1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4 2010 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
38 #include "coretypes.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
53 #include "basic-block.h"
58 #include "integrate.h"
59 #include "langhooks.h"
61 #include "cfglayout.h"
63 #include "tree-pass.h"
69 /* So we can assign to cfun in this file. */
72 #ifndef STACK_ALIGNMENT_NEEDED
73 #define STACK_ALIGNMENT_NEEDED 1
76 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
78 /* Some systems use __main in a way incompatible with its use in gcc, in these
79 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
80 give the same symbol without quotes for an alternative entry point. You
81 must define both, or neither. */
83 #define NAME__MAIN "__main"
86 /* Round a value to the lowest integer less than it that is a multiple of
87 the required alignment. Avoid using division in case the value is
88 negative. Assume the alignment is a power of two. */
89 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
91 /* Similar, but round to the next highest integer that meets the
93 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
95 /* Nonzero if function being compiled doesn't contain any calls
96 (ignoring the prologue and epilogue). This is set prior to
97 local register allocation and is valid for the remaining
99 int current_function_is_leaf
;
101 /* Nonzero if function being compiled doesn't modify the stack pointer
102 (ignoring the prologue and epilogue). This is only valid after
103 pass_stack_ptr_mod has run. */
104 int current_function_sp_is_unchanging
;
106 /* Nonzero if the function being compiled is a leaf function which only
107 uses leaf registers. This is valid after reload (specifically after
108 sched2) and is useful only if the port defines LEAF_REGISTERS. */
109 int current_function_uses_only_leaf_regs
;
111 /* Nonzero once virtual register instantiation has been done.
112 assign_stack_local uses frame_pointer_rtx when this is nonzero.
113 calls.c:emit_library_call_value_1 uses it to set up
114 post-instantiation libcalls. */
115 int virtuals_instantiated
;
117 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
118 static GTY(()) int funcdef_no
;
120 /* These variables hold pointers to functions to create and destroy
121 target specific, per-function data structures. */
122 struct machine_function
* (*init_machine_status
) (void);
124 /* The currently compiled function. */
125 struct function
*cfun
= 0;
127 /* These hashes record the prologue and epilogue insns. */
128 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
129 htab_t prologue_insn_hash
;
130 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
131 htab_t epilogue_insn_hash
;
134 htab_t types_used_by_vars_hash
= NULL
;
135 tree types_used_by_cur_var_decl
= NULL
;
137 /* Forward declarations. */
139 static struct temp_slot
*find_temp_slot_from_address (rtx
);
140 static void pad_to_arg_alignment (struct args_size
*, int, struct args_size
*);
141 static void pad_below (struct args_size
*, enum machine_mode
, tree
);
142 static void reorder_blocks_1 (rtx
, tree
, VEC(tree
,heap
) **);
143 static int all_blocks (tree
, tree
*);
144 static tree
*get_block_vector (tree
, int *);
145 extern tree
debug_find_var_in_block_tree (tree
, tree
);
146 /* We always define `record_insns' even if it's not used so that we
147 can always export `prologue_epilogue_contains'. */
148 static void record_insns (rtx
, rtx
, htab_t
*) ATTRIBUTE_UNUSED
;
149 static bool contains (const_rtx
, htab_t
);
151 static void emit_return_into_block (basic_block
);
153 static void prepare_function_start (void);
154 static void do_clobber_return_reg (rtx
, void *);
155 static void do_use_return_reg (rtx
, void *);
156 static void set_insn_locators (rtx
, int) ATTRIBUTE_UNUSED
;
158 /* Stack of nested functions. */
159 /* Keep track of the cfun stack. */
161 typedef struct function
*function_p
;
163 DEF_VEC_P(function_p
);
164 DEF_VEC_ALLOC_P(function_p
,heap
);
165 static VEC(function_p
,heap
) *function_context_stack
;
167 /* Save the current context for compilation of a nested function.
168 This is called from language-specific code. */
171 push_function_context (void)
174 allocate_struct_function (NULL
, false);
176 VEC_safe_push (function_p
, heap
, function_context_stack
, cfun
);
180 /* Restore the last saved context, at the end of a nested function.
181 This function is called from language-specific code. */
184 pop_function_context (void)
186 struct function
*p
= VEC_pop (function_p
, function_context_stack
);
188 current_function_decl
= p
->decl
;
190 /* Reset variables that have known state during rtx generation. */
191 virtuals_instantiated
= 0;
192 generating_concat_p
= 1;
195 /* Clear out all parts of the state in F that can safely be discarded
196 after the function has been parsed, but not compiled, to let
197 garbage collection reclaim the memory. */
200 free_after_parsing (struct function
*f
)
205 /* Clear out all parts of the state in F that can safely be discarded
206 after the function has been compiled, to let garbage collection
207 reclaim the memory. */
210 free_after_compilation (struct function
*f
)
212 prologue_insn_hash
= NULL
;
213 epilogue_insn_hash
= NULL
;
215 if (crtl
->emit
.regno_pointer_align
)
216 free (crtl
->emit
.regno_pointer_align
);
218 memset (crtl
, 0, sizeof (struct rtl_data
));
223 regno_reg_rtx
= NULL
;
224 insn_locators_free ();
227 /* Return size needed for stack frame based on slots so far allocated.
228 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
229 the caller may have to do that. */
232 get_frame_size (void)
234 if (FRAME_GROWS_DOWNWARD
)
235 return -frame_offset
;
240 /* Issue an error message and return TRUE if frame OFFSET overflows in
241 the signed target pointer arithmetics for function FUNC. Otherwise
245 frame_offset_overflow (HOST_WIDE_INT offset
, tree func
)
247 unsigned HOST_WIDE_INT size
= FRAME_GROWS_DOWNWARD
? -offset
: offset
;
249 if (size
> ((unsigned HOST_WIDE_INT
) 1 << (GET_MODE_BITSIZE (Pmode
) - 1))
250 /* Leave room for the fixed part of the frame. */
251 - 64 * UNITS_PER_WORD
)
253 error_at (DECL_SOURCE_LOCATION (func
),
254 "total size of local objects too large");
261 /* Return stack slot alignment in bits for TYPE and MODE. */
264 get_stack_local_alignment (tree type
, enum machine_mode mode
)
266 unsigned int alignment
;
269 alignment
= BIGGEST_ALIGNMENT
;
271 alignment
= GET_MODE_ALIGNMENT (mode
);
273 /* Allow the frond-end to (possibly) increase the alignment of this
276 type
= lang_hooks
.types
.type_for_mode (mode
, 0);
278 return STACK_SLOT_ALIGNMENT (type
, mode
, alignment
);
281 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
282 with machine mode MODE.
284 ALIGN controls the amount of alignment for the address of the slot:
285 0 means according to MODE,
286 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
287 -2 means use BITS_PER_UNIT,
288 positive specifies alignment boundary in bits.
290 If REDUCE_ALIGNMENT_OK is true, it is OK to reduce alignment.
292 We do not round to stack_boundary here. */
295 assign_stack_local_1 (enum machine_mode mode
, HOST_WIDE_INT size
,
297 bool reduce_alignment_ok ATTRIBUTE_UNUSED
)
300 int bigend_correction
= 0;
301 unsigned int alignment
, alignment_in_bits
;
302 int frame_off
, frame_alignment
, frame_phase
;
306 alignment
= get_stack_local_alignment (NULL
, mode
);
307 alignment
/= BITS_PER_UNIT
;
309 else if (align
== -1)
311 alignment
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
312 size
= CEIL_ROUND (size
, alignment
);
314 else if (align
== -2)
315 alignment
= 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
317 alignment
= align
/ BITS_PER_UNIT
;
319 alignment_in_bits
= alignment
* BITS_PER_UNIT
;
321 if (FRAME_GROWS_DOWNWARD
)
322 frame_offset
-= size
;
324 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
325 if (alignment_in_bits
> MAX_SUPPORTED_STACK_ALIGNMENT
)
327 alignment_in_bits
= MAX_SUPPORTED_STACK_ALIGNMENT
;
328 alignment
= alignment_in_bits
/ BITS_PER_UNIT
;
331 if (SUPPORTS_STACK_ALIGNMENT
)
333 if (crtl
->stack_alignment_estimated
< alignment_in_bits
)
335 if (!crtl
->stack_realign_processed
)
336 crtl
->stack_alignment_estimated
= alignment_in_bits
;
339 /* If stack is realigned and stack alignment value
340 hasn't been finalized, it is OK not to increase
341 stack_alignment_estimated. The bigger alignment
342 requirement is recorded in stack_alignment_needed
344 gcc_assert (!crtl
->stack_realign_finalized
);
345 if (!crtl
->stack_realign_needed
)
347 /* It is OK to reduce the alignment as long as the
348 requested size is 0 or the estimated stack
349 alignment >= mode alignment. */
350 gcc_assert (reduce_alignment_ok
352 || (crtl
->stack_alignment_estimated
353 >= GET_MODE_ALIGNMENT (mode
)));
354 alignment_in_bits
= crtl
->stack_alignment_estimated
;
355 alignment
= alignment_in_bits
/ BITS_PER_UNIT
;
361 if (crtl
->stack_alignment_needed
< alignment_in_bits
)
362 crtl
->stack_alignment_needed
= alignment_in_bits
;
363 if (crtl
->max_used_stack_slot_alignment
< alignment_in_bits
)
364 crtl
->max_used_stack_slot_alignment
= alignment_in_bits
;
366 /* Calculate how many bytes the start of local variables is off from
368 frame_alignment
= PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
;
369 frame_off
= STARTING_FRAME_OFFSET
% frame_alignment
;
370 frame_phase
= frame_off
? frame_alignment
- frame_off
: 0;
372 /* Round the frame offset to the specified alignment. The default is
373 to always honor requests to align the stack but a port may choose to
374 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
375 if (STACK_ALIGNMENT_NEEDED
379 /* We must be careful here, since FRAME_OFFSET might be negative and
380 division with a negative dividend isn't as well defined as we might
381 like. So we instead assume that ALIGNMENT is a power of two and
382 use logical operations which are unambiguous. */
383 if (FRAME_GROWS_DOWNWARD
)
385 = (FLOOR_ROUND (frame_offset
- frame_phase
,
386 (unsigned HOST_WIDE_INT
) alignment
)
390 = (CEIL_ROUND (frame_offset
- frame_phase
,
391 (unsigned HOST_WIDE_INT
) alignment
)
395 /* On a big-endian machine, if we are allocating more space than we will use,
396 use the least significant bytes of those that are allocated. */
397 if (BYTES_BIG_ENDIAN
&& mode
!= BLKmode
&& GET_MODE_SIZE (mode
) < size
)
398 bigend_correction
= size
- GET_MODE_SIZE (mode
);
400 /* If we have already instantiated virtual registers, return the actual
401 address relative to the frame pointer. */
402 if (virtuals_instantiated
)
403 addr
= plus_constant (frame_pointer_rtx
,
405 (frame_offset
+ bigend_correction
406 + STARTING_FRAME_OFFSET
, Pmode
));
408 addr
= plus_constant (virtual_stack_vars_rtx
,
410 (frame_offset
+ bigend_correction
,
413 if (!FRAME_GROWS_DOWNWARD
)
414 frame_offset
+= size
;
416 x
= gen_rtx_MEM (mode
, addr
);
417 set_mem_align (x
, alignment_in_bits
);
418 MEM_NOTRAP_P (x
) = 1;
421 = gen_rtx_EXPR_LIST (VOIDmode
, x
, stack_slot_list
);
423 if (frame_offset_overflow (frame_offset
, current_function_decl
))
429 /* Wrap up assign_stack_local_1 with last parameter as false. */
432 assign_stack_local (enum machine_mode mode
, HOST_WIDE_INT size
, int align
)
434 return assign_stack_local_1 (mode
, size
, align
, false);
438 /* In order to evaluate some expressions, such as function calls returning
439 structures in memory, we need to temporarily allocate stack locations.
440 We record each allocated temporary in the following structure.
442 Associated with each temporary slot is a nesting level. When we pop up
443 one level, all temporaries associated with the previous level are freed.
444 Normally, all temporaries are freed after the execution of the statement
445 in which they were created. However, if we are inside a ({...}) grouping,
446 the result may be in a temporary and hence must be preserved. If the
447 result could be in a temporary, we preserve it if we can determine which
448 one it is in. If we cannot determine which temporary may contain the
449 result, all temporaries are preserved. A temporary is preserved by
450 pretending it was allocated at the previous nesting level.
452 Automatic variables are also assigned temporary slots, at the nesting
453 level where they are defined. They are marked a "kept" so that
454 free_temp_slots will not free them. */
456 struct GTY(()) temp_slot
{
457 /* Points to next temporary slot. */
458 struct temp_slot
*next
;
459 /* Points to previous temporary slot. */
460 struct temp_slot
*prev
;
461 /* The rtx to used to reference the slot. */
463 /* The size, in units, of the slot. */
465 /* The type of the object in the slot, or zero if it doesn't correspond
466 to a type. We use this to determine whether a slot can be reused.
467 It can be reused if objects of the type of the new slot will always
468 conflict with objects of the type of the old slot. */
470 /* The alignment (in bits) of the slot. */
472 /* Nonzero if this temporary is currently in use. */
474 /* Nonzero if this temporary has its address taken. */
476 /* Nesting level at which this slot is being used. */
478 /* Nonzero if this should survive a call to free_temp_slots. */
480 /* The offset of the slot from the frame_pointer, including extra space
481 for alignment. This info is for combine_temp_slots. */
482 HOST_WIDE_INT base_offset
;
483 /* The size of the slot, including extra space for alignment. This
484 info is for combine_temp_slots. */
485 HOST_WIDE_INT full_size
;
488 /* A table of addresses that represent a stack slot. The table is a mapping
489 from address RTXen to a temp slot. */
490 static GTY((param_is(struct temp_slot_address_entry
))) htab_t temp_slot_address_table
;
492 /* Entry for the above hash table. */
493 struct GTY(()) temp_slot_address_entry
{
496 struct temp_slot
*temp_slot
;
499 /* Removes temporary slot TEMP from LIST. */
502 cut_slot_from_list (struct temp_slot
*temp
, struct temp_slot
**list
)
505 temp
->next
->prev
= temp
->prev
;
507 temp
->prev
->next
= temp
->next
;
511 temp
->prev
= temp
->next
= NULL
;
514 /* Inserts temporary slot TEMP to LIST. */
517 insert_slot_to_list (struct temp_slot
*temp
, struct temp_slot
**list
)
521 (*list
)->prev
= temp
;
526 /* Returns the list of used temp slots at LEVEL. */
528 static struct temp_slot
**
529 temp_slots_at_level (int level
)
531 if (level
>= (int) VEC_length (temp_slot_p
, used_temp_slots
))
532 VEC_safe_grow_cleared (temp_slot_p
, gc
, used_temp_slots
, level
+ 1);
534 return &(VEC_address (temp_slot_p
, used_temp_slots
)[level
]);
537 /* Returns the maximal temporary slot level. */
540 max_slot_level (void)
542 if (!used_temp_slots
)
545 return VEC_length (temp_slot_p
, used_temp_slots
) - 1;
548 /* Moves temporary slot TEMP to LEVEL. */
551 move_slot_to_level (struct temp_slot
*temp
, int level
)
553 cut_slot_from_list (temp
, temp_slots_at_level (temp
->level
));
554 insert_slot_to_list (temp
, temp_slots_at_level (level
));
558 /* Make temporary slot TEMP available. */
561 make_slot_available (struct temp_slot
*temp
)
563 cut_slot_from_list (temp
, temp_slots_at_level (temp
->level
));
564 insert_slot_to_list (temp
, &avail_temp_slots
);
569 /* Compute the hash value for an address -> temp slot mapping.
570 The value is cached on the mapping entry. */
572 temp_slot_address_compute_hash (struct temp_slot_address_entry
*t
)
574 int do_not_record
= 0;
575 return hash_rtx (t
->address
, GET_MODE (t
->address
),
576 &do_not_record
, NULL
, false);
579 /* Return the hash value for an address -> temp slot mapping. */
581 temp_slot_address_hash (const void *p
)
583 const struct temp_slot_address_entry
*t
;
584 t
= (const struct temp_slot_address_entry
*) p
;
588 /* Compare two address -> temp slot mapping entries. */
590 temp_slot_address_eq (const void *p1
, const void *p2
)
592 const struct temp_slot_address_entry
*t1
, *t2
;
593 t1
= (const struct temp_slot_address_entry
*) p1
;
594 t2
= (const struct temp_slot_address_entry
*) p2
;
595 return exp_equiv_p (t1
->address
, t2
->address
, 0, true);
598 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
600 insert_temp_slot_address (rtx address
, struct temp_slot
*temp_slot
)
603 struct temp_slot_address_entry
*t
= GGC_NEW (struct temp_slot_address_entry
);
604 t
->address
= address
;
605 t
->temp_slot
= temp_slot
;
606 t
->hash
= temp_slot_address_compute_hash (t
);
607 slot
= htab_find_slot_with_hash (temp_slot_address_table
, t
, t
->hash
, INSERT
);
611 /* Remove an address -> temp slot mapping entry if the temp slot is
612 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
614 remove_unused_temp_slot_addresses_1 (void **slot
, void *data ATTRIBUTE_UNUSED
)
616 const struct temp_slot_address_entry
*t
;
617 t
= (const struct temp_slot_address_entry
*) *slot
;
618 if (! t
->temp_slot
->in_use
)
623 /* Remove all mappings of addresses to unused temp slots. */
625 remove_unused_temp_slot_addresses (void)
627 htab_traverse (temp_slot_address_table
,
628 remove_unused_temp_slot_addresses_1
,
632 /* Find the temp slot corresponding to the object at address X. */
634 static struct temp_slot
*
635 find_temp_slot_from_address (rtx x
)
638 struct temp_slot_address_entry tmp
, *t
;
640 /* First try the easy way:
641 See if X exists in the address -> temp slot mapping. */
643 tmp
.temp_slot
= NULL
;
644 tmp
.hash
= temp_slot_address_compute_hash (&tmp
);
645 t
= (struct temp_slot_address_entry
*)
646 htab_find_with_hash (temp_slot_address_table
, &tmp
, tmp
.hash
);
650 /* If we have a sum involving a register, see if it points to a temp
652 if (GET_CODE (x
) == PLUS
&& REG_P (XEXP (x
, 0))
653 && (p
= find_temp_slot_from_address (XEXP (x
, 0))) != 0)
655 else if (GET_CODE (x
) == PLUS
&& REG_P (XEXP (x
, 1))
656 && (p
= find_temp_slot_from_address (XEXP (x
, 1))) != 0)
659 /* Last resort: Address is a virtual stack var address. */
660 if (GET_CODE (x
) == PLUS
661 && XEXP (x
, 0) == virtual_stack_vars_rtx
662 && CONST_INT_P (XEXP (x
, 1)))
665 for (i
= max_slot_level (); i
>= 0; i
--)
666 for (p
= *temp_slots_at_level (i
); p
; p
= p
->next
)
668 if (INTVAL (XEXP (x
, 1)) >= p
->base_offset
669 && INTVAL (XEXP (x
, 1)) < p
->base_offset
+ p
->full_size
)
677 /* Allocate a temporary stack slot and record it for possible later
680 MODE is the machine mode to be given to the returned rtx.
682 SIZE is the size in units of the space required. We do no rounding here
683 since assign_stack_local will do any required rounding.
685 KEEP is 1 if this slot is to be retained after a call to
686 free_temp_slots. Automatic variables for a block are allocated
687 with this flag. KEEP values of 2 or 3 were needed respectively
688 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
689 or for SAVE_EXPRs, but they are now unused.
691 TYPE is the type that will be used for the stack slot. */
694 assign_stack_temp_for_type (enum machine_mode mode
, HOST_WIDE_INT size
,
698 struct temp_slot
*p
, *best_p
= 0, *selected
= NULL
, **pp
;
701 /* If SIZE is -1 it means that somebody tried to allocate a temporary
702 of a variable size. */
703 gcc_assert (size
!= -1);
705 /* These are now unused. */
706 gcc_assert (keep
<= 1);
708 align
= get_stack_local_alignment (type
, mode
);
710 /* Try to find an available, already-allocated temporary of the proper
711 mode which meets the size and alignment requirements. Choose the
712 smallest one with the closest alignment.
714 If assign_stack_temp is called outside of the tree->rtl expansion,
715 we cannot reuse the stack slots (that may still refer to
716 VIRTUAL_STACK_VARS_REGNUM). */
717 if (!virtuals_instantiated
)
719 for (p
= avail_temp_slots
; p
; p
= p
->next
)
721 if (p
->align
>= align
&& p
->size
>= size
722 && GET_MODE (p
->slot
) == mode
723 && objects_must_conflict_p (p
->type
, type
)
724 && (best_p
== 0 || best_p
->size
> p
->size
725 || (best_p
->size
== p
->size
&& best_p
->align
> p
->align
)))
727 if (p
->align
== align
&& p
->size
== size
)
730 cut_slot_from_list (selected
, &avail_temp_slots
);
739 /* Make our best, if any, the one to use. */
743 cut_slot_from_list (selected
, &avail_temp_slots
);
745 /* If there are enough aligned bytes left over, make them into a new
746 temp_slot so that the extra bytes don't get wasted. Do this only
747 for BLKmode slots, so that we can be sure of the alignment. */
748 if (GET_MODE (best_p
->slot
) == BLKmode
)
750 int alignment
= best_p
->align
/ BITS_PER_UNIT
;
751 HOST_WIDE_INT rounded_size
= CEIL_ROUND (size
, alignment
);
753 if (best_p
->size
- rounded_size
>= alignment
)
755 p
= GGC_NEW (struct temp_slot
);
756 p
->in_use
= p
->addr_taken
= 0;
757 p
->size
= best_p
->size
- rounded_size
;
758 p
->base_offset
= best_p
->base_offset
+ rounded_size
;
759 p
->full_size
= best_p
->full_size
- rounded_size
;
760 p
->slot
= adjust_address_nv (best_p
->slot
, BLKmode
, rounded_size
);
761 p
->align
= best_p
->align
;
762 p
->type
= best_p
->type
;
763 insert_slot_to_list (p
, &avail_temp_slots
);
765 stack_slot_list
= gen_rtx_EXPR_LIST (VOIDmode
, p
->slot
,
768 best_p
->size
= rounded_size
;
769 best_p
->full_size
= rounded_size
;
774 /* If we still didn't find one, make a new temporary. */
777 HOST_WIDE_INT frame_offset_old
= frame_offset
;
779 p
= GGC_NEW (struct temp_slot
);
781 /* We are passing an explicit alignment request to assign_stack_local.
