1 /* Lower complex number operations to scalar operations.
2 Copyright (C) 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
28 #include "tree-flow.h"
29 #include "tree-gimple.h"
30 #include "tree-iterator.h"
31 #include "tree-pass.h"
32 #include "tree-ssa-propagate.h"
33 #include "diagnostic.h"
36 /* For each complex ssa name, a lattice value. We're interested in finding
37 out whether a complex number is degenerate in some way, having only real
38 or only complex parts. */
48 #define PAIR(a, b) ((a) << 2 | (b))
50 DEF_VEC_I(complex_lattice_t
);
51 DEF_VEC_ALLOC_I(complex_lattice_t
, heap
);
53 static VEC(complex_lattice_t
, heap
) *complex_lattice_values
;
55 /* For each complex variable, a pair of variables for the components exists in
57 static htab_t complex_variable_components
;
59 /* For each complex SSA_NAME, a pair of ssa names for the components. */
60 static VEC(tree
, heap
) *complex_ssa_name_components
;
62 /* Lookup UID in the complex_variable_components hashtable and return the
65 cvc_lookup (unsigned int uid
)
67 struct int_tree_map
*h
, in
;
69 h
= htab_find_with_hash (complex_variable_components
, &in
, uid
);
70 return h
? h
->to
: NULL
;
73 /* Insert the pair UID, TO into the complex_variable_components hashtable. */
76 cvc_insert (unsigned int uid
, tree to
)
78 struct int_tree_map
*h
;
81 h
= XNEW (struct int_tree_map
);
84 loc
= htab_find_slot_with_hash (complex_variable_components
, h
,
86 *(struct int_tree_map
**) loc
= h
;
89 /* Return true if T is not a zero constant. In the case of real values,
90 we're only interested in +0.0. */
93 some_nonzerop (tree t
)
97 if (TREE_CODE (t
) == REAL_CST
)
98 zerop
= REAL_VALUES_IDENTICAL (TREE_REAL_CST (t
), dconst0
);
99 else if (TREE_CODE (t
) == FIXED_CST
)
100 zerop
= fixed_zerop (t
);
101 else if (TREE_CODE (t
) == INTEGER_CST
)
102 zerop
= integer_zerop (t
);
107 /* Compute a lattice value from T. It may be a gimple_val, or, as a
108 special exception, a COMPLEX_EXPR. */
110 static complex_lattice_t
111 find_lattice_value (tree t
)
115 complex_lattice_t ret
;
117 switch (TREE_CODE (t
))
120 return VEC_index (complex_lattice_t
, complex_lattice_values
,
121 SSA_NAME_VERSION (t
));
124 real
= TREE_REALPART (t
);
125 imag
= TREE_IMAGPART (t
);
129 real
= TREE_OPERAND (t
, 0);
130 imag
= TREE_OPERAND (t
, 1);
137 r
= some_nonzerop (real
);
138 i
= some_nonzerop (imag
);
139 ret
= r
*ONLY_REAL
+ i
*ONLY_IMAG
;
141 /* ??? On occasion we could do better than mapping 0+0i to real, but we
142 certainly don't want to leave it UNINITIALIZED, which eventually gets
143 mapped to VARYING. */
144 if (ret
== UNINITIALIZED
)
150 /* Determine if LHS is something for which we're interested in seeing
151 simulation results. */
154 is_complex_reg (tree lhs
)
156 return TREE_CODE (TREE_TYPE (lhs
)) == COMPLEX_TYPE
&& is_gimple_reg (lhs
);
159 /* Mark the incoming parameters to the function as VARYING. */
162 init_parameter_lattice_values (void)
166 for (parm
= DECL_ARGUMENTS (cfun
->decl
); parm
; parm
= TREE_CHAIN (parm
))
167 if (is_complex_reg (parm
) && var_ann (parm
) != NULL
)
169 tree ssa_name
= gimple_default_def (cfun
, parm
);
170 VEC_replace (complex_lattice_t
, complex_lattice_values
,
171 SSA_NAME_VERSION (ssa_name
), VARYING
);
175 /* Initialize DONT_SIMULATE_AGAIN for each stmt and phi. Return false if
176 we found no statements we want to simulate, and thus there's nothing for
177 the entire pass to do. */
180 init_dont_simulate_again (void)
183 block_stmt_iterator bsi
;
185 bool saw_a_complex_op
= false;
189 for (phi
= phi_nodes (bb
); phi
; phi
= PHI_CHAIN (phi
))
190 DONT_SIMULATE_AGAIN (phi
) = !is_complex_reg (PHI_RESULT (phi
));
192 for (bsi
= bsi_start (bb
); !bsi_end_p (bsi
); bsi_next (&bsi
))
194 tree orig_stmt
, stmt
, rhs
= NULL
;
197 orig_stmt
= stmt
= bsi_stmt (bsi
);
199 /* Most control-altering statements must be initially
200 simulated, else we won't cover the entire cfg. */
201 dsa
= !stmt_ends_bb_p (stmt
);
203 switch (TREE_CODE (stmt
))
206 /* We don't care what the lattice value of <retval> is,
207 since it's never used as an input to another computation. */
209 stmt
= TREE_OPERAND (stmt
, 0);
210 if (!stmt
|| TREE_CODE (stmt
) != GIMPLE_MODIFY_STMT
)
214 case GIMPLE_MODIFY_STMT
:
215 dsa
= !is_complex_reg (GIMPLE_STMT_OPERAND (stmt
, 0));
216 rhs
= GIMPLE_STMT_OPERAND (stmt
, 1);
220 rhs
= TREE_OPERAND (stmt
, 0);
228 switch (TREE_CODE (rhs
))
232 rhs
= TREE_OPERAND (rhs
, 0);
245 if (TREE_CODE (TREE_TYPE (rhs
)) == COMPLEX_TYPE
)
246 saw_a_complex_op
= true;
253 DONT_SIMULATE_AGAIN (orig_stmt
) = dsa
;
257 return saw_a_complex_op
;
261 /* Evaluate statement STMT against the complex lattice defined above. */
263 static enum ssa_prop_result
264 complex_visit_stmt (tree stmt
, edge
*taken_edge_p ATTRIBUTE_UNUSED
,
267 complex_lattice_t new_l
, old_l
, op1_l
, op2_l
;
271 if (TREE_CODE (stmt
) != GIMPLE_MODIFY_STMT
)
272 return SSA_PROP_VARYING
;
274 lhs
= GIMPLE_STMT_OPERAND (stmt
, 0);
275 rhs
= GIMPLE_STMT_OPERAND (stmt
, 1);
277 /* These conditions should be satisfied due to the initial filter
278 set up in init_dont_simulate_again. */
279 gcc_assert (TREE_CODE (lhs
) == SSA_NAME
);
280 gcc_assert (TREE_CODE (TREE_TYPE (lhs
)) == COMPLEX_TYPE
);
283 ver
= SSA_NAME_VERSION (lhs
);
284 old_l
= VEC_index (complex_lattice_t
, complex_lattice_values
, ver
);
286 switch (TREE_CODE (rhs
))
291 new_l
