target-supports.exp (check_effective_target_mips_soft_float): Return true for MIPS16...
[official-gcc.git] / gcc / combine.c
blobcfd0ed1a4047f8ae6ca05c33e9f77c166ba9448b
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "tree.h"
84 #include "tm_p.h"
85 #include "flags.h"
86 #include "regs.h"
87 #include "hard-reg-set.h"
88 #include "basic-block.h"
89 #include "insn-config.h"
90 #include "function.h"
91 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
92 #include "expr.h"
93 #include "insn-attr.h"
94 #include "recog.h"
95 #include "real.h"
96 #include "toplev.h"
97 #include "target.h"
98 #include "optabs.h"
99 #include "insn-codes.h"
100 #include "rtlhooks-def.h"
101 /* Include output.h for dump_file. */
102 #include "output.h"
103 #include "params.h"
104 #include "timevar.h"
105 #include "tree-pass.h"
106 #include "df.h"
107 #include "cgraph.h"
109 /* Number of attempts to combine instructions in this function. */
111 static int combine_attempts;
113 /* Number of attempts that got as far as substitution in this function. */
115 static int combine_merges;
117 /* Number of instructions combined with added SETs in this function. */
119 static int combine_extras;
121 /* Number of instructions combined in this function. */
123 static int combine_successes;
125 /* Totals over entire compilation. */
127 static int total_attempts, total_merges, total_extras, total_successes;
129 /* combine_instructions may try to replace the right hand side of the
130 second instruction with the value of an associated REG_EQUAL note
131 before throwing it at try_combine. That is problematic when there
132 is a REG_DEAD note for a register used in the old right hand side
133 and can cause distribute_notes to do wrong things. This is the
134 second instruction if it has been so modified, null otherwise. */
136 static rtx i2mod;
138 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
140 static rtx i2mod_old_rhs;
142 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
144 static rtx i2mod_new_rhs;
146 typedef struct reg_stat_struct {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx last_death;
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx last_set;
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
166 Therefore, we maintain the following fields:
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
182 (The next two parameters are out of date).
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
196 /* Record last value assigned to (hard or pseudo) register n. */
198 rtx last_set_value;
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
203 int last_set_table_tick;
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
208 int last_set_label;
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
223 char last_set_invalid;
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
235 If an entry is zero, it means that we don't know anything special. */
237 unsigned char sign_bit_copies;
239 unsigned HOST_WIDE_INT nonzero_bits;
241 /* Record the value of the label_tick when the last truncation
242 happened. The field truncated_to_mode is only valid if
243 truncation_label == label_tick. */
245 int truncation_label;
247 /* Record the last truncation seen for this register. If truncation
248 is not a nop to this mode we might be able to save an explicit
249 truncation if we know that value already contains a truncated
250 value. */
252 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
253 } reg_stat_type;
255 DEF_VEC_O(reg_stat_type);
256 DEF_VEC_ALLOC_O(reg_stat_type,heap);
258 static VEC(reg_stat_type,heap) *reg_stat;
260 /* Record the luid of the last insn that invalidated memory
261 (anything that writes memory, and subroutine calls, but not pushes). */
263 static int mem_last_set;
265 /* Record the luid of the last CALL_INSN
266 so we can tell whether a potential combination crosses any calls. */
268 static int last_call_luid;
270 /* When `subst' is called, this is the insn that is being modified
271 (by combining in a previous insn). The PATTERN of this insn
272 is still the old pattern partially modified and it should not be
273 looked at, but this may be used to examine the successors of the insn
274 to judge whether a simplification is valid. */
276 static rtx subst_insn;
278 /* This is the lowest LUID that `subst' is currently dealing with.
279 get_last_value will not return a value if the register was set at or
280 after this LUID. If not for this mechanism, we could get confused if
281 I2 or I1 in try_combine were an insn that used the old value of a register
282 to obtain a new value. In that case, we might erroneously get the
283 new value of the register when we wanted the old one. */
285 static int subst_low_luid;
287 /* This contains any hard registers that are used in newpat; reg_dead_at_p
288 must consider all these registers to be always live. */
290 static HARD_REG_SET newpat_used_regs;
292 /* This is an insn to which a LOG_LINKS entry has been added. If this
293 insn is the earlier than I2 or I3, combine should rescan starting at
294 that location. */
296 static rtx added_links_insn;
298 /* Basic block in which we are performing combines. */
299 static basic_block this_basic_block;
302 /* Length of the currently allocated uid_insn_cost array. */
304 static int max_uid_known;
306 /* The following array records the insn_rtx_cost for every insn
307 in the instruction stream. */
309 static int *uid_insn_cost;
311 /* The following array records the LOG_LINKS for every insn in the
312 instruction stream as an INSN_LIST rtx. */
314 static rtx *uid_log_links;
316 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
317 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
319 /* Incremented for each basic block. */
321 static int label_tick;
323 /* Reset to label_tick for each label. */
325 static int label_tick_ebb_start;
327 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
328 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
330 static enum machine_mode nonzero_bits_mode;
332 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
333 be safely used. It is zero while computing them and after combine has
334 completed. This former test prevents propagating values based on
335 previously set values, which can be incorrect if a variable is modified
336 in a loop. */
338 static int nonzero_sign_valid;
341 /* Record one modification to rtl structure
342 to be undone by storing old_contents into *where. */
344 struct undo
346 struct undo *next;
347 enum { UNDO_RTX, UNDO_INT, UNDO_MODE } kind;
348 union { rtx r; int i; enum machine_mode m; } old_contents;
349 union { rtx *r; int *i; } where;
352 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
353 num_undo says how many are currently recorded.
355 other_insn is nonzero if we have modified some other insn in the process
356 of working on subst_insn. It must be verified too. */
358 struct undobuf
360 struct undo *undos;
361 struct undo *frees;
362 rtx other_insn;
365 static struct undobuf undobuf;
367 /* Number of times the pseudo being substituted for
368 was found and replaced. */
370 static int n_occurrences;
372 static rtx reg_nonzero_bits_for_combine (const_rtx, enum machine_mode, const_rtx,
373 enum machine_mode,
374 unsigned HOST_WIDE_INT,
375 unsigned HOST_WIDE_INT *);
376 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, enum machine_mode, const_rtx,
377 enum machine_mode,
378 unsigned int, unsigned int *);
379 static void do_SUBST (rtx *, rtx);
380 static void do_SUBST_INT (int *, int);
381 static void init_reg_last (void);
382 static void setup_incoming_promotions (rtx);
383 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
384 static int cant_combine_insn_p (rtx);
385 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
386 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
387 static int contains_muldiv (rtx);
388 static rtx try_combine (rtx, rtx, rtx, int *);
389 static void undo_all (void);
390 static void undo_commit (void);
391 static rtx *find_split_point (rtx *, rtx);
392 static rtx subst (rtx, rtx, rtx, int, int);
393 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
394 static rtx simplify_if_then_else (rtx);
395 static rtx simplify_set (rtx);
396 static rtx simplify_logical (rtx);
397 static rtx expand_compound_operation (rtx);
398 static const_rtx expand_field_assignment (const_rtx);
399 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
400 rtx, unsigned HOST_WIDE_INT, int, int, int);
401 static rtx extract_left_shift (rtx, int);
402 static rtx make_compound_operation (rtx, enum rtx_code);
403 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
404 unsigned HOST_WIDE_INT *);
405 static rtx canon_reg_for_combine (rtx, rtx);
406 static rtx force_to_mode (rtx, enum machine_mode,
407 unsigned HOST_WIDE_INT, int);
408 static rtx if_then_else_cond (rtx, rtx *, rtx *);
409 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
410 static int rtx_equal_for_field_assignment_p (rtx, rtx);
411 static rtx make_field_assignment (rtx);
412 static rtx apply_distributive_law (rtx);
413 static rtx distribute_and_simplify_rtx (rtx, int);
414 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
415 unsigned HOST_WIDE_INT);
416 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
417 unsigned HOST_WIDE_INT);
418 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
419 HOST_WIDE_INT, enum machine_mode, int *);
420 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
421 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
422 int);
423 static int recog_for_combine (rtx *, rtx, rtx *);
424 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
425 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
426 static void update_table_tick (rtx);
427 static void record_value_for_reg (rtx, rtx, rtx);
428 static void check_conversions (rtx, rtx);
429 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
430 static void record_dead_and_set_regs (rtx);
431 static int get_last_value_validate (rtx *, rtx, int, int);
432 static rtx get_last_value (const_rtx);
433 static int use_crosses_set_p (const_rtx, int);
434 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
435 static int reg_dead_at_p (rtx, rtx);
436 static void move_deaths (rtx, rtx, int, rtx, rtx *);
437 static int reg_bitfield_target_p (rtx, rtx);
438 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx);
439 static void distribute_links (rtx);
440 static void mark_used_regs_combine (rtx);
441 static void record_promoted_value (rtx, rtx);
442 static int unmentioned_reg_p_1 (rtx *, void *);
443 static bool unmentioned_reg_p (rtx, rtx);
444 static void record_truncated_value (rtx);
445 static bool reg_truncated_to_mode (enum machine_mode, const_rtx);
446 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
449 /* It is not safe to use ordinary gen_lowpart in combine.
450 See comments in gen_lowpart_for_combine. */
451 #undef RTL_HOOKS_GEN_LOWPART
452 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
454 /* Our implementation of gen_lowpart never emits a new pseudo. */
455 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
456 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
458 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
459 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
461 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
462 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
464 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
465 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
467 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
470 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
471 PATTERN can not be split. Otherwise, it returns an insn sequence.
472 This is a wrapper around split_insns which ensures that the
473 reg_stat vector is made larger if the splitter creates a new
474 register. */
476 static rtx
477 combine_split_insns (rtx pattern, rtx insn)
479 rtx ret;
480 unsigned int nregs;
482 ret = split_insns (pattern, insn);
483 nregs = max_reg_num ();
484 if (nregs > VEC_length (reg_stat_type, reg_stat))
485 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
486 return ret;
489 /* This is used by find_single_use to locate an rtx in LOC that
490 contains exactly one use of DEST, which is typically either a REG
491 or CC0. It returns a pointer to the innermost rtx expression
492 containing DEST. Appearances of DEST that are being used to
493 totally replace it are not counted. */
495 static rtx *
496 find_single_use_1 (rtx dest, rtx *loc)
498 rtx x = *loc;
499 enum rtx_code code = GET_CODE (x);
500 rtx *result = NULL;
501 rtx *this_result;
502 int i;
503 const char *fmt;
505 switch (code)
507 case CONST_INT:
508 case CONST:
509 case LABEL_REF:
510 case SYMBOL_REF:
511 case CONST_DOUBLE:
512 case CONST_VECTOR:
513 case CLOBBER:
514 return 0;
516 case SET:
517 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
518 of a REG that occupies all of the REG, the insn uses DEST if
519 it is mentioned in the destination or the source. Otherwise, we
520 need just check the source. */
521 if (GET_CODE (SET_DEST (x)) != CC0
522 && GET_CODE (SET_DEST (x)) != PC
523 && !REG_P (SET_DEST (x))
524 && ! (GET_CODE (SET_DEST (x)) == SUBREG
525 && REG_P (SUBREG_REG (SET_DEST (x)))
526 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
527 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
528 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
529 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
530 break;
532 return find_single_use_1 (dest, &SET_SRC (x));
534 case MEM:
535 case SUBREG:
536 return find_single_use_1 (dest, &XEXP (x, 0));
538 default:
539 break;
542 /* If it wasn't one of the common cases above, check each expression and
543 vector of this code. Look for a unique usage of DEST. */
545 fmt = GET_RTX_FORMAT (code);
546 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
548 if (fmt[i] == 'e')
550 if (dest == XEXP (x, i)
551 || (REG_P (dest) && REG_P (XEXP (x, i))
552 && REGNO (dest) == REGNO (XEXP (x, i))))
553 this_result = loc;
554 else
555 this_result = find_single_use_1 (dest, &XEXP (x, i));
557 if (result == NULL)
558 result = this_result;
559 else if (this_result)
560 /* Duplicate usage. */
561 return NULL;
563 else if (fmt[i] == 'E')
565 int j;
567 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
569 if (XVECEXP (x, i, j) == dest
570 || (REG_P (dest)
571 && REG_P (XVECEXP (x, i, j))
572 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
573 this_result = loc;
574 else
575 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
577 if (result == NULL)
578 result = this_result;
579 else if (this_result)
580 return NULL;
585 return result;
589 /* See if DEST, produced in INSN, is used only a single time in the
590 sequel. If so, return a pointer to the innermost rtx expression in which
591 it is used.
593 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
595 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
596 care about REG_DEAD notes or LOG_LINKS.
598 Otherwise, we find the single use by finding an insn that has a
599 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
600 only referenced once in that insn, we know that it must be the first
601 and last insn referencing DEST. */
603 static rtx *
604 find_single_use (rtx dest, rtx insn, rtx *ploc)
606 rtx next;
607 rtx *result;
608 rtx link;
610 #ifdef HAVE_cc0
611 if (dest == cc0_rtx)
613 next = NEXT_INSN (insn);
614 if (next == 0
615 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
616 return 0;
618 result = find_single_use_1 (dest, &PATTERN (next));
619 if (result && ploc)
620 *ploc = next;
621 return result;
623 #endif
625 if (!REG_P (dest))
626 return 0;
628 for (next = next_nonnote_insn (insn);
629 next != 0 && !LABEL_P (next);
630 next = next_nonnote_insn (next))
631 if (INSN_P (next) && dead_or_set_p (next, dest))
633 for (link = LOG_LINKS (next); link; link = XEXP (link, 1))
634 if (XEXP (link, 0) == insn)
635 break;
637 if (link)
639 result = find_single_use_1 (dest, &PATTERN (next));
640 if (ploc)
641 *ploc = next;
642 return result;
646 return 0;
649 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
650 insn. The substitution can be undone by undo_all. If INTO is already
651 set to NEWVAL, do not record this change. Because computing NEWVAL might
652 also call SUBST, we have to compute it before we put anything into
653 the undo table. */
655 static void
656 do_SUBST (rtx *into, rtx newval)
658 struct undo *buf;
659 rtx oldval = *into;
661 if (oldval == newval)
662 return;
664 /* We'd like to catch as many invalid transformations here as
665 possible. Unfortunately, there are way too many mode changes
666 that are perfectly valid, so we'd waste too much effort for
667 little gain doing the checks here. Focus on catching invalid
668 transformations involving integer constants. */
669 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
670 && GET_CODE (newval) == CONST_INT)
672 /* Sanity check that we're replacing oldval with a CONST_INT
673 that is a valid sign-extension for the original mode. */
674 gcc_assert (INTVAL (newval)
675 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
677 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
678 CONST_INT is not valid, because after the replacement, the
679 original mode would be gone. Unfortunately, we can't tell
680 when do_SUBST is called to replace the operand thereof, so we
681 perform this test on oldval instead, checking whether an
682 invalid replacement took place before we got here. */
683 gcc_assert (!(GET_CODE (oldval) == SUBREG
684 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT));
685 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
686 && GET_CODE (XEXP (oldval, 0)) == CONST_INT));
689 if (undobuf.frees)
690 buf = undobuf.frees, undobuf.frees = buf->next;
691 else
692 buf = XNEW (struct undo);
694 buf->kind = UNDO_RTX;
695 buf->where.r = into;
696 buf->old_contents.r = oldval;
697 *into = newval;
699 buf->next = undobuf.undos, undobuf.undos = buf;
702 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
704 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
705 for the value of a HOST_WIDE_INT value (including CONST_INT) is
706 not safe. */
708 static void
709 do_SUBST_INT (int *into, int newval)
711 struct undo *buf;
712 int oldval = *into;
714 if (oldval == newval)
715 return;
717 if (undobuf.frees)
718 buf = undobuf.frees, undobuf.frees = buf->next;
719 else
720 buf = XNEW (struct undo);
722 buf->kind = UNDO_INT;
723 buf->where.i = into;
724 buf->old_contents.i = oldval;
725 *into = newval;
727 buf->next = undobuf.undos, undobuf.undos = buf;
730 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
732 /* Similar to SUBST, but just substitute the mode. This is used when
733 changing the mode of a pseudo-register, so that any other
734 references to the entry in the regno_reg_rtx array will change as
735 well. */
737 static void
738 do_SUBST_MODE (rtx *into, enum machine_mode newval)
740 struct undo *buf;
741 enum machine_mode oldval = GET_MODE (*into);
743 if (oldval == newval)
744 return;
746 if (undobuf.frees)
747 buf = undobuf.frees, undobuf.frees = buf->next;
748 else
749 buf = XNEW (struct undo);
751 buf->kind = UNDO_MODE;
752 buf->where.r = into;
753 buf->old_contents.m = oldval;
754 PUT_MODE (*into, newval);
756 buf->next = undobuf.undos, undobuf.undos = buf;
759 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
761 /* Subroutine of try_combine. Determine whether the combine replacement
762 patterns NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to
763 insn_rtx_cost that the original instruction sequence I1, I2, I3 and
764 undobuf.other_insn. Note that I1 and/or NEWI2PAT may be NULL_RTX.
765 NEWOTHERPAT and undobuf.other_insn may also both be NULL_RTX. This
766 function returns false, if the costs of all instructions can be
767 estimated, and the replacements are more expensive than the original
768 sequence. */
770 static bool
771 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat,
772 rtx newotherpat)
774 int i1_cost, i2_cost, i3_cost;
775 int new_i2_cost, new_i3_cost;
776 int old_cost, new_cost;
778 /* Lookup the original insn_rtx_costs. */
779 i2_cost = INSN_COST (i2);
780 i3_cost = INSN_COST (i3);
782 if (i1)
784 i1_cost = INSN_COST (i1);
785 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
786 ? i1_cost + i2_cost + i3_cost : 0;
788 else
790 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
791 i1_cost = 0;
794 /* Calculate the replacement insn_rtx_costs. */
795 new_i3_cost = insn_rtx_cost (newpat);
796 if (newi2pat)
798 new_i2_cost = insn_rtx_cost (newi2pat);
799 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
800 ? new_i2_cost + new_i3_cost : 0;
802 else
804 new_cost = new_i3_cost;
805 new_i2_cost = 0;
808 if (undobuf.other_insn)
810 int old_other_cost, new_other_cost;
812 old_other_cost = INSN_COST (undobuf.other_insn);
813 new_other_cost = insn_rtx_cost (newotherpat);
814 if (old_other_cost > 0 && new_other_cost > 0)
816 old_cost += old_other_cost;
817 new_cost += new_other_cost;
819 else
820 old_cost = 0;
823 /* Disallow this recombination if both new_cost and old_cost are
824 greater than zero, and new_cost is greater than old cost. */
825 if (old_cost > 0
826 && new_cost > old_cost)
828 if (dump_file)
830 if (i1)
832 fprintf (dump_file,
833 "rejecting combination of insns %d, %d and %d\n",
834 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
835 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
836 i1_cost, i2_cost, i3_cost, old_cost);
838 else
840 fprintf (dump_file,
841 "rejecting combination of insns %d and %d\n",
842 INSN_UID (i2), INSN_UID (i3));
843 fprintf (dump_file, "original costs %d + %d = %d\n",
844 i2_cost, i3_cost, old_cost);
847 if (newi2pat)
849 fprintf (dump_file, "replacement costs %d + %d = %d\n",
850 new_i2_cost, new_i3_cost, new_cost);
852 else
853 fprintf (dump_file, "replacement cost %d\n", new_cost);
856 return false;
859 /* Update the uid_insn_cost array with the replacement costs. */
860 INSN_COST (i2) = new_i2_cost;
861 INSN_COST (i3) = new_i3_cost;
862 if (i1)
863 INSN_COST (i1) = 0;
865 return true;
869 /* Delete any insns that copy a register to itself. */
871 static void
872 delete_noop_moves (void)
874 rtx insn, next;
875 basic_block bb;
877 FOR_EACH_BB (bb)
879 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
881 next = NEXT_INSN (insn);
882 if (INSN_P (insn) && noop_move_p (insn))
884 rtx note;
886 /* If we're about to remove the first insn of a libcall
887 then move the libcall note to the next real insn and
888 update the retval note. */
889 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
890 && XEXP (note, 0) != insn)
892 rtx new_libcall_insn = next_real_insn (insn);
893 rtx retval_note = find_reg_note (XEXP (note, 0),
894 REG_RETVAL, NULL_RTX);
895 REG_NOTES (new_libcall_insn)
896 = gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
897 REG_NOTES (new_libcall_insn));
898 XEXP (retval_note, 0) = new_libcall_insn;
901 if (dump_file)
902 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
904 delete_insn_and_edges (insn);
911 /* Fill in log links field for all insns. */
913 static void
914 create_log_links (void)
916 basic_block bb;
917 rtx *next_use, insn;
918 struct df_ref **def_vec, **use_vec;
920 next_use = XCNEWVEC (rtx, max_reg_num ());
922 /* Pass through each block from the end, recording the uses of each
923 register and establishing log links when def is encountered.
924 Note that we do not clear next_use array in order to save time,
925 so we have to test whether the use is in the same basic block as def.
927 There are a few cases below when we do not consider the definition or
928 usage -- these are taken from original flow.c did. Don't ask me why it is
929 done this way; I don't know and if it works, I don't want to know. */
931 FOR_EACH_BB (bb)
933 FOR_BB_INSNS_REVERSE (bb, insn)
935 if (!INSN_P (insn))
936 continue;
938 /* Log links are created only once. */
939 gcc_assert (!LOG_LINKS (insn));
941 for (def_vec = DF_INSN_DEFS (insn); *def_vec; def_vec++)
943 struct df_ref *def = *def_vec;
944 int regno = DF_REF_REGNO (def);
945 rtx use_insn;
947 if (!next_use[regno])
948 continue;
950 /* Do not consider if it is pre/post modification in MEM. */
951 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
952 continue;
954 /* Do not make the log link for frame pointer. */
955 if ((regno == FRAME_POINTER_REGNUM
956 && (! reload_completed || frame_pointer_needed))
957 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
958 || (regno == HARD_FRAME_POINTER_REGNUM
959 && (! reload_completed || frame_pointer_needed))
960 #endif
961 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
962 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
963 #endif
965 continue;
967 use_insn = next_use[regno];
968 if (BLOCK_FOR_INSN (use_insn) == bb)
970 /* flow.c claimed:
972 We don't build a LOG_LINK for hard registers contained
973 in ASM_OPERANDs. If these registers get replaced,
974 we might wind up changing the semantics of the insn,
975 even if reload can make what appear to be valid
976 assignments later. */
977 if (regno >= FIRST_PSEUDO_REGISTER
978 || asm_noperands (PATTERN (use_insn)) < 0)
979 LOG_LINKS (use_insn) =
980 alloc_INSN_LIST (insn, LOG_LINKS (use_insn));
982 next_use[regno] = NULL_RTX;
985 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
987 struct df_ref *use = *use_vec;
988 int regno = DF_REF_REGNO (use);
990 /* Do not consider the usage of the stack pointer
991 by function call. */
992 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
993 continue;
995 next_use[regno] = insn;
1000 free (next_use);
1003 /* Clear LOG_LINKS fields of insns. */
1005 static void
1006 clear_log_links (void)
1008 rtx insn;
1010 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1011 if (INSN_P (insn))
1012 free_INSN_LIST_list (&LOG_LINKS (insn));
1018 /* Main entry point for combiner. F is the first insn of the function.
1019 NREGS is the first unused pseudo-reg number.
1021 Return nonzero if the combiner has turned an indirect jump
1022 instruction into a direct jump. */
1023 static int
1024 combine_instructions (rtx f, unsigned int nregs)
1026 rtx insn, next;
1027 #ifdef HAVE_cc0
1028 rtx prev;
1029 #endif
1030 rtx links, nextlinks;
1031 rtx first;
1033 int new_direct_jump_p = 0;
1035 for (first = f; first && !INSN_P (first); )
1036 first = NEXT_INSN (first);
1037 if (!first)
1038 return 0;
1040 combine_attempts = 0;
1041 combine_merges = 0;
1042 combine_extras = 0;
1043 combine_successes = 0;
1045 rtl_hooks = combine_rtl_hooks;
1047 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
1049 init_recog_no_volatile ();
1051 /* Allocate array for insn info. */
1052 max_uid_known = get_max_uid ();
1053 uid_log_links = XCNEWVEC (rtx, max_uid_known + 1);
1054 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1056 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1058 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1059 problems when, for example, we have j <<= 1 in a loop. */
1061 nonzero_sign_valid = 0;
1063 /* Scan all SETs and see if we can deduce anything about what
1064 bits are known to be zero for some registers and how many copies
1065 of the sign bit are known to exist for those registers.
1067 Also set any known values so that we can use it while searching
1068 for what bits are known to be set. */
1070 label_tick = label_tick_ebb_start = 1;
1072 setup_incoming_promotions (first);
1074 create_log_links ();
1075 FOR_EACH_BB (this_basic_block)
1077 last_call_luid = 0;
1078 mem_last_set = -1;
1079 label_tick++;
1080 FOR_BB_INSNS (this_basic_block, insn)
1081 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1083 subst_low_luid = DF_INSN_LUID (insn);
1084 subst_insn = insn;
1086 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1087 insn);
1088 record_dead_and_set_regs (insn);
1090 #ifdef AUTO_INC_DEC
1091 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1092 if (REG_NOTE_KIND (links) == REG_INC)
1093 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1094 insn);
1095 #endif
1097 /* Record the current insn_rtx_cost of this instruction. */
1098 if (NONJUMP_INSN_P (insn))
1099 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn));
1100 if (dump_file)
1101 fprintf(dump_file, "insn_cost %d: %d\n",
1102 INSN_UID (insn), INSN_COST (insn));
1104 else if (LABEL_P (insn))
1105 label_tick_ebb_start = label_tick;
1108 nonzero_sign_valid = 1;
1110 /* Now scan all the insns in forward order. */
1112 label_tick = label_tick_ebb_start = 1;
1113 init_reg_last ();
1114 setup_incoming_promotions (first);
1116 FOR_EACH_BB (this_basic_block)
1118 last_call_luid = 0;
1119 mem_last_set = -1;
1120 label_tick++;
1121 for (insn = BB_HEAD (this_basic_block);
1122 insn != NEXT_INSN (BB_END (this_basic_block));
1123 insn = next ? next : NEXT_INSN (insn))
1125 next = 0;
1126 if (INSN_P (insn))
1128 /* See if we know about function return values before this
1129 insn based upon SUBREG flags. */
1130 check_conversions (insn, PATTERN (insn));
1132 /* Try this insn with each insn it links back to. */
1134 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1135 if ((next = try_combine (insn, XEXP (links, 0),
1136 NULL_RTX, &new_direct_jump_p)) != 0)
1137 goto retry;
1139 /* Try each sequence of three linked insns ending with this one. */
1141 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1143 rtx link = XEXP (links, 0);
1145 /* If the linked insn has been replaced by a note, then there
1146 is no point in pursuing this chain any further. */
1147 if (NOTE_P (link))
1148 continue;
1150 for (nextlinks = LOG_LINKS (link);
1151 nextlinks;
1152 nextlinks = XEXP (nextlinks, 1))
1153 if ((next = try_combine (insn, link,
1154 XEXP (nextlinks, 0),
1155 &new_direct_jump_p)) != 0)
1156 goto retry;
1159 #ifdef HAVE_cc0
1160 /* Try to combine a jump insn that uses CC0
1161 with a preceding insn that sets CC0, and maybe with its
1162 logical predecessor as well.
1163 This is how we make decrement-and-branch insns.
1164 We need this special code because data flow connections
1165 via CC0 do not get entered in LOG_LINKS. */
1167 if (JUMP_P (insn)
1168 && (prev = prev_nonnote_insn (insn)) != 0
1169 && NONJUMP_INSN_P (prev)
1170 && sets_cc0_p (PATTERN (prev)))
1172 if ((next = try_combine (insn, prev,
1173 NULL_RTX, &new_direct_jump_p)) != 0)
1174 goto retry;
1176 for (nextlinks = LOG_LINKS (prev); nextlinks;
1177 nextlinks = XEXP (nextlinks, 1))
1178 if ((next = try_combine (insn, prev,
1179 XEXP (nextlinks, 0),
1180 &new_direct_jump_p)) != 0)
1181 goto retry;
1184 /* Do the same for an insn that explicitly references CC0. */
1185 if (NONJUMP_INSN_P (insn)
1186 && (prev = prev_nonnote_insn (insn)) != 0
1187 && NONJUMP_INSN_P (prev)
1188 && sets_cc0_p (PATTERN (prev))
1189 && GET_CODE (PATTERN (insn)) == SET
1190 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1192 if ((next = try_combine (insn, prev,
1193 NULL_RTX, &new_direct_jump_p)) != 0)
1194 goto retry;
1196 for (nextlinks = LOG_LINKS (prev); nextlinks;
1197 nextlinks = XEXP (nextlinks, 1))
1198 if ((next = try_combine (insn, prev,
1199 XEXP (nextlinks, 0),
1200 &new_direct_jump_p)) != 0)
1201 goto retry;
1204 /* Finally, see if any of the insns that this insn links to
1205 explicitly references CC0. If so, try this insn, that insn,
1206 and its predecessor if it sets CC0. */
1207 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1208 if (NONJUMP_INSN_P (XEXP (links, 0))
1209 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
1210 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
1211 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
1212 && NONJUMP_INSN_P (prev)
1213 && sets_cc0_p (PATTERN (prev))
1214 && (next = try_combine (insn, XEXP (links, 0),
1215 prev, &new_direct_jump_p)) != 0)
1216 goto retry;
1217 #endif
1219 /* Try combining an insn with two different insns whose results it
1220 uses. */
1221 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1222 for (nextlinks = XEXP (links, 1); nextlinks;
1223 nextlinks = XEXP (nextlinks, 1))
1224 if ((next = try_combine (insn, XEXP (links, 0),
1225 XEXP (nextlinks, 0),
1226 &new_direct_jump_p)) != 0)
1227 goto retry;
1229 /* Try this insn with each REG_EQUAL note it links back to. */
1230 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1232 rtx set, note;
1233 rtx temp = XEXP (links, 0);
1234 if ((set = single_set (temp)) != 0
1235 && (note = find_reg_equal_equiv_note (temp)) != 0
1236 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1237 /* Avoid using a register that may already been marked
1238 dead by an earlier instruction. */
1239 && ! unmentioned_reg_p (note, SET_SRC (set))
1240 && (GET_MODE (note) == VOIDmode
1241 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1242 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1244 /* Temporarily replace the set's source with the
1245 contents of the REG_EQUAL note. The insn will
1246 be deleted or recognized by try_combine. */
1247 rtx orig = SET_SRC (set);
1248 SET_SRC (set) = note;
1249 i2mod = temp;
1250 i2mod_old_rhs = copy_rtx (orig);
1251 i2mod_new_rhs = copy_rtx (note);
1252 next = try_combine (insn, i2mod, NULL_RTX,
1253 &new_direct_jump_p);
1254 i2mod = NULL_RTX;
1255 if (next)
1256 goto retry;
1257 SET_SRC (set) = orig;
1261 if (!NOTE_P (insn))
1262 record_dead_and_set_regs (insn);
1264 retry:
1267 else if (LABEL_P (insn))
1268 label_tick_ebb_start = label_tick;
1272 clear_log_links ();
1273 clear_bb_flags ();
1274 new_direct_jump_p |= purge_all_dead_edges ();
1275 delete_noop_moves ();
1277 /* Clean up. */
1278 free (uid_log_links);
1279 free (uid_insn_cost);
1280 VEC_free (reg_stat_type, heap, reg_stat);
1283 struct undo *undo, *next;
1284 for (undo = undobuf.frees; undo; undo = next)
1286 next = undo->next;
1287 free (undo);
1289 undobuf.frees = 0;
1292 total_attempts += combine_attempts;
1293 total_merges += combine_merges;
1294 total_extras += combine_extras;
1295 total_successes += combine_successes;
1297 nonzero_sign_valid = 0;
1298 rtl_hooks = general_rtl_hooks;
1300 /* Make recognizer allow volatile MEMs again. */
1301 init_recog ();
1303 return new_direct_jump_p;
1306 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1308 static void
1309 init_reg_last (void)
1311 unsigned int i;
1312 reg_stat_type *p;
1314 for (i = 0; VEC_iterate (reg_stat_type, reg_stat, i, p); ++i)
1315 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1318 /* Set up any promoted values for incoming argument registers. */
1320 static void
1321 setup_incoming_promotions (rtx first)
1323 tree arg;
1324 bool strictly_local = false;
1326 if (!targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
1327 return;
1329 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1330 arg = TREE_CHAIN (arg))
1332 rtx reg = DECL_INCOMING_RTL (arg);
1333 int uns1, uns3;
1334 enum machine_mode mode1, mode2, mode3, mode4;
1336 /* Only continue if the incoming argument is in a register. */
1337 if (!REG_P (reg))
1338 continue;
1340 /* Determine, if possible, whether all call sites of the current
1341 function lie within the current compilation unit. (This does
1342 take into account the exporting of a function via taking its
1343 address, and so forth.) */
1344 if (flag_unit_at_a_time)
1345 strictly_local = cgraph_local_info (current_function_decl)->local;
1347 /* The mode and signedness of the argument before any promotions happen
1348 (equal to the mode of the pseudo holding it at that stage). */
1349 mode1 = TYPE_MODE (TREE_TYPE (arg));
1350 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1352 /* The mode and signedness of the argument after any source language and
1353 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1354 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1355 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1357 /* The mode and signedness of the argument as it is actually passed,
1358 after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions. */
1359 mode3 = promote_mode (DECL_ARG_TYPE (arg), mode2, &uns3, 1);
1361 /* The mode of the register in which the argument is being passed. */
1362 mode4 = GET_MODE (reg);
1364 /* Eliminate sign extensions in the callee when possible. Only
1365 do this when:
1366 (a) a mode promotion has occurred;
1367 (b) the mode of the register is the same as the mode of
1368 the argument as it is passed; and
1369 (c) the signedness does not change across any of the promotions; and
1370 (d) when no language-level promotions (which we cannot guarantee
1371 will have been done by an external caller) are necessary,
1372 unless we know that this function is only ever called from
1373 the current compilation unit -- all of whose call sites will
1374 do the mode1 --> mode2 promotion. */
1375 if (mode1 != mode3
1376 && mode3 == mode4
1377 && uns1 == uns3
1378 && (mode1 == mode2 || strictly_local))
1380 /* Record that the value was promoted from mode1 to mode3,
1381 so that any sign extension at the head of the current
1382 function may be eliminated. */
1383 rtx x;
1384 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1385 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1386 record_value_for_reg (reg, first, x);
1391 /* Called via note_stores. If X is a pseudo that is narrower than
1392 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1394 If we are setting only a portion of X and we can't figure out what
1395 portion, assume all bits will be used since we don't know what will
1396 be happening.
1398 Similarly, set how many bits of X are known to be copies of the sign bit
1399 at all locations in the function. This is the smallest number implied
1400 by any set of X. */
1402 static void
1403 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1405 rtx insn = (rtx) data;
1406 unsigned int num;
1408 if (REG_P (x)
1409 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1410 /* If this register is undefined at the start of the file, we can't
1411 say what its contents were. */
1412 && ! REGNO_REG_SET_P
1413 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x))
1414 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
1416 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
1418 if (set == 0 || GET_CODE (set) == CLOBBER)
1420 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1421 rsp->sign_bit_copies = 1;
1422 return;
1425 /* If this register is being initialized using itself, and the
1426 register is uninitialized in this basic block, and there are
1427 no LOG_LINKS which set the register, then part of the
1428 register is uninitialized. In that case we can't assume
1429 anything about the number of nonzero bits.
1431 ??? We could do better if we checked this in
1432 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1433 could avoid making assumptions about the insn which initially
1434 sets the register, while still using the information in other
1435 insns. We would have to be careful to check every insn
1436 involved in the combination. */
1438 if (insn
1439 && reg_referenced_p (x, PATTERN (insn))
1440 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1441 REGNO (x)))
1443 rtx link;
1445 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
1447 if (dead_or_set_p (XEXP (link, 0), x))
1448 break;
1450 if (!link)
1452 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1453 rsp->sign_bit_copies = 1;
1454 return;
1458 /* If this is a complex assignment, see if we can convert it into a
1459 simple assignment. */
1460 set = expand_field_assignment (set);
1462 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1463 set what we know about X. */
1465 if (SET_DEST (set) == x
1466 || (GET_CODE (SET_DEST (set)) == SUBREG
1467 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1468 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1469 && SUBREG_REG (SET_DEST (set)) == x))
1471 rtx src = SET_SRC (set);
1473 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1474 /* If X is narrower than a word and SRC is a non-negative
1475 constant that would appear negative in the mode of X,
1476 sign-extend it for use in reg_stat[].nonzero_bits because some
1477 machines (maybe most) will actually do the sign-extension
1478 and this is the conservative approach.
1480 ??? For 2.5, try to tighten up the MD files in this regard
1481 instead of this kludge. */
1483 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1484 && GET_CODE (src) == CONST_INT
1485 && INTVAL (src) > 0
1486 && 0 != (INTVAL (src)
1487 & ((HOST_WIDE_INT) 1
1488 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1489 src = GEN_INT (INTVAL (src)
1490 | ((HOST_WIDE_INT) (-1)
1491 << GET_MODE_BITSIZE (GET_MODE (x))));
1492 #endif
1494 /* Don't call nonzero_bits if it cannot change anything. */
1495 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1496 rsp->nonzero_bits |= nonzero_bits (src, nonzero_bits_mode);
1497 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1498 if (rsp->sign_bit_copies == 0
1499 || rsp->sign_bit_copies > num)
1500 rsp->sign_bit_copies = num;
1502 else
1504 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1505 rsp->sign_bit_copies = 1;
1510 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1511 insns that were previously combined into I3 or that will be combined
1512 into the merger of INSN and I3.
1514 Return 0 if the combination is not allowed for any reason.
1516 If the combination is allowed, *PDEST will be set to the single
1517 destination of INSN and *PSRC to the single source, and this function
1518 will return 1. */
1520 static int
1521 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1522 rtx *pdest, rtx *psrc)
1524 int i;
1525 const_rtx set = 0;
1526 rtx src, dest;
1527 rtx p;
1528 #ifdef AUTO_INC_DEC
1529 rtx link;
1530 #endif
1531 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1532 && next_active_insn (succ) == i3)
1533 : next_active_insn (insn) == i3);
1535 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1536 or a PARALLEL consisting of such a SET and CLOBBERs.
1538 If INSN has CLOBBER parallel parts, ignore them for our processing.
1539 By definition, these happen during the execution of the insn. When it
1540 is merged with another insn, all bets are off. If they are, in fact,
1541 needed and aren't also supplied in I3, they may be added by
1542 recog_for_combine. Otherwise, it won't match.
1544 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1545 note.
1547 Get the source and destination of INSN. If more than one, can't
1548 combine. */
1550 if (GET_CODE (PATTERN (insn)) == SET)
1551 set = PATTERN (insn);
1552 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1553 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1555 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1557 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1558 rtx note;
1560 switch (GET_CODE (elt))
1562 /* This is important to combine floating point insns
1563 for the SH4 port. */
1564 case USE:
1565 /* Combining an isolated USE doesn't make sense.
1566 We depend here on combinable_i3pat to reject them. */
1567 /* The code below this loop only verifies that the inputs of
1568 the SET in INSN do not change. We call reg_set_between_p
1569 to verify that the REG in the USE does not change between
1570 I3 and INSN.
1571 If the USE in INSN was for a pseudo register, the matching
1572 insn pattern will likely match any register; combining this
1573 with any other USE would only be safe if we knew that the
1574 used registers have identical values, or if there was
1575 something to tell them apart, e.g. different modes. For
1576 now, we forgo such complicated tests and simply disallow
1577 combining of USES of pseudo registers with any other USE. */
1578 if (REG_P (XEXP (elt, 0))
1579 && GET_CODE (PATTERN (i3)) == PARALLEL)
1581 rtx i3pat = PATTERN (i3);
1582 int i = XVECLEN (i3pat, 0) - 1;
1583 unsigned int regno = REGNO (XEXP (elt, 0));
1587 rtx i3elt = XVECEXP (i3pat, 0, i);
1589 if (GET_CODE (i3elt) == USE
1590 && REG_P (XEXP (i3elt, 0))
1591 && (REGNO (XEXP (i3elt, 0)) == regno
1592 ? reg_set_between_p (XEXP (elt, 0),
1593 PREV_INSN (insn), i3)
1594 : regno >= FIRST_PSEUDO_REGISTER))
1595 return 0;
1597 while (--i >= 0);
1599 break;
1601 /* We can ignore CLOBBERs. */
1602 case CLOBBER:
1603 break;
1605 case SET:
1606 /* Ignore SETs whose result isn't used but not those that
1607 have side-effects. */
1608 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1609 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1610 || INTVAL (XEXP (note, 0)) <= 0)
1611 && ! side_effects_p (elt))
1612 break;
1614 /* If we have already found a SET, this is a second one and
1615 so we cannot combine with this insn. */
1616 if (set)
1617 return 0;
1619 set = elt;
1620 break;
1622 default:
1623 /* Anything else means we can't combine. */
1624 return 0;
1628 if (set == 0
1629 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1630 so don't do anything with it. */
1631 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1632 return 0;
1634 else
1635 return 0;
1637 if (set == 0)
1638 return 0;
1640 set = expand_field_assignment (set);
1641 src = SET_SRC (set), dest = SET_DEST (set);
1643 /* Don't eliminate a store in the stack pointer. */
1644 if (dest == stack_pointer_rtx
1645 /* Don't combine with an insn that sets a register to itself if it has
1646 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1647 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1648 /* Can't merge an ASM_OPERANDS. */
1649 || GET_CODE (src) == ASM_OPERANDS
1650 /* Can't merge a function call. */
1651 || GET_CODE (src) == CALL
1652 /* Don't eliminate a function call argument. */
1653 || (CALL_P (i3)
1654 && (find_reg_fusage (i3, USE, dest)
1655 || (REG_P (dest)
1656 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1657 && global_regs[REGNO (dest)])))
1658 /* Don't substitute into an incremented register. */
1659 || FIND_REG_INC_NOTE (i3, dest)
1660 || (succ && FIND_REG_INC_NOTE (succ, dest))
1661 /* Don't substitute into a non-local goto, this confuses CFG. */
1662 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1663 #if 0
1664 /* Don't combine the end of a libcall into anything. */
1665 /* ??? This gives worse code, and appears to be unnecessary, since no
1666 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1667 use REG_RETVAL notes for noconflict blocks, but other code here
1668 makes sure that those insns don't disappear. */
1669 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1670 #endif
1671 /* Make sure that DEST is not used after SUCC but before I3. */
1672 || (succ && ! all_adjacent
1673 && reg_used_between_p (dest, succ, i3))
1674 /* Make sure that the value that is to be substituted for the register
1675 does not use any registers whose values alter in between. However,
1676 If the insns are adjacent, a use can't cross a set even though we
1677 think it might (this can happen for a sequence of insns each setting
1678 the same destination; last_set of that register might point to
1679 a NOTE). If INSN has a REG_EQUIV note, the register is always
1680 equivalent to the memory so the substitution is valid even if there
1681 are intervening stores. Also, don't move a volatile asm or
1682 UNSPEC_VOLATILE across any other insns. */
1683 || (! all_adjacent
1684 && (((!MEM_P (src)
1685 || ! find_reg_note (insn, REG_EQUIV, src))
1686 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1687 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1688 || GET_CODE (src) == UNSPEC_VOLATILE))
1689 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1690 better register allocation by not doing the combine. */
1691 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1692 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1693 /* Don't combine across a CALL_INSN, because that would possibly
1694 change whether the life span of some REGs crosses calls or not,
1695 and it is a pain to update that information.
1696 Exception: if source is a constant, moving it later can't hurt.
1697 Accept that special case, because it helps -fforce-addr a lot. */
1698 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1699 return 0;
1701 /* DEST must either be a REG or CC0. */
1702 if (REG_P (dest))
1704 /* If register alignment is being enforced for multi-word items in all
1705 cases except for parameters, it is possible to have a register copy
1706 insn referencing a hard register that is not allowed to contain the
1707 mode being copied and which would not be valid as an operand of most
1708 insns. Eliminate this problem by not combining with such an insn.
1710 Also, on some machines we don't want to extend the life of a hard
1711 register. */
1713 if (REG_P (src)
1714 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1715 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1716 /* Don't extend the life of a hard register unless it is
1717 user variable (if we have few registers) or it can't
1718 fit into the desired register (meaning something special
1719 is going on).
1720 Also avoid substituting a return register into I3, because
1721 reload can't handle a conflict with constraints of other
1722 inputs. */
1723 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1724 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1725 return 0;
1727 else if (GET_CODE (dest) != CC0)
1728 return 0;
1731 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1732 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1733 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1735 /* Don't substitute for a register intended as a clobberable
1736 operand. */
1737 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1738 if (rtx_equal_p (reg, dest))
1739 return 0;
1741 /* If the clobber represents an earlyclobber operand, we must not
1742 substitute an expression containing the clobbered register.
1743 As we do not analyze the constraint strings here, we have to
1744 make the conservative assumption. However, if the register is
1745 a fixed hard reg, the clobber cannot represent any operand;
1746 we leave it up to the machine description to either accept or
1747 reject use-and-clobber patterns. */
1748 if (!REG_P (reg)
1749 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1750 || !fixed_regs[REGNO (reg)])
1751 if (reg_overlap_mentioned_p (reg, src))
1752 return 0;
1755 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1756 or not), reject, unless nothing volatile comes between it and I3 */
1758 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1760 /* Make sure succ doesn't contain a volatile reference. */
1761 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1762 return 0;
1764 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1765 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1766 return 0;
1769 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1770 to be an explicit register variable, and was chosen for a reason. */
1772 if (GET_CODE (src) == ASM_OPERANDS
1773 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1774 return 0;
1776 /* If there are any volatile insns between INSN and I3, reject, because
1777 they might affect machine state. */
1779 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1780 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1781 return 0;
1783 /* If INSN contains an autoincrement or autodecrement, make sure that
1784 register is not used between there and I3, and not already used in
1785 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1786 Also insist that I3 not be a jump; if it were one
1787 and the incremented register were spilled, we would lose. */
1789 #ifdef AUTO_INC_DEC
1790 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1791 if (REG_NOTE_KIND (link) == REG_INC
1792 && (JUMP_P (i3)
1793 || reg_used_between_p (XEXP (link, 0), insn, i3)
1794 || (pred != NULL_RTX
1795 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1796 || (succ != NULL_RTX
1797 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1798 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1799 return 0;
1800 #endif
1802 #ifdef HAVE_cc0
1803 /* Don't combine an insn that follows a CC0-setting insn.