782 One side effect of that is assign_stack_local will not round SIZE
783 to ensure the frame offset remains suitably aligned.
785 So for requests which depended on the rounding of SIZE, we go ahead
786 and round it now. We also make sure ALIGNMENT is at least
787 BIGGEST_ALIGNMENT. */
788 gcc_assert (mode
!= BLKmode
|| align
== BIGGEST_ALIGNMENT
);
789 p
->slot
= assign_stack_local (mode
,
791 ? CEIL_ROUND (size
, (int) align
/ BITS_PER_UNIT
)
797 /* The following slot size computation is necessary because we don't
798 know the actual size of the temporary slot until assign_stack_local
799 has performed all the frame alignment and size rounding for the
800 requested temporary. Note that extra space added for alignment
801 can be either above or below this stack slot depending on which
802 way the frame grows. We include the extra space if and only if it
803 is above this slot. */
804 if (FRAME_GROWS_DOWNWARD
)
805 p
->size
= frame_offset_old
- frame_offset
;
809 /* Now define the fields used by combine_temp_slots. */
810 if (FRAME_GROWS_DOWNWARD
)
812 p
->base_offset
= frame_offset
;
813 p
->full_size
= frame_offset_old
- frame_offset
;
817 p
->base_offset
= frame_offset_old
;
818 p
->full_size
= frame_offset
- frame_offset_old
;
828 p
->level
= temp_slot_level
;
831 pp
= temp_slots_at_level (p
->level
);
832 insert_slot_to_list (p
, pp
);
833 insert_temp_slot_address (XEXP (p
->slot
, 0), p
);
835 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
836 slot
= gen_rtx_MEM (mode
, XEXP (p
->slot
, 0));
837 stack_slot_list
= gen_rtx_EXPR_LIST (VOIDmode
, slot
, stack_slot_list
);
839 /* If we know the alias set for the memory that will be used, use
840 it. If there's no TYPE, then we don't know anything about the
841 alias set for the memory. */
842 set_mem_alias_set (slot
, type
? get_alias_set (type
) : 0);
843 set_mem_align (slot
, align
);
845 /* If a type is specified, set the relevant flags. */
848 MEM_VOLATILE_P (slot
) = TYPE_VOLATILE (type
);
849 MEM_SET_IN_STRUCT_P (slot
, (AGGREGATE_TYPE_P (type
)
850 || TREE_CODE (type
) == COMPLEX_TYPE
));
852 MEM_NOTRAP_P (slot
) = 1;
857 /* Allocate a temporary stack slot and record it for possible later
858 reuse. First three arguments are same as in preceding function. */
861 assign_stack_temp (enum machine_mode mode
, HOST_WIDE_INT size
, int keep
)
863 return assign_stack_temp_for_type (mode
, size
, keep
, NULL_TREE
);
866 /* Assign a temporary.
867 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
868 and so that should be used in error messages. In either case, we
869 allocate of the given type.
870 KEEP is as for assign_stack_temp.
871 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
872 it is 0 if a register is OK.
873 DONT_PROMOTE is 1 if we should not promote values in register
877 assign_temp (tree type_or_decl
, int keep
, int memory_required
,
878 int dont_promote ATTRIBUTE_UNUSED
)
881 enum machine_mode mode
;
886 if (DECL_P (type_or_decl
))
887 decl
= type_or_decl
, type
= TREE_TYPE (decl
);
889 decl
= NULL
, type
= type_or_decl
;
891 mode
= TYPE_MODE (type
);
893 unsignedp
= TYPE_UNSIGNED (type
);
896 if (mode
== BLKmode
|| memory_required
)
898 HOST_WIDE_INT size
= int_size_in_bytes (type
);
901 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
902 problems with allocating the stack space. */
906 /* Unfortunately, we don't yet know how to allocate variable-sized
907 temporaries. However, sometimes we can find a fixed upper limit on
908 the size, so try that instead. */
910 size
= max_int_size_in_bytes (type
);
912 /* The size of the temporary may be too large to fit into an integer. */
913 /* ??? Not sure this should happen except for user silliness, so limit
914 this to things that aren't compiler-generated temporaries. The
915 rest of the time we'll die in assign_stack_temp_for_type. */
916 if (decl
&& size
== -1
917 && TREE_CODE (TYPE_SIZE_UNIT (type
)) == INTEGER_CST
)
919 error ("size of variable %q+D is too large", decl
);
923 tmp
= assign_stack_temp_for_type (mode
, size
, keep
, type
);
929 mode
= promote_mode (type
, mode
, &unsignedp
);
932 return gen_reg_rtx (mode
);
935 /* Combine temporary stack slots which are adjacent on the stack.
937 This allows for better use of already allocated stack space. This is only
938 done for BLKmode slots because we can be sure that we won't have alignment
939 problems in this case. */
942 combine_temp_slots (void)
944 struct temp_slot
*p
, *q
, *next
, *next_q
;
947 /* We can't combine slots, because the information about which slot
948 is in which alias set will be lost. */
949 if (flag_strict_aliasing
)
952 /* If there are a lot of temp slots, don't do anything unless
953 high levels of optimization. */
954 if (! flag_expensive_optimizations
)
955 for (p
= avail_temp_slots
, num_slots
= 0; p
; p
= p
->next
, num_slots
++)
956 if (num_slots
> 100 || (num_slots
> 10 && optimize
== 0))
959 for (p
= avail_temp_slots
; p
; p
= next
)
965 if (GET_MODE (p
->slot
) != BLKmode
)
968 for (q
= p
->next
; q
; q
= next_q
)
974 if (GET_MODE (q
->slot
) != BLKmode
)
977 if (p
->base_offset
+ p
->full_size
== q
->base_offset
)
979 /* Q comes after P; combine Q into P. */
981 p
->full_size
+= q
->full_size
;
984 else if (q
->base_offset
+ q
->full_size
== p
->base_offset
)
986 /* P comes after Q; combine P into Q. */
988 q
->full_size
+= p
->full_size
;
993 cut_slot_from_list (q
, &avail_temp_slots
);
996 /* Either delete P or advance past it. */
998 cut_slot_from_list (p
, &avail_temp_slots
);
1002 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1003 slot that previously was known by OLD_RTX. */
1006 update_temp_slot_address (rtx old_rtx
, rtx new_rtx
)
1008 struct temp_slot
*p
;
1010 if (rtx_equal_p (old_rtx
, new_rtx
))
1013 p
= find_temp_slot_from_address (old_rtx
);
1015 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1016 NEW_RTX is a register, see if one operand of the PLUS is a
1017 temporary location. If so, NEW_RTX points into it. Otherwise,
1018 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1019 in common between them. If so, try a recursive call on those
1023 if (GET_CODE (old_rtx
) != PLUS
)
1026 if (REG_P (new_rtx
))
1028 update_temp_slot_address (XEXP (old_rtx
, 0), new_rtx
);
1029 update_temp_slot_address (XEXP (old_rtx
, 1), new_rtx
);
1032 else if (GET_CODE (new_rtx
) != PLUS
)
1035 if (rtx_equal_p (XEXP (old_rtx
, 0), XEXP (new_rtx
, 0)))
1036 update_temp_slot_address (XEXP (old_rtx
, 1), XEXP (new_rtx
, 1));
1037 else if (rtx_equal_p (XEXP (old_rtx
, 1), XEXP (new_rtx
, 0)))
1038 update_temp_slot_address (XEXP (old_rtx
, 0), XEXP (new_rtx
, 1));
1039 else if (rtx_equal_p (XEXP (old_rtx
, 0), XEXP (new_rtx
, 1)))
1040 update_temp_slot_address (XEXP (old_rtx
, 1), XEXP (new_rtx
, 0));
1041 else if (rtx_equal_p (XEXP (old_rtx
, 1), XEXP (new_rtx
, 1)))
1042 update_temp_slot_address (XEXP (old_rtx
, 0), XEXP (new_rtx
, 0));
1047 /* Otherwise add an alias for the temp's address. */
1048 insert_temp_slot_address (new_rtx
, p
);
1051 /* If X could be a reference to a temporary slot, mark the fact that its
1052 address was taken. */
1055 mark_temp_addr_taken (rtx x
)
1057 struct temp_slot
*p
;
1062 /* If X is not in memory or is at a constant address, it cannot be in
1063 a temporary slot. */
1064 if (!MEM_P (x
) || CONSTANT_P (XEXP (x
, 0)))
1067 p
= find_temp_slot_from_address (XEXP (x
, 0));
1072 /* If X could be a reference to a temporary slot, mark that slot as
1073 belonging to the to one level higher than the current level. If X
1074 matched one of our slots, just mark that one. Otherwise, we can't
1075 easily predict which it is, so upgrade all of them. Kept slots
1076 need not be touched.
1078 This is called when an ({...}) construct occurs and a statement
1079 returns a value in memory. */
1082 preserve_temp_slots (rtx x
)
1084 struct temp_slot
*p
= 0, *next
;
1086 /* If there is no result, we still might have some objects whose address
1087 were taken, so we need to make sure they stay around. */
1090 for (p
= *temp_slots_at_level (temp_slot_level
); p
; p
= next
)
1095 move_slot_to_level (p
, temp_slot_level
- 1);
1101 /* If X is a register that is being used as a pointer, see if we have
1102 a temporary slot we know it points to. To be consistent with
1103 the code below, we really should preserve all non-kept slots
1104 if we can't find a match, but that seems to be much too costly. */
1105 if (REG_P (x
) && REG_POINTER (x
))
1106 p
= find_temp_slot_from_address (x
);
1108 /* If X is not in memory or is at a constant address, it cannot be in
1109 a temporary slot, but it can contain something whose address was
1111 if (p
== 0 && (!MEM_P (x
) || CONSTANT_P (XEXP (x
, 0))))
1113 for (p
= *temp_slots_at_level (temp_slot_level
); p
; p
= next
)
1118 move_slot_to_level (p
, temp_slot_level
- 1);
1124 /* First see if we can find a match. */
1126 p
= find_temp_slot_from_address (XEXP (x
, 0));
1130 /* Move everything at our level whose address was taken to our new
1131 level in case we used its address. */
1132 struct temp_slot
*q
;
1134 if (p
->level
== temp_slot_level
)
1136 for (q
= *temp_slots_at_level (temp_slot_level
); q
; q
= next
)
1140 if (p
!= q
&& q
->addr_taken
)
1141 move_slot_to_level (q
, temp_slot_level
- 1);
1144 move_slot_to_level (p
, temp_slot_level
- 1);
1150 /* Otherwise, preserve all non-kept slots at this level. */
1151 for (p
= *temp_slots_at_level (temp_slot_level
); p
; p
= next
)
1156 move_slot_to_level (p
, temp_slot_level
- 1);
1160 /* Free all temporaries used so far. This is normally called at the
1161 end of generating code for a statement. */
1164 free_temp_slots (void)
1166 struct temp_slot
*p
, *next
;
1167 bool some_available
= false;
1169 for (p
= *temp_slots_at_level (temp_slot_level
); p
; p
= next
)
1175 make_slot_available (p
);
1176 some_available
= true;
1182 remove_unused_temp_slot_addresses ();
1183 combine_temp_slots ();
1187 /* Push deeper into the nesting level for stack temporaries. */
1190 push_temp_slots (void)
1195 /* Pop a temporary nesting level. All slots in use in the current level
1199 pop_temp_slots (void)
1201 struct temp_slot
*p
, *next
;
1202 bool some_available
= false;
1204 for (p
= *temp_slots_at_level (temp_slot_level
); p
; p
= next
)
1207 make_slot_available (p
);
1208 some_available
= true;
1213 remove_unused_temp_slot_addresses ();
1214 combine_temp_slots ();
1220 /* Initialize temporary slots. */
1223 init_temp_slots (void)
1225 /* We have not allocated any temporaries yet. */
1226 avail_temp_slots
= 0;
1227 used_temp_slots
= 0;
1228 temp_slot_level
= 0;
1230 /* Set up the table to map addresses to temp slots. */
1231 if (! temp_slot_address_table
)
1232 temp_slot_address_table
= htab_create_ggc (32,
1233 temp_slot_address_hash
,
1234 temp_slot_address_eq
,
1237 htab_empty (temp_slot_address_table
);
1240 /* These routines are responsible for converting virtual register references
1241 to the actual hard register references once RTL generation is complete.
1243 The following four variables are used for communication between the
1244 routines. They contain the offsets of the virtual registers from their
1245 respective hard registers. */
1247 static int in_arg_offset
;
1248 static int var_offset
;
1249 static int dynamic_offset
;
1250 static int out_arg_offset
;
1251 static int cfa_offset
;
1253 /* In most machines, the stack pointer register is equivalent to the bottom
1256 #ifndef STACK_POINTER_OFFSET
1257 #define STACK_POINTER_OFFSET 0
1260 /* If not defined, pick an appropriate default for the offset of dynamically
1261 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1262 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1264 #ifndef STACK_DYNAMIC_OFFSET
1266 /* The bottom of the stack points to the actual arguments. If
1267 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1268 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1269 stack space for register parameters is not pushed by the caller, but
1270 rather part of the fixed stack areas and hence not included in
1271 `crtl->outgoing_args_size'. Nevertheless, we must allow
1272 for it when allocating stack dynamic objects. */
1274 #if defined(REG_PARM_STACK_SPACE)
1275 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1276 ((ACCUMULATE_OUTGOING_ARGS \
1277 ? (crtl->outgoing_args_size \
1278 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1279 : REG_PARM_STACK_SPACE (FNDECL))) \
1280 : 0) + (STACK_POINTER_OFFSET))
1282 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1283 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1284 + (STACK_POINTER_OFFSET))
1289 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1290 is a virtual register, return the equivalent hard register and set the
1291 offset indirectly through the pointer. Otherwise, return 0. */
1294 instantiate_new_reg (rtx x
, HOST_WIDE_INT
*poffset
)
1297 HOST_WIDE_INT offset
;
1299 if (x
== virtual_incoming_args_rtx
)
1301 if (stack_realign_drap
)
1303 /* Replace virtual_incoming_args_rtx with internal arg
1304 pointer if DRAP is used to realign stack. */
1305 new_rtx
= crtl
->args
.internal_arg_pointer
;
1309 new_rtx
= arg_pointer_rtx
, offset
= in_arg_offset
;
1311 else if (x
== virtual_stack_vars_rtx
)
1312 new_rtx
= frame_pointer_rtx
, offset
= var_offset
;
1313 else if (x
== virtual_stack_dynamic_rtx
)
1314 new_rtx
= stack_pointer_rtx
, offset
= dynamic_offset
;
1315 else if (x
== virtual_outgoing_args_rtx
)
1316 new_rtx
= stack_pointer_rtx
, offset
= out_arg_offset
;
1317 else if (x
== virtual_cfa_rtx
)
1319 #ifdef FRAME_POINTER_CFA_OFFSET
1320 new_rtx
= frame_pointer_rtx
;
1322 new_rtx
= arg_pointer_rtx
;
1324 offset
= cfa_offset
;
1333 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1334 Instantiate any virtual registers present inside of *LOC. The expression
1335 is simplified, as much as possible, but is not to be considered "valid"
1336 in any sense implied by the target. If any change is made, set CHANGED
1340 instantiate_virtual_regs_in_rtx (rtx
*loc
, void *data
)
1342 HOST_WIDE_INT offset
;
1343 bool *changed
= (bool *) data
;
1350 switch (GET_CODE (x
))
1353 new_rtx
= instantiate_new_reg (x
, &offset
);
1356 *loc
= plus_constant (new_rtx
, offset
);
1363 new_rtx
= instantiate_new_reg (XEXP (x
, 0), &offset
);
1366 new_rtx
= plus_constant (new_rtx
, offset
);
1367 *loc
= simplify_gen_binary (PLUS
, GET_MODE (x
), new_rtx
, XEXP (x
, 1));
1373 /* FIXME -- from old code */
1374 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1375 we can commute the PLUS and SUBREG because pointers into the
1376 frame are well-behaved. */
1386 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1387 matches the predicate for insn CODE operand OPERAND. */
1390 safe_insn_predicate (int code
, int operand
, rtx x
)
1392 const struct insn_operand_data
*op_data
;
1397 op_data
= &insn_data
[code
].operand
[operand
];
1398 if (op_data
->predicate
== NULL
)
1401 return op_data
->predicate (x
, op_data
->mode
);
1404 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1405 registers present inside of insn. The result will be a valid insn. */
1408 instantiate_virtual_regs_in_insn (rtx insn
)
1410 HOST_WIDE_INT offset
;
1412 bool any_change
= false;
1413 rtx set
, new_rtx
, x
, seq
;
1415 /* There are some special cases to be handled first. */
1416 set
= single_set (insn
);
1419 /* We're allowed to assign to a virtual register. This is interpreted
1420 to mean that the underlying register gets assigned the inverse
1421 transformation. This is used, for example, in the handling of
1423 new_rtx
= instantiate_new_reg (SET_DEST (set
), &offset
);
1428 for_each_rtx (&SET_SRC (set
), instantiate_virtual_regs_in_rtx
, NULL
);
1429 x
= simplify_gen_binary (PLUS
, GET_MODE (new_rtx
), SET_SRC (set
),
1431 x
= force_operand (x
, new_rtx
);
1433 emit_move_insn (new_rtx
, x
);
1438 emit_insn_before (seq
, insn
);
1443 /* Handle a straight copy from a virtual register by generating a
1444 new add insn. The difference between this and falling through
1445 to the generic case is avoiding a new pseudo and eliminating a
1446 move insn in the initial rtl stream. */
1447 new_rtx
= instantiate_new_reg (SET_SRC (set
), &offset
);
1448 if (new_rtx
&& offset
!= 0
1449 && REG_P (SET_DEST (set
))
1450 && REGNO (SET_DEST (set
)) > LAST_VIRTUAL_REGISTER
)
1454 x
= expand_simple_binop (GET_MODE (SET_DEST (set
)), PLUS
,
1455 new_rtx
, GEN_INT (offset
), SET_DEST (set
),
1456 1, OPTAB_LIB_WIDEN
);
1457 if (x
!= SET_DEST (set
))
1458 emit_move_insn (SET_DEST (set
), x
);
1463 emit_insn_before (seq
, insn
);
1468 extract_insn (insn
);
1469 insn_code
= INSN_CODE (insn
);
1471 /* Handle a plus involving a virtual register by determining if the
1472 operands remain valid if they're modified in place. */
1473 if (GET_CODE (SET_SRC (set
)) == PLUS
1474 && recog_data
.n_operands
>= 3
1475 && recog_data
.operand_loc
[1] == &XEXP (SET_SRC (set
), 0)
1476 && recog_data
.operand_loc
[2] == &XEXP (SET_SRC (set
), 1)
1477 && CONST_INT_P (recog_data
.operand
[2])
1478 && (new_rtx
= instantiate_new_reg (recog_data
.operand
[1], &offset
)))
1480 offset
+= INTVAL (recog_data
.operand
[2]);
1482 /* If the sum is zero, then replace with a plain move. */
1484 && REG_P (SET_DEST (set
))
1485 && REGNO (SET_DEST (set
)) > LAST_VIRTUAL_REGISTER
)
1488 emit_move_insn (SET_DEST (set
), new_rtx
);
1492 emit_insn_before (seq
, insn
);
1497 x
= gen_int_mode (offset
, recog_data
.operand_mode
[2]);
1499 /* Using validate_change and apply_change_group here leaves
1500 recog_data in an invalid state. Since we know exactly what
1501 we want to check, do those two by hand. */
1502 if (safe_insn_predicate (insn_code
, 1, new_rtx
)
1503 && safe_insn_predicate (insn_code
, 2, x
))
1505 *recog_data
.operand_loc
[1] = recog_data
.operand
[1] = new_rtx
;
1506 *recog_data
.operand_loc
[2] = recog_data
.operand
[2] = x
;
1509 /* Fall through into the regular operand fixup loop in
1510 order to take care of operands other than 1 and 2. */
1516 extract_insn (insn
);
1517 insn_code
= INSN_CODE (insn
);
1520 /* In the general case, we expect virtual registers to appear only in
1521 operands, and then only as either bare registers or inside memories. */
1522 for (i
= 0; i
< recog_data
.n_operands
; ++i
)
1524 x
= recog_data
.operand
[i
];
1525 switch (GET_CODE (x
))
1529 rtx addr
= XEXP (x
, 0);
1530 bool changed
= false;
1532 for_each_rtx (&addr
, instantiate_virtual_regs_in_rtx
, &changed
);
1537 x
= replace_equiv_address (x
, addr
);
1538 /* It may happen that the address with the virtual reg
1539 was valid (e.g. based on the virtual stack reg, which might
1540 be acceptable to the predicates with all offsets), whereas
1541 the address now isn't anymore, for instance when the address
1542 is still offsetted, but the base reg isn't virtual-stack-reg
1543 anymore. Below we would do a force_reg on the whole operand,
1544 but this insn might actually only accept memory. Hence,
1545 before doing that last resort, try to reload the address into
1546 a register, so this operand stays a MEM. */
1547 if (!safe_insn_predicate (insn_code
, i
, x
))
1549 addr
= force_reg (GET_MODE (addr
), addr
);
1550 x
= replace_equiv_address (x
, addr
);
1555 emit_insn_before (seq
, insn
);
1560 new_rtx
= instantiate_new_reg (x
, &offset
);
1561 if (new_rtx
== NULL
)
1569 /* Careful, special mode predicates may have stuff in
1570 insn_data[insn_code].operand[i].mode that isn't useful
1571 to us for computing a new value. */
1572 /* ??? Recognize address_operand and/or "p" constraints
1573 to see if (plus new offset) is a valid before we put
1574 this through expand_simple_binop. */
1575 x
= expand_simple_binop (GET_MODE (x
), PLUS
, new_rtx
,
1576 GEN_INT (offset
), NULL_RTX
,
1577 1, OPTAB_LIB_WIDEN
);
1580 emit_insn_before (seq
, insn
);
1585 new_rtx
= instantiate_new_reg (SUBREG_REG (x
), &offset
);
1586 if (new_rtx
== NULL
)
1591 new_rtx
= expand_simple_binop (GET_MODE (new_rtx
), PLUS
, new_rtx
,
1592 GEN_INT (offset
), NULL_RTX
,
1593 1, OPTAB_LIB_WIDEN
);
1596 emit_insn_before (seq
, insn
);
1598 x
= simplify_gen_subreg (recog_data
.operand_mode
[i
], new_rtx
,
1599 GET_MODE (new_rtx
), SUBREG_BYTE (x
));
1607 /* At this point, X contains the new value for the operand.
