1 /* Definitions of target machine for GNU compiler. NEC V850 series
2 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
3 2007, 2008 Free Software Foundation, Inc.
4 Contributed by Jeff Law (law@cygnus.com).
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
25 /* These are defined in svr4.h but we want to override them. */
32 #define TARGET_CPU_generic 1
33 #define TARGET_CPU_v850e 2
34 #define TARGET_CPU_v850e1 3
36 #ifndef TARGET_CPU_DEFAULT
37 #define TARGET_CPU_DEFAULT TARGET_CPU_generic
40 #define MASK_DEFAULT MASK_V850
41 #define SUBTARGET_ASM_SPEC "%{!mv*:-mv850}"
42 #define SUBTARGET_CPP_SPEC "%{!mv*:-D__v850__}"
43 #define TARGET_VERSION fprintf (stderr, " (NEC V850)");
45 /* Choose which processor will be the default.
46 We must pass a -mv850xx option to the assembler if no explicit -mv* option
47 is given, because the assembler's processor default may not be correct. */
48 #if TARGET_CPU_DEFAULT == TARGET_CPU_v850e
50 #define MASK_DEFAULT MASK_V850E
51 #undef SUBTARGET_ASM_SPEC
52 #define SUBTARGET_ASM_SPEC "%{!mv*:-mv850e}"
53 #undef SUBTARGET_CPP_SPEC
54 #define SUBTARGET_CPP_SPEC "%{!mv*:-D__v850e__}"
56 #define TARGET_VERSION fprintf (stderr, " (NEC V850E)");
59 #if TARGET_CPU_DEFAULT == TARGET_CPU_v850e1
61 #define MASK_DEFAULT MASK_V850E /* No practical difference. */
62 #undef SUBTARGET_ASM_SPEC
63 #define SUBTARGET_ASM_SPEC "%{!mv*:-mv850e1}"
64 #undef SUBTARGET_CPP_SPEC
65 #define SUBTARGET_CPP_SPEC "%{!mv*:-D__v850e1__} %{mv850e1:-D__v850e1__}"
67 #define TARGET_VERSION fprintf (stderr, " (NEC V850E1)");
70 #define ASM_SPEC "%{mv*:-mv%*}"
71 #define CPP_SPEC "%{mv850e:-D__v850e__} %{mv850:-D__v850__} %(subtarget_cpp_spec)"
74 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
75 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }
77 /* Names to predefine in the preprocessor for this target machine. */
78 #define TARGET_CPU_CPP_BUILTINS() do { \
79 builtin_define( "__v851__" ); \
80 builtin_define( "__v850" ); \
81 builtin_assert( "machine=v850" ); \
82 builtin_assert( "cpu=v850" ); \
84 builtin_define ("__EP__"); \
87 #define MASK_CPU (MASK_V850 | MASK_V850E)
89 /* Information about the various small memory areas. */
90 struct small_memory_info
{
96 enum small_memory_type
{
97 /* tiny data area, using EP as base register */
99 /* small data area using dp as base register */
101 /* zero data area using r0 as base register */
106 extern struct small_memory_info small_memory
[(int)SMALL_MEMORY_max
];
108 /* Show we can debug even without a frame pointer. */
109 #define CAN_DEBUG_WITHOUT_FP
111 /* Some machines may desire to change what optimizations are
112 performed for various optimization levels. This macro, if
113 defined, is executed once just after the optimization level is
114 determined and before the remainder of the command options have
115 been parsed. Values set in this macro are used as the default
116 values for the other command line options.
118 LEVEL is the optimization level specified; 2 if `-O2' is
119 specified, 1 if `-O' is specified, and 0 if neither is specified.
121 SIZE is nonzero if `-Os' is specified, 0 otherwise.
123 You should not use this macro to change options that are not
124 machine-specific. These should uniformly selected by the same
125 optimization level on all supported machines. Use this macro to
126 enable machine-specific optimizations.
128 *Do not examine `write_symbols' in this macro!* The debugging
129 options are not supposed to alter the generated code. */
131 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) \
133 target_flags |= MASK_STRICT_ALIGN; \
135 /* Note - we no longer enable MASK_EP when optimizing. This is \
136 because of a hardware bug which stops the SLD and SST instructions\
137 from correctly detecting some hazards. If the user is sure that \
138 their hardware is fixed or that their program will not encounter \
139 the conditions that trigger the bug then they can enable -mep by \
141 target_flags |= MASK_PROLOG_FUNCTION; \
145 /* Target machine storage layout */
147 /* Define this if most significant bit is lowest numbered
148 in instructions that operate on numbered bit-fields.
149 This is not true on the NEC V850. */
150 #define BITS_BIG_ENDIAN 0
152 /* Define this if most significant byte of a word is the lowest numbered. */
153 /* This is not true on the NEC V850. */
154 #define BYTES_BIG_ENDIAN 0
156 /* Define this if most significant word of a multiword number is lowest
158 This is not true on the NEC V850. */
159 #define WORDS_BIG_ENDIAN 0
161 /* Width of a word, in units (bytes). */
162 #define UNITS_PER_WORD 4
164 /* Define this macro if it is advisable to hold scalars in registers
165 in a wider mode than that declared by the program. In such cases,
166 the value is constrained to be within the bounds of the declared
167 type, but kept valid in the wider mode. The signedness of the
168 extension may differ from that of the type.
