 && LEGITIMATE_CONSTANT_P (op));
1181 if (GET_MODE (op) != mode && mode != VOIDmode)
1182 return 0;
1184 if (GET_CODE (op) == SUBREG)
1186 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1187 because it is guaranteed to be reloaded into one.
1188 Just make sure the MEM is valid in itself.
1189 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1190 but currently it does result from (SUBREG (REG)...) where the
1191 reg went on the stack.) */
1192 if (! reload_completed && MEM_P (SUBREG_REG (op)))
1193 return general_operand (op, mode);
1194 op = SUBREG_REG (op);
1197 /* We don't consider registers whose class is NO_REGS
1198 to be a register operand. */
1199 return (REG_P (op)
1200 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1201 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
1204 /* Return 1 if OP is a valid operand that stands for pushing a
1205 value of mode MODE onto the stack.
1207 The main use of this function is as a predicate in match_operand
1208 expressions in the machine description. */
1211 push_operand (rtx op, enum machine_mode mode)
1213 unsigned int rounded_size = GET_MODE_SIZE (mode);
1215 #ifdef PUSH_ROUNDING
1216 rounded_size = PUSH_ROUNDING (rounded_size);
1217 #endif
1219 if (!MEM_P (op))
1220 return 0;
1222 if (mode != VOIDmode && GET_MODE (op) != mode)
1223 return 0;
1225 op = XEXP (op, 0);
1227 if (rounded_size == GET_MODE_SIZE (mode))
1229 if (GET_CODE (op) != STACK_PUSH_CODE)
1230 return 0;
1232 else
1234 if (GET_CODE (op) != PRE_MODIFY
1235 || GET_CODE (XEXP (op, 1)) != PLUS
1236 || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1237 || !CONST_INT_P (XEXP (XEXP (op, 1), 1))
1238 #ifdef STACK_GROWS_DOWNWARD
1239 || INTVAL (XEXP (XEXP (op, 1), 1)) != - (int) rounded_size
1240 #else
1241 || INTVAL (XEXP (XEXP (op, 1), 1)) != (int) rounded_size
1242 #endif
1244 return 0;
1247 return XEXP (op, 0) == stack_pointer_rtx;
1250 /* Return 1 if OP is a valid operand that stands for popping a
1251 value of mode MODE off the stack.
1253 The main use of this function is as a predicate in match_operand
1254 expressions in the machine description. */
1257 pop_operand (rtx op, enum machine_mode mode)
1259 if (!MEM_P (op))
1260 return 0;
1262 if (mode != VOIDmode && GET_MODE (op) != mode)
1263 return 0;
1265 op = XEXP (op, 0);
1267 if (GET_CODE (op) != STACK_POP_CODE)
1268 return 0;
1270 return XEXP (op, 0) == stack_pointer_rtx;
1273 /* Return 1 if ADDR is a valid memory address
1274 for mode MODE in address space AS. */
1277 memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED,
1278 rtx addr, addr_space_t as)
1280 #ifdef GO_IF_LEGITIMATE_ADDRESS
1281 gcc_assert (ADDR_SPACE_GENERIC_P (as));
1282 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1283 return 0;
1285 win:
1286 return 1;
1287 #else
1288 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
1289 #endif
1292 /* Return 1 if OP is a valid memory reference with mode MODE,
1293 including a valid address.
1295 The main use of this function is as a predicate in match_operand
1296 expressions in the machine description. */
1299 memory_operand (rtx op, enum machine_mode mode)
1301 rtx inner;
1303 if (! reload_completed)
1304 /* Note that no SUBREG is a memory operand before end of reload pass,
1305 because (SUBREG (MEM...)) forces reloading into a register. */
1306 return MEM_P (op) && general_operand (op, mode);
1308 if (mode != VOIDmode && GET_MODE (op) != mode)
1309 return 0;
1311 inner = op;
1312 if (GET_CODE (inner) == SUBREG)
1313 inner = SUBREG_REG (inner);
1315 return (MEM_P (inner) && general_operand (op, mode));
1318 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1319 that is, a memory reference whose address is a general_operand. */
1322 indirect_operand (rtx op, enum machine_mode mode)
1324 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1325 if (! reload_completed
1326 && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
1328 int offset = SUBREG_BYTE (op);
1329 rtx inner = SUBREG_REG (op);
1331 if (mode != VOIDmode && GET_MODE (op) != mode)
1332 return 0;
1334 /* The only way that we can have a general_operand as the resulting
1335 address is if OFFSET is zero and the address already is an operand
1336 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1337 operand. */
1339 return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
1340 || (GET_CODE (XEXP (inner, 0)) == PLUS
1341 && CONST_INT_P (XEXP (XEXP (inner, 0), 1))
1342 && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
1343 && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
1346 return (MEM_P (op)
1347 && memory_operand (op, mode)
1348 && general_operand (XEXP (op, 0), Pmode));
1351 /* Return 1 if this is an ordered comparison operator (not including
1352 ORDERED and UNORDERED). */
1355 ordered_comparison_operator (rtx op, enum machine_mode mode)
1357 if (mode != VOIDmode && GET_MODE (op) != mode)
1358 return false;
1359 switch (GET_CODE (op))
1361 case EQ:
1362 case NE:
1363 case LT:
1364 case LTU:
1365 case LE:
1366 case LEU:
1367 case GT:
1368 case GTU:
1369 case GE:
1370 case GEU:
1371 return true;
1372 default:
1373 return false;
1377 /* Return 1 if this is a comparison operator. This allows the use of
1378 MATCH_OPERATOR to recognize all the branch insns. */
1381 comparison_operator (rtx op, enum machine_mode mode)
1383 return ((mode == VOIDmode || GET_MODE (op) == mode)
1384 && COMPARISON_P (op));
1387 /* If BODY is an insn body that uses ASM_OPERANDS, return it. */
1390 extract_asm_operands (rtx body)
1392 rtx tmp;
1393 switch (GET_CODE (body))
1395 case ASM_OPERANDS:
1396 return body;
1398 case SET:
1399 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1400 tmp = SET_SRC (body);
1401 if (GET_CODE (tmp) == ASM_OPERANDS)
1402 return tmp;
1403 break;
1405 case PARALLEL:
1406 tmp = XVECEXP (body, 0, 0);
1407 if (GET_CODE (tmp) == ASM_OPERANDS)
1408 return tmp;
1409 if (GET_CODE (tmp) == SET)
1411 tmp = SET_SRC (tmp);
1412 if (GET_CODE (tmp) == ASM_OPERANDS)
1413 return tmp;
1415 break;
1417 default:
1418 break;
1420 return NULL;
1423 /* If BODY is an insn body that uses ASM_OPERANDS,
1424 return the number of operands (both input and output) in the insn.
1425 Otherwise return -1. */
1428 asm_noperands (const_rtx body)
1430 rtx asm_op = extract_asm_operands (CONST_CAST_RTX (body));
1431 int n_sets = 0;
1433 if (asm_op == NULL)
1434 return -1;
1436 if (GET_CODE (body) == SET)
1437 n_sets = 1;
1438 else if (GET_CODE (body) == PARALLEL)
1440 int i;
1441 if (GET_CODE (XVECEXP (body, 0, 0)) == SET)
1443 /* Multiple output operands, or 1 output plus some clobbers:
1444 body is
1445 [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1446 /* Count backwards through CLOBBERs to determine number of SETs. */
1447 for (i = XVECLEN (body, 0); i > 0; i--)
1449 if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1450 break;
1451 if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1452 return -1;
1455 /* N_SETS is now number of output operands. */
1456 n_sets = i;
1458 /* Verify that all the SETs we have
1459 came from a single original asm_operands insn
1460 (so that invalid combinations are blocked). */
1461 for (i = 0; i < n_sets; i++)
1463 rtx elt = XVECEXP (body, 0, i);
1464 if (GET_CODE (elt) != SET)
1465 return -1;
1466 if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1467 return -1;
1468 /* If these ASM_OPERANDS rtx's came from different original insns
1469 then they aren't allowed together. */
1470 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1471 != ASM_OPERANDS_INPUT_VEC (asm_op))
1472 return -1;
1475 else
1477 /* 0 outputs, but some clobbers:
1478 body is [(asm_operands ...) (clobber (reg ...))...]. */
1479 /* Make sure all the other parallel things really are clobbers. */
1480 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1481 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1482 return -1;
1486 return (ASM_OPERANDS_INPUT_LENGTH (asm_op)
1487 + ASM_OPERANDS_LABEL_LENGTH (asm_op) + n_sets);
1490 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1491 copy its operands (both input and output) into the vector OPERANDS,
1492 the locations of the operands within the insn into the vector OPERAND_LOCS,
1493 and the constraints for the operands into CONSTRAINTS.