1804 An insn that uses CC0 must not be separated from the one that sets it.
1805 We do, however, allow I2 to follow a CC0-setting insn if that insn
1806 is passed as I1; in that case it will be deleted also.
1807 We also allow combining in this case if all the insns are adjacent
1808 because that would leave the two CC0 insns adjacent as well.
1809 It would be more logical to test whether CC0 occurs inside I1 or I2,
1810 but that would be much slower, and this ought to be equivalent. */
1812 p = prev_nonnote_insn (insn);
1813 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1814 && ! all_adjacent)
1815 return 0;
1816 #endif
1818 /* If we get here, we have passed all the tests and the combination is
1819 to be allowed. */
1821 *pdest = dest;
1822 *psrc = src;
1824 return 1;
1827 /* LOC is the location within I3 that contains its pattern or the component
1828 of a PARALLEL of the pattern. We validate that it is valid for combining.
1830 One problem is if I3 modifies its output, as opposed to replacing it
1831 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1832 so would produce an insn that is not equivalent to the original insns.
1834 Consider:
1836 (set (reg:DI 101) (reg:DI 100))
1837 (set (subreg:SI (reg:DI 101) 0) <foo>)
1839 This is NOT equivalent to:
1841 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1842 (set (reg:DI 101) (reg:DI 100))])
1844 Not only does this modify 100 (in which case it might still be valid
1845 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1847 We can also run into a problem if I2 sets a register that I1
1848 uses and I1 gets directly substituted into I3 (not via I2). In that
1849 case, we would be getting the wrong value of I2DEST into I3, so we
1850 must reject the combination. This case occurs when I2 and I1 both
1851 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1852 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1853 of a SET must prevent combination from occurring.
1855 Before doing the above check, we first try to expand a field assignment
1856 into a set of logical operations.
1858 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1859 we place a register that is both set and used within I3. If more than one
1860 such register is detected, we fail.
1862 Return 1 if the combination is valid, zero otherwise. */
1864 static int
1865 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1866 int i1_not_in_src, rtx *pi3dest_killed)
1868 rtx x = *loc;
1870 if (GET_CODE (x) == SET)
1872 rtx set = x ;
1873 rtx dest = SET_DEST (set);
1874 rtx src = SET_SRC (set);
1875 rtx inner_dest = dest;
1876 rtx subdest;
1878 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1879 || GET_CODE (inner_dest) == SUBREG
1880 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1881 inner_dest = XEXP (inner_dest, 0);
1883 /* Check for the case where I3 modifies its output, as discussed
1884 above. We don't want to prevent pseudos from being combined
1885 into the address of a MEM, so only prevent the combination if
1886 i1 or i2 set the same MEM. */
1887 if ((inner_dest != dest &&
1888 (!MEM_P (inner_dest)
1889 || rtx_equal_p (i2dest, inner_dest)
1890 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1891 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1892 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1894 /* This is the same test done in can_combine_p except we can't test
1895 all_adjacent; we don't have to, since this instruction will stay
1896 in place, thus we are not considering increasing the lifetime of
1897 INNER_DEST.
1899 Also, if this insn sets a function argument, combining it with
1900 something that might need a spill could clobber a previous
1901 function argument; the all_adjacent test in can_combine_p also
1902 checks this; here, we do a more specific test for this case. */
1904 || (REG_P (inner_dest)
1905 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1906 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1907 GET_MODE (inner_dest))))
1908 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1909 return 0;
1911 /* If DEST is used in I3, it is being killed in this insn, so
1912 record that for later. We have to consider paradoxical
1913 subregs here, since they kill the whole register, but we
1914 ignore partial subregs, STRICT_LOW_PART, etc.
1915 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1916 STACK_POINTER_REGNUM, since these are always considered to be
1917 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1918 subdest = dest;
1919 if (GET_CODE (subdest) == SUBREG
1920 && (GET_MODE_SIZE (GET_MODE (subdest))
1921 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
1922 subdest = SUBREG_REG (subdest);
1923 if (pi3dest_killed
1924 && REG_P (subdest)
1925 && reg_referenced_p (subdest, PATTERN (i3))
1926 && REGNO (subdest) != FRAME_POINTER_REGNUM
1927 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1928 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
1929 #endif
1930 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1931 && (REGNO (subdest) != ARG_POINTER_REGNUM
1932 || ! fixed_regs [REGNO (subdest)])
1933 #endif
1934 && REGNO (subdest) != STACK_POINTER_REGNUM)
1936 if (*pi3dest_killed)
1937 return 0;
1939 *pi3dest_killed = subdest;
1943 else if (GET_CODE (x) == PARALLEL)
1945 int i;
1947 for (i = 0; i < XVECLEN (x, 0); i++)
1948 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1949 i1_not_in_src, pi3dest_killed))
1950 return 0;
1953 return 1;
1956 /* Return 1 if X is an arithmetic expression that contains a multiplication
1957 and division. We don't count multiplications by powers of two here. */
1959 static int
1960 contains_muldiv (rtx x)
1962 switch (GET_CODE (x))
1964 case MOD: case DIV: case UMOD: case UDIV:
1965 return 1;
1967 case MULT:
1968 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1969 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1970 default:
1971 if (BINARY_P (x))
1972 return contains_muldiv (XEXP (x, 0))
1973 || contains_muldiv (XEXP (x, 1));
1975 if (UNARY_P (x))
1976 return contains_muldiv (XEXP (x, 0));
1978 return 0;
1982 /* Determine whether INSN can be used in a combination. Return nonzero if
1983 not. This is used in try_combine to detect early some cases where we
1984 can't perform combinations. */
1986 static int
1987 cant_combine_insn_p (rtx insn)
1989 rtx set;
1990 rtx src, dest;
1992 /* If this isn't really an insn, we can't do anything.
1993 This can occur when flow deletes an insn that it has merged into an
1994 auto-increment address. */
1995 if (! INSN_P (insn))
1996 return 1;
1998 /* Never combine loads and stores involving hard regs that are likely
1999 to be spilled. The register allocator can usually handle such
2000 reg-reg moves by tying. If we allow the combiner to make
2001 substitutions of likely-spilled regs, reload might die.
2002 As an exception, we allow combinations involving fixed regs; these are
2003 not available to the register allocator so there's no risk involved. */
2005 set = single_set (insn);
2006 if (! set)
2007 return 0;
2008 src = SET_SRC (set);
2009 dest = SET_DEST (set);
2010 if (GET_CODE (src) == SUBREG)
2011 src = SUBREG_REG (src);
2012 if (GET_CODE (dest) == SUBREG)
2013 dest = SUBREG_REG (dest);
2014 if (REG_P (src) && REG_P (dest)
2015 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
2016 && ! fixed_regs[REGNO (src)]
2017 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
2018 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
2019 && ! fixed_regs[REGNO (dest)]
2020 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
2021 return 1;
2023 return 0;
2026 struct likely_spilled_retval_info
2028 unsigned regno, nregs;
2029 unsigned mask;
2032 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2033 hard registers that are known to be written to / clobbered in full. */
2034 static void
2035 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2037 struct likely_spilled_retval_info *info = data;
2038 unsigned regno, nregs;
2039 unsigned new_mask;
2041 if (!REG_P (XEXP (set, 0)))
2042 return;
2043 regno = REGNO (x);
2044 if (regno >= info->regno + info->nregs)
2045 return;
2046 nregs = hard_regno_nregs[regno][GET_MODE (x)];
2047 if (regno + nregs <= info->regno)
2048 return;
2049 new_mask = (2U << (nregs - 1)) - 1;
2050 if (regno < info->regno)
2051 new_mask >>= info->regno - regno;
2052 else
2053 new_mask <<= regno - info->regno;
2054 info->mask &= ~new_mask;
2057 /* Return nonzero iff part of the return value is live during INSN, and
2058 it is likely spilled. This can happen when more than one insn is needed
2059 to copy the return value, e.g. when we consider to combine into the
2060 second copy insn for a complex value. */
2062 static int
2063 likely_spilled_retval_p (rtx insn)
2065 rtx use = BB_END (this_basic_block);
2066 rtx reg, p;
2067 unsigned regno, nregs;
2068 /* We assume here that no machine mode needs more than
2069 32 hard registers when the value overlaps with a register
2070 for which FUNCTION_VALUE_REGNO_P is true. */
2071 unsigned mask;
2072 struct likely_spilled_retval_info info;
2074 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2075 return 0;
2076 reg = XEXP (PATTERN (use), 0);
2077 if (!REG_P (reg) || !FUNCTION_VALUE_REGNO_P (REGNO (reg)))
2078 return 0;
2079 regno = REGNO (reg);
2080 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
2081 if (nregs == 1)
2082 return 0;
2083 mask = (2U << (nregs - 1)) - 1;
2085 /* Disregard parts of the return value that are set later. */
2086 info.regno = regno;
2087 info.nregs = nregs;
2088 info.mask = mask;
2089 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2090 if (INSN_P (p))
2091 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2092 mask = info.mask;
2094 /* Check if any of the (probably) live return value registers is
2095 likely spilled. */
2096 nregs --;
2099 if ((mask & 1 << nregs)
2100 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno + nregs)))
2101 return 1;
2102 } while (nregs--);
2103 return 0;
2106 /* Adjust INSN after we made a change to its destination.
2108 Changing the destination can invalidate notes that say something about
2109 the results of the insn and a LOG_LINK pointing to the insn. */
2111 static void
2112 adjust_for_new_dest (rtx insn)
2114 /* For notes, be conservative and simply remove them. */
2115 remove_reg_equal_equiv_notes (insn);
2117 /* The new insn will have a destination that was previously the destination
2118 of an insn just above it. Call distribute_links to make a LOG_LINK from
2119 the next use of that destination. */
2120 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
2122 df_insn_rescan (insn);
2125 /* Return TRUE if combine can reuse reg X in mode MODE.
2126 ADDED_SETS is nonzero if the original set is still required. */
2127 static bool
2128 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
2130 unsigned int regno;
2132 if (!REG_P(x))
2133 return false;
2135 regno = REGNO (x);
2136 /* Allow hard registers if the new mode is legal, and occupies no more
2137 registers than the old mode. */
2138 if (regno < FIRST_PSEUDO_REGISTER)
2139 return (HARD_REGNO_MODE_OK (regno, mode)
2140 && (hard_regno_nregs[regno][GET_MODE (x)]
2141 >= hard_regno_nregs[regno][mode]));
2143 /* Or a pseudo that is only used once. */
2144 return (REG_N_SETS (regno) == 1 && !added_sets
2145 && !REG_USERVAR_P (x));
2149 /* Check whether X, the destination of a set, refers to part of
2150 the register specified by REG. */
2152 static bool
2153 reg_subword_p (rtx x, rtx reg)
2155 /* Check that reg is an integer mode register. */
2156 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2157 return false;
2159 if (GET_CODE (x) == STRICT_LOW_PART
2160 || GET_CODE (x) == ZERO_EXTRACT)
2161 x = XEXP (x, 0);
2163 return GET_CODE (x) == SUBREG
2164 && SUBREG_REG (x) == reg
2165 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2169 /* Try to combine the insns I1 and I2 into I3.
2170 Here I1 and I2 appear earlier than I3.
2171 I1 can be zero; then we combine just I2 into I3.
2173 If we are combining three insns and the resulting insn is not recognized,
2174 try splitting it into two insns. If that happens, I2 and I3 are retained
2175 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
2176 are pseudo-deleted.
2178 Return 0 if the combination does not work. Then nothing is changed.
2179 If we did the combination, return the insn at which combine should
2180 resume scanning.
2182 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2183 new direct jump instruction. */
2185 static rtx
2186 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
2188 /* New patterns for I3 and I2, respectively. */
2189 rtx newpat, newi2pat = 0;
2190 rtvec newpat_vec_with_clobbers = 0;
2191 int substed_i2 = 0, substed_i1 = 0;
2192 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
2193 int added_sets_1, added_sets_2;
2194 /* Total number of SETs to put into I3. */
2195 int total_sets;
2196 /* Nonzero if I2's body now appears in I3. */
2197 int i2_is_used;
2198 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2199 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2200 /* Contains I3 if the destination of I3 is used in its source, which means
2201 that the old life of I3 is being killed. If that usage is placed into
2202 I2 and not in I3, a REG_DEAD note must be made. */
2203 rtx i3dest_killed = 0;
2204 /* SET_DEST and SET_SRC of I2 and I1. */
2205 rtx i2dest, i2src, i1dest = 0, i1src = 0;
2206 /* PATTERN (I1) and PATTERN (I2), or a copy of it in certain cases. */
2207 rtx i1pat = 0, i2pat = 0;
2208 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2209 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2210 int i2dest_killed = 0, i1dest_killed = 0;
2211 int i1_feeds_i3 = 0;
2212 /* Notes that must be added to REG_NOTES in I3 and I2. */
2213 rtx new_i3_notes, new_i2_notes;
2214 /* Notes that we substituted I3 into I2 instead of the normal case. */
2215 int i3_subst_into_i2 = 0;
2216 /* Notes that I1, I2 or I3 is a MULT operation. */
2217 int have_mult = 0;
2218 int swap_i2i3 = 0;
2220 int maxreg;
2221 rtx temp;
2222 rtx link;
2223 rtx other_pat = 0;
2224 rtx new_other_notes;
2225 int i;
2227 /* Exit early if one of the insns involved can't be used for
2228 combinations. */
2229 if (cant_combine_insn_p (i3)
2230 || cant_combine_insn_p (i2)
2231 || (i1 && cant_combine_insn_p (i1))
2232 || likely_spilled_retval_p (i3)
2233 /* We also can't do anything if I3 has a
2234 REG_LIBCALL note since we don't want to disrupt the contiguity of a
2235 libcall. */
2236 #if 0
2237 /* ??? This gives worse code, and appears to be unnecessary, since no
2238 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
2239 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
2240 #endif
2242 return 0;
2244 combine_attempts++;
2245 undobuf.other_insn = 0;
2247 /* Reset the hard register usage information. */
2248 CLEAR_HARD_REG_SET (newpat_used_regs);
2250 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
2251 code below, set I1 to be the earlier of the two insns. */
2252 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2253 temp = i1, i1 = i2, i2 = temp;
2255 added_links_insn = 0;
2257 /* First check for one important special-case that the code below will
2258 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2259 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2260 we may be able to replace that destination with the destination of I3.
2261 This occurs in the common code where we compute both a quotient and
2262 remainder into a structure, in which case we want to do the computation
2263 directly into the structure to avoid register-register copies.
2265 Note that this case handles both multiple sets in I2 and also
2266 cases where I2 has a number of CLOBBER or PARALLELs.
2268 We make very conservative checks below and only try to handle the
2269 most common cases of this. For example, we only handle the case
2270 where I2 and I3 are adjacent to avoid making difficult register
2271 usage tests. */
2273 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2274 && REG_P (SET_SRC (PATTERN (i3)))
2275 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2276 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2277 && GET_CODE (PATTERN (i2)) == PARALLEL
2278 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2279 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2280 below would need to check what is inside (and reg_overlap_mentioned_p
2281 doesn't support those codes anyway). Don't allow those destinations;
2282 the resulting insn isn't likely to be recognized anyway. */
2283 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2284 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2285 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2286 SET_DEST (PATTERN (i3)))
2287 && next_real_insn (i2) == i3)
2289 rtx p2 = PATTERN (i2);
2291 /* Make sure that the destination of I3,
2292 which we are going to substitute into one output of I2,
2293 is not used within another output of I2. We must avoid making this:
2294 (parallel [(set (mem (reg 69)) ...)
2295 (set (reg 69) ...)])
2296 which is not well-defined as to order of actions.
2297 (Besides, reload can't handle output reloads for this.)
2299 The problem can also happen if the dest of I3 is a memory ref,
2300 if another dest in I2 is an indirect memory ref. */
2301 for (i = 0; i < XVECLEN (p2, 0); i++)
2302 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2303 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2304 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2305 SET_DEST (XVECEXP (p2, 0, i))))
2306 break;
2308 if (i == XVECLEN (p2, 0))
2309 for (i = 0; i < XVECLEN (p2, 0); i++)
2310 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2311 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2312 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2314 combine_merges++;
2316 subst_insn = i3;
2317 subst_low_luid = DF_INSN_LUID (i2);
2319 added_sets_2 = added_sets_1 = 0;
2320 i2dest = SET_SRC (PATTERN (i3));
2321 i2dest_killed = dead_or_set_p (i2, i2dest);
2323 /* Replace the dest in I2 with our dest and make the resulting
2324 insn the new pattern for I3. Then skip to where we
2325 validate the pattern. Everything was set up above. */
2326 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
2327 SET_DEST (PATTERN (i3)));
2329 newpat = p2;
2330 i3_subst_into_i2 = 1;
2331 goto validate_replacement;
2335 /* If I2 is setting a pseudo to a constant and I3 is setting some
2336 sub-part of it to another constant, merge them by making a new
2337 constant. */
2338 if (i1 == 0
2339 && (temp = single_set (i2)) != 0
2340 && (GET_CODE (SET_SRC (temp)) == CONST_INT
2341 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
2342 && GET_CODE (PATTERN (i3)) == SET
2343 && (GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT
2344 || GET_CODE (SET_SRC (PATTERN (i3))) == CONST_DOUBLE)
2345 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
2347 rtx dest = SET_DEST (PATTERN (i3));
2348 int offset = -1;
2349 int width = 0;
2351 if (GET_CODE (dest) == ZERO_EXTRACT)
2353 if (GET_CODE (XEXP (dest, 1)) == CONST_INT
2354 && GET_CODE (XEXP (dest, 2)) == CONST_INT)
2356 width = INTVAL (XEXP (dest, 1));
2357 offset = INTVAL (XEXP (dest, 2));
2358 dest = XEXP (dest, 0);
2359 if (BITS_BIG_ENDIAN)
2360 offset = GET_MODE_BITSIZE (GET_MODE (dest)) - width - offset;
2363 else
2365 if (GET_CODE (dest) == STRICT_LOW_PART)
2366 dest = XEXP (dest, 0);
2367 width = GET_MODE_BITSIZE (GET_MODE (dest));
2368 offset = 0;
2371 if (offset >= 0)
2373 /* If this is the low part, we're done. */
2374 if (subreg_lowpart_p (dest))
2376 /* Handle the case where inner is twice the size of outer. */
2377 else if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2378 == 2 * GET_MODE_BITSIZE (GET_MODE (dest)))
2379 offset += GET_MODE_BITSIZE (GET_MODE (dest));
2380 /* Otherwise give up for now. */
2381 else
2382 offset = -1;
2385 if (offset >= 0
2386 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2387 <= HOST_BITS_PER_WIDE_INT * 2))
2389 HOST_WIDE_INT mhi, ohi, ihi;
2390 HOST_WIDE_INT mlo, olo, ilo;
2391 rtx inner = SET_SRC (PATTERN (i3));
2392 rtx outer = SET_SRC (temp);
2394 if (GET_CODE (outer) == CONST_INT)
2396 olo = INTVAL (outer);
2397 ohi = olo < 0 ? -1 : 0;
2399 else
2401 olo = CONST_DOUBLE_LOW (outer);
2402 ohi = CONST_DOUBLE_HIGH (outer);
2405 if (GET_CODE (inner) == CONST_INT)
2407 ilo = INTVAL (inner);
2408 ihi = ilo < 0 ? -1 : 0;
2410 else
2412 ilo = CONST_DOUBLE_LOW (inner);
2413 ihi = CONST_DOUBLE_HIGH (inner);
2416 if (width < HOST_BITS_PER_WIDE_INT)
2418 mlo = ((unsigned HOST_WIDE_INT) 1 << width) - 1;
2419 mhi = 0;
2421 else if (width < HOST_BITS_PER_WIDE_INT * 2)
2423 mhi = ((unsigned HOST_WIDE_INT) 1
2424 << (width - HOST_BITS_PER_WIDE_INT)) - 1;
2425 mlo = -1;
2427 else
2429 mlo = -1;
2430 mhi = -1;
2433 ilo &= mlo;
2434 ihi &= mhi;
2436 if (offset >= HOST_BITS_PER_WIDE_INT)
2438 mhi = mlo << (offset - HOST_BITS_PER_WIDE_INT);
2439 mlo = 0;
2440 ihi = ilo << (offset - HOST_BITS_PER_WIDE_INT);
2441 ilo = 0;
2443 else if (offset > 0)
2445 mhi = (mhi << offset) | ((unsigned HOST_WIDE_INT) mlo
2446 >> (HOST_BITS_PER_WIDE_INT - offset));
2447 mlo = mlo << offset;
2448 ihi = (ihi << offset) | ((unsigned HOST_WIDE_INT) ilo
2449 >> (HOST_BITS_PER_WIDE_INT - offset));
2450 ilo = ilo << offset;
2453 olo = (olo & ~mlo) | ilo;
2454 ohi = (ohi & ~mhi) | ihi;
2456 combine_merges++;
2457 subst_insn = i3;
2458 subst_low_luid = DF_INSN_LUID (i2);
2459 added_sets_2 = added_sets_1 = 0;
2460 i2dest = SET_DEST (temp);
2461 i2dest_killed = dead_or_set_p (i2, i2dest);
2463 SUBST (SET_SRC (temp),
2464 immed_double_const (olo, ohi, GET_MODE (SET_DEST (temp))));
2466 newpat = PATTERN (i2);
2467 goto validate_replacement;
2471 #ifndef HAVE_cc0
2472 /* If we have no I1 and I2 looks like:
2473 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2474 (set Y OP)])
2475 make up a dummy I1 that is
2476 (set Y OP)
2477 and change I2 to be
2478 (set (reg:CC X) (compare:CC Y (const_int 0)))
2480 (We can ignore any trailing CLOBBERs.)
2482 This undoes a previous combination and allows us to match a branch-and-
2483 decrement insn. */
2485 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2486 && XVECLEN (PATTERN (i2), 0) >= 2
2487 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2488 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2489 == MODE_CC)
2490 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2491 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2492 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2493 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2494 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2495 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2497 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2498 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2499 break;
2501 if (i == 1)
2503 /* We make I1 with the same INSN_UID as I2. This gives it
2504 the same DF_INSN_LUID for value tracking. Our fake I1 will
2505 never appear in the insn stream so giving it the same INSN_UID
2506 as I2 will not cause a problem. */
2508 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2509 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
2510 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX);
2512 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2513 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2514 SET_DEST (PATTERN (i1)));
2517 #endif
2519 /* Verify that I2 and I1 are valid for combining. */
2520 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
2521 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
2523 undo_all ();
2524 return 0;
2527 /* Record whether I2DEST is used in I2SRC and similarly for the other
2528 cases. Knowing this will help in register status updating below. */
2529 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2530 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2531 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2532 i2dest_killed = dead_or_set_p (i2, i2dest);
2533 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2535 /* See if I1 directly feeds into I3. It does if I1DEST is not used
2536 in I2SRC. */
2537 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
2539 /* Ensure that I3's pattern can be the destination of combines. */
2540 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
2541 i1 && i2dest_in_i1src && i1_feeds_i3,
2542 &i3dest_killed))
2544 undo_all ();
2545 return 0;
2548 /* See if any of the insns is a MULT operation. Unless one is, we will
2549 reject a combination that is, since it must be slower. Be conservative
2550 here. */
2551 if (GET_CODE (i2src) == MULT
2552 || (i1 != 0 && GET_CODE (i1src) == MULT)
2553 || (GET_CODE (PATTERN (i3)) == SET
2554 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2555 have_mult = 1;
2557 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2558 We used to do this EXCEPT in one case: I3 has a post-inc in an
2559 output operand. However, that exception can give rise to insns like
2560 mov r3,(r3)+
2561 which is a famous insn on the PDP-11 where the value of r3 used as the
2562 source was model-dependent. Avoid this sort of thing. */
2564 #if 0
2565 if (!(GET_CODE (PATTERN (i3)) == SET
2566 && REG_P (SET_SRC (PATTERN (i3)))
2567 && MEM_P (SET_DEST (PATTERN (i3)))
2568 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2569 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2570 /* It's not the exception. */
2571 #endif
2572 #ifdef AUTO_INC_DEC
2573 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2574 if (REG_NOTE_KIND (link) == REG_INC
2575 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2576 || (i1 != 0
2577 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2579 undo_all ();
2580 return 0;
2582 #endif
2584 /* See if the SETs in I1 or I2 need to be kept around in the merged
2585 instruction: whenever the value set there is still needed past I3.
2586 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2588 For the SET in I1, we have two cases: If I1 and I2 independently
2589 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2590 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2591 in I1 needs to be kept around unless I1DEST dies or is set in either
2592 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
2593 I1DEST. If so, we know I1 feeds into I2. */
2595 added_sets_2 = ! dead_or_set_p (i3, i2dest);
2597 added_sets_1
2598 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
2599 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
2601 /* If the set in I2 needs to be kept around, we must make a copy of
2602 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2603 PATTERN (I2), we are only substituting for the original I1DEST, not into
2604 an already-substituted copy. This also prevents making self-referential
2605 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2606 I2DEST. */
2608 if (added_sets_2)
2610 if (GET_CODE (PATTERN (i2)) == PARALLEL)
2611 i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
2612 else
2613 i2pat = copy_rtx (PATTERN (i2));
2616 if (added_sets_1)
2618 if (GET_CODE (PATTERN (i1)) == PARALLEL)
2619 i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
2620 else
2621 i1pat = copy_rtx (PATTERN (i1));
2624 combine_merges++;
2626 /* Substitute in the latest insn for the regs set by the earlier ones. */
2628 maxreg = max_reg_num ();
2630 subst_insn = i3;
2632 #ifndef HAVE_cc0
2633 /* Many machines that don't use CC0 have insns that can both perform an
2634 arithmetic operation and set the condition code. These operations will
2635 be represented as a PARALLEL with the first element of the vector
2636 being a COMPARE of an arithmetic operation with the constant zero.
2637 The second element of the vector will set some pseudo to the result
2638 of the same arithmetic operation. If we simplify the COMPARE, we won't
2639 match such a pattern and so will generate an extra insn. Here we test
2640 for this case, where both the comparison and the operation result are
2641 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2642 I2SRC. Later we will make the PARALLEL that contains I2. */
2644 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2645 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2646 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
2647 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2649 #ifdef SELECT_CC_MODE
2650 rtx *cc_use;
2651 enum machine_mode compare_mode;
2652 #endif
2654 newpat = PATTERN (i3);
2655 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2657 i2_is_used = 1;
2659 #ifdef SELECT_CC_MODE
2660 /* See if a COMPARE with the operand we substituted in should be done
2661 with the mode that is currently being used. If not, do the same
2662 processing we do in `subst' for a SET; namely, if the destination
2663 is used only once, try to replace it with a register of the proper
2664 mode and also replace the COMPARE. */
2665 if (undobuf.other_insn == 0
2666 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2667 &undobuf.other_insn))
2668 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2669 i2src, const0_rtx))
2670 != GET_MODE (SET_DEST (newpat))))
2672 if (can_change_dest_mode(SET_DEST (newpat), added_sets_2,
2673 compare_mode))
2675 unsigned int regno = REGNO (SET_DEST (newpat));
2676 rtx new_dest;
2678 if (regno < FIRST_PSEUDO_REGISTER)
2679 new_dest = gen_rtx_REG (compare_mode, regno);
2680 else
2682 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
2683 new_dest = regno_reg_rtx[regno];
2686 SUBST (SET_DEST (newpat), new_dest);
2687 SUBST (XEXP (*cc_use, 0), new_dest);
2688 SUBST (SET_SRC (newpat),
2689 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2691 else
2692 undobuf.other_insn = 0;
2694 #endif
2696 else
2697 #endif
2699 /* It is possible that the source of I2 or I1 may be performing
2700 an unneeded operation, such as a ZERO_EXTEND of something
2701 that is known to have the high part zero. Handle that case
2702 by letting subst look at the innermost one of them.
2704 Another way to do this would be to have a function that tries
2705 to simplify a single insn instead of merging two or more
2706 insns. We don't do this because of the potential of infinite
2707 loops and because of the potential extra memory required.
2708 However, doing it the way we are is a bit of a kludge and
2709 doesn't catch all cases.
2711 But only do this if -fexpensive-optimizations since it slows
2712 things down and doesn't usually win.
2714 This is not done in the COMPARE case above because the
2715 unmodified I2PAT is used in the PARALLEL and so a pattern
2716 with a modified I2SRC would not match. */
2718 if (flag_expensive_optimizations)
2720 /* Pass pc_rtx so no substitutions are done, just
2721 simplifications. */
2722 if (i1)
2724 subst_low_luid = DF_INSN_LUID (i1);
2725 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
2727 else
2729 subst_low_luid = DF_INSN_LUID (i2);
2730 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
2734 n_occurrences = 0; /* `subst' counts here */
2736 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2737 need to make a unique copy of I2SRC each time we substitute it
2738 to avoid self-referential rtl. */
2740 subst_low_luid = DF_INSN_LUID (i2);
2741 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2742 ! i1_feeds_i3 && i1dest_in_i1src);
2743 substed_i2 = 1;
2745 /* Record whether i2's body now appears within i3's body. */
2746 i2_is_used = n_occurrences;
2749 /* If we already got a failure, don't try to do more. Otherwise,
2750 try to substitute in I1 if we have it. */
2752 if (i1 && GET_CODE (newpat) != CLOBBER)
2754 /* Before we can do this substitution, we must redo the test done
2755 above (see detailed comments there) that ensures that I1DEST
2756 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2758 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
2759 0, (rtx*) 0))
2761 undo_all ();
2762 return 0;
2765 n_occurrences = 0;
2766 subst_low_luid = DF_INSN_LUID (i1);
2767 newpat = subst (newpat, i1dest, i1src, 0, 0);
2768 substed_i1 = 1;
2771 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2772 to count all the ways that I2SRC and I1SRC can be used. */
2773 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2774 && i2_is_used + added_sets_2 > 1)
2775 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2776 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2777 > 1))
2778 /* Fail if we tried to make a new register. */
2779 || max_reg_num () != maxreg
2780 /* Fail if we couldn't do something and have a CLOBBER. */
2781 || GET_CODE (newpat) == CLOBBER
2782 /* Fail if this new pattern is a MULT and we didn't have one before
2783 at the outer level. */
2784 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2785 && ! have_mult))
2787 undo_all ();
2788 return 0;
2791 /* If the actions of the earlier insns must be kept
2792 in addition to substituting them into the latest one,
2793 we must make a new PARALLEL for the latest insn
2794 to hold additional the SETs. */
2796 if (added_sets_1 || added_sets_2)
2798 combine_extras++;
2800 if (GET_CODE (newpat) == PARALLEL)
2802 rtvec old = XVEC (newpat, 0);
2803 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2804 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2805 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2806 sizeof (old->elem[0]) * old->num_elem);
2808 else
2810 rtx old = newpat;
2811 total_sets = 1 + added_sets_1 + added_sets_2;
2812 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2813 XVECEXP (newpat, 0, 0) = old;
2816 if (added_sets_1)
2817 XVECEXP (newpat, 0, --total_sets) = i1pat;
2819 if (added_sets_2)
2821 /* If there is no I1, use I2's body as is. We used to also not do
2822 the subst call below if I2 was substituted into I3,
2823 but that could lose a simplification. */
2824 if (i1 == 0)
2825 XVECEXP (newpat, 0, --total_sets) = i2pat;
2826 else
2827 /* See comment where i2pat is assigned. */
2828 XVECEXP (newpat, 0, --total_sets)
2829 = subst (i2pat, i1dest, i1src, 0, 0);
2833 /* We come here when we are replacing a destination in I2 with the
2834 destination of I3. */
2835 validate_replacement:
2837 /* Note which hard regs this insn has as inputs. */
2838 mark_used_regs_combine (newpat);
2840 /* If recog_for_combine fails, it strips existing clobbers. If we'll
2841 consider splitting this pattern, we might need these clobbers. */
2842 if (i1 && GET_CODE (newpat) == PARALLEL
2843 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
2845 int len = XVECLEN (newpat, 0);
2847 newpat_vec_with_clobbers = rtvec_alloc (len);
2848 for (i = 0; i < len; i++)
2849 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
2852 /* Is the result of combination a valid instruction? */
2853 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2855 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2856 the second SET's destination is a register that is unused and isn't
2857 marked as an instruction that might trap in an EH region. In that case,
2858 we just need the first SET. This can occur when simplifying a divmod
2859 insn. We *must* test for this case here because the code below that
2860 splits two independent SETs doesn't handle this case correctly when it
2861 updates the register status.
2863 It's pointless doing this if we originally had two sets, one from
2864 i3, and one from i2. Combining then splitting the parallel results
2865 in the original i2 again plus an invalid insn (which we delete).
2866 The net effect is only to move instructions around, which makes
2867 debug info less accurate.
2869 Also check the case where the first SET's destination is unused.
2870 That would not cause incorrect code, but does cause an unneeded
2871 insn to remain. */
2873 if (insn_code_number < 0
2874 && !(added_sets_2 && i1 == 0)
2875 && GET_CODE (newpat) == PARALLEL
2876 && XVECLEN (newpat, 0) == 2
2877 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2878 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2879 && asm_noperands (newpat) < 0)
2881 rtx set0 = XVECEXP (newpat, 0, 0);
2882 rtx set1 = XVECEXP (newpat, 0, 1);
2883 rtx note;
2885 if (((REG_P (SET_DEST (set1))
2886 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2887 || (GET_CODE (SET_DEST (set1)) == SUBREG
2888 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2889 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2890 || INTVAL (XEXP (note, 0)) <= 0)
2891 && ! side_effects_p (SET_SRC (set1)))
2893 newpat = set0;
2894 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2897 else if (((REG_P (SET_DEST (set0))
2898 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2899 || (GET_CODE (SET_DEST (set0)) == SUBREG
2900 && find_reg_note (i3, REG_UNUSED,
2901 SUBREG_REG (SET_DEST (set0)))))
2902 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2903 || INTVAL (XEXP (note, 0)) <= 0)
2904 && ! side_effects_p (SET_SRC (set0)))
2906 newpat = set1;
2907 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2909 if (insn_code_number >= 0)
2911 /* If we will be able to accept this, we have made a
2912 change to the destination of I3. This requires us to
2913 do a few adjustments. */
2915 PATTERN (i3) = newpat;
2916 adjust_for_new_dest (i3);
2921 /* If we were combining three insns and the result is a simple SET
2922 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2923 insns. There are two ways to do this. It can be split using a
2924 machine-specific method (like when you have an addition of a large
2925 constant) or by combine in the function find_split_point. */
2927 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2928 && asm_noperands (newpat) < 0)
2930 rtx parallel, m_split, *split;
2932 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2933 use I2DEST as a scratch register will help. In the latter case,
2934 convert I2DEST to the mode of the source of NEWPAT if we can. */
2936 m_split = combine_split_insns (newpat, i3);
2938 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2939 inputs of NEWPAT. */
2941 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2942 possible to try that as a scratch reg. This would require adding
2943 more code to make it work though. */
2945 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
2947 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
2949 /* First try to split using the original register as a
2950 scratch register. */
2951 parallel = gen_rtx_PARALLEL (VOIDmode,
2952 gen_rtvec (2, newpat,
2953 gen_rtx_CLOBBER (VOIDmode,
2954 i2dest)));
2955 m_split = combine_split_insns (parallel, i3);
2957 /* If that didn't work, try changing the mode of I2DEST if
2958 we can. */
2959 if (m_split == 0
2960 && new_mode != GET_MODE (i2dest)
2961 && new_mode != VOIDmode
2962 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
2964 enum machine_mode old_mode = GET_MODE (i2dest);
2965 rtx ni2dest;
2967 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
2968 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
2969 else
2971 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
2972 ni2dest = regno_reg_rtx[REGNO (i2dest)];
2975 parallel = (gen_rtx_PARALLEL
2976 (VOIDmode,
2977 gen_rtvec (2, newpat,
2978 gen_rtx_CLOBBER (VOIDmode,
2979 ni2dest))));
2980 m_split = combine_split_insns (parallel, i3);
2982 if (m_split == 0
2983 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2985 struct undo *buf;
2987 PUT_MODE (regno_reg_rtx[REGNO (i2dest)], old_mode);
2988 buf = undobuf.undos;
2989 undobuf.undos = buf->next;
2990 buf->next = undobuf.frees;
2991 undobuf.frees = buf;
2996 /* If recog_for_combine has discarded clobbers, try to use them
2997 again for the split. */
2998 if (m_split == 0 && newpat_vec_with_clobbers)
3000 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3001 m_split = combine_split_insns (parallel, i3);
3004 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
3006 m_split = PATTERN (m_split);
3007 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
3008 if (insn_code_number >= 0)
3009 newpat = m_split;
3011 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
3012 && (next_real_insn (i2) == i3
3013 || ! use_crosses_set_p (PATTERN (m_split), DF_INSN_LUID (i2))))
3015 rtx i2set, i3set;
3016 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
3017 newi2pat = PATTERN (m_split);
3019 i3set = single_set (NEXT_INSN (m_split));
3020 i2set = single_set (m_split);
3022 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3024 /* If I2 or I3 has multiple SETs, we won't know how to track
3025 register status, so don't use these insns. If I2's destination
3026 is used between I2 and I3, we also can't use these insns. */
3028 if (i2_code_number >= 0 && i2set && i3set
3029 && (next_real_insn (i2) == i3
3030 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3031 insn_code_number = recog_for_combine (&newi3pat, i3,
3032 &new_i3_notes);
3033 if (insn_code_number >= 0)
3034 newpat = newi3pat;
3036 /* It is possible that both insns now set the destination of I3.
3037 If so, we must show an extra use of it. */
3039 if (insn_code_number >= 0)
3041 rtx new_i3_dest = SET_DEST (i3set);
3042 rtx new_i2_dest = SET_DEST (i2set);
3044 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3045 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3046 || GET_CODE (new_i3_dest) == SUBREG)
3047 new_i3_dest = XEXP (new_i3_dest, 0);
3049 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3050 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3051 || GET_CODE (new_i2_dest) == SUBREG)
3052 new_i2_dest = XEXP (new_i2_dest, 0);
3054 if (REG_P (new_i3_dest)
3055 && REG_P (new_i2_dest)
3056 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
3057 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3061 /* If we can split it and use I2DEST, go ahead and see if that
3062 helps things be recognized. Verify that none of the registers
3063 are set between I2 and I3. */
3064 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
3065 #ifdef HAVE_cc0
3066 && REG_P (i2dest)
3067 #endif
3068 /* We need I2DEST in the proper mode. If it is a hard register
3069 or the only use of a pseudo, we can change its mode.
3070 Make sure we don't change a hard register to have a mode that
3071 isn't valid for it, or change the number of registers. */
3072 && (GET_MODE (*split) == GET_MODE (i2dest)
3073 || GET_MODE (*split) == VOIDmode
3074 || can_change_dest_mode (i2dest, added_sets_2,
3075 GET_MODE (*split)))
3076 && (next_real_insn (i2) == i3
3077 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3078 /* We can't overwrite I2DEST if its value is still used by
3079 NEWPAT. */
3080 && ! reg_referenced_p (i2dest, newpat))
3082 rtx newdest = i2dest;
3083 enum rtx_code split_code = GET_CODE (*split);
3084 enum machine_mode split_mode = GET_MODE (*split);
3085 bool subst_done = false;
3086 newi2pat = NULL_RTX;
3088 /* Get NEWDEST as a register in the proper mode. We have already
3089 validated that we can do this. */
3090 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3092 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3093 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3094 else
3096 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3097 newdest = regno_reg_rtx[REGNO (i2dest)];
3101 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3102 an ASHIFT. This can occur if it was inside a PLUS and hence
3103 appeared to be a memory address. This is a kludge. */
3104 if (split_code == MULT
3105 && GET_CODE (XEXP (*split, 1)) == CONST_INT
3106 && INTVAL (XEXP (*split, 1)) > 0
3107 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
3109 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3110 XEXP (*split, 0), GEN_INT (i)));
3111 /* Update split_code because we may not have a multiply
3112 anymore. */
3113 split_code = GET_CODE (*split);
3116 #ifdef INSN_SCHEDULING
3117 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3118 be written as a ZERO_EXTEND. */
3119 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3121 #ifdef LOAD_EXTEND_OP
3122 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3123 what it really is. */
3124 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3125 == SIGN_EXTEND)
3126 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3127 SUBREG_REG (*split)));
3128 else
3129 #endif
3130 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3131 SUBREG_REG (*split)));
3133 #endif
3135 /* Attempt to split binary operators using arithmetic identities. */
3136 if (BINARY_P (SET_SRC (newpat))
3137 && split_mode == GET_MODE (SET_SRC (newpat))
3138 && ! side_effects_p (SET_SRC (newpat)))
3140 rtx setsrc = SET_SRC (newpat);
3141 enum machine_mode mode = GET_MODE (setsrc);
3142 enum rtx_code code = GET_CODE (setsrc);
3143 rtx src_op0 = XEXP (setsrc, 0);
3144 rtx src_op1 = XEXP (setsrc, 1);
3146 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3147 if (rtx_equal_p (src_op0, src_op1))
3149 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
3150 SUBST (XEXP (setsrc, 0), newdest);
3151 SUBST (XEXP (setsrc, 1), newdest);
3152 subst_done = true;
3154 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3155 else if ((code == PLUS || code == MULT)
3156 && GET_CODE (src_op0) == code
3157 && GET_CODE (XEXP (src_op0, 0)) == code
3158 && (INTEGRAL_MODE_P (mode)
3159 || (FLOAT_MODE_P (mode)
3160 && flag_unsafe_math_optimizations)))
3162 rtx p = XEXP (XEXP (src_op0, 0), 0);
3163 rtx q = XEXP (XEXP (src_op0, 0), 1);
3164 rtx r = XEXP (src_op0, 1);
3165 rtx s = src_op1;
3167 /* Split both "((X op Y) op X) op Y" and
3168 "((X op Y) op Y) op X" as "T op T" where T is
3169 "X op Y". */
3170 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3171 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3173 newi2pat = gen_rtx_SET (VOIDmode, newdest,
3174 XEXP (src_op0, 0));
3175 SUBST (XEXP (setsrc, 0), newdest);
3176 SUBST (XEXP (setsrc, 1), newdest);
3177 subst_done = true;
3179 /* Split "((X op X) op Y) op Y)" as "T op T" where
3180 T is "X op Y". */
3181 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3183 rtx tmp = simplify_gen_binary (code, mode, p, r);
3184 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
3185 SUBST (XEXP (setsrc, 0), newdest);
3186 SUBST (XEXP (setsrc, 1), newdest);
3187 subst_done = true;
3192 if (!subst_done)
3194 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
3195 SUBST (*split, newdest);
3198 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3200 /* recog_for_combine might have added CLOBBERs to newi2pat.
3201 Make sure NEWPAT does not depend on the clobbered regs. */
3202 if (GET_CODE (newi2pat) == PARALLEL)
3203 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3204 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3206 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3207 if (reg_overlap_mentioned_p (reg, newpat))
3209 undo_all ();
3210 return 0;
3214 /* If the split point was a MULT and we didn't have one before,
3215 don't use one now. */
3216 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3217 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3221 /* Check for a case where we loaded from memory in a narrow mode and
3222 then sign extended it, but we need both registers. In that case,
3223 we have a PARALLEL with both loads from the same memory location.
3224 We can split this into a load from memory followed by a register-register
3225 copy. This saves at least one insn, more if register allocation can
3226 eliminate the copy.
3228 We cannot do this if the destination of the first assignment is a
3229 condition code register or cc0. We eliminate this case by making sure
3230 the SET_DEST and SET_SRC have the same mode.