1608 Validate the new value vs the insn predicate. Note that
1609 asm insns will have insn_code -1 here. */
1610 if (!safe_insn_predicate (insn_code
, i
, x
))
1615 gcc_assert (REGNO (x
) <= LAST_VIRTUAL_REGISTER
);
1616 x
= copy_to_reg (x
);
1619 x
= force_reg (insn_data
[insn_code
].operand
[i
].mode
, x
);
1623 emit_insn_before (seq
, insn
);
1626 *recog_data
.operand_loc
[i
] = recog_data
.operand
[i
] = x
;
1632 /* Propagate operand changes into the duplicates. */
1633 for (i
= 0; i
< recog_data
.n_dups
; ++i
)
1634 *recog_data
.dup_loc
[i
]
1635 = copy_rtx (recog_data
.operand
[(unsigned)recog_data
.dup_num
[i
]]);
1637 /* Force re-recognition of the instruction for validation. */
1638 INSN_CODE (insn
) = -1;
1641 if (asm_noperands (PATTERN (insn
)) >= 0)
1643 if (!check_asm_operands (PATTERN (insn
)))
1645 error_for_asm (insn
, "impossible constraint in %<asm%>");
1651 if (recog_memoized (insn
) < 0)
1652 fatal_insn_not_found (insn
);
1656 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1657 do any instantiation required. */
1660 instantiate_decl_rtl (rtx x
)
1667 /* If this is a CONCAT, recurse for the pieces. */
1668 if (GET_CODE (x
) == CONCAT
)
1670 instantiate_decl_rtl (XEXP (x
, 0));
1671 instantiate_decl_rtl (XEXP (x
, 1));
1675 /* If this is not a MEM, no need to do anything. Similarly if the
1676 address is a constant or a register that is not a virtual register. */
1681 if (CONSTANT_P (addr
)
1683 && (REGNO (addr
) < FIRST_VIRTUAL_REGISTER
1684 || REGNO (addr
) > LAST_VIRTUAL_REGISTER
)))
1687 for_each_rtx (&XEXP (x
, 0), instantiate_virtual_regs_in_rtx
, NULL
);
1690 /* Helper for instantiate_decls called via walk_tree: Process all decls
1691 in the given DECL_VALUE_EXPR. */
1694 instantiate_expr (tree
*tp
, int *walk_subtrees
, void *data ATTRIBUTE_UNUSED
)
1700 if (DECL_P (t
) && DECL_RTL_SET_P (t
))
1701 instantiate_decl_rtl (DECL_RTL (t
));
1706 /* Subroutine of instantiate_decls: Process all decls in the given
1707 BLOCK node and all its subblocks. */
1710 instantiate_decls_1 (tree let
)
1714 for (t
= BLOCK_VARS (let
); t
; t
= TREE_CHAIN (t
))
1716 if (DECL_RTL_SET_P (t
))
1717 instantiate_decl_rtl (DECL_RTL (t
));
1718 if (TREE_CODE (t
) == VAR_DECL
&& DECL_HAS_VALUE_EXPR_P (t
))
1720 tree v
= DECL_VALUE_EXPR (t
);
1721 walk_tree (&v
, instantiate_expr
, NULL
, NULL
);
1725 /* Process all subblocks. */
1726 for (t
= BLOCK_SUBBLOCKS (let
); t
; t
= BLOCK_CHAIN (t
))
1727 instantiate_decls_1 (t
);
1730 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1731 all virtual registers in their DECL_RTL's. */
1734 instantiate_decls (tree fndecl
)
1738 /* Process all parameters of the function. */
1739 for (decl
= DECL_ARGUMENTS (fndecl
); decl
; decl
= TREE_CHAIN (decl
))
1741 instantiate_decl_rtl (DECL_RTL (decl
));
1742 instantiate_decl_rtl (DECL_INCOMING_RTL (decl
));
1743 if (DECL_HAS_VALUE_EXPR_P (decl
))
1745 tree v
= DECL_VALUE_EXPR (decl
);
1746 walk_tree (&v
, instantiate_expr
, NULL
, NULL
);
1750 /* Now process all variables defined in the function or its subblocks. */
1751 instantiate_decls_1 (DECL_INITIAL (fndecl
));
1753 t
= cfun
->local_decls
;
1754 cfun
->local_decls
= NULL_TREE
;
1757 next
= TREE_CHAIN (t
);
1758 decl
= TREE_VALUE (t
);
1759 if (DECL_RTL_SET_P (decl
))
1760 instantiate_decl_rtl (DECL_RTL (decl
));
1765 /* Pass through the INSNS of function FNDECL and convert virtual register
1766 references to hard register references. */
1769 instantiate_virtual_regs (void)
1773 /* Compute the offsets to use for this function. */
1774 in_arg_offset
= FIRST_PARM_OFFSET (current_function_decl
);
1775 var_offset
= STARTING_FRAME_OFFSET
;
1776 dynamic_offset
= STACK_DYNAMIC_OFFSET (current_function_decl
);
1777 out_arg_offset
= STACK_POINTER_OFFSET
;
1778 #ifdef FRAME_POINTER_CFA_OFFSET
1779 cfa_offset
= FRAME_POINTER_CFA_OFFSET (current_function_decl
);
1781 cfa_offset
= ARG_POINTER_CFA_OFFSET (current_function_decl
);
1784 /* Initialize recognition, indicating that volatile is OK. */
1787 /* Scan through all the insns, instantiating every virtual register still
1789 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
1792 /* These patterns in the instruction stream can never be recognized.
1793 Fortunately, they shouldn't contain virtual registers either. */
1794 if (GET_CODE (PATTERN (insn
)) == USE
1795 || GET_CODE (PATTERN (insn
)) == CLOBBER
1796 || GET_CODE (PATTERN (insn
)) == ADDR_VEC
1797 || GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
1798 || GET_CODE (PATTERN (insn
)) == ASM_INPUT
)
1800 else if (DEBUG_INSN_P (insn
))
1801 for_each_rtx (&INSN_VAR_LOCATION (insn
),
1802 instantiate_virtual_regs_in_rtx
, NULL
);
1804 instantiate_virtual_regs_in_insn (insn
);
1806 if (INSN_DELETED_P (insn
))
1809 for_each_rtx (®_NOTES (insn
), instantiate_virtual_regs_in_rtx
, NULL
);
1811 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1813 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn
),
1814 instantiate_virtual_regs_in_rtx
, NULL
);
1817 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1818 instantiate_decls (current_function_decl
);
1820 targetm
.instantiate_decls ();
1822 /* Indicate that, from now on, assign_stack_local should use
1823 frame_pointer_rtx. */
1824 virtuals_instantiated
= 1;
1828 struct rtl_opt_pass pass_instantiate_virtual_regs
=
1834 instantiate_virtual_regs
, /* execute */
1837 0, /* static_pass_number */
1838 TV_NONE
, /* tv_id */
1839 0, /* properties_required */
1840 0, /* properties_provided */
1841 0, /* properties_destroyed */
1842 0, /* todo_flags_start */
1843 TODO_dump_func
/* todo_flags_finish */
1848 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1849 This means a type for which function calls must pass an address to the
1850 function or get an address back from the function.
1851 EXP may be a type node or an expression (whose type is tested). */
1854 aggregate_value_p (const_tree exp
, const_tree fntype
)
1856 int i
, regno
, nregs
;
1859 const_tree type
= (TYPE_P (exp
)) ? exp
: TREE_TYPE (exp
);
1861 /* DECL node associated with FNTYPE when relevant, which we might need to
1862 check for by-invisible-reference returns, typically for CALL_EXPR input
1864 const_tree fndecl
= NULL_TREE
;
1867 switch (TREE_CODE (fntype
))
1870 fndecl
= get_callee_fndecl (fntype
);
1872 ? TREE_TYPE (fndecl
)
1873 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype
))));
1877 fntype
= TREE_TYPE (fndecl
);
1882 case IDENTIFIER_NODE
:
1886 /* We don't expect other rtl types here. */
1890 if (TREE_CODE (type
) == VOID_TYPE
)
1893 /* If a record should be passed the same as its first (and only) member
1894 don't pass it as an aggregate. */
1895 if (TREE_CODE (type
) == RECORD_TYPE
&& TYPE_TRANSPARENT_AGGR (type
))
1896 return aggregate_value_p (first_field (type
), fntype
);
1898 /* If the front end has decided that this needs to be passed by
1899 reference, do so. */
1900 if ((TREE_CODE (exp
) == PARM_DECL
|| TREE_CODE (exp
) == RESULT_DECL
)
1901 && DECL_BY_REFERENCE (exp
))
1904 /* If the EXPression is a CALL_EXPR, honor DECL_BY_REFERENCE set on the
1905 called function RESULT_DECL, meaning the function returns in memory by
1906 invisible reference. This check lets front-ends not set TREE_ADDRESSABLE
1907 on the function type, which used to be the way to request such a return
1908 mechanism but might now be causing troubles at gimplification time if
1909 temporaries with the function type need to be created. */
1910 if (TREE_CODE (exp
) == CALL_EXPR
&& fndecl
&& DECL_RESULT (fndecl
)
1911 && DECL_BY_REFERENCE (DECL_RESULT (fndecl
)))
1914 if (targetm
.calls
.return_in_memory (type
, fntype
))
1916 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1917 and thus can't be returned in registers. */
1918 if (TREE_ADDRESSABLE (type
))
1920 if (flag_pcc_struct_return
&& AGGREGATE_TYPE_P (type
))
1922 /* Make sure we have suitable call-clobbered regs to return
1923 the value in; if not, we must return it in memory. */
1924 reg
= hard_function_value (type
, 0, fntype
, 0);
1926 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1931 regno
= REGNO (reg
);
1932 nregs
= hard_regno_nregs
[regno
][TYPE_MODE (type
)];
1933 for (i
= 0; i
< nregs
; i
++)
1934 if (! call_used_regs
[regno
+ i
])
1939 /* Return true if we should assign DECL a pseudo register; false if it
1940 should live on the local stack. */
1943 use_register_for_decl (const_tree decl
)
1945 if (!targetm
.calls
.allocate_stack_slots_for_args())
1948 /* Honor volatile. */
1949 if (TREE_SIDE_EFFECTS (decl
))
1952 /* Honor addressability. */
1953 if (TREE_ADDRESSABLE (decl
))
1956 /* Only register-like things go in registers. */
1957 if (DECL_MODE (decl
) == BLKmode
)
1960 /* If -ffloat-store specified, don't put explicit float variables
1962 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1963 propagates values across these stores, and it probably shouldn't. */
1964 if (flag_float_store
&& FLOAT_TYPE_P (TREE_TYPE (decl
)))
1967 /* If we're not interested in tracking debugging information for
1968 this decl, then we can certainly put it in a register. */
1969 if (DECL_IGNORED_P (decl
))
1975 if (!DECL_REGISTER (decl
))
1978 switch (TREE_CODE (TREE_TYPE (decl
)))
1982 case QUAL_UNION_TYPE
:
1983 /* When not optimizing, disregard register keyword for variables with
1984 types containing methods, otherwise the methods won't be callable
1985 from the debugger. */
1986 if (TYPE_METHODS (TREE_TYPE (decl
)))
1996 /* Return true if TYPE should be passed by invisible reference. */
1999 pass_by_reference (CUMULATIVE_ARGS
*ca
, enum machine_mode mode
,
2000 tree type
, bool named_arg
)
2004 /* If this type contains non-trivial constructors, then it is
2005 forbidden for the middle-end to create any new copies. */
2006 if (TREE_ADDRESSABLE (type
))
2009 /* GCC post 3.4 passes *all* variable sized types by reference. */
2010 if (!TYPE_SIZE (type
) || TREE_CODE (TYPE_SIZE (type
)) != INTEGER_CST
)
2013 /* If a record type should be passed the same as its first (and only)
2014 member, use the type and mode of that member. */
2015 if (TREE_CODE (type
) == RECORD_TYPE
&& TYPE_TRANSPARENT_AGGR (type
))
2017 type
= TREE_TYPE (first_field (type
));
2018 mode
= TYPE_MODE (type
);
2022 return targetm
.calls
.pass_by_reference (ca
, mode
, type
, named_arg
);
2025 /* Return true if TYPE, which is passed by reference, should be callee
2026 copied instead of caller copied. */
2029 reference_callee_copied (CUMULATIVE_ARGS
*ca
, enum machine_mode mode
,
2030 tree type
, bool named_arg
)
2032 if (type
&& TREE_ADDRESSABLE (type
))
2034 return targetm
.calls
.callee_copies (ca
, mode
, type
, named_arg
);
2037 /* Structures to communicate between the subroutines of assign_parms.
2038 The first holds data persistent across all parameters, the second
2039 is cleared out for each parameter. */
2041 struct assign_parm_data_all
2043 CUMULATIVE_ARGS args_so_far
;
2044 struct args_size stack_args_size
;
2045 tree function_result_decl
;
2047 rtx first_conversion_insn
;
2048 rtx last_conversion_insn
;
2049 HOST_WIDE_INT pretend_args_size
;
2050 HOST_WIDE_INT extra_pretend_bytes
;
2051 int reg_parm_stack_space
;
2054 struct assign_parm_data_one
2060 enum machine_mode nominal_mode
;
2061 enum machine_mode passed_mode
;
2062 enum machine_mode promoted_mode
;
2063 struct locate_and_pad_arg_data locate
;
2065 BOOL_BITFIELD named_arg
: 1;
2066 BOOL_BITFIELD passed_pointer
: 1;
2067 BOOL_BITFIELD on_stack
: 1;
2068 BOOL_BITFIELD loaded_in_reg
: 1;
2071 /* A subroutine of assign_parms. Initialize ALL. */
2074 assign_parms_initialize_all (struct assign_parm_data_all
*all
)
2078 memset (all
, 0, sizeof (*all
));
2080 fntype
= TREE_TYPE (current_function_decl
);
2082 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2083 INIT_CUMULATIVE_INCOMING_ARGS (all
->args_so_far
, fntype
, NULL_RTX
);
2085 INIT_CUMULATIVE_ARGS (all
->args_so_far
, fntype
, NULL_RTX
,
2086 current_function_decl
, -1);
2089 #ifdef REG_PARM_STACK_SPACE
2090 all
->reg_parm_stack_space
= REG_PARM_STACK_SPACE (current_function_decl
);
2094 /* If ARGS contains entries with complex types, split the entry into two
2095 entries of the component type. Return a new list of substitutions are
2096 needed, else the old list. */
2099 split_complex_args (VEC(tree
, heap
) **args
)
2104 for (i
= 0; VEC_iterate (tree
, *args
, i
, p
); ++i
)
2106 tree type
= TREE_TYPE (p
);
2107 if (TREE_CODE (type
) == COMPLEX_TYPE
2108 && targetm
.calls
.split_complex_arg (type
))
2111 tree subtype
= TREE_TYPE (type
);
2112 bool addressable
= TREE_ADDRESSABLE (p
);
2114 /* Rewrite the PARM_DECL's type with its component. */
2116 TREE_TYPE (p
) = subtype
;
2117 DECL_ARG_TYPE (p
) = TREE_TYPE (DECL_ARG_TYPE (p
));
2118 DECL_MODE (p
) = VOIDmode
;
2119 DECL_SIZE (p
) = NULL
;
2120 DECL_SIZE_UNIT (p
) = NULL
;
2121 /* If this arg must go in memory, put it in a pseudo here.
2122 We can't allow it to go in memory as per normal parms,
2123 because the usual place might not have the imag part
2124 adjacent to the real part. */
2125 DECL_ARTIFICIAL (p
) = addressable
;
2126 DECL_IGNORED_P (p
) = addressable
;
2127 TREE_ADDRESSABLE (p
) = 0;
2129 VEC_replace (tree
, *args
, i
, p
);
2131 /* Build a second synthetic decl. */
2132 decl
= build_decl (EXPR_LOCATION (p
),
2133 PARM_DECL
, NULL_TREE
, subtype
);
2134 DECL_ARG_TYPE (decl
) = DECL_ARG_TYPE (p
);
2135 DECL_ARTIFICIAL (decl
) = addressable
;
2136 DECL_IGNORED_P (decl
) = addressable
;
2137 layout_decl (decl
, 0);
2138 VEC_safe_insert (tree
, heap
, *args
, ++i
, decl
);
2143 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2144 the hidden struct return argument, and (abi willing) complex args.
2145 Return the new parameter list. */
2147 static VEC(tree
, heap
) *
2148 assign_parms_augmented_arg_list (struct assign_parm_data_all
*all
)
2150 tree fndecl
= current_function_decl
;
2151 tree fntype
= TREE_TYPE (fndecl
);
2152 VEC(tree
, heap
) *fnargs
= NULL
;
2155 for (arg
= DECL_ARGUMENTS (fndecl
); arg
; arg
= TREE_CHAIN (arg
))
2156 VEC_safe_push (tree
, heap
, fnargs
, arg
);
2158 all
->orig_fnargs
= DECL_ARGUMENTS (fndecl
);
2160 /* If struct value address is treated as the first argument, make it so. */
2161 if (aggregate_value_p (DECL_RESULT (fndecl
), fndecl
)
2162 && ! cfun
->returns_pcc_struct
2163 && targetm
.calls
.struct_value_rtx (TREE_TYPE (fndecl
), 1) == 0)
2165 tree type
= build_pointer_type (TREE_TYPE (fntype
));
2168 decl
= build_decl (DECL_SOURCE_LOCATION (fndecl
),
2169 PARM_DECL
, NULL_TREE
, type
);
2170 DECL_ARG_TYPE (decl
) = type
;
2171 DECL_ARTIFICIAL (decl
) = 1;
2172 DECL_IGNORED_P (decl
) = 1;
2174 TREE_CHAIN (decl
) = all
->orig_fnargs
;
2175 all
->orig_fnargs
= decl
;
2176 VEC_safe_insert (tree
, heap
, fnargs
, 0, decl
);
2178 all
->function_result_decl
= decl
;
2181 /* If the target wants to split complex arguments into scalars, do so. */
2182 if (targetm
.calls
.split_complex_arg
)
2183 split_complex_args (&fnargs
);
2188 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2189 data for the parameter. Incorporate ABI specifics such as pass-by-
2190 reference and type promotion. */
2193 assign_parm_find_data_types (struct assign_parm_data_all
*all
, tree parm
,
2194 struct assign_parm_data_one
*data
)
2196 tree nominal_type
, passed_type
;
2197 enum machine_mode nominal_mode
, passed_mode
, promoted_mode
;
2200 memset (data
, 0, sizeof (*data
));
2202 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2204 data
->named_arg
= 1; /* No variadic parms. */
2205 else if (TREE_CHAIN (parm
))
2206 data
->named_arg
= 1; /* Not the last non-variadic parm. */
2207 else if (targetm
.calls
.strict_argument_naming (&all
->args_so_far
))
2208 data
->named_arg
= 1; /* Only variadic ones are unnamed. */
2210 data
->named_arg
= 0; /* Treat as variadic. */
2212 nominal_type
= TREE_TYPE (parm
);
2213 passed_type
= DECL_ARG_TYPE (parm
);
2215 /* Look out for errors propagating this far. Also, if the parameter's
2216 type is void then its value doesn't matter. */
2217 if (TREE_TYPE (parm
) == error_mark_node
2218 /* This can happen after weird syntax errors
2219 or if an enum type is defined among the parms. */
2220 || TREE_CODE (parm
) != PARM_DECL
2221 || passed_type
== NULL
2222 || VOID_TYPE_P (nominal_type
))
2224 nominal_type
= passed_type
= void_type_node
;
2225 nominal_mode
= passed_mode
= promoted_mode
= VOIDmode
;
2229 /* Find mode of arg as it is passed, and mode of arg as it should be
2230 during execution of this function. */
2231 passed_mode
= TYPE_MODE (passed_type
);
2232 nominal_mode
= TYPE_MODE (nominal_type
);
2234 /* If the parm is to be passed as a transparent union or record, use the
2235 type of the first field for the tests below. We have already verified
2236 that the modes are the same. */
2237 if ((TREE_CODE (passed_type
) == UNION_TYPE
2238 || TREE_CODE (passed_type
) == RECORD_TYPE
)
2239 && TYPE_TRANSPARENT_AGGR (passed_type
))
2240 passed_type
= TREE_TYPE (first_field (passed_type
));
2242 /* See if this arg was passed by invisible reference. */
2243 if (pass_by_reference (&all
->args_so_far
, passed_mode
,
2244 passed_type
, data
->named_arg
))
2246 passed_type
= nominal_type
= build_pointer_type (passed_type
);
2247 data
->passed_pointer
= true;
2248 passed_mode
= nominal_mode
= Pmode
;
2251 /* Find mode as it is passed by the ABI. */
2252 unsignedp
= TYPE_UNSIGNED (passed_type
);
2253 promoted_mode
= promote_function_mode (passed_type
, passed_mode
, &unsignedp
,
2254 TREE_TYPE (current_function_decl
), 0);
2257 data
->nominal_type
= nominal_type
;
2258 data
->passed_type
= passed_type
;
2259 data
->nominal_mode
= nominal_mode
;
2260 data
->passed_mode
= passed_mode
;
2261 data
->promoted_mode
= promoted_mode
;
2264 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2267 assign_parms_setup_varargs (struct assign_parm_data_all
*all
,
2268 struct assign_parm_data_one
*data
, bool no_rtl
)
2270 int varargs_pretend_bytes
= 0;
2272 targetm
.calls
.setup_incoming_varargs (&all
->args_so_far
,
2273 data
->promoted_mode
,
2275 &varargs_pretend_bytes
, no_rtl
);
2277 /* If the back-end has requested extra stack space, record how much is
2278 needed. Do not change pretend_args_size otherwise since it may be
2279 nonzero from an earlier partial argument. */
2280 if (varargs_pretend_bytes
> 0)
2281 all
->pretend_args_size
= varargs_pretend_bytes
;
2284 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2285 the incoming location of the current parameter. */
2288 assign_parm_find_entry_rtl (struct assign_parm_data_all
*all
,
2289 struct assign_parm_data_one
*data
)
2291 HOST_WIDE_INT pretend_bytes
= 0;
2295 if (data
->promoted_mode
== VOIDmode
)
2297 data
->entry_parm
= data
->stack_parm
= const0_rtx
;
2301 #ifdef FUNCTION_INCOMING_ARG
2302 entry_parm
= FUNCTION_INCOMING_ARG (all
->args_so_far
, data
->promoted_mode
,
2303 data
->passed_type
, data
->named_arg
);
2305 entry_parm
= FUNCTION_ARG (all
->args_so_far
, data
->promoted_mode
,
2306 data
->passed_type
, data
->named_arg
);
2309 if (entry_parm
== 0)
2310 data
->promoted_mode
= data
->passed_mode
;
2312 /* Determine parm's home in the stack, in case it arrives in the stack
2313 or we should pretend it did. Compute the stack position and rtx where
2314 the argument arrives and its size.
