Daily bump.
[official-gcc.git] / gcc / reload.c
blobe0405097adbe37e1002e03cde077a56b2380bc64
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains subroutines used only from the file reload1.c.
21 It knows how to scan one insn for operands and values
22 that need to be copied into registers to make valid code.
23 It also finds other operands and values which are valid
24 but for which equivalent values in registers exist and
25 ought to be used instead.
27 Before processing the first insn of the function, call `init_reload'.
28 init_reload actually has to be called earlier anyway.
30 To scan an insn, call `find_reloads'. This does two things:
31 1. sets up tables describing which values must be reloaded
32 for this insn, and what kind of hard regs they must be reloaded into;
33 2. optionally record the locations where those values appear in
34 the data, so they can be replaced properly later.
35 This is done only if the second arg to `find_reloads' is nonzero.
37 The third arg to `find_reloads' specifies the number of levels
38 of indirect addressing supported by the machine. If it is zero,
39 indirect addressing is not valid. If it is one, (MEM (REG n))
40 is valid even if (REG n) did not get a hard register; if it is two,
41 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
42 hard register, and similarly for higher values.
44 Then you must choose the hard regs to reload those pseudo regs into,
45 and generate appropriate load insns before this insn and perhaps
46 also store insns after this insn. Set up the array `reload_reg_rtx'
47 to contain the REG rtx's for the registers you used. In some
48 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
49 for certain reloads. Then that tells you which register to use,
50 so you do not need to allocate one. But you still do need to add extra
51 instructions to copy the value into and out of that register.
53 Finally you must call `subst_reloads' to substitute the reload reg rtx's
54 into the locations already recorded.
56 NOTE SIDE EFFECTS:
58 find_reloads can alter the operands of the instruction it is called on.
60 1. Two operands of any sort may be interchanged, if they are in a
61 commutative instruction.
62 This happens only if find_reloads thinks the instruction will compile
63 better that way.
65 2. Pseudo-registers that are equivalent to constants are replaced
66 with those constants if they are not in hard registers.
68 1 happens every time find_reloads is called.
69 2 happens only when REPLACE is 1, which is only when
70 actually doing the reloads, not when just counting them.
72 Using a reload register for several reloads in one insn:
74 When an insn has reloads, it is considered as having three parts:
75 the input reloads, the insn itself after reloading, and the output reloads.
76 Reloads of values used in memory addresses are often needed for only one part.
78 When this is so, reload_when_needed records which part needs the reload.
79 Two reloads for different parts of the insn can share the same reload
80 register.
82 When a reload is used for addresses in multiple parts, or when it is
83 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
84 a register with any other reload. */
86 #define REG_OK_STRICT
88 /* We do not enable this with ENABLE_CHECKING, since it is awfully slow. */
89 #undef DEBUG_RELOAD
91 #include "config.h"
92 #include "system.h"
93 #include "coretypes.h"
94 #include "tm.h"
95 #include "rtl-error.h"
96 #include "tm_p.h"
97 #include "insn-config.h"
98 #include "expr.h"
99 #include "optabs.h"
100 #include "recog.h"
101 #include "df.h"
102 #include "reload.h"
103 #include "regs.h"
104 #include "addresses.h"
105 #include "hard-reg-set.h"
106 #include "flags.h"
107 #include "function.h"
108 #include "params.h"
109 #include "target.h"
110 #include "ira.h"
112 /* True if X is a constant that can be forced into the constant pool.
113 MODE is the mode of the operand, or VOIDmode if not known. */
114 #define CONST_POOL_OK_P(MODE, X) \
115 ((MODE) != VOIDmode \
116 && CONSTANT_P (X) \
117 && GET_CODE (X) != HIGH \
118 && !targetm.cannot_force_const_mem (MODE, X))
120 /* True if C is a non-empty register class that has too few registers
121 to be safely used as a reload target class. */
123 static inline bool
124 small_register_class_p (reg_class_t rclass)
126 return (reg_class_size [(int) rclass] == 1
127 || (reg_class_size [(int) rclass] >= 1
128 && targetm.class_likely_spilled_p (rclass)));
132 /* All reloads of the current insn are recorded here. See reload.h for
133 comments. */
134 int n_reloads;
135 struct reload rld[MAX_RELOADS];
137 /* All the "earlyclobber" operands of the current insn
138 are recorded here. */
139 int n_earlyclobbers;
140 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
142 int reload_n_operands;
144 /* Replacing reloads.
146 If `replace_reloads' is nonzero, then as each reload is recorded
147 an entry is made for it in the table `replacements'.
148 Then later `subst_reloads' can look through that table and
149 perform all the replacements needed. */
151 /* Nonzero means record the places to replace. */
152 static int replace_reloads;
154 /* Each replacement is recorded with a structure like this. */
155 struct replacement
157 rtx *where; /* Location to store in */
158 int what; /* which reload this is for */
159 enum machine_mode mode; /* mode it must have */
162 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
164 /* Number of replacements currently recorded. */
165 static int n_replacements;
167 /* Used to track what is modified by an operand. */
168 struct decomposition
170 int reg_flag; /* Nonzero if referencing a register. */
171 int safe; /* Nonzero if this can't conflict with anything. */
172 rtx base; /* Base address for MEM. */
173 HOST_WIDE_INT start; /* Starting offset or register number. */
174 HOST_WIDE_INT end; /* Ending offset or register number. */
177 #ifdef SECONDARY_MEMORY_NEEDED
179 /* Save MEMs needed to copy from one class of registers to another. One MEM
180 is used per mode, but normally only one or two modes are ever used.
182 We keep two versions, before and after register elimination. The one
183 after register elimination is record separately for each operand. This
184 is done in case the address is not valid to be sure that we separately
185 reload each. */
187 static rtx secondary_memlocs[NUM_MACHINE_MODES];
188 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
189 static int secondary_memlocs_elim_used = 0;
190 #endif
192 /* The instruction we are doing reloads for;
193 so we can test whether a register dies in it. */
194 static rtx this_insn;
196 /* Nonzero if this instruction is a user-specified asm with operands. */
197 static int this_insn_is_asm;
199 /* If hard_regs_live_known is nonzero,
200 we can tell which hard regs are currently live,
201 at least enough to succeed in choosing dummy reloads. */
202 static int hard_regs_live_known;
204 /* Indexed by hard reg number,
205 element is nonnegative if hard reg has been spilled.
206 This vector is passed to `find_reloads' as an argument
207 and is not changed here. */
208 static short *static_reload_reg_p;
210 /* Set to 1 in subst_reg_equivs if it changes anything. */
211 static int subst_reg_equivs_changed;
213 /* On return from push_reload, holds the reload-number for the OUT
214 operand, which can be different for that from the input operand. */
215 static int output_reloadnum;
217 /* Compare two RTX's. */
218 #define MATCHES(x, y) \
219 (x == y || (x != 0 && (REG_P (x) \
220 ? REG_P (y) && REGNO (x) == REGNO (y) \
221 : rtx_equal_p (x, y) && ! side_effects_p (x))))
223 /* Indicates if two reloads purposes are for similar enough things that we
224 can merge their reloads. */
225 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
226 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
227 || ((when1) == (when2) && (op1) == (op2)) \
228 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
229 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
230 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
231 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
232 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
234 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
235 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
236 ((when1) != (when2) \
237 || ! ((op1) == (op2) \
238 || (when1) == RELOAD_FOR_INPUT \
239 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
240 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
242 /* If we are going to reload an address, compute the reload type to
243 use. */
244 #define ADDR_TYPE(type) \
245 ((type) == RELOAD_FOR_INPUT_ADDRESS \
246 ? RELOAD_FOR_INPADDR_ADDRESS \
247 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
248 ? RELOAD_FOR_OUTADDR_ADDRESS \
249 : (type)))
251 static int push_secondary_reload (int, rtx, int, int, enum reg_class,
252 enum machine_mode, enum reload_type,
253 enum insn_code *, secondary_reload_info *);
254 static enum reg_class find_valid_class (enum machine_mode, enum machine_mode,
255 int, unsigned int);
256 static void push_replacement (rtx *, int, enum machine_mode);
257 static void dup_replacements (rtx *, rtx *);
258 static void combine_reloads (void);
259 static int find_reusable_reload (rtx *, rtx, enum reg_class,
260 enum reload_type, int, int);
261 static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
262 enum machine_mode, reg_class_t, int, int);
263 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
264 static struct decomposition decompose (rtx);
265 static int immune_p (rtx, rtx, struct decomposition);
266 static bool alternative_allows_const_pool_ref (rtx, const char *, int);
267 static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
268 int *);
269 static rtx make_memloc (rtx, int);
270 static int maybe_memory_address_addr_space_p (enum machine_mode, rtx,
271 addr_space_t, rtx *);
272 static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
273 int, enum reload_type, int, rtx);
274 static rtx subst_reg_equivs (rtx, rtx);
275 static rtx subst_indexed_address (rtx);
276 static void update_auto_inc_notes (rtx, int, int);
277 static int find_reloads_address_1 (enum machine_mode, addr_space_t, rtx, int,
278 enum rtx_code, enum rtx_code, rtx *,
279 int, enum reload_type,int, rtx);
280 static void find_reloads_address_part (rtx, rtx *, enum reg_class,
281 enum machine_mode, int,
282 enum reload_type, int);
283 static rtx find_reloads_subreg_address (rtx, int, enum reload_type,
284 int, rtx, int *);
285 static void copy_replacements_1 (rtx *, rtx *, int);
286 static int find_inc_amount (rtx, rtx);
287 static int refers_to_mem_for_reload_p (rtx);
288 static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
289 rtx, rtx *);
291 /* Add NEW to reg_equiv_alt_mem_list[REGNO] if it's not present in the
292 list yet. */
294 static void
295 push_reg_equiv_alt_mem (int regno, rtx mem)
297 rtx it;
299 for (it = reg_equiv_alt_mem_list (regno); it; it = XEXP (it, 1))
300 if (rtx_equal_p (XEXP (it, 0), mem))
301 return;
303 reg_equiv_alt_mem_list (regno)
304 = alloc_EXPR_LIST (REG_EQUIV, mem,
305 reg_equiv_alt_mem_list (regno));
308 /* Determine if any secondary reloads are needed for loading (if IN_P is
309 nonzero) or storing (if IN_P is zero) X to or from a reload register of
310 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
311 are needed, push them.
313 Return the reload number of the secondary reload we made, or -1 if
314 we didn't need one. *PICODE is set to the insn_code to use if we do
315 need a secondary reload. */
317 static int
318 push_secondary_reload (int in_p, rtx x, int opnum, int optional,
319 enum reg_class reload_class,
320 enum machine_mode reload_mode, enum reload_type type,
321 enum insn_code *picode, secondary_reload_info *prev_sri)
323 enum reg_class rclass = NO_REGS;
324 enum reg_class scratch_class;
325 enum machine_mode mode = reload_mode;
326 enum insn_code icode = CODE_FOR_nothing;
327 enum insn_code t_icode = CODE_FOR_nothing;
328 enum reload_type secondary_type;
329 int s_reload, t_reload = -1;
330 const char *scratch_constraint;
331 char letter;
332 secondary_reload_info sri;
334 if (type == RELOAD_FOR_INPUT_ADDRESS
335 || type == RELOAD_FOR_OUTPUT_ADDRESS
336 || type == RELOAD_FOR_INPADDR_ADDRESS
337 || type == RELOAD_FOR_OUTADDR_ADDRESS)
338 secondary_type = type;
339 else
340 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
342 *picode = CODE_FOR_nothing;
344 /* If X is a paradoxical SUBREG, use the inner value to determine both the
345 mode and object being reloaded. */
346 if (paradoxical_subreg_p (x))
348 x = SUBREG_REG (x);
349 reload_mode = GET_MODE (x);
352 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
353 is still a pseudo-register by now, it *must* have an equivalent MEM
354 but we don't want to assume that), use that equivalent when seeing if
355 a secondary reload is needed since whether or not a reload is needed
356 might be sensitive to the form of the MEM. */
358 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
359 && reg_equiv_mem (REGNO (x)))
360 x = reg_equiv_mem (REGNO (x));
362 sri.icode = CODE_FOR_nothing;
363 sri.prev_sri = prev_sri;
364 rclass = (enum reg_class) targetm.secondary_reload (in_p, x, reload_class,
365 reload_mode, &sri);
366 icode = (enum insn_code) sri.icode;
368 /* If we don't need any secondary registers, done. */
369 if (rclass == NO_REGS && icode == CODE_FOR_nothing)
370 return -1;
372 if (rclass != NO_REGS)
373 t_reload = push_secondary_reload (in_p, x, opnum, optional, rclass,
374 reload_mode, type, &t_icode, &sri);
376 /* If we will be using an insn, the secondary reload is for a
377 scratch register. */
379 if (icode != CODE_FOR_nothing)
381 /* If IN_P is nonzero, the reload register will be the output in
382 operand 0. If IN_P is zero, the reload register will be the input
383 in operand 1. Outputs should have an initial "=", which we must
384 skip. */
386 /* ??? It would be useful to be able to handle only two, or more than
387 three, operands, but for now we can only handle the case of having
388 exactly three: output, input and one temp/scratch. */
389 gcc_assert (insn_data[(int) icode].n_operands == 3);
391 /* ??? We currently have no way to represent a reload that needs
392 an icode to reload from an intermediate tertiary reload register.
393 We should probably have a new field in struct reload to tag a
394 chain of scratch operand reloads onto. */
395 gcc_assert (rclass == NO_REGS);
397 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
398 gcc_assert (*scratch_constraint == '=');
399 scratch_constraint++;
400 if (*scratch_constraint == '&')
401 scratch_constraint++;
402 letter = *scratch_constraint;
403 scratch_class = (letter == 'r' ? GENERAL_REGS
404 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) letter,
405 scratch_constraint));
407 rclass = scratch_class;
408 mode = insn_data[(int) icode].operand[2].mode;
411 /* This case isn't valid, so fail. Reload is allowed to use the same
412 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
413 in the case of a secondary register, we actually need two different
414 registers for correct code. We fail here to prevent the possibility of
415 silently generating incorrect code later.
417 The convention is that secondary input reloads are valid only if the
418 secondary_class is different from class. If you have such a case, you
419 can not use secondary reloads, you must work around the problem some
420 other way.
422 Allow this when a reload_in/out pattern is being used. I.e. assume
423 that the generated code handles this case. */
425 gcc_assert (!in_p || rclass != reload_class || icode != CODE_FOR_nothing
426 || t_icode != CODE_FOR_nothing);
428 /* See if we can reuse an existing secondary reload. */
429 for (s_reload = 0; s_reload < n_reloads; s_reload++)
430 if (rld[s_reload].secondary_p
431 && (reg_class_subset_p (rclass, rld[s_reload].rclass)
432 || reg_class_subset_p (rld[s_reload].rclass, rclass))
433 && ((in_p && rld[s_reload].inmode == mode)
434 || (! in_p && rld[s_reload].outmode == mode))
435 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
436 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
437 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
438 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
439 && (small_register_class_p (rclass)
440 || targetm.small_register_classes_for_mode_p (VOIDmode))
441 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
442 opnum, rld[s_reload].opnum))
444 if (in_p)
445 rld[s_reload].inmode = mode;
446 if (! in_p)
447 rld[s_reload].outmode = mode;
449 if (reg_class_subset_p (rclass, rld[s_reload].rclass))
450 rld[s_reload].rclass = rclass;
452 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
453 rld[s_reload].optional &= optional;
454 rld[s_reload].secondary_p = 1;
455 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
456 opnum, rld[s_reload].opnum))
457 rld[s_reload].when_needed = RELOAD_OTHER;
459 break;
462 if (s_reload == n_reloads)
464 #ifdef SECONDARY_MEMORY_NEEDED
465 /* If we need a memory location to copy between the two reload regs,
466 set it up now. Note that we do the input case before making
467 the reload and the output case after. This is due to the
468 way reloads are output. */
470 if (in_p && icode == CODE_FOR_nothing
471 && SECONDARY_MEMORY_NEEDED (rclass, reload_class, mode))
473 get_secondary_mem (x, reload_mode, opnum, type);
475 /* We may have just added new reloads. Make sure we add
476 the new reload at the end. */
477 s_reload = n_reloads;
479 #endif
481 /* We need to make a new secondary reload for this register class. */
482 rld[s_reload].in = rld[s_reload].out = 0;
483 rld[s_reload].rclass = rclass;
485 rld[s_reload].inmode = in_p ? mode : VOIDmode;
486 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
487 rld[s_reload].reg_rtx = 0;
488 rld[s_reload].optional = optional;
489 rld[s_reload].inc = 0;
490 /* Maybe we could combine these, but it seems too tricky. */
491 rld[s_reload].nocombine = 1;
492 rld[s_reload].in_reg = 0;
493 rld[s_reload].out_reg = 0;
494 rld[s_reload].opnum = opnum;
495 rld[s_reload].when_needed = secondary_type;
496 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
497 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
498 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
499 rld[s_reload].secondary_out_icode
500 = ! in_p ? t_icode : CODE_FOR_nothing;
501 rld[s_reload].secondary_p = 1;
503 n_reloads++;
505 #ifdef SECONDARY_MEMORY_NEEDED
506 if (! in_p && icode == CODE_FOR_nothing
507 && SECONDARY_MEMORY_NEEDED (reload_class, rclass, mode))
508 get_secondary_mem (x, mode, opnum, type);
509 #endif
512 *picode = icode;
513 return s_reload;
516 /* If a secondary reload is needed, return its class. If both an intermediate
517 register and a scratch register is needed, we return the class of the
518 intermediate register. */
519 reg_class_t
520 secondary_reload_class (bool in_p, reg_class_t rclass, enum machine_mode mode,
521 rtx x)
523 enum insn_code icode;
524 secondary_reload_info sri;
526 sri.icode = CODE_FOR_nothing;
527 sri.prev_sri = NULL;
528 rclass
529 = (enum reg_class) targetm.secondary_reload (in_p, x, rclass, mode, &sri);
530 icode = (enum insn_code) sri.icode;
532 /* If there are no secondary reloads at all, we return NO_REGS.
533 If an intermediate register is needed, we return its class. */
534 if (icode == CODE_FOR_nothing || rclass != NO_REGS)
535 return rclass;
537 /* No intermediate register is needed, but we have a special reload
538 pattern, which we assume for now needs a scratch register. */
539 return scratch_reload_class (icode);
542 /* ICODE is the insn_code of a reload pattern. Check that it has exactly
543 three operands, verify that operand 2 is an output operand, and return
544 its register class.
545 ??? We'd like to be able to handle any pattern with at least 2 operands,
546 for zero or more scratch registers, but that needs more infrastructure. */
547 enum reg_class
548 scratch_reload_class (enum insn_code icode)
550 const char *scratch_constraint;
551 char scratch_letter;
552 enum reg_class rclass;
554 gcc_assert (insn_data[(int) icode].n_operands == 3);
555 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
556 gcc_assert (*scratch_constraint == '=');
557 scratch_constraint++;
558 if (*scratch_constraint == '&')
559 scratch_constraint++;
560 scratch_letter = *scratch_constraint;
561 if (scratch_letter == 'r')
562 return GENERAL_REGS;
563 rclass = REG_CLASS_FROM_CONSTRAINT ((unsigned char) scratch_letter,
564 scratch_constraint);
565 gcc_assert (rclass != NO_REGS);
566 return rclass;
569 #ifdef SECONDARY_MEMORY_NEEDED
571 /* Return a memory location that will be used to copy X in mode MODE.
572 If we haven't already made a location for this mode in this insn,
573 call find_reloads_address on the location being returned. */
576 get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
577 int opnum, enum reload_type type)
579 rtx loc;
580 int mem_valid;
582 /* By default, if MODE is narrower than a word, widen it to a word.
583 This is required because most machines that require these memory
584 locations do not support short load and stores from all registers
585 (e.g., FP registers). */
587 #ifdef SECONDARY_MEMORY_NEEDED_MODE
588 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
589 #else
590 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
591 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
592 #endif
594 /* If we already have made a MEM for this operand in MODE, return it. */
595 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
596 return secondary_memlocs_elim[(int) mode][opnum];
598 /* If this is the first time we've tried to get a MEM for this mode,
599 allocate a new one. `something_changed' in reload will get set
600 by noticing that the frame size has changed. */
602 if (secondary_memlocs[(int) mode] == 0)
604 #ifdef SECONDARY_MEMORY_NEEDED_RTX
605 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
606 #else
607 secondary_memlocs[(int) mode]
608 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
609 #endif
612 /* Get a version of the address doing any eliminations needed. If that
613 didn't give us a new MEM, make a new one if it isn't valid. */
615 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
616 mem_valid = strict_memory_address_addr_space_p (mode, XEXP (loc, 0),
617 MEM_ADDR_SPACE (loc));
619 if (! mem_valid && loc == secondary_memlocs[(int) mode])
620 loc = copy_rtx (loc);
622 /* The only time the call below will do anything is if the stack
623 offset is too large. In that case IND_LEVELS doesn't matter, so we
624 can just pass a zero. Adjust the type to be the address of the
625 corresponding object. If the address was valid, save the eliminated
626 address. If it wasn't valid, we need to make a reload each time, so
627 don't save it. */
629 if (! mem_valid)
631 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
632 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
633 : RELOAD_OTHER);
635 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
636 opnum, type, 0, 0);
639 secondary_memlocs_elim[(int) mode][opnum] = loc;
640 if (secondary_memlocs_elim_used <= (int)mode)
641 secondary_memlocs_elim_used = (int)mode + 1;
642 return loc;
645 /* Clear any secondary memory locations we've made. */
647 void
648 clear_secondary_mem (void)
650 memset (secondary_memlocs, 0, sizeof secondary_memlocs);
652 #endif /* SECONDARY_MEMORY_NEEDED */
655 /* Find the largest class which has at least one register valid in
656 mode INNER, and which for every such register, that register number
657 plus N is also valid in OUTER (if in range) and is cheap to move
658 into REGNO. Such a class must exist. */
660 static enum reg_class
661 find_valid_class (enum machine_mode outer ATTRIBUTE_UNUSED,
662 enum machine_mode inner ATTRIBUTE_UNUSED, int n,
663 unsigned int dest_regno ATTRIBUTE_UNUSED)
665 int best_cost = -1;
666 int rclass;
667 int regno;
668 enum reg_class best_class = NO_REGS;
669 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
670 unsigned int best_size = 0;
671 int cost;
673 for (rclass = 1; rclass < N_REG_CLASSES; rclass++)
675 int bad = 0;
676 int good = 0;
677 for (regno = 0; regno < FIRST_PSEUDO_REGISTER - n && ! bad; regno++)
678 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], regno))
680 if (HARD_REGNO_MODE_OK (regno, inner))
682 good = 1;
683 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], regno + n)
684 && ! HARD_REGNO_MODE_OK (regno + n, outer))
685 bad = 1;
689 if (bad || !good)
690 continue;
691 cost = register_move_cost (outer, (enum reg_class) rclass, dest_class);
693 if ((reg_class_size[rclass] > best_size
694 && (best_cost < 0 || best_cost >= cost))
695 || best_cost > cost)
697 best_class = (enum reg_class) rclass;
698 best_size = reg_class_size[rclass];
699 best_cost = register_move_cost (outer, (enum reg_class) rclass,
700 dest_class);
704 gcc_assert (best_size != 0);
706 return best_class;
709 /* We are trying to reload a subreg of something that is not a register.
710 Find the largest class which contains only registers valid in
711 mode MODE. OUTER is the mode of the subreg, DEST_CLASS the class in
712 which we would eventually like to obtain the object. */
714 static enum reg_class
715 find_valid_class_1 (enum machine_mode outer ATTRIBUTE_UNUSED,
716 enum machine_mode mode ATTRIBUTE_UNUSED,
717 enum reg_class dest_class ATTRIBUTE_UNUSED)
719 int best_cost = -1;
720 int rclass;
721 int regno;
722 enum reg_class best_class = NO_REGS;
723 unsigned int best_size = 0;
724 int cost;
726 for (rclass = 1; rclass < N_REG_CLASSES; rclass++)
728 int bad = 0;
729 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && !bad; regno++)
731 if (in_hard_reg_set_p (reg_class_contents[rclass], mode, regno)
732 && !HARD_REGNO_MODE_OK (regno, mode))
733 bad = 1;
736 if (bad)
737 continue;
739 cost = register_move_cost (outer, (enum reg_class) rclass, dest_class);
741 if ((reg_class_size[rclass] > best_size
742 && (best_cost < 0 || best_cost >= cost))
743 || best_cost > cost)
745 best_class = (enum reg_class) rclass;
746 best_size = reg_class_size[rclass];
747 best_cost = register_move_cost (outer, (enum reg_class) rclass,
748 dest_class);
752 gcc_assert (best_size != 0);
754 #ifdef LIMIT_RELOAD_CLASS
755 best_class = LIMIT_RELOAD_CLASS (mode, best_class);
756 #endif
757 return best_class;
760 /* Return the number of a previously made reload that can be combined with
761 a new one, or n_reloads if none of the existing reloads can be used.
762 OUT, RCLASS, TYPE and OPNUM are the same arguments as passed to
763 push_reload, they determine the kind of the new reload that we try to
764 combine. P_IN points to the corresponding value of IN, which can be
765 modified by this function.
766 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
768 static int
769 find_reusable_reload (rtx *p_in, rtx out, enum reg_class rclass,
770 enum reload_type type, int opnum, int dont_share)
772 rtx in = *p_in;
773 int i;
774 /* We can't merge two reloads if the output of either one is
775 earlyclobbered. */
777 if (earlyclobber_operand_p (out))
778 return n_reloads;
780 /* We can use an existing reload if the class is right
781 and at least one of IN and OUT is a match
782 and the other is at worst neutral.
783 (A zero compared against anything is neutral.)
785 For targets with small register classes, don't use existing reloads
786 unless they are for the same thing since that can cause us to need
787 more reload registers than we otherwise would. */
789 for (i = 0; i < n_reloads; i++)
790 if ((reg_class_subset_p (rclass, rld[i].rclass)
791 || reg_class_subset_p (rld[i].rclass, rclass))
792 /* If the existing reload has a register, it must fit our class. */
793 && (rld[i].reg_rtx == 0
794 || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
795 true_regnum (rld[i].reg_rtx)))
796 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
797 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
798 || (out != 0 && MATCHES (rld[i].out, out)
799 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
800 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
801 && (small_register_class_p (rclass)
802 || targetm.small_register_classes_for_mode_p (VOIDmode))
803 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
804 return i;
806 /* Reloading a plain reg for input can match a reload to postincrement
807 that reg, since the postincrement's value is the right value.
808 Likewise, it can match a preincrement reload, since we regard
809 the preincrementation as happening before any ref in this insn
810 to that register. */
811 for (i = 0; i < n_reloads; i++)
812 if ((reg_class_subset_p (rclass, rld[i].rclass)
813 || reg_class_subset_p (rld[i].rclass, rclass))
814 /* If the existing reload has a register, it must fit our
815 class. */
816 && (rld[i].reg_rtx == 0
817 || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
818 true_regnum (rld[i].reg_rtx)))
819 && out == 0 && rld[i].out == 0 && rld[i].in != 0
820 && ((REG_P (in)
821 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
822 && MATCHES (XEXP (rld[i].in, 0), in))
823 || (REG_P (rld[i].in)
824 && GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
825 && MATCHES (XEXP (in, 0), rld[i].in)))
826 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
827 && (small_register_class_p (rclass)
828 || targetm.small_register_classes_for_mode_p (VOIDmode))
829 && MERGABLE_RELOADS (type, rld[i].when_needed,
830 opnum, rld[i].opnum))
832 /* Make sure reload_in ultimately has the increment,
833 not the plain register. */
834 if (REG_P (in))
835 *p_in = rld[i].in;
836 return i;
838 return n_reloads;
841 /* Return true if X is a SUBREG that will need reloading of its SUBREG_REG
842 expression. MODE is the mode that X will be used in. OUTPUT is true if
843 the function is invoked for the output part of an enclosing reload. */
845 static bool
846 reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, bool output)
848 rtx inner;
850 /* Only SUBREGs are problematical. */
851 if (GET_CODE (x) != SUBREG)
852 return false;
854 inner = SUBREG_REG (x);
856 /* If INNER is a constant or PLUS, then INNER will need reloading. */
857 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
858 return true;
860 /* If INNER is not a hard register, then INNER will not need reloading. */
861 if (!(REG_P (inner) && HARD_REGISTER_P (inner)))
862 return false;
864 /* If INNER is not ok for MODE, then INNER will need reloading. */
865 if (!HARD_REGNO_MODE_OK (subreg_regno (x), mode))
866 return true;
868 /* If this is for an output, and the outer part is a word or smaller,
869 INNER is larger than a word and the number of registers in INNER is
870 not the same as the number of words in INNER, then INNER will need
871 reloading (with an in-out reload). */
872 return (output
873 && GET_MODE_SIZE (mode) <= UNITS_PER_WORD
874 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
875 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
876 != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
879 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
880 requiring an extra reload register. The caller has already found that
881 IN contains some reference to REGNO, so check that we can produce the
882 new value in a single step. E.g. if we have
883 (set (reg r13) (plus (reg r13) (const int 1))), and there is an
884 instruction that adds one to a register, this should succeed.
885 However, if we have something like
886 (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
887 needs to be loaded into a register first, we need a separate reload
888 register.
889 Such PLUS reloads are generated by find_reload_address_part.
890 The out-of-range PLUS expressions are usually introduced in the instruction
891 patterns by register elimination and substituting pseudos without a home
892 by their function-invariant equivalences. */
893 static int
894 can_reload_into (rtx in, int regno, enum machine_mode mode)
896 rtx dst, test_insn;
897 int r = 0;
898 struct recog_data_d save_recog_data;
900 /* For matching constraints, we often get notional input reloads where
901 we want to use the original register as the reload register. I.e.
902 technically this is a non-optional input-output reload, but IN is
903 already a valid register, and has been chosen as the reload register.
904 Speed this up, since it trivially works. */
905 if (REG_P (in))
906 return 1;
908 /* To test MEMs properly, we'd have to take into account all the reloads
909 that are already scheduled, which can become quite complicated.