170 Some simple experiments have shown that leaving UNSIGNEDP alone
171 generates the best overall code. */
173 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
174 if (GET_MODE_CLASS (MODE) == MODE_INT \
175 && GET_MODE_SIZE (MODE) < 4) \
178 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
179 #define PARM_BOUNDARY 32
181 /* The stack goes in 32-bit lumps. */
182 #define STACK_BOUNDARY 32
184 /* Allocation boundary (in *bits*) for the code of a function.
185 16 is the minimum boundary; 32 would give better performance. */
186 #define FUNCTION_BOUNDARY 16
188 /* No data type wants to be aligned rounder than this. */
189 #define BIGGEST_ALIGNMENT 32
191 /* Alignment of field after `int : 0' in a structure. */
192 #define EMPTY_FIELD_BOUNDARY 32
194 /* No structure field wants to be aligned rounder than this. */
195 #define BIGGEST_FIELD_ALIGNMENT 32
197 /* Define this if move instructions will actually fail to work
198 when given unaligned data. */
199 #define STRICT_ALIGNMENT TARGET_STRICT_ALIGN
201 /* Define this as 1 if `char' should by default be signed; else as 0.
203 On the NEC V850, loads do sign extension, so make this default. */
204 #define DEFAULT_SIGNED_CHAR 1
206 /* Standard register usage. */
208 /* Number of actual hardware registers.
209 The hardware registers are assigned numbers for the compiler
210 from 0 to just below FIRST_PSEUDO_REGISTER.
212 All registers that the compiler knows about must be given numbers,
213 even those that are not normally considered general registers. */
215 #define FIRST_PSEUDO_REGISTER 34
217 /* 1 for registers that have pervasive standard uses
218 and are not available for the register allocator. */
220 #define FIXED_REGISTERS \
221 { 1, 1, 0, 1, 1, 0, 0, 0, \
222 0, 0, 0, 0, 0, 0, 0, 0, \
223 0, 0, 0, 0, 0, 0, 0, 0, \
224 0, 0, 0, 0, 0, 0, 1, 0, \
227 /* 1 for registers not available across function calls.
228 These must include the FIXED_REGISTERS and also any
229 registers that can be used without being saved.
230 The latter must include the registers where values are returned
231 and the register where structure-value addresses are passed.
232 Aside from that, you can include as many other registers as you
235 #define CALL_USED_REGISTERS \
236 { 1, 1, 0, 1, 1, 1, 1, 1, \
237 1, 1, 1, 1, 1, 1, 1, 1, \
238 1, 1, 1, 1, 0, 0, 0, 0, \
239 0, 0, 0, 0, 0, 0, 1, 1, \
242 /* List the order in which to allocate registers. Each register must be
243 listed once, even those in FIXED_REGISTERS.
245 On the 850, we make the return registers first, then all of the volatile
246 registers, then the saved registers in reverse order to better save the
247 registers with an out of line function, and finally the fixed
250 #define REG_ALLOC_ORDER \
252 10, 11, /* return registers */ \
253 12, 13, 14, 15, 16, 17, 18, 19, /* scratch registers */ \
254 6, 7, 8, 9, 31, /* argument registers */ \
255 29, 28, 27, 26, 25, 24, 23, 22, /* saved registers */ \
257 0, 1, 3, 4, 5, 30, 32, 33 /* fixed registers */ \
260 /* If TARGET_APP_REGS is not defined then add r2 and r5 to
261 the pool of fixed registers. See PR 14505. */
262 #define CONDITIONAL_REGISTER_USAGE \
264 if (!TARGET_APP_REGS) \
266 fixed_regs[2] = 1; call_used_regs[2] = 1; \
267 fixed_regs[5] = 1; call_used_regs[5] = 1; \
271 /* Return number of consecutive hard regs needed starting at reg REGNO
272 to hold something of mode MODE.
274 This is ordinarily the length in words of a value of mode MODE
275 but can be less for certain modes in special long registers. */
277 #define HARD_REGNO_NREGS(REGNO, MODE) \
278 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
280 /* Value is 1 if hard register REGNO can hold a value of machine-mode
283 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
284 ((((REGNO) & 1) == 0) || (GET_MODE_SIZE (MODE) <= 4))
286 /* Value is 1 if it is a good idea to tie two pseudo registers
287 when one has mode MODE1 and one has mode MODE2.
288 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
289 for any hard reg, then this must be 0 for correct output. */
290 #define MODES_TIEABLE_P(MODE1, MODE2) \
291 (MODE1 == MODE2 || (GET_MODE_SIZE (MODE1) <= 4 && GET_MODE_SIZE (MODE2) <= 4))
294 /* Define the classes of registers for register constraints in the
295 machine description. Also define ranges of constants.
297 One of the classes must always be named ALL_REGS and include all hard regs.
298 If there is more than one class, another class must be named NO_REGS
299 and contain no registers.
301 The name GENERAL_REGS must be the name of a class (or an alias for
302 another name such as ALL_REGS). This is the class of registers
303 that is allowed by "g" or "r" in a register constraint.
304 Also, registers outside this class are allocated only when
305 instructions express preferences for them.
307 The classes must be numbered in nondecreasing order; that is,
308 a larger-numbered class must never be contained completely
309 in a smaller-numbered class.