3232 We cannot do this if the destination of the second assignment is
3233 a register that we have already assumed is zero-extended. Similarly
3234 for a SUBREG of such a register. */
3236 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3237 && GET_CODE (newpat) == PARALLEL
3238 && XVECLEN (newpat, 0) == 2
3239 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3240 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3241 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3242 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3243 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3244 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3245 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3246 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3247 DF_INSN_LUID (i2))
3248 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3249 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3250 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
3251 (REG_P (temp)
3252 && VEC_index (reg_stat_type, reg_stat,
3253 REGNO (temp))->nonzero_bits != 0
3254 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3255 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3256 && (VEC_index (reg_stat_type, reg_stat,
3257 REGNO (temp))->nonzero_bits
3258 != GET_MODE_MASK (word_mode))))
3259 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3260 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3261 (REG_P (temp)
3262 && VEC_index (reg_stat_type, reg_stat,
3263 REGNO (temp))->nonzero_bits != 0
3264 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3265 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3266 && (VEC_index (reg_stat_type, reg_stat,
3267 REGNO (temp))->nonzero_bits
3268 != GET_MODE_MASK (word_mode)))))
3269 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3270 SET_SRC (XVECEXP (newpat, 0, 1)))
3271 && ! find_reg_note (i3, REG_UNUSED,
3272 SET_DEST (XVECEXP (newpat, 0, 0))))
3274 rtx ni2dest;
3276 newi2pat = XVECEXP (newpat, 0, 0);
3277 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3278 newpat = XVECEXP (newpat, 0, 1);
3279 SUBST (SET_SRC (newpat),
3280 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3281 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3283 if (i2_code_number >= 0)
3284 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3286 if (insn_code_number >= 0)
3287 swap_i2i3 = 1;
3290 /* Similarly, check for a case where we have a PARALLEL of two independent
3291 SETs but we started with three insns. In this case, we can do the sets
3292 as two separate insns. This case occurs when some SET allows two
3293 other insns to combine, but the destination of that SET is still live. */
3295 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3296 && GET_CODE (newpat) == PARALLEL
3297 && XVECLEN (newpat, 0) == 2
3298 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3299 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3300 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3301 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3302 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3303 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3304 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3305 DF_INSN_LUID (i2))
3306 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3307 XVECEXP (newpat, 0, 0))
3308 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3309 XVECEXP (newpat, 0, 1))
3310 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3311 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1))))
3312 #ifdef HAVE_cc0
3313 /* We cannot split the parallel into two sets if both sets
3314 reference cc0. */
3315 && ! (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0))
3316 && reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 1)))
3317 #endif
3320 /* Normally, it doesn't matter which of the two is done first,
3321 but it does if one references cc0. In that case, it has to
3322 be first. */
3323 #ifdef HAVE_cc0
3324 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
3326 newi2pat = XVECEXP (newpat, 0, 0);
3327 newpat = XVECEXP (newpat, 0, 1);
3329 else
3330 #endif
3332 newi2pat = XVECEXP (newpat, 0, 1);
3333 newpat = XVECEXP (newpat, 0, 0);
3336 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3338 if (i2_code_number >= 0)
3339 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3342 /* If it still isn't recognized, fail and change things back the way they
3343 were. */
3344 if ((insn_code_number < 0
3345 /* Is the result a reasonable ASM_OPERANDS? */
3346 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3348 undo_all ();
3349 return 0;
3352 /* If we had to change another insn, make sure it is valid also. */
3353 if (undobuf.other_insn)
3355 CLEAR_HARD_REG_SET (newpat_used_regs);
3357 other_pat = PATTERN (undobuf.other_insn);
3358 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
3359 &new_other_notes);
3361 if (other_code_number < 0 && ! check_asm_operands (other_pat))
3363 undo_all ();
3364 return 0;
3368 #ifdef HAVE_cc0
3369 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3370 they are adjacent to each other or not. */
3372 rtx p = prev_nonnote_insn (i3);
3373 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
3374 && sets_cc0_p (newi2pat))
3376 undo_all ();
3377 return 0;
3380 #endif
3382 /* Only allow this combination if insn_rtx_costs reports that the
3383 replacement instructions are cheaper than the originals. */
3384 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat, other_pat))
3386 undo_all ();
3387 return 0;
3390 /* We now know that we can do this combination. Merge the insns and
3391 update the status of registers and LOG_LINKS. */
3393 if (undobuf.other_insn)
3395 rtx note, next;
3397 PATTERN (undobuf.other_insn) = other_pat;
3399 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
3400 are still valid. Then add any non-duplicate notes added by
3401 recog_for_combine. */
3402 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
3404 next = XEXP (note, 1);
3406 if (REG_NOTE_KIND (note) == REG_UNUSED
3407 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
3408 remove_note (undobuf.other_insn, note);
3411 distribute_notes (new_other_notes, undobuf.other_insn,
3412 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
3415 if (swap_i2i3)
3417 rtx insn;
3418 rtx link;
3419 rtx ni2dest;
3421 /* I3 now uses what used to be its destination and which is now
3422 I2's destination. This requires us to do a few adjustments. */
3423 PATTERN (i3) = newpat;
3424 adjust_for_new_dest (i3);
3426 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3427 so we still will.
3429 However, some later insn might be using I2's dest and have
3430 a LOG_LINK pointing at I3. We must remove this link.
3431 The simplest way to remove the link is to point it at I1,
3432 which we know will be a NOTE. */
3434 /* newi2pat is usually a SET here; however, recog_for_combine might
3435 have added some clobbers. */
3436 if (GET_CODE (newi2pat) == PARALLEL)
3437 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
3438 else
3439 ni2dest = SET_DEST (newi2pat);
3441 for (insn = NEXT_INSN (i3);
3442 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3443 || insn != BB_HEAD (this_basic_block->next_bb));
3444 insn = NEXT_INSN (insn))
3446 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
3448 for (link = LOG_LINKS (insn); link;
3449 link = XEXP (link, 1))
3450 if (XEXP (link, 0) == i3)
3451 XEXP (link, 0) = i1;
3453 break;
3459 rtx i3notes, i2notes, i1notes = 0;
3460 rtx i3links, i2links, i1links = 0;
3461 rtx midnotes = 0;
3462 unsigned int regno;
3463 /* Compute which registers we expect to eliminate. newi2pat may be setting
3464 either i3dest or i2dest, so we must check it. Also, i1dest may be the
3465 same as i3dest, in which case newi2pat may be setting i1dest. */
3466 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
3467 || i2dest_in_i2src || i2dest_in_i1src
3468 || !i2dest_killed
3469 ? 0 : i2dest);
3470 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
3471 || (newi2pat && reg_set_p (i1dest, newi2pat))
3472 || !i1dest_killed
3473 ? 0 : i1dest);
3475 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
3476 clear them. */
3477 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
3478 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
3479 if (i1)
3480 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
3482 /* Ensure that we do not have something that should not be shared but
3483 occurs multiple times in the new insns. Check this by first
3484 resetting all the `used' flags and then copying anything is shared. */
3486 reset_used_flags (i3notes);
3487 reset_used_flags (i2notes);
3488 reset_used_flags (i1notes);
3489 reset_used_flags (newpat);
3490 reset_used_flags (newi2pat);
3491 if (undobuf.other_insn)
3492 reset_used_flags (PATTERN (undobuf.other_insn));
3494 i3notes = copy_rtx_if_shared (i3notes);
3495 i2notes = copy_rtx_if_shared (i2notes);
3496 i1notes = copy_rtx_if_shared (i1notes);
3497 newpat = copy_rtx_if_shared (newpat);
3498 newi2pat = copy_rtx_if_shared (newi2pat);
3499 if (undobuf.other_insn)
3500 reset_used_flags (PATTERN (undobuf.other_insn));
3502 INSN_CODE (i3) = insn_code_number;
3503 PATTERN (i3) = newpat;
3505 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
3507 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
3509 reset_used_flags (call_usage);
3510 call_usage = copy_rtx (call_usage);
3512 if (substed_i2)
3513 replace_rtx (call_usage, i2dest, i2src);
3515 if (substed_i1)
3516 replace_rtx (call_usage, i1dest, i1src);
3518 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
3521 if (undobuf.other_insn)
3522 INSN_CODE (undobuf.other_insn) = other_code_number;
3524 /* We had one special case above where I2 had more than one set and
3525 we replaced a destination of one of those sets with the destination
3526 of I3. In that case, we have to update LOG_LINKS of insns later
3527 in this basic block. Note that this (expensive) case is rare.
3529 Also, in this case, we must pretend that all REG_NOTEs for I2
3530 actually came from I3, so that REG_UNUSED notes from I2 will be
3531 properly handled. */
3533 if (i3_subst_into_i2)
3535 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
3536 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
3537 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
3538 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
3539 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
3540 && ! find_reg_note (i2, REG_UNUSED,
3541 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
3542 for (temp = NEXT_INSN (i2);
3543 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3544 || BB_HEAD (this_basic_block) != temp);
3545 temp = NEXT_INSN (temp))
3546 if (temp != i3 && INSN_P (temp))
3547 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
3548 if (XEXP (link, 0) == i2)
3549 XEXP (link, 0) = i3;
3551 if (i3notes)
3553 rtx link = i3notes;
3554 while (XEXP (link, 1))
3555 link = XEXP (link, 1);
3556 XEXP (link, 1) = i2notes;
3558 else
3559 i3notes = i2notes;
3560 i2notes = 0;
3563 LOG_LINKS (i3) = 0;
3564 REG_NOTES (i3) = 0;
3565 LOG_LINKS (i2) = 0;
3566 REG_NOTES (i2) = 0;
3568 if (newi2pat)
3570 INSN_CODE (i2) = i2_code_number;
3571 PATTERN (i2) = newi2pat;
3573 else
3574 SET_INSN_DELETED (i2);
3576 if (i1)
3578 LOG_LINKS (i1) = 0;
3579 REG_NOTES (i1) = 0;
3580 SET_INSN_DELETED (i1);
3583 /* Get death notes for everything that is now used in either I3 or
3584 I2 and used to die in a previous insn. If we built two new
3585 patterns, move from I1 to I2 then I2 to I3 so that we get the
3586 proper movement on registers that I2 modifies. */
3588 if (newi2pat)
3590 move_deaths (newi2pat, NULL_RTX, DF_INSN_LUID (i1), i2, &midnotes);
3591 move_deaths (newpat, newi2pat, DF_INSN_LUID (i1), i3, &midnotes);
3593 else
3594 move_deaths (newpat, NULL_RTX, i1 ? DF_INSN_LUID (i1) : DF_INSN_LUID (i2),
3595 i3, &midnotes);
3597 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
3598 if (i3notes)
3599 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
3600 elim_i2, elim_i1);
3601 if (i2notes)
3602 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
3603 elim_i2, elim_i1);
3604 if (i1notes)
3605 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
3606 elim_i2, elim_i1);
3607 if (midnotes)
3608 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3609 elim_i2, elim_i1);
3611 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
3612 know these are REG_UNUSED and want them to go to the desired insn,
3613 so we always pass it as i3. */
3615 if (newi2pat && new_i2_notes)
3616 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3618 if (new_i3_notes)
3619 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
3621 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
3622 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
3623 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
3624 in that case, it might delete I2. Similarly for I2 and I1.
3625 Show an additional death due to the REG_DEAD note we make here. If
3626 we discard it in distribute_notes, we will decrement it again. */
3628 if (i3dest_killed)
3630 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
3631 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
3632 NULL_RTX),
3633 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
3634 else
3635 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
3636 NULL_RTX),
3637 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3638 elim_i2, elim_i1);
3641 if (i2dest_in_i2src)
3643 if (newi2pat && reg_set_p (i2dest, newi2pat))
3644 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
3645 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3646 else
3647 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
3648 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3649 NULL_RTX, NULL_RTX);
3652 if (i1dest_in_i1src)
3654 if (newi2pat && reg_set_p (i1dest, newi2pat))
3655 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3656 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3657 else
3658 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3659 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3660 NULL_RTX, NULL_RTX);
3663 distribute_links (i3links);
3664 distribute_links (i2links);
3665 distribute_links (i1links);
3667 if (REG_P (i2dest))
3669 rtx link;
3670 rtx i2_insn = 0, i2_val = 0, set;
3672 /* The insn that used to set this register doesn't exist, and
3673 this life of the register may not exist either. See if one of
3674 I3's links points to an insn that sets I2DEST. If it does,
3675 that is now the last known value for I2DEST. If we don't update
3676 this and I2 set the register to a value that depended on its old
3677 contents, we will get confused. If this insn is used, thing
3678 will be set correctly in combine_instructions. */
3680 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3681 if ((set = single_set (XEXP (link, 0))) != 0
3682 && rtx_equal_p (i2dest, SET_DEST (set)))
3683 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
3685 record_value_for_reg (i2dest, i2_insn, i2_val);
3687 /* If the reg formerly set in I2 died only once and that was in I3,
3688 zero its use count so it won't make `reload' do any work. */
3689 if (! added_sets_2
3690 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
3691 && ! i2dest_in_i2src)
3693 regno = REGNO (i2dest);
3694 INC_REG_N_SETS (regno, -1);
3698 if (i1 && REG_P (i1dest))
3700 rtx link;
3701 rtx i1_insn = 0, i1_val = 0, set;
3703 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3704 if ((set = single_set (XEXP (link, 0))) != 0
3705 && rtx_equal_p (i1dest, SET_DEST (set)))
3706 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
3708 record_value_for_reg (i1dest, i1_insn, i1_val);
3710 regno = REGNO (i1dest);
3711 if (! added_sets_1 && ! i1dest_in_i1src)
3712 INC_REG_N_SETS (regno, -1);
3715 /* Update reg_stat[].nonzero_bits et al for any changes that may have
3716 been made to this insn. The order of
3717 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
3718 can affect nonzero_bits of newpat */
3719 if (newi2pat)
3720 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
3721 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
3723 /* Set new_direct_jump_p if a new return or simple jump instruction
3724 has been created.
3726 If I3 is now an unconditional jump, ensure that it has a
3727 BARRIER following it since it may have initially been a
3728 conditional jump. It may also be the last nonnote insn. */
3730 if (returnjump_p (i3) || any_uncondjump_p (i3))
3732 *new_direct_jump_p = 1;
3733 mark_jump_label (PATTERN (i3), i3, 0);
3735 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
3736 || !BARRIER_P (temp))
3737 emit_barrier_after (i3);
3740 if (undobuf.other_insn != NULL_RTX
3741 && (returnjump_p (undobuf.other_insn)
3742 || any_uncondjump_p (undobuf.other_insn)))
3744 *new_direct_jump_p = 1;
3746 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
3747 || !BARRIER_P (temp))
3748 emit_barrier_after (undobuf.other_insn);
3751 /* An NOOP jump does not need barrier, but it does need cleaning up
3752 of CFG. */
3753 if (GET_CODE (newpat) == SET
3754 && SET_SRC (newpat) == pc_rtx
3755 && SET_DEST (newpat) == pc_rtx)
3756 *new_direct_jump_p = 1;
3759 if (undobuf.other_insn != NULL_RTX)
3761 if (dump_file)
3763 fprintf (dump_file, "modifying other_insn ");
3764 dump_insn_slim (dump_file, undobuf.other_insn);
3766 df_insn_rescan (undobuf.other_insn);
3769 if (i1 && !(NOTE_P(i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
3771 if (dump_file)
3773 fprintf (dump_file, "modifying insn i1 ");
3774 dump_insn_slim (dump_file, i1);
3776 df_insn_rescan (i1);
3779 if (i2 && !(NOTE_P(i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
3781 if (dump_file)
3783 fprintf (dump_file, "modifying insn i2 ");
3784 dump_insn_slim (dump_file, i2);
3786 df_insn_rescan (i2);
3789 if (i3 && !(NOTE_P(i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
3791 if (dump_file)
3793 fprintf (dump_file, "modifying insn i3 ");
3794 dump_insn_slim (dump_file, i3);
3796 df_insn_rescan (i3);
3799 combine_successes++;
3800 undo_commit ();
3802 if (added_links_insn
3803 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
3804 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
3805 return added_links_insn;
3806 else
3807 return newi2pat ? i2 : i3;
3810 /* Undo all the modifications recorded in undobuf. */
3812 static void
3813 undo_all (void)
3815 struct undo *undo, *next;
3817 for (undo = undobuf.undos; undo; undo = next)
3819 next = undo->next;
3820 switch (undo->kind)
3822 case UNDO_RTX:
3823 *undo->where.r = undo->old_contents.r;
3824 break;
3825 case UNDO_INT:
3826 *undo->where.i = undo->old_contents.i;
3827 break;
3828 case UNDO_MODE:
3829 PUT_MODE (*undo->where.r, undo->old_contents.m);
3830 break;
3831 default:
3832 gcc_unreachable ();
3835 undo->next = undobuf.frees;
3836 undobuf.frees = undo;
3839 undobuf.undos = 0;
3842 /* We've committed to accepting the changes we made. Move all
3843 of the undos to the free list. */
3845 static void
3846 undo_commit (void)
3848 struct undo *undo, *next;
3850 for (undo = undobuf.undos; undo; undo = next)
3852 next = undo->next;
3853 undo->next = undobuf.frees;
3854 undobuf.frees = undo;
3856 undobuf.undos = 0;
3859 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
3860 where we have an arithmetic expression and return that point. LOC will
3861 be inside INSN.
3863 try_combine will call this function to see if an insn can be split into
3864 two insns. */
3866 static rtx *
3867 find_split_point (rtx *loc, rtx insn)
3869 rtx x = *loc;
3870 enum rtx_code code = GET_CODE (x);
3871 rtx *split;
3872 unsigned HOST_WIDE_INT len = 0;
3873 HOST_WIDE_INT pos = 0;
3874 int unsignedp = 0;
3875 rtx inner = NULL_RTX;
3877 /* First special-case some codes. */
3878 switch (code)
3880 case SUBREG:
3881 #ifdef INSN_SCHEDULING
3882 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3883 point. */
3884 if (MEM_P (SUBREG_REG (x)))
3885 return loc;
3886 #endif
3887 return find_split_point (&SUBREG_REG (x), insn);
3889 case MEM:
3890 #ifdef HAVE_lo_sum
3891 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3892 using LO_SUM and HIGH. */
3893 if (GET_CODE (XEXP (x, 0)) == CONST
3894 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3896 SUBST (XEXP (x, 0),
3897 gen_rtx_LO_SUM (Pmode,
3898 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3899 XEXP (x, 0)));
3900 return &XEXP (XEXP (x, 0), 0);
3902 #endif
3904 /* If we have a PLUS whose second operand is a constant and the
3905 address is not valid, perhaps will can split it up using
3906 the machine-specific way to split large constants. We use
3907 the first pseudo-reg (one of the virtual regs) as a placeholder;
3908 it will not remain in the result. */
3909 if (GET_CODE (XEXP (x, 0)) == PLUS
3910 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3911 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3913 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3914 rtx seq = combine_split_insns (gen_rtx_SET (VOIDmode, reg,
3915 XEXP (x, 0)),
3916 subst_insn);
3918 /* This should have produced two insns, each of which sets our
3919 placeholder. If the source of the second is a valid address,
3920 we can make put both sources together and make a split point
3921 in the middle. */
3923 if (seq
3924 && NEXT_INSN (seq) != NULL_RTX
3925 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
3926 && NONJUMP_INSN_P (seq)
3927 && GET_CODE (PATTERN (seq)) == SET
3928 && SET_DEST (PATTERN (seq)) == reg
3929 && ! reg_mentioned_p (reg,
3930 SET_SRC (PATTERN (seq)))
3931 && NONJUMP_INSN_P (NEXT_INSN (seq))
3932 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3933 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
3934 && memory_address_p (GET_MODE (x),
3935 SET_SRC (PATTERN (NEXT_INSN (seq)))))
3937 rtx src1 = SET_SRC (PATTERN (seq));
3938 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3940 /* Replace the placeholder in SRC2 with SRC1. If we can
3941 find where in SRC2 it was placed, that can become our
3942 split point and we can replace this address with SRC2.
3943 Just try two obvious places. */
3945 src2 = replace_rtx (src2, reg, src1);
3946 split = 0;
3947 if (XEXP (src2, 0) == src1)
3948 split = &XEXP (src2, 0);
3949 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3950 && XEXP (XEXP (src2, 0), 0) == src1)
3951 split = &XEXP (XEXP (src2, 0), 0);
3953 if (split)
3955 SUBST (XEXP (x, 0), src2);
3956 return split;
3960 /* If that didn't work, perhaps the first operand is complex and
3961 needs to be computed separately, so make a split point there.
3962 This will occur on machines that just support REG + CONST
3963 and have a constant moved through some previous computation. */
3965 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
3966 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3967 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3968 return &XEXP (XEXP (x, 0), 0);
3970 break;
3972 case SET:
3973 #ifdef HAVE_cc0
3974 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3975 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3976 we need to put the operand into a register. So split at that
3977 point. */
3979 if (SET_DEST (x) == cc0_rtx
3980 && GET_CODE (SET_SRC (x)) != COMPARE
3981 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3982 && !OBJECT_P (SET_SRC (x))
3983 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3984 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
3985 return &SET_SRC (x);
3986 #endif
3988 /* See if we can split SET_SRC as it stands. */
3989 split = find_split_point (&SET_SRC (x), insn);
3990 if (split && split != &SET_SRC (x))
3991 return split;
3993 /* See if we can split SET_DEST as it stands. */
3994 split = find_split_point (&SET_DEST (x), insn);
3995 if (split && split != &SET_DEST (x))
3996 return split;
3998 /* See if this is a bitfield assignment with everything constant. If
3999 so, this is an IOR of an AND, so split it into that. */
4000 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4001 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
4002 <= HOST_BITS_PER_WIDE_INT)
4003 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
4004 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
4005 && GET_CODE (SET_SRC (x)) == CONST_INT
4006 && ((INTVAL (XEXP (SET_DEST (x), 1))
4007 + INTVAL (XEXP (SET_DEST (x), 2)))
4008 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
4009 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4011 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4012 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4013 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4014 rtx dest = XEXP (SET_DEST (x), 0);
4015 enum machine_mode mode = GET_MODE (dest);
4016 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
4017 rtx or_mask;
4019 if (BITS_BIG_ENDIAN)
4020 pos = GET_MODE_BITSIZE (mode) - len - pos;
4022 or_mask = gen_int_mode (src << pos, mode);
4023 if (src == mask)
4024 SUBST (SET_SRC (x),
4025 simplify_gen_binary (IOR, mode, dest, or_mask));
4026 else
4028 rtx negmask = gen_int_mode (~(mask << pos), mode);
4029 SUBST (SET_SRC (x),
4030 simplify_gen_binary (IOR, mode,
4031 simplify_gen_binary (AND, mode,
4032 dest, negmask),
4033 or_mask));
4036 SUBST (SET_DEST (x), dest);
4038 split = find_split_point (&SET_SRC (x), insn);
4039 if (split && split != &SET_SRC (x))
4040 return split;
4043 /* Otherwise, see if this is an operation that we can split into two.
4044 If so, try to split that. */
4045 code = GET_CODE (SET_SRC (x));
4047 switch (code)
4049 case AND:
4050 /* If we are AND'ing with a large constant that is only a single
4051 bit and the result is only being used in a context where we
4052 need to know if it is zero or nonzero, replace it with a bit
4053 extraction. This will avoid the large constant, which might
4054 have taken more than one insn to make. If the constant were
4055 not a valid argument to the AND but took only one insn to make,
4056 this is no worse, but if it took more than one insn, it will
4057 be better. */
4059 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
4060 && REG_P (XEXP (SET_SRC (x), 0))
4061 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4062 && REG_P (SET_DEST (x))
4063 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
4064 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4065 && XEXP (*split, 0) == SET_DEST (x)
4066 && XEXP (*split, 1) == const0_rtx)
4068 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4069 XEXP (SET_SRC (x), 0),
4070 pos, NULL_RTX, 1, 1, 0, 0);
4071 if (extraction != 0)
4073 SUBST (SET_SRC (x), extraction);
4074 return find_split_point (loc, insn);
4077 break;
4079 case NE:
4080 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4081 is known to be on, this can be converted into a NEG of a shift. */
4082 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4083 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4084 && 1 <= (pos = exact_log2
4085 (nonzero_bits (XEXP (SET_SRC (x), 0),
4086 GET_MODE (XEXP (SET_SRC (x), 0))))))
4088 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4090 SUBST (SET_SRC (x),
4091 gen_rtx_NEG (mode,
4092 gen_rtx_LSHIFTRT (mode,
4093 XEXP (SET_SRC (x), 0),
4094 GEN_INT (pos))));
4096 split = find_split_point (&SET_SRC (x), insn);
4097 if (split && split != &SET_SRC (x))
4098 return split;
4100 break;
4102 case SIGN_EXTEND:
4103 inner = XEXP (SET_SRC (x), 0);
4105 /* We can't optimize if either mode is a partial integer
4106 mode as we don't know how many bits are significant
4107 in those modes. */
4108 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4109 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4110 break;
4112 pos = 0;
4113 len = GET_MODE_BITSIZE (GET_MODE (inner));
4114 unsignedp = 0;
4115 break;
4117 case SIGN_EXTRACT:
4118 case ZERO_EXTRACT:
4119 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
4120 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
4122 inner = XEXP (SET_SRC (x), 0);
4123 len = INTVAL (XEXP (SET_SRC (x), 1));
4124 pos = INTVAL (XEXP (SET_SRC (x), 2));
4126 if (BITS_BIG_ENDIAN)
4127 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
4128 unsignedp = (code == ZERO_EXTRACT);
4130 break;
4132 default:
4133 break;
4136 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
4138 enum machine_mode mode = GET_MODE (SET_SRC (x));
4140 /* For unsigned, we have a choice of a shift followed by an
4141 AND or two shifts. Use two shifts for field sizes where the
4142 constant might be too large. We assume here that we can
4143 always at least get 8-bit constants in an AND insn, which is
4144 true for every current RISC. */
4146 if (unsignedp && len <= 8)
4148 SUBST (SET_SRC (x),
4149 gen_rtx_AND (mode,
4150 gen_rtx_LSHIFTRT
4151 (mode, gen_lowpart (mode, inner),
4152 GEN_INT (pos)),
4153 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
4155 split = find_split_point (&SET_SRC (x), insn);
4156 if (split && split != &SET_SRC (x))
4157 return split;
4159 else
4161 SUBST (SET_SRC (x),
4162 gen_rtx_fmt_ee
4163 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
4164 gen_rtx_ASHIFT (mode,
4165 gen_lowpart (mode, inner),
4166 GEN_INT (GET_MODE_BITSIZE (mode)
4167 - len - pos)),
4168 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
4170 split = find_split_point (&SET_SRC (x), insn);
4171 if (split && split != &SET_SRC (x))
4172 return split;
4176 /* See if this is a simple operation with a constant as the second
4177 operand. It might be that this constant is out of range and hence
4178 could be used as a split point. */
4179 if (BINARY_P (SET_SRC (x))
4180 && CONSTANT_P (XEXP (SET_SRC (x), 1))
4181 && (OBJECT_P (XEXP (SET_SRC (x), 0))
4182 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
4183 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
4184 return &XEXP (SET_SRC (x), 1);
4186 /* Finally, see if this is a simple operation with its first operand
4187 not in a register. The operation might require this operand in a
4188 register, so return it as a split point. We can always do this
4189 because if the first operand were another operation, we would have
4190 already found it as a split point. */
4191 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
4192 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
4193 return &XEXP (SET_SRC (x), 0);
4195 return 0;
4197 case AND:
4198 case IOR:
4199 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4200 it is better to write this as (not (ior A B)) so we can split it.
4201 Similarly for IOR. */
4202 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
4204 SUBST (*loc,
4205 gen_rtx_NOT (GET_MODE (x),
4206 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
4207 GET_MODE (x),
4208 XEXP (XEXP (x, 0), 0),
4209 XEXP (XEXP (x, 1), 0))));
4210 return find_split_point (loc, insn);
4213 /* Many RISC machines have a large set of logical insns. If the
4214 second operand is a NOT, put it first so we will try to split the
4215 other operand first. */
4216 if (GET_CODE (XEXP (x, 1)) == NOT)
4218 rtx tem = XEXP (x, 0);
4219 SUBST (XEXP (x, 0), XEXP (x, 1));
4220 SUBST (XEXP (x, 1), tem);
4222 break;
4224 default:
4225 break;
4228 /* Otherwise, select our actions depending on our rtx class. */
4229 switch (GET_RTX_CLASS (code))
4231 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
4232 case RTX_TERNARY:
4233 split = find_split_point (&XEXP (x, 2), insn);
4234 if (split)
4235 return split;
4236 /* ... fall through ... */
4237 case RTX_BIN_ARITH:
4238 case RTX_COMM_ARITH:
4239 case RTX_COMPARE:
4240 case RTX_COMM_COMPARE:
4241 split = find_split_point (&XEXP (x, 1), insn);
4242 if (split)
4243 return split;
4244 /* ... fall through ... */
4245 case RTX_UNARY:
4246 /* Some machines have (and (shift ...) ...) insns. If X is not
4247 an AND, but XEXP (X, 0) is, use it as our split point. */
4248 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
4249 return &XEXP (x, 0);
4251 split = find_split_point (&XEXP (x, 0), insn);
4252 if (split)
4253 return split;
4254 return loc;
4256 default:
4257 /* Otherwise, we don't have a split point. */
4258 return 0;
4262 /* Throughout X, replace FROM with TO, and return the result.
4263 The result is TO if X is FROM;
4264 otherwise the result is X, but its contents may have been modified.
4265 If they were modified, a record was made in undobuf so that
4266 undo_all will (among other things) return X to its original state.
4268 If the number of changes necessary is too much to record to undo,
4269 the excess changes are not made, so the result is invalid.
4270 The changes already made can still be undone.
4271 undobuf.num_undo is incremented for such changes, so by testing that
4272 the caller can tell whether the result is valid.
4274 `n_occurrences' is incremented each time FROM is replaced.
4276 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
4278 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
4279 by copying if `n_occurrences' is nonzero. */
4281 static rtx
4282 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
4284 enum rtx_code code = GET_CODE (x);
4285 enum machine_mode op0_mode = VOIDmode;
4286 const char *fmt;
4287 int len, i;
4288 rtx new;
4290 /* Two expressions are equal if they are identical copies of a shared
4291 RTX or if they are both registers with the same register number
4292 and mode. */
4294 #define COMBINE_RTX_EQUAL_P(X,Y) \
4295 ((X) == (Y) \
4296 || (REG_P (X) && REG_P (Y) \
4297 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
4299 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
4301 n_occurrences++;
4302 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
4305 /* If X and FROM are the same register but different modes, they
4306 will not have been seen as equal above. However, the log links code
4307 will make a LOG_LINKS entry for that case. If we do nothing, we
4308 will try to rerecognize our original insn and, when it succeeds,
4309 we will delete the feeding insn, which is incorrect.
4311 So force this insn not to match in this (rare) case. */
4312 if (! in_dest && code == REG && REG_P (from)
4313 && reg_overlap_mentioned_p (x, from))
4314 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
4316 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
4317 of which may contain things that can be combined. */
4318 if (code != MEM && code != LO_SUM && OBJECT_P (x))
4319 return x;
4321 /* It is possible to have a subexpression appear twice in the insn.
4322 Suppose that FROM is a register that appears within TO.
4323 Then, after that subexpression has been scanned once by `subst',
4324 the second time it is scanned, TO may be found. If we were
4325 to scan TO here, we would find FROM within it and create a
4326 self-referent rtl structure which is completely wrong. */
4327 if (COMBINE_RTX_EQUAL_P (x, to))
4328 return to;
4330 /* Parallel asm_operands need special attention because all of the
4331 inputs are shared across the arms. Furthermore, unsharing the
4332 rtl results in recognition failures. Failure to handle this case
4333 specially can result in circular rtl.
4335 Solve this by doing a normal pass across the first entry of the
4336 parallel, and only processing the SET_DESTs of the subsequent
4337 entries. Ug. */
4339 if (code == PARALLEL
4340 && GET_CODE (XVECEXP (x, 0, 0)) == SET
4341 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
4343 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
4345 /* If this substitution failed, this whole thing fails. */
4346 if (GET_CODE (new) == CLOBBER
4347 && XEXP (new, 0) == const0_rtx)
4348 return new;
4350 SUBST (XVECEXP (x, 0, 0), new);
4352 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
4354 rtx dest = SET_DEST (XVECEXP (x, 0, i));
4356 if (!REG_P (dest)
4357 && GET_CODE (dest) != CC0
4358 && GET_CODE (dest) != PC)
4360 new = subst (dest, from, to, 0, unique_copy);
4362 /* If this substitution failed, this whole thing fails. */
4363 if (GET_CODE (new) == CLOBBER
4364 && XEXP (new, 0) == const0_rtx)
4365 return new;
4367 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
4371 else
4373 len = GET_RTX_LENGTH (code);
4374 fmt = GET_RTX_FORMAT (code);
4376 /* We don't need to process a SET_DEST that is a register, CC0,
4377 or PC, so set up to skip this common case. All other cases
4378 where we want to suppress replacing something inside a
4379 SET_SRC are handled via the IN_DEST operand. */
4380 if (code == SET
4381 && (REG_P (SET_DEST (x))
4382 || GET_CODE (SET_DEST (x)) == CC0
4383 || GET_CODE (SET_DEST (x)) == PC))
4384 fmt = "ie";
4386 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
4387 constant. */
4388 if (fmt[0] == 'e')
4389 op0_mode = GET_MODE (XEXP (x, 0));
4391 for (i = 0; i < len; i++)
4393 if (fmt[i] == 'E')
4395 int j;
4396 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4398 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
4400 new = (unique_copy && n_occurrences
4401 ? copy_rtx (to) : to);
4402 n_occurrences++;
4404 else
4406 new = subst (XVECEXP (x, i, j), from, to, 0,
4407 unique_copy);
4409 /* If this substitution failed, this whole thing
4410 fails. */
4411 if (GET_CODE (new) == CLOBBER
4412 && XEXP (new, 0) == const0_rtx)
4413 return new;
4416 SUBST (XVECEXP (x, i, j), new);
4419 else if (fmt[i] == 'e')
4421 /* If this is a register being set, ignore it. */
4422 new = XEXP (x, i);
4423 if (in_dest
4424 && i == 0
4425 && (((code == SUBREG || code == ZERO_EXTRACT)
4426 && REG_P (new))
4427 || code == STRICT_LOW_PART))
4430 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
4432 /* In general, don't install a subreg involving two
4433 modes not tieable. It can worsen register
4434 allocation, and can even make invalid reload
4435 insns, since the reg inside may need to be copied
4436 from in the outside mode, and that may be invalid
4437 if it is an fp reg copied in integer mode.
4439 We allow two exceptions to this: It is valid if
4440 it is inside another SUBREG and the mode of that
4441 SUBREG and the mode of the inside of TO is
4442 tieable and it is valid if X is a SET that copies
4443 FROM to CC0. */
4445 if (GET_CODE (to) == SUBREG
4446 && ! MODES_TIEABLE_P (GET_MODE (to),
4447 GET_MODE (SUBREG_REG (to)))
4448 && ! (code == SUBREG
4449 && MODES_TIEABLE_P (GET_MODE (x),
4450 GET_MODE (SUBREG_REG (to))))
4451 #ifdef HAVE_cc0
4452 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
4453 #endif
4455 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4457 #ifdef CANNOT_CHANGE_MODE_CLASS
4458 if (code == SUBREG
4459 && REG_P (to)
4460 && REGNO (to) < FIRST_PSEUDO_REGISTER
4461 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
4462 GET_MODE (to),
4463 GET_MODE (x)))
4464 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4465 #endif
4467 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
4468 n_occurrences++;
4470 else
4471 /* If we are in a SET_DEST, suppress most cases unless we
4472 have gone inside a MEM, in which case we want to
4473 simplify the address. We assume here that things that
4474 are actually part of the destination have their inner
4475 parts in the first expression. This is true for SUBREG,
4476 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
4477 things aside from REG and MEM that should appear in a
4478 SET_DEST. */
4479 new = subst (XEXP (x, i), from, to,
4480 (((in_dest
4481 && (code == SUBREG || code == STRICT_LOW_PART
4482 || code == ZERO_EXTRACT))
4483 || code == SET)
4484 && i == 0), unique_copy);
4486 /* If we found that we will have to reject this combination,
4487 indicate that by returning the CLOBBER ourselves, rather than
4488 an expression containing it. This will speed things up as
4489 well as prevent accidents where two CLOBBERs are considered
4490 to be equal, thus producing an incorrect simplification. */
4492 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
4493 return new;
4495 if (GET_CODE (x) == SUBREG
4496 && (GET_CODE (new) == CONST_INT
4497 || GET_CODE (new) == CONST_DOUBLE))
4499 enum machine_mode mode = GET_MODE (x);
4501 x = simplify_subreg (GET_MODE (x), new,
4502 GET_MODE (SUBREG_REG (x)),
4503 SUBREG_BYTE (x));
4504 if (! x)
4505 x = gen_rtx_CLOBBER (mode, const0_rtx);
4507 else if (GET_CODE (new) == CONST_INT
4508 && GET_CODE (x) == ZERO_EXTEND)
4510 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
4511 new, GET_MODE (XEXP (x, 0)));
4512 gcc_assert (x);
4514 else
4515 SUBST (XEXP (x, i), new);
4520 /* Check if we are loading something from the constant pool via float
4521 extension; in this case we would undo compress_float_constant
4522 optimization and degenerate constant load to an immediate value. */
4523 if (GET_CODE (x) == FLOAT_EXTEND
4524 && MEM_P (XEXP (x, 0))
4525 && MEM_READONLY_P (XEXP (x, 0)))
4527 rtx tmp = avoid_constant_pool_reference (x);
4528 if (x != tmp)
4529 return x;
4532 /* Try to simplify X. If the simplification changed the code, it is likely
4533 that further simplification will help, so loop, but limit the number
4534 of repetitions that will be performed. */
4536 for (i = 0; i < 4; i++)
4538 /* If X is sufficiently simple, don't bother trying to do anything
4539 with it. */
4540 if (code != CONST_INT && code != REG && code != CLOBBER)
4541 x = combine_simplify_rtx (x, op0_mode, in_dest);
4543 if (GET_CODE (x) == code)
4544 break;
4546 code = GET_CODE (x);
4548 /* We no longer know the original mode of operand 0 since we
4549 have changed the form of X) */
4550 op0_mode = VOIDmode;
4553 return x;
4556 /* Simplify X, a piece of RTL. We just operate on the expression at the
4557 outer level; call `subst' to simplify recursively. Return the new
4558 expression.
4560 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
4561 if we are inside a SET_DEST. */
4563 static rtx
4564 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
4566 enum rtx_code code = GET_CODE (x);
4567 enum machine_mode mode = GET_MODE (x);
4568 rtx temp;
4569 int i;
4571 /* If this is a commutative operation, put a constant last and a complex
4572 expression first. We don't need to do this for comparisons here. */
4573 if (COMMUTATIVE_ARITH_P (x)
4574 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
4576 temp = XEXP (x, 0);
4577 SUBST (XEXP (x, 0), XEXP (x, 1));
4578 SUBST (XEXP (x, 1), temp);
4581 /* If this is a simple operation applied to an IF_THEN_ELSE, try
4582 applying it to the arms of the IF_THEN_ELSE. This often simplifies
4583 things. Check for cases where both arms are testing the same
4584 condition.
4586 Don't do anything if all operands are very simple. */
4588 if ((BINARY_P (x)
4589 && ((!OBJECT_P (XEXP (x, 0))
4590 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4591 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
4592 || (!OBJECT_P (XEXP (x, 1))
4593 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
4594 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
4595 || (UNARY_P (x)
4596 && (!OBJECT_P (XEXP (x, 0))
4597 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4598 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
4600 rtx cond, true_rtx, false_rtx;
4602 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
4603 if (cond != 0
4604 /* If everything is a comparison, what we have is highly unlikely
4605 to be simpler, so don't use it. */
4606 && ! (COMPARISON_P (x)
4607 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
4609 rtx cop1 = const0_rtx;
4610 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
4612 if (cond_code == NE && COMPARISON_P (cond))
4613 return x;
4615 /* Simplify the alternative arms; this may collapse the true and
4616 false arms to store-flag values. Be careful to use copy_rtx
4617 here since true_rtx or false_rtx might share RTL with x as a
4618 result of the if_then_else_cond call above. */
4619 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
4620 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
4622 /* If true_rtx and false_rtx are not general_operands, an if_then_else
4623 is unlikely to be simpler. */
4624 if (general_operand (true_rtx, VOIDmode)
4625 && general_operand (false_rtx, VOIDmode))
4627 enum rtx_code reversed;
4629 /* Restarting if we generate a store-flag expression will cause
4630 us to loop. Just drop through in this case. */
4632 /* If the result values are STORE_FLAG_VALUE and zero, we can
4633 just make the comparison operation. */
4634 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
4635 x = simplify_gen_relational (cond_code, mode, VOIDmode,
4636 cond, cop1);
4637 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
4638 && ((reversed = reversed_comparison_code_parts
4639 (cond_code, cond, cop1, NULL))
4640 != UNKNOWN))
4641 x = simplify_gen_relational (reversed, mode, VOIDmode,
4642 cond, cop1);
4644 /* Likewise, we can make the negate of a comparison operation
4645 if the result values are - STORE_FLAG_VALUE and zero. */
4646 else if (GET_CODE (true_rtx) == CONST_INT
4647 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
4648 && false_rtx == const0_rtx)
4649 x = simplify_gen_unary (NEG, mode,
4650 simplify_gen_relational (cond_code,
4651 mode, VOIDmode,
4652 cond, cop1),
4653 mode);
4654 else if (GET_CODE (false_rtx) == CONST_INT
4655 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
4656 && true_rtx == const0_rtx
4657 && ((reversed = reversed_comparison_code_parts
4658 (cond_code, cond, cop1, NULL))
4659 != UNKNOWN))
4660 x = simplify_gen_unary (NEG, mode,
4661 simplify_gen_relational (reversed,
4662 mode, VOIDmode,
4663 cond, cop1),
4664 mode);
4665 else
4666 return gen_rtx_IF_THEN_ELSE (mode,
4667 simplify_gen_relational (cond_code,
4668 mode,
4669 VOIDmode,
4670 cond,
4671 cop1),
4672 true_rtx, false_rtx);
4674 code = GET_CODE (x);
4675 op0_mode = VOIDmode;
4680 /* Try to fold this expression in case we have constants that weren't
4681 present before. */
4682 temp = 0;
4683 switch (GET_RTX_CLASS (code))
4685 case RTX_UNARY:
4686 if (op0_mode == VOIDmode)
4687 op0_mode = GET_MODE (XEXP (x, 0));
4688 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
4689 break;
4690 case RTX_COMPARE:
4691 case RTX_COMM_COMPARE:
4693 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
4694 if (cmp_mode == VOIDmode)
4696 cmp_mode = GET_MODE (XEXP (x, 1));
4697 if (cmp_mode == VOIDmode)
4698 cmp_mode = op0_mode;
4700 temp = simplify_relational_operation (code, mode, cmp_mode,
4701 XEXP (x, 0), XEXP (x, 1));
4703 break;
4704 case RTX_COMM_ARITH:
4705 case RTX_BIN_ARITH:
4706 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
4707 break;
4708 case RTX_BITFIELD_OPS:
4709 case RTX_TERNARY:
4710 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
4711 XEXP (x, 1), XEXP (x, 2));
4712 break;
4713 default:
4714 break;
4717 if (temp)
4719 x = temp;
4720 code = GET_CODE (temp);
4721 op0_mode = VOIDmode;
4722 mode = GET_MODE (temp);
4725 /* First see if we can apply the inverse distributive law. */
4726 if (code == PLUS || code == MINUS
4727 || code == AND || code == IOR || code == XOR)
4729 x = apply_distributive_law (x);
4730 code = GET_CODE (x);
4731 op0_mode = VOIDmode;
4734 /* If CODE is an associative operation not otherwise handled, see if we
4735 can associate some operands. This can win if they are constants or
4736 if they are logically related (i.e. (a & b) & a). */
4737 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
4738 || code == AND || code == IOR || code == XOR
4739 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
4740 && ((INTEGRAL_MODE_P (mode) && code != DIV)
4741 || (flag_associative_math && FLOAT_MODE_P (mode))))
4743 if (GET_CODE (XEXP (x, 0)) == code)
4745 rtx other = XEXP (XEXP (x, 0), 0);
4746 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
4747 rtx inner_op1 = XEXP (x, 1);
4748 rtx inner;
4750 /* Make sure we pass the constant operand if any as the second
4751 one if this is a commutative operation. */
4752 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
4754 rtx tem = inner_op0;
4755 inner_op0 = inner_op1;
4756 inner_op1 = tem;
4758 inner = simplify_binary_operation (code == MINUS ? PLUS
4759 : code == DIV ? MULT
4760 : code,
4761 mode, inner_op0, inner_op1);
4763 /* For commutative operations, try the other pair if that one
4764 didn't simplify. */
4765 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
4767 other = XEXP (XEXP (x, 0), 1);
4768 inner = simplify_binary_operation (code, mode,
4769 XEXP (XEXP (x, 0), 0),
4770 XEXP (x, 1));
4773 if (inner)
4774 return simplify_gen_binary (code, mode, other, inner);
4778 /* A little bit of algebraic simplification here. */
4779 switch (code)
4781 case MEM:
4782 /* Ensure that our address has any ASHIFTs converted to MULT in case
4783 address-recognizing predicates are called later. */
4784 temp = make_compound_operation (XEXP (x, 0), MEM);
4785 SUBST (XEXP (x, 0), temp);
4786 break;
4788 case SUBREG:
4789 if (op0_mode == VOIDmode)
4790 op0_mode = GET_MODE (SUBREG_REG (x));
4792 /* See if this can be moved to simplify_subreg. */
4793 if (CONSTANT_P (SUBREG_REG (x))
4794 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
4795 /* Don't call gen_lowpart if the inner mode
4796 is VOIDmode and we cannot simplify it, as SUBREG without
4797 inner mode is invalid. */
4798 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
4799 || gen_lowpart_common (mode, SUBREG_REG (x))))
4800 return gen_lowpart (mode, SUBREG_REG (x));
4802 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
4803 break;
4805 rtx temp;
4806 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
4807 SUBREG_BYTE (x));
4808 if (temp)
4809 return temp;
4812 /* Don't change the mode of the MEM if that would change the meaning
4813 of the address. */
4814 if (MEM_P (SUBREG_REG (x))
4815 && (MEM_VOLATILE_P (SUBREG_REG (x))
4816 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
4817 return gen_rtx_CLOBBER (mode, const0_rtx);
4819 /* Note that we cannot do any narrowing for non-constants since
4820 we might have been counting on using the fact that some bits were
4821 zero. We now do this in the SET. */
4823 break;
4825 case NEG:
4826 temp = expand_compound_operation (XEXP (x, 0));
4828 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4829 replaced by (lshiftrt X C). This will convert
4830 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4832 if (GET_CODE (temp) == ASHIFTRT
4833 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4834 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4835 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
4836 INTVAL (XEXP (temp, 1)));
4838 /* If X has only a single bit that might be nonzero, say, bit I, convert
4839 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4840 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4841 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4842 or a SUBREG of one since we'd be making the expression more
4843 complex if it was just a register. */
4845 if (!REG_P (temp)
4846 && ! (GET_CODE (temp) == SUBREG
4847 && REG_P (SUBREG_REG (temp)))
4848 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4850 rtx temp1 = simplify_shift_const
4851 (NULL_RTX, ASHIFTRT, mode,
4852 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4853 GET_MODE_BITSIZE (mode) - 1 - i),
4854 GET_MODE_BITSIZE (mode) - 1 - i);
4856 /* If all we did was surround TEMP with the two shifts, we
4857 haven't improved anything, so don't use it. Otherwise,
4858 we are better off with TEMP1. */
4859 if (GET_CODE (temp1) != ASHIFTRT
4860 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4861 || XEXP (XEXP (temp1, 0), 0) != temp)
4862 return temp1;
4864 break;
4866 case TRUNCATE:
4867 /* We can't handle truncation to a partial integer mode here
4868 because we don't know the real bitsize of the partial
4869 integer mode. */
4870 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4871 break;
4873 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4874 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4875 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4876 SUBST (XEXP (x, 0),
4877 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4878 GET_MODE_MASK (mode), 0));
4880 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
4881 whose value is a comparison can be replaced with a subreg if
4882 STORE_FLAG_VALUE permits. */
4883 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4884 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4885 && (temp = get_last_value (XEXP (x, 0)))
4886 && COMPARISON_P (temp))
4887 return gen_lowpart (mode, XEXP (x, 0));
4888 break;
4890 #ifdef HAVE_cc0
4891 case COMPARE:
4892 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4893 using cc0, in which case we want to leave it as a COMPARE
4894 so we can distinguish it from a register-register-copy. */
4895 if (XEXP (x, 1) == const0_rtx)
4896 return XEXP (x, 0);
4898 /* x - 0 is the same as x unless x's mode has signed zeros and
4899 allows rounding towards -infinity. Under those conditions,
4900 0 - 0 is -0. */
4901 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4902 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4903 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4904 return XEXP (x, 0);
4905 break;
4906 #endif
4908 case CONST:
4909 /* (const (const X)) can become (const X). Do it this way rather than
4910 returning the inner CONST since CONST can be shared with a
4911 REG_EQUAL note. */
4912 if (GET_CODE (XEXP (x, 0)) == CONST)
4913 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4914 break;
4916 #ifdef HAVE_lo_sum
4917 case LO_SUM:
4918 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4919 can add in an offset. find_split_point will split this address up
4920 again if it doesn't match. */
4921 if (GET_CODE (XEXP (x, 0)) == HIGH
4922 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4923 return XEXP (x, 1);
4924 break;
4925 #endif
4927 case PLUS:
4928 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4929 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4930 bit-field and can be replaced by either a sign_extend or a
4931 sign_extract. The `and' may be a zero_extend and the two
4932 <c>, -<c> constants may be reversed. */
4933 if (GET_CODE (XEXP (x, 0)) == XOR
4934 && GET_CODE (XEXP (x, 1)) == CONST_INT
4935 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4936 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4937 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4938 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4939 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4940 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4941 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4942 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4943 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4944 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4945 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4946 == (unsigned int) i + 1))))
4947 return simplify_shift_const
4948 (NULL_RTX, ASHIFTRT, mode,
4949 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4950 XEXP (XEXP (XEXP (x, 0), 0), 0),
4951 GET_MODE_BITSIZE (mode) - (i + 1)),
4952 GET_MODE_BITSIZE (mode) - (i + 1));
4954 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4955 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4956 the bitsize of the mode - 1. This allows simplification of
4957 "a = (b & 8) == 0;" */
4958 if (XEXP (x, 1) == constm1_rtx
4959 && !REG_P (XEXP (x, 0))
4960 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4961 && REG_P (SUBREG_REG (XEXP (x, 0))))
4962 && nonzero_bits (XEXP (x, 0), mode) == 1)
4963 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4964 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4965 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4966 GET_MODE_BITSIZE (mode) - 1),
4967 GET_MODE_BITSIZE (mode) - 1);
4969 /* If we are adding two things that have no bits in common, convert
4970 the addition into an IOR. This will often be further simplified,
4971 for example in cases like ((a & 1) + (a & 2)), which can
4972 become a & 3. */
4974 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4975 && (nonzero_bits (XEXP (x, 0), mode)
4976 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4978 /* Try to simplify the expression further. */
4979 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4980 temp = combine_simplify_rtx (tor, mode, in_dest);
4982 /* If we could, great. If not, do not go ahead with the IOR
4983 replacement, since PLUS appears in many special purpose
4984 address arithmetic instructions. */
4985 if (GET_CODE (temp) != CLOBBER && temp != tor)
4986 return temp;
4988 break;
4990 case MINUS:
4991 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4992 (and <foo> (const_int pow2-1)) */
4993 if (GET_CODE (XEXP (x, 1)) == AND
4994 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4995 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4996 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4997 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4998 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4999 break;
5001 case MULT:
5002 /* If we have (mult (plus A B) C), apply the distributive law and then
5003 the inverse distributive law to see if things simplify. This
5004 occurs mostly in addresses, often when unrolling loops. */
5006 if (GET_CODE (XEXP (x, 0)) == PLUS)
5008 rtx result = distribute_and_simplify_rtx (x, 0);
5009 if (result)
5010 return result;
5013 /* Try simplify a*(b/c) as (a*b)/c. */
5014 if (FLOAT_MODE_P (mode) && flag_associative_math
5015 && GET_CODE (XEXP (x, 0)) == DIV)
5017 rtx tem = simplify_binary_operation (MULT, mode,
5018 XEXP (XEXP (x, 0), 0),
5019 XEXP (x, 1));
5020 if (tem)
5021 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5023 break;
5025 case UDIV:
5026 /* If this is a divide by a power of two, treat it as a shift if
5027 its first operand is a shift. */
5028 if (GET_CODE (XEXP (x, 1)) == CONST_INT
5029 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
5030 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5031 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5032 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5033 || GET_CODE (XEXP (x, 0)) == ROTATE
5034 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5035 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5036 break;
5038 case EQ: case NE:
5039 case GT: case GTU: case GE: case GEU:
5040 case LT: case LTU: case LE: case LEU:
5041 case UNEQ: case LTGT:
5042 case UNGT: case UNGE:
5043 case UNLT: case UNLE:
5044 case UNORDERED: case ORDERED:
5045 /* If the first operand is a condition code, we can't do anything
5046 with it. */
5047 if (GET_CODE (XEXP (x, 0)) == COMPARE
5048 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5049 && ! CC0_P (XEXP (x, 0))))
5051 rtx op0 = XEXP (x, 0);
5052 rtx op1 = XEXP (x, 1);
5053 enum rtx_code new_code;
5055 if (GET_CODE (op0) == COMPARE)
5056 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5058 /* Simplify our comparison, if possible. */
5059 new_code = simplify_comparison (code, &op0, &op1);
5061 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5062 if only the low-order bit is possibly nonzero in X (such as when
5063 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5064 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5065 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5066 (plus X 1).