910 And since we've already handled address reloads for this MEM, it
911 should always succeed anyway. */
912 if (MEM_P (in))
913 return 1;
915 /* If we can make a simple SET insn that does the job, everything should
916 be fine. */
917 dst = gen_rtx_REG (mode, regno);
918 test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
919 save_recog_data = recog_data;
920 if (recog_memoized (test_insn) >= 0)
922 extract_insn (test_insn);
923 r = constrain_operands (1);
925 recog_data = save_recog_data;
926 return r;
929 /* Record one reload that needs to be performed.
930 IN is an rtx saying where the data are to be found before this instruction.
931 OUT says where they must be stored after the instruction.
932 (IN is zero for data not read, and OUT is zero for data not written.)
933 INLOC and OUTLOC point to the places in the instructions where
934 IN and OUT were found.
935 If IN and OUT are both nonzero, it means the same register must be used
936 to reload both IN and OUT.
938 RCLASS is a register class required for the reloaded data.
939 INMODE is the machine mode that the instruction requires
940 for the reg that replaces IN and OUTMODE is likewise for OUT.
942 If IN is zero, then OUT's location and mode should be passed as
943 INLOC and INMODE.
945 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
947 OPTIONAL nonzero means this reload does not need to be performed:
948 it can be discarded if that is more convenient.
950 OPNUM and TYPE say what the purpose of this reload is.
952 The return value is the reload-number for this reload.
954 If both IN and OUT are nonzero, in some rare cases we might
955 want to make two separate reloads. (Actually we never do this now.)
956 Therefore, the reload-number for OUT is stored in
957 output_reloadnum when we return; the return value applies to IN.
958 Usually (presently always), when IN and OUT are nonzero,
959 the two reload-numbers are equal, but the caller should be careful to
960 distinguish them. */
963 push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
964 enum reg_class rclass, enum machine_mode inmode,
965 enum machine_mode outmode, int strict_low, int optional,
966 int opnum, enum reload_type type)
968 int i;
969 int dont_share = 0;
970 int dont_remove_subreg = 0;
971 #ifdef LIMIT_RELOAD_CLASS
972 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
973 #endif
974 int secondary_in_reload = -1, secondary_out_reload = -1;
975 enum insn_code secondary_in_icode = CODE_FOR_nothing;
976 enum insn_code secondary_out_icode = CODE_FOR_nothing;
977 enum reg_class subreg_in_class ATTRIBUTE_UNUSED;
978 subreg_in_class = NO_REGS;
980 /* INMODE and/or OUTMODE could be VOIDmode if no mode
981 has been specified for the operand. In that case,
982 use the operand's mode as the mode to reload. */
983 if (inmode == VOIDmode && in != 0)
984 inmode = GET_MODE (in);
985 if (outmode == VOIDmode && out != 0)
986 outmode = GET_MODE (out);
988 /* If find_reloads and friends until now missed to replace a pseudo
989 with a constant of reg_equiv_constant something went wrong
990 beforehand.
991 Note that it can't simply be done here if we missed it earlier
992 since the constant might need to be pushed into the literal pool
993 and the resulting memref would probably need further
994 reloading. */
995 if (in != 0 && REG_P (in))
997 int regno = REGNO (in);
999 gcc_assert (regno < FIRST_PSEUDO_REGISTER
1000 || reg_renumber[regno] >= 0
1001 || reg_equiv_constant (regno) == NULL_RTX);
1004 /* reg_equiv_constant only contains constants which are obviously
1005 not appropriate as destination. So if we would need to replace
1006 the destination pseudo with a constant we are in real
1007 trouble. */
1008 if (out != 0 && REG_P (out))
1010 int regno = REGNO (out);
1012 gcc_assert (regno < FIRST_PSEUDO_REGISTER
1013 || reg_renumber[regno] >= 0
1014 || reg_equiv_constant (regno) == NULL_RTX);
1017 /* If we have a read-write operand with an address side-effect,
1018 change either IN or OUT so the side-effect happens only once. */
1019 if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
1020 switch (GET_CODE (XEXP (in, 0)))
1022 case POST_INC: case POST_DEC: case POST_MODIFY:
1023 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
1024 break;
1026 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
1027 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
1028 break;
1030 default:
1031 break;
1034 /* If we are reloading a (SUBREG constant ...), really reload just the
1035 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
1036 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
1037 a pseudo and hence will become a MEM) with M1 wider than M2 and the
1038 register is a pseudo, also reload the inside expression.
1039 For machines that extend byte loads, do this for any SUBREG of a pseudo
1040 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
1041 M2 is an integral mode that gets extended when loaded.
1042 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1043 where either M1 is not valid for R or M2 is wider than a word but we
1044 only need one register to store an M2-sized quantity in R.
1045 (However, if OUT is nonzero, we need to reload the reg *and*
1046 the subreg, so do nothing here, and let following statement handle it.)
1048 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
1049 we can't handle it here because CONST_INT does not indicate a mode.
1051 Similarly, we must reload the inside expression if we have a
1052 STRICT_LOW_PART (presumably, in == out in this case).
1054 Also reload the inner expression if it does not require a secondary
1055 reload but the SUBREG does.
1057 Finally, reload the inner expression if it is a register that is in
1058 the class whose registers cannot be referenced in a different size
1059 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
1060 cannot reload just the inside since we might end up with the wrong
1061 register class. But if it is inside a STRICT_LOW_PART, we have
1062 no choice, so we hope we do get the right register class there. */
1064 if (in != 0 && GET_CODE (in) == SUBREG
1065 && (subreg_lowpart_p (in) || strict_low)
1066 #ifdef CANNOT_CHANGE_MODE_CLASS
1067 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, rclass)
1068 #endif
1069 && contains_reg_of_mode[(int) rclass][(int) GET_MODE (SUBREG_REG (in))]
1070 && (CONSTANT_P (SUBREG_REG (in))
1071 || GET_CODE (SUBREG_REG (in)) == PLUS
1072 || strict_low
1073 || (((REG_P (SUBREG_REG (in))
1074 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
1075 || MEM_P (SUBREG_REG (in)))
1076 && ((GET_MODE_PRECISION (inmode)
1077 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (in))))
1078 #ifdef LOAD_EXTEND_OP
1079 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1080 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1081 <= UNITS_PER_WORD)
1082 && (GET_MODE_PRECISION (inmode)
1083 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (in))))
1084 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
1085 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != UNKNOWN)
1086 #endif
1087 #ifdef WORD_REGISTER_OPERATIONS
1088 || ((GET_MODE_PRECISION (inmode)
1089 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (in))))
1090 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1091 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1092 / UNITS_PER_WORD)))
1093 #endif
1095 || (REG_P (SUBREG_REG (in))
1096 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1097 /* The case where out is nonzero
1098 is handled differently in the following statement. */
1099 && (out == 0 || subreg_lowpart_p (in))
1100 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1101 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1102 > UNITS_PER_WORD)
1103 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1104 / UNITS_PER_WORD)
1105 != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
1106 [GET_MODE (SUBREG_REG (in))]))
1107 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1108 || (secondary_reload_class (1, rclass, inmode, in) != NO_REGS
1109 && (secondary_reload_class (1, rclass, GET_MODE (SUBREG_REG (in)),
1110 SUBREG_REG (in))
1111 == NO_REGS))
1112 #ifdef CANNOT_CHANGE_MODE_CLASS
1113 || (REG_P (SUBREG_REG (in))
1114 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1115 && REG_CANNOT_CHANGE_MODE_P
1116 (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1117 #endif
1120 #ifdef LIMIT_RELOAD_CLASS
1121 in_subreg_loc = inloc;
1122 #endif
1123 inloc = &SUBREG_REG (in);
1124 in = *inloc;
1125 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1126 if (MEM_P (in))
1127 /* This is supposed to happen only for paradoxical subregs made by
1128 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1129 gcc_assert (GET_MODE_SIZE (GET_MODE (in)) <= GET_MODE_SIZE (inmode));
1130 #endif
1131 inmode = GET_MODE (in);
1134 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1135 where M1 is not valid for R if it was not handled by the code above.
1137 Similar issue for (SUBREG constant ...) if it was not handled by the
1138 code above. This can happen if SUBREG_BYTE != 0.
1140 However, we must reload the inner reg *as well as* the subreg in
1141 that case. */
1143 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, false))
1145 if (REG_P (SUBREG_REG (in)))
1146 subreg_in_class
1147 = find_valid_class (inmode, GET_MODE (SUBREG_REG (in)),
1148 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1149 GET_MODE (SUBREG_REG (in)),
1150 SUBREG_BYTE (in),
1151 GET_MODE (in)),
1152 REGNO (SUBREG_REG (in)));
1153 else if (GET_CODE (SUBREG_REG (in)) == SYMBOL_REF)
1154 subreg_in_class = find_valid_class_1 (inmode,
1155 GET_MODE (SUBREG_REG (in)),
1156 rclass);
1158 /* This relies on the fact that emit_reload_insns outputs the
1159 instructions for input reloads of type RELOAD_OTHER in the same
1160 order as the reloads. Thus if the outer reload is also of type
1161 RELOAD_OTHER, we are guaranteed that this inner reload will be
1162 output before the outer reload. */
1163 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1164 subreg_in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1165 dont_remove_subreg = 1;
1168 /* Similarly for paradoxical and problematical SUBREGs on the output.
1169 Note that there is no reason we need worry about the previous value
1170 of SUBREG_REG (out); even if wider than out, storing in a subreg is
1171 entitled to clobber it all (except in the case of a word mode subreg
1172 or of a STRICT_LOW_PART, in that latter case the constraint should
1173 label it input-output.) */
1174 if (out != 0 && GET_CODE (out) == SUBREG
1175 && (subreg_lowpart_p (out) || strict_low)
1176 #ifdef CANNOT_CHANGE_MODE_CLASS
1177 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, rclass)
1178 #endif
1179 && contains_reg_of_mode[(int) rclass][(int) GET_MODE (SUBREG_REG (out))]
1180 && (CONSTANT_P (SUBREG_REG (out))
1181 || strict_low
1182 || (((REG_P (SUBREG_REG (out))
1183 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1184 || MEM_P (SUBREG_REG (out)))
1185 && ((GET_MODE_PRECISION (outmode)
1186 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (out))))
1187 #ifdef WORD_REGISTER_OPERATIONS
1188 || ((GET_MODE_PRECISION (outmode)
1189 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (out))))
1190 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1191 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1192 / UNITS_PER_WORD)))
1193 #endif
1195 || (REG_P (SUBREG_REG (out))
1196 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1197 /* The case of a word mode subreg
1198 is handled differently in the following statement. */
1199 && ! (GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1200 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1201 > UNITS_PER_WORD))
1202 && ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode))
1203 || (secondary_reload_class (0, rclass, outmode, out) != NO_REGS
1204 && (secondary_reload_class (0, rclass, GET_MODE (SUBREG_REG (out)),
1205 SUBREG_REG (out))
1206 == NO_REGS))
1207 #ifdef CANNOT_CHANGE_MODE_CLASS
1208 || (REG_P (SUBREG_REG (out))
1209 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1210 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1211 GET_MODE (SUBREG_REG (out)),
1212 outmode))
1213 #endif
1216 #ifdef LIMIT_RELOAD_CLASS
1217 out_subreg_loc = outloc;
1218 #endif
1219 outloc = &SUBREG_REG (out);
1220 out = *outloc;
1221 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1222 gcc_assert (!MEM_P (out)
1223 || GET_MODE_SIZE (GET_MODE (out))
1224 <= GET_MODE_SIZE (outmode));
1225 #endif
1226 outmode = GET_MODE (out);
1229 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1230 where either M1 is not valid for R or M2 is wider than a word but we
1231 only need one register to store an M2-sized quantity in R.
1233 However, we must reload the inner reg *as well as* the subreg in
1234 that case and the inner reg is an in-out reload. */
1236 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, true))
1238 enum reg_class in_out_class
1239 = find_valid_class (outmode, GET_MODE (SUBREG_REG (out)),
1240 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1241 GET_MODE (SUBREG_REG (out)),
1242 SUBREG_BYTE (out),
1243 GET_MODE (out)),
1244 REGNO (SUBREG_REG (out)));
1246 /* This relies on the fact that emit_reload_insns outputs the
1247 instructions for output reloads of type RELOAD_OTHER in reverse
1248 order of the reloads. Thus if the outer reload is also of type
1249 RELOAD_OTHER, we are guaranteed that this inner reload will be
1250 output after the outer reload. */
1251 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1252 &SUBREG_REG (out), in_out_class, VOIDmode, VOIDmode,
1253 0, 0, opnum, RELOAD_OTHER);
1254 dont_remove_subreg = 1;
1257 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1258 if (in != 0 && out != 0 && MEM_P (out)
1259 && (REG_P (in) || MEM_P (in) || GET_CODE (in) == PLUS)
1260 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1261 dont_share = 1;
1263 /* If IN is a SUBREG of a hard register, make a new REG. This
1264 simplifies some of the cases below. */
1266 if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
1267 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1268 && ! dont_remove_subreg)
1269 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1271 /* Similarly for OUT. */
1272 if (out != 0 && GET_CODE (out) == SUBREG
1273 && REG_P (SUBREG_REG (out))
1274 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1275 && ! dont_remove_subreg)
1276 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1278 /* Narrow down the class of register wanted if that is
1279 desirable on this machine for efficiency. */
1281 reg_class_t preferred_class = rclass;
1283 if (in != 0)
1284 preferred_class = targetm.preferred_reload_class (in, rclass);
1286 /* Output reloads may need analogous treatment, different in detail. */
1287 if (out != 0)
1288 preferred_class
1289 = targetm.preferred_output_reload_class (out, preferred_class);
1291 /* Discard what the target said if we cannot do it. */
1292 if (preferred_class != NO_REGS
1293 || (optional && type == RELOAD_FOR_OUTPUT))
1294 rclass = (enum reg_class) preferred_class;
1297 /* Make sure we use a class that can handle the actual pseudo
1298 inside any subreg. For example, on the 386, QImode regs
1299 can appear within SImode subregs. Although GENERAL_REGS
1300 can handle SImode, QImode needs a smaller class. */
1301 #ifdef LIMIT_RELOAD_CLASS
1302 if (in_subreg_loc)
1303 rclass = LIMIT_RELOAD_CLASS (inmode, rclass);
1304 else if (in != 0 && GET_CODE (in) == SUBREG)
1305 rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), rclass);
1307 if (out_subreg_loc)
1308 rclass = LIMIT_RELOAD_CLASS (outmode, rclass);
1309 if (out != 0 && GET_CODE (out) == SUBREG)
1310 rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), rclass);
1311 #endif
1313 /* Verify that this class is at least possible for the mode that
1314 is specified. */
1315 if (this_insn_is_asm)
1317 enum machine_mode mode;
1318 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1319 mode = inmode;
1320 else
1321 mode = outmode;
1322 if (mode == VOIDmode)
1324 error_for_asm (this_insn, "cannot reload integer constant "
1325 "operand in %<asm%>");
1326 mode = word_mode;
1327 if (in != 0)
1328 inmode = word_mode;
1329 if (out != 0)
1330 outmode = word_mode;
1332 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1333 if (HARD_REGNO_MODE_OK (i, mode)
1334 && in_hard_reg_set_p (reg_class_contents[(int) rclass], mode, i))
1335 break;
1336 if (i == FIRST_PSEUDO_REGISTER)
1338 error_for_asm (this_insn, "impossible register constraint "
1339 "in %<asm%>");
1340 /* Avoid further trouble with this insn. */
1341 PATTERN (this_insn) = gen_rtx_USE (VOIDmode, const0_rtx);
1342 /* We used to continue here setting class to ALL_REGS, but it triggers
1343 sanity check on i386 for:
1344 void foo(long double d)
1346 asm("" :: "a" (d));
1348 Returning zero here ought to be safe as we take care in
1349 find_reloads to not process the reloads when instruction was
1350 replaced by USE. */
1352 return 0;
1356 /* Optional output reloads are always OK even if we have no register class,
1357 since the function of these reloads is only to have spill_reg_store etc.
1358 set, so that the storing insn can be deleted later. */
1359 gcc_assert (rclass != NO_REGS
1360 || (optional != 0 && type == RELOAD_FOR_OUTPUT));
1362 i = find_reusable_reload (&in, out, rclass, type, opnum, dont_share);
1364 if (i == n_reloads)
1366 /* See if we need a secondary reload register to move between CLASS
1367 and IN or CLASS and OUT. Get the icode and push any required reloads
1368 needed for each of them if so. */
1370 if (in != 0)
1371 secondary_in_reload
1372 = push_secondary_reload (1, in, opnum, optional, rclass, inmode, type,
1373 &secondary_in_icode, NULL);
1374 if (out != 0 && GET_CODE (out) != SCRATCH)
1375 secondary_out_reload
1376 = push_secondary_reload (0, out, opnum, optional, rclass, outmode,
1377 type, &secondary_out_icode, NULL);
1379 /* We found no existing reload suitable for re-use.
1380 So add an additional reload. */
1382 #ifdef SECONDARY_MEMORY_NEEDED
1383 if (subreg_in_class == NO_REGS
1384 && in != 0
1385 && (REG_P (in)
1386 || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
1387 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER)
1388 subreg_in_class = REGNO_REG_CLASS (reg_or_subregno (in));
1389 /* If a memory location is needed for the copy, make one. */
1390 if (subreg_in_class != NO_REGS
1391 && SECONDARY_MEMORY_NEEDED (subreg_in_class, rclass, inmode))
1392 get_secondary_mem (in, inmode, opnum, type);
1393 #endif
1395 i = n_reloads;
1396 rld[i].in = in;
1397 rld[i].out = out;
1398 rld[i].rclass = rclass;
1399 rld[i].inmode = inmode;
1400 rld[i].outmode = outmode;
1401 rld[i].reg_rtx = 0;
1402 rld[i].optional = optional;
1403 rld[i].inc = 0;
1404 rld[i].nocombine = 0;
1405 rld[i].in_reg = inloc ? *inloc : 0;
1406 rld[i].out_reg = outloc ? *outloc : 0;
1407 rld[i].opnum = opnum;
1408 rld[i].when_needed = type;
1409 rld[i].secondary_in_reload = secondary_in_reload;
1410 rld[i].secondary_out_reload = secondary_out_reload;
1411 rld[i].secondary_in_icode = secondary_in_icode;
1412 rld[i].secondary_out_icode = secondary_out_icode;
1413 rld[i].secondary_p = 0;
1415 n_reloads++;
1417 #ifdef SECONDARY_MEMORY_NEEDED
1418 if (out != 0
1419 && (REG_P (out)
1420 || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
1421 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1422 && SECONDARY_MEMORY_NEEDED (rclass,
1423 REGNO_REG_CLASS (reg_or_subregno (out)),
1424 outmode))
1425 get_secondary_mem (out, outmode, opnum, type);
1426 #endif
1428 else
1430 /* We are reusing an existing reload,
1431 but we may have additional information for it.
1432 For example, we may now have both IN and OUT
1433 while the old one may have just one of them. */
1435 /* The modes can be different. If they are, we want to reload in
1436 the larger mode, so that the value is valid for both modes. */
1437 if (inmode != VOIDmode
1438 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1439 rld[i].inmode = inmode;
1440 if (outmode != VOIDmode
1441 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1442 rld[i].outmode = outmode;
1443 if (in != 0)
1445 rtx in_reg = inloc ? *inloc : 0;
1446 /* If we merge reloads for two distinct rtl expressions that
1447 are identical in content, there might be duplicate address
1448 reloads. Remove the extra set now, so that if we later find
1449 that we can inherit this reload, we can get rid of the
1450 address reloads altogether.
1452 Do not do this if both reloads are optional since the result
1453 would be an optional reload which could potentially leave
1454 unresolved address replacements.
1456 It is not sufficient to call transfer_replacements since
1457 choose_reload_regs will remove the replacements for address
1458 reloads of inherited reloads which results in the same
1459 problem. */
1460 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1461 && ! (rld[i].optional && optional))
1463 /* We must keep the address reload with the lower operand
1464 number alive. */
1465 if (opnum > rld[i].opnum)
1467 remove_address_replacements (in);
1468 in = rld[i].in;
1469 in_reg = rld[i].in_reg;
1471 else
1472 remove_address_replacements (rld[i].in);
1474 /* When emitting reloads we don't necessarily look at the in-
1475 and outmode, but also directly at the operands (in and out).
1476 So we can't simply overwrite them with whatever we have found
1477 for this (to-be-merged) reload, we have to "merge" that too.
1478 Reusing another reload already verified that we deal with the
1479 same operands, just possibly in different modes. So we
1480 overwrite the operands only when the new mode is larger.
1481 See also PR33613. */
1482 if (!rld[i].in
1483 || GET_MODE_SIZE (GET_MODE (in))
1484 > GET_MODE_SIZE (GET_MODE (rld[i].in)))
1485 rld[i].in = in;
1486 if (!rld[i].in_reg
1487 || (in_reg
1488 && GET_MODE_SIZE (GET_MODE (in_reg))
1489 > GET_MODE_SIZE (GET_MODE (rld[i].in_reg))))
1490 rld[i].in_reg = in_reg;
1492 if (out != 0)
1494 if (!rld[i].out
1495 || (out
1496 && GET_MODE_SIZE (GET_MODE (out))
1497 > GET_MODE_SIZE (GET_MODE (rld[i].out))))
1498 rld[i].out = out;
1499 if (outloc
1500 && (!rld[i].out_reg
1501 || GET_MODE_SIZE (GET_MODE (*outloc))
1502 > GET_MODE_SIZE (GET_MODE (rld[i].out_reg))))
1503 rld[i].out_reg = *outloc;
1505 if (reg_class_subset_p (rclass, rld[i].rclass))
1506 rld[i].rclass = rclass;
1507 rld[i].optional &= optional;
1508 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1509 opnum, rld[i].opnum))
1510 rld[i].when_needed = RELOAD_OTHER;
1511 rld[i].opnum = MIN (rld[i].opnum, opnum);
1514 /* If the ostensible rtx being reloaded differs from the rtx found
1515 in the location to substitute, this reload is not safe to combine
1516 because we cannot reliably tell whether it appears in the insn. */
1518 if (in != 0 && in != *inloc)
1519 rld[i].nocombine = 1;
1521 #if 0
1522 /* This was replaced by changes in find_reloads_address_1 and the new
1523 function inc_for_reload, which go with a new meaning of reload_inc. */
1525 /* If this is an IN/OUT reload in an insn that sets the CC,
1526 it must be for an autoincrement. It doesn't work to store
1527 the incremented value after the insn because that would clobber the CC.
1528 So we must do the increment of the value reloaded from,
1529 increment it, store it back, then decrement again. */
1530 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1532 out = 0;
1533 rld[i].out = 0;
1534 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1535 /* If we did not find a nonzero amount-to-increment-by,
1536 that contradicts the belief that IN is being incremented
1537 in an address in this insn. */
1538 gcc_assert (rld[i].inc != 0);
1540 #endif
1542 /* If we will replace IN and OUT with the reload-reg,
1543 record where they are located so that substitution need
1544 not do a tree walk. */
1546 if (replace_reloads)
1548 if (inloc != 0)
1550 struct replacement *r = &replacements[n_replacements++];
1551 r->what = i;
1552 r->where = inloc;
1553 r->mode = inmode;
1555 if (outloc != 0 && outloc != inloc)
1557 struct replacement *r = &replacements[n_replacements++];
1558 r->what = i;
1559 r->where = outloc;
1560 r->mode = outmode;
1564 /* If this reload is just being introduced and it has both
1565 an incoming quantity and an outgoing quantity that are
1566 supposed to be made to match, see if either one of the two
1567 can serve as the place to reload into.
1569 If one of them is acceptable, set rld[i].reg_rtx
1570 to that one. */
1572 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1574 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1575 inmode, outmode,
1576 rld[i].rclass, i,
1577 earlyclobber_operand_p (out));
1579 /* If the outgoing register already contains the same value
1580 as the incoming one, we can dispense with loading it.
1581 The easiest way to tell the caller that is to give a phony
1582 value for the incoming operand (same as outgoing one). */
1583 if (rld[i].reg_rtx == out
1584 && (REG_P (in) || CONSTANT_P (in))
1585 && 0 != find_equiv_reg (in, this_insn, NO_REGS, REGNO (out),
1586 static_reload_reg_p, i, inmode))
1587 rld[i].in = out;
1590 /* If this is an input reload and the operand contains a register that
1591 dies in this insn and is used nowhere else, see if it is the right class
1592 to be used for this reload. Use it if so. (This occurs most commonly
1593 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1594 this if it is also an output reload that mentions the register unless
1595 the output is a SUBREG that clobbers an entire register.
1597 Note that the operand might be one of the spill regs, if it is a
1598 pseudo reg and we are in a block where spilling has not taken place.
1599 But if there is no spilling in this block, that is OK.
1600 An explicitly used hard reg cannot be a spill reg. */
1602 if (rld[i].reg_rtx == 0 && in != 0 && hard_regs_live_known)
1604 rtx note;
1605 int regno;
1606 enum machine_mode rel_mode = inmode;
1608 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1609 rel_mode = outmode;
1611 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1612 if (REG_NOTE_KIND (note) == REG_DEAD
1613 && REG_P (XEXP (note, 0))
1614 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1615 && reg_mentioned_p (XEXP (note, 0), in)
1616 /* Check that a former pseudo is valid; see find_dummy_reload. */
1617 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1618 || (! bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
1619 ORIGINAL_REGNO (XEXP (note, 0)))
1620 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] == 1))
1621 && ! refers_to_regno_for_reload_p (regno,
1622 end_hard_regno (rel_mode,
1623 regno),
1624 PATTERN (this_insn), inloc)
1625 && ! find_reg_fusage (this_insn, USE, XEXP (note, 0))
1626 /* If this is also an output reload, IN cannot be used as
1627 the reload register if it is set in this insn unless IN
1628 is also OUT. */
1629 && (out == 0 || in == out
1630 || ! hard_reg_set_here_p (regno,
1631 end_hard_regno (rel_mode, regno),
1632 PATTERN (this_insn)))
1633 /* ??? Why is this code so different from the previous?
1634 Is there any simple coherent way to describe the two together?
1635 What's going on here. */
1636 && (in != out
1637 || (GET_CODE (in) == SUBREG
1638 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1639 / UNITS_PER_WORD)
1640 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1641 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1642 /* Make sure the operand fits in the reg that dies. */
1643 && (GET_MODE_SIZE (rel_mode)
1644 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1645 && HARD_REGNO_MODE_OK (regno, inmode)
1646 && HARD_REGNO_MODE_OK (regno, outmode))
1648 unsigned int offs;
1649 unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
1650 hard_regno_nregs[regno][outmode]);
1652 for (offs = 0; offs < nregs; offs++)
1653 if (fixed_regs[regno + offs]
1654 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
1655 regno + offs))
1656 break;
1658 if (offs == nregs
1659 && (! (refers_to_regno_for_reload_p
1660 (regno, end_hard_regno (inmode, regno), in, (rtx *) 0))
1661 || can_reload_into (in, regno, inmode)))
1663 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1664 break;
1669 if (out)
1670 output_reloadnum = i;
1672 return i;
1675 /* Record an additional place we must replace a value
1676 for which we have already recorded a reload.
1677 RELOADNUM is the value returned by push_reload
1678 when the reload was recorded.
1679 This is used in insn patterns that use match_dup. */
1681 static void
1682 push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
1684 if (replace_reloads)
1686 struct replacement *r = &replacements[n_replacements++];
1687 r->what = reloadnum;
1688 r->where = loc;
1689 r->mode = mode;
1693 /* Duplicate any replacement we have recorded to apply at
1694 location ORIG_LOC to also be performed at DUP_LOC.
1695 This is used in insn patterns that use match_dup. */
1697 static void
1698 dup_replacements (rtx *dup_loc, rtx *orig_loc)
1700 int i, n = n_replacements;
1702 for (i = 0; i < n; i++)
1704 struct replacement *r = &replacements[i];
1705 if (r->where == orig_loc)
1706 push_replacement (dup_loc, r->what, r->mode);
1710 /* Transfer all replacements that used to be in reload FROM to be in
1711 reload TO. */
1713 void
1714 transfer_replacements (int to, int from)
1716 int i;
1718 for (i = 0; i < n_replacements; i++)
1719 if (replacements[i].what == from)
1720 replacements[i].what = to;
1723 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1724 or a subpart of it. If we have any replacements registered for IN_RTX,
1725 cancel the reloads that were supposed to load them.
1726 Return nonzero if we canceled any reloads. */
1728 remove_address_replacements (rtx in_rtx)
1730 int i, j;
1731 char reload_flags[MAX_RELOADS];
1732 int something_changed = 0;
1734 memset (reload_flags, 0, sizeof reload_flags);
1735 for (i = 0, j = 0; i < n_replacements; i++)
1737 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1738 reload_flags[replacements[i].what] |= 1;
1739 else
1741 replacements[j++] = replacements[i];
1742 reload_flags[replacements[i].what] |= 2;
1745 /* Note that the following store must be done before the recursive calls. */
1746 n_replacements = j;
1748 for (i = n_reloads - 1; i >= 0; i--)
1750 if (reload_flags[i] == 1)
1752 deallocate_reload_reg (i);
1753 remove_address_replacements (rld[i].in);
1754 rld[i].in = 0;
1755 something_changed = 1;
1758 return something_changed;
1761 /* If there is only one output reload, and it is not for an earlyclobber
1762 operand, try to combine it with a (logically unrelated) input reload
1763 to reduce the number of reload registers needed.
1765 This is safe if the input reload does not appear in
1766 the value being output-reloaded, because this implies
1767 it is not needed any more once the original insn completes.