1494 Write the modes of the operands into MODES.
1495 Return the assembler-template.
1497 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1498 we don't store that info. */
1500 const char *
1501 decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
1502 const char **constraints, enum machine_mode *modes,
1503 location_t *loc)
1505 int nbase = 0, n, i;
1506 rtx asmop;
1508 switch (GET_CODE (body))
1510 case ASM_OPERANDS:
1511 /* Zero output asm: BODY is (asm_operands ...). */
1512 asmop = body;
1513 break;
1515 case SET:
1516 /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */
1517 asmop = SET_SRC (body);
1519 /* The output is in the SET.
1520 Its constraint is in the ASM_OPERANDS itself. */
1521 if (operands)
1522 operands[0] = SET_DEST (body);
1523 if (operand_locs)
1524 operand_locs[0] = &SET_DEST (body);
1525 if (constraints)
1526 constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1527 if (modes)
1528 modes[0] = GET_MODE (SET_DEST (body));
1529 nbase = 1;
1530 break;
1532 case PARALLEL:
1534 int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
1536 asmop = XVECEXP (body, 0, 0);
1537 if (GET_CODE (asmop) == SET)
1539 asmop = SET_SRC (asmop);
1541 /* At least one output, plus some CLOBBERs. The outputs are in
1542 the SETs. Their constraints are in the ASM_OPERANDS itself. */
1543 for (i = 0; i < nparallel; i++)
1545 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1546 break; /* Past last SET */
1547 if (operands)
1548 operands[i] = SET_DEST (XVECEXP (body, 0, i));
1549 if (operand_locs)
1550 operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1551 if (constraints)
1552 constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1553 if (modes)
1554 modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1556 nbase = i;
1558 break;
1561 default:
1562 gcc_unreachable ();
1565 n = ASM_OPERANDS_INPUT_LENGTH (asmop);
1566 for (i = 0; i < n; i++)
1568 if (operand_locs)
1569 operand_locs[nbase + i] = &ASM_OPERANDS_INPUT (asmop, i);
1570 if (operands)
1571 operands[nbase + i] = ASM_OPERANDS_INPUT (asmop, i);
1572 if (constraints)
1573 constraints[nbase + i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1574 if (modes)
1575 modes[nbase + i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1577 nbase += n;
1579 n = ASM_OPERANDS_LABEL_LENGTH (asmop);
1580 for (i = 0; i < n; i++)
1582 if (operand_locs)
1583 operand_locs[nbase + i] = &ASM_OPERANDS_LABEL (asmop, i);
1584 if (operands)
1585 operands[nbase + i] = ASM_OPERANDS_LABEL (asmop, i);
1586 if (constraints)
1587 constraints[nbase + i] = "";
1588 if (modes)
1589 modes[nbase + i] = Pmode;
1592 if (loc)
1593 *loc = ASM_OPERANDS_SOURCE_LOCATION (asmop);
1595 return ASM_OPERANDS_TEMPLATE (asmop);
1598 /* Check if an asm_operand matches its constraints.
1599 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1602 asm_operand_ok (rtx op, const char *constraint, const char **constraints)
1604 int result = 0;
1606 /* Use constrain_operands after reload. */
1607 gcc_assert (!reload_completed);
1609 /* Empty constraint string is the same as "X,...,X", i.e. X for as
1610 many alternatives as required to match the other operands. */
1611 if (*constraint == '\0')
1612 return 1;
1614 while (*constraint)
1616 char c = *constraint;
1617 int len;
1618 switch (c)
1620 case ',':
1621 constraint++;
1622 continue;
1623 case '=':
1624 case '+':
1625 case '*':
1626 case '%':
1627 case '!':
1628 case '#':
1629 case '&':
1630 case '?':
1631 break;
1633 case '0': case '1': case '2': case '3': case '4':
1634 case '5': case '6': case '7': case '8': case '9':
1635 /* If caller provided constraints pointer, look up
1636 the maching constraint. Otherwise, our caller should have
1637 given us the proper matching constraint, but we can't
1638 actually fail the check if they didn't. Indicate that
1639 results are inconclusive. */
1640 if (constraints)
1642 char *end;
1643 unsigned long match;
1645 match = strtoul (constraint, &end, 10);
1646 if (!result)
1647 result = asm_operand_ok (op, constraints[match], NULL);
1648 constraint = (const char *) end;
1650 else
1653 constraint++;
1654 while (ISDIGIT (*constraint));
1655 if (! result)
1656 result = -1;
1658 continue;
1660 case 'p':
1661 if (address_operand (op, VOIDmode))
1662 result = 1;
1663 break;
1665 case TARGET_MEM_CONSTRAINT:
1666 case 'V': /* non-offsettable */
1667 if (memory_operand (op, VOIDmode))
1668 result = 1;
1669 break;
1671 case 'o': /* offsettable */
1672 if (offsettable_nonstrict_memref_p (op))
1673 result = 1;
1674 break;
1676 case '<':
1677 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed to exist,
1678 excepting those that expand_call created. Further, on some
1679 machines which do not have generalized auto inc/dec, an inc/dec
1680 is not a memory_operand.
1682 Match any memory and hope things are resolved after reload. */
1684 if (MEM_P (op)
1685 && (1
1686 || GET_CODE (XEXP (op, 0)) == PRE_DEC
1687 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1688 result = 1;
1689 break;
1691 case '>':
1692 if (MEM_P (op)
1693 && (1
1694 || GET_CODE (XEXP (op, 0)) == PRE_INC
1695 || GET_CODE (XEXP (op, 0)) == POST_INC))
1696 result = 1;
1697 break;
1699 case 'E':
1700 case 'F':
1701 if (GET_CODE (op) == CONST_DOUBLE
1702 || (GET_CODE (op) == CONST_VECTOR
1703 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
1704 result = 1;
1705 break;
1707 case 'G':
1708 if (GET_CODE (op) == CONST_DOUBLE
1709 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'G', constraint))
1710 result = 1;
1711 break;
1712 case 'H':
1713 if (GET_CODE (op) == CONST_DOUBLE
1714 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'H', constraint))
1715 result = 1;
1716 break;
1718 case 's':
1719 if (CONST_INT_P (op)
1720 || (GET_CODE (op) == CONST_DOUBLE
1721 && GET_MODE (op) == VOIDmode))
1722 break;
1723 /* Fall through. */
1725 case 'i':
1726 if (CONSTANT_P (op) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
1727 result = 1;
1728 break;
1730 case 'n':
1731 if (CONST_INT_P (op)
1732 || (GET_CODE (op) == CONST_DOUBLE
1733 && GET_MODE (op) == VOIDmode))
1734 result = 1;
1735 break;
1737 case 'I':
1738 if (CONST_INT_P (op)
1739 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'I', constraint))
1740 result = 1;
1741 break;
1742 case 'J':
1743 if (CONST_INT_P (op)
1744 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'J', constraint))
1745 result = 1;
1746 break;
1747 case 'K':
1748 if (CONST_INT_P (op)
1749 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'K', constraint))
1750 result = 1;
1751 break;
1752 case 'L':
1753 if (CONST_INT_P (op)
1754 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'L', constraint))
1755 result = 1;
1756 break;
1757 case 'M':
1758 if (CONST_INT_P (op)
1759 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'M', constraint))
1760 result = 1;
1761 break;
1762 case 'N':
1763 if (CONST_INT_P (op)
1764 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'N', constraint))
1765 result = 1;
1766 break;
1767 case 'O':
1768 if (CONST_INT_P (op)
1769 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'O', constraint))
1770 result = 1;
1771 break;
1772 case 'P':
1773 if (CONST_INT_P (op)
1774 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'P', constraint))
1775 result = 1;
1776 break;
1778 case 'X':
1779 result = 1;
1780 break;
1782 case 'g':
1783 if (general_operand (op, VOIDmode))
1784 result = 1;
1785 break;
1787 default:
1788 /* For all other letters, we first check for a register class,
1789 otherwise it is an EXTRA_CONSTRAINT. */
1790 if (REG_CLASS_FROM_CONSTRAINT (c, constraint) != NO_REGS)
1792 case 'r':
1793 if (GET_MODE (op) == BLKmode)
1794 break;
1795 if (register_operand (op, VOIDmode))
1796 result = 1;
1798 #ifdef EXTRA_CONSTRAINT_STR
1799 else if (EXTRA_MEMORY_CONSTRAINT (c, constraint))
1800 /* Every memory operand can be reloaded to fit. */
1801 result = result || memory_operand (op, VOIDmode);
1802 else if (EXTRA_ADDRESS_CONSTRAINT (c, constraint))
1803 /* Every address operand can be reloaded to fit. */
1804 result = result || address_operand (op, VOIDmode);
1805 else if (EXTRA_CONSTRAINT_STR (op, c, constraint))
1806 result = 1;
1807 #endif
1808 break;
1810 len = CONSTRAINT_LEN (c, constraint);
1812 constraint++;
1813 while (--len && *constraint);
1814 if (len)
1815 return 0;
1818 return result;
1821 /* Given an rtx *P, if it is a sum containing an integer constant term,
1822 return the location (type rtx *) of the pointer to that constant term.