311 For any two classes, it is very desirable that there be another
312 class that represents their union. */
316 NO_REGS
, GENERAL_REGS
, ALL_REGS
, LIM_REG_CLASSES
319 #define N_REG_CLASSES (int) LIM_REG_CLASSES
321 #define IRA_COVER_CLASSES \
323 GENERAL_REGS, LIM_REG_CLASSES \
326 /* Give names of register classes as strings for dump file. */
328 #define REG_CLASS_NAMES \
329 { "NO_REGS", "GENERAL_REGS", "ALL_REGS", "LIM_REGS" }
331 /* Define which registers fit in which classes.
332 This is an initializer for a vector of HARD_REG_SET
333 of length N_REG_CLASSES. */
335 #define REG_CLASS_CONTENTS \
337 { 0x00000000 }, /* NO_REGS */ \
338 { 0xffffffff }, /* GENERAL_REGS */ \
339 { 0xffffffff }, /* ALL_REGS */ \
342 /* The same information, inverted:
343 Return the class number of the smallest class containing
344 reg number REGNO. This could be a conditional expression
345 or could index an array. */
347 #define REGNO_REG_CLASS(REGNO) GENERAL_REGS
349 /* The class value for index registers, and the one for base regs. */
351 #define INDEX_REG_CLASS NO_REGS
352 #define BASE_REG_CLASS GENERAL_REGS
354 /* Get reg_class from a letter such as appears in the machine description. */
356 #define REG_CLASS_FROM_LETTER(C) (NO_REGS)
358 /* Macros to check register numbers against specific register classes. */
360 /* These assume that REGNO is a hard or pseudo reg number.
361 They give nonzero only if REGNO is a hard reg of the suitable class
362 or a pseudo reg currently allocated to a suitable hard reg.
363 Since they use reg_renumber, they are safe only once reg_renumber
364 has been allocated, which happens in local-alloc.c. */
366 #define REGNO_OK_FOR_BASE_P(regno) \
367 ((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
369 #define REGNO_OK_FOR_INDEX_P(regno) 0
371 /* Given an rtx X being reloaded into a reg required to be
372 in class CLASS, return the class of reg to actually use.
373 In general this is just CLASS; but on some machines
374 in some cases it is preferable to use a more restrictive class. */
376 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
378 /* Return the maximum number of consecutive registers
379 needed to represent mode MODE in a register of class CLASS. */
381 #define CLASS_MAX_NREGS(CLASS, MODE) \
382 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
384 /* The letters I, J, K, L, M, N, O, P in a register constraint string
385 can be used to stand for particular ranges of immediate operands.
386 This macro defines what the ranges are.
387 C is the letter, and VALUE is a constant value.
388 Return 1 if VALUE is in the range specified by C. */
390 #define INT_7_BITS(VALUE) ((unsigned) (VALUE) + 0x40 < 0x80)
391 #define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
393 #define CONST_OK_FOR_I(VALUE) ((VALUE) == 0)
394 /* 5-bit signed immediate */
395 #define CONST_OK_FOR_J(VALUE) ((unsigned) (VALUE) + 0x10 < 0x20)
396 /* 16-bit signed immediate */
397 #define CONST_OK_FOR_K(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
398 /* valid constant for movhi instruction. */
399 #define CONST_OK_FOR_L(VALUE) \
400 (((unsigned) ((int) (VALUE) >> 16) + 0x8000 < 0x10000) \
401 && CONST_OK_FOR_I ((VALUE & 0xffff)))
402 /* 16-bit unsigned immediate */
403 #define CONST_OK_FOR_M(VALUE) ((unsigned)(VALUE) < 0x10000)
404 /* 5-bit unsigned immediate in shift instructions */
405 #define CONST_OK_FOR_N(VALUE) ((unsigned) (VALUE) <= 31)
406 /* 9-bit signed immediate for word multiply instruction. */
407 #define CONST_OK_FOR_O(VALUE) ((unsigned) (VALUE) + 0x100 < 0x200)
409 #define CONST_OK_FOR_P(VALUE) 0
411 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
412 ((C) == 'I' ? CONST_OK_FOR_I (VALUE) : \
413 (C) == 'J' ? CONST_OK_FOR_J (VALUE) : \
414 (C) == 'K' ? CONST_OK_FOR_K (VALUE) : \
415 (C) == 'L' ? CONST_OK_FOR_L (VALUE) : \
416 (C) == 'M' ? CONST_OK_FOR_M (VALUE) : \
417 (C) == 'N' ? CONST_OK_FOR_N (VALUE) : \
418 (C) == 'O' ? CONST_OK_FOR_O (VALUE) : \
419 (C) == 'P' ? CONST_OK_FOR_P (VALUE) : \
422 /* Similar, but for floating constants, and defining letters G and H.
423 Here VALUE is the CONST_DOUBLE rtx itself.
425 `G' is a zero of some form. */
427 #define CONST_DOUBLE_OK_FOR_G(VALUE) \
428 ((GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
429 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
430 || (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_INT \
431 && CONST_DOUBLE_LOW (VALUE) == 0 \
432 && CONST_DOUBLE_HIGH (VALUE) == 0))
434 #define CONST_DOUBLE_OK_FOR_H(VALUE) 0
436 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
437 ((C) == 'G' ? CONST_DOUBLE_OK_FOR_G (VALUE) \
438 : (C) == 'H' ? CONST_DOUBLE_OK_FOR_H (VALUE) \
442 /* Stack layout; function entry, exit and calling. */
444 /* Define this if pushing a word on the stack
445 makes the stack pointer a smaller address. */
447 #define STACK_GROWS_DOWNWARD
449 /* Define this to nonzero if the nominal address of the stack frame
450 is at the high-address end of the local variables;
451 that is, each additional local variable allocated
452 goes at a more negative offset in the frame. */
454 #define FRAME_GROWS_DOWNWARD 1
456 /* Offset within stack frame to start allocating local variables at.
