gcc/
[official-gcc.git] / gcc / genrecog.c
blobb52baca038e2a4652889db10f1ec71fec19a0a65
1 /* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 /* This program is used to produce insn-recog.c, which contains a
24 function called `recog' plus its subroutines. These functions
25 contain a decision tree that recognizes whether an rtx, the
26 argument given to recog, is a valid instruction.
28 recog returns -1 if the rtx is not valid. If the rtx is valid,
29 recog returns a nonnegative number which is the insn code number
30 for the pattern that matched. This is the same as the order in the
31 machine description of the entry that matched. This number can be
32 used as an index into various insn_* tables, such as insn_template,
33 insn_outfun, and insn_n_operands (found in insn-output.c).
35 The third argument to recog is an optional pointer to an int. If
36 present, recog will accept a pattern if it matches except for
37 missing CLOBBER expressions at the end. In that case, the value
38 pointed to by the optional pointer will be set to the number of
39 CLOBBERs that need to be added (it should be initialized to zero by
40 the caller). If it is set nonzero, the caller should allocate a
41 PARALLEL of the appropriate size, copy the initial entries, and
42 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
44 This program also generates the function `split_insns', which
45 returns 0 if the rtl could not be split, or it returns the split
46 rtl as an INSN list.
48 This program also generates the function `peephole2_insns', which
49 returns 0 if the rtl could not be matched. If there was a match,
50 the new rtl is returned in an INSN list, and LAST_INSN will point
51 to the last recognized insn in the old sequence. */
53 #include "bconfig.h"
54 #include "system.h"
55 #include "coretypes.h"
56 #include "tm.h"
57 #include "rtl.h"
58 #include "errors.h"
59 #include "gensupport.h"
61 #define OUTPUT_LABEL(INDENT_STRING, LABEL_NUMBER) \
62 printf("%sL%d: ATTRIBUTE_UNUSED_LABEL\n", (INDENT_STRING), (LABEL_NUMBER))
64 /* A listhead of decision trees. The alternatives to a node are kept
65 in a doubly-linked list so we can easily add nodes to the proper
66 place when merging. */
68 struct decision_head
70 struct decision *first;
71 struct decision *last;
74 /* A single test. The two accept types aren't tests per-se, but
75 their equality (or lack thereof) does affect tree merging so
76 it is convenient to keep them here. */
78 struct decision_test
80 /* A linked list through the tests attached to a node. */
81 struct decision_test *next;
83 /* These types are roughly in the order in which we'd like to test them. */
84 enum decision_type
86 DT_num_insns,
87 DT_mode, DT_code, DT_veclen,
88 DT_elt_zero_int, DT_elt_one_int, DT_elt_zero_wide, DT_elt_zero_wide_safe,
89 DT_const_int,
90 DT_veclen_ge, DT_dup, DT_pred, DT_c_test,
91 DT_accept_op, DT_accept_insn
92 } type;
94 union
96 int num_insns; /* Number if insn in a define_peephole2. */
97 enum machine_mode mode; /* Machine mode of node. */
98 RTX_CODE code; /* Code to test. */
100 struct
102 const char *name; /* Predicate to call. */
103 const struct pred_data *data;
104 /* Optimization hints for this predicate. */
105 enum machine_mode mode; /* Machine mode for node. */
106 } pred;
108 const char *c_test; /* Additional test to perform. */
109 int veclen; /* Length of vector. */
110 int dup; /* Number of operand to compare against. */
111 HOST_WIDE_INT intval; /* Value for XINT for XWINT. */
112 int opno; /* Operand number matched. */
114 struct {
115 int code_number; /* Insn number matched. */
116 int lineno; /* Line number of the insn. */
117 int num_clobbers_to_add; /* Number of CLOBBERs to be added. */
118 } insn;
119 } u;
122 /* Data structure for decision tree for recognizing legitimate insns. */
124 struct decision
126 struct decision_head success; /* Nodes to test on success. */
127 struct decision *next; /* Node to test on failure. */
128 struct decision *prev; /* Node whose failure tests us. */
129 struct decision *afterward; /* Node to test on success,
130 but failure of successor nodes. */
132 const char *position; /* String denoting position in pattern. */
134 struct decision_test *tests; /* The tests for this node. */
136 int number; /* Node number, used for labels */
137 int subroutine_number; /* Number of subroutine this node starts */
138 int need_label; /* Label needs to be output. */
141 #define SUBROUTINE_THRESHOLD 100
143 static int next_subroutine_number;
145 /* We can write three types of subroutines: One for insn recognition,
146 one to split insns, and one for peephole-type optimizations. This
147 defines which type is being written. */
149 enum routine_type {
150 RECOG, SPLIT, PEEPHOLE2
153 #define IS_SPLIT(X) ((X) != RECOG)
155 /* Next available node number for tree nodes. */
157 static int next_number;
159 /* Next number to use as an insn_code. */
161 static int next_insn_code;
163 /* Record the highest depth we ever have so we know how many variables to
164 allocate in each subroutine we make. */
166 static int max_depth;
168 /* The line number of the start of the pattern currently being processed. */
169 static int pattern_lineno;
171 /* Count of errors. */
172 static int error_count;
174 /* Predicate handling.
176 We construct from the machine description a table mapping each
177 predicate to a list of the rtl codes it can possibly match. The
178 function 'maybe_both_true' uses it to deduce that there are no
179 expressions that can be matches by certain pairs of tree nodes.
180 Also, if a predicate can match only one code, we can hardwire that
181 code into the node testing the predicate.
183 Some predicates are flagged as special. validate_pattern will not
184 warn about modeless match_operand expressions if they have a
185 special predicate. Predicates that allow only constants are also
186 treated as special, for this purpose.
188 validate_pattern will warn about predicates that allow non-lvalues
189 when they appear in destination operands.
191 Calculating the set of rtx codes that can possibly be accepted by a
192 predicate expression EXP requires a three-state logic: any given
193 subexpression may definitively accept a code C (Y), definitively
194 reject a code C (N), or may have an indeterminate effect (I). N
195 and I is N; Y or I is Y; Y and I, N or I are both I. Here are full
196 truth tables.
198 a b a&b a|b
199 Y Y Y Y
200 N Y N Y
201 N N N N
202 I Y I Y
203 I N N I
204 I I I I
206 We represent Y with 1, N with 0, I with 2. If any code is left in
207 an I state by the complete expression, we must assume that that
208 code can be accepted. */
210 #define N 0
211 #define Y 1
212 #define I 2
214 #define TRISTATE_AND(a,b) \
215 ((a) == I ? ((b) == N ? N : I) : \
216 (b) == I ? ((a) == N ? N : I) : \
217 (a) && (b))
219 #define TRISTATE_OR(a,b) \
220 ((a) == I ? ((b) == Y ? Y : I) : \
221 (b) == I ? ((a) == Y ? Y : I) : \
222 (a) || (b))
224 #define TRISTATE_NOT(a) \
225 ((a) == I ? I : !(a))
227 /* 0 means no warning about that code yet, 1 means warned. */
228 static char did_you_mean_codes[NUM_RTX_CODE];
230 /* Recursively calculate the set of rtx codes accepted by the
231 predicate expression EXP, writing the result to CODES. */
232 static void
233 compute_predicate_codes (rtx exp, char codes[NUM_RTX_CODE])
235 char op0_codes[NUM_RTX_CODE];
236 char op1_codes[NUM_RTX_CODE];
237 char op2_codes[NUM_RTX_CODE];
238 int i;
240 switch (GET_CODE (exp))
242 case AND:
243 compute_predicate_codes (XEXP (exp, 0), op0_codes);
244 compute_predicate_codes (XEXP (exp, 1), op1_codes);
245 for (i = 0; i < NUM_RTX_CODE; i++)
246 codes[i] = TRISTATE_AND (op0_codes[i], op1_codes[i]);
247 break;
249 case IOR:
250 compute_predicate_codes (XEXP (exp, 0), op0_codes);
251 compute_predicate_codes (XEXP (exp, 1), op1_codes);
252 for (i = 0; i < NUM_RTX_CODE; i++)
253 codes[i] = TRISTATE_OR (op0_codes[i], op1_codes[i]);
254 break;
255 case NOT:
256 compute_predicate_codes (XEXP (exp, 0), op0_codes);
257 for (i = 0; i < NUM_RTX_CODE; i++)
258 codes[i] = TRISTATE_NOT (op0_codes[i]);
259 break;
261 case IF_THEN_ELSE:
262 /* a ? b : c accepts the same codes as (a & b) | (!a & c). */
263 compute_predicate_codes (XEXP (exp, 0), op0_codes);
264 compute_predicate_codes (XEXP (exp, 1), op1_codes);
265 compute_predicate_codes (XEXP (exp, 2), op2_codes);
266 for (i = 0; i < NUM_RTX_CODE; i++)
267 codes[i] = TRISTATE_OR (TRISTATE_AND (op0_codes[i], op1_codes[i]),
268 TRISTATE_AND (TRISTATE_NOT (op0_codes[i]),
269 op2_codes[i]));
270 break;
272 case MATCH_CODE:
273 /* MATCH_CODE allows a specified list of codes. However, if it
274 does not apply to the top level of the expression, it does not
275 constrain the set of codes for the top level. */
276 if (XSTR (exp, 1)[0] != '\0')
278 memset (codes, Y, NUM_RTX_CODE);
279 break;
282 memset (codes, N, NUM_RTX_CODE);
284 const char *next_code = XSTR (exp, 0);
285 const char *code;
287 if (*next_code == '\0')
289 message_with_line (pattern_lineno, "empty match_code expression");
290 error_count++;
291 break;
294 while ((code = scan_comma_elt (&next_code)) != 0)
296 size_t n = next_code - code;
297 int found_it = 0;