1823 Otherwise, return a null pointer. */
1825 rtx *
1826 find_constant_term_loc (rtx *p)
1828 rtx *tem;
1829 enum rtx_code code = GET_CODE (*p);
1831 /* If *P IS such a constant term, P is its location. */
1833 if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1834 || code == CONST)
1835 return p;
1837 /* Otherwise, if not a sum, it has no constant term. */
1839 if (GET_CODE (*p) != PLUS)
1840 return 0;
1842 /* If one of the summands is constant, return its location. */
1844 if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1845 && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1846 return p;
1848 /* Otherwise, check each summand for containing a constant term. */
1850 if (XEXP (*p, 0) != 0)
1852 tem = find_constant_term_loc (&XEXP (*p, 0));
1853 if (tem != 0)
1854 return tem;
1857 if (XEXP (*p, 1) != 0)
1859 tem = find_constant_term_loc (&XEXP (*p, 1));
1860 if (tem != 0)
1861 return tem;
1864 return 0;
1867 /* Return 1 if OP is a memory reference
1868 whose address contains no side effects
1869 and remains valid after the addition
1870 of a positive integer less than the
1871 size of the object being referenced.
1873 We assume that the original address is valid and do not check it.
1875 This uses strict_memory_address_p as a subroutine, so
1876 don't use it before reload. */
1879 offsettable_memref_p (rtx op)
1881 return ((MEM_P (op))
1882 && offsettable_address_addr_space_p (1, GET_MODE (op), XEXP (op, 0),
1883 MEM_ADDR_SPACE (op)));
1886 /* Similar, but don't require a strictly valid mem ref:
1887 consider pseudo-regs valid as index or base regs. */
1890 offsettable_nonstrict_memref_p (rtx op)
1892 return ((MEM_P (op))
1893 && offsettable_address_addr_space_p (0, GET_MODE (op), XEXP (op, 0),
1894 MEM_ADDR_SPACE (op)));
1897 /* Return 1 if Y is a memory address which contains no side effects
1898 and would remain valid for address space AS after the addition of
1899 a positive integer less than the size of that mode.
1901 We assume that the original address is valid and do not check it.
1902 We do check that it is valid for narrower modes.
1904 If STRICTP is nonzero, we require a strictly valid address,
1905 for the sake of use in reload.c. */
1908 offsettable_address_addr_space_p (int strictp, enum machine_mode mode, rtx y,
1909 addr_space_t as)
1911 enum rtx_code ycode = GET_CODE (y);
1912 rtx z;
1913 rtx y1 = y;
1914 rtx *y2;
1915 int (*addressp) (enum machine_mode, rtx, addr_space_t) =
1916 (strictp ? strict_memory_address_addr_space_p
1917 : memory_address_addr_space_p);
1918 unsigned int mode_sz = GET_MODE_SIZE (mode);
1920 if (CONSTANT_ADDRESS_P (y))
1921 return 1;
1923 /* Adjusting an offsettable address involves changing to a narrower mode.
1924 Make sure that's OK. */
1926 if (mode_dependent_address_p (y))
1927 return 0;
1929 /* ??? How much offset does an offsettable BLKmode reference need?
1930 Clearly that depends on the situation in which it's being used.
1931 However, the current situation in which we test 0xffffffff is
1932 less than ideal. Caveat user. */
1933 if (mode_sz == 0)
1934 mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
1936 /* If the expression contains a constant term,
1937 see if it remains valid when max possible offset is added. */
1939 if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
1941 int good;
1943 y1 = *y2;
1944 *y2 = plus_constant (*y2, mode_sz - 1);
1945 /* Use QImode because an odd displacement may be automatically invalid
1946 for any wider mode. But it should be valid for a single byte. */
1947 good = (*addressp) (QImode, y, as);
1949 /* In any case, restore old contents of memory. */
1950 *y2 = y1;
1951 return good;
1954 if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
1955 return 0;
1957 /* The offset added here is chosen as the maximum offset that
1958 any instruction could need to add when operating on something
1959 of the specified mode. We assume that if Y and Y+c are
1960 valid addresses then so is Y+d for all 0<d<c. adjust_address will
1961 go inside a LO_SUM here, so we do so as well. */
1962 if (GET_CODE (y) == LO_SUM
1963 && mode != BLKmode
1964 && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
1965 z = gen_rtx_LO_SUM (GET_MODE (y), XEXP (y, 0),
1966 plus_constant (XEXP (y, 1), mode_sz - 1));
1967 else
1968 z = plus_constant (y, mode_sz - 1);
1970 /* Use QImode because an odd displacement may be automatically invalid
1971 for any wider mode. But it should be valid for a single byte. */
1972 return (*addressp) (QImode, z, as);
1975 /* Return 1 if ADDR is an address-expression whose effect depends
1976 on the mode of the memory reference it is used in.
1978 Autoincrement addressing is a typical example of mode-dependence
1979 because the amount of the increment depends on the mode. */
1982 mode_dependent_address_p (rtx addr)
1984 /* Auto-increment addressing with anything other than post_modify
1985 or pre_modify always introduces a mode dependency. Catch such
1986 cases now instead of deferring to the target. */
1987 if (GET_CODE (addr) == PRE_INC
1988 || GET_CODE (addr) == POST_INC
1989 || GET_CODE (addr) == PRE_DEC
1990 || GET_CODE (addr) == POST_DEC)
1991 return 1;
1993 GO_IF_MODE_DEPENDENT_ADDRESS (addr, win);
1994 return 0;
1995 /* Label `win' might (not) be used via GO_IF_MODE_DEPENDENT_ADDRESS. */
1996 win: ATTRIBUTE_UNUSED_LABEL
1997 return 1;
2000 /* Like extract_insn, but save insn extracted and don't extract again, when
2001 called again for the same insn expecting that recog_data still contain the
2002 valid information. This is used primary by gen_attr infrastructure that
2003 often does extract insn again and again. */
2004 void
2005 extract_insn_cached (rtx insn)
2007 if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
2008 return;
2009 extract_insn (insn);
2010 recog_data.insn = insn;
2013 /* Do cached extract_insn, constrain_operands and complain about failures.
2014 Used by insn_attrtab. */
2015 void
2016 extract_constrain_insn_cached (rtx insn)
2018 extract_insn_cached (insn);
2019 if (which_alternative == -1
2020 && !constrain_operands (reload_completed))
2021 fatal_insn_not_found (insn);
2024 /* Do cached constrain_operands and complain about failures. */
2026 constrain_operands_cached (int strict)
2028 if (which_alternative == -1)
2029 return constrain_operands (strict);
2030 else
2031 return 1;
2034 /* Analyze INSN and fill in recog_data. */
2036 void
2037 extract_insn (rtx insn)
2039 int i;
2040 int icode;
2041 int noperands;
2042 rtx body = PATTERN (insn);
2044 recog_data.n_operands = 0;
2045 recog_data.n_alternatives = 0;
2046 recog_data.n_dups = 0;
2048 switch (GET_CODE (body))
2050 case USE:
2051 case CLOBBER:
2052 case ASM_INPUT:
2053 case ADDR_VEC:
2054 case ADDR_DIFF_VEC:
2055 case VAR_LOCATION:
2056 return;
2058 case SET:
2059 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2060 goto asm_insn;
2061 else
2062 goto normal_insn;
2063 case PARALLEL:
2064 if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2065 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2066 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
2067 goto asm_insn;
2068 else
2069 goto normal_insn;
2070 case ASM_OPERANDS:
2071 asm_insn:
2072 recog_data.n_operands = noperands = asm_noperands (body);
2073 if (noperands >= 0)
2075 /* This insn is an `asm' with operands. */
2077 /* expand_asm_operands makes sure there aren't too many operands. */
2078 gcc_assert (noperands <= MAX_RECOG_OPERANDS);
2080 /* Now get the operand values and constraints out of the insn. */
2081 decode_asm_operands (body, recog_data.operand,
2082 recog_data.operand_loc,
2083 recog_data.constraints,
2084 recog_data.operand_mode, NULL);
2085 if (noperands > 0)
2087 const char *p = recog_data.constraints[0];
2088 recog_data.n_alternatives = 1;
2089 while (*p)
2090 recog_data.n_alternatives += (*p++ == ',');
2092 break;
2094 fatal_insn_not_found (insn);
2096 default:
2097 normal_insn:
2098 /* Ordinary insn: recognize it, get the operands via insn_extract
2099 and get the constraints. */
2101 icode = recog_memoized (insn);
2102 if (icode < 0)
2103 fatal_insn_not_found (insn);
2105 recog_data.n_operands = noperands = insn_data[icode].n_operands;
2106 recog_data.n_alternatives = insn_data[icode].n_alternatives;
2107 recog_data.n_dups = insn_data[icode].n_dups;
2109 insn_extract (insn);
2111 for (i = 0; i < noperands; i++)
2113 recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2114 recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2115 /* VOIDmode match_operands gets mode from their real operand. */
2116 if (recog_data.operand_mode[i] == VOIDmode)
2117 recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2120 for (i = 0; i < noperands; i++)
2121 recog_data.operand_type[i]
2122 = (recog_data.constraints[i][0] == '=' ? OP_OUT
2123 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2124 : OP_IN);
2126 gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
2128 if (INSN_CODE (insn) < 0)
2129 for (i = 0; i < recog_data.n_alternatives; i++)
2130 recog_data.alternative_enabled_p[i] = true;
2131 else
2133 recog_data.insn = insn;
2134 for (i = 0; i < recog_data.n_alternatives; i++)
2136 which_alternative = i;
2137 recog_data.alternative_enabled_p[i] = get_attr_enabled (insn);
2141 recog_data.insn = NULL;
2142 which_alternative = -1;
2145 /* After calling extract_insn, you can use this function to extract some
2146 information from the constraint strings into a more usable form.
