1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /*@@ This file should be rewritten to use an arbitrary precision
21 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
22 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
23 @@ The routines that translate from the ap rep should
24 @@ warn if precision et. al. is lost.
25 @@ This would also make life easier when this technology is used
26 @@ for cross-compilers. */
28 /* The entry points in this file are fold, size_int_wide and size_binop.
30 fold takes a tree as argument and returns a simplified tree.
32 size_binop takes a tree code for an arithmetic operation
33 and two operands that are trees, and produces a tree for the
34 result, assuming the type comes from `sizetype'.
36 size_int takes an integer value, and creates a tree constant
37 with type from `sizetype'.
39 Note: Since the folders get called on non-gimple code as well as
40 gimple code, we need to handle GIMPLE tuples as well as their
41 corresponding tree equivalents. */
45 #include "coretypes.h"
49 #include "stor-layout.h"
51 #include "tree-iterator.h"
57 #include "diagnostic-core.h"
59 #include "langhooks.h"
61 #include "basic-block.h"
62 #include "tree-ssa-alias.h"
63 #include "internal-fn.h"
65 #include "gimple-expr.h"
70 #include "hash-table.h" /* Required for ENABLE_FOLD_CHECKING. */
72 /* Nonzero if we are folding constants inside an initializer; zero
74 int folding_initializer
= 0;
76 /* The following constants represent a bit based encoding of GCC's
77 comparison operators. This encoding simplifies transformations
78 on relational comparison operators, such as AND and OR. */
79 enum comparison_code
{
98 static bool negate_mathfn_p (enum built_in_function
);
99 static bool negate_expr_p (tree
);
100 static tree
negate_expr (tree
);
101 static tree
split_tree (tree
, enum tree_code
, tree
*, tree
*, tree
*, int);
102 static tree
associate_trees (location_t
, tree
, tree
, enum tree_code
, tree
);
103 static tree
const_binop (enum tree_code
, tree
, tree
);
104 static enum comparison_code
comparison_to_compcode (enum tree_code
);
105 static enum tree_code
compcode_to_comparison (enum comparison_code
);
106 static int operand_equal_for_comparison_p (tree
, tree
, tree
);
107 static int twoval_comparison_p (tree
, tree
*, tree
*, int *);
108 static tree
eval_subst (location_t
, tree
, tree
, tree
, tree
, tree
);
109 static tree
pedantic_omit_one_operand_loc (location_t
, tree
, tree
, tree
);
110 static tree
distribute_bit_expr (location_t
, enum tree_code
, tree
, tree
, tree
);
111 static tree
make_bit_field_ref (location_t
, tree
, tree
,
112 HOST_WIDE_INT
, HOST_WIDE_INT
, int);
113 static tree
optimize_bit_field_compare (location_t
, enum tree_code
,
115 static tree
decode_field_reference (location_t
, tree
, HOST_WIDE_INT
*,
117 enum machine_mode
*, int *, int *,
119 static int all_ones_mask_p (const_tree
, int);
120 static tree
sign_bit_p (tree
, const_tree
);
121 static int simple_operand_p (const_tree
);
122 static bool simple_operand_p_2 (tree
);
123 static tree
range_binop (enum tree_code
, tree
, tree
, int, tree
, int);
124 static tree
range_predecessor (tree
);
125 static tree
range_successor (tree
);
126 static tree
fold_range_test (location_t
, enum tree_code
, tree
, tree
, tree
);
127 static tree
fold_cond_expr_with_comparison (location_t
, tree
, tree
, tree
, tree
);
128 static tree
unextend (tree
, int, int, tree
);
129 static tree
optimize_minmax_comparison (location_t
, enum tree_code
,
131 static tree
extract_muldiv (tree
, tree
, enum tree_code
, tree
, bool *);
132 static tree
extract_muldiv_1 (tree
, tree
, enum tree_code
, tree
, bool *);
133 static tree
fold_binary_op_with_conditional_arg (location_t
,
134 enum tree_code
, tree
,
137 static tree
fold_mathfn_compare (location_t
,
138 enum built_in_function
, enum tree_code
,
140 static tree
fold_inf_compare (location_t
, enum tree_code
, tree
, tree
, tree
);
141 static tree
fold_div_compare (location_t
, enum tree_code
, tree
, tree
, tree
);
142 static bool reorder_operands_p (const_tree
, const_tree
);
143 static tree
fold_negate_const (tree
, tree
);
144 static tree
fold_not_const (const_tree
, tree
);
145 static tree
fold_relational_const (enum tree_code
, tree
, tree
, tree
);
146 static tree
fold_convert_const (enum tree_code
, tree
, tree
);
148 /* Return EXPR_LOCATION of T if it is not UNKNOWN_LOCATION.
149 Otherwise, return LOC. */
152 expr_location_or (tree t
, location_t loc
)
154 location_t tloc
= EXPR_LOCATION (t
);
155 return tloc
== UNKNOWN_LOCATION
? loc
: tloc
;
158 /* Similar to protected_set_expr_location, but never modify x in place,
159 if location can and needs to be set, unshare it. */
162 protected_set_expr_location_unshare (tree x
, location_t loc
)
164 if (CAN_HAVE_LOCATION_P (x
)
165 && EXPR_LOCATION (x
) != loc
166 && !(TREE_CODE (x
) == SAVE_EXPR
167 || TREE_CODE (x
) == TARGET_EXPR
168 || TREE_CODE (x
) == BIND_EXPR
))
171 SET_EXPR_LOCATION (x
, loc
);
176 /* If ARG2 divides ARG1 with zero remainder, carries out the division
177 of type CODE and returns the quotient.
178 Otherwise returns NULL_TREE. */
181 div_if_zero_remainder (enum tree_code code
, const_tree arg1
, const_tree arg2
)
186 /* The sign of the division is according to operand two, that
187 does the correct thing for POINTER_PLUS_EXPR where we want
188 a signed division. */
189 uns
= TYPE_UNSIGNED (TREE_TYPE (arg2
));
191 quo
= tree_to_double_int (arg1
).divmod (tree_to_double_int (arg2
),
195 return build_int_cst_wide (TREE_TYPE (arg1
), quo
.low
, quo
.high
);
200 /* This is nonzero if we should defer warnings about undefined
201 overflow. This facility exists because these warnings are a
202 special case. The code to estimate loop iterations does not want
203 to issue any warnings, since it works with expressions which do not
204 occur in user code. Various bits of cleanup code call fold(), but
205 only use the result if it has certain characteristics (e.g., is a
206 constant); that code only wants to issue a warning if the result is
209 static int fold_deferring_overflow_warnings
;
211 /* If a warning about undefined overflow is deferred, this is the
212 warning. Note that this may cause us to turn two warnings into
213 one, but that is fine since it is sufficient to only give one
214 warning per expression. */
216 static const char* fold_deferred_overflow_warning
;
218 /* If a warning about undefined overflow is deferred, this is the
219 level at which the warning should be emitted. */
221 static enum warn_strict_overflow_code fold_deferred_overflow_code
;
223 /* Start deferring overflow warnings. We could use a stack here to
224 permit nested calls, but at present it is not necessary. */
227 fold_defer_overflow_warnings (void)
229 ++fold_deferring_overflow_warnings
;
232 /* Stop deferring overflow warnings. If there is a pending warning,
233 and ISSUE is true, then issue the warning if appropriate. STMT is
234 the statement with which the warning should be associated (used for
235 location information); STMT may be NULL. CODE is the level of the
236 warning--a warn_strict_overflow_code value. This function will use
237 the smaller of CODE and the deferred code when deciding whether to
238 issue the warning. CODE may be zero to mean to always use the
242 fold_undefer_overflow_warnings (bool issue
, const_gimple stmt
, int code
)
247 gcc_assert (fold_deferring_overflow_warnings
> 0);
248 --fold_deferring_overflow_warnings
;
249 if (fold_deferring_overflow_warnings
> 0)
251 if (fold_deferred_overflow_warning
!= NULL
253 && code
< (int) fold_deferred_overflow_code
)
254 fold_deferred_overflow_code
= (enum warn_strict_overflow_code
) code
;
258 warnmsg
= fold_deferred_overflow_warning
;
259 fold_deferred_overflow_warning
= NULL
;
261 if (!issue
|| warnmsg
== NULL
)
264 if (gimple_no_warning_p (stmt
))
267 /* Use the smallest code level when deciding to issue the
269 if (code
== 0 || code
> (int) fold_deferred_overflow_code
)
270 code
= fold_deferred_overflow_code
;
272 if (!issue_strict_overflow_warning (code
))
276 locus
= input_location
;
278 locus
= gimple_location (stmt
);
279 warning_at (locus
, OPT_Wstrict_overflow
, "%s", warnmsg
);
282 /* Stop deferring overflow warnings, ignoring any deferred
286 fold_undefer_and_ignore_overflow_warnings (void)
288 fold_undefer_overflow_warnings (false, NULL
, 0);
291 /* Whether we are deferring overflow warnings. */
294 fold_deferring_overflow_warnings_p (void)
296 return fold_deferring_overflow_warnings
> 0;
299 /* This is called when we fold something based on the fact that signed
300 overflow is undefined. */
303 fold_overflow_warning (const char* gmsgid
, enum warn_strict_overflow_code wc
)
305 if (fold_deferring_overflow_warnings
> 0)
307 if (fold_deferred_overflow_warning
== NULL
308 || wc
< fold_deferred_overflow_code
)
310 fold_deferred_overflow_warning
= gmsgid
;
311 fold_deferred_overflow_code
= wc
;
314 else if (issue_strict_overflow_warning (wc
))
315 warning (OPT_Wstrict_overflow
, gmsgid
);
318 /* Return true if the built-in mathematical function specified by CODE
319 is odd, i.e. -f(x) == f(-x). */
322 negate_mathfn_p (enum built_in_function code
)
326 CASE_FLT_FN (BUILT_IN_ASIN
):
327 CASE_FLT_FN (BUILT_IN_ASINH
):
328 CASE_FLT_FN (BUILT_IN_ATAN
):
329 CASE_FLT_FN (BUILT_IN_ATANH
):
330 CASE_FLT_FN (BUILT_IN_CASIN
):
331 CASE_FLT_FN (BUILT_IN_CASINH
):
332 CASE_FLT_FN (BUILT_IN_CATAN
):
333 CASE_FLT_FN (BUILT_IN_CATANH
):
334 CASE_FLT_FN (BUILT_IN_CBRT
):
335 CASE_FLT_FN (BUILT_IN_CPROJ
):
336 CASE_FLT_FN (BUILT_IN_CSIN
):
337 CASE_FLT_FN (BUILT_IN_CSINH
):
338 CASE_FLT_FN (BUILT_IN_CTAN
):
339 CASE_FLT_FN (BUILT_IN_CTANH
):
340 CASE_FLT_FN (BUILT_IN_ERF
):
341 CASE_FLT_FN (BUILT_IN_LLROUND
):
342 CASE_FLT_FN (BUILT_IN_LROUND
):
343 CASE_FLT_FN (BUILT_IN_ROUND
):
344 CASE_FLT_FN (BUILT_IN_SIN
):
345 CASE_FLT_FN (BUILT_IN_SINH
):
346 CASE_FLT_FN (BUILT_IN_TAN
):
347 CASE_FLT_FN (BUILT_IN_TANH
):
348 CASE_FLT_FN (BUILT_IN_TRUNC
):
351 CASE_FLT_FN (BUILT_IN_LLRINT
):
352 CASE_FLT_FN (BUILT_IN_LRINT
):
353 CASE_FLT_FN (BUILT_IN_NEARBYINT
):
354 CASE_FLT_FN (BUILT_IN_RINT
):
355 return !flag_rounding_math
;
363 /* Check whether we may negate an integer constant T without causing
367 may_negate_without_overflow_p (const_tree t
)
369 unsigned HOST_WIDE_INT val
;
373 gcc_assert (TREE_CODE (t
) == INTEGER_CST
);
375 type
= TREE_TYPE (t
);
376 if (TYPE_UNSIGNED (type
))
379 prec
= TYPE_PRECISION (type
);
380 if (prec
> HOST_BITS_PER_WIDE_INT
)
382 if (TREE_INT_CST_LOW (t
) != 0)
384 prec
-= HOST_BITS_PER_WIDE_INT
;
385 val
= TREE_INT_CST_HIGH (t
);
388 val
= TREE_INT_CST_LOW (t
);
389 if (prec
< HOST_BITS_PER_WIDE_INT
)
390 val
&= ((unsigned HOST_WIDE_INT
) 1 << prec
) - 1;
391 return val
!= ((unsigned HOST_WIDE_INT
) 1 << (prec
- 1));
394 /* Determine whether an expression T can be cheaply negated using
395 the function negate_expr without introducing undefined overflow. */
398 negate_expr_p (tree t
)
405 type
= TREE_TYPE (t
);
408 switch (TREE_CODE (t
))
411 if (TYPE_OVERFLOW_WRAPS (type
))
414 /* Check that -CST will not overflow type. */
415 return may_negate_without_overflow_p (t
);
417 return (INTEGRAL_TYPE_P (type
)
418 && TYPE_OVERFLOW_WRAPS (type
));
425 /* We want to canonicalize to positive real constants. Pretend
426 that only negative ones can be easily negated. */
427 return REAL_VALUE_NEGATIVE (TREE_REAL_CST (t
));
430 return negate_expr_p (TREE_REALPART (t
))
431 && negate_expr_p (TREE_IMAGPART (t
));
435 if (FLOAT_TYPE_P (TREE_TYPE (type
)) || TYPE_OVERFLOW_WRAPS (type
))
438 int count
= TYPE_VECTOR_SUBPARTS (type
), i
;
440 for (i
= 0; i
< count
; i
++)
441 if (!negate_expr_p (VECTOR_CST_ELT (t
, i
)))
448 return negate_expr_p (TREE_OPERAND (t
, 0))
449 && negate_expr_p (TREE_OPERAND (t
, 1));
452 return negate_expr_p (TREE_OPERAND (t
, 0));
455 if (HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type
))
456 || HONOR_SIGNED_ZEROS (TYPE_MODE (type
)))
458 /* -(A + B) -> (-B) - A. */
459 if (negate_expr_p (TREE_OPERAND (t
, 1))
460 && reorder_operands_p (TREE_OPERAND (t
, 0),
461 TREE_OPERAND (t
, 1)))
463 /* -(A + B) -> (-A) - B. */
464 return negate_expr_p (TREE_OPERAND (t
, 0));
467 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
468 return !HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type
))
469 && !HONOR_SIGNED_ZEROS (TYPE_MODE (type
))
470 && reorder_operands_p (TREE_OPERAND (t
, 0),
471 TREE_OPERAND (t
, 1));
474 if (TYPE_UNSIGNED (TREE_TYPE (t
)))
480 if (! HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (TREE_TYPE (t
))))
481 return negate_expr_p (TREE_OPERAND (t
, 1))
482 || negate_expr_p (TREE_OPERAND (t
, 0));
488 /* In general we can't negate A / B, because if A is INT_MIN and
489 B is 1, we may turn this into INT_MIN / -1 which is undefined
490 and actually traps on some architectures. But if overflow is
491 undefined, we can negate, because - (INT_MIN / 1) is an
493 if (INTEGRAL_TYPE_P (TREE_TYPE (t
)))
495 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t
)))
497 /* If overflow is undefined then we have to be careful because
498 we ask whether it's ok to associate the negate with the
499 division which is not ok for example for
500 -((a - b) / c) where (-(a - b)) / c may invoke undefined
501 overflow because of negating INT_MIN. So do not use
502 negate_expr_p here but open-code the two important cases. */
503 if (TREE_CODE (TREE_OPERAND (t
, 0)) == NEGATE_EXPR
504 || (TREE_CODE (TREE_OPERAND (t
, 0)) == INTEGER_CST
505 && may_negate_without_overflow_p (TREE_OPERAND (t
, 0))))
508 else if (negate_expr_p (TREE_OPERAND (t
, 0)))
510 return negate_expr_p (TREE_OPERAND (t
, 1));
513 /* Negate -((double)float) as (double)(-float). */
514 if (TREE_CODE (type
) == REAL_TYPE
)
516 tree tem
= strip_float_extensions (t
);
518 return negate_expr_p (tem
);
523 /* Negate -f(x) as f(-x). */
524 if (negate_mathfn_p (builtin_mathfn_code (t
)))
525 return negate_expr_p (CALL_EXPR_ARG (t
, 0));
529 /* Optimize -((int)x >> 31) into (unsigned)x >> 31. */
530 if (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
)
532 tree op1
= TREE_OPERAND (t
, 1);
533 if (TREE_INT_CST_HIGH (op1
) == 0
534 && (unsigned HOST_WIDE_INT
) (TYPE_PRECISION (type
) - 1)
535 == TREE_INT_CST_LOW (op1
))
546 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
547 simplification is possible.
548 If negate_expr_p would return true for T, NULL_TREE will never be
552 fold_negate_expr (location_t loc
, tree t
)
554 tree type
= TREE_TYPE (t
);
557 switch (TREE_CODE (t
))
559 /* Convert - (~A) to A + 1. */
561 if (INTEGRAL_TYPE_P (type
))
562 return fold_build2_loc (loc
, PLUS_EXPR
, type
, TREE_OPERAND (t
, 0),
563 build_one_cst (type
));
567 tem
= fold_negate_const (t
, type
);
568 if (TREE_OVERFLOW (tem
) == TREE_OVERFLOW (t
)
569 || !TYPE_OVERFLOW_TRAPS (type
))
574 tem
= fold_negate_const (t
, type
);
575 /* Two's complement FP formats, such as c4x, may overflow. */
576 if (!TREE_OVERFLOW (tem
) || !flag_trapping_math
)
581 tem
= fold_negate_const (t
, type
);
586 tree rpart
= negate_expr (TREE_REALPART (t
));
587 tree ipart
= negate_expr (TREE_IMAGPART (t
));
589 if ((TREE_CODE (rpart
) == REAL_CST
590 && TREE_CODE (ipart
) == REAL_CST
)
591 || (TREE_CODE (rpart
) == INTEGER_CST
592 && TREE_CODE (ipart
) == INTEGER_CST
))
593 return build_complex (type
, rpart
, ipart
);
599 int count
= TYPE_VECTOR_SUBPARTS (type
), i
;
600 tree
*elts
= XALLOCAVEC (tree
, count
);
602 for (i
= 0; i
< count
; i
++)
604 elts
[i
] = fold_negate_expr (loc
, VECTOR_CST_ELT (t
, i
));
605 if (elts
[i
] == NULL_TREE
)
609 return build_vector (type
, elts
);
613 if (negate_expr_p (t
))
614 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
,
615 fold_negate_expr (loc
, TREE_OPERAND (t
, 0)),
616 fold_negate_expr (loc
, TREE_OPERAND (t
, 1)));
620 if (negate_expr_p (t
))
621 return fold_build1_loc (loc
, CONJ_EXPR
, type
,
622 fold_negate_expr (loc
, TREE_OPERAND (t
, 0)));
626 return TREE_OPERAND (t
, 0);
629 if (!HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type
))
630 && !HONOR_SIGNED_ZEROS (TYPE_MODE (type
)))
632 /* -(A + B) -> (-B) - A. */
633 if (negate_expr_p (TREE_OPERAND (t
, 1))
634 && reorder_operands_p (TREE_OPERAND (t
, 0),
635 TREE_OPERAND (t
, 1)))
637 tem
= negate_expr (TREE_OPERAND (t
, 1));
638 return fold_build2_loc (loc
, MINUS_EXPR
, type
,
639 tem
, TREE_OPERAND (t
, 0));
642 /* -(A + B) -> (-A) - B. */
643 if (negate_expr_p (TREE_OPERAND (t
, 0)))
645 tem
= negate_expr (TREE_OPERAND (t
, 0));
646 return fold_build2_loc (loc
, MINUS_EXPR
, type
,
647 tem
, TREE_OPERAND (t
, 1));
653 /* - (A - B) -> B - A */
654 if (!HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type
))
655 && !HONOR_SIGNED_ZEROS (TYPE_MODE (type
))
656 && reorder_operands_p (TREE_OPERAND (t
, 0), TREE_OPERAND (t
, 1)))
657 return fold_build2_loc (loc
, MINUS_EXPR
, type
,
658 TREE_OPERAND (t
, 1), TREE_OPERAND (t
, 0));
662 if (TYPE_UNSIGNED (type
))
668 if (! HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type
)))
670 tem
= TREE_OPERAND (t
, 1);
671 if (negate_expr_p (tem
))
672 return fold_build2_loc (loc
, TREE_CODE (t
), type
,
673 TREE_OPERAND (t
, 0), negate_expr (tem
));
674 tem
= TREE_OPERAND (t
, 0);
675 if (negate_expr_p (tem
))
676 return fold_build2_loc (loc
, TREE_CODE (t
), type
,
677 negate_expr (tem
), TREE_OPERAND (t
, 1));
684 /* In general we can't negate A / B, because if A is INT_MIN and
685 B is 1, we may turn this into INT_MIN / -1 which is undefined
686 and actually traps on some architectures. But if overflow is
687 undefined, we can negate, because - (INT_MIN / 1) is an
689 if (!INTEGRAL_TYPE_P (type
) || TYPE_OVERFLOW_UNDEFINED (type
))
691 const char * const warnmsg
= G_("assuming signed overflow does not "
692 "occur when negating a division");
693 tem
= TREE_OPERAND (t
, 1);
694 if (negate_expr_p (tem
))
696 if (INTEGRAL_TYPE_P (type
)
697 && (TREE_CODE (tem
) != INTEGER_CST
698 || integer_onep (tem
)))
699 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_MISC
);
700 return fold_build2_loc (loc
, TREE_CODE (t
), type
,
701 TREE_OPERAND (t
, 0), negate_expr (tem
));
703 /* If overflow is undefined then we have to be careful because
704 we ask whether it's ok to associate the negate with the
705 division which is not ok for example for
706 -((a - b) / c) where (-(a - b)) / c may invoke undefined
707 overflow because of negating INT_MIN. So do not use
708 negate_expr_p here but open-code the two important cases. */
709 tem
= TREE_OPERAND (t
, 0);
710 if ((INTEGRAL_TYPE_P (type
)
711 && (TREE_CODE (tem
) == NEGATE_EXPR
712 || (TREE_CODE (tem
) == INTEGER_CST
713 && may_negate_without_overflow_p (tem
))))
714 || !INTEGRAL_TYPE_P (type
))
715 return fold_build2_loc (loc
, TREE_CODE (t
), type
,
716 negate_expr (tem
), TREE_OPERAND (t
, 1));
721 /* Convert -((double)float) into (double)(-float). */
722 if (TREE_CODE (type
) == REAL_TYPE
)
724 tem
= strip_float_extensions (t
);
725 if (tem
!= t
&& negate_expr_p (tem
))
726 return fold_convert_loc (loc
, type
, negate_expr (tem
));
731 /* Negate -f(x) as f(-x). */
732 if (negate_mathfn_p (builtin_mathfn_code (t
))
733 && negate_expr_p (CALL_EXPR_ARG (t
, 0)))
737 fndecl
= get_callee_fndecl (t
);
738 arg
= negate_expr (CALL_EXPR_ARG (t
, 0));
739 return build_call_expr_loc (loc
, fndecl
, 1, arg
);
744 /* Optimize -((int)x >> 31) into (unsigned)x >> 31. */
745 if (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
)
747 tree op1
= TREE_OPERAND (t
, 1);
748 if (TREE_INT_CST_HIGH (op1
) == 0
749 && (unsigned HOST_WIDE_INT
) (TYPE_PRECISION (type
) - 1)
750 == TREE_INT_CST_LOW (op1
))
752 tree ntype
= TYPE_UNSIGNED (type
)
753 ? signed_type_for (type
)
754 : unsigned_type_for (type
);
755 tree temp
= fold_convert_loc (loc
, ntype
, TREE_OPERAND (t
, 0));
756 temp
= fold_build2_loc (loc
, RSHIFT_EXPR
, ntype
, temp
, op1
);
757 return fold_convert_loc (loc
, type
, temp
);
769 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T can not be
770 negated in a simpler way. Also allow for T to be NULL_TREE, in which case
782 loc
= EXPR_LOCATION (t
);
783 type
= TREE_TYPE (t
);
786 tem
= fold_negate_expr (loc
, t
);
788 tem
= build1_loc (loc
, NEGATE_EXPR
, TREE_TYPE (t
), t
);
789 return fold_convert_loc (loc
, type
, tem
);
792 /* Split a tree IN into a constant, literal and variable parts that could be
793 combined with CODE to make IN. "constant" means an expression with
794 TREE_CONSTANT but that isn't an actual constant. CODE must be a
795 commutative arithmetic operation. Store the constant part into *CONP,
796 the literal in *LITP and return the variable part. If a part isn't
797 present, set it to null. If the tree does not decompose in this way,
798 return the entire tree as the variable part and the other parts as null.
800 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
801 case, we negate an operand that was subtracted. Except if it is a
802 literal for which we use *MINUS_LITP instead.
804 If NEGATE_P is true, we are negating all of IN, again except a literal
805 for which we use *MINUS_LITP instead.
807 If IN is itself a literal or constant, return it as appropriate.
809 Note that we do not guarantee that any of the three values will be the
810 same type as IN, but they will have the same signedness and mode. */
813 split_tree (tree in
, enum tree_code code
, tree
*conp
, tree
*litp
,
814 tree
*minus_litp
, int negate_p
)
822 /* Strip any conversions that don't change the machine mode or signedness. */
823 STRIP_SIGN_NOPS (in
);
825 if (TREE_CODE (in
) == INTEGER_CST
|| TREE_CODE (in
) == REAL_CST
826 || TREE_CODE (in
) == FIXED_CST
)
828 else if (TREE_CODE (in
) == code
829 || ((! FLOAT_TYPE_P (TREE_TYPE (in
)) || flag_associative_math
)
830 && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in
))
831 /* We can associate addition and subtraction together (even
832 though the C standard doesn't say so) for integers because
833 the value is not affected. For reals, the value might be
834 affected, so we can't. */
835 && ((code
== PLUS_EXPR
&& TREE_CODE (in
) == MINUS_EXPR
)
836 || (code
== MINUS_EXPR
&& TREE_CODE (in
) == PLUS_EXPR
))))
838 tree op0
= TREE_OPERAND (in
, 0);
839 tree op1
= TREE_OPERAND (in
, 1);
840 int neg1_p
= TREE_CODE (in
) == MINUS_EXPR
;
841 int neg_litp_p
= 0, neg_conp_p
= 0, neg_var_p
= 0;
843 /* First see if either of the operands is a literal, then a constant. */
844 if (TREE_CODE (op0
) == INTEGER_CST
|| TREE_CODE (op0
) == REAL_CST
845 || TREE_CODE (op0
) == FIXED_CST
)
846 *litp
= op0
, op0
= 0;
847 else if (TREE_CODE (op1
) == INTEGER_CST
|| TREE_CODE (op1
) == REAL_CST
848 || TREE_CODE (op1
) == FIXED_CST
)
849 *litp
= op1
, neg_litp_p
= neg1_p
, op1
= 0;
851 if (op0
!= 0 && TREE_CONSTANT (op0
))
852 *conp
= op0
, op0
= 0;
853 else if (op1
!= 0 && TREE_CONSTANT (op1
))
854 *conp
= op1
, neg_conp_p
= neg1_p
, op1
= 0;
856 /* If we haven't dealt with either operand, this is not a case we can
857 decompose. Otherwise, VAR is either of the ones remaining, if any. */
858 if (op0
!= 0 && op1
!= 0)
863 var
= op1
, neg_var_p
= neg1_p
;
865 /* Now do any needed negations. */
867 *minus_litp
= *litp
, *litp
= 0;
869 *conp
= negate_expr (*conp
);
871 var
= negate_expr (var
);
873 else if (TREE_CODE (in
) == BIT_NOT_EXPR
874 && code
== PLUS_EXPR
)
876 /* -X - 1 is folded to ~X, undo that here. */
877 *minus_litp
= build_one_cst (TREE_TYPE (in
));
878 var
= negate_expr (TREE_OPERAND (in
, 0));
880 else if (TREE_CONSTANT (in
))
888 *minus_litp
= *litp
, *litp
= 0;
889 else if (*minus_litp
)
890 *litp
= *minus_litp
, *minus_litp
= 0;
891 *conp
= negate_expr (*conp
);
892 var
= negate_expr (var
);
898 /* Re-associate trees split by the above function. T1 and T2 are
899 either expressions to associate or null. Return the new
900 expression, if any. LOC is the location of the new expression. If
901 we build an operation, do it in TYPE and with CODE. */
904 associate_trees (location_t loc
, tree t1
, tree t2
, enum tree_code code
, tree type
)
911 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
912 try to fold this since we will have infinite recursion. But do
913 deal with any NEGATE_EXPRs. */
914 if (TREE_CODE (t1
) == code
|| TREE_CODE (t2
) == code
915 || TREE_CODE (t1
) == MINUS_EXPR
|| TREE_CODE (t2
) == MINUS_EXPR
)
917 if (code
== PLUS_EXPR
)
919 if (TREE_CODE (t1
) == NEGATE_EXPR
)
920 return build2_loc (loc
, MINUS_EXPR
, type
,
921 fold_convert_loc (loc
, type
, t2
),
922 fold_convert_loc (loc
, type
,
923 TREE_OPERAND (t1
, 0)));
924 else if (TREE_CODE (t2
) == NEGATE_EXPR
)
925 return build2_loc (loc
, MINUS_EXPR
, type
,
926 fold_convert_loc (loc
, type
, t1
),
927 fold_convert_loc (loc
, type
,
928 TREE_OPERAND (t2
, 0)));
929 else if (integer_zerop (t2
))
930 return fold_convert_loc (loc
, type
, t1
);
932 else if (code
== MINUS_EXPR
)
934 if (integer_zerop (t2
))
935 return fold_convert_loc (loc
, type
, t1
);
938 return build2_loc (loc
, code
, type
, fold_convert_loc (loc
, type
, t1
),
939 fold_convert_loc (loc
, type
, t2
));
942 return fold_build2_loc (loc
, code
, type
, fold_convert_loc (loc
, type
, t1
),
943 fold_convert_loc (loc
, type
, t2
));
946 /* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable
947 for use in int_const_binop, size_binop and size_diffop. */
950 int_binop_types_match_p (enum tree_code code
, const_tree type1
, const_tree type2
)
952 if (!INTEGRAL_TYPE_P (type1
) && !POINTER_TYPE_P (type1
))
954 if (!INTEGRAL_TYPE_P (type2
) && !POINTER_TYPE_P (type2
))
969 return TYPE_UNSIGNED (type1
) == TYPE_UNSIGNED (type2
)
970 && TYPE_PRECISION (type1
) == TYPE_PRECISION (type2
)
971 && TYPE_MODE (type1
) == TYPE_MODE (type2
);
975 /* Combine two integer constants ARG1 and ARG2 under operation CODE
976 to produce a new constant. Return NULL_TREE if we don't know how
977 to evaluate CODE at compile-time. */
980 int_const_binop_1 (enum tree_code code
, const_tree arg1
, const_tree arg2
,
983 double_int op1
, op2
, res
, tmp
;
985 tree type
= TREE_TYPE (arg1
);
986 bool uns
= TYPE_UNSIGNED (type
);
987 bool overflow
= false;
989 op1
= tree_to_double_int (arg1
);
990 op2
= tree_to_double_int (arg2
);
1007 res
= op1
.rshift (op2
.to_shwi (), TYPE_PRECISION (type
), !uns
);
1011 /* It's unclear from the C standard whether shifts can overflow.