299 for (i = 0; i < NUM_RTX_CODE; i++)
300 if (!strncmp (code, GET_RTX_NAME (i), n)
301 && GET_RTX_NAME (i)[n] == '\0')
303 codes[i] = Y;
304 found_it = 1;
305 break;
307 if (!found_it)
309 message_with_line (pattern_lineno, "match_code \"%.*s\" matches nothing",
310 (int) n, code);
311 error_count ++;
312 for (i = 0; i < NUM_RTX_CODE; i++)
313 if (!strncasecmp (code, GET_RTX_NAME (i), n)
314 && GET_RTX_NAME (i)[n] == '\0'
315 && !did_you_mean_codes[i])
317 did_you_mean_codes[i] = 1;
318 message_with_line (pattern_lineno, "(did you mean \"%s\"?)", GET_RTX_NAME (i));
324 break;
326 case MATCH_OPERAND:
327 /* MATCH_OPERAND disallows the set of codes that the named predicate
328 disallows, and is indeterminate for the codes that it does allow. */
330 struct pred_data *p = lookup_predicate (XSTR (exp, 1));
331 if (!p)
333 message_with_line (pattern_lineno,
334 "reference to unknown predicate '%s'",
335 XSTR (exp, 1));
336 error_count++;
337 break;
339 for (i = 0; i < NUM_RTX_CODE; i++)
340 codes[i] = p->codes[i] ? I : N;
342 break;
345 case MATCH_TEST:
346 /* (match_test WHATEVER) is completely indeterminate. */
347 memset (codes, I, NUM_RTX_CODE);
348 break;
350 default:
351 message_with_line (pattern_lineno,
352 "'%s' cannot be used in a define_predicate expression",
353 GET_RTX_NAME (GET_CODE (exp)));
354 error_count++;
355 memset (codes, I, NUM_RTX_CODE);
356 break;
360 #undef TRISTATE_OR
361 #undef TRISTATE_AND
362 #undef TRISTATE_NOT
364 /* Process a define_predicate expression: compute the set of predicates
365 that can be matched, and record this as a known predicate. */
366 static void
367 process_define_predicate (rtx desc)
369 struct pred_data *pred = XCNEW (struct pred_data);
370 char codes[NUM_RTX_CODE];
371 int i;
373 pred->name = XSTR (desc, 0);
374 if (GET_CODE (desc) == DEFINE_SPECIAL_PREDICATE)
375 pred->special = 1;
377 compute_predicate_codes (XEXP (desc, 1), codes);
379 for (i = 0; i < NUM_RTX_CODE; i++)
380 if (codes[i] != N)
381 add_predicate_code (pred, (enum rtx_code) i);
383 add_predicate (pred);
385 #undef I
386 #undef N
387 #undef Y
390 static struct decision *new_decision
391 (const char *, struct decision_head *);
392 static struct decision_test *new_decision_test
393 (enum decision_type, struct decision_test ***);
394 static rtx find_operand
395 (rtx, int, rtx);
396 static rtx find_matching_operand
397 (rtx, int);
398 static void validate_pattern
399 (rtx, rtx, rtx, int);
400 static struct decision *add_to_sequence
401 (rtx, struct decision_head *, const char *, enum routine_type, int);
403 static int maybe_both_true_2
404 (struct decision_test *, struct decision_test *);
405 static int maybe_both_true_1
406 (struct decision_test *, struct decision_test *);
407 static int maybe_both_true
408 (struct decision *, struct decision *, int);
410 static int nodes_identical_1
411 (struct decision_test *, struct decision_test *);
412 static int nodes_identical
413 (struct decision *, struct decision *);
414 static void merge_accept_insn
415 (struct decision *, struct decision *);
416 static void merge_trees
417 (struct decision_head *, struct decision_head *);
419 static void factor_tests
420 (struct decision_head *);
421 static void simplify_tests
422 (struct decision_head *);
423 static int break_out_subroutines
424 (struct decision_head *, int);
425 static void find_afterward
426 (struct decision_head *, struct decision *);
428 static void change_state
429 (const char *, const char *, const char *);
430 static void print_code
431 (enum rtx_code);
432 static void write_afterward
433 (struct decision *, struct decision *, const char *);
434 static struct decision *write_switch
435 (struct decision *, int);
436 static void write_cond
437 (struct decision_test *, int, enum routine_type);
438 static void write_action
439 (struct decision *, struct decision_test *, int, int,
440 struct decision *, enum routine_type);
441 static int is_unconditional
442 (struct decision_test *, enum routine_type);
443 static int write_node
444 (struct decision *, int, enum routine_type);
445 static void write_tree_1
446 (struct decision_head *, int, enum routine_type);
447 static void write_tree
448 (struct decision_head *, const char *, enum routine_type, int);
449 static void write_subroutine
450 (struct decision_head *, enum routine_type);
451 static void write_subroutines
452 (struct decision_head *, enum routine_type);
453 static void write_header
454 (void);
456 static struct decision_head make_insn_sequence
457 (rtx, enum routine_type);
458 static void process_tree
459 (struct decision_head *, enum routine_type);
461 static void debug_decision_0
462 (struct decision *, int, int);
463 static void debug_decision_1
464 (struct decision *, int);
465 static void debug_decision_2
466 (struct decision_test *);
467 extern void debug_decision
468 (struct decision *);
469 extern void debug_decision_list
470 (struct decision *);
472 /* Create a new node in sequence after LAST. */
474 static struct decision *
475 new_decision (const char *position, struct decision_head *last)
477 struct decision *new_decision = XCNEW (struct decision);
479 new_decision->success = *last;
480 new_decision->position = xstrdup (position);
481 new_decision->number = next_number++;
483 last->first = last->last = new_decision;
484 return new_decision;
487 /* Create a new test and link it in at PLACE. */
489 static struct decision_test *
490 new_decision_test (enum decision_type type, struct decision_test ***pplace)
492 struct decision_test **place = *pplace;
493 struct decision_test *test;
495 test = XNEW (struct decision_test);
496 test->next = *place;
497 test->type = type;
498 *place = test;
500 place = &test->next;
501 *pplace = place;
503 return test;
506 /* Search for and return operand N, stop when reaching node STOP. */
508 static rtx
509 find_operand (rtx pattern, int n, rtx stop)
511 const char *fmt;
512 RTX_CODE code;
513 int i, j, len;
514 rtx r;
516 if (pattern == stop)
517 return stop;
519 code = GET_CODE (pattern);
520 if ((code == MATCH_SCRATCH
521 || code == MATCH_OPERAND
522 || code == MATCH_OPERATOR
523 || code == MATCH_PARALLEL)
524 && XINT (pattern, 0) == n)
525 return pattern;
527 fmt = GET_RTX_FORMAT (code);
528 len = GET_RTX_LENGTH (code);
529 for (i = 0; i < len; i++)
531 switch (fmt[i])
533 case 'e': case 'u':
534 if ((r = find_operand (XEXP (pattern, i), n, stop)) != NULL_RTX)
535 return r;
536 break;
538 case 'V':
539 if (! XVEC (pattern, i))
540 break;
541 /* Fall through. */
543 case 'E':
544 for (j = 0; j < XVECLEN (pattern, i); j++)
545 if ((r = find_operand (XVECEXP (pattern, i, j), n, stop))
546 != NULL_RTX)
547 return r;
548 break;
550 case 'i': case 'w': case '0': case 's':
551 break;
553 default:
554 gcc_unreachable ();
558 return NULL;
561 /* Search for and return operand M, such that it has a matching
562 constraint for operand N. */
564 static rtx
565 find_matching_operand (rtx pattern, int n)
567 const char *fmt;
568 RTX_CODE code;
569 int i, j, len;
570 rtx r;
572 code = GET_CODE (pattern);
573 if (code == MATCH_OPERAND
574 && (XSTR (pattern, 2)[0] == '0' + n
575 || (XSTR (pattern, 2)[0] == '%'
576 && XSTR (pattern, 2)[1] == '0' + n)))
577 return pattern;
579 fmt = GET_RTX_FORMAT (code);
580 len = GET_RTX_LENGTH (code);
581 for (i = 0; i < len; i++)
583 switch (fmt[i])
585 case 'e': case 'u':
586 if ((r = find_matching_operand (XEXP (pattern, i), n)))
587 return r;
588 break;
590 case 'V':
591 if (! XVEC (pattern, i))
592 break;
593 /* Fall through. */
595 case 'E':
596 for (j = 0; j < XVECLEN (pattern, i); j++)
597 if ((r = find_matching_operand (XVECEXP (pattern, i, j), n)))
598 return r;
599 break;
601 case 'i': case 'w': case '0': case 's':
602 break;
604 default:
605 gcc_unreachable ();
609 return NULL;
613 /* Check for various errors in patterns. SET is nonnull for a destination,
614 and is the complete set pattern. SET_CODE is '=' for normal sets, and
615 '+' within a context that requires in-out constraints. */
617 static void
618 validate_pattern (rtx pattern, rtx insn, rtx set, int set_code)
620 const char *fmt;
621 RTX_CODE code;
622 size_t i, len;
623 int j;
625 code = GET_CODE (pattern);
626 switch (code)
628 case MATCH_SCRATCH:
629 return;
630 case MATCH_DUP:
631 case MATCH_OP_DUP:
632 case MATCH_PAR_DUP:
633 if (find_operand (insn, XINT (pattern, 0), pattern) == pattern)
635 message_with_line (pattern_lineno,
636 "operand %i duplicated before defined",
637 XINT (pattern, 0));
638 error_count++;
640 break;
641 case MATCH_OPERAND:
642 case MATCH_OPERATOR:
644 const char *pred_name = XSTR (pattern, 1);
645 const struct pred_data *pred;
646 const char *c_test;
648 if (GET_CODE (insn) == DEFINE_INSN)
649 c_test = XSTR (insn, 2);
650 else
651 c_test = XSTR (insn, 1);
653 if (pred_name[0] != 0)
655 pred = lookup_predicate (pred_name);
656 if (!pred)
657 message_with_line (pattern_lineno,
658 "warning: unknown predicate '%s'",
659 pred_name);
661 else
662 pred = 0;
664 if (code == MATCH_OPERAND)
666 const char constraints0 = XSTR (pattern, 2)[0];
668 /* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
669 don't use the MATCH_OPERAND constraint, only the predicate.