1769 If that doesn't work, see we can use any of the registers that
1770 die in this insn as a reload register. We can if it is of the right
1771 class and does not appear in the value being output-reloaded. */
1773 static void
1774 combine_reloads (void)
1776 int i, regno;
1777 int output_reload = -1;
1778 int secondary_out = -1;
1779 rtx note;
1781 /* Find the output reload; return unless there is exactly one
1782 and that one is mandatory. */
1784 for (i = 0; i < n_reloads; i++)
1785 if (rld[i].out != 0)
1787 if (output_reload >= 0)
1788 return;
1789 output_reload = i;
1792 if (output_reload < 0 || rld[output_reload].optional)
1793 return;
1795 /* An input-output reload isn't combinable. */
1797 if (rld[output_reload].in != 0)
1798 return;
1800 /* If this reload is for an earlyclobber operand, we can't do anything. */
1801 if (earlyclobber_operand_p (rld[output_reload].out))
1802 return;
1804 /* If there is a reload for part of the address of this operand, we would
1805 need to change it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1806 its life to the point where doing this combine would not lower the
1807 number of spill registers needed. */
1808 for (i = 0; i < n_reloads; i++)
1809 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1810 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1811 && rld[i].opnum == rld[output_reload].opnum)
1812 return;
1814 /* Check each input reload; can we combine it? */
1816 for (i = 0; i < n_reloads; i++)
1817 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1818 /* Life span of this reload must not extend past main insn. */
1819 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1820 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1821 && rld[i].when_needed != RELOAD_OTHER
1822 && (ira_reg_class_max_nregs [(int)rld[i].rclass][(int) rld[i].inmode]
1823 == ira_reg_class_max_nregs [(int) rld[output_reload].rclass]
1824 [(int) rld[output_reload].outmode])
1825 && rld[i].inc == 0
1826 && rld[i].reg_rtx == 0
1827 #ifdef SECONDARY_MEMORY_NEEDED
1828 /* Don't combine two reloads with different secondary
1829 memory locations. */
1830 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1831 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1832 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1833 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1834 #endif
1835 && (targetm.small_register_classes_for_mode_p (VOIDmode)
1836 ? (rld[i].rclass == rld[output_reload].rclass)
1837 : (reg_class_subset_p (rld[i].rclass,
1838 rld[output_reload].rclass)
1839 || reg_class_subset_p (rld[output_reload].rclass,
1840 rld[i].rclass)))
1841 && (MATCHES (rld[i].in, rld[output_reload].out)
1842 /* Args reversed because the first arg seems to be
1843 the one that we imagine being modified
1844 while the second is the one that might be affected. */
1845 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1846 rld[i].in)
1847 /* However, if the input is a register that appears inside
1848 the output, then we also can't share.
1849 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1850 If the same reload reg is used for both reg 69 and the
1851 result to be stored in memory, then that result
1852 will clobber the address of the memory ref. */
1853 && ! (REG_P (rld[i].in)
1854 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1855 rld[output_reload].out))))
1856 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1857 rld[i].when_needed != RELOAD_FOR_INPUT)
1858 && (reg_class_size[(int) rld[i].rclass]
1859 || targetm.small_register_classes_for_mode_p (VOIDmode))
1860 /* We will allow making things slightly worse by combining an
1861 input and an output, but no worse than that. */
1862 && (rld[i].when_needed == RELOAD_FOR_INPUT
1863 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1865 int j;
1867 /* We have found a reload to combine with! */
1868 rld[i].out = rld[output_reload].out;
1869 rld[i].out_reg = rld[output_reload].out_reg;
1870 rld[i].outmode = rld[output_reload].outmode;
1871 /* Mark the old output reload as inoperative. */
1872 rld[output_reload].out = 0;
1873 /* The combined reload is needed for the entire insn. */
1874 rld[i].when_needed = RELOAD_OTHER;
1875 /* If the output reload had a secondary reload, copy it. */
1876 if (rld[output_reload].secondary_out_reload != -1)
1878 rld[i].secondary_out_reload
1879 = rld[output_reload].secondary_out_reload;
1880 rld[i].secondary_out_icode
1881 = rld[output_reload].secondary_out_icode;
1884 #ifdef SECONDARY_MEMORY_NEEDED
1885 /* Copy any secondary MEM. */
1886 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1887 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1888 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1889 #endif
1890 /* If required, minimize the register class. */
1891 if (reg_class_subset_p (rld[output_reload].rclass,
1892 rld[i].rclass))
1893 rld[i].rclass = rld[output_reload].rclass;
1895 /* Transfer all replacements from the old reload to the combined. */
1896 for (j = 0; j < n_replacements; j++)
1897 if (replacements[j].what == output_reload)
1898 replacements[j].what = i;
1900 return;
1903 /* If this insn has only one operand that is modified or written (assumed
1904 to be the first), it must be the one corresponding to this reload. It
1905 is safe to use anything that dies in this insn for that output provided
1906 that it does not occur in the output (we already know it isn't an
1907 earlyclobber. If this is an asm insn, give up. */
1909 if (INSN_CODE (this_insn) == -1)
1910 return;
1912 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1913 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1914 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1915 return;
1917 /* See if some hard register that dies in this insn and is not used in
1918 the output is the right class. Only works if the register we pick
1919 up can fully hold our output reload. */
1920 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1921 if (REG_NOTE_KIND (note) == REG_DEAD
1922 && REG_P (XEXP (note, 0))
1923 && !reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1924 rld[output_reload].out)
1925 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1926 && HARD_REGNO_MODE_OK (regno, rld[output_reload].outmode)
1927 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].rclass],
1928 regno)
1929 && (hard_regno_nregs[regno][rld[output_reload].outmode]
1930 <= hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))])
1931 /* Ensure that a secondary or tertiary reload for this output
1932 won't want this register. */
1933 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1934 || (!(TEST_HARD_REG_BIT
1935 (reg_class_contents[(int) rld[secondary_out].rclass], regno))
1936 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1937 || !(TEST_HARD_REG_BIT
1938 (reg_class_contents[(int) rld[secondary_out].rclass],
1939 regno)))))
1940 && !fixed_regs[regno]
1941 /* Check that a former pseudo is valid; see find_dummy_reload. */
1942 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1943 || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
1944 ORIGINAL_REGNO (XEXP (note, 0)))
1945 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] == 1)))
1947 rld[output_reload].reg_rtx
1948 = gen_rtx_REG (rld[output_reload].outmode, regno);
1949 return;
1953 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1954 See if one of IN and OUT is a register that may be used;
1955 this is desirable since a spill-register won't be needed.
1956 If so, return the register rtx that proves acceptable.
1958 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1959 RCLASS is the register class required for the reload.
1961 If FOR_REAL is >= 0, it is the number of the reload,
1962 and in some cases when it can be discovered that OUT doesn't need
1963 to be computed, clear out rld[FOR_REAL].out.
1965 If FOR_REAL is -1, this should not be done, because this call
1966 is just to see if a register can be found, not to find and install it.
1968 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1969 puts an additional constraint on being able to use IN for OUT since
1970 IN must not appear elsewhere in the insn (it is assumed that IN itself
1971 is safe from the earlyclobber). */
1973 static rtx
1974 find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1975 enum machine_mode inmode, enum machine_mode outmode,
1976 reg_class_t rclass, int for_real, int earlyclobber)
1978 rtx in = real_in;
1979 rtx out = real_out;
1980 int in_offset = 0;
1981 int out_offset = 0;
1982 rtx value = 0;
1984 /* If operands exceed a word, we can't use either of them
1985 unless they have the same size. */
1986 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1987 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1988 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1989 return 0;
1991 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1992 respectively refers to a hard register. */
1994 /* Find the inside of any subregs. */
1995 while (GET_CODE (out) == SUBREG)
1997 if (REG_P (SUBREG_REG (out))
1998 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1999 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
2000 GET_MODE (SUBREG_REG (out)),
2001 SUBREG_BYTE (out),
2002 GET_MODE (out));
2003 out = SUBREG_REG (out);
2005 while (GET_CODE (in) == SUBREG)
2007 if (REG_P (SUBREG_REG (in))
2008 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
2009 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
2010 GET_MODE (SUBREG_REG (in)),
2011 SUBREG_BYTE (in),
2012 GET_MODE (in));
2013 in = SUBREG_REG (in);
2016 /* Narrow down the reg class, the same way push_reload will;
2017 otherwise we might find a dummy now, but push_reload won't. */
2019 reg_class_t preferred_class = targetm.preferred_reload_class (in, rclass);
2020 if (preferred_class != NO_REGS)
2021 rclass = (enum reg_class) preferred_class;
2024 /* See if OUT will do. */
2025 if (REG_P (out)
2026 && REGNO (out) < FIRST_PSEUDO_REGISTER)
2028 unsigned int regno = REGNO (out) + out_offset;
2029 unsigned int nwords = hard_regno_nregs[regno][outmode];
2030 rtx saved_rtx;
2032 /* When we consider whether the insn uses OUT,
2033 ignore references within IN. They don't prevent us
2034 from copying IN into OUT, because those refs would
2035 move into the insn that reloads IN.
2037 However, we only ignore IN in its role as this reload.
2038 If the insn uses IN elsewhere and it contains OUT,
2039 that counts. We can't be sure it's the "same" operand
2040 so it might not go through this reload.
2042 We also need to avoid using OUT if it, or part of it, is a
2043 fixed register. Modifying such registers, even transiently,
2044 may have undefined effects on the machine, such as modifying
2045 the stack pointer. */
2046 saved_rtx = *inloc;
2047 *inloc = const0_rtx;
2049 if (regno < FIRST_PSEUDO_REGISTER
2050 && HARD_REGNO_MODE_OK (regno, outmode)
2051 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
2052 PATTERN (this_insn), outloc))
2054 unsigned int i;
2056 for (i = 0; i < nwords; i++)
2057 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
2058 regno + i)
2059 || fixed_regs[regno + i])
2060 break;
2062 if (i == nwords)
2064 if (REG_P (real_out))
2065 value = real_out;
2066 else
2067 value = gen_rtx_REG (outmode, regno);
2071 *inloc = saved_rtx;
2074 /* Consider using IN if OUT was not acceptable
2075 or if OUT dies in this insn (like the quotient in a divmod insn).
2076 We can't use IN unless it is dies in this insn,
2077 which means we must know accurately which hard regs are live.
2078 Also, the result can't go in IN if IN is used within OUT,
2079 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
2080 if (hard_regs_live_known
2081 && REG_P (in)
2082 && REGNO (in) < FIRST_PSEUDO_REGISTER
2083 && (value == 0
2084 || find_reg_note (this_insn, REG_UNUSED, real_out))
2085 && find_reg_note (this_insn, REG_DEAD, real_in)
2086 && !fixed_regs[REGNO (in)]
2087 && HARD_REGNO_MODE_OK (REGNO (in),
2088 /* The only case where out and real_out might
2089 have different modes is where real_out
2090 is a subreg, and in that case, out
2091 has a real mode. */
2092 (GET_MODE (out) != VOIDmode
2093 ? GET_MODE (out) : outmode))
2094 && (ORIGINAL_REGNO (in) < FIRST_PSEUDO_REGISTER
2095 /* However only do this if we can be sure that this input
2096 operand doesn't correspond with an uninitialized pseudo.
2097 global can assign some hardreg to it that is the same as
2098 the one assigned to a different, also live pseudo (as it
2099 can ignore the conflict). We must never introduce writes
2100 to such hardregs, as they would clobber the other live
2101 pseudo. See PR 20973. */
2102 || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
2103 ORIGINAL_REGNO (in))
2104 /* Similarly, only do this if we can be sure that the death
2105 note is still valid. global can assign some hardreg to
2106 the pseudo referenced in the note and simultaneously a
2107 subword of this hardreg to a different, also live pseudo,
2108 because only another subword of the hardreg is actually
2109 used in the insn. This cannot happen if the pseudo has
2110 been assigned exactly one hardreg. See PR 33732. */
2111 && hard_regno_nregs[REGNO (in)][GET_MODE (in)] == 1)))
2113 unsigned int regno = REGNO (in) + in_offset;
2114 unsigned int nwords = hard_regno_nregs[regno][inmode];
2116 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
2117 && ! hard_reg_set_here_p (regno, regno + nwords,
2118 PATTERN (this_insn))
2119 && (! earlyclobber
2120 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
2121 PATTERN (this_insn), inloc)))
2123 unsigned int i;
2125 for (i = 0; i < nwords; i++)
2126 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
2127 regno + i))
2128 break;
2130 if (i == nwords)
2132 /* If we were going to use OUT as the reload reg
2133 and changed our mind, it means OUT is a dummy that
2134 dies here. So don't bother copying value to it. */
2135 if (for_real >= 0 && value == real_out)
2136 rld[for_real].out = 0;
2137 if (REG_P (real_in))
2138 value = real_in;
2139 else
2140 value = gen_rtx_REG (inmode, regno);
2145 return value;
2148 /* This page contains subroutines used mainly for determining
2149 whether the IN or an OUT of a reload can serve as the
2150 reload register. */
2152 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2155 earlyclobber_operand_p (rtx x)
2157 int i;
2159 for (i = 0; i < n_earlyclobbers; i++)
2160 if (reload_earlyclobbers[i] == x)
2161 return 1;
2163 return 0;
2166 /* Return 1 if expression X alters a hard reg in the range
2167 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2168 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2169 X should be the body of an instruction. */
2171 static int
2172 hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2174 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2176 rtx op0 = SET_DEST (x);
2178 while (GET_CODE (op0) == SUBREG)
2179 op0 = SUBREG_REG (op0);
2180 if (REG_P (op0))
2182 unsigned int r = REGNO (op0);
2184 /* See if this reg overlaps range under consideration. */
2185 if (r < end_regno
2186 && end_hard_regno (GET_MODE (op0), r) > beg_regno)
2187 return 1;
2190 else if (GET_CODE (x) == PARALLEL)
2192 int i = XVECLEN (x, 0) - 1;
2194 for (; i >= 0; i--)
2195 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2196 return 1;
2199 return 0;
2202 /* Return 1 if ADDR is a valid memory address for mode MODE
2203 in address space AS, and check that each pseudo reg has the
2204 proper kind of hard reg. */
2207 strict_memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED,
2208 rtx addr, addr_space_t as)
2210 #ifdef GO_IF_LEGITIMATE_ADDRESS
2211 gcc_assert (ADDR_SPACE_GENERIC_P (as));
2212 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2213 return 0;
2215 win:
2216 return 1;
2217 #else
2218 return targetm.addr_space.legitimate_address_p (mode, addr, 1, as);
2219 #endif
2222 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2223 if they are the same hard reg, and has special hacks for
2224 autoincrement and autodecrement.
2225 This is specifically intended for find_reloads to use
2226 in determining whether two operands match.
2227 X is the operand whose number is the lower of the two.
2229 The value is 2 if Y contains a pre-increment that matches
2230 a non-incrementing address in X. */
2232 /* ??? To be completely correct, we should arrange to pass
2233 for X the output operand and for Y the input operand.
2234 For now, we assume that the output operand has the lower number
2235 because that is natural in (SET output (... input ...)). */
2238 operands_match_p (rtx x, rtx y)
2240 int i;
2241 RTX_CODE code = GET_CODE (x);
2242 const char *fmt;
2243 int success_2;
2245 if (x == y)
2246 return 1;
2247 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2248 && (REG_P (y) || (GET_CODE (y) == SUBREG
2249 && REG_P (SUBREG_REG (y)))))
2251 int j;
2253 if (code == SUBREG)
2255 i = REGNO (SUBREG_REG (x));
2256 if (i >= FIRST_PSEUDO_REGISTER)
2257 goto slow;
2258 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2259 GET_MODE (SUBREG_REG (x)),
2260 SUBREG_BYTE (x),
2261 GET_MODE (x));
2263 else
2264 i = REGNO (x);
2266 if (GET_CODE (y) == SUBREG)
2268 j = REGNO (SUBREG_REG (y));
2269 if (j >= FIRST_PSEUDO_REGISTER)
2270 goto slow;
2271 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2272 GET_MODE (SUBREG_REG (y)),
2273 SUBREG_BYTE (y),
2274 GET_MODE (y));
2276 else
2277 j = REGNO (y);
2279 /* On a REG_WORDS_BIG_ENDIAN machine, point to the last register of a
2280 multiple hard register group of scalar integer registers, so that
2281 for example (reg:DI 0) and (reg:SI 1) will be considered the same
2282 register. */
2283 if (REG_WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2284 && SCALAR_INT_MODE_P (GET_MODE (x))
2285 && i < FIRST_PSEUDO_REGISTER)
2286 i += hard_regno_nregs[i][GET_MODE (x)] - 1;
2287 if (REG_WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2288 && SCALAR_INT_MODE_P (GET_MODE (y))
2289 && j < FIRST_PSEUDO_REGISTER)
2290 j += hard_regno_nregs[j][GET_MODE (y)] - 1;
2292 return i == j;
2294 /* If two operands must match, because they are really a single
2295 operand of an assembler insn, then two postincrements are invalid
2296 because the assembler insn would increment only once.
2297 On the other hand, a postincrement matches ordinary indexing
2298 if the postincrement is the output operand. */
2299 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2300 return operands_match_p (XEXP (x, 0), y);
2301 /* Two preincrements are invalid
2302 because the assembler insn would increment only once.
2303 On the other hand, a preincrement matches ordinary indexing
2304 if the preincrement is the input operand.
2305 In this case, return 2, since some callers need to do special
2306 things when this happens. */
2307 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2308 || GET_CODE (y) == PRE_MODIFY)
2309 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2311 slow:
2313 /* Now we have disposed of all the cases in which different rtx codes
2314 can match. */
2315 if (code != GET_CODE (y))
2316 return 0;
2318 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2319 if (GET_MODE (x) != GET_MODE (y))
2320 return 0;
2322 /* MEMs referring to different address space are not equivalent. */
2323 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2324 return 0;
2326 switch (code)
2328 CASE_CONST_UNIQUE:
2329 return 0;
2331 case LABEL_REF:
2332 return XEXP (x, 0) == XEXP (y, 0);
2333 case SYMBOL_REF:
2334 return XSTR (x, 0) == XSTR (y, 0);
2336 default:
2337 break;
2340 /* Compare the elements. If any pair of corresponding elements
2341 fail to match, return 0 for the whole things. */
2343 success_2 = 0;
2344 fmt = GET_RTX_FORMAT (code);
2345 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2347 int val, j;
2348 switch (fmt[i])
2350 case 'w':
2351 if (XWINT (x, i) != XWINT (y, i))
2352 return 0;
2353 break;
2355 case 'i':
2356 if (XINT (x, i) != XINT (y, i))
2357 return 0;
2358 break;
2360 case 'e':
2361 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2362 if (val == 0)
2363 return 0;
2364 /* If any subexpression returns 2,
2365 we should return 2 if we are successful. */
2366 if (val == 2)
2367 success_2 = 1;
2368 break;
2370 case '0':
2371 break;
2373 case 'E':
2374 if (XVECLEN (x, i) != XVECLEN (y, i))
2375 return 0;
2376 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2378 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2379 if (val == 0)
2380 return 0;
2381 if (val == 2)
2382 success_2 = 1;
2384 break;
2386 /* It is believed that rtx's at this level will never
2387 contain anything but integers and other rtx's,
2388 except for within LABEL_REFs and SYMBOL_REFs. */
2389 default:
2390 gcc_unreachable ();
2393 return 1 + success_2;
2396 /* Describe the range of registers or memory referenced by X.
2397 If X is a register, set REG_FLAG and put the first register
2398 number into START and the last plus one into END.
2399 If X is a memory reference, put a base address into BASE
2400 and a range of integer offsets into START and END.
2401 If X is pushing on the stack, we can assume it causes no trouble,
2402 so we set the SAFE field. */
2404 static struct decomposition
2405 decompose (rtx x)
2407 struct decomposition val;
2408 int all_const = 0;
2410 memset (&val, 0, sizeof (val));
2412 switch (GET_CODE (x))
2414 case MEM:
2416 rtx base = NULL_RTX, offset = 0;
2417 rtx addr = XEXP (x, 0);
2419 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2420 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2422 val.base = XEXP (addr, 0);
2423 val.start = -GET_MODE_SIZE (GET_MODE (x));
2424 val.end = GET_MODE_SIZE (GET_MODE (x));
2425 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2426 return val;
2429 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2431 if (GET_CODE (XEXP (addr, 1)) == PLUS
2432 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2433 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2435 val.base = XEXP (addr, 0);
2436 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2437 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2438 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2439 return val;
2443 if (GET_CODE (addr) == CONST)
2445 addr = XEXP (addr, 0);
2446 all_const = 1;
2448 if (GET_CODE (addr) == PLUS)
2450 if (CONSTANT_P (XEXP (addr, 0)))
2452 base = XEXP (addr, 1);
2453 offset = XEXP (addr, 0);
2455 else if (CONSTANT_P (XEXP (addr, 1)))
2457 base = XEXP (addr, 0);
2458 offset = XEXP (addr, 1);
2462 if (offset == 0)
2464 base = addr;
2465 offset = const0_rtx;
2467 if (GET_CODE (offset) == CONST)
2468 offset = XEXP (offset, 0);
2469 if (GET_CODE (offset) == PLUS)
2471 if (CONST_INT_P (XEXP (offset, 0)))
2473 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2474 offset = XEXP (offset, 0);
2476 else if (CONST_INT_P (XEXP (offset, 1)))
2478 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2479 offset = XEXP (offset, 1);
2481 else
2483 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2484 offset = const0_rtx;
2487 else if (!CONST_INT_P (offset))
2489 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2490 offset = const0_rtx;
2493 if (all_const && GET_CODE (base) == PLUS)
2494 base = gen_rtx_CONST (GET_MODE (base), base);
2496 gcc_assert (CONST_INT_P (offset));
2498 val.start = INTVAL (offset);
2499 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2500 val.base = base;
2502 break;
2504 case REG:
2505 val.reg_flag = 1;
2506 val.start = true_regnum (x);
2507 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2509 /* A pseudo with no hard reg. */
2510 val.start = REGNO (x);
2511 val.end = val.start + 1;
2513 else
2514 /* A hard reg. */
2515 val.end = end_hard_regno (GET_MODE (x), val.start);
2516 break;
2518 case SUBREG:
2519 if (!REG_P (SUBREG_REG (x)))
2520 /* This could be more precise, but it's good enough. */
2521 return decompose (SUBREG_REG (x));
2522 val.reg_flag = 1;
2523 val.start = true_regnum (x);
2524 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2525 return decompose (SUBREG_REG (x));
2526 else
2527 /* A hard reg. */
2528 val.end = val.start + subreg_nregs (x);
2529 break;
2531 case SCRATCH:
2532 /* This hasn't been assigned yet, so it can't conflict yet. */
2533 val.safe = 1;
2534 break;
2536 default:
2537 gcc_assert (CONSTANT_P (x));
2538 val.safe = 1;
2539 break;
2541 return val;
2544 /* Return 1 if altering Y will not modify the value of X.
2545 Y is also described by YDATA, which should be decompose (Y). */
2547 static int
2548 immune_p (rtx x, rtx y, struct decomposition ydata)
2550 struct decomposition xdata;
2552 if (ydata.reg_flag)
2553 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2554 if (ydata.safe)
2555 return 1;
2557 gcc_assert (MEM_P (y));
2558 /* If Y is memory and X is not, Y can't affect X. */
2559 if (!MEM_P (x))
2560 return 1;
2562 xdata = decompose (x);
2564 if (! rtx_equal_p (xdata.base, ydata.base))
2566 /* If bases are distinct symbolic constants, there is no overlap. */
2567 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2568 return 1;
2569 /* Constants and stack slots never overlap. */
2570 if (CONSTANT_P (xdata.base)
2571 && (ydata.base == frame_pointer_rtx
2572 || ydata.base == hard_frame_pointer_rtx
2573 || ydata.base == stack_pointer_rtx))
2574 return 1;
2575 if (CONSTANT_P (ydata.base)
2576 && (xdata.base == frame_pointer_rtx
2577 || xdata.base == hard_frame_pointer_rtx
2578 || xdata.base == stack_pointer_rtx))
2579 return 1;
2580 /* If either base is variable, we don't know anything. */
2581 return 0;
2584 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2587 /* Similar, but calls decompose. */
2590 safe_from_earlyclobber (rtx op, rtx clobber)
2592 struct decomposition early_data;
2594 early_data = decompose (clobber);
2595 return immune_p (op, clobber, early_data);
2598 /* Main entry point of this file: search the body of INSN
2599 for values that need reloading and record them with push_reload.
2600 REPLACE nonzero means record also where the values occur
2601 so that subst_reloads can be used.
2603 IND_LEVELS says how many levels of indirection are supported by this
2604 machine; a value of zero means that a memory reference is not a valid
2605 memory address.
2607 LIVE_KNOWN says we have valid information about which hard
2608 regs are live at each point in the program; this is true when
2609 we are called from global_alloc but false when stupid register
2610 allocation has been done.
2612 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2613 which is nonnegative if the reg has been commandeered for reloading into.
2614 It is copied into STATIC_RELOAD_REG_P and referenced from there
2615 by various subroutines.
2617 Return TRUE if some operands need to be changed, because of swapping
2618 commutative operands, reg_equiv_address substitution, or whatever. */
2621 find_reloads (rtx insn, int replace, int ind_levels, int live_known,
2622 short *reload_reg_p)
2624 int insn_code_number;
2625 int i, j;
2626 int noperands;
2627 /* These start out as the constraints for the insn
2628 and they are chewed up as we consider alternatives. */
2629 const char *constraints[MAX_RECOG_OPERANDS];
2630 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2631 a register. */
2632 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2633 char pref_or_nothing[MAX_RECOG_OPERANDS];
2634 /* Nonzero for a MEM operand whose entire address needs a reload.
2635 May be -1 to indicate the entire address may or may not need a reload. */
2636 int address_reloaded[MAX_RECOG_OPERANDS];
2637 /* Nonzero for an address operand that needs to be completely reloaded.
2638 May be -1 to indicate the entire operand may or may not need a reload. */
2639 int address_operand_reloaded[MAX_RECOG_OPERANDS];
2640 /* Value of enum reload_type to use for operand. */
2641 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2642 /* Value of enum reload_type to use within address of operand. */
2643 enum reload_type address_type[MAX_RECOG_OPERANDS];
2644 /* Save the usage of each operand. */
2645 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2646 int no_input_reloads = 0, no_output_reloads = 0;
2647 int n_alternatives;
2648 reg_class_t this_alternative[MAX_RECOG_OPERANDS];
2649 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2650 char this_alternative_win[MAX_RECOG_OPERANDS];
2651 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2652 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2653 int this_alternative_matches[MAX_RECOG_OPERANDS];
2654 reg_class_t goal_alternative[MAX_RECOG_OPERANDS];
2655 int this_alternative_number;
2656 int goal_alternative_number = 0;
2657 int operand_reloadnum[MAX_RECOG_OPERANDS];
2658 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2659 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2660 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2661 char goal_alternative_win[MAX_RECOG_OPERANDS];
2662 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2663 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2664 int goal_alternative_swapped;
2665 int best;
2666 int commutative;
2667 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2668 rtx substed_operand[MAX_RECOG_OPERANDS];
2669 rtx body = PATTERN (insn);
2670 rtx set = single_set (insn);
2671 int goal_earlyclobber = 0, this_earlyclobber;
2672 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2673 int retval = 0;
2675 this_insn = insn;
2676 n_reloads = 0;
2677 n_replacements = 0;
2678 n_earlyclobbers = 0;
2679 replace_reloads = replace;
2680 hard_regs_live_known = live_known;
2681 static_reload_reg_p = reload_reg_p;
2683 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2684 neither are insns that SET cc0. Insns that use CC0 are not allowed
2685 to have any input reloads. */
2686 if (JUMP_P (insn) || CALL_P (insn))
2687 no_output_reloads = 1;
2689 #ifdef HAVE_cc0
2690 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2691 no_input_reloads = 1;
2692 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2693 no_output_reloads = 1;
2694 #endif
2696 #ifdef SECONDARY_MEMORY_NEEDED
2697 /* The eliminated forms of any secondary memory locations are per-insn, so
2698 clear them out here. */
2700 if (secondary_memlocs_elim_used)
2702 memset (secondary_memlocs_elim, 0,
2703 sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2704 secondary_memlocs_elim_used = 0;
2706 #endif
2708 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2709 is cheap to move between them. If it is not, there may not be an insn
2710 to do the copy, so we may need a reload. */
2711 if (GET_CODE (body) == SET
2712 && REG_P (SET_DEST (body))
2713 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2714 && REG_P (SET_SRC (body))
2715 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2716 && register_move_cost (GET_MODE (SET_SRC (body)),
2717 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2718 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2719 return 0;
2721 extract_insn (insn);
2723 noperands = reload_n_operands = recog_data.n_operands;
2724 n_alternatives = recog_data.n_alternatives;
2726 /* Just return "no reloads" if insn has no operands with constraints. */
2727 if (noperands == 0 || n_alternatives == 0)
2728 return 0;
2730 insn_code_number = INSN_CODE (insn);
2731 this_insn_is_asm = insn_code_number < 0;
2733 memcpy (operand_mode, recog_data.operand_mode,
2734 noperands * sizeof (enum machine_mode));
2735 memcpy (constraints, recog_data.constraints,
2736 noperands * sizeof (const char *));
2738 commutative = -1;
2740 /* If we will need to know, later, whether some pair of operands
2741 are the same, we must compare them now and save the result.
2742 Reloading the base and index registers will clobber them
2743 and afterward they will fail to match. */
2745 for (i = 0; i < noperands; i++)
2747 const char *p;
2748 int c;
2749 char *end;
2751 substed_operand[i] = recog_data.operand[i];
2752 p = constraints[i];
2754 modified[i] = RELOAD_READ;
2756 /* Scan this operand's constraint to see if it is an output operand,
2757 an in-out operand, is commutative, or should match another. */
2759 while ((c = *p))
2761 p += CONSTRAINT_LEN (c, p);
2762 switch (c)
2764 case '=':
2765 modified[i] = RELOAD_WRITE;
2766 break;
2767 case '+':
2768 modified[i] = RELOAD_READ_WRITE;
2769 break;
2770 case '%':
2772 /* The last operand should not be marked commutative. */
2773 gcc_assert (i != noperands - 1);
2775 /* We currently only support one commutative pair of
2776 operands. Some existing asm code currently uses more
2777 than one pair. Previously, that would usually work,
2778 but sometimes it would crash the compiler. We
2779 continue supporting that case as well as we can by
2780 silently ignoring all but the first pair. In the
2781 future we may handle it correctly. */
2782 if (commutative < 0)
2783 commutative = i;
2784 else
2785 gcc_assert (this_insn_is_asm);
2787 break;
2788 /* Use of ISDIGIT is tempting here, but it may get expensive because
2789 of locale support we don't want. */
2790 case '0': case '1': case '2': case '3': case '4':
2791 case '5': case '6': case '7': case '8': case '9':
2793 c = strtoul (p - 1, &end, 10);
2794 p = end;
2796 operands_match[c][i]
2797 = operands_match_p (recog_data.operand[c],
2798 recog_data.operand[i]);
2800 /* An operand may not match itself. */
2801 gcc_assert (c != i);
2803 /* If C can be commuted with C+1, and C might need to match I,
2804 then C+1 might also need to match I. */
2805 if (commutative >= 0)
2807 if (c == commutative || c == commutative + 1)
2809 int other = c + (c == commutative ? 1 : -1);
2810 operands_match[other][i]
2811 = operands_match_p (recog_data.operand[other],
2812 recog_data.operand[i]);
2814 if (i == commutative || i == commutative + 1)
2816 int other = i + (i == commutative ? 1 : -1);
2817 operands_match[c][other]
2818 = operands_match_p (recog_data.operand[c],
2819 recog_data.operand[other]);
2821 /* Note that C is supposed to be less than I.