1012 The following code ignores overflow; perhaps a C standard
1013 interpretation ruling is needed. */
1014 res
= op1
.lshift (op2
.to_shwi (), TYPE_PRECISION (type
), !uns
);
1018 res
= op1
.rrotate (op2
.to_shwi (), TYPE_PRECISION (type
));
1022 res
= op1
.lrotate (op2
.to_shwi (), TYPE_PRECISION (type
));
1026 res
= op1
.add_with_sign (op2
, false, &overflow
);
1030 res
= op1
.sub_with_overflow (op2
, &overflow
);
1034 res
= op1
.mul_with_sign (op2
, false, &overflow
);
1037 case MULT_HIGHPART_EXPR
:
1038 if (TYPE_PRECISION (type
) > HOST_BITS_PER_WIDE_INT
)
1040 bool dummy_overflow
;
1041 if (TYPE_PRECISION (type
) != 2 * HOST_BITS_PER_WIDE_INT
)
1043 op1
.wide_mul_with_sign (op2
, uns
, &res
, &dummy_overflow
);
1047 bool dummy_overflow
;
1048 /* MULT_HIGHPART_EXPR can't ever oveflow, as the multiplication
1049 is performed in twice the precision of arguments. */
1050 tmp
= op1
.mul_with_sign (op2
, false, &dummy_overflow
);
1051 res
= tmp
.rshift (TYPE_PRECISION (type
),
1052 2 * TYPE_PRECISION (type
), !uns
);
1056 case TRUNC_DIV_EXPR
:
1057 case FLOOR_DIV_EXPR
: case CEIL_DIV_EXPR
:
1058 case EXACT_DIV_EXPR
:
1059 /* This is a shortcut for a common special case. */
1060 if (op2
.high
== 0 && (HOST_WIDE_INT
) op2
.low
> 0
1061 && !TREE_OVERFLOW (arg1
)
1062 && !TREE_OVERFLOW (arg2
)
1063 && op1
.high
== 0 && (HOST_WIDE_INT
) op1
.low
>= 0)
1065 if (code
== CEIL_DIV_EXPR
)
1066 op1
.low
+= op2
.low
- 1;
1068 res
.low
= op1
.low
/ op2
.low
, res
.high
= 0;
1072 /* ... fall through ... */
1074 case ROUND_DIV_EXPR
:
1082 if (op1
== op2
&& !op1
.is_zero ())
1084 res
= double_int_one
;
1087 res
= op1
.divmod_with_overflow (op2
, uns
, code
, &tmp
, &overflow
);
1090 case TRUNC_MOD_EXPR
:
1091 case FLOOR_MOD_EXPR
: case CEIL_MOD_EXPR
:
1092 /* This is a shortcut for a common special case. */
1093 if (op2
.high
== 0 && (HOST_WIDE_INT
) op2
.low
> 0
1094 && !TREE_OVERFLOW (arg1
)
1095 && !TREE_OVERFLOW (arg2
)
1096 && op1
.high
== 0 && (HOST_WIDE_INT
) op1
.low
>= 0)
1098 if (code
== CEIL_MOD_EXPR
)
1099 op1
.low
+= op2
.low
- 1;
1100 res
.low
= op1
.low
% op2
.low
, res
.high
= 0;
1104 /* ... fall through ... */
1106 case ROUND_MOD_EXPR
:
1110 /* Check for the case the case of INT_MIN % -1 and return
1111 overflow and result = 0. The TImode case is handled properly
1113 if (TYPE_PRECISION (type
) <= HOST_BITS_PER_WIDE_INT
1115 && op2
.is_minus_one ()
1116 && op1
.high
== (HOST_WIDE_INT
) -1
1117 && (HOST_WIDE_INT
) op1
.low
1118 == (((HOST_WIDE_INT
)-1) << (TYPE_PRECISION (type
) - 1)))
1121 res
= double_int_zero
;
1124 tmp
= op1
.divmod_with_overflow (op2
, uns
, code
, &res
, &overflow
);
1128 res
= op1
.min (op2
, uns
);
1132 res
= op1
.max (op2
, uns
);
1139 t
= force_fit_type_double (TREE_TYPE (arg1
), res
, overflowable
,
1141 | TREE_OVERFLOW (arg1
) | TREE_OVERFLOW (arg2
));
1147 int_const_binop (enum tree_code code
, const_tree arg1
, const_tree arg2
)
1149 return int_const_binop_1 (code
, arg1
, arg2
, 1);
1152 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1153 constant. We assume ARG1 and ARG2 have the same data type, or at least
1154 are the same kind of constant and the same machine mode. Return zero if
1155 combining the constants is not allowed in the current operating mode. */
1158 const_binop (enum tree_code code
, tree arg1
, tree arg2
)
1160 /* Sanity check for the recursive cases. */
1167 if (TREE_CODE (arg1
) == INTEGER_CST
)
1168 return int_const_binop (code
, arg1
, arg2
);
1170 if (TREE_CODE (arg1
) == REAL_CST
)
1172 enum machine_mode mode
;
1175 REAL_VALUE_TYPE value
;
1176 REAL_VALUE_TYPE result
;
1180 /* The following codes are handled by real_arithmetic. */
1195 d1
= TREE_REAL_CST (arg1
);
1196 d2
= TREE_REAL_CST (arg2
);
1198 type
= TREE_TYPE (arg1
);
1199 mode
= TYPE_MODE (type
);
1201 /* Don't perform operation if we honor signaling NaNs and
1202 either operand is a NaN. */
1203 if (HONOR_SNANS (mode
)
1204 && (REAL_VALUE_ISNAN (d1
) || REAL_VALUE_ISNAN (d2
)))
1207 /* Don't perform operation if it would raise a division
1208 by zero exception. */
1209 if (code
== RDIV_EXPR
1210 && REAL_VALUES_EQUAL (d2
, dconst0
)
1211 && (flag_trapping_math
|| ! MODE_HAS_INFINITIES (mode
)))
1214 /* If either operand is a NaN, just return it. Otherwise, set up
1215 for floating-point trap; we return an overflow. */
1216 if (REAL_VALUE_ISNAN (d1
))
1218 else if (REAL_VALUE_ISNAN (d2
))
1221 inexact
= real_arithmetic (&value
, code
, &d1
, &d2
);
1222 real_convert (&result
, mode
, &value
);
1224 /* Don't constant fold this floating point operation if
1225 the result has overflowed and flag_trapping_math. */
1226 if (flag_trapping_math
1227 && MODE_HAS_INFINITIES (mode
)
1228 && REAL_VALUE_ISINF (result
)
1229 && !REAL_VALUE_ISINF (d1
)
1230 && !REAL_VALUE_ISINF (d2
))
1233 /* Don't constant fold this floating point operation if the
1234 result may dependent upon the run-time rounding mode and
1235 flag_rounding_math is set, or if GCC's software emulation
1236 is unable to accurately represent the result. */
1237 if ((flag_rounding_math
1238 || (MODE_COMPOSITE_P (mode
) && !flag_unsafe_math_optimizations
))
1239 && (inexact
|| !real_identical (&result
, &value
)))
1242 t
= build_real (type
, result
);
1244 TREE_OVERFLOW (t
) = TREE_OVERFLOW (arg1
) | TREE_OVERFLOW (arg2
);
1248 if (TREE_CODE (arg1
) == FIXED_CST
)
1250 FIXED_VALUE_TYPE f1
;
1251 FIXED_VALUE_TYPE f2
;
1252 FIXED_VALUE_TYPE result
;
1257 /* The following codes are handled by fixed_arithmetic. */
1263 case TRUNC_DIV_EXPR
:
1264 f2
= TREE_FIXED_CST (arg2
);
1269 f2
.data
.high
= TREE_INT_CST_HIGH (arg2
);
1270 f2
.data
.low
= TREE_INT_CST_LOW (arg2
);
1278 f1
= TREE_FIXED_CST (arg1
);
1279 type
= TREE_TYPE (arg1
);
1280 sat_p
= TYPE_SATURATING (type
);
1281 overflow_p
= fixed_arithmetic (&result
, code
, &f1
, &f2
, sat_p
);
1282 t
= build_fixed (type
, result
);
1283 /* Propagate overflow flags. */
1284 if (overflow_p
| TREE_OVERFLOW (arg1
) | TREE_OVERFLOW (arg2
))
1285 TREE_OVERFLOW (t
) = 1;
1289 if (TREE_CODE (arg1
) == COMPLEX_CST
)
1291 tree type
= TREE_TYPE (arg1
);
1292 tree r1
= TREE_REALPART (arg1
);
1293 tree i1
= TREE_IMAGPART (arg1
);
1294 tree r2
= TREE_REALPART (arg2
);
1295 tree i2
= TREE_IMAGPART (arg2
);
1302 real
= const_binop (code
, r1
, r2
);
1303 imag
= const_binop (code
, i1
, i2
);
1307 if (COMPLEX_FLOAT_TYPE_P (type
))
1308 return do_mpc_arg2 (arg1
, arg2
, type
,
1309 /* do_nonfinite= */ folding_initializer
,
1312 real
= const_binop (MINUS_EXPR
,
1313 const_binop (MULT_EXPR
, r1
, r2
),
1314 const_binop (MULT_EXPR
, i1
, i2
));
1315 imag
= const_binop (PLUS_EXPR
,
1316 const_binop (MULT_EXPR
, r1
, i2
),
1317 const_binop (MULT_EXPR
, i1
, r2
));
1321 if (COMPLEX_FLOAT_TYPE_P (type
))
1322 return do_mpc_arg2 (arg1
, arg2
, type
,
1323 /* do_nonfinite= */ folding_initializer
,
1326 case TRUNC_DIV_EXPR
:
1328 case FLOOR_DIV_EXPR
:
1329 case ROUND_DIV_EXPR
:
1330 if (flag_complex_method
== 0)
1332 /* Keep this algorithm in sync with
1333 tree-complex.c:expand_complex_div_straight().
1335 Expand complex division to scalars, straightforward algorithm.
1336 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1340 = const_binop (PLUS_EXPR
,
1341 const_binop (MULT_EXPR
, r2
, r2
),
1342 const_binop (MULT_EXPR
, i2
, i2
));
1344 = const_binop (PLUS_EXPR
,
1345 const_binop (MULT_EXPR
, r1
, r2
),
1346 const_binop (MULT_EXPR
, i1
, i2
));
1348 = const_binop (MINUS_EXPR
,
1349 const_binop (MULT_EXPR
, i1
, r2
),
1350 const_binop (MULT_EXPR
, r1
, i2
));
1352 real
= const_binop (code
, t1
, magsquared
);
1353 imag
= const_binop (code
, t2
, magsquared
);
1357 /* Keep this algorithm in sync with
1358 tree-complex.c:expand_complex_div_wide().
1360 Expand complex division to scalars, modified algorithm to minimize
1361 overflow with wide input ranges. */
1362 tree compare
= fold_build2 (LT_EXPR
, boolean_type_node
,
1363 fold_abs_const (r2
, TREE_TYPE (type
)),
1364 fold_abs_const (i2
, TREE_TYPE (type
)));
1366 if (integer_nonzerop (compare
))
1368 /* In the TRUE branch, we compute
1370 div = (br * ratio) + bi;
1371 tr = (ar * ratio) + ai;
1372 ti = (ai * ratio) - ar;
1375 tree ratio
= const_binop (code
, r2
, i2
);
1376 tree div
= const_binop (PLUS_EXPR
, i2
,
1377 const_binop (MULT_EXPR
, r2
, ratio
));
1378 real
= const_binop (MULT_EXPR
, r1
, ratio
);
1379 real
= const_binop (PLUS_EXPR
, real
, i1
);
1380 real
= const_binop (code
, real
, div
);
1382 imag
= const_binop (MULT_EXPR
, i1
, ratio
);
1383 imag
= const_binop (MINUS_EXPR
, imag
, r1
);
1384 imag
= const_binop (code
, imag
, div
);
1388 /* In the FALSE branch, we compute
1390 divisor = (d * ratio) + c;
1391 tr = (b * ratio) + a;
1392 ti = b - (a * ratio);
1395 tree ratio
= const_binop (code
, i2
, r2
);
1396 tree div
= const_binop (PLUS_EXPR
, r2
,
1397 const_binop (MULT_EXPR
, i2
, ratio
));
1399 real
= const_binop (MULT_EXPR
, i1
, ratio
);
1400 real
= const_binop (PLUS_EXPR
, real
, r1
);
1401 real
= const_binop (code
, real
, div
);
1403 imag
= const_binop (MULT_EXPR
, r1
, ratio
);
1404 imag
= const_binop (MINUS_EXPR
, i1
, imag
);
1405 imag
= const_binop (code
, imag
, div
);
1415 return build_complex (type
, real
, imag
);
1418 if (TREE_CODE (arg1
) == VECTOR_CST
1419 && TREE_CODE (arg2
) == VECTOR_CST
)
1421 tree type
= TREE_TYPE (arg1
);
1422 int count
= TYPE_VECTOR_SUBPARTS (type
), i
;
1423 tree
*elts
= XALLOCAVEC (tree
, count
);
1425 for (i
= 0; i
< count
; i
++)
1427 tree elem1
= VECTOR_CST_ELT (arg1
, i
);
1428 tree elem2
= VECTOR_CST_ELT (arg2
, i
);
1430 elts
[i
] = const_binop (code
, elem1
, elem2
);
1432 /* It is possible that const_binop cannot handle the given
1433 code and return NULL_TREE */
1434 if (elts
[i
] == NULL_TREE
)
1438 return build_vector (type
, elts
);
1441 /* Shifts allow a scalar offset for a vector. */
1442 if (TREE_CODE (arg1
) == VECTOR_CST
1443 && TREE_CODE (arg2
) == INTEGER_CST
)
1445 tree type
= TREE_TYPE (arg1
);
1446 int count
= TYPE_VECTOR_SUBPARTS (type
), i
;
1447 tree
*elts
= XALLOCAVEC (tree
, count
);
1449 if (code
== VEC_LSHIFT_EXPR
1450 || code
== VEC_RSHIFT_EXPR
)
1452 if (!tree_fits_uhwi_p (arg2
))
1455 unsigned HOST_WIDE_INT shiftc
= tree_to_uhwi (arg2
);
1456 unsigned HOST_WIDE_INT outerc
= tree_to_uhwi (TYPE_SIZE (type
));
1457 unsigned HOST_WIDE_INT innerc
1458 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (type
)));
1459 if (shiftc
>= outerc
|| (shiftc
% innerc
) != 0)
1461 int offset
= shiftc
/ innerc
;
1462 /* The direction of VEC_[LR]SHIFT_EXPR is endian dependent.
1463 For reductions, compiler emits VEC_RSHIFT_EXPR always,
1464 for !BYTES_BIG_ENDIAN picks first vector element, but
1465 for BYTES_BIG_ENDIAN last element from the vector. */
1466 if ((code
== VEC_RSHIFT_EXPR
) ^ (!BYTES_BIG_ENDIAN
))
1468 tree zero
= build_zero_cst (TREE_TYPE (type
));
1469 for (i
= 0; i
< count
; i
++)
1471 if (i
+ offset
< 0 || i
+ offset
>= count
)
1474 elts
[i
] = VECTOR_CST_ELT (arg1
, i
+ offset
);
1478 for (i
= 0; i
< count
; i
++)
1480 tree elem1
= VECTOR_CST_ELT (arg1
, i
);
1482 elts
[i
] = const_binop (code
, elem1
, arg2
);
1484 /* It is possible that const_binop cannot handle the given
1485 code and return NULL_TREE */
1486 if (elts
[i
] == NULL_TREE
)
1490 return build_vector (type
, elts
);
1495 /* Create a sizetype INT_CST node with NUMBER sign extended. KIND
1496 indicates which particular sizetype to create. */
1499 size_int_kind (HOST_WIDE_INT number
, enum size_type_kind kind
)
1501 return build_int_cst (sizetype_tab
[(int) kind
], number
);
1504 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1505 is a tree code. The type of the result is taken from the operands.
1506 Both must be equivalent integer types, ala int_binop_types_match_p.
1507 If the operands are constant, so is the result. */
1510 size_binop_loc (location_t loc
, enum tree_code code
, tree arg0
, tree arg1
)
1512 tree type
= TREE_TYPE (arg0
);
1514 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
1515 return error_mark_node
;
1517 gcc_assert (int_binop_types_match_p (code
, TREE_TYPE (arg0
),
1520 /* Handle the special case of two integer constants faster. */
1521 if (TREE_CODE (arg0
) == INTEGER_CST
&& TREE_CODE (arg1
) == INTEGER_CST
)
1523 /* And some specific cases even faster than that. */
1524 if (code
== PLUS_EXPR
)
1526 if (integer_zerop (arg0
) && !TREE_OVERFLOW (arg0
))
1528 if (integer_zerop (arg1
) && !TREE_OVERFLOW (arg1
))
1531 else if (code
== MINUS_EXPR
)
1533 if (integer_zerop (arg1
) && !TREE_OVERFLOW (arg1
))
1536 else if (code
== MULT_EXPR
)
1538 if (integer_onep (arg0
) && !TREE_OVERFLOW (arg0
))
1542 /* Handle general case of two integer constants. For sizetype
1543 constant calculations we always want to know about overflow,
1544 even in the unsigned case. */
1545 return int_const_binop_1 (code
, arg0
, arg1
, -1);
1548 return fold_build2_loc (loc
, code
, type
, arg0
, arg1
);
1551 /* Given two values, either both of sizetype or both of bitsizetype,
1552 compute the difference between the two values. Return the value
1553 in signed type corresponding to the type of the operands. */
1556 size_diffop_loc (location_t loc
, tree arg0
, tree arg1
)
1558 tree type
= TREE_TYPE (arg0
);
1561 gcc_assert (int_binop_types_match_p (MINUS_EXPR
, TREE_TYPE (arg0
),
1564 /* If the type is already signed, just do the simple thing. */
1565 if (!TYPE_UNSIGNED (type
))
1566 return size_binop_loc (loc
, MINUS_EXPR
, arg0
, arg1
);
1568 if (type
== sizetype
)
1570 else if (type
== bitsizetype
)
1571 ctype
= sbitsizetype
;
1573 ctype
= signed_type_for (type
);
1575 /* If either operand is not a constant, do the conversions to the signed
1576 type and subtract. The hardware will do the right thing with any
1577 overflow in the subtraction. */
1578 if (TREE_CODE (arg0
) != INTEGER_CST
|| TREE_CODE (arg1
) != INTEGER_CST
)
1579 return size_binop_loc (loc
, MINUS_EXPR
,
1580 fold_convert_loc (loc
, ctype
, arg0
),
1581 fold_convert_loc (loc
, ctype
, arg1
));
1583 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1584 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1585 overflow) and negate (which can't either). Special-case a result
1586 of zero while we're here. */
1587 if (tree_int_cst_equal (arg0
, arg1
))
1588 return build_int_cst (ctype
, 0);
1589 else if (tree_int_cst_lt (arg1
, arg0
))
1590 return fold_convert_loc (loc
, ctype
,
1591 size_binop_loc (loc
, MINUS_EXPR
, arg0
, arg1
));
1593 return size_binop_loc (loc
, MINUS_EXPR
, build_int_cst (ctype
, 0),
1594 fold_convert_loc (loc
, ctype
,
1595 size_binop_loc (loc
,
1600 /* A subroutine of fold_convert_const handling conversions of an
1601 INTEGER_CST to another integer type. */
1604 fold_convert_const_int_from_int (tree type
, const_tree arg1
)
1608 /* Given an integer constant, make new constant with new type,
1609 appropriately sign-extended or truncated. */
1610 t
= force_fit_type_double (type
, tree_to_double_int (arg1
),
1611 !POINTER_TYPE_P (TREE_TYPE (arg1
)),
1612 (TREE_INT_CST_HIGH (arg1
) < 0
1613 && (TYPE_UNSIGNED (type
)
1614 < TYPE_UNSIGNED (TREE_TYPE (arg1
))))
1615 | TREE_OVERFLOW (arg1
));
1620 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1621 to an integer type. */
1624 fold_convert_const_int_from_real (enum tree_code code
, tree type
, const_tree arg1
)
1629 /* The following code implements the floating point to integer
1630 conversion rules required by the Java Language Specification,
1631 that IEEE NaNs are mapped to zero and values that overflow
1632 the target precision saturate, i.e. values greater than
1633 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
1634 are mapped to INT_MIN. These semantics are allowed by the
1635 C and C++ standards that simply state that the behavior of
1636 FP-to-integer conversion is unspecified upon overflow. */
1640 REAL_VALUE_TYPE x
= TREE_REAL_CST (arg1
);
1644 case FIX_TRUNC_EXPR
:
1645 real_trunc (&r
, VOIDmode
, &x
);
1652 /* If R is NaN, return zero and show we have an overflow. */
1653 if (REAL_VALUE_ISNAN (r
))
1656 val
= double_int_zero
;
1659 /* See if R is less than the lower bound or greater than the
1664 tree lt
= TYPE_MIN_VALUE (type
);
1665 REAL_VALUE_TYPE l
= real_value_from_int_cst (NULL_TREE
, lt
);
1666 if (REAL_VALUES_LESS (r
, l
))
1669 val
= tree_to_double_int (lt
);
1675 tree ut
= TYPE_MAX_VALUE (type
);
1678 REAL_VALUE_TYPE u
= real_value_from_int_cst (NULL_TREE
, ut
);
1679 if (REAL_VALUES_LESS (u
, r
))
1682 val
= tree_to_double_int (ut
);
1688 real_to_integer2 ((HOST_WIDE_INT
*) &val
.low
, &val
.high
, &r
);
1690 t
= force_fit_type_double (type
, val
, -1, overflow
| TREE_OVERFLOW (arg1
));
1694 /* A subroutine of fold_convert_const handling conversions of a
1695 FIXED_CST to an integer type. */
1698 fold_convert_const_int_from_fixed (tree type
, const_tree arg1
)
1701 double_int temp
, temp_trunc
;
1704 /* Right shift FIXED_CST to temp by fbit. */
1705 temp
= TREE_FIXED_CST (arg1
).data
;
1706 mode
= TREE_FIXED_CST (arg1
).mode
;
1707 if (GET_MODE_FBIT (mode
) < HOST_BITS_PER_DOUBLE_INT
)
1709 temp
= temp
.rshift (GET_MODE_FBIT (mode
),
1710 HOST_BITS_PER_DOUBLE_INT
,
1711 SIGNED_FIXED_POINT_MODE_P (mode
));
1713 /* Left shift temp to temp_trunc by fbit. */
1714 temp_trunc
= temp
.lshift (GET_MODE_FBIT (mode
),
1715 HOST_BITS_PER_DOUBLE_INT
,
1716 SIGNED_FIXED_POINT_MODE_P (mode
));
1720 temp
= double_int_zero
;
1721 temp_trunc
= double_int_zero
;
1724 /* If FIXED_CST is negative, we need to round the value toward 0.