= find_lattice_value (rhs
);
296 op1_l
= find_lattice_value (TREE_OPERAND (rhs
, 0));
297 op2_l
= find_lattice_value (TREE_OPERAND (rhs
, 1));
299 /* We've set up the lattice values such that IOR neatly
301 new_l
= op1_l
| op2_l
;
310 op1_l
= find_lattice_value (TREE_OPERAND (rhs
, 0));
311 op2_l
= find_lattice_value (TREE_OPERAND (rhs
, 1));
313 /* Obviously, if either varies, so does the result. */
314 if (op1_l
== VARYING
|| op2_l
== VARYING
)
316 /* Don't prematurely promote variables if we've not yet seen
318 else if (op1_l
== UNINITIALIZED
)
320 else if (op2_l
== UNINITIALIZED
)
324 /* At this point both numbers have only one component. If the
325 numbers are of opposite kind, the result is imaginary,
326 otherwise the result is real. The add/subtract translates
327 the real/imag from/to 0/1; the ^ performs the comparison. */
328 new_l
= ((op1_l
- ONLY_REAL
) ^ (op2_l
- ONLY_REAL
)) + ONLY_REAL
;
330 /* Don't allow the lattice value to flip-flop indefinitely. */
337 new_l
= find_lattice_value (TREE_OPERAND (rhs
, 0));
345 /* If nothing changed this round, let the propagator know. */
347 return SSA_PROP_NOT_INTERESTING
;
349 VEC_replace (complex_lattice_t
, complex_lattice_values
, ver
, new_l
);
350 return new_l
== VARYING
? SSA_PROP_VARYING
: SSA_PROP_INTERESTING
;
353 /* Evaluate a PHI node against the complex lattice defined above. */
355 static enum ssa_prop_result
356 complex_visit_phi (tree phi
)
358 complex_lattice_t new_l
, old_l
;
363 lhs
= PHI_RESULT (phi
);
365 /* This condition should be satisfied due to the initial filter
366 set up in init_dont_simulate_again. */
367 gcc_assert (TREE_CODE (TREE_TYPE (lhs
)) == COMPLEX_TYPE
);
369 /* We've set up the lattice values such that IOR neatly models PHI meet. */
370 new_l
= UNINITIALIZED
;
371 for (i
= PHI_NUM_ARGS (phi
) - 1; i
>= 0; --i
)
372 new_l
|= find_lattice_value (PHI_ARG_DEF (phi
, i
));
374 ver
= SSA_NAME_VERSION (lhs
);
375 old_l
= VEC_index (complex_lattice_t
, complex_lattice_values
, ver
);
378 return SSA_PROP_NOT_INTERESTING
;
380 VEC_replace (complex_lattice_t
, complex_lattice_values
, ver
, new_l
);
381 return new_l
== VARYING
? SSA_PROP_VARYING
: SSA_PROP_INTERESTING
;
384 /* Create one backing variable for a complex component of ORIG. */
387 create_one_component_var (tree type
, tree orig
, const char *prefix
,
388 const char *suffix
, enum tree_code code
)
390 tree r
= create_tmp_var (type
, prefix
);
391 add_referenced_var (r
);
393 DECL_SOURCE_LOCATION (r
) = DECL_SOURCE_LOCATION (orig
);
394 DECL_ARTIFICIAL (r
) = 1;
396 if (DECL_NAME (orig
) && !DECL_IGNORED_P (orig
))
398 const char *name
= IDENTIFIER_POINTER (DECL_NAME (orig
));
401 DECL_NAME (r
) = get_identifier (ACONCAT ((name
, suffix
, NULL
)));
403 inner_type
= TREE_TYPE (TREE_TYPE (orig
));
404 SET_DECL_DEBUG_EXPR (r
, build1 (code
, type
, orig
));
405 DECL_DEBUG_EXPR_IS_FROM (r
) = 1;
406 DECL_IGNORED_P (r
) = 0;
407 TREE_NO_WARNING (r
) = TREE_NO_WARNING (orig
);
411 DECL_IGNORED_P (r
) = 1;
412 TREE_NO_WARNING (r
) = 1;
418 /* Retrieve a value for a complex component of VAR. */
421 get_component_var (tree var
, bool imag_p
)
423 size_t decl_index
= DECL_UID (var
) * 2 + imag_p
;
424 tree ret
= cvc_lookup (decl_index
);
428 ret
= create_one_component_var (TREE_TYPE (TREE_TYPE (var
)), var
,
429 imag_p
? "CI" : "CR",
430 imag_p
? "$imag" : "$real",
431 imag_p
? IMAGPART_EXPR
: REALPART_EXPR
);
432 cvc_insert (decl_index
, ret
);
438 /* Retrieve a value for a complex component of SSA_NAME. */
441 get_component_ssa_name (tree ssa_name
, bool imag_p
)
443 complex_lattice_t lattice
= find_lattice_value (ssa_name
);
444 size_t ssa_name_index
;
447 if (lattice
== (imag_p
? ONLY_REAL
: ONLY_IMAG
))
449 tree inner_type
= TREE_TYPE (TREE_TYPE (ssa_name
));
450 if (SCALAR_FLOAT_TYPE_P (inner_type
))
451 return build_real (inner_type
, dconst0
);
453 return build_int_cst (inner_type
, 0);
456 ssa_name_index
= SSA_NAME_VERSION (ssa_name
) * 2 + imag_p
;
457 ret
= VEC_index (tree
, complex_ssa_name_components
, ssa_name_index
);
460 ret
= get_component_var (SSA_NAME_VAR (ssa_name
), imag_p
);
461 ret
= make_ssa_name (ret
, NULL
);
463 /* Copy some properties from the original. In particular, whether it
464 is used in an abnormal phi, and whether it's uninitialized. */
465 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret
)
466 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name
);
467 if (TREE_CODE (SSA_NAME_VAR (ssa_name
)) == VAR_DECL
468 && IS_EMPTY_STMT (SSA_NAME_DEF_STMT (ssa_name
)))
470 SSA_NAME_DEF_STMT (ret
) = SSA_NAME_DEF_STMT (ssa_name
);
471 set_default_def (SSA_NAME_VAR (ret
), ret
);
474 VEC_replace (tree
, complex_ssa_name_components
, ssa_name_index
, ret
);
480 /* Set a value for a complex component of SSA_NAME, return a STMT_LIST of
481 stuff that needs doing. */
484 set_component_ssa_name (tree ssa_name
, bool imag_p
, tree value
)
486 complex_lattice_t lattice
= find_lattice_value (ssa_name
);
487 size_t ssa_name_index
;
488 tree comp
, list
, last
;
490 /* We know the value must be zero, else there's a bug in our lattice
491 analysis. But the value may well be a variable known to contain
492 zero. We should be safe ignoring it. */
493 if (lattice
== (imag_p
? ONLY_REAL
: ONLY_IMAG
))
496 /* If we've already assigned an SSA_NAME to this component, then this
497 means that our walk of the basic blocks found a use before the set.