2147 The collected data is stored in recog_op_alt. */
2148 void
2149 preprocess_constraints (void)
2151 int i;
2153 for (i = 0; i < recog_data.n_operands; i++)
2154 memset (recog_op_alt[i], 0, (recog_data.n_alternatives
2155 * sizeof (struct operand_alternative)));
2157 for (i = 0; i < recog_data.n_operands; i++)
2159 int j;
2160 struct operand_alternative *op_alt;
2161 const char *p = recog_data.constraints[i];
2163 op_alt = recog_op_alt[i];
2165 for (j = 0; j < recog_data.n_alternatives; j++)
2167 op_alt[j].cl = NO_REGS;
2168 op_alt[j].constraint = p;
2169 op_alt[j].matches = -1;
2170 op_alt[j].matched = -1;
2172 if (!recog_data.alternative_enabled_p[j])
2174 p = skip_alternative (p);
2175 continue;
2178 if (*p == '\0' || *p == ',')
2180 op_alt[j].anything_ok = 1;
2181 continue;
2184 for (;;)
2186 char c = *p;
2187 if (c == '#')
2189 c = *++p;
2190 while (c != ',' && c != '\0');
2191 if (c == ',' || c == '\0')
2193 p++;
2194 break;
2197 switch (c)
2199 case '=': case '+': case '*': case '%':
2200 case 'E': case 'F': case 'G': case 'H':
2201 case 's': case 'i': case 'n':
2202 case 'I': case 'J': case 'K': case 'L':
2203 case 'M': case 'N': case 'O': case 'P':
2204 /* These don't say anything we care about. */
2205 break;
2207 case '?':
2208 op_alt[j].reject += 6;
2209 break;
2210 case '!':
2211 op_alt[j].reject += 600;
2212 break;
2213 case '&':
2214 op_alt[j].earlyclobber = 1;
2215 break;
2217 case '0': case '1': case '2': case '3': case '4':
2218 case '5': case '6': case '7': case '8': case '9':
2220 char *end;
2221 op_alt[j].matches = strtoul (p, &end, 10);
2222 recog_op_alt[op_alt[j].matches][j].matched = i;
2223 p = end;
2225 continue;
2227 case TARGET_MEM_CONSTRAINT:
2228 op_alt[j].memory_ok = 1;
2229 break;
2230 case '<':
2231 op_alt[j].decmem_ok = 1;
2232 break;
2233 case '>':
2234 op_alt[j].incmem_ok = 1;
2235 break;
2236 case 'V':
2237 op_alt[j].nonoffmem_ok = 1;
2238 break;
2239 case 'o':
2240 op_alt[j].offmem_ok = 1;
2241 break;
2242 case 'X':
2243 op_alt[j].anything_ok = 1;
2244 break;
2246 case 'p':
2247 op_alt[j].is_address = 1;
2248 op_alt[j].cl = reg_class_subunion[(int) op_alt[j].cl]
2249 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
2250 break;
2252 case 'g':
2253 case 'r':
2254 op_alt[j].cl =
2255 reg_class_subunion[(int) op_alt[j].cl][(int) GENERAL_REGS];
2256 break;
2258 default:
2259 if (EXTRA_MEMORY_CONSTRAINT (c, p))
2261 op_alt[j].memory_ok = 1;
2262 break;
2264 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
2266 op_alt[j].is_address = 1;
2267 op_alt[j].cl
2268 = (reg_class_subunion
2269 [(int) op_alt[j].cl]
2270 [(int) base_reg_class (VOIDmode, ADDRESS,
2271 SCRATCH)]);
2272 break;
2275 op_alt[j].cl
2276 = (reg_class_subunion
2277 [(int) op_alt[j].cl]
2278 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
2279 break;
2281 p += CONSTRAINT_LEN (c, p);
2287 /* Check the operands of an insn against the insn's operand constraints
2288 and return 1 if they are valid.
2289 The information about the insn's operands, constraints, operand modes
2290 etc. is obtained from the global variables set up by extract_insn.
2292 WHICH_ALTERNATIVE is set to a number which indicates which
2293 alternative of constraints was matched: 0 for the first alternative,
2294 1 for the next, etc.
2296 In addition, when two operands are required to match
2297 and it happens that the output operand is (reg) while the
2298 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2299 make the output operand look like the input.
2300 This is because the output operand is the one the template will print.
2302 This is used in final, just before printing the assembler code and by
2303 the routines that determine an insn's attribute.
2305 If STRICT is a positive nonzero value, it means that we have been
2306 called after reload has been completed. In that case, we must
2307 do all checks strictly. If it is zero, it means that we have been called
2308 before reload has completed. In that case, we first try to see if we can
2309 find an alternative that matches strictly. If not, we try again, this
2310 time assuming that reload will fix up the insn. This provides a "best
2311 guess" for the alternative and is used to compute attributes of insns prior
2312 to reload. A negative value of STRICT is used for this internal call. */
2314 struct funny_match
2316 int this_op, other;
2320 constrain_operands (int strict)
2322 const char *constraints[MAX_RECOG_OPERANDS];
2323 int matching_operands[MAX_RECOG_OPERANDS];
2324 int earlyclobber[MAX_RECOG_OPERANDS];
2325 int c;
2327 struct funny_match funny_match[MAX_RECOG_OPERANDS];
2328 int funny_match_index;
2330 which_alternative = 0;
2331 if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2332 return 1;
2334 for (c = 0; c < recog_data.n_operands; c++)
2336 constraints[c] = recog_data.constraints[c];
2337 matching_operands[c] = -1;
2342 int seen_earlyclobber_at = -1;
2343 int opno;
2344 int lose = 0;
2345 funny_match_index = 0;
2347 if (!recog_data.alternative_enabled_p[which_alternative])
2349 int i;
2351 for (i = 0; i < recog_data.n_operands; i++)
2352 constraints[i] = skip_alternative (constraints[i]);
2354 which_alternative++;
2355 continue;
2358 for (opno = 0; opno < recog_data.n_operands; opno++)
2360 rtx op = recog_data.operand[opno];
2361 enum machine_mode mode = GET_MODE (op);
2362 const char *p = constraints[opno];
2363 int offset = 0;
2364 int win = 0;
2365 int val;
2366 int len;
2368 earlyclobber[opno] = 0;
2370 /* A unary operator may be accepted by the predicate, but it
2371 is irrelevant for matching constraints. */
2372 if (UNARY_P (op))
2373 op = XEXP (op, 0);
2375 if (GET_CODE (op) == SUBREG)
2377 if (REG_P (SUBREG_REG (op))
2378 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2379 offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2380 GET_MODE (SUBREG_REG (op)),
2381 SUBREG_BYTE (op),
2382 GET_MODE (op));
2383 op = SUBREG_REG (op);
2386 /* An empty constraint or empty alternative
2387 allows anything which matched the pattern. */
2388 if (*p == 0 || *p == ',')
2389 win = 1;
2392 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
2394 case '\0':
2395 len = 0;
2396 break;
2397 case ',':
2398 c = '\0';
2399 break;
2401 case '?': case '!': case '*': case '%':
2402 case '=': case '+':
2403 break;
2405 case '#':
2406 /* Ignore rest of this alternative as far as
2407 constraint checking is concerned. */
2409 p++;
2410 while (*p && *p != ',');
2411 len = 0;
2412 break;
2414 case '&':
2415 earlyclobber[opno] = 1;
2416 if (seen_earlyclobber_at < 0)
2417 seen_earlyclobber_at = opno;
2418 break;
2420 case '0': case '1': case '2': case '3': case '4':
2421 case '5': case '6': case '7': case '8': case '9':
2423 /* This operand must be the same as a previous one.
2424 This kind of constraint is used for instructions such
2425 as add when they take only two operands.