1725 By checking if the fractional bits are not zero to add 1 to temp. */
1726 if (SIGNED_FIXED_POINT_MODE_P (mode
)
1727 && temp_trunc
.is_negative ()
1728 && TREE_FIXED_CST (arg1
).data
!= temp_trunc
)
1729 temp
+= double_int_one
;
1731 /* Given a fixed-point constant, make new constant with new type,
1732 appropriately sign-extended or truncated. */
1733 t
= force_fit_type_double (type
, temp
, -1,
1734 (temp
.is_negative ()
1735 && (TYPE_UNSIGNED (type
)
1736 < TYPE_UNSIGNED (TREE_TYPE (arg1
))))
1737 | TREE_OVERFLOW (arg1
));
1742 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1743 to another floating point type. */
1746 fold_convert_const_real_from_real (tree type
, const_tree arg1
)
1748 REAL_VALUE_TYPE value
;
1751 real_convert (&value
, TYPE_MODE (type
), &TREE_REAL_CST (arg1
));
1752 t
= build_real (type
, value
);
1754 /* If converting an infinity or NAN to a representation that doesn't
1755 have one, set the overflow bit so that we can produce some kind of
1756 error message at the appropriate point if necessary. It's not the
1757 most user-friendly message, but it's better than nothing. */
1758 if (REAL_VALUE_ISINF (TREE_REAL_CST (arg1
))
1759 && !MODE_HAS_INFINITIES (TYPE_MODE (type
)))
1760 TREE_OVERFLOW (t
) = 1;
1761 else if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1
))
1762 && !MODE_HAS_NANS (TYPE_MODE (type
)))
1763 TREE_OVERFLOW (t
) = 1;
1764 /* Regular overflow, conversion produced an infinity in a mode that
1765 can't represent them. */
1766 else if (!MODE_HAS_INFINITIES (TYPE_MODE (type
))
1767 && REAL_VALUE_ISINF (value
)
1768 && !REAL_VALUE_ISINF (TREE_REAL_CST (arg1
)))
1769 TREE_OVERFLOW (t
) = 1;
1771 TREE_OVERFLOW (t
) = TREE_OVERFLOW (arg1
);
1775 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
1776 to a floating point type. */
1779 fold_convert_const_real_from_fixed (tree type
, const_tree arg1
)
1781 REAL_VALUE_TYPE value
;
1784 real_convert_from_fixed (&value
, TYPE_MODE (type
), &TREE_FIXED_CST (arg1
));
1785 t
= build_real (type
, value
);
1787 TREE_OVERFLOW (t
) = TREE_OVERFLOW (arg1
);
1791 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
1792 to another fixed-point type. */
1795 fold_convert_const_fixed_from_fixed (tree type
, const_tree arg1
)
1797 FIXED_VALUE_TYPE value
;
1801 overflow_p
= fixed_convert (&value
, TYPE_MODE (type
), &TREE_FIXED_CST (arg1
),
1802 TYPE_SATURATING (type
));
1803 t
= build_fixed (type
, value
);
1805 /* Propagate overflow flags. */
1806 if (overflow_p
| TREE_OVERFLOW (arg1
))
1807 TREE_OVERFLOW (t
) = 1;
1811 /* A subroutine of fold_convert_const handling conversions an INTEGER_CST
1812 to a fixed-point type. */
1815 fold_convert_const_fixed_from_int (tree type
, const_tree arg1
)
1817 FIXED_VALUE_TYPE value
;
1821 overflow_p
= fixed_convert_from_int (&value
, TYPE_MODE (type
),
1822 TREE_INT_CST (arg1
),
1823 TYPE_UNSIGNED (TREE_TYPE (arg1
)),
1824 TYPE_SATURATING (type
));
1825 t
= build_fixed (type
, value
);
1827 /* Propagate overflow flags. */
1828 if (overflow_p
| TREE_OVERFLOW (arg1
))
1829 TREE_OVERFLOW (t
) = 1;
1833 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1834 to a fixed-point type. */
1837 fold_convert_const_fixed_from_real (tree type
, const_tree arg1
)
1839 FIXED_VALUE_TYPE value
;
1843 overflow_p
= fixed_convert_from_real (&value
, TYPE_MODE (type
),
1844 &TREE_REAL_CST (arg1
),
1845 TYPE_SATURATING (type
));
1846 t
= build_fixed (type
, value
);
1848 /* Propagate overflow flags. */
1849 if (overflow_p
| TREE_OVERFLOW (arg1
))
1850 TREE_OVERFLOW (t
) = 1;
1854 /* Attempt to fold type conversion operation CODE of expression ARG1 to
1855 type TYPE. If no simplification can be done return NULL_TREE. */
1858 fold_convert_const (enum tree_code code
, tree type
, tree arg1
)
1860 if (TREE_TYPE (arg1
) == type
)
1863 if (POINTER_TYPE_P (type
) || INTEGRAL_TYPE_P (type
)
1864 || TREE_CODE (type
) == OFFSET_TYPE
)
1866 if (TREE_CODE (arg1
) == INTEGER_CST
)
1867 return fold_convert_const_int_from_int (type
, arg1
);
1868 else if (TREE_CODE (arg1
) == REAL_CST
)
1869 return fold_convert_const_int_from_real (code
, type
, arg1
);
1870 else if (TREE_CODE (arg1
) == FIXED_CST
)
1871 return fold_convert_const_int_from_fixed (type
, arg1
);
1873 else if (TREE_CODE (type
) == REAL_TYPE
)
1875 if (TREE_CODE (arg1
) == INTEGER_CST
)
1876 return build_real_from_int_cst (type
, arg1
);
1877 else if (TREE_CODE (arg1
) == REAL_CST
)
1878 return fold_convert_const_real_from_real (type
, arg1
);
1879 else if (TREE_CODE (arg1
) == FIXED_CST
)
1880 return fold_convert_const_real_from_fixed (type
, arg1
);
1882 else if (TREE_CODE (type
) == FIXED_POINT_TYPE
)
1884 if (TREE_CODE (arg1
) == FIXED_CST
)
1885 return fold_convert_const_fixed_from_fixed (type
, arg1
);
1886 else if (TREE_CODE (arg1
) == INTEGER_CST
)
1887 return fold_convert_const_fixed_from_int (type
, arg1
);
1888 else if (TREE_CODE (arg1
) == REAL_CST
)
1889 return fold_convert_const_fixed_from_real (type
, arg1
);
1894 /* Construct a vector of zero elements of vector type TYPE. */
1897 build_zero_vector (tree type
)
1901 t
= fold_convert_const (NOP_EXPR
, TREE_TYPE (type
), integer_zero_node
);
1902 return build_vector_from_val (type
, t
);
1905 /* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */
1908 fold_convertible_p (const_tree type
, const_tree arg
)
1910 tree orig
= TREE_TYPE (arg
);
1915 if (TREE_CODE (arg
) == ERROR_MARK
1916 || TREE_CODE (type
) == ERROR_MARK
1917 || TREE_CODE (orig
) == ERROR_MARK
)
1920 if (TYPE_MAIN_VARIANT (type
) == TYPE_MAIN_VARIANT (orig
))
1923 switch (TREE_CODE (type
))
1925 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
1926 case POINTER_TYPE
: case REFERENCE_TYPE
:
1928 if (INTEGRAL_TYPE_P (orig
) || POINTER_TYPE_P (orig
)
1929 || TREE_CODE (orig
) == OFFSET_TYPE
)
1931 return (TREE_CODE (orig
) == VECTOR_TYPE
1932 && tree_int_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (orig
)));
1935 case FIXED_POINT_TYPE
:
1939 return TREE_CODE (type
) == TREE_CODE (orig
);
1946 /* Convert expression ARG to type TYPE. Used by the middle-end for
1947 simple conversions in preference to calling the front-end's convert. */
1950 fold_convert_loc (location_t loc
, tree type
, tree arg
)
1952 tree orig
= TREE_TYPE (arg
);
1958 if (TREE_CODE (arg
) == ERROR_MARK
1959 || TREE_CODE (type
) == ERROR_MARK
1960 || TREE_CODE (orig
) == ERROR_MARK
)
1961 return error_mark_node
;
1963 switch (TREE_CODE (type
))
1966 case REFERENCE_TYPE
:
1967 /* Handle conversions between pointers to different address spaces. */
1968 if (POINTER_TYPE_P (orig
)
1969 && (TYPE_ADDR_SPACE (TREE_TYPE (type
))
1970 != TYPE_ADDR_SPACE (TREE_TYPE (orig
))))
1971 return fold_build1_loc (loc
, ADDR_SPACE_CONVERT_EXPR
, type
, arg
);
1974 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
1976 if (TREE_CODE (arg
) == INTEGER_CST
)
1978 tem
= fold_convert_const (NOP_EXPR
, type
, arg
);
1979 if (tem
!= NULL_TREE
)
1982 if (INTEGRAL_TYPE_P (orig
) || POINTER_TYPE_P (orig
)
1983 || TREE_CODE (orig
) == OFFSET_TYPE
)
1984 return fold_build1_loc (loc
, NOP_EXPR
, type
, arg
);
1985 if (TREE_CODE (orig
) == COMPLEX_TYPE
)
1986 return fold_convert_loc (loc
, type
,
1987 fold_build1_loc (loc
, REALPART_EXPR
,
1988 TREE_TYPE (orig
), arg
));
1989 gcc_assert (TREE_CODE (orig
) == VECTOR_TYPE
1990 && tree_int_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (orig
)));
1991 return fold_build1_loc (loc
, NOP_EXPR
, type
, arg
);
1994 if (TREE_CODE (arg
) == INTEGER_CST
)
1996 tem
= fold_convert_const (FLOAT_EXPR
, type
, arg
);
1997 if (tem
!= NULL_TREE
)
2000 else if (TREE_CODE (arg
) == REAL_CST
)
2002 tem
= fold_convert_const (NOP_EXPR
, type
, arg
);
2003 if (tem
!= NULL_TREE
)
2006 else if (TREE_CODE (arg
) == FIXED_CST
)
2008 tem
= fold_convert_const (FIXED_CONVERT_EXPR
, type
, arg
);
2009 if (tem
!= NULL_TREE
)
2013 switch (TREE_CODE (orig
))
2016 case BOOLEAN_TYPE
: case ENUMERAL_TYPE
:
2017 case POINTER_TYPE
: case REFERENCE_TYPE
:
2018 return fold_build1_loc (loc
, FLOAT_EXPR
, type
, arg
);
2021 return fold_build1_loc (loc
, NOP_EXPR
, type
, arg
);
2023 case FIXED_POINT_TYPE
:
2024 return fold_build1_loc (loc
, FIXED_CONVERT_EXPR
, type
, arg
);
2027 tem
= fold_build1_loc (loc
, REALPART_EXPR
, TREE_TYPE (orig
), arg
);
2028 return fold_convert_loc (loc
, type
, tem
);
2034 case FIXED_POINT_TYPE
:
2035 if (TREE_CODE (arg
) == FIXED_CST
|| TREE_CODE (arg
) == INTEGER_CST
2036 || TREE_CODE (arg
) == REAL_CST
)
2038 tem
= fold_convert_const (FIXED_CONVERT_EXPR
, type
, arg
);
2039 if (tem
!= NULL_TREE
)
2040 goto fold_convert_exit
;
2043 switch (TREE_CODE (orig
))
2045 case FIXED_POINT_TYPE
:
2050 return fold_build1_loc (loc
, FIXED_CONVERT_EXPR
, type
, arg
);
2053 tem
= fold_build1_loc (loc
, REALPART_EXPR
, TREE_TYPE (orig
), arg
);
2054 return fold_convert_loc (loc
, type
, tem
);
2061 switch (TREE_CODE (orig
))
2064 case BOOLEAN_TYPE
: case ENUMERAL_TYPE
:
2065 case POINTER_TYPE
: case REFERENCE_TYPE
:
2067 case FIXED_POINT_TYPE
:
2068 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
,
2069 fold_convert_loc (loc
, TREE_TYPE (type
), arg
),
2070 fold_convert_loc (loc
, TREE_TYPE (type
),
2071 integer_zero_node
));
2076 if (TREE_CODE (arg
) == COMPLEX_EXPR
)
2078 rpart
= fold_convert_loc (loc
, TREE_TYPE (type
),
2079 TREE_OPERAND (arg
, 0));
2080 ipart
= fold_convert_loc (loc
, TREE_TYPE (type
),
2081 TREE_OPERAND (arg
, 1));
2082 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rpart
, ipart
);
2085 arg
= save_expr (arg
);
2086 rpart
= fold_build1_loc (loc
, REALPART_EXPR
, TREE_TYPE (orig
), arg
);
2087 ipart
= fold_build1_loc (loc
, IMAGPART_EXPR
, TREE_TYPE (orig
), arg
);
2088 rpart
= fold_convert_loc (loc
, TREE_TYPE (type
), rpart
);
2089 ipart
= fold_convert_loc (loc
, TREE_TYPE (type
), ipart
);
2090 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rpart
, ipart
);
2098 if (integer_zerop (arg
))
2099 return build_zero_vector (type
);
2100 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (orig
)));
2101 gcc_assert (INTEGRAL_TYPE_P (orig
) || POINTER_TYPE_P (orig
)
2102 || TREE_CODE (orig
) == VECTOR_TYPE
);
2103 return fold_build1_loc (loc
, VIEW_CONVERT_EXPR
, type
, arg
);
2106 tem
= fold_ignored_result (arg
);
2107 return fold_build1_loc (loc
, NOP_EXPR
, type
, tem
);
2110 if (TYPE_MAIN_VARIANT (type
) == TYPE_MAIN_VARIANT (orig
))
2111 return fold_build1_loc (loc
, NOP_EXPR
, type
, arg
);
2115 protected_set_expr_location_unshare (tem
, loc
);
2119 /* Return false if expr can be assumed not to be an lvalue, true
2123 maybe_lvalue_p (const_tree x
)
2125 /* We only need to wrap lvalue tree codes. */
2126 switch (TREE_CODE (x
))
2139 case ARRAY_RANGE_REF
:
2145 case PREINCREMENT_EXPR
:
2146 case PREDECREMENT_EXPR
:
2148 case TRY_CATCH_EXPR
:
2149 case WITH_CLEANUP_EXPR
:
2158 /* Assume the worst for front-end tree codes. */
2159 if ((int)TREE_CODE (x
) >= NUM_TREE_CODES
)
2167 /* Return an expr equal to X but certainly not valid as an lvalue. */
2170 non_lvalue_loc (location_t loc
, tree x
)
2172 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2177 if (! maybe_lvalue_p (x
))
2179 return build1_loc (loc
, NON_LVALUE_EXPR
, TREE_TYPE (x
), x
);
2182 /* Nonzero means lvalues are limited to those valid in pedantic ANSI C.
2183 Zero means allow extended lvalues. */
2185 int pedantic_lvalues
;
2187 /* When pedantic, return an expr equal to X but certainly not valid as a
2188 pedantic lvalue. Otherwise, return X. */
2191 pedantic_non_lvalue_loc (location_t loc
, tree x
)
2193 if (pedantic_lvalues
)
2194 return non_lvalue_loc (loc
, x
);
2196 return protected_set_expr_location_unshare (x
, loc
);
2199 /* Given a tree comparison code, return the code that is the logical inverse.
2200 It is generally not safe to do this for floating-point comparisons, except
2201 for EQ_EXPR, NE_EXPR, ORDERED_EXPR and UNORDERED_EXPR, so we return
2202 ERROR_MARK in this case. */
2205 invert_tree_comparison (enum tree_code code
, bool honor_nans
)
2207 if (honor_nans
&& flag_trapping_math
&& code
!= EQ_EXPR
&& code
!= NE_EXPR
2208 && code
!= ORDERED_EXPR
&& code
!= UNORDERED_EXPR
)
2218 return honor_nans
? UNLE_EXPR
: LE_EXPR
;
2220 return honor_nans
? UNLT_EXPR
: LT_EXPR
;
2222 return honor_nans
? UNGE_EXPR
: GE_EXPR
;
2224 return honor_nans
? UNGT_EXPR
: GT_EXPR
;
2238 return UNORDERED_EXPR
;
2239 case UNORDERED_EXPR
:
2240 return ORDERED_EXPR
;
2246 /* Similar, but return the comparison that results if the operands are
2247 swapped. This is safe for floating-point. */
2250 swap_tree_comparison (enum tree_code code
)
2257 case UNORDERED_EXPR
:
2283 /* Convert a comparison tree code from an enum tree_code representation
2284 into a compcode bit-based encoding. This function is the inverse of
2285 compcode_to_comparison. */
2287 static enum comparison_code
2288 comparison_to_compcode (enum tree_code code
)
2305 return COMPCODE_ORD
;
2306 case UNORDERED_EXPR
:
2307 return COMPCODE_UNORD
;
2309 return COMPCODE_UNLT
;
2311 return COMPCODE_UNEQ
;
2313 return COMPCODE_UNLE
;
2315 return COMPCODE_UNGT
;
2317 return COMPCODE_LTGT
;
2319 return COMPCODE_UNGE
;
2325 /* Convert a compcode bit-based encoding of a comparison operator back
2326 to GCC's enum tree_code representation. This function is the
2327 inverse of comparison_to_compcode. */
2329 static enum tree_code
2330 compcode_to_comparison (enum comparison_code code
)
2347 return ORDERED_EXPR
;
2348 case COMPCODE_UNORD
:
2349 return UNORDERED_EXPR
;
2367 /* Return a tree for the comparison which is the combination of
2368 doing the AND or OR (depending on CODE) of the two operations LCODE
2369 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2370 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2371 if this makes the transformation invalid. */
2374 combine_comparisons (location_t loc
,
2375 enum tree_code code
, enum tree_code lcode
,
2376 enum tree_code rcode
, tree truth_type
,
2377 tree ll_arg
, tree lr_arg
)
2379 bool honor_nans
= HONOR_NANS (TYPE_MODE (TREE_TYPE (ll_arg
)));
2380 enum comparison_code lcompcode
= comparison_to_compcode (lcode
);
2381 enum comparison_code rcompcode
= comparison_to_compcode (rcode
);
2386 case TRUTH_AND_EXPR
: case TRUTH_ANDIF_EXPR
:
2387 compcode
= lcompcode
& rcompcode
;
2390 case TRUTH_OR_EXPR
: case TRUTH_ORIF_EXPR
:
2391 compcode
= lcompcode
| rcompcode
;
2400 /* Eliminate unordered comparisons, as well as LTGT and ORD
2401 which are not used unless the mode has NaNs. */
2402 compcode
&= ~COMPCODE_UNORD
;
2403 if (compcode
== COMPCODE_LTGT
)
2404 compcode
= COMPCODE_NE
;
2405 else if (compcode
== COMPCODE_ORD
)
2406 compcode
= COMPCODE_TRUE
;
2408 else if (flag_trapping_math
)
2410 /* Check that the original operation and the optimized ones will trap
2411 under the same condition. */
2412 bool ltrap
= (lcompcode
& COMPCODE_UNORD
) == 0
2413 && (lcompcode
!= COMPCODE_EQ
)
2414 && (lcompcode
!= COMPCODE_ORD
);
2415 bool rtrap
= (rcompcode
& COMPCODE_UNORD
) == 0
2416 && (rcompcode
!= COMPCODE_EQ
)
2417 && (rcompcode
!= COMPCODE_ORD
);
2418 bool trap
= (compcode
& COMPCODE_UNORD
) == 0
2419 && (compcode
!= COMPCODE_EQ
)
2420 && (compcode
!= COMPCODE_ORD
);
2422 /* In a short-circuited boolean expression the LHS might be
2423 such that the RHS, if evaluated, will never trap. For
2424 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2425 if neither x nor y is NaN. (This is a mixed blessing: for
2426 example, the expression above will never trap, hence
2427 optimizing it to x < y would be invalid). */
2428 if ((code
== TRUTH_ORIF_EXPR
&& (lcompcode
& COMPCODE_UNORD
))
2429 || (code
== TRUTH_ANDIF_EXPR
&& !(lcompcode
& COMPCODE_UNORD
)))
2432 /* If the comparison was short-circuited, and only the RHS
2433 trapped, we may now generate a spurious trap. */
2435 && (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_ORIF_EXPR
))
2438 /* If we changed the conditions that cause a trap, we lose. */
2439 if ((ltrap
|| rtrap
) != trap
)
2443 if (compcode
== COMPCODE_TRUE
)
2444 return constant_boolean_node (true, truth_type
);
2445 else if (compcode
== COMPCODE_FALSE
)
2446 return constant_boolean_node (false, truth_type
);
2449 enum tree_code tcode
;
2451 tcode
= compcode_to_comparison ((enum comparison_code
) compcode
);
2452 return fold_build2_loc (loc
, tcode
, truth_type
, ll_arg
, lr_arg
);
2456 /* Return nonzero if two operands (typically of the same tree node)
2457 are necessarily equal. If either argument has side-effects this
2458 function returns zero. FLAGS modifies behavior as follows:
2460 If OEP_ONLY_CONST is set, only return nonzero for constants.
2461 This function tests whether the operands are indistinguishable;
2462 it does not test whether they are equal using C's == operation.
2463 The distinction is important for IEEE floating point, because
2464 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2465 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2467 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2468 even though it may hold multiple values during a function.
2469 This is because a GCC tree node guarantees that nothing else is
2470 executed between the evaluation of its "operands" (which may often
2471 be evaluated in arbitrary order). Hence if the operands themselves
2472 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2473 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2474 unset means assuming isochronic (or instantaneous) tree equivalence.
2475 Unless comparing arbitrary expression trees, such as from different
2476 statements, this flag can usually be left unset.
2478 If OEP_PURE_SAME is set, then pure functions with identical arguments
2479 are considered the same. It is used when the caller has other ways
2480 to ensure that global memory is unchanged in between. */
2483 operand_equal_p (const_tree arg0
, const_tree arg1
, unsigned int flags
)
2485 /* If either is ERROR_MARK, they aren't equal. */
2486 if (TREE_CODE (arg0
) == ERROR_MARK
|| TREE_CODE (arg1
) == ERROR_MARK
2487 || TREE_TYPE (arg0
) == error_mark_node
2488 || TREE_TYPE (arg1
) == error_mark_node
)
2491 /* Similar, if either does not have a type (like a released SSA name),
2492 they aren't equal. */
2493 if (!TREE_TYPE (arg0
) || !TREE_TYPE (arg1
))
2496 /* Check equality of integer constants before bailing out due to
2497 precision differences. */
2498 if (TREE_CODE (arg0
) == INTEGER_CST
&& TREE_CODE (arg1
) == INTEGER_CST
)
2499 return tree_int_cst_equal (arg0
, arg1
);
2501 /* If both types don't have the same signedness, then we can't consider
2502 them equal. We must check this before the STRIP_NOPS calls
2503 because they may change the signedness of the arguments. As pointers
2504 strictly don't have a signedness, require either two pointers or
2505 two non-pointers as well. */
2506 if (TYPE_UNSIGNED (TREE_TYPE (arg0
)) != TYPE_UNSIGNED (TREE_TYPE (arg1
))
2507 || POINTER_TYPE_P (TREE_TYPE (arg0
)) != POINTER_TYPE_P (TREE_TYPE (arg1
)))
2510 /* We cannot consider pointers to different address space equal. */
2511 if (POINTER_TYPE_P (TREE_TYPE (arg0
)) && POINTER_TYPE_P (TREE_TYPE (arg1
))
2512 && (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0
)))
2513 != TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg1
)))))
2516 /* If both types don't have the same precision, then it is not safe
2518 if (element_precision (TREE_TYPE (arg0
))
2519 != element_precision (TREE_TYPE (arg1
)))
2525 /* In case both args are comparisons but with different comparison
2526 code, try to swap the comparison operands of one arg to produce
2527 a match and compare that variant. */
2528 if (TREE_CODE (arg0
) != TREE_CODE (arg1
)
2529 && COMPARISON_CLASS_P (arg0
)
2530 && COMPARISON_CLASS_P (arg1
))
2532 enum tree_code swap_code
= swap_tree_comparison (TREE_CODE (arg1
));
2534 if (TREE_CODE (arg0
) == swap_code
)
2535 return operand_equal_p (TREE_OPERAND (arg0
, 0),
2536 TREE_OPERAND (arg1
, 1), flags
)
2537 && operand_equal_p (TREE_OPERAND (arg0
, 1),
2538 TREE_OPERAND (arg1
, 0), flags
);
2541 if (TREE_CODE (arg0
) != TREE_CODE (arg1
)
2542 /* NOP_EXPR and CONVERT_EXPR are considered equal. */
2543 && !(CONVERT_EXPR_P (arg0
) && CONVERT_EXPR_P (arg1
)))
2546 /* This is needed for conversions and for COMPONENT_REF.
2547 Might as well play it safe and always test this. */
2548 if (TREE_CODE (TREE_TYPE (arg0
)) == ERROR_MARK
2549 || TREE_CODE (TREE_TYPE (arg1
)) == ERROR_MARK
2550 || TYPE_MODE (TREE_TYPE (arg0
)) != TYPE_MODE (TREE_TYPE (arg1
)))
2553 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
2554 We don't care about side effects in that case because the SAVE_EXPR
2555 takes care of that for us. In all other cases, two expressions are
2556 equal if they have no side effects. If we have two identical
2557 expressions with side effects that should be treated the same due
2558 to the only side effects being identical SAVE_EXPR's, that will
2559 be detected in the recursive calls below.
2560 If we are taking an invariant address of two identical objects
2561 they are necessarily equal as well. */
2562 if (arg0
== arg1
&& ! (flags
& OEP_ONLY_CONST
)
2563 && (TREE_CODE (arg0
) == SAVE_EXPR
2564 || (flags
& OEP_CONSTANT_ADDRESS_OF
)
2565 || (! TREE_SIDE_EFFECTS (arg0
) && ! TREE_SIDE_EFFECTS (arg1
))))
2568 /* Next handle constant cases, those for which we can return 1 even
2569 if ONLY_CONST is set. */
2570 if (TREE_CONSTANT (arg0
) && TREE_CONSTANT (arg1
))
2571 switch (TREE_CODE (arg0
))
2574 return tree_int_cst_equal (arg0
, arg1
);
2577 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0
),
2578 TREE_FIXED_CST (arg1
));
2581 if (REAL_VALUES_IDENTICAL (TREE_REAL_CST (arg0
),
2582 TREE_REAL_CST (arg1
)))
2586 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0
))))
2588 /* If we do not distinguish between signed and unsigned zero,
2589 consider them equal. */
2590 if (real_zerop (arg0
) && real_zerop (arg1
))
2599 if (VECTOR_CST_NELTS (arg0
) != VECTOR_CST_NELTS (arg1
))
2602 for (i
= 0; i
< VECTOR_CST_NELTS (arg0
); ++i
)
2604 if (!operand_equal_p (VECTOR_CST_ELT (arg0
, i
),
2605 VECTOR_CST_ELT (arg1
, i
), flags
))
2612 return (operand_equal_p (TREE_REALPART (arg0
), TREE_REALPART (arg1
),
2614 && operand_equal_p (TREE_IMAGPART (arg0
), TREE_IMAGPART (arg1
),
2618 return (TREE_STRING_LENGTH (arg0
) == TREE_STRING_LENGTH (arg1
)
2619 && ! memcmp (TREE_STRING_POINTER (arg0
),
2620 TREE_STRING_POINTER (arg1
),
2621 TREE_STRING_LENGTH (arg0
)));
2624 return operand_equal_p (TREE_OPERAND (arg0
, 0), TREE_OPERAND (arg1
, 0),
2625 TREE_CONSTANT (arg0
) && TREE_CONSTANT (arg1
)
2626 ? OEP_CONSTANT_ADDRESS_OF
: 0);
2631 if (flags
& OEP_ONLY_CONST
)
2634 /* Define macros to test an operand from arg0 and arg1 for equality and a
2635 variant that allows null and views null as being different from any
2636 non-null value. In the latter case, if either is null, the both
2637 must be; otherwise, do the normal comparison. */
2638 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
2639 TREE_OPERAND (arg1, N), flags)
2641 #define OP_SAME_WITH_NULL(N) \
2642 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
2643 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
2645 switch (TREE_CODE_CLASS (TREE_CODE (arg0
)))
2648 /* Two conversions are equal only if signedness and modes match. */
2649 switch (TREE_CODE (arg0
))
2652 case FIX_TRUNC_EXPR
:
2653 if (TYPE_UNSIGNED (TREE_TYPE (arg0
))
2654 != TYPE_UNSIGNED (TREE_TYPE (arg1
)))
2664 case tcc_comparison
:
2666 if (OP_SAME (0) && OP_SAME (1))
2669 /* For commutative ops, allow the other order. */
2670 return (commutative_tree_code (TREE_CODE (arg0
))
2671 && operand_equal_p (TREE_OPERAND (arg0
, 0),
2672 TREE_OPERAND (arg1
, 1), flags
)
2673 && operand_equal_p (TREE_OPERAND (arg0
, 1),
2674 TREE_OPERAND (arg1
, 0), flags
));
2677 /* If either of the pointer (or reference) expressions we are
2678 dereferencing contain a side effect, these cannot be equal,
2679 but their addresses can be. */
2680 if ((flags
& OEP_CONSTANT_ADDRESS_OF
) == 0
2681 && (TREE_SIDE_EFFECTS (arg0
)
2682 || TREE_SIDE_EFFECTS (arg1
)))
2685 switch (TREE_CODE (arg0
))
2688 flags
&= ~OEP_CONSTANT_ADDRESS_OF
;
2695 case TARGET_MEM_REF
:
2696 flags
&= ~OEP_CONSTANT_ADDRESS_OF
;
2697 /* Require equal extra operands and then fall through to MEM_REF
2698 handling of the two common operands. */
2699 if (!OP_SAME_WITH_NULL (2)
2700 || !OP_SAME_WITH_NULL (3)
2701 || !OP_SAME_WITH_NULL (4))
2705 flags
&= ~OEP_CONSTANT_ADDRESS_OF
;
2706 /* Require equal access sizes, and similar pointer types.
2707 We can have incomplete types for array references of
2708 variable-sized arrays from the Fortran frontend
2709 though. Also verify the types are compatible. */
2710 return ((TYPE_SIZE (TREE_TYPE (arg0
)) == TYPE_SIZE (TREE_TYPE (arg1
))
2711 || (TYPE_SIZE (TREE_TYPE (arg0
))
2712 && TYPE_SIZE (TREE_TYPE (arg1
))
2713 && operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0
)),
2714 TYPE_SIZE (TREE_TYPE (arg1
)), flags
)))
2715 && types_compatible_p (TREE_TYPE (arg0
), TREE_TYPE (arg1
))
2716 && alias_ptr_types_compatible_p
2717 (TREE_TYPE (TREE_OPERAND (arg0
, 1)),
2718 TREE_TYPE (TREE_OPERAND (arg1
, 1)))
2719 && OP_SAME (0) && OP_SAME (1));
2722 case ARRAY_RANGE_REF
:
2723 /* Operands 2 and 3 may be null.
2724 Compare the array index by value if it is constant first as we
2725 may have different types but same value here. */
2728 flags
&= ~OEP_CONSTANT_ADDRESS_OF
;
2729 return ((tree_int_cst_equal (TREE_OPERAND (arg0
, 1),
2730 TREE_OPERAND (arg1
, 1))
2732 && OP_SAME_WITH_NULL (2)
2733 && OP_SAME_WITH_NULL (3));
2736 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
2737 may be NULL when we're called to compare MEM_EXPRs. */
2738 if (!OP_SAME_WITH_NULL (0)
2741 flags
&= ~OEP_CONSTANT_ADDRESS_OF
;
2742 return OP_SAME_WITH_NULL (2);
2747 flags
&= ~OEP_CONSTANT_ADDRESS_OF
;
2748 return OP_SAME (1) && OP_SAME (2);
2754 case tcc_expression
:
2755 switch (TREE_CODE (arg0
))
2758 case TRUTH_NOT_EXPR
:
2761 case TRUTH_ANDIF_EXPR
:
2762 case TRUTH_ORIF_EXPR
:
2763 return OP_SAME (0) && OP_SAME (1);
2766 case WIDEN_MULT_PLUS_EXPR
:
2767 case WIDEN_MULT_MINUS_EXPR
:
2770 /* The multiplcation operands are commutative. */
2773 case TRUTH_AND_EXPR
:
2775 case TRUTH_XOR_EXPR
:
2776 if (OP_SAME (0) && OP_SAME (1))
2779 /* Otherwise take into account this is a commutative operation. */
2780 return (operand_equal_p (TREE_OPERAND (arg0
, 0),
2781 TREE_OPERAND (arg1
, 1), flags
)
2782 && operand_equal_p (TREE_OPERAND (arg0
, 1),
2783 TREE_OPERAND (arg1
, 0), flags
));
2788 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
2795 switch (TREE_CODE (arg0
))
2798 /* If the CALL_EXPRs call different functions, then they
2799 clearly can not be equal. */
2800 if (! operand_equal_p (CALL_EXPR_FN (arg0
), CALL_EXPR_FN (arg1
),
2805 unsigned int cef
= call_expr_flags (arg0
);
2806 if (flags
& OEP_PURE_SAME
)
2807 cef
&= ECF_CONST
| ECF_PURE
;
2814 /* Now see if all the arguments are the same. */
2816 const_call_expr_arg_iterator iter0
, iter1
;
2818 for (a0
= first_const_call_expr_arg (arg0
, &iter0
),
2819 a1
= first_const_call_expr_arg (arg1
, &iter1
);
2821 a0
= next_const_call_expr_arg (&iter0
),
2822 a1
= next_const_call_expr_arg (&iter1
))
2823 if (! operand_equal_p (a0
, a1
, flags
))
2826 /* If we get here and both argument lists are exhausted
2827 then the CALL_EXPRs are equal. */
2828 return ! (a0
|| a1
);
2834 case tcc_declaration
:
2835 /* Consider __builtin_sqrt equal to sqrt. */
2836 return (TREE_CODE (arg0
) == FUNCTION_DECL
2837 && DECL_BUILT_IN (arg0
) && DECL_BUILT_IN (arg1
)
2838 && DECL_BUILT_IN_CLASS (arg0
) == DECL_BUILT_IN_CLASS (arg1
)
2839 && DECL_FUNCTION_CODE (arg0
) == DECL_FUNCTION_CODE (arg1
));
2846 #undef OP_SAME_WITH_NULL
2849 /* Similar to operand_equal_p, but see if ARG0 might have been made by
2850 shorten_compare from ARG1 when ARG1 was being compared with OTHER.