498 This is fine. Now we should create an initialization for the value
499 we created earlier. */
500 ssa_name_index
= SSA_NAME_VERSION (ssa_name
) * 2 + imag_p
;
501 comp
= VEC_index (tree
, complex_ssa_name_components
, ssa_name_index
);
505 /* If we've nothing assigned, and the value we're given is already stable,
506 then install that as the value for this SSA_NAME. This preemptively
507 copy-propagates the value, which avoids unnecessary memory allocation. */
508 else if (is_gimple_min_invariant (value
))
510 VEC_replace (tree
, complex_ssa_name_components
, ssa_name_index
, value
);
513 else if (TREE_CODE (value
) == SSA_NAME
514 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name
))
516 /* Replace an anonymous base value with the variable from cvc_lookup.
517 This should result in better debug info. */
518 if (DECL_IGNORED_P (SSA_NAME_VAR (value
))
519 && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name
)))
521 comp
= get_component_var (SSA_NAME_VAR (ssa_name
), imag_p
);
522 replace_ssa_name_symbol (value
, comp
);
525 VEC_replace (tree
, complex_ssa_name_components
, ssa_name_index
, value
);
529 /* Finally, we need to stabilize the result by installing the value into
532 comp
= get_component_ssa_name (ssa_name
, imag_p
);
534 /* Do all the work to assign VALUE to COMP. */
535 value
= force_gimple_operand (value
, &list
, false, NULL
);
536 last
= build_gimple_modify_stmt (comp
, value
);
537 append_to_statement_list (last
, &list
);
539 gcc_assert (SSA_NAME_DEF_STMT (comp
) == NULL
);
540 SSA_NAME_DEF_STMT (comp
) = last
;
545 /* Extract the real or imaginary part of a complex variable or constant.
546 Make sure that it's a proper gimple_val and gimplify it if not.
547 Emit any new code before BSI. */
550 extract_component (block_stmt_iterator
*bsi
, tree t
, bool imagpart_p
,
553 switch (TREE_CODE (t
))
556 return imagpart_p
? TREE_IMAGPART (t
) : TREE_REALPART (t
);
559 return TREE_OPERAND (t
, imagpart_p
);
568 tree inner_type
= TREE_TYPE (TREE_TYPE (t
));
570 t
= build1 ((imagpart_p
? IMAGPART_EXPR
: REALPART_EXPR
),
571 inner_type
, unshare_expr (t
));
574 t
= gimplify_val (bsi
, inner_type
, t
);
580 return get_component_ssa_name (t
, imagpart_p
);
587 /* Update the complex components of the ssa name on the lhs of STMT. */
590 update_complex_components (block_stmt_iterator
*bsi
, tree stmt
, tree r
, tree i
)
592 tree lhs
= GIMPLE_STMT_OPERAND (stmt
, 0);
595 list
= set_component_ssa_name (lhs
, false, r
);
597 bsi_insert_after (bsi
, list
, BSI_CONTINUE_LINKING
);
599 list
= set_component_ssa_name (lhs
, true, i
);
601 bsi_insert_after (bsi
, list
, BSI_CONTINUE_LINKING
);
605 update_complex_components_on_edge (edge e
, tree lhs
, tree r
, tree i
)
609 list
= set_component_ssa_name (lhs
, false, r
);
611 bsi_insert_on_edge (e
, list
);
613 list
= set_component_ssa_name (lhs
, true, i
);
615 bsi_insert_on_edge (e
, list
);
618 /* Update an assignment to a complex variable in place. */
621 update_complex_assignment (block_stmt_iterator
*bsi
, tree r
, tree i
)
626 mod
= stmt
= bsi_stmt (*bsi
);
627 if (TREE_CODE (stmt
) == RETURN_EXPR
)
628 mod
= TREE_OPERAND (mod
, 0);
629 else if (gimple_in_ssa_p (cfun
))
630 update_complex_components (bsi
, stmt
, r
, i
);
632 type
= TREE_TYPE (GIMPLE_STMT_OPERAND (mod
, 1));
633 GIMPLE_STMT_OPERAND (mod
, 1) = build2 (COMPLEX_EXPR
, type
, r
, i
);
637 /* Generate code at the entry point of the function to initialize the
638 component variables for a complex parameter. */
641 update_parameter_components (void)
643 edge entry_edge
= single_succ_edge (ENTRY_BLOCK_PTR
);
646 for (parm
= DECL_ARGUMENTS (cfun
->decl
); parm
; parm
= TREE_CHAIN (parm
))
648 tree type
= TREE_TYPE (parm
);
651 if (TREE_CODE (type
) != COMPLEX_TYPE
|| !is_gimple_reg (parm
))
654 type
= TREE_TYPE (type
);
655 ssa_name
= gimple_default_def (cfun
, parm
);
659 r
= build1 (REALPART_EXPR
, type
, ssa_name
);
660 i
= build1 (IMAGPART_EXPR