2427 Note that the lower-numbered operand is passed first.
2429 If we are not testing strictly, assume that this
2430 constraint will be satisfied. */
2432 char *end;
2433 int match;
2435 match = strtoul (p, &end, 10);
2436 p = end;
2438 if (strict < 0)
2439 val = 1;
2440 else
2442 rtx op1 = recog_data.operand[match];
2443 rtx op2 = recog_data.operand[opno];
2445 /* A unary operator may be accepted by the predicate,
2446 but it is irrelevant for matching constraints. */
2447 if (UNARY_P (op1))
2448 op1 = XEXP (op1, 0);
2449 if (UNARY_P (op2))
2450 op2 = XEXP (op2, 0);
2452 val = operands_match_p (op1, op2);
2455 matching_operands[opno] = match;
2456 matching_operands[match] = opno;
2458 if (val != 0)
2459 win = 1;
2461 /* If output is *x and input is *--x, arrange later
2462 to change the output to *--x as well, since the
2463 output op is the one that will be printed. */
2464 if (val == 2 && strict > 0)
2466 funny_match[funny_match_index].this_op = opno;
2467 funny_match[funny_match_index++].other = match;
2470 len = 0;
2471 break;
2473 case 'p':
2474 /* p is used for address_operands. When we are called by
2475 gen_reload, no one will have checked that the address is
2476 strictly valid, i.e., that all pseudos requiring hard regs
2477 have gotten them. */
2478 if (strict <= 0
2479 || (strict_memory_address_p (recog_data.operand_mode[opno],
2480 op)))
2481 win = 1;
2482 break;
2484 /* No need to check general_operand again;
2485 it was done in insn-recog.c. Well, except that reload
2486 doesn't check the validity of its replacements, but
2487 that should only matter when there's a bug. */
2488 case 'g':
2489 /* Anything goes unless it is a REG and really has a hard reg
2490 but the hard reg is not in the class GENERAL_REGS. */
2491 if (REG_P (op))
2493 if (strict < 0
2494 || GENERAL_REGS == ALL_REGS
2495 || (reload_in_progress
2496 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2497 || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2498 win = 1;
2500 else if (strict < 0 || general_operand (op, mode))
2501 win = 1;
2502 break;
2504 case 'X':
2505 /* This is used for a MATCH_SCRATCH in the cases when
2506 we don't actually need anything. So anything goes
2507 any time. */
2508 win = 1;
2509 break;
2511 case TARGET_MEM_CONSTRAINT:
2512 /* Memory operands must be valid, to the extent
2513 required by STRICT. */
2514 if (MEM_P (op))
2516 if (strict > 0
2517 && !strict_memory_address_addr_space_p
2518 (GET_MODE (op), XEXP (op, 0),
2519 MEM_ADDR_SPACE (op)))
2520 break;
2521 if (strict == 0
2522 && !memory_address_addr_space_p
2523 (GET_MODE (op), XEXP (op, 0),
2524 MEM_ADDR_SPACE (op)))
2525 break;
2526 win = 1;
2528 /* Before reload, accept what reload can turn into mem. */
2529 else if (strict < 0 && CONSTANT_P (op))
2530 win = 1;
2531 /* During reload, accept a pseudo */
2532 else if (reload_in_progress && REG_P (op)
2533 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2534 win = 1;
2535 break;
2537 case '<':
2538 if (MEM_P (op)
2539 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
2540 || GET_CODE (XEXP (op, 0)) == POST_DEC))
2541 win = 1;
2542 break;
2544 case '>':
2545 if (MEM_P (op)
2546 && (GET_CODE (XEXP (op, 0)) == PRE_INC
2547 || GET_CODE (XEXP (op, 0)) == POST_INC))
2548 win = 1;
2549 break;
2551 case 'E':
2552 case 'F':
2553 if (GET_CODE (op) == CONST_DOUBLE
2554 || (GET_CODE (op) == CONST_VECTOR
2555 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
2556 win = 1;
2557 break;
2559 case 'G':
2560 case 'H':
2561 if (GET_CODE (op) == CONST_DOUBLE
2562 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
2563 win = 1;
2564 break;
2566 case 's':
2567 if (CONST_INT_P (op)
2568 || (GET_CODE (op) == CONST_DOUBLE
2569 && GET_MODE (op) == VOIDmode))
2570 break;
2571 case 'i':
2572 if (CONSTANT_P (op))
2573 win = 1;
2574 break;
2576 case 'n':
2577 if (CONST_INT_P (op)
2578 || (GET_CODE (op) == CONST_DOUBLE
2579 && GET_MODE (op) == VOIDmode))
2580 win = 1;
2581 break;
2583 case 'I':
2584 case 'J':
2585 case 'K':
2586 case 'L':
2587 case 'M':
2588 case 'N':
2589 case 'O':
2590 case 'P':
2591 if (CONST_INT_P (op)
2592 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
2593 win = 1;
2594 break;
2596 case 'V':
2597 if (MEM_P (op)
2598 && ((strict > 0 && ! offsettable_memref_p (op))
2599 || (strict < 0
2600 && !(CONSTANT_P (op) || MEM_P (op)))
2601 || (reload_in_progress
2602 && !(REG_P (op)
2603 && REGNO (op) >= FIRST_PSEUDO_REGISTER))))
2604 win = 1;
2605 break;
2607 case 'o':
2608 if ((strict > 0 && offsettable_memref_p (op))
2609 || (strict == 0 && offsettable_nonstrict_memref_p (op))
2610 /* Before reload, accept what reload can handle. */
2611 || (strict < 0
2612 && (CONSTANT_P (op) || MEM_P (op)))
2613 /* During reload, accept a pseudo */
2614 || (reload_in_progress && REG_P (op)
2615 && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2616 win = 1;
2617 break;
2619 default:
2621 enum reg_class cl;
2623 cl = (c == 'r'
2624 ? GENERAL_REGS : REG_CLASS_FROM_CONSTRAINT (c, p));
2625 if (cl != NO_REGS)
2627 if (strict < 0
2628 || (strict == 0
2629 && REG_P (op)
2630 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2631 || (strict == 0 && GET_CODE (op) == SCRATCH)
2632 || (REG_P (op)
2633 && reg_fits_class_p (op, cl, offset, mode)))
2634 win = 1;
2636 #ifdef EXTRA_CONSTRAINT_STR
2637 else if (EXTRA_CONSTRAINT_STR (op, c, p))
2638 win = 1;
2640 else if (EXTRA_MEMORY_CONSTRAINT (c, p)
2641 /* Every memory operand can be reloaded to fit. */
2642 && ((strict < 0 && MEM_P (op))
2643 /* Before reload, accept what reload can turn
2644 into mem. */
2645 || (strict < 0 && CONSTANT_P (op))
2646 /* During reload, accept a pseudo */
2647 || (reload_in_progress && REG_P (op)
2648 && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
2649 win = 1;
2650 else if (EXTRA_ADDRESS_CONSTRAINT (c, p)
2651 /* Every address operand can be reloaded to fit. */
2652 && strict < 0)
2653 win = 1;
2654 #endif
2655 break;
2658 while (p += len, c);
2660 constraints[opno] = p;
2661 /* If this operand did not win somehow,
2662 this alternative loses. */
2663 if (! win)
2664 lose = 1;
2666 /* This alternative won; the operands are ok.
2667 Change whichever operands this alternative says to change. */
2668 if (! lose)
2670 int opno, eopno;
2672 /* See if any earlyclobber operand conflicts with some other
2673 operand. */
2675 if (strict > 0 && seen_earlyclobber_at >= 0)
2676 for (eopno = seen_earlyclobber_at;
2677 eopno < recog_data.n_operands;
2678 eopno++)
2679 /* Ignore earlyclobber operands now in memory,
2680 because we would often report failure when we have
2681 two memory operands, one of which was formerly a REG. */
2682 if (earlyclobber[eopno]
2683 && REG_P (recog_data.operand[eopno]))
2684 for (opno = 0; opno < recog_data.n_operands; opno++)
2685 if ((MEM_P (recog_data.operand[opno])
2686 || recog_data.operand_type[opno] != OP_OUT)
2687 && opno != eopno
2688 /* Ignore things like match_operator operands. */
2689 && *recog_data.constraints[opno] != 0
2690 && ! (matching_operands[opno] == eopno
2691 && operands_match_p (recog_data.operand[opno],
2692 recog_data.operand[eopno]))
2693 && ! safe_from_earlyclobber (recog_data.operand[opno],
2694 recog_data.operand[eopno]))
2695 lose = 1;
2697 if (! lose)
2699 while (--funny_match_index >= 0)
2701 recog_data.operand[funny_match[funny_match_index].other]
2702 = recog_data.operand[funny_match[funny_match_index].this_op];
2705 return 1;
2709 which_alternative++;
2711 while (which_alternative < recog_data.n_alternatives);
2713 which_alternative = -1;
2714 /* If we are about to reject this, but we are not to test strictly,
2715 try a very loose test. Only return failure if it fails also. */
2716 if (strict == 0)
2717 return constrain_operands (-1);
2718 else
2719 return 0;
2722 /* Return 1 iff OPERAND (assumed to be a REG rtx)
2723 is a hard reg in class CLASS when its regno is offset by OFFSET
2724 and changed to mode MODE.