2852 When in doubt, return 0. */
2855 operand_equal_for_comparison_p (tree arg0
, tree arg1
, tree other
)
2857 int unsignedp1
, unsignedpo
;
2858 tree primarg0
, primarg1
, primother
;
2859 unsigned int correct_width
;
2861 if (operand_equal_p (arg0
, arg1
, 0))
2864 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
2865 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1
)))
2868 /* Discard any conversions that don't change the modes of ARG0 and ARG1
2869 and see if the inner values are the same. This removes any
2870 signedness comparison, which doesn't matter here. */
2871 primarg0
= arg0
, primarg1
= arg1
;
2872 STRIP_NOPS (primarg0
);
2873 STRIP_NOPS (primarg1
);
2874 if (operand_equal_p (primarg0
, primarg1
, 0))
2877 /* Duplicate what shorten_compare does to ARG1 and see if that gives the
2878 actual comparison operand, ARG0.
2880 First throw away any conversions to wider types
2881 already present in the operands. */
2883 primarg1
= get_narrower (arg1
, &unsignedp1
);
2884 primother
= get_narrower (other
, &unsignedpo
);
2886 correct_width
= TYPE_PRECISION (TREE_TYPE (arg1
));
2887 if (unsignedp1
== unsignedpo
2888 && TYPE_PRECISION (TREE_TYPE (primarg1
)) < correct_width
2889 && TYPE_PRECISION (TREE_TYPE (primother
)) < correct_width
)
2891 tree type
= TREE_TYPE (arg0
);
2893 /* Make sure shorter operand is extended the right way
2894 to match the longer operand. */
2895 primarg1
= fold_convert (signed_or_unsigned_type_for
2896 (unsignedp1
, TREE_TYPE (primarg1
)), primarg1
);
2898 if (operand_equal_p (arg0
, fold_convert (type
, primarg1
), 0))
2905 /* See if ARG is an expression that is either a comparison or is performing
2906 arithmetic on comparisons. The comparisons must only be comparing
2907 two different values, which will be stored in *CVAL1 and *CVAL2; if
2908 they are nonzero it means that some operands have already been found.
2909 No variables may be used anywhere else in the expression except in the
2910 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
2911 the expression and save_expr needs to be called with CVAL1 and CVAL2.
2913 If this is true, return 1. Otherwise, return zero. */
2916 twoval_comparison_p (tree arg
, tree
*cval1
, tree
*cval2
, int *save_p
)
2918 enum tree_code code
= TREE_CODE (arg
);
2919 enum tree_code_class tclass
= TREE_CODE_CLASS (code
);
2921 /* We can handle some of the tcc_expression cases here. */
2922 if (tclass
== tcc_expression
&& code
== TRUTH_NOT_EXPR
)
2924 else if (tclass
== tcc_expression
2925 && (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_ORIF_EXPR
2926 || code
== COMPOUND_EXPR
))
2927 tclass
= tcc_binary
;
2929 else if (tclass
== tcc_expression
&& code
== SAVE_EXPR
2930 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg
, 0)))
2932 /* If we've already found a CVAL1 or CVAL2, this expression is
2933 two complex to handle. */
2934 if (*cval1
|| *cval2
)
2944 return twoval_comparison_p (TREE_OPERAND (arg
, 0), cval1
, cval2
, save_p
);
2947 return (twoval_comparison_p (TREE_OPERAND (arg
, 0), cval1
, cval2
, save_p
)
2948 && twoval_comparison_p (TREE_OPERAND (arg
, 1),
2949 cval1
, cval2
, save_p
));
2954 case tcc_expression
:
2955 if (code
== COND_EXPR
)
2956 return (twoval_comparison_p (TREE_OPERAND (arg
, 0),
2957 cval1
, cval2
, save_p
)
2958 && twoval_comparison_p (TREE_OPERAND (arg
, 1),
2959 cval1
, cval2
, save_p
)
2960 && twoval_comparison_p (TREE_OPERAND (arg
, 2),
2961 cval1
, cval2
, save_p
));
2964 case tcc_comparison
:
2965 /* First see if we can handle the first operand, then the second. For
2966 the second operand, we know *CVAL1 can't be zero. It must be that
2967 one side of the comparison is each of the values; test for the
2968 case where this isn't true by failing if the two operands
2971 if (operand_equal_p (TREE_OPERAND (arg
, 0),
2972 TREE_OPERAND (arg
, 1), 0))
2976 *cval1
= TREE_OPERAND (arg
, 0);
2977 else if (operand_equal_p (*cval1
, TREE_OPERAND (arg
, 0), 0))
2979 else if (*cval2
== 0)
2980 *cval2
= TREE_OPERAND (arg
, 0);
2981 else if (operand_equal_p (*cval2
, TREE_OPERAND (arg
, 0), 0))
2986 if (operand_equal_p (*cval1
, TREE_OPERAND (arg
, 1), 0))
2988 else if (*cval2
== 0)
2989 *cval2
= TREE_OPERAND (arg
, 1);
2990 else if (operand_equal_p (*cval2
, TREE_OPERAND (arg
, 1), 0))
3002 /* ARG is a tree that is known to contain just arithmetic operations and
3003 comparisons. Evaluate the operations in the tree substituting NEW0 for
3004 any occurrence of OLD0 as an operand of a comparison and likewise for
3008 eval_subst (location_t loc
, tree arg
, tree old0
, tree new0
,
3009 tree old1
, tree new1
)
3011 tree type
= TREE_TYPE (arg
);
3012 enum tree_code code
= TREE_CODE (arg
);
3013 enum tree_code_class tclass
= TREE_CODE_CLASS (code
);
3015 /* We can handle some of the tcc_expression cases here. */
3016 if (tclass
== tcc_expression
&& code
== TRUTH_NOT_EXPR
)
3018 else if (tclass
== tcc_expression
3019 && (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_ORIF_EXPR
))
3020 tclass
= tcc_binary
;
3025 return fold_build1_loc (loc
, code
, type
,
3026 eval_subst (loc
, TREE_OPERAND (arg
, 0),
3027 old0
, new0
, old1
, new1
));
3030 return fold_build2_loc (loc
, code
, type
,
3031 eval_subst (loc
, TREE_OPERAND (arg
, 0),
3032 old0
, new0
, old1
, new1
),
3033 eval_subst (loc
, TREE_OPERAND (arg
, 1),
3034 old0
, new0
, old1
, new1
));
3036 case tcc_expression
:
3040 return eval_subst (loc
, TREE_OPERAND (arg
, 0), old0
, new0
,
3044 return eval_subst (loc
, TREE_OPERAND (arg
, 1), old0
, new0
,
3048 return fold_build3_loc (loc
, code
, type
,
3049 eval_subst (loc
, TREE_OPERAND (arg
, 0),
3050 old0
, new0
, old1
, new1
),
3051 eval_subst (loc
, TREE_OPERAND (arg
, 1),
3052 old0
, new0
, old1
, new1
),
3053 eval_subst (loc
, TREE_OPERAND (arg
, 2),
3054 old0
, new0
, old1
, new1
));
3058 /* Fall through - ??? */
3060 case tcc_comparison
:
3062 tree arg0
= TREE_OPERAND (arg
, 0);
3063 tree arg1
= TREE_OPERAND (arg
, 1);
3065 /* We need to check both for exact equality and tree equality. The
3066 former will be true if the operand has a side-effect. In that
3067 case, we know the operand occurred exactly once. */
3069 if (arg0
== old0
|| operand_equal_p (arg0
, old0
, 0))
3071 else if (arg0
== old1
|| operand_equal_p (arg0
, old1
, 0))
3074 if (arg1
== old0
|| operand_equal_p (arg1
, old0
, 0))
3076 else if (arg1
== old1
|| operand_equal_p (arg1
, old1
, 0))
3079 return fold_build2_loc (loc
, code
, type
, arg0
, arg1
);
3087 /* Return a tree for the case when the result of an expression is RESULT
3088 converted to TYPE and OMITTED was previously an operand of the expression
3089 but is now not needed (e.g., we folded OMITTED * 0).
3091 If OMITTED has side effects, we must evaluate it. Otherwise, just do
3092 the conversion of RESULT to TYPE. */
3095 omit_one_operand_loc (location_t loc
, tree type
, tree result
, tree omitted
)
3097 tree t
= fold_convert_loc (loc
, type
, result
);
3099 /* If the resulting operand is an empty statement, just return the omitted
3100 statement casted to void. */
3101 if (IS_EMPTY_STMT (t
) && TREE_SIDE_EFFECTS (omitted
))
3102 return build1_loc (loc
, NOP_EXPR
, void_type_node
,
3103 fold_ignored_result (omitted
));
3105 if (TREE_SIDE_EFFECTS (omitted
))
3106 return build2_loc (loc
, COMPOUND_EXPR
, type
,
3107 fold_ignored_result (omitted
), t
);
3109 return non_lvalue_loc (loc
, t
);
3112 /* Similar, but call pedantic_non_lvalue instead of non_lvalue. */
3115 pedantic_omit_one_operand_loc (location_t loc
, tree type
, tree result
,
3118 tree t
= fold_convert_loc (loc
, type
, result
);
3120 /* If the resulting operand is an empty statement, just return the omitted
3121 statement casted to void. */
3122 if (IS_EMPTY_STMT (t
) && TREE_SIDE_EFFECTS (omitted
))
3123 return build1_loc (loc
, NOP_EXPR
, void_type_node
,
3124 fold_ignored_result (omitted
));
3126 if (TREE_SIDE_EFFECTS (omitted
))
3127 return build2_loc (loc
, COMPOUND_EXPR
, type
,
3128 fold_ignored_result (omitted
), t
);
3130 return pedantic_non_lvalue_loc (loc
, t
);
3133 /* Return a tree for the case when the result of an expression is RESULT
3134 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
3135 of the expression but are now not needed.
3137 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
3138 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
3139 evaluated before OMITTED2. Otherwise, if neither has side effects,
3140 just do the conversion of RESULT to TYPE. */
3143 omit_two_operands_loc (location_t loc
, tree type
, tree result
,
3144 tree omitted1
, tree omitted2
)
3146 tree t
= fold_convert_loc (loc
, type
, result
);
3148 if (TREE_SIDE_EFFECTS (omitted2
))
3149 t
= build2_loc (loc
, COMPOUND_EXPR
, type
, omitted2
, t
);
3150 if (TREE_SIDE_EFFECTS (omitted1
))
3151 t
= build2_loc (loc
, COMPOUND_EXPR
, type
, omitted1
, t
);
3153 return TREE_CODE (t
) != COMPOUND_EXPR
? non_lvalue_loc (loc
, t
) : t
;
3157 /* Return a simplified tree node for the truth-negation of ARG. This
3158 never alters ARG itself. We assume that ARG is an operation that
3159 returns a truth value (0 or 1).
3161 FIXME: one would think we would fold the result, but it causes
3162 problems with the dominator optimizer. */
3165 fold_truth_not_expr (location_t loc
, tree arg
)
3167 tree type
= TREE_TYPE (arg
);
3168 enum tree_code code
= TREE_CODE (arg
);
3169 location_t loc1
, loc2
;
3171 /* If this is a comparison, we can simply invert it, except for
3172 floating-point non-equality comparisons, in which case we just
3173 enclose a TRUTH_NOT_EXPR around what we have. */
3175 if (TREE_CODE_CLASS (code
) == tcc_comparison
)
3177 tree op_type
= TREE_TYPE (TREE_OPERAND (arg
, 0));
3178 if (FLOAT_TYPE_P (op_type
)
3179 && flag_trapping_math
3180 && code
!= ORDERED_EXPR
&& code
!= UNORDERED_EXPR
3181 && code
!= NE_EXPR
&& code
!= EQ_EXPR
)
3184 code
= invert_tree_comparison (code
, HONOR_NANS (TYPE_MODE (op_type
)));
3185 if (code
== ERROR_MARK
)
3188 return build2_loc (loc
, code
, type
, TREE_OPERAND (arg
, 0),
3189 TREE_OPERAND (arg
, 1));
3195 return constant_boolean_node (integer_zerop (arg
), type
);
3197 case TRUTH_AND_EXPR
:
3198 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3199 loc2
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3200 return build2_loc (loc
, TRUTH_OR_EXPR
, type
,
3201 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)),
3202 invert_truthvalue_loc (loc2
, TREE_OPERAND (arg
, 1)));
3205 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3206 loc2
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3207 return build2_loc (loc
, TRUTH_AND_EXPR
, type
,
3208 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)),
3209 invert_truthvalue_loc (loc2
, TREE_OPERAND (arg
, 1)));
3211 case TRUTH_XOR_EXPR
:
3212 /* Here we can invert either operand. We invert the first operand
3213 unless the second operand is a TRUTH_NOT_EXPR in which case our
3214 result is the XOR of the first operand with the inside of the
3215 negation of the second operand. */
3217 if (TREE_CODE (TREE_OPERAND (arg
, 1)) == TRUTH_NOT_EXPR
)
3218 return build2_loc (loc
, TRUTH_XOR_EXPR
, type
, TREE_OPERAND (arg
, 0),
3219 TREE_OPERAND (TREE_OPERAND (arg
, 1), 0));
3221 return build2_loc (loc
, TRUTH_XOR_EXPR
, type
,
3222 invert_truthvalue_loc (loc
, TREE_OPERAND (arg
, 0)),
3223 TREE_OPERAND (arg
, 1));
3225 case TRUTH_ANDIF_EXPR
:
3226 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3227 loc2
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3228 return build2_loc (loc
, TRUTH_ORIF_EXPR
, type
,
3229 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)),
3230 invert_truthvalue_loc (loc2
, TREE_OPERAND (arg
, 1)));
3232 case TRUTH_ORIF_EXPR
:
3233 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3234 loc2
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3235 return build2_loc (loc
, TRUTH_ANDIF_EXPR
, type
,
3236 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)),
3237 invert_truthvalue_loc (loc2
, TREE_OPERAND (arg
, 1)));
3239 case TRUTH_NOT_EXPR
:
3240 return TREE_OPERAND (arg
, 0);
3244 tree arg1
= TREE_OPERAND (arg
, 1);
3245 tree arg2
= TREE_OPERAND (arg
, 2);
3247 loc1
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3248 loc2
= expr_location_or (TREE_OPERAND (arg
, 2), loc
);
3250 /* A COND_EXPR may have a throw as one operand, which
3251 then has void type. Just leave void operands
3253 return build3_loc (loc
, COND_EXPR
, type
, TREE_OPERAND (arg
, 0),
3254 VOID_TYPE_P (TREE_TYPE (arg1
))
3255 ? arg1
: invert_truthvalue_loc (loc1
, arg1
),
3256 VOID_TYPE_P (TREE_TYPE (arg2
))
3257 ? arg2
: invert_truthvalue_loc (loc2
, arg2
));
3261 loc1
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3262 return build2_loc (loc
, COMPOUND_EXPR
, type
,
3263 TREE_OPERAND (arg
, 0),
3264 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 1)));
3266 case NON_LVALUE_EXPR
:
3267 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3268 return invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0));
3271 if (TREE_CODE (TREE_TYPE (arg
)) == BOOLEAN_TYPE
)
3272 return build1_loc (loc
, TRUTH_NOT_EXPR
, type
, arg
);
3274 /* ... fall through ... */
3277 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3278 return build1_loc (loc
, TREE_CODE (arg
), type
,
3279 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)));
3282 if (!integer_onep (TREE_OPERAND (arg
, 1)))
3284 return build2_loc (loc
, EQ_EXPR
, type
, arg
, build_int_cst (type
, 0));
3287 return build1_loc (loc
, TRUTH_NOT_EXPR
, type
, arg
);
3289 case CLEANUP_POINT_EXPR
:
3290 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3291 return build1_loc (loc
, CLEANUP_POINT_EXPR
, type
,
3292 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)));
3299 /* Fold the truth-negation of ARG. This never alters ARG itself. We
3300 assume that ARG is an operation that returns a truth value (0 or 1
3301 for scalars, 0 or -1 for vectors). Return the folded expression if
3302 folding is successful. Otherwise, return NULL_TREE. */
3305 fold_invert_truthvalue (location_t loc
, tree arg
)
3307 tree type
= TREE_TYPE (arg
);
3308 return fold_unary_loc (loc
, VECTOR_TYPE_P (type
)
3314 /* Return a simplified tree node for the truth-negation of ARG. This
3315 never alters ARG itself. We assume that ARG is an operation that
3316 returns a truth value (0 or 1 for scalars, 0 or -1 for vectors). */
3319 invert_truthvalue_loc (location_t loc
, tree arg
)
3321 if (TREE_CODE (arg
) == ERROR_MARK
)
3324 tree type
= TREE_TYPE (arg
);
3325 return fold_build1_loc (loc
, VECTOR_TYPE_P (type
)
3331 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
3332 operands are another bit-wise operation with a common input. If so,
3333 distribute the bit operations to save an operation and possibly two if
3334 constants are involved. For example, convert
3335 (A | B) & (A | C) into A | (B & C)
3336 Further simplification will occur if B and C are constants.
3338 If this optimization cannot be done, 0 will be returned. */
3341 distribute_bit_expr (location_t loc
, enum tree_code code
, tree type
,
3342 tree arg0
, tree arg1
)
3347 if (TREE_CODE (arg0
) != TREE_CODE (arg1
)
3348 || TREE_CODE (arg0
) == code
3349 || (TREE_CODE (arg0
) != BIT_AND_EXPR
3350 && TREE_CODE (arg0
) != BIT_IOR_EXPR
))
3353 if (operand_equal_p (TREE_OPERAND (arg0
, 0), TREE_OPERAND (arg1
, 0), 0))
3355 common
= TREE_OPERAND (arg0
, 0);
3356 left
= TREE_OPERAND (arg0
, 1);
3357 right
= TREE_OPERAND (arg1
, 1);
3359 else if (operand_equal_p (TREE_OPERAND (arg0
, 0), TREE_OPERAND (arg1
, 1), 0))
3361 common
= TREE_OPERAND (arg0
, 0);
3362 left
= TREE_OPERAND (arg0
, 1);
3363 right
= TREE_OPERAND (arg1
, 0);
3365 else if (operand_equal_p (TREE_OPERAND (arg0
, 1), TREE_OPERAND (arg1
, 0), 0))
3367 common
= TREE_OPERAND (arg0
, 1);
3368 left
= TREE_OPERAND (arg0
, 0);
3369 right
= TREE_OPERAND (arg1
, 1);
3371 else if (operand_equal_p (TREE_OPERAND (arg0
, 1), TREE_OPERAND (arg1
, 1), 0))
3373 common
= TREE_OPERAND (arg0
, 1);
3374 left
= TREE_OPERAND (arg0
, 0);
3375 right
= TREE_OPERAND (arg1
, 0);
3380 common
= fold_convert_loc (loc
, type
, common
);
3381 left
= fold_convert_loc (loc
, type
, left
);
3382 right
= fold_convert_loc (loc
, type
, right
);
3383 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
, common
,
3384 fold_build2_loc (loc
, code
, type
, left
, right
));
3387 /* Knowing that ARG0 and ARG1 are both RDIV_EXPRs, simplify a binary operation
3388 with code CODE. This optimization is unsafe. */
3390 distribute_real_division (location_t loc
, enum tree_code code
, tree type
,
3391 tree arg0
, tree arg1
)
3393 bool mul0
= TREE_CODE (arg0
) == MULT_EXPR
;
3394 bool mul1
= TREE_CODE (arg1
) == MULT_EXPR
;
3396 /* (A / C) +- (B / C) -> (A +- B) / C. */
3398 && operand_equal_p (TREE_OPERAND (arg0
, 1),
3399 TREE_OPERAND (arg1
, 1), 0))
3400 return fold_build2_loc (loc
, mul0
? MULT_EXPR
: RDIV_EXPR
, type
,
3401 fold_build2_loc (loc
, code
, type
,
3402 TREE_OPERAND (arg0
, 0),
3403 TREE_OPERAND (arg1
, 0)),
3404 TREE_OPERAND (arg0
, 1));
3406 /* (A / C1) +- (A / C2) -> A * (1 / C1 +- 1 / C2). */
3407 if (operand_equal_p (TREE_OPERAND (arg0
, 0),
3408 TREE_OPERAND (arg1
, 0), 0)
3409 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == REAL_CST
3410 && TREE_CODE (TREE_OPERAND (arg1
, 1)) == REAL_CST
)
3412 REAL_VALUE_TYPE r0
, r1
;
3413 r0
= TREE_REAL_CST (TREE_OPERAND (arg0
, 1));
3414 r1
= TREE_REAL_CST (TREE_OPERAND (arg1
, 1));
3416 real_arithmetic (&r0
, RDIV_EXPR
, &dconst1
, &r0
);
3418 real_arithmetic (&r1
, RDIV_EXPR
, &dconst1
, &r1
);
3419 real_arithmetic (&r0
, code
, &r0
, &r1
);
3420 return fold_build2_loc (loc
, MULT_EXPR
, type
,
3421 TREE_OPERAND (arg0
, 0),
3422 build_real (type
, r0
));
3428 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3429 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero. */
3432 make_bit_field_ref (location_t loc
, tree inner
, tree type
,
3433 HOST_WIDE_INT bitsize
, HOST_WIDE_INT bitpos
, int unsignedp
)
3435 tree result
, bftype
;
3439 tree size
= TYPE_SIZE (TREE_TYPE (inner
));
3440 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner
))
3441 || POINTER_TYPE_P (TREE_TYPE (inner
)))
3442 && tree_fits_shwi_p (size
)
3443 && tree_to_shwi (size
) == bitsize
)
3444 return fold_convert_loc (loc
, type
, inner
);
3448 if (TYPE_PRECISION (bftype
) != bitsize
3449 || TYPE_UNSIGNED (bftype
) == !unsignedp
)
3450 bftype
= build_nonstandard_integer_type (bitsize
, 0);
3452 result
= build3_loc (loc
, BIT_FIELD_REF
, bftype
, inner
,
3453 size_int (bitsize
), bitsize_int (bitpos
));
3456 result
= fold_convert_loc (loc
, type
, result
);
3461 /* Optimize a bit-field compare.
3463 There are two cases: First is a compare against a constant and the
3464 second is a comparison of two items where the fields are at the same
3465 bit position relative to the start of a chunk (byte, halfword, word)
3466 large enough to contain it. In these cases we can avoid the shift
3467 implicit in bitfield extractions.
3469 For constants, we emit a compare of the shifted constant with the
3470 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
3471 compared. For two fields at the same position, we do the ANDs with the
3472 similar mask and compare the result of the ANDs.
3474 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
3475 COMPARE_TYPE is the type of the comparison, and LHS and RHS
3476 are the left and right operands of the comparison, respectively.
3478 If the optimization described above can be done, we return the resulting
3479 tree. Otherwise we return zero. */
3482 optimize_bit_field_compare (location_t loc
, enum tree_code code
,
3483 tree compare_type
, tree lhs
, tree rhs
)
3485 HOST_WIDE_INT lbitpos
, lbitsize
, rbitpos
, rbitsize
, nbitpos
, nbitsize
;
3486 tree type
= TREE_TYPE (lhs
);
3487 tree signed_type
, unsigned_type
;
3488 int const_p
= TREE_CODE (rhs
) == INTEGER_CST
;
3489 enum machine_mode lmode
, rmode
, nmode
;
3490 int lunsignedp
, runsignedp
;
3491 int lvolatilep
= 0, rvolatilep
= 0;
3492 tree linner
, rinner
= NULL_TREE
;
3496 /* Get all the information about the extractions being done. If the bit size
3497 if the same as the size of the underlying object, we aren't doing an
3498 extraction at all and so can do nothing. We also don't want to
3499 do anything if the inner expression is a PLACEHOLDER_EXPR since we
3500 then will no longer be able to replace it. */
3501 linner
= get_inner_reference (lhs
, &lbitsize
, &lbitpos
, &offset
, &lmode
,
3502 &lunsignedp
, &lvolatilep
, false);
3503 if (linner
== lhs
|| lbitsize
== GET_MODE_BITSIZE (lmode
) || lbitsize
< 0
3504 || offset
!= 0 || TREE_CODE (linner
) == PLACEHOLDER_EXPR
|| lvolatilep
)
3509 /* If this is not a constant, we can only do something if bit positions,
3510 sizes, and signedness are the same. */
3511 rinner
= get_inner_reference (rhs
, &rbitsize
, &rbitpos
, &offset
, &rmode
,
3512 &runsignedp
, &rvolatilep
, false);
3514 if (rinner
== rhs
|| lbitpos
!= rbitpos
|| lbitsize
!= rbitsize
3515 || lunsignedp
!= runsignedp
|| offset
!= 0
3516 || TREE_CODE (rinner
) == PLACEHOLDER_EXPR
|| rvolatilep
)
3520 /* See if we can find a mode to refer to this field. We should be able to,
3521 but fail if we can't. */
3522 nmode
= get_best_mode (lbitsize
, lbitpos
, 0, 0,
3523 const_p
? TYPE_ALIGN (TREE_TYPE (linner
))
3524 : MIN (TYPE_ALIGN (TREE_TYPE (linner
)),
3525 TYPE_ALIGN (TREE_TYPE (rinner
))),
3527 if (nmode
== VOIDmode
)
3530 /* Set signed and unsigned types of the precision of this mode for the
3532 signed_type
= lang_hooks
.types
.type_for_mode (nmode
, 0);
3533 unsigned_type
= lang_hooks
.types
.type_for_mode (nmode
, 1);
3535 /* Compute the bit position and size for the new reference and our offset
3536 within it. If the new reference is the same size as the original, we
3537 won't optimize anything, so return zero. */
3538 nbitsize
= GET_MODE_BITSIZE (nmode
);
3539 nbitpos
= lbitpos
& ~ (nbitsize
- 1);
3541 if (nbitsize
== lbitsize
)
3544 if (BYTES_BIG_ENDIAN
)
3545 lbitpos
= nbitsize
- lbitsize
- lbitpos
;
3547 /* Make the mask to be used against the extracted field. */
3548 mask
= build_int_cst_type (unsigned_type
, -1);
3549 mask
= const_binop (LSHIFT_EXPR
, mask
, size_int (nbitsize
- lbitsize
));
3550 mask
= const_binop (RSHIFT_EXPR
, mask
,
3551 size_int (nbitsize
- lbitsize
- lbitpos
));
3554 /* If not comparing with constant, just rework the comparison
3556 return fold_build2_loc (loc
, code
, compare_type
,
3557 fold_build2_loc (loc
, BIT_AND_EXPR
, unsigned_type
,
3558 make_bit_field_ref (loc
, linner
,
3563 fold_build2_loc (loc
, BIT_AND_EXPR
, unsigned_type
,
3564 make_bit_field_ref (loc
, rinner
,
3570 /* Otherwise, we are handling the constant case. See if the constant is too
3571 big for the field. Warn and return a tree of for 0 (false) if so. We do
3572 this not only for its own sake, but to avoid having to test for this
3573 error case below. If we didn't, we might generate wrong code.
3575 For unsigned fields, the constant shifted right by the field length should
3576 be all zero. For signed fields, the high-order bits should agree with
3581 if (! integer_zerop (const_binop (RSHIFT_EXPR
,
3582 fold_convert_loc (loc
,
3583 unsigned_type
, rhs
),
3584 size_int (lbitsize
))))
3586 warning (0, "comparison is always %d due to width of bit-field",
3588 return constant_boolean_node (code
== NE_EXPR
, compare_type
);
3593 tree tem
= const_binop (RSHIFT_EXPR
,
3594 fold_convert_loc (loc
, signed_type
, rhs
),
3595 size_int (lbitsize
- 1));
3596 if (! integer_zerop (tem
) && ! integer_all_onesp (tem
))
3598 warning (0, "comparison is always %d due to width of bit-field",
3600 return constant_boolean_node (code
== NE_EXPR
, compare_type
);
3604 /* Single-bit compares should always be against zero. */
3605 if (lbitsize
== 1 && ! integer_zerop (rhs
))
3607 code
= code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
;
3608 rhs
= build_int_cst (type
, 0);
3611 /* Make a new bitfield reference, shift the constant over the
3612 appropriate number of bits and mask it with the computed mask
3613 (in case this was a signed field). If we changed it, make a new one. */
3614 lhs
= make_bit_field_ref (loc
, linner
, unsigned_type
, nbitsize
, nbitpos
, 1);
3616 rhs
= const_binop (BIT_AND_EXPR
,
3617 const_binop (LSHIFT_EXPR
,
3618 fold_convert_loc (loc
, unsigned_type
, rhs
),
3619 size_int (lbitpos
)),
3622 lhs
= build2_loc (loc
, code
, compare_type
,
3623 build2 (BIT_AND_EXPR
, unsigned_type
, lhs
, mask
), rhs
);
3627 /* Subroutine for fold_truth_andor_1: decode a field reference.