5068 Remove any ZERO_EXTRACT we made when thinking this was a
5069 comparison. It may now be simpler to use, e.g., an AND. If a
5070 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5071 the call to make_compound_operation in the SET case. */
5073 if (STORE_FLAG_VALUE == 1
5074 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5075 && op1 == const0_rtx
5076 && mode == GET_MODE (op0)
5077 && nonzero_bits (op0, mode) == 1)
5078 return gen_lowpart (mode,
5079 expand_compound_operation (op0));
5081 else if (STORE_FLAG_VALUE == 1
5082 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5083 && op1 == const0_rtx
5084 && mode == GET_MODE (op0)
5085 && (num_sign_bit_copies (op0, mode)
5086 == GET_MODE_BITSIZE (mode)))
5088 op0 = expand_compound_operation (op0);
5089 return simplify_gen_unary (NEG, mode,
5090 gen_lowpart (mode, op0),
5091 mode);
5094 else if (STORE_FLAG_VALUE == 1
5095 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5096 && op1 == const0_rtx
5097 && mode == GET_MODE (op0)
5098 && nonzero_bits (op0, mode) == 1)
5100 op0 = expand_compound_operation (op0);
5101 return simplify_gen_binary (XOR, mode,
5102 gen_lowpart (mode, op0),
5103 const1_rtx);
5106 else if (STORE_FLAG_VALUE == 1
5107 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5108 && op1 == const0_rtx
5109 && mode == GET_MODE (op0)
5110 && (num_sign_bit_copies (op0, mode)
5111 == GET_MODE_BITSIZE (mode)))
5113 op0 = expand_compound_operation (op0);
5114 return plus_constant (gen_lowpart (mode, op0), 1);
5117 /* If STORE_FLAG_VALUE is -1, we have cases similar to
5118 those above. */
5119 if (STORE_FLAG_VALUE == -1
5120 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5121 && op1 == const0_rtx
5122 && (num_sign_bit_copies (op0, mode)
5123 == GET_MODE_BITSIZE (mode)))
5124 return gen_lowpart (mode,
5125 expand_compound_operation (op0));
5127 else if (STORE_FLAG_VALUE == -1
5128 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5129 && op1 == const0_rtx
5130 && mode == GET_MODE (op0)
5131 && nonzero_bits (op0, mode) == 1)
5133 op0 = expand_compound_operation (op0);
5134 return simplify_gen_unary (NEG, mode,
5135 gen_lowpart (mode, op0),
5136 mode);
5139 else if (STORE_FLAG_VALUE == -1
5140 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5141 && op1 == const0_rtx
5142 && mode == GET_MODE (op0)
5143 && (num_sign_bit_copies (op0, mode)
5144 == GET_MODE_BITSIZE (mode)))
5146 op0 = expand_compound_operation (op0);
5147 return simplify_gen_unary (NOT, mode,
5148 gen_lowpart (mode, op0),
5149 mode);
5152 /* If X is 0/1, (eq X 0) is X-1. */
5153 else if (STORE_FLAG_VALUE == -1
5154 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5155 && op1 == const0_rtx
5156 && mode == GET_MODE (op0)
5157 && nonzero_bits (op0, mode) == 1)
5159 op0 = expand_compound_operation (op0);
5160 return plus_constant (gen_lowpart (mode, op0), -1);
5163 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5164 one bit that might be nonzero, we can convert (ne x 0) to
5165 (ashift x c) where C puts the bit in the sign bit. Remove any
5166 AND with STORE_FLAG_VALUE when we are done, since we are only
5167 going to test the sign bit. */
5168 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5169 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5170 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5171 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5172 && op1 == const0_rtx
5173 && mode == GET_MODE (op0)
5174 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
5176 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5177 expand_compound_operation (op0),
5178 GET_MODE_BITSIZE (mode) - 1 - i);
5179 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
5180 return XEXP (x, 0);
5181 else
5182 return x;
5185 /* If the code changed, return a whole new comparison. */
5186 if (new_code != code)
5187 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
5189 /* Otherwise, keep this operation, but maybe change its operands.
5190 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
5191 SUBST (XEXP (x, 0), op0);
5192 SUBST (XEXP (x, 1), op1);
5194 break;
5196 case IF_THEN_ELSE:
5197 return simplify_if_then_else (x);
5199 case ZERO_EXTRACT:
5200 case SIGN_EXTRACT:
5201 case ZERO_EXTEND:
5202 case SIGN_EXTEND:
5203 /* If we are processing SET_DEST, we are done. */
5204 if (in_dest)
5205 return x;
5207 return expand_compound_operation (x);
5209 case SET:
5210 return simplify_set (x);
5212 case AND:
5213 case IOR:
5214 return simplify_logical (x);
5216 case ASHIFT:
5217 case LSHIFTRT:
5218 case ASHIFTRT:
5219 case ROTATE:
5220 case ROTATERT:
5221 /* If this is a shift by a constant amount, simplify it. */
5222 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
5223 return simplify_shift_const (x, code, mode, XEXP (x, 0),
5224 INTVAL (XEXP (x, 1)));
5226 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
5227 SUBST (XEXP (x, 1),
5228 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
5229 ((HOST_WIDE_INT) 1
5230 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
5231 - 1,
5232 0));
5233 break;
5235 default:
5236 break;
5239 return x;
5242 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
5244 static rtx
5245 simplify_if_then_else (rtx x)
5247 enum machine_mode mode = GET_MODE (x);
5248 rtx cond = XEXP (x, 0);
5249 rtx true_rtx = XEXP (x, 1);
5250 rtx false_rtx = XEXP (x, 2);
5251 enum rtx_code true_code = GET_CODE (cond);
5252 int comparison_p = COMPARISON_P (cond);
5253 rtx temp;
5254 int i;
5255 enum rtx_code false_code;
5256 rtx reversed;
5258 /* Simplify storing of the truth value. */
5259 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
5260 return simplify_gen_relational (true_code, mode, VOIDmode,
5261 XEXP (cond, 0), XEXP (cond, 1));
5263 /* Also when the truth value has to be reversed. */
5264 if (comparison_p
5265 && true_rtx == const0_rtx && false_rtx == const_true_rtx
5266 && (reversed = reversed_comparison (cond, mode)))
5267 return reversed;
5269 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
5270 in it is being compared against certain values. Get the true and false
5271 comparisons and see if that says anything about the value of each arm. */
5273 if (comparison_p
5274 && ((false_code = reversed_comparison_code (cond, NULL))
5275 != UNKNOWN)
5276 && REG_P (XEXP (cond, 0)))
5278 HOST_WIDE_INT nzb;
5279 rtx from = XEXP (cond, 0);
5280 rtx true_val = XEXP (cond, 1);
5281 rtx false_val = true_val;
5282 int swapped = 0;
5284 /* If FALSE_CODE is EQ, swap the codes and arms. */
5286 if (false_code == EQ)
5288 swapped = 1, true_code = EQ, false_code = NE;
5289 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5292 /* If we are comparing against zero and the expression being tested has
5293 only a single bit that might be nonzero, that is its value when it is
5294 not equal to zero. Similarly if it is known to be -1 or 0. */
5296 if (true_code == EQ && true_val == const0_rtx
5297 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
5299 false_code = EQ;
5300 false_val = GEN_INT (trunc_int_for_mode (nzb, GET_MODE (from)));
5302 else if (true_code == EQ && true_val == const0_rtx
5303 && (num_sign_bit_copies (from, GET_MODE (from))
5304 == GET_MODE_BITSIZE (GET_MODE (from))))
5306 false_code = EQ;
5307 false_val = constm1_rtx;
5310 /* Now simplify an arm if we know the value of the register in the
5311 branch and it is used in the arm. Be careful due to the potential
5312 of locally-shared RTL. */
5314 if (reg_mentioned_p (from, true_rtx))
5315 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
5316 from, true_val),
5317 pc_rtx, pc_rtx, 0, 0);
5318 if (reg_mentioned_p (from, false_rtx))
5319 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
5320 from, false_val),
5321 pc_rtx, pc_rtx, 0, 0);
5323 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
5324 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
5326 true_rtx = XEXP (x, 1);
5327 false_rtx = XEXP (x, 2);
5328 true_code = GET_CODE (cond);
5331 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
5332 reversed, do so to avoid needing two sets of patterns for
5333 subtract-and-branch insns. Similarly if we have a constant in the true
5334 arm, the false arm is the same as the first operand of the comparison, or
5335 the false arm is more complicated than the true arm. */
5337 if (comparison_p
5338 && reversed_comparison_code (cond, NULL) != UNKNOWN
5339 && (true_rtx == pc_rtx
5340 || (CONSTANT_P (true_rtx)
5341 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
5342 || true_rtx == const0_rtx
5343 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
5344 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
5345 && !OBJECT_P (false_rtx))
5346 || reg_mentioned_p (true_rtx, false_rtx)
5347 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
5349 true_code = reversed_comparison_code (cond, NULL);
5350 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
5351 SUBST (XEXP (x, 1), false_rtx);
5352 SUBST (XEXP (x, 2), true_rtx);
5354 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5355 cond = XEXP (x, 0);
5357 /* It is possible that the conditional has been simplified out. */
5358 true_code = GET_CODE (cond);
5359 comparison_p = COMPARISON_P (cond);
5362 /* If the two arms are identical, we don't need the comparison. */
5364 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
5365 return true_rtx;
5367 /* Convert a == b ? b : a to "a". */
5368 if (true_code == EQ && ! side_effects_p (cond)
5369 && !HONOR_NANS (mode)
5370 && rtx_equal_p (XEXP (cond, 0), false_rtx)
5371 && rtx_equal_p (XEXP (cond, 1), true_rtx))
5372 return false_rtx;
5373 else if (true_code == NE && ! side_effects_p (cond)
5374 && !HONOR_NANS (mode)
5375 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5376 && rtx_equal_p (XEXP (cond, 1), false_rtx))
5377 return true_rtx;
5379 /* Look for cases where we have (abs x) or (neg (abs X)). */
5381 if (GET_MODE_CLASS (mode) == MODE_INT
5382 && GET_CODE (false_rtx) == NEG
5383 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
5384 && comparison_p
5385 && rtx_equal_p (true_rtx, XEXP (cond, 0))
5386 && ! side_effects_p (true_rtx))
5387 switch (true_code)
5389 case GT:
5390 case GE:
5391 return simplify_gen_unary (ABS, mode, true_rtx, mode);
5392 case LT:
5393 case LE:
5394 return
5395 simplify_gen_unary (NEG, mode,
5396 simplify_gen_unary (ABS, mode, true_rtx, mode),
5397 mode);
5398 default:
5399 break;
5402 /* Look for MIN or MAX. */
5404 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
5405 && comparison_p
5406 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5407 && rtx_equal_p (XEXP (cond, 1), false_rtx)
5408 && ! side_effects_p (cond))
5409 switch (true_code)
5411 case GE:
5412 case GT:
5413 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
5414 case LE:
5415 case LT:
5416 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
5417 case GEU:
5418 case GTU:
5419 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
5420 case LEU:
5421 case LTU:
5422 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
5423 default:
5424 break;
5427 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
5428 second operand is zero, this can be done as (OP Z (mult COND C2)) where
5429 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
5430 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
5431 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
5432 neither 1 or -1, but it isn't worth checking for. */
5434 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5435 && comparison_p
5436 && GET_MODE_CLASS (mode) == MODE_INT
5437 && ! side_effects_p (x))
5439 rtx t = make_compound_operation (true_rtx, SET);
5440 rtx f = make_compound_operation (false_rtx, SET);
5441 rtx cond_op0 = XEXP (cond, 0);
5442 rtx cond_op1 = XEXP (cond, 1);
5443 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
5444 enum machine_mode m = mode;
5445 rtx z = 0, c1 = NULL_RTX;
5447 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
5448 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
5449 || GET_CODE (t) == ASHIFT
5450 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
5451 && rtx_equal_p (XEXP (t, 0), f))
5452 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
5454 /* If an identity-zero op is commutative, check whether there
5455 would be a match if we swapped the operands. */
5456 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
5457 || GET_CODE (t) == XOR)
5458 && rtx_equal_p (XEXP (t, 1), f))
5459 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
5460 else if (GET_CODE (t) == SIGN_EXTEND
5461 && (GET_CODE (XEXP (t, 0)) == PLUS
5462 || GET_CODE (XEXP (t, 0)) == MINUS
5463 || GET_CODE (XEXP (t, 0)) == IOR
5464 || GET_CODE (XEXP (t, 0)) == XOR
5465 || GET_CODE (XEXP (t, 0)) == ASHIFT
5466 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5467 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5468 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5469 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5470 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5471 && (num_sign_bit_copies (f, GET_MODE (f))
5472 > (unsigned int)
5473 (GET_MODE_BITSIZE (mode)
5474 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
5476 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5477 extend_op = SIGN_EXTEND;
5478 m = GET_MODE (XEXP (t, 0));
5480 else if (GET_CODE (t) == SIGN_EXTEND
5481 && (GET_CODE (XEXP (t, 0)) == PLUS
5482 || GET_CODE (XEXP (t, 0)) == IOR
5483 || GET_CODE (XEXP (t, 0)) == XOR)
5484 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5485 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5486 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5487 && (num_sign_bit_copies (f, GET_MODE (f))
5488 > (unsigned int)
5489 (GET_MODE_BITSIZE (mode)
5490 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5492 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5493 extend_op = SIGN_EXTEND;
5494 m = GET_MODE (XEXP (t, 0));
5496 else if (GET_CODE (t) == ZERO_EXTEND
5497 && (GET_CODE (XEXP (t, 0)) == PLUS
5498 || GET_CODE (XEXP (t, 0)) == MINUS
5499 || GET_CODE (XEXP (t, 0)) == IOR
5500 || GET_CODE (XEXP (t, 0)) == XOR
5501 || GET_CODE (XEXP (t, 0)) == ASHIFT
5502 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5503 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5504 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5505 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5506 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5507 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5508 && ((nonzero_bits (f, GET_MODE (f))
5509 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5510 == 0))
5512 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5513 extend_op = ZERO_EXTEND;
5514 m = GET_MODE (XEXP (t, 0));
5516 else if (GET_CODE (t) == ZERO_EXTEND
5517 && (GET_CODE (XEXP (t, 0)) == PLUS
5518 || GET_CODE (XEXP (t, 0)) == IOR
5519 || GET_CODE (XEXP (t, 0)) == XOR)
5520 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5521 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5522 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5523 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5524 && ((nonzero_bits (f, GET_MODE (f))
5525 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5526 == 0))
5528 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5529 extend_op = ZERO_EXTEND;
5530 m = GET_MODE (XEXP (t, 0));
5533 if (z)
5535 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
5536 cond_op0, cond_op1),
5537 pc_rtx, pc_rtx, 0, 0);
5538 temp = simplify_gen_binary (MULT, m, temp,
5539 simplify_gen_binary (MULT, m, c1,
5540 const_true_rtx));
5541 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5542 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
5544 if (extend_op != UNKNOWN)
5545 temp = simplify_gen_unary (extend_op, mode, temp, m);
5547 return temp;
5551 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5552 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5553 negation of a single bit, we can convert this operation to a shift. We
5554 can actually do this more generally, but it doesn't seem worth it. */
5556 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5557 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5558 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5559 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5560 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5561 == GET_MODE_BITSIZE (mode))
5562 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5563 return
5564 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5565 gen_lowpart (mode, XEXP (cond, 0)), i);
5567 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5568 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5569 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5570 && GET_MODE (XEXP (cond, 0)) == mode
5571 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5572 == nonzero_bits (XEXP (cond, 0), mode)
5573 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5574 return XEXP (cond, 0);
5576 return x;
5579 /* Simplify X, a SET expression. Return the new expression. */
5581 static rtx
5582 simplify_set (rtx x)
5584 rtx src = SET_SRC (x);
5585 rtx dest = SET_DEST (x);
5586 enum machine_mode mode
5587 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5588 rtx other_insn;
5589 rtx *cc_use;
5591 /* (set (pc) (return)) gets written as (return). */
5592 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5593 return src;
5595 /* Now that we know for sure which bits of SRC we are using, see if we can
5596 simplify the expression for the object knowing that we only need the
5597 low-order bits. */
5599 if (GET_MODE_CLASS (mode) == MODE_INT
5600 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5602 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, 0);
5603 SUBST (SET_SRC (x), src);
5606 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5607 the comparison result and try to simplify it unless we already have used
5608 undobuf.other_insn. */
5609 if ((GET_MODE_CLASS (mode) == MODE_CC
5610 || GET_CODE (src) == COMPARE
5611 || CC0_P (dest))
5612 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5613 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5614 && COMPARISON_P (*cc_use)
5615 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5617 enum rtx_code old_code = GET_CODE (*cc_use);
5618 enum rtx_code new_code;
5619 rtx op0, op1, tmp;
5620 int other_changed = 0;
5621 enum machine_mode compare_mode = GET_MODE (dest);
5623 if (GET_CODE (src) == COMPARE)
5624 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5625 else
5626 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5628 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5629 op0, op1);
5630 if (!tmp)
5631 new_code = old_code;
5632 else if (!CONSTANT_P (tmp))
5634 new_code = GET_CODE (tmp);
5635 op0 = XEXP (tmp, 0);
5636 op1 = XEXP (tmp, 1);
5638 else
5640 rtx pat = PATTERN (other_insn);
5641 undobuf.other_insn = other_insn;
5642 SUBST (*cc_use, tmp);
5644 /* Attempt to simplify CC user. */
5645 if (GET_CODE (pat) == SET)
5647 rtx new = simplify_rtx (SET_SRC (pat));
5648 if (new != NULL_RTX)
5649 SUBST (SET_SRC (pat), new);
5652 /* Convert X into a no-op move. */
5653 SUBST (SET_DEST (x), pc_rtx);
5654 SUBST (SET_SRC (x), pc_rtx);
5655 return x;
5658 /* Simplify our comparison, if possible. */
5659 new_code = simplify_comparison (new_code, &op0, &op1);
5661 #ifdef SELECT_CC_MODE
5662 /* If this machine has CC modes other than CCmode, check to see if we
5663 need to use a different CC mode here. */
5664 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5665 compare_mode = GET_MODE (op0);
5666 else
5667 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5669 #ifndef HAVE_cc0
5670 /* If the mode changed, we have to change SET_DEST, the mode in the
5671 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5672 a hard register, just build new versions with the proper mode. If it
5673 is a pseudo, we lose unless it is only time we set the pseudo, in
5674 which case we can safely change its mode. */
5675 if (compare_mode != GET_MODE (dest))
5677 if (can_change_dest_mode (dest, 0, compare_mode))
5679 unsigned int regno = REGNO (dest);
5680 rtx new_dest;
5682 if (regno < FIRST_PSEUDO_REGISTER)
5683 new_dest = gen_rtx_REG (compare_mode, regno);
5684 else
5686 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
5687 new_dest = regno_reg_rtx[regno];
5690 SUBST (SET_DEST (x), new_dest);
5691 SUBST (XEXP (*cc_use, 0), new_dest);
5692 other_changed = 1;
5694 dest = new_dest;
5697 #endif /* cc0 */
5698 #endif /* SELECT_CC_MODE */
5700 /* If the code changed, we have to build a new comparison in
5701 undobuf.other_insn. */
5702 if (new_code != old_code)
5704 int other_changed_previously = other_changed;
5705 unsigned HOST_WIDE_INT mask;
5707 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5708 dest, const0_rtx));
5709 other_changed = 1;
5711 /* If the only change we made was to change an EQ into an NE or
5712 vice versa, OP0 has only one bit that might be nonzero, and OP1
5713 is zero, check if changing the user of the condition code will
5714 produce a valid insn. If it won't, we can keep the original code
5715 in that insn by surrounding our operation with an XOR. */
5717 if (((old_code == NE && new_code == EQ)
5718 || (old_code == EQ && new_code == NE))
5719 && ! other_changed_previously && op1 == const0_rtx
5720 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5721 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5723 rtx pat = PATTERN (other_insn), note = 0;
5725 if ((recog_for_combine (&pat, other_insn, &note) < 0
5726 && ! check_asm_operands (pat)))
5728 PUT_CODE (*cc_use, old_code);
5729 other_changed = 0;
5731 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
5732 op0, GEN_INT (mask));
5737 if (other_changed)
5738 undobuf.other_insn = other_insn;
5740 #ifdef HAVE_cc0
5741 /* If we are now comparing against zero, change our source if
5742 needed. If we do not use cc0, we always have a COMPARE. */
5743 if (op1 == const0_rtx && dest == cc0_rtx)
5745 SUBST (SET_SRC (x), op0);
5746 src = op0;
5748 else
5749 #endif
5751 /* Otherwise, if we didn't previously have a COMPARE in the
5752 correct mode, we need one. */
5753 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5755 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5756 src = SET_SRC (x);
5758 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
5760 SUBST (SET_SRC (x), op0);
5761 src = SET_SRC (x);
5763 /* Otherwise, update the COMPARE if needed. */
5764 else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
5766 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5767 src = SET_SRC (x);
5770 else
5772 /* Get SET_SRC in a form where we have placed back any
5773 compound expressions. Then do the checks below. */
5774 src = make_compound_operation (src, SET);
5775 SUBST (SET_SRC (x), src);
5778 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5779 and X being a REG or (subreg (reg)), we may be able to convert this to
5780 (set (subreg:m2 x) (op)).
5782 We can always do this if M1 is narrower than M2 because that means that
5783 we only care about the low bits of the result.
5785 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5786 perform a narrower operation than requested since the high-order bits will
5787 be undefined. On machine where it is defined, this transformation is safe
5788 as long as M1 and M2 have the same number of words. */
5790 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5791 && !OBJECT_P (SUBREG_REG (src))
5792 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5793 / UNITS_PER_WORD)
5794 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5795 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5796 #ifndef WORD_REGISTER_OPERATIONS
5797 && (GET_MODE_SIZE (GET_MODE (src))
5798 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5799 #endif
5800 #ifdef CANNOT_CHANGE_MODE_CLASS
5801 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
5802 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5803 GET_MODE (SUBREG_REG (src)),
5804 GET_MODE (src)))
5805 #endif
5806 && (REG_P (dest)
5807 || (GET_CODE (dest) == SUBREG
5808 && REG_P (SUBREG_REG (dest)))))
5810 SUBST (SET_DEST (x),
5811 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5812 dest));
5813 SUBST (SET_SRC (x), SUBREG_REG (src));
5815 src = SET_SRC (x), dest = SET_DEST (x);
5818 #ifdef HAVE_cc0
5819 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5820 in SRC. */
5821 if (dest == cc0_rtx
5822 && GET_CODE (src) == SUBREG
5823 && subreg_lowpart_p (src)
5824 && (GET_MODE_BITSIZE (GET_MODE (src))
5825 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5827 rtx inner = SUBREG_REG (src);
5828 enum machine_mode inner_mode = GET_MODE (inner);
5830 /* Here we make sure that we don't have a sign bit on. */
5831 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5832 && (nonzero_bits (inner, inner_mode)
5833 < ((unsigned HOST_WIDE_INT) 1
5834 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5836 SUBST (SET_SRC (x), inner);
5837 src = SET_SRC (x);
5840 #endif
5842 #ifdef LOAD_EXTEND_OP
5843 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5844 would require a paradoxical subreg. Replace the subreg with a
5845 zero_extend to avoid the reload that would otherwise be required. */
5847 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5848 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
5849 && SUBREG_BYTE (src) == 0
5850 && (GET_MODE_SIZE (GET_MODE (src))
5851 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5852 && MEM_P (SUBREG_REG (src)))
5854 SUBST (SET_SRC (x),
5855 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5856 GET_MODE (src), SUBREG_REG (src)));
5858 src = SET_SRC (x);
5860 #endif
5862 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5863 are comparing an item known to be 0 or -1 against 0, use a logical
5864 operation instead. Check for one of the arms being an IOR of the other
5865 arm with some value. We compute three terms to be IOR'ed together. In
5866 practice, at most two will be nonzero. Then we do the IOR's. */
5868 if (GET_CODE (dest) != PC
5869 && GET_CODE (src) == IF_THEN_ELSE
5870 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5871 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5872 && XEXP (XEXP (src, 0), 1) == const0_rtx
5873 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5874 #ifdef HAVE_conditional_move
5875 && ! can_conditionally_move_p (GET_MODE (src))
5876 #endif
5877 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5878 GET_MODE (XEXP (XEXP (src, 0), 0)))
5879 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5880 && ! side_effects_p (src))
5882 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5883 ? XEXP (src, 1) : XEXP (src, 2));
5884 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5885 ? XEXP (src, 2) : XEXP (src, 1));
5886 rtx term1 = const0_rtx, term2, term3;
5888 if (GET_CODE (true_rtx) == IOR
5889 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5890 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5891 else if (GET_CODE (true_rtx) == IOR
5892 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5893 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5894 else if (GET_CODE (false_rtx) == IOR
5895 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5896 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5897 else if (GET_CODE (false_rtx) == IOR
5898 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5899 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5901 term2 = simplify_gen_binary (AND, GET_MODE (src),
5902 XEXP (XEXP (src, 0), 0), true_rtx);
5903 term3 = simplify_gen_binary (AND, GET_MODE (src),
5904 simplify_gen_unary (NOT, GET_MODE (src),
5905 XEXP (XEXP (src, 0), 0),
5906 GET_MODE (src)),
5907 false_rtx);
5909 SUBST (SET_SRC (x),
5910 simplify_gen_binary (IOR, GET_MODE (src),
5911 simplify_gen_binary (IOR, GET_MODE (src),
5912 term1, term2),
5913 term3));
5915 src = SET_SRC (x);
5918 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5919 whole thing fail. */
5920 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5921 return src;
5922 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5923 return dest;
5924 else
5925 /* Convert this into a field assignment operation, if possible. */
5926 return make_field_assignment (x);
5929 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5930 result. */
5932 static rtx
5933 simplify_logical (rtx x)
5935 enum machine_mode mode = GET_MODE (x);
5936 rtx op0 = XEXP (x, 0);
5937 rtx op1 = XEXP (x, 1);
5939 switch (GET_CODE (x))
5941 case AND:
5942 /* We can call simplify_and_const_int only if we don't lose
5943 any (sign) bits when converting INTVAL (op1) to
5944 "unsigned HOST_WIDE_INT". */
5945 if (GET_CODE (op1) == CONST_INT
5946 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5947 || INTVAL (op1) > 0))
5949 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5950 if (GET_CODE (x) != AND)
5951 return x;
5953 op0 = XEXP (x, 0);
5954 op1 = XEXP (x, 1);
5957 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
5958 apply the distributive law and then the inverse distributive
5959 law to see if things simplify. */
5960 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5962 rtx result = distribute_and_simplify_rtx (x, 0);
5963 if (result)
5964 return result;
5966 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5968 rtx result = distribute_and_simplify_rtx (x, 1);
5969 if (result)
5970 return result;
5972 break;
5974 case IOR:
5975 /* If we have (ior (and A B) C), apply the distributive law and then
5976 the inverse distributive law to see if things simplify. */
5978 if (GET_CODE (op0) == AND)
5980 rtx result = distribute_and_simplify_rtx (x, 0);
5981 if (result)
5982 return result;
5985 if (GET_CODE (op1) == AND)
5987 rtx result = distribute_and_simplify_rtx (x, 1);
5988 if (result)
5989 return result;
5991 break;
5993 default:
5994 gcc_unreachable ();
5997 return x;
6000 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6001 operations" because they can be replaced with two more basic operations.
6002 ZERO_EXTEND is also considered "compound" because it can be replaced with
6003 an AND operation, which is simpler, though only one operation.
6005 The function expand_compound_operation is called with an rtx expression
6006 and will convert it to the appropriate shifts and AND operations,
6007 simplifying at each stage.
6009 The function make_compound_operation is called to convert an expression
6010 consisting of shifts and ANDs into the equivalent compound expression.
6011 It is the inverse of this function, loosely speaking. */
6013 static rtx
6014 expand_compound_operation (rtx x)
6016 unsigned HOST_WIDE_INT pos = 0, len;
6017 int unsignedp = 0;
6018 unsigned int modewidth;
6019 rtx tem;
6021 switch (GET_CODE (x))
6023 case ZERO_EXTEND:
6024 unsignedp = 1;
6025 case SIGN_EXTEND:
6026 /* We can't necessarily use a const_int for a multiword mode;
6027 it depends on implicitly extending the value.
6028 Since we don't know the right way to extend it,
6029 we can't tell whether the implicit way is right.
6031 Even for a mode that is no wider than a const_int,
6032 we can't win, because we need to sign extend one of its bits through
6033 the rest of it, and we don't know which bit. */
6034 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
6035 return x;
6037 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6038 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6039 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6040 reloaded. If not for that, MEM's would very rarely be safe.
6042 Reject MODEs bigger than a word, because we might not be able
6043 to reference a two-register group starting with an arbitrary register
6044 (and currently gen_lowpart might crash for a SUBREG). */
6046 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6047 return x;
6049 /* Reject MODEs that aren't scalar integers because turning vector
6050 or complex modes into shifts causes problems. */
6052 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6053 return x;
6055 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
6056 /* If the inner object has VOIDmode (the only way this can happen
6057 is if it is an ASM_OPERANDS), we can't do anything since we don't
6058 know how much masking to do. */
6059 if (len == 0)
6060 return x;
6062 break;
6064 case ZERO_EXTRACT:
6065 unsignedp = 1;
6067 /* ... fall through ... */
6069 case SIGN_EXTRACT:
6070 /* If the operand is a CLOBBER, just return it. */
6071 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6072 return XEXP (x, 0);
6074 if (GET_CODE (XEXP (x, 1)) != CONST_INT
6075 || GET_CODE (XEXP (x, 2)) != CONST_INT
6076 || GET_MODE (XEXP (x, 0)) == VOIDmode)
6077 return x;
6079 /* Reject MODEs that aren't scalar integers because turning vector
6080 or complex modes into shifts causes problems. */
6082 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6083 return x;
6085 len = INTVAL (XEXP (x, 1));
6086 pos = INTVAL (XEXP (x, 2));
6088 /* This should stay within the object being extracted, fail otherwise. */
6089 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
6090 return x;
6092 if (BITS_BIG_ENDIAN)
6093 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
6095 break;
6097 default:
6098 return x;
6100 /* Convert sign extension to zero extension, if we know that the high
6101 bit is not set, as this is easier to optimize. It will be converted
6102 back to cheaper alternative in make_extraction. */
6103 if (GET_CODE (x) == SIGN_EXTEND
6104 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6105 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6106 & ~(((unsigned HOST_WIDE_INT)
6107 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
6108 >> 1))
6109 == 0)))
6111 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
6112 rtx temp2 = expand_compound_operation (temp);
6114 /* Make sure this is a profitable operation. */
6115 if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
6116 return temp2;
6117 else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
6118 return temp;
6119 else
6120 return x;
6123 /* We can optimize some special cases of ZERO_EXTEND. */
6124 if (GET_CODE (x) == ZERO_EXTEND)
6126 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6127 know that the last value didn't have any inappropriate bits
6128 set. */
6129 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6130 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6131 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6132 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
6133 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6134 return XEXP (XEXP (x, 0), 0);
6136 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6137 if (GET_CODE (XEXP (x, 0)) == SUBREG
6138 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6139 && subreg_lowpart_p (XEXP (x, 0))
6140 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6141 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
6142 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6143 return SUBREG_REG (XEXP (x, 0));
6145 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6146 is a comparison and STORE_FLAG_VALUE permits. This is like
6147 the first case, but it works even when GET_MODE (x) is larger
6148 than HOST_WIDE_INT. */
6149 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6150 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6151 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
6152 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6153 <= HOST_BITS_PER_WIDE_INT)
6154 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6155 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6156 return XEXP (XEXP (x, 0), 0);
6158 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6159 if (GET_CODE (XEXP (x, 0)) == SUBREG
6160 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6161 && subreg_lowpart_p (XEXP (x, 0))
6162 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6163 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6164 <= HOST_BITS_PER_WIDE_INT)
6165 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6166 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6167 return SUBREG_REG (XEXP (x, 0));
6171 /* If we reach here, we want to return a pair of shifts. The inner
6172 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6173 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6174 logical depending on the value of UNSIGNEDP.
6176 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6177 converted into an AND of a shift.
6179 We must check for the case where the left shift would have a negative
6180 count. This can happen in a case like (x >> 31) & 255 on machines
6181 that can't shift by a constant. On those machines, we would first
6182 combine the shift with the AND to produce a variable-position
6183 extraction. Then the constant of 31 would be substituted in to produce
6184 a such a position. */
6186 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
6187 if (modewidth + len >= pos)
6189 enum machine_mode mode = GET_MODE (x);
6190 tem = gen_lowpart (mode, XEXP (x, 0));
6191 if (!tem || GET_CODE (tem) == CLOBBER)
6192 return x;
6193 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6194 tem, modewidth - pos - len);
6195 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6196 mode, tem, modewidth - len);
6198 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6199 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6200 simplify_shift_const (NULL_RTX, LSHIFTRT,
6201 GET_MODE (x),
6202 XEXP (x, 0), pos),
6203 ((HOST_WIDE_INT) 1 << len) - 1);
6204 else
6205 /* Any other cases we can't handle. */
6206 return x;
6208 /* If we couldn't do this for some reason, return the original
6209 expression. */
6210 if (GET_CODE (tem) == CLOBBER)
6211 return x;
6213 return tem;
6216 /* X is a SET which contains an assignment of one object into
6217 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6218 or certain SUBREGS). If possible, convert it into a series of
6219 logical operations.
6221 We half-heartedly support variable positions, but do not at all
6222 support variable lengths. */
6224 static const_rtx
6225 expand_field_assignment (const_rtx x)
6227 rtx inner;
6228 rtx pos; /* Always counts from low bit. */
6229 int len;
6230 rtx mask, cleared, masked;
6231 enum machine_mode compute_mode;
6233 /* Loop until we find something we can't simplify. */
6234 while (1)
6236 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6237 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
6239 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
6240 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
6241 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
6243 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
6244 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
6246 inner = XEXP (SET_DEST (x), 0);
6247 len = INTVAL (XEXP (SET_DEST (x), 1));
6248 pos = XEXP (SET_DEST (x), 2);
6250 /* A constant position should stay within the width of INNER. */
6251 if (GET_CODE (pos) == CONST_INT
6252 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
6253 break;
6255 if (BITS_BIG_ENDIAN)
6257 if (GET_CODE (pos) == CONST_INT)
6258 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
6259 - INTVAL (pos));
6260 else if (GET_CODE (pos) == MINUS
6261 && GET_CODE (XEXP (pos, 1)) == CONST_INT
6262 && (INTVAL (XEXP (pos, 1))
6263 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
6264 /* If position is ADJUST - X, new position is X. */
6265 pos = XEXP (pos, 0);
6266 else
6267 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
6268 GEN_INT (GET_MODE_BITSIZE (
6269 GET_MODE (inner))
6270 - len),
6271 pos);
6275 /* A SUBREG between two modes that occupy the same numbers of words
6276 can be done by moving the SUBREG to the source. */
6277 else if (GET_CODE (SET_DEST (x)) == SUBREG
6278 /* We need SUBREGs to compute nonzero_bits properly. */
6279 && nonzero_sign_valid
6280 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6281 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6282 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6283 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6285 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6286 gen_lowpart
6287 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6288 SET_SRC (x)));
6289 continue;
6291 else
6292 break;
6294 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6295 inner = SUBREG_REG (inner);
6297 compute_mode = GET_MODE (inner);
6299 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6300 if (! SCALAR_INT_MODE_P (compute_mode))
6302 enum machine_mode imode;
6304 /* Don't do anything for vector or complex integral types. */
6305 if (! FLOAT_MODE_P (compute_mode))
6306 break;
6308 /* Try to find an integral mode to pun with. */
6309 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6310 if (imode == BLKmode)
6311 break;
6313 compute_mode = imode;
6314 inner = gen_lowpart (imode, inner);
6317 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6318 if (len >= HOST_BITS_PER_WIDE_INT)
6319 break;
6321 /* Now compute the equivalent expression. Make a copy of INNER
6322 for the SET_DEST in case it is a MEM into which we will substitute;
6323 we don't want shared RTL in that case. */
6324 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6325 cleared = simplify_gen_binary (AND, compute_mode,
6326 simplify_gen_unary (NOT, compute_mode,
6327 simplify_gen_binary (ASHIFT,
6328 compute_mode,
6329 mask, pos),
6330 compute_mode),
6331 inner);
6332 masked = simplify_gen_binary (ASHIFT, compute_mode,
6333 simplify_gen_binary (
6334 AND, compute_mode,
6335 gen_lowpart (compute_mode, SET_SRC (x)),
6336 mask),
6337 pos);
6339 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6340 simplify_gen_binary (IOR, compute_mode,
6341 cleared, masked));
6344 return x;
6347 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6348 it is an RTX that represents a variable starting position; otherwise,
6349 POS is the (constant) starting bit position (counted from the LSB).
6351 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6352 signed reference.
6354 IN_DEST is nonzero if this is a reference in the destination of a
6355 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6356 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6357 be used.
6359 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6360 ZERO_EXTRACT should be built even for bits starting at bit 0.
6362 MODE is the desired mode of the result (if IN_DEST == 0).
6364 The result is an RTX for the extraction or NULL_RTX if the target
6365 can't handle it. */
6367 static rtx
6368 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6369 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6370 int in_dest, int in_compare)
6372 /* This mode describes the size of the storage area
6373 to fetch the overall value from. Within that, we
6374 ignore the POS lowest bits, etc. */
6375 enum machine_mode is_mode = GET_MODE (inner);
6376 enum machine_mode inner_mode;
6377 enum machine_mode wanted_inner_mode;
6378 enum machine_mode wanted_inner_reg_mode = word_mode;
6379 enum machine_mode pos_mode = word_mode;
6380 enum machine_mode extraction_mode = word_mode;
6381 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6382 rtx new = 0;
6383 rtx orig_pos_rtx = pos_rtx;
6384 HOST_WIDE_INT orig_pos;
6386 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6388 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6389 consider just the QI as the memory to extract from.
6390 The subreg adds or removes high bits; its mode is
6391 irrelevant to the meaning of this extraction,
6392 since POS and LEN count from the lsb. */
6393 if (MEM_P (SUBREG_REG (inner)))
6394 is_mode = GET_MODE (SUBREG_REG (inner));
6395 inner = SUBREG_REG (inner);
6397 else if (GET_CODE (inner) == ASHIFT
6398 && GET_CODE (XEXP (inner, 1)) == CONST_INT
6399 && pos_rtx == 0 && pos == 0
6400 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6402 /* We're extracting the least significant bits of an rtx
6403 (ashift X (const_int C)), where LEN > C. Extract the
6404 least significant (LEN - C) bits of X, giving an rtx
6405 whose mode is MODE, then shift it left C times. */
6406 new = make_extraction (mode, XEXP (inner, 0),
6407 0, 0, len - INTVAL (XEXP (inner, 1)),
6408 unsignedp, in_dest, in_compare);
6409 if (new != 0)
6410 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
6413 inner_mode = GET_MODE (inner);
6415 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6416 pos = INTVAL (pos_rtx), pos_rtx = 0;
6418 /* See if this can be done without an extraction. We never can if the
6419 width of the field is not the same as that of some integer mode. For
6420 registers, we can only avoid the extraction if the position is at the
6421 low-order bit and this is either not in the destination or we have the
6422 appropriate STRICT_LOW_PART operation available.