670 This is confusing to folks doing new ports, so help them
671 not make the mistake. */
672 if (GET_CODE (insn) == DEFINE_EXPAND
673 || GET_CODE (insn) == DEFINE_SPLIT
674 || GET_CODE (insn) == DEFINE_PEEPHOLE2)
676 if (constraints0)
677 message_with_line (pattern_lineno,
678 "warning: constraints not supported in %s",
679 rtx_name[GET_CODE (insn)]);
682 /* A MATCH_OPERAND that is a SET should have an output reload. */
683 else if (set && constraints0)
685 if (set_code == '+')
687 if (constraints0 == '+')
689 /* If we've only got an output reload for this operand,
690 we'd better have a matching input operand. */
691 else if (constraints0 == '='
692 && find_matching_operand (insn, XINT (pattern, 0)))
694 else
696 message_with_line (pattern_lineno,
697 "operand %d missing in-out reload",
698 XINT (pattern, 0));
699 error_count++;
702 else if (constraints0 != '=' && constraints0 != '+')
704 message_with_line (pattern_lineno,
705 "operand %d missing output reload",
706 XINT (pattern, 0));
707 error_count++;
712 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
713 while not likely to occur at runtime, results in less efficient
714 code from insn-recog.c. */
715 if (set && pred && pred->allows_non_lvalue)
716 message_with_line (pattern_lineno,
717 "warning: destination operand %d "
718 "allows non-lvalue",
719 XINT (pattern, 0));
721 /* A modeless MATCH_OPERAND can be handy when we can check for
722 multiple modes in the c_test. In most other cases, it is a
723 mistake. Only DEFINE_INSN is eligible, since SPLIT and
724 PEEP2 can FAIL within the output pattern. Exclude special
725 predicates, which check the mode themselves. Also exclude
726 predicates that allow only constants. Exclude the SET_DEST
727 of a call instruction, as that is a common idiom. */
729 if (GET_MODE (pattern) == VOIDmode
730 && code == MATCH_OPERAND
731 && GET_CODE (insn) == DEFINE_INSN
732 && pred
733 && !pred->special
734 && pred->allows_non_const
735 && strstr (c_test, "operands") == NULL
736 && ! (set
737 && GET_CODE (set) == SET
738 && GET_CODE (SET_SRC (set)) == CALL))
739 message_with_line (pattern_lineno,
740 "warning: operand %d missing mode?",
741 XINT (pattern, 0));
742 return;
745 case SET:
747 enum machine_mode dmode, smode;
748 rtx dest, src;
750 dest = SET_DEST (pattern);
751 src = SET_SRC (pattern);
753 /* STRICT_LOW_PART is a wrapper. Its argument is the real
754 destination, and it's mode should match the source. */
755 if (GET_CODE (dest) == STRICT_LOW_PART)
756 dest = XEXP (dest, 0);
758 /* Find the referent for a DUP. */
760 if (GET_CODE (dest) == MATCH_DUP
761 || GET_CODE (dest) == MATCH_OP_DUP
762 || GET_CODE (dest) == MATCH_PAR_DUP)
763 dest = find_operand (insn, XINT (dest, 0), NULL);
765 if (GET_CODE (src) == MATCH_DUP
766 || GET_CODE (src) == MATCH_OP_DUP
767 || GET_CODE (src) == MATCH_PAR_DUP)
768 src = find_operand (insn, XINT (src, 0), NULL);
770 dmode = GET_MODE (dest);
771 smode = GET_MODE (src);
773 /* The mode of an ADDRESS_OPERAND is the mode of the memory
774 reference, not the mode of the address. */
775 if (GET_CODE (src) == MATCH_OPERAND
776 && ! strcmp (XSTR (src, 1), "address_operand"))
779 /* The operands of a SET must have the same mode unless one
780 is VOIDmode. */
781 else if (dmode != VOIDmode && smode != VOIDmode && dmode != smode)
783 message_with_line (pattern_lineno,
784 "mode mismatch in set: %smode vs %smode",
785 GET_MODE_NAME (dmode), GET_MODE_NAME (smode));
786 error_count++;
789 /* If only one of the operands is VOIDmode, and PC or CC0 is
790 not involved, it's probably a mistake. */
791 else if (dmode != smode
792 && GET_CODE (dest) != PC
793 && GET_CODE (dest) != CC0
794 && GET_CODE (src) != PC
795 && GET_CODE (src) != CC0
796 && GET_CODE (src) != CONST_INT
797 && GET_CODE (src) != CALL)
799 const char *which;
800 which = (dmode == VOIDmode ? "destination" : "source");
801 message_with_line (pattern_lineno,
802 "warning: %s missing a mode?", which);
805 if (dest != SET_DEST (pattern))
806 validate_pattern (dest, insn, pattern, '=');
807 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
808 validate_pattern (SET_SRC (pattern), insn, NULL_RTX, 0);
809 return;
812 case CLOBBER:
813 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
814 return;
816 case ZERO_EXTRACT:
817 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
818 validate_pattern (XEXP (pattern, 1), insn, NULL_RTX, 0);
819 validate_pattern (XEXP (pattern, 2), insn, NULL_RTX, 0);
820 return;
822 case STRICT_LOW_PART:
823 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
824 return;
826 case LABEL_REF:
827 if (GET_MODE (XEXP (pattern, 0)) != VOIDmode)
829 message_with_line (pattern_lineno,
830 "operand to label_ref %smode not VOIDmode",
831 GET_MODE_NAME (GET_MODE (XEXP (pattern, 0))));
832 error_count++;
834 break;
836 default:
837 break;
840 fmt = GET_RTX_FORMAT (code);
841 len = GET_RTX_LENGTH (code);
842 for (i = 0; i < len; i++)
844 switch (fmt[i])
846 case 'e': case 'u':
847 validate_pattern (XEXP (pattern, i), insn, NULL_RTX, 0);
848 break;
850 case 'E':
851 for (j = 0; j < XVECLEN (pattern, i); j++)
852 validate_pattern (XVECEXP (pattern, i, j), insn, NULL_RTX, 0);
853 break;
855 case 'i': case 'w': case '0': case 's':
856 break;
858 default:
859 gcc_unreachable ();
864 /* Create a chain of nodes to verify that an rtl expression matches
865 PATTERN.
867 LAST is a pointer to the listhead in the previous node in the chain (or
868 in the calling function, for the first node).
870 POSITION is the string representing the current position in the insn.
872 INSN_TYPE is the type of insn for which we are emitting code.
874 A pointer to the final node in the chain is returned. */
876 static struct decision *
877 add_to_sequence (rtx pattern, struct decision_head *last, const char *position,
878 enum routine_type insn_type, int top)
880 RTX_CODE code;
881 struct decision *this_decision, *sub;
882 struct decision_test *test;
883 struct decision_test **place;
884 char *subpos;
885 size_t i;
886 const char *fmt;
887 int depth = strlen (position);
888 int len;
889 enum machine_mode mode;
891 if (depth > max_depth)
892 max_depth = depth;
894 subpos = XNEWVAR (char, depth + 2);
895 strcpy (subpos, position);
896 subpos[depth + 1] = 0;
898 sub = this_decision = new_decision (position, last);
899 place = &this_decision->tests;
901 restart:
902 mode = GET_MODE (pattern);
903 code = GET_CODE (pattern);
905 switch (code)
907 case PARALLEL:
908 /* Toplevel peephole pattern. */
909 if (insn_type == PEEPHOLE2 && top)
911 int num_insns;
913 /* Check we have sufficient insns. This avoids complications
914 because we then know peep2_next_insn never fails. */
915 num_insns = XVECLEN (pattern, 0);
916 if (num_insns > 1)
918 test = new_decision_test (DT_num_insns, &place);
919 test->u.num_insns = num_insns;
920 last = &sub->success;
922 else
924 /* We don't need the node we just created -- unlink it. */
925 last->first = last->last = NULL;
928 for (i = 0; i < (size_t) XVECLEN (pattern, 0); i++)
930 /* Which insn we're looking at is represented by A-Z. We don't
931 ever use 'A', however; it is always implied. */
933 subpos[depth] = (i > 0 ? 'A' + i : 0);
934 sub = add_to_sequence (XVECEXP (pattern, 0, i),
935 last, subpos, insn_type, 0);
936 last = &sub->success;
938 goto ret;
941 /* Else nothing special. */
942 break;
944 case MATCH_PARALLEL:
945 /* The explicit patterns within a match_parallel enforce a minimum
946 length on the vector. The match_parallel predicate may allow
947 for more elements. We do need to check for this minimum here
948 or the code generated to match the internals may reference data
949 beyond the end of the vector. */
950 test = new_decision_test (DT_veclen_ge, &place);
951 test->u.veclen = XVECLEN (pattern, 2);
952 /* Fall through. */
954 case MATCH_OPERAND:
955 case MATCH_SCRATCH:
956 case MATCH_OPERATOR:
958 RTX_CODE was_code = code;
959 const char *pred_name;
960 bool allows_const_int = true;
962 if (code == MATCH_SCRATCH)
964 pred_name = "scratch_operand";
965 code = UNKNOWN;
967 else
969 pred_name = XSTR (pattern, 1);
970 if (code == MATCH_PARALLEL)
971 code = PARALLEL;
972 else
973 code = UNKNOWN;
976 if (pred_name[0] != 0)
978 const struct pred_data *pred;
980 test = new_decision_test (DT_pred, &place);
981 test->u.pred.name = pred_name;
982 test->u.pred.mode = mode;
984 /* See if we know about this predicate.
985 If we do, remember it for use below.
987 We can optimize the generated code a little if either
988 (a) the predicate only accepts one code, or (b) the
989 predicate does not allow CONST_INT, in which case it
990 can match only if the modes match. */
991 pred = lookup_predicate (pred_name);
992 if (pred)
994 test->u.pred.data = pred;
995 allows_const_int = pred->codes[CONST_INT];
996 if (was_code == MATCH_PARALLEL
997 && pred->singleton != PARALLEL)
998 message_with_line (pattern_lineno,
999 "predicate '%s' used in match_parallel "
1000 "does not allow only PARALLEL", pred->name);
1001 else
1002 code = pred->singleton;
1004 else
1005 message_with_line (pattern_lineno,
1006 "warning: unknown predicate '%s' in '%s' expression",
1007 pred_name, GET_RTX_NAME (was_code));
1010 /* Can't enforce a mode if we allow const_int. */
1011 if (allows_const_int)
1012 mode = VOIDmode;
1014 /* Accept the operand, i.e. record it in `operands'. */
1015 test = new_decision_test (DT_accept_op, &place);
1016 test->u.opno = XINT (pattern, 0);
1018 if (was_code == MATCH_OPERATOR || was_code == MATCH_PARALLEL)
1020 char base = (was_code == MATCH_OPERATOR ? '0' : 'a');
1021 for (i = 0; i < (size_t) XVECLEN (pattern, 2); i++)
1023 subpos[depth] = i + base;
1024 sub = add_to_sequence (XVECEXP (pattern, 2, i),
1025 &sub->success, subpos, insn_type, 0);
1028 goto fini;
1031 case MATCH_OP_DUP:
1032 code = UNKNOWN;
1034 test = new_decision_test (DT_dup, &place);
1035 test->u.dup = XINT (pattern, 0);
1037 test = new_decision_test (DT_accept_op, &place);
1038 test->u.opno = XINT (pattern, 0);
1040 for (i = 0; i < (size_t) XVECLEN (pattern, 1); i++)
1042 subpos[depth] = i + '0';
1043 sub = add_to_sequence (XVECEXP (pattern, 1, i),
1044 &sub->success, subpos, insn_type, 0);
1046 goto fini;
1048 case MATCH_DUP:
1049 case MATCH_PAR_DUP:
1050 code = UNKNOWN;
1052 test = new_decision_test (DT_dup, &place);
1053 test->u.dup = XINT (pattern, 0);
1054 goto fini;
1056 case ADDRESS:
1057 pattern = XEXP (pattern, 0);
1058 goto restart;
1060 default:
1061 break;
1064 fmt = GET_RTX_FORMAT (code);
1065 len = GET_RTX_LENGTH (code);
1067 /* Do tests against the current node first. */
1068 for (i = 0; i < (size_t) len; i++)
1070 if (fmt[i] == 'i')
1072 gcc_assert (i < 2);
1074 if (!i)
1076 test = new_decision_test (DT_elt_zero_int, &place);
1077 test->u.intval = XINT (pattern, i);
1079 else
1081 test = new_decision_test (DT_elt_one_int, &place);
1082 test->u.intval = XINT (pattern, i);
1085 else if (fmt[i] == 'w')
1087 /* If this value actually fits in an int, we can use a switch
1088 statement here, so indicate that. */
1089 enum decision_type type
1090 = ((int) XWINT (pattern, i) == XWINT (pattern, i))
1091 ? DT_elt_zero_wide_safe : DT_elt_zero_wide;
1093 gcc_assert (!i);
1095 test = new_decision_test (type, &place);
1096 test->u.intval = XWINT (pattern, i);
1098 else if (fmt[i] == 'E')
1100 gcc_assert (!i);
1102 test = new_decision_test (DT_veclen, &place);
1103 test->u.veclen = XVECLEN (pattern, i);
1107 /* Now test our sub-patterns. */
1108 for (i = 0; i < (size_t) len; i++)
1110 switch (fmt[i])
1112 case 'e': case 'u':
1113 subpos[depth] = '0' + i;
1114 sub = add_to_sequence (XEXP (pattern, i), &sub->success,
1115 subpos, insn_type, 0);
1116 break;
1118 case 'E':
1120 int j;
1121 for (j = 0; j < XVECLEN (pattern, i); j++)
1123 subpos[depth] = 'a' + j;
1124 sub = add_to_sequence (XVECEXP (pattern, i, j),
1125 &sub->success, subpos, insn_type, 0);
1127 break;
1130 case 'i': case 'w':
1131 /* Handled above. */
1132 break;
1133 case '0':
1134 break;
1136 default:
1137 gcc_unreachable ();
1141 fini:
1142 /* Insert nodes testing mode and code, if they're still relevant,
1143 before any of the nodes we may have added above. */
1144 if (code != UNKNOWN)
1146 place = &this_decision->tests;
1147 test = new_decision_test (DT_code, &place);
1148 test->u.code = code;
1151 if (mode != VOIDmode)
1153 place = &this_decision->tests;
1154 test = new_decision_test (DT_mode, &place);
1155 test->u.mode = mode;
1158 /* If we didn't insert any tests or accept nodes, hork. */
1159 gcc_assert (this_decision->tests);
1161 ret:
1162 free (subpos);
1163 return sub;
1166 /* A subroutine of maybe_both_true; examines only one test.