3629 If EXP is a comparison reference, we return the innermost reference.
3631 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
3632 set to the starting bit number.
3634 If the innermost field can be completely contained in a mode-sized
3635 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
3637 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
3638 otherwise it is not changed.
3640 *PUNSIGNEDP is set to the signedness of the field.
3642 *PMASK is set to the mask used. This is either contained in a
3643 BIT_AND_EXPR or derived from the width of the field.
3645 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
3647 Return 0 if this is not a component reference or is one that we can't
3648 do anything with. */
3651 decode_field_reference (location_t loc
, tree exp
, HOST_WIDE_INT
*pbitsize
,
3652 HOST_WIDE_INT
*pbitpos
, enum machine_mode
*pmode
,
3653 int *punsignedp
, int *pvolatilep
,
3654 tree
*pmask
, tree
*pand_mask
)
3656 tree outer_type
= 0;
3658 tree mask
, inner
, offset
;
3660 unsigned int precision
;
3662 /* All the optimizations using this function assume integer fields.
3663 There are problems with FP fields since the type_for_size call
3664 below can fail for, e.g., XFmode. */
3665 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp
)))
3668 /* We are interested in the bare arrangement of bits, so strip everything
3669 that doesn't affect the machine mode. However, record the type of the
3670 outermost expression if it may matter below. */
3671 if (CONVERT_EXPR_P (exp
)
3672 || TREE_CODE (exp
) == NON_LVALUE_EXPR
)
3673 outer_type
= TREE_TYPE (exp
);
3676 if (TREE_CODE (exp
) == BIT_AND_EXPR
)
3678 and_mask
= TREE_OPERAND (exp
, 1);
3679 exp
= TREE_OPERAND (exp
, 0);
3680 STRIP_NOPS (exp
); STRIP_NOPS (and_mask
);
3681 if (TREE_CODE (and_mask
) != INTEGER_CST
)
3685 inner
= get_inner_reference (exp
, pbitsize
, pbitpos
, &offset
, pmode
,
3686 punsignedp
, pvolatilep
, false);
3687 if ((inner
== exp
&& and_mask
== 0)
3688 || *pbitsize
< 0 || offset
!= 0
3689 || TREE_CODE (inner
) == PLACEHOLDER_EXPR
)
3692 /* If the number of bits in the reference is the same as the bitsize of
3693 the outer type, then the outer type gives the signedness. Otherwise
3694 (in case of a small bitfield) the signedness is unchanged. */
3695 if (outer_type
&& *pbitsize
== TYPE_PRECISION (outer_type
))
3696 *punsignedp
= TYPE_UNSIGNED (outer_type
);
3698 /* Compute the mask to access the bitfield. */
3699 unsigned_type
= lang_hooks
.types
.type_for_size (*pbitsize
, 1);
3700 precision
= TYPE_PRECISION (unsigned_type
);
3702 mask
= build_int_cst_type (unsigned_type
, -1);
3704 mask
= const_binop (LSHIFT_EXPR
, mask
, size_int (precision
- *pbitsize
));
3705 mask
= const_binop (RSHIFT_EXPR
, mask
, size_int (precision
- *pbitsize
));
3707 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
3709 mask
= fold_build2_loc (loc
, BIT_AND_EXPR
, unsigned_type
,
3710 fold_convert_loc (loc
, unsigned_type
, and_mask
), mask
);
3713 *pand_mask
= and_mask
;
3717 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
3721 all_ones_mask_p (const_tree mask
, int size
)
3723 tree type
= TREE_TYPE (mask
);
3724 unsigned int precision
= TYPE_PRECISION (type
);
3727 tmask
= build_int_cst_type (signed_type_for (type
), -1);
3730 tree_int_cst_equal (mask
,
3731 const_binop (RSHIFT_EXPR
,
3732 const_binop (LSHIFT_EXPR
, tmask
,
3733 size_int (precision
- size
)),
3734 size_int (precision
- size
)));
3737 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
3738 represents the sign bit of EXP's type. If EXP represents a sign
3739 or zero extension, also test VAL against the unextended type.
3740 The return value is the (sub)expression whose sign bit is VAL,
3741 or NULL_TREE otherwise. */
3744 sign_bit_p (tree exp
, const_tree val
)
3746 unsigned HOST_WIDE_INT mask_lo
, lo
;
3747 HOST_WIDE_INT mask_hi
, hi
;
3751 /* Tree EXP must have an integral type. */
3752 t
= TREE_TYPE (exp
);
3753 if (! INTEGRAL_TYPE_P (t
))
3756 /* Tree VAL must be an integer constant. */
3757 if (TREE_CODE (val
) != INTEGER_CST
3758 || TREE_OVERFLOW (val
))
3761 width
= TYPE_PRECISION (t
);
3762 if (width
> HOST_BITS_PER_WIDE_INT
)
3764 hi
= (unsigned HOST_WIDE_INT
) 1 << (width
- HOST_BITS_PER_WIDE_INT
- 1);
3767 mask_hi
= (HOST_WIDE_INT_M1U
>> (HOST_BITS_PER_DOUBLE_INT
- width
));
3773 lo
= (unsigned HOST_WIDE_INT
) 1 << (width
- 1);
3776 mask_lo
= (HOST_WIDE_INT_M1U
>> (HOST_BITS_PER_WIDE_INT
- width
));
3779 /* We mask off those bits beyond TREE_TYPE (exp) so that we can
3780 treat VAL as if it were unsigned. */
3781 if ((TREE_INT_CST_HIGH (val
) & mask_hi
) == hi
3782 && (TREE_INT_CST_LOW (val
) & mask_lo
) == lo
)
3785 /* Handle extension from a narrower type. */
3786 if (TREE_CODE (exp
) == NOP_EXPR
3787 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp
, 0))) < width
)
3788 return sign_bit_p (TREE_OPERAND (exp
, 0), val
);
3793 /* Subroutine for fold_truth_andor_1: determine if an operand is simple enough
3794 to be evaluated unconditionally. */
3797 simple_operand_p (const_tree exp
)
3799 /* Strip any conversions that don't change the machine mode. */
3802 return (CONSTANT_CLASS_P (exp
)
3803 || TREE_CODE (exp
) == SSA_NAME
3805 && ! TREE_ADDRESSABLE (exp
)
3806 && ! TREE_THIS_VOLATILE (exp
)
3807 && ! DECL_NONLOCAL (exp
)
3808 /* Don't regard global variables as simple. They may be
3809 allocated in ways unknown to the compiler (shared memory,
3810 #pragma weak, etc). */
3811 && ! TREE_PUBLIC (exp
)
3812 && ! DECL_EXTERNAL (exp
)
3813 /* Weakrefs are not safe to be read, since they can be NULL.
3814 They are !TREE_PUBLIC && !DECL_EXTERNAL but still
3815 have DECL_WEAK flag set. */
3816 && (! VAR_OR_FUNCTION_DECL_P (exp
) || ! DECL_WEAK (exp
))
3817 /* Loading a static variable is unduly expensive, but global
3818 registers aren't expensive. */
3819 && (! TREE_STATIC (exp
) || DECL_REGISTER (exp
))));
3822 /* Subroutine for fold_truth_andor: determine if an operand is simple enough
3823 to be evaluated unconditionally.
3824 I addition to simple_operand_p, we assume that comparisons, conversions,
3825 and logic-not operations are simple, if their operands are simple, too. */
3828 simple_operand_p_2 (tree exp
)
3830 enum tree_code code
;
3832 if (TREE_SIDE_EFFECTS (exp
)
3833 || tree_could_trap_p (exp
))
3836 while (CONVERT_EXPR_P (exp
))
3837 exp
= TREE_OPERAND (exp
, 0);
3839 code
= TREE_CODE (exp
);
3841 if (TREE_CODE_CLASS (code
) == tcc_comparison
)
3842 return (simple_operand_p (TREE_OPERAND (exp
, 0))
3843 && simple_operand_p (TREE_OPERAND (exp
, 1)));
3845 if (code
== TRUTH_NOT_EXPR
)
3846 return simple_operand_p_2 (TREE_OPERAND (exp
, 0));
3848 return simple_operand_p (exp
);
3852 /* The following functions are subroutines to fold_range_test and allow it to
3853 try to change a logical combination of comparisons into a range test.
3856 X == 2 || X == 3 || X == 4 || X == 5
3860 (unsigned) (X - 2) <= 3
3862 We describe each set of comparisons as being either inside or outside
3863 a range, using a variable named like IN_P, and then describe the
3864 range with a lower and upper bound. If one of the bounds is omitted,
3865 it represents either the highest or lowest value of the type.
3867 In the comments below, we represent a range by two numbers in brackets
3868 preceded by a "+" to designate being inside that range, or a "-" to
3869 designate being outside that range, so the condition can be inverted by
3870 flipping the prefix. An omitted bound is represented by a "-". For
3871 example, "- [-, 10]" means being outside the range starting at the lowest
3872 possible value and ending at 10, in other words, being greater than 10.
3873 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
3876 We set up things so that the missing bounds are handled in a consistent
3877 manner so neither a missing bound nor "true" and "false" need to be
3878 handled using a special case. */
3880 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
3881 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
3882 and UPPER1_P are nonzero if the respective argument is an upper bound
3883 and zero for a lower. TYPE, if nonzero, is the type of the result; it
3884 must be specified for a comparison. ARG1 will be converted to ARG0's
3885 type if both are specified. */
3888 range_binop (enum tree_code code
, tree type
, tree arg0
, int upper0_p
,
3889 tree arg1
, int upper1_p
)
3895 /* If neither arg represents infinity, do the normal operation.
3896 Else, if not a comparison, return infinity. Else handle the special
3897 comparison rules. Note that most of the cases below won't occur, but
3898 are handled for consistency. */
3900 if (arg0
!= 0 && arg1
!= 0)
3902 tem
= fold_build2 (code
, type
!= 0 ? type
: TREE_TYPE (arg0
),
3903 arg0
, fold_convert (TREE_TYPE (arg0
), arg1
));
3905 return TREE_CODE (tem
) == INTEGER_CST
? tem
: 0;
3908 if (TREE_CODE_CLASS (code
) != tcc_comparison
)
3911 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
3912 for neither. In real maths, we cannot assume open ended ranges are
3913 the same. But, this is computer arithmetic, where numbers are finite.
3914 We can therefore make the transformation of any unbounded range with
3915 the value Z, Z being greater than any representable number. This permits
3916 us to treat unbounded ranges as equal. */
3917 sgn0
= arg0
!= 0 ? 0 : (upper0_p
? 1 : -1);
3918 sgn1
= arg1
!= 0 ? 0 : (upper1_p
? 1 : -1);
3922 result
= sgn0
== sgn1
;
3925 result
= sgn0
!= sgn1
;
3928 result
= sgn0
< sgn1
;
3931 result
= sgn0
<= sgn1
;
3934 result
= sgn0
> sgn1
;
3937 result
= sgn0
>= sgn1
;
3943 return constant_boolean_node (result
, type
);
3946 /* Helper routine for make_range. Perform one step for it, return
3947 new expression if the loop should continue or NULL_TREE if it should
3951 make_range_step (location_t loc
, enum tree_code code
, tree arg0
, tree arg1
,
3952 tree exp_type
, tree
*p_low
, tree
*p_high
, int *p_in_p
,
3953 bool *strict_overflow_p
)
3955 tree arg0_type
= TREE_TYPE (arg0
);
3956 tree n_low
, n_high
, low
= *p_low
, high
= *p_high
;
3957 int in_p
= *p_in_p
, n_in_p
;
3961 case TRUTH_NOT_EXPR
:
3962 /* We can only do something if the range is testing for zero. */
3963 if (low
== NULL_TREE
|| high
== NULL_TREE
3964 || ! integer_zerop (low
) || ! integer_zerop (high
))
3969 case EQ_EXPR
: case NE_EXPR
:
3970 case LT_EXPR
: case LE_EXPR
: case GE_EXPR
: case GT_EXPR
:
3971 /* We can only do something if the range is testing for zero
3972 and if the second operand is an integer constant. Note that
3973 saying something is "in" the range we make is done by
3974 complementing IN_P since it will set in the initial case of
3975 being not equal to zero; "out" is leaving it alone. */
3976 if (low
== NULL_TREE
|| high
== NULL_TREE
3977 || ! integer_zerop (low
) || ! integer_zerop (high
)
3978 || TREE_CODE (arg1
) != INTEGER_CST
)
3983 case NE_EXPR
: /* - [c, c] */
3986 case EQ_EXPR
: /* + [c, c] */
3987 in_p
= ! in_p
, low
= high
= arg1
;
3989 case GT_EXPR
: /* - [-, c] */
3990 low
= 0, high
= arg1
;
3992 case GE_EXPR
: /* + [c, -] */
3993 in_p
= ! in_p
, low
= arg1
, high
= 0;
3995 case LT_EXPR
: /* - [c, -] */
3996 low
= arg1
, high
= 0;
3998 case LE_EXPR
: /* + [-, c] */
3999 in_p
= ! in_p
, low
= 0, high
= arg1
;
4005 /* If this is an unsigned comparison, we also know that EXP is
4006 greater than or equal to zero. We base the range tests we make
4007 on that fact, so we record it here so we can parse existing
4008 range tests. We test arg0_type since often the return type
4009 of, e.g. EQ_EXPR, is boolean. */
4010 if (TYPE_UNSIGNED (arg0_type
) && (low
== 0 || high
== 0))
4012 if (! merge_ranges (&n_in_p
, &n_low
, &n_high
,
4014 build_int_cst (arg0_type
, 0),
4018 in_p
= n_in_p
, low
= n_low
, high
= n_high
;
4020 /* If the high bound is missing, but we have a nonzero low
4021 bound, reverse the range so it goes from zero to the low bound
4023 if (high
== 0 && low
&& ! integer_zerop (low
))
4026 high
= range_binop (MINUS_EXPR
, NULL_TREE
, low
, 0,
4027 integer_one_node
, 0);
4028 low
= build_int_cst (arg0_type
, 0);
4038 /* If flag_wrapv and ARG0_TYPE is signed, make sure
4039 low and high are non-NULL, then normalize will DTRT. */
4040 if (!TYPE_UNSIGNED (arg0_type
)
4041 && !TYPE_OVERFLOW_UNDEFINED (arg0_type
))
4043 if (low
== NULL_TREE
)
4044 low
= TYPE_MIN_VALUE (arg0_type
);
4045 if (high
== NULL_TREE
)
4046 high
= TYPE_MAX_VALUE (arg0_type
);
4049 /* (-x) IN [a,b] -> x in [-b, -a] */
4050 n_low
= range_binop (MINUS_EXPR
, exp_type
,
4051 build_int_cst (exp_type
, 0),
4053 n_high
= range_binop (MINUS_EXPR
, exp_type
,
4054 build_int_cst (exp_type
, 0),
4056 if (n_high
!= 0 && TREE_OVERFLOW (n_high
))
4062 return build2_loc (loc
, MINUS_EXPR
, exp_type
, negate_expr (arg0
),
4063 build_int_cst (exp_type
, 1));
4067 if (TREE_CODE (arg1
) != INTEGER_CST
)
4070 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
4071 move a constant to the other side. */
4072 if (!TYPE_UNSIGNED (arg0_type
)
4073 && !TYPE_OVERFLOW_UNDEFINED (arg0_type
))
4076 /* If EXP is signed, any overflow in the computation is undefined,
4077 so we don't worry about it so long as our computations on
4078 the bounds don't overflow. For unsigned, overflow is defined
4079 and this is exactly the right thing. */
4080 n_low
= range_binop (code
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
,
4081 arg0_type
, low
, 0, arg1
, 0);
4082 n_high
= range_binop (code
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
,
4083 arg0_type
, high
, 1, arg1
, 0);
4084 if ((n_low
!= 0 && TREE_OVERFLOW (n_low
))
4085 || (n_high
!= 0 && TREE_OVERFLOW (n_high
)))
4088 if (TYPE_OVERFLOW_UNDEFINED (arg0_type
))
4089 *strict_overflow_p
= true;
4092 /* Check for an unsigned range which has wrapped around the maximum
4093 value thus making n_high < n_low, and normalize it. */
4094 if (n_low
&& n_high
&& tree_int_cst_lt (n_high
, n_low
))
4096 low
= range_binop (PLUS_EXPR
, arg0_type
, n_high
, 0,
4097 integer_one_node
, 0);
4098 high
= range_binop (MINUS_EXPR
, arg0_type
, n_low
, 0,
4099 integer_one_node
, 0);
4101 /* If the range is of the form +/- [ x+1, x ], we won't
4102 be able to normalize it. But then, it represents the
4103 whole range or the empty set, so make it
4105 if (tree_int_cst_equal (n_low
, low
)
4106 && tree_int_cst_equal (n_high
, high
))
4112 low
= n_low
, high
= n_high
;
4120 case NON_LVALUE_EXPR
:
4121 if (TYPE_PRECISION (arg0_type
) > TYPE_PRECISION (exp_type
))
4124 if (! INTEGRAL_TYPE_P (arg0_type
)
4125 || (low
!= 0 && ! int_fits_type_p (low
, arg0_type
))
4126 || (high
!= 0 && ! int_fits_type_p (high
, arg0_type
)))
4129 n_low
= low
, n_high
= high
;
4132 n_low
= fold_convert_loc (loc
, arg0_type
, n_low
);
4135 n_high
= fold_convert_loc (loc
, arg0_type
, n_high
);
4137 /* If we're converting arg0 from an unsigned type, to exp,
4138 a signed type, we will be doing the comparison as unsigned.
4139 The tests above have already verified that LOW and HIGH
4142 So we have to ensure that we will handle large unsigned
4143 values the same way that the current signed bounds treat
4146 if (!TYPE_UNSIGNED (exp_type
) && TYPE_UNSIGNED (arg0_type
))
4150 /* For fixed-point modes, we need to pass the saturating flag
4151 as the 2nd parameter. */
4152 if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type
)))
4154 = lang_hooks
.types
.type_for_mode (TYPE_MODE (arg0_type
),
4155 TYPE_SATURATING (arg0_type
));
4158 = lang_hooks
.types
.type_for_mode (TYPE_MODE (arg0_type
), 1);
4160 /* A range without an upper bound is, naturally, unbounded.
4161 Since convert would have cropped a very large value, use
4162 the max value for the destination type. */
4164 = TYPE_MAX_VALUE (equiv_type
) ? TYPE_MAX_VALUE (equiv_type
)
4165 : TYPE_MAX_VALUE (arg0_type
);
4167 if (TYPE_PRECISION (exp_type
) == TYPE_PRECISION (arg0_type
))
4168 high_positive
= fold_build2_loc (loc
, RSHIFT_EXPR
, arg0_type
,
4169 fold_convert_loc (loc
, arg0_type
,
4171 build_int_cst (arg0_type
, 1));
4173 /* If the low bound is specified, "and" the range with the
4174 range for which the original unsigned value will be
4178 if (! merge_ranges (&n_in_p
, &n_low
, &n_high
, 1, n_low
, n_high
,
4179 1, fold_convert_loc (loc
, arg0_type
,
4184 in_p
= (n_in_p
== in_p
);
4188 /* Otherwise, "or" the range with the range of the input
4189 that will be interpreted as negative. */
4190 if (! merge_ranges (&n_in_p
, &n_low
, &n_high
, 0, n_low
, n_high
,
4191 1, fold_convert_loc (loc
, arg0_type
,
4196 in_p
= (in_p
!= n_in_p
);
4210 /* Given EXP, a logical expression, set the range it is testing into
4211 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
4212 actually being tested. *PLOW and *PHIGH will be made of the same
4213 type as the returned expression. If EXP is not a comparison, we
4214 will most likely not be returning a useful value and range. Set
4215 *STRICT_OVERFLOW_P to true if the return value is only valid
4216 because signed overflow is undefined; otherwise, do not change
4217 *STRICT_OVERFLOW_P. */
4220 make_range (tree exp
, int *pin_p
, tree
*plow
, tree
*phigh
,
4221 bool *strict_overflow_p
)
4223 enum tree_code code
;
4224 tree arg0
, arg1
= NULL_TREE
;
4225 tree exp_type
, nexp
;
4228 location_t loc
= EXPR_LOCATION (exp
);
4230 /* Start with simply saying "EXP != 0" and then look at the code of EXP
4231 and see if we can refine the range. Some of the cases below may not
4232 happen, but it doesn't seem worth worrying about this. We "continue"
4233 the outer loop when we've changed something; otherwise we "break"
4234 the switch, which will "break" the while. */
4237 low
= high
= build_int_cst (TREE_TYPE (exp
), 0);
4241 code
= TREE_CODE (exp
);
4242 exp_type
= TREE_TYPE (exp
);
4245 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code
)))
4247 if (TREE_OPERAND_LENGTH (exp
) > 0)
4248 arg0
= TREE_OPERAND (exp
, 0);
4249 if (TREE_CODE_CLASS (code
) == tcc_binary
4250 || TREE_CODE_CLASS (code
) == tcc_comparison
4251 || (TREE_CODE_CLASS (code
) == tcc_expression
4252 && TREE_OPERAND_LENGTH (exp
) > 1))
4253 arg1
= TREE_OPERAND (exp
, 1);
4255 if (arg0
== NULL_TREE
)
4258 nexp
= make_range_step (loc
, code
, arg0
, arg1
, exp_type
, &low
,
4259 &high
, &in_p
, strict_overflow_p
);
4260 if (nexp
== NULL_TREE
)
4265 /* If EXP is a constant, we can evaluate whether this is true or false. */
4266 if (TREE_CODE (exp
) == INTEGER_CST
)
4268 in_p
= in_p
== (integer_onep (range_binop (GE_EXPR
, integer_type_node
,
4270 && integer_onep (range_binop (LE_EXPR
, integer_type_node
,
4276 *pin_p
= in_p
, *plow
= low
, *phigh
= high
;
4280 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
4281 type, TYPE, return an expression to test if EXP is in (or out of, depending
4282 on IN_P) the range. Return 0 if the test couldn't be created. */
4285 build_range_check (location_t loc
, tree type
, tree exp
, int in_p
,
4286 tree low
, tree high
)
4288 tree etype
= TREE_TYPE (exp
), value
;
4290 #ifdef HAVE_canonicalize_funcptr_for_compare
4291 /* Disable this optimization for function pointer expressions
4292 on targets that require function pointer canonicalization. */
4293 if (HAVE_canonicalize_funcptr_for_compare
4294 && TREE_CODE (etype
) == POINTER_TYPE
4295 && TREE_CODE (TREE_TYPE (etype
)) == FUNCTION_TYPE
)
4301 value
= build_range_check (loc
, type
, exp
, 1, low
, high
);
4303 return invert_truthvalue_loc (loc
, value
);
4308 if (low
== 0 && high
== 0)
4309 return omit_one_operand_loc (loc
, type
, build_int_cst (type
, 1), exp
);
4312 return fold_build2_loc (loc
, LE_EXPR
, type
, exp
,
4313 fold_convert_loc (loc
, etype
, high
));
4316 return fold_build2_loc (loc
, GE_EXPR
, type
, exp
,
4317 fold_convert_loc (loc
, etype
, low
));
4319 if (operand_equal_p (low
, high
, 0))
4320 return fold_build2_loc (loc
, EQ_EXPR
, type
, exp
,
4321 fold_convert_loc (loc
, etype
, low
));
4323 if (integer_zerop (low
))
4325 if (! TYPE_UNSIGNED (etype
))
4327 etype
= unsigned_type_for (etype
);
4328 high
= fold_convert_loc (loc
, etype
, high
);
4329 exp
= fold_convert_loc (loc
, etype
, exp
);
4331 return build_range_check (loc
, type
, exp
, 1, 0, high
);
4334 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
4335 if (integer_onep (low
) && TREE_CODE (high
) == INTEGER_CST
)
4337 unsigned HOST_WIDE_INT lo
;
4341 prec
= TYPE_PRECISION (etype
);
4342 if (prec
<= HOST_BITS_PER_WIDE_INT
)
4345 lo
= ((unsigned HOST_WIDE_INT
) 1 << (prec
- 1)) - 1;
4349 hi
= ((HOST_WIDE_INT
) 1 << (prec
- HOST_BITS_PER_WIDE_INT
- 1)) - 1;
4350 lo
= HOST_WIDE_INT_M1U
;
4353 if (TREE_INT_CST_HIGH (high
) == hi
&& TREE_INT_CST_LOW (high
) == lo
)
4355 if (TYPE_UNSIGNED (etype
))
4357 tree signed_etype
= signed_type_for (etype
);
4358 if (TYPE_PRECISION (signed_etype
) != TYPE_PRECISION (etype
))
4360 = build_nonstandard_integer_type (TYPE_PRECISION (etype
), 0);
4362 etype
= signed_etype
;
4363 exp
= fold_convert_loc (loc
, etype
, exp
);
4365 return fold_build2_loc (loc
, GT_EXPR
, type
, exp
,
4366 build_int_cst (etype
, 0));
4370 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
4371 This requires wrap-around arithmetics for the type of the expression.
4372 First make sure that arithmetics in this type is valid, then make sure
4373 that it wraps around. */
4374 if (TREE_CODE (etype
) == ENUMERAL_TYPE
|| TREE_CODE (etype
) == BOOLEAN_TYPE
)
4375 etype
= lang_hooks
.types
.type_for_size (TYPE_PRECISION (etype
),
4376 TYPE_UNSIGNED (etype
));
4378 if (TREE_CODE (etype
) == INTEGER_TYPE
&& !TYPE_OVERFLOW_WRAPS (etype
))
4380 tree utype
, minv
, maxv
;
4382 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
4383 for the type in question, as we rely on this here. */
4384 utype
= unsigned_type_for (etype
);
4385 maxv
= fold_convert_loc (loc
, utype
, TYPE_MAX_VALUE (etype
));
4386 maxv
= range_binop (PLUS_EXPR
, NULL_TREE
, maxv
, 1,
4387 integer_one_node
, 1);
4388 minv
= fold_convert_loc (loc
, utype
, TYPE_MIN_VALUE (etype
));
4390 if (integer_zerop (range_binop (NE_EXPR
, integer_type_node
,
4397 high
= fold_convert_loc (loc
, etype
, high
);
4398 low
= fold_convert_loc (loc
, etype
, low
);
4399 exp
= fold_convert_loc (loc
, etype
, exp
);
4401 value
= const_binop (MINUS_EXPR
, high
, low
);
4404 if (POINTER_TYPE_P (etype
))
4406 if (value
!= 0 && !TREE_OVERFLOW (value
))
4408 low
= fold_build1_loc (loc
, NEGATE_EXPR
, TREE_TYPE (low
), low
);
4409 return build_range_check (loc
, type
,
4410 fold_build_pointer_plus_loc (loc
, exp
, low
),
4411 1, build_int_cst (etype
, 0), value
);
4416 if (value
!= 0 && !TREE_OVERFLOW (value
))
4417 return build_range_check (loc
, type
,
4418 fold_build2_loc (loc
, MINUS_EXPR
, etype
, exp
, low
),
4419 1, build_int_cst (etype
, 0), value
);
4424 /* Return the predecessor of VAL in its type, handling the infinite case. */
4427 range_predecessor (tree val
)
4429 tree type
= TREE_TYPE (val
);
4431 if (INTEGRAL_TYPE_P (type
)
4432 && operand_equal_p (val
, TYPE_MIN_VALUE (type
), 0))
4435 return range_binop (MINUS_EXPR
, NULL_TREE
, val
, 0, integer_one_node
, 0);
4438 /* Return the successor of VAL in its type, handling the infinite case. */
4441 range_successor (tree val
)
4443 tree type
= TREE_TYPE (val
);
4445 if (INTEGRAL_TYPE_P (type
)
4446 && operand_equal_p (val
, TYPE_MAX_VALUE (type
), 0))
4449 return range_binop (PLUS_EXPR
, NULL_TREE
, val
, 0, integer_one_node
, 0);
4452 /* Given two ranges, see if we can merge them into one. Return 1 if we
4453 can, 0 if we can't. Set the output range into the specified parameters. */
4456 merge_ranges (int *pin_p
, tree
*plow
, tree
*phigh
, int in0_p
, tree low0
,
4457 tree high0
, int in1_p
, tree low1
, tree high1
)
4465 int lowequal
= ((low0
== 0 && low1
== 0)
4466 || integer_onep (range_binop (EQ_EXPR
, integer_type_node
,
4467 low0
, 0, low1
, 0)));
4468 int highequal
= ((high0
== 0 && high1
== 0)
4469 || integer_onep (range_binop (EQ_EXPR
, integer_type_node
,
4470 high0
, 1, high1
, 1)));
4472 /* Make range 0 be the range that starts first, or ends last if they
4473 start at the same value. Swap them if it isn't. */
4474 if (integer_onep (range_binop (GT_EXPR
, integer_type_node
,
4477 && integer_onep (range_binop (GT_EXPR
, integer_type_node
,
4478 high1
, 1, high0
, 1))))
4480 temp
= in0_p
, in0_p
= in1_p
, in1_p
= temp
;
4481 tem
= low0
, low0
= low1
, low1
= tem
;
4482 tem
= high0
, high0
= high1
, high1
= tem
;
4485 /* Now flag two cases, whether the ranges are disjoint or whether the
4486 second range is totally subsumed in the first. Note that the tests
4487 below are simplified by the ones above. */
4488 no_overlap
= integer_onep (range_binop (LT_EXPR
, integer_type_node
,
4489 high0
, 1, low1
, 0));
4490 subset
= integer_onep (range_binop (LE_EXPR
, integer_type_node
,
4491 high1
, 1, high0
, 1));
4493 /* We now have four cases, depending on whether we are including or
4494 excluding the two ranges. */
4497 /* If they don't overlap, the result is false. If the second range
4498 is a subset it is the result. Otherwise, the range is from the start
4499 of the second to the end of the first. */
4501 in_p
= 0, low
= high
= 0;
4503 in_p
= 1, low
= low1
, high
= high1
;
4505 in_p
= 1, low
= low1
, high
= high0
;
4508 else if (in0_p
&& ! in1_p
)
4510 /* If they don't overlap, the result is the first range. If they are
4511 equal, the result is false. If the second range is a subset of the
4512 first, and the ranges begin at the same place, we go from just after
4513 the end of the second range to the end of the first. If the second
4514 range is not a subset of the first, or if it is a subset and both
4515 ranges end at the same place, the range starts at the start of the
4516 first range and ends just before the second range.