6424 For MEM, we can avoid an extract if the field starts on an appropriate
6425 boundary and we can change the mode of the memory reference. */
6427 if (tmode != BLKmode
6428 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6429 && !MEM_P (inner)
6430 && (inner_mode == tmode
6431 || !REG_P (inner)
6432 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
6433 GET_MODE_BITSIZE (inner_mode))
6434 || reg_truncated_to_mode (tmode, inner))
6435 && (! in_dest
6436 || (REG_P (inner)
6437 && have_insn_for (STRICT_LOW_PART, tmode))))
6438 || (MEM_P (inner) && pos_rtx == 0
6439 && (pos
6440 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6441 : BITS_PER_UNIT)) == 0
6442 /* We can't do this if we are widening INNER_MODE (it
6443 may not be aligned, for one thing). */
6444 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6445 && (inner_mode == tmode
6446 || (! mode_dependent_address_p (XEXP (inner, 0))
6447 && ! MEM_VOLATILE_P (inner))))))
6449 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6450 field. If the original and current mode are the same, we need not
6451 adjust the offset. Otherwise, we do if bytes big endian.
6453 If INNER is not a MEM, get a piece consisting of just the field
6454 of interest (in this case POS % BITS_PER_WORD must be 0). */
6456 if (MEM_P (inner))
6458 HOST_WIDE_INT offset;
6460 /* POS counts from lsb, but make OFFSET count in memory order. */
6461 if (BYTES_BIG_ENDIAN)
6462 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6463 else
6464 offset = pos / BITS_PER_UNIT;
6466 new = adjust_address_nv (inner, tmode, offset);
6468 else if (REG_P (inner))
6470 if (tmode != inner_mode)
6472 /* We can't call gen_lowpart in a DEST since we
6473 always want a SUBREG (see below) and it would sometimes
6474 return a new hard register. */
6475 if (pos || in_dest)
6477 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6479 if (WORDS_BIG_ENDIAN
6480 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6481 final_word = ((GET_MODE_SIZE (inner_mode)
6482 - GET_MODE_SIZE (tmode))
6483 / UNITS_PER_WORD) - final_word;
6485 final_word *= UNITS_PER_WORD;
6486 if (BYTES_BIG_ENDIAN &&
6487 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6488 final_word += (GET_MODE_SIZE (inner_mode)
6489 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6491 /* Avoid creating invalid subregs, for example when
6492 simplifying (x>>32)&255. */
6493 if (!validate_subreg (tmode, inner_mode, inner, final_word))
6494 return NULL_RTX;
6496 new = gen_rtx_SUBREG (tmode, inner, final_word);
6498 else
6499 new = gen_lowpart (tmode, inner);
6501 else
6502 new = inner;
6504 else
6505 new = force_to_mode (inner, tmode,
6506 len >= HOST_BITS_PER_WIDE_INT
6507 ? ~(unsigned HOST_WIDE_INT) 0
6508 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6511 /* If this extraction is going into the destination of a SET,
6512 make a STRICT_LOW_PART unless we made a MEM. */
6514 if (in_dest)
6515 return (MEM_P (new) ? new
6516 : (GET_CODE (new) != SUBREG
6517 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6518 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6520 if (mode == tmode)
6521 return new;
6523 if (GET_CODE (new) == CONST_INT)
6524 return gen_int_mode (INTVAL (new), mode);
6526 /* If we know that no extraneous bits are set, and that the high
6527 bit is not set, convert the extraction to the cheaper of
6528 sign and zero extension, that are equivalent in these cases. */
6529 if (flag_expensive_optimizations
6530 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6531 && ((nonzero_bits (new, tmode)
6532 & ~(((unsigned HOST_WIDE_INT)
6533 GET_MODE_MASK (tmode))
6534 >> 1))
6535 == 0)))
6537 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6538 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6540 /* Prefer ZERO_EXTENSION, since it gives more information to
6541 backends. */
6542 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6543 return temp;
6544 return temp1;
6547 /* Otherwise, sign- or zero-extend unless we already are in the
6548 proper mode. */
6550 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6551 mode, new));
6554 /* Unless this is a COMPARE or we have a funny memory reference,
6555 don't do anything with zero-extending field extracts starting at
6556 the low-order bit since they are simple AND operations. */
6557 if (pos_rtx == 0 && pos == 0 && ! in_dest
6558 && ! in_compare && unsignedp)
6559 return 0;
6561 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
6562 if the position is not a constant and the length is not 1. In all
6563 other cases, we would only be going outside our object in cases when
6564 an original shift would have been undefined. */
6565 if (MEM_P (inner)
6566 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6567 || (pos_rtx != 0 && len != 1)))
6568 return 0;
6570 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6571 and the mode for the result. */
6572 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6574 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6575 pos_mode = mode_for_extraction (EP_insv, 2);
6576 extraction_mode = mode_for_extraction (EP_insv, 3);
6579 if (! in_dest && unsignedp
6580 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6582 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6583 pos_mode = mode_for_extraction (EP_extzv, 3);
6584 extraction_mode = mode_for_extraction (EP_extzv, 0);
6587 if (! in_dest && ! unsignedp
6588 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6590 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6591 pos_mode = mode_for_extraction (EP_extv, 3);
6592 extraction_mode = mode_for_extraction (EP_extv, 0);
6595 /* Never narrow an object, since that might not be safe. */
6597 if (mode != VOIDmode
6598 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6599 extraction_mode = mode;
6601 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6602 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6603 pos_mode = GET_MODE (pos_rtx);
6605 /* If this is not from memory, the desired mode is the preferred mode
6606 for an extraction pattern's first input operand, or word_mode if there
6607 is none. */
6608 if (!MEM_P (inner))
6609 wanted_inner_mode = wanted_inner_reg_mode;
6610 else
6612 /* Be careful not to go beyond the extracted object and maintain the
6613 natural alignment of the memory. */
6614 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
6615 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
6616 > GET_MODE_BITSIZE (wanted_inner_mode))
6618 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
6619 gcc_assert (wanted_inner_mode != VOIDmode);
6622 /* If we have to change the mode of memory and cannot, the desired mode
6623 is EXTRACTION_MODE. */
6624 if (inner_mode != wanted_inner_mode
6625 && (mode_dependent_address_p (XEXP (inner, 0))
6626 || MEM_VOLATILE_P (inner)
6627 || pos_rtx))
6628 wanted_inner_mode = extraction_mode;
6631 orig_pos = pos;
6633 if (BITS_BIG_ENDIAN)
6635 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6636 BITS_BIG_ENDIAN style. If position is constant, compute new
6637 position. Otherwise, build subtraction.
6638 Note that POS is relative to the mode of the original argument.
6639 If it's a MEM we need to recompute POS relative to that.
6640 However, if we're extracting from (or inserting into) a register,
6641 we want to recompute POS relative to wanted_inner_mode. */
6642 int width = (MEM_P (inner)
6643 ? GET_MODE_BITSIZE (is_mode)
6644 : GET_MODE_BITSIZE (wanted_inner_mode));
6646 if (pos_rtx == 0)
6647 pos = width - len - pos;
6648 else
6649 pos_rtx
6650 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6651 /* POS may be less than 0 now, but we check for that below.
6652 Note that it can only be less than 0 if !MEM_P (inner). */
6655 /* If INNER has a wider mode, and this is a constant extraction, try to
6656 make it smaller and adjust the byte to point to the byte containing
6657 the value. */
6658 if (wanted_inner_mode != VOIDmode
6659 && inner_mode != wanted_inner_mode
6660 && ! pos_rtx
6661 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6662 && MEM_P (inner)
6663 && ! mode_dependent_address_p (XEXP (inner, 0))
6664 && ! MEM_VOLATILE_P (inner))
6666 int offset = 0;
6668 /* The computations below will be correct if the machine is big
6669 endian in both bits and bytes or little endian in bits and bytes.
6670 If it is mixed, we must adjust. */
6672 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6673 adjust OFFSET to compensate. */
6674 if (BYTES_BIG_ENDIAN
6675 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6676 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6678 /* We can now move to the desired byte. */
6679 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
6680 * GET_MODE_SIZE (wanted_inner_mode);
6681 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6683 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6684 && is_mode != wanted_inner_mode)
6685 offset = (GET_MODE_SIZE (is_mode)
6686 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6688 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6691 /* If INNER is not memory, we can always get it into the proper mode. If we
6692 are changing its mode, POS must be a constant and smaller than the size
6693 of the new mode. */
6694 else if (!MEM_P (inner))
6696 if (GET_MODE (inner) != wanted_inner_mode
6697 && (pos_rtx != 0
6698 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6699 return 0;
6701 if (orig_pos < 0)
6702 return 0;
6704 inner = force_to_mode (inner, wanted_inner_mode,
6705 pos_rtx
6706 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6707 ? ~(unsigned HOST_WIDE_INT) 0
6708 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6709 << orig_pos),
6713 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6714 have to zero extend. Otherwise, we can just use a SUBREG. */
6715 if (pos_rtx != 0
6716 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6718 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6720 /* If we know that no extraneous bits are set, and that the high
6721 bit is not set, convert extraction to cheaper one - either
6722 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6723 cases. */
6724 if (flag_expensive_optimizations
6725 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6726 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6727 & ~(((unsigned HOST_WIDE_INT)
6728 GET_MODE_MASK (GET_MODE (pos_rtx)))
6729 >> 1))
6730 == 0)))
6732 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6734 /* Prefer ZERO_EXTENSION, since it gives more information to
6735 backends. */
6736 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6737 temp = temp1;
6739 pos_rtx = temp;
6741 else if (pos_rtx != 0
6742 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6743 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6745 /* Make POS_RTX unless we already have it and it is correct. If we don't
6746 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6747 be a CONST_INT. */
6748 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6749 pos_rtx = orig_pos_rtx;
6751 else if (pos_rtx == 0)
6752 pos_rtx = GEN_INT (pos);
6754 /* Make the required operation. See if we can use existing rtx. */
6755 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6756 extraction_mode, inner, GEN_INT (len), pos_rtx);
6757 if (! in_dest)
6758 new = gen_lowpart (mode, new);
6760 return new;
6763 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6764 with any other operations in X. Return X without that shift if so. */
6766 static rtx
6767 extract_left_shift (rtx x, int count)
6769 enum rtx_code code = GET_CODE (x);
6770 enum machine_mode mode = GET_MODE (x);
6771 rtx tem;
6773 switch (code)
6775 case ASHIFT:
6776 /* This is the shift itself. If it is wide enough, we will return
6777 either the value being shifted if the shift count is equal to
6778 COUNT or a shift for the difference. */
6779 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6780 && INTVAL (XEXP (x, 1)) >= count)
6781 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6782 INTVAL (XEXP (x, 1)) - count);
6783 break;
6785 case NEG: case NOT:
6786 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6787 return simplify_gen_unary (code, mode, tem, mode);
6789 break;
6791 case PLUS: case IOR: case XOR: case AND:
6792 /* If we can safely shift this constant and we find the inner shift,
6793 make a new operation. */
6794 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6795 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6796 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6797 return simplify_gen_binary (code, mode, tem,
6798 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6800 break;
6802 default:
6803 break;
6806 return 0;
6809 /* Look at the expression rooted at X. Look for expressions
6810 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6811 Form these expressions.
6813 Return the new rtx, usually just X.
6815 Also, for machines like the VAX that don't have logical shift insns,
6816 try to convert logical to arithmetic shift operations in cases where
6817 they are equivalent. This undoes the canonicalizations to logical
6818 shifts done elsewhere.
6820 We try, as much as possible, to re-use rtl expressions to save memory.
6822 IN_CODE says what kind of expression we are processing. Normally, it is
6823 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6824 being kludges), it is MEM. When processing the arguments of a comparison
6825 or a COMPARE against zero, it is COMPARE. */
6827 static rtx
6828 make_compound_operation (rtx x, enum rtx_code in_code)
6830 enum rtx_code code = GET_CODE (x);
6831 enum machine_mode mode = GET_MODE (x);
6832 int mode_width = GET_MODE_BITSIZE (mode);
6833 rtx rhs, lhs;
6834 enum rtx_code next_code;
6835 int i;
6836 rtx new = 0;
6837 rtx tem;
6838 const char *fmt;
6840 /* Select the code to be used in recursive calls. Once we are inside an
6841 address, we stay there. If we have a comparison, set to COMPARE,
6842 but once inside, go back to our default of SET. */
6844 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6845 : ((code == COMPARE || COMPARISON_P (x))
6846 && XEXP (x, 1) == const0_rtx) ? COMPARE
6847 : in_code == COMPARE ? SET : in_code);
6849 /* Process depending on the code of this operation. If NEW is set
6850 nonzero, it will be returned. */
6852 switch (code)
6854 case ASHIFT:
6855 /* Convert shifts by constants into multiplications if inside
6856 an address. */
6857 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6858 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6859 && INTVAL (XEXP (x, 1)) >= 0)
6861 new = make_compound_operation (XEXP (x, 0), next_code);
6862 new = gen_rtx_MULT (mode, new,
6863 GEN_INT ((HOST_WIDE_INT) 1
6864 << INTVAL (XEXP (x, 1))));
6866 break;
6868 case AND:
6869 /* If the second operand is not a constant, we can't do anything
6870 with it. */
6871 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6872 break;
6874 /* If the constant is a power of two minus one and the first operand
6875 is a logical right shift, make an extraction. */
6876 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6877 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6879 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6880 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6881 0, in_code == COMPARE);
6884 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6885 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6886 && subreg_lowpart_p (XEXP (x, 0))
6887 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6888 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6890 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6891 next_code);
6892 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6893 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6894 0, in_code == COMPARE);
6896 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6897 else if ((GET_CODE (XEXP (x, 0)) == XOR
6898 || GET_CODE (XEXP (x, 0)) == IOR)
6899 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6900 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6901 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6903 /* Apply the distributive law, and then try to make extractions. */
6904 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6905 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6906 XEXP (x, 1)),
6907 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6908 XEXP (x, 1)));
6909 new = make_compound_operation (new, in_code);
6912 /* If we are have (and (rotate X C) M) and C is larger than the number
6913 of bits in M, this is an extraction. */
6915 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6916 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6917 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6918 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6920 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6921 new = make_extraction (mode, new,
6922 (GET_MODE_BITSIZE (mode)
6923 - INTVAL (XEXP (XEXP (x, 0), 1))),
6924 NULL_RTX, i, 1, 0, in_code == COMPARE);
6927 /* On machines without logical shifts, if the operand of the AND is
6928 a logical shift and our mask turns off all the propagated sign
6929 bits, we can replace the logical shift with an arithmetic shift. */
6930 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6931 && !have_insn_for (LSHIFTRT, mode)
6932 && have_insn_for (ASHIFTRT, mode)
6933 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6934 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6935 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6936 && mode_width <= HOST_BITS_PER_WIDE_INT)
6938 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6940 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6941 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6942 SUBST (XEXP (x, 0),
6943 gen_rtx_ASHIFTRT (mode,
6944 make_compound_operation
6945 (XEXP (XEXP (x, 0), 0), next_code),
6946 XEXP (XEXP (x, 0), 1)));
6949 /* If the constant is one less than a power of two, this might be
6950 representable by an extraction even if no shift is present.
6951 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6952 we are in a COMPARE. */
6953 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6954 new = make_extraction (mode,
6955 make_compound_operation (XEXP (x, 0),
6956 next_code),
6957 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6959 /* If we are in a comparison and this is an AND with a power of two,
6960 convert this into the appropriate bit extract. */
6961 else if (in_code == COMPARE
6962 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6963 new = make_extraction (mode,
6964 make_compound_operation (XEXP (x, 0),
6965 next_code),
6966 i, NULL_RTX, 1, 1, 0, 1);
6968 break;
6970 case LSHIFTRT:
6971 /* If the sign bit is known to be zero, replace this with an
6972 arithmetic shift. */
6973 if (have_insn_for (ASHIFTRT, mode)
6974 && ! have_insn_for (LSHIFTRT, mode)
6975 && mode_width <= HOST_BITS_PER_WIDE_INT
6976 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6978 new = gen_rtx_ASHIFTRT (mode,
6979 make_compound_operation (XEXP (x, 0),
6980 next_code),
6981 XEXP (x, 1));
6982 break;
6985 /* ... fall through ... */
6987 case ASHIFTRT:
6988 lhs = XEXP (x, 0);
6989 rhs = XEXP (x, 1);
6991 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6992 this is a SIGN_EXTRACT. */
6993 if (GET_CODE (rhs) == CONST_INT
6994 && GET_CODE (lhs) == ASHIFT
6995 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6996 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6998 new = make_compound_operation (XEXP (lhs, 0), next_code);
6999 new = make_extraction (mode, new,
7000 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
7001 NULL_RTX, mode_width - INTVAL (rhs),
7002 code == LSHIFTRT, 0, in_code == COMPARE);
7003 break;
7006 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7007 If so, try to merge the shifts into a SIGN_EXTEND. We could
7008 also do this for some cases of SIGN_EXTRACT, but it doesn't
7009 seem worth the effort; the case checked for occurs on Alpha. */
7011 if (!OBJECT_P (lhs)
7012 && ! (GET_CODE (lhs) == SUBREG
7013 && (OBJECT_P (SUBREG_REG (lhs))))
7014 && GET_CODE (rhs) == CONST_INT
7015 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
7016 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
7017 new = make_extraction (mode, make_compound_operation (new, next_code),
7018 0, NULL_RTX, mode_width - INTVAL (rhs),
7019 code == LSHIFTRT, 0, in_code == COMPARE);
7021 break;
7023 case SUBREG:
7024 /* Call ourselves recursively on the inner expression. If we are
7025 narrowing the object and it has a different RTL code from
7026 what it originally did, do this SUBREG as a force_to_mode. */
7028 tem = make_compound_operation (SUBREG_REG (x), in_code);
7031 rtx simplified;
7032 simplified = simplify_subreg (GET_MODE (x), tem, GET_MODE (tem),
7033 SUBREG_BYTE (x));
7035 if (simplified)
7036 tem = simplified;
7038 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
7039 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
7040 && subreg_lowpart_p (x))
7042 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
7045 /* If we have something other than a SUBREG, we might have
7046 done an expansion, so rerun ourselves. */
7047 if (GET_CODE (newer) != SUBREG)
7048 newer = make_compound_operation (newer, in_code);
7050 return newer;
7053 if (simplified)
7054 return tem;
7056 break;
7058 default:
7059 break;
7062 if (new)
7064 x = gen_lowpart (mode, new);
7065 code = GET_CODE (x);
7068 /* Now recursively process each operand of this operation. */
7069 fmt = GET_RTX_FORMAT (code);
7070 for (i = 0; i < GET_RTX_LENGTH (code); i++)
7071 if (fmt[i] == 'e')
7073 new = make_compound_operation (XEXP (x, i), next_code);
7074 SUBST (XEXP (x, i), new);
7077 /* If this is a commutative operation, the changes to the operands
7078 may have made it noncanonical. */
7079 if (COMMUTATIVE_ARITH_P (x)
7080 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
7082 tem = XEXP (x, 0);
7083 SUBST (XEXP (x, 0), XEXP (x, 1));
7084 SUBST (XEXP (x, 1), tem);
7087 return x;
7090 /* Given M see if it is a value that would select a field of bits
7091 within an item, but not the entire word. Return -1 if not.
7092 Otherwise, return the starting position of the field, where 0 is the
7093 low-order bit.
7095 *PLEN is set to the length of the field. */
7097 static int
7098 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
7100 /* Get the bit number of the first 1 bit from the right, -1 if none. */
7101 int pos = exact_log2 (m & -m);
7102 int len = 0;
7104 if (pos >= 0)
7105 /* Now shift off the low-order zero bits and see if we have a
7106 power of two minus 1. */
7107 len = exact_log2 ((m >> pos) + 1);
7109 if (len <= 0)
7110 pos = -1;
7112 *plen = len;
7113 return pos;
7116 /* If X refers to a register that equals REG in value, replace these
7117 references with REG. */
7118 static rtx
7119 canon_reg_for_combine (rtx x, rtx reg)
7121 rtx op0, op1, op2;
7122 const char *fmt;
7123 int i;
7124 bool copied;
7126 enum rtx_code code = GET_CODE (x);
7127 switch (GET_RTX_CLASS (code))
7129 case RTX_UNARY:
7130 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7131 if (op0 != XEXP (x, 0))
7132 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
7133 GET_MODE (reg));
7134 break;
7136 case RTX_BIN_ARITH:
7137 case RTX_COMM_ARITH:
7138 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7139 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7140 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7141 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
7142 break;
7144 case RTX_COMPARE:
7145 case RTX_COMM_COMPARE:
7146 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7147 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7148 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7149 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
7150 GET_MODE (op0), op0, op1);
7151 break;
7153 case RTX_TERNARY:
7154 case RTX_BITFIELD_OPS:
7155 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7156 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7157 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
7158 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
7159 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
7160 GET_MODE (op0), op0, op1, op2);
7162 case RTX_OBJ:
7163 if (REG_P (x))
7165 if (rtx_equal_p (get_last_value (reg), x)
7166 || rtx_equal_p (reg, get_last_value (x)))
7167 return reg;
7168 else
7169 break;
7172 /* fall through */
7174 default:
7175 fmt = GET_RTX_FORMAT (code);
7176 copied = false;
7177 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7178 if (fmt[i] == 'e')
7180 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
7181 if (op != XEXP (x, i))
7183 if (!copied)
7185 copied = true;
7186 x = copy_rtx (x);
7188 XEXP (x, i) = op;
7191 else if (fmt[i] == 'E')
7193 int j;
7194 for (j = 0; j < XVECLEN (x, i); j++)
7196 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
7197 if (op != XVECEXP (x, i, j))
7199 if (!copied)
7201 copied = true;
7202 x = copy_rtx (x);
7204 XVECEXP (x, i, j) = op;
7209 break;
7212 return x;
7215 /* Return X converted to MODE. If the value is already truncated to
7216 MODE we can just return a subreg even though in the general case we
7217 would need an explicit truncation. */
7219 static rtx
7220 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
7222 if (GET_MODE_SIZE (GET_MODE (x)) <= GET_MODE_SIZE (mode)
7223 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
7224 GET_MODE_BITSIZE (GET_MODE (x)))
7225 || (REG_P (x) && reg_truncated_to_mode (mode, x)))
7226 return gen_lowpart (mode, x);
7227 else
7228 return simplify_gen_unary (TRUNCATE, mode, x, GET_MODE (x));
7231 /* See if X can be simplified knowing that we will only refer to it in
7232 MODE and will only refer to those bits that are nonzero in MASK.
7233 If other bits are being computed or if masking operations are done
7234 that select a superset of the bits in MASK, they can sometimes be
7235 ignored.
7237 Return a possibly simplified expression, but always convert X to
7238 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
7240 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
7241 are all off in X. This is used when X will be complemented, by either
7242 NOT, NEG, or XOR. */
7244 static rtx
7245 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
7246 int just_select)
7248 enum rtx_code code = GET_CODE (x);
7249 int next_select = just_select || code == XOR || code == NOT || code == NEG;
7250 enum machine_mode op_mode;
7251 unsigned HOST_WIDE_INT fuller_mask, nonzero;
7252 rtx op0, op1, temp;
7254 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
7255 code below will do the wrong thing since the mode of such an
7256 expression is VOIDmode.
7258 Also do nothing if X is a CLOBBER; this can happen if X was
7259 the return value from a call to gen_lowpart. */
7260 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
7261 return x;
7263 /* We want to perform the operation is its present mode unless we know
7264 that the operation is valid in MODE, in which case we do the operation
7265 in MODE. */
7266 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
7267 && have_insn_for (code, mode))
7268 ? mode : GET_MODE (x));
7270 /* It is not valid to do a right-shift in a narrower mode
7271 than the one it came in with. */
7272 if ((code == LSHIFTRT || code == ASHIFTRT)
7273 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
7274 op_mode = GET_MODE (x);
7276 /* Truncate MASK to fit OP_MODE. */
7277 if (op_mode)
7278 mask &= GET_MODE_MASK (op_mode);
7280 /* When we have an arithmetic operation, or a shift whose count we
7281 do not know, we need to assume that all bits up to the highest-order
7282 bit in MASK will be needed. This is how we form such a mask. */
7283 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
7284 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
7285 else
7286 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
7287 - 1);
7289 /* Determine what bits of X are guaranteed to be (non)zero. */
7290 nonzero = nonzero_bits (x, mode);
7292 /* If none of the bits in X are needed, return a zero. */
7293 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
7294 x = const0_rtx;
7296 /* If X is a CONST_INT, return a new one. Do this here since the
7297 test below will fail. */
7298 if (GET_CODE (x) == CONST_INT)
7300 if (SCALAR_INT_MODE_P (mode))
7301 return gen_int_mode (INTVAL (x) & mask, mode);
7302 else
7304 x = GEN_INT (INTVAL (x) & mask);
7305 return gen_lowpart_common (mode, x);
7309 /* If X is narrower than MODE and we want all the bits in X's mode, just
7310 get X in the proper mode. */
7311 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
7312 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
7313 return gen_lowpart (mode, x);
7315 switch (code)
7317 case CLOBBER:
7318 /* If X is a (clobber (const_int)), return it since we know we are
7319 generating something that won't match. */
7320 return x;
7322 case SIGN_EXTEND:
7323 case ZERO_EXTEND:
7324 case ZERO_EXTRACT:
7325 case SIGN_EXTRACT:
7326 x = expand_compound_operation (x);
7327 if (GET_CODE (x) != code)
7328 return force_to_mode (x, mode, mask, next_select);
7329 break;
7331 case SUBREG:
7332 if (subreg_lowpart_p (x)
7333 /* We can ignore the effect of this SUBREG if it narrows the mode or
7334 if the constant masks to zero all the bits the mode doesn't
7335 have. */
7336 && ((GET_MODE_SIZE (GET_MODE (x))
7337 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
7338 || (0 == (mask
7339 & GET_MODE_MASK (GET_MODE (x))
7340 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
7341 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
7342 break;
7344 case AND:
7345 /* If this is an AND with a constant, convert it into an AND
7346 whose constant is the AND of that constant with MASK. If it
7347 remains an AND of MASK, delete it since it is redundant. */
7349 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
7351 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
7352 mask & INTVAL (XEXP (x, 1)));
7354 /* If X is still an AND, see if it is an AND with a mask that
7355 is just some low-order bits. If so, and it is MASK, we don't
7356 need it. */
7358 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
7359 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
7360 == mask))
7361 x = XEXP (x, 0);
7363 /* If it remains an AND, try making another AND with the bits
7364 in the mode mask that aren't in MASK turned on. If the
7365 constant in the AND is wide enough, this might make a
7366 cheaper constant. */
7368 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
7369 && GET_MODE_MASK (GET_MODE (x)) != mask
7370 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
7372 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
7373 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
7374 int width = GET_MODE_BITSIZE (GET_MODE (x));
7375 rtx y;
7377 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
7378 number, sign extend it. */
7379 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
7380 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7381 cval |= (HOST_WIDE_INT) -1 << width;
7383 y = simplify_gen_binary (AND, GET_MODE (x),
7384 XEXP (x, 0), GEN_INT (cval));
7385 if (rtx_cost (y, SET) < rtx_cost (x, SET))
7386 x = y;
7389 break;
7392 goto binop;
7394 case PLUS:
7395 /* In (and (plus FOO C1) M), if M is a mask that just turns off
7396 low-order bits (as in an alignment operation) and FOO is already
7397 aligned to that boundary, mask C1 to that boundary as well.
7398 This may eliminate that PLUS and, later, the AND. */
7401 unsigned int width = GET_MODE_BITSIZE (mode);
7402 unsigned HOST_WIDE_INT smask = mask;
7404 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
7405 number, sign extend it. */
7407 if (width < HOST_BITS_PER_WIDE_INT
7408 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7409 smask |= (HOST_WIDE_INT) -1 << width;
7411 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7412 && exact_log2 (- smask) >= 0
7413 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7414 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7415 return force_to_mode (plus_constant (XEXP (x, 0),
7416 (INTVAL (XEXP (x, 1)) & smask)),
7417 mode, smask, next_select);
7420 /* ... fall through ... */
7422 case MULT:
7423 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7424 most significant bit in MASK since carries from those bits will
7425 affect the bits we are interested in. */
7426 mask = fuller_mask;
7427 goto binop;
7429 case MINUS:
7430 /* If X is (minus C Y) where C's least set bit is larger than any bit
7431 in the mask, then we may replace with (neg Y). */
7432 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7433 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7434 & -INTVAL (XEXP (x, 0))))
7435 > mask))
7437 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7438 GET_MODE (x));
7439 return force_to_mode (x, mode, mask, next_select);
7442 /* Similarly, if C contains every bit in the fuller_mask, then we may
7443 replace with (not Y). */
7444 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7445 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7446 == INTVAL (XEXP (x, 0))))
7448 x = simplify_gen_unary (NOT, GET_MODE (x),
7449 XEXP (x, 1), GET_MODE (x));
7450 return force_to_mode (x, mode, mask, next_select);
7453 mask = fuller_mask;
7454 goto binop;
7456 case IOR:
7457 case XOR:
7458 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7459 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7460 operation which may be a bitfield extraction. Ensure that the
7461 constant we form is not wider than the mode of X. */
7463 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7464 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7465 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7466 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7467 && GET_CODE (XEXP (x, 1)) == CONST_INT
7468 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7469 + floor_log2 (INTVAL (XEXP (x, 1))))
7470 < GET_MODE_BITSIZE (GET_MODE (x)))
7471 && (INTVAL (XEXP (x, 1))
7472 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7474 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7475 << INTVAL (XEXP (XEXP (x, 0), 1)));
7476 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
7477 XEXP (XEXP (x, 0), 0), temp);
7478 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
7479 XEXP (XEXP (x, 0), 1));
7480 return force_to_mode (x, mode, mask, next_select);
7483 binop:
7484 /* For most binary operations, just propagate into the operation and
7485 change the mode if we have an operation of that mode. */
7487 op0 = gen_lowpart_or_truncate (op_mode,
7488 force_to_mode (XEXP (x, 0), mode, mask,
7489 next_select));
7490 op1 = gen_lowpart_or_truncate (op_mode,
7491 force_to_mode (XEXP (x, 1), mode, mask,
7492 next_select));
7494 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7495 x = simplify_gen_binary (code, op_mode, op0, op1);
7496 break;
7498 case ASHIFT:
7499 /* For left shifts, do the same, but just for the first operand.
7500 However, we cannot do anything with shifts where we cannot
7501 guarantee that the counts are smaller than the size of the mode
7502 because such a count will have a different meaning in a
7503 wider mode. */
7505 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7506 && INTVAL (XEXP (x, 1)) >= 0
7507 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7508 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7509 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7510 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7511 break;
7513 /* If the shift count is a constant and we can do arithmetic in
7514 the mode of the shift, refine which bits we need. Otherwise, use the
7515 conservative form of the mask. */
7516 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7517 && INTVAL (XEXP (x, 1)) >= 0
7518 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7519 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7520 mask >>= INTVAL (XEXP (x, 1));
7521 else
7522 mask = fuller_mask;
7524 op0 = gen_lowpart_or_truncate (op_mode,
7525 force_to_mode (XEXP (x, 0), op_mode,
7526 mask, next_select));
7528 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7529 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
7530 break;
7532 case LSHIFTRT:
7533 /* Here we can only do something if the shift count is a constant,
7534 this shift constant is valid for the host, and we can do arithmetic
7535 in OP_MODE. */
7537 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7538 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7539 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7541 rtx inner = XEXP (x, 0);
7542 unsigned HOST_WIDE_INT inner_mask;
7544 /* Select the mask of the bits we need for the shift operand. */
7545 inner_mask = mask << INTVAL (XEXP (x, 1));
7547 /* We can only change the mode of the shift if we can do arithmetic
7548 in the mode of the shift and INNER_MASK is no wider than the
7549 width of X's mode. */
7550 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7551 op_mode = GET_MODE (x);
7553 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
7555 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7556 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7559 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7560 shift and AND produces only copies of the sign bit (C2 is one less
7561 than a power of two), we can do this with just a shift. */
7563 if (GET_CODE (x) == LSHIFTRT
7564 && GET_CODE (XEXP (x, 1)) == CONST_INT
7565 /* The shift puts one of the sign bit copies in the least significant
7566 bit. */
7567 && ((INTVAL (XEXP (x, 1))
7568 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7569 >= GET_MODE_BITSIZE (GET_MODE (x)))
7570 && exact_log2 (mask + 1) >= 0
7571 /* Number of bits left after the shift must be more than the mask
7572 needs. */
7573 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7574 <= GET_MODE_BITSIZE (GET_MODE (x)))
7575 /* Must be more sign bit copies than the mask needs. */
7576 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7577 >= exact_log2 (mask + 1)))
7578 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7579 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7580 - exact_log2 (mask + 1)));
7582 goto shiftrt;
7584 case ASHIFTRT:
7585 /* If we are just looking for the sign bit, we don't need this shift at
7586 all, even if it has a variable count. */
7587 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7588 && (mask == ((unsigned HOST_WIDE_INT) 1
7589 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7590 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7592 /* If this is a shift by a constant, get a mask that contains those bits
7593 that are not copies of the sign bit. We then have two cases: If
7594 MASK only includes those bits, this can be a logical shift, which may
7595 allow simplifications. If MASK is a single-bit field not within
7596 those bits, we are requesting a copy of the sign bit and hence can
7597 shift the sign bit to the appropriate location. */
7599 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7600 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7602 int i;
7604 /* If the considered data is wider than HOST_WIDE_INT, we can't
7605 represent a mask for all its bits in a single scalar.
7606 But we only care about the lower bits, so calculate these. */
7608 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7610 nonzero = ~(HOST_WIDE_INT) 0;
7612 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7613 is the number of bits a full-width mask would have set.
7614 We need only shift if these are fewer than nonzero can
7615 hold. If not, we must keep all bits set in nonzero. */
7617 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7618 < HOST_BITS_PER_WIDE_INT)
7619 nonzero >>= INTVAL (XEXP (x, 1))
7620 + HOST_BITS_PER_WIDE_INT
7621 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7623 else
7625 nonzero = GET_MODE_MASK (GET_MODE (x));
7626 nonzero >>= INTVAL (XEXP (x, 1));
7629 if ((mask & ~nonzero) == 0)
7631 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
7632 XEXP (x, 0), INTVAL (XEXP (x, 1)));
7633 if (GET_CODE (x) != ASHIFTRT)
7634 return force_to_mode (x, mode, mask, next_select);
7637 else if ((i = exact_log2 (mask)) >= 0)
7639 x = simplify_shift_const
7640 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7641 GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7643 if (GET_CODE (x) != ASHIFTRT)
7644 return force_to_mode (x, mode, mask, next_select);
7648 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7649 even if the shift count isn't a constant. */
7650 if (mask == 1)
7651 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7652 XEXP (x, 0), XEXP (x, 1));
7654 shiftrt:
7656 /* If this is a zero- or sign-extension operation that just affects bits
7657 we don't care about, remove it. Be sure the call above returned
7658 something that is still a shift. */
7660 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7661 && GET_CODE (XEXP (x, 1)) == CONST_INT
7662 && INTVAL (XEXP (x, 1)) >= 0
7663 && (INTVAL (XEXP (x, 1))
7664 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7665 && GET_CODE (XEXP (x, 0)) == ASHIFT
7666 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7667 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7668 next_select);
7670 break;
7672 case ROTATE:
7673 case ROTATERT:
7674 /* If the shift count is constant and we can do computations
7675 in the mode of X, compute where the bits we care about are.
7676 Otherwise, we can't do anything. Don't change the mode of
7677 the shift or propagate MODE into the shift, though. */
7678 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7679 && INTVAL (XEXP (x, 1)) >= 0)
7681 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7682 GET_MODE (x), GEN_INT (mask),
7683 XEXP (x, 1));
7684 if (temp && GET_CODE (temp) == CONST_INT)
7685 SUBST (XEXP (x, 0),
7686 force_to_mode (XEXP (x, 0), GET_MODE (x),
7687 INTVAL (temp), next_select));
7689 break;
7691 case NEG:
7692 /* If we just want the low-order bit, the NEG isn't needed since it
7693 won't change the low-order bit. */
7694 if (mask == 1)
7695 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
7697 /* We need any bits less significant than the most significant bit in
7698 MASK since carries from those bits will affect the bits we are
7699 interested in. */
7700 mask = fuller_mask;
7701 goto unop;
7703 case NOT:
7704 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7705 same as the XOR case above. Ensure that the constant we form is not
7706 wider than the mode of X. */
7708 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7709 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7710 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7711 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7712 < GET_MODE_BITSIZE (GET_MODE (x)))
7713 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7715 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7716 GET_MODE (x));
7717 temp = simplify_gen_binary (XOR, GET_MODE (x),
7718 XEXP (XEXP (x, 0), 0), temp);
7719 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7720 temp, XEXP (XEXP (x, 0), 1));
7722 return force_to_mode (x, mode, mask, next_select);
7725 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7726 use the full mask inside the NOT. */
7727 mask = fuller_mask;
7729 unop:
7730 op0 = gen_lowpart_or_truncate (op_mode,
7731 force_to_mode (XEXP (x, 0), mode, mask,
7732 next_select));
7733 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7734 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7735 break;
7737 case NE:
7738 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7739 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7740 which is equal to STORE_FLAG_VALUE. */
7741 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7742 && GET_MODE (XEXP (x, 0)) == mode
7743 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7744 && (nonzero_bits (XEXP (x, 0), mode)
7745 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7746 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7748 break;
7750 case IF_THEN_ELSE:
7751 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7752 written in a narrower mode. We play it safe and do not do so. */
7754 SUBST (XEXP (x, 1),
7755 gen_lowpart_or_truncate (GET_MODE (x),
7756 force_to_mode (XEXP (x, 1), mode,
7757 mask, next_select)));
7758 SUBST (XEXP (x, 2),
7759 gen_lowpart_or_truncate (GET_MODE (x),
7760 force_to_mode (XEXP (x, 2), mode,
7761 mask, next_select)));
7762 break;
7764 default:
7765 break;
7768 /* Ensure we return a value of the proper mode. */
7769 return gen_lowpart_or_truncate (mode, x);
7772 /* Return nonzero if X is an expression that has one of two values depending on
7773 whether some other value is zero or nonzero. In that case, we return the
7774 value that is being tested, *PTRUE is set to the value if the rtx being
7775 returned has a nonzero value, and *PFALSE is set to the other alternative.
7777 If we return zero, we set *PTRUE and *PFALSE to X. */
7779 static rtx
7780 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7782 enum machine_mode mode = GET_MODE (x);
7783 enum rtx_code code = GET_CODE (x);
7784 rtx cond0, cond1, true0, true1, false0, false1;
7785 unsigned HOST_WIDE_INT nz;
7787 /* If we are comparing a value against zero, we are done. */
7788 if ((code == NE || code == EQ)
7789 && XEXP (x, 1) == const0_rtx)
7791 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7792 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7793 return XEXP (x, 0);
7796 /* If this is a unary operation whose operand has one of two values, apply
7797 our opcode to compute those values. */
7798 else if (UNARY_P (x)
7799 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7801 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7802 *pfalse = simplify_gen_unary (code, mode, false0,
7803 GET_MODE (XEXP (x, 0)));
7804 return cond0;
7807 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7808 make can't possibly match and would suppress other optimizations. */
7809 else if (code == COMPARE)
7812 /* If this is a binary operation, see if either side has only one of two
7813 values. If either one does or if both do and they are conditional on
7814 the same value, compute the new true and false values. */
7815 else if (BINARY_P (x))
7817 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7818 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7820 if ((cond0 != 0 || cond1 != 0)
7821 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7823 /* If if_then_else_cond returned zero, then true/false are the
7824 same rtl. We must copy one of them to prevent invalid rtl
7825 sharing. */
7826 if (cond0 == 0)
7827 true0 = copy_rtx (true0);
7828 else if (cond1 == 0)
7829 true1 = copy_rtx (true1);
7831 if (COMPARISON_P (x))
7833 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
7834 true0, true1);
7835 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
7836 false0, false1);
7838 else
7840 *ptrue = simplify_gen_binary (code, mode, true0, true1);
7841 *pfalse = simplify_gen_binary (code, mode, false0, false1);
7844 return cond0 ? cond0 : cond1;
7847 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7848 operands is zero when the other is nonzero, and vice-versa,
7849 and STORE_FLAG_VALUE is 1 or -1. */
7851 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7852 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7853 || code == UMAX)
7854 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7856 rtx op0 = XEXP (XEXP (x, 0), 1);
7857 rtx op1 = XEXP (XEXP (x, 1), 1);
7859 cond0 = XEXP (XEXP (x, 0), 0);
7860 cond1 = XEXP (XEXP (x, 1), 0);
7862 if (COMPARISON_P (cond0)
7863 && COMPARISON_P (cond1)
7864 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7865 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7866 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7867 || ((swap_condition (GET_CODE (cond0))
7868 == reversed_comparison_code (cond1, NULL))
7869 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7870 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7871 && ! side_effects_p (x))
7873 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
7874 *pfalse = simplify_gen_binary (MULT, mode,
7875 (code == MINUS
7876 ? simplify_gen_unary (NEG, mode,
7877 op1, mode)
7878 : op1),
7879 const_true_rtx);
7880 return cond0;
7884 /* Similarly for MULT, AND and UMIN, except that for these the result
7885 is always zero. */
7886 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7887 && (code == MULT || code == AND || code == UMIN)
7888 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7890 cond0 = XEXP (XEXP (x, 0), 0);
7891 cond1 = XEXP (XEXP (x, 1), 0);
7893 if (COMPARISON_P (cond0)
7894 && COMPARISON_P (cond1)
7895 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7896 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7897 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7898 || ((swap_condition (GET_CODE (cond0))
7899 == reversed_comparison_code (cond1, NULL))
7900 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7901 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7902 && ! side_effects_p (x))
7904 *ptrue = *pfalse = const0_rtx;
7905 return cond0;
7910 else if (code == IF_THEN_ELSE)
7912 /* If we have IF_THEN_ELSE already, extract the condition and
7913 canonicalize it if it is NE or EQ. */
7914 cond0 = XEXP (x, 0);
7915 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7916 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7917 return XEXP (cond0, 0);
7918 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7920 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7921 return XEXP (cond0, 0);
7923 else
7924 return cond0;
7927 /* If X is a SUBREG, we can narrow both the true and false values
7928 if the inner expression, if there is a condition. */
7929 else if (code == SUBREG
7930 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7931 &true0, &false0)))
7933 true0 = simplify_gen_subreg (mode, true0,
7934 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7935 false0 = simplify_gen_subreg (mode, false0,
7936 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7937 if (true0 && false0)
7939 *ptrue = true0;
7940 *pfalse = false0;
7941 return cond0;
7945 /* If X is a constant, this isn't special and will cause confusions
7946 if we treat it as such. Likewise if it is equivalent to a constant. */
7947 else if (CONSTANT_P (x)
7948 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7951 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7952 will be least confusing to the rest of the compiler. */
7953 else if (mode == BImode)
7955 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7956 return x;
7959 /* If X is known to be either 0 or -1, those are the true and
7960 false values when testing X. */
7961 else if (x == constm1_rtx || x == const0_rtx
7962 || (mode != VOIDmode
7963 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7965 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7966 return x;
7969 /* Likewise for 0 or a single bit. */
7970 else if (SCALAR_INT_MODE_P (mode)
7971 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7972 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7974 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7975 return x;
7978 /* Otherwise fail; show no condition with true and false values the same. */
7979 *ptrue = *pfalse = x;
7980 return 0;
7983 /* Return the value of expression X given the fact that condition COND
7984 is known to be true when applied to REG as its first operand and VAL
7985 as its second. X is known to not be shared and so can be modified in
7986 place.
7988 We only handle the simplest cases, and specifically those cases that
7989 arise with IF_THEN_ELSE expressions. */
7991 static rtx
7992 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
7994 enum rtx_code code = GET_CODE (x);
7995 rtx temp;
7996 const char *fmt;
7997 int i, j;
7999 if (side_effects_p (x))
8000 return x;
8002 /* If either operand of the condition is a floating point value,
8003 then we have to avoid collapsing an EQ comparison. */
8004 if (cond == EQ
8005 && rtx_equal_p (x, reg)
8006 && ! FLOAT_MODE_P (GET_MODE (x))
8007 && ! FLOAT_MODE_P (GET_MODE (val)))
8008 return val;
8010 if (cond == UNEQ && rtx_equal_p (x, reg))
8011 return val;
8013 /* If X is (abs REG) and we know something about REG's relationship
8014 with zero, we may be able to simplify this. */
8016 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
8017 switch (cond)
8019 case GE: case GT: case EQ:
8020 return XEXP (x, 0);
8021 case LT: case LE:
8022 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
8023 XEXP (x, 0),
8024 GET_MODE (XEXP (x, 0)));
8025 default:
8026 break;
8029 /* The only other cases we handle are MIN, MAX, and comparisons if the
8030 operands are the same as REG and VAL. */
8032 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
8034 if (rtx_equal_p (XEXP (x, 0), val))
8035 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
8037 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
8039 if (COMPARISON_P (x))
8041 if (comparison_dominates_p (cond, code))
8042 return const_true_rtx;
8044 code = reversed_comparison_code (x, NULL);
8045 if (code != UNKNOWN
8046 && comparison_dominates_p (cond, code))
8047 return const0_rtx;
8048 else
8049 return x;
8051 else if (code == SMAX || code == SMIN
8052 || code == UMIN || code == UMAX)
8054 int unsignedp = (code == UMIN || code == UMAX);
8056 /* Do not reverse the condition when it is NE or EQ.