2316 There is one complexity here: If this was a parameter that would
2317 have been passed in registers, but wasn't only because it is
2318 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2319 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2320 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2321 as it was the previous time. */
2322 in_regs
= entry_parm
!= 0;
2323 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2326 if (!in_regs
&& !data
->named_arg
)
2328 if (targetm
.calls
.pretend_outgoing_varargs_named (&all
->args_so_far
))
2331 #ifdef FUNCTION_INCOMING_ARG
2332 tem
= FUNCTION_INCOMING_ARG (all
->args_so_far
, data
->promoted_mode
,
2333 data
->passed_type
, true);
2335 tem
= FUNCTION_ARG (all
->args_so_far
, data
->promoted_mode
,
2336 data
->passed_type
, true);
2338 in_regs
= tem
!= NULL
;
2342 /* If this parameter was passed both in registers and in the stack, use
2343 the copy on the stack. */
2344 if (targetm
.calls
.must_pass_in_stack (data
->promoted_mode
,
2352 partial
= targetm
.calls
.arg_partial_bytes (&all
->args_so_far
,
2353 data
->promoted_mode
,
2356 data
->partial
= partial
;
2358 /* The caller might already have allocated stack space for the
2359 register parameters. */
2360 if (partial
!= 0 && all
->reg_parm_stack_space
== 0)
2362 /* Part of this argument is passed in registers and part
2363 is passed on the stack. Ask the prologue code to extend
2364 the stack part so that we can recreate the full value.
2366 PRETEND_BYTES is the size of the registers we need to store.
2367 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2368 stack space that the prologue should allocate.
2370 Internally, gcc assumes that the argument pointer is aligned
2371 to STACK_BOUNDARY bits. This is used both for alignment
2372 optimizations (see init_emit) and to locate arguments that are
2373 aligned to more than PARM_BOUNDARY bits. We must preserve this
2374 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2375 a stack boundary. */
2377 /* We assume at most one partial arg, and it must be the first
2378 argument on the stack. */
2379 gcc_assert (!all
->extra_pretend_bytes
&& !all
->pretend_args_size
);
2381 pretend_bytes
= partial
;
2382 all
->pretend_args_size
= CEIL_ROUND (pretend_bytes
, STACK_BYTES
);
2384 /* We want to align relative to the actual stack pointer, so
2385 don't include this in the stack size until later. */
2386 all
->extra_pretend_bytes
= all
->pretend_args_size
;
2390 locate_and_pad_parm (data
->promoted_mode
, data
->passed_type
, in_regs
,
2391 entry_parm
? data
->partial
: 0, current_function_decl
,
2392 &all
->stack_args_size
, &data
->locate
);
2394 /* Update parm_stack_boundary if this parameter is passed in the
2396 if (!in_regs
&& crtl
->parm_stack_boundary
< data
->locate
.boundary
)
2397 crtl
->parm_stack_boundary
= data
->locate
.boundary
;
2399 /* Adjust offsets to include the pretend args. */
2400 pretend_bytes
= all
->extra_pretend_bytes
- pretend_bytes
;
2401 data
->locate
.slot_offset
.constant
+= pretend_bytes
;
2402 data
->locate
.offset
.constant
+= pretend_bytes
;
2404 data
->entry_parm
= entry_parm
;
2407 /* A subroutine of assign_parms. If there is actually space on the stack
2408 for this parm, count it in stack_args_size and return true. */
2411 assign_parm_is_stack_parm (struct assign_parm_data_all
*all
,
2412 struct assign_parm_data_one
*data
)
2414 /* Trivially true if we've no incoming register. */
2415 if (data
->entry_parm
== NULL
)
2417 /* Also true if we're partially in registers and partially not,
2418 since we've arranged to drop the entire argument on the stack. */
2419 else if (data
->partial
!= 0)
2421 /* Also true if the target says that it's passed in both registers
2422 and on the stack. */
2423 else if (GET_CODE (data
->entry_parm
) == PARALLEL
2424 && XEXP (XVECEXP (data
->entry_parm
, 0, 0), 0) == NULL_RTX
)
2426 /* Also true if the target says that there's stack allocated for
2427 all register parameters. */
2428 else if (all
->reg_parm_stack_space
> 0)
2430 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2434 all
->stack_args_size
.constant
+= data
->locate
.size
.constant
;
2435 if (data
->locate
.size
.var
)
2436 ADD_PARM_SIZE (all
->stack_args_size
, data
->locate
.size
.var
);
2441 /* A subroutine of assign_parms. Given that this parameter is allocated
2442 stack space by the ABI, find it. */
2445 assign_parm_find_stack_rtl (tree parm
, struct assign_parm_data_one
*data
)
2447 rtx offset_rtx
, stack_parm
;
2448 unsigned int align
, boundary
;
2450 /* If we're passing this arg using a reg, make its stack home the
2451 aligned stack slot. */
2452 if (data
->entry_parm
)
2453 offset_rtx
= ARGS_SIZE_RTX (data
->locate
.slot_offset
);
2455 offset_rtx
= ARGS_SIZE_RTX (data
->locate
.offset
);
2457 stack_parm
= crtl
->args
.internal_arg_pointer
;
2458 if (offset_rtx
!= const0_rtx
)
2459 stack_parm
= gen_rtx_PLUS (Pmode
, stack_parm
, offset_rtx
);
2460 stack_parm
= gen_rtx_MEM (data
->promoted_mode
, stack_parm
);
2462 if (!data
->passed_pointer
)
2464 set_mem_attributes (stack_parm
, parm
, 1);
2465 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2466 while promoted mode's size is needed. */
2467 if (data
->promoted_mode
!= BLKmode
2468 && data
->promoted_mode
!= DECL_MODE (parm
))
2470 set_mem_size (stack_parm
,
2471 GEN_INT (GET_MODE_SIZE (data
->promoted_mode
)));
2472 if (MEM_EXPR (stack_parm
) && MEM_OFFSET (stack_parm
))
2474 int offset
= subreg_lowpart_offset (DECL_MODE (parm
),
2475 data
->promoted_mode
);
2477 set_mem_offset (stack_parm
,
2478 plus_constant (MEM_OFFSET (stack_parm
),
2484 boundary
= data
->locate
.boundary
;
2485 align
= BITS_PER_UNIT
;
2487 /* If we're padding upward, we know that the alignment of the slot
2488 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2489 intentionally forcing upward padding. Otherwise we have to come
2490 up with a guess at the alignment based on OFFSET_RTX. */
2491 if (data
->locate
.where_pad
!= downward
|| data
->entry_parm
)
2493 else if (CONST_INT_P (offset_rtx
))
2495 align
= INTVAL (offset_rtx
) * BITS_PER_UNIT
| boundary
;
2496 align
= align
& -align
;
2498 set_mem_align (stack_parm
, align
);
2500 if (data
->entry_parm
)
2501 set_reg_attrs_for_parm (data
->entry_parm
, stack_parm
);
2503 data
->stack_parm
= stack_parm
;
2506 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2507 always valid and contiguous. */
2510 assign_parm_adjust_entry_rtl (struct assign_parm_data_one
*data
)
2512 rtx entry_parm
= data
->entry_parm
;
2513 rtx stack_parm
= data
->stack_parm
;
2515 /* If this parm was passed part in regs and part in memory, pretend it
2516 arrived entirely in memory by pushing the register-part onto the stack.
2517 In the special case of a DImode or DFmode that is split, we could put
2518 it together in a pseudoreg directly, but for now that's not worth
2520 if (data
->partial
!= 0)
2522 /* Handle calls that pass values in multiple non-contiguous
2523 locations. The Irix 6 ABI has examples of this. */
2524 if (GET_CODE (entry_parm
) == PARALLEL
)
2525 emit_group_store (validize_mem (stack_parm
), entry_parm
,
2527 int_size_in_bytes (data
->passed_type
));
2530 gcc_assert (data
->partial
% UNITS_PER_WORD
== 0);
2531 move_block_from_reg (REGNO (entry_parm
), validize_mem (stack_parm
),
2532 data
->partial
/ UNITS_PER_WORD
);
2535 entry_parm
= stack_parm
;
2538 /* If we didn't decide this parm came in a register, by default it came
2540 else if (entry_parm
== NULL
)
2541 entry_parm
= stack_parm
;
2543 /* When an argument is passed in multiple locations, we can't make use
2544 of this information, but we can save some copying if the whole argument
2545 is passed in a single register. */
2546 else if (GET_CODE (entry_parm
) == PARALLEL
2547 && data
->nominal_mode
!= BLKmode
2548 && data
->passed_mode
!= BLKmode
)
2550 size_t i
, len
= XVECLEN (entry_parm
, 0);
2552 for (i
= 0; i
< len
; i
++)
2553 if (XEXP (XVECEXP (entry_parm
, 0, i
), 0) != NULL_RTX
2554 && REG_P (XEXP (XVECEXP (entry_parm
, 0, i
), 0))
2555 && (GET_MODE (XEXP (XVECEXP (entry_parm
, 0, i
), 0))
2556 == data
->passed_mode
)
2557 && INTVAL (XEXP (XVECEXP (entry_parm
, 0, i
), 1)) == 0)
2559 entry_parm
= XEXP (XVECEXP (entry_parm
, 0, i
), 0);
2564 data
->entry_parm
= entry_parm
;
2567 /* A subroutine of assign_parms. Reconstitute any values which were
2568 passed in multiple registers and would fit in a single register. */
2571 assign_parm_remove_parallels (struct assign_parm_data_one
*data
)
2573 rtx entry_parm
= data
->entry_parm
;
2575 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2576 This can be done with register operations rather than on the
2577 stack, even if we will store the reconstituted parameter on the
2579 if (GET_CODE (entry_parm
) == PARALLEL
&& GET_MODE (entry_parm
) != BLKmode
)
2581 rtx parmreg
= gen_reg_rtx (GET_MODE (entry_parm
));
2582 emit_group_store (parmreg
, entry_parm
, data
->passed_type
,
2583 GET_MODE_SIZE (GET_MODE (entry_parm
)));
2584 entry_parm
= parmreg
;
2587 data
->entry_parm
= entry_parm
;
2590 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2591 always valid and properly aligned. */
2594 assign_parm_adjust_stack_rtl (struct assign_parm_data_one
*data
)
2596 rtx stack_parm
= data
->stack_parm
;
2598 /* If we can't trust the parm stack slot to be aligned enough for its
2599 ultimate type, don't use that slot after entry. We'll make another
2600 stack slot, if we need one. */
2602 && ((STRICT_ALIGNMENT
2603 && GET_MODE_ALIGNMENT (data
->nominal_mode
) > MEM_ALIGN (stack_parm
))
2604 || (data
->nominal_type
2605 && TYPE_ALIGN (data
->nominal_type
) > MEM_ALIGN (stack_parm
)
2606 && MEM_ALIGN (stack_parm
) < PREFERRED_STACK_BOUNDARY
)))
2609 /* If parm was passed in memory, and we need to convert it on entry,
2610 don't store it back in that same slot. */
2611 else if (data
->entry_parm
== stack_parm
2612 && data
->nominal_mode
!= BLKmode
2613 && data
->nominal_mode
!= data
->passed_mode
)
2616 /* If stack protection is in effect for this function, don't leave any
2617 pointers in their passed stack slots. */
2618 else if (crtl
->stack_protect_guard
2619 && (flag_stack_protect
== 2
2620 || data
->passed_pointer
2621 || POINTER_TYPE_P (data
->nominal_type
)))
2624 data
->stack_parm
= stack_parm
;
2627 /* A subroutine of assign_parms. Return true if the current parameter
2628 should be stored as a BLKmode in the current frame. */
2631 assign_parm_setup_block_p (struct assign_parm_data_one
*data
)
2633 if (data
->nominal_mode
== BLKmode
)
2635 if (GET_MODE (data
->entry_parm
) == BLKmode
)
2638 #ifdef BLOCK_REG_PADDING
2639 /* Only assign_parm_setup_block knows how to deal with register arguments
2640 that are padded at the least significant end. */
2641 if (REG_P (data
->entry_parm
)
2642 && GET_MODE_SIZE (data
->promoted_mode
) < UNITS_PER_WORD
2643 && (BLOCK_REG_PADDING (data
->passed_mode
, data
->passed_type
, 1)
2644 == (BYTES_BIG_ENDIAN
? upward
: downward
)))
2651 /* A subroutine of assign_parms. Arrange for the parameter to be
2652 present and valid in DATA->STACK_RTL. */
2655 assign_parm_setup_block (struct assign_parm_data_all
*all
,
2656 tree parm
, struct assign_parm_data_one
*data
)
2658 rtx entry_parm
= data
->entry_parm
;
2659 rtx stack_parm
= data
->stack_parm
;
2661 HOST_WIDE_INT size_stored
;
2663 if (GET_CODE (entry_parm
) == PARALLEL
)
2664 entry_parm
= emit_group_move_into_temps (entry_parm
);
2666 size
= int_size_in_bytes (data
->passed_type
);
2667 size_stored
= CEIL_ROUND (size
, UNITS_PER_WORD
);
2668 if (stack_parm
== 0)
2670 DECL_ALIGN (parm
) = MAX (DECL_ALIGN (parm
), BITS_PER_WORD
);
2671 stack_parm
= assign_stack_local (BLKmode
, size_stored
,
2673 if (GET_MODE_SIZE (GET_MODE (entry_parm
)) == size
)
2674 PUT_MODE (stack_parm
, GET_MODE (entry_parm
));
2675 set_mem_attributes (stack_parm
, parm
, 1);
2678 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2679 calls that pass values in multiple non-contiguous locations. */
2680 if (REG_P (entry_parm
) || GET_CODE (entry_parm
) == PARALLEL
)
2684 /* Note that we will be storing an integral number of words.
2685 So we have to be careful to ensure that we allocate an
2686 integral number of words. We do this above when we call
2687 assign_stack_local if space was not allocated in the argument
2688 list. If it was, this will not work if PARM_BOUNDARY is not
2689 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2690 if it becomes a problem. Exception is when BLKmode arrives
2691 with arguments not conforming to word_mode. */
2693 if (data
->stack_parm
== 0)
2695 else if (GET_CODE (entry_parm
) == PARALLEL
)
2698 gcc_assert (!size
|| !(PARM_BOUNDARY
% BITS_PER_WORD
));
2700 mem
= validize_mem (stack_parm
);
2702 /* Handle values in multiple non-contiguous locations. */
2703 if (GET_CODE (entry_parm
) == PARALLEL
)
2705 push_to_sequence2 (all
->first_conversion_insn
,
2706 all
->last_conversion_insn
);
2707 emit_group_store (mem
, entry_parm
, data
->passed_type
, size
);
2708 all
->first_conversion_insn
= get_insns ();
2709 all
->last_conversion_insn
= get_last_insn ();
2716 /* If SIZE is that of a mode no bigger than a word, just use
2717 that mode's store operation. */
2718 else if (size
<= UNITS_PER_WORD
)
2720 enum machine_mode mode
2721 = mode_for_size (size
* BITS_PER_UNIT
, MODE_INT
, 0);
2724 #ifdef BLOCK_REG_PADDING
2725 && (size
== UNITS_PER_WORD
2726 || (BLOCK_REG_PADDING (mode
, data
->passed_type
, 1)
2727 != (BYTES_BIG_ENDIAN
? upward
: downward
)))
2733 /* We are really truncating a word_mode value containing
2734 SIZE bytes into a value of mode MODE. If such an
2735 operation requires no actual instructions, we can refer
2736 to the value directly in mode MODE, otherwise we must
2737 start with the register in word_mode and explicitly
2739 if (TRULY_NOOP_TRUNCATION (size
* BITS_PER_UNIT
, BITS_PER_WORD
))
2740 reg
= gen_rtx_REG (mode
, REGNO (entry_parm
));
2743 reg
= gen_rtx_REG (word_mode
, REGNO (entry_parm
));
2744 reg
= convert_to_mode (mode
, copy_to_reg (reg
), 1);
2746 emit_move_insn (change_address (mem
, mode
, 0), reg
);
2749 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2750 machine must be aligned to the left before storing
2751 to memory. Note that the previous test doesn't
2752 handle all cases (e.g. SIZE == 3). */
2753 else if (size
!= UNITS_PER_WORD
2754 #ifdef BLOCK_REG_PADDING
2755 && (BLOCK_REG_PADDING (mode
, data
->passed_type
, 1)
2763 int by
= (UNITS_PER_WORD
- size
) * BITS_PER_UNIT
;
2764 rtx reg
= gen_rtx_REG (word_mode
, REGNO (entry_parm
));
2766 x
= expand_shift (LSHIFT_EXPR
, word_mode
, reg
,
2767 build_int_cst (NULL_TREE
, by
),
2769 tem
= change_address (mem
, word_mode
, 0);
2770 emit_move_insn (tem
, x
);
2773 move_block_from_reg (REGNO (entry_parm
), mem
,
2774 size_stored
/ UNITS_PER_WORD
);
2777 move_block_from_reg (REGNO (entry_parm
), mem
,
2778 size_stored
/ UNITS_PER_WORD
);
2780 else if (data
->stack_parm
== 0)
2782 push_to_sequence2 (all
->first_conversion_insn
, all
->last_conversion_insn
);
2783 emit_block_move (stack_parm
, data
->entry_parm
, GEN_INT (size
),
2785 all
->first_conversion_insn
= get_insns ();
2786 all
->last_conversion_insn
= get_last_insn ();
2790 data
->stack_parm
= stack_parm
;
2791 SET_DECL_RTL (parm
, stack_parm
);
2794 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2795 parameter. Get it there. Perform all ABI specified conversions. */
2798 assign_parm_setup_reg (struct assign_parm_data_all
*all
, tree parm
,
2799 struct assign_parm_data_one
*data
)
2802 enum machine_mode promoted_nominal_mode
;
2803 int unsignedp
= TYPE_UNSIGNED (TREE_TYPE (parm
));
2804 bool did_conversion
= false;
2806 /* Store the parm in a pseudoregister during the function, but we may
2807 need to do it in a wider mode. Using 2 here makes the result
2808 consistent with promote_decl_mode and thus expand_expr_real_1. */
2809 promoted_nominal_mode
2810 = promote_function_mode (data
->nominal_type
, data
->nominal_mode
, &unsignedp
,
2811 TREE_TYPE (current_function_decl
), 2);
2813 parmreg
= gen_reg_rtx (promoted_nominal_mode
);
2815 if (!DECL_ARTIFICIAL (parm
))
2816 mark_user_reg (parmreg
);
2818 /* If this was an item that we received a pointer to,
2819 set DECL_RTL appropriately. */
2820 if (data
->passed_pointer
)
2822 rtx x
= gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data
->passed_type
)), parmreg
);
2823 set_mem_attributes (x
, parm
, 1);
2824 SET_DECL_RTL (parm
, x
);
2827 SET_DECL_RTL (parm
, parmreg
);
2829 assign_parm_remove_parallels (data
);
2831 /* Copy the value into the register, thus bridging between
2832 assign_parm_find_data_types and expand_expr_real_1. */
2833 if (data
->nominal_mode
!= data
->passed_mode
2834 || promoted_nominal_mode
!= data
->promoted_mode
)
2838 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2839 mode, by the caller. We now have to convert it to
2840 NOMINAL_MODE, if different. However, PARMREG may be in
2841 a different mode than NOMINAL_MODE if it is being stored
2844 If ENTRY_PARM is a hard register, it might be in a register
2845 not valid for operating in its mode (e.g., an odd-numbered
2846 register for a DFmode). In that case, moves are the only
2847 thing valid, so we can't do a convert from there. This
2848 occurs when the calling sequence allow such misaligned
2851 In addition, the conversion may involve a call, which could
2852 clobber parameters which haven't been copied to pseudo
2853 registers yet. Therefore, we must first copy the parm to
2854 a pseudo reg here, and save the conversion until after all
2855 parameters have been moved. */
2857 rtx tempreg
= gen_reg_rtx (GET_MODE (data
->entry_parm
));
2859 emit_move_insn (tempreg
, validize_mem (data
->entry_parm
));
2861 push_to_sequence2 (all
->first_conversion_insn
, all
->last_conversion_insn
);
2862 tempreg
= convert_to_mode (data
->nominal_mode
, tempreg
, unsignedp
);
2864 if (GET_CODE (tempreg
) == SUBREG
2865 && GET_MODE (tempreg
) == data
->nominal_mode
2866 && REG_P (SUBREG_REG (tempreg
))
2867 && data
->nominal_mode
== data
->passed_mode
2868 && GET_MODE (SUBREG_REG (tempreg
)) == GET_MODE (data
->entry_parm
)
2869 && GET_MODE_SIZE (GET_MODE (tempreg
))
2870 < GET_MODE_SIZE (GET_MODE (data
->entry_parm
)))
2872 /* The argument is already sign/zero extended, so note it
2874 SUBREG_PROMOTED_VAR_P (tempreg
) = 1;
2875 SUBREG_PROMOTED_UNSIGNED_SET (tempreg
, unsignedp
);