2822 No need to consider altering both C and I because in
2823 that case we would alter one into the other. */
2830 /* Examine each operand that is a memory reference or memory address
2831 and reload parts of the addresses into index registers.
2832 Also here any references to pseudo regs that didn't get hard regs
2833 but are equivalent to constants get replaced in the insn itself
2834 with those constants. Nobody will ever see them again.
2836 Finally, set up the preferred classes of each operand. */
2838 for (i = 0; i < noperands; i++)
2840 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2842 address_reloaded[i] = 0;
2843 address_operand_reloaded[i] = 0;
2844 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2845 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2846 : RELOAD_OTHER);
2847 address_type[i]
2848 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2849 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2850 : RELOAD_OTHER);
2852 if (*constraints[i] == 0)
2853 /* Ignore things like match_operator operands. */
2855 else if (constraints[i][0] == 'p'
2856 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
2858 address_operand_reloaded[i]
2859 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2860 recog_data.operand[i],
2861 recog_data.operand_loc[i],
2862 i, operand_type[i], ind_levels, insn);
2864 /* If we now have a simple operand where we used to have a
2865 PLUS or MULT, re-recognize and try again. */
2866 if ((OBJECT_P (*recog_data.operand_loc[i])
2867 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2868 && (GET_CODE (recog_data.operand[i]) == MULT
2869 || GET_CODE (recog_data.operand[i]) == PLUS))
2871 INSN_CODE (insn) = -1;
2872 retval = find_reloads (insn, replace, ind_levels, live_known,
2873 reload_reg_p);
2874 return retval;
2877 recog_data.operand[i] = *recog_data.operand_loc[i];
2878 substed_operand[i] = recog_data.operand[i];
2880 /* Address operands are reloaded in their existing mode,
2881 no matter what is specified in the machine description. */
2882 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2884 /* If the address is a single CONST_INT pick address mode
2885 instead otherwise we will later not know in which mode
2886 the reload should be performed. */
2887 if (operand_mode[i] == VOIDmode)
2888 operand_mode[i] = Pmode;
2891 else if (code == MEM)
2893 address_reloaded[i]
2894 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2895 recog_data.operand_loc[i],
2896 XEXP (recog_data.operand[i], 0),
2897 &XEXP (recog_data.operand[i], 0),
2898 i, address_type[i], ind_levels, insn);
2899 recog_data.operand[i] = *recog_data.operand_loc[i];
2900 substed_operand[i] = recog_data.operand[i];
2902 else if (code == SUBREG)
2904 rtx reg = SUBREG_REG (recog_data.operand[i]);
2905 rtx op
2906 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2907 ind_levels,
2908 set != 0
2909 && &SET_DEST (set) == recog_data.operand_loc[i],
2910 insn,
2911 &address_reloaded[i]);
2913 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2914 that didn't get a hard register, emit a USE with a REG_EQUAL
2915 note in front so that we might inherit a previous, possibly
2916 wider reload. */
2918 if (replace
2919 && MEM_P (op)
2920 && REG_P (reg)
2921 && (GET_MODE_SIZE (GET_MODE (reg))
2922 >= GET_MODE_SIZE (GET_MODE (op)))
2923 && reg_equiv_constant (REGNO (reg)) == 0)
2924 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2925 insn),
2926 REG_EQUAL, reg_equiv_memory_loc (REGNO (reg)));
2928 substed_operand[i] = recog_data.operand[i] = op;
2930 else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
2931 /* We can get a PLUS as an "operand" as a result of register
2932 elimination. See eliminate_regs and gen_reload. We handle
2933 a unary operator by reloading the operand. */
2934 substed_operand[i] = recog_data.operand[i]
2935 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2936 ind_levels, 0, insn,
2937 &address_reloaded[i]);
2938 else if (code == REG)
2940 /* This is equivalent to calling find_reloads_toplev.
2941 The code is duplicated for speed.
2942 When we find a pseudo always equivalent to a constant,
2943 we replace it by the constant. We must be sure, however,
2944 that we don't try to replace it in the insn in which it
2945 is being set. */
2946 int regno = REGNO (recog_data.operand[i]);
2947 if (reg_equiv_constant (regno) != 0
2948 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2950 /* Record the existing mode so that the check if constants are
2951 allowed will work when operand_mode isn't specified. */
2953 if (operand_mode[i] == VOIDmode)
2954 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2956 substed_operand[i] = recog_data.operand[i]
2957 = reg_equiv_constant (regno);
2959 if (reg_equiv_memory_loc (regno) != 0
2960 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
2961 /* We need not give a valid is_set_dest argument since the case
2962 of a constant equivalence was checked above. */
2963 substed_operand[i] = recog_data.operand[i]
2964 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2965 ind_levels, 0, insn,
2966 &address_reloaded[i]);
2968 /* If the operand is still a register (we didn't replace it with an
2969 equivalent), get the preferred class to reload it into. */
2970 code = GET_CODE (recog_data.operand[i]);
2971 preferred_class[i]
2972 = ((code == REG && REGNO (recog_data.operand[i])
2973 >= FIRST_PSEUDO_REGISTER)
2974 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2975 : NO_REGS);
2976 pref_or_nothing[i]
2977 = (code == REG
2978 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2979 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2982 /* If this is simply a copy from operand 1 to operand 0, merge the
2983 preferred classes for the operands. */
2984 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2985 && recog_data.operand[1] == SET_SRC (set))
2987 preferred_class[0] = preferred_class[1]
2988 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2989 pref_or_nothing[0] |= pref_or_nothing[1];
2990 pref_or_nothing[1] |= pref_or_nothing[0];
2993 /* Now see what we need for pseudo-regs that didn't get hard regs
2994 or got the wrong kind of hard reg. For this, we must consider
2995 all the operands together against the register constraints. */
2997 best = MAX_RECOG_OPERANDS * 2 + 600;
2999 goal_alternative_swapped = 0;
3001 /* The constraints are made of several alternatives.
3002 Each operand's constraint looks like foo,bar,... with commas
3003 separating the alternatives. The first alternatives for all
3004 operands go together, the second alternatives go together, etc.
3006 First loop over alternatives. */
3008 for (this_alternative_number = 0;
3009 this_alternative_number < n_alternatives;
3010 this_alternative_number++)
3012 int swapped;
3014 if (!recog_data.alternative_enabled_p[this_alternative_number])
3016 int i;
3018 for (i = 0; i < recog_data.n_operands; i++)
3019 constraints[i] = skip_alternative (constraints[i]);
3021 continue;
3024 /* If insn is commutative (it's safe to exchange a certain pair
3025 of operands) then we need to try each alternative twice, the
3026 second time matching those two operands as if we had
3027 exchanged them. To do this, really exchange them in
3028 operands. */
3029 for (swapped = 0; swapped < (commutative >= 0 ? 2 : 1); swapped++)
3031 /* Loop over operands for one constraint alternative. */
3032 /* LOSERS counts those that don't fit this alternative
3033 and would require loading. */
3034 int losers = 0;
3035 /* BAD is set to 1 if it some operand can't fit this alternative
3036 even after reloading. */
3037 int bad = 0;
3038 /* REJECT is a count of how undesirable this alternative says it is
3039 if any reloading is required. If the alternative matches exactly
3040 then REJECT is ignored, but otherwise it gets this much
3041 counted against it in addition to the reloading needed. Each
3042 ? counts three times here since we want the disparaging caused by
3043 a bad register class to only count 1/3 as much. */
3044 int reject = 0;
3046 if (swapped)
3048 enum reg_class tclass;
3049 int t;
3051 recog_data.operand[commutative] = substed_operand[commutative + 1];
3052 recog_data.operand[commutative + 1] = substed_operand[commutative];
3053 /* Swap the duplicates too. */
3054 for (i = 0; i < recog_data.n_dups; i++)
3055 if (recog_data.dup_num[i] == commutative
3056 || recog_data.dup_num[i] == commutative + 1)
3057 *recog_data.dup_loc[i]
3058 = recog_data.operand[(int) recog_data.dup_num[i]];
3060 tclass = preferred_class[commutative];
3061 preferred_class[commutative] = preferred_class[commutative + 1];
3062 preferred_class[commutative + 1] = tclass;
3064 t = pref_or_nothing[commutative];
3065 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3066 pref_or_nothing[commutative + 1] = t;
3068 t = address_reloaded[commutative];
3069 address_reloaded[commutative] = address_reloaded[commutative + 1];
3070 address_reloaded[commutative + 1] = t;
3073 this_earlyclobber = 0;
3075 for (i = 0; i < noperands; i++)
3077 const char *p = constraints[i];
3078 char *end;
3079 int len;
3080 int win = 0;
3081 int did_match = 0;
3082 /* 0 => this operand can be reloaded somehow for this alternative. */
3083 int badop = 1;
3084 /* 0 => this operand can be reloaded if the alternative allows regs. */
3085 int winreg = 0;
3086 int c;
3087 int m;
3088 rtx operand = recog_data.operand[i];
3089 int offset = 0;
3090 /* Nonzero means this is a MEM that must be reloaded into a reg
3091 regardless of what the constraint says. */
3092 int force_reload = 0;
3093 int offmemok = 0;
3094 /* Nonzero if a constant forced into memory would be OK for this
3095 operand. */
3096 int constmemok = 0;
3097 int earlyclobber = 0;
3099 /* If the predicate accepts a unary operator, it means that
3100 we need to reload the operand, but do not do this for
3101 match_operator and friends. */
3102 if (UNARY_P (operand) && *p != 0)
3103 operand = XEXP (operand, 0);
3105 /* If the operand is a SUBREG, extract
3106 the REG or MEM (or maybe even a constant) within.
3107 (Constants can occur as a result of reg_equiv_constant.) */
3109 while (GET_CODE (operand) == SUBREG)
3111 /* Offset only matters when operand is a REG and
3112 it is a hard reg. This is because it is passed
3113 to reg_fits_class_p if it is a REG and all pseudos
3114 return 0 from that function. */
3115 if (REG_P (SUBREG_REG (operand))
3116 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
3118 if (simplify_subreg_regno (REGNO (SUBREG_REG (operand)),
3119 GET_MODE (SUBREG_REG (operand)),
3120 SUBREG_BYTE (operand),
3121 GET_MODE (operand)) < 0)
3122 force_reload = 1;
3123 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
3124 GET_MODE (SUBREG_REG (operand)),
3125 SUBREG_BYTE (operand),
3126 GET_MODE (operand));
3128 operand = SUBREG_REG (operand);
3129 /* Force reload if this is a constant or PLUS or if there may
3130 be a problem accessing OPERAND in the outer mode. */
3131 if (CONSTANT_P (operand)
3132 || GET_CODE (operand) == PLUS
3133 /* We must force a reload of paradoxical SUBREGs
3134 of a MEM because the alignment of the inner value
3135 may not be enough to do the outer reference. On
3136 big-endian machines, it may also reference outside
3137 the object.
3139 On machines that extend byte operations and we have a
3140 SUBREG where both the inner and outer modes are no wider
3141 than a word and the inner mode is narrower, is integral,
3142 and gets extended when loaded from memory, combine.c has
3143 made assumptions about the behavior of the machine in such
3144 register access. If the data is, in fact, in memory we
3145 must always load using the size assumed to be in the
3146 register and let the insn do the different-sized
3147 accesses.
3149 This is doubly true if WORD_REGISTER_OPERATIONS. In
3150 this case eliminate_regs has left non-paradoxical
3151 subregs for push_reload to see. Make sure it does
3152 by forcing the reload.
3154 ??? When is it right at this stage to have a subreg
3155 of a mem that is _not_ to be handled specially? IMO
3156 those should have been reduced to just a mem. */
3157 || ((MEM_P (operand)
3158 || (REG_P (operand)
3159 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3160 #ifndef WORD_REGISTER_OPERATIONS
3161 && (((GET_MODE_BITSIZE (GET_MODE (operand))
3162 < BIGGEST_ALIGNMENT)
3163 && (GET_MODE_SIZE (operand_mode[i])
3164 > GET_MODE_SIZE (GET_MODE (operand))))
3165 || BYTES_BIG_ENDIAN
3166 #ifdef LOAD_EXTEND_OP
3167 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3168 && (GET_MODE_SIZE (GET_MODE (operand))
3169 <= UNITS_PER_WORD)
3170 && (GET_MODE_SIZE (operand_mode[i])
3171 > GET_MODE_SIZE (GET_MODE (operand)))
3172 && INTEGRAL_MODE_P (GET_MODE (operand))
3173 && LOAD_EXTEND_OP (GET_MODE (operand)) != UNKNOWN)
3174 #endif
3176 #endif
3179 force_reload = 1;
3182 this_alternative[i] = NO_REGS;
3183 this_alternative_win[i] = 0;
3184 this_alternative_match_win[i] = 0;
3185 this_alternative_offmemok[i] = 0;
3186 this_alternative_earlyclobber[i] = 0;
3187 this_alternative_matches[i] = -1;
3189 /* An empty constraint or empty alternative
3190 allows anything which matched the pattern. */
3191 if (*p == 0 || *p == ',')
3192 win = 1, badop = 0;
3194 /* Scan this alternative's specs for this operand;
3195 set WIN if the operand fits any letter in this alternative.
3196 Otherwise, clear BADOP if this operand could
3197 fit some letter after reloads,
3198 or set WINREG if this operand could fit after reloads
3199 provided the constraint allows some registers. */
3202 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
3204 case '\0':
3205 len = 0;
3206 break;
3207 case ',':
3208 c = '\0';
3209 break;
3211 case '=': case '+': case '*':
3212 break;
3214 case '%':
3215 /* We only support one commutative marker, the first
3216 one. We already set commutative above. */
3217 break;
3219 case '?':
3220 reject += 6;
3221 break;
3223 case '!':
3224 reject = 600;
3225 break;
3227 case '#':
3228 /* Ignore rest of this alternative as far as
3229 reloading is concerned. */
3231 p++;
3232 while (*p && *p != ',');
3233 len = 0;
3234 break;
3236 case '0': case '1': case '2': case '3': case '4':
3237 case '5': case '6': case '7': case '8': case '9':
3238 m = strtoul (p, &end, 10);
3239 p = end;
3240 len = 0;
3242 this_alternative_matches[i] = m;
3243 /* We are supposed to match a previous operand.
3244 If we do, we win if that one did.
3245 If we do not, count both of the operands as losers.
3246 (This is too conservative, since most of the time
3247 only a single reload insn will be needed to make
3248 the two operands win. As a result, this alternative
3249 may be rejected when it is actually desirable.) */
3250 if ((swapped && (m != commutative || i != commutative + 1))
3251 /* If we are matching as if two operands were swapped,
3252 also pretend that operands_match had been computed
3253 with swapped.
3254 But if I is the second of those and C is the first,
3255 don't exchange them, because operands_match is valid
3256 only on one side of its diagonal. */
3257 ? (operands_match
3258 [(m == commutative || m == commutative + 1)
3259 ? 2 * commutative + 1 - m : m]
3260 [(i == commutative || i == commutative + 1)
3261 ? 2 * commutative + 1 - i : i])
3262 : operands_match[m][i])
3264 /* If we are matching a non-offsettable address where an
3265 offsettable address was expected, then we must reject
3266 this combination, because we can't reload it. */
3267 if (this_alternative_offmemok[m]
3268 && MEM_P (recog_data.operand[m])
3269 && this_alternative[m] == NO_REGS
3270 && ! this_alternative_win[m])
3271 bad = 1;
3273 did_match = this_alternative_win[m];
3275 else
3277 /* Operands don't match. */
3278 rtx value;
3279 int loc1, loc2;
3280 /* Retroactively mark the operand we had to match
3281 as a loser, if it wasn't already. */
3282 if (this_alternative_win[m])
3283 losers++;
3284 this_alternative_win[m] = 0;
3285 if (this_alternative[m] == NO_REGS)
3286 bad = 1;
3287 /* But count the pair only once in the total badness of
3288 this alternative, if the pair can be a dummy reload.
3289 The pointers in operand_loc are not swapped; swap
3290 them by hand if necessary. */
3291 if (swapped && i == commutative)
3292 loc1 = commutative + 1;
3293 else if (swapped && i == commutative + 1)
3294 loc1 = commutative;
3295 else
3296 loc1 = i;
3297 if (swapped && m == commutative)
3298 loc2 = commutative + 1;
3299 else if (swapped && m == commutative + 1)
3300 loc2 = commutative;
3301 else
3302 loc2 = m;
3303 value
3304 = find_dummy_reload (recog_data.operand[i],
3305 recog_data.operand[m],
3306 recog_data.operand_loc[loc1],
3307 recog_data.operand_loc[loc2],
3308 operand_mode[i], operand_mode[m],
3309 this_alternative[m], -1,
3310 this_alternative_earlyclobber[m]);
3312 if (value != 0)
3313 losers--;
3315 /* This can be fixed with reloads if the operand
3316 we are supposed to match can be fixed with reloads. */
3317 badop = 0;
3318 this_alternative[i] = this_alternative[m];
3320 /* If we have to reload this operand and some previous
3321 operand also had to match the same thing as this
3322 operand, we don't know how to do that. So reject this
3323 alternative. */
3324 if (! did_match || force_reload)
3325 for (j = 0; j < i; j++)
3326 if (this_alternative_matches[j]
3327 == this_alternative_matches[i])
3329 badop = 1;
3330 break;
3332 break;
3334 case 'p':
3335 /* All necessary reloads for an address_operand
3336 were handled in find_reloads_address. */
3337 this_alternative[i]
3338 = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
3339 ADDRESS, SCRATCH);
3340 win = 1;
3341 badop = 0;
3342 break;
3344 case TARGET_MEM_CONSTRAINT:
3345 if (force_reload)
3346 break;
3347 if (MEM_P (operand)
3348 || (REG_P (operand)
3349 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3350 && reg_renumber[REGNO (operand)] < 0))
3351 win = 1;
3352 if (CONST_POOL_OK_P (operand_mode[i], operand))
3353 badop = 0;
3354 constmemok = 1;
3355 break;
3357 case '<':
3358 if (MEM_P (operand)
3359 && ! address_reloaded[i]
3360 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3361 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3362 win = 1;
3363 break;
3365 case '>':
3366 if (MEM_P (operand)
3367 && ! address_reloaded[i]
3368 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3369 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3370 win = 1;
3371 break;
3373 /* Memory operand whose address is not offsettable. */
3374 case 'V':
3375 if (force_reload)
3376 break;
3377 if (MEM_P (operand)
3378 && ! (ind_levels ? offsettable_memref_p (operand)
3379 : offsettable_nonstrict_memref_p (operand))
3380 /* Certain mem addresses will become offsettable
3381 after they themselves are reloaded. This is important;
3382 we don't want our own handling of unoffsettables
3383 to override the handling of reg_equiv_address. */
3384 && !(REG_P (XEXP (operand, 0))
3385 && (ind_levels == 0
3386 || reg_equiv_address (REGNO (XEXP (operand, 0))) != 0)))
3387 win = 1;
3388 break;
3390 /* Memory operand whose address is offsettable. */
3391 case 'o':
3392 if (force_reload)
3393 break;
3394 if ((MEM_P (operand)
3395 /* If IND_LEVELS, find_reloads_address won't reload a
3396 pseudo that didn't get a hard reg, so we have to
3397 reject that case. */
3398 && ((ind_levels ? offsettable_memref_p (operand)
3399 : offsettable_nonstrict_memref_p (operand))
3400 /* A reloaded address is offsettable because it is now
3401 just a simple register indirect. */
3402 || address_reloaded[i] == 1))
3403 || (REG_P (operand)
3404 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3405 && reg_renumber[REGNO (operand)] < 0
3406 /* If reg_equiv_address is nonzero, we will be
3407 loading it into a register; hence it will be
3408 offsettable, but we cannot say that reg_equiv_mem
3409 is offsettable without checking. */
3410 && ((reg_equiv_mem (REGNO (operand)) != 0
3411 && offsettable_memref_p (reg_equiv_mem (REGNO (operand))))
3412 || (reg_equiv_address (REGNO (operand)) != 0))))
3413 win = 1;
3414 if (CONST_POOL_OK_P (operand_mode[i], operand)
3415 || MEM_P (operand))
3416 badop = 0;
3417 constmemok = 1;
3418 offmemok = 1;
3419 break;
3421 case '&':
3422 /* Output operand that is stored before the need for the
3423 input operands (and their index registers) is over. */
3424 earlyclobber = 1, this_earlyclobber = 1;
3425 break;
3427 case 'E':
3428 case 'F':
3429 if (CONST_DOUBLE_AS_FLOAT_P (operand)
3430 || (GET_CODE (operand) == CONST_VECTOR
3431 && (GET_MODE_CLASS (GET_MODE (operand))
3432 == MODE_VECTOR_FLOAT)))
3433 win = 1;
3434 break;
3436 case 'G':
3437 case 'H':
3438 if (CONST_DOUBLE_AS_FLOAT_P (operand)
3439 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
3440 win = 1;
3441 break;
3443 case 's':
3444 if (CONST_SCALAR_INT_P (operand))
3445 break;
3446 case 'i':
3447 if (CONSTANT_P (operand)
3448 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand)))
3449 win = 1;
3450 break;
3452 case 'n':
3453 if (CONST_SCALAR_INT_P (operand))
3454 win = 1;
3455 break;
3457 case 'I':
3458 case 'J':
3459 case 'K':
3460 case 'L':
3461 case 'M':
3462 case 'N':
3463 case 'O':
3464 case 'P':
3465 if (CONST_INT_P (operand)
3466 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
3467 win = 1;
3468 break;
3470 case 'X':
3471 force_reload = 0;
3472 win = 1;
3473 break;
3475 case 'g':
3476 if (! force_reload
3477 /* A PLUS is never a valid operand, but reload can make
3478 it from a register when eliminating registers. */
3479 && GET_CODE (operand) != PLUS
3480 /* A SCRATCH is not a valid operand. */
3481 && GET_CODE (operand) != SCRATCH
3482 && (! CONSTANT_P (operand)
3483 || ! flag_pic
3484 || LEGITIMATE_PIC_OPERAND_P (operand))
3485 && (GENERAL_REGS == ALL_REGS
3486 || !REG_P (operand)
3487 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3488 && reg_renumber[REGNO (operand)] < 0)))
3489 win = 1;
3490 /* Drop through into 'r' case. */
3492 case 'r':
3493 this_alternative[i]
3494 = reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3495 goto reg;
3497 default:
3498 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
3500 #ifdef EXTRA_CONSTRAINT_STR
3501 if (EXTRA_MEMORY_CONSTRAINT (c, p))
3503 if (force_reload)
3504 break;
3505 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3506 win = 1;
3507 /* If the address was already reloaded,
3508 we win as well. */
3509 else if (MEM_P (operand)
3510 && address_reloaded[i] == 1)
3511 win = 1;
3512 /* Likewise if the address will be reloaded because
3513 reg_equiv_address is nonzero. For reg_equiv_mem
3514 we have to check. */
3515 else if (REG_P (operand)
3516 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3517 && reg_renumber[REGNO (operand)] < 0
3518 && ((reg_equiv_mem (REGNO (operand)) != 0
3519 && EXTRA_CONSTRAINT_STR (reg_equiv_mem (REGNO (operand)), c, p))
3520 || (reg_equiv_address (REGNO (operand)) != 0)))
3521 win = 1;
3523 /* If we didn't already win, we can reload
3524 constants via force_const_mem, and other
3525 MEMs by reloading the address like for 'o'. */
3526 if (CONST_POOL_OK_P (operand_mode[i], operand)
3527 || MEM_P (operand))
3528 badop = 0;
3529 constmemok = 1;
3530 offmemok = 1;
3531 break;
3533 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
3535 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3536 win = 1;
3538 /* If we didn't already win, we can reload
3539 the address into a base register. */
3540 this_alternative[i]
3541 = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
3542 ADDRESS, SCRATCH);
3543 badop = 0;
3544 break;
3547 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3548 win = 1;
3549 #endif
3550 break;
3553 this_alternative[i]
3554 = (reg_class_subunion
3555 [this_alternative[i]]
3556 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
3557 reg:
3558 if (GET_MODE (operand) == BLKmode)
3559 break;
3560 winreg = 1;
3561 if (REG_P (operand)
3562 && reg_fits_class_p (operand, this_alternative[i],
3563 offset, GET_MODE (recog_data.operand[i])))
3564 win = 1;
3565 break;
3567 while ((p += len), c);
3569 if (swapped == (commutative >= 0 ? 1 : 0))
3570 constraints[i] = p;
3572 /* If this operand could be handled with a reg,
3573 and some reg is allowed, then this operand can be handled. */
3574 if (winreg && this_alternative[i] != NO_REGS
3575 && (win || !class_only_fixed_regs[this_alternative[i]]))
3576 badop = 0;
3578 /* Record which operands fit this alternative. */
3579 this_alternative_earlyclobber[i] = earlyclobber;
3580 if (win && ! force_reload)
3581 this_alternative_win[i] = 1;
3582 else if (did_match && ! force_reload)
3583 this_alternative_match_win[i] = 1;
3584 else
3586 int const_to_mem = 0;
3588 this_alternative_offmemok[i] = offmemok;
3589 losers++;
3590 if (badop)
3591 bad = 1;
3592 /* Alternative loses if it has no regs for a reg operand. */
3593 if (REG_P (operand)
3594 && this_alternative[i] == NO_REGS
3595 && this_alternative_matches[i] < 0)
3596 bad = 1;
3598 /* If this is a constant that is reloaded into the desired
3599 class by copying it to memory first, count that as another
3600 reload. This is consistent with other code and is
3601 required to avoid choosing another alternative when
3602 the constant is moved into memory by this function on
3603 an early reload pass. Note that the test here is
3604 precisely the same as in the code below that calls
3605 force_const_mem. */
3606 if (CONST_POOL_OK_P (operand_mode[i], operand)
3607 && ((targetm.preferred_reload_class (operand,
3608 this_alternative[i])
3609 == NO_REGS)
3610 || no_input_reloads))
3612 const_to_mem = 1;
3613 if (this_alternative[i] != NO_REGS)
3614 losers++;
3617 /* Alternative loses if it requires a type of reload not
3618 permitted for this insn. We can always reload SCRATCH
3619 and objects with a REG_UNUSED note. */
3620 if (GET_CODE (operand) != SCRATCH
3621 && modified[i] != RELOAD_READ && no_output_reloads
3622 && ! find_reg_note (insn, REG_UNUSED, operand))
3623 bad = 1;
3624 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3625 && ! const_to_mem)
3626 bad = 1;
3628 /* If we can't reload this value at all, reject this
3629 alternative. Note that we could also lose due to
3630 LIMIT_RELOAD_CLASS, but we don't check that
3631 here. */
3633 if (! CONSTANT_P (operand) && this_alternative[i] != NO_REGS)
3635 if (targetm.preferred_reload_class (operand,
3636 this_alternative[i])
3637 == NO_REGS)
3638 reject = 600;
3640 if (operand_type[i] == RELOAD_FOR_OUTPUT
3641 && (targetm.preferred_output_reload_class (operand,
3642 this_alternative[i])
3643 == NO_REGS))
3644 reject = 600;
3647 /* We prefer to reload pseudos over reloading other things,
3648 since such reloads may be able to be eliminated later.
3649 If we are reloading a SCRATCH, we won't be generating any
3650 insns, just using a register, so it is also preferred.
3651 So bump REJECT in other cases. Don't do this in the
3652 case where we are forcing a constant into memory and
3653 it will then win since we don't want to have a different
3654 alternative match then. */
3655 if (! (REG_P (operand)
3656 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3657 && GET_CODE (operand) != SCRATCH
3658 && ! (const_to_mem && constmemok))
3659 reject += 2;
3661 /* Input reloads can be inherited more often than output
3662 reloads can be removed, so penalize output reloads. */
3663 if (operand_type[i] != RELOAD_FOR_INPUT
3664 && GET_CODE (operand) != SCRATCH)
3665 reject++;
3668 /* If this operand is a pseudo register that didn't get
3669 a hard reg and this alternative accepts some
3670 register, see if the class that we want is a subset
3671 of the preferred class for this register. If not,
3672 but it intersects that class, use the preferred class
3673 instead. If it does not intersect the preferred
3674 class, show that usage of this alternative should be
3675 discouraged; it will be discouraged more still if the
3676 register is `preferred or nothing'. We do this
3677 because it increases the chance of reusing our spill
3678 register in a later insn and avoiding a pair of
3679 memory stores and loads.
3681 Don't bother with this if this alternative will
3682 accept this operand.
3684 Don't do this for a multiword operand, since it is
3685 only a small win and has the risk of requiring more
3686 spill registers, which could cause a large loss.