2725 If REG occupies multiple hard regs, all of them must be in CLASS. */
2728 reg_fits_class_p (rtx operand, enum reg_class cl, int offset,
2729 enum machine_mode mode)
2731 int regno = REGNO (operand);
2733 if (cl == NO_REGS)
2734 return 0;
2736 return (regno < FIRST_PSEUDO_REGISTER
2737 && in_hard_reg_set_p (reg_class_contents[(int) cl],
2738 mode, regno + offset));
2741 /* Split single instruction. Helper function for split_all_insns and
2742 split_all_insns_noflow. Return last insn in the sequence if successful,
2743 or NULL if unsuccessful. */
2745 static rtx
2746 split_insn (rtx insn)
2748 /* Split insns here to get max fine-grain parallelism. */
2749 rtx first = PREV_INSN (insn);
2750 rtx last = try_split (PATTERN (insn), insn, 1);
2751 rtx insn_set, last_set, note;
2753 if (last == insn)
2754 return NULL_RTX;
2756 /* If the original instruction was a single set that was known to be
2757 equivalent to a constant, see if we can say the same about the last
2758 instruction in the split sequence. The two instructions must set
2759 the same destination. */
2760 insn_set = single_set (insn);
2761 if (insn_set)
2763 last_set = single_set (last);
2764 if (last_set && rtx_equal_p (SET_DEST (last_set), SET_DEST (insn_set)))
2766 note = find_reg_equal_equiv_note (insn);
2767 if (note && CONSTANT_P (XEXP (note, 0)))
2768 set_unique_reg_note (last, REG_EQUAL, XEXP (note, 0));
2769 else if (CONSTANT_P (SET_SRC (insn_set)))
2770 set_unique_reg_note (last, REG_EQUAL, SET_SRC (insn_set));
2774 /* try_split returns the NOTE that INSN became. */
2775 SET_INSN_DELETED (insn);
2777 /* ??? Coddle to md files that generate subregs in post-reload
2778 splitters instead of computing the proper hard register. */
2779 if (reload_completed && first != last)
2781 first = NEXT_INSN (first);
2782 for (;;)
2784 if (INSN_P (first))
2785 cleanup_subreg_operands (first);
2786 if (first == last)
2787 break;
2788 first = NEXT_INSN (first);
2792 return last;
2795 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2797 void
2798 split_all_insns (void)
2800 sbitmap blocks;
2801 bool changed;
2802 basic_block bb;
2804 blocks = sbitmap_alloc (last_basic_block);
2805 sbitmap_zero (blocks);
2806 changed = false;
2808 FOR_EACH_BB_REVERSE (bb)
2810 rtx insn, next;
2811 bool finish = false;
2813 rtl_profile_for_bb (bb);
2814 for (insn = BB_HEAD (bb); !finish ; insn = next)
2816 /* Can't use `next_real_insn' because that might go across
2817 CODE_LABELS and short-out basic blocks. */
2818 next = NEXT_INSN (insn);
2819 finish = (insn == BB_END (bb));
2820 if (INSN_P (insn))
2822 rtx set = single_set (insn);
2824 /* Don't split no-op move insns. These should silently
2825 disappear later in final. Splitting such insns would
2826 break the code that handles LIBCALL blocks. */
2827 if (set && set_noop_p (set))
2829 /* Nops get in the way while scheduling, so delete them
2830 now if register allocation has already been done. It
2831 is too risky to try to do this before register
2832 allocation, and there are unlikely to be very many
2833 nops then anyways. */
2834 if (reload_completed)
2835 delete_insn_and_edges (insn);
2837 else
2839 rtx last = split_insn (insn);
2840 if (last)
2842 /* The split sequence may include barrier, but the
2843 BB boundary we are interested in will be set to
2844 previous one. */
2846 while (BARRIER_P (last))
2847 last = PREV_INSN (last);
2848 SET_BIT (blocks, bb->index);
2849 changed = true;
2856 default_rtl_profile ();
2857 if (changed)
2858 find_many_sub_basic_blocks (blocks);
2860 #ifdef ENABLE_CHECKING
2861 verify_flow_info ();
2862 #endif
2864 sbitmap_free (blocks);
2867 /* Same as split_all_insns, but do not expect CFG to be available.
2868 Used by machine dependent reorg passes. */
2870 unsigned int
2871 split_all_insns_noflow (void)
2873 rtx next, insn;
2875 for (insn = get_insns (); insn; insn = next)
2877 next = NEXT_INSN (insn);
2878 if (INSN_P (insn))
2880 /* Don't split no-op move insns. These should silently
2881 disappear later in final. Splitting such insns would
2882 break the code that handles LIBCALL blocks. */
2883 rtx set = single_set (insn);
2884 if (set && set_noop_p (set))
2886 /* Nops get in the way while scheduling, so delete them
2887 now if register allocation has already been done. It
2888 is too risky to try to do this before register
2889 allocation, and there are unlikely to be very many
2890 nops then anyways.
2892 ??? Should we use delete_insn when the CFG isn't valid? */
2893 if (reload_completed)
2894 delete_insn_and_edges (insn);
2896 else
2897 split_insn (insn);
2900 return 0;
2903 #ifdef HAVE_peephole2
2904 struct peep2_insn_data
2906 rtx insn;
2907 regset live_before;
2910 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
2911 static int peep2_current;
2912 /* The number of instructions available to match a peep2. */
2913 int peep2_current_count;
2915 /* A non-insn marker indicating the last insn of the block.
2916 The live_before regset for this element is correct, indicating
2917 DF_LIVE_OUT for the block. */
2918 #define PEEP2_EOB pc_rtx
2920 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
2921 does not exist. Used by the recognizer to find the next insn to match
2922 in a multi-insn pattern. */
2925 peep2_next_insn (int n)
2927 gcc_assert (n <= peep2_current_count);
2929 n += peep2_current;
2930 if (n >= MAX_INSNS_PER_PEEP2 + 1)
2931 n -= MAX_INSNS_PER_PEEP2 + 1;
2933 return peep2_insn_data[n].insn;
2936 /* Return true if REGNO is dead before the Nth non-note insn
2937 after `current'. */
2940 peep2_regno_dead_p (int ofs, int regno)
2942 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
2944 ofs += peep2_current;
2945 if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
2946 ofs -= MAX_INSNS_PER_PEEP2 + 1;
2948 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
2950 return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
2953 /* Similarly for a REG. */
2956 peep2_reg_dead_p (int ofs, rtx reg)
2958 int regno, n;
2960 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
2962 ofs += peep2_current;
2963 if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
2964 ofs -= MAX_INSNS_PER_PEEP2 + 1;
2966 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
2968 regno = REGNO (reg);
2969 n = hard_regno_nregs[regno][GET_MODE (reg)];
2970 while (--n >= 0)
2971 if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno + n))
2972 return 0;
2973 return 1;
2976 /* Try to find a hard register of mode MODE, matching the register class in
2977 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
2978 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
2979 in which case the only condition is that the register must be available
2980 before CURRENT_INSN.