, type
, ssa_name
);
661 update_complex_components_on_edge (entry_edge
, ssa_name
, r
, i
);
665 /* Generate code to set the component variables of a complex variable
666 to match the PHI statements in block BB. */
669 update_phi_components (basic_block bb
)
673 for (phi
= phi_nodes (bb
); phi
; phi
= PHI_CHAIN (phi
))
674 if (is_complex_reg (PHI_RESULT (phi
)))
676 tree lr
, li
, pr
= NULL
, pi
= NULL
;
679 lr
= get_component_ssa_name (PHI_RESULT (phi
), false);
680 if (TREE_CODE (lr
) == SSA_NAME
)
682 pr
= create_phi_node (lr
, bb
);
683 SSA_NAME_DEF_STMT (lr
) = pr
;
686 li
= get_component_ssa_name (PHI_RESULT (phi
), true);
687 if (TREE_CODE (li
) == SSA_NAME
)
689 pi
= create_phi_node (li
, bb
);
690 SSA_NAME_DEF_STMT (li
) = pi
;
693 for (i
= 0, n
= PHI_NUM_ARGS (phi
); i
< n
; ++i
)
695 tree comp
, arg
= PHI_ARG_DEF (phi
, i
);
698 comp
= extract_component (NULL
, arg
, false, false);
699 SET_PHI_ARG_DEF (pr
, i
, comp
);
703 comp
= extract_component (NULL
, arg
, true, false);
704 SET_PHI_ARG_DEF (pi
, i
, comp
);
710 /* Mark each virtual op in STMT for ssa update. */
713 update_all_vops (tree stmt
)
718 FOR_EACH_SSA_TREE_OPERAND (sym
, stmt
, iter
, SSA_OP_ALL_VIRTUALS
)
720 if (TREE_CODE (sym
) == SSA_NAME
)
721 sym
= SSA_NAME_VAR (sym
);
722 mark_sym_for_renaming (sym
);
726 /* Expand a complex move to scalars. */
729 expand_complex_move (block_stmt_iterator
*bsi
, tree stmt
, tree type
,
732 tree inner_type
= TREE_TYPE (type
);
735 if (TREE_CODE (lhs
) == SSA_NAME
)
737 if (is_ctrl_altering_stmt (bsi_stmt (*bsi
)))
742 /* The value is not assigned on the exception edges, so we need not
743 concern ourselves there. We do need to update on the fallthru
745 FOR_EACH_EDGE (e
, ei
, bsi
->bb
->succs
)
746 if (e
->flags
& EDGE_FALLTHRU
)
751 r
= build1 (REALPART_EXPR
, inner_type
, lhs
);
752 i
= build1 (IMAGPART_EXPR
, inner_type
, lhs
);
753 update_complex_components_on_edge (e
, lhs
, r
, i
);
755 else if (TREE_CODE (rhs
) == CALL_EXPR
|| TREE_SIDE_EFFECTS (rhs
))
757 r
= build1 (REALPART_EXPR
, inner_type
, lhs
);
758 i
= build1 (IMAGPART_EXPR
, inner_type
, lhs
);
759 update_complex_components (bsi
, stmt
, r
, i
);
763 update_all_vops (bsi_stmt (*bsi
));
764 r
= extract_component (bsi
, rhs
, 0, true);
765 i
= extract_component (bsi
, rhs
, 1, true);
766 update_complex_assignment (bsi
, r
, i
);
769 else if (TREE_CODE (rhs
) == SSA_NAME
&& !TREE_SIDE_EFFECTS (lhs
))
773 r
= extract_component (bsi
, rhs
, 0, false);
774 i
= extract_component (bsi
, rhs
, 1, false);
776 x
= build1 (REALPART_EXPR
, inner_type
, unshare_expr (lhs
));
777 x
= build_gimple_modify_stmt (x
, r
);
778 bsi_insert_before (bsi
, x
, BSI_SAME_STMT
);
780 if (stmt
== bsi_stmt (*bsi
))
782 x
= build1 (IMAGPART_EXPR
, inner_type
, unshare_expr (lhs
));
783 GIMPLE_STMT_OPERAND (stmt
, 0) = x
;
784 GIMPLE_STMT_OPERAND (stmt
, 1) = i
;
788 x
= build1 (IMAGPART_EXPR
, inner_type
, unshare_expr (lhs
));
789 x
= build_gimple_modify_stmt (x
, i
);
790 bsi_insert_before (bsi
, x
, BSI_SAME_STMT
);
792 stmt
= bsi_stmt (*bsi
);
793 gcc_assert (TREE_CODE (stmt
) == RETURN_EXPR
);
794 GIMPLE_STMT_OPERAND (stmt
, 0) = lhs
;
797 update_all_vops (stmt
);
802 /* Expand complex addition to scalars:
803 a + b = (ar + br) + i(ai + bi)
804 a - b = (ar - br) + i(ai + bi)
808 expand_complex_addition (block_stmt_iterator
*bsi
, tree inner_type
,
809 tree ar
, tree ai
, tree br
, tree bi
,
811 complex_lattice_t al
, complex_lattice_t bl
)
815 switch (PAIR (al
, bl
))
817 case PAIR (ONLY_REAL
, ONLY_REAL
):
818 rr
= gimplify_build2 (bsi
, code
, inner_type
, ar
, br
);
822 case PAIR (ONLY_REAL
, ONLY_IMAG
):
824 if (code
== MINUS_EXPR
)
825 ri
= gimplify_build2 (bsi
, MINUS_EXPR
, inner_type
, ai
, bi
);
830 case PAIR (ONLY_IMAG
, ONLY_REAL
):
831 if (code
== MINUS_EXPR
)
832 rr
= gimplify_build2 (bsi
, MINUS_EXPR
, inner_type
, ar
, br
);
838 case PAIR (ONLY_IMAG
, ONLY_IMAG
):
840 ri
= gimplify_build2 (bsi