2878 /* TREE_USED gets set erroneously during expand_assignment. */
2879 save_tree_used
= TREE_USED (parm
);
2880 expand_assignment (parm
, make_tree (data
->nominal_type
, tempreg
), false);
2881 TREE_USED (parm
) = save_tree_used
;
2882 all
->first_conversion_insn
= get_insns ();
2883 all
->last_conversion_insn
= get_last_insn ();
2886 did_conversion
= true;
2889 emit_move_insn (parmreg
, validize_mem (data
->entry_parm
));
2891 /* If we were passed a pointer but the actual value can safely live
2892 in a register, put it in one. */
2893 if (data
->passed_pointer
2894 && TYPE_MODE (TREE_TYPE (parm
)) != BLKmode
2895 /* If by-reference argument was promoted, demote it. */
2896 && (TYPE_MODE (TREE_TYPE (parm
)) != GET_MODE (DECL_RTL (parm
))
2897 || use_register_for_decl (parm
)))
2899 /* We can't use nominal_mode, because it will have been set to
2900 Pmode above. We must use the actual mode of the parm. */
2901 parmreg
= gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm
)));
2902 mark_user_reg (parmreg
);
2904 if (GET_MODE (parmreg
) != GET_MODE (DECL_RTL (parm
)))
2906 rtx tempreg
= gen_reg_rtx (GET_MODE (DECL_RTL (parm
)));
2907 int unsigned_p
= TYPE_UNSIGNED (TREE_TYPE (parm
));
2909 push_to_sequence2 (all
->first_conversion_insn
,
2910 all
->last_conversion_insn
);
2911 emit_move_insn (tempreg
, DECL_RTL (parm
));
2912 tempreg
= convert_to_mode (GET_MODE (parmreg
), tempreg
, unsigned_p
);
2913 emit_move_insn (parmreg
, tempreg
);
2914 all
->first_conversion_insn
= get_insns ();
2915 all
->last_conversion_insn
= get_last_insn ();
2918 did_conversion
= true;
2921 emit_move_insn (parmreg
, DECL_RTL (parm
));
2923 SET_DECL_RTL (parm
, parmreg
);
2925 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2927 data
->stack_parm
= NULL
;
2930 /* Mark the register as eliminable if we did no conversion and it was
2931 copied from memory at a fixed offset, and the arg pointer was not
2932 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2933 offset formed an invalid address, such memory-equivalences as we
2934 make here would screw up life analysis for it. */
2935 if (data
->nominal_mode
== data
->passed_mode
2937 && data
->stack_parm
!= 0
2938 && MEM_P (data
->stack_parm
)
2939 && data
->locate
.offset
.var
== 0
2940 && reg_mentioned_p (virtual_incoming_args_rtx
,
2941 XEXP (data
->stack_parm
, 0)))
2943 rtx linsn
= get_last_insn ();
2946 /* Mark complex types separately. */
2947 if (GET_CODE (parmreg
) == CONCAT
)
2949 enum machine_mode submode
2950 = GET_MODE_INNER (GET_MODE (parmreg
));
2951 int regnor
= REGNO (XEXP (parmreg
, 0));
2952 int regnoi
= REGNO (XEXP (parmreg
, 1));
2953 rtx stackr
= adjust_address_nv (data
->stack_parm
, submode
, 0);
2954 rtx stacki
= adjust_address_nv (data
->stack_parm
, submode
,
2955 GET_MODE_SIZE (submode
));
2957 /* Scan backwards for the set of the real and
2959 for (sinsn
= linsn
; sinsn
!= 0;
2960 sinsn
= prev_nonnote_insn (sinsn
))
2962 set
= single_set (sinsn
);
2966 if (SET_DEST (set
) == regno_reg_rtx
[regnoi
])
2967 set_unique_reg_note (sinsn
, REG_EQUIV
, stacki
);
2968 else if (SET_DEST (set
) == regno_reg_rtx
[regnor
])
2969 set_unique_reg_note (sinsn
, REG_EQUIV
, stackr
);
2972 else if ((set
= single_set (linsn
)) != 0
2973 && SET_DEST (set
) == parmreg
)
2974 set_unique_reg_note (linsn
, REG_EQUIV
, data
->stack_parm
);
2977 /* For pointer data type, suggest pointer register. */
2978 if (POINTER_TYPE_P (TREE_TYPE (parm
)))
2979 mark_reg_pointer (parmreg
,
2980 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm
))));
2983 /* A subroutine of assign_parms. Allocate stack space to hold the current
2984 parameter. Get it there. Perform all ABI specified conversions. */
2987 assign_parm_setup_stack (struct assign_parm_data_all
*all
, tree parm
,
2988 struct assign_parm_data_one
*data
)
2990 /* Value must be stored in the stack slot STACK_PARM during function
2992 bool to_conversion
= false;
2994 assign_parm_remove_parallels (data
);
2996 if (data
->promoted_mode
!= data
->nominal_mode
)
2998 /* Conversion is required. */
2999 rtx tempreg
= gen_reg_rtx (GET_MODE (data
->entry_parm
));
3001 emit_move_insn (tempreg
, validize_mem (data
->entry_parm
));
3003 push_to_sequence2 (all
->first_conversion_insn
, all
->last_conversion_insn
);
3004 to_conversion
= true;
3006 data
->entry_parm
= convert_to_mode (data
->nominal_mode
, tempreg
,
3007 TYPE_UNSIGNED (TREE_TYPE (parm
)));
3009 if (data
->stack_parm
)
3011 int offset
= subreg_lowpart_offset (data
->nominal_mode
,
3012 GET_MODE (data
->stack_parm
));
3013 /* ??? This may need a big-endian conversion on sparc64. */
3015 = adjust_address (data
->stack_parm
, data
->nominal_mode
, 0);
3016 if (offset
&& MEM_OFFSET (data
->stack_parm
))
3017 set_mem_offset (data
->stack_parm
,
3018 plus_constant (MEM_OFFSET (data
->stack_parm
),
3023 if (data
->entry_parm
!= data
->stack_parm
)
3027 if (data
->stack_parm
== 0)
3029 int align
= STACK_SLOT_ALIGNMENT (data
->passed_type
,
3030 GET_MODE (data
->entry_parm
),
3031 TYPE_ALIGN (data
->passed_type
));
3033 = assign_stack_local (GET_MODE (data
->entry_parm
),
3034 GET_MODE_SIZE (GET_MODE (data
->entry_parm
)),
3036 set_mem_attributes (data
->stack_parm
, parm
, 1);
3039 dest
= validize_mem (data
->stack_parm
);
3040 src
= validize_mem (data
->entry_parm
);
3044 /* Use a block move to handle potentially misaligned entry_parm. */
3046 push_to_sequence2 (all
->first_conversion_insn
,
3047 all
->last_conversion_insn
);
3048 to_conversion
= true;
3050 emit_block_move (dest
, src
,
3051 GEN_INT (int_size_in_bytes (data
->passed_type
)),
3055 emit_move_insn (dest
, src
);
3060 all
->first_conversion_insn
= get_insns ();
3061 all
->last_conversion_insn
= get_last_insn ();
3065 SET_DECL_RTL (parm
, data
->stack_parm
);
3068 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3069 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3072 assign_parms_unsplit_complex (struct assign_parm_data_all
*all
,
3073 VEC(tree
, heap
) *fnargs
)
3076 tree orig_fnargs
= all
->orig_fnargs
;
3079 for (parm
= orig_fnargs
; parm
; parm
= TREE_CHAIN (parm
), ++i
)
3081 if (TREE_CODE (TREE_TYPE (parm
)) == COMPLEX_TYPE
3082 && targetm
.calls
.split_complex_arg (TREE_TYPE (parm
)))
3084 rtx tmp
, real
, imag
;
3085 enum machine_mode inner
= GET_MODE_INNER (DECL_MODE (parm
));
3087 real
= DECL_RTL (VEC_index (tree
, fnargs
, i
));
3088 imag
= DECL_RTL (VEC_index (tree
, fnargs
, i
+ 1));
3089 if (inner
!= GET_MODE (real
))
3091 real
= gen_lowpart_SUBREG (inner
, real
);
3092 imag
= gen_lowpart_SUBREG (inner
, imag
);
3095 if (TREE_ADDRESSABLE (parm
))
3098 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (parm
));
3099 int align
= STACK_SLOT_ALIGNMENT (TREE_TYPE (parm
),
3101 TYPE_ALIGN (TREE_TYPE (parm
)));
3103 /* split_complex_arg put the real and imag parts in
3104 pseudos. Move them to memory. */
3105 tmp
= assign_stack_local (DECL_MODE (parm
), size
, align
);
3106 set_mem_attributes (tmp
, parm
, 1);
3107 rmem
= adjust_address_nv (tmp
, inner
, 0);
3108 imem
= adjust_address_nv (tmp
, inner
, GET_MODE_SIZE (inner
));
3109 push_to_sequence2 (all
->first_conversion_insn
,
3110 all
->last_conversion_insn
);
3111 emit_move_insn (rmem
, real
);
3112 emit_move_insn (imem
, imag
);
3113 all
->first_conversion_insn
= get_insns ();
3114 all
->last_conversion_insn
= get_last_insn ();
3118 tmp
= gen_rtx_CONCAT (DECL_MODE (parm
), real
, imag
);
3119 SET_DECL_RTL (parm
, tmp
);
3121 real
= DECL_INCOMING_RTL (VEC_index (tree
, fnargs
, i
));
3122 imag
= DECL_INCOMING_RTL (VEC_index (tree
, fnargs
, i
+ 1));
3123 if (inner
!= GET_MODE (real
))
3125 real
= gen_lowpart_SUBREG (inner
, real
);
3126 imag
= gen_lowpart_SUBREG (inner
, imag
);
3128 tmp
= gen_rtx_CONCAT (DECL_MODE (parm
), real
, imag
);
3129 set_decl_incoming_rtl (parm
, tmp
, false);
3135 /* Assign RTL expressions to the function's parameters. This may involve
3136 copying them into registers and using those registers as the DECL_RTL. */
3139 assign_parms (tree fndecl
)
3141 struct assign_parm_data_all all
;
3143 VEC(tree
, heap
) *fnargs
;
3146 crtl
->args
.internal_arg_pointer
3147 = targetm
.calls
.internal_arg_pointer ();
3149 assign_parms_initialize_all (&all
);
3150 fnargs
= assign_parms_augmented_arg_list (&all
);
3152 for (i
= 0; VEC_iterate (tree
, fnargs
, i
, parm
); ++i
)
3154 struct assign_parm_data_one data
;
3156 /* Extract the type of PARM; adjust it according to ABI. */
3157 assign_parm_find_data_types (&all
, parm
, &data
);
3159 /* Early out for errors and void parameters. */
3160 if (data
.passed_mode
== VOIDmode
)
3162 SET_DECL_RTL (parm
, const0_rtx
);
3163 DECL_INCOMING_RTL (parm
) = DECL_RTL (parm
);
3167 /* Estimate stack alignment from parameter alignment. */
3168 if (SUPPORTS_STACK_ALIGNMENT
)
3170 unsigned int align
= FUNCTION_ARG_BOUNDARY (data
.promoted_mode
,
3172 align
= MINIMUM_ALIGNMENT (data
.passed_type
, data
.promoted_mode
,
3174 if (TYPE_ALIGN (data
.nominal_type
) > align
)
3175 align
= MINIMUM_ALIGNMENT (data
.nominal_type
,
3176 TYPE_MODE (data
.nominal_type
),
3177 TYPE_ALIGN (data
.nominal_type
));
3178 if (crtl
->stack_alignment_estimated
< align
)
3180 gcc_assert (!crtl
->stack_realign_processed
);
3181 crtl
->stack_alignment_estimated
= align
;
3185 if (cfun
->stdarg
&& !TREE_CHAIN (parm
))
3186 assign_parms_setup_varargs (&all
, &data
, false);
3188 /* Find out where the parameter arrives in this function. */
3189 assign_parm_find_entry_rtl (&all
, &data
);
3191 /* Find out where stack space for this parameter might be. */
3192 if (assign_parm_is_stack_parm (&all
, &data
))
3194 assign_parm_find_stack_rtl (parm
, &data
);
3195 assign_parm_adjust_entry_rtl (&data
);
3198 /* Record permanently how this parm was passed. */
3199 set_decl_incoming_rtl (parm
, data
.entry_parm
, data
.passed_pointer
);
3201 /* Update info on where next arg arrives in registers. */
3202 FUNCTION_ARG_ADVANCE (all
.args_so_far
, data
.promoted_mode
,
3203 data
.passed_type
, data
.named_arg
);
3205 assign_parm_adjust_stack_rtl (&data
);
3207 if (assign_parm_setup_block_p (&data
))
3208 assign_parm_setup_block (&all
, parm
, &data
);
3209 else if (data
.passed_pointer
|| use_register_for_decl (parm
))
3210 assign_parm_setup_reg (&all
, parm
, &data
);
3212 assign_parm_setup_stack (&all
, parm
, &data
);
3215 if (targetm
.calls
.split_complex_arg
)
3216 assign_parms_unsplit_complex (&all
, fnargs
);
3218 VEC_free (tree
, heap
, fnargs
);
3220 /* Output all parameter conversion instructions (possibly including calls)
3221 now that all parameters have been copied out of hard registers. */
3222 emit_insn (all
.first_conversion_insn
);
3224 /* Estimate reload stack alignment from scalar return mode. */
3225 if (SUPPORTS_STACK_ALIGNMENT
)
3227 if (DECL_RESULT (fndecl
))
3229 tree type
= TREE_TYPE (DECL_RESULT (fndecl
));
3230 enum machine_mode mode
= TYPE_MODE (type
);
3234 && !AGGREGATE_TYPE_P (type
))
3236 unsigned int align
= GET_MODE_ALIGNMENT (mode
);
3237 if (crtl
->stack_alignment_estimated
< align
)
3239 gcc_assert (!crtl
->stack_realign_processed
);
3240 crtl
->stack_alignment_estimated
= align
;
3246 /* If we are receiving a struct value address as the first argument, set up
3247 the RTL for the function result. As this might require code to convert
3248 the transmitted address to Pmode, we do this here to ensure that possible
3249 preliminary conversions of the address have been emitted already. */
3250 if (all
.function_result_decl
)
3252 tree result
= DECL_RESULT (current_function_decl
);
3253 rtx addr
= DECL_RTL (all
.function_result_decl
);
3256 if (DECL_BY_REFERENCE (result
))
3260 addr
= convert_memory_address (Pmode
, addr
);
3261 x
= gen_rtx_MEM (DECL_MODE (result
), addr
);
3262 set_mem_attributes (x
, result
, 1);
3264 SET_DECL_RTL (result
, x
);
3267 /* We have aligned all the args, so add space for the pretend args. */
3268 crtl
->args
.pretend_args_size
= all
.pretend_args_size
;
3269 all
.stack_args_size
.constant
+= all
.extra_pretend_bytes
;
3270 crtl
->args
.size
= all
.stack_args_size
.constant
;
3272 /* Adjust function incoming argument size for alignment and
3275 #ifdef REG_PARM_STACK_SPACE
3276 crtl
->args
.size
= MAX (crtl
->args
.size
,
3277 REG_PARM_STACK_SPACE (fndecl
));
3280 crtl
->args
.size
= CEIL_ROUND (crtl
->args
.size
,
3281 PARM_BOUNDARY
/ BITS_PER_UNIT
);
3283 #ifdef ARGS_GROW_DOWNWARD
3284 crtl
->args
.arg_offset_rtx
3285 = (all
.stack_args_size
.var
== 0 ? GEN_INT (-all
.stack_args_size
.constant
)
3286 : expand_expr (size_diffop (all
.stack_args_size
.var
,
3287 size_int (-all
.stack_args_size
.constant
)),
3288 NULL_RTX
, VOIDmode
, EXPAND_NORMAL
));
3290 crtl
->args
.arg_offset_rtx
= ARGS_SIZE_RTX (all
.stack_args_size
);
3293 /* See how many bytes, if any, of its args a function should try to pop
3296 crtl
->args
.pops_args
= RETURN_POPS_ARGS (fndecl
, TREE_TYPE (fndecl
),
3299 /* For stdarg.h function, save info about
3300 regs and stack space used by the named args. */
3302 crtl
->args
.info
= all
.args_so_far
;
3304 /* Set the rtx used for the function return value. Put this in its
3305 own variable so any optimizers that need this information don't have
3306 to include tree.h. Do this here so it gets done when an inlined
3307 function gets output. */
3310 = (DECL_RTL_SET_P (DECL_RESULT (fndecl
))
3311 ? DECL_RTL (DECL_RESULT (fndecl
)) : NULL_RTX
);
3313 /* If scalar return value was computed in a pseudo-reg, or was a named
3314 return value that got dumped to the stack, copy that to the hard
3316 if (DECL_RTL_SET_P (DECL_RESULT (fndecl
)))
3318 tree decl_result
= DECL_RESULT (fndecl
);
3319 rtx decl_rtl
= DECL_RTL (decl_result
);
3321 if (REG_P (decl_rtl
)
3322 ? REGNO (decl_rtl
) >= FIRST_PSEUDO_REGISTER
3323 : DECL_REGISTER (decl_result
))
3327 real_decl_rtl
= targetm
.calls
.function_value (TREE_TYPE (decl_result
),
3329 REG_FUNCTION_VALUE_P (real_decl_rtl
) = 1;
3330 /* The delay slot scheduler assumes that crtl->return_rtx
3331 holds the hard register containing the return value, not a
3332 temporary pseudo. */
3333 crtl
->return_rtx
= real_decl_rtl
;
3338 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3339 For all seen types, gimplify their sizes. */
3342 gimplify_parm_type (tree
*tp
, int *walk_subtrees
, void *data
)
3349 if (POINTER_TYPE_P (t
))
3351 else if (TYPE_SIZE (t
) && !TREE_CONSTANT (TYPE_SIZE (t
))
3352 && !TYPE_SIZES_GIMPLIFIED (t
))
3354 gimplify_type_sizes (t
, (gimple_seq
*) data
);
3362 /* Gimplify the parameter list for current_function_decl. This involves
3363 evaluating SAVE_EXPRs of variable sized parameters and generating code
3364 to implement callee-copies reference parameters. Returns a sequence of
3365 statements to add to the beginning of the function. */
3368 gimplify_parameters (void)
3370 struct assign_parm_data_all all
;
3372 gimple_seq stmts
= NULL
;
3373 VEC(tree
, heap
) *fnargs
;
3376 assign_parms_initialize_all (&all
);
3377 fnargs
= assign_parms_augmented_arg_list (&all
);
3379 for (i
= 0; VEC_iterate (tree
, fnargs
, i
, parm
); ++i
)
3381 struct assign_parm_data_one data
;
3383 /* Extract the type of PARM; adjust it according to ABI. */
3384 assign_parm_find_data_types (&all
, parm
, &data
);
3386 /* Early out for errors and void parameters. */
3387 if (data
.passed_mode
== VOIDmode
|| DECL_SIZE (parm
) == NULL
)
3390 /* Update info on where next arg arrives in registers. */
3391 FUNCTION_ARG_ADVANCE (all
.args_so_far
, data
.promoted_mode
,
3392 data
.passed_type
, data
.named_arg
);
3394 /* ??? Once upon a time variable_size stuffed parameter list
3395 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3396 turned out to be less than manageable in the gimple world.
3397 Now we have to hunt them down ourselves. */
3398 walk_tree_without_duplicates (&data
.passed_type
,
3399 gimplify_parm_type
, &stmts
);
3401 if (TREE_CODE (DECL_SIZE_UNIT (parm
)) != INTEGER_CST
)
3403 gimplify_one_sizepos (&DECL_SIZE (parm
), &stmts
);
3404 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm
), &stmts
);
3407 if (data
.passed_pointer
)
3409 tree type
= TREE_TYPE (data
.passed_type
);
3410 if (reference_callee_copied (&all
.args_so_far
, TYPE_MODE (type
),
3411 type
, data
.named_arg
))
3415 /* For constant-sized objects, this is trivial; for
3416 variable-sized objects, we have to play games. */
3417 if (TREE_CODE (DECL_SIZE_UNIT (parm
)) == INTEGER_CST
3418 && !(flag_stack_check
== GENERIC_STACK_CHECK
3419 && compare_tree_int (DECL_SIZE_UNIT (parm
),
3420 STACK_CHECK_MAX_VAR_SIZE
) > 0))
3422 local
= create_tmp_var (type
, get_name (parm
));
3423 DECL_IGNORED_P (local
) = 0;
3424 /* If PARM was addressable, move that flag over
3425 to the local copy, as its address will be taken,
3427 if (TREE_ADDRESSABLE (parm
))
3429 TREE_ADDRESSABLE (parm
) = 0;
3430 TREE_ADDRESSABLE (local
) = 1;
3435 tree ptr_type
, addr
;
3437 ptr_type
= build_pointer_type (type
);
3438 addr
= create_tmp_var (ptr_type
, get_name (parm
));
3439 DECL_IGNORED_P (addr
) = 0;
3440 local
= build_fold_indirect_ref (addr
);
3442 t
= built_in_decls
[BUILT_IN_ALLOCA
];
3443 t
= build_call_expr (t
, 1, DECL_SIZE_UNIT (parm
));
3444 t
= fold_convert (ptr_type
, t
);
3445 t
= build2 (MODIFY_EXPR
, TREE_TYPE (addr
), addr
, t
);
3446 gimplify_and_add (t
, &stmts
);
3449 gimplify_assign (local
, parm
, &stmts
);
3451 SET_DECL_VALUE_EXPR (parm
, local
);
3452 DECL_HAS_VALUE_EXPR_P (parm
) = 1;
3457 VEC_free (tree
, heap
, fnargs
);
3462 /* Compute the size and offset from the start of the stacked arguments for a
3463 parm passed in mode PASSED_MODE and with type TYPE.
3465 INITIAL_OFFSET_PTR points to the current offset into the stacked
3468 The starting offset and size for this parm are returned in
3469 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3470 nonzero, the offset is that of stack slot, which is returned in
3471 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3472 padding required from the initial offset ptr to the stack slot.
3474 IN_REGS is nonzero if the argument will be passed in registers. It will
3475 never be set if REG_PARM_STACK_SPACE is not defined.
3477 FNDECL is the function in which the argument was defined.
3479 There are two types of rounding that are done. The first, controlled by
3480 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3481 list to be aligned to the specific boundary (in bits). This rounding
3482 affects the initial and starting offsets, but not the argument size.