4517 Otherwise, we can't describe this as a single range. */
4519 in_p
= 1, low
= low0
, high
= high0
;
4520 else if (lowequal
&& highequal
)
4521 in_p
= 0, low
= high
= 0;
4522 else if (subset
&& lowequal
)
4524 low
= range_successor (high1
);
4529 /* We are in the weird situation where high0 > high1 but
4530 high1 has no successor. Punt. */
4534 else if (! subset
|| highequal
)
4537 high
= range_predecessor (low1
);
4541 /* low0 < low1 but low1 has no predecessor. Punt. */
4549 else if (! in0_p
&& in1_p
)
4551 /* If they don't overlap, the result is the second range. If the second
4552 is a subset of the first, the result is false. Otherwise,
4553 the range starts just after the first range and ends at the
4554 end of the second. */
4556 in_p
= 1, low
= low1
, high
= high1
;
4557 else if (subset
|| highequal
)
4558 in_p
= 0, low
= high
= 0;
4561 low
= range_successor (high0
);
4566 /* high1 > high0 but high0 has no successor. Punt. */
4574 /* The case where we are excluding both ranges. Here the complex case
4575 is if they don't overlap. In that case, the only time we have a
4576 range is if they are adjacent. If the second is a subset of the
4577 first, the result is the first. Otherwise, the range to exclude
4578 starts at the beginning of the first range and ends at the end of the
4582 if (integer_onep (range_binop (EQ_EXPR
, integer_type_node
,
4583 range_successor (high0
),
4585 in_p
= 0, low
= low0
, high
= high1
;
4588 /* Canonicalize - [min, x] into - [-, x]. */
4589 if (low0
&& TREE_CODE (low0
) == INTEGER_CST
)
4590 switch (TREE_CODE (TREE_TYPE (low0
)))
4593 if (TYPE_PRECISION (TREE_TYPE (low0
))
4594 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low0
))))
4598 if (tree_int_cst_equal (low0
,
4599 TYPE_MIN_VALUE (TREE_TYPE (low0
))))
4603 if (TYPE_UNSIGNED (TREE_TYPE (low0
))
4604 && integer_zerop (low0
))
4611 /* Canonicalize - [x, max] into - [x, -]. */
4612 if (high1
&& TREE_CODE (high1
) == INTEGER_CST
)
4613 switch (TREE_CODE (TREE_TYPE (high1
)))
4616 if (TYPE_PRECISION (TREE_TYPE (high1
))
4617 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (high1
))))
4621 if (tree_int_cst_equal (high1
,
4622 TYPE_MAX_VALUE (TREE_TYPE (high1
))))
4626 if (TYPE_UNSIGNED (TREE_TYPE (high1
))
4627 && integer_zerop (range_binop (PLUS_EXPR
, NULL_TREE
,
4629 integer_one_node
, 1)))
4636 /* The ranges might be also adjacent between the maximum and
4637 minimum values of the given type. For
4638 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
4639 return + [x + 1, y - 1]. */
4640 if (low0
== 0 && high1
== 0)
4642 low
= range_successor (high0
);
4643 high
= range_predecessor (low1
);
4644 if (low
== 0 || high
== 0)
4654 in_p
= 0, low
= low0
, high
= high0
;
4656 in_p
= 0, low
= low0
, high
= high1
;
4659 *pin_p
= in_p
, *plow
= low
, *phigh
= high
;
4664 /* Subroutine of fold, looking inside expressions of the form
4665 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
4666 of the COND_EXPR. This function is being used also to optimize
4667 A op B ? C : A, by reversing the comparison first.
4669 Return a folded expression whose code is not a COND_EXPR
4670 anymore, or NULL_TREE if no folding opportunity is found. */
4673 fold_cond_expr_with_comparison (location_t loc
, tree type
,
4674 tree arg0
, tree arg1
, tree arg2
)
4676 enum tree_code comp_code
= TREE_CODE (arg0
);
4677 tree arg00
= TREE_OPERAND (arg0
, 0);
4678 tree arg01
= TREE_OPERAND (arg0
, 1);
4679 tree arg1_type
= TREE_TYPE (arg1
);
4685 /* If we have A op 0 ? A : -A, consider applying the following
4688 A == 0? A : -A same as -A
4689 A != 0? A : -A same as A
4690 A >= 0? A : -A same as abs (A)
4691 A > 0? A : -A same as abs (A)
4692 A <= 0? A : -A same as -abs (A)
4693 A < 0? A : -A same as -abs (A)
4695 None of these transformations work for modes with signed
4696 zeros. If A is +/-0, the first two transformations will
4697 change the sign of the result (from +0 to -0, or vice
4698 versa). The last four will fix the sign of the result,
4699 even though the original expressions could be positive or
4700 negative, depending on the sign of A.
4702 Note that all these transformations are correct if A is
4703 NaN, since the two alternatives (A and -A) are also NaNs. */
4704 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type
))
4705 && (FLOAT_TYPE_P (TREE_TYPE (arg01
))
4706 ? real_zerop (arg01
)
4707 : integer_zerop (arg01
))
4708 && ((TREE_CODE (arg2
) == NEGATE_EXPR
4709 && operand_equal_p (TREE_OPERAND (arg2
, 0), arg1
, 0))
4710 /* In the case that A is of the form X-Y, '-A' (arg2) may
4711 have already been folded to Y-X, check for that. */
4712 || (TREE_CODE (arg1
) == MINUS_EXPR
4713 && TREE_CODE (arg2
) == MINUS_EXPR
4714 && operand_equal_p (TREE_OPERAND (arg1
, 0),
4715 TREE_OPERAND (arg2
, 1), 0)
4716 && operand_equal_p (TREE_OPERAND (arg1
, 1),
4717 TREE_OPERAND (arg2
, 0), 0))))
4722 tem
= fold_convert_loc (loc
, arg1_type
, arg1
);
4723 return pedantic_non_lvalue_loc (loc
,
4724 fold_convert_loc (loc
, type
,
4725 negate_expr (tem
)));
4728 return pedantic_non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg1
));
4731 if (flag_trapping_math
)
4736 if (TYPE_UNSIGNED (TREE_TYPE (arg1
)))
4737 arg1
= fold_convert_loc (loc
, signed_type_for
4738 (TREE_TYPE (arg1
)), arg1
);
4739 tem
= fold_build1_loc (loc
, ABS_EXPR
, TREE_TYPE (arg1
), arg1
);
4740 return pedantic_non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, tem
));
4743 if (flag_trapping_math
)
4747 if (TYPE_UNSIGNED (TREE_TYPE (arg1
)))
4748 arg1
= fold_convert_loc (loc
, signed_type_for
4749 (TREE_TYPE (arg1
)), arg1
);
4750 tem
= fold_build1_loc (loc
, ABS_EXPR
, TREE_TYPE (arg1
), arg1
);
4751 return negate_expr (fold_convert_loc (loc
, type
, tem
));
4753 gcc_assert (TREE_CODE_CLASS (comp_code
) == tcc_comparison
);
4757 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
4758 A == 0 ? A : 0 is always 0 unless A is -0. Note that
4759 both transformations are correct when A is NaN: A != 0
4760 is then true, and A == 0 is false. */
4762 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type
))
4763 && integer_zerop (arg01
) && integer_zerop (arg2
))
4765 if (comp_code
== NE_EXPR
)
4766 return pedantic_non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg1
));
4767 else if (comp_code
== EQ_EXPR
)
4768 return build_zero_cst (type
);
4771 /* Try some transformations of A op B ? A : B.
4773 A == B? A : B same as B
4774 A != B? A : B same as A
4775 A >= B? A : B same as max (A, B)
4776 A > B? A : B same as max (B, A)
4777 A <= B? A : B same as min (A, B)
4778 A < B? A : B same as min (B, A)
4780 As above, these transformations don't work in the presence
4781 of signed zeros. For example, if A and B are zeros of
4782 opposite sign, the first two transformations will change
4783 the sign of the result. In the last four, the original
4784 expressions give different results for (A=+0, B=-0) and
4785 (A=-0, B=+0), but the transformed expressions do not.
4787 The first two transformations are correct if either A or B
4788 is a NaN. In the first transformation, the condition will
4789 be false, and B will indeed be chosen. In the case of the
4790 second transformation, the condition A != B will be true,
4791 and A will be chosen.
4793 The conversions to max() and min() are not correct if B is
4794 a number and A is not. The conditions in the original
4795 expressions will be false, so all four give B. The min()
4796 and max() versions would give a NaN instead. */
4797 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type
))
4798 && operand_equal_for_comparison_p (arg01
, arg2
, arg00
)
4799 /* Avoid these transformations if the COND_EXPR may be used
4800 as an lvalue in the C++ front-end. PR c++/19199. */
4802 || VECTOR_TYPE_P (type
)
4803 || (strcmp (lang_hooks
.name
, "GNU C++") != 0
4804 && strcmp (lang_hooks
.name
, "GNU Objective-C++") != 0)
4805 || ! maybe_lvalue_p (arg1
)
4806 || ! maybe_lvalue_p (arg2
)))
4808 tree comp_op0
= arg00
;
4809 tree comp_op1
= arg01
;
4810 tree comp_type
= TREE_TYPE (comp_op0
);
4812 /* Avoid adding NOP_EXPRs in case this is an lvalue. */
4813 if (TYPE_MAIN_VARIANT (comp_type
) == TYPE_MAIN_VARIANT (type
))
4823 return pedantic_non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg2
));
4825 return pedantic_non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg1
));
4830 /* In C++ a ?: expression can be an lvalue, so put the
4831 operand which will be used if they are equal first
4832 so that we can convert this back to the
4833 corresponding COND_EXPR. */
4834 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1
))))
4836 comp_op0
= fold_convert_loc (loc
, comp_type
, comp_op0
);
4837 comp_op1
= fold_convert_loc (loc
, comp_type
, comp_op1
);
4838 tem
= (comp_code
== LE_EXPR
|| comp_code
== UNLE_EXPR
)
4839 ? fold_build2_loc (loc
, MIN_EXPR
, comp_type
, comp_op0
, comp_op1
)
4840 : fold_build2_loc (loc
, MIN_EXPR
, comp_type
,
4841 comp_op1
, comp_op0
);
4842 return pedantic_non_lvalue_loc (loc
,
4843 fold_convert_loc (loc
, type
, tem
));
4850 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1
))))
4852 comp_op0
= fold_convert_loc (loc
, comp_type
, comp_op0
);
4853 comp_op1
= fold_convert_loc (loc
, comp_type
, comp_op1
);
4854 tem
= (comp_code
== GE_EXPR
|| comp_code
== UNGE_EXPR
)
4855 ? fold_build2_loc (loc
, MAX_EXPR
, comp_type
, comp_op0
, comp_op1
)
4856 : fold_build2_loc (loc
, MAX_EXPR
, comp_type
,
4857 comp_op1
, comp_op0
);
4858 return pedantic_non_lvalue_loc (loc
,
4859 fold_convert_loc (loc
, type
, tem
));
4863 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1
))))
4864 return pedantic_non_lvalue_loc (loc
,
4865 fold_convert_loc (loc
, type
, arg2
));
4868 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1
))))
4869 return pedantic_non_lvalue_loc (loc
,
4870 fold_convert_loc (loc
, type
, arg1
));
4873 gcc_assert (TREE_CODE_CLASS (comp_code
) == tcc_comparison
);
4878 /* If this is A op C1 ? A : C2 with C1 and C2 constant integers,
4879 we might still be able to simplify this. For example,
4880 if C1 is one less or one more than C2, this might have started
4881 out as a MIN or MAX and been transformed by this function.
4882 Only good for INTEGER_TYPEs, because we need TYPE_MAX_VALUE. */
4884 if (INTEGRAL_TYPE_P (type
)
4885 && TREE_CODE (arg01
) == INTEGER_CST
4886 && TREE_CODE (arg2
) == INTEGER_CST
)
4890 if (TREE_CODE (arg1
) == INTEGER_CST
)
4892 /* We can replace A with C1 in this case. */
4893 arg1
= fold_convert_loc (loc
, type
, arg01
);
4894 return fold_build3_loc (loc
, COND_EXPR
, type
, arg0
, arg1
, arg2
);
4897 /* If C1 is C2 + 1, this is min(A, C2), but use ARG00's type for
4898 MIN_EXPR, to preserve the signedness of the comparison. */
4899 if (! operand_equal_p (arg2
, TYPE_MAX_VALUE (type
),
4901 && operand_equal_p (arg01
,
4902 const_binop (PLUS_EXPR
, arg2
,
4903 build_int_cst (type
, 1)),
4906 tem
= fold_build2_loc (loc
, MIN_EXPR
, TREE_TYPE (arg00
), arg00
,
4907 fold_convert_loc (loc
, TREE_TYPE (arg00
),
4909 return pedantic_non_lvalue_loc (loc
,
4910 fold_convert_loc (loc
, type
, tem
));
4915 /* If C1 is C2 - 1, this is min(A, C2), with the same care
4917 if (! operand_equal_p (arg2
, TYPE_MIN_VALUE (type
),
4919 && operand_equal_p (arg01
,
4920 const_binop (MINUS_EXPR
, arg2
,
4921 build_int_cst (type
, 1)),
4924 tem
= fold_build2_loc (loc
, MIN_EXPR
, TREE_TYPE (arg00
), arg00
,
4925 fold_convert_loc (loc
, TREE_TYPE (arg00
),
4927 return pedantic_non_lvalue_loc (loc
,
4928 fold_convert_loc (loc
, type
, tem
));
4933 /* If C1 is C2 - 1, this is max(A, C2), but use ARG00's type for
4934 MAX_EXPR, to preserve the signedness of the comparison. */
4935 if (! operand_equal_p (arg2
, TYPE_MIN_VALUE (type
),
4937 && operand_equal_p (arg01
,
4938 const_binop (MINUS_EXPR
, arg2
,
4939 build_int_cst (type
, 1)),
4942 tem
= fold_build2_loc (loc
, MAX_EXPR
, TREE_TYPE (arg00
), arg00
,
4943 fold_convert_loc (loc
, TREE_TYPE (arg00
),
4945 return pedantic_non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, tem
));
4950 /* If C1 is C2 + 1, this is max(A, C2), with the same care as above. */
4951 if (! operand_equal_p (arg2
, TYPE_MAX_VALUE (type
),
4953 && operand_equal_p (arg01
,
4954 const_binop (PLUS_EXPR
, arg2
,
4955 build_int_cst (type
, 1)),
4958 tem
= fold_build2_loc (loc
, MAX_EXPR
, TREE_TYPE (arg00
), arg00
,
4959 fold_convert_loc (loc
, TREE_TYPE (arg00
),
4961 return pedantic_non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, tem
));
4975 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
4976 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
4977 (BRANCH_COST (optimize_function_for_speed_p (cfun), \
4981 /* EXP is some logical combination of boolean tests. See if we can
4982 merge it into some range test. Return the new tree if so. */
4985 fold_range_test (location_t loc
, enum tree_code code
, tree type
,
4988 int or_op
= (code
== TRUTH_ORIF_EXPR
4989 || code
== TRUTH_OR_EXPR
);
4990 int in0_p
, in1_p
, in_p
;
4991 tree low0
, low1
, low
, high0
, high1
, high
;
4992 bool strict_overflow_p
= false;
4994 const char * const warnmsg
= G_("assuming signed overflow does not occur "
4995 "when simplifying range test");
4997 if (!INTEGRAL_TYPE_P (type
))
5000 lhs
= make_range (op0
, &in0_p
, &low0
, &high0
, &strict_overflow_p
);
5001 rhs
= make_range (op1
, &in1_p
, &low1
, &high1
, &strict_overflow_p
);
5003 /* If this is an OR operation, invert both sides; we will invert
5004 again at the end. */
5006 in0_p
= ! in0_p
, in1_p
= ! in1_p
;
5008 /* If both expressions are the same, if we can merge the ranges, and we
5009 can build the range test, return it or it inverted. If one of the
5010 ranges is always true or always false, consider it to be the same
5011 expression as the other. */
5012 if ((lhs
== 0 || rhs
== 0 || operand_equal_p (lhs
, rhs
, 0))
5013 && merge_ranges (&in_p
, &low
, &high
, in0_p
, low0
, high0
,
5015 && 0 != (tem
= (build_range_check (loc
, type
,
5017 : rhs
!= 0 ? rhs
: integer_zero_node
,
5020 if (strict_overflow_p
)
5021 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_COMPARISON
);
5022 return or_op
? invert_truthvalue_loc (loc
, tem
) : tem
;
5025 /* On machines where the branch cost is expensive, if this is a
5026 short-circuited branch and the underlying object on both sides
5027 is the same, make a non-short-circuit operation. */
5028 else if (LOGICAL_OP_NON_SHORT_CIRCUIT
5029 && lhs
!= 0 && rhs
!= 0
5030 && (code
== TRUTH_ANDIF_EXPR
5031 || code
== TRUTH_ORIF_EXPR
)
5032 && operand_equal_p (lhs
, rhs
, 0))
5034 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
5035 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
5036 which cases we can't do this. */
5037 if (simple_operand_p (lhs
))
5038 return build2_loc (loc
, code
== TRUTH_ANDIF_EXPR
5039 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
,
5042 else if (!lang_hooks
.decls
.global_bindings_p ()
5043 && !CONTAINS_PLACEHOLDER_P (lhs
))
5045 tree common
= save_expr (lhs
);
5047 if (0 != (lhs
= build_range_check (loc
, type
, common
,
5048 or_op
? ! in0_p
: in0_p
,
5050 && (0 != (rhs
= build_range_check (loc
, type
, common
,
5051 or_op
? ! in1_p
: in1_p
,
5054 if (strict_overflow_p
)
5055 fold_overflow_warning (warnmsg
,
5056 WARN_STRICT_OVERFLOW_COMPARISON
);
5057 return build2_loc (loc
, code
== TRUTH_ANDIF_EXPR
5058 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
,
5067 /* Subroutine for fold_truth_andor_1: C is an INTEGER_CST interpreted as a P
5068 bit value. Arrange things so the extra bits will be set to zero if and
5069 only if C is signed-extended to its full width. If MASK is nonzero,
5070 it is an INTEGER_CST that should be AND'ed with the extra bits. */
5073 unextend (tree c
, int p
, int unsignedp
, tree mask
)
5075 tree type
= TREE_TYPE (c
);
5076 int modesize
= GET_MODE_BITSIZE (TYPE_MODE (type
));
5079 if (p
== modesize
|| unsignedp
)
5082 /* We work by getting just the sign bit into the low-order bit, then
5083 into the high-order bit, then sign-extend. We then XOR that value
5085 temp
= const_binop (RSHIFT_EXPR
, c
, size_int (p
- 1));
5086 temp
= const_binop (BIT_AND_EXPR
, temp
, size_int (1));
5088 /* We must use a signed type in order to get an arithmetic right shift.
5089 However, we must also avoid introducing accidental overflows, so that
5090 a subsequent call to integer_zerop will work. Hence we must
5091 do the type conversion here. At this point, the constant is either
5092 zero or one, and the conversion to a signed type can never overflow.
5093 We could get an overflow if this conversion is done anywhere else. */
5094 if (TYPE_UNSIGNED (type
))
5095 temp
= fold_convert (signed_type_for (type
), temp
);
5097 temp
= const_binop (LSHIFT_EXPR
, temp
, size_int (modesize
- 1));
5098 temp
= const_binop (RSHIFT_EXPR
, temp
, size_int (modesize
- p
- 1));
5100 temp
= const_binop (BIT_AND_EXPR
, temp
,
5101 fold_convert (TREE_TYPE (c
), mask
));
5102 /* If necessary, convert the type back to match the type of C. */
5103 if (TYPE_UNSIGNED (type
))
5104 temp
= fold_convert (type
, temp
);
5106 return fold_convert (type
, const_binop (BIT_XOR_EXPR
, c
, temp
));
5109 /* For an expression that has the form
5113 we can drop one of the inner expressions and simplify to
5117 LOC is the location of the resulting expression. OP is the inner
5118 logical operation; the left-hand side in the examples above, while CMPOP
5119 is the right-hand side. RHS_ONLY is used to prevent us from accidentally
5120 removing a condition that guards another, as in
5121 (A != NULL && A->...) || A == NULL
5122 which we must not transform. If RHS_ONLY is true, only eliminate the
5123 right-most operand of the inner logical operation. */
5126 merge_truthop_with_opposite_arm (location_t loc
, tree op
, tree cmpop
,
5129 tree type
= TREE_TYPE (cmpop
);
5130 enum tree_code code
= TREE_CODE (cmpop
);
5131 enum tree_code truthop_code
= TREE_CODE (op
);
5132 tree lhs
= TREE_OPERAND (op
, 0);
5133 tree rhs
= TREE_OPERAND (op
, 1);
5134 tree orig_lhs
= lhs
, orig_rhs
= rhs
;
5135 enum tree_code rhs_code
= TREE_CODE (rhs
);
5136 enum tree_code lhs_code
= TREE_CODE (lhs
);
5137 enum tree_code inv_code
;
5139 if (TREE_SIDE_EFFECTS (op
) || TREE_SIDE_EFFECTS (cmpop
))
5142 if (TREE_CODE_CLASS (code
) != tcc_comparison
)
5145 if (rhs_code
== truthop_code
)
5147 tree newrhs
= merge_truthop_with_opposite_arm (loc
, rhs
, cmpop
, rhs_only
);
5148 if (newrhs
!= NULL_TREE
)
5151 rhs_code
= TREE_CODE (rhs
);
5154 if (lhs_code
== truthop_code
&& !rhs_only
)
5156 tree newlhs
= merge_truthop_with_opposite_arm (loc
, lhs
, cmpop
, false);
5157 if (newlhs
!= NULL_TREE
)
5160 lhs_code
= TREE_CODE (lhs
);
5164 inv_code
= invert_tree_comparison (code
, HONOR_NANS (TYPE_MODE (type
)));
5165 if (inv_code
== rhs_code
5166 && operand_equal_p (TREE_OPERAND (rhs
, 0), TREE_OPERAND (cmpop
, 0), 0)
5167 && operand_equal_p (TREE_OPERAND (rhs
, 1), TREE_OPERAND (cmpop
, 1), 0))
5169 if (!rhs_only
&& inv_code
== lhs_code
5170 && operand_equal_p (TREE_OPERAND (lhs
, 0), TREE_OPERAND (cmpop
, 0), 0)
5171 && operand_equal_p (TREE_OPERAND (lhs
, 1), TREE_OPERAND (cmpop
, 1), 0))
5173 if (rhs
!= orig_rhs
|| lhs
!= orig_lhs
)
5174 return fold_build2_loc (loc
, truthop_code
, TREE_TYPE (cmpop
),
5179 /* Find ways of folding logical expressions of LHS and RHS:
5180 Try to merge two comparisons to the same innermost item.
5181 Look for range tests like "ch >= '0' && ch <= '9'".
5182 Look for combinations of simple terms on machines with expensive branches
5183 and evaluate the RHS unconditionally.
5185 For example, if we have p->a == 2 && p->b == 4 and we can make an
5186 object large enough to span both A and B, we can do this with a comparison
5187 against the object ANDed with the a mask.
5189 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
5190 operations to do this with one comparison.
5192 We check for both normal comparisons and the BIT_AND_EXPRs made this by
5193 function and the one above.
5195 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
5196 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
5198 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
5201 We return the simplified tree or 0 if no optimization is possible. */
5204 fold_truth_andor_1 (location_t loc
, enum tree_code code
, tree truth_type
,
5207 /* If this is the "or" of two comparisons, we can do something if
5208 the comparisons are NE_EXPR. If this is the "and", we can do something
5209 if the comparisons are EQ_EXPR. I.e.,
5210 (a->b == 2 && a->c == 4) can become (a->new == NEW).
5212 WANTED_CODE is this operation code. For single bit fields, we can
5213 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
5214 comparison for one-bit fields. */
5216 enum tree_code wanted_code
;
5217 enum tree_code lcode
, rcode
;
5218 tree ll_arg
, lr_arg
, rl_arg
, rr_arg
;
5219 tree ll_inner
, lr_inner
, rl_inner
, rr_inner
;
5220 HOST_WIDE_INT ll_bitsize
, ll_bitpos
, lr_bitsize
, lr_bitpos
;
5221 HOST_WIDE_INT rl_bitsize
, rl_bitpos
, rr_bitsize
, rr_bitpos
;
5222 HOST_WIDE_INT xll_bitpos
, xlr_bitpos
, xrl_bitpos
, xrr_bitpos
;
5223 HOST_WIDE_INT lnbitsize
, lnbitpos
, rnbitsize
, rnbitpos
;
5224 int ll_unsignedp
, lr_unsignedp
, rl_unsignedp
, rr_unsignedp
;
5225 enum machine_mode ll_mode
, lr_mode
, rl_mode
, rr_mode
;
5226 enum machine_mode lnmode
, rnmode
;
5227 tree ll_mask
, lr_mask
, rl_mask
, rr_mask
;
5228 tree ll_and_mask
, lr_and_mask
, rl_and_mask
, rr_and_mask
;
5229 tree l_const
, r_const
;
5230 tree lntype
, rntype
, result
;
5231 HOST_WIDE_INT first_bit
, end_bit
;
5234 /* Start by getting the comparison codes. Fail if anything is volatile.