, code
, inner_type
, ai
, bi
);
843 case PAIR (VARYING
, ONLY_REAL
):
844 rr
= gimplify_build2 (bsi
, code
, inner_type
, ar
, br
);
848 case PAIR (VARYING
, ONLY_IMAG
):
850 ri
= gimplify_build2 (bsi
, code
, inner_type
, ai
, bi
);
853 case PAIR (ONLY_REAL
, VARYING
):
854 if (code
== MINUS_EXPR
)
856 rr
= gimplify_build2 (bsi
, code
, inner_type
, ar
, br
);
860 case PAIR (ONLY_IMAG
, VARYING
):
861 if (code
== MINUS_EXPR
)
864 ri
= gimplify_build2 (bsi
, code
, inner_type
, ai
, bi
);
867 case PAIR (VARYING
, VARYING
):
869 rr
= gimplify_build2 (bsi
, code
, inner_type
, ar
, br
);
870 ri
= gimplify_build2 (bsi
, code
, inner_type
, ai
, bi
);
877 update_complex_assignment (bsi
, rr
, ri
);
880 /* Expand a complex multiplication or division to a libcall to the c99
881 compliant routines. */
884 expand_complex_libcall (block_stmt_iterator
*bsi
, tree ar
, tree ai
,
885 tree br
, tree bi
, enum tree_code code
)
887 enum machine_mode mode
;
888 enum built_in_function bcode
;
891 stmt
= bsi_stmt (*bsi
);
892 type
= TREE_TYPE (GIMPLE_STMT_OPERAND (stmt
, 1));
894 mode
= TYPE_MODE (type
);
895 gcc_assert (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
);
896 if (code
== MULT_EXPR
)
897 bcode
= BUILT_IN_COMPLEX_MUL_MIN
+ mode
- MIN_MODE_COMPLEX_FLOAT
;
898 else if (code
== RDIV_EXPR
)
899 bcode
= BUILT_IN_COMPLEX_DIV_MIN
+ mode
- MIN_MODE_COMPLEX_FLOAT
;
902 fn
= built_in_decls
[bcode
];
904 GIMPLE_STMT_OPERAND (stmt
, 1) = build_call_expr (fn
, 4, ar
, ai
, br
, bi
);
907 if (gimple_in_ssa_p (cfun
))
909 tree lhs
= GIMPLE_STMT_OPERAND (stmt
, 0);
910 type
= TREE_TYPE (type
);
911 update_complex_components (bsi
, stmt
,
912 build1 (REALPART_EXPR
, type
, lhs
),
913 build1 (IMAGPART_EXPR
, type
, lhs
));
917 /* Expand complex multiplication to scalars:
918 a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
922 expand_complex_multiplication (block_stmt_iterator
*bsi
, tree inner_type
,
923 tree ar
, tree ai
, tree br
, tree bi
,
924 complex_lattice_t al
, complex_lattice_t bl
)
930 complex_lattice_t tl
;
931 rr
= ar
, ar
= br
, br
= rr
;
932 ri
= ai
, ai
= bi
, bi
= ri
;
933 tl
= al
, al
= bl
, bl
= tl
;
936 switch (PAIR (al
, bl
))
938 case PAIR (ONLY_REAL
, ONLY_REAL
):
939 rr
= gimplify_build2 (bsi
, MULT_EXPR
, inner_type
, ar
, br
);
943 case PAIR (ONLY_IMAG
, ONLY_REAL
):
945 if (TREE_CODE (ai
) == REAL_CST
946 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (ai
), dconst1
))
949 ri
= gimplify_build2 (bsi
, MULT_EXPR
, inner_type
, ai
, br
);
952 case PAIR (ONLY_IMAG
, ONLY_IMAG
):
953 rr
= gimplify_build2 (bsi
, MULT_EXPR
, inner_type
, ai
, bi
);
954 rr
= gimplify_build1 (bsi
, NEGATE_EXPR
, inner_type
, rr
);
958 case PAIR (VARYING
, ONLY_REAL
):
959 rr
= gimplify_build2 (bsi
, MULT_EXPR
, inner_type
, ar
, br
);
960 ri
= gimplify_build2 (bsi
, MULT_EXPR
, inner_type
, ai
, br
);
963 case PAIR (VARYING
, ONLY_IMAG
):
964 rr
= gimplify_build2 (bsi
, MULT_EXPR
, inner_type
, ai
, bi
);
965 rr
= gimplify_build1 (bsi
, NEGATE_EXPR
, inner_type
, rr
);
966 ri
= gimplify_build2 (bsi
, MULT_EXPR
, inner_type
, ar
, bi
);
969 case PAIR (VARYING
, VARYING
):
970 if (flag_complex_method
== 2 && SCALAR_FLOAT_TYPE_P (inner_type
))
972 expand_complex_libcall (bsi
, ar
, ai
, br
, bi
, MULT_EXPR
);
979 t1
= gimplify_build2 (bsi
, MULT_EXPR
, inner_type
, ar
, br
);
980 t2
= gimplify_build2 (bsi
, MULT_EXPR
, inner_type
, ai
, bi
);
981 t3
= gimplify_build2 (bsi
, MULT_EXPR
, inner_type
, ar
, bi
);
983 /* Avoid expanding redundant multiplication for the common
984 case of squaring a complex number. */
985 if (ar
== br
&& ai
== bi
)
988 t4
= gimplify_build2 (bsi
, MULT_EXPR
, inner_type
, ai
, br
);
990 rr
= gimplify_build2 (bsi
, MINUS_EXPR
, inner_type
, t1
, t2
);
991 ri
= gimplify_build2 (bsi
, PLUS_EXPR
, inner_type
, t3
, t4
);
999 update_complex_assignment (bsi
, rr
, ri
);
1002 /* Expand complex division to scalars, straightforward algorithm.