3484 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3485 optionally rounds the size of the parm to PARM_BOUNDARY. The
3486 initial offset is not affected by this rounding, while the size always
3487 is and the starting offset may be. */
3489 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3490 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3491 callers pass in the total size of args so far as
3492 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3495 locate_and_pad_parm (enum machine_mode passed_mode
, tree type
, int in_regs
,
3496 int partial
, tree fndecl ATTRIBUTE_UNUSED
,
3497 struct args_size
*initial_offset_ptr
,
3498 struct locate_and_pad_arg_data
*locate
)
3501 enum direction where_pad
;
3502 unsigned int boundary
;
3503 int reg_parm_stack_space
= 0;
3504 int part_size_in_regs
;
3506 #ifdef REG_PARM_STACK_SPACE
3507 reg_parm_stack_space
= REG_PARM_STACK_SPACE (fndecl
);
3509 /* If we have found a stack parm before we reach the end of the
3510 area reserved for registers, skip that area. */
3513 if (reg_parm_stack_space
> 0)
3515 if (initial_offset_ptr
->var
)
3517 initial_offset_ptr
->var
3518 = size_binop (MAX_EXPR
, ARGS_SIZE_TREE (*initial_offset_ptr
),
3519 ssize_int (reg_parm_stack_space
));
3520 initial_offset_ptr
->constant
= 0;
3522 else if (initial_offset_ptr
->constant
< reg_parm_stack_space
)
3523 initial_offset_ptr
->constant
= reg_parm_stack_space
;
3526 #endif /* REG_PARM_STACK_SPACE */
3528 part_size_in_regs
= (reg_parm_stack_space
== 0 ? partial
: 0);
3531 = type
? size_in_bytes (type
) : size_int (GET_MODE_SIZE (passed_mode
));
3532 where_pad
= FUNCTION_ARG_PADDING (passed_mode
, type
);
3533 boundary
= FUNCTION_ARG_BOUNDARY (passed_mode
, type
);
3534 locate
->where_pad
= where_pad
;
3536 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3537 if (boundary
> MAX_SUPPORTED_STACK_ALIGNMENT
)
3538 boundary
= MAX_SUPPORTED_STACK_ALIGNMENT
;
3540 locate
->boundary
= boundary
;
3542 if (SUPPORTS_STACK_ALIGNMENT
)
3544 /* stack_alignment_estimated can't change after stack has been
3546 if (crtl
->stack_alignment_estimated
< boundary
)
3548 if (!crtl
->stack_realign_processed
)
3549 crtl
->stack_alignment_estimated
= boundary
;
3552 /* If stack is realigned and stack alignment value
3553 hasn't been finalized, it is OK not to increase
3554 stack_alignment_estimated. The bigger alignment
3555 requirement is recorded in stack_alignment_needed
3557 gcc_assert (!crtl
->stack_realign_finalized
3558 && crtl
->stack_realign_needed
);
3563 /* Remember if the outgoing parameter requires extra alignment on the
3564 calling function side. */
3565 if (crtl
->stack_alignment_needed
< boundary
)
3566 crtl
->stack_alignment_needed
= boundary
;
3567 if (crtl
->preferred_stack_boundary
< boundary
)
3568 crtl
->preferred_stack_boundary
= boundary
;
3570 #ifdef ARGS_GROW_DOWNWARD
3571 locate
->slot_offset
.constant
= -initial_offset_ptr
->constant
;
3572 if (initial_offset_ptr
->var
)
3573 locate
->slot_offset
.var
= size_binop (MINUS_EXPR
, ssize_int (0),
3574 initial_offset_ptr
->var
);
3578 if (where_pad
!= none
3579 && (!host_integerp (sizetree
, 1)
3580 || (tree_low_cst (sizetree
, 1) * BITS_PER_UNIT
) % PARM_BOUNDARY
))
3581 s2
= round_up (s2
, PARM_BOUNDARY
/ BITS_PER_UNIT
);
3582 SUB_PARM_SIZE (locate
->slot_offset
, s2
);
3585 locate
->slot_offset
.constant
+= part_size_in_regs
;
3588 #ifdef REG_PARM_STACK_SPACE
3589 || REG_PARM_STACK_SPACE (fndecl
) > 0
3592 pad_to_arg_alignment (&locate
->slot_offset
, boundary
,
3593 &locate
->alignment_pad
);
3595 locate
->size
.constant
= (-initial_offset_ptr
->constant
3596 - locate
->slot_offset
.constant
);
3597 if (initial_offset_ptr
->var
)
3598 locate
->size
.var
= size_binop (MINUS_EXPR
,
3599 size_binop (MINUS_EXPR
,
3601 initial_offset_ptr
->var
),
3602 locate
->slot_offset
.var
);
3604 /* Pad_below needs the pre-rounded size to know how much to pad
3606 locate
->offset
= locate
->slot_offset
;
3607 if (where_pad
== downward
)
3608 pad_below (&locate
->offset
, passed_mode
, sizetree
);
3610 #else /* !ARGS_GROW_DOWNWARD */
3612 #ifdef REG_PARM_STACK_SPACE
3613 || REG_PARM_STACK_SPACE (fndecl
) > 0
3616 pad_to_arg_alignment (initial_offset_ptr
, boundary
,
3617 &locate
->alignment_pad
);
3618 locate
->slot_offset
= *initial_offset_ptr
;
3620 #ifdef PUSH_ROUNDING
3621 if (passed_mode
!= BLKmode
)
3622 sizetree
= size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree
)));
3625 /* Pad_below needs the pre-rounded size to know how much to pad below
3626 so this must be done before rounding up. */
3627 locate
->offset
= locate
->slot_offset
;
3628 if (where_pad
== downward
)
3629 pad_below (&locate
->offset
, passed_mode
, sizetree
);
3631 if (where_pad
!= none
3632 && (!host_integerp (sizetree
, 1)
3633 || (tree_low_cst (sizetree
, 1) * BITS_PER_UNIT
) % PARM_BOUNDARY
))
3634 sizetree
= round_up (sizetree
, PARM_BOUNDARY
/ BITS_PER_UNIT
);
3636 ADD_PARM_SIZE (locate
->size
, sizetree
);
3638 locate
->size
.constant
-= part_size_in_regs
;
3639 #endif /* ARGS_GROW_DOWNWARD */
3641 #ifdef FUNCTION_ARG_OFFSET
3642 locate
->offset
.constant
+= FUNCTION_ARG_OFFSET (passed_mode
, type
);
3646 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3647 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3650 pad_to_arg_alignment (struct args_size
*offset_ptr
, int boundary
,
3651 struct args_size
*alignment_pad
)
3653 tree save_var
= NULL_TREE
;
3654 HOST_WIDE_INT save_constant
= 0;
3655 int boundary_in_bytes
= boundary
/ BITS_PER_UNIT
;
3656 HOST_WIDE_INT sp_offset
= STACK_POINTER_OFFSET
;
3658 #ifdef SPARC_STACK_BOUNDARY_HACK
3659 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3660 the real alignment of %sp. However, when it does this, the
3661 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3662 if (SPARC_STACK_BOUNDARY_HACK
)
3666 if (boundary
> PARM_BOUNDARY
)
3668 save_var
= offset_ptr
->var
;
3669 save_constant
= offset_ptr
->constant
;
3672 alignment_pad
->var
= NULL_TREE
;
3673 alignment_pad
->constant
= 0;
3675 if (boundary
> BITS_PER_UNIT
)
3677 if (offset_ptr
->var
)
3679 tree sp_offset_tree
= ssize_int (sp_offset
);
3680 tree offset
= size_binop (PLUS_EXPR
,
3681 ARGS_SIZE_TREE (*offset_ptr
),
3683 #ifdef ARGS_GROW_DOWNWARD
3684 tree rounded
= round_down (offset
, boundary
/ BITS_PER_UNIT
);
3686 tree rounded
= round_up (offset
, boundary
/ BITS_PER_UNIT
);
3689 offset_ptr
->var
= size_binop (MINUS_EXPR
, rounded
, sp_offset_tree
);
3690 /* ARGS_SIZE_TREE includes constant term. */
3691 offset_ptr
->constant
= 0;
3692 if (boundary
> PARM_BOUNDARY
)
3693 alignment_pad
->var
= size_binop (MINUS_EXPR
, offset_ptr
->var
,
3698 offset_ptr
->constant
= -sp_offset
+
3699 #ifdef ARGS_GROW_DOWNWARD
3700 FLOOR_ROUND (offset_ptr
->constant
+ sp_offset
, boundary_in_bytes
);
3702 CEIL_ROUND (offset_ptr
->constant
+ sp_offset
, boundary_in_bytes
);
3704 if (boundary
> PARM_BOUNDARY
)
3705 alignment_pad
->constant
= offset_ptr
->constant
- save_constant
;
3711 pad_below (struct args_size
*offset_ptr
, enum machine_mode passed_mode
, tree sizetree
)
3713 if (passed_mode
!= BLKmode
)
3715 if (GET_MODE_BITSIZE (passed_mode
) % PARM_BOUNDARY
)
3716 offset_ptr
->constant
3717 += (((GET_MODE_BITSIZE (passed_mode
) + PARM_BOUNDARY
- 1)
3718 / PARM_BOUNDARY
* PARM_BOUNDARY
/ BITS_PER_UNIT
)
3719 - GET_MODE_SIZE (passed_mode
));
3723 if (TREE_CODE (sizetree
) != INTEGER_CST
3724 || (TREE_INT_CST_LOW (sizetree
) * BITS_PER_UNIT
) % PARM_BOUNDARY
)
3726 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3727 tree s2
= round_up (sizetree
, PARM_BOUNDARY
/ BITS_PER_UNIT
);
3729 ADD_PARM_SIZE (*offset_ptr
, s2
);
3730 SUB_PARM_SIZE (*offset_ptr
, sizetree
);
3736 /* True if register REGNO was alive at a place where `setjmp' was
3737 called and was set more than once or is an argument. Such regs may
3738 be clobbered by `longjmp'. */
3741 regno_clobbered_at_setjmp (bitmap setjmp_crosses
, int regno
)
3743 /* There appear to be cases where some local vars never reach the
3744 backend but have bogus regnos. */
3745 if (regno
>= max_reg_num ())
3748 return ((REG_N_SETS (regno
) > 1
3749 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR
), regno
))
3750 && REGNO_REG_SET_P (setjmp_crosses
, regno
));
3753 /* Walk the tree of blocks describing the binding levels within a
3754 function and warn about variables the might be killed by setjmp or
3755 vfork. This is done after calling flow_analysis before register
3756 allocation since that will clobber the pseudo-regs to hard
3760 setjmp_vars_warning (bitmap setjmp_crosses
, tree block
)
3764 for (decl
= BLOCK_VARS (block
); decl
; decl
= TREE_CHAIN (decl
))
3766 if (TREE_CODE (decl
) == VAR_DECL
3767 && DECL_RTL_SET_P (decl
)
3768 && REG_P (DECL_RTL (decl
))
3769 && regno_clobbered_at_setjmp (setjmp_crosses
, REGNO (DECL_RTL (decl
))))
3770 warning (OPT_Wclobbered
, "variable %q+D might be clobbered by"
3771 " %<longjmp%> or %<vfork%>", decl
);
3774 for (sub
= BLOCK_SUBBLOCKS (block
); sub
; sub
= BLOCK_CHAIN (sub
))
3775 setjmp_vars_warning (setjmp_crosses
, sub
);
3778 /* Do the appropriate part of setjmp_vars_warning
3779 but for arguments instead of local variables. */
3782 setjmp_args_warning (bitmap setjmp_crosses
)
3785 for (decl
= DECL_ARGUMENTS (current_function_decl
);
3786 decl
; decl
= TREE_CHAIN (decl
))
3787 if (DECL_RTL (decl
) != 0
3788 && REG_P (DECL_RTL (decl
))
3789 && regno_clobbered_at_setjmp (setjmp_crosses
, REGNO (DECL_RTL (decl
))))
3790 warning (OPT_Wclobbered
,
3791 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3795 /* Generate warning messages for variables live across setjmp. */
3798 generate_setjmp_warnings (void)
3800 bitmap setjmp_crosses
= regstat_get_setjmp_crosses ();
3802 if (n_basic_blocks
== NUM_FIXED_BLOCKS
3803 || bitmap_empty_p (setjmp_crosses
))
3806 setjmp_vars_warning (setjmp_crosses
, DECL_INITIAL (current_function_decl
));
3807 setjmp_args_warning (setjmp_crosses
);
3811 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3812 and create duplicate blocks. */
3813 /* ??? Need an option to either create block fragments or to create
3814 abstract origin duplicates of a source block. It really depends
3815 on what optimization has been performed. */
3818 reorder_blocks (void)
3820 tree block
= DECL_INITIAL (current_function_decl
);
3821 VEC(tree
,heap
) *block_stack
;
3823 if (block
== NULL_TREE
)
3826 block_stack
= VEC_alloc (tree
, heap
, 10);
3828 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3829 clear_block_marks (block
);
3831 /* Prune the old trees away, so that they don't get in the way. */
3832 BLOCK_SUBBLOCKS (block
) = NULL_TREE
;
3833 BLOCK_CHAIN (block
) = NULL_TREE
;
3835 /* Recreate the block tree from the note nesting. */
3836 reorder_blocks_1 (get_insns (), block
, &block_stack
);
3837 BLOCK_SUBBLOCKS (block
) = blocks_nreverse (BLOCK_SUBBLOCKS (block
));
3839 VEC_free (tree
, heap
, block_stack
);
3842 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3845 clear_block_marks (tree block
)
3849 TREE_ASM_WRITTEN (block
) = 0;
3850 clear_block_marks (BLOCK_SUBBLOCKS (block
));
3851 block
= BLOCK_CHAIN (block
);
3856 reorder_blocks_1 (rtx insns
, tree current_block
, VEC(tree
,heap
) **p_block_stack
)
3860 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
3864 if (NOTE_KIND (insn
) == NOTE_INSN_BLOCK_BEG
)
3866 tree block
= NOTE_BLOCK (insn
);
3869 origin
= (BLOCK_FRAGMENT_ORIGIN (block
)
3870 ? BLOCK_FRAGMENT_ORIGIN (block
)
3873 /* If we have seen this block before, that means it now
3874 spans multiple address regions. Create a new fragment. */
3875 if (TREE_ASM_WRITTEN (block
))
3877 tree new_block
= copy_node (block
);
3879 BLOCK_FRAGMENT_ORIGIN (new_block
) = origin
;
3880 BLOCK_FRAGMENT_CHAIN (new_block
)
3881 = BLOCK_FRAGMENT_CHAIN (origin
);
3882 BLOCK_FRAGMENT_CHAIN (origin
) = new_block
;
3884 NOTE_BLOCK (insn
) = new_block
;
3888 BLOCK_SUBBLOCKS (block
) = 0;
3889 TREE_ASM_WRITTEN (block
) = 1;
3890 /* When there's only one block for the entire function,
3891 current_block == block and we mustn't do this, it
3892 will cause infinite recursion. */
3893 if (block
!= current_block
)
3895 if (block
!= origin
)
3896 gcc_assert (BLOCK_SUPERCONTEXT (origin
) == current_block
);
3898 BLOCK_SUPERCONTEXT (block
) = current_block
;
3899 BLOCK_CHAIN (block
) = BLOCK_SUBBLOCKS (current_block
);
3900 BLOCK_SUBBLOCKS (current_block
) = block
;
3901 current_block
= origin
;
3903 VEC_safe_push (tree
, heap
, *p_block_stack
, block
);
3905 else if (NOTE_KIND (insn
) == NOTE_INSN_BLOCK_END
)
3907 NOTE_BLOCK (insn
) = VEC_pop (tree
, *p_block_stack
);
3908 BLOCK_SUBBLOCKS (current_block
)
3909 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block
));
3910 current_block
= BLOCK_SUPERCONTEXT (current_block
);
3916 /* Reverse the order of elements in the chain T of blocks,
3917 and return the new head of the chain (old last element). */
3920 blocks_nreverse (tree t
)
3922 tree prev
= 0, decl
, next
;
3923 for (decl
= t
; decl
; decl
= next
)
3925 next
= BLOCK_CHAIN (decl
);
3926 BLOCK_CHAIN (decl
) = prev
;
3932 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3933 non-NULL, list them all into VECTOR, in a depth-first preorder
3934 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3938 all_blocks (tree block
, tree
*vector
)
3944 TREE_ASM_WRITTEN (block
) = 0;
3946 /* Record this block. */
3948 vector
[n_blocks
] = block
;
3952 /* Record the subblocks, and their subblocks... */
3953 n_blocks
+= all_blocks (BLOCK_SUBBLOCKS (block
),
3954 vector
? vector
+ n_blocks
: 0);
3955 block
= BLOCK_CHAIN (block
);
3961 /* Return a vector containing all the blocks rooted at BLOCK. The
3962 number of elements in the vector is stored in N_BLOCKS_P. The
3963 vector is dynamically allocated; it is the caller's responsibility
3964 to call `free' on the pointer returned. */
3967 get_block_vector (tree block
, int *n_blocks_p
)
3971 *n_blocks_p
= all_blocks (block
, NULL
);
3972 block_vector
= XNEWVEC (tree
, *n_blocks_p
);
3973 all_blocks (block
, block_vector
);
3975 return block_vector
;
3978 static GTY(()) int next_block_index
= 2;
3980 /* Set BLOCK_NUMBER for all the blocks in FN. */
3983 number_blocks (tree fn
)
3989 /* For SDB and XCOFF debugging output, we start numbering the blocks
3990 from 1 within each function, rather than keeping a running
3992 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3993 if (write_symbols
== SDB_DEBUG
|| write_symbols
== XCOFF_DEBUG
)
3994 next_block_index
= 1;
3997 block_vector
= get_block_vector (DECL_INITIAL (fn
), &n_blocks
);
3999 /* The top-level BLOCK isn't numbered at all. */
4000 for (i
= 1; i
< n_blocks
; ++i
)
4001 /* We number the blocks from two. */
4002 BLOCK_NUMBER (block_vector
[i
]) = next_block_index
++;
4004 free (block_vector
);
4009 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4012 debug_find_var_in_block_tree (tree var
, tree block
)
4016 for (t
= BLOCK_VARS (block
); t
; t
= TREE_CHAIN (t
))
4020 for (t
= BLOCK_SUBBLOCKS (block
); t
; t
= TREE_CHAIN (t
))
4022 tree ret
= debug_find_var_in_block_tree (var
, t
);
4030 /* Keep track of whether we're in a dummy function context. If we are,
4031 we don't want to invoke the set_current_function hook, because we'll
4032 get into trouble if the hook calls target_reinit () recursively or
4033 when the initial initialization is not yet complete. */
4035 static bool in_dummy_function
;
4037 /* Invoke the target hook when setting cfun. Update the optimization options
4038 if the function uses different options than the default. */
4041 invoke_set_current_function_hook (tree fndecl
)
4043 if (!in_dummy_function
)
4045 tree opts
= ((fndecl
)
4046 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl
)
4047 : optimization_default_node
);
4050 opts
= optimization_default_node
;
4052 /* Change optimization options if needed. */
4053 if (optimization_current_node
!= opts
)
4055 optimization_current_node
= opts
;
4056 cl_optimization_restore (TREE_OPTIMIZATION (opts
));
4059 targetm
.set_current_function (fndecl
);
4063 /* cfun should never be set directly; use this function. */
4066 set_cfun (struct function
*new_cfun
)
4068 if (cfun
!= new_cfun
)
4071 invoke_set_current_function_hook (new_cfun
? new_cfun
->decl
: NULL_TREE
);
4075 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4077 static VEC(function_p
,heap
) *cfun_stack
;
4079 /* Push the current cfun onto the stack, and set cfun to new_cfun. */
4082 push_cfun (struct function
*new_cfun
)
4084 VEC_safe_push (function_p
, heap
, cfun_stack
, cfun
);
4085 set_cfun (new_cfun
);
4088 /* Pop cfun from the stack. */
4093 struct function
*new_cfun
= VEC_pop (function_p
, cfun_stack
);
4094 set_cfun (new_cfun
);
4097 /* Return value of funcdef and increase it. */
4099 get_next_funcdef_no (void)
4101 return funcdef_no
++;
4104 /* Allocate a function structure for FNDECL and set its contents
4105 to the defaults. Set cfun to the newly-allocated object.
4106 Some of the helper functions invoked during initialization assume
4107 that cfun has already been set. Therefore, assign the new object
4108 directly into cfun and invoke the back end hook explicitly at the
4109 very end, rather than initializing a temporary and calling set_cfun
4112 ABSTRACT_P is true if this is a function that will never be seen by
4113 the middle-end. Such functions are front-end concepts (like C++
4114 function templates) that do not correspond directly to functions
4115 placed in object files. */
4118 allocate_struct_function (tree fndecl
, bool abstract_p
)
4121 tree fntype
= fndecl
? TREE_TYPE (fndecl
) : NULL_TREE
;
4123 cfun
= GGC_CNEW (struct function
);
4125 cfun
->function_frequency
= FUNCTION_FREQUENCY_NORMAL
;
4127 init_eh_for_function ();
4129 if (init_machine_status
)
4130 cfun
->machine
= (*init_machine_status
) ();
4132 #ifdef OVERRIDE_ABI_FORMAT
4133 OVERRIDE_ABI_FORMAT (fndecl
);
4136 invoke_set_current_function_hook (fndecl
);
4138 if (fndecl
!= NULL_TREE
)
4140 DECL_STRUCT_FUNCTION (fndecl
) = cfun
;
4141 cfun
->decl
= fndecl
;
4142 current_function_funcdef_no
= get_next_funcdef_no ();
4144 result
= DECL_RESULT (fndecl
);
4145 if (!abstract_p
&& aggregate_value_p (result
, fndecl
))
4147 #ifdef PCC_STATIC_STRUCT_RETURN
4148 cfun
->returns_pcc_struct
= 1;
4150 cfun
->returns_struct
= 1;
4155 && TYPE_ARG_TYPES (fntype
) != 0
4156 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype
)))
4157 != void_type_node
));
4159 /* Assume all registers in stdarg functions need to be saved. */
4160 cfun
->va_list_gpr_size
= VA_LIST_MAX_GPR_SIZE
;
4161 cfun
->va_list_fpr_size
= VA_LIST_MAX_FPR_SIZE
;
4165 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4166 instead of just setting it. */
4169 push_struct_function (tree fndecl
)
4171 VEC_safe_push (function_p
, heap
, cfun_stack
, cfun
);
4172 allocate_struct_function (fndecl
, false);
4175 /* Reset cfun, and other non-struct-function variables to defaults as
4176 appropriate for emitting rtl at the start of a function. */
4179 prepare_function_start (void)
4181 gcc_assert (!crtl
->emit
.x_last_insn
);
4184 init_varasm_status ();
4186 default_rtl_profile ();
4188 cse_not_expected
= ! optimize
;
4190 /* Caller save not needed yet. */
4191 caller_save_needed
= 0;
4193 /* We haven't done register allocation yet. */
4196 /* Indicate that we have not instantiated virtual registers yet. */
4197 virtuals_instantiated
= 0;
4199 /* Indicate that we want CONCATs now. */
4200 generating_concat_p
= 1;
4202 /* Indicate we have no need of a frame pointer yet. */
4203 frame_pointer_needed
= 0;
4206 /* Initialize the rtl expansion mechanism so that we can do simple things
4207 like generate sequences. This is used to provide a context during global
4208 initialization of some passes. You must call expand_dummy_function_end
4209 to exit this context. */
4212 init_dummy_function_start (void)
4214 gcc_assert (!in_dummy_function
);
4215 in_dummy_function
= true;
4216 push_struct_function (NULL_TREE
);
4217 prepare_function_start ();
4220 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4221 and initialize static variables for generating RTL for the statements
4225 init_function_start (tree subr
)
4227 if (subr
&& DECL_STRUCT_FUNCTION (subr
))
4228 set_cfun (DECL_STRUCT_FUNCTION (subr
));
4230 allocate_struct_function (subr
, false);
4231 prepare_function_start ();
4233 /* Warn if this value is an aggregate type,
4234 regardless of which calling convention we are using for it. */
4235 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr
))))
4236 warning (OPT_Waggregate_return
, "function returns an aggregate");
4239 /* Make sure all values used by the optimization passes have sane defaults. */
4241 init_function_for_compilation (void)
4247 struct rtl_opt_pass pass_init_function
=
4251 "*init_function", /* name */
4253 init_function_for_compilation
, /* execute */
4256 0, /* static_pass_number */
4257 TV_NONE
, /* tv_id */
4258 0, /* properties_required */
4259 0, /* properties_provided */
4260 0, /* properties_destroyed */
4261 0, /* todo_flags_start */
4262 0 /* todo_flags_finish */
4268 expand_main_function (void)
4270 #if (defined(INVOKE__main) \
4271 || (!defined(HAS_INIT_SECTION) \
4272 && !defined(INIT_SECTION_ASM_OP) \
4273 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4274 emit_library_call (init_one_libfunc (NAME__MAIN
), LCT_NORMAL
, VOIDmode
, 0);
4278 /* Expand code to initialize the stack_protect_guard. This is invoked at
4279 the beginning of a function to be protected. */
4281 #ifndef HAVE_stack_protect_set
4282 # define HAVE_stack_protect_set 0
4283 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
4287 stack_protect_prologue (void)
4289 tree guard_decl
= targetm
.stack_protect_guard ();
4292 x
= expand_normal (crtl
->stack_protect_guard
);
4293 y
= expand_normal (guard_decl
);
4295 /* Allow the target to copy from Y to X without leaking Y into a
4297 if (HAVE_stack_protect_set
)
4299 rtx insn
= gen_stack_protect_set (x
, y
);
4307 /* Otherwise do a straight move. */
4308 emit_move_insn (x
, y
);
4311 /* Expand code to verify the stack_protect_guard. This is invoked at
4312 the end of a function to be protected. */
4314 #ifndef HAVE_stack_protect_test
4315 # define HAVE_stack_protect_test 0
4316 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4320 stack_protect_epilogue (void)
4322 tree guard_decl
= targetm
.stack_protect_guard ();
4323 rtx label
= gen_label_rtx ();
4326 x
= expand_normal (crtl
->stack_protect_guard
);
4327 y
= expand_normal (guard_decl
);
4329 /* Allow the target to compare Y with X without leaking either into
4331 switch (HAVE_stack_protect_test
!= 0)
4334 tmp
= gen_stack_protect_test (x
, y
, label
);
4343 emit_cmp_and_jump_insns (x
, y
, EQ
, NULL_RTX
, ptr_mode
, 1, label
);
4347 /* The noreturn predictor has been moved to the tree level. The rtl-level
4348 predictors estimate this branch about 20%, which isn't enough to get
4349 things moved out of line. Since this is the only extant case of adding
4350 a noreturn function at the rtl level, it doesn't seem worth doing ought
4351 except adding the prediction by hand. */
4352 tmp
= get_last_insn ();
4354 predict_insn_def (tmp
, PRED_NORETURN
, TAKEN
);
4356 expand_expr_stmt (targetm
.stack_protect_fail ());