1167 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1169 static int
1170 maybe_both_true_2 (struct decision_test *d1, struct decision_test *d2)
1172 if (d1->type == d2->type)
1174 switch (d1->type)
1176 case DT_num_insns:
1177 if (d1->u.num_insns == d2->u.num_insns)
1178 return 1;
1179 else
1180 return -1;
1182 case DT_mode:
1183 return d1->u.mode == d2->u.mode;
1185 case DT_code:
1186 return d1->u.code == d2->u.code;
1188 case DT_veclen:
1189 return d1->u.veclen == d2->u.veclen;
1191 case DT_elt_zero_int:
1192 case DT_elt_one_int:
1193 case DT_elt_zero_wide:
1194 case DT_elt_zero_wide_safe:
1195 return d1->u.intval == d2->u.intval;
1197 default:
1198 break;
1202 /* If either has a predicate that we know something about, set
1203 things up so that D1 is the one that always has a known
1204 predicate. Then see if they have any codes in common. */
1206 if (d1->type == DT_pred || d2->type == DT_pred)
1208 if (d2->type == DT_pred)
1210 struct decision_test *tmp;
1211 tmp = d1, d1 = d2, d2 = tmp;
1214 /* If D2 tests a mode, see if it matches D1. */
1215 if (d1->u.pred.mode != VOIDmode)
1217 if (d2->type == DT_mode)
1219 if (d1->u.pred.mode != d2->u.mode
1220 /* The mode of an address_operand predicate is the
1221 mode of the memory, not the operand. It can only
1222 be used for testing the predicate, so we must
1223 ignore it here. */
1224 && strcmp (d1->u.pred.name, "address_operand") != 0)
1225 return 0;
1227 /* Don't check two predicate modes here, because if both predicates
1228 accept CONST_INT, then both can still be true even if the modes
1229 are different. If they don't accept CONST_INT, there will be a
1230 separate DT_mode that will make maybe_both_true_1 return 0. */
1233 if (d1->u.pred.data)
1235 /* If D2 tests a code, see if it is in the list of valid
1236 codes for D1's predicate. */
1237 if (d2->type == DT_code)
1239 if (!d1->u.pred.data->codes[d2->u.code])
1240 return 0;
1243 /* Otherwise see if the predicates have any codes in common. */
1244 else if (d2->type == DT_pred && d2->u.pred.data)
1246 bool common = false;
1247 int c;
1249 for (c = 0; c < NUM_RTX_CODE; c++)
1250 if (d1->u.pred.data->codes[c] && d2->u.pred.data->codes[c])
1252 common = true;
1253 break;
1256 if (!common)
1257 return 0;
1262 /* Tests vs veclen may be known when strict equality is involved. */
1263 if (d1->type == DT_veclen && d2->type == DT_veclen_ge)
1264 return d1->u.veclen >= d2->u.veclen;
1265 if (d1->type == DT_veclen_ge && d2->type == DT_veclen)
1266 return d2->u.veclen >= d1->u.veclen;
1268 return -1;
1271 /* A subroutine of maybe_both_true; examines all the tests for a given node.
1272 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1274 static int
1275 maybe_both_true_1 (struct decision_test *d1, struct decision_test *d2)
1277 struct decision_test *t1, *t2;
1279 /* A match_operand with no predicate can match anything. Recognize
1280 this by the existence of a lone DT_accept_op test. */
1281 if (d1->type == DT_accept_op || d2->type == DT_accept_op)
1282 return 1;
1284 /* Eliminate pairs of tests while they can exactly match. */
1285 while (d1 && d2 && d1->type == d2->type)
1287 if (maybe_both_true_2 (d1, d2) == 0)
1288 return 0;
1289 d1 = d1->next, d2 = d2->next;
1292 /* After that, consider all pairs. */
1293 for (t1 = d1; t1 ; t1 = t1->next)
1294 for (t2 = d2; t2 ; t2 = t2->next)
1295 if (maybe_both_true_2 (t1, t2) == 0)
1296 return 0;
1298 return -1;
1301 /* Return 0 if we can prove that there is no RTL that can match both
1302 D1 and D2. Otherwise, return 1 (it may be that there is an RTL that
1303 can match both or just that we couldn't prove there wasn't such an RTL).
1305 TOPLEVEL is nonzero if we are to only look at the top level and not
1306 recursively descend. */
1308 static int
1309 maybe_both_true (struct decision *d1, struct decision *d2,
1310 int toplevel)
1312 struct decision *p1, *p2;
1313 int cmp;
1315 /* Don't compare strings on the different positions in insn. Doing so
1316 is incorrect and results in false matches from constructs like
1318 [(set (subreg:HI (match_operand:SI "register_operand" "r") 0)
1319 (subreg:HI (match_operand:SI "register_operand" "r") 0))]
1321 [(set (match_operand:HI "register_operand" "r")
1322 (match_operand:HI "register_operand" "r"))]
1324 If we are presented with such, we are recursing through the remainder
1325 of a node's success nodes (from the loop at the end of this function).
1326 Skip forward until we come to a position that matches.
1328 Due to the way position strings are constructed, we know that iterating
1329 forward from the lexically lower position (e.g. "00") will run into
1330 the lexically higher position (e.g. "1") and not the other way around.
1331 This saves a bit of effort. */
1333 cmp = strcmp (d1->position, d2->position);
1334 if (cmp != 0)
1336 gcc_assert (!toplevel);
1338 /* If the d2->position was lexically lower, swap. */
1339 if (cmp > 0)
1340 p1 = d1, d1 = d2, d2 = p1;
1342 if (d1->success.first == 0)
1343 return 1;
1344 for (p1 = d1->success.first; p1; p1 = p1->next)
1345 if (maybe_both_true (p1, d2, 0))
1346 return 1;
1348 return 0;
1351 /* Test the current level. */
1352 cmp = maybe_both_true_1 (d1->tests, d2->tests);
1353 if (cmp >= 0)
1354 return cmp;
1356 /* We can't prove that D1 and D2 cannot both be true. If we are only
1357 to check the top level, return 1. Otherwise, see if we can prove
1358 that all choices in both successors are mutually exclusive. If
1359 either does not have any successors, we can't prove they can't both
1360 be true. */
1362 if (toplevel || d1->success.first == 0 || d2->success.first == 0)
1363 return 1;
1365 for (p1 = d1->success.first; p1; p1 = p1->next)
1366 for (p2 = d2->success.first; p2; p2 = p2->next)
1367 if (maybe_both_true (p1, p2, 0))
1368 return 1;
1370 return 0;
1373 /* A subroutine of nodes_identical. Examine two tests for equivalence. */
1375 static int
1376 nodes_identical_1 (struct decision_test *d1, struct decision_test *d2)
1378 switch (d1->type)
1380 case DT_num_insns:
1381 return d1->u.num_insns == d2->u.num_insns;
1383 case DT_mode:
1384 return d1->u.mode == d2->u.mode;
1386 case DT_code:
1387 return d1->u.code == d2->u.code;
1389 case DT_pred:
1390 return (d1->u.pred.mode == d2->u.pred.mode
1391 && strcmp (d1->u.pred.name, d2->u.pred.name) == 0);
1393 case DT_c_test:
1394 return strcmp (d1->u.c_test, d2->u.c_test) == 0;
1396 case DT_veclen:
1397 case DT_veclen_ge:
1398 return d1->u.veclen == d2->u.veclen;
1400 case DT_dup:
1401 return d1->u.dup == d2->u.dup;
1403 case DT_elt_zero_int:
1404 case DT_elt_one_int:
1405 case DT_elt_zero_wide:
1406 case DT_elt_zero_wide_safe:
1407 return d1->u.intval == d2->u.intval;
1409 case DT_accept_op:
1410 return d1->u.opno == d2->u.opno;
1412 case DT_accept_insn:
1413 /* Differences will be handled in merge_accept_insn. */
1414 return 1;
1416 default:
1417 gcc_unreachable ();
1421 /* True iff the two nodes are identical (on one level only). Due
1422 to the way these lists are constructed, we shouldn't have to
1423 consider different orderings on the tests. */
1425 static int
1426 nodes_identical (struct decision *d1, struct decision *d2)
1428 struct decision_test *t1, *t2;
1430 for (t1 = d1->tests, t2 = d2->tests; t1 && t2; t1 = t1->next, t2 = t2->next)
1432 if (t1->type != t2->type)
1433 return 0;
1434 if (! nodes_identical_1 (t1, t2))
1435 return 0;
1438 /* For success, they should now both be null. */
1439 if (t1 != t2)
1440 return 0;
1442 /* Check that their subnodes are at the same position, as any one set
1443 of sibling decisions must be at the same position. Allowing this
1444 requires complications to find_afterward and when change_state is
1445 invoked. */
1446 if (d1->success.first
1447 && d2->success.first
1448 && strcmp (d1->success.first->position, d2->success.first->position))
1449 return 0;
1451 return 1;
1454 /* A subroutine of merge_trees; given two nodes that have been declared
1455 identical, cope with two insn accept states. If they differ in the
1456 number of clobbers, then the conflict was created by make_insn_sequence
1457 and we can drop the with-clobbers version on the floor. If both
1458 nodes have no additional clobbers, we have found an ambiguity in the
1459 source machine description. */
1461 static void
1462 merge_accept_insn (struct decision *oldd, struct decision *addd)
1464 struct decision_test *old, *add;
1466 for (old = oldd->tests; old; old = old->next)
1467 if (old->type == DT_accept_insn)
1468 break;
1469 if (old == NULL)
1470 return;
1472 for (add = addd->tests; add; add = add->next)
1473 if (add->type == DT_accept_insn)
1474 break;
1475 if (add == NULL)
1476 return;
1478 /* If one node is for a normal insn and the second is for the base
1479 insn with clobbers stripped off, the second node should be ignored. */
1481 if (old->u.insn.num_clobbers_to_add == 0
1482 && add->u.insn.num_clobbers_to_add > 0)
1484 /* Nothing to do here. */
1486 else if (old->u.insn.num_clobbers_to_add > 0
1487 && add->u.insn.num_clobbers_to_add == 0)
1489 /* In this case, replace OLD with ADD. */
1490 old->u.insn = add->u.insn;
1492 else
1494 message_with_line (add->u.insn.lineno, "`%s' matches `%s'",
1495 get_insn_name (add->u.insn.code_number),
1496 get_insn_name (old->u.insn.code_number));
1497 message_with_line (old->u.insn.lineno, "previous definition of `%s'",
1498 get_insn_name (old->u.insn.code_number));
1499 error_count++;
1503 /* Merge two decision trees OLDH and ADDH, modifying OLDH destructively. */
1505 static void
1506 merge_trees (struct decision_head *oldh, struct decision_head *addh)
1508 struct decision *next, *add;
1510 if (addh->first == 0)
1511 return;
1512 if (oldh->first == 0)
1514 *oldh = *addh;
1515 return;
1518 /* Trying to merge bits at different positions isn't possible. */
1519 gcc_assert (!strcmp (oldh->first->position, addh->first->position));
1521 for (add = addh->first; add ; add = next)
1523 struct decision *old, *insert_before = NULL;
1525 next = add->next;
1527 /* The semantics of pattern matching state that the tests are
1528 done in the order given in the MD file so that if an insn
1529 matches two patterns, the first one will be used. However,
1530 in practice, most, if not all, patterns are unambiguous so
1531 that their order is independent. In that case, we can merge
1532 identical tests and group all similar modes and codes together.