457 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
458 first local allocated. Otherwise, it is the offset to the BEGINNING
459 of the first local allocated. */
461 #define STARTING_FRAME_OFFSET 0
463 /* Offset of first parameter from the argument pointer register value. */
464 /* Is equal to the size of the saved fp + pc, even if an fp isn't
465 saved since the value is used before we know. */
467 #define FIRST_PARM_OFFSET(FNDECL) 0
469 /* Specify the registers used for certain standard purposes.
470 The values of these macros are register numbers. */
472 /* Register to use for pushing function arguments. */
473 #define STACK_POINTER_REGNUM 3
475 /* Base register for access to local variables of the function. */
476 #define FRAME_POINTER_REGNUM 32
478 /* Register containing return address from latest function call. */
479 #define LINK_POINTER_REGNUM 31
481 /* On some machines the offset between the frame pointer and starting
482 offset of the automatic variables is not known until after register
483 allocation has been done (for example, because the saved registers
484 are between these two locations). On those machines, define
485 `FRAME_POINTER_REGNUM' the number of a special, fixed register to
486 be used internally until the offset is known, and define
487 `HARD_FRAME_POINTER_REGNUM' to be actual the hard register number
488 used for the frame pointer.
490 You should define this macro only in the very rare circumstances
491 when it is not possible to calculate the offset between the frame
492 pointer and the automatic variables until after register
493 allocation has been completed. When this macro is defined, you
494 must also indicate in your definition of `ELIMINABLE_REGS' how to
495 eliminate `FRAME_POINTER_REGNUM' into either
496 `HARD_FRAME_POINTER_REGNUM' or `STACK_POINTER_REGNUM'.
498 Do not define this macro if it would be the same as
499 `FRAME_POINTER_REGNUM'. */
500 #undef HARD_FRAME_POINTER_REGNUM
501 #define HARD_FRAME_POINTER_REGNUM 29
503 /* Base register for access to arguments of the function. */
504 #define ARG_POINTER_REGNUM 33
506 /* Register in which static-chain is passed to a function. */
507 #define STATIC_CHAIN_REGNUM 20
509 /* Value should be nonzero if functions must have frame pointers.
510 Zero means the frame pointer need not be set up (and parms
511 may be accessed via the stack pointer) in functions that seem suitable.
512 This is computed in `reload', in reload1.c. */
513 #define FRAME_POINTER_REQUIRED 0
515 /* If defined, this macro specifies a table of register pairs used to
516 eliminate unneeded registers that point into the stack frame. If
517 it is not defined, the only elimination attempted by the compiler
518 is to replace references to the frame pointer with references to
521 The definition of this macro is a list of structure
522 initializations, each of which specifies an original and
523 replacement register.
525 On some machines, the position of the argument pointer is not
526 known until the compilation is completed. In such a case, a
527 separate hard register must be used for the argument pointer.
528 This register can be eliminated by replacing it with either the
529 frame pointer or the argument pointer, depending on whether or not
530 the frame pointer has been eliminated.
532 In this case, you might specify:
533 #define ELIMINABLE_REGS \
534 {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
535 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
536 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
538 Note that the elimination of the argument pointer with the stack
539 pointer is specified first since that is the preferred elimination. */
541 #define ELIMINABLE_REGS \
542 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
543 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
544 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
545 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }} \
547 /* A C expression that returns nonzero if the compiler is allowed to
548 try to replace register number FROM-REG with register number
549 TO-REG. This macro need only be defined if `ELIMINABLE_REGS' is
550 defined, and will usually be the constant 1, since most of the
551 cases preventing register elimination are things that the compiler
552 already knows about. */
554 #define CAN_ELIMINATE(FROM, TO) \
555 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
557 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
558 specifies the initial difference between the specified pair of
559 registers. This macro must be defined if `ELIMINABLE_REGS' is
562 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
564 if ((FROM) == FRAME_POINTER_REGNUM) \
565 (OFFSET) = get_frame_size () + crtl->outgoing_args_size; \
566 else if ((FROM) == ARG_POINTER_REGNUM) \
567 (OFFSET) = compute_frame_size (get_frame_size (), (long *)0); \
569 gcc_unreachable (); \
572 /* Keep the stack pointer constant throughout the function. */
573 #define ACCUMULATE_OUTGOING_ARGS 1
575 /* Value is the number of bytes of arguments automatically
576 popped when returning from a subroutine call.
577 FUNDECL is the declaration node of the function (as a tree),
578 FUNTYPE is the data type of the function (as a tree),
579 or for a library call it is an identifier node for the subroutine name.
580 SIZE is the number of bytes of arguments passed on the stack. */
582 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
584 #define RETURN_ADDR_RTX(COUNT, FP) v850_return_addr (COUNT)
586 /* Define a data type for recording info about an argument list
587 during the scan of that argument list. This data type should
588 hold all necessary information about the function itself
589 and about the args processed so far, enough to enable macros
590 such as FUNCTION_ARG to determine where the next arg should go. */
592 #define CUMULATIVE_ARGS struct cum_arg
593 struct cum_arg
{ int nbytes
; int anonymous_args
; };
595 /* Define where to put the arguments to a function.