8057 This is because we cannot conclude anything about
8058 the value of 'SMAX (x, y)' when x is not equal to y,
8059 but we can when x equals y. */
8060 if ((code == SMAX || code == UMAX)
8061 && ! (cond == EQ || cond == NE))
8062 cond = reverse_condition (cond);
8064 switch (cond)
8066 case GE: case GT:
8067 return unsignedp ? x : XEXP (x, 1);
8068 case LE: case LT:
8069 return unsignedp ? x : XEXP (x, 0);
8070 case GEU: case GTU:
8071 return unsignedp ? XEXP (x, 1) : x;
8072 case LEU: case LTU:
8073 return unsignedp ? XEXP (x, 0) : x;
8074 default:
8075 break;
8080 else if (code == SUBREG)
8082 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
8083 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
8085 if (SUBREG_REG (x) != r)
8087 /* We must simplify subreg here, before we lose track of the
8088 original inner_mode. */
8089 new = simplify_subreg (GET_MODE (x), r,
8090 inner_mode, SUBREG_BYTE (x));
8091 if (new)
8092 return new;
8093 else
8094 SUBST (SUBREG_REG (x), r);
8097 return x;
8099 /* We don't have to handle SIGN_EXTEND here, because even in the
8100 case of replacing something with a modeless CONST_INT, a
8101 CONST_INT is already (supposed to be) a valid sign extension for
8102 its narrower mode, which implies it's already properly
8103 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
8104 story is different. */
8105 else if (code == ZERO_EXTEND)
8107 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
8108 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
8110 if (XEXP (x, 0) != r)
8112 /* We must simplify the zero_extend here, before we lose
8113 track of the original inner_mode. */
8114 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
8115 r, inner_mode);
8116 if (new)
8117 return new;
8118 else
8119 SUBST (XEXP (x, 0), r);
8122 return x;
8125 fmt = GET_RTX_FORMAT (code);
8126 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8128 if (fmt[i] == 'e')
8129 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
8130 else if (fmt[i] == 'E')
8131 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8132 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
8133 cond, reg, val));
8136 return x;
8139 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
8140 assignment as a field assignment. */
8142 static int
8143 rtx_equal_for_field_assignment_p (rtx x, rtx y)
8145 if (x == y || rtx_equal_p (x, y))
8146 return 1;
8148 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
8149 return 0;
8151 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
8152 Note that all SUBREGs of MEM are paradoxical; otherwise they
8153 would have been rewritten. */
8154 if (MEM_P (x) && GET_CODE (y) == SUBREG
8155 && MEM_P (SUBREG_REG (y))
8156 && rtx_equal_p (SUBREG_REG (y),
8157 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
8158 return 1;
8160 if (MEM_P (y) && GET_CODE (x) == SUBREG
8161 && MEM_P (SUBREG_REG (x))
8162 && rtx_equal_p (SUBREG_REG (x),
8163 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
8164 return 1;
8166 /* We used to see if get_last_value of X and Y were the same but that's
8167 not correct. In one direction, we'll cause the assignment to have
8168 the wrong destination and in the case, we'll import a register into this
8169 insn that might have already have been dead. So fail if none of the
8170 above cases are true. */
8171 return 0;
8174 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
8175 Return that assignment if so.
8177 We only handle the most common cases. */
8179 static rtx
8180 make_field_assignment (rtx x)
8182 rtx dest = SET_DEST (x);
8183 rtx src = SET_SRC (x);
8184 rtx assign;
8185 rtx rhs, lhs;
8186 HOST_WIDE_INT c1;
8187 HOST_WIDE_INT pos;
8188 unsigned HOST_WIDE_INT len;
8189 rtx other;
8190 enum machine_mode mode;
8192 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
8193 a clear of a one-bit field. We will have changed it to
8194 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
8195 for a SUBREG. */
8197 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
8198 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
8199 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
8200 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8202 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8203 1, 1, 1, 0);
8204 if (assign != 0)
8205 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8206 return x;
8209 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
8210 && subreg_lowpart_p (XEXP (src, 0))
8211 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
8212 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
8213 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
8214 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
8215 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
8216 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8218 assign = make_extraction (VOIDmode, dest, 0,
8219 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
8220 1, 1, 1, 0);
8221 if (assign != 0)
8222 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8223 return x;
8226 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
8227 one-bit field. */
8228 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
8229 && XEXP (XEXP (src, 0), 0) == const1_rtx
8230 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8232 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8233 1, 1, 1, 0);
8234 if (assign != 0)
8235 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
8236 return x;
8239 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
8240 SRC is an AND with all bits of that field set, then we can discard
8241 the AND. */
8242 if (GET_CODE (dest) == ZERO_EXTRACT
8243 && GET_CODE (XEXP (dest, 1)) == CONST_INT
8244 && GET_CODE (src) == AND
8245 && GET_CODE (XEXP (src, 1)) == CONST_INT)
8247 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
8248 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
8249 unsigned HOST_WIDE_INT ze_mask;
8251 if (width >= HOST_BITS_PER_WIDE_INT)
8252 ze_mask = -1;
8253 else
8254 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
8256 /* Complete overlap. We can remove the source AND. */
8257 if ((and_mask & ze_mask) == ze_mask)
8258 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
8260 /* Partial overlap. We can reduce the source AND. */
8261 if ((and_mask & ze_mask) != and_mask)
8263 mode = GET_MODE (src);
8264 src = gen_rtx_AND (mode, XEXP (src, 0),
8265 gen_int_mode (and_mask & ze_mask, mode));
8266 return gen_rtx_SET (VOIDmode, dest, src);
8270 /* The other case we handle is assignments into a constant-position
8271 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
8272 a mask that has all one bits except for a group of zero bits and
8273 OTHER is known to have zeros where C1 has ones, this is such an
8274 assignment. Compute the position and length from C1. Shift OTHER
8275 to the appropriate position, force it to the required mode, and
8276 make the extraction. Check for the AND in both operands. */
8278 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
8279 return x;
8281 rhs = expand_compound_operation (XEXP (src, 0));
8282 lhs = expand_compound_operation (XEXP (src, 1));
8284 if (GET_CODE (rhs) == AND
8285 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
8286 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
8287 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
8288 else if (GET_CODE (lhs) == AND
8289 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
8290 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
8291 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
8292 else
8293 return x;
8295 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
8296 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
8297 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
8298 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
8299 return x;
8301 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
8302 if (assign == 0)
8303 return x;
8305 /* The mode to use for the source is the mode of the assignment, or of
8306 what is inside a possible STRICT_LOW_PART. */
8307 mode = (GET_CODE (assign) == STRICT_LOW_PART
8308 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
8310 /* Shift OTHER right POS places and make it the source, restricting it
8311 to the proper length and mode. */
8313 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
8314 GET_MODE (src),
8315 other, pos),
8316 dest);
8317 src = force_to_mode (src, mode,
8318 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
8319 ? ~(unsigned HOST_WIDE_INT) 0
8320 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
8323 /* If SRC is masked by an AND that does not make a difference in
8324 the value being stored, strip it. */
8325 if (GET_CODE (assign) == ZERO_EXTRACT
8326 && GET_CODE (XEXP (assign, 1)) == CONST_INT
8327 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
8328 && GET_CODE (src) == AND
8329 && GET_CODE (XEXP (src, 1)) == CONST_INT
8330 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
8331 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
8332 src = XEXP (src, 0);
8334 return gen_rtx_SET (VOIDmode, assign, src);
8337 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
8338 if so. */
8340 static rtx
8341 apply_distributive_law (rtx x)
8343 enum rtx_code code = GET_CODE (x);
8344 enum rtx_code inner_code;
8345 rtx lhs, rhs, other;
8346 rtx tem;
8348 /* Distributivity is not true for floating point as it can change the
8349 value. So we don't do it unless -funsafe-math-optimizations. */
8350 if (FLOAT_MODE_P (GET_MODE (x))
8351 && ! flag_unsafe_math_optimizations)
8352 return x;
8354 /* The outer operation can only be one of the following: */
8355 if (code != IOR && code != AND && code != XOR
8356 && code != PLUS && code != MINUS)
8357 return x;
8359 lhs = XEXP (x, 0);
8360 rhs = XEXP (x, 1);
8362 /* If either operand is a primitive we can't do anything, so get out
8363 fast. */
8364 if (OBJECT_P (lhs) || OBJECT_P (rhs))
8365 return x;
8367 lhs = expand_compound_operation (lhs);
8368 rhs = expand_compound_operation (rhs);
8369 inner_code = GET_CODE (lhs);
8370 if (inner_code != GET_CODE (rhs))
8371 return x;
8373 /* See if the inner and outer operations distribute. */
8374 switch (inner_code)
8376 case LSHIFTRT:
8377 case ASHIFTRT:
8378 case AND:
8379 case IOR:
8380 /* These all distribute except over PLUS. */
8381 if (code == PLUS || code == MINUS)
8382 return x;
8383 break;
8385 case MULT:
8386 if (code != PLUS && code != MINUS)
8387 return x;
8388 break;
8390 case ASHIFT:
8391 /* This is also a multiply, so it distributes over everything. */
8392 break;
8394 case SUBREG:
8395 /* Non-paradoxical SUBREGs distributes over all operations,
8396 provided the inner modes and byte offsets are the same, this
8397 is an extraction of a low-order part, we don't convert an fp
8398 operation to int or vice versa, this is not a vector mode,
8399 and we would not be converting a single-word operation into a
8400 multi-word operation. The latter test is not required, but
8401 it prevents generating unneeded multi-word operations. Some
8402 of the previous tests are redundant given the latter test,
8403 but are retained because they are required for correctness.
8405 We produce the result slightly differently in this case. */
8407 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
8408 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
8409 || ! subreg_lowpart_p (lhs)
8410 || (GET_MODE_CLASS (GET_MODE (lhs))
8411 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
8412 || (GET_MODE_SIZE (GET_MODE (lhs))
8413 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
8414 || VECTOR_MODE_P (GET_MODE (lhs))
8415 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD
8416 /* Result might need to be truncated. Don't change mode if
8417 explicit truncation is needed. */
8418 || !TRULY_NOOP_TRUNCATION
8419 (GET_MODE_BITSIZE (GET_MODE (x)),
8420 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (lhs)))))
8421 return x;
8423 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
8424 SUBREG_REG (lhs), SUBREG_REG (rhs));
8425 return gen_lowpart (GET_MODE (x), tem);
8427 default:
8428 return x;
8431 /* Set LHS and RHS to the inner operands (A and B in the example
8432 above) and set OTHER to the common operand (C in the example).
8433 There is only one way to do this unless the inner operation is
8434 commutative. */
8435 if (COMMUTATIVE_ARITH_P (lhs)
8436 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
8437 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
8438 else if (COMMUTATIVE_ARITH_P (lhs)
8439 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
8440 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
8441 else if (COMMUTATIVE_ARITH_P (lhs)
8442 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
8443 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
8444 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8445 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8446 else
8447 return x;
8449 /* Form the new inner operation, seeing if it simplifies first. */
8450 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
8452 /* There is one exception to the general way of distributing:
8453 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8454 if (code == XOR && inner_code == IOR)
8456 inner_code = AND;
8457 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8460 /* We may be able to continuing distributing the result, so call
8461 ourselves recursively on the inner operation before forming the
8462 outer operation, which we return. */
8463 return simplify_gen_binary (inner_code, GET_MODE (x),
8464 apply_distributive_law (tem), other);
8467 /* See if X is of the form (* (+ A B) C), and if so convert to
8468 (+ (* A C) (* B C)) and try to simplify.
8470 Most of the time, this results in no change. However, if some of
8471 the operands are the same or inverses of each other, simplifications
8472 will result.
8474 For example, (and (ior A B) (not B)) can occur as the result of
8475 expanding a bit field assignment. When we apply the distributive
8476 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
8477 which then simplifies to (and (A (not B))).
8479 Note that no checks happen on the validity of applying the inverse
8480 distributive law. This is pointless since we can do it in the
8481 few places where this routine is called.
8483 N is the index of the term that is decomposed (the arithmetic operation,
8484 i.e. (+ A B) in the first example above). !N is the index of the term that
8485 is distributed, i.e. of C in the first example above. */
8486 static rtx
8487 distribute_and_simplify_rtx (rtx x, int n)
8489 enum machine_mode mode;
8490 enum rtx_code outer_code, inner_code;
8491 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
8493 decomposed = XEXP (x, n);
8494 if (!ARITHMETIC_P (decomposed))
8495 return NULL_RTX;
8497 mode = GET_MODE (x);
8498 outer_code = GET_CODE (x);
8499 distributed = XEXP (x, !n);
8501 inner_code = GET_CODE (decomposed);
8502 inner_op0 = XEXP (decomposed, 0);
8503 inner_op1 = XEXP (decomposed, 1);
8505 /* Special case (and (xor B C) (not A)), which is equivalent to
8506 (xor (ior A B) (ior A C)) */
8507 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
8509 distributed = XEXP (distributed, 0);
8510 outer_code = IOR;
8513 if (n == 0)
8515 /* Distribute the second term. */
8516 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
8517 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
8519 else
8521 /* Distribute the first term. */
8522 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
8523 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
8526 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
8527 new_op0, new_op1));
8528 if (GET_CODE (tmp) != outer_code
8529 && rtx_cost (tmp, SET) < rtx_cost (x, SET))
8530 return tmp;
8532 return NULL_RTX;
8535 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
8536 in MODE. Return an equivalent form, if different from (and VAROP
8537 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
8539 static rtx
8540 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
8541 unsigned HOST_WIDE_INT constop)
8543 unsigned HOST_WIDE_INT nonzero;
8544 unsigned HOST_WIDE_INT orig_constop;
8545 rtx orig_varop;
8546 int i;
8548 orig_varop = varop;
8549 orig_constop = constop;
8550 if (GET_CODE (varop) == CLOBBER)
8551 return NULL_RTX;
8553 /* Simplify VAROP knowing that we will be only looking at some of the
8554 bits in it.
8556 Note by passing in CONSTOP, we guarantee that the bits not set in
8557 CONSTOP are not significant and will never be examined. We must
8558 ensure that is the case by explicitly masking out those bits
8559 before returning. */
8560 varop = force_to_mode (varop, mode, constop, 0);
8562 /* If VAROP is a CLOBBER, we will fail so return it. */
8563 if (GET_CODE (varop) == CLOBBER)
8564 return varop;
8566 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8567 to VAROP and return the new constant. */
8568 if (GET_CODE (varop) == CONST_INT)
8569 return gen_int_mode (INTVAL (varop) & constop, mode);
8571 /* See what bits may be nonzero in VAROP. Unlike the general case of
8572 a call to nonzero_bits, here we don't care about bits outside
8573 MODE. */
8575 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8577 /* Turn off all bits in the constant that are known to already be zero.
8578 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8579 which is tested below. */
8581 constop &= nonzero;
8583 /* If we don't have any bits left, return zero. */
8584 if (constop == 0)
8585 return const0_rtx;
8587 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8588 a power of two, we can replace this with an ASHIFT. */
8589 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8590 && (i = exact_log2 (constop)) >= 0)
8591 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8593 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8594 or XOR, then try to apply the distributive law. This may eliminate
8595 operations if either branch can be simplified because of the AND.
8596 It may also make some cases more complex, but those cases probably
8597 won't match a pattern either with or without this. */
8599 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8600 return
8601 gen_lowpart
8602 (mode,
8603 apply_distributive_law
8604 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
8605 simplify_and_const_int (NULL_RTX,
8606 GET_MODE (varop),
8607 XEXP (varop, 0),
8608 constop),
8609 simplify_and_const_int (NULL_RTX,
8610 GET_MODE (varop),
8611 XEXP (varop, 1),
8612 constop))));
8614 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
8615 the AND and see if one of the operands simplifies to zero. If so, we
8616 may eliminate it. */
8618 if (GET_CODE (varop) == PLUS
8619 && exact_log2 (constop + 1) >= 0)
8621 rtx o0, o1;
8623 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8624 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8625 if (o0 == const0_rtx)
8626 return o1;
8627 if (o1 == const0_rtx)
8628 return o0;
8631 /* Make a SUBREG if necessary. If we can't make it, fail. */
8632 varop = gen_lowpart (mode, varop);
8633 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
8634 return NULL_RTX;
8636 /* If we are only masking insignificant bits, return VAROP. */
8637 if (constop == nonzero)
8638 return varop;
8640 if (varop == orig_varop && constop == orig_constop)
8641 return NULL_RTX;
8643 /* Otherwise, return an AND. */
8644 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
8648 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8649 in MODE.
8651 Return an equivalent form, if different from X. Otherwise, return X. If
8652 X is zero, we are to always construct the equivalent form. */
8654 static rtx
8655 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8656 unsigned HOST_WIDE_INT constop)
8658 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
8659 if (tem)
8660 return tem;
8662 if (!x)
8663 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
8664 gen_int_mode (constop, mode));
8665 if (GET_MODE (x) != mode)
8666 x = gen_lowpart (mode, x);
8667 return x;
8670 /* Given a REG, X, compute which bits in X can be nonzero.
8671 We don't care about bits outside of those defined in MODE.
8673 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8674 a shift, AND, or zero_extract, we can do better. */
8676 static rtx
8677 reg_nonzero_bits_for_combine (const_rtx x, enum machine_mode mode,
8678 const_rtx known_x ATTRIBUTE_UNUSED,
8679 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8680 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8681 unsigned HOST_WIDE_INT *nonzero)
8683 rtx tem;
8684 reg_stat_type *rsp;
8686 /* If X is a register whose nonzero bits value is current, use it.
8687 Otherwise, if X is a register whose value we can find, use that
8688 value. Otherwise, use the previously-computed global nonzero bits
8689 for this register. */
8691 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
8692 if (rsp->last_set_value != 0
8693 && (rsp->last_set_mode == mode
8694 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
8695 && GET_MODE_CLASS (mode) == MODE_INT))
8696 && ((rsp->last_set_label >= label_tick_ebb_start
8697 && rsp->last_set_label < label_tick)
8698 || (rsp->last_set_label == label_tick
8699 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
8700 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8701 && REG_N_SETS (REGNO (x)) == 1
8702 && !REGNO_REG_SET_P
8703 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
8705 *nonzero &= rsp->last_set_nonzero_bits;
8706 return NULL;
8709 tem = get_last_value (x);
8711 if (tem)
8713 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8714 /* If X is narrower than MODE and TEM is a non-negative
8715 constant that would appear negative in the mode of X,
8716 sign-extend it for use in reg_nonzero_bits because some
8717 machines (maybe most) will actually do the sign-extension
8718 and this is the conservative approach.
8720 ??? For 2.5, try to tighten up the MD files in this regard
8721 instead of this kludge. */
8723 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8724 && GET_CODE (tem) == CONST_INT
8725 && INTVAL (tem) > 0
8726 && 0 != (INTVAL (tem)
8727 & ((HOST_WIDE_INT) 1
8728 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8729 tem = GEN_INT (INTVAL (tem)
8730 | ((HOST_WIDE_INT) (-1)
8731 << GET_MODE_BITSIZE (GET_MODE (x))));
8732 #endif
8733 return tem;
8735 else if (nonzero_sign_valid && rsp->nonzero_bits)
8737 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
8739 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8740 /* We don't know anything about the upper bits. */
8741 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8742 *nonzero &= mask;
8745 return NULL;
8748 /* Return the number of bits at the high-order end of X that are known to
8749 be equal to the sign bit. X will be used in mode MODE; if MODE is
8750 VOIDmode, X will be used in its own mode. The returned value will always
8751 be between 1 and the number of bits in MODE. */
8753 static rtx
8754 reg_num_sign_bit_copies_for_combine (const_rtx x, enum machine_mode mode,
8755 const_rtx known_x ATTRIBUTE_UNUSED,
8756 enum machine_mode known_mode
8757 ATTRIBUTE_UNUSED,
8758 unsigned int known_ret ATTRIBUTE_UNUSED,
8759 unsigned int *result)
8761 rtx tem;
8762 reg_stat_type *rsp;
8764 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
8765 if (rsp->last_set_value != 0
8766 && rsp->last_set_mode == mode
8767 && ((rsp->last_set_label >= label_tick_ebb_start
8768 && rsp->last_set_label < label_tick)
8769 || (rsp->last_set_label == label_tick
8770 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
8771 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8772 && REG_N_SETS (REGNO (x)) == 1
8773 && !REGNO_REG_SET_P
8774 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
8776 *result = rsp->last_set_sign_bit_copies;
8777 return NULL;
8780 tem = get_last_value (x);
8781 if (tem != 0)
8782 return tem;
8784 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
8785 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8786 *result = rsp->sign_bit_copies;
8788 return NULL;
8791 /* Return the number of "extended" bits there are in X, when interpreted
8792 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8793 unsigned quantities, this is the number of high-order zero bits.
8794 For signed quantities, this is the number of copies of the sign bit
8795 minus 1. In both case, this function returns the number of "spare"
8796 bits. For example, if two quantities for which this function returns
8797 at least 1 are added, the addition is known not to overflow.
8799 This function will always return 0 unless called during combine, which
8800 implies that it must be called from a define_split. */
8802 unsigned int
8803 extended_count (const_rtx x, enum machine_mode mode, int unsignedp)
8805 if (nonzero_sign_valid == 0)
8806 return 0;
8808 return (unsignedp
8809 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8810 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8811 - floor_log2 (nonzero_bits (x, mode)))
8812 : 0)
8813 : num_sign_bit_copies (x, mode) - 1);
8816 /* This function is called from `simplify_shift_const' to merge two
8817 outer operations. Specifically, we have already found that we need
8818 to perform operation *POP0 with constant *PCONST0 at the outermost
8819 position. We would now like to also perform OP1 with constant CONST1
8820 (with *POP0 being done last).
8822 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8823 the resulting operation. *PCOMP_P is set to 1 if we would need to
8824 complement the innermost operand, otherwise it is unchanged.
8826 MODE is the mode in which the operation will be done. No bits outside
8827 the width of this mode matter. It is assumed that the width of this mode
8828 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8830 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8831 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8832 result is simply *PCONST0.
8834 If the resulting operation cannot be expressed as one operation, we
8835 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8837 static int
8838 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8840 enum rtx_code op0 = *pop0;
8841 HOST_WIDE_INT const0 = *pconst0;
8843 const0 &= GET_MODE_MASK (mode);
8844 const1 &= GET_MODE_MASK (mode);
8846 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8847 if (op0 == AND)
8848 const1 &= const0;
8850 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8851 if OP0 is SET. */
8853 if (op1 == UNKNOWN || op0 == SET)
8854 return 1;
8856 else if (op0 == UNKNOWN)
8857 op0 = op1, const0 = const1;
8859 else if (op0 == op1)
8861 switch (op0)
8863 case AND:
8864 const0 &= const1;
8865 break;
8866 case IOR:
8867 const0 |= const1;
8868 break;
8869 case XOR:
8870 const0 ^= const1;
8871 break;
8872 case PLUS:
8873 const0 += const1;
8874 break;
8875 case NEG:
8876 op0 = UNKNOWN;
8877 break;
8878 default:
8879 break;
8883 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8884 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8885 return 0;
8887 /* If the two constants aren't the same, we can't do anything. The
8888 remaining six cases can all be done. */
8889 else if (const0 != const1)
8890 return 0;
8892 else
8893 switch (op0)
8895 case IOR:
8896 if (op1 == AND)
8897 /* (a & b) | b == b */
8898 op0 = SET;
8899 else /* op1 == XOR */
8900 /* (a ^ b) | b == a | b */
8902 break;
8904 case XOR:
8905 if (op1 == AND)
8906 /* (a & b) ^ b == (~a) & b */
8907 op0 = AND, *pcomp_p = 1;
8908 else /* op1 == IOR */
8909 /* (a | b) ^ b == a & ~b */
8910 op0 = AND, const0 = ~const0;
8911 break;
8913 case AND:
8914 if (op1 == IOR)
8915 /* (a | b) & b == b */
8916 op0 = SET;
8917 else /* op1 == XOR */
8918 /* (a ^ b) & b) == (~a) & b */
8919 *pcomp_p = 1;
8920 break;
8921 default:
8922 break;
8925 /* Check for NO-OP cases. */
8926 const0 &= GET_MODE_MASK (mode);
8927 if (const0 == 0
8928 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8929 op0 = UNKNOWN;
8930 else if (const0 == 0 && op0 == AND)
8931 op0 = SET;
8932 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8933 && op0 == AND)
8934 op0 = UNKNOWN;
8936 /* ??? Slightly redundant with the above mask, but not entirely.
8937 Moving this above means we'd have to sign-extend the mode mask
8938 for the final test. */
8939 const0 = trunc_int_for_mode (const0, mode);
8941 *pop0 = op0;
8942 *pconst0 = const0;
8944 return 1;
8947 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8948 The result of the shift is RESULT_MODE. Return NULL_RTX if we cannot
8949 simplify it. Otherwise, return a simplified value.
8951 The shift is normally computed in the widest mode we find in VAROP, as
8952 long as it isn't a different number of words than RESULT_MODE. Exceptions
8953 are ASHIFTRT and ROTATE, which are always done in their original mode. */
8955 static rtx
8956 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
8957 rtx varop, int orig_count)
8959 enum rtx_code orig_code = code;
8960 rtx orig_varop = varop;
8961 int count;
8962 enum machine_mode mode = result_mode;
8963 enum machine_mode shift_mode, tmode;
8964 unsigned int mode_words
8965 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8966 /* We form (outer_op (code varop count) (outer_const)). */
8967 enum rtx_code outer_op = UNKNOWN;
8968 HOST_WIDE_INT outer_const = 0;
8969 int complement_p = 0;
8970 rtx new, x;
8972 /* Make sure and truncate the "natural" shift on the way in. We don't
8973 want to do this inside the loop as it makes it more difficult to
8974 combine shifts. */
8975 if (SHIFT_COUNT_TRUNCATED)
8976 orig_count &= GET_MODE_BITSIZE (mode) - 1;
8978 /* If we were given an invalid count, don't do anything except exactly
8979 what was requested. */
8981 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8982 return NULL_RTX;
8984 count = orig_count;
8986 /* Unless one of the branches of the `if' in this loop does a `continue',
8987 we will `break' the loop after the `if'. */
8989 while (count != 0)
8991 /* If we have an operand of (clobber (const_int 0)), fail. */
8992 if (GET_CODE (varop) == CLOBBER)
8993 return NULL_RTX;
8995 /* If we discovered we had to complement VAROP, leave. Making a NOT
8996 here would cause an infinite loop. */
8997 if (complement_p)
8998 break;
9000 /* Convert ROTATERT to ROTATE. */
9001 if (code == ROTATERT)
9003 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
9004 code = ROTATE;
9005 if (VECTOR_MODE_P (result_mode))
9006 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9007 else
9008 count = bitsize - count;
9011 /* We need to determine what mode we will do the shift in. If the
9012 shift is a right shift or a ROTATE, we must always do it in the mode
9013 it was originally done in. Otherwise, we can do it in MODE, the
9014 widest mode encountered. */
9015 shift_mode
9016 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9017 ? result_mode : mode);
9019 /* Handle cases where the count is greater than the size of the mode
9020 minus 1. For ASHIFT, use the size minus one as the count (this can
9021 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9022 take the count modulo the size. For other shifts, the result is
9023 zero.
9025 Since these shifts are being produced by the compiler by combining
9026 multiple operations, each of which are defined, we know what the
9027 result is supposed to be. */
9029 if (count > (GET_MODE_BITSIZE (shift_mode) - 1))
9031 if (code == ASHIFTRT)
9032 count = GET_MODE_BITSIZE (shift_mode) - 1;
9033 else if (code == ROTATE || code == ROTATERT)
9034 count %= GET_MODE_BITSIZE (shift_mode);
9035 else
9037 /* We can't simply return zero because there may be an
9038 outer op. */
9039 varop = const0_rtx;
9040 count = 0;
9041 break;
9045 /* An arithmetic right shift of a quantity known to be -1 or 0
9046 is a no-op. */
9047 if (code == ASHIFTRT
9048 && (num_sign_bit_copies (varop, shift_mode)
9049 == GET_MODE_BITSIZE (shift_mode)))
9051 count = 0;
9052 break;
9055 /* If we are doing an arithmetic right shift and discarding all but
9056 the sign bit copies, this is equivalent to doing a shift by the
9057 bitsize minus one. Convert it into that shift because it will often
9058 allow other simplifications. */
9060 if (code == ASHIFTRT
9061 && (count + num_sign_bit_copies (varop, shift_mode)
9062 >= GET_MODE_BITSIZE (shift_mode)))
9063 count = GET_MODE_BITSIZE (shift_mode) - 1;
9065 /* We simplify the tests below and elsewhere by converting
9066 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9067 `make_compound_operation' will convert it to an ASHIFTRT for
9068 those machines (such as VAX) that don't have an LSHIFTRT. */
9069 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9070 && code == ASHIFTRT
9071 && ((nonzero_bits (varop, shift_mode)
9072 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
9073 == 0))
9074 code = LSHIFTRT;
9076 if (((code == LSHIFTRT
9077 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9078 && !(nonzero_bits (varop, shift_mode) >> count))
9079 || (code == ASHIFT
9080 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9081 && !((nonzero_bits (varop, shift_mode) << count)
9082 & GET_MODE_MASK (shift_mode))))
9083 && !side_effects_p (varop))
9084 varop = const0_rtx;
9086 switch (GET_CODE (varop))
9088 case SIGN_EXTEND:
9089 case ZERO_EXTEND:
9090 case SIGN_EXTRACT:
9091 case ZERO_EXTRACT:
9092 new = expand_compound_operation (varop);
9093 if (new != varop)
9095 varop = new;
9096 continue;
9098 break;
9100 case MEM:
9101 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9102 minus the width of a smaller mode, we can do this with a
9103 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9104 if ((code == ASHIFTRT || code == LSHIFTRT)
9105 && ! mode_dependent_address_p (XEXP (varop, 0))
9106 && ! MEM_VOLATILE_P (varop)
9107 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9108 MODE_INT, 1)) != BLKmode)
9110 new = adjust_address_nv (varop, tmode,
9111 BYTES_BIG_ENDIAN ? 0
9112 : count / BITS_PER_UNIT);
9114 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9115 : ZERO_EXTEND, mode, new);
9116 count = 0;
9117 continue;
9119 break;
9121 case SUBREG:
9122 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9123 the same number of words as what we've seen so far. Then store
9124 the widest mode in MODE. */
9125 if (subreg_lowpart_p (varop)
9126 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9127 > GET_MODE_SIZE (GET_MODE (varop)))
9128 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9129 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9130 == mode_words)
9132 varop = SUBREG_REG (varop);
9133 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9134 mode = GET_MODE (varop);
9135 continue;
9137 break;
9139 case MULT:
9140 /* Some machines use MULT instead of ASHIFT because MULT
9141 is cheaper. But it is still better on those machines to
9142 merge two shifts into one. */
9143 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9144 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9146 varop
9147 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
9148 XEXP (varop, 0),
9149 GEN_INT (exact_log2 (
9150 INTVAL (XEXP (varop, 1)))));
9151 continue;
9153 break;
9155 case UDIV:
9156 /* Similar, for when divides are cheaper. */
9157 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9158 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9160 varop
9161 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
9162 XEXP (varop, 0),
9163 GEN_INT (exact_log2 (
9164 INTVAL (XEXP (varop, 1)))));
9165 continue;
9167 break;
9169 case ASHIFTRT:
9170 /* If we are extracting just the sign bit of an arithmetic
9171 right shift, that shift is not needed. However, the sign
9172 bit of a wider mode may be different from what would be
9173 interpreted as the sign bit in a narrower mode, so, if
9174 the result is narrower, don't discard the shift. */
9175 if (code == LSHIFTRT
9176 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9177 && (GET_MODE_BITSIZE (result_mode)
9178 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9180 varop = XEXP (varop, 0);
9181 continue;
9184 /* ... fall through ... */
9186 case LSHIFTRT:
9187 case ASHIFT:
9188 case ROTATE:
9189 /* Here we have two nested shifts. The result is usually the
9190 AND of a new shift with a mask. We compute the result below. */
9191 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9192 && INTVAL (XEXP (varop, 1)) >= 0
9193 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9194 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9195 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9196 && !VECTOR_MODE_P (result_mode))
9198 enum rtx_code first_code = GET_CODE (varop);
9199 unsigned int first_count = INTVAL (XEXP (varop, 1));
9200 unsigned HOST_WIDE_INT mask;
9201 rtx mask_rtx;
9203 /* We have one common special case. We can't do any merging if
9204 the inner code is an ASHIFTRT of a smaller mode. However, if
9205 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9206 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9207 we can convert it to
9208 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9209 This simplifies certain SIGN_EXTEND operations. */
9210 if (code == ASHIFT && first_code == ASHIFTRT
9211 && count == (GET_MODE_BITSIZE (result_mode)
9212 - GET_MODE_BITSIZE (GET_MODE (varop))))
9214 /* C3 has the low-order C1 bits zero. */
9216 mask = (GET_MODE_MASK (mode)
9217 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9219 varop = simplify_and_const_int (NULL_RTX, result_mode,
9220 XEXP (varop, 0), mask);
9221 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9222 varop, count);
9223 count = first_count;
9224 code = ASHIFTRT;
9225 continue;
9228 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9229 than C1 high-order bits equal to the sign bit, we can convert
9230 this to either an ASHIFT or an ASHIFTRT depending on the
9231 two counts.
9233 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9235 if (code == ASHIFTRT && first_code == ASHIFT
9236 && GET_MODE (varop) == shift_mode
9237 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9238 > first_count))
9240 varop = XEXP (varop, 0);
9241 count -= first_count;
9242 if (count < 0)
9244 count = -count;
9245 code = ASHIFT;
9248 continue;
9251 /* There are some cases we can't do. If CODE is ASHIFTRT,
9252 we can only do this if FIRST_CODE is also ASHIFTRT.
9254 We can't do the case when CODE is ROTATE and FIRST_CODE is
9255 ASHIFTRT.
9257 If the mode of this shift is not the mode of the outer shift,
9258 we can't do this if either shift is a right shift or ROTATE.
9260 Finally, we can't do any of these if the mode is too wide
9261 unless the codes are the same.
9263 Handle the case where the shift codes are the same
9264 first. */
9266 if (code == first_code)
9268 if (GET_MODE (varop) != result_mode
9269 && (code == ASHIFTRT || code == LSHIFTRT
9270 || code == ROTATE))
9271 break;
9273 count += first_count;
9274 varop = XEXP (varop, 0);
9275 continue;
9278 if (code == ASHIFTRT
9279 || (code == ROTATE && first_code == ASHIFTRT)
9280 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9281 || (GET_MODE (varop) != result_mode
9282 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9283 || first_code == ROTATE
9284 || code == ROTATE)))
9285 break;
9287 /* To compute the mask to apply after the shift, shift the
9288 nonzero bits of the inner shift the same way the
9289 outer shift will. */
9291 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9293 mask_rtx
9294 = simplify_const_binary_operation (code, result_mode, mask_rtx,
9295 GEN_INT (count));
9297 /* Give up if we can't compute an outer operation to use. */
9298 if (mask_rtx == 0
9299 || GET_CODE (mask_rtx) != CONST_INT
9300 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9301 INTVAL (mask_rtx),
9302 result_mode, &complement_p))
9303 break;
9305 /* If the shifts are in the same direction, we add the
9306 counts. Otherwise, we subtract them. */
9307 if ((code == ASHIFTRT || code == LSHIFTRT)
9308 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9309 count += first_count;
9310 else
9311 count -= first_count;
9313 /* If COUNT is positive, the new shift is usually CODE,
9314 except for the two exceptions below, in which case it is
9315 FIRST_CODE. If the count is negative, FIRST_CODE should
9316 always be used */
9317 if (count > 0
9318 && ((first_code == ROTATE && code == ASHIFT)
9319 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9320 code = first_code;
9321 else if (count < 0)
9322 code = first_code, count = -count;
9324 varop = XEXP (varop, 0);
9325 continue;
9328 /* If we have (A << B << C) for any shift, we can convert this to
9329 (A << C << B). This wins if A is a constant. Only try this if
9330 B is not a constant. */
9332 else if (GET_CODE (varop) == code
9333 && GET_CODE (XEXP (varop, 0)) == CONST_INT
9334 && GET_CODE (XEXP (varop, 1)) != CONST_INT)
9336 rtx new = simplify_const_binary_operation (code, mode,
9337 XEXP (varop, 0),
9338 GEN_INT (count));
9339 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
9340 count = 0;
9341 continue;
9343 break;
9345 case NOT:
9346 if (VECTOR_MODE_P (mode))
9347 break;
9349 /* Make this fit the case below. */
9350 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9351 GEN_INT (GET_MODE_MASK (mode)));
9352 continue;
9354 case IOR:
9355 case AND:
9356 case XOR:
9357 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9358 with C the size of VAROP - 1 and the shift is logical if
9359 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9360 we have an (le X 0) operation. If we have an arithmetic shift
9361 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9362 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9364 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9365 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9366 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9367 && (code == LSHIFTRT || code == ASHIFTRT)
9368 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9369 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9371 count = 0;
9372 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9373 const0_rtx);
9375 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9376 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9378 continue;
9381 /* If we have (shift (logical)), move the logical to the outside
9382 to allow it to possibly combine with another logical and the
9383 shift to combine with another shift. This also canonicalizes to
9384 what a ZERO_EXTRACT looks like. Also, some machines have
9385 (and (shift)) insns. */
9387 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9388 /* We can't do this if we have (ashiftrt (xor)) and the
9389 constant has its sign bit set in shift_mode. */
9390 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9391 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9392 shift_mode))
9393 && (new = simplify_const_binary_operation (code, result_mode,
9394 XEXP (varop, 1),
9395 GEN_INT (count))) != 0
9396 && GET_CODE (new) == CONST_INT
9397 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9398 INTVAL (new), result_mode, &complement_p))
9400 varop = XEXP (varop, 0);
9401 continue;
9404 /* If we can't do that, try to simplify the shift in each arm of the
9405 logical expression, make a new logical expression, and apply
9406 the inverse distributive law. This also can't be done
9407 for some (ashiftrt (xor)). */
9408 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9409 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9410 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9411 shift_mode)))
9413 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9414 XEXP (varop, 0), count);
9415 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9416 XEXP (varop, 1), count);
9418 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
9419 lhs, rhs);
9420 varop = apply_distributive_law (varop);
9422 count = 0;
9423 continue;
9425 break;
9427 case EQ:
9428 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9429 says that the sign bit can be tested, FOO has mode MODE, C is
9430 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9431 that may be nonzero. */
9432 if (code == LSHIFTRT
9433 && XEXP (varop, 1) == const0_rtx
9434 && GET_MODE (XEXP (varop, 0)) == result_mode
9435 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9436 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9437 && STORE_FLAG_VALUE == -1
9438 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9439 && merge_outer_ops (&outer_op, &outer_const, XOR,
9440 (HOST_WIDE_INT) 1, result_mode,
9441 &complement_p))
9443 varop = XEXP (varop, 0);
9444 count = 0;
9445 continue;
9447 break;
9449 case NEG:
9450 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9451 than the number of bits in the mode is equivalent to A. */
9452 if (code == LSHIFTRT
9453 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9454 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9456 varop = XEXP (varop, 0);
9457 count = 0;
9458 continue;
9461 /* NEG commutes with ASHIFT since it is multiplication. Move the
9462 NEG outside to allow shifts to combine. */
9463 if (code == ASHIFT
9464 && merge_outer_ops (&outer_op, &outer_const, NEG,
9465 (HOST_WIDE_INT) 0, result_mode,
9466 &complement_p))
9468 varop = XEXP (varop, 0);
9469 continue;
9471 break;
9473 case PLUS:
9474 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9475 is one less than the number of bits in the mode is
9476 equivalent to (xor A 1). */
9477 if (code == LSHIFTRT
9478 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9479 && XEXP (varop, 1) == constm1_rtx
9480 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9481 && merge_outer_ops (&outer_op, &outer_const, XOR,
9482 (HOST_WIDE_INT) 1, result_mode,
9483 &complement_p))
9485 count = 0;
9486 varop = XEXP (varop, 0);
9487 continue;
9490 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9491 that might be nonzero in BAR are those being shifted out and those
9492 bits are known zero in FOO, we can replace the PLUS with FOO.
9493 Similarly in the other operand order. This code occurs when
9494 we are computing the size of a variable-size array. */
9496 if ((code == ASHIFTRT || code == LSHIFTRT)
9497 && count < HOST_BITS_PER_WIDE_INT
9498 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9499 && (nonzero_bits (XEXP (varop, 1), result_mode)
9500 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9502 varop = XEXP (varop, 0);
9503 continue;
9505 else if ((code == ASHIFTRT || code == LSHIFTRT)
9506 && count < HOST_BITS_PER_WIDE_INT
9507 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9508 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9509 >> count)
9510 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9511 & nonzero_bits (XEXP (varop, 1),
9512 result_mode)))
9514 varop = XEXP (varop, 1);
9515 continue;
9518 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9519 if (code == ASHIFT
9520 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9521 && (new = simplify_const_binary_operation (ASHIFT, result_mode,
9522 XEXP (varop, 1),
9523 GEN_INT (count))) != 0
9524 && GET_CODE (new) == CONST_INT
9525 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9526 INTVAL (new), result_mode, &complement_p))
9528 varop = XEXP (varop, 0);
9529 continue;
9532 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9533 signbit', and attempt to change the PLUS to an XOR and move it to
9534 the outer operation as is done above in the AND/IOR/XOR case
9535 leg for shift(logical). See details in logical handling above
9536 for reasoning in doing so. */
9537 if (code == LSHIFTRT
9538 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9539 && mode_signbit_p (result_mode, XEXP (varop, 1))
9540 && (new = simplify_const_binary_operation (code, result_mode,
9541 XEXP (varop, 1),
9542 GEN_INT (count))) != 0
9543 && GET_CODE (new) == CONST_INT
9544 && merge_outer_ops (&outer_op, &outer_const, XOR,
9545 INTVAL (new), result_mode, &complement_p))
9547 varop = XEXP (varop, 0);
9548 continue;
9551 break;
9553 case MINUS:
9554 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9555 with C the size of VAROP - 1 and the shift is logical if
9556 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9557 we have a (gt X 0) operation. If the shift is arithmetic with
9558 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9559 we have a (neg (gt X 0)) operation. */
9561 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9562 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9563 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9564 && (code == LSHIFTRT || code == ASHIFTRT)
9565 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9566 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
9567 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9569 count = 0;
9570 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9571 const0_rtx);
9573 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9574 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9576 continue;
9578 break;
9580 case TRUNCATE:
9581 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9582 if the truncate does not affect the value. */
9583 if (code == LSHIFTRT
9584 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9585 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9586 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9587 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9588 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9590 rtx varop_inner = XEXP (varop, 0);
9592 varop_inner
9593 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9594 XEXP (varop_inner, 0),
9595 GEN_INT
9596 (count + INTVAL (XEXP (varop_inner, 1))));
9597 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9598 count = 0;
9599 continue;
9601 break;
9603 default:
9604 break;
9607 break;
9610 /* We need to determine what mode to do the shift in. If the shift is
9611 a right shift or ROTATE, we must always do it in the mode it was
9612 originally done in. Otherwise, we can do it in MODE, the widest mode
9613 encountered. The code we care about is that of the shift that will
9614 actually be done, not the shift that was originally requested. */
9615 shift_mode
9616 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9617 ? result_mode : mode);
9619 /* We have now finished analyzing the shift. The result should be
9620 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9621 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9622 to the result of the shift. OUTER_CONST is the relevant constant,
9623 but we must turn off all bits turned off in the shift. */
9625 if (outer_op == UNKNOWN
9626 && orig_code == code && orig_count == count
9627 && varop == orig_varop
9628 && shift_mode == GET_MODE (varop))
9629 return NULL_RTX;
9631 /* Make a SUBREG if necessary. If we can't make it, fail. */
9632 varop = gen_lowpart (shift_mode, varop);
9633 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9634 return NULL_RTX;
9636 /* If we have an outer operation and we just made a shift, it is
9637 possible that we could have simplified the shift were it not
9638 for the outer operation. So try to do the simplification
9639 recursively. */
9641 if (outer_op != UNKNOWN)
9642 x = simplify_shift_const_1 (code, shift_mode, varop, count);
9643 else
9644 x = NULL_RTX;
9646 if (x == NULL_RTX)
9647 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
9649 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9650 turn off all the bits that the shift would have turned off. */
9651 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9652 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9653 GET_MODE_MASK (result_mode) >> orig_count);
9655 /* Do the remainder of the processing in RESULT_MODE. */
9656 x = gen_lowpart_or_truncate (result_mode, x);
9658 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9659 operation. */
9660 if (complement_p)
9661 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9663 if (outer_op != UNKNOWN)
9665 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9666 outer_const = trunc_int_for_mode (outer_const, result_mode);
9668 if (outer_op == AND)
9669 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9670 else if (outer_op == SET)
9672 /* This means that we have determined that the result is
9673 equivalent to a constant. This should be rare. */
9674 if (!side_effects_p (x))
9675 x = GEN_INT (outer_const);
9677 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9678 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9679 else
9680 x = simplify_gen_binary (outer_op, result_mode, x,
9681 GEN_INT (outer_const));
9684 return x;
9687 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9688 The result of the shift is RESULT_MODE. If we cannot simplify it,
9689 return X or, if it is NULL, synthesize the expression with
9690 simplify_gen_binary. Otherwise, return a simplified value.
9692 The shift is normally computed in the widest mode we find in VAROP, as
9693 long as it isn't a different number of words than RESULT_MODE. Exceptions
9694 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9696 static rtx
9697 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
9698 rtx varop, int count)
9700 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
9701 if (tem)
9702 return tem;
9704 if (!x)
9705 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
9706 if (GET_MODE (x) != result_mode)
9707 x = gen_lowpart (result_mode, x);
9708 return x;
9712 /* Like recog, but we receive the address of a pointer to a new pattern.
9713 We try to match the rtx that the pointer points to.
9714 If that fails, we may try to modify or replace the pattern,
9715 storing the replacement into the same pointer object.
9717 Modifications include deletion or addition of CLOBBERs.
9719 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9720 the CLOBBERs are placed.