2981 Registers that already have bits set in REG_SET will not be considered.
2983 If an appropriate register is available, it will be returned and the
2984 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
2985 returned. */
2988 peep2_find_free_register (int from, int to, const char *class_str,
2989 enum machine_mode mode, HARD_REG_SET *reg_set)
2991 static int search_ofs;
2992 enum reg_class cl;
2993 HARD_REG_SET live;
2994 int i;
2996 gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
2997 gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
2999 from += peep2_current;
3000 if (from >= MAX_INSNS_PER_PEEP2 + 1)
3001 from -= MAX_INSNS_PER_PEEP2 + 1;
3002 to += peep2_current;
3003 if (to >= MAX_INSNS_PER_PEEP2 + 1)
3004 to -= MAX_INSNS_PER_PEEP2 + 1;
3006 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3007 REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
3009 while (from != to)
3011 HARD_REG_SET this_live;
3013 if (++from >= MAX_INSNS_PER_PEEP2 + 1)
3014 from = 0;
3015 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3016 REG_SET_TO_HARD_REG_SET (this_live, peep2_insn_data[from].live_before);
3017 IOR_HARD_REG_SET (live, this_live);
3020 cl = (class_str[0] == 'r' ? GENERAL_REGS
3021 : REG_CLASS_FROM_CONSTRAINT (class_str[0], class_str));
3023 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3025 int raw_regno, regno, success, j;
3027 /* Distribute the free registers as much as possible. */
3028 raw_regno = search_ofs + i;
3029 if (raw_regno >= FIRST_PSEUDO_REGISTER)
3030 raw_regno -= FIRST_PSEUDO_REGISTER;
3031 #ifdef REG_ALLOC_ORDER
3032 regno = reg_alloc_order[raw_regno];
3033 #else
3034 regno = raw_regno;
3035 #endif
3037 /* Don't allocate fixed registers. */
3038 if (fixed_regs[regno])
3039 continue;
3040 /* Don't allocate global registers. */
3041 if (global_regs[regno])
3042 continue;
3043 /* Make sure the register is of the right class. */
3044 if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno))
3045 continue;
3046 /* And can support the mode we need. */
3047 if (! HARD_REGNO_MODE_OK (regno, mode))
3048 continue;
3049 /* And that we don't create an extra save/restore. */
3050 if (! call_used_regs[regno] && ! df_regs_ever_live_p (regno))
3051 continue;
3052 if (! targetm.hard_regno_scratch_ok (regno))
3053 continue;
3055 /* And we don't clobber traceback for noreturn functions. */
3056 if ((regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM)
3057 && (! reload_completed || frame_pointer_needed))
3058 continue;
3060 success = 1;
3061 for (j = hard_regno_nregs[regno][mode] - 1; j >= 0; j--)
3063 if (TEST_HARD_REG_BIT (*reg_set, regno + j)
3064 || TEST_HARD_REG_BIT (live, regno + j))
3066 success = 0;
3067 break;
3070 if (success)
3072 add_to_hard_reg_set (reg_set, mode, regno);
3074 /* Start the next search with the next register. */
3075 if (++raw_regno >= FIRST_PSEUDO_REGISTER)
3076 raw_regno = 0;
3077 search_ofs = raw_regno;
3079 return gen_rtx_REG (mode, regno);
3083 search_ofs = 0;
3084 return NULL_RTX;
3087 /* Forget all currently tracked instructions, only remember current
3088 LIVE regset. */
3090 static void
3091 peep2_reinit_state (regset live)
3093 int i;
3095 /* Indicate that all slots except the last holds invalid data. */
3096 for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3097 peep2_insn_data[i].insn = NULL_RTX;
3098 peep2_current_count = 0;
3100 /* Indicate that the last slot contains live_after data. */
3101 peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3102 peep2_current = MAX_INSNS_PER_PEEP2;
3104 COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3107 /* Perform the peephole2 optimization pass. */
3109 static void
3110 peephole2_optimize (void)
3112 rtx insn, prev;
3113 bitmap live;
3114 int i;
3115 basic_block bb;
3116 bool do_cleanup_cfg = false;
3117 bool do_rebuild_jump_labels = false;
3119 df_set_flags (DF_LR_RUN_DCE);
3120 df_analyze ();
3122 /* Initialize the regsets we're going to use. */
3123 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3124 peep2_insn_data[i].live_before = BITMAP_ALLOC (&reg_obstack);
3125 live = BITMAP_ALLOC (&reg_obstack);
3127 FOR_EACH_BB_REVERSE (bb)
3129 rtl_profile_for_bb (bb);
3131 /* Start up propagation. */
3132 bitmap_copy (live, DF_LR_OUT (bb));
3133 df_simulate_initialize_backwards (bb, live);
3134 peep2_reinit_state (live);
3136 for (insn = BB_END (bb); ; insn = prev)
3138 prev = PREV_INSN (insn);
3139 if (NONDEBUG_INSN_P (insn))
3141 rtx attempt, before_try, x;
3142 int match_len;
3143 rtx note;
3144 bool was_call = false;
3146 /* Record this insn. */
3147 if (--peep2_current < 0)
3148 peep2_current = MAX_INSNS_PER_PEEP2;
3149 if (peep2_current_count < MAX_INSNS_PER_PEEP2
3150 && peep2_insn_data[peep2_current].insn == NULL_RTX)
3151 peep2_current_count++;
3152 peep2_insn_data[peep2_current].insn = insn;
3153 df_simulate_one_insn_backwards (bb, insn, live);
3154 COPY_REG_SET (peep2_insn_data[peep2_current].live_before, live);
3156 if (RTX_FRAME_RELATED_P (insn))
3158 /* If an insn has RTX_FRAME_RELATED_P set, peephole
3159 substitution would lose the
3160 REG_FRAME_RELATED_EXPR that is attached. */
3161 peep2_reinit_state (live);
3162 attempt = NULL;
3164 else
3165 /* Match the peephole. */
3166 attempt = peephole2_insns (PATTERN (insn), insn, &match_len);
3168 if (attempt != NULL)
3170 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3171 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3172 cfg-related call notes. */
3173 for (i = 0; i <= match_len; ++i)
3175 int j;
3176 rtx old_insn, new_insn, note;
3178 j = i + peep2_current;
3179 if (j >= MAX_INSNS_PER_PEEP2 + 1)
3180 j -= MAX_INSNS_PER_PEEP2 + 1;
3181 old_insn = peep2_insn_data[j].insn;
3182 if (!CALL_P (old_insn))
3183 continue;
3184 was_call = true;
3186 new_insn = attempt;
3187 while (new_insn != NULL_RTX)
3189 if (CALL_P (new_insn))
3190 break;
3191 new_insn = NEXT_INSN (new_insn);
3194 gcc_assert (new_insn != NULL_RTX);
3196 CALL_INSN_FUNCTION_USAGE (new_insn)
3197 = CALL_INSN_FUNCTION_USAGE (old_insn);
3199 for (note = REG_NOTES (old_insn);
3200 note;
3201 note = XEXP (note, 1))
3202 switch (REG_NOTE_KIND (note))
3204 case REG_NORETURN:
3205 case REG_SETJMP:
3206 add_reg_note (new_insn, REG_NOTE_KIND (note),
3207 XEXP (note, 0));
3208 break;
3209 default:
3210 /* Discard all other reg notes. */
3211 break;
3214 /* Croak if there is another call in the sequence. */
3215 while (++i <= match_len)
3217 j = i + peep2_current;
3218 if (j >= MAX_INSNS_PER_PEEP2 + 1)
3219 j -= MAX_INSNS_PER_PEEP2 + 1;
3220 old_insn = peep2_insn_data[j].insn;
3221 gcc_assert (!CALL_P (old_insn));
3223 break;
3226 i = match_len + peep2_current;
3227 if (i >= MAX_INSNS_PER_PEEP2 + 1)
3228 i -= MAX_INSNS_PER_PEEP2 + 1;
3230 note = find_reg_note (peep2_insn_data[i].insn,
3231 REG_EH_REGION, NULL_RTX);
3233 /* Replace the old sequence with the new. */
3234 attempt = emit_insn_after_setloc (attempt,
3235 peep2_insn_data[i].insn,
3236 INSN_LOCATOR (peep2_insn_data[i].insn));
3237 before_try = PREV_INSN (insn);
3238 delete_insn_chain (insn, peep2_insn_data[i].insn, false);
3240 /* Re-insert the EH_REGION notes. */
3241 if (note || (was_call && nonlocal_goto_handler_labels))
3243 edge eh_edge;
3244 edge_iterator ei;
3246 FOR_EACH_EDGE (eh_edge, ei, bb->succs)
3247 if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3248 break;
3250 if (note)
3251 copy_reg_eh_region_note_backward (note, attempt,
3252 before_try);
3254 if (eh_edge)
3255 for (x = attempt ; x != before_try ; x = PREV_INSN (x))
3256 if (x != BB_END (bb)
3257 && (can_throw_internal (x)
3258 || can_nonlocal_goto (x)))
3260 edge nfte, nehe;
3261 int flags;
3263 nfte = split_block (bb, x);
3264 flags = (eh_edge->flags
3265 & (EDGE_EH | EDGE_ABNORMAL));
3266 if (CALL_P (x))
3267 flags |= EDGE_ABNORMAL_CALL;
3268 nehe = make_edge (nfte->src, eh_edge->dest,
3269 flags);
3271 nehe->probability = eh_edge->probability;
3272 nfte->probability
3273 = REG_BR_PROB_BASE - nehe->probability;
3275 do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3276 bb = nfte->src;
3277 eh_edge = nehe;
3280 /* Converting possibly trapping insn to non-trapping is
3281 possible. Zap dummy outgoing edges. */
3282 do_cleanup_cfg |= purge_dead_edges (bb);
3285 if (targetm.have_conditional_execution ())
3287 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3288 peep2_insn_data[i].insn = NULL_RTX;
3289 peep2_insn_data[peep2_current].insn = PEEP2_EOB;
3290 peep2_current_count = 0;
3292 else
3294 /* Back up lifetime information past the end of the
3295 newly created sequence. */
3296 if (++i >= MAX_INSNS_PER_PEEP2 + 1)
3297 i = 0;
3298 bitmap_copy (live, peep2_insn_data[i].live_before);
3300 /* Update life information for the new sequence. */
3301 x = attempt;
3304 if (INSN_P (x))
3306 if (--i < 0)