596 Value is zero to push the argument on the stack,
597 or a hard register in which to store the argument.
599 MODE is the argument's machine mode.
600 TYPE is the data type of the argument (as a tree).
601 This is null for libcalls where that information may
603 CUM is a variable of type CUMULATIVE_ARGS which gives info about
604 the preceding args and about the function being called.
605 NAMED is nonzero if this argument is a named parameter
606 (otherwise it is an extra parameter matching an ellipsis). */
608 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
609 function_arg (&CUM, MODE, TYPE, NAMED)
611 /* Initialize a variable CUM of type CUMULATIVE_ARGS
612 for a call to a function whose data type is FNTYPE.
613 For a library call, FNTYPE is 0. */
615 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
616 ((CUM).nbytes = 0, (CUM).anonymous_args = 0)
618 /* Update the data in CUM to advance over an argument
619 of mode MODE and data type TYPE.
620 (TYPE is null for libcalls where that information may not be available.) */
622 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
623 ((CUM).nbytes += ((MODE) != BLKmode \
624 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD \
625 : (int_size_in_bytes (TYPE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD))
627 /* When a parameter is passed in a register, stack space is still
629 #define REG_PARM_STACK_SPACE(DECL) (!TARGET_GHS ? 16 : 0)
631 /* Define this if the above stack space is to be considered part of the
632 space allocated by the caller. */
633 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
635 /* 1 if N is a possible register number for function argument passing. */
637 #define FUNCTION_ARG_REGNO_P(N) (N >= 6 && N <= 9)
639 /* Define how to find the value returned by a function.
640 VALTYPE is the data type of the value (as a tree).
641 If the precise function being called is known, FUNC is its FUNCTION_DECL;
642 otherwise, FUNC is 0. */
644 #define FUNCTION_VALUE(VALTYPE, FUNC) \
645 gen_rtx_REG (TYPE_MODE (VALTYPE), 10)
647 /* Define how to find the value returned by a library function
648 assuming the value has mode MODE. */
650 #define LIBCALL_VALUE(MODE) \
651 gen_rtx_REG (MODE, 10)
653 /* 1 if N is a possible register number for a function value. */
655 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 10)
657 #define DEFAULT_PCC_STRUCT_RETURN 0
659 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
660 the stack pointer does not matter. The value is tested only in
661 functions that have frame pointers.
662 No definition is equivalent to always zero. */
664 #define EXIT_IGNORE_STACK 1
666 /* Define this macro as a C expression that is nonzero for registers
667 used by the epilogue or the `return' pattern. */
669 #define EPILOGUE_USES(REGNO) \
670 (reload_completed && (REGNO) == LINK_POINTER_REGNUM)
672 /* Output assembler code to FILE to increment profiler label # LABELNO
673 for profiling a function entry. */
675 #define FUNCTION_PROFILER(FILE, LABELNO) ;
677 #define TRAMPOLINE_TEMPLATE(FILE) \
679 fprintf (FILE, "\tjarl .+4,r12\n"); \
680 fprintf (FILE, "\tld.w 12[r12],r20\n"); \
681 fprintf (FILE, "\tld.w 16[r12],r12\n"); \
682 fprintf (FILE, "\tjmp [r12]\n"); \
683 fprintf (FILE, "\tnop\n"); \
684 fprintf (FILE, "\t.long 0\n"); \
685 fprintf (FILE, "\t.long 0\n"); \
688 /* Length in units of the trampoline for entering a nested function. */
690 #define TRAMPOLINE_SIZE 24
692 /* Emit RTL insns to initialize the variable parts of a trampoline.
693 FNADDR is an RTX for the address of the function's pure code.
694 CXT is an RTX for the static chain value for the function. */
696 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
698 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 16)), \
700 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 20)), \
704 /* Addressing modes, and classification of registers for them. */
707 /* 1 if X is an rtx for a constant that is a valid address. */
709 /* ??? This seems too exclusive. May get better code by accepting more
710 possibilities here, in particular, should accept ZDA_NAME SYMBOL_REFs. */
712 #define CONSTANT_ADDRESS_P(X) \
713 (GET_CODE (X) == CONST_INT \
714 && CONST_OK_FOR_K (INTVAL (X)))
716 /* Maximum number of registers that can appear in a valid memory address. */
718 #define MAX_REGS_PER_ADDRESS 1
720 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
721 and check its validity for a certain class.
722 We have two alternate definitions for each of them.
723 The usual definition accepts all pseudo regs; the other rejects
724 them unless they have been allocated suitable hard regs.
725 The symbol REG_OK_STRICT causes the latter definition to be used.
727 Most source files want to accept pseudo regs in the hope that
728 they will get allocated to the class that the insn wants them to be in.
729 Source files for reload pass need to be strict.
730 After reload, it makes no difference, since pseudo regs have
731 been eliminated by then. */
733 #ifndef REG_OK_STRICT
735 /* Nonzero if X is a hard reg that can be used as an index
736 or if it is a pseudo reg. */
737 #define REG_OK_FOR_INDEX_P(X) 0
738 /* Nonzero if X is a hard reg that can be used as a base reg
739 or if it is a pseudo reg. */
740 #define REG_OK_FOR_BASE_P(X) 1
741 #define REG_OK_FOR_INDEX_P_STRICT(X) 0
742 #define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X))
747 /* Nonzero if X is a hard reg that can be used as an index. */
748 #define REG_OK_FOR_INDEX_P(X) 0
749 /* Nonzero if X is a hard reg that can be used as a base reg. */
750 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
755 /* A C expression that defines the optional machine-dependent
756 constraint letters that can be used to segregate specific types of
757 operands, usually memory references, for the target machine.