1003 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1008 expand_complex_div_straight (block_stmt_iterator
*bsi
, tree inner_type
,
1009 tree ar
, tree ai
, tree br
, tree bi
,
1010 enum tree_code code
)
1012 tree rr
, ri
, div
, t1
, t2
, t3
;
1014 t1
= gimplify_build2 (bsi
, MULT_EXPR
, inner_type
, br
, br
);
1015 t2
= gimplify_build2 (bsi
, MULT_EXPR
, inner_type
, bi
, bi
);
1016 div
= gimplify_build2 (bsi
, PLUS_EXPR
, inner_type
, t1
, t2
);
1018 t1
= gimplify_build2 (bsi
, MULT_EXPR
, inner_type
, ar
, br
);
1019 t2
= gimplify_build2 (bsi
, MULT_EXPR
, inner_type
, ai
, bi
);
1020 t3
= gimplify_build2 (bsi
, PLUS_EXPR
, inner_type
, t1
, t2
);
1021 rr
= gimplify_build2 (bsi
, code
, inner_type
, t3
, div
);
1023 t1
= gimplify_build2 (bsi
, MULT_EXPR
, inner_type
, ai
, br
);
1024 t2
= gimplify_build2 (bsi
, MULT_EXPR
, inner_type
, ar
, bi
);
1025 t3
= gimplify_build2 (bsi
, MINUS_EXPR
, inner_type
, t1
, t2
);
1026 ri
= gimplify_build2 (bsi
, code
, inner_type
, t3
, div
);
1028 update_complex_assignment (bsi
, rr
, ri
);
1031 /* Expand complex division to scalars, modified algorithm to minimize
1032 overflow with wide input ranges. */
1035 expand_complex_div_wide (block_stmt_iterator
*bsi
, tree inner_type
,
1036 tree ar
, tree ai
, tree br
, tree bi
,
1037 enum tree_code code
)
1039 tree rr
, ri
, ratio
, div
, t1
, t2
, tr
, ti
, cond
;
1040 basic_block bb_cond
, bb_true
, bb_false
, bb_join
;
1042 /* Examine |br| < |bi|, and branch. */
1043 t1
= gimplify_build1 (bsi
, ABS_EXPR
, inner_type
, br
);
1044 t2
= gimplify_build1 (bsi
, ABS_EXPR
, inner_type
, bi
);
1045 cond
= fold_build2 (LT_EXPR
, boolean_type_node
, t1
, t2
);
1048 bb_cond
= bb_true
= bb_false
= bb_join
= NULL
;
1049 rr
= ri
= tr
= ti
= NULL
;
1050 if (!TREE_CONSTANT (cond
))
1054 cond
= build3 (COND_EXPR
, void_type_node
, cond
, NULL_TREE
, NULL_TREE
);
1055 bsi_insert_before (bsi
, cond
, BSI_SAME_STMT
);
1057 /* Split the original block, and create the TRUE and FALSE blocks. */
1058 e
= split_block (bsi
->bb
, cond
);
1061 bb_true
= create_empty_bb (bb_cond
);
1062 bb_false
= create_empty_bb (bb_true
);
1064 /* Wire the blocks together. */
1065 e
->flags
= EDGE_TRUE_VALUE
;
1066 redirect_edge_succ (e
, bb_true
);
1067 make_edge (bb_cond
, bb_false
, EDGE_FALSE_VALUE
);
1068 make_edge (bb_true
, bb_join
, EDGE_FALLTHRU
);
1069 make_edge (bb_false
, bb_join
, EDGE_FALLTHRU
);
1071 /* Update dominance info. Note that bb_join's data was
1072 updated by split_block. */
1073 if (dom_info_available_p (CDI_DOMINATORS
))
1075 set_immediate_dominator (CDI_DOMINATORS
, bb_true
, bb_cond
);
1076 set_immediate_dominator (CDI_DOMINATORS
, bb_false
, bb_cond
);
1079 rr
= make_rename_temp (inner_type
, NULL
);
1080 ri
= make_rename_temp (inner_type
, NULL
);
1083 /* In the TRUE branch, we compute
1085 div = (br * ratio) + bi;
1086 tr = (ar * ratio) + ai;
1087 ti = (ai * ratio) - ar;
1090 if (bb_true
|| integer_nonzerop (cond
))
1094 *bsi
= bsi_last (bb_true
);
1095 bsi_insert_after (bsi
, build_empty_stmt (), BSI_NEW_STMT
);
1098 ratio
= gimplify_build2 (bsi
, code
, inner_type
, br
, bi
);
1100 t1
= gimplify_build2 (bsi
, MULT_EXPR
, inner_type
, br
, ratio
);
1101 div
= gimplify_build2 (bsi
, PLUS_EXPR
, inner_type
, t1
, bi
);
1103 t1
= gimplify_build2 (bsi
, MULT_EXPR
, inner_type
, ar
, ratio
);
1104 tr
= gimplify_build2 (bsi
, PLUS_EXPR
, inner_type
, t1
, ai
);
1106 t1
= gimplify_build2 (bsi
, MULT_EXPR
, inner_type
, ai
, ratio
);
1107 ti
= gimplify_build2 (bsi
, MINUS_EXPR
, inner_type
, t1
, ar
);
1109 tr
= gimplify_build2 (bsi
, code
, inner_type
, tr
, div
);
1110 ti
= gimplify_build2 (bsi
, code
, inner_type
, ti
, div
);
1114 t1
= build_gimple_modify_stmt (rr
, tr
);
1115 bsi_insert_before (bsi
, t1
, BSI_SAME_STMT
);
1116 t1
= build_gimple_modify_stmt (ri
, ti
);
1117 bsi_insert_before (bsi
, t1
, BSI_SAME_STMT
);
1118 bsi_remove (bsi
, true);
1122 /* In the FALSE branch, we compute
1124 divisor = (d * ratio) + c;
1125 tr = (b * ratio) + a;
1126 ti = b - (a * ratio);
1129 if (bb_false
|| integer_zerop (cond
))
1133 *bsi
= bsi_last (bb_false
);
1134 bsi_insert_after (bsi
, build_empty_stmt (), BSI_NEW_STMT
);
1137 ratio
= gimplify_build2 (bsi
, code
, inner_type
, bi
, br
);
1139 t1
= gimplify_build2 (bsi
, MULT_EXPR
, inner_type
, bi
, ratio
);
1140 div
= gimplify_build2 (bsi
, PLUS_EXPR
, inner_type
, t1
, br
);
1142 t1
= gimplify_build2 (bsi
, MULT_EXPR
, inner_type
, ai
, ratio
);
1143 tr
= gimplify_build2 (bsi
, PLUS_EXPR
, inner_type
, t1
, ar
);
1145 t1
= gimplify_build2 (bsi