1534 Scan starting from the end of OLDH until we reach a point
1535 where we reach the head of the list or where we pass a
1536 pattern that could also be true if NEW is true. If we find
1537 an identical pattern, we can merge them. Also, record the
1538 last node that tests the same code and mode and the last one
1539 that tests just the same mode.
1541 If we have no match, place NEW after the closest match we found. */
1543 for (old = oldh->last; old; old = old->prev)
1545 if (nodes_identical (old, add))
1547 merge_accept_insn (old, add);
1548 merge_trees (&old->success, &add->success);
1549 goto merged_nodes;
1552 if (maybe_both_true (old, add, 0))
1553 break;
1555 /* Insert the nodes in DT test type order, which is roughly
1556 how expensive/important the test is. Given that the tests
1557 are also ordered within the list, examining the first is
1558 sufficient. */
1559 if ((int) add->tests->type < (int) old->tests->type)
1560 insert_before = old;
1563 if (insert_before == NULL)
1565 add->next = NULL;
1566 add->prev = oldh->last;
1567 oldh->last->next = add;
1568 oldh->last = add;
1570 else
1572 if ((add->prev = insert_before->prev) != NULL)
1573 add->prev->next = add;
1574 else
1575 oldh->first = add;
1576 add->next = insert_before;
1577 insert_before->prev = add;
1580 merged_nodes:;
1584 /* Walk the tree looking for sub-nodes that perform common tests.
1585 Factor out the common test into a new node. This enables us
1586 (depending on the test type) to emit switch statements later. */
1588 static void
1589 factor_tests (struct decision_head *head)
1591 struct decision *first, *next;
1593 for (first = head->first; first && first->next; first = next)
1595 enum decision_type type;
1596 struct decision *new_dec, *old_last;
1598 type = first->tests->type;
1599 next = first->next;
1601 /* Want at least two compatible sequential nodes. */
1602 if (next->tests->type != type)
1603 continue;
1605 /* Don't want all node types, just those we can turn into
1606 switch statements. */
1607 if (type != DT_mode
1608 && type != DT_code
1609 && type != DT_veclen
1610 && type != DT_elt_zero_int
1611 && type != DT_elt_one_int
1612 && type != DT_elt_zero_wide_safe)
1613 continue;
1615 /* If we'd been performing more than one test, create a new node
1616 below our first test. */
1617 if (first->tests->next != NULL)
1619 new_dec = new_decision (first->position, &first->success);
1620 new_dec->tests = first->tests->next;
1621 first->tests->next = NULL;
1624 /* Crop the node tree off after our first test. */
1625 first->next = NULL;
1626 old_last = head->last;
1627 head->last = first;
1629 /* For each compatible test, adjust to perform only one test in
1630 the top level node, then merge the node back into the tree. */
1633 struct decision_head h;
1635 if (next->tests->next != NULL)
1637 new_dec = new_decision (next->position, &next->success);
1638 new_dec->tests = next->tests->next;
1639 next->tests->next = NULL;
1641 new_dec = next;
1642 next = next->next;
1643 new_dec->next = NULL;
1644 h.first = h.last = new_dec;
1646 merge_trees (head, &h);
1648 while (next && next->tests->type == type);
1650 /* After we run out of compatible tests, graft the remaining nodes
1651 back onto the tree. */
1652 if (next)
1654 next->prev = head->last;
1655 head->last->next = next;
1656 head->last = old_last;
1660 /* Recurse. */
1661 for (first = head->first; first; first = first->next)
1662 factor_tests (&first->success);
1665 /* After factoring, try to simplify the tests on any one node.
1666 Tests that are useful for switch statements are recognizable
1667 by having only a single test on a node -- we'll be manipulating
1668 nodes with multiple tests:
1670 If we have mode tests or code tests that are redundant with
1671 predicates, remove them. */
1673 static void
1674 simplify_tests (struct decision_head *head)
1676 struct decision *tree;
1678 for (tree = head->first; tree; tree = tree->next)
1680 struct decision_test *a, *b;
1682 a = tree->tests;
1683 b = a->next;
1684 if (b == NULL)
1685 continue;
1687 /* Find a predicate node. */
1688 while (b && b->type != DT_pred)
1689 b = b->next;
1690 if (b)
1692 /* Due to how these tests are constructed, we don't even need
1693 to check that the mode and code are compatible -- they were
1694 generated from the predicate in the first place. */
1695 while (a->type == DT_mode || a->type == DT_code)
1696 a = a->next;
1697 tree->tests = a;
1701 /* Recurse. */
1702 for (tree = head->first; tree; tree = tree->next)
1703 simplify_tests (&tree->success);
1706 /* Count the number of subnodes of HEAD. If the number is high enough,
1707 make the first node in HEAD start a separate subroutine in the C code
1708 that is generated. */
1710 static int
1711 break_out_subroutines (struct decision_head *head, int initial)
1713 int size = 0;
1714 struct decision *sub;
1716 for (sub = head->first; sub; sub = sub->next)
1717 size += 1 + break_out_subroutines (&sub->success, 0);
1719 if (size > SUBROUTINE_THRESHOLD && ! initial)
1721 head->first->subroutine_number = ++next_subroutine_number;
1722 size = 1;
1724 return size;
1727 /* For each node p, find the next alternative that might be true
1728 when p is true. */
1730 static void
1731 find_afterward (struct decision_head *head, struct decision *real_afterward)
1733 struct decision *p, *q, *afterward;
1735 /* We can't propagate alternatives across subroutine boundaries.
1736 This is not incorrect, merely a minor optimization loss. */
1738 p = head->first;
1739 afterward = (p->subroutine_number > 0 ? NULL : real_afterward);
1741 for ( ; p ; p = p->next)
1743 /* Find the next node that might be true if this one fails. */
1744 for (q = p->next; q ; q = q->next)
1745 if (maybe_both_true (p, q, 1))
1746 break;
1748 /* If we reached the end of the list without finding one,
1749 use the incoming afterward position. */
1750 if (!q)
1751 q = afterward;
1752 p->afterward = q;
1753 if (q)
1754 q->need_label = 1;
1757 /* Recurse. */
1758 for (p = head->first; p ; p = p->next)
1759 if (p->success.first)
1760 find_afterward (&p->success, p->afterward);
1762 /* When we are generating a subroutine, record the real afterward
1763 position in the first node where write_tree can find it, and we
1764 can do the right thing at the subroutine call site. */
1765 p = head->first;
1766 if (p->subroutine_number > 0)
1767 p->afterward = real_afterward;
1770 /* Assuming that the state of argument is denoted by OLDPOS, take whatever
1771 actions are necessary to move to NEWPOS. If we fail to move to the
1772 new state, branch to node AFTERWARD if nonzero, otherwise return.