758 Normally this macro will not be defined. If it is required for a
759 particular target machine, it should return 1 if VALUE corresponds
760 to the operand type represented by the constraint letter C. If C
761 is not defined as an extra constraint, the value returned should
762 be 0 regardless of VALUE.
764 For example, on the ROMP, load instructions cannot have their
765 output in r0 if the memory reference contains a symbolic address.
766 Constraint letter `Q' is defined as representing a memory address
767 that does *not* contain a symbolic address. An alternative is
768 specified with a `Q' constraint on the input and `r' on the
769 output. The next alternative specifies `m' on the input and a
770 register class that does not include r0 on the output. */
772 #define EXTRA_CONSTRAINT(OP, C) \
773 ((C) == 'Q' ? ep_memory_operand (OP, GET_MODE (OP), FALSE) \
774 : (C) == 'R' ? special_symbolref_operand (OP, VOIDmode) \
775 : (C) == 'S' ? (GET_CODE (OP) == SYMBOL_REF \
776 && !SYMBOL_REF_ZDA_P (OP)) \
777 : (C) == 'T' ? ep_memory_operand (OP, GET_MODE (OP), TRUE) \
778 : (C) == 'U' ? ((GET_CODE (OP) == SYMBOL_REF \
779 && SYMBOL_REF_ZDA_P (OP)) \
780 || (GET_CODE (OP) == CONST \
781 && GET_CODE (XEXP (OP, 0)) == PLUS \
782 && GET_CODE (XEXP (XEXP (OP, 0), 0)) == SYMBOL_REF \
783 && SYMBOL_REF_ZDA_P (XEXP (XEXP (OP, 0), 0)))) \
786 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
787 that is a valid memory address for an instruction.
788 The MODE argument is the machine mode for the MEM expression
789 that wants to use this address.
791 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
792 except for CONSTANT_ADDRESS_P which is actually
793 machine-independent. */
795 /* Accept either REG or SUBREG where a register is valid. */
797 #define RTX_OK_FOR_BASE_P(X) \
798 ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
799 || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
800 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
802 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
804 if (RTX_OK_FOR_BASE_P (X)) \
806 if (CONSTANT_ADDRESS_P (X) \
807 && (MODE == QImode || INTVAL (X) % 2 == 0) \
808 && (GET_MODE_SIZE (MODE) <= 4 || INTVAL (X) % 4 == 0)) \
810 if (GET_CODE (X) == LO_SUM \
811 && REG_P (XEXP (X, 0)) \
812 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
813 && CONSTANT_P (XEXP (X, 1)) \
814 && (GET_CODE (XEXP (X, 1)) != CONST_INT \
815 || ((MODE == QImode || INTVAL (XEXP (X, 1)) % 2 == 0) \
816 && CONST_OK_FOR_K (INTVAL (XEXP (X, 1))))) \
817 && GET_MODE_SIZE (MODE) <= GET_MODE_SIZE (word_mode)) \
819 if (special_symbolref_operand (X, MODE) \
820 && (GET_MODE_SIZE (MODE) <= GET_MODE_SIZE (word_mode))) \
822 if (GET_CODE (X) == PLUS \
823 && RTX_OK_FOR_BASE_P (XEXP (X, 0)) \
824 && CONSTANT_ADDRESS_P (XEXP (X, 1)) \
825 && ((MODE == QImode || INTVAL (XEXP (X, 1)) % 2 == 0) \
826 && CONST_OK_FOR_K (INTVAL (XEXP (X, 1)) \
827 + (GET_MODE_NUNITS (MODE) * UNITS_PER_WORD)))) \
832 /* Nonzero if the constant value X is a legitimate general operand.
833 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
835 #define LEGITIMATE_CONSTANT_P(X) \
836 (GET_CODE (X) == CONST_DOUBLE \
837 || !(GET_CODE (X) == CONST \
838 && GET_CODE (XEXP (X, 0)) == PLUS \
839 && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF \
840 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
841 && ! CONST_OK_FOR_K (INTVAL (XEXP (XEXP (X, 0), 1)))))
843 /* Tell final.c how to eliminate redundant test instructions. */
845 /* Here we define machine-dependent flags and fields in cc_status
846 (see `conditions.h'). No extra ones are needed for the VAX. */
848 /* Store in cc_status the expressions
849 that the condition codes will describe
850 after execution of an instruction whose pattern is EXP.