, MULT_EXPR
, inner_type
, ar
, ratio
);
1146 ti
= gimplify_build2 (bsi
, MINUS_EXPR
, inner_type
, ai
, t1
);
1148 tr
= gimplify_build2 (bsi
, code
, inner_type
, tr
, div
);
1149 ti
= gimplify_build2 (bsi
, code
, inner_type
, ti
, div
);
1153 t1
= build_gimple_modify_stmt (rr
, tr
);
1154 bsi_insert_before (bsi
, t1
, BSI_SAME_STMT
);
1155 t1
= build_gimple_modify_stmt (ri
, ti
);
1156 bsi_insert_before (bsi
, t1
, BSI_SAME_STMT
);
1157 bsi_remove (bsi
, true);
1162 *bsi
= bsi_start (bb_join
);
1166 update_complex_assignment (bsi
, rr
, ri
);
1169 /* Expand complex division to scalars. */
1172 expand_complex_division (block_stmt_iterator
*bsi
, tree inner_type
,
1173 tree ar
, tree ai
, tree br
, tree bi
,
1174 enum tree_code code
,
1175 complex_lattice_t al
, complex_lattice_t bl
)
1179 switch (PAIR (al
, bl
))
1181 case PAIR (ONLY_REAL
, ONLY_REAL
):
1182 rr
= gimplify_build2 (bsi
, code
, inner_type
, ar
, br
);
1186 case PAIR (ONLY_REAL
, ONLY_IMAG
):
1188 ri
= gimplify_build2 (bsi
, code
, inner_type
, ar
, bi
);
1189 ri
= gimplify_build1 (bsi
, NEGATE_EXPR
, inner_type
, ri
);
1192 case PAIR (ONLY_IMAG
, ONLY_REAL
):
1194 ri
= gimplify_build2 (bsi
, code
, inner_type
, ai
, br
);
1197 case PAIR (ONLY_IMAG
, ONLY_IMAG
):
1198 rr
= gimplify_build2 (bsi
, code
, inner_type
, ai
, bi
);
1202 case PAIR (VARYING
, ONLY_REAL
):
1203 rr
= gimplify_build2 (bsi
, code
, inner_type
, ar
, br
);
1204 ri
= gimplify_build2 (bsi
, code
, inner_type
, ai
, br
);
1207 case PAIR (VARYING
, ONLY_IMAG
):
1208 rr
= gimplify_build2 (bsi
, code
, inner_type
, ai
, bi
);
1209 ri
= gimplify_build2 (bsi
, code
, inner_type
, ar
, bi
);
1210 ri
= gimplify_build1 (bsi
, NEGATE_EXPR
, inner_type
, ri
);
1212 case PAIR (ONLY_REAL
, VARYING
):
1213 case PAIR (ONLY_IMAG
, VARYING
):
1214 case PAIR (VARYING
, VARYING
):
1215 switch (flag_complex_method
)
1218 /* straightforward implementation of complex divide acceptable. */
1219 expand_complex_div_straight (bsi
, inner_type
, ar
, ai
, br
, bi
, code
);
1223 if (SCALAR_FLOAT_TYPE_P (inner_type
))
1225 expand_complex_libcall (bsi
, ar
, ai
, br
, bi
, code
);
1231 /* wide ranges of inputs must work for complex divide. */
1232 expand_complex_div_wide (bsi
, inner_type
, ar
, ai
, br
, bi
, code
);
1244 update_complex_assignment (bsi
, rr
, ri
);
1247 /* Expand complex negation to scalars:
1252 expand_complex_negation (block_stmt_iterator
*bsi
, tree inner_type
,
1257 rr
= gimplify_build1 (bsi
, NEGATE_EXPR
, inner_type
, ar
);
1258 ri
= gimplify_build1 (bsi
, NEGATE_EXPR
, inner_type
, ai
);
1260 update_complex_assignment (bsi
, rr
, ri
);
1263 /* Expand complex conjugate to scalars:
1268 expand_complex_conjugate (block_stmt_iterator
*bsi
, tree inner_type
,
1273 ri
= gimplify_build1 (bsi
, NEGATE_EXPR
, inner_type
, ai
);
1275 update_complex_assignment (bsi
, ar
, ri
);
1278 /* Expand complex comparison (EQ or NE only). */
1281 expand_complex_comparison (block_stmt_iterator
*bsi
, tree ar
, tree ai
,
1282 tree br
, tree bi
, enum tree_code code
)
1284 tree cr
, ci
, cc
, stmt
, expr
, type
;
1286 cr
= gimplify_build2 (bsi
, code
, boolean_type_node
, ar
, br
);
1287 ci
= gimplify_build2 (bsi
, code
, boolean_type_node
, ai
, bi
);
1288 cc
= gimplify_build2 (bsi
,
1289 (code
== EQ_EXPR
? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
),
1290 boolean_type_node
, cr
, ci
);
1292 stmt
= expr
= bsi_stmt (*bsi
);
1294 switch (TREE_CODE (stmt
))
1297 expr
= TREE_OPERAND (stmt
, 0);
1299 case GIMPLE_MODIFY_STMT
:
1300 type
= TREE_TYPE (GIMPLE_STMT_OPERAND (expr
, 1));
1301 GIMPLE_STMT_OPERAND (expr
, 1) = fold_convert (type
, cc
);
1304 TREE_OPERAND (stmt
, 0) = cc
;
1313 /* Process one statement. If we identify a complex operation, expand it. */
1316 expand_complex_operations_1 (block_stmt_iterator
*bsi
)
1318 tree stmt
= bsi_stmt (*bsi
);
1319 tree rhs
, type
, inner_type
;
1320 tree ac
, ar
, ai
, bc
, br
, bi
;
1321 complex_lattice_t al
, bl
;
1322 enum tree_code code
;
1324 switch (TREE_CODE (stmt
))
1327 stmt
= TREE_OPERAND (stmt
, 0);
1330 if (TREE_CODE (stmt
) != GIMPLE_MODIFY_STMT
)
1334 case GIMPLE_MODIFY_STMT
:
1335 rhs
= GIMPLE_STMT_OPERAND (stmt
, 1);
1339 rhs
= TREE_OPERAND (stmt
, 0);
1346 type
= TREE_TYPE (rhs
);
1347 code
= TREE_CODE (rhs
);
1349 /* Initial filter for operations we handle. */
1355 case TRUNC_DIV_EXPR
:
1357 case FLOOR_DIV_EXPR
:
1358 case ROUND_DIV_EXPR
:
1362 if (TREE_CODE (type
) != COMPLEX_TYPE
)
1364 inner_type
= TREE_TYPE (type
);
1369 inner_type
= TREE_TYPE (TREE_OPERAND (rhs
, 1));