1774 Failure to move to the new state can only occur if we are trying to
1775 match multiple insns and we try to step past the end of the stream. */
1777 static void
1778 change_state (const char *oldpos, const char *newpos, const char *indent)
1780 int odepth = strlen (oldpos);
1781 int ndepth = strlen (newpos);
1782 int depth;
1783 int old_has_insn, new_has_insn;
1785 /* Pop up as many levels as necessary. */
1786 for (depth = odepth; strncmp (oldpos, newpos, depth) != 0; --depth)
1787 continue;
1789 /* Hunt for the last [A-Z] in both strings. */
1790 for (old_has_insn = odepth - 1; old_has_insn >= 0; --old_has_insn)
1791 if (ISUPPER (oldpos[old_has_insn]))
1792 break;
1793 for (new_has_insn = ndepth - 1; new_has_insn >= 0; --new_has_insn)
1794 if (ISUPPER (newpos[new_has_insn]))
1795 break;
1797 /* Go down to desired level. */
1798 while (depth < ndepth)
1800 /* It's a different insn from the first one. */
1801 if (ISUPPER (newpos[depth]))
1803 printf ("%stem = peep2_next_insn (%d);\n",
1804 indent, newpos[depth] - 'A');
1805 printf ("%sx%d = PATTERN (tem);\n", indent, depth + 1);
1807 else if (ISLOWER (newpos[depth]))
1808 printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
1809 indent, depth + 1, depth, newpos[depth] - 'a');
1810 else
1811 printf ("%sx%d = XEXP (x%d, %c);\n",
1812 indent, depth + 1, depth, newpos[depth]);
1813 ++depth;
1817 /* Print the enumerator constant for CODE -- the upcase version of
1818 the name. */
1820 static void
1821 print_code (enum rtx_code code)
1823 const char *p;
1824 for (p = GET_RTX_NAME (code); *p; p++)
1825 putchar (TOUPPER (*p));
1828 /* Emit code to cross an afterward link -- change state and branch. */
1830 static void
1831 write_afterward (struct decision *start, struct decision *afterward,
1832 const char *indent)
1834 if (!afterward || start->subroutine_number > 0)
1835 printf("%sgoto ret0;\n", indent);
1836 else
1838 change_state (start->position, afterward->position, indent);
1839 printf ("%sgoto L%d;\n", indent, afterward->number);
1843 /* Emit a HOST_WIDE_INT as an integer constant expression. We need to take
1844 special care to avoid "decimal constant is so large that it is unsigned"
1845 warnings in the resulting code. */
1847 static void
1848 print_host_wide_int (HOST_WIDE_INT val)
1850 HOST_WIDE_INT min = (unsigned HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1);
1851 if (val == min)
1852 printf ("(" HOST_WIDE_INT_PRINT_DEC_C "-1)", val + 1);
1853 else
1854 printf (HOST_WIDE_INT_PRINT_DEC_C, val);
1857 /* Emit a switch statement, if possible, for an initial sequence of
1858 nodes at START. Return the first node yet untested. */
1860 static struct decision *
1861 write_switch (struct decision *start, int depth)
1863 struct decision *p = start;
1864 enum decision_type type = p->tests->type;
1865 struct decision *needs_label = NULL;
1867 /* If we have two or more nodes in sequence that test the same one
1868 thing, we may be able to use a switch statement. */
1870 if (!p->next
1871 || p->tests->next
1872 || p->next->tests->type != type
1873 || p->next->tests->next
1874 || nodes_identical_1 (p->tests, p->next->tests))
1875 return p;
1877 /* DT_code is special in that we can do interesting things with
1878 known predicates at the same time. */
1879 if (type == DT_code)
1881 char codemap[NUM_RTX_CODE];
1882 struct decision *ret;
1883 RTX_CODE code;
1885 memset (codemap, 0, sizeof(codemap));
1887 printf (" switch (GET_CODE (x%d))\n {\n", depth);
1888 code = p->tests->u.code;
1891 if (p != start && p->need_label && needs_label == NULL)
1892 needs_label = p;
1894 printf (" case ");
1895 print_code (code);
1896 printf (":\n goto L%d;\n", p->success.first->number);
1897 p->success.first->need_label = 1;
1899 codemap[code] = 1;
1900 p = p->next;
1902 while (p
1903 && ! p->tests->next
1904 && p->tests->type == DT_code
1905 && ! codemap[code = p->tests->u.code]);
1907 /* If P is testing a predicate that we know about and we haven't
1908 seen any of the codes that are valid for the predicate, we can
1909 write a series of "case" statement, one for each possible code.
1910 Since we are already in a switch, these redundant tests are very
1911 cheap and will reduce the number of predicates called. */
1913 /* Note that while we write out cases for these predicates here,
1914 we don't actually write the test here, as it gets kinda messy.
1915 It is trivial to leave this to later by telling our caller that
1916 we only processed the CODE tests. */
1917 if (needs_label != NULL)
1918 ret = needs_label;
1919 else
1920 ret = p;
1922 while (p && p->tests->type == DT_pred && p->tests->u.pred.data)
1924 const struct pred_data *data = p->tests->u.pred.data;
1925 int c;
1927 for (c = 0; c < NUM_RTX_CODE; c++)
1928 if (codemap[c] && data->codes[c])
1929 goto pred_done;
1931 for (c = 0; c < NUM_RTX_CODE; c++)
1932 if (data->codes[c])
1934 fputs (" case ", stdout);
1935 print_code ((enum rtx_code) c);
1936 fputs (":\n", stdout);
1937 codemap[c] = 1;
1940 printf (" goto L%d;\n", p->number);
1941 p->need_label = 1;
1942 p = p->next;
1945 pred_done:
1946 /* Make the default case skip the predicates we managed to match. */
1948 printf (" default:\n");
1949 if (p != ret)
1951 if (p)
1953 printf (" goto L%d;\n", p->number);
1954 p->need_label = 1;
1956 else
1957 write_afterward (start, start->afterward, " ");
1959 else
1960 printf (" break;\n");
1961 printf (" }\n");
1963 return ret;
1965 else if (type == DT_mode
1966 || type == DT_veclen
1967 || type == DT_elt_zero_int
1968 || type == DT_elt_one_int
1969 || type == DT_elt_zero_wide_safe)
1971 const char *indent = "";
1973 /* We cast switch parameter to integer, so we must ensure that the value
1974 fits. */
1975 if (type == DT_elt_zero_wide_safe)
1977 indent = " ";
1978 printf(" if ((int) XWINT (x%d, 0) == XWINT (x%d, 0))\n", depth, depth);
1980 printf ("%s switch (", indent);
1981 switch (type)
1983 case DT_mode:
1984 printf ("GET_MODE (x%d)", depth);
1985 break;
1986 case DT_veclen:
1987 printf ("XVECLEN (x%d, 0)", depth);
1988 break;
1989 case DT_elt_zero_int:
1990 printf ("XINT (x%d, 0)", depth);
1991 break;
1992 case DT_elt_one_int:
1993 printf ("XINT (x%d, 1)", depth);
1994 break;
1995 case DT_elt_zero_wide_safe:
1996 /* Convert result of XWINT to int for portability since some C
1997 compilers won't do it and some will. */
1998 printf ("(int) XWINT (x%d, 0)", depth);
1999 break;
2000 default:
2001 gcc_unreachable ();
2003 printf (")\n%s {\n", indent);
2007 /* Merge trees will not unify identical nodes if their
2008 sub-nodes are at different levels. Thus we must check
2009 for duplicate cases. */
2010 struct decision *q;
2011 for (q = start; q != p; q = q->next)
2012 if (nodes_identical_1 (p->tests, q->tests))
2013 goto case_done;
2015 if (p != start && p->need_label && needs_label == NULL)
2016 needs_label = p;
2018 printf ("%s case ", indent);
2019 switch (type)
2021 case DT_mode:
2022 printf ("%smode", GET_MODE_NAME (p->tests->u.mode));
2023 break;
2024 case DT_veclen:
2025 printf ("%d", p->tests->u.veclen);
2026 break;
2027 case DT_elt_zero_int:
2028 case DT_elt_one_int:
2029 case DT_elt_zero_wide:
2030 case DT_elt_zero_wide_safe:
2031 print_host_wide_int (p->tests->u.intval);
2032 break;
2033 default:
2034 gcc_unreachable ();
2036 printf (":\n%s goto L%d;\n", indent, p->success.first->number);
2037 p->success.first->need_label = 1;
2039 p = p->next;
2041 while (p && p->tests->type == type && !p->tests->next);
2043 case_done:
2044 printf ("%s default:\n%s break;\n%s }\n",
2045 indent, indent, indent);
2047 return needs_label != NULL ? needs_label : p;
2049 else
2051 /* None of the other tests are amenable. */
2052 return p;
2056 /* Emit code for one test. */
2058 static void
2059 write_cond (struct decision_test *p, int depth,
2060 enum routine_type subroutine_type)
2062 switch (p->type)
2064 case DT_num_insns:
2065 printf ("peep2_current_count >= %d", p->u.num_insns);
2066 break;
2068 case DT_mode:
2069 printf ("GET_MODE (x%d) == %smode", depth, GET_MODE_NAME (p->u.mode));
2070 break;
2072 case DT_code:
2073 printf ("GET_CODE (x%d) == ", depth);
2074 print_code (p->u.code);
2075 break;
2077 case DT_veclen:
2078 printf ("XVECLEN (x%d, 0) == %d", depth, p->u.veclen);
2079 break;
2081 case DT_elt_zero_int:
2082 printf ("XINT (x%d, 0) == %d", depth, (int) p->u.intval);
2083 break;
2085 case DT_elt_one_int:
2086 printf ("XINT (x%d, 1) == %d", depth, (int) p->u.intval);
2087 break;
2089 case DT_elt_zero_wide:
2090 case DT_elt_zero_wide_safe:
2091 printf ("XWINT (x%d, 0) == ", depth);
2092 print_host_wide_int (p->u.intval);
2093 break;
2095 case DT_const_int:
2096 printf ("x%d == const_int_rtx[MAX_SAVED_CONST_INT + (%d)]",
2097 depth, (int) p->u.intval);
2098 break;
2100 case DT_veclen_ge:
2101 printf ("XVECLEN (x%d, 0) >= %d", depth, p->u.veclen);
2102 break;
2104 case DT_dup:
2105 printf ("rtx_equal_p (x%d, operands[%d])", depth, p->u.dup);
2106 break;
2108 case DT_pred:
2109 printf ("%s (x%d, %smode)", p->u.pred.name, depth,
2110 GET_MODE_NAME (p->u.pred.mode));
2111 break;
2113 case DT_c_test:
2114 print_c_condition (p->u.c_test);
2115 break;
2117 case DT_accept_insn:
2118 gcc_assert (subroutine_type == RECOG);
2119 gcc_assert (p->u.insn.num_clobbers_to_add);
2120 printf ("pnum_clobbers != NULL");
2121 break;
2123 default:
2124 gcc_unreachable ();
2128 /* Emit code for one action. The previous tests have succeeded;
2129 TEST is the last of the chain. In the normal case we simply
2130 perform a state change. For the `accept' tests we must do more work. */
2132 static void
2133 write_action (struct decision *p, struct decision_test *test,
2134 int depth, int uncond, struct decision *success,
2135 enum routine_type subroutine_type)
2137 const char *indent;
2138 int want_close = 0;
2140 if (uncond)
2141 indent = " ";
2142 else if (test->type == DT_accept_op || test->type == DT_accept_insn)
2144 fputs (" {\n", stdout);
2145 indent = " ";
2146 want_close = 1;
2148 else
2149 indent = " ";
2151 if (test->type == DT_accept_op)
2153 printf("%soperands[%d] = x%d;\n", indent, test->u.opno, depth);
2155 /* Only allow DT_accept_insn to follow. */
2156 if (test->next)
2158 test = test->next;
2159 gcc_assert (test->type == DT_accept_insn);
2163 /* Sanity check that we're now at the end of the list of tests. */
2164 gcc_assert (!test->next);
2166 if (test->type == DT_accept_insn)
2168 switch (subroutine_type)
2170 case RECOG:
2171 if (test->u.insn.num_clobbers_to_add != 0)
2172 printf ("%s*pnum_clobbers = %d;\n",
2173 indent, test->u.insn.num_clobbers_to_add);
2174 printf ("%sreturn %d; /* %s */\n", indent,
2175 test->u.insn.code_number,
2176 get_insn_name (test->u.insn.code_number));
2177 break;
2179 case SPLIT:
2180 printf ("%sreturn gen_split_%d (insn, operands);\n",
2181 indent, test->u.insn.code_number);
2182 break;
2184 case PEEPHOLE2:
2186 int match_len = 0, i;
2188 for (i = strlen (p->position) - 1; i >= 0; --i)
2189 if (ISUPPER (p->position[i]))
2191 match_len = p->position[i] - 'A';
2192 break;
2194 printf ("%s*_pmatch_len = %d;\n", indent, match_len);
2195 printf ("%stem = gen_peephole2_%d (insn, operands);\n",
2196 indent, test->u.insn.code_number);
2197 printf ("%sif (tem != 0)\n%s return tem;\n", indent, indent);
2199 break;
2201 default:
2202 gcc_unreachable ();
2205 else
2207 printf("%sgoto L%d;\n", indent, success->number);
2208 success->need_label = 1;
2211 if (want_close)
2212 fputs (" }\n", stdout);
2215 /* Return 1 if the test is always true and has no fallthru path. Return -1
2216 if the test does have a fallthru path, but requires that the condition be
2217 terminated. Otherwise return 0 for a normal test. */
2218 /* ??? is_unconditional is a stupid name for a tri-state function. */
2220 static int
2221 is_unconditional (struct decision_test *t, enum routine_type subroutine_type)
2223 if (t->type == DT_accept_op)
2224 return 1;
2226 if (t->type == DT_accept_insn)
2228 switch (subroutine_type)
2230 case RECOG:
2231 return (t->u.insn.num_clobbers_to_add == 0);
2232 case SPLIT:
2233 return 1;
2234 case PEEPHOLE2:
2235 return -1;
2236 default:
2237 gcc_unreachable ();
2241 return 0;
2244 /* Emit code for one node -- the conditional and the accompanying action.