3688 Don't do this if the preferred class has only one
3689 register because we might otherwise exhaust the
3690 class. */
3692 if (! win && ! did_match
3693 && this_alternative[i] != NO_REGS
3694 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3695 && reg_class_size [(int) preferred_class[i]] > 0
3696 && ! small_register_class_p (preferred_class[i]))
3698 if (! reg_class_subset_p (this_alternative[i],
3699 preferred_class[i]))
3701 /* Since we don't have a way of forming the intersection,
3702 we just do something special if the preferred class
3703 is a subset of the class we have; that's the most
3704 common case anyway. */
3705 if (reg_class_subset_p (preferred_class[i],
3706 this_alternative[i]))
3707 this_alternative[i] = preferred_class[i];
3708 else
3709 reject += (2 + 2 * pref_or_nothing[i]);
3714 /* Now see if any output operands that are marked "earlyclobber"
3715 in this alternative conflict with any input operands
3716 or any memory addresses. */
3718 for (i = 0; i < noperands; i++)
3719 if (this_alternative_earlyclobber[i]
3720 && (this_alternative_win[i] || this_alternative_match_win[i]))
3722 struct decomposition early_data;
3724 early_data = decompose (recog_data.operand[i]);
3726 gcc_assert (modified[i] != RELOAD_READ);
3728 if (this_alternative[i] == NO_REGS)
3730 this_alternative_earlyclobber[i] = 0;
3731 gcc_assert (this_insn_is_asm);
3732 error_for_asm (this_insn,
3733 "%<&%> constraint used with no register class");
3736 for (j = 0; j < noperands; j++)
3737 /* Is this an input operand or a memory ref? */
3738 if ((MEM_P (recog_data.operand[j])
3739 || modified[j] != RELOAD_WRITE)
3740 && j != i
3741 /* Ignore things like match_operator operands. */
3742 && !recog_data.is_operator[j]
3743 /* Don't count an input operand that is constrained to match
3744 the early clobber operand. */
3745 && ! (this_alternative_matches[j] == i
3746 && rtx_equal_p (recog_data.operand[i],
3747 recog_data.operand[j]))
3748 /* Is it altered by storing the earlyclobber operand? */
3749 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3750 early_data))
3752 /* If the output is in a non-empty few-regs class,
3753 it's costly to reload it, so reload the input instead. */
3754 if (small_register_class_p (this_alternative[i])
3755 && (REG_P (recog_data.operand[j])
3756 || GET_CODE (recog_data.operand[j]) == SUBREG))
3758 losers++;
3759 this_alternative_win[j] = 0;
3760 this_alternative_match_win[j] = 0;
3762 else
3763 break;
3765 /* If an earlyclobber operand conflicts with something,
3766 it must be reloaded, so request this and count the cost. */
3767 if (j != noperands)
3769 losers++;
3770 this_alternative_win[i] = 0;
3771 this_alternative_match_win[j] = 0;
3772 for (j = 0; j < noperands; j++)
3773 if (this_alternative_matches[j] == i
3774 && this_alternative_match_win[j])
3776 this_alternative_win[j] = 0;
3777 this_alternative_match_win[j] = 0;
3778 losers++;
3783 /* If one alternative accepts all the operands, no reload required,
3784 choose that alternative; don't consider the remaining ones. */
3785 if (losers == 0)
3787 /* Unswap these so that they are never swapped at `finish'. */
3788 if (swapped)
3790 recog_data.operand[commutative] = substed_operand[commutative];
3791 recog_data.operand[commutative + 1]
3792 = substed_operand[commutative + 1];
3794 for (i = 0; i < noperands; i++)
3796 goal_alternative_win[i] = this_alternative_win[i];
3797 goal_alternative_match_win[i] = this_alternative_match_win[i];
3798 goal_alternative[i] = this_alternative[i];
3799 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3800 goal_alternative_matches[i] = this_alternative_matches[i];
3801 goal_alternative_earlyclobber[i]
3802 = this_alternative_earlyclobber[i];
3804 goal_alternative_number = this_alternative_number;
3805 goal_alternative_swapped = swapped;
3806 goal_earlyclobber = this_earlyclobber;
3807 goto finish;
3810 /* REJECT, set by the ! and ? constraint characters and when a register
3811 would be reloaded into a non-preferred class, discourages the use of
3812 this alternative for a reload goal. REJECT is incremented by six
3813 for each ? and two for each non-preferred class. */
3814 losers = losers * 6 + reject;
3816 /* If this alternative can be made to work by reloading,
3817 and it needs less reloading than the others checked so far,
3818 record it as the chosen goal for reloading. */
3819 if (! bad)
3821 if (best > losers)
3823 for (i = 0; i < noperands; i++)
3825 goal_alternative[i] = this_alternative[i];
3826 goal_alternative_win[i] = this_alternative_win[i];
3827 goal_alternative_match_win[i]
3828 = this_alternative_match_win[i];
3829 goal_alternative_offmemok[i]
3830 = this_alternative_offmemok[i];
3831 goal_alternative_matches[i] = this_alternative_matches[i];
3832 goal_alternative_earlyclobber[i]
3833 = this_alternative_earlyclobber[i];
3835 goal_alternative_swapped = swapped;
3836 best = losers;
3837 goal_alternative_number = this_alternative_number;
3838 goal_earlyclobber = this_earlyclobber;
3842 if (swapped)
3844 enum reg_class tclass;
3845 int t;
3847 /* If the commutative operands have been swapped, swap
3848 them back in order to check the next alternative. */
3849 recog_data.operand[commutative] = substed_operand[commutative];
3850 recog_data.operand[commutative + 1] = substed_operand[commutative + 1];
3851 /* Unswap the duplicates too. */
3852 for (i = 0; i < recog_data.n_dups; i++)
3853 if (recog_data.dup_num[i] == commutative
3854 || recog_data.dup_num[i] == commutative + 1)
3855 *recog_data.dup_loc[i]
3856 = recog_data.operand[(int) recog_data.dup_num[i]];
3858 /* Unswap the operand related information as well. */
3859 tclass = preferred_class[commutative];
3860 preferred_class[commutative] = preferred_class[commutative + 1];
3861 preferred_class[commutative + 1] = tclass;
3863 t = pref_or_nothing[commutative];
3864 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3865 pref_or_nothing[commutative + 1] = t;
3867 t = address_reloaded[commutative];
3868 address_reloaded[commutative] = address_reloaded[commutative + 1];
3869 address_reloaded[commutative + 1] = t;
3874 /* The operands don't meet the constraints.
3875 goal_alternative describes the alternative
3876 that we could reach by reloading the fewest operands.
3877 Reload so as to fit it. */
3879 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3881 /* No alternative works with reloads?? */
3882 if (insn_code_number >= 0)
3883 fatal_insn ("unable to generate reloads for:", insn);
3884 error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
3885 /* Avoid further trouble with this insn. */
3886 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3887 n_reloads = 0;
3888 return 0;
3891 /* Jump to `finish' from above if all operands are valid already.
3892 In that case, goal_alternative_win is all 1. */
3893 finish:
3895 /* Right now, for any pair of operands I and J that are required to match,
3896 with I < J,
3897 goal_alternative_matches[J] is I.
3898 Set up goal_alternative_matched as the inverse function:
3899 goal_alternative_matched[I] = J. */
3901 for (i = 0; i < noperands; i++)
3902 goal_alternative_matched[i] = -1;
3904 for (i = 0; i < noperands; i++)
3905 if (! goal_alternative_win[i]
3906 && goal_alternative_matches[i] >= 0)
3907 goal_alternative_matched[goal_alternative_matches[i]] = i;
3909 for (i = 0; i < noperands; i++)
3910 goal_alternative_win[i] |= goal_alternative_match_win[i];
3912 /* If the best alternative is with operands 1 and 2 swapped,
3913 consider them swapped before reporting the reloads. Update the
3914 operand numbers of any reloads already pushed. */
3916 if (goal_alternative_swapped)
3918 rtx tem;
3920 tem = substed_operand[commutative];
3921 substed_operand[commutative] = substed_operand[commutative + 1];
3922 substed_operand[commutative + 1] = tem;
3923 tem = recog_data.operand[commutative];
3924 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3925 recog_data.operand[commutative + 1] = tem;
3926 tem = *recog_data.operand_loc[commutative];
3927 *recog_data.operand_loc[commutative]
3928 = *recog_data.operand_loc[commutative + 1];
3929 *recog_data.operand_loc[commutative + 1] = tem;
3931 for (i = 0; i < n_reloads; i++)
3933 if (rld[i].opnum == commutative)
3934 rld[i].opnum = commutative + 1;
3935 else if (rld[i].opnum == commutative + 1)
3936 rld[i].opnum = commutative;
3940 for (i = 0; i < noperands; i++)
3942 operand_reloadnum[i] = -1;
3944 /* If this is an earlyclobber operand, we need to widen the scope.
3945 The reload must remain valid from the start of the insn being
3946 reloaded until after the operand is stored into its destination.
3947 We approximate this with RELOAD_OTHER even though we know that we
3948 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3950 One special case that is worth checking is when we have an
3951 output that is earlyclobber but isn't used past the insn (typically
3952 a SCRATCH). In this case, we only need have the reload live
3953 through the insn itself, but not for any of our input or output
3954 reloads.
3955 But we must not accidentally narrow the scope of an existing
3956 RELOAD_OTHER reload - leave these alone.
3958 In any case, anything needed to address this operand can remain
3959 however they were previously categorized. */
3961 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3962 operand_type[i]
3963 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3964 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3967 /* Any constants that aren't allowed and can't be reloaded
3968 into registers are here changed into memory references. */
3969 for (i = 0; i < noperands; i++)
3970 if (! goal_alternative_win[i])
3972 rtx op = recog_data.operand[i];
3973 rtx subreg = NULL_RTX;
3974 rtx plus = NULL_RTX;
3975 enum machine_mode mode = operand_mode[i];
3977 /* Reloads of SUBREGs of CONSTANT RTXs are handled later in
3978 push_reload so we have to let them pass here. */
3979 if (GET_CODE (op) == SUBREG)
3981 subreg = op;
3982 op = SUBREG_REG (op);
3983 mode = GET_MODE (op);
3986 if (GET_CODE (op) == PLUS)
3988 plus = op;
3989 op = XEXP (op, 1);
3992 if (CONST_POOL_OK_P (mode, op)
3993 && ((targetm.preferred_reload_class (op, goal_alternative[i])
3994 == NO_REGS)
3995 || no_input_reloads))
3997 int this_address_reloaded;
3998 rtx tem = force_const_mem (mode, op);
4000 /* If we stripped a SUBREG or a PLUS above add it back. */
4001 if (plus != NULL_RTX)
4002 tem = gen_rtx_PLUS (mode, XEXP (plus, 0), tem);
4004 if (subreg != NULL_RTX)
4005 tem = gen_rtx_SUBREG (operand_mode[i], tem, SUBREG_BYTE (subreg));
4007 this_address_reloaded = 0;
4008 substed_operand[i] = recog_data.operand[i]
4009 = find_reloads_toplev (tem, i, address_type[i], ind_levels,
4010 0, insn, &this_address_reloaded);
4012 /* If the alternative accepts constant pool refs directly
4013 there will be no reload needed at all. */
4014 if (plus == NULL_RTX
4015 && subreg == NULL_RTX
4016 && alternative_allows_const_pool_ref (this_address_reloaded == 0
4017 ? substed_operand[i]
4018 : NULL,
4019 recog_data.constraints[i],
4020 goal_alternative_number))
4021 goal_alternative_win[i] = 1;
4025 /* Record the values of the earlyclobber operands for the caller. */
4026 if (goal_earlyclobber)
4027 for (i = 0; i < noperands; i++)
4028 if (goal_alternative_earlyclobber[i])
4029 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
4031 /* Now record reloads for all the operands that need them. */
4032 for (i = 0; i < noperands; i++)
4033 if (! goal_alternative_win[i])
4035 /* Operands that match previous ones have already been handled. */
4036 if (goal_alternative_matches[i] >= 0)
4038 /* Handle an operand with a nonoffsettable address
4039 appearing where an offsettable address will do
4040 by reloading the address into a base register.
4042 ??? We can also do this when the operand is a register and
4043 reg_equiv_mem is not offsettable, but this is a bit tricky,
4044 so we don't bother with it. It may not be worth doing. */
4045 else if (goal_alternative_matched[i] == -1
4046 && goal_alternative_offmemok[i]
4047 && MEM_P (recog_data.operand[i]))
4049 /* If the address to be reloaded is a VOIDmode constant,
4050 use the default address mode as mode of the reload register,
4051 as would have been done by find_reloads_address. */
4052 addr_space_t as = MEM_ADDR_SPACE (recog_data.operand[i]);
4053 enum machine_mode address_mode;
4055 address_mode = get_address_mode (recog_data.operand[i]);
4056 operand_reloadnum[i]
4057 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
4058 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
4059 base_reg_class (VOIDmode, as, MEM, SCRATCH),
4060 address_mode,
4061 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
4062 rld[operand_reloadnum[i]].inc
4063 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
4065 /* If this operand is an output, we will have made any
4066 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
4067 now we are treating part of the operand as an input, so
4068 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
4070 if (modified[i] == RELOAD_WRITE)
4072 for (j = 0; j < n_reloads; j++)
4074 if (rld[j].opnum == i)
4076 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
4077 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
4078 else if (rld[j].when_needed
4079 == RELOAD_FOR_OUTADDR_ADDRESS)
4080 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
4085 else if (goal_alternative_matched[i] == -1)
4087 operand_reloadnum[i]
4088 = push_reload ((modified[i] != RELOAD_WRITE
4089 ? recog_data.operand[i] : 0),
4090 (modified[i] != RELOAD_READ
4091 ? recog_data.operand[i] : 0),
4092 (modified[i] != RELOAD_WRITE
4093 ? recog_data.operand_loc[i] : 0),
4094 (modified[i] != RELOAD_READ
4095 ? recog_data.operand_loc[i] : 0),
4096 (enum reg_class) goal_alternative[i],
4097 (modified[i] == RELOAD_WRITE
4098 ? VOIDmode : operand_mode[i]),
4099 (modified[i] == RELOAD_READ
4100 ? VOIDmode : operand_mode[i]),
4101 (insn_code_number < 0 ? 0
4102 : insn_data[insn_code_number].operand[i].strict_low),
4103 0, i, operand_type[i]);
4105 /* In a matching pair of operands, one must be input only
4106 and the other must be output only.
4107 Pass the input operand as IN and the other as OUT. */
4108 else if (modified[i] == RELOAD_READ
4109 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
4111 operand_reloadnum[i]
4112 = push_reload (recog_data.operand[i],
4113 recog_data.operand[goal_alternative_matched[i]],
4114 recog_data.operand_loc[i],
4115 recog_data.operand_loc[goal_alternative_matched[i]],
4116 (enum reg_class) goal_alternative[i],
4117 operand_mode[i],
4118 operand_mode[goal_alternative_matched[i]],
4119 0, 0, i, RELOAD_OTHER);
4120 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
4122 else if (modified[i] == RELOAD_WRITE
4123 && modified[goal_alternative_matched[i]] == RELOAD_READ)
4125 operand_reloadnum[goal_alternative_matched[i]]
4126 = push_reload (recog_data.operand[goal_alternative_matched[i]],
4127 recog_data.operand[i],
4128 recog_data.operand_loc[goal_alternative_matched[i]],
4129 recog_data.operand_loc[i],
4130 (enum reg_class) goal_alternative[i],
4131 operand_mode[goal_alternative_matched[i]],
4132 operand_mode[i],
4133 0, 0, i, RELOAD_OTHER);
4134 operand_reloadnum[i] = output_reloadnum;
4136 else
4138 gcc_assert (insn_code_number < 0);
4139 error_for_asm (insn, "inconsistent operand constraints "
4140 "in an %<asm%>");
4141 /* Avoid further trouble with this insn. */
4142 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
4143 n_reloads = 0;
4144 return 0;
4147 else if (goal_alternative_matched[i] < 0
4148 && goal_alternative_matches[i] < 0
4149 && address_operand_reloaded[i] != 1
4150 && optimize)
4152 /* For each non-matching operand that's a MEM or a pseudo-register
4153 that didn't get a hard register, make an optional reload.
4154 This may get done even if the insn needs no reloads otherwise. */
4156 rtx operand = recog_data.operand[i];
4158 while (GET_CODE (operand) == SUBREG)
4159 operand = SUBREG_REG (operand);
4160 if ((MEM_P (operand)
4161 || (REG_P (operand)
4162 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4163 /* If this is only for an output, the optional reload would not
4164 actually cause us to use a register now, just note that
4165 something is stored here. */
4166 && (goal_alternative[i] != NO_REGS
4167 || modified[i] == RELOAD_WRITE)
4168 && ! no_input_reloads
4169 /* An optional output reload might allow to delete INSN later.
4170 We mustn't make in-out reloads on insns that are not permitted
4171 output reloads.
4172 If this is an asm, we can't delete it; we must not even call
4173 push_reload for an optional output reload in this case,
4174 because we can't be sure that the constraint allows a register,
4175 and push_reload verifies the constraints for asms. */
4176 && (modified[i] == RELOAD_READ
4177 || (! no_output_reloads && ! this_insn_is_asm)))
4178 operand_reloadnum[i]
4179 = push_reload ((modified[i] != RELOAD_WRITE
4180 ? recog_data.operand[i] : 0),
4181 (modified[i] != RELOAD_READ
4182 ? recog_data.operand[i] : 0),
4183 (modified[i] != RELOAD_WRITE
4184 ? recog_data.operand_loc[i] : 0),
4185 (modified[i] != RELOAD_READ
4186 ? recog_data.operand_loc[i] : 0),
4187 (enum reg_class) goal_alternative[i],
4188 (modified[i] == RELOAD_WRITE
4189 ? VOIDmode : operand_mode[i]),
4190 (modified[i] == RELOAD_READ
4191 ? VOIDmode : operand_mode[i]),
4192 (insn_code_number < 0 ? 0
4193 : insn_data[insn_code_number].operand[i].strict_low),
4194 1, i, operand_type[i]);
4195 /* If a memory reference remains (either as a MEM or a pseudo that
4196 did not get a hard register), yet we can't make an optional
4197 reload, check if this is actually a pseudo register reference;
4198 we then need to emit a USE and/or a CLOBBER so that reload
4199 inheritance will do the right thing. */
4200 else if (replace
4201 && (MEM_P (operand)
4202 || (REG_P (operand)
4203 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
4204 && reg_renumber [REGNO (operand)] < 0)))
4206 operand = *recog_data.operand_loc[i];
4208 while (GET_CODE (operand) == SUBREG)
4209 operand = SUBREG_REG (operand);
4210 if (REG_P (operand))
4212 if (modified[i] != RELOAD_WRITE)
4213 /* We mark the USE with QImode so that we recognize
4214 it as one that can be safely deleted at the end
4215 of reload. */
4216 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
4217 insn), QImode);
4218 if (modified[i] != RELOAD_READ)
4219 emit_insn_after (gen_clobber (operand), insn);
4223 else if (goal_alternative_matches[i] >= 0
4224 && goal_alternative_win[goal_alternative_matches[i]]
4225 && modified[i] == RELOAD_READ
4226 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
4227 && ! no_input_reloads && ! no_output_reloads
4228 && optimize)
4230 /* Similarly, make an optional reload for a pair of matching
4231 objects that are in MEM or a pseudo that didn't get a hard reg. */
4233 rtx operand = recog_data.operand[i];
4235 while (GET_CODE (operand) == SUBREG)
4236 operand = SUBREG_REG (operand);
4237 if ((MEM_P (operand)
4238 || (REG_P (operand)
4239 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4240 && (goal_alternative[goal_alternative_matches[i]] != NO_REGS))
4241 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
4242 = push_reload (recog_data.operand[goal_alternative_matches[i]],
4243 recog_data.operand[i],
4244 recog_data.operand_loc[goal_alternative_matches[i]],
4245 recog_data.operand_loc[i],
4246 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
4247 operand_mode[goal_alternative_matches[i]],
4248 operand_mode[i],
4249 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
4252 /* Perform whatever substitutions on the operands we are supposed
4253 to make due to commutativity or replacement of registers
4254 with equivalent constants or memory slots. */
4256 for (i = 0; i < noperands; i++)
4258 /* We only do this on the last pass through reload, because it is
4259 possible for some data (like reg_equiv_address) to be changed during
4260 later passes. Moreover, we lose the opportunity to get a useful
4261 reload_{in,out}_reg when we do these replacements. */
4263 if (replace)
4265 rtx substitution = substed_operand[i];
4267 *recog_data.operand_loc[i] = substitution;
4269 /* If we're replacing an operand with a LABEL_REF, we need to
4270 make sure that there's a REG_LABEL_OPERAND note attached to
4271 this instruction. */
4272 if (GET_CODE (substitution) == LABEL_REF
4273 && !find_reg_note (insn, REG_LABEL_OPERAND,
4274 XEXP (substitution, 0))
4275 /* For a JUMP_P, if it was a branch target it must have
4276 already been recorded as such. */
4277 && (!JUMP_P (insn)
4278 || !label_is_jump_target_p (XEXP (substitution, 0),
4279 insn)))
4281 add_reg_note (insn, REG_LABEL_OPERAND, XEXP (substitution, 0));
4282 if (LABEL_P (XEXP (substitution, 0)))
4283 ++LABEL_NUSES (XEXP (substitution, 0));
4287 else
4288 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4291 /* If this insn pattern contains any MATCH_DUP's, make sure that
4292 they will be substituted if the operands they match are substituted.
4293 Also do now any substitutions we already did on the operands.
4295 Don't do this if we aren't making replacements because we might be
4296 propagating things allocated by frame pointer elimination into places
4297 it doesn't expect. */
4299 if (insn_code_number >= 0 && replace)
4300 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4302 int opno = recog_data.dup_num[i];
4303 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4304 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4307 #if 0
4308 /* This loses because reloading of prior insns can invalidate the equivalence
4309 (or at least find_equiv_reg isn't smart enough to find it any more),
4310 causing this insn to need more reload regs than it needed before.
4311 It may be too late to make the reload regs available.
4312 Now this optimization is done safely in choose_reload_regs. */
4314 /* For each reload of a reg into some other class of reg,
4315 search for an existing equivalent reg (same value now) in the right class.
4316 We can use it as long as we don't need to change its contents. */
4317 for (i = 0; i < n_reloads; i++)
4318 if (rld[i].reg_rtx == 0
4319 && rld[i].in != 0
4320 && REG_P (rld[i].in)
4321 && rld[i].out == 0)
4323 rld[i].reg_rtx
4324 = find_equiv_reg (rld[i].in, insn, rld[i].rclass, -1,
4325 static_reload_reg_p, 0, rld[i].inmode);
4326 /* Prevent generation of insn to load the value
4327 because the one we found already has the value. */
4328 if (rld[i].reg_rtx)
4329 rld[i].in = rld[i].reg_rtx;
4331 #endif
4333 /* If we detected error and replaced asm instruction by USE, forget about the
4334 reloads. */
4335 if (GET_CODE (PATTERN (insn)) == USE
4336 && CONST_INT_P (XEXP (PATTERN (insn), 0)))
4337 n_reloads = 0;
4339 /* Perhaps an output reload can be combined with another
4340 to reduce needs by one. */
4341 if (!goal_earlyclobber)
4342 combine_reloads ();
4344 /* If we have a pair of reloads for parts of an address, they are reloading
4345 the same object, the operands themselves were not reloaded, and they
4346 are for two operands that are supposed to match, merge the reloads and
4347 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4349 for (i = 0; i < n_reloads; i++)
4351 int k;
4353 for (j = i + 1; j < n_reloads; j++)
4354 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4355 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4356 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4357 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4358 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4359 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4360 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4361 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4362 && rtx_equal_p (rld[i].in, rld[j].in)
4363 && (operand_reloadnum[rld[i].opnum] < 0
4364 || rld[operand_reloadnum[rld[i].opnum]].optional)
4365 && (operand_reloadnum[rld[j].opnum] < 0
4366 || rld[operand_reloadnum[rld[j].opnum]].optional)
4367 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4368 || (goal_alternative_matches[rld[j].opnum]
4369 == rld[i].opnum)))
4371 for (k = 0; k < n_replacements; k++)
4372 if (replacements[k].what == j)
4373 replacements[k].what = i;
4375 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4376 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4377 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4378 else
4379 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4380 rld[j].in = 0;
4384 /* Scan all the reloads and update their type.
4385 If a reload is for the address of an operand and we didn't reload
4386 that operand, change the type. Similarly, change the operand number
4387 of a reload when two operands match. If a reload is optional, treat it
4388 as though the operand isn't reloaded.
4390 ??? This latter case is somewhat odd because if we do the optional
4391 reload, it means the object is hanging around. Thus we need only
4392 do the address reload if the optional reload was NOT done.
4394 Change secondary reloads to be the address type of their operand, not
4395 the normal type.
4397 If an operand's reload is now RELOAD_OTHER, change any
4398 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4399 RELOAD_FOR_OTHER_ADDRESS. */
4401 for (i = 0; i < n_reloads; i++)
4403 if (rld[i].secondary_p
4404 && rld[i].when_needed == operand_type[rld[i].opnum])
4405 rld[i].when_needed = address_type[rld[i].opnum];
4407 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4408 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4409 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4410 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4411 && (operand_reloadnum[rld[i].opnum] < 0
4412 || rld[operand_reloadnum[rld[i].opnum]].optional))
4414 /* If we have a secondary reload to go along with this reload,
4415 change its type to RELOAD_FOR_OPADDR_ADDR. */
4417 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4418 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4419 && rld[i].secondary_in_reload != -1)
4421 int secondary_in_reload = rld[i].secondary_in_reload;
4423 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4425 /* If there's a tertiary reload we have to change it also. */
4426 if (secondary_in_reload > 0
4427 && rld[secondary_in_reload].secondary_in_reload != -1)
4428 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4429 = RELOAD_FOR_OPADDR_ADDR;
4432 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4433 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4434 && rld[i].secondary_out_reload != -1)
4436 int secondary_out_reload = rld[i].secondary_out_reload;
4438 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4440 /* If there's a tertiary reload we have to change it also. */
4441 if (secondary_out_reload
4442 && rld[secondary_out_reload].secondary_out_reload != -1)
4443 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4444 = RELOAD_FOR_OPADDR_ADDR;
4447 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4448 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4449 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4450 else
4451 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4454 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4455 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4456 && operand_reloadnum[rld[i].opnum] >= 0
4457 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4458 == RELOAD_OTHER))
4459 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4461 if (goal_alternative_matches[rld[i].opnum] >= 0)
4462 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4465 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4466 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4467 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4469 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4470 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4471 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4472 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4473 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4474 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4475 This is complicated by the fact that a single operand can have more
4476 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4477 choose_reload_regs without affecting code quality, and cases that
4478 actually fail are extremely rare, so it turns out to be better to fix
4479 the problem here by not generating cases that choose_reload_regs will
4480 fail for. */
4481 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4482 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4483 a single operand.
4484 We can reduce the register pressure by exploiting that a
4485 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4486 does not conflict with any of them, if it is only used for the first of
4487 the RELOAD_FOR_X_ADDRESS reloads. */
4489 int first_op_addr_num = -2;
4490 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4491 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4492 int need_change = 0;
4493 /* We use last_op_addr_reload and the contents of the above arrays
4494 first as flags - -2 means no instance encountered, -1 means exactly
4495 one instance encountered.
4496 If more than one instance has been encountered, we store the reload
4497 number of the first reload of the kind in question; reload numbers
4498 are known to be non-negative. */
4499 for (i = 0; i < noperands; i++)
4500 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4501 for (i = n_reloads - 1; i >= 0; i--)
4503 switch (rld[i].when_needed)
4505 case RELOAD_FOR_OPERAND_ADDRESS:
4506 if (++first_op_addr_num >= 0)
4508 first_op_addr_num = i;
4509 need_change = 1;
4511 break;
4512 case RELOAD_FOR_INPUT_ADDRESS:
4513 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4515 first_inpaddr_num[rld[i].opnum] = i;
4516 need_change = 1;
4518 break;
4519 case RELOAD_FOR_OUTPUT_ADDRESS:
4520 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4522 first_outpaddr_num[rld[i].opnum] = i;
4523 need_change = 1;
4525 break;
4526 default:
4527 break;
4531 if (need_change)
4533 for (i = 0; i < n_reloads; i++)
4535 int first_num;
4536 enum reload_type type;
4538 switch (rld[i].when_needed)
4540 case RELOAD_FOR_OPADDR_ADDR:
4541 first_num = first_op_addr_num;
4542 type = RELOAD_FOR_OPERAND_ADDRESS;
4543 break;
4544 case RELOAD_FOR_INPADDR_ADDRESS:
4545 first_num = first_inpaddr_num[rld[i].opnum];
4546 type = RELOAD_FOR_INPUT_ADDRESS;
4547 break;
4548 case RELOAD_FOR_OUTADDR_ADDRESS:
4549 first_num = first_outpaddr_num[rld[i].opnum];
4550 type = RELOAD_FOR_OUTPUT_ADDRESS;
4551 break;
4552 default:
4553 continue;
4555 if (first_num < 0)
4556 continue;
4557 else if (i > first_num)
4558 rld[i].when_needed = type;
4559 else
4561 /* Check if the only TYPE reload that uses reload I is
4562 reload FIRST_NUM. */
4563 for (j = n_reloads - 1; j > first_num; j--)
4565 if (rld[j].when_needed == type
4566 && (rld[i].secondary_p
4567 ? rld[j].secondary_in_reload == i
4568 : reg_mentioned_p (rld[i].in, rld[j].in)))
4570 rld[i].when_needed = type;
4571 break;
4579 /* See if we have any reloads that are now allowed to be merged
4580 because we've changed when the reload is needed to
4581 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4582 check for the most common cases. */
4584 for (i = 0; i < n_reloads; i++)
4585 if (rld[i].in != 0 && rld[i].out == 0
4586 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4587 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4588 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4589 for (j = 0; j < n_reloads; j++)
4590 if (i != j && rld[j].in != 0 && rld[j].out == 0
4591 && rld[j].when_needed == rld[i].when_needed
4592 && MATCHES (rld[i].in, rld[j].in)
4593 && rld[i].rclass == rld[j].rclass
4594 && !rld[i].nocombine && !rld[j].nocombine
4595 && rld[i].reg_rtx == rld[j].reg_rtx)
4597 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4598 transfer_replacements (i, j);
4599 rld[j].in = 0;
4602 #ifdef HAVE_cc0
4603 /* If we made any reloads for addresses, see if they violate a
4604 "no input reloads" requirement for this insn. But loads that we
4605 do after the insn (such as for output addresses) are fine. */
4606 if (no_input_reloads)
4607 for (i = 0; i < n_reloads; i++)
4608 gcc_assert (rld[i].in == 0
4609 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS
4610 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS);
4611 #endif
4613 /* Compute reload_mode and reload_nregs. */
4614 for (i = 0; i < n_reloads; i++)
4616 rld[i].mode
4617 = (rld[i].inmode == VOIDmode
4618 || (GET_MODE_SIZE (rld[i].outmode)
4619 > GET_MODE_SIZE (rld[i].inmode)))
4620 ? rld[i].outmode : rld[i].inmode;
4622 rld[i].nregs = ira_reg_class_max_nregs [rld[i].rclass][rld[i].mode];
4625 /* Special case a simple move with an input reload and a
4626 destination of a hard reg, if the hard reg is ok, use it. */
4627 for (i = 0; i < n_reloads; i++)
4628 if (rld[i].when_needed == RELOAD_FOR_INPUT
4629 && GET_CODE (PATTERN (insn)) == SET
4630 && REG_P (SET_DEST (PATTERN (insn)))
4631 && (SET_SRC (PATTERN (insn)) == rld[i].in
4632 || SET_SRC (PATTERN (insn)) == rld[i].in_reg)
4633 && !elimination_target_reg_p (SET_DEST (PATTERN (insn))))
4635 rtx dest = SET_DEST (PATTERN (insn));
4636 unsigned int regno = REGNO (dest);
4638 if (regno < FIRST_PSEUDO_REGISTER
4639 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno)
4640 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4642 int nr = hard_regno_nregs[regno][rld[i].mode];
4643 int ok = 1, nri;
4645 for (nri = 1; nri < nr; nri ++)
4646 if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno + nri))
4648 ok = 0;
4649 break;
4652 if (ok)
4653 rld[i].reg_rtx = dest;
4657 return retval;
4660 /* Return true if alternative number ALTNUM in constraint-string
4661 CONSTRAINT is guaranteed to accept a reloaded constant-pool reference.
4662 MEM gives the reference if it didn't need any reloads, otherwise it
4663 is null. */
4665 static bool
4666 alternative_allows_const_pool_ref (rtx mem ATTRIBUTE_UNUSED,
4667 const char *constraint, int altnum)
4669 int c;
4671 /* Skip alternatives before the one requested. */
4672 while (altnum > 0)
4674 while (*constraint++ != ',')
4676 altnum--;
4678 /* Scan the requested alternative for TARGET_MEM_CONSTRAINT or 'o'.