9722 The value is the final insn code from the pattern ultimately matched,
9723 or -1. */
9725 static int
9726 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9728 rtx pat = *pnewpat;
9729 int insn_code_number;
9730 int num_clobbers_to_add = 0;
9731 int i;
9732 rtx notes = 0;
9733 rtx old_notes, old_pat;
9735 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9736 we use to indicate that something didn't match. If we find such a
9737 thing, force rejection. */
9738 if (GET_CODE (pat) == PARALLEL)
9739 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9740 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9741 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9742 return -1;
9744 old_pat = PATTERN (insn);
9745 old_notes = REG_NOTES (insn);
9746 PATTERN (insn) = pat;
9747 REG_NOTES (insn) = 0;
9749 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9750 if (dump_file && (dump_flags & TDF_DETAILS))
9752 if (insn_code_number < 0)
9753 fputs ("Failed to match this instruction:\n", dump_file);
9754 else
9755 fputs ("Successfully matched this instruction:\n", dump_file);
9756 print_rtl_single (dump_file, pat);
9759 /* If it isn't, there is the possibility that we previously had an insn
9760 that clobbered some register as a side effect, but the combined
9761 insn doesn't need to do that. So try once more without the clobbers
9762 unless this represents an ASM insn. */
9764 if (insn_code_number < 0 && ! check_asm_operands (pat)
9765 && GET_CODE (pat) == PARALLEL)
9767 int pos;
9769 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9770 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9772 if (i != pos)
9773 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9774 pos++;
9777 SUBST_INT (XVECLEN (pat, 0), pos);
9779 if (pos == 1)
9780 pat = XVECEXP (pat, 0, 0);
9782 PATTERN (insn) = pat;
9783 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9784 if (dump_file && (dump_flags & TDF_DETAILS))
9786 if (insn_code_number < 0)
9787 fputs ("Failed to match this instruction:\n", dump_file);
9788 else
9789 fputs ("Successfully matched this instruction:\n", dump_file);
9790 print_rtl_single (dump_file, pat);
9793 PATTERN (insn) = old_pat;
9794 REG_NOTES (insn) = old_notes;
9796 /* Recognize all noop sets, these will be killed by followup pass. */
9797 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9798 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9800 /* If we had any clobbers to add, make a new pattern than contains
9801 them. Then check to make sure that all of them are dead. */
9802 if (num_clobbers_to_add)
9804 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9805 rtvec_alloc (GET_CODE (pat) == PARALLEL
9806 ? (XVECLEN (pat, 0)
9807 + num_clobbers_to_add)
9808 : num_clobbers_to_add + 1));
9810 if (GET_CODE (pat) == PARALLEL)
9811 for (i = 0; i < XVECLEN (pat, 0); i++)
9812 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9813 else
9814 XVECEXP (newpat, 0, 0) = pat;
9816 add_clobbers (newpat, insn_code_number);
9818 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9819 i < XVECLEN (newpat, 0); i++)
9821 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
9822 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9823 return -1;
9824 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
9826 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
9827 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9828 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9831 pat = newpat;
9834 *pnewpat = pat;
9835 *pnotes = notes;
9837 return insn_code_number;
9840 /* Like gen_lowpart_general but for use by combine. In combine it
9841 is not possible to create any new pseudoregs. However, it is
9842 safe to create invalid memory addresses, because combine will
9843 try to recognize them and all they will do is make the combine
9844 attempt fail.
9846 If for some reason this cannot do its job, an rtx
9847 (clobber (const_int 0)) is returned.
9848 An insn containing that will not be recognized. */
9850 static rtx
9851 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
9853 enum machine_mode imode = GET_MODE (x);
9854 unsigned int osize = GET_MODE_SIZE (omode);
9855 unsigned int isize = GET_MODE_SIZE (imode);
9856 rtx result;
9858 if (omode == imode)
9859 return x;
9861 /* Return identity if this is a CONST or symbolic reference. */
9862 if (omode == Pmode
9863 && (GET_CODE (x) == CONST
9864 || GET_CODE (x) == SYMBOL_REF
9865 || GET_CODE (x) == LABEL_REF))
9866 return x;
9868 /* We can only support MODE being wider than a word if X is a
9869 constant integer or has a mode the same size. */
9870 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
9871 && ! ((imode == VOIDmode
9872 && (GET_CODE (x) == CONST_INT
9873 || GET_CODE (x) == CONST_DOUBLE))
9874 || isize == osize))
9875 goto fail;
9877 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9878 won't know what to do. So we will strip off the SUBREG here and
9879 process normally. */
9880 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
9882 x = SUBREG_REG (x);
9884 /* For use in case we fall down into the address adjustments
9885 further below, we need to adjust the known mode and size of
9886 x; imode and isize, since we just adjusted x. */
9887 imode = GET_MODE (x);
9889 if (imode == omode)
9890 return x;
9892 isize = GET_MODE_SIZE (imode);
9895 result = gen_lowpart_common (omode, x);
9897 if (result)
9898 return result;
9900 if (MEM_P (x))
9902 int offset = 0;
9904 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9905 address. */
9906 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9907 goto fail;
9909 /* If we want to refer to something bigger than the original memref,
9910 generate a paradoxical subreg instead. That will force a reload
9911 of the original memref X. */
9912 if (isize < osize)
9913 return gen_rtx_SUBREG (omode, x, 0);
9915 if (WORDS_BIG_ENDIAN)
9916 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
9918 /* Adjust the address so that the address-after-the-data is
9919 unchanged. */
9920 if (BYTES_BIG_ENDIAN)
9921 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
9923 return adjust_address_nv (x, omode, offset);
9926 /* If X is a comparison operator, rewrite it in a new mode. This
9927 probably won't match, but may allow further simplifications. */
9928 else if (COMPARISON_P (x))
9929 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
9931 /* If we couldn't simplify X any other way, just enclose it in a
9932 SUBREG. Normally, this SUBREG won't match, but some patterns may
9933 include an explicit SUBREG or we may simplify it further in combine. */
9934 else
9936 int offset = 0;
9937 rtx res;
9939 offset = subreg_lowpart_offset (omode, imode);
9940 if (imode == VOIDmode)
9942 imode = int_mode_for_mode (omode);
9943 x = gen_lowpart_common (imode, x);
9944 if (x == NULL)
9945 goto fail;
9947 res = simplify_gen_subreg (omode, x, imode, offset);
9948 if (res)
9949 return res;
9952 fail:
9953 return gen_rtx_CLOBBER (imode, const0_rtx);
9956 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9957 comparison code that will be tested.
9959 The result is a possibly different comparison code to use. *POP0 and
9960 *POP1 may be updated.
9962 It is possible that we might detect that a comparison is either always
9963 true or always false. However, we do not perform general constant
9964 folding in combine, so this knowledge isn't useful. Such tautologies
9965 should have been detected earlier. Hence we ignore all such cases. */
9967 static enum rtx_code
9968 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
9970 rtx op0 = *pop0;
9971 rtx op1 = *pop1;
9972 rtx tem, tem1;
9973 int i;
9974 enum machine_mode mode, tmode;
9976 /* Try a few ways of applying the same transformation to both operands. */
9977 while (1)
9979 #ifndef WORD_REGISTER_OPERATIONS
9980 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9981 so check specially. */
9982 if (code != GTU && code != GEU && code != LTU && code != LEU
9983 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9984 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9985 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9986 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9987 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9988 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9989 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9990 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9991 && XEXP (op0, 1) == XEXP (op1, 1)
9992 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
9993 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
9994 && (INTVAL (XEXP (op0, 1))
9995 == (GET_MODE_BITSIZE (GET_MODE (op0))
9996 - (GET_MODE_BITSIZE
9997 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9999 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10000 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10002 #endif
10004 /* If both operands are the same constant shift, see if we can ignore the
10005 shift. We can if the shift is a rotate or if the bits shifted out of
10006 this shift are known to be zero for both inputs and if the type of
10007 comparison is compatible with the shift. */
10008 if (GET_CODE (op0) == GET_CODE (op1)
10009 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10010 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10011 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10012 && (code != GT && code != LT && code != GE && code != LE))
10013 || (GET_CODE (op0) == ASHIFTRT
10014 && (code != GTU && code != LTU
10015 && code != GEU && code != LEU)))
10016 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10017 && INTVAL (XEXP (op0, 1)) >= 0
10018 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10019 && XEXP (op0, 1) == XEXP (op1, 1))
10021 enum machine_mode mode = GET_MODE (op0);
10022 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10023 int shift_count = INTVAL (XEXP (op0, 1));
10025 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10026 mask &= (mask >> shift_count) << shift_count;
10027 else if (GET_CODE (op0) == ASHIFT)
10028 mask = (mask & (mask << shift_count)) >> shift_count;
10030 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10031 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10032 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10033 else
10034 break;
10037 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10038 SUBREGs are of the same mode, and, in both cases, the AND would
10039 be redundant if the comparison was done in the narrower mode,
10040 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10041 and the operand's possibly nonzero bits are 0xffffff01; in that case
10042 if we only care about QImode, we don't need the AND). This case
10043 occurs if the output mode of an scc insn is not SImode and
10044 STORE_FLAG_VALUE == 1 (e.g., the 386).
10046 Similarly, check for a case where the AND's are ZERO_EXTEND
10047 operations from some narrower mode even though a SUBREG is not
10048 present. */
10050 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10051 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10052 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
10054 rtx inner_op0 = XEXP (op0, 0);
10055 rtx inner_op1 = XEXP (op1, 0);
10056 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10057 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10058 int changed = 0;
10060 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10061 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10062 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10063 && (GET_MODE (SUBREG_REG (inner_op0))
10064 == GET_MODE (SUBREG_REG (inner_op1)))
10065 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10066 <= HOST_BITS_PER_WIDE_INT)
10067 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10068 GET_MODE (SUBREG_REG (inner_op0)))))
10069 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10070 GET_MODE (SUBREG_REG (inner_op1))))))
10072 op0 = SUBREG_REG (inner_op0);
10073 op1 = SUBREG_REG (inner_op1);
10075 /* The resulting comparison is always unsigned since we masked
10076 off the original sign bit. */
10077 code = unsigned_condition (code);
10079 changed = 1;
10082 else if (c0 == c1)
10083 for (tmode = GET_CLASS_NARROWEST_MODE
10084 (GET_MODE_CLASS (GET_MODE (op0)));
10085 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10086 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10088 op0 = gen_lowpart (tmode, inner_op0);
10089 op1 = gen_lowpart (tmode, inner_op1);
10090 code = unsigned_condition (code);
10091 changed = 1;
10092 break;
10095 if (! changed)
10096 break;
10099 /* If both operands are NOT, we can strip off the outer operation
10100 and adjust the comparison code for swapped operands; similarly for
10101 NEG, except that this must be an equality comparison. */
10102 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10103 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10104 && (code == EQ || code == NE)))
10105 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10107 else
10108 break;
10111 /* If the first operand is a constant, swap the operands and adjust the
10112 comparison code appropriately, but don't do this if the second operand
10113 is already a constant integer. */
10114 if (swap_commutative_operands_p (op0, op1))
10116 tem = op0, op0 = op1, op1 = tem;
10117 code = swap_condition (code);
10120 /* We now enter a loop during which we will try to simplify the comparison.
10121 For the most part, we only are concerned with comparisons with zero,
10122 but some things may really be comparisons with zero but not start
10123 out looking that way. */
10125 while (GET_CODE (op1) == CONST_INT)
10127 enum machine_mode mode = GET_MODE (op0);
10128 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10129 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10130 int equality_comparison_p;
10131 int sign_bit_comparison_p;
10132 int unsigned_comparison_p;
10133 HOST_WIDE_INT const_op;
10135 /* We only want to handle integral modes. This catches VOIDmode,
10136 CCmode, and the floating-point modes. An exception is that we
10137 can handle VOIDmode if OP0 is a COMPARE or a comparison
10138 operation. */
10140 if (GET_MODE_CLASS (mode) != MODE_INT
10141 && ! (mode == VOIDmode
10142 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
10143 break;
10145 /* Get the constant we are comparing against and turn off all bits
10146 not on in our mode. */
10147 const_op = INTVAL (op1);
10148 if (mode != VOIDmode)
10149 const_op = trunc_int_for_mode (const_op, mode);
10150 op1 = GEN_INT (const_op);
10152 /* If we are comparing against a constant power of two and the value
10153 being compared can only have that single bit nonzero (e.g., it was
10154 `and'ed with that bit), we can replace this with a comparison
10155 with zero. */
10156 if (const_op
10157 && (code == EQ || code == NE || code == GE || code == GEU
10158 || code == LT || code == LTU)
10159 && mode_width <= HOST_BITS_PER_WIDE_INT
10160 && exact_log2 (const_op) >= 0
10161 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10163 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10164 op1 = const0_rtx, const_op = 0;
10167 /* Similarly, if we are comparing a value known to be either -1 or
10168 0 with -1, change it to the opposite comparison against zero. */
10170 if (const_op == -1
10171 && (code == EQ || code == NE || code == GT || code == LE
10172 || code == GEU || code == LTU)
10173 && num_sign_bit_copies (op0, mode) == mode_width)
10175 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10176 op1 = const0_rtx, const_op = 0;
10179 /* Do some canonicalizations based on the comparison code. We prefer
10180 comparisons against zero and then prefer equality comparisons.
10181 If we can reduce the size of a constant, we will do that too. */
10183 switch (code)
10185 case LT:
10186 /* < C is equivalent to <= (C - 1) */
10187 if (const_op > 0)
10189 const_op -= 1;
10190 op1 = GEN_INT (const_op);
10191 code = LE;
10192 /* ... fall through to LE case below. */
10194 else
10195 break;
10197 case LE:
10198 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10199 if (const_op < 0)
10201 const_op += 1;
10202 op1 = GEN_INT (const_op);
10203 code = LT;
10206 /* If we are doing a <= 0 comparison on a value known to have
10207 a zero sign bit, we can replace this with == 0. */
10208 else if (const_op == 0
10209 && mode_width <= HOST_BITS_PER_WIDE_INT
10210 && (nonzero_bits (op0, mode)
10211 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10212 code = EQ;
10213 break;
10215 case GE:
10216 /* >= C is equivalent to > (C - 1). */
10217 if (const_op > 0)
10219 const_op -= 1;
10220 op1 = GEN_INT (const_op);
10221 code = GT;
10222 /* ... fall through to GT below. */
10224 else
10225 break;
10227 case GT:
10228 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10229 if (const_op < 0)
10231 const_op += 1;
10232 op1 = GEN_INT (const_op);
10233 code = GE;
10236 /* If we are doing a > 0 comparison on a value known to have
10237 a zero sign bit, we can replace this with != 0. */
10238 else if (const_op == 0
10239 && mode_width <= HOST_BITS_PER_WIDE_INT
10240 && (nonzero_bits (op0, mode)
10241 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10242 code = NE;
10243 break;
10245 case LTU:
10246 /* < C is equivalent to <= (C - 1). */
10247 if (const_op > 0)
10249 const_op -= 1;
10250 op1 = GEN_INT (const_op);
10251 code = LEU;
10252 /* ... fall through ... */
10255 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10256 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10257 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10259 const_op = 0, op1 = const0_rtx;
10260 code = GE;
10261 break;
10263 else
10264 break;
10266 case LEU:
10267 /* unsigned <= 0 is equivalent to == 0 */
10268 if (const_op == 0)
10269 code = EQ;
10271 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10272 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10273 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10275 const_op = 0, op1 = const0_rtx;
10276 code = GE;
10278 break;
10280 case GEU:
10281 /* >= C is equivalent to > (C - 1). */
10282 if (const_op > 1)
10284 const_op -= 1;
10285 op1 = GEN_INT (const_op);
10286 code = GTU;
10287 /* ... fall through ... */
10290 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10291 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10292 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10294 const_op = 0, op1 = const0_rtx;
10295 code = LT;
10296 break;
10298 else
10299 break;
10301 case GTU:
10302 /* unsigned > 0 is equivalent to != 0 */
10303 if (const_op == 0)
10304 code = NE;
10306 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10307 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10308 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10310 const_op = 0, op1 = const0_rtx;
10311 code = LT;
10313 break;
10315 default:
10316 break;
10319 /* Compute some predicates to simplify code below. */
10321 equality_comparison_p = (code == EQ || code == NE);
10322 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10323 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10324 || code == GEU);
10326 /* If this is a sign bit comparison and we can do arithmetic in
10327 MODE, say that we will only be needing the sign bit of OP0. */
10328 if (sign_bit_comparison_p
10329 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10330 op0 = force_to_mode (op0, mode,
10331 ((HOST_WIDE_INT) 1
10332 << (GET_MODE_BITSIZE (mode) - 1)),
10335 /* Now try cases based on the opcode of OP0. If none of the cases
10336 does a "continue", we exit this loop immediately after the
10337 switch. */
10339 switch (GET_CODE (op0))
10341 case ZERO_EXTRACT:
10342 /* If we are extracting a single bit from a variable position in
10343 a constant that has only a single bit set and are comparing it
10344 with zero, we can convert this into an equality comparison
10345 between the position and the location of the single bit. */
10346 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
10347 have already reduced the shift count modulo the word size. */
10348 if (!SHIFT_COUNT_TRUNCATED
10349 && GET_CODE (XEXP (op0, 0)) == CONST_INT
10350 && XEXP (op0, 1) == const1_rtx
10351 && equality_comparison_p && const_op == 0
10352 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10354 if (BITS_BIG_ENDIAN)
10356 enum machine_mode new_mode
10357 = mode_for_extraction (EP_extzv, 1);
10358 if (new_mode == MAX_MACHINE_MODE)
10359 i = BITS_PER_WORD - 1 - i;
10360 else
10362 mode = new_mode;
10363 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10367 op0 = XEXP (op0, 2);
10368 op1 = GEN_INT (i);
10369 const_op = i;
10371 /* Result is nonzero iff shift count is equal to I. */
10372 code = reverse_condition (code);
10373 continue;
10376 /* ... fall through ... */
10378 case SIGN_EXTRACT:
10379 tem = expand_compound_operation (op0);
10380 if (tem != op0)
10382 op0 = tem;
10383 continue;
10385 break;
10387 case NOT:
10388 /* If testing for equality, we can take the NOT of the constant. */
10389 if (equality_comparison_p
10390 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10392 op0 = XEXP (op0, 0);
10393 op1 = tem;
10394 continue;
10397 /* If just looking at the sign bit, reverse the sense of the
10398 comparison. */
10399 if (sign_bit_comparison_p)
10401 op0 = XEXP (op0, 0);
10402 code = (code == GE ? LT : GE);
10403 continue;
10405 break;
10407 case NEG:
10408 /* If testing for equality, we can take the NEG of the constant. */
10409 if (equality_comparison_p
10410 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10412 op0 = XEXP (op0, 0);
10413 op1 = tem;
10414 continue;
10417 /* The remaining cases only apply to comparisons with zero. */
10418 if (const_op != 0)
10419 break;
10421 /* When X is ABS or is known positive,
10422 (neg X) is < 0 if and only if X != 0. */
10424 if (sign_bit_comparison_p
10425 && (GET_CODE (XEXP (op0, 0)) == ABS
10426 || (mode_width <= HOST_BITS_PER_WIDE_INT
10427 && (nonzero_bits (XEXP (op0, 0), mode)
10428 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10430 op0 = XEXP (op0, 0);
10431 code = (code == LT ? NE : EQ);
10432 continue;
10435 /* If we have NEG of something whose two high-order bits are the
10436 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10437 if (num_sign_bit_copies (op0, mode) >= 2)
10439 op0 = XEXP (op0, 0);
10440 code = swap_condition (code);
10441 continue;
10443 break;
10445 case ROTATE:
10446 /* If we are testing equality and our count is a constant, we
10447 can perform the inverse operation on our RHS. */
10448 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10449 && (tem = simplify_binary_operation (ROTATERT, mode,
10450 op1, XEXP (op0, 1))) != 0)
10452 op0 = XEXP (op0, 0);
10453 op1 = tem;
10454 continue;
10457 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10458 a particular bit. Convert it to an AND of a constant of that
10459 bit. This will be converted into a ZERO_EXTRACT. */
10460 if (const_op == 0 && sign_bit_comparison_p
10461 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10462 && mode_width <= HOST_BITS_PER_WIDE_INT)
10464 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10465 ((HOST_WIDE_INT) 1
10466 << (mode_width - 1
10467 - INTVAL (XEXP (op0, 1)))));
10468 code = (code == LT ? NE : EQ);
10469 continue;
10472 /* Fall through. */
10474 case ABS:
10475 /* ABS is ignorable inside an equality comparison with zero. */
10476 if (const_op == 0 && equality_comparison_p)
10478 op0 = XEXP (op0, 0);
10479 continue;
10481 break;
10483 case SIGN_EXTEND:
10484 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
10485 (compare FOO CONST) if CONST fits in FOO's mode and we
10486 are either testing inequality or have an unsigned
10487 comparison with ZERO_EXTEND or a signed comparison with
10488 SIGN_EXTEND. But don't do it if we don't have a compare
10489 insn of the given mode, since we'd have to revert it
10490 later on, and then we wouldn't know whether to sign- or
10491 zero-extend. */
10492 mode = GET_MODE (XEXP (op0, 0));
10493 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10494 && ! unsigned_comparison_p
10495 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10496 && ((unsigned HOST_WIDE_INT) const_op
10497 < (((unsigned HOST_WIDE_INT) 1
10498 << (GET_MODE_BITSIZE (mode) - 1))))
10499 && optab_handler (cmp_optab, mode)->insn_code != CODE_FOR_nothing)
10501 op0 = XEXP (op0, 0);
10502 continue;
10504 break;
10506 case SUBREG:
10507 /* Check for the case where we are comparing A - C1 with C2, that is
10509 (subreg:MODE (plus (A) (-C1))) op (C2)
10511 with C1 a constant, and try to lift the SUBREG, i.e. to do the
10512 comparison in the wider mode. One of the following two conditions
10513 must be true in order for this to be valid:
10515 1. The mode extension results in the same bit pattern being added
10516 on both sides and the comparison is equality or unsigned. As
10517 C2 has been truncated to fit in MODE, the pattern can only be
10518 all 0s or all 1s.
10520 2. The mode extension results in the sign bit being copied on
10521 each side.
10523 The difficulty here is that we have predicates for A but not for
10524 (A - C1) so we need to check that C1 is within proper bounds so
10525 as to perturbate A as little as possible. */
10527 if (mode_width <= HOST_BITS_PER_WIDE_INT
10528 && subreg_lowpart_p (op0)
10529 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
10530 && GET_CODE (SUBREG_REG (op0)) == PLUS
10531 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT)
10533 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
10534 rtx a = XEXP (SUBREG_REG (op0), 0);
10535 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
10537 if ((c1 > 0
10538 && (unsigned HOST_WIDE_INT) c1
10539 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
10540 && (equality_comparison_p || unsigned_comparison_p)
10541 /* (A - C1) zero-extends if it is positive and sign-extends
10542 if it is negative, C2 both zero- and sign-extends. */
10543 && ((0 == (nonzero_bits (a, inner_mode)
10544 & ~GET_MODE_MASK (mode))
10545 && const_op >= 0)
10546 /* (A - C1) sign-extends if it is positive and 1-extends
10547 if it is negative, C2 both sign- and 1-extends. */
10548 || (num_sign_bit_copies (a, inner_mode)
10549 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10550 - mode_width)
10551 && const_op < 0)))
10552 || ((unsigned HOST_WIDE_INT) c1
10553 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
10554 /* (A - C1) always sign-extends, like C2. */
10555 && num_sign_bit_copies (a, inner_mode)
10556 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10557 - (mode_width - 1))))
10559 op0 = SUBREG_REG (op0);
10560 continue;
10564 /* If the inner mode is narrower and we are extracting the low part,
10565 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10566 if (subreg_lowpart_p (op0)
10567 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10568 /* Fall through */ ;
10569 else
10570 break;
10572 /* ... fall through ... */
10574 case ZERO_EXTEND:
10575 mode = GET_MODE (XEXP (op0, 0));
10576 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10577 && (unsigned_comparison_p || equality_comparison_p)
10578 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10579 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
10580 && optab_handler (cmp_optab, mode)->insn_code != CODE_FOR_nothing)
10582 op0 = XEXP (op0, 0);
10583 continue;
10585 break;
10587 case PLUS:
10588 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10589 this for equality comparisons due to pathological cases involving
10590 overflows. */
10591 if (equality_comparison_p
10592 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10593 op1, XEXP (op0, 1))))
10595 op0 = XEXP (op0, 0);
10596 op1 = tem;
10597 continue;
10600 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10601 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10602 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10604 op0 = XEXP (XEXP (op0, 0), 0);
10605 code = (code == LT ? EQ : NE);
10606 continue;
10608 break;
10610 case MINUS:
10611 /* We used to optimize signed comparisons against zero, but that
10612 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10613 arrive here as equality comparisons, or (GEU, LTU) are
10614 optimized away. No need to special-case them. */
10616 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10617 (eq B (minus A C)), whichever simplifies. We can only do
10618 this for equality comparisons due to pathological cases involving
10619 overflows. */
10620 if (equality_comparison_p
10621 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10622 XEXP (op0, 1), op1)))
10624 op0 = XEXP (op0, 0);
10625 op1 = tem;
10626 continue;
10629 if (equality_comparison_p
10630 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10631 XEXP (op0, 0), op1)))
10633 op0 = XEXP (op0, 1);
10634 op1 = tem;
10635 continue;
10638 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10639 of bits in X minus 1, is one iff X > 0. */
10640 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10641 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10642 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10643 == mode_width - 1
10644 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10646 op0 = XEXP (op0, 1);
10647 code = (code == GE ? LE : GT);
10648 continue;
10650 break;
10652 case XOR:
10653 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10654 if C is zero or B is a constant. */
10655 if (equality_comparison_p
10656 && 0 != (tem = simplify_binary_operation (XOR, mode,
10657 XEXP (op0, 1), op1)))
10659 op0 = XEXP (op0, 0);
10660 op1 = tem;
10661 continue;
10663 break;
10665 case EQ: case NE:
10666 case UNEQ: case LTGT:
10667 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10668 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10669 case UNORDERED: case ORDERED:
10670 /* We can't do anything if OP0 is a condition code value, rather
10671 than an actual data value. */
10672 if (const_op != 0
10673 || CC0_P (XEXP (op0, 0))
10674 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10675 break;
10677 /* Get the two operands being compared. */
10678 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10679 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10680 else
10681 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10683 /* Check for the cases where we simply want the result of the
10684 earlier test or the opposite of that result. */
10685 if (code == NE || code == EQ
10686 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10687 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10688 && (STORE_FLAG_VALUE
10689 & (((HOST_WIDE_INT) 1
10690 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10691 && (code == LT || code == GE)))
10693 enum rtx_code new_code;
10694 if (code == LT || code == NE)
10695 new_code = GET_CODE (op0);
10696 else
10697 new_code = reversed_comparison_code (op0, NULL);
10699 if (new_code != UNKNOWN)
10701 code = new_code;
10702 op0 = tem;
10703 op1 = tem1;
10704 continue;
10707 break;
10709 case IOR:
10710 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10711 iff X <= 0. */
10712 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10713 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10714 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10716 op0 = XEXP (op0, 1);
10717 code = (code == GE ? GT : LE);
10718 continue;
10720 break;
10722 case AND:
10723 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10724 will be converted to a ZERO_EXTRACT later. */
10725 if (const_op == 0 && equality_comparison_p
10726 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10727 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10729 op0 = simplify_and_const_int
10730 (NULL_RTX, mode, gen_rtx_LSHIFTRT (mode,
10731 XEXP (op0, 1),
10732 XEXP (XEXP (op0, 0), 1)),
10733 (HOST_WIDE_INT) 1);
10734 continue;
10737 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10738 zero and X is a comparison and C1 and C2 describe only bits set
10739 in STORE_FLAG_VALUE, we can compare with X. */
10740 if (const_op == 0 && equality_comparison_p
10741 && mode_width <= HOST_BITS_PER_WIDE_INT
10742 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10743 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10744 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10745 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10746 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10748 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10749 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10750 if ((~STORE_FLAG_VALUE & mask) == 0
10751 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10752 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10753 && COMPARISON_P (tem))))
10755 op0 = XEXP (XEXP (op0, 0), 0);
10756 continue;
10760 /* If we are doing an equality comparison of an AND of a bit equal
10761 to the sign bit, replace this with a LT or GE comparison of
10762 the underlying value. */
10763 if (equality_comparison_p
10764 && const_op == 0
10765 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10766 && mode_width <= HOST_BITS_PER_WIDE_INT
10767 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10768 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10770 op0 = XEXP (op0, 0);
10771 code = (code == EQ ? GE : LT);
10772 continue;
10775 /* If this AND operation is really a ZERO_EXTEND from a narrower
10776 mode, the constant fits within that mode, and this is either an
10777 equality or unsigned comparison, try to do this comparison in
10778 the narrower mode.
10780 Note that in:
10782 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
10783 -> (ne:DI (reg:SI 4) (const_int 0))
10785 unless TRULY_NOOP_TRUNCATION allows it or the register is
10786 known to hold a value of the required mode the
10787 transformation is invalid. */
10788 if ((equality_comparison_p || unsigned_comparison_p)
10789 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10790 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10791 & GET_MODE_MASK (mode))
10792 + 1)) >= 0
10793 && const_op >> i == 0
10794 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
10795 && (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
10796 GET_MODE_BITSIZE (GET_MODE (op0)))
10797 || (REG_P (XEXP (op0, 0))
10798 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
10800 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10801 continue;
10804 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10805 fits in both M1 and M2 and the SUBREG is either paradoxical
10806 or represents the low part, permute the SUBREG and the AND
10807 and try again. */
10808 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10810 unsigned HOST_WIDE_INT c1;
10811 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10812 /* Require an integral mode, to avoid creating something like
10813 (AND:SF ...). */
10814 if (SCALAR_INT_MODE_P (tmode)
10815 /* It is unsafe to commute the AND into the SUBREG if the
10816 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10817 not defined. As originally written the upper bits
10818 have a defined value due to the AND operation.
10819 However, if we commute the AND inside the SUBREG then
10820 they no longer have defined values and the meaning of
10821 the code has been changed. */
10822 && (0
10823 #ifdef WORD_REGISTER_OPERATIONS
10824 || (mode_width > GET_MODE_BITSIZE (tmode)
10825 && mode_width <= BITS_PER_WORD)
10826 #endif
10827 || (mode_width <= GET_MODE_BITSIZE (tmode)
10828 && subreg_lowpart_p (XEXP (op0, 0))))
10829 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10830 && mode_width <= HOST_BITS_PER_WIDE_INT
10831 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10832 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10833 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10834 && c1 != mask
10835 && c1 != GET_MODE_MASK (tmode))
10837 op0 = simplify_gen_binary (AND, tmode,
10838 SUBREG_REG (XEXP (op0, 0)),
10839 gen_int_mode (c1, tmode));
10840 op0 = gen_lowpart (mode, op0);
10841 continue;
10845 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10846 if (const_op == 0 && equality_comparison_p
10847 && XEXP (op0, 1) == const1_rtx
10848 && GET_CODE (XEXP (op0, 0)) == NOT)
10850 op0 = simplify_and_const_int
10851 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10852 code = (code == NE ? EQ : NE);
10853 continue;
10856 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10857 (eq (and (lshiftrt X) 1) 0).
10858 Also handle the case where (not X) is expressed using xor. */
10859 if (const_op == 0 && equality_comparison_p
10860 && XEXP (op0, 1) == const1_rtx
10861 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10863 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10864 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10866 if (GET_CODE (shift_op) == NOT
10867 || (GET_CODE (shift_op) == XOR
10868 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
10869 && GET_CODE (shift_count) == CONST_INT
10870 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10871 && (INTVAL (XEXP (shift_op, 1))
10872 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10874 op0 = simplify_and_const_int
10875 (NULL_RTX, mode,
10876 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10877 (HOST_WIDE_INT) 1);
10878 code = (code == NE ? EQ : NE);
10879 continue;
10882 break;
10884 case ASHIFT:
10885 /* If we have (compare (ashift FOO N) (const_int C)) and
10886 the high order N bits of FOO (N+1 if an inequality comparison)
10887 are known to be zero, we can do this by comparing FOO with C
10888 shifted right N bits so long as the low-order N bits of C are
10889 zero. */
10890 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10891 && INTVAL (XEXP (op0, 1)) >= 0
10892 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10893 < HOST_BITS_PER_WIDE_INT)
10894 && ((const_op
10895 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10896 && mode_width <= HOST_BITS_PER_WIDE_INT
10897 && (nonzero_bits (XEXP (op0, 0), mode)
10898 & ~(mask >> (INTVAL (XEXP (op0, 1))
10899 + ! equality_comparison_p))) == 0)
10901 /* We must perform a logical shift, not an arithmetic one,
10902 as we want the top N bits of C to be zero. */
10903 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10905 temp >>= INTVAL (XEXP (op0, 1));
10906 op1 = gen_int_mode (temp, mode);
10907 op0 = XEXP (op0, 0);
10908 continue;
10911 /* If we are doing a sign bit comparison, it means we are testing
10912 a particular bit. Convert it to the appropriate AND. */
10913 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10914 && mode_width <= HOST_BITS_PER_WIDE_INT)
10916 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10917 ((HOST_WIDE_INT) 1
10918 << (mode_width - 1
10919 - INTVAL (XEXP (op0, 1)))));
10920 code = (code == LT ? NE : EQ);
10921 continue;
10924 /* If this an equality comparison with zero and we are shifting
10925 the low bit to the sign bit, we can convert this to an AND of the
10926 low-order bit. */
10927 if (const_op == 0 && equality_comparison_p
10928 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10929 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10930 == mode_width - 1)
10932 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10933 (HOST_WIDE_INT) 1);
10934 continue;
10936 break;
10938 case ASHIFTRT:
10939 /* If this is an equality comparison with zero, we can do this
10940 as a logical shift, which might be much simpler. */
10941 if (equality_comparison_p && const_op == 0
10942 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10944 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10945 XEXP (op0, 0),
10946 INTVAL (XEXP (op0, 1)));
10947 continue;
10950 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10951 do the comparison in a narrower mode. */
10952 if (! unsigned_comparison_p
10953 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10954 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10955 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10956 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10957 MODE_INT, 1)) != BLKmode
10958 && (((unsigned HOST_WIDE_INT) const_op
10959 + (GET_MODE_MASK (tmode) >> 1) + 1)
10960 <= GET_MODE_MASK (tmode)))
10962 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
10963 continue;
10966 /* Likewise if OP0 is a PLUS of a sign extension with a
10967 constant, which is usually represented with the PLUS
10968 between the shifts. */
10969 if (! unsigned_comparison_p
10970 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10971 && GET_CODE (XEXP (op0, 0)) == PLUS
10972 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10973 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10974 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10975 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10976 MODE_INT, 1)) != BLKmode
10977 && (((unsigned HOST_WIDE_INT) const_op
10978 + (GET_MODE_MASK (tmode) >> 1) + 1)
10979 <= GET_MODE_MASK (tmode)))
10981 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10982 rtx add_const = XEXP (XEXP (op0, 0), 1);
10983 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
10984 add_const, XEXP (op0, 1));
10986 op0 = simplify_gen_binary (PLUS, tmode,
10987 gen_lowpart (tmode, inner),
10988 new_const);
10989 continue;
10992 /* ... fall through ... */
10993 case LSHIFTRT:
10994 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10995 the low order N bits of FOO are known to be zero, we can do this
10996 by comparing FOO with C shifted left N bits so long as no
10997 overflow occurs. */
10998 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10999 && INTVAL (XEXP (op0, 1)) >= 0
11000 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11001 && mode_width <= HOST_BITS_PER_WIDE_INT
11002 && (nonzero_bits (XEXP (op0, 0), mode)
11003 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
11004 && (((unsigned HOST_WIDE_INT) const_op
11005 + (GET_CODE (op0) != LSHIFTRT
11006 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11007 + 1)
11008 : 0))
11009 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11011 /* If the shift was logical, then we must make the condition
11012 unsigned. */
11013 if (GET_CODE (op0) == LSHIFTRT)
11014 code = unsigned_condition (code);
11016 const_op <<= INTVAL (XEXP (op0, 1));
11017 op1 = GEN_INT (const_op);
11018 op0 = XEXP (op0, 0);
11019 continue;
11022 /* If we are using this shift to extract just the sign bit, we
11023 can replace this with an LT or GE comparison. */
11024 if (const_op == 0
11025 && (equality_comparison_p || sign_bit_comparison_p)
11026 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11027 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11028 == mode_width - 1)
11030 op0 = XEXP (op0, 0);
11031 code = (code == NE || code == GT ? LT : GE);
11032 continue;
11034 break;
11036 default:
11037 break;
11040 break;
11043 /* Now make any compound operations involved in this comparison. Then,
11044 check for an outmost SUBREG on OP0 that is not doing anything or is
11045 paradoxical. The latter transformation must only be performed when
11046 it is known that the "extra" bits will be the same in op0 and op1 or
11047 that they don't matter. There are three cases to consider:
11049 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11050 care bits and we can assume they have any convenient value. So
11051 making the transformation is safe.
11053 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11054 In this case the upper bits of op0 are undefined. We should not make
11055 the simplification in that case as we do not know the contents of
11056 those bits.
11058 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11059 UNKNOWN. In that case we know those bits are zeros or ones. We must
11060 also be sure that they are the same as the upper bits of op1.
11062 We can never remove a SUBREG for a non-equality comparison because
11063 the sign bit is in a different place in the underlying object. */
11065 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11066 op1 = make_compound_operation (op1, SET);
11068 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11069 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11070 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11071 && (code == NE || code == EQ))
11073 if (GET_MODE_SIZE (GET_MODE (op0))
11074 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11076 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11077 implemented. */
11078 if (REG_P (SUBREG_REG (op0)))
11080 op0 = SUBREG_REG (op0);
11081 op1 = gen_lowpart (GET_MODE (op0), op1);
11084 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11085 <= HOST_BITS_PER_WIDE_INT)
11086 && (nonzero_bits (SUBREG_REG (op0),
11087 GET_MODE (SUBREG_REG (op0)))
11088 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11090 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
11092 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11093 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11094 op0 = SUBREG_REG (op0), op1 = tem;
11098 /* We now do the opposite procedure: Some machines don't have compare
11099 insns in all modes. If OP0's mode is an integer mode smaller than a
11100 word and we can't do a compare in that mode, see if there is a larger
11101 mode for which we can do the compare. There are a number of cases in
11102 which we can use the wider mode. */
11104 mode = GET_MODE (op0);
11105 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11106 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11107 && ! have_insn_for (COMPARE, mode))
11108 for (tmode = GET_MODE_WIDER_MODE (mode);
11109 (tmode != VOIDmode
11110 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11111 tmode = GET_MODE_WIDER_MODE (tmode))
11112 if (have_insn_for (COMPARE, tmode))
11114 int zero_extended;
11116 /* If the only nonzero bits in OP0 and OP1 are those in the
11117 narrower mode and this is an equality or unsigned comparison,
11118 we can use the wider mode. Similarly for sign-extended
11119 values, in which case it is true for all comparisons. */
11120 zero_extended = ((code == EQ || code == NE
11121 || code == GEU || code == GTU
11122 || code == LEU || code == LTU)
11123 && (nonzero_bits (op0, tmode)
11124 & ~GET_MODE_MASK (mode)) == 0
11125 && ((GET_CODE (op1) == CONST_INT
11126 || (nonzero_bits (op1, tmode)
11127 & ~GET_MODE_MASK (mode)) == 0)));
11129 if (zero_extended
11130 || ((num_sign_bit_copies (op0, tmode)
11131 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11132 - GET_MODE_BITSIZE (mode)))
11133 && (num_sign_bit_copies (op1, tmode)
11134 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11135 - GET_MODE_BITSIZE (mode)))))
11137 /* If OP0 is an AND and we don't have an AND in MODE either,
11138 make a new AND in the proper mode. */
11139 if (GET_CODE (op0) == AND
11140 && !have_insn_for (AND, mode))
11141 op0 = simplify_gen_binary (AND, tmode,
11142 gen_lowpart (tmode,
11143 XEXP (op0, 0)),
11144 gen_lowpart (tmode,
11145 XEXP (op0, 1)));
11147 op0 = gen_lowpart (tmode, op0);
11148 if (zero_extended && GET_CODE (op1) == CONST_INT)
11149 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
11150 op1 = gen_lowpart (tmode, op1);
11151 break;
11154 /* If this is a test for negative, we can make an explicit
11155 test of the sign bit. */
11157 if (op1 == const0_rtx && (code == LT || code == GE)
11158 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11160 op0 = simplify_gen_binary (AND, tmode,
11161 gen_lowpart (tmode, op0),
11162 GEN_INT ((HOST_WIDE_INT) 1
11163 << (GET_MODE_BITSIZE (mode)
11164 - 1)));
11165 code = (code == LT) ? NE : EQ;
11166 break;
11170 #ifdef CANONICALIZE_COMPARISON
11171 /* If this machine only supports a subset of valid comparisons, see if we
11172 can convert an unsupported one into a supported one. */
11173 CANONICALIZE_COMPARISON (code, op0, op1);
11174 #endif
11176 *pop0 = op0;
11177 *pop1 = op1;
11179 return code;
11182 /* Utility function for record_value_for_reg. Count number of
11183 rtxs in X. */
11184 static int
11185 count_rtxs (rtx x)
11187 enum rtx_code code = GET_CODE (x);
11188 const char *fmt;
11189 int i, ret = 1;
11191 if (GET_RTX_CLASS (code) == '2'
11192 || GET_RTX_CLASS (code) == 'c')
11194 rtx x0 = XEXP (x, 0);
11195 rtx x1 = XEXP (x, 1);
11197 if (x0 == x1)
11198 return 1 + 2 * count_rtxs (x0);
11200 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
11201 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
11202 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11203 return 2 + 2 * count_rtxs (x0)
11204 + count_rtxs (x == XEXP (x1, 0)
11205 ? XEXP (x1, 1) : XEXP (x1, 0));
11207 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
11208 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
11209 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11210 return 2 + 2 * count_rtxs (x1)
11211 + count_rtxs (x == XEXP (x0, 0)
11212 ? XEXP (x0, 1) : XEXP (x0, 0));
11215 fmt = GET_RTX_FORMAT (code);
11216 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11217 if (fmt[i] == 'e')
11218 ret += count_rtxs (XEXP (x, i));
11220 return ret;
11223 /* Utility function for following routine. Called when X is part of a value
11224 being stored into last_set_value. Sets last_set_table_tick
11225 for each register mentioned. Similar to mention_regs in cse.c */
11227 static void
11228 update_table_tick (rtx x)
11230 enum rtx_code code = GET_CODE (x);
11231 const char *fmt = GET_RTX_FORMAT (code);
11232 int i;
11234 if (code == REG)
11236 unsigned int regno = REGNO (x);
11237 unsigned int endregno = END_REGNO (x);
11238 unsigned int r;
11240 for (r = regno; r < endregno; r++)
11242 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, r);
11243 rsp->last_set_table_tick = label_tick;
11246 return;
11249 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11250 /* Note that we can't have an "E" in values stored; see
11251 get_last_value_validate. */
11252 if (fmt[i] == 'e')
11254 /* Check for identical subexpressions. If x contains
11255 identical subexpression we only have to traverse one of
11256 them. */
11257 if (i == 0 && ARITHMETIC_P (x))
11259 /* Note that at this point x1 has already been
11260 processed. */
11261 rtx x0 = XEXP (x, 0);
11262 rtx x1 = XEXP (x, 1);
11264 /* If x0 and x1 are identical then there is no need to
11265 process x0. */
11266 if (x0 == x1)
11267 break;
11269 /* If x0 is identical to a subexpression of x1 then while
11270 processing x1, x0 has already been processed. Thus we
11271 are done with x. */
11272 if (ARITHMETIC_P (x1)
11273 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11274 break;
11276 /* If x1 is identical to a subexpression of x0 then we
11277 still have to process the rest of x0. */
11278 if (ARITHMETIC_P (x0)
11279 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11281 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
11282 break;
11286 update_table_tick (XEXP (x, i));
11290 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11291 are saying that the register is clobbered and we no longer know its
11292 value. If INSN is zero, don't update reg_stat[].last_set; this is
11293 only permitted with VALUE also zero and is used to invalidate the
11294 register. */
11296 static void
11297 record_value_for_reg (rtx reg, rtx insn, rtx value)
11299 unsigned int regno = REGNO (reg);
11300 unsigned int endregno = END_REGNO (reg);
11301 unsigned int i;
11302 reg_stat_type *rsp;
11304 /* If VALUE contains REG and we have a previous value for REG, substitute
11305 the previous value. */
11306 if (value && insn && reg_overlap_mentioned_p (reg, value))
11308 rtx tem;
11310 /* Set things up so get_last_value is allowed to see anything set up to
11311 our insn. */
11312 subst_low_luid = DF_INSN_LUID (insn);
11313 tem = get_last_value (reg);
11315 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11316 it isn't going to be useful and will take a lot of time to process,
11317 so just use the CLOBBER. */
11319 if (tem)
11321 if (ARITHMETIC_P (tem)
11322 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11323 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11324 tem = XEXP (tem, 0);
11325 else if (count_occurrences (value, reg, 1) >= 2)
11327 /* If there are two or more occurrences of REG in VALUE,
11328 prevent the value from growing too much. */
11329 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
11330 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
11333 value = replace_rtx (copy_rtx (value), reg, tem);
11337 /* For each register modified, show we don't know its value, that
11338 we don't know about its bitwise content, that its value has been
11339 updated, and that we don't know the location of the death of the
11340 register. */
11341 for (i = regno; i < endregno; i++)
11343 rsp = VEC_index (reg_stat_type, reg_stat, i);
11345 if (insn)
11346 rsp->last_set = insn;
11348 rsp->last_set_value = 0;
11349 rsp->last_set_mode = 0;
11350 rsp->last_set_nonzero_bits = 0;
11351 rsp->last_set_sign_bit_copies = 0;
11352 rsp->last_death = 0;
11353 rsp->truncated_to_mode = 0;
11356 /* Mark registers that are being referenced in this value. */
11357 if (value)
11358 update_table_tick (value);
11360 /* Now update the status of each register being set.