2245 Return true if there is no fallthru path. */
2247 static int
2248 write_node (struct decision *p, int depth,
2249 enum routine_type subroutine_type)
2251 struct decision_test *test, *last_test;
2252 int uncond;
2254 /* Scan the tests and simplify comparisons against small
2255 constants. */
2256 for (test = p->tests; test; test = test->next)
2258 if (test->type == DT_code
2259 && test->u.code == CONST_INT
2260 && test->next
2261 && test->next->type == DT_elt_zero_wide_safe
2262 && -MAX_SAVED_CONST_INT <= test->next->u.intval
2263 && test->next->u.intval <= MAX_SAVED_CONST_INT)
2265 test->type = DT_const_int;
2266 test->u.intval = test->next->u.intval;
2267 test->next = test->next->next;
2271 last_test = test = p->tests;
2272 uncond = is_unconditional (test, subroutine_type);
2273 if (uncond == 0)
2275 printf (" if (");
2276 write_cond (test, depth, subroutine_type);
2278 while ((test = test->next) != NULL)
2280 last_test = test;
2281 if (is_unconditional (test, subroutine_type))
2282 break;
2284 printf ("\n && ");
2285 write_cond (test, depth, subroutine_type);
2288 printf (")\n");
2291 write_action (p, last_test, depth, uncond, p->success.first, subroutine_type);
2293 return uncond > 0;
2296 /* Emit code for all of the sibling nodes of HEAD. */
2298 static void
2299 write_tree_1 (struct decision_head *head, int depth,
2300 enum routine_type subroutine_type)
2302 struct decision *p, *next;
2303 int uncond = 0;
2305 for (p = head->first; p ; p = next)
2307 /* The label for the first element was printed in write_tree. */
2308 if (p != head->first && p->need_label)
2309 OUTPUT_LABEL (" ", p->number);
2311 /* Attempt to write a switch statement for a whole sequence. */
2312 next = write_switch (p, depth);
2313 if (p != next)
2314 uncond = 0;
2315 else
2317 /* Failed -- fall back and write one node. */
2318 uncond = write_node (p, depth, subroutine_type);
2319 next = p->next;
2323 /* Finished with this chain. Close a fallthru path by branching
2324 to the afterward node. */
2325 if (! uncond)
2326 write_afterward (head->last, head->last->afterward, " ");
2329 /* Write out the decision tree starting at HEAD. PREVPOS is the
2330 position at the node that branched to this node. */
2332 static void
2333 write_tree (struct decision_head *head, const char *prevpos,
2334 enum routine_type type, int initial)
2336 struct decision *p = head->first;
2338 putchar ('\n');
2339 if (p->need_label)
2340 OUTPUT_LABEL (" ", p->number);
2342 if (! initial && p->subroutine_number > 0)
2344 static const char * const name_prefix[] = {
2345 "recog", "split", "peephole2"
2348 static const char * const call_suffix[] = {
2349 ", pnum_clobbers", "", ", _pmatch_len"
2352 /* This node has been broken out into a separate subroutine.
2353 Call it, test the result, and branch accordingly. */
2355 if (p->afterward)
2357 printf (" tem = %s_%d (x0, insn%s);\n",
2358 name_prefix[type], p->subroutine_number, call_suffix[type]);
2359 if (IS_SPLIT (type))
2360 printf (" if (tem != 0)\n return tem;\n");
2361 else
2362 printf (" if (tem >= 0)\n return tem;\n");
2364 change_state (p->position, p->afterward->position, " ");
2365 printf (" goto L%d;\n", p->afterward->number);
2367 else
2369 printf (" return %s_%d (x0, insn%s);\n",
2370 name_prefix[type], p->subroutine_number, call_suffix[type]);
2373 else
2375 int depth = strlen (p->position);
2377 change_state (prevpos, p->position, " ");
2378 write_tree_1 (head, depth, type);
2380 for (p = head->first; p; p = p->next)
2381 if (p->success.first)
2382 write_tree (&p->success, p->position, type, 0);
2386 /* Write out a subroutine of type TYPE to do comparisons starting at
2387 node TREE. */
2389 static void
2390 write_subroutine (struct decision_head *head, enum routine_type type)
2392 int subfunction = head->first ? head->first->subroutine_number : 0;
2393 const char *s_or_e;
2394 char extension[32];
2395 int i;
2397 s_or_e = subfunction ? "static " : "";
2399 if (subfunction)
2400 sprintf (extension, "_%d", subfunction);
2401 else if (type == RECOG)
2402 extension[0] = '\0';
2403 else
2404 strcpy (extension, "_insns");
2406 switch (type)
2408 case RECOG:
2409 printf ("%sint\n\
2410 recog%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n", s_or_e, extension);
2411 break;
2412 case SPLIT:
2413 printf ("%srtx\n\
2414 split%s (rtx x0 ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED)\n",
2415 s_or_e, extension);
2416 break;
2417 case PEEPHOLE2:
2418 printf ("%srtx\n\
2419 peephole2%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *_pmatch_len ATTRIBUTE_UNUSED)\n",
2420 s_or_e, extension);
2421 break;
2424 printf ("{\n rtx * const operands ATTRIBUTE_UNUSED = &recog_data.operand[0];\n");
2425 for (i = 1; i <= max_depth; i++)
2426 printf (" rtx x%d ATTRIBUTE_UNUSED;\n", i);
2428 printf (" %s tem ATTRIBUTE_UNUSED;\n", IS_SPLIT (type) ? "rtx" : "int");
2430 if (!subfunction)
2431 printf (" recog_data.insn = NULL_RTX;\n");
2433 if (head->first)
2434 write_tree (head, "", type, 1);
2435 else
2436 printf (" goto ret0;\n");
2438 printf (" ret0:\n return %d;\n}\n\n", IS_SPLIT (type) ? 0 : -1);
2441 /* In break_out_subroutines, we discovered the boundaries for the
2442 subroutines, but did not write them out. Do so now. */
2444 static void
2445 write_subroutines (struct decision_head *head, enum routine_type type)
2447 struct decision *p;
2449 for (p = head->first; p ; p = p->next)
2450 if (p->success.first)
2451 write_subroutines (&p->success, type);
2453 if (head->first->subroutine_number > 0)
2454 write_subroutine (head, type);
2457 /* Begin the output file. */
2459 static void
2460 write_header (void)
2462 puts ("\
2463 /* Generated automatically by the program `genrecog' from the target\n\
2464 machine description file. */\n\
2466 #include \"config.h\"\n\
2467 #include \"system.h\"\n\
2468 #include \"coretypes.h\"\n\
2469 #include \"tm.h\"\n\
2470 #include \"rtl.h\"\n\
2471 #include \"tm_p.h\"\n\
2472 #include \"function.h\"\n\
2473 #include \"insn-config.h\"\n\
2474 #include \"recog.h\"\n\
2475 #include \"real.h\"\n\
2476 #include \"output.h\"\n\
2477 #include \"flags.h\"\n\
2478 #include \"hard-reg-set.h\"\n\
2479 #include \"resource.h\"\n\
2480 #include \"toplev.h\"\n\
2481 #include \"reload.h\"\n\
2482 #include \"regs.h\"\n\
2483 #include \"tm-constrs.h\"\n\
2484 \n");
2486 puts ("\n\
2487 /* `recog' contains a decision tree that recognizes whether the rtx\n\
2488 X0 is a valid instruction.\n\
2490 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
2491 returns a nonnegative number which is the insn code number for the\n\
2492 pattern that matched. This is the same as the order in the machine\n\
2493 description of the entry that matched. This number can be used as an\n\
2494 index into `insn_data' and other tables.\n");
2495 puts ("\
2496 The third argument to recog is an optional pointer to an int. If\n\
2497 present, recog will accept a pattern if it matches except for missing\n\
2498 CLOBBER expressions at the end. In that case, the value pointed to by\n\
2499 the optional pointer will be set to the number of CLOBBERs that need\n\
2500 to be added (it should be initialized to zero by the caller). If it");
2501 puts ("\
2502 is set nonzero, the caller should allocate a PARALLEL of the\n\
2503 appropriate size, copy the initial entries, and call add_clobbers\n\
2504 (found in insn-emit.c) to fill in the CLOBBERs.\n\
2507 puts ("\n\
2508 The function split_insns returns 0 if the rtl could not\n\
2509 be split or the split rtl as an INSN list if it can be.\n\
2511 The function peephole2_insns returns 0 if the rtl could not\n\
2512 be matched. If there was a match, the new rtl is returned in an INSN list,\n\
2513 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
2514 */\n\n");
2518 /* Construct and return a sequence of decisions
2519 that will recognize INSN.