4679 If one of them is present, this alternative accepts the result of
4680 passing a constant-pool reference through find_reloads_toplev.
4682 The same is true of extra memory constraints if the address
4683 was reloaded into a register. However, the target may elect
4684 to disallow the original constant address, forcing it to be
4685 reloaded into a register instead. */
4686 for (; (c = *constraint) && c != ',' && c != '#';
4687 constraint += CONSTRAINT_LEN (c, constraint))
4689 if (c == TARGET_MEM_CONSTRAINT || c == 'o')
4690 return true;
4691 #ifdef EXTRA_CONSTRAINT_STR
4692 if (EXTRA_MEMORY_CONSTRAINT (c, constraint)
4693 && (mem == NULL || EXTRA_CONSTRAINT_STR (mem, c, constraint)))
4694 return true;
4695 #endif
4697 return false;
4700 /* Scan X for memory references and scan the addresses for reloading.
4701 Also checks for references to "constant" regs that we want to eliminate
4702 and replaces them with the values they stand for.
4703 We may alter X destructively if it contains a reference to such.
4704 If X is just a constant reg, we return the equivalent value
4705 instead of X.
4707 IND_LEVELS says how many levels of indirect addressing this machine
4708 supports.
4710 OPNUM and TYPE identify the purpose of the reload.
4712 IS_SET_DEST is true if X is the destination of a SET, which is not
4713 appropriate to be replaced by a constant.
4715 INSN, if nonzero, is the insn in which we do the reload. It is used
4716 to determine if we may generate output reloads, and where to put USEs
4717 for pseudos that we have to replace with stack slots.
4719 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4720 result of find_reloads_address. */
4722 static rtx
4723 find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4724 int ind_levels, int is_set_dest, rtx insn,
4725 int *address_reloaded)
4727 RTX_CODE code = GET_CODE (x);
4729 const char *fmt = GET_RTX_FORMAT (code);
4730 int i;
4731 int copied;
4733 if (code == REG)
4735 /* This code is duplicated for speed in find_reloads. */
4736 int regno = REGNO (x);
4737 if (reg_equiv_constant (regno) != 0 && !is_set_dest)
4738 x = reg_equiv_constant (regno);
4739 #if 0
4740 /* This creates (subreg (mem...)) which would cause an unnecessary
4741 reload of the mem. */
4742 else if (reg_equiv_mem (regno) != 0)
4743 x = reg_equiv_mem (regno);
4744 #endif
4745 else if (reg_equiv_memory_loc (regno)
4746 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
4748 rtx mem = make_memloc (x, regno);
4749 if (reg_equiv_address (regno)
4750 || ! rtx_equal_p (mem, reg_equiv_mem (regno)))
4752 /* If this is not a toplevel operand, find_reloads doesn't see
4753 this substitution. We have to emit a USE of the pseudo so
4754 that delete_output_reload can see it. */
4755 if (replace_reloads && recog_data.operand[opnum] != x)
4756 /* We mark the USE with QImode so that we recognize it
4757 as one that can be safely deleted at the end of
4758 reload. */
4759 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4760 QImode);
4761 x = mem;
4762 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4763 opnum, type, ind_levels, insn);
4764 if (!rtx_equal_p (x, mem))
4765 push_reg_equiv_alt_mem (regno, x);
4766 if (address_reloaded)
4767 *address_reloaded = i;
4770 return x;
4772 if (code == MEM)
4774 rtx tem = x;
4776 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4777 opnum, type, ind_levels, insn);
4778 if (address_reloaded)
4779 *address_reloaded = i;
4781 return tem;
4784 if (code == SUBREG && REG_P (SUBREG_REG (x)))
4786 /* Check for SUBREG containing a REG that's equivalent to a
4787 constant. If the constant has a known value, truncate it
4788 right now. Similarly if we are extracting a single-word of a
4789 multi-word constant. If the constant is symbolic, allow it
4790 to be substituted normally. push_reload will strip the
4791 subreg later. The constant must not be VOIDmode, because we
4792 will lose the mode of the register (this should never happen
4793 because one of the cases above should handle it). */
4795 int regno = REGNO (SUBREG_REG (x));
4796 rtx tem;
4798 if (regno >= FIRST_PSEUDO_REGISTER
4799 && reg_renumber[regno] < 0
4800 && reg_equiv_constant (regno) != 0)
4802 tem =
4803 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant (regno),
4804 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4805 gcc_assert (tem);
4806 if (CONSTANT_P (tem)
4807 && !targetm.legitimate_constant_p (GET_MODE (x), tem))
4809 tem = force_const_mem (GET_MODE (x), tem);
4810 i = find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4811 &XEXP (tem, 0), opnum, type,
4812 ind_levels, insn);
4813 if (address_reloaded)
4814 *address_reloaded = i;
4816 return tem;
4819 /* If the subreg contains a reg that will be converted to a mem,
4820 attempt to convert the whole subreg to a (narrower or wider)
4821 memory reference instead. If this succeeds, we're done --
4822 otherwise fall through to check whether the inner reg still
4823 needs address reloads anyway. */
4825 if (regno >= FIRST_PSEUDO_REGISTER
4826 && reg_equiv_memory_loc (regno) != 0)
4828 tem = find_reloads_subreg_address (x, opnum, type, ind_levels,
4829 insn, address_reloaded);
4830 if (tem)
4831 return tem;
4835 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4837 if (fmt[i] == 'e')
4839 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4840 ind_levels, is_set_dest, insn,
4841 address_reloaded);
4842 /* If we have replaced a reg with it's equivalent memory loc -
4843 that can still be handled here e.g. if it's in a paradoxical
4844 subreg - we must make the change in a copy, rather than using
4845 a destructive change. This way, find_reloads can still elect
4846 not to do the change. */
4847 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4849 x = shallow_copy_rtx (x);
4850 copied = 1;
4852 XEXP (x, i) = new_part;
4855 return x;
4858 /* Return a mem ref for the memory equivalent of reg REGNO.
4859 This mem ref is not shared with anything. */
4861 static rtx
4862 make_memloc (rtx ad, int regno)
4864 /* We must rerun eliminate_regs, in case the elimination
4865 offsets have changed. */
4866 rtx tem
4867 = XEXP (eliminate_regs (reg_equiv_memory_loc (regno), VOIDmode, NULL_RTX),
4870 /* If TEM might contain a pseudo, we must copy it to avoid
4871 modifying it when we do the substitution for the reload. */
4872 if (rtx_varies_p (tem, 0))
4873 tem = copy_rtx (tem);
4875 tem = replace_equiv_address_nv (reg_equiv_memory_loc (regno), tem);
4876 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4878 /* Copy the result if it's still the same as the equivalence, to avoid
4879 modifying it when we do the substitution for the reload. */
4880 if (tem == reg_equiv_memory_loc (regno))
4881 tem = copy_rtx (tem);
4882 return tem;
4885 /* Returns true if AD could be turned into a valid memory reference
4886 to mode MODE in address space AS by reloading the part pointed to
4887 by PART into a register. */
4889 static int
4890 maybe_memory_address_addr_space_p (enum machine_mode mode, rtx ad,
4891 addr_space_t as, rtx *part)
4893 int retv;
4894 rtx tem = *part;
4895 rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4897 *part = reg;
4898 retv = memory_address_addr_space_p (mode, ad, as);
4899 *part = tem;
4901 return retv;
4904 /* Record all reloads needed for handling memory address AD
4905 which appears in *LOC in a memory reference to mode MODE
4906 which itself is found in location *MEMREFLOC.
4907 Note that we take shortcuts assuming that no multi-reg machine mode
4908 occurs as part of an address.
4910 OPNUM and TYPE specify the purpose of this reload.
4912 IND_LEVELS says how many levels of indirect addressing this machine
4913 supports.
4915 INSN, if nonzero, is the insn in which we do the reload. It is used
4916 to determine if we may generate output reloads, and where to put USEs
4917 for pseudos that we have to replace with stack slots.
4919 Value is one if this address is reloaded or replaced as a whole; it is
4920 zero if the top level of this address was not reloaded or replaced, and
4921 it is -1 if it may or may not have been reloaded or replaced.
4923 Note that there is no verification that the address will be valid after
4924 this routine does its work. Instead, we rely on the fact that the address
4925 was valid when reload started. So we need only undo things that reload
4926 could have broken. These are wrong register types, pseudos not allocated
4927 to a hard register, and frame pointer elimination. */
4929 static int
4930 find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
4931 rtx *loc, int opnum, enum reload_type type,
4932 int ind_levels, rtx insn)
4934 addr_space_t as = memrefloc? MEM_ADDR_SPACE (*memrefloc)
4935 : ADDR_SPACE_GENERIC;
4936 int regno;
4937 int removed_and = 0;
4938 int op_index;
4939 rtx tem;
4941 /* If the address is a register, see if it is a legitimate address and
4942 reload if not. We first handle the cases where we need not reload
4943 or where we must reload in a non-standard way. */
4945 if (REG_P (ad))
4947 regno = REGNO (ad);
4949 if (reg_equiv_constant (regno) != 0)
4951 find_reloads_address_part (reg_equiv_constant (regno), loc,
4952 base_reg_class (mode, as, MEM, SCRATCH),
4953 GET_MODE (ad), opnum, type, ind_levels);
4954 return 1;
4957 tem = reg_equiv_memory_loc (regno);
4958 if (tem != 0)
4960 if (reg_equiv_address (regno) != 0 || num_not_at_initial_offset)
4962 tem = make_memloc (ad, regno);
4963 if (! strict_memory_address_addr_space_p (GET_MODE (tem),
4964 XEXP (tem, 0),
4965 MEM_ADDR_SPACE (tem)))
4967 rtx orig = tem;
4969 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4970 &XEXP (tem, 0), opnum,
4971 ADDR_TYPE (type), ind_levels, insn);
4972 if (!rtx_equal_p (tem, orig))
4973 push_reg_equiv_alt_mem (regno, tem);
4975 /* We can avoid a reload if the register's equivalent memory
4976 expression is valid as an indirect memory address.
4977 But not all addresses are valid in a mem used as an indirect
4978 address: only reg or reg+constant. */
4980 if (ind_levels > 0
4981 && strict_memory_address_addr_space_p (mode, tem, as)
4982 && (REG_P (XEXP (tem, 0))
4983 || (GET_CODE (XEXP (tem, 0)) == PLUS
4984 && REG_P (XEXP (XEXP (tem, 0), 0))
4985 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4987 /* TEM is not the same as what we'll be replacing the
4988 pseudo with after reload, put a USE in front of INSN
4989 in the final reload pass. */
4990 if (replace_reloads
4991 && num_not_at_initial_offset
4992 && ! rtx_equal_p (tem, reg_equiv_mem (regno)))
4994 *loc = tem;
4995 /* We mark the USE with QImode so that we
4996 recognize it as one that can be safely
4997 deleted at the end of reload. */
4998 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4999 insn), QImode);
5001 /* This doesn't really count as replacing the address
5002 as a whole, since it is still a memory access. */
5004 return 0;
5006 ad = tem;
5010 /* The only remaining case where we can avoid a reload is if this is a
5011 hard register that is valid as a base register and which is not the
5012 subject of a CLOBBER in this insn. */
5014 else if (regno < FIRST_PSEUDO_REGISTER
5015 && regno_ok_for_base_p (regno, mode, as, MEM, SCRATCH)
5016 && ! regno_clobbered_p (regno, this_insn, mode, 0))
5017 return 0;
5019 /* If we do not have one of the cases above, we must do the reload. */
5020 push_reload (ad, NULL_RTX, loc, (rtx*) 0,
5021 base_reg_class (mode, as, MEM, SCRATCH),
5022 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
5023 return 1;
5026 if (strict_memory_address_addr_space_p (mode, ad, as))
5028 /* The address appears valid, so reloads are not needed.
5029 But the address may contain an eliminable register.
5030 This can happen because a machine with indirect addressing
5031 may consider a pseudo register by itself a valid address even when
5032 it has failed to get a hard reg.
5033 So do a tree-walk to find and eliminate all such regs. */
5035 /* But first quickly dispose of a common case. */
5036 if (GET_CODE (ad) == PLUS
5037 && CONST_INT_P (XEXP (ad, 1))
5038 && REG_P (XEXP (ad, 0))
5039 && reg_equiv_constant (REGNO (XEXP (ad, 0))) == 0)
5040 return 0;
5042 subst_reg_equivs_changed = 0;
5043 *loc = subst_reg_equivs (ad, insn);
5045 if (! subst_reg_equivs_changed)
5046 return 0;
5048 /* Check result for validity after substitution. */
5049 if (strict_memory_address_addr_space_p (mode, ad, as))
5050 return 0;
5053 #ifdef LEGITIMIZE_RELOAD_ADDRESS
5056 if (memrefloc && ADDR_SPACE_GENERIC_P (as))
5058 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
5059 ind_levels, win);
5061 break;
5062 win:
5063 *memrefloc = copy_rtx (*memrefloc);
5064 XEXP (*memrefloc, 0) = ad;
5065 move_replacements (&ad, &XEXP (*memrefloc, 0));
5066 return -1;
5068 while (0);
5069 #endif
5071 /* The address is not valid. We have to figure out why. First see if
5072 we have an outer AND and remove it if so. Then analyze what's inside. */
5074 if (GET_CODE (ad) == AND)
5076 removed_and = 1;
5077 loc = &XEXP (ad, 0);
5078 ad = *loc;
5081 /* One possibility for why the address is invalid is that it is itself
5082 a MEM. This can happen when the frame pointer is being eliminated, a
5083 pseudo is not allocated to a hard register, and the offset between the
5084 frame and stack pointers is not its initial value. In that case the
5085 pseudo will have been replaced by a MEM referring to the
5086 stack pointer. */
5087 if (MEM_P (ad))
5089 /* First ensure that the address in this MEM is valid. Then, unless
5090 indirect addresses are valid, reload the MEM into a register. */
5091 tem = ad;
5092 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
5093 opnum, ADDR_TYPE (type),
5094 ind_levels == 0 ? 0 : ind_levels - 1, insn);
5096 /* If tem was changed, then we must create a new memory reference to
5097 hold it and store it back into memrefloc. */
5098 if (tem != ad && memrefloc)
5100 *memrefloc = copy_rtx (*memrefloc);
5101 copy_replacements (tem, XEXP (*memrefloc, 0));
5102 loc = &XEXP (*memrefloc, 0);
5103 if (removed_and)
5104 loc = &XEXP (*loc, 0);
5107 /* Check similar cases as for indirect addresses as above except
5108 that we can allow pseudos and a MEM since they should have been
5109 taken care of above. */
5111 if (ind_levels == 0
5112 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
5113 || MEM_P (XEXP (tem, 0))
5114 || ! (REG_P (XEXP (tem, 0))
5115 || (GET_CODE (XEXP (tem, 0)) == PLUS
5116 && REG_P (XEXP (XEXP (tem, 0), 0))
5117 && CONST_INT_P (XEXP (XEXP (tem, 0), 1)))))
5119 /* Must use TEM here, not AD, since it is the one that will
5120 have any subexpressions reloaded, if needed. */
5121 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
5122 base_reg_class (mode, as, MEM, SCRATCH), GET_MODE (tem),
5123 VOIDmode, 0,
5124 0, opnum, type);
5125 return ! removed_and;
5127 else
5128 return 0;
5131 /* If we have address of a stack slot but it's not valid because the
5132 displacement is too large, compute the sum in a register.
5133 Handle all base registers here, not just fp/ap/sp, because on some
5134 targets (namely SH) we can also get too large displacements from
5135 big-endian corrections. */
5136 else if (GET_CODE (ad) == PLUS
5137 && REG_P (XEXP (ad, 0))
5138 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
5139 && CONST_INT_P (XEXP (ad, 1))
5140 && (regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, as, PLUS,
5141 CONST_INT)
5142 /* Similarly, if we were to reload the base register and the
5143 mem+offset address is still invalid, then we want to reload
5144 the whole address, not just the base register. */
5145 || ! maybe_memory_address_addr_space_p
5146 (mode, ad, as, &(XEXP (ad, 0)))))
5149 /* Unshare the MEM rtx so we can safely alter it. */
5150 if (memrefloc)
5152 *memrefloc = copy_rtx (*memrefloc);
5153 loc = &XEXP (*memrefloc, 0);
5154 if (removed_and)
5155 loc = &XEXP (*loc, 0);
5158 if (double_reg_address_ok
5159 && regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, as,
5160 PLUS, CONST_INT))
5162 /* Unshare the sum as well. */
5163 *loc = ad = copy_rtx (ad);
5165 /* Reload the displacement into an index reg.
5166 We assume the frame pointer or arg pointer is a base reg. */
5167 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
5168 INDEX_REG_CLASS, GET_MODE (ad), opnum,
5169 type, ind_levels);
5170 return 0;
5172 else
5174 /* If the sum of two regs is not necessarily valid,
5175 reload the sum into a base reg.
5176 That will at least work. */
5177 find_reloads_address_part (ad, loc,
5178 base_reg_class (mode, as, MEM, SCRATCH),
5179 GET_MODE (ad), opnum, type, ind_levels);
5181 return ! removed_and;
5184 /* If we have an indexed stack slot, there are three possible reasons why
5185 it might be invalid: The index might need to be reloaded, the address
5186 might have been made by frame pointer elimination and hence have a
5187 constant out of range, or both reasons might apply.
5189 We can easily check for an index needing reload, but even if that is the
5190 case, we might also have an invalid constant. To avoid making the
5191 conservative assumption and requiring two reloads, we see if this address
5192 is valid when not interpreted strictly. If it is, the only problem is
5193 that the index needs a reload and find_reloads_address_1 will take care
5194 of it.
5196 Handle all base registers here, not just fp/ap/sp, because on some
5197 targets (namely SPARC) we can also get invalid addresses from preventive
5198 subreg big-endian corrections made by find_reloads_toplev. We
5199 can also get expressions involving LO_SUM (rather than PLUS) from
5200 find_reloads_subreg_address.
5202 If we decide to do something, it must be that `double_reg_address_ok'
5203 is true. We generate a reload of the base register + constant and
5204 rework the sum so that the reload register will be added to the index.
5205 This is safe because we know the address isn't shared.
5207 We check for the base register as both the first and second operand of
5208 the innermost PLUS and/or LO_SUM. */
5210 for (op_index = 0; op_index < 2; ++op_index)
5212 rtx operand, addend;
5213 enum rtx_code inner_code;
5215 if (GET_CODE (ad) != PLUS)
5216 continue;
5218 inner_code = GET_CODE (XEXP (ad, 0));
5219 if (!(GET_CODE (ad) == PLUS
5220 && CONST_INT_P (XEXP (ad, 1))
5221 && (inner_code == PLUS || inner_code == LO_SUM)))
5222 continue;
5224 operand = XEXP (XEXP (ad, 0), op_index);
5225 if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
5226 continue;
5228 addend = XEXP (XEXP (ad, 0), 1 - op_index);
5230 if ((regno_ok_for_base_p (REGNO (operand), mode, as, inner_code,
5231 GET_CODE (addend))
5232 || operand == frame_pointer_rtx
5233 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
5234 || operand == hard_frame_pointer_rtx
5235 #endif
5236 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
5237 || operand == arg_pointer_rtx
5238 #endif
5239 || operand == stack_pointer_rtx)
5240 && ! maybe_memory_address_addr_space_p
5241 (mode, ad, as, &XEXP (XEXP (ad, 0), 1 - op_index)))
5243 rtx offset_reg;
5244 enum reg_class cls;
5246 offset_reg = plus_constant (GET_MODE (ad), operand,
5247 INTVAL (XEXP (ad, 1)));
5249 /* Form the adjusted address. */
5250 if (GET_CODE (XEXP (ad, 0)) == PLUS)
5251 ad = gen_rtx_PLUS (GET_MODE (ad),
5252 op_index == 0 ? offset_reg : addend,
5253 op_index == 0 ? addend : offset_reg);
5254 else
5255 ad = gen_rtx_LO_SUM (GET_MODE (ad),
5256 op_index == 0 ? offset_reg : addend,
5257 op_index == 0 ? addend : offset_reg);
5258 *loc = ad;
5260 cls = base_reg_class (mode, as, MEM, GET_CODE (addend));
5261 find_reloads_address_part (XEXP (ad, op_index),
5262 &XEXP (ad, op_index), cls,
5263 GET_MODE (ad), opnum, type, ind_levels);
5264 find_reloads_address_1 (mode, as,
5265 XEXP (ad, 1 - op_index), 1, GET_CODE (ad),
5266 GET_CODE (XEXP (ad, op_index)),
5267 &XEXP (ad, 1 - op_index), opnum,
5268 type, 0, insn);
5270 return 0;
5274 /* See if address becomes valid when an eliminable register
5275 in a sum is replaced. */
5277 tem = ad;
5278 if (GET_CODE (ad) == PLUS)
5279 tem = subst_indexed_address (ad);
5280 if (tem != ad && strict_memory_address_addr_space_p (mode, tem, as))
5282 /* Ok, we win that way. Replace any additional eliminable
5283 registers. */
5285 subst_reg_equivs_changed = 0;
5286 tem = subst_reg_equivs (tem, insn);
5288 /* Make sure that didn't make the address invalid again. */
5290 if (! subst_reg_equivs_changed
5291 || strict_memory_address_addr_space_p (mode, tem, as))
5293 *loc = tem;
5294 return 0;
5298 /* If constants aren't valid addresses, reload the constant address
5299 into a register. */
5300 if (CONSTANT_P (ad) && ! strict_memory_address_addr_space_p (mode, ad, as))
5302 enum machine_mode address_mode = GET_MODE (ad);
5303 if (address_mode == VOIDmode)
5304 address_mode = targetm.addr_space.address_mode (as);
5306 /* If AD is an address in the constant pool, the MEM rtx may be shared.
5307 Unshare it so we can safely alter it. */
5308 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
5309 && CONSTANT_POOL_ADDRESS_P (ad))
5311 *memrefloc = copy_rtx (*memrefloc);
5312 loc = &XEXP (*memrefloc, 0);
5313 if (removed_and)
5314 loc = &XEXP (*loc, 0);
5317 find_reloads_address_part (ad, loc,
5318 base_reg_class (mode, as, MEM, SCRATCH),
5319 address_mode, opnum, type, ind_levels);
5320 return ! removed_and;
5323 return find_reloads_address_1 (mode, as, ad, 0, MEM, SCRATCH, loc,
5324 opnum, type, ind_levels, insn);
5327 /* Find all pseudo regs appearing in AD
5328 that are eliminable in favor of equivalent values
5329 and do not have hard regs; replace them by their equivalents.
5330 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
5331 front of it for pseudos that we have to replace with stack slots. */
5333 static rtx
5334 subst_reg_equivs (rtx ad, rtx insn)
5336 RTX_CODE code = GET_CODE (ad);
5337 int i;
5338 const char *fmt;
5340 switch (code)
5342 case HIGH:
5343 case CONST:
5344 CASE_CONST_ANY:
5345 case SYMBOL_REF:
5346 case LABEL_REF:
5347 case PC:
5348 case CC0:
5349 return ad;
5351 case REG:
5353 int regno = REGNO (ad);
5355 if (reg_equiv_constant (regno) != 0)
5357 subst_reg_equivs_changed = 1;
5358 return reg_equiv_constant (regno);
5360 if (reg_equiv_memory_loc (regno) && num_not_at_initial_offset)
5362 rtx mem = make_memloc (ad, regno);
5363 if (! rtx_equal_p (mem, reg_equiv_mem (regno)))
5365 subst_reg_equivs_changed = 1;
5366 /* We mark the USE with QImode so that we recognize it
5367 as one that can be safely deleted at the end of
5368 reload. */
5369 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5370 QImode);
5371 return mem;
5375 return ad;
5377 case PLUS:
5378 /* Quickly dispose of a common case. */
5379 if (XEXP (ad, 0) == frame_pointer_rtx
5380 && CONST_INT_P (XEXP (ad, 1)))
5381 return ad;
5382 break;
5384 default:
5385 break;
5388 fmt = GET_RTX_FORMAT (code);
5389 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5390 if (fmt[i] == 'e')
5391 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5392 return ad;
5395 /* Compute the sum of X and Y, making canonicalizations assumed in an
5396 address, namely: sum constant integers, surround the sum of two
5397 constants with a CONST, put the constant as the second operand, and
5398 group the constant on the outermost sum.
5400 This routine assumes both inputs are already in canonical form. */
5403 form_sum (enum machine_mode mode, rtx x, rtx y)
5405 rtx tem;
5407 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
5408 gcc_assert (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode);
5410 if (CONST_INT_P (x))
5411 return plus_constant (mode, y, INTVAL (x));
5412 else if (CONST_INT_P (y))
5413 return plus_constant (mode, x, INTVAL (y));
5414 else if (CONSTANT_P (x))
5415 tem = x, x = y, y = tem;
5417 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5418 return form_sum (mode, XEXP (x, 0), form_sum (mode, XEXP (x, 1), y));
5420 /* Note that if the operands of Y are specified in the opposite
5421 order in the recursive calls below, infinite recursion will occur. */
5422 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5423 return form_sum (mode, form_sum (mode, x, XEXP (y, 0)), XEXP (y, 1));
5425 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5426 constant will have been placed second. */
5427 if (CONSTANT_P (x) && CONSTANT_P (y))
5429 if (GET_CODE (x) == CONST)
5430 x = XEXP (x, 0);
5431 if (GET_CODE (y) == CONST)
5432 y = XEXP (y, 0);
5434 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5437 return gen_rtx_PLUS (mode, x, y);
5440 /* If ADDR is a sum containing a pseudo register that should be
5441 replaced with a constant (from reg_equiv_constant),
5442 return the result of doing so, and also apply the associative
5443 law so that the result is more likely to be a valid address.
5444 (But it is not guaranteed to be one.)
5446 Note that at most one register is replaced, even if more are
5447 replaceable. Also, we try to put the result into a canonical form
5448 so it is more likely to be a valid address.
5450 In all other cases, return ADDR. */
5452 static rtx
5453 subst_indexed_address (rtx addr)
5455 rtx op0 = 0, op1 = 0, op2 = 0;
5456 rtx tem;
5457 int regno;
5459 if (GET_CODE (addr) == PLUS)
5461 /* Try to find a register to replace. */
5462 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5463 if (REG_P (op0)
5464 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5465 && reg_renumber[regno] < 0
5466 && reg_equiv_constant (regno) != 0)
5467 op0 = reg_equiv_constant (regno);
5468 else if (REG_P (op1)
5469 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5470 && reg_renumber[regno] < 0
5471 && reg_equiv_constant (regno) != 0)
5472 op1 = reg_equiv_constant (regno);
5473 else if (GET_CODE (op0) == PLUS
5474 && (tem = subst_indexed_address (op0)) != op0)
5475 op0 = tem;
5476 else if (GET_CODE (op1) == PLUS
5477 && (tem = subst_indexed_address (op1)) != op1)
5478 op1 = tem;
5479 else
5480 return addr;
5482 /* Pick out up to three things to add. */
5483 if (GET_CODE (op1) == PLUS)
5484 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5485 else if (GET_CODE (op0) == PLUS)
5486 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5488 /* Compute the sum. */
5489 if (op2 != 0)
5490 op1 = form_sum (GET_MODE (addr), op1, op2);
5491 if (op1 != 0)
5492 op0 = form_sum (GET_MODE (addr), op0, op1);
5494 return op0;
5496 return addr;
5499 /* Update the REG_INC notes for an insn. It updates all REG_INC
5500 notes for the instruction which refer to REGNO the to refer
5501 to the reload number.