5235 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
5236 it were surrounded with a NE_EXPR. */
5238 if (TREE_SIDE_EFFECTS (lhs
) || TREE_SIDE_EFFECTS (rhs
))
5241 lcode
= TREE_CODE (lhs
);
5242 rcode
= TREE_CODE (rhs
);
5244 if (lcode
== BIT_AND_EXPR
&& integer_onep (TREE_OPERAND (lhs
, 1)))
5246 lhs
= build2 (NE_EXPR
, truth_type
, lhs
,
5247 build_int_cst (TREE_TYPE (lhs
), 0));
5251 if (rcode
== BIT_AND_EXPR
&& integer_onep (TREE_OPERAND (rhs
, 1)))
5253 rhs
= build2 (NE_EXPR
, truth_type
, rhs
,
5254 build_int_cst (TREE_TYPE (rhs
), 0));
5258 if (TREE_CODE_CLASS (lcode
) != tcc_comparison
5259 || TREE_CODE_CLASS (rcode
) != tcc_comparison
)
5262 ll_arg
= TREE_OPERAND (lhs
, 0);
5263 lr_arg
= TREE_OPERAND (lhs
, 1);
5264 rl_arg
= TREE_OPERAND (rhs
, 0);
5265 rr_arg
= TREE_OPERAND (rhs
, 1);
5267 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
5268 if (simple_operand_p (ll_arg
)
5269 && simple_operand_p (lr_arg
))
5271 if (operand_equal_p (ll_arg
, rl_arg
, 0)
5272 && operand_equal_p (lr_arg
, rr_arg
, 0))
5274 result
= combine_comparisons (loc
, code
, lcode
, rcode
,
5275 truth_type
, ll_arg
, lr_arg
);
5279 else if (operand_equal_p (ll_arg
, rr_arg
, 0)
5280 && operand_equal_p (lr_arg
, rl_arg
, 0))
5282 result
= combine_comparisons (loc
, code
, lcode
,
5283 swap_tree_comparison (rcode
),
5284 truth_type
, ll_arg
, lr_arg
);
5290 code
= ((code
== TRUTH_AND_EXPR
|| code
== TRUTH_ANDIF_EXPR
)
5291 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
);
5293 /* If the RHS can be evaluated unconditionally and its operands are
5294 simple, it wins to evaluate the RHS unconditionally on machines
5295 with expensive branches. In this case, this isn't a comparison
5296 that can be merged. */
5298 if (BRANCH_COST (optimize_function_for_speed_p (cfun
),
5300 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg
))
5301 && simple_operand_p (rl_arg
)
5302 && simple_operand_p (rr_arg
))
5304 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
5305 if (code
== TRUTH_OR_EXPR
5306 && lcode
== NE_EXPR
&& integer_zerop (lr_arg
)
5307 && rcode
== NE_EXPR
&& integer_zerop (rr_arg
)
5308 && TREE_TYPE (ll_arg
) == TREE_TYPE (rl_arg
)
5309 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg
)))
5310 return build2_loc (loc
, NE_EXPR
, truth_type
,
5311 build2 (BIT_IOR_EXPR
, TREE_TYPE (ll_arg
),
5313 build_int_cst (TREE_TYPE (ll_arg
), 0));
5315 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
5316 if (code
== TRUTH_AND_EXPR
5317 && lcode
== EQ_EXPR
&& integer_zerop (lr_arg
)
5318 && rcode
== EQ_EXPR
&& integer_zerop (rr_arg
)
5319 && TREE_TYPE (ll_arg
) == TREE_TYPE (rl_arg
)
5320 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg
)))
5321 return build2_loc (loc
, EQ_EXPR
, truth_type
,
5322 build2 (BIT_IOR_EXPR
, TREE_TYPE (ll_arg
),
5324 build_int_cst (TREE_TYPE (ll_arg
), 0));
5327 /* See if the comparisons can be merged. Then get all the parameters for
5330 if ((lcode
!= EQ_EXPR
&& lcode
!= NE_EXPR
)
5331 || (rcode
!= EQ_EXPR
&& rcode
!= NE_EXPR
))
5335 ll_inner
= decode_field_reference (loc
, ll_arg
,
5336 &ll_bitsize
, &ll_bitpos
, &ll_mode
,
5337 &ll_unsignedp
, &volatilep
, &ll_mask
,
5339 lr_inner
= decode_field_reference (loc
, lr_arg
,
5340 &lr_bitsize
, &lr_bitpos
, &lr_mode
,
5341 &lr_unsignedp
, &volatilep
, &lr_mask
,
5343 rl_inner
= decode_field_reference (loc
, rl_arg
,
5344 &rl_bitsize
, &rl_bitpos
, &rl_mode
,
5345 &rl_unsignedp
, &volatilep
, &rl_mask
,
5347 rr_inner
= decode_field_reference (loc
, rr_arg
,
5348 &rr_bitsize
, &rr_bitpos
, &rr_mode
,
5349 &rr_unsignedp
, &volatilep
, &rr_mask
,
5352 /* It must be true that the inner operation on the lhs of each
5353 comparison must be the same if we are to be able to do anything.
5354 Then see if we have constants. If not, the same must be true for
5356 if (volatilep
|| ll_inner
== 0 || rl_inner
== 0
5357 || ! operand_equal_p (ll_inner
, rl_inner
, 0))
5360 if (TREE_CODE (lr_arg
) == INTEGER_CST
5361 && TREE_CODE (rr_arg
) == INTEGER_CST
)
5362 l_const
= lr_arg
, r_const
= rr_arg
;
5363 else if (lr_inner
== 0 || rr_inner
== 0
5364 || ! operand_equal_p (lr_inner
, rr_inner
, 0))
5367 l_const
= r_const
= 0;
5369 /* If either comparison code is not correct for our logical operation,
5370 fail. However, we can convert a one-bit comparison against zero into
5371 the opposite comparison against that bit being set in the field. */
5373 wanted_code
= (code
== TRUTH_AND_EXPR
? EQ_EXPR
: NE_EXPR
);
5374 if (lcode
!= wanted_code
)
5376 if (l_const
&& integer_zerop (l_const
) && integer_pow2p (ll_mask
))
5378 /* Make the left operand unsigned, since we are only interested
5379 in the value of one bit. Otherwise we are doing the wrong
5388 /* This is analogous to the code for l_const above. */
5389 if (rcode
!= wanted_code
)
5391 if (r_const
&& integer_zerop (r_const
) && integer_pow2p (rl_mask
))
5400 /* See if we can find a mode that contains both fields being compared on
5401 the left. If we can't, fail. Otherwise, update all constants and masks
5402 to be relative to a field of that size. */
5403 first_bit
= MIN (ll_bitpos
, rl_bitpos
);
5404 end_bit
= MAX (ll_bitpos
+ ll_bitsize
, rl_bitpos
+ rl_bitsize
);
5405 lnmode
= get_best_mode (end_bit
- first_bit
, first_bit
, 0, 0,
5406 TYPE_ALIGN (TREE_TYPE (ll_inner
)), word_mode
,
5408 if (lnmode
== VOIDmode
)
5411 lnbitsize
= GET_MODE_BITSIZE (lnmode
);
5412 lnbitpos
= first_bit
& ~ (lnbitsize
- 1);
5413 lntype
= lang_hooks
.types
.type_for_size (lnbitsize
, 1);
5414 xll_bitpos
= ll_bitpos
- lnbitpos
, xrl_bitpos
= rl_bitpos
- lnbitpos
;
5416 if (BYTES_BIG_ENDIAN
)
5418 xll_bitpos
= lnbitsize
- xll_bitpos
- ll_bitsize
;
5419 xrl_bitpos
= lnbitsize
- xrl_bitpos
- rl_bitsize
;
5422 ll_mask
= const_binop (LSHIFT_EXPR
, fold_convert_loc (loc
, lntype
, ll_mask
),
5423 size_int (xll_bitpos
));
5424 rl_mask
= const_binop (LSHIFT_EXPR
, fold_convert_loc (loc
, lntype
, rl_mask
),
5425 size_int (xrl_bitpos
));
5429 l_const
= fold_convert_loc (loc
, lntype
, l_const
);
5430 l_const
= unextend (l_const
, ll_bitsize
, ll_unsignedp
, ll_and_mask
);
5431 l_const
= const_binop (LSHIFT_EXPR
, l_const
, size_int (xll_bitpos
));
5432 if (! integer_zerop (const_binop (BIT_AND_EXPR
, l_const
,
5433 fold_build1_loc (loc
, BIT_NOT_EXPR
,
5436 warning (0, "comparison is always %d", wanted_code
== NE_EXPR
);
5438 return constant_boolean_node (wanted_code
== NE_EXPR
, truth_type
);
5443 r_const
= fold_convert_loc (loc
, lntype
, r_const
);
5444 r_const
= unextend (r_const
, rl_bitsize
, rl_unsignedp
, rl_and_mask
);
5445 r_const
= const_binop (LSHIFT_EXPR
, r_const
, size_int (xrl_bitpos
));
5446 if (! integer_zerop (const_binop (BIT_AND_EXPR
, r_const
,
5447 fold_build1_loc (loc
, BIT_NOT_EXPR
,
5450 warning (0, "comparison is always %d", wanted_code
== NE_EXPR
);
5452 return constant_boolean_node (wanted_code
== NE_EXPR
, truth_type
);
5456 /* If the right sides are not constant, do the same for it. Also,
5457 disallow this optimization if a size or signedness mismatch occurs
5458 between the left and right sides. */
5461 if (ll_bitsize
!= lr_bitsize
|| rl_bitsize
!= rr_bitsize
5462 || ll_unsignedp
!= lr_unsignedp
|| rl_unsignedp
!= rr_unsignedp
5463 /* Make sure the two fields on the right
5464 correspond to the left without being swapped. */
5465 || ll_bitpos
- rl_bitpos
!= lr_bitpos
- rr_bitpos
)
5468 first_bit
= MIN (lr_bitpos
, rr_bitpos
);
5469 end_bit
= MAX (lr_bitpos
+ lr_bitsize
, rr_bitpos
+ rr_bitsize
);
5470 rnmode
= get_best_mode (end_bit
- first_bit
, first_bit
, 0, 0,
5471 TYPE_ALIGN (TREE_TYPE (lr_inner
)), word_mode
,
5473 if (rnmode
== VOIDmode
)
5476 rnbitsize
= GET_MODE_BITSIZE (rnmode
);
5477 rnbitpos
= first_bit
& ~ (rnbitsize
- 1);
5478 rntype
= lang_hooks
.types
.type_for_size (rnbitsize
, 1);
5479 xlr_bitpos
= lr_bitpos
- rnbitpos
, xrr_bitpos
= rr_bitpos
- rnbitpos
;
5481 if (BYTES_BIG_ENDIAN
)
5483 xlr_bitpos
= rnbitsize
- xlr_bitpos
- lr_bitsize
;
5484 xrr_bitpos
= rnbitsize
- xrr_bitpos
- rr_bitsize
;
5487 lr_mask
= const_binop (LSHIFT_EXPR
, fold_convert_loc (loc
,
5489 size_int (xlr_bitpos
));
5490 rr_mask
= const_binop (LSHIFT_EXPR
, fold_convert_loc (loc
,
5492 size_int (xrr_bitpos
));
5494 /* Make a mask that corresponds to both fields being compared.
5495 Do this for both items being compared. If the operands are the
5496 same size and the bits being compared are in the same position
5497 then we can do this by masking both and comparing the masked
5499 ll_mask
= const_binop (BIT_IOR_EXPR
, ll_mask
, rl_mask
);
5500 lr_mask
= const_binop (BIT_IOR_EXPR
, lr_mask
, rr_mask
);
5501 if (lnbitsize
== rnbitsize
&& xll_bitpos
== xlr_bitpos
)
5503 lhs
= make_bit_field_ref (loc
, ll_inner
, lntype
, lnbitsize
, lnbitpos
,
5504 ll_unsignedp
|| rl_unsignedp
);
5505 if (! all_ones_mask_p (ll_mask
, lnbitsize
))
5506 lhs
= build2 (BIT_AND_EXPR
, lntype
, lhs
, ll_mask
);
5508 rhs
= make_bit_field_ref (loc
, lr_inner
, rntype
, rnbitsize
, rnbitpos
,
5509 lr_unsignedp
|| rr_unsignedp
);
5510 if (! all_ones_mask_p (lr_mask
, rnbitsize
))
5511 rhs
= build2 (BIT_AND_EXPR
, rntype
, rhs
, lr_mask
);
5513 return build2_loc (loc
, wanted_code
, truth_type
, lhs
, rhs
);
5516 /* There is still another way we can do something: If both pairs of
5517 fields being compared are adjacent, we may be able to make a wider
5518 field containing them both.
5520 Note that we still must mask the lhs/rhs expressions. Furthermore,
5521 the mask must be shifted to account for the shift done by
5522 make_bit_field_ref. */
5523 if ((ll_bitsize
+ ll_bitpos
== rl_bitpos
5524 && lr_bitsize
+ lr_bitpos
== rr_bitpos
)
5525 || (ll_bitpos
== rl_bitpos
+ rl_bitsize
5526 && lr_bitpos
== rr_bitpos
+ rr_bitsize
))
5530 lhs
= make_bit_field_ref (loc
, ll_inner
, lntype
,
5531 ll_bitsize
+ rl_bitsize
,
5532 MIN (ll_bitpos
, rl_bitpos
), ll_unsignedp
);
5533 rhs
= make_bit_field_ref (loc
, lr_inner
, rntype
,
5534 lr_bitsize
+ rr_bitsize
,
5535 MIN (lr_bitpos
, rr_bitpos
), lr_unsignedp
);
5537 ll_mask
= const_binop (RSHIFT_EXPR
, ll_mask
,
5538 size_int (MIN (xll_bitpos
, xrl_bitpos
)));
5539 lr_mask
= const_binop (RSHIFT_EXPR
, lr_mask
,
5540 size_int (MIN (xlr_bitpos
, xrr_bitpos
)));
5542 /* Convert to the smaller type before masking out unwanted bits. */
5544 if (lntype
!= rntype
)
5546 if (lnbitsize
> rnbitsize
)
5548 lhs
= fold_convert_loc (loc
, rntype
, lhs
);
5549 ll_mask
= fold_convert_loc (loc
, rntype
, ll_mask
);
5552 else if (lnbitsize
< rnbitsize
)
5554 rhs
= fold_convert_loc (loc
, lntype
, rhs
);
5555 lr_mask
= fold_convert_loc (loc
, lntype
, lr_mask
);
5560 if (! all_ones_mask_p (ll_mask
, ll_bitsize
+ rl_bitsize
))
5561 lhs
= build2 (BIT_AND_EXPR
, type
, lhs
, ll_mask
);
5563 if (! all_ones_mask_p (lr_mask
, lr_bitsize
+ rr_bitsize
))
5564 rhs
= build2 (BIT_AND_EXPR
, type
, rhs
, lr_mask
);
5566 return build2_loc (loc
, wanted_code
, truth_type
, lhs
, rhs
);
5572 /* Handle the case of comparisons with constants. If there is something in
5573 common between the masks, those bits of the constants must be the same.
5574 If not, the condition is always false. Test for this to avoid generating
5575 incorrect code below. */
5576 result
= const_binop (BIT_AND_EXPR
, ll_mask
, rl_mask
);
5577 if (! integer_zerop (result
)
5578 && simple_cst_equal (const_binop (BIT_AND_EXPR
, result
, l_const
),
5579 const_binop (BIT_AND_EXPR
, result
, r_const
)) != 1)
5581 if (wanted_code
== NE_EXPR
)
5583 warning (0, "%<or%> of unmatched not-equal tests is always 1");
5584 return constant_boolean_node (true, truth_type
);
5588 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
5589 return constant_boolean_node (false, truth_type
);
5593 /* Construct the expression we will return. First get the component
5594 reference we will make. Unless the mask is all ones the width of
5595 that field, perform the mask operation. Then compare with the
5597 result
= make_bit_field_ref (loc
, ll_inner
, lntype
, lnbitsize
, lnbitpos
,
5598 ll_unsignedp
|| rl_unsignedp
);
5600 ll_mask
= const_binop (BIT_IOR_EXPR
, ll_mask
, rl_mask
);
5601 if (! all_ones_mask_p (ll_mask
, lnbitsize
))
5602 result
= build2_loc (loc
, BIT_AND_EXPR
, lntype
, result
, ll_mask
);
5604 return build2_loc (loc
, wanted_code
, truth_type
, result
,
5605 const_binop (BIT_IOR_EXPR
, l_const
, r_const
));
5608 /* Optimize T, which is a comparison of a MIN_EXPR or MAX_EXPR with a
5612 optimize_minmax_comparison (location_t loc
, enum tree_code code
, tree type
,
5616 enum tree_code op_code
;
5619 int consts_equal
, consts_lt
;
5622 STRIP_SIGN_NOPS (arg0
);
5624 op_code
= TREE_CODE (arg0
);
5625 minmax_const
= TREE_OPERAND (arg0
, 1);
5626 comp_const
= fold_convert_loc (loc
, TREE_TYPE (arg0
), op1
);
5627 consts_equal
= tree_int_cst_equal (minmax_const
, comp_const
);
5628 consts_lt
= tree_int_cst_lt (minmax_const
, comp_const
);
5629 inner
= TREE_OPERAND (arg0
, 0);
5631 /* If something does not permit us to optimize, return the original tree. */
5632 if ((op_code
!= MIN_EXPR
&& op_code
!= MAX_EXPR
)
5633 || TREE_CODE (comp_const
) != INTEGER_CST
5634 || TREE_OVERFLOW (comp_const
)
5635 || TREE_CODE (minmax_const
) != INTEGER_CST
5636 || TREE_OVERFLOW (minmax_const
))
5639 /* Now handle all the various comparison codes. We only handle EQ_EXPR
5640 and GT_EXPR, doing the rest with recursive calls using logical
5644 case NE_EXPR
: case LT_EXPR
: case LE_EXPR
:
5647 = optimize_minmax_comparison (loc
,
5648 invert_tree_comparison (code
, false),
5651 return invert_truthvalue_loc (loc
, tem
);
5657 fold_build2_loc (loc
, TRUTH_ORIF_EXPR
, type
,
5658 optimize_minmax_comparison
5659 (loc
, EQ_EXPR
, type
, arg0
, comp_const
),
5660 optimize_minmax_comparison
5661 (loc
, GT_EXPR
, type
, arg0
, comp_const
));
5664 if (op_code
== MAX_EXPR
&& consts_equal
)
5665 /* MAX (X, 0) == 0 -> X <= 0 */
5666 return fold_build2_loc (loc
, LE_EXPR
, type
, inner
, comp_const
);
5668 else if (op_code
== MAX_EXPR
&& consts_lt
)
5669 /* MAX (X, 0) == 5 -> X == 5 */
5670 return fold_build2_loc (loc
, EQ_EXPR
, type
, inner
, comp_const
);
5672 else if (op_code
== MAX_EXPR
)
5673 /* MAX (X, 0) == -1 -> false */
5674 return omit_one_operand_loc (loc
, type
, integer_zero_node
, inner
);
5676 else if (consts_equal
)
5677 /* MIN (X, 0) == 0 -> X >= 0 */
5678 return fold_build2_loc (loc
, GE_EXPR
, type
, inner
, comp_const
);
5681 /* MIN (X, 0) == 5 -> false */
5682 return omit_one_operand_loc (loc
, type
, integer_zero_node
, inner
);
5685 /* MIN (X, 0) == -1 -> X == -1 */
5686 return fold_build2_loc (loc
, EQ_EXPR
, type
, inner
, comp_const
);
5689 if (op_code
== MAX_EXPR
&& (consts_equal
|| consts_lt
))
5690 /* MAX (X, 0) > 0 -> X > 0
5691 MAX (X, 0) > 5 -> X > 5 */
5692 return fold_build2_loc (loc
, GT_EXPR
, type
, inner
, comp_const
);
5694 else if (op_code
== MAX_EXPR
)
5695 /* MAX (X, 0) > -1 -> true */
5696 return omit_one_operand_loc (loc
, type
, integer_one_node
, inner
);
5698 else if (op_code
== MIN_EXPR
&& (consts_equal
|| consts_lt
))
5699 /* MIN (X, 0) > 0 -> false
5700 MIN (X, 0) > 5 -> false */
5701 return omit_one_operand_loc (loc
, type
, integer_zero_node
, inner
);
5704 /* MIN (X, 0) > -1 -> X > -1 */
5705 return fold_build2_loc (loc
, GT_EXPR
, type
, inner
, comp_const
);
5712 /* T is an integer expression that is being multiplied, divided, or taken a
5713 modulus (CODE says which and what kind of divide or modulus) by a
5714 constant C. See if we can eliminate that operation by folding it with
5715 other operations already in T. WIDE_TYPE, if non-null, is a type that
5716 should be used for the computation if wider than our type.
5718 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
5719 (X * 2) + (Y * 4). We must, however, be assured that either the original
5720 expression would not overflow or that overflow is undefined for the type
5721 in the language in question.
5723 If we return a non-null expression, it is an equivalent form of the
5724 original computation, but need not be in the original type.
5726 We set *STRICT_OVERFLOW_P to true if the return values depends on
5727 signed overflow being undefined. Otherwise we do not change
5728 *STRICT_OVERFLOW_P. */
5731 extract_muldiv (tree t
, tree c
, enum tree_code code
, tree wide_type
,
5732 bool *strict_overflow_p
)
5734 /* To avoid exponential search depth, refuse to allow recursion past
5735 three levels. Beyond that (1) it's highly unlikely that we'll find
5736 something interesting and (2) we've probably processed it before
5737 when we built the inner expression. */
5746 ret
= extract_muldiv_1 (t
, c
, code
, wide_type
, strict_overflow_p
);
5753 extract_muldiv_1 (tree t
, tree c
, enum tree_code code
, tree wide_type
,
5754 bool *strict_overflow_p
)
5756 tree type
= TREE_TYPE (t
);
5757 enum tree_code tcode
= TREE_CODE (t
);
5758 tree ctype
= (wide_type
!= 0 && (GET_MODE_SIZE (TYPE_MODE (wide_type
))
5759 > GET_MODE_SIZE (TYPE_MODE (type
)))
5760 ? wide_type
: type
);
5762 int same_p
= tcode
== code
;
5763 tree op0
= NULL_TREE
, op1
= NULL_TREE
;
5764 bool sub_strict_overflow_p
;
5766 /* Don't deal with constants of zero here; they confuse the code below. */
5767 if (integer_zerop (c
))
5770 if (TREE_CODE_CLASS (tcode
) == tcc_unary
)
5771 op0
= TREE_OPERAND (t
, 0);
5773 if (TREE_CODE_CLASS (tcode
) == tcc_binary
)
5774 op0
= TREE_OPERAND (t
, 0), op1
= TREE_OPERAND (t
, 1);
5776 /* Note that we need not handle conditional operations here since fold
5777 already handles those cases. So just do arithmetic here. */
5781 /* For a constant, we can always simplify if we are a multiply
5782 or (for divide and modulus) if it is a multiple of our constant. */
5783 if (code
== MULT_EXPR
5784 || integer_zerop (const_binop (TRUNC_MOD_EXPR
, t
, c
)))
5785 return const_binop (code
, fold_convert (ctype
, t
),
5786 fold_convert (ctype
, c
));
5789 CASE_CONVERT
: case NON_LVALUE_EXPR
:
5790 /* If op0 is an expression ... */
5791 if ((COMPARISON_CLASS_P (op0
)
5792 || UNARY_CLASS_P (op0
)
5793 || BINARY_CLASS_P (op0
)
5794 || VL_EXP_CLASS_P (op0
)
5795 || EXPRESSION_CLASS_P (op0
))
5796 /* ... and has wrapping overflow, and its type is smaller
5797 than ctype, then we cannot pass through as widening. */
5798 && ((TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0
))
5799 && (TYPE_PRECISION (ctype
)
5800 > TYPE_PRECISION (TREE_TYPE (op0
))))
5801 /* ... or this is a truncation (t is narrower than op0),
5802 then we cannot pass through this narrowing. */
5803 || (TYPE_PRECISION (type
)
5804 < TYPE_PRECISION (TREE_TYPE (op0
)))
5805 /* ... or signedness changes for division or modulus,
5806 then we cannot pass through this conversion. */
5807 || (code
!= MULT_EXPR
5808 && (TYPE_UNSIGNED (ctype
)
5809 != TYPE_UNSIGNED (TREE_TYPE (op0
))))
5810 /* ... or has undefined overflow while the converted to
5811 type has not, we cannot do the operation in the inner type
5812 as that would introduce undefined overflow. */
5813 || (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0
))
5814 && !TYPE_OVERFLOW_UNDEFINED (type
))))
5817 /* Pass the constant down and see if we can make a simplification. If
5818 we can, replace this expression with the inner simplification for
5819 possible later conversion to our or some other type. */
5820 if ((t2
= fold_convert (TREE_TYPE (op0
), c
)) != 0
5821 && TREE_CODE (t2
) == INTEGER_CST
5822 && !TREE_OVERFLOW (t2
)
5823 && (0 != (t1
= extract_muldiv (op0
, t2
, code
,
5825 ? ctype
: NULL_TREE
,
5826 strict_overflow_p
))))
5831 /* If widening the type changes it from signed to unsigned, then we
5832 must avoid building ABS_EXPR itself as unsigned. */
5833 if (TYPE_UNSIGNED (ctype
) && !TYPE_UNSIGNED (type
))
5835 tree cstype
= (*signed_type_for
) (ctype
);
5836 if ((t1
= extract_muldiv (op0
, c
, code
, cstype
, strict_overflow_p
))
5839 t1
= fold_build1 (tcode
, cstype
, fold_convert (cstype
, t1
));
5840 return fold_convert (ctype
, t1
);
5844 /* If the constant is negative, we cannot simplify this. */
5845 if (tree_int_cst_sgn (c
) == -1)
5849 /* For division and modulus, type can't be unsigned, as e.g.
5850 (-(x / 2U)) / 2U isn't equal to -((x / 2U) / 2U) for x >= 2.
5851 For signed types, even with wrapping overflow, this is fine. */
5852 if (code
!= MULT_EXPR
&& TYPE_UNSIGNED (type
))
5854 if ((t1
= extract_muldiv (op0
, c
, code
, wide_type
, strict_overflow_p
))
5856 return fold_build1 (tcode
, ctype
, fold_convert (ctype
, t1
));
5859 case MIN_EXPR
: case MAX_EXPR
:
5860 /* If widening the type changes the signedness, then we can't perform
5861 this optimization as that changes the result. */
5862 if (TYPE_UNSIGNED (ctype
) != TYPE_UNSIGNED (type
))
5865 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
5866 sub_strict_overflow_p
= false;
5867 if ((t1
= extract_muldiv (op0
, c
, code
, wide_type
,
5868 &sub_strict_overflow_p
)) != 0
5869 && (t2
= extract_muldiv (op1
, c
, code
, wide_type
,
5870 &sub_strict_overflow_p
)) != 0)
5872 if (tree_int_cst_sgn (c
) < 0)
5873 tcode
= (tcode
== MIN_EXPR
? MAX_EXPR
: MIN_EXPR
);
5874 if (sub_strict_overflow_p
)
5875 *strict_overflow_p
= true;
5876 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, t1
),
5877 fold_convert (ctype
, t2
));
5881 case LSHIFT_EXPR
: case RSHIFT_EXPR
:
5882 /* If the second operand is constant, this is a multiplication
5883 or floor division, by a power of two, so we can treat it that
5884 way unless the multiplier or divisor overflows. Signed
5885 left-shift overflow is implementation-defined rather than
5886 undefined in C90, so do not convert signed left shift into
5888 if (TREE_CODE (op1
) == INTEGER_CST
5889 && (tcode
== RSHIFT_EXPR
|| TYPE_UNSIGNED (TREE_TYPE (op0
)))
5890 /* const_binop may not detect overflow correctly,
5891 so check for it explicitly here. */
5892 && TYPE_PRECISION (TREE_TYPE (size_one_node
)) > TREE_INT_CST_LOW (op1
)
5893 && TREE_INT_CST_HIGH (op1
) == 0
5894 && 0 != (t1
= fold_convert (ctype
,
5895 const_binop (LSHIFT_EXPR
,
5898 && !TREE_OVERFLOW (t1
))
5899 return extract_muldiv (build2 (tcode
== LSHIFT_EXPR
5900 ? MULT_EXPR
: FLOOR_DIV_EXPR
,
5902 fold_convert (ctype
, op0
),
5904 c
, code
, wide_type
, strict_overflow_p
);
5907 case PLUS_EXPR
: case MINUS_EXPR
:
5908 /* See if we can eliminate the operation on both sides. If we can, we
5909 can return a new PLUS or MINUS. If we can't, the only remaining
5910 cases where we can do anything are if the second operand is a
5912 sub_strict_overflow_p
= false;
5913 t1
= extract_muldiv (op0
, c
, code
, wide_type
, &sub_strict_overflow_p
);
5914 t2
= extract_muldiv (op1
, c
, code
, wide_type
, &sub_strict_overflow_p
);
5915 if (t1
!= 0 && t2
!= 0
5916 && (code
== MULT_EXPR
5917 /* If not multiplication, we can only do this if both operands
5918 are divisible by c. */
5919 || (multiple_of_p (ctype
, op0
, c
)
5920 && multiple_of_p (ctype
, op1
, c
))))
5922 if (sub_strict_overflow_p
)
5923 *strict_overflow_p
= true;
5924 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, t1
),
5925 fold_convert (ctype
, t2
));
5928 /* If this was a subtraction, negate OP1 and set it to be an addition.