851 Do not alter them if the instruction would not alter the cc's. */
853 #define CC_OVERFLOW_UNUSABLE 0x200
854 #define CC_NO_CARRY CC_NO_OVERFLOW
855 #define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN)
857 /* Nonzero if access to memory by bytes or half words is no faster
858 than accessing full words. */
859 #define SLOW_BYTE_ACCESS 1
861 /* According expr.c, a value of around 6 should minimize code size, and
862 for the V850 series, that's our primary concern. */
863 #define MOVE_RATIO(speed) 6
865 /* Indirect calls are expensive, never turn a direct call
866 into an indirect call. */
867 #define NO_FUNCTION_CSE
869 /* The four different data regions on the v850. */
878 #define TEXT_SECTION_ASM_OP "\t.section .text"
879 #define DATA_SECTION_ASM_OP "\t.section .data"
880 #define BSS_SECTION_ASM_OP "\t.section .bss"
881 #define SDATA_SECTION_ASM_OP "\t.section .sdata,\"aw\""
882 #define SBSS_SECTION_ASM_OP "\t.section .sbss,\"aw\""
884 #define SCOMMON_ASM_OP "\t.scomm\t"
885 #define ZCOMMON_ASM_OP "\t.zcomm\t"
886 #define TCOMMON_ASM_OP "\t.tcomm\t"
888 #define ASM_COMMENT_START "#"
890 /* Output to assembler file text saying following lines
891 may contain character constants, extra white space, comments, etc. */
893 #define ASM_APP_ON "#APP\n"
895 /* Output to assembler file text saying following lines
896 no longer contain unusual constructs. */
898 #define ASM_APP_OFF "#NO_APP\n"
900 #undef USER_LABEL_PREFIX
901 #define USER_LABEL_PREFIX "_"
903 #define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
904 if (! v850_output_addr_const_extra (FILE, X)) \
907 /* This says how to output the assembler to define a global
908 uninitialized but not common symbol. */
910 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
911 asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
913 #undef ASM_OUTPUT_ALIGNED_BSS
914 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
915 v850_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
917 /* This says how to output the assembler to define a global
918 uninitialized, common symbol. */
919 #undef ASM_OUTPUT_ALIGNED_COMMON
920 #undef ASM_OUTPUT_COMMON
921 #define ASM_OUTPUT_ALIGNED_DECL_COMMON(FILE, DECL, NAME, SIZE, ALIGN) \
922 v850_output_common (FILE, DECL, NAME, SIZE, ALIGN)
924 /* This says how to output the assembler to define a local
925 uninitialized symbol. */
926 #undef ASM_OUTPUT_ALIGNED_LOCAL
927 #undef ASM_OUTPUT_LOCAL
928 #define ASM_OUTPUT_ALIGNED_DECL_LOCAL(FILE, DECL, NAME, SIZE, ALIGN) \
929 v850_output_local (FILE, DECL, NAME, SIZE, ALIGN)
931 /* Globalizing directive for a label. */
932 #define GLOBAL_ASM_OP "\t.global "
934 #define ASM_PN_FORMAT "%s___%lu"
936 /* This is how we tell the assembler that two symbols have the same value. */
938 #define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
939 do { assemble_name(FILE, NAME1); \
940 fputs(" = ", FILE); \
941 assemble_name(FILE, NAME2); \
942 fputc('\n', FILE); } while (0)
945 /* How to refer to registers in assembler output.
946 This sequence is indexed by compiler's hard-register-number (see above). */
948 #define REGISTER_NAMES \
949 { "r0", "r1", "r2", "sp", "gp", "r5", "r6" , "r7", \
950 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
951 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
952 "r24", "r25", "r26", "r27", "r28", "r29", "ep", "r31", \
955 #define ADDITIONAL_REGISTER_NAMES \
965 /* Print an instruction operand X on file FILE.
966 look in v850.c for details */
968 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
970 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
973 /* Print a memory operand whose address is X, on file FILE.
974 This uses a function in output-vax.c. */
976 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
978 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO)
979 #define ASM_OUTPUT_REG_POP(FILE,REGNO)
981 /* This is how to output an element of a case-vector that is absolute. */
983 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
984 fprintf (FILE, "\t%s .L%d\n", \
985 (TARGET_BIG_SWITCH ? ".long" : ".short"), VALUE)
987 /* This is how to output an element of a case-vector that is relative. */
989 /* Disable the shift, which is for the currently disabled "switch"
990 opcode. Se casesi in v850.md. */
991 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
992 fprintf (FILE, "\t%s %s.L%d-.L%d%s\n", \
993 (TARGET_BIG_SWITCH ? ".long" : ".short"), \
994 (0 && ! TARGET_BIG_SWITCH && TARGET_V850E ? "(" : ""), \
996 (0 && ! TARGET_BIG_SWITCH && TARGET_V850E ? ")>>1" : ""))
998 #define ASM_OUTPUT_ALIGN(FILE, LOG) \
1000 fprintf (FILE, "\t.align %d\n", (LOG))
1002 /* We don't have to worry about dbx compatibility for the v850. */
1003 #define DEFAULT_GDB_EXTENSIONS 1
1005 /* Use stabs debugging info by default. */
1006 #undef PREFERRED_DEBUGGING_TYPE
1007 #define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
1009 /* Specify the machine mode that this machine uses
1010 for the index in the tablejump instruction. */
1011 #define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? SImode : HImode)
1013 /* Define as C expression which evaluates to nonzero if the tablejump
1014 instruction expects the table to contain offsets from the address of the
1016 Do not define this if the table should contain absolute addresses. */
1017 #define CASE_VECTOR_PC_RELATIVE 1
1019 /* The switch instruction requires that the jump table immediately follow
1021 #define JUMP_TABLES_IN_TEXT_SECTION 1
1023 /* svr4.h defines this assuming that 4 byte alignment is required. */
1024 #undef ASM_OUTPUT_BEFORE_CASE_LABEL
1025 #define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE,PREFIX,NUM,TABLE) \
1026 ASM_OUTPUT_ALIGN ((FILE), (TARGET_BIG_SWITCH ? 2 : 1));
1028 #define WORD_REGISTER_OPERATIONS
1030 /* Byte and short loads sign extend the value to a word. */
1031 #define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
1033 /* This flag, if defined, says the same insns that convert to a signed fixnum
1034 also convert validly to an unsigned one. */
1035 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1037 /* Max number of bytes we can move from memory to memory
1038 in one reasonably fast instruction. */
1041 /* Define if shifts truncate the shift count
1042 which implies one can omit a sign-extension or zero-extension
1043 of a shift count. */
1044 #define SHIFT_COUNT_TRUNCATED 1
1046 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1047 is done just by pretending it is already truncated. */
1048 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1050 /* Specify the machine mode that pointers have.