4360 /* Start the RTL for a new function, and set variables used for
4362 SUBR is the FUNCTION_DECL node.
4363 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4364 the function's parameters, which must be run at any return statement. */
4367 expand_function_start (tree subr
)
4369 /* Make sure volatile mem refs aren't considered
4370 valid operands of arithmetic insns. */
4371 init_recog_no_volatile ();
4375 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr
));
4378 = (stack_limit_rtx
!= NULL_RTX
&& ! DECL_NO_LIMIT_STACK (subr
));
4380 /* Make the label for return statements to jump to. Do not special
4381 case machines with special return instructions -- they will be
4382 handled later during jump, ifcvt, or epilogue creation. */
4383 return_label
= gen_label_rtx ();
4385 /* Initialize rtx used to return the value. */
4386 /* Do this before assign_parms so that we copy the struct value address
4387 before any library calls that assign parms might generate. */
4389 /* Decide whether to return the value in memory or in a register. */
4390 if (aggregate_value_p (DECL_RESULT (subr
), subr
))
4392 /* Returning something that won't go in a register. */
4393 rtx value_address
= 0;
4395 #ifdef PCC_STATIC_STRUCT_RETURN
4396 if (cfun
->returns_pcc_struct
)
4398 int size
= int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr
)));
4399 value_address
= assemble_static_space (size
);
4404 rtx sv
= targetm
.calls
.struct_value_rtx (TREE_TYPE (subr
), 2);
4405 /* Expect to be passed the address of a place to store the value.
4406 If it is passed as an argument, assign_parms will take care of
4410 value_address
= gen_reg_rtx (Pmode
);
4411 emit_move_insn (value_address
, sv
);
4416 rtx x
= value_address
;
4417 if (!DECL_BY_REFERENCE (DECL_RESULT (subr
)))
4419 x
= gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr
)), x
);
4420 set_mem_attributes (x
, DECL_RESULT (subr
), 1);
4422 SET_DECL_RTL (DECL_RESULT (subr
), x
);
4425 else if (DECL_MODE (DECL_RESULT (subr
)) == VOIDmode
)
4426 /* If return mode is void, this decl rtl should not be used. */
4427 SET_DECL_RTL (DECL_RESULT (subr
), NULL_RTX
);
4430 /* Compute the return values into a pseudo reg, which we will copy
4431 into the true return register after the cleanups are done. */
4432 tree return_type
= TREE_TYPE (DECL_RESULT (subr
));
4433 if (TYPE_MODE (return_type
) != BLKmode
4434 && targetm
.calls
.return_in_msb (return_type
))
4435 /* expand_function_end will insert the appropriate padding in
4436 this case. Use the return value's natural (unpadded) mode
4437 within the function proper. */
4438 SET_DECL_RTL (DECL_RESULT (subr
),
4439 gen_reg_rtx (TYPE_MODE (return_type
)));
4442 /* In order to figure out what mode to use for the pseudo, we
4443 figure out what the mode of the eventual return register will
4444 actually be, and use that. */
4445 rtx hard_reg
= hard_function_value (return_type
, subr
, 0, 1);
4447 /* Structures that are returned in registers are not
4448 aggregate_value_p, so we may see a PARALLEL or a REG. */
4449 if (REG_P (hard_reg
))
4450 SET_DECL_RTL (DECL_RESULT (subr
),
4451 gen_reg_rtx (GET_MODE (hard_reg
)));
4454 gcc_assert (GET_CODE (hard_reg
) == PARALLEL
);
4455 SET_DECL_RTL (DECL_RESULT (subr
), gen_group_rtx (hard_reg
));
4459 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4460 result to the real return register(s). */
4461 DECL_REGISTER (DECL_RESULT (subr
)) = 1;
4464 /* Initialize rtx for parameters and local variables.
4465 In some cases this requires emitting insns. */
4466 assign_parms (subr
);
4468 /* If function gets a static chain arg, store it. */
4469 if (cfun
->static_chain_decl
)
4471 tree parm
= cfun
->static_chain_decl
;
4472 rtx local
, chain
, insn
;
4474 local
= gen_reg_rtx (Pmode
);
4475 chain
= targetm
.calls
.static_chain (current_function_decl
, true);
4477 set_decl_incoming_rtl (parm
, chain
, false);
4478 SET_DECL_RTL (parm
, local
);
4479 mark_reg_pointer (local
, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm
))));
4481 insn
= emit_move_insn (local
, chain
);
4483 /* Mark the register as eliminable, similar to parameters. */
4485 && reg_mentioned_p (arg_pointer_rtx
, XEXP (chain
, 0)))
4486 set_unique_reg_note (insn
, REG_EQUIV
, chain
);
4489 /* If the function receives a non-local goto, then store the
4490 bits we need to restore the frame pointer. */
4491 if (cfun
->nonlocal_goto_save_area
)
4496 /* ??? We need to do this save early. Unfortunately here is
4497 before the frame variable gets declared. Help out... */
4498 tree var
= TREE_OPERAND (cfun
->nonlocal_goto_save_area
, 0);
4499 if (!DECL_RTL_SET_P (var
))
4502 t_save
= build4 (ARRAY_REF
, ptr_type_node
,
4503 cfun
->nonlocal_goto_save_area
,
4504 integer_zero_node
, NULL_TREE
, NULL_TREE
);
4505 r_save
= expand_expr (t_save
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4506 r_save
= convert_memory_address (Pmode
, r_save
);
4508 emit_move_insn (r_save
, targetm
.builtin_setjmp_frame_value ());
4509 update_nonlocal_goto_save_area ();
4512 /* The following was moved from init_function_start.
4513 The move is supposed to make sdb output more accurate. */
4514 /* Indicate the beginning of the function body,
4515 as opposed to parm setup. */
4516 emit_note (NOTE_INSN_FUNCTION_BEG
);
4518 gcc_assert (NOTE_P (get_last_insn ()));
4520 parm_birth_insn
= get_last_insn ();
4525 PROFILE_HOOK (current_function_funcdef_no
);
4529 /* After the display initializations is where the stack checking
4531 if(flag_stack_check
)
4532 stack_check_probe_note
= emit_note (NOTE_INSN_DELETED
);
4534 /* Make sure there is a line number after the function entry setup code. */
4535 force_next_line_note ();
4538 /* Undo the effects of init_dummy_function_start. */
4540 expand_dummy_function_end (void)
4542 gcc_assert (in_dummy_function
);
4544 /* End any sequences that failed to be closed due to syntax errors. */
4545 while (in_sequence_p ())
4548 /* Outside function body, can't compute type's actual size
4549 until next function's body starts. */
4551 free_after_parsing (cfun
);
4552 free_after_compilation (cfun
);
4554 in_dummy_function
= false;
4557 /* Call DOIT for each hard register used as a return value from
4558 the current function. */
4561 diddle_return_value (void (*doit
) (rtx
, void *), void *arg
)
4563 rtx outgoing
= crtl
->return_rtx
;
4568 if (REG_P (outgoing
))
4569 (*doit
) (outgoing
, arg
);
4570 else if (GET_CODE (outgoing
) == PARALLEL
)
4574 for (i
= 0; i
< XVECLEN (outgoing
, 0); i
++)
4576 rtx x
= XEXP (XVECEXP (outgoing
, 0, i
), 0);
4578 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
4585 do_clobber_return_reg (rtx reg
, void *arg ATTRIBUTE_UNUSED
)
4591 clobber_return_register (void)
4593 diddle_return_value (do_clobber_return_reg
, NULL
);
4595 /* In case we do use pseudo to return value, clobber it too. */
4596 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl
)))
4598 tree decl_result
= DECL_RESULT (current_function_decl
);
4599 rtx decl_rtl
= DECL_RTL (decl_result
);
4600 if (REG_P (decl_rtl
) && REGNO (decl_rtl
) >= FIRST_PSEUDO_REGISTER
)
4602 do_clobber_return_reg (decl_rtl
, NULL
);
4608 do_use_return_reg (rtx reg
, void *arg ATTRIBUTE_UNUSED
)
4614 use_return_register (void)
4616 diddle_return_value (do_use_return_reg
, NULL
);
4619 /* Possibly warn about unused parameters. */
4621 do_warn_unused_parameter (tree fn
)
4625 for (decl
= DECL_ARGUMENTS (fn
);
4626 decl
; decl
= TREE_CHAIN (decl
))
4627 if (!TREE_USED (decl
) && TREE_CODE (decl
) == PARM_DECL
4628 && DECL_NAME (decl
) && !DECL_ARTIFICIAL (decl
)
4629 && !TREE_NO_WARNING (decl
))
4630 warning (OPT_Wunused_parameter
, "unused parameter %q+D", decl
);
4633 static GTY(()) rtx initial_trampoline
;
4635 /* Generate RTL for the end of the current function. */
4638 expand_function_end (void)
4642 /* If arg_pointer_save_area was referenced only from a nested
4643 function, we will not have initialized it yet. Do that now. */
4644 if (arg_pointer_save_area
&& ! crtl
->arg_pointer_save_area_init
)
4645 get_arg_pointer_save_area ();
4647 /* If we are doing generic stack checking and this function makes calls,
4648 do a stack probe at the start of the function to ensure we have enough
4649 space for another stack frame. */
4650 if (flag_stack_check
== GENERIC_STACK_CHECK
)
4654 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
4657 rtx max_frame_size
= GEN_INT (STACK_CHECK_MAX_FRAME_SIZE
);
4659 if (STACK_CHECK_MOVING_SP
)
4660 anti_adjust_stack_and_probe (max_frame_size
, true);
4662 probe_stack_range (STACK_OLD_CHECK_PROTECT
, max_frame_size
);
4665 emit_insn_before (seq
, stack_check_probe_note
);
4670 /* End any sequences that failed to be closed due to syntax errors. */
4671 while (in_sequence_p ())
4674 clear_pending_stack_adjust ();
4675 do_pending_stack_adjust ();
4677 /* Output a linenumber for the end of the function.
4678 SDB depends on this. */
4679 force_next_line_note ();
4680 set_curr_insn_source_location (input_location
);
4682 /* Before the return label (if any), clobber the return
4683 registers so that they are not propagated live to the rest of
4684 the function. This can only happen with functions that drop
4685 through; if there had been a return statement, there would
4686 have either been a return rtx, or a jump to the return label.
4688 We delay actual code generation after the current_function_value_rtx
4690 clobber_after
= get_last_insn ();
4692 /* Output the label for the actual return from the function. */
4693 emit_label (return_label
);
4695 if (USING_SJLJ_EXCEPTIONS
)
4697 /* Let except.c know where it should emit the call to unregister
4698 the function context for sjlj exceptions. */
4699 if (flag_exceptions
)
4700 sjlj_emit_function_exit_after (get_last_insn ());
4704 /* We want to ensure that instructions that may trap are not
4705 moved into the epilogue by scheduling, because we don't
4706 always emit unwind information for the epilogue. */
4707 if (flag_non_call_exceptions
)
4708 emit_insn (gen_blockage ());
4711 /* If this is an implementation of throw, do what's necessary to
4712 communicate between __builtin_eh_return and the epilogue. */
4713 expand_eh_return ();
4715 /* If scalar return value was computed in a pseudo-reg, or was a named
4716 return value that got dumped to the stack, copy that to the hard
4718 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl
)))
4720 tree decl_result
= DECL_RESULT (current_function_decl
);
4721 rtx decl_rtl
= DECL_RTL (decl_result
);
4723 if (REG_P (decl_rtl
)
4724 ? REGNO (decl_rtl
) >= FIRST_PSEUDO_REGISTER
4725 : DECL_REGISTER (decl_result
))
4727 rtx real_decl_rtl
= crtl
->return_rtx
;
4729 /* This should be set in assign_parms. */
4730 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl
));
4732 /* If this is a BLKmode structure being returned in registers,
4733 then use the mode computed in expand_return. Note that if
4734 decl_rtl is memory, then its mode may have been changed,
4735 but that crtl->return_rtx has not. */
4736 if (GET_MODE (real_decl_rtl
) == BLKmode
)
4737 PUT_MODE (real_decl_rtl
, GET_MODE (decl_rtl
));
4739 /* If a non-BLKmode return value should be padded at the least
4740 significant end of the register, shift it left by the appropriate
4741 amount. BLKmode results are handled using the group load/store
4743 if (TYPE_MODE (TREE_TYPE (decl_result
)) != BLKmode
4744 && targetm
.calls
.return_in_msb (TREE_TYPE (decl_result
)))
4746 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl
),
4747 REGNO (real_decl_rtl
)),
4749 shift_return_value (GET_MODE (decl_rtl
), true, real_decl_rtl
);
4751 /* If a named return value dumped decl_return to memory, then
4752 we may need to re-do the PROMOTE_MODE signed/unsigned
4754 else if (GET_MODE (real_decl_rtl
) != GET_MODE (decl_rtl
))
4756 int unsignedp
= TYPE_UNSIGNED (TREE_TYPE (decl_result
));
4757 promote_function_mode (TREE_TYPE (decl_result
),
4758 GET_MODE (decl_rtl
), &unsignedp
,
4759 TREE_TYPE (current_function_decl
), 1);
4761 convert_move (real_decl_rtl
, decl_rtl
, unsignedp
);
4763 else if (GET_CODE (real_decl_rtl
) == PARALLEL
)
4765 /* If expand_function_start has created a PARALLEL for decl_rtl,
4766 move the result to the real return registers. Otherwise, do
4767 a group load from decl_rtl for a named return. */
4768 if (GET_CODE (decl_rtl
) == PARALLEL
)
4769 emit_group_move (real_decl_rtl
, decl_rtl
);
4771 emit_group_load (real_decl_rtl
, decl_rtl
,
4772 TREE_TYPE (decl_result
),
4773 int_size_in_bytes (TREE_TYPE (decl_result
)));
4775 /* In the case of complex integer modes smaller than a word, we'll
4776 need to generate some non-trivial bitfield insertions. Do that
4777 on a pseudo and not the hard register. */
4778 else if (GET_CODE (decl_rtl
) == CONCAT
4779 && GET_MODE_CLASS (GET_MODE (decl_rtl
)) == MODE_COMPLEX_INT
4780 && GET_MODE_BITSIZE (GET_MODE (decl_rtl
)) <= BITS_PER_WORD
)
4782 int old_generating_concat_p
;
4785 old_generating_concat_p
= generating_concat_p
;
4786 generating_concat_p
= 0;
4787 tmp
= gen_reg_rtx (GET_MODE (decl_rtl
));
4788 generating_concat_p
= old_generating_concat_p
;
4790 emit_move_insn (tmp
, decl_rtl
);
4791 emit_move_insn (real_decl_rtl
, tmp
);
4794 emit_move_insn (real_decl_rtl
, decl_rtl
);
4798 /* If returning a structure, arrange to return the address of the value
4799 in a place where debuggers expect to find it.
4801 If returning a structure PCC style,
4802 the caller also depends on this value.
4803 And cfun->returns_pcc_struct is not necessarily set. */
4804 if (cfun
->returns_struct
4805 || cfun
->returns_pcc_struct
)
4807 rtx value_address
= DECL_RTL (DECL_RESULT (current_function_decl
));
4808 tree type
= TREE_TYPE (DECL_RESULT (current_function_decl
));
4811 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl
)))
4812 type
= TREE_TYPE (type
);
4814 value_address
= XEXP (value_address
, 0);
4816 outgoing
= targetm
.calls
.function_value (build_pointer_type (type
),
4817 current_function_decl
, true);
4819 /* Mark this as a function return value so integrate will delete the
4820 assignment and USE below when inlining this function. */
4821 REG_FUNCTION_VALUE_P (outgoing
) = 1;
4823 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4824 value_address
= convert_memory_address (GET_MODE (outgoing
),
4827 emit_move_insn (outgoing
, value_address
);
4829 /* Show return register used to hold result (in this case the address
4831 crtl
->return_rtx
= outgoing
;
4834 /* Emit the actual code to clobber return register. */
4839 clobber_return_register ();
4843 emit_insn_after (seq
, clobber_after
);
4846 /* Output the label for the naked return from the function. */
4847 if (naked_return_label
)
4848 emit_label (naked_return_label
);
4850 /* @@@ This is a kludge. We want to ensure that instructions that
4851 may trap are not moved into the epilogue by scheduling, because
4852 we don't always emit unwind information for the epilogue. */
4853 if (! USING_SJLJ_EXCEPTIONS
&& flag_non_call_exceptions
)
4854 emit_insn (gen_blockage ());
4856 /* If stack protection is enabled for this function, check the guard. */
4857 if (crtl
->stack_protect_guard
)
4858 stack_protect_epilogue ();
4860 /* If we had calls to alloca, and this machine needs
4861 an accurate stack pointer to exit the function,
4862 insert some code to save and restore the stack pointer. */
4863 if (! EXIT_IGNORE_STACK
4864 && cfun
->calls_alloca
)
4868 emit_stack_save (SAVE_FUNCTION
, &tem
, parm_birth_insn
);
4869 emit_stack_restore (SAVE_FUNCTION
, tem
, NULL_RTX
);
4872 /* ??? This should no longer be necessary since stupid is no longer with
4873 us, but there are some parts of the compiler (eg reload_combine, and
4874 sh mach_dep_reorg) that still try and compute their own lifetime info
4875 instead of using the general framework. */
4876 use_return_register ();
4880 get_arg_pointer_save_area (void)
4882 rtx ret
= arg_pointer_save_area
;
4886 ret
= assign_stack_local (Pmode
, GET_MODE_SIZE (Pmode
), 0);
4887 arg_pointer_save_area
= ret
;
4890 if (! crtl
->arg_pointer_save_area_init
)
4894 /* Save the arg pointer at the beginning of the function. The
4895 generated stack slot may not be a valid memory address, so we
4896 have to check it and fix it if necessary. */
4898 emit_move_insn (validize_mem (ret
),
4899 crtl
->args
.internal_arg_pointer
);
4903 push_topmost_sequence ();
4904 emit_insn_after (seq
, entry_of_function ());
4905 pop_topmost_sequence ();
4911 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
4912 for the first time. */
4915 record_insns (rtx insns
, rtx end
, htab_t
*hashp
)
4918 htab_t hash
= *hashp
;
4922 = htab_create_ggc (17, htab_hash_pointer
, htab_eq_pointer
, NULL
);
4924 for (tmp
= insns
; tmp
!= end
; tmp
= NEXT_INSN (tmp
))
4926 void **slot
= htab_find_slot (hash
, tmp
, INSERT
);
4927 gcc_assert (*slot
== NULL
);
4932 /* INSN has been duplicated as COPY, as part of duping a basic block.