2521 TYPE says what type of routine we are recognizing (RECOG or SPLIT). */
2523 static struct decision_head
2524 make_insn_sequence (rtx insn, enum routine_type type)
2526 rtx x;
2527 const char *c_test = XSTR (insn, type == RECOG ? 2 : 1);
2528 int truth = maybe_eval_c_test (c_test);
2529 struct decision *last;
2530 struct decision_test *test, **place;
2531 struct decision_head head;
2532 char c_test_pos[2];
2534 /* We should never see an insn whose C test is false at compile time. */
2535 gcc_assert (truth);
2537 c_test_pos[0] = '\0';
2538 if (type == PEEPHOLE2)
2540 int i, j;
2542 /* peephole2 gets special treatment:
2543 - X always gets an outer parallel even if it's only one entry
2544 - we remove all traces of outer-level match_scratch and match_dup
2545 expressions here. */
2546 x = rtx_alloc (PARALLEL);
2547 PUT_MODE (x, VOIDmode);
2548 XVEC (x, 0) = rtvec_alloc (XVECLEN (insn, 0));
2549 for (i = j = 0; i < XVECLEN (insn, 0); i++)
2551 rtx tmp = XVECEXP (insn, 0, i);
2552 if (GET_CODE (tmp) != MATCH_SCRATCH && GET_CODE (tmp) != MATCH_DUP)
2554 XVECEXP (x, 0, j) = tmp;
2555 j++;
2558 XVECLEN (x, 0) = j;
2560 c_test_pos[0] = 'A' + j - 1;
2561 c_test_pos[1] = '\0';
2563 else if (XVECLEN (insn, type == RECOG) == 1)
2564 x = XVECEXP (insn, type == RECOG, 0);
2565 else
2567 x = rtx_alloc (PARALLEL);
2568 XVEC (x, 0) = XVEC (insn, type == RECOG);
2569 PUT_MODE (x, VOIDmode);
2572 validate_pattern (x, insn, NULL_RTX, 0);
2574 memset(&head, 0, sizeof(head));
2575 last = add_to_sequence (x, &head, "", type, 1);
2577 /* Find the end of the test chain on the last node. */
2578 for (test = last->tests; test->next; test = test->next)
2579 continue;
2580 place = &test->next;
2582 /* Skip the C test if it's known to be true at compile time. */
2583 if (truth == -1)
2585 /* Need a new node if we have another test to add. */
2586 if (test->type == DT_accept_op)
2588 last = new_decision (c_test_pos, &last->success);
2589 place = &last->tests;
2591 test = new_decision_test (DT_c_test, &place);
2592 test->u.c_test = c_test;
2595 test = new_decision_test (DT_accept_insn, &place);
2596 test->u.insn.code_number = next_insn_code;
2597 test->u.insn.lineno = pattern_lineno;
2598 test->u.insn.num_clobbers_to_add = 0;
2600 switch (type)
2602 case RECOG:
2603 /* If this is a DEFINE_INSN and X is a PARALLEL, see if it ends
2604 with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes.
2605 If so, set up to recognize the pattern without these CLOBBERs. */
2607 if (GET_CODE (x) == PARALLEL)
2609 int i;
2611 /* Find the last non-clobber in the parallel. */
2612 for (i = XVECLEN (x, 0); i > 0; i--)
2614 rtx y = XVECEXP (x, 0, i - 1);
2615 if (GET_CODE (y) != CLOBBER
2616 || (!REG_P (XEXP (y, 0))
2617 && GET_CODE (XEXP (y, 0)) != MATCH_SCRATCH))
2618 break;
2621 if (i != XVECLEN (x, 0))
2623 rtx new_rtx;
2624 struct decision_head clobber_head;
2626 /* Build a similar insn without the clobbers. */
2627 if (i == 1)
2628 new_rtx = XVECEXP (x, 0, 0);
2629 else
2631 int j;
2633 new_rtx = rtx_alloc (PARALLEL);
2634 XVEC (new_rtx, 0) = rtvec_alloc (i);
2635 for (j = i - 1; j >= 0; j--)
2636 XVECEXP (new_rtx, 0, j) = XVECEXP (x, 0, j);
2639 /* Recognize it. */
2640 memset (&clobber_head, 0, sizeof(clobber_head));
2641 last = add_to_sequence (new_rtx, &clobber_head, "", type, 1);
2643 /* Find the end of the test chain on the last node. */
2644 for (test = last->tests; test->next; test = test->next)
2645 continue;
2647 /* We definitely have a new test to add -- create a new
2648 node if needed. */
2649 place = &test->next;
2650 if (test->type == DT_accept_op)
2652 last = new_decision ("", &last->success);
2653 place = &last->tests;
2656 /* Skip the C test if it's known to be true at compile
2657 time. */
2658 if (truth == -1)
2660 test = new_decision_test (DT_c_test, &place);
2661 test->u.c_test = c_test;
2664 test = new_decision_test (DT_accept_insn, &place);
2665 test->u.insn.code_number = next_insn_code;
2666 test->u.insn.lineno = pattern_lineno;
2667 test->u.insn.num_clobbers_to_add = XVECLEN (x, 0) - i;
2669 merge_trees (&head, &clobber_head);
2672 break;
2674 case SPLIT:
2675 /* Define the subroutine we will call below and emit in genemit. */
2676 printf ("extern rtx gen_split_%d (rtx, rtx *);\n", next_insn_code);
2677 break;
2679 case PEEPHOLE2:
2680 /* Define the subroutine we will call below and emit in genemit. */
2681 printf ("extern rtx gen_peephole2_%d (rtx, rtx *);\n",
2682 next_insn_code);
2683 break;
2686 return head;
2689 static void
2690 process_tree (struct decision_head *head, enum routine_type subroutine_type)
2692 if (head->first == NULL)
2694 /* We can elide peephole2_insns, but not recog or split_insns. */
2695 if (subroutine_type == PEEPHOLE2)
2696 return;
2698 else
2700 factor_tests (head);
2702 next_subroutine_number = 0;
2703 break_out_subroutines (head, 1);
2704 find_afterward (head, NULL);
2706 /* We run this after find_afterward, because find_afterward needs
2707 the redundant DT_mode tests on predicates to determine whether
2708 two tests can both be true or not. */
2709 simplify_tests(head);
2711 write_subroutines (head, subroutine_type);
2714 write_subroutine (head, subroutine_type);
2717 extern int main (int, char **);
2720 main (int argc, char **argv)
2722 rtx desc;
2723 struct decision_head recog_tree, split_tree, peephole2_tree, h;
2725 progname = "genrecog";
2727 memset (&recog_tree, 0, sizeof recog_tree);
2728 memset (&split_tree, 0, sizeof split_tree);
2729 memset (&peephole2_tree, 0, sizeof peephole2_tree);
2731 if (init_md_reader_args (argc, argv) != SUCCESS_EXIT_CODE)
2732 return (FATAL_EXIT_CODE);
2734 next_insn_code = 0;
2736 write_header ();
2738 /* Read the machine description. */
2740 while (1)
2742 desc = read_md_rtx (&pattern_lineno, &next_insn_code);
2743 if (desc == NULL)
2744 break;
2746 switch (GET_CODE (desc))
2748 case DEFINE_PREDICATE:
2749 case DEFINE_SPECIAL_PREDICATE:
2750 process_define_predicate (desc);
2751 break;
2753 case DEFINE_INSN:
2754 h = make_insn_sequence (desc, RECOG);
2755 merge_trees (&recog_tree, &h);
2756 break;
2758 case DEFINE_SPLIT:
2759 h = make_insn_sequence (desc, SPLIT);
2760 merge_trees (&split_tree, &h);
2761 break;
2763 case DEFINE_PEEPHOLE2:
2764 h = make_insn_sequence (desc, PEEPHOLE2);
2765 merge_trees (&peephole2_tree, &h);
2767 default:
2768 /* do nothing */;
2772 if (error_count || have_error)
2773 return FATAL_EXIT_CODE;
2775 puts ("\n\n");
2777 process_tree (&recog_tree, RECOG);
2778 process_tree (&split_tree, SPLIT);
2779 process_tree (&peephole2_tree, PEEPHOLE2);
2781 fflush (stdout);
2782 return (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
2785 static void
2786 debug_decision_2 (struct decision_test *test)
2788 switch (test->type)
2790 case DT_num_insns:
2791 fprintf (stderr, "num_insns=%d", test->u.num_insns);
2792 break;
2793 case DT_mode:
2794 fprintf (stderr, "mode=%s", GET_MODE_NAME (test->u.mode));
2795 break;
2796 case DT_code:
2797 fprintf (stderr, "code=%s", GET_RTX_NAME (test->u.code));
2798 break;
2799 case DT_veclen:
2800 fprintf (stderr, "veclen=%d", test->u.veclen);
2801 break;
2802 case DT_elt_zero_int:
2803 fprintf (stderr, "elt0_i=%d", (int) test->u.intval);
2804 break;
2805 case DT_elt_one_int:
2806 fprintf (stderr, "elt1_i=%d", (int) test->u.intval);
2807 break;
2808 case DT_elt_zero_wide:
2809 fprintf (stderr, "elt0_w=" HOST_WIDE_INT_PRINT_DEC, test->u.intval);
2810 break;
2811 case DT_elt_zero_wide_safe:
2812 fprintf (stderr, "elt0_ws=" HOST_WIDE_INT_PRINT_DEC, test->u.intval);
2813 break;
2814 case DT_veclen_ge:
2815 fprintf (stderr, "veclen>=%d", test->u.veclen);
2816 break;
2817 case DT_dup:
2818 fprintf (stderr, "dup=%d", test->u.dup);
2819 break;
2820 case DT_pred:
2821 fprintf (stderr, "pred=(%s,%s)",
2822 test->u.pred.name, GET_MODE_NAME(test->u.pred.mode));
2823 break;
2824 case DT_c_test:
2826 char sub[16+4];
2827 strncpy (sub, test->u.c_test, sizeof(sub));
2828 memcpy (sub+16, "...", 4);
2829 fprintf (stderr, "c_test=\"%s\"", sub);
2831 break;
2832 case DT_accept_op:
2833 fprintf (stderr, "A_op=%d", test->u.opno);
2834 break;
2835 case DT_accept_insn:
2836 fprintf (stderr, "A_insn=(%d,%d)",
2837 test->u.insn.code_number, test->u.insn.num_clobbers_to_add);
2838 break;
2840 default:
2841 gcc_unreachable ();
2845 static void
2846 debug_decision_1 (struct decision *d, int indent)
2848 int i;
2849 struct decision_test *test;
2851 if (d == NULL)
2853 for (i = 0; i < indent; ++i)
2854 putc (' ', stderr);
2855 fputs ("(nil)\n", stderr);
2856 return;
2859 for (i = 0; i < indent; ++i)
2860 putc (' ', stderr);
2862 putc ('{', stderr);
2863 test = d->tests;
2864 if (test)
2866 debug_decision_2 (test);
2867 while ((test = test->next) != NULL)
2869 fputs (" + ", stderr);
2870 debug_decision_2 (test);
2873 fprintf (stderr, "} %d n %d a %d\n", d->number,
2874 (d->next ? d->next->number : -1),
2875 (d->afterward ? d->afterward->number : -1));
2878 static void
2879 debug_decision_0 (struct decision *d, int indent, int maxdepth)
2881 struct decision *n;
2882 int i;
2884 if (maxdepth < 0)
2885 return;
2886 if (d == NULL)
2888 for (i = 0; i < indent; ++i)
2889 putc (' ', stderr);
2890 fputs ("(nil)\n", stderr);
2891 return;
2894 debug_decision_1 (d, indent);
2895 for (n = d->success.first; n ; n = n->next)
2896 debug_decision_0 (n, indent + 2, maxdepth - 1);
2899 void
2900 debug_decision (struct decision *d)
2902 debug_decision_0 (d, 0, 1000000);
2905 void
2906 debug_decision_list (struct decision *d)
2908 while (d)
2910 debug_decision_0 (d, 0, 0);
2911 d = d->next;