3307 i = MAX_INSNS_PER_PEEP2;
3308 if (peep2_current_count < MAX_INSNS_PER_PEEP2
3309 && peep2_insn_data[i].insn == NULL_RTX)
3310 peep2_current_count++;
3311 peep2_insn_data[i].insn = x;
3312 df_insn_rescan (x);
3313 df_simulate_one_insn_backwards (bb, x, live);
3314 bitmap_copy (peep2_insn_data[i].live_before,
3315 live);
3317 x = PREV_INSN (x);
3319 while (x != prev);
3321 peep2_current = i;
3324 /* If we generated a jump instruction, it won't have
3325 JUMP_LABEL set. Recompute after we're done. */
3326 for (x = attempt; x != before_try; x = PREV_INSN (x))
3327 if (JUMP_P (x))
3329 do_rebuild_jump_labels = true;
3330 break;
3335 if (insn == BB_HEAD (bb))
3336 break;
3340 default_rtl_profile ();
3341 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3342 BITMAP_FREE (peep2_insn_data[i].live_before);
3343 BITMAP_FREE (live);
3344 if (do_rebuild_jump_labels)
3345 rebuild_jump_labels (get_insns ());
3347 #endif /* HAVE_peephole2 */
3349 /* Common predicates for use with define_bypass. */
3351 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3352 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3353 must be either a single_set or a PARALLEL with SETs inside. */
3356 store_data_bypass_p (rtx out_insn, rtx in_insn)
3358 rtx out_set, in_set;
3359 rtx out_pat, in_pat;
3360 rtx out_exp, in_exp;
3361 int i, j;
3363 in_set = single_set (in_insn);
3364 if (in_set)
3366 if (!MEM_P (SET_DEST (in_set)))
3367 return false;
3369 out_set = single_set (out_insn);
3370 if (out_set)
3372 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set)))
3373 return false;
3375 else
3377 out_pat = PATTERN (out_insn);
3379 if (GET_CODE (out_pat) != PARALLEL)
3380 return false;
3382 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3384 out_exp = XVECEXP (out_pat, 0, i);
3386 if (GET_CODE (out_exp) == CLOBBER)
3387 continue;
3389 gcc_assert (GET_CODE (out_exp) == SET);
3391 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_set)))
3392 return false;
3396 else
3398 in_pat = PATTERN (in_insn);
3399 gcc_assert (GET_CODE (in_pat) == PARALLEL);
3401 for (i = 0; i < XVECLEN (in_pat, 0); i++)
3403 in_exp = XVECEXP (in_pat, 0, i);
3405 if (GET_CODE (in_exp) == CLOBBER)
3406 continue;
3408 gcc_assert (GET_CODE (in_exp) == SET);
3410 if (!MEM_P (SET_DEST (in_exp)))
3411 return false;
3413 out_set = single_set (out_insn);
3414 if (out_set)
3416 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_exp)))
3417 return false;
3419 else
3421 out_pat = PATTERN (out_insn);
3422 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3424 for (j = 0; j < XVECLEN (out_pat, 0); j++)
3426 out_exp = XVECEXP (out_pat, 0, j);
3428 if (GET_CODE (out_exp) == CLOBBER)
3429 continue;
3431 gcc_assert (GET_CODE (out_exp) == SET);
3433 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_exp)))
3434 return false;
3440 return true;
3443 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3444 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3445 or multiple set; IN_INSN should be single_set for truth, but for convenience
3446 of insn categorization may be any JUMP or CALL insn. */
3449 if_test_bypass_p (rtx out_insn, rtx in_insn)
3451 rtx out_set, in_set;
3453 in_set = single_set (in_insn);
3454 if (! in_set)
3456 gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
3457 return false;
3460 if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3461 return false;
3462 in_set = SET_SRC (in_set);
3464 out_set = single_set (out_insn);
3465 if (out_set)
3467 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3468 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3469 return false;
3471 else
3473 rtx out_pat;
3474 int i;
3476 out_pat = PATTERN (out_insn);
3477 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3479 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3481 rtx exp = XVECEXP (out_pat, 0, i);
3483 if (GET_CODE (exp) == CLOBBER)
3484 continue;
3486 gcc_assert (GET_CODE (exp) == SET);
3488 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3489 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3490 return false;
3494 return true;
3497 static bool
3498 gate_handle_peephole2 (void)
3500 return (optimize > 0 && flag_peephole2);
3503 static unsigned int
3504 rest_of_handle_peephole2 (void)
3506 #ifdef HAVE_peephole2
3507 peephole2_optimize ();
3508 #endif
3509 return 0;
3512 struct rtl_opt_pass pass_peephole2 =
3515 RTL_PASS,
3516 "peephole2", /* name */
3517 gate_handle_peephole2, /* gate */
3518 rest_of_handle_peephole2, /* execute */
3519 NULL, /* sub */
3520 NULL, /* next */
3521 0, /* static_pass_number */
3522 TV_PEEPHOLE2, /* tv_id */
3523 0, /* properties_required */
3524 0, /* properties_provided */
3525 0, /* properties_destroyed */
3526 0, /* todo_flags_start */
3527 TODO_df_finish | TODO_verify_rtl_sharing |
3528 TODO_dump_func /* todo_flags_finish */
3532 static unsigned int
3533 rest_of_handle_split_all_insns (void)
3535 split_all_insns ();
3536 return 0;
3539 struct rtl_opt_pass pass_split_all_insns =
3542 RTL_PASS,
3543 "split1", /* name */
3544 NULL, /* gate */
3545 rest_of_handle_split_all_insns, /* execute */
3546 NULL, /* sub */
3547 NULL, /* next */
3548 0, /* static_pass_number */
3549 TV_NONE, /* tv_id */
3550 0, /* properties_required */
3551 0, /* properties_provided */
3552 0, /* properties_destroyed */
3553 0, /* todo_flags_start */
3554 TODO_dump_func /* todo_flags_finish */
3558 static unsigned int
3559 rest_of_handle_split_after_reload (void)
3561 /* If optimizing, then go ahead and split insns now. */
3562 #ifndef STACK_REGS
3563 if (optimize > 0)
3564 #endif
3565 split_all_insns ();
3566 return 0;
3569 struct rtl_opt_pass pass_split_after_reload =
3572 RTL_PASS,
3573 "split2", /* name */
3574 NULL, /* gate */
3575 rest_of_handle_split_after_reload, /* execute */
3576 NULL, /* sub */
3577 NULL, /* next */
3578 0, /* static_pass_number */
3579 TV_NONE, /* tv_id */
3580 0, /* properties_required */
3581 0, /* properties_provided */
3582 0, /* properties_destroyed */
3583 0, /* todo_flags_start */
3584 TODO_dump_func /* todo_flags_finish */
3588 static bool
3589 gate_handle_split_before_regstack (void)
3591 #if defined (HAVE_ATTR_length) && defined (STACK_REGS)
3592 /* If flow2 creates new instructions which need splitting
3593 and scheduling after reload is not done, they might not be
3594 split until final which doesn't allow splitting
3595 if HAVE_ATTR_length. */
3596 # ifdef INSN_SCHEDULING
3597 return (optimize && !flag_schedule_insns_after_reload);
3598 # else
3599 return (optimize);
3600 # endif
3601 #else
3602 return 0;
3603 #endif
3606 static unsigned int
3607 rest_of_handle_split_before_regstack (void)
3609 split_all_insns ();
3610 return 0;
3613 struct rtl_opt_pass pass_split_before_regstack =
3616 RTL_PASS,
3617 "split3", /* name */
3618 gate_handle_split_before_regstack, /* gate */
3619 rest_of_handle_split_before_regstack, /* execute */
3620 NULL, /* sub */
3621 NULL, /* next */
3622 0, /* static_pass_number */
3623 TV_NONE, /* tv_id */
3624 0, /* properties_required */
3625 0, /* properties_provided */
3626 0, /* properties_destroyed */
3627 0, /* todo_flags_start */
3628 TODO_dump_func /* todo_flags_finish */
3632 static bool
3633 gate_handle_split_before_sched2 (void)
3635 #ifdef INSN_SCHEDULING
3636 return optimize > 0 && flag_schedule_insns_after_reload;
3637 #else
3638 return 0;
3639 #endif
3642 static unsigned int
3643 rest_of_handle_split_before_sched2 (void)
3645 #ifdef INSN_SCHEDULING
3646 split_all_insns ();
3647 #endif
3648 return 0;
3651 struct rtl_opt_pass pass_split_before_sched2 =
3654 RTL_PASS,
3655 "split4", /* name */
3656 gate_handle_split_before_sched2, /* gate */
3657 rest_of_handle_split_before_sched2, /* execute */
3658 NULL, /* sub */
3659 NULL, /* next */
3660 0, /* static_pass_number */
3661 TV_NONE, /* tv_id */
3662 0, /* properties_required */
3663 0, /* properties_provided */
3664 0, /* properties_destroyed */
3665 0, /* todo_flags_start */
3666 TODO_verify_flow |
3667 TODO_dump_func /* todo_flags_finish */
3671 /* The placement of the splitting that we do for shorten_branches
3672 depends on whether regstack is used by the target or not. */
3673 static bool
3674 gate_do_final_split (void)
3676 #if defined (HAVE_ATTR_length) && !defined (STACK_REGS)
3677 return 1;
3678 #else
3679 return 0;
3680 #endif
3683 struct rtl_opt_pass pass_split_for_shorten_branches =
3686 RTL_PASS,
3687 "split5", /* name */
3688 gate_do_final_split, /* gate */
3689 split_all_insns_noflow, /* execute */
3690 NULL, /* sub */
3691 NULL, /* next */
3692 0, /* static_pass_number */
3693 TV_NONE, /* tv_id */
3694 0, /* properties_required */
3695 0, /* properties_provided */
3696 0, /* properties_destroyed */
3697 0, /* todo_flags_start */
3698 TODO_dump_func | TODO_verify_rtl_sharing /* todo_flags_finish */