5503 INSN is the insn for which any REG_INC notes need updating.
5505 REGNO is the register number which has been reloaded.
5507 RELOADNUM is the reload number. */
5509 static void
5510 update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5511 int reloadnum ATTRIBUTE_UNUSED)
5513 #ifdef AUTO_INC_DEC
5514 rtx link;
5516 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5517 if (REG_NOTE_KIND (link) == REG_INC
5518 && (int) REGNO (XEXP (link, 0)) == regno)
5519 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5520 #endif
5523 /* Record the pseudo registers we must reload into hard registers in a
5524 subexpression of a would-be memory address, X referring to a value
5525 in mode MODE. (This function is not called if the address we find
5526 is strictly valid.)
5528 CONTEXT = 1 means we are considering regs as index regs,
5529 = 0 means we are considering them as base regs.
5530 OUTER_CODE is the code of the enclosing RTX, typically a MEM, a PLUS,
5531 or an autoinc code.
5532 If CONTEXT == 0 and OUTER_CODE is a PLUS or LO_SUM, then INDEX_CODE
5533 is the code of the index part of the address. Otherwise, pass SCRATCH
5534 for this argument.
5535 OPNUM and TYPE specify the purpose of any reloads made.
5537 IND_LEVELS says how many levels of indirect addressing are
5538 supported at this point in the address.
5540 INSN, if nonzero, is the insn in which we do the reload. It is used
5541 to determine if we may generate output reloads.
5543 We return nonzero if X, as a whole, is reloaded or replaced. */
5545 /* Note that we take shortcuts assuming that no multi-reg machine mode
5546 occurs as part of an address.
5547 Also, this is not fully machine-customizable; it works for machines
5548 such as VAXen and 68000's and 32000's, but other possible machines
5549 could have addressing modes that this does not handle right.
5550 If you add push_reload calls here, you need to make sure gen_reload
5551 handles those cases gracefully. */
5553 static int
5554 find_reloads_address_1 (enum machine_mode mode, addr_space_t as,
5555 rtx x, int context,
5556 enum rtx_code outer_code, enum rtx_code index_code,
5557 rtx *loc, int opnum, enum reload_type type,
5558 int ind_levels, rtx insn)
5560 #define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE, AS, OUTER, INDEX) \
5561 ((CONTEXT) == 0 \
5562 ? regno_ok_for_base_p (REGNO, MODE, AS, OUTER, INDEX) \
5563 : REGNO_OK_FOR_INDEX_P (REGNO))
5565 enum reg_class context_reg_class;
5566 RTX_CODE code = GET_CODE (x);
5567 bool reloaded_inner_of_autoinc = false;
5569 if (context == 1)
5570 context_reg_class = INDEX_REG_CLASS;
5571 else
5572 context_reg_class = base_reg_class (mode, as, outer_code, index_code);
5574 switch (code)
5576 case PLUS:
5578 rtx orig_op0 = XEXP (x, 0);
5579 rtx orig_op1 = XEXP (x, 1);
5580 RTX_CODE code0 = GET_CODE (orig_op0);
5581 RTX_CODE code1 = GET_CODE (orig_op1);
5582 rtx op0 = orig_op0;
5583 rtx op1 = orig_op1;
5585 if (GET_CODE (op0) == SUBREG)
5587 op0 = SUBREG_REG (op0);
5588 code0 = GET_CODE (op0);
5589 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5590 op0 = gen_rtx_REG (word_mode,
5591 (REGNO (op0) +
5592 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5593 GET_MODE (SUBREG_REG (orig_op0)),
5594 SUBREG_BYTE (orig_op0),
5595 GET_MODE (orig_op0))));
5598 if (GET_CODE (op1) == SUBREG)
5600 op1 = SUBREG_REG (op1);
5601 code1 = GET_CODE (op1);
5602 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5603 /* ??? Why is this given op1's mode and above for
5604 ??? op0 SUBREGs we use word_mode? */
5605 op1 = gen_rtx_REG (GET_MODE (op1),
5606 (REGNO (op1) +
5607 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5608 GET_MODE (SUBREG_REG (orig_op1)),
5609 SUBREG_BYTE (orig_op1),
5610 GET_MODE (orig_op1))));
5612 /* Plus in the index register may be created only as a result of
5613 register rematerialization for expression like &localvar*4. Reload it.
5614 It may be possible to combine the displacement on the outer level,
5615 but it is probably not worthwhile to do so. */
5616 if (context == 1)
5618 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5619 opnum, ADDR_TYPE (type), ind_levels, insn);
5620 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5621 context_reg_class,
5622 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5623 return 1;
5626 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5627 || code0 == ZERO_EXTEND || code1 == MEM)
5629 find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5630 &XEXP (x, 0), opnum, type, ind_levels,
5631 insn);
5632 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, code0,
5633 &XEXP (x, 1), opnum, type, ind_levels,
5634 insn);
5637 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5638 || code1 == ZERO_EXTEND || code0 == MEM)
5640 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, code1,
5641 &XEXP (x, 0), opnum, type, ind_levels,
5642 insn);
5643 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5644 &XEXP (x, 1), opnum, type, ind_levels,
5645 insn);
5648 else if (code0 == CONST_INT || code0 == CONST
5649 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5650 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, code0,
5651 &XEXP (x, 1), opnum, type, ind_levels,
5652 insn);
5654 else if (code1 == CONST_INT || code1 == CONST
5655 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5656 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, code1,
5657 &XEXP (x, 0), opnum, type, ind_levels,
5658 insn);
5660 else if (code0 == REG && code1 == REG)
5662 if (REGNO_OK_FOR_INDEX_P (REGNO (op1))
5663 && regno_ok_for_base_p (REGNO (op0), mode, as, PLUS, REG))
5664 return 0;
5665 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0))
5666 && regno_ok_for_base_p (REGNO (op1), mode, as, PLUS, REG))
5667 return 0;
5668 else if (regno_ok_for_base_p (REGNO (op0), mode, as, PLUS, REG))
5669 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5670 &XEXP (x, 1), opnum, type, ind_levels,
5671 insn);
5672 else if (REGNO_OK_FOR_INDEX_P (REGNO (op1)))
5673 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5674 &XEXP (x, 0), opnum, type, ind_levels,
5675 insn);
5676 else if (regno_ok_for_base_p (REGNO (op1), mode, as, PLUS, REG))
5677 find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5678 &XEXP (x, 0), opnum, type, ind_levels,
5679 insn);
5680 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0)))
5681 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, REG,
5682 &XEXP (x, 1), opnum, type, ind_levels,
5683 insn);
5684 else
5686 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5687 &XEXP (x, 0), opnum, type, ind_levels,
5688 insn);
5689 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5690 &XEXP (x, 1), opnum, type, ind_levels,
5691 insn);
5695 else if (code0 == REG)
5697 find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5698 &XEXP (x, 0), opnum, type, ind_levels,
5699 insn);
5700 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, REG,
5701 &XEXP (x, 1), opnum, type, ind_levels,
5702 insn);
5705 else if (code1 == REG)
5707 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5708 &XEXP (x, 1), opnum, type, ind_levels,
5709 insn);
5710 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5711 &XEXP (x, 0), opnum, type, ind_levels,
5712 insn);
5716 return 0;
5718 case POST_MODIFY:
5719 case PRE_MODIFY:
5721 rtx op0 = XEXP (x, 0);
5722 rtx op1 = XEXP (x, 1);
5723 enum rtx_code index_code;
5724 int regno;
5725 int reloadnum;
5727 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5728 return 0;
5730 /* Currently, we only support {PRE,POST}_MODIFY constructs
5731 where a base register is {inc,dec}remented by the contents
5732 of another register or by a constant value. Thus, these
5733 operands must match. */
5734 gcc_assert (op0 == XEXP (op1, 0));
5736 /* Require index register (or constant). Let's just handle the
5737 register case in the meantime... If the target allows
5738 auto-modify by a constant then we could try replacing a pseudo
5739 register with its equivalent constant where applicable.
5741 We also handle the case where the register was eliminated
5742 resulting in a PLUS subexpression.
5744 If we later decide to reload the whole PRE_MODIFY or
5745 POST_MODIFY, inc_for_reload might clobber the reload register
5746 before reading the index. The index register might therefore
5747 need to live longer than a TYPE reload normally would, so be
5748 conservative and class it as RELOAD_OTHER. */
5749 if ((REG_P (XEXP (op1, 1))
5750 && !REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5751 || GET_CODE (XEXP (op1, 1)) == PLUS)
5752 find_reloads_address_1 (mode, as, XEXP (op1, 1), 1, code, SCRATCH,
5753 &XEXP (op1, 1), opnum, RELOAD_OTHER,
5754 ind_levels, insn);
5756 gcc_assert (REG_P (XEXP (op1, 0)));
5758 regno = REGNO (XEXP (op1, 0));
5759 index_code = GET_CODE (XEXP (op1, 1));
5761 /* A register that is incremented cannot be constant! */
5762 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5763 || reg_equiv_constant (regno) == 0);
5765 /* Handle a register that is equivalent to a memory location
5766 which cannot be addressed directly. */
5767 if (reg_equiv_memory_loc (regno) != 0
5768 && (reg_equiv_address (regno) != 0
5769 || num_not_at_initial_offset))
5771 rtx tem = make_memloc (XEXP (x, 0), regno);
5773 if (reg_equiv_address (regno)
5774 || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
5776 rtx orig = tem;
5778 /* First reload the memory location's address.
5779 We can't use ADDR_TYPE (type) here, because we need to
5780 write back the value after reading it, hence we actually
5781 need two registers. */
5782 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5783 &XEXP (tem, 0), opnum,
5784 RELOAD_OTHER,
5785 ind_levels, insn);
5787 if (!rtx_equal_p (tem, orig))
5788 push_reg_equiv_alt_mem (regno, tem);
5790 /* Then reload the memory location into a base
5791 register. */
5792 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5793 &XEXP (op1, 0),
5794 base_reg_class (mode, as,
5795 code, index_code),
5796 GET_MODE (x), GET_MODE (x), 0,
5797 0, opnum, RELOAD_OTHER);
5799 update_auto_inc_notes (this_insn, regno, reloadnum);
5800 return 0;
5804 if (reg_renumber[regno] >= 0)
5805 regno = reg_renumber[regno];
5807 /* We require a base register here... */
5808 if (!regno_ok_for_base_p (regno, GET_MODE (x), as, code, index_code))
5810 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5811 &XEXP (op1, 0), &XEXP (x, 0),
5812 base_reg_class (mode, as,
5813 code, index_code),
5814 GET_MODE (x), GET_MODE (x), 0, 0,
5815 opnum, RELOAD_OTHER);
5817 update_auto_inc_notes (this_insn, regno, reloadnum);
5818 return 0;
5821 return 0;
5823 case POST_INC:
5824 case POST_DEC:
5825 case PRE_INC:
5826 case PRE_DEC:
5827 if (REG_P (XEXP (x, 0)))
5829 int regno = REGNO (XEXP (x, 0));
5830 int value = 0;
5831 rtx x_orig = x;
5833 /* A register that is incremented cannot be constant! */
5834 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5835 || reg_equiv_constant (regno) == 0);
5837 /* Handle a register that is equivalent to a memory location
5838 which cannot be addressed directly. */
5839 if (reg_equiv_memory_loc (regno) != 0
5840 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
5842 rtx tem = make_memloc (XEXP (x, 0), regno);
5843 if (reg_equiv_address (regno)
5844 || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
5846 rtx orig = tem;
5848 /* First reload the memory location's address.
5849 We can't use ADDR_TYPE (type) here, because we need to
5850 write back the value after reading it, hence we actually
5851 need two registers. */
5852 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5853 &XEXP (tem, 0), opnum, type,
5854 ind_levels, insn);
5855 reloaded_inner_of_autoinc = true;
5856 if (!rtx_equal_p (tem, orig))
5857 push_reg_equiv_alt_mem (regno, tem);
5858 /* Put this inside a new increment-expression. */
5859 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5860 /* Proceed to reload that, as if it contained a register. */
5864 /* If we have a hard register that is ok in this incdec context,
5865 don't make a reload. If the register isn't nice enough for
5866 autoincdec, we can reload it. But, if an autoincrement of a
5867 register that we here verified as playing nice, still outside
5868 isn't "valid", it must be that no autoincrement is "valid".
5869 If that is true and something made an autoincrement anyway,
5870 this must be a special context where one is allowed.
5871 (For example, a "push" instruction.)
5872 We can't improve this address, so leave it alone. */
5874 /* Otherwise, reload the autoincrement into a suitable hard reg
5875 and record how much to increment by. */
5877 if (reg_renumber[regno] >= 0)
5878 regno = reg_renumber[regno];
5879 if (regno >= FIRST_PSEUDO_REGISTER
5880 || !REG_OK_FOR_CONTEXT (context, regno, mode, as, code,
5881 index_code))
5883 int reloadnum;
5885 /* If we can output the register afterwards, do so, this
5886 saves the extra update.
5887 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5888 CALL_INSN - and it does not set CC0.
5889 But don't do this if we cannot directly address the
5890 memory location, since this will make it harder to
5891 reuse address reloads, and increases register pressure.
5892 Also don't do this if we can probably update x directly. */
5893 rtx equiv = (MEM_P (XEXP (x, 0))
5894 ? XEXP (x, 0)
5895 : reg_equiv_mem (regno));
5896 enum insn_code icode = optab_handler (add_optab, GET_MODE (x));
5897 if (insn && NONJUMP_INSN_P (insn) && equiv
5898 && memory_operand (equiv, GET_MODE (equiv))
5899 #ifdef HAVE_cc0
5900 && ! sets_cc0_p (PATTERN (insn))
5901 #endif
5902 && ! (icode != CODE_FOR_nothing
5903 && insn_operand_matches (icode, 0, equiv)
5904 && insn_operand_matches (icode, 1, equiv))
5905 /* Using RELOAD_OTHER means we emit this and the reload we
5906 made earlier in the wrong order. */
5907 && !reloaded_inner_of_autoinc)
5909 /* We use the original pseudo for loc, so that
5910 emit_reload_insns() knows which pseudo this
5911 reload refers to and updates the pseudo rtx, not
5912 its equivalent memory location, as well as the
5913 corresponding entry in reg_last_reload_reg. */
5914 loc = &XEXP (x_orig, 0);
5915 x = XEXP (x, 0);
5916 reloadnum
5917 = push_reload (x, x, loc, loc,
5918 context_reg_class,
5919 GET_MODE (x), GET_MODE (x), 0, 0,
5920 opnum, RELOAD_OTHER);
5922 else
5924 reloadnum
5925 = push_reload (x, x, loc, (rtx*) 0,
5926 context_reg_class,
5927 GET_MODE (x), GET_MODE (x), 0, 0,
5928 opnum, type);
5929 rld[reloadnum].inc
5930 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5932 value = 1;
5935 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5936 reloadnum);
5938 return value;
5940 return 0;
5942 case TRUNCATE:
5943 case SIGN_EXTEND:
5944 case ZERO_EXTEND:
5945 /* Look for parts to reload in the inner expression and reload them
5946 too, in addition to this operation. Reloading all inner parts in
5947 addition to this one shouldn't be necessary, but at this point,
5948 we don't know if we can possibly omit any part that *can* be
5949 reloaded. Targets that are better off reloading just either part
5950 (or perhaps even a different part of an outer expression), should
5951 define LEGITIMIZE_RELOAD_ADDRESS. */
5952 find_reloads_address_1 (GET_MODE (XEXP (x, 0)), as, XEXP (x, 0),
5953 context, code, SCRATCH, &XEXP (x, 0), opnum,
5954 type, ind_levels, insn);
5955 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5956 context_reg_class,
5957 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5958 return 1;
5960 case MEM:
5961 /* This is probably the result of a substitution, by eliminate_regs, of
5962 an equivalent address for a pseudo that was not allocated to a hard
5963 register. Verify that the specified address is valid and reload it
5964 into a register.
5966 Since we know we are going to reload this item, don't decrement for
5967 the indirection level.
5969 Note that this is actually conservative: it would be slightly more
5970 efficient to use the value of SPILL_INDIRECT_LEVELS from
5971 reload1.c here. */
5973 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5974 opnum, ADDR_TYPE (type), ind_levels, insn);
5975 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5976 context_reg_class,
5977 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5978 return 1;
5980 case REG:
5982 int regno = REGNO (x);
5984 if (reg_equiv_constant (regno) != 0)
5986 find_reloads_address_part (reg_equiv_constant (regno), loc,
5987 context_reg_class,
5988 GET_MODE (x), opnum, type, ind_levels);
5989 return 1;
5992 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5993 that feeds this insn. */
5994 if (reg_equiv_mem (regno) != 0)
5996 push_reload (reg_equiv_mem (regno), NULL_RTX, loc, (rtx*) 0,
5997 context_reg_class,
5998 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5999 return 1;
6001 #endif
6003 if (reg_equiv_memory_loc (regno)
6004 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
6006 rtx tem = make_memloc (x, regno);
6007 if (reg_equiv_address (regno) != 0
6008 || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
6010 x = tem;
6011 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
6012 &XEXP (x, 0), opnum, ADDR_TYPE (type),
6013 ind_levels, insn);
6014 if (!rtx_equal_p (x, tem))
6015 push_reg_equiv_alt_mem (regno, x);
6019 if (reg_renumber[regno] >= 0)
6020 regno = reg_renumber[regno];
6022 if (regno >= FIRST_PSEUDO_REGISTER
6023 || !REG_OK_FOR_CONTEXT (context, regno, mode, as, outer_code,
6024 index_code))
6026 push_reload (x, NULL_RTX, loc, (rtx*) 0,
6027 context_reg_class,
6028 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6029 return 1;
6032 /* If a register appearing in an address is the subject of a CLOBBER
6033 in this insn, reload it into some other register to be safe.
6034 The CLOBBER is supposed to make the register unavailable
6035 from before this insn to after it. */
6036 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
6038 push_reload (x, NULL_RTX, loc, (rtx*) 0,
6039 context_reg_class,
6040 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6041 return 1;
6044 return 0;
6046 case SUBREG:
6047 if (REG_P (SUBREG_REG (x)))
6049 /* If this is a SUBREG of a hard register and the resulting register
6050 is of the wrong class, reload the whole SUBREG. This avoids
6051 needless copies if SUBREG_REG is multi-word. */
6052 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6054 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
6056 if (!REG_OK_FOR_CONTEXT (context, regno, mode, as, outer_code,
6057 index_code))
6059 push_reload (x, NULL_RTX, loc, (rtx*) 0,
6060 context_reg_class,
6061 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6062 return 1;
6065 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
6066 is larger than the class size, then reload the whole SUBREG. */
6067 else
6069 enum reg_class rclass = context_reg_class;
6070 if (ira_reg_class_max_nregs [rclass][GET_MODE (SUBREG_REG (x))]
6071 > reg_class_size[(int) rclass])
6073 /* If the inner register will be replaced by a memory
6074 reference, we can do this only if we can replace the
6075 whole subreg by a (narrower) memory reference. If
6076 this is not possible, fall through and reload just
6077 the inner register (including address reloads). */
6078 if (reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
6080 rtx tem = find_reloads_subreg_address (x, opnum,
6081 ADDR_TYPE (type),
6082 ind_levels, insn,
6083 NULL);
6084 if (tem)
6086 push_reload (tem, NULL_RTX, loc, (rtx*) 0, rclass,
6087 GET_MODE (tem), VOIDmode, 0, 0,
6088 opnum, type);
6089 return 1;
6092 else
6094 push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
6095 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6096 return 1;
6101 break;
6103 default:
6104 break;
6108 const char *fmt = GET_RTX_FORMAT (code);
6109 int i;
6111 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6113 if (fmt[i] == 'e')
6114 /* Pass SCRATCH for INDEX_CODE, since CODE can never be a PLUS once
6115 we get here. */
6116 find_reloads_address_1 (mode, as, XEXP (x, i), context,
6117 code, SCRATCH, &XEXP (x, i),
6118 opnum, type, ind_levels, insn);
6122 #undef REG_OK_FOR_CONTEXT
6123 return 0;
6126 /* X, which is found at *LOC, is a part of an address that needs to be
6127 reloaded into a register of class RCLASS. If X is a constant, or if
6128 X is a PLUS that contains a constant, check that the constant is a
6129 legitimate operand and that we are supposed to be able to load
6130 it into the register.
6132 If not, force the constant into memory and reload the MEM instead.
6134 MODE is the mode to use, in case X is an integer constant.
6136 OPNUM and TYPE describe the purpose of any reloads made.
6138 IND_LEVELS says how many levels of indirect addressing this machine
6139 supports. */
6141 static void
6142 find_reloads_address_part (rtx x, rtx *loc, enum reg_class rclass,
6143 enum machine_mode mode, int opnum,
6144 enum reload_type type, int ind_levels)
6146 if (CONSTANT_P (x)
6147 && (!targetm.legitimate_constant_p (mode, x)
6148 || targetm.preferred_reload_class (x, rclass) == NO_REGS))
6150 x = force_const_mem (mode, x);
6151 find_reloads_address (mode, &x, XEXP (x, 0), &XEXP (x, 0),
6152 opnum, type, ind_levels, 0);
6155 else if (GET_CODE (x) == PLUS
6156 && CONSTANT_P (XEXP (x, 1))
6157 && (!targetm.legitimate_constant_p (GET_MODE (x), XEXP (x, 1))
6158 || targetm.preferred_reload_class (XEXP (x, 1), rclass)
6159 == NO_REGS))
6161 rtx tem;
6163 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
6164 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
6165 find_reloads_address (mode, &XEXP (x, 1), XEXP (tem, 0), &XEXP (tem, 0),
6166 opnum, type, ind_levels, 0);
6169 push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
6170 mode, VOIDmode, 0, 0, opnum, type);
6173 /* X, a subreg of a pseudo, is a part of an address that needs to be
6174 reloaded, and the pseusdo is equivalent to a memory location.
6176 Attempt to replace the whole subreg by a (possibly narrower or wider)
6177 memory reference. If this is possible, return this new memory
6178 reference, and push all required address reloads. Otherwise,
6179 return NULL.
6181 OPNUM and TYPE identify the purpose of the reload.
6183 IND_LEVELS says how many levels of indirect addressing are
6184 supported at this point in the address.
6186 INSN, if nonzero, is the insn in which we do the reload. It is used
6187 to determine where to put USEs for pseudos that we have to replace with
6188 stack slots. */
6190 static rtx
6191 find_reloads_subreg_address (rtx x, int opnum, enum reload_type type,
6192 int ind_levels, rtx insn, int *address_reloaded)
6194 enum machine_mode outer_mode = GET_MODE (x);
6195 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
6196 int regno = REGNO (SUBREG_REG (x));
6197 int reloaded = 0;
6198 rtx tem, orig;
6199 int offset;
6201 gcc_assert (reg_equiv_memory_loc (regno) != 0);
6203 /* We cannot replace the subreg with a modified memory reference if:
6205 - we have a paradoxical subreg that implicitly acts as a zero or
6206 sign extension operation due to LOAD_EXTEND_OP;
6208 - we have a subreg that is implicitly supposed to act on the full
6209 register due to WORD_REGISTER_OPERATIONS (see also eliminate_regs);
6211 - the address of the equivalent memory location is mode-dependent; or
6213 - we have a paradoxical subreg and the resulting memory is not
6214 sufficiently aligned to allow access in the wider mode.
6216 In addition, we choose not to perform the replacement for *any*
6217 paradoxical subreg, even if it were possible in principle. This
6218 is to avoid generating wider memory references than necessary.
6220 This corresponds to how previous versions of reload used to handle
6221 paradoxical subregs where no address reload was required. */
6223 if (paradoxical_subreg_p (x))
6224 return NULL;
6226 #ifdef WORD_REGISTER_OPERATIONS
6227 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode)
6228 && ((GET_MODE_SIZE (outer_mode) - 1) / UNITS_PER_WORD
6229 == (GET_MODE_SIZE (inner_mode) - 1) / UNITS_PER_WORD))
6230 return NULL;
6231 #endif
6233 /* Since we don't attempt to handle paradoxical subregs, we can just
6234 call into simplify_subreg, which will handle all remaining checks
6235 for us. */
6236 orig = make_memloc (SUBREG_REG (x), regno);
6237 offset = SUBREG_BYTE (x);
6238 tem = simplify_subreg (outer_mode, orig, inner_mode, offset);
6239 if (!tem || !MEM_P (tem))
6240 return NULL;
6242 /* Now push all required address reloads, if any. */
6243 reloaded = find_reloads_address (GET_MODE (tem), &tem,
6244 XEXP (tem, 0), &XEXP (tem, 0),
6245 opnum, type, ind_levels, insn);
6246 /* ??? Do we need to handle nonzero offsets somehow? */
6247 if (!offset && !rtx_equal_p (tem, orig))
6248 push_reg_equiv_alt_mem (regno, tem);
6250 /* For some processors an address may be valid in the original mode but
6251 not in a smaller mode. For example, ARM accepts a scaled index register
6252 in SImode but not in HImode. Note that this is only a problem if the
6253 address in reg_equiv_mem is already invalid in the new mode; other
6254 cases would be fixed by find_reloads_address as usual.
6256 ??? We attempt to handle such cases here by doing an additional reload
6257 of the full address after the usual processing by find_reloads_address.
6258 Note that this may not work in the general case, but it seems to cover
6259 the cases where this situation currently occurs. A more general fix
6260 might be to reload the *value* instead of the address, but this would
6261 not be expected by the callers of this routine as-is.
6263 If find_reloads_address already completed replaced the address, there
6264 is nothing further to do. */
6265 if (reloaded == 0
6266 && reg_equiv_mem (regno) != 0
6267 && !strict_memory_address_addr_space_p
6268 (GET_MODE (x), XEXP (reg_equiv_mem (regno), 0),
6269 MEM_ADDR_SPACE (reg_equiv_mem (regno))))
6271 push_reload (XEXP (tem, 0), NULL_RTX, &XEXP (tem, 0), (rtx*) 0,
6272 base_reg_class (GET_MODE (tem), MEM_ADDR_SPACE (tem),
6273 MEM, SCRATCH),
6274 GET_MODE (XEXP (tem, 0)), VOIDmode, 0, 0, opnum, type);
6275 reloaded = 1;
6278 /* If this is not a toplevel operand, find_reloads doesn't see this
6279 substitution. We have to emit a USE of the pseudo so that
6280 delete_output_reload can see it. */
6281 if (replace_reloads && recog_data.operand[opnum] != x)
6282 /* We mark the USE with QImode so that we recognize it as one that
6283 can be safely deleted at the end of reload. */
6284 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, SUBREG_REG (x)), insn),
6285 QImode);
6287 if (address_reloaded)
6288 *address_reloaded = reloaded;
6290 return tem;
6293 /* Substitute into the current INSN the registers into which we have reloaded
6294 the things that need reloading. The array `replacements'
6295 contains the locations of all pointers that must be changed
6296 and says what to replace them with.
6298 Return the rtx that X translates into; usually X, but modified. */
6300 void
6301 subst_reloads (rtx insn)
6303 int i;
6305 for (i = 0; i < n_replacements; i++)
6307 struct replacement *r = &replacements[i];
6308 rtx reloadreg = rld[r->what].reg_rtx;
6309 if (reloadreg)
6311 #ifdef DEBUG_RELOAD
6312 /* This checking takes a very long time on some platforms
6313 causing the gcc.c-torture/compile/limits-fnargs.c test
6314 to time out during testing. See PR 31850.
6316 Internal consistency test. Check that we don't modify
6317 anything in the equivalence arrays. Whenever something from
6318 those arrays needs to be reloaded, it must be unshared before
6319 being substituted into; the equivalence must not be modified.
6320 Otherwise, if the equivalence is used after that, it will
6321 have been modified, and the thing substituted (probably a
6322 register) is likely overwritten and not a usable equivalence. */
6323 int check_regno;
6325 for (check_regno = 0; check_regno < max_regno; check_regno++)
6327 #define CHECK_MODF(ARRAY) \
6328 gcc_assert (!(*reg_equivs)[check_regno].ARRAY \
6329 || !loc_mentioned_in_p (r->where, \
6330 (*reg_equivs)[check_regno].ARRAY))
6332 CHECK_MODF (constant);
6333 CHECK_MODF (memory_loc);
6334 CHECK_MODF (address);
6335 CHECK_MODF (mem);
6336 #undef CHECK_MODF
6338 #endif /* DEBUG_RELOAD */
6340 /* If we're replacing a LABEL_REF with a register, there must
6341 already be an indication (to e.g. flow) which label this
6342 register refers to. */
6343 gcc_assert (GET_CODE (*r->where) != LABEL_REF
6344 || !JUMP_P (insn)
6345 || find_reg_note (insn,
6346 REG_LABEL_OPERAND,
6347 XEXP (*r->where, 0))
6348 || label_is_jump_target_p (XEXP (*r->where, 0), insn));
6350 /* Encapsulate RELOADREG so its machine mode matches what
6351 used to be there. Note that gen_lowpart_common will
6352 do the wrong thing if RELOADREG is multi-word. RELOADREG
6353 will always be a REG here. */
6354 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
6355 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6357 *r->where = reloadreg;
6359 /* If reload got no reg and isn't optional, something's wrong. */
6360 else
6361 gcc_assert (rld[r->what].optional);
6365 /* Make a copy of any replacements being done into X and move those
6366 copies to locations in Y, a copy of X. */
6368 void
6369 copy_replacements (rtx x, rtx y)
6371 copy_replacements_1 (&x, &y, n_replacements);
6374 static void
6375 copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
6377 int i, j;
6378 rtx x, y;
6379 struct replacement *r;
6380 enum rtx_code code;
6381 const char *fmt;
6383 for (j = 0; j < orig_replacements; j++)
6384 if (replacements[j].where == px)
6386 r = &replacements[n_replacements++];
6387 r->where = py;
6388 r->what = replacements[j].what;
6389 r->mode = replacements[j].mode;
6392 x = *px;
6393 y = *py;
6394 code = GET_CODE (x);
6395 fmt = GET_RTX_FORMAT (code);
6397 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6399 if (fmt[i] == 'e')
6400 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6401 else if (fmt[i] == 'E')
6402 for (j = XVECLEN (x, i); --j >= 0; )
6403 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6404 orig_replacements);
6408 /* Change any replacements being done to *X to be done to *Y. */
6410 void
6411 move_replacements (rtx *x, rtx *y)
6413 int i;
6415 for (i = 0; i < n_replacements; i++)
6416 if (replacements[i].where == x)
6417 replacements[i].where = y;
6420 /* If LOC was scheduled to be replaced by something, return the replacement.