4933 If INSN is an epilogue insn, then record COPY as epilogue as well. */
4936 maybe_copy_epilogue_insn (rtx insn
, rtx copy
)
4940 if (epilogue_insn_hash
== NULL
4941 || htab_find (epilogue_insn_hash
, insn
) == NULL
)
4944 slot
= htab_find_slot (epilogue_insn_hash
, copy
, INSERT
);
4945 gcc_assert (*slot
== NULL
);
4949 /* Set the locator of the insn chain starting at INSN to LOC. */
4951 set_insn_locators (rtx insn
, int loc
)
4953 while (insn
!= NULL_RTX
)
4956 INSN_LOCATOR (insn
) = loc
;
4957 insn
= NEXT_INSN (insn
);
4961 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
4962 we can be running after reorg, SEQUENCE rtl is possible. */
4965 contains (const_rtx insn
, htab_t hash
)
4970 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
4973 for (i
= XVECLEN (PATTERN (insn
), 0) - 1; i
>= 0; i
--)
4974 if (htab_find (hash
, XVECEXP (PATTERN (insn
), 0, i
)))
4979 return htab_find (hash
, insn
) != NULL
;
4983 prologue_epilogue_contains (const_rtx insn
)
4985 if (contains (insn
, prologue_insn_hash
))
4987 if (contains (insn
, epilogue_insn_hash
))
4993 /* Insert gen_return at the end of block BB. This also means updating
4994 block_for_insn appropriately. */
4997 emit_return_into_block (basic_block bb
)
4999 emit_jump_insn_after (gen_return (), BB_END (bb
));
5001 #endif /* HAVE_return */
5003 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5004 this into place with notes indicating where the prologue ends and where
5005 the epilogue begins. Update the basic block information when possible. */
5008 thread_prologue_and_epilogue_insns (void)
5012 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
5015 #if defined (HAVE_epilogue) || defined(HAVE_return)
5016 rtx epilogue_end
= NULL_RTX
;
5020 rtl_profile_for_bb (ENTRY_BLOCK_PTR
);
5021 #ifdef HAVE_prologue
5025 seq
= gen_prologue ();
5028 /* Insert an explicit USE for the frame pointer
5029 if the profiling is on and the frame pointer is required. */
5030 if (crtl
->profile
&& frame_pointer_needed
)
5031 emit_use (hard_frame_pointer_rtx
);
5033 /* Retain a map of the prologue insns. */
5034 record_insns (seq
, NULL
, &prologue_insn_hash
);
5035 emit_note (NOTE_INSN_PROLOGUE_END
);
5037 #ifndef PROFILE_BEFORE_PROLOGUE
5038 /* Ensure that instructions are not moved into the prologue when
5039 profiling is on. The call to the profiling routine can be
5040 emitted within the live range of a call-clobbered register. */
5042 emit_insn (gen_blockage ());
5047 set_insn_locators (seq
, prologue_locator
);
5049 /* Can't deal with multiple successors of the entry block
5050 at the moment. Function should always have at least one
5052 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR
));
5054 insert_insn_on_edge (seq
, single_succ_edge (ENTRY_BLOCK_PTR
));
5059 /* If the exit block has no non-fake predecessors, we don't need
5061 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
5062 if ((e
->flags
& EDGE_FAKE
) == 0)
5067 rtl_profile_for_bb (EXIT_BLOCK_PTR
);
5069 if (optimize
&& HAVE_return
)
5071 /* If we're allowed to generate a simple return instruction,
5072 then by definition we don't need a full epilogue. Examine
5073 the block that falls through to EXIT. If it does not
5074 contain any code, examine its predecessors and try to
5075 emit (conditional) return instructions. */
5080 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
5081 if (e
->flags
& EDGE_FALLTHRU
)
5087 /* Verify that there are no active instructions in the last block. */
5088 label
= BB_END (last
);
5089 while (label
&& !LABEL_P (label
))
5091 if (active_insn_p (label
))
5093 label
= PREV_INSN (label
);
5096 if (BB_HEAD (last
) == label
&& LABEL_P (label
))
5100 for (ei2
= ei_start (last
->preds
); (e
= ei_safe_edge (ei2
)); )
5102 basic_block bb
= e
->src
;
5105 if (bb
== ENTRY_BLOCK_PTR
)
5112 if (!JUMP_P (jump
) || JUMP_LABEL (jump
) != label
)
5118 /* If we have an unconditional jump, we can replace that
5119 with a simple return instruction. */
5120 if (simplejump_p (jump
))
5122 emit_return_into_block (bb
);
5126 /* If we have a conditional jump, we can try to replace
5127 that with a conditional return instruction. */
5128 else if (condjump_p (jump
))
5130 if (! redirect_jump (jump
, 0, 0))
5136 /* If this block has only one successor, it both jumps
5137 and falls through to the fallthru block, so we can't
5139 if (single_succ_p (bb
))
5151 /* Fix up the CFG for the successful change we just made. */
5152 redirect_edge_succ (e
, EXIT_BLOCK_PTR
);
5155 /* Emit a return insn for the exit fallthru block. Whether
5156 this is still reachable will be determined later. */
5158 emit_barrier_after (BB_END (last
));
5159 emit_return_into_block (last
);
5160 epilogue_end
= BB_END (last
);
5161 single_succ_edge (last
)->flags
&= ~EDGE_FALLTHRU
;
5167 /* A small fib -- epilogue is not yet completed, but we wish to re-use
5168 this marker for the splits of EH_RETURN patterns, and nothing else
5169 uses the flag in the meantime. */
5170 epilogue_completed
= 1;
5172 #ifdef HAVE_eh_return
5173 /* Find non-fallthru edges that end with EH_RETURN instructions. On
5174 some targets, these get split to a special version of the epilogue
5175 code. In order to be able to properly annotate these with unwind
5176 info, try to split them now. If we get a valid split, drop an
5177 EPILOGUE_BEG note and mark the insns as epilogue insns. */
5178 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
5180 rtx prev
, last
, trial
;
5182 if (e
->flags
& EDGE_FALLTHRU
)
5184 last
= BB_END (e
->src
);
5185 if (!eh_returnjump_p (last
))
5188 prev
= PREV_INSN (last
);
5189 trial
= try_split (PATTERN (last
), last
, 1);
5193 record_insns (NEXT_INSN (prev
), NEXT_INSN (trial
), &epilogue_insn_hash
);
5194 emit_note_after (NOTE_INSN_EPILOGUE_BEG
, prev
);
5198 /* Find the edge that falls through to EXIT. Other edges may exist
5199 due to RETURN instructions, but those don't need epilogues.
5200 There really shouldn't be a mixture -- either all should have
5201 been converted or none, however... */
5203 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
5204 if (e
->flags
& EDGE_FALLTHRU
)
5209 #ifdef HAVE_epilogue
5213 epilogue_end
= emit_note (NOTE_INSN_EPILOGUE_BEG
);
5214 seq
= gen_epilogue ();
5215 emit_jump_insn (seq
);
5217 /* Retain a map of the epilogue insns. */
5218 record_insns (seq
, NULL
, &epilogue_insn_hash
);
5219 set_insn_locators (seq
, epilogue_locator
);
5224 insert_insn_on_edge (seq
, e
);
5232 if (! next_active_insn (BB_END (e
->src
)))
5234 /* We have a fall-through edge to the exit block, the source is not
5235 at the end of the function, and there will be an assembler epilogue
5236 at the end of the function.
5237 We can't use force_nonfallthru here, because that would try to
5238 use return. Inserting a jump 'by hand' is extremely messy, so
5239 we take advantage of cfg_layout_finalize using
5240 fixup_fallthru_exit_predecessor. */
5241 cfg_layout_initialize (0);
5242 FOR_EACH_BB (cur_bb
)
5243 if (cur_bb
->index
>= NUM_FIXED_BLOCKS
5244 && cur_bb
->next_bb
->index
>= NUM_FIXED_BLOCKS
)
5245 cur_bb
->aux
= cur_bb
->next_bb
;
5246 cfg_layout_finalize ();
5249 default_rtl_profile ();
5253 commit_edge_insertions ();
5255 /* The epilogue insns we inserted may cause the exit edge to no longer
5257 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
5259 if (((e
->flags
& EDGE_FALLTHRU
) != 0)
5260 && returnjump_p (BB_END (e
->src
)))
5261 e
->flags
&= ~EDGE_FALLTHRU
;
5265 #ifdef HAVE_sibcall_epilogue
5266 /* Emit sibling epilogues before any sibling call sites. */
5267 for (ei
= ei_start (EXIT_BLOCK_PTR
->preds
); (e
= ei_safe_edge (ei
)); )
5269 basic_block bb
= e
->src
;
5270 rtx insn
= BB_END (bb
);
5273 || ! SIBLING_CALL_P (insn
))
5280 emit_note (NOTE_INSN_EPILOGUE_BEG
);
5281 emit_insn (gen_sibcall_epilogue ());
5285 /* Retain a map of the epilogue insns. Used in life analysis to
5286 avoid getting rid of sibcall epilogue insns. Do this before we
5287 actually emit the sequence. */
5288 record_insns (seq
, NULL
, &epilogue_insn_hash
);
5289 set_insn_locators (seq
, epilogue_locator
);
5291 emit_insn_before (seq
, insn
);
5296 #ifdef HAVE_epilogue
5301 /* Similarly, move any line notes that appear after the epilogue.
5302 There is no need, however, to be quite so anal about the existence
5303 of such a note. Also possibly move
5304 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5306 for (insn
= epilogue_end
; insn
; insn
= next
)
5308 next
= NEXT_INSN (insn
);
5310 && (NOTE_KIND (insn
) == NOTE_INSN_FUNCTION_BEG
))
5311 reorder_insns (insn
, insn
, PREV_INSN (epilogue_end
));
5316 /* Threading the prologue and epilogue changes the artificial refs
5317 in the entry and exit blocks. */
5318 epilogue_completed
= 1;
5319 df_update_entry_exit_and_calls ();
5322 /* Reposition the prologue-end and epilogue-begin notes after
5323 instruction scheduling. */
5326 reposition_prologue_and_epilogue_notes (void)
5328 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
5329 || defined (HAVE_sibcall_epilogue)
5330 /* Since the hash table is created on demand, the fact that it is
5331 non-null is a signal that it is non-empty. */
5332 if (prologue_insn_hash
!= NULL
)
5334 size_t len
= htab_elements (prologue_insn_hash
);
5335 rtx insn
, last
= NULL
, note
= NULL
;
5337 /* Scan from the beginning until we reach the last prologue insn. */
5338 /* ??? While we do have the CFG intact, there are two problems:
5339 (1) The prologue can contain loops (typically probing the stack),
5340 which means that the end of the prologue isn't in the first bb.
5341 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
5342 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
5346 if (NOTE_KIND (insn
) == NOTE_INSN_PROLOGUE_END
)
5349 else if (contains (insn
, prologue_insn_hash
))
5361 /* Scan forward looking for the PROLOGUE_END note. It should
5362 be right at the beginning of the block, possibly with other
5363 insn notes that got moved there. */
5364 for (note
= NEXT_INSN (last
); ; note
= NEXT_INSN (note
))
5367 && NOTE_KIND (note
) == NOTE_INSN_PROLOGUE_END
)
5372 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5374 last
= NEXT_INSN (last
);
5375 reorder_insns (note
, note
, last
);
5379 if (epilogue_insn_hash
!= NULL
)
5384 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
5386 rtx insn
, first
= NULL
, note
= NULL
;
5387 basic_block bb
= e
->src
;
5389 /* Scan from the beginning until we reach the first epilogue insn. */
5390 FOR_BB_INSNS (bb
, insn
)
5394 if (NOTE_KIND (insn
) == NOTE_INSN_EPILOGUE_BEG
)
5401 else if (first
== NULL
&& contains (insn
, epilogue_insn_hash
))
5411 /* If the function has a single basic block, and no real
5412 epilogue insns (e.g. sibcall with no cleanup), the
5413 epilogue note can get scheduled before the prologue
5414 note. If we have frame related prologue insns, having
5415 them scanned during the epilogue will result in a crash.
5416 In this case re-order the epilogue note to just before
5417 the last insn in the block. */
5419 first
= BB_END (bb
);
5421 if (PREV_INSN (first
) != note
)
5422 reorder_insns (note
, note
, PREV_INSN (first
));
5426 #endif /* HAVE_prologue or HAVE_epilogue */
5429 /* Returns the name of the current function. */
5431 current_function_name (void)
5435 return lang_hooks
.decl_printable_name (cfun
->decl
, 2);
5440 rest_of_handle_check_leaf_regs (void)
5442 #ifdef LEAF_REGISTERS
5443 current_function_uses_only_leaf_regs
5444 = optimize
> 0 && only_leaf_regs_used () && leaf_function_p ();
5449 /* Insert a TYPE into the used types hash table of CFUN. */
5452 used_types_insert_helper (tree type
, struct function
*func
)
5454 if (type
!= NULL
&& func
!= NULL
)
5458 if (func
->used_types_hash
== NULL
)
5459 func
->used_types_hash
= htab_create_ggc (37, htab_hash_pointer
,
5460 htab_eq_pointer
, NULL
);
5461 slot
= htab_find_slot (func
->used_types_hash
, type
, INSERT
);
5467 /* Given a type, insert it into the used hash table in cfun. */
5469 used_types_insert (tree t
)
5471 while (POINTER_TYPE_P (t
) || TREE_CODE (t
) == ARRAY_TYPE
)
5476 if (TYPE_NAME (t
) == NULL_TREE
5477 || TYPE_NAME (t
) == TYPE_NAME (TYPE_MAIN_VARIANT (t
)))
5478 t
= TYPE_MAIN_VARIANT (t
);
5479 if (debug_info_level
> DINFO_LEVEL_NONE
)
5482 used_types_insert_helper (t
, cfun
);
5484 /* So this might be a type referenced by a global variable.
5485 Record that type so that we can later decide to emit its debug
5487 types_used_by_cur_var_decl
=
5488 tree_cons (t
, NULL
, types_used_by_cur_var_decl
);
5493 /* Helper to Hash a struct types_used_by_vars_entry. */
5496 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry
*entry
)
5498 gcc_assert (entry
&& entry
->var_decl
&& entry
->type
);
5500 return iterative_hash_object (entry
->type
,
5501 iterative_hash_object (entry
->var_decl
, 0));
5504 /* Hash function of the types_used_by_vars_entry hash table. */
5507 types_used_by_vars_do_hash (const void *x
)
5509 const struct types_used_by_vars_entry
*entry
=
5510 (const struct types_used_by_vars_entry
*) x
;
5512 return hash_types_used_by_vars_entry (entry
);
5515 /*Equality function of the types_used_by_vars_entry hash table. */
5518 types_used_by_vars_eq (const void *x1
, const void *x2
)
5520 const struct types_used_by_vars_entry
*e1
=
5521 (const struct types_used_by_vars_entry
*) x1
;
5522 const struct types_used_by_vars_entry
*e2
=
5523 (const struct types_used_by_vars_entry
*)x2
;
5525 return (e1
->var_decl
== e2
->var_decl
&& e1
->type
== e2
->type
);
5528 /* Inserts an entry into the types_used_by_vars_hash hash table. */
5531 types_used_by_var_decl_insert (tree type
, tree var_decl
)
5533 if (type
!= NULL
&& var_decl
!= NULL
)
5536 struct types_used_by_vars_entry e
;
5537 e
.var_decl
= var_decl
;
5539 if (types_used_by_vars_hash
== NULL
)
5540 types_used_by_vars_hash
=
5541 htab_create_ggc (37, types_used_by_vars_do_hash
,
5542 types_used_by_vars_eq
, NULL
);
5543 slot
= htab_find_slot_with_hash (types_used_by_vars_hash
, &e
,
5544 hash_types_used_by_vars_entry (&e
), INSERT
);
5547 struct types_used_by_vars_entry
*entry
;
5548 entry
= (struct types_used_by_vars_entry
*) ggc_alloc
5549 (sizeof (struct types_used_by_vars_entry
));
5551 entry
->var_decl
= var_decl
;
5557 struct rtl_opt_pass pass_leaf_regs
=
5561 "*leaf_regs", /* name */
5563 rest_of_handle_check_leaf_regs
, /* execute */
5566 0, /* static_pass_number */
5567 TV_NONE
, /* tv_id */
5568 0, /* properties_required */
5569 0, /* properties_provided */
5570 0, /* properties_destroyed */
5571 0, /* todo_flags_start */
5572 0 /* todo_flags_finish */
5577 rest_of_handle_thread_prologue_and_epilogue (void)
5580 cleanup_cfg (CLEANUP_EXPENSIVE
);
5581 /* On some machines, the prologue and epilogue code, or parts thereof,
5582 can be represented as RTL. Doing so lets us schedule insns between
5583 it and the rest of the code and also allows delayed branch
5584 scheduling to operate in the epilogue. */
5586 thread_prologue_and_epilogue_insns ();
5590 struct rtl_opt_pass pass_thread_prologue_and_epilogue
=
5594 "pro_and_epilogue", /* name */
5596 rest_of_handle_thread_prologue_and_epilogue
, /* execute */
5599 0, /* static_pass_number */
5600 TV_THREAD_PROLOGUE_AND_EPILOGUE
, /* tv_id */
5601 0, /* properties_required */
5602 0, /* properties_provided */
5603 0, /* properties_destroyed */
5604 TODO_verify_flow
, /* todo_flags_start */
5607 TODO_df_finish
| TODO_verify_rtl_sharing
|
5608 TODO_ggc_collect
/* todo_flags_finish */
5613 /* This mini-pass fixes fall-out from SSA in asm statements that have
5614 in-out constraints. Say you start with
5617 asm ("": "+mr" (inout));
5620 which is transformed very early to use explicit output and match operands:
5623 asm ("": "=mr" (inout) : "0" (inout));
5626 Or, after SSA and copyprop,
5628 asm ("": "=mr" (inout_2) : "0" (inout_1));
5631 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
5632 they represent two separate values, so they will get different pseudo
5633 registers during expansion. Then, since the two operands need to match
5634 per the constraints, but use different pseudo registers, reload can
5635 only register a reload for these operands. But reloads can only be
5636 satisfied by hardregs, not by memory, so we need a register for this
5637 reload, just because we are presented with non-matching operands.
5638 So, even though we allow memory for this operand, no memory can be
5639 used for it, just because the two operands don't match. This can
5640 cause reload failures on register-starved targets.
5642 So it's a symptom of reload not being able to use memory for reloads
5643 or, alternatively it's also a symptom of both operands not coming into
5644 reload as matching (in which case the pseudo could go to memory just
5645 fine, as the alternative allows it, and no reload would be necessary).
5646 We fix the latter problem here, by transforming
5648 asm ("": "=mr" (inout_2) : "0" (inout_1));
5653 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
5656 match_asm_constraints_1 (rtx insn
, rtx
*p_sets
, int noutputs
)
5659 bool changed
= false;
5660 rtx op
= SET_SRC (p_sets
[0]);
5661 int ninputs
= ASM_OPERANDS_INPUT_LENGTH (op
);
5662 rtvec inputs
= ASM_OPERANDS_INPUT_VEC (op
);
5663 bool *output_matched
= XALLOCAVEC (bool, noutputs
);
5665 memset (output_matched
, 0, noutputs
* sizeof (bool));
5666 for (i
= 0; i
< ninputs
; i
++)
5668 rtx input
, output
, insns
;
5669 const char *constraint
= ASM_OPERANDS_INPUT_CONSTRAINT (op
, i
);
5673 if (*constraint
== '%')
5676 match
= strtoul (constraint
, &end
, 10);
5677 if (end
== constraint
)
5680 gcc_assert (match
< noutputs
);
5681 output
= SET_DEST (p_sets
[match
]);
5682 input
= RTVEC_ELT (inputs
, i
);
5683 /* Only do the transformation for pseudos. */
5684 if (! REG_P (output
)
5685 || rtx_equal_p (output
, input
)
5686 || (GET_MODE (input
) != VOIDmode
5687 && GET_MODE (input
) != GET_MODE (output
)))
5690 /* We can't do anything if the output is also used as input,
5691 as we're going to overwrite it. */
5692 for (j
= 0; j
< ninputs
; j
++)
5693 if (reg_overlap_mentioned_p (output
, RTVEC_ELT (inputs
, j
)))
5698 /* Avoid changing the same input several times. For
5699 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
5700 only change in once (to out1), rather than changing it
5701 first to out1 and afterwards to out2. */
5704 for (j
= 0; j
< noutputs
; j
++)
5705 if (output_matched
[j
] && input
== SET_DEST (p_sets
[j
]))
5710 output_matched
[match
] = true;
5713 emit_move_insn (output
, input
);
5714 insns
= get_insns ();
5716 emit_insn_before (insns
, insn
);
5718 /* Now replace all mentions of the input with output. We can't
5719 just replace the occurrence in inputs[i], as the register might
5720 also be used in some other input (or even in an address of an
5721 output), which would mean possibly increasing the number of
5722 inputs by one (namely 'output' in addition), which might pose
5723 a too complicated problem for reload to solve. E.g. this situation:
5725 asm ("" : "=r" (output), "=m" (input) : "0" (input))
5727 Here 'input' is used in two occurrences as input (once for the
5728 input operand, once for the address in the second output operand).
5729 If we would replace only the occurrence of the input operand (to
5730 make the matching) we would be left with this:
5733 asm ("" : "=r" (output), "=m" (input) : "0" (output))
5735 Now we suddenly have two different input values (containing the same
5736 value, but different pseudos) where we formerly had only one.
5737 With more complicated asms this might lead to reload failures
5738 which wouldn't have happen without this pass. So, iterate over
5739 all operands and replace all occurrences of the register used. */
5740 for (j
= 0; j
< noutputs
; j
++)
5741 if (!rtx_equal_p (SET_DEST (p_sets
[j
]), input
)
5742 && reg_overlap_mentioned_p (input
, SET_DEST (p_sets
[j
])))
5743 SET_DEST (p_sets
[j
]) = replace_rtx (SET_DEST (p_sets
[j
]),
5745 for (j
= 0; j
< ninputs
; j
++)
5746 if (reg_overlap_mentioned_p (input
, RTVEC_ELT (inputs
, j
)))
5747 RTVEC_ELT (inputs
, j
) = replace_rtx (RTVEC_ELT (inputs
, j
),
5754 df_insn_rescan (insn
);
5758 rest_of_match_asm_constraints (void)
5761 rtx insn
, pat
, *p_sets
;
5764 if (!crtl
->has_asm_statement
)
5767 df_set_flags (DF_DEFER_INSN_RESCAN
);
5770 FOR_BB_INSNS (bb
, insn
)
5775 pat
= PATTERN (insn
);
5776 if (GET_CODE (pat
) == PARALLEL
)
5777 p_sets
= &XVECEXP (pat
, 0, 0), noutputs
= XVECLEN (pat
, 0);
5778 else if (GET_CODE (pat
) == SET
)
5779 p_sets
= &PATTERN (insn
), noutputs
= 1;
5783 if (GET_CODE (*p_sets
) == SET
5784 && GET_CODE (SET_SRC (*p_sets
)) == ASM_OPERANDS
)
5785 match_asm_constraints_1 (insn
, p_sets
, noutputs
);
5789 return TODO_df_finish
;
5792 struct rtl_opt_pass pass_match_asm_constraints
=
5796 "asmcons", /* name */
5798 rest_of_match_asm_constraints
, /* execute */
5801 0, /* static_pass_number */
5802 TV_NONE
, /* tv_id */
5803 0, /* properties_required */
5804 0, /* properties_provided */
5805 0, /* properties_destroyed */
5806 0, /* todo_flags_start */
5807 TODO_dump_func
/* todo_flags_finish */
5812 #include "gt-function.h"