11361 If someone is using this register in this block, set this register
11362 to invalid since we will get confused between the two lives in this
11363 basic block. This makes using this register always invalid. In cse, we
11364 scan the table to invalidate all entries using this register, but this
11365 is too much work for us. */
11367 for (i = regno; i < endregno; i++)
11369 rsp = VEC_index (reg_stat_type, reg_stat, i);
11370 rsp->last_set_label = label_tick;
11371 if (!insn
11372 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
11373 rsp->last_set_invalid = 1;
11374 else
11375 rsp->last_set_invalid = 0;
11378 /* The value being assigned might refer to X (like in "x++;"). In that
11379 case, we must replace it with (clobber (const_int 0)) to prevent
11380 infinite loops. */
11381 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11382 if (value && ! get_last_value_validate (&value, insn,
11383 rsp->last_set_label, 0))
11385 value = copy_rtx (value);
11386 if (! get_last_value_validate (&value, insn,
11387 rsp->last_set_label, 1))
11388 value = 0;
11391 /* For the main register being modified, update the value, the mode, the
11392 nonzero bits, and the number of sign bit copies. */
11394 rsp->last_set_value = value;
11396 if (value)
11398 enum machine_mode mode = GET_MODE (reg);
11399 subst_low_luid = DF_INSN_LUID (insn);
11400 rsp->last_set_mode = mode;
11401 if (GET_MODE_CLASS (mode) == MODE_INT
11402 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11403 mode = nonzero_bits_mode;
11404 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
11405 rsp->last_set_sign_bit_copies
11406 = num_sign_bit_copies (value, GET_MODE (reg));
11410 /* Called via note_stores from record_dead_and_set_regs to handle one
11411 SET or CLOBBER in an insn. DATA is the instruction in which the
11412 set is occurring. */
11414 static void
11415 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
11417 rtx record_dead_insn = (rtx) data;
11419 if (GET_CODE (dest) == SUBREG)
11420 dest = SUBREG_REG (dest);
11422 if (!record_dead_insn)
11424 if (REG_P (dest))
11425 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
11426 return;
11429 if (REG_P (dest))
11431 /* If we are setting the whole register, we know its value. Otherwise
11432 show that we don't know the value. We can handle SUBREG in
11433 some cases. */
11434 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11435 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11436 else if (GET_CODE (setter) == SET
11437 && GET_CODE (SET_DEST (setter)) == SUBREG
11438 && SUBREG_REG (SET_DEST (setter)) == dest
11439 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11440 && subreg_lowpart_p (SET_DEST (setter)))
11441 record_value_for_reg (dest, record_dead_insn,
11442 gen_lowpart (GET_MODE (dest),
11443 SET_SRC (setter)));
11444 else
11445 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11447 else if (MEM_P (dest)
11448 /* Ignore pushes, they clobber nothing. */
11449 && ! push_operand (dest, GET_MODE (dest)))
11450 mem_last_set = DF_INSN_LUID (record_dead_insn);
11453 /* Update the records of when each REG was most recently set or killed
11454 for the things done by INSN. This is the last thing done in processing
11455 INSN in the combiner loop.
11457 We update reg_stat[], in particular fields last_set, last_set_value,
11458 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
11459 last_death, and also the similar information mem_last_set (which insn
11460 most recently modified memory) and last_call_luid (which insn was the
11461 most recent subroutine call). */
11463 static void
11464 record_dead_and_set_regs (rtx insn)
11466 rtx link;
11467 unsigned int i;
11469 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11471 if (REG_NOTE_KIND (link) == REG_DEAD
11472 && REG_P (XEXP (link, 0)))
11474 unsigned int regno = REGNO (XEXP (link, 0));
11475 unsigned int endregno = END_REGNO (XEXP (link, 0));
11477 for (i = regno; i < endregno; i++)
11479 reg_stat_type *rsp;
11481 rsp = VEC_index (reg_stat_type, reg_stat, i);
11482 rsp->last_death = insn;
11485 else if (REG_NOTE_KIND (link) == REG_INC)
11486 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11489 if (CALL_P (insn))
11491 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11492 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11494 reg_stat_type *rsp;
11496 rsp = VEC_index (reg_stat_type, reg_stat, i);
11497 rsp->last_set_invalid = 1;
11498 rsp->last_set = insn;
11499 rsp->last_set_value = 0;
11500 rsp->last_set_mode = 0;
11501 rsp->last_set_nonzero_bits = 0;
11502 rsp->last_set_sign_bit_copies = 0;
11503 rsp->last_death = 0;
11504 rsp->truncated_to_mode = 0;
11507 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
11509 /* We can't combine into a call pattern. Remember, though, that
11510 the return value register is set at this LUID. We could
11511 still replace a register with the return value from the
11512 wrong subroutine call! */
11513 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
11515 else
11516 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11519 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11520 register present in the SUBREG, so for each such SUBREG go back and
11521 adjust nonzero and sign bit information of the registers that are
11522 known to have some zero/sign bits set.
11524 This is needed because when combine blows the SUBREGs away, the
11525 information on zero/sign bits is lost and further combines can be
11526 missed because of that. */
11528 static void
11529 record_promoted_value (rtx insn, rtx subreg)
11531 rtx links, set;
11532 unsigned int regno = REGNO (SUBREG_REG (subreg));
11533 enum machine_mode mode = GET_MODE (subreg);
11535 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11536 return;
11538 for (links = LOG_LINKS (insn); links;)
11540 reg_stat_type *rsp;
11542 insn = XEXP (links, 0);
11543 set = single_set (insn);
11545 if (! set || !REG_P (SET_DEST (set))
11546 || REGNO (SET_DEST (set)) != regno
11547 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11549 links = XEXP (links, 1);
11550 continue;
11553 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11554 if (rsp->last_set == insn)
11556 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11557 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
11560 if (REG_P (SET_SRC (set)))
11562 regno = REGNO (SET_SRC (set));
11563 links = LOG_LINKS (insn);
11565 else
11566 break;
11570 /* Check if X, a register, is known to contain a value already
11571 truncated to MODE. In this case we can use a subreg to refer to
11572 the truncated value even though in the generic case we would need
11573 an explicit truncation. */
11575 static bool
11576 reg_truncated_to_mode (enum machine_mode mode, const_rtx x)
11578 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
11579 enum machine_mode truncated = rsp->truncated_to_mode;
11581 if (truncated == 0
11582 || rsp->truncation_label < label_tick_ebb_start)
11583 return false;
11584 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
11585 return true;
11586 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
11587 GET_MODE_BITSIZE (truncated)))
11588 return true;
11589 return false;
11592 /* X is a REG or a SUBREG. If X is some sort of a truncation record
11593 it. For non-TRULY_NOOP_TRUNCATION targets we might be able to turn
11594 a truncate into a subreg using this information. */
11596 static void
11597 record_truncated_value (rtx x)
11599 enum machine_mode truncated_mode;
11600 reg_stat_type *rsp;
11602 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
11604 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
11605 truncated_mode = GET_MODE (x);
11607 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
11608 return;
11610 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (truncated_mode),
11611 GET_MODE_BITSIZE (original_mode)))
11612 return;
11614 x = SUBREG_REG (x);
11616 /* ??? For hard-regs we now record everything. We might be able to
11617 optimize this using last_set_mode. */
11618 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
11619 truncated_mode = GET_MODE (x);
11620 else
11621 return;
11623 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
11624 if (rsp->truncated_to_mode == 0
11625 || rsp->truncation_label < label_tick_ebb_start
11626 || (GET_MODE_SIZE (truncated_mode)
11627 < GET_MODE_SIZE (rsp->truncated_to_mode)))
11629 rsp->truncated_to_mode = truncated_mode;
11630 rsp->truncation_label = label_tick;
11634 /* Scan X for promoted SUBREGs and truncated REGs. For each one
11635 found, note what it implies to the registers used in it. */
11637 static void
11638 check_conversions (rtx insn, rtx x)
11640 if (GET_CODE (x) == SUBREG || REG_P (x))
11642 if (GET_CODE (x) == SUBREG
11643 && SUBREG_PROMOTED_VAR_P (x)
11644 && REG_P (SUBREG_REG (x)))
11645 record_promoted_value (insn, x);
11647 record_truncated_value (x);
11649 else
11651 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11652 int i, j;
11654 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11655 switch (format[i])
11657 case 'e':
11658 check_conversions (insn, XEXP (x, i));
11659 break;
11660 case 'V':
11661 case 'E':
11662 if (XVEC (x, i) != 0)
11663 for (j = 0; j < XVECLEN (x, i); j++)
11664 check_conversions (insn, XVECEXP (x, i, j));
11665 break;
11670 /* Utility routine for the following function. Verify that all the registers
11671 mentioned in *LOC are valid when *LOC was part of a value set when
11672 label_tick == TICK. Return 0 if some are not.
11674 If REPLACE is nonzero, replace the invalid reference with
11675 (clobber (const_int 0)) and return 1. This replacement is useful because
11676 we often can get useful information about the form of a value (e.g., if
11677 it was produced by a shift that always produces -1 or 0) even though
11678 we don't know exactly what registers it was produced from. */
11680 static int
11681 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11683 rtx x = *loc;
11684 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11685 int len = GET_RTX_LENGTH (GET_CODE (x));
11686 int i;
11688 if (REG_P (x))
11690 unsigned int regno = REGNO (x);
11691 unsigned int endregno = END_REGNO (x);
11692 unsigned int j;
11694 for (j = regno; j < endregno; j++)
11696 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, j);
11697 if (rsp->last_set_invalid
11698 /* If this is a pseudo-register that was only set once and not
11699 live at the beginning of the function, it is always valid. */
11700 || (! (regno >= FIRST_PSEUDO_REGISTER
11701 && REG_N_SETS (regno) == 1
11702 && (!REGNO_REG_SET_P
11703 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno)))
11704 && rsp->last_set_label > tick))
11706 if (replace)
11707 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11708 return replace;
11712 return 1;
11714 /* If this is a memory reference, make sure that there were
11715 no stores after it that might have clobbered the value. We don't
11716 have alias info, so we assume any store invalidates it. */
11717 else if (MEM_P (x) && !MEM_READONLY_P (x)
11718 && DF_INSN_LUID (insn) <= mem_last_set)
11720 if (replace)
11721 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11722 return replace;
11725 for (i = 0; i < len; i++)
11727 if (fmt[i] == 'e')
11729 /* Check for identical subexpressions. If x contains
11730 identical subexpression we only have to traverse one of
11731 them. */
11732 if (i == 1 && ARITHMETIC_P (x))
11734 /* Note that at this point x0 has already been checked
11735 and found valid. */
11736 rtx x0 = XEXP (x, 0);
11737 rtx x1 = XEXP (x, 1);
11739 /* If x0 and x1 are identical then x is also valid. */
11740 if (x0 == x1)
11741 return 1;
11743 /* If x1 is identical to a subexpression of x0 then
11744 while checking x0, x1 has already been checked. Thus
11745 it is valid and so as x. */
11746 if (ARITHMETIC_P (x0)
11747 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11748 return 1;
11750 /* If x0 is identical to a subexpression of x1 then x is
11751 valid iff the rest of x1 is valid. */
11752 if (ARITHMETIC_P (x1)
11753 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11754 return
11755 get_last_value_validate (&XEXP (x1,
11756 x0 == XEXP (x1, 0) ? 1 : 0),
11757 insn, tick, replace);
11760 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11761 replace) == 0)
11762 return 0;
11764 /* Don't bother with these. They shouldn't occur anyway. */
11765 else if (fmt[i] == 'E')
11766 return 0;
11769 /* If we haven't found a reason for it to be invalid, it is valid. */
11770 return 1;
11773 /* Get the last value assigned to X, if known. Some registers
11774 in the value may be replaced with (clobber (const_int 0)) if their value
11775 is known longer known reliably. */
11777 static rtx
11778 get_last_value (const_rtx x)
11780 unsigned int regno;
11781 rtx value;
11782 reg_stat_type *rsp;
11784 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11785 then convert it to the desired mode. If this is a paradoxical SUBREG,
11786 we cannot predict what values the "extra" bits might have. */
11787 if (GET_CODE (x) == SUBREG
11788 && subreg_lowpart_p (x)
11789 && (GET_MODE_SIZE (GET_MODE (x))
11790 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11791 && (value = get_last_value (SUBREG_REG (x))) != 0)
11792 return gen_lowpart (GET_MODE (x), value);
11794 if (!REG_P (x))
11795 return 0;
11797 regno = REGNO (x);
11798 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11799 value = rsp->last_set_value;
11801 /* If we don't have a value, or if it isn't for this basic block and
11802 it's either a hard register, set more than once, or it's a live
11803 at the beginning of the function, return 0.
11805 Because if it's not live at the beginning of the function then the reg
11806 is always set before being used (is never used without being set).
11807 And, if it's set only once, and it's always set before use, then all
11808 uses must have the same last value, even if it's not from this basic
11809 block. */
11811 if (value == 0
11812 || (rsp->last_set_label < label_tick_ebb_start
11813 && (regno < FIRST_PSEUDO_REGISTER
11814 || REG_N_SETS (regno) != 1
11815 || REGNO_REG_SET_P
11816 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno))))
11817 return 0;
11819 /* If the value was set in a later insn than the ones we are processing,
11820 we can't use it even if the register was only set once. */
11821 if (rsp->last_set_label == label_tick
11822 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
11823 return 0;
11825 /* If the value has all its registers valid, return it. */
11826 if (get_last_value_validate (&value, rsp->last_set,
11827 rsp->last_set_label, 0))
11828 return value;
11830 /* Otherwise, make a copy and replace any invalid register with
11831 (clobber (const_int 0)). If that fails for some reason, return 0. */
11833 value = copy_rtx (value);
11834 if (get_last_value_validate (&value, rsp->last_set,
11835 rsp->last_set_label, 1))
11836 return value;
11838 return 0;
11841 /* Return nonzero if expression X refers to a REG or to memory
11842 that is set in an instruction more recent than FROM_LUID. */
11844 static int
11845 use_crosses_set_p (const_rtx x, int from_luid)
11847 const char *fmt;
11848 int i;
11849 enum rtx_code code = GET_CODE (x);
11851 if (code == REG)
11853 unsigned int regno = REGNO (x);
11854 unsigned endreg = END_REGNO (x);
11856 #ifdef PUSH_ROUNDING
11857 /* Don't allow uses of the stack pointer to be moved,
11858 because we don't know whether the move crosses a push insn. */
11859 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11860 return 1;
11861 #endif
11862 for (; regno < endreg; regno++)
11864 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
11865 if (rsp->last_set
11866 && rsp->last_set_label == label_tick
11867 && DF_INSN_LUID (rsp->last_set) > from_luid)
11868 return 1;
11870 return 0;
11873 if (code == MEM && mem_last_set > from_luid)
11874 return 1;
11876 fmt = GET_RTX_FORMAT (code);
11878 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11880 if (fmt[i] == 'E')
11882 int j;
11883 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11884 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
11885 return 1;
11887 else if (fmt[i] == 'e'
11888 && use_crosses_set_p (XEXP (x, i), from_luid))
11889 return 1;
11891 return 0;
11894 /* Define three variables used for communication between the following
11895 routines. */
11897 static unsigned int reg_dead_regno, reg_dead_endregno;
11898 static int reg_dead_flag;
11900 /* Function called via note_stores from reg_dead_at_p.
11902 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11903 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11905 static void
11906 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
11908 unsigned int regno, endregno;
11910 if (!REG_P (dest))
11911 return;
11913 regno = REGNO (dest);
11914 endregno = END_REGNO (dest);
11915 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11916 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11919 /* Return nonzero if REG is known to be dead at INSN.
11921 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11922 referencing REG, it is dead. If we hit a SET referencing REG, it is
11923 live. Otherwise, see if it is live or dead at the start of the basic
11924 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11925 must be assumed to be always live. */
11927 static int
11928 reg_dead_at_p (rtx reg, rtx insn)
11930 basic_block block;
11931 unsigned int i;
11933 /* Set variables for reg_dead_at_p_1. */
11934 reg_dead_regno = REGNO (reg);
11935 reg_dead_endregno = END_REGNO (reg);
11937 reg_dead_flag = 0;
11939 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
11940 we allow the machine description to decide whether use-and-clobber
11941 patterns are OK. */
11942 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11944 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11945 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
11946 return 0;
11949 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11950 beginning of function. */
11951 for (; insn && !LABEL_P (insn) && !BARRIER_P (insn);
11952 insn = prev_nonnote_insn (insn))
11954 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11955 if (reg_dead_flag)
11956 return reg_dead_flag == 1 ? 1 : 0;
11958 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11959 return 1;
11962 /* Get the basic block that we were in. */
11963 if (insn == 0)
11964 block = ENTRY_BLOCK_PTR->next_bb;
11965 else
11967 FOR_EACH_BB (block)
11968 if (insn == BB_HEAD (block))
11969 break;
11971 if (block == EXIT_BLOCK_PTR)
11972 return 0;
11975 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11976 if (REGNO_REG_SET_P (df_get_live_in (block), i))
11977 return 0;
11979 return 1;
11982 /* Note hard registers in X that are used. */
11984 static void
11985 mark_used_regs_combine (rtx x)
11987 RTX_CODE code = GET_CODE (x);
11988 unsigned int regno;
11989 int i;
11991 switch (code)
11993 case LABEL_REF:
11994 case SYMBOL_REF:
11995 case CONST_INT:
11996 case CONST:
11997 case CONST_DOUBLE:
11998 case CONST_VECTOR:
11999 case PC:
12000 case ADDR_VEC:
12001 case ADDR_DIFF_VEC:
12002 case ASM_INPUT:
12003 #ifdef HAVE_cc0
12004 /* CC0 must die in the insn after it is set, so we don't need to take
12005 special note of it here. */
12006 case CC0:
12007 #endif
12008 return;
12010 case CLOBBER:
12011 /* If we are clobbering a MEM, mark any hard registers inside the
12012 address as used. */
12013 if (MEM_P (XEXP (x, 0)))
12014 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12015 return;
12017 case REG:
12018 regno = REGNO (x);
12019 /* A hard reg in a wide mode may really be multiple registers.
12020 If so, mark all of them just like the first. */
12021 if (regno < FIRST_PSEUDO_REGISTER)
12023 /* None of this applies to the stack, frame or arg pointers. */
12024 if (regno == STACK_POINTER_REGNUM
12025 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
12026 || regno == HARD_FRAME_POINTER_REGNUM
12027 #endif
12028 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12029 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12030 #endif
12031 || regno == FRAME_POINTER_REGNUM)
12032 return;
12034 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
12036 return;
12038 case SET:
12040 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12041 the address. */
12042 rtx testreg = SET_DEST (x);
12044 while (GET_CODE (testreg) == SUBREG
12045 || GET_CODE (testreg) == ZERO_EXTRACT
12046 || GET_CODE (testreg) == STRICT_LOW_PART)
12047 testreg = XEXP (testreg, 0);
12049 if (MEM_P (testreg))
12050 mark_used_regs_combine (XEXP (testreg, 0));
12052 mark_used_regs_combine (SET_SRC (x));
12054 return;
12056 default:
12057 break;
12060 /* Recursively scan the operands of this expression. */
12063 const char *fmt = GET_RTX_FORMAT (code);
12065 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12067 if (fmt[i] == 'e')
12068 mark_used_regs_combine (XEXP (x, i));
12069 else if (fmt[i] == 'E')
12071 int j;
12073 for (j = 0; j < XVECLEN (x, i); j++)
12074 mark_used_regs_combine (XVECEXP (x, i, j));
12080 /* Remove register number REGNO from the dead registers list of INSN.
12082 Return the note used to record the death, if there was one. */
12085 remove_death (unsigned int regno, rtx insn)
12087 rtx note = find_regno_note (insn, REG_DEAD, regno);
12089 if (note)
12090 remove_note (insn, note);
12092 return note;
12095 /* For each register (hardware or pseudo) used within expression X, if its
12096 death is in an instruction with luid between FROM_LUID (inclusive) and
12097 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12098 list headed by PNOTES.
12100 That said, don't move registers killed by maybe_kill_insn.
12102 This is done when X is being merged by combination into TO_INSN. These
12103 notes will then be distributed as needed. */
12105 static void
12106 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx to_insn,
12107 rtx *pnotes)
12109 const char *fmt;
12110 int len, i;
12111 enum rtx_code code = GET_CODE (x);
12113 if (code == REG)
12115 unsigned int regno = REGNO (x);
12116 rtx where_dead = VEC_index (reg_stat_type, reg_stat, regno)->last_death;
12118 /* Don't move the register if it gets killed in between from and to. */
12119 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12120 && ! reg_referenced_p (x, maybe_kill_insn))
12121 return;
12123 if (where_dead
12124 && DF_INSN_LUID (where_dead) >= from_luid
12125 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
12127 rtx note = remove_death (regno, where_dead);
12129 /* It is possible for the call above to return 0. This can occur
12130 when last_death points to I2 or I1 that we combined with.
12131 In that case make a new note.
12133 We must also check for the case where X is a hard register
12134 and NOTE is a death note for a range of hard registers
12135 including X. In that case, we must put REG_DEAD notes for
12136 the remaining registers in place of NOTE. */
12138 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12139 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12140 > GET_MODE_SIZE (GET_MODE (x))))
12142 unsigned int deadregno = REGNO (XEXP (note, 0));
12143 unsigned int deadend = END_HARD_REGNO (XEXP (note, 0));
12144 unsigned int ourend = END_HARD_REGNO (x);
12145 unsigned int i;
12147 for (i = deadregno; i < deadend; i++)
12148 if (i < regno || i >= ourend)
12149 REG_NOTES (where_dead)
12150 = gen_rtx_EXPR_LIST (REG_DEAD,
12151 regno_reg_rtx[i],
12152 REG_NOTES (where_dead));
12155 /* If we didn't find any note, or if we found a REG_DEAD note that
12156 covers only part of the given reg, and we have a multi-reg hard
12157 register, then to be safe we must check for REG_DEAD notes
12158 for each register other than the first. They could have
12159 their own REG_DEAD notes lying around. */
12160 else if ((note == 0
12161 || (note != 0
12162 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12163 < GET_MODE_SIZE (GET_MODE (x)))))
12164 && regno < FIRST_PSEUDO_REGISTER
12165 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
12167 unsigned int ourend = END_HARD_REGNO (x);
12168 unsigned int i, offset;
12169 rtx oldnotes = 0;
12171 if (note)
12172 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
12173 else
12174 offset = 1;
12176 for (i = regno + offset; i < ourend; i++)
12177 move_deaths (regno_reg_rtx[i],
12178 maybe_kill_insn, from_luid, to_insn, &oldnotes);
12181 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
12183 XEXP (note, 1) = *pnotes;
12184 *pnotes = note;
12186 else
12187 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
12190 return;
12193 else if (GET_CODE (x) == SET)
12195 rtx dest = SET_DEST (x);
12197 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
12199 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
12200 that accesses one word of a multi-word item, some
12201 piece of everything register in the expression is used by
12202 this insn, so remove any old death. */
12203 /* ??? So why do we test for equality of the sizes? */
12205 if (GET_CODE (dest) == ZERO_EXTRACT
12206 || GET_CODE (dest) == STRICT_LOW_PART
12207 || (GET_CODE (dest) == SUBREG
12208 && (((GET_MODE_SIZE (GET_MODE (dest))
12209 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
12210 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
12211 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
12213 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
12214 return;
12217 /* If this is some other SUBREG, we know it replaces the entire
12218 value, so use that as the destination. */
12219 if (GET_CODE (dest) == SUBREG)
12220 dest = SUBREG_REG (dest);
12222 /* If this is a MEM, adjust deaths of anything used in the address.
12223 For a REG (the only other possibility), the entire value is
12224 being replaced so the old value is not used in this insn. */
12226 if (MEM_P (dest))
12227 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
12228 to_insn, pnotes);
12229 return;
12232 else if (GET_CODE (x) == CLOBBER)
12233 return;
12235 len = GET_RTX_LENGTH (code);
12236 fmt = GET_RTX_FORMAT (code);
12238 for (i = 0; i < len; i++)
12240 if (fmt[i] == 'E')
12242 int j;
12243 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12244 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
12245 to_insn, pnotes);
12247 else if (fmt[i] == 'e')
12248 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
12252 /* Return 1 if X is the target of a bit-field assignment in BODY, the
12253 pattern of an insn. X must be a REG. */
12255 static int
12256 reg_bitfield_target_p (rtx x, rtx body)
12258 int i;
12260 if (GET_CODE (body) == SET)
12262 rtx dest = SET_DEST (body);
12263 rtx target;
12264 unsigned int regno, tregno, endregno, endtregno;
12266 if (GET_CODE (dest) == ZERO_EXTRACT)
12267 target = XEXP (dest, 0);
12268 else if (GET_CODE (dest) == STRICT_LOW_PART)
12269 target = SUBREG_REG (XEXP (dest, 0));
12270 else
12271 return 0;
12273 if (GET_CODE (target) == SUBREG)
12274 target = SUBREG_REG (target);
12276 if (!REG_P (target))
12277 return 0;
12279 tregno = REGNO (target), regno = REGNO (x);
12280 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
12281 return target == x;
12283 endtregno = end_hard_regno (GET_MODE (target), tregno);
12284 endregno = end_hard_regno (GET_MODE (x), regno);
12286 return endregno > tregno && regno < endtregno;
12289 else if (GET_CODE (body) == PARALLEL)
12290 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
12291 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
12292 return 1;
12294 return 0;
12297 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
12298 as appropriate. I3 and I2 are the insns resulting from the combination
12299 insns including FROM (I2 may be zero).
12301 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
12302 not need REG_DEAD notes because they are being substituted for. This
12303 saves searching in the most common cases.
12305 Each note in the list is either ignored or placed on some insns, depending
12306 on the type of note. */
12308 static void
12309 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
12310 rtx elim_i1)
12312 rtx note, next_note;
12313 rtx tem;
12315 for (note = notes; note; note = next_note)
12317 rtx place = 0, place2 = 0;
12319 next_note = XEXP (note, 1);
12320 switch (REG_NOTE_KIND (note))
12322 case REG_BR_PROB:
12323 case REG_BR_PRED:
12324 /* Doesn't matter much where we put this, as long as it's somewhere.
12325 It is preferable to keep these notes on branches, which is most
12326 likely to be i3. */
12327 place = i3;
12328 break;
12330 case REG_VALUE_PROFILE:
12331 /* Just get rid of this note, as it is unused later anyway. */
12332 break;
12334 case REG_NON_LOCAL_GOTO:
12335 if (JUMP_P (i3))
12336 place = i3;
12337 else
12339 gcc_assert (i2 && JUMP_P (i2));
12340 place = i2;
12342 break;
12344 case REG_EH_REGION:
12345 /* These notes must remain with the call or trapping instruction. */
12346 if (CALL_P (i3))
12347 place = i3;
12348 else if (i2 && CALL_P (i2))
12349 place = i2;
12350 else
12352 gcc_assert (flag_non_call_exceptions);
12353 if (may_trap_p (i3))
12354 place = i3;
12355 else if (i2 && may_trap_p (i2))
12356 place = i2;
12357 /* ??? Otherwise assume we've combined things such that we
12358 can now prove that the instructions can't trap. Drop the
12359 note in this case. */
12361 break;
12363 case REG_NORETURN:
12364 case REG_SETJMP:
12365 /* These notes must remain with the call. It should not be
12366 possible for both I2 and I3 to be a call. */
12367 if (CALL_P (i3))
12368 place = i3;
12369 else
12371 gcc_assert (i2 && CALL_P (i2));
12372 place = i2;
12374 break;
12376 case REG_UNUSED:
12377 /* Any clobbers for i3 may still exist, and so we must process
12378 REG_UNUSED notes from that insn.
12380 Any clobbers from i2 or i1 can only exist if they were added by
12381 recog_for_combine. In that case, recog_for_combine created the
12382 necessary REG_UNUSED notes. Trying to keep any original
12383 REG_UNUSED notes from these insns can cause incorrect output
12384 if it is for the same register as the original i3 dest.
12385 In that case, we will notice that the register is set in i3,
12386 and then add a REG_UNUSED note for the destination of i3, which
12387 is wrong. However, it is possible to have REG_UNUSED notes from
12388 i2 or i1 for register which were both used and clobbered, so
12389 we keep notes from i2 or i1 if they will turn into REG_DEAD
12390 notes. */
12392 /* If this register is set or clobbered in I3, put the note there
12393 unless there is one already. */
12394 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12396 if (from_insn != i3)
12397 break;
12399 if (! (REG_P (XEXP (note, 0))
12400 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12401 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12402 place = i3;
12404 /* Otherwise, if this register is used by I3, then this register
12405 now dies here, so we must put a REG_DEAD note here unless there
12406 is one already. */
12407 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12408 && ! (REG_P (XEXP (note, 0))
12409 ? find_regno_note (i3, REG_DEAD,
12410 REGNO (XEXP (note, 0)))
12411 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12413 PUT_REG_NOTE_KIND (note, REG_DEAD);
12414 place = i3;
12416 break;
12418 case REG_EQUAL:
12419 case REG_EQUIV:
12420 case REG_NOALIAS:
12421 /* These notes say something about results of an insn. We can
12422 only support them if they used to be on I3 in which case they
12423 remain on I3. Otherwise they are ignored.
12425 If the note refers to an expression that is not a constant, we
12426 must also ignore the note since we cannot tell whether the
12427 equivalence is still true. It might be possible to do
12428 slightly better than this (we only have a problem if I2DEST
12429 or I1DEST is present in the expression), but it doesn't
12430 seem worth the trouble. */
12432 if (from_insn == i3
12433 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12434 place = i3;
12435 break;
12437 case REG_INC:
12438 case REG_NO_CONFLICT:
12439 /* These notes say something about how a register is used. They must
12440 be present on any use of the register in I2 or I3. */
12441 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12442 place = i3;
12444 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12446 if (place)
12447 place2 = i2;
12448 else
12449 place = i2;
12451 break;
12453 case REG_LABEL_TARGET:
12454 case REG_LABEL_OPERAND:
12455 /* This can show up in several ways -- either directly in the
12456 pattern, or hidden off in the constant pool with (or without?)
12457 a REG_EQUAL note. */
12458 /* ??? Ignore the without-reg_equal-note problem for now. */
12459 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12460 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12461 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12462 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12463 place = i3;
12465 if (i2
12466 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12467 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12468 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12469 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12471 if (place)
12472 place2 = i2;
12473 else
12474 place = i2;
12477 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
12478 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
12479 there. */
12480 if (place && JUMP_P (place)
12481 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
12482 && (JUMP_LABEL (place) == NULL
12483 || JUMP_LABEL (place) == XEXP (note, 0)))
12485 rtx label = JUMP_LABEL (place);
12487 if (!label)
12488 JUMP_LABEL (place) = XEXP (note, 0);
12489 else if (LABEL_P (label))
12490 LABEL_NUSES (label)--;
12493 if (place2 && JUMP_P (place2)
12494 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
12495 && (JUMP_LABEL (place2) == NULL
12496 || JUMP_LABEL (place2) == XEXP (note, 0)))
12498 rtx label = JUMP_LABEL (place2);
12500 if (!label)
12501 JUMP_LABEL (place2) = XEXP (note, 0);
12502 else if (LABEL_P (label))
12503 LABEL_NUSES (label)--;
12504 place2 = 0;
12506 break;
12508 case REG_NONNEG:
12509 /* This note says something about the value of a register prior
12510 to the execution of an insn. It is too much trouble to see
12511 if the note is still correct in all situations. It is better
12512 to simply delete it. */
12513 break;
12515 case REG_RETVAL:
12516 /* If the insn previously containing this note still exists,
12517 put it back where it was. Otherwise move it to the previous
12518 insn. Adjust the corresponding REG_LIBCALL note. */
12519 if (!NOTE_P (from_insn))
12520 place = from_insn;
12521 else
12523 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12524 place = prev_real_insn (from_insn);
12525 if (tem && place)
12526 XEXP (tem, 0) = place;
12527 /* If we're deleting the last remaining instruction of a
12528 libcall sequence, don't add the notes. */
12529 else if (XEXP (note, 0) == from_insn)
12530 tem = place = 0;
12531 /* Don't add the dangling REG_RETVAL note. */
12532 else if (! tem)
12533 place = 0;
12535 break;
12537 case REG_LIBCALL:
12538 /* This is handled similarly to REG_RETVAL. */
12539 if (!NOTE_P (from_insn))
12540 place = from_insn;
12541 else
12543 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12544 place = next_real_insn (from_insn);
12545 if (tem && place)
12546 XEXP (tem, 0) = place;
12547 /* If we're deleting the last remaining instruction of a
12548 libcall sequence, don't add the notes. */
12549 else if (XEXP (note, 0) == from_insn)
12550 tem = place = 0;
12551 /* Don't add the dangling REG_LIBCALL note. */
12552 else if (! tem)
12553 place = 0;
12555 break;
12557 case REG_DEAD:
12558 /* If we replaced the right hand side of FROM_INSN with a
12559 REG_EQUAL note, the original use of the dying register
12560 will not have been combined into I3 and I2. In such cases,
12561 FROM_INSN is guaranteed to be the first of the combined
12562 instructions, so we simply need to search back before
12563 FROM_INSN for the previous use or set of this register,
12564 then alter the notes there appropriately.
12566 If the register is used as an input in I3, it dies there.
12567 Similarly for I2, if it is nonzero and adjacent to I3.
12569 If the register is not used as an input in either I3 or I2
12570 and it is not one of the registers we were supposed to eliminate,
12571 there are two possibilities. We might have a non-adjacent I2
12572 or we might have somehow eliminated an additional register
12573 from a computation. For example, we might have had A & B where
12574 we discover that B will always be zero. In this case we will
12575 eliminate the reference to A.
12577 In both cases, we must search to see if we can find a previous
12578 use of A and put the death note there. */
12580 if (from_insn
12581 && from_insn == i2mod
12582 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
12583 tem = from_insn;
12584 else
12586 if (from_insn
12587 && CALL_P (from_insn)
12588 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12589 place = from_insn;
12590 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12591 place = i3;
12592 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12593 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12594 place = i2;
12595 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
12596 && !(i2mod
12597 && reg_overlap_mentioned_p (XEXP (note, 0),
12598 i2mod_old_rhs)))
12599 || rtx_equal_p (XEXP (note, 0), elim_i1))
12600 break;
12601 tem = i3;
12604 if (place == 0)
12606 basic_block bb = this_basic_block;
12608 for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
12610 if (! INSN_P (tem))
12612 if (tem == BB_HEAD (bb))
12613 break;
12614 continue;
12617 /* If the register is being set at TEM, see if that is all
12618 TEM is doing. If so, delete TEM. Otherwise, make this
12619 into a REG_UNUSED note instead. Don't delete sets to
12620 global register vars. */
12621 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
12622 || !global_regs[REGNO (XEXP (note, 0))])
12623 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
12625 rtx set = single_set (tem);
12626 rtx inner_dest = 0;
12627 #ifdef HAVE_cc0
12628 rtx cc0_setter = NULL_RTX;
12629 #endif
12631 if (set != 0)
12632 for (inner_dest = SET_DEST (set);
12633 (GET_CODE (inner_dest) == STRICT_LOW_PART
12634 || GET_CODE (inner_dest) == SUBREG
12635 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12636 inner_dest = XEXP (inner_dest, 0))
12639 /* Verify that it was the set, and not a clobber that
12640 modified the register.
12642 CC0 targets must be careful to maintain setter/user
12643 pairs. If we cannot delete the setter due to side
12644 effects, mark the user with an UNUSED note instead
12645 of deleting it. */
12647 if (set != 0 && ! side_effects_p (SET_SRC (set))
12648 && rtx_equal_p (XEXP (note, 0), inner_dest)
12649 #ifdef HAVE_cc0
12650 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12651 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12652 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12653 #endif
12656 /* Move the notes and links of TEM elsewhere.
12657 This might delete other dead insns recursively.
12658 First set the pattern to something that won't use
12659 any register. */
12660 rtx old_notes = REG_NOTES (tem);
12662 PATTERN (tem) = pc_rtx;
12663 REG_NOTES (tem) = NULL;
12665 distribute_notes (old_notes, tem, tem, NULL_RTX,
12666 NULL_RTX, NULL_RTX);
12667 distribute_links (LOG_LINKS (tem));
12669 SET_INSN_DELETED (tem);
12671 #ifdef HAVE_cc0
12672 /* Delete the setter too. */
12673 if (cc0_setter)
12675 PATTERN (cc0_setter) = pc_rtx;
12676 old_notes = REG_NOTES (cc0_setter);
12677 REG_NOTES (cc0_setter) = NULL;
12679 distribute_notes (old_notes, cc0_setter,
12680 cc0_setter, NULL_RTX,
12681 NULL_RTX, NULL_RTX);
12682 distribute_links (LOG_LINKS (cc0_setter));
12684 SET_INSN_DELETED (cc0_setter);
12686 #endif
12688 else
12690 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12692 /* If there isn't already a REG_UNUSED note, put one
12693 here. Do not place a REG_DEAD note, even if
12694 the register is also used here; that would not
12695 match the algorithm used in lifetime analysis
12696 and can cause the consistency check in the
12697 scheduler to fail. */
12698 if (! find_regno_note (tem, REG_UNUSED,
12699 REGNO (XEXP (note, 0))))
12700 place = tem;
12701 break;
12704 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12705 || (CALL_P (tem)
12706 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12708 place = tem;
12710 /* If we are doing a 3->2 combination, and we have a
12711 register which formerly died in i3 and was not used
12712 by i2, which now no longer dies in i3 and is used in
12713 i2 but does not die in i2, and place is between i2
12714 and i3, then we may need to move a link from place to
12715 i2. */
12716 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
12717 && from_insn
12718 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
12719 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12721 rtx links = LOG_LINKS (place);
12722 LOG_LINKS (place) = 0;
12723 distribute_links (links);
12725 break;
12728 if (tem == BB_HEAD (bb))
12729 break;
12734 /* If the register is set or already dead at PLACE, we needn't do
12735 anything with this note if it is still a REG_DEAD note.
12736 We check here if it is set at all, not if is it totally replaced,
12737 which is what `dead_or_set_p' checks, so also check for it being
12738 set partially. */
12740 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12742 unsigned int regno = REGNO (XEXP (note, 0));
12743 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
12745 if (dead_or_set_p (place, XEXP (note, 0))
12746 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12748 /* Unless the register previously died in PLACE, clear
12749 last_death. [I no longer understand why this is
12750 being done.] */
12751 if (rsp->last_death != place)
12752 rsp->last_death = 0;
12753 place = 0;
12755 else
12756 rsp->last_death = place;
12758 /* If this is a death note for a hard reg that is occupying
12759 multiple registers, ensure that we are still using all
12760 parts of the object. If we find a piece of the object
12761 that is unused, we must arrange for an appropriate REG_DEAD
12762 note to be added for it. However, we can't just emit a USE
12763 and tag the note to it, since the register might actually
12764 be dead; so we recourse, and the recursive call then finds
12765 the previous insn that used this register. */
12767 if (place && regno < FIRST_PSEUDO_REGISTER
12768 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12770 unsigned int endregno = END_HARD_REGNO (XEXP (note, 0));
12771 int all_used = 1;
12772 unsigned int i;
12774 for (i = regno; i < endregno; i++)
12775 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12776 && ! find_regno_fusage (place, USE, i))
12777 || dead_or_set_regno_p (place, i))
12778 all_used = 0;
12780 if (! all_used)
12782 /* Put only REG_DEAD notes for pieces that are
12783 not already dead or set. */
12785 for (i = regno; i < endregno;
12786 i += hard_regno_nregs[i][reg_raw_mode[i]])
12788 rtx piece = regno_reg_rtx[i];
12789 basic_block bb = this_basic_block;
12791 if (! dead_or_set_p (place, piece)
12792 && ! reg_bitfield_target_p (piece,
12793 PATTERN (place)))
12795 rtx new_note
12796 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12798 distribute_notes (new_note, place, place,
12799 NULL_RTX, NULL_RTX, NULL_RTX);
12801 else if (! refers_to_regno_p (i, i + 1,
12802 PATTERN (place), 0)
12803 && ! find_regno_fusage (place, USE, i))
12804 for (tem = PREV_INSN (place); ;
12805 tem = PREV_INSN (tem))
12807 if (! INSN_P (tem))
12809 if (tem == BB_HEAD (bb))
12810 break;
12811 continue;
12813 if (dead_or_set_p (tem, piece)
12814 || reg_bitfield_target_p (piece,
12815 PATTERN (tem)))
12817 REG_NOTES (tem)
12818 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12819 REG_NOTES (tem));
12820 break;
12826 place = 0;
12830 break;
12832 default:
12833 /* Any other notes should not be present at this point in the
12834 compilation. */
12835 gcc_unreachable ();
12838 if (place)
12840 XEXP (note, 1) = REG_NOTES (place);
12841 REG_NOTES (place) = note;
12844 if (place2)
12845 REG_NOTES (place2)
12846 = gen_rtx_fmt_ee (GET_CODE (note), REG_NOTE_KIND (note),
12847 XEXP (note, 0), REG_NOTES (place2));
12851 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12852 I3, I2, and I1 to new locations. This is also called to add a link
12853 pointing at I3 when I3's destination is changed. */
12855 static void
12856 distribute_links (rtx links)
12858 rtx link, next_link;
12860 for (link = links; link; link = next_link)
12862 rtx place = 0;
12863 rtx insn;
12864 rtx set, reg;
12866 next_link = XEXP (link, 1);
12868 /* If the insn that this link points to is a NOTE or isn't a single
12869 set, ignore it. In the latter case, it isn't clear what we
12870 can do other than ignore the link, since we can't tell which
12871 register it was for. Such links wouldn't be used by combine
12872 anyway.
12874 It is not possible for the destination of the target of the link to
12875 have been changed by combine. The only potential of this is if we
12876 replace I3, I2, and I1 by I3 and I2. But in that case the
12877 destination of I2 also remains unchanged. */
12879 if (NOTE_P (XEXP (link, 0))
12880 || (set = single_set (XEXP (link, 0))) == 0)
12881 continue;
12883 reg = SET_DEST (set);
12884 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12885 || GET_CODE (reg) == STRICT_LOW_PART)
12886 reg = XEXP (reg, 0);
12888 /* A LOG_LINK is defined as being placed on the first insn that uses
12889 a register and points to the insn that sets the register. Start
12890 searching at the next insn after the target of the link and stop
12891 when we reach a set of the register or the end of the basic block.
12893 Note that this correctly handles the link that used to point from
12894 I3 to I2. Also note that not much searching is typically done here
12895 since most links don't point very far away. */
12897 for (insn = NEXT_INSN (XEXP (link, 0));
12898 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12899 || BB_HEAD (this_basic_block->next_bb) != insn));
12900 insn = NEXT_INSN (insn))
12901 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12903 if (reg_referenced_p (reg, PATTERN (insn)))
12904 place = insn;
12905 break;
12907 else if (CALL_P (insn)
12908 && find_reg_fusage (insn, USE, reg))
12910 place = insn;
12911 break;
12913 else if (INSN_P (insn) && reg_set_p (reg, insn))
12914 break;
12916 /* If we found a place to put the link, place it there unless there
12917 is already a link to the same insn as LINK at that point. */
12919 if (place)
12921 rtx link2;
12923 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12924 if (XEXP (link2, 0) == XEXP (link, 0))
12925 break;
12927 if (link2 == 0)
12929 XEXP (link, 1) = LOG_LINKS (place);
12930 LOG_LINKS (place) = link;
12932 /* Set added_links_insn to the earliest insn we added a
12933 link to. */
12934 if (added_links_insn == 0
12935 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
12936 added_links_insn = place;
12942 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12943 Check whether the expression pointer to by LOC is a register or
12944 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12945 Otherwise return zero. */
12947 static int
12948 unmentioned_reg_p_1 (rtx *loc, void *expr)
12950 rtx x = *loc;
12952 if (x != NULL_RTX
12953 && (REG_P (x) || MEM_P (x))
12954 && ! reg_mentioned_p (x, (rtx) expr))
12955 return 1;
12956 return 0;
12959 /* Check for any register or memory mentioned in EQUIV that is not
12960 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
12961 of EXPR where some registers may have been replaced by constants. */
12963 static bool
12964 unmentioned_reg_p (rtx equiv, rtx expr)
12966 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
12969 void
12970 dump_combine_stats (FILE *file)
12972 fprintf
12973 (file,
12974 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12975 combine_attempts, combine_merges, combine_extras, combine_successes);
12978 void
12979 dump_combine_total_stats (FILE *file)
12981 fprintf
12982 (file,
12983 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12984 total_attempts, total_merges, total_extras, total_successes);
12987 static bool
12988 gate_handle_combine (void)
12990 return (optimize > 0);
12993 /* Try combining insns through substitution. */
12994 static unsigned int
12995 rest_of_handle_combine (void)
12997 int rebuild_jump_labels_after_combine;
12999 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
13000 df_note_add_problem ();
13001 df_analyze ();
13003 regstat_init_n_sets_and_refs ();
13005 rebuild_jump_labels_after_combine
13006 = combine_instructions (get_insns (), max_reg_num ());
13008 /* Combining insns may have turned an indirect jump into a
13009 direct jump. Rebuild the JUMP_LABEL fields of jumping
13010 instructions. */
13011 if (rebuild_jump_labels_after_combine)
13013 timevar_push (TV_JUMP);
13014 rebuild_jump_labels (get_insns ());
13015 cleanup_cfg (0);
13016 timevar_pop (TV_JUMP);
13019 regstat_free_n_sets_and_refs ();
13020 return 0;
13023 struct tree_opt_pass pass_combine =
13025 "combine", /* name */
13026 gate_handle_combine, /* gate */
13027 rest_of_handle_combine, /* execute */
13028 NULL, /* sub */
13029 NULL, /* next */
13030 0, /* static_pass_number */
13031 TV_COMBINE, /* tv_id */
13032 0, /* properties_required */
13033 0, /* properties_provided */
13034 0, /* properties_destroyed */
13035 0, /* todo_flags_start */
13036 TODO_dump_func |
13037 TODO_df_finish | TODO_verify_rtl_sharing |
13038 TODO_ggc_collect, /* todo_flags_finish */
13039 'c' /* letter */