6421 Otherwise, return *LOC. */
6424 find_replacement (rtx *loc)
6426 struct replacement *r;
6428 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6430 rtx reloadreg = rld[r->what].reg_rtx;
6432 if (reloadreg && r->where == loc)
6434 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6435 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6437 return reloadreg;
6439 else if (reloadreg && GET_CODE (*loc) == SUBREG
6440 && r->where == &SUBREG_REG (*loc))
6442 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6443 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6445 return simplify_gen_subreg (GET_MODE (*loc), reloadreg,
6446 GET_MODE (SUBREG_REG (*loc)),
6447 SUBREG_BYTE (*loc));
6451 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6452 what's inside and make a new rtl if so. */
6453 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6454 || GET_CODE (*loc) == MULT)
6456 rtx x = find_replacement (&XEXP (*loc, 0));
6457 rtx y = find_replacement (&XEXP (*loc, 1));
6459 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6460 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6463 return *loc;
6466 /* Return nonzero if register in range [REGNO, ENDREGNO)
6467 appears either explicitly or implicitly in X
6468 other than being stored into (except for earlyclobber operands).
6470 References contained within the substructure at LOC do not count.
6471 LOC may be zero, meaning don't ignore anything.
6473 This is similar to refers_to_regno_p in rtlanal.c except that we
6474 look at equivalences for pseudos that didn't get hard registers. */
6476 static int
6477 refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6478 rtx x, rtx *loc)
6480 int i;
6481 unsigned int r;
6482 RTX_CODE code;
6483 const char *fmt;
6485 if (x == 0)
6486 return 0;
6488 repeat:
6489 code = GET_CODE (x);
6491 switch (code)
6493 case REG:
6494 r = REGNO (x);
6496 /* If this is a pseudo, a hard register must not have been allocated.
6497 X must therefore either be a constant or be in memory. */
6498 if (r >= FIRST_PSEUDO_REGISTER)
6500 if (reg_equiv_memory_loc (r))
6501 return refers_to_regno_for_reload_p (regno, endregno,
6502 reg_equiv_memory_loc (r),
6503 (rtx*) 0);
6505 gcc_assert (reg_equiv_constant (r) || reg_equiv_invariant (r));
6506 return 0;
6509 return (endregno > r
6510 && regno < r + (r < FIRST_PSEUDO_REGISTER
6511 ? hard_regno_nregs[r][GET_MODE (x)]
6512 : 1));
6514 case SUBREG:
6515 /* If this is a SUBREG of a hard reg, we can see exactly which
6516 registers are being modified. Otherwise, handle normally. */
6517 if (REG_P (SUBREG_REG (x))
6518 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6520 unsigned int inner_regno = subreg_regno (x);
6521 unsigned int inner_endregno
6522 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6523 ? subreg_nregs (x) : 1);
6525 return endregno > inner_regno && regno < inner_endregno;
6527 break;
6529 case CLOBBER:
6530 case SET:
6531 if (&SET_DEST (x) != loc
6532 /* Note setting a SUBREG counts as referring to the REG it is in for
6533 a pseudo but not for hard registers since we can
6534 treat each word individually. */
6535 && ((GET_CODE (SET_DEST (x)) == SUBREG
6536 && loc != &SUBREG_REG (SET_DEST (x))
6537 && REG_P (SUBREG_REG (SET_DEST (x)))
6538 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6539 && refers_to_regno_for_reload_p (regno, endregno,
6540 SUBREG_REG (SET_DEST (x)),
6541 loc))
6542 /* If the output is an earlyclobber operand, this is
6543 a conflict. */
6544 || ((!REG_P (SET_DEST (x))
6545 || earlyclobber_operand_p (SET_DEST (x)))
6546 && refers_to_regno_for_reload_p (regno, endregno,
6547 SET_DEST (x), loc))))
6548 return 1;
6550 if (code == CLOBBER || loc == &SET_SRC (x))
6551 return 0;
6552 x = SET_SRC (x);
6553 goto repeat;
6555 default:
6556 break;
6559 /* X does not match, so try its subexpressions. */
6561 fmt = GET_RTX_FORMAT (code);
6562 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6564 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6566 if (i == 0)
6568 x = XEXP (x, 0);
6569 goto repeat;
6571 else
6572 if (refers_to_regno_for_reload_p (regno, endregno,
6573 XEXP (x, i), loc))
6574 return 1;
6576 else if (fmt[i] == 'E')
6578 int j;
6579 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6580 if (loc != &XVECEXP (x, i, j)
6581 && refers_to_regno_for_reload_p (regno, endregno,
6582 XVECEXP (x, i, j), loc))
6583 return 1;
6586 return 0;
6589 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6590 we check if any register number in X conflicts with the relevant register
6591 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6592 contains a MEM (we don't bother checking for memory addresses that can't
6593 conflict because we expect this to be a rare case.
6595 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6596 that we look at equivalences for pseudos that didn't get hard registers. */
6599 reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6601 int regno, endregno;
6603 /* Overly conservative. */
6604 if (GET_CODE (x) == STRICT_LOW_PART
6605 || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
6606 x = XEXP (x, 0);
6608 /* If either argument is a constant, then modifying X can not affect IN. */
6609 if (CONSTANT_P (x) || CONSTANT_P (in))
6610 return 0;
6611 else if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
6612 return refers_to_mem_for_reload_p (in);
6613 else if (GET_CODE (x) == SUBREG)
6615 regno = REGNO (SUBREG_REG (x));
6616 if (regno < FIRST_PSEUDO_REGISTER)
6617 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6618 GET_MODE (SUBREG_REG (x)),
6619 SUBREG_BYTE (x),
6620 GET_MODE (x));
6621 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6622 ? subreg_nregs (x) : 1);
6624 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6626 else if (REG_P (x))
6628 regno = REGNO (x);
6630 /* If this is a pseudo, it must not have been assigned a hard register.
6631 Therefore, it must either be in memory or be a constant. */
6633 if (regno >= FIRST_PSEUDO_REGISTER)
6635 if (reg_equiv_memory_loc (regno))
6636 return refers_to_mem_for_reload_p (in);
6637 gcc_assert (reg_equiv_constant (regno));
6638 return 0;
6641 endregno = END_HARD_REGNO (x);
6643 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6645 else if (MEM_P (x))
6646 return refers_to_mem_for_reload_p (in);
6647 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6648 || GET_CODE (x) == CC0)
6649 return reg_mentioned_p (x, in);
6650 else
6652 gcc_assert (GET_CODE (x) == PLUS);
6654 /* We actually want to know if X is mentioned somewhere inside IN.
6655 We must not say that (plus (sp) (const_int 124)) is in
6656 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6657 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6658 into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
6659 while (MEM_P (in))
6660 in = XEXP (in, 0);
6661 if (REG_P (in))
6662 return 0;
6663 else if (GET_CODE (in) == PLUS)
6664 return (rtx_equal_p (x, in)
6665 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6666 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6667 else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6668 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6671 gcc_unreachable ();
6674 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6675 registers. */
6677 static int
6678 refers_to_mem_for_reload_p (rtx x)
6680 const char *fmt;
6681 int i;
6683 if (MEM_P (x))
6684 return 1;
6686 if (REG_P (x))
6687 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6688 && reg_equiv_memory_loc (REGNO (x)));
6690 fmt = GET_RTX_FORMAT (GET_CODE (x));
6691 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6692 if (fmt[i] == 'e'
6693 && (MEM_P (XEXP (x, i))
6694 || refers_to_mem_for_reload_p (XEXP (x, i))))
6695 return 1;
6697 return 0;
6700 /* Check the insns before INSN to see if there is a suitable register
6701 containing the same value as GOAL.
6702 If OTHER is -1, look for a register in class RCLASS.
6703 Otherwise, just see if register number OTHER shares GOAL's value.
6705 Return an rtx for the register found, or zero if none is found.
6707 If RELOAD_REG_P is (short *)1,
6708 we reject any hard reg that appears in reload_reg_rtx
6709 because such a hard reg is also needed coming into this insn.
6711 If RELOAD_REG_P is any other nonzero value,
6712 it is a vector indexed by hard reg number
6713 and we reject any hard reg whose element in the vector is nonnegative
6714 as well as any that appears in reload_reg_rtx.
6716 If GOAL is zero, then GOALREG is a register number; we look
6717 for an equivalent for that register.
6719 MODE is the machine mode of the value we want an equivalence for.
6720 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6722 This function is used by jump.c as well as in the reload pass.
6724 If GOAL is the sum of the stack pointer and a constant, we treat it
6725 as if it were a constant except that sp is required to be unchanging. */
6728 find_equiv_reg (rtx goal, rtx insn, enum reg_class rclass, int other,
6729 short *reload_reg_p, int goalreg, enum machine_mode mode)
6731 rtx p = insn;
6732 rtx goaltry, valtry, value, where;
6733 rtx pat;
6734 int regno = -1;
6735 int valueno;
6736 int goal_mem = 0;
6737 int goal_const = 0;
6738 int goal_mem_addr_varies = 0;
6739 int need_stable_sp = 0;
6740 int nregs;
6741 int valuenregs;
6742 int num = 0;
6744 if (goal == 0)
6745 regno = goalreg;
6746 else if (REG_P (goal))
6747 regno = REGNO (goal);
6748 else if (MEM_P (goal))
6750 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6751 if (MEM_VOLATILE_P (goal))
6752 return 0;
6753 if (flag_float_store && SCALAR_FLOAT_MODE_P (GET_MODE (goal)))
6754 return 0;
6755 /* An address with side effects must be reexecuted. */
6756 switch (code)
6758 case POST_INC:
6759 case PRE_INC:
6760 case POST_DEC:
6761 case PRE_DEC:
6762 case POST_MODIFY:
6763 case PRE_MODIFY:
6764 return 0;
6765 default:
6766 break;
6768 goal_mem = 1;
6770 else if (CONSTANT_P (goal))
6771 goal_const = 1;
6772 else if (GET_CODE (goal) == PLUS
6773 && XEXP (goal, 0) == stack_pointer_rtx
6774 && CONSTANT_P (XEXP (goal, 1)))
6775 goal_const = need_stable_sp = 1;
6776 else if (GET_CODE (goal) == PLUS
6777 && XEXP (goal, 0) == frame_pointer_rtx
6778 && CONSTANT_P (XEXP (goal, 1)))
6779 goal_const = 1;
6780 else
6781 return 0;
6783 num = 0;
6784 /* Scan insns back from INSN, looking for one that copies
6785 a value into or out of GOAL.
6786 Stop and give up if we reach a label. */
6788 while (1)
6790 p = PREV_INSN (p);
6791 if (p && DEBUG_INSN_P (p))
6792 continue;
6793 num++;
6794 if (p == 0 || LABEL_P (p)
6795 || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
6796 return 0;
6798 /* Don't reuse register contents from before a setjmp-type
6799 function call; on the second return (from the longjmp) it
6800 might have been clobbered by a later reuse. It doesn't
6801 seem worthwhile to actually go and see if it is actually
6802 reused even if that information would be readily available;
6803 just don't reuse it across the setjmp call. */
6804 if (CALL_P (p) && find_reg_note (p, REG_SETJMP, NULL_RTX))
6805 return 0;
6807 if (NONJUMP_INSN_P (p)
6808 /* If we don't want spill regs ... */
6809 && (! (reload_reg_p != 0
6810 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6811 /* ... then ignore insns introduced by reload; they aren't
6812 useful and can cause results in reload_as_needed to be
6813 different from what they were when calculating the need for
6814 spills. If we notice an input-reload insn here, we will
6815 reject it below, but it might hide a usable equivalent.
6816 That makes bad code. It may even fail: perhaps no reg was
6817 spilled for this insn because it was assumed we would find
6818 that equivalent. */
6819 || INSN_UID (p) < reload_first_uid))
6821 rtx tem;
6822 pat = single_set (p);
6824 /* First check for something that sets some reg equal to GOAL. */
6825 if (pat != 0
6826 && ((regno >= 0
6827 && true_regnum (SET_SRC (pat)) == regno
6828 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6830 (regno >= 0
6831 && true_regnum (SET_DEST (pat)) == regno
6832 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6834 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6835 /* When looking for stack pointer + const,
6836 make sure we don't use a stack adjust. */
6837 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6838 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6839 || (goal_mem
6840 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6841 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6842 || (goal_mem
6843 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6844 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6845 /* If we are looking for a constant,
6846 and something equivalent to that constant was copied
6847 into a reg, we can use that reg. */
6848 || (goal_const && REG_NOTES (p) != 0
6849 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6850 && ((rtx_equal_p (XEXP (tem, 0), goal)
6851 && (valueno
6852 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6853 || (REG_P (SET_DEST (pat))
6854 && CONST_DOUBLE_AS_FLOAT_P (XEXP (tem, 0))
6855 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6856 && CONST_INT_P (goal)
6857 && 0 != (goaltry
6858 = operand_subword (XEXP (tem, 0), 0, 0,
6859 VOIDmode))
6860 && rtx_equal_p (goal, goaltry)
6861 && (valtry
6862 = operand_subword (SET_DEST (pat), 0, 0,
6863 VOIDmode))
6864 && (valueno = true_regnum (valtry)) >= 0)))
6865 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6866 NULL_RTX))
6867 && REG_P (SET_DEST (pat))
6868 && CONST_DOUBLE_AS_FLOAT_P (XEXP (tem, 0))
6869 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6870 && CONST_INT_P (goal)
6871 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6872 VOIDmode))
6873 && rtx_equal_p (goal, goaltry)
6874 && (valtry
6875 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6876 && (valueno = true_regnum (valtry)) >= 0)))
6878 if (other >= 0)
6880 if (valueno != other)
6881 continue;
6883 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6884 continue;
6885 else if (!in_hard_reg_set_p (reg_class_contents[(int) rclass],
6886 mode, valueno))
6887 continue;
6888 value = valtry;
6889 where = p;
6890 break;
6895 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6896 (or copying VALUE into GOAL, if GOAL is also a register).
6897 Now verify that VALUE is really valid. */
6899 /* VALUENO is the register number of VALUE; a hard register. */
6901 /* Don't try to re-use something that is killed in this insn. We want
6902 to be able to trust REG_UNUSED notes. */
6903 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6904 return 0;
6906 /* If we propose to get the value from the stack pointer or if GOAL is
6907 a MEM based on the stack pointer, we need a stable SP. */
6908 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6909 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6910 goal)))
6911 need_stable_sp = 1;
6913 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6914 if (GET_MODE (value) != mode)
6915 return 0;
6917 /* Reject VALUE if it was loaded from GOAL
6918 and is also a register that appears in the address of GOAL. */
6920 if (goal_mem && value == SET_DEST (single_set (where))
6921 && refers_to_regno_for_reload_p (valueno, end_hard_regno (mode, valueno),
6922 goal, (rtx*) 0))
6923 return 0;
6925 /* Reject registers that overlap GOAL. */
6927 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6928 nregs = hard_regno_nregs[regno][mode];
6929 else
6930 nregs = 1;
6931 valuenregs = hard_regno_nregs[valueno][mode];
6933 if (!goal_mem && !goal_const
6934 && regno + nregs > valueno && regno < valueno + valuenregs)
6935 return 0;
6937 /* Reject VALUE if it is one of the regs reserved for reloads.
6938 Reload1 knows how to reuse them anyway, and it would get
6939 confused if we allocated one without its knowledge.
6940 (Now that insns introduced by reload are ignored above,
6941 this case shouldn't happen, but I'm not positive.) */
6943 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6945 int i;
6946 for (i = 0; i < valuenregs; ++i)
6947 if (reload_reg_p[valueno + i] >= 0)
6948 return 0;
6951 /* Reject VALUE if it is a register being used for an input reload
6952 even if it is not one of those reserved. */
6954 if (reload_reg_p != 0)
6956 int i;
6957 for (i = 0; i < n_reloads; i++)
6958 if (rld[i].reg_rtx != 0 && rld[i].in)
6960 int regno1 = REGNO (rld[i].reg_rtx);
6961 int nregs1 = hard_regno_nregs[regno1]
6962 [GET_MODE (rld[i].reg_rtx)];
6963 if (regno1 < valueno + valuenregs
6964 && regno1 + nregs1 > valueno)
6965 return 0;
6969 if (goal_mem)
6970 /* We must treat frame pointer as varying here,
6971 since it can vary--in a nonlocal goto as generated by expand_goto. */
6972 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6974 /* Now verify that the values of GOAL and VALUE remain unaltered
6975 until INSN is reached. */
6977 p = insn;
6978 while (1)
6980 p = PREV_INSN (p);
6981 if (p == where)
6982 return value;
6984 /* Don't trust the conversion past a function call
6985 if either of the two is in a call-clobbered register, or memory. */
6986 if (CALL_P (p))
6988 int i;
6990 if (goal_mem || need_stable_sp)
6991 return 0;
6993 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6994 for (i = 0; i < nregs; ++i)
6995 if (call_used_regs[regno + i]
6996 || HARD_REGNO_CALL_PART_CLOBBERED (regno + i, mode))
6997 return 0;
6999 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
7000 for (i = 0; i < valuenregs; ++i)
7001 if (call_used_regs[valueno + i]
7002 || HARD_REGNO_CALL_PART_CLOBBERED (valueno + i, mode))
7003 return 0;
7006 if (INSN_P (p))
7008 pat = PATTERN (p);
7010 /* Watch out for unspec_volatile, and volatile asms. */
7011 if (volatile_insn_p (pat))
7012 return 0;
7014 /* If this insn P stores in either GOAL or VALUE, return 0.
7015 If GOAL is a memory ref and this insn writes memory, return 0.
7016 If GOAL is a memory ref and its address is not constant,
7017 and this insn P changes a register used in GOAL, return 0. */
7019 if (GET_CODE (pat) == COND_EXEC)
7020 pat = COND_EXEC_CODE (pat);
7021 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
7023 rtx dest = SET_DEST (pat);
7024 while (GET_CODE (dest) == SUBREG
7025 || GET_CODE (dest) == ZERO_EXTRACT
7026 || GET_CODE (dest) == STRICT_LOW_PART)
7027 dest = XEXP (dest, 0);
7028 if (REG_P (dest))
7030 int xregno = REGNO (dest);
7031 int xnregs;
7032 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
7033 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
7034 else
7035 xnregs = 1;
7036 if (xregno < regno + nregs && xregno + xnregs > regno)
7037 return 0;
7038 if (xregno < valueno + valuenregs
7039 && xregno + xnregs > valueno)
7040 return 0;
7041 if (goal_mem_addr_varies
7042 && reg_overlap_mentioned_for_reload_p (dest, goal))
7043 return 0;
7044 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
7045 return 0;
7047 else if (goal_mem && MEM_P (dest)
7048 && ! push_operand (dest, GET_MODE (dest)))
7049 return 0;
7050 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
7051 && reg_equiv_memory_loc (regno) != 0)
7052 return 0;
7053 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
7054 return 0;
7056 else if (GET_CODE (pat) == PARALLEL)
7058 int i;
7059 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
7061 rtx v1 = XVECEXP (pat, 0, i);
7062 if (GET_CODE (v1) == COND_EXEC)
7063 v1 = COND_EXEC_CODE (v1);
7064 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
7066 rtx dest = SET_DEST (v1);
7067 while (GET_CODE (dest) == SUBREG
7068 || GET_CODE (dest) == ZERO_EXTRACT
7069 || GET_CODE (dest) == STRICT_LOW_PART)
7070 dest = XEXP (dest, 0);
7071 if (REG_P (dest))
7073 int xregno = REGNO (dest);
7074 int xnregs;
7075 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
7076 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
7077 else
7078 xnregs = 1;
7079 if (xregno < regno + nregs
7080 && xregno + xnregs > regno)
7081 return 0;
7082 if (xregno < valueno + valuenregs
7083 && xregno + xnregs > valueno)
7084 return 0;
7085 if (goal_mem_addr_varies
7086 && reg_overlap_mentioned_for_reload_p (dest,
7087 goal))
7088 return 0;
7089 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
7090 return 0;
7092 else if (goal_mem && MEM_P (dest)
7093 && ! push_operand (dest, GET_MODE (dest)))
7094 return 0;
7095 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
7096 && reg_equiv_memory_loc (regno) != 0)
7097 return 0;
7098 else if (need_stable_sp
7099 && push_operand (dest, GET_MODE (dest)))
7100 return 0;
7105 if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
7107 rtx link;
7109 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
7110 link = XEXP (link, 1))
7112 pat = XEXP (link, 0);
7113 if (GET_CODE (pat) == CLOBBER)
7115 rtx dest = SET_DEST (pat);
7117 if (REG_P (dest))
7119 int xregno = REGNO (dest);
7120 int xnregs
7121 = hard_regno_nregs[xregno][GET_MODE (dest)];
7123 if (xregno < regno + nregs
7124 && xregno + xnregs > regno)
7125 return 0;
7126 else if (xregno < valueno + valuenregs
7127 && xregno + xnregs > valueno)
7128 return 0;
7129 else if (goal_mem_addr_varies
7130 && reg_overlap_mentioned_for_reload_p (dest,
7131 goal))
7132 return 0;
7135 else if (goal_mem && MEM_P (dest)
7136 && ! push_operand (dest, GET_MODE (dest)))
7137 return 0;
7138 else if (need_stable_sp
7139 && push_operand (dest, GET_MODE (dest)))
7140 return 0;
7145 #ifdef AUTO_INC_DEC
7146 /* If this insn auto-increments or auto-decrements
7147 either regno or valueno, return 0 now.
7148 If GOAL is a memory ref and its address is not constant,
7149 and this insn P increments a register used in GOAL, return 0. */
7151 rtx link;
7153 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
7154 if (REG_NOTE_KIND (link) == REG_INC
7155 && REG_P (XEXP (link, 0)))
7157 int incno = REGNO (XEXP (link, 0));
7158 if (incno < regno + nregs && incno >= regno)
7159 return 0;
7160 if (incno < valueno + valuenregs && incno >= valueno)
7161 return 0;
7162 if (goal_mem_addr_varies
7163 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
7164 goal))
7165 return 0;
7168 #endif
7173 /* Find a place where INCED appears in an increment or decrement operator
7174 within X, and return the amount INCED is incremented or decremented by.
7175 The value is always positive. */
7177 static int
7178 find_inc_amount (rtx x, rtx inced)
7180 enum rtx_code code = GET_CODE (x);
7181 const char *fmt;
7182 int i;
7184 if (code == MEM)
7186 rtx addr = XEXP (x, 0);
7187 if ((GET_CODE (addr) == PRE_DEC
7188 || GET_CODE (addr) == POST_DEC
7189 || GET_CODE (addr) == PRE_INC
7190 || GET_CODE (addr) == POST_INC)
7191 && XEXP (addr, 0) == inced)
7192 return GET_MODE_SIZE (GET_MODE (x));
7193 else if ((GET_CODE (addr) == PRE_MODIFY
7194 || GET_CODE (addr) == POST_MODIFY)
7195 && GET_CODE (XEXP (addr, 1)) == PLUS
7196 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
7197 && XEXP (addr, 0) == inced
7198 && CONST_INT_P (XEXP (XEXP (addr, 1), 1)))
7200 i = INTVAL (XEXP (XEXP (addr, 1), 1));
7201 return i < 0 ? -i : i;
7205 fmt = GET_RTX_FORMAT (code);
7206 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7208 if (fmt[i] == 'e')
7210 int tem = find_inc_amount (XEXP (x, i), inced);
7211 if (tem != 0)
7212 return tem;
7214 if (fmt[i] == 'E')
7216 int j;
7217 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7219 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
7220 if (tem != 0)
7221 return tem;
7226 return 0;
7229 /* Return 1 if registers from REGNO to ENDREGNO are the subjects of a
7230 REG_INC note in insn INSN. REGNO must refer to a hard register. */
7232 #ifdef AUTO_INC_DEC
7233 static int
7234 reg_inc_found_and_valid_p (unsigned int regno, unsigned int endregno,
7235 rtx insn)
7237 rtx link;
7239 gcc_assert (insn);
7241 if (! INSN_P (insn))
7242 return 0;
7244 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
7245 if (REG_NOTE_KIND (link) == REG_INC)
7247 unsigned int test = (int) REGNO (XEXP (link, 0));
7248 if (test >= regno && test < endregno)
7249 return 1;
7251 return 0;
7253 #else
7255 #define reg_inc_found_and_valid_p(regno,endregno,insn) 0
7257 #endif
7259 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
7260 If SETS is 1, also consider SETs. If SETS is 2, enable checking
7261 REG_INC. REGNO must refer to a hard register. */
7264 regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
7265 int sets)
7267 unsigned int nregs, endregno;
7269 /* regno must be a hard register. */
7270 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
7272 nregs = hard_regno_nregs[regno][mode];
7273 endregno = regno + nregs;
7275 if ((GET_CODE (PATTERN (insn)) == CLOBBER
7276 || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7277 && REG_P (XEXP (PATTERN (insn), 0)))
7279 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
7281 return test >= regno && test < endregno;
7284 if (sets == 2 && reg_inc_found_and_valid_p (regno, endregno, insn))
7285 return 1;
7287 if (GET_CODE (PATTERN (insn)) == PARALLEL)
7289 int i = XVECLEN (PATTERN (insn), 0) - 1;
7291 for (; i >= 0; i--)
7293 rtx elt = XVECEXP (PATTERN (insn), 0, i);
7294 if ((GET_CODE (elt) == CLOBBER
7295 || (sets == 1 && GET_CODE (elt) == SET))
7296 && REG_P (XEXP (elt, 0)))
7298 unsigned int test = REGNO (XEXP (elt, 0));
7300 if (test >= regno && test < endregno)
7301 return 1;
7303 if (sets == 2
7304 && reg_inc_found_and_valid_p (regno, endregno, elt))
7305 return 1;
7309 return 0;
7312 /* Find the low part, with mode MODE, of a hard regno RELOADREG. */
7314 reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
7316 int regno;
7318 if (GET_MODE (reloadreg) == mode)
7319 return reloadreg;
7321 regno = REGNO (reloadreg);
7323 if (REG_WORDS_BIG_ENDIAN)
7324 regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
7325 - (int) hard_regno_nregs[regno][mode];
7327 return gen_rtx_REG (mode, regno);
7330 static const char *const reload_when_needed_name[] =
7332 "RELOAD_FOR_INPUT",
7333 "RELOAD_FOR_OUTPUT",
7334 "RELOAD_FOR_INSN",
7335 "RELOAD_FOR_INPUT_ADDRESS",
7336 "RELOAD_FOR_INPADDR_ADDRESS",
7337 "RELOAD_FOR_OUTPUT_ADDRESS",
7338 "RELOAD_FOR_OUTADDR_ADDRESS",
7339 "RELOAD_FOR_OPERAND_ADDRESS",
7340 "RELOAD_FOR_OPADDR_ADDR",
7341 "RELOAD_OTHER",
7342 "RELOAD_FOR_OTHER_ADDRESS"
7345 /* These functions are used to print the variables set by 'find_reloads' */
7347 DEBUG_FUNCTION void
7348 debug_reload_to_stream (FILE *f)
7350 int r;
7351 const char *prefix;
7353 if (! f)
7354 f = stderr;
7355 for (r = 0; r < n_reloads; r++)
7357 fprintf (f, "Reload %d: ", r);
7359 if (rld[r].in != 0)
7361 fprintf (f, "reload_in (%s) = ",
7362 GET_MODE_NAME (rld[r].inmode));
7363 print_inline_rtx (f, rld[r].in, 24);
7364 fprintf (f, "\n\t");
7367 if (rld[r].out != 0)
7369 fprintf (f, "reload_out (%s) = ",
7370 GET_MODE_NAME (rld[r].outmode));
7371 print_inline_rtx (f, rld[r].out, 24);
7372 fprintf (f, "\n\t");
7375 fprintf (f, "%s, ", reg_class_names[(int) rld[r].rclass]);
7377 fprintf (f, "%s (opnum = %d)",
7378 reload_when_needed_name[(int) rld[r].when_needed],
7379 rld[r].opnum);
7381 if (rld[r].optional)
7382 fprintf (f, ", optional");
7384 if (rld[r].nongroup)
7385 fprintf (f, ", nongroup");
7387 if (rld[r].inc != 0)
7388 fprintf (f, ", inc by %d", rld[r].inc);
7390 if (rld[r].nocombine)
7391 fprintf (f, ", can't combine");
7393 if (rld[r].secondary_p)
7394 fprintf (f, ", secondary_reload_p");
7396 if (rld[r].in_reg != 0)
7398 fprintf (f, "\n\treload_in_reg: ");
7399 print_inline_rtx (f, rld[r].in_reg, 24);
7402 if (rld[r].out_reg != 0)
7404 fprintf (f, "\n\treload_out_reg: ");
7405 print_inline_rtx (f, rld[r].out_reg, 24);
7408 if (rld[r].reg_rtx != 0)
7410 fprintf (f, "\n\treload_reg_rtx: ");
7411 print_inline_rtx (f, rld[r].reg_rtx, 24);
7414 prefix = "\n\t";
7415 if (rld[r].secondary_in_reload != -1)
7417 fprintf (f, "%ssecondary_in_reload = %d",
7418 prefix, rld[r].secondary_in_reload);
7419 prefix = ", ";
7422 if (rld[r].secondary_out_reload != -1)
7423 fprintf (f, "%ssecondary_out_reload = %d\n",
7424 prefix, rld[r].secondary_out_reload);
7426 prefix = "\n\t";
7427 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7429 fprintf (f, "%ssecondary_in_icode = %s", prefix,
7430 insn_data[rld[r].secondary_in_icode].name);
7431 prefix = ", ";
7434 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7435 fprintf (f, "%ssecondary_out_icode = %s", prefix,
7436 insn_data[rld[r].secondary_out_icode].name);
7438 fprintf (f, "\n");
7442 DEBUG_FUNCTION void
7443 debug_reload (void)
7445 debug_reload_to_stream (stderr);