1370 if (TREE_CODE (inner_type
) != COMPLEX_TYPE
)
1378 /* COND_EXPR may also fallthru here, but we do not need to do anything
1380 if (TREE_CODE (stmt
) != GIMPLE_MODIFY_STMT
)
1383 lhs
= GIMPLE_STMT_OPERAND (stmt
, 0);
1384 rhs
= GIMPLE_STMT_OPERAND (stmt
, 1);
1386 if (TREE_CODE (type
) == COMPLEX_TYPE
)
1387 expand_complex_move (bsi
, stmt
, type
, lhs
, rhs
);
1388 else if ((TREE_CODE (rhs
) == REALPART_EXPR
1389 || TREE_CODE (rhs
) == IMAGPART_EXPR
)
1390 && TREE_CODE (TREE_OPERAND (rhs
, 0)) == SSA_NAME
)
1392 GENERIC_TREE_OPERAND (stmt
, 1)
1393 = extract_component (bsi
, TREE_OPERAND (rhs
, 0),
1394 TREE_CODE (rhs
) == IMAGPART_EXPR
, false);
1401 /* Extract the components of the two complex values. Make sure and
1402 handle the common case of the same value used twice specially. */
1403 ac
= TREE_OPERAND (rhs
, 0);
1404 ar
= extract_component (bsi
, ac
, 0, true);
1405 ai
= extract_component (bsi
, ac
, 1, true);
1407 if (TREE_CODE_CLASS (code
) == tcc_unary
)
1408 bc
= br
= bi
= NULL
;
1411 bc
= TREE_OPERAND (rhs
, 1);
1416 br
= extract_component (bsi
, bc
, 0, true);
1417 bi
= extract_component (bsi
, bc
, 1, true);
1421 if (gimple_in_ssa_p (cfun
))
1423 al
= find_lattice_value (ac
);
1424 if (al
== UNINITIALIZED
)
1427 if (TREE_CODE_CLASS (code
) == tcc_unary
)
1433 bl
= find_lattice_value (bc
);
1434 if (bl
== UNINITIALIZED
)
1445 expand_complex_addition (bsi
, inner_type
, ar
, ai
, br
, bi
, code
, al
, bl
);
1449 expand_complex_multiplication (bsi
, inner_type
, ar
, ai
, br
, bi
, al
, bl
);
1452 case TRUNC_DIV_EXPR
:
1454 case FLOOR_DIV_EXPR
:
1455 case ROUND_DIV_EXPR
:
1457 expand_complex_division (bsi
, inner_type
, ar
, ai
, br
, bi
, code
, al
, bl
);
1461 expand_complex_negation (bsi
, inner_type
, ar
, ai
);
1465 expand_complex_conjugate (bsi
, inner_type
, ar
, ai
);
1470 expand_complex_comparison (bsi
, ar
, ai
, br
, bi
, code
);
1479 /* Entry point for complex operation lowering during optimization. */
1482 tree_lower_complex (void)
1484 int old_last_basic_block
;
1485 block_stmt_iterator bsi
;
1488 if (!init_dont_simulate_again ())
1491 complex_lattice_values
= VEC_alloc (complex_lattice_t
, heap
, num_ssa_names
);
1492 VEC_safe_grow_cleared (complex_lattice_t
, heap
,
1493 complex_lattice_values
, num_ssa_names
);
1495 init_parameter_lattice_values ();
1496 ssa_propagate (complex_visit_stmt
, complex_visit_phi
);
1498 complex_variable_components
= htab_create (10, int_tree_map_hash
,
1499 int_tree_map_eq
, free
);
1501 complex_ssa_name_components
= VEC_alloc (tree
, heap
, 2*num_ssa_names
);
1502 VEC_safe_grow_cleared (tree
, heap
, complex_ssa_name_components
,
1505 update_parameter_components ();
1507 /* ??? Ideally we'd traverse the blocks in breadth-first order. */
1508 old_last_basic_block
= last_basic_block
;
1511 if (bb
->index
>= old_last_basic_block
)
1513 update_phi_components (bb
);
1514 for (bsi
= bsi_start (bb
); !bsi_end_p (bsi
); bsi_next (&bsi
))
1515 expand_complex_operations_1 (&bsi
);
1518 bsi_commit_edge_inserts ();
1520 htab_delete (complex_variable_components
);
1521 VEC_free (tree
, heap
, complex_ssa_name_components
);
1522 VEC_free (complex_lattice_t
, heap
, complex_lattice_values
);
1526 struct tree_opt_pass pass_lower_complex
=
1528 "cplxlower", /* name */
1530 tree_lower_complex
, /* execute */
1533 0, /* static_pass_number */
1535 PROP_ssa
, /* properties_required */
1536 0, /* properties_provided */
1537 0, /* properties_destroyed */
1538 0, /* todo_flags_start */
1542 | TODO_verify_stmts
, /* todo_flags_finish */
1547 /* Entry point for complex operation lowering without optimization. */
1550 tree_lower_complex_O0 (void)
1552 int old_last_basic_block
= last_basic_block
;
1553 block_stmt_iterator bsi
;
1558 if (bb
->index
>= old_last_basic_block
)
1560 for (bsi
= bsi_start (bb
); !bsi_end_p (bsi
); bsi_next (&bsi
))
1561 expand_complex_operations_1 (&bsi
);
1567 gate_no_optimization (void)
1569 /* With errors, normal optimization passes are not run. If we don't
1570 lower complex operations at all, rtl expansion will abort. */
1571 return optimize
== 0 || sorrycount
|| errorcount
;
1574 struct tree_opt_pass pass_lower_complex_O0
=
1576 "cplxlower0", /* name */
1577 gate_no_optimization
, /* gate */
1578 tree_lower_complex_O0
, /* execute */
1581 0, /* static_pass_number */
1583 PROP_cfg
, /* properties_required */
1584 0, /* properties_provided */
1585 0, /* properties_destroyed */
1586 0, /* todo_flags_start */
1587 TODO_dump_func
| TODO_ggc_collect
1588 | TODO_verify_stmts
, /* todo_flags_finish */