1051 After generation of rtl, the compiler makes no further distinction
1052 between pointers and any other objects of this machine mode. */
1053 #define Pmode SImode
1055 /* A function address in a call instruction
1056 is a byte address (for indexing purposes)
1057 so give the MEM rtx a byte's mode. */
1058 #define FUNCTION_MODE QImode
1060 /* Tell compiler we want to support GHS pragmas */
1061 #define REGISTER_TARGET_PRAGMAS() do { \
1062 c_register_pragma ("ghs", "interrupt", ghs_pragma_interrupt); \
1063 c_register_pragma ("ghs", "section", ghs_pragma_section); \
1064 c_register_pragma ("ghs", "starttda", ghs_pragma_starttda); \
1065 c_register_pragma ("ghs", "startsda", ghs_pragma_startsda); \
1066 c_register_pragma ("ghs", "startzda", ghs_pragma_startzda); \
1067 c_register_pragma ("ghs", "endtda", ghs_pragma_endtda); \
1068 c_register_pragma ("ghs", "endsda", ghs_pragma_endsda); \
1069 c_register_pragma ("ghs", "endzda", ghs_pragma_endzda); \
1072 /* enum GHS_SECTION_KIND is an enumeration of the kinds of sections that
1073 can appear in the "ghs section" pragma. These names are used to index
1074 into the GHS_default_section_names[] and GHS_current_section_names[]
1075 that are defined in v850.c, and so the ordering of each must remain
1078 These arrays give the default and current names for each kind of
1079 section defined by the GHS pragmas. The current names can be changed
1080 by the "ghs section" pragma. If the current names are null, use
1081 the default names. Note that the two arrays have different types.
1083 For the *normal* section kinds (like .data, .text, etc.) we do not
1084 want to explicitly force the name of these sections, but would rather
1085 let the linker (or at least the back end) choose the name of the
1086 section, UNLESS the user has force a specific name for these section
1087 kinds. To accomplish this set the name in ghs_default_section_names
1090 enum GHS_section_kind
1092 GHS_SECTION_KIND_DEFAULT
,
1094 GHS_SECTION_KIND_TEXT
,
1095 GHS_SECTION_KIND_DATA
,
1096 GHS_SECTION_KIND_RODATA
,
1097 GHS_SECTION_KIND_BSS
,
1098 GHS_SECTION_KIND_SDATA
,
1099 GHS_SECTION_KIND_ROSDATA
,
1100 GHS_SECTION_KIND_TDATA
,
1101 GHS_SECTION_KIND_ZDATA
,
1102 GHS_SECTION_KIND_ROZDATA
,
1104 COUNT_OF_GHS_SECTION_KINDS
/* must be last */
1107 /* The following code is for handling pragmas supported by the
1108 v850 compiler produced by Green Hills Software. This is at
1109 the specific request of a customer. */
1111 typedef struct data_area_stack_element
1113 struct data_area_stack_element
* prev
;
1114 v850_data_area data_area
; /* Current default data area. */
1115 } data_area_stack_element
;
1117 /* Track the current data area set by the
1118 data area pragma (which can be nested). */
1119 extern data_area_stack_element
* data_area_stack
;
1121 /* Names of the various data areas used on the v850. */
1122 extern union tree_node
* GHS_default_section_names
[(int) COUNT_OF_GHS_SECTION_KINDS
];
1123 extern union tree_node
* GHS_current_section_names
[(int) COUNT_OF_GHS_SECTION_KINDS
];
1125 /* The assembler op to start the file. */
1127 #define FILE_ASM_OP "\t.file\n"
1129 /* Enable the register move pass to improve code. */
1130 #define ENABLE_REGMOVE_PASS
1133 /* Implement ZDA, TDA, and SDA */
1135 #define EP_REGNUM 30 /* ep register number */
1137 #define SYMBOL_FLAG_ZDA (SYMBOL_FLAG_MACH_DEP << 0)
1138 #define SYMBOL_FLAG_TDA (SYMBOL_FLAG_MACH_DEP << 1)
1139 #define SYMBOL_FLAG_SDA (SYMBOL_FLAG_MACH_DEP << 2)
1140 #define SYMBOL_REF_ZDA_P(X) ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_ZDA) != 0)
1141 #define SYMBOL_REF_TDA_P(X) ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_TDA) != 0)
1142 #define SYMBOL_REF_SDA_P(X) ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_SDA) != 0)
1144 #define TARGET_ASM_INIT_SECTIONS v850_asm_init_sections
1146 #endif /* ! GCC_V850_H */