5929 This simplifies the logic below. */
5930 if (tcode
== MINUS_EXPR
)
5932 tcode
= PLUS_EXPR
, op1
= negate_expr (op1
);
5933 /* If OP1 was not easily negatable, the constant may be OP0. */
5934 if (TREE_CODE (op0
) == INTEGER_CST
)
5945 if (TREE_CODE (op1
) != INTEGER_CST
)
5948 /* If either OP1 or C are negative, this optimization is not safe for
5949 some of the division and remainder types while for others we need
5950 to change the code. */
5951 if (tree_int_cst_sgn (op1
) < 0 || tree_int_cst_sgn (c
) < 0)
5953 if (code
== CEIL_DIV_EXPR
)
5954 code
= FLOOR_DIV_EXPR
;
5955 else if (code
== FLOOR_DIV_EXPR
)
5956 code
= CEIL_DIV_EXPR
;
5957 else if (code
!= MULT_EXPR
5958 && code
!= CEIL_MOD_EXPR
&& code
!= FLOOR_MOD_EXPR
)
5962 /* If it's a multiply or a division/modulus operation of a multiple
5963 of our constant, do the operation and verify it doesn't overflow. */
5964 if (code
== MULT_EXPR
5965 || integer_zerop (const_binop (TRUNC_MOD_EXPR
, op1
, c
)))
5967 op1
= const_binop (code
, fold_convert (ctype
, op1
),
5968 fold_convert (ctype
, c
));
5969 /* We allow the constant to overflow with wrapping semantics. */
5971 || (TREE_OVERFLOW (op1
) && !TYPE_OVERFLOW_WRAPS (ctype
)))
5977 /* If we have an unsigned type, we cannot widen the operation since it
5978 will change the result if the original computation overflowed. */
5979 if (TYPE_UNSIGNED (ctype
) && ctype
!= type
)
5982 /* If we were able to eliminate our operation from the first side,
5983 apply our operation to the second side and reform the PLUS. */
5984 if (t1
!= 0 && (TREE_CODE (t1
) != code
|| code
== MULT_EXPR
))
5985 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, t1
), op1
);
5987 /* The last case is if we are a multiply. In that case, we can
5988 apply the distributive law to commute the multiply and addition
5989 if the multiplication of the constants doesn't overflow
5990 and overflow is defined. With undefined overflow
5991 op0 * c might overflow, while (op0 + orig_op1) * c doesn't. */
5992 if (code
== MULT_EXPR
&& TYPE_OVERFLOW_WRAPS (ctype
))
5993 return fold_build2 (tcode
, ctype
,
5994 fold_build2 (code
, ctype
,
5995 fold_convert (ctype
, op0
),
5996 fold_convert (ctype
, c
)),
6002 /* We have a special case here if we are doing something like
6003 (C * 8) % 4 since we know that's zero. */
6004 if ((code
== TRUNC_MOD_EXPR
|| code
== CEIL_MOD_EXPR
6005 || code
== FLOOR_MOD_EXPR
|| code
== ROUND_MOD_EXPR
)
6006 /* If the multiplication can overflow we cannot optimize this. */
6007 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t
))
6008 && TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
6009 && integer_zerop (const_binop (TRUNC_MOD_EXPR
, op1
, c
)))
6011 *strict_overflow_p
= true;
6012 return omit_one_operand (type
, integer_zero_node
, op0
);
6015 /* ... fall through ... */
6017 case TRUNC_DIV_EXPR
: case CEIL_DIV_EXPR
: case FLOOR_DIV_EXPR
:
6018 case ROUND_DIV_EXPR
: case EXACT_DIV_EXPR
:
6019 /* If we can extract our operation from the LHS, do so and return a
6020 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
6021 do something only if the second operand is a constant. */
6023 && (t1
= extract_muldiv (op0
, c
, code
, wide_type
,
6024 strict_overflow_p
)) != 0)
6025 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, t1
),
6026 fold_convert (ctype
, op1
));
6027 else if (tcode
== MULT_EXPR
&& code
== MULT_EXPR
6028 && (t1
= extract_muldiv (op1
, c
, code
, wide_type
,
6029 strict_overflow_p
)) != 0)
6030 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, op0
),
6031 fold_convert (ctype
, t1
));
6032 else if (TREE_CODE (op1
) != INTEGER_CST
)
6035 /* If these are the same operation types, we can associate them
6036 assuming no overflow. */
6041 unsigned prec
= TYPE_PRECISION (ctype
);
6042 bool uns
= TYPE_UNSIGNED (ctype
);
6043 double_int diop1
= tree_to_double_int (op1
).ext (prec
, uns
);
6044 double_int dic
= tree_to_double_int (c
).ext (prec
, uns
);
6045 mul
= diop1
.mul_with_sign (dic
, false, &overflow_p
);
6046 overflow_p
= ((!uns
&& overflow_p
)
6047 | TREE_OVERFLOW (c
) | TREE_OVERFLOW (op1
));
6048 if (!double_int_fits_to_tree_p (ctype
, mul
)
6049 && ((uns
&& tcode
!= MULT_EXPR
) || !uns
))
6052 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, op0
),
6053 double_int_to_tree (ctype
, mul
));
6056 /* If these operations "cancel" each other, we have the main
6057 optimizations of this pass, which occur when either constant is a
6058 multiple of the other, in which case we replace this with either an
6059 operation or CODE or TCODE.
6061 If we have an unsigned type, we cannot do this since it will change
6062 the result if the original computation overflowed. */
6063 if (TYPE_OVERFLOW_UNDEFINED (ctype
)
6064 && ((code
== MULT_EXPR
&& tcode
== EXACT_DIV_EXPR
)
6065 || (tcode
== MULT_EXPR
6066 && code
!= TRUNC_MOD_EXPR
&& code
!= CEIL_MOD_EXPR
6067 && code
!= FLOOR_MOD_EXPR
&& code
!= ROUND_MOD_EXPR
6068 && code
!= MULT_EXPR
)))
6070 if (integer_zerop (const_binop (TRUNC_MOD_EXPR
, op1
, c
)))
6072 if (TYPE_OVERFLOW_UNDEFINED (ctype
))
6073 *strict_overflow_p
= true;
6074 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, op0
),
6075 fold_convert (ctype
,
6076 const_binop (TRUNC_DIV_EXPR
,
6079 else if (integer_zerop (const_binop (TRUNC_MOD_EXPR
, c
, op1
)))
6081 if (TYPE_OVERFLOW_UNDEFINED (ctype
))
6082 *strict_overflow_p
= true;
6083 return fold_build2 (code
, ctype
, fold_convert (ctype
, op0
),
6084 fold_convert (ctype
,
6085 const_binop (TRUNC_DIV_EXPR
,
6098 /* Return a node which has the indicated constant VALUE (either 0 or
6099 1 for scalars or {-1,-1,..} or {0,0,...} for vectors),
6100 and is of the indicated TYPE. */
6103 constant_boolean_node (bool value
, tree type
)
6105 if (type
== integer_type_node
)
6106 return value
? integer_one_node
: integer_zero_node
;
6107 else if (type
== boolean_type_node
)
6108 return value
? boolean_true_node
: boolean_false_node
;
6109 else if (TREE_CODE (type
) == VECTOR_TYPE
)
6110 return build_vector_from_val (type
,
6111 build_int_cst (TREE_TYPE (type
),
6114 return fold_convert (type
, value
? integer_one_node
: integer_zero_node
);
6118 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
6119 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
6120 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
6121 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
6122 COND is the first argument to CODE; otherwise (as in the example
6123 given here), it is the second argument. TYPE is the type of the
6124 original expression. Return NULL_TREE if no simplification is
6128 fold_binary_op_with_conditional_arg (location_t loc
,
6129 enum tree_code code
,
6130 tree type
, tree op0
, tree op1
,
6131 tree cond
, tree arg
, int cond_first_p
)
6133 tree cond_type
= cond_first_p
? TREE_TYPE (op0
) : TREE_TYPE (op1
);
6134 tree arg_type
= cond_first_p
? TREE_TYPE (op1
) : TREE_TYPE (op0
);
6135 tree test
, true_value
, false_value
;
6136 tree lhs
= NULL_TREE
;
6137 tree rhs
= NULL_TREE
;
6138 enum tree_code cond_code
= COND_EXPR
;
6140 if (TREE_CODE (cond
) == COND_EXPR
6141 || TREE_CODE (cond
) == VEC_COND_EXPR
)
6143 test
= TREE_OPERAND (cond
, 0);
6144 true_value
= TREE_OPERAND (cond
, 1);
6145 false_value
= TREE_OPERAND (cond
, 2);
6146 /* If this operand throws an expression, then it does not make
6147 sense to try to perform a logical or arithmetic operation
6149 if (VOID_TYPE_P (TREE_TYPE (true_value
)))
6151 if (VOID_TYPE_P (TREE_TYPE (false_value
)))
6156 tree testtype
= TREE_TYPE (cond
);
6158 true_value
= constant_boolean_node (true, testtype
);
6159 false_value
= constant_boolean_node (false, testtype
);
6162 if (TREE_CODE (TREE_TYPE (test
)) == VECTOR_TYPE
)
6163 cond_code
= VEC_COND_EXPR
;
6165 /* This transformation is only worthwhile if we don't have to wrap ARG
6166 in a SAVE_EXPR and the operation can be simplified without recursing
6167 on at least one of the branches once its pushed inside the COND_EXPR. */
6168 if (!TREE_CONSTANT (arg
)
6169 && (TREE_SIDE_EFFECTS (arg
)
6170 || TREE_CODE (arg
) == COND_EXPR
|| TREE_CODE (arg
) == VEC_COND_EXPR
6171 || TREE_CONSTANT (true_value
) || TREE_CONSTANT (false_value
)))
6174 arg
= fold_convert_loc (loc
, arg_type
, arg
);
6177 true_value
= fold_convert_loc (loc
, cond_type
, true_value
);
6179 lhs
= fold_build2_loc (loc
, code
, type
, true_value
, arg
);
6181 lhs
= fold_build2_loc (loc
, code
, type
, arg
, true_value
);
6185 false_value
= fold_convert_loc (loc
, cond_type
, false_value
);
6187 rhs
= fold_build2_loc (loc
, code
, type
, false_value
, arg
);
6189 rhs
= fold_build2_loc (loc
, code
, type
, arg
, false_value
);
6192 /* Check that we have simplified at least one of the branches. */
6193 if (!TREE_CONSTANT (arg
) && !TREE_CONSTANT (lhs
) && !TREE_CONSTANT (rhs
))
6196 return fold_build3_loc (loc
, cond_code
, type
, test
, lhs
, rhs
);
6200 /* Subroutine of fold() that checks for the addition of +/- 0.0.
6202 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
6203 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
6204 ADDEND is the same as X.
6206 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
6207 and finite. The problematic cases are when X is zero, and its mode
6208 has signed zeros. In the case of rounding towards -infinity,
6209 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
6210 modes, X + 0 is not the same as X because -0 + 0 is 0. */
6213 fold_real_zero_addition_p (const_tree type
, const_tree addend
, int negate
)
6215 if (!real_zerop (addend
))
6218 /* Don't allow the fold with -fsignaling-nans. */
6219 if (HONOR_SNANS (TYPE_MODE (type
)))
6222 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
6223 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type
)))
6226 /* In a vector or complex, we would need to check the sign of all zeros. */
6227 if (TREE_CODE (addend
) != REAL_CST
)
6230 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
6231 if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend
)))
6234 /* The mode has signed zeros, and we have to honor their sign.
6235 In this situation, there is only one case we can return true for.
6236 X - 0 is the same as X unless rounding towards -infinity is
6238 return negate
&& !HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type
));
6241 /* Subroutine of fold() that checks comparisons of built-in math
6242 functions against real constants.
6244 FCODE is the DECL_FUNCTION_CODE of the built-in, CODE is the comparison
6245 operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR, GE_EXPR or LE_EXPR. TYPE
6246 is the type of the result and ARG0 and ARG1 are the operands of the
6247 comparison. ARG1 must be a TREE_REAL_CST.
6249 The function returns the constant folded tree if a simplification
6250 can be made, and NULL_TREE otherwise. */
6253 fold_mathfn_compare (location_t loc
,
6254 enum built_in_function fcode
, enum tree_code code
,
6255 tree type
, tree arg0
, tree arg1
)
6259 if (BUILTIN_SQRT_P (fcode
))
6261 tree arg
= CALL_EXPR_ARG (arg0
, 0);
6262 enum machine_mode mode
= TYPE_MODE (TREE_TYPE (arg0
));
6264 c
= TREE_REAL_CST (arg1
);
6265 if (REAL_VALUE_NEGATIVE (c
))
6267 /* sqrt(x) < y is always false, if y is negative. */
6268 if (code
== EQ_EXPR
|| code
== LT_EXPR
|| code
== LE_EXPR
)
6269 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg
);
6271 /* sqrt(x) > y is always true, if y is negative and we
6272 don't care about NaNs, i.e. negative values of x. */
6273 if (code
== NE_EXPR
|| !HONOR_NANS (mode
))
6274 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg
);
6276 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
6277 return fold_build2_loc (loc
, GE_EXPR
, type
, arg
,
6278 build_real (TREE_TYPE (arg
), dconst0
));
6280 else if (code
== GT_EXPR
|| code
== GE_EXPR
)
6284 REAL_ARITHMETIC (c2
, MULT_EXPR
, c
, c
);
6285 real_convert (&c2
, mode
, &c2
);
6287 if (REAL_VALUE_ISINF (c2
))
6289 /* sqrt(x) > y is x == +Inf, when y is very large. */
6290 if (HONOR_INFINITIES (mode
))
6291 return fold_build2_loc (loc
, EQ_EXPR
, type
, arg
,
6292 build_real (TREE_TYPE (arg
), c2
));
6294 /* sqrt(x) > y is always false, when y is very large
6295 and we don't care about infinities. */
6296 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg
);
6299 /* sqrt(x) > c is the same as x > c*c. */
6300 return fold_build2_loc (loc
, code
, type
, arg
,
6301 build_real (TREE_TYPE (arg
), c2
));
6303 else if (code
== LT_EXPR
|| code
== LE_EXPR
)
6307 REAL_ARITHMETIC (c2
, MULT_EXPR
, c
, c
);
6308 real_convert (&c2
, mode
, &c2
);
6310 if (REAL_VALUE_ISINF (c2
))
6312 /* sqrt(x) < y is always true, when y is a very large
6313 value and we don't care about NaNs or Infinities. */
6314 if (! HONOR_NANS (mode
) && ! HONOR_INFINITIES (mode
))
6315 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg
);
6317 /* sqrt(x) < y is x != +Inf when y is very large and we
6318 don't care about NaNs. */
6319 if (! HONOR_NANS (mode
))
6320 return fold_build2_loc (loc
, NE_EXPR
, type
, arg
,
6321 build_real (TREE_TYPE (arg
), c2
));
6323 /* sqrt(x) < y is x >= 0 when y is very large and we
6324 don't care about Infinities. */
6325 if (! HONOR_INFINITIES (mode
))
6326 return fold_build2_loc (loc
, GE_EXPR
, type
, arg
,
6327 build_real (TREE_TYPE (arg
), dconst0
));
6329 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
6330 arg
= save_expr (arg
);
6331 return fold_build2_loc (loc
, TRUTH_ANDIF_EXPR
, type
,
6332 fold_build2_loc (loc
, GE_EXPR
, type
, arg
,
6333 build_real (TREE_TYPE (arg
),
6335 fold_build2_loc (loc
, NE_EXPR
, type
, arg
,
6336 build_real (TREE_TYPE (arg
),
6340 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
6341 if (! HONOR_NANS (mode
))
6342 return fold_build2_loc (loc
, code
, type
, arg
,
6343 build_real (TREE_TYPE (arg
), c2
));
6345 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
6346 arg
= save_expr (arg
);
6347 return fold_build2_loc (loc
, TRUTH_ANDIF_EXPR
, type
,
6348 fold_build2_loc (loc
, GE_EXPR
, type
, arg
,
6349 build_real (TREE_TYPE (arg
),
6351 fold_build2_loc (loc
, code
, type
, arg
,
6352 build_real (TREE_TYPE (arg
),
6360 /* Subroutine of fold() that optimizes comparisons against Infinities,
6361 either +Inf or -Inf.
6363 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6364 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
6365 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
6367 The function returns the constant folded tree if a simplification
6368 can be made, and NULL_TREE otherwise. */
6371 fold_inf_compare (location_t loc
, enum tree_code code
, tree type
,
6372 tree arg0
, tree arg1
)
6374 enum machine_mode mode
;
6375 REAL_VALUE_TYPE max
;
6379 mode
= TYPE_MODE (TREE_TYPE (arg0
));
6381 /* For negative infinity swap the sense of the comparison. */
6382 neg
= REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1
));
6384 code
= swap_tree_comparison (code
);
6389 /* x > +Inf is always false, if with ignore sNANs. */
6390 if (HONOR_SNANS (mode
))
6392 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
6395 /* x <= +Inf is always true, if we don't case about NaNs. */
6396 if (! HONOR_NANS (mode
))
6397 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg0
);
6399 /* x <= +Inf is the same as x == x, i.e. isfinite(x). */
6400 arg0
= save_expr (arg0
);
6401 return fold_build2_loc (loc
, EQ_EXPR
, type
, arg0
, arg0
);
6405 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX. */
6406 real_maxval (&max
, neg
, mode
);
6407 return fold_build2_loc (loc
, neg
? LT_EXPR
: GT_EXPR
, type
,
6408 arg0
, build_real (TREE_TYPE (arg0
), max
));
6411 /* x < +Inf is always equal to x <= DBL_MAX. */
6412 real_maxval (&max
, neg
, mode
);
6413 return fold_build2_loc (loc
, neg
? GE_EXPR
: LE_EXPR
, type
,
6414 arg0
, build_real (TREE_TYPE (arg0
), max
));
6417 /* x != +Inf is always equal to !(x > DBL_MAX). */
6418 real_maxval (&max
, neg
, mode
);
6419 if (! HONOR_NANS (mode
))
6420 return fold_build2_loc (loc
, neg
? GE_EXPR
: LE_EXPR
, type
,
6421 arg0
, build_real (TREE_TYPE (arg0
), max
));
6423 temp
= fold_build2_loc (loc
, neg
? LT_EXPR
: GT_EXPR
, type
,
6424 arg0
, build_real (TREE_TYPE (arg0
), max
));
6425 return fold_build1_loc (loc
, TRUTH_NOT_EXPR
, type
, temp
);
6434 /* Subroutine of fold() that optimizes comparisons of a division by
6435 a nonzero integer constant against an integer constant, i.e.
6438 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6439 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
6440 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
6442 The function returns the constant folded tree if a simplification
6443 can be made, and NULL_TREE otherwise. */
6446 fold_div_compare (location_t loc
,
6447 enum tree_code code
, tree type
, tree arg0
, tree arg1
)
6449 tree prod
, tmp
, hi
, lo
;
6450 tree arg00
= TREE_OPERAND (arg0
, 0);
6451 tree arg01
= TREE_OPERAND (arg0
, 1);
6453 bool unsigned_p
= TYPE_UNSIGNED (TREE_TYPE (arg0
));
6457 /* We have to do this the hard way to detect unsigned overflow.
6458 prod = int_const_binop (MULT_EXPR, arg01, arg1); */
6459 val
= TREE_INT_CST (arg01
)
6460 .mul_with_sign (TREE_INT_CST (arg1
), unsigned_p
, &overflow
);
6461 prod
= force_fit_type_double (TREE_TYPE (arg00
), val
, -1, overflow
);
6462 neg_overflow
= false;
6466 tmp
= int_const_binop (MINUS_EXPR
, arg01
,
6467 build_int_cst (TREE_TYPE (arg01
), 1));
6470 /* Likewise hi = int_const_binop (PLUS_EXPR, prod, tmp). */
6471 val
= TREE_INT_CST (prod
)
6472 .add_with_sign (TREE_INT_CST (tmp
), unsigned_p
, &overflow
);
6473 hi
= force_fit_type_double (TREE_TYPE (arg00
), val
,
6474 -1, overflow
| TREE_OVERFLOW (prod
));
6476 else if (tree_int_cst_sgn (arg01
) >= 0)
6478 tmp
= int_const_binop (MINUS_EXPR
, arg01
,
6479 build_int_cst (TREE_TYPE (arg01
), 1));
6480 switch (tree_int_cst_sgn (arg1
))
6483 neg_overflow
= true;
6484 lo
= int_const_binop (MINUS_EXPR
, prod
, tmp
);
6489 lo
= fold_negate_const (tmp
, TREE_TYPE (arg0
));
6494 hi
= int_const_binop (PLUS_EXPR
, prod
, tmp
);
6504 /* A negative divisor reverses the relational operators. */
6505 code
= swap_tree_comparison (code
);
6507 tmp
= int_const_binop (PLUS_EXPR
, arg01
,
6508 build_int_cst (TREE_TYPE (arg01
), 1));
6509 switch (tree_int_cst_sgn (arg1
))
6512 hi
= int_const_binop (MINUS_EXPR
, prod
, tmp
);
6517 hi
= fold_negate_const (tmp
, TREE_TYPE (arg0
));
6522 neg_overflow
= true;
6523 lo
= int_const_binop (PLUS_EXPR
, prod
, tmp
);
6535 if (TREE_OVERFLOW (lo
) && TREE_OVERFLOW (hi
))
6536 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg00
);
6537 if (TREE_OVERFLOW (hi
))
6538 return fold_build2_loc (loc
, GE_EXPR
, type
, arg00
, lo
);
6539 if (TREE_OVERFLOW (lo
))
6540 return fold_build2_loc (loc
, LE_EXPR
, type
, arg00
, hi
);
6541 return build_range_check (loc
, type
, arg00
, 1, lo
, hi
);
6544 if (TREE_OVERFLOW (lo
) && TREE_OVERFLOW (hi
))
6545 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg00
);
6546 if (TREE_OVERFLOW (hi
))
6547 return fold_build2_loc (loc
, LT_EXPR
, type
, arg00
, lo
);
6548 if (TREE_OVERFLOW (lo
))
6549 return fold_build2_loc (loc
, GT_EXPR
, type
, arg00
, hi
);
6550 return build_range_check (loc
, type
, arg00
, 0, lo
, hi
);
6553 if (TREE_OVERFLOW (lo
))
6555 tmp
= neg_overflow
? integer_zero_node
: integer_one_node
;
6556 return omit_one_operand_loc (loc
, type
, tmp
, arg00
);
6558 return fold_build2_loc (loc
, LT_EXPR
, type
, arg00
, lo
);
6561 if (TREE_OVERFLOW (hi
))
6563 tmp
= neg_overflow
? integer_zero_node
: integer_one_node
;
6564 return omit_one_operand_loc (loc
, type
, tmp
, arg00
);
6566 return fold_build2_loc (loc
, LE_EXPR
, type
, arg00
, hi
);
6569 if (TREE_OVERFLOW (hi
))
6571 tmp
= neg_overflow
? integer_one_node
: integer_zero_node
;
6572 return omit_one_operand_loc (loc
, type
, tmp
, arg00
);
6574 return fold_build2_loc (loc
, GT_EXPR
, type
, arg00
, hi
);
6577 if (TREE_OVERFLOW (lo
))
6579 tmp
= neg_overflow
? integer_one_node
: integer_zero_node
;
6580 return omit_one_operand_loc (loc
, type
, tmp
, arg00
);
6582 return fold_build2_loc (loc
, GE_EXPR
, type
, arg00
, lo
);
6592 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6593 equality/inequality test, then return a simplified form of the test
6594 using a sign testing. Otherwise return NULL. TYPE is the desired
6598 fold_single_bit_test_into_sign_test (location_t loc
,
6599 enum tree_code code
, tree arg0
, tree arg1
,
6602 /* If this is testing a single bit, we can optimize the test. */
6603 if ((code
== NE_EXPR
|| code
== EQ_EXPR
)
6604 && TREE_CODE (arg0
) == BIT_AND_EXPR
&& integer_zerop (arg1
)
6605 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
6607 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6608 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6609 tree arg00
= sign_bit_p (TREE_OPERAND (arg0
, 0), TREE_OPERAND (arg0
, 1));
6611 if (arg00
!= NULL_TREE
6612 /* This is only a win if casting to a signed type is cheap,
6613 i.e. when arg00's type is not a partial mode. */
6614 && TYPE_PRECISION (TREE_TYPE (arg00
))
6615 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (arg00
))))
6617 tree stype
= signed_type_for (TREE_TYPE (arg00
));
6618 return fold_build2_loc (loc
, code
== EQ_EXPR
? GE_EXPR
: LT_EXPR
,
6620 fold_convert_loc (loc
, stype
, arg00
),
6621 build_int_cst (stype
, 0));
6628 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6629 equality/inequality test, then return a simplified form of
6630 the test using shifts and logical operations. Otherwise return
6631 NULL. TYPE is the desired result type. */
6634 fold_single_bit_test (location_t loc
, enum tree_code code
,
6635 tree arg0
, tree arg1
, tree result_type
)
6637 /* If this is testing a single bit, we can optimize the test. */
6638 if ((code
== NE_EXPR
|| code
== EQ_EXPR
)
6639 && TREE_CODE (arg0
) == BIT_AND_EXPR
&& integer_zerop (arg1
)
6640 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
6642 tree inner
= TREE_OPERAND (arg0
, 0);
6643 tree type
= TREE_TYPE (arg0
);
6644 int bitnum
= tree_log2 (TREE_OPERAND (arg0
, 1));
6645 enum machine_mode operand_mode
= TYPE_MODE (type
);
6647 tree signed_type
, unsigned_type
, intermediate_type
;
6650 /* First, see if we can fold the single bit test into a sign-bit
6652 tem
= fold_single_bit_test_into_sign_test (loc
, code
, arg0
, arg1
,
6657 /* Otherwise we have (A & C) != 0 where C is a single bit,
6658 convert that into ((A >> C2) & 1). Where C2 = log2(C).
6659 Similarly for (A & C) == 0. */
6661 /* If INNER is a right shift of a constant and it plus BITNUM does
6662 not overflow, adjust BITNUM and INNER. */
6663 if (TREE_CODE (inner
) == RSHIFT_EXPR
6664 && TREE_CODE (TREE_OPERAND (inner
, 1)) == INTEGER_CST
6665 && tree_fits_uhwi_p (TREE_OPERAND (inner
, 1))
6666 && bitnum
< TYPE_PRECISION (type
)
6667 && (tree_to_uhwi (TREE_OPERAND (inner
, 1))
6668 < (unsigned) (TYPE_PRECISION (type
) - bitnum
)))
6670 bitnum
+= tree_to_uhwi (TREE_OPERAND (inner
, 1));
6671 inner
= TREE_OPERAND (inner
, 0);
6674 /* If we are going to be able to omit the AND below, we must do our
6675 operations as unsigned. If we must use the AND, we have a choice.
6676 Normally unsigned is faster, but for some machines signed is. */
6677 #ifdef LOAD_EXTEND_OP
6678 ops_unsigned
= (LOAD_EXTEND_OP (operand_mode
) == SIGN_EXTEND
6679 && !flag_syntax_only
) ? 0 : 1;
6684 signed_type
= lang_hooks
.types
.type_for_mode (operand_mode
, 0);
6685 unsigned_type
= lang_hooks
.types
.type_for_mode (operand_mode
, 1);
6686 intermediate_type
= ops_unsigned
? unsigned_type
: signed_type
;
6687 inner
= fold_convert_loc (loc
, intermediate_type
, inner
);
6690 inner
= build2 (RSHIFT_EXPR
, intermediate_type
,
6691 inner
, size_int (bitnum
));
6693 one
= build_int_cst (intermediate_type
, 1);
6695 if (code
== EQ_EXPR
)
6696 inner
= fold_build2_loc (loc
, BIT_XOR_EXPR
, intermediate_type
, inner
, one
);
6698 /* Put the AND last so it can combine with more things. */
6699 inner
= build2 (BIT_AND_EXPR
, intermediate_type
, inner
, one
);
6701 /* Make sure to return the proper type. */
6702 inner
= fold_convert_loc (loc
, result_type
, inner
);
6709 /* Check whether we are allowed to reorder operands arg0 and arg1,
6710 such that the evaluation of arg1 occurs before arg0. */
6713 reorder_operands_p (const_tree arg0
, const_tree arg1
)
6715 if (! flag_evaluation_order
)
6717 if (TREE_CONSTANT (arg0
) || TREE_CONSTANT (arg1
))
6719 return ! TREE_SIDE_EFFECTS (arg0
)
6720 && ! TREE_SIDE_EFFECTS (arg1
);
6723 /* Test whether it is preferable two swap two operands, ARG0 and
6724 ARG1, for example because ARG0 is an integer constant and ARG1
6725 isn't. If REORDER is true, only recommend swapping if we can
6726 evaluate the operands in reverse order. */
6729 tree_swap_operands_p (const_tree arg0
, const_tree arg1
, bool reorder
)
6731 STRIP_SIGN_NOPS (arg0
);
6732 STRIP_SIGN_NOPS (arg1
);
6734 if (TREE_CODE (arg1
) == INTEGER_CST
)
6736 if (TREE_CODE (arg0
) == INTEGER_CST
)
6739 if (TREE_CODE (arg1
) == REAL_CST
)
6741 if (TREE_CODE (arg0
) == REAL_CST
)
6744 if (TREE_CODE (arg1
) == FIXED_CST
)
6746 if (TREE_CODE (arg0
) == FIXED_CST
)
6749 if (TREE_CODE (arg1
) == COMPLEX_CST
)
6751 if (TREE_CODE (arg0
) == COMPLEX_CST
)
6754 if (TREE_CONSTANT (arg1
))
6756 if (TREE_CONSTANT (arg0
))
6759 if (optimize_function_for_size_p (cfun
))
6762 if (reorder
&& flag_evaluation_order
6763 && (TREE_SIDE_EFFECTS (arg0
) || TREE_SIDE_EFFECTS (arg1
)))
6766 /* It is preferable to swap two SSA_NAME to ensure a canonical form
6767 for commutative and comparison operators. Ensuring a canonical
6768 form allows the optimizers to find additional redundancies without
6769 having to explicitly check for both orderings. */
6770 if (TREE_CODE (arg0
) == SSA_NAME
6771 && TREE_CODE (arg1
) == SSA_NAME
6772 && SSA_NAME_VERSION (arg0
) > SSA_NAME_VERSION (arg1
))
6775 /* Put SSA_NAMEs last. */
6776 if (TREE_CODE (arg1
) == SSA_NAME
)
6778 if (TREE_CODE (arg0
) == SSA_NAME
)
6781 /* Put variables last. */
6790 /* Fold comparison ARG0 CODE ARG1 (with result in TYPE), where
6791 ARG0 is extended to a wider type. */
6794 fold_widened_comparison (location_t loc
, enum tree_code code
,
6795 tree type
, tree arg0
, tree arg1
)
6797 tree arg0_unw
= get_unwidened (arg0
, NULL_TREE
);
6799 tree shorter_type
, outer_type
;
6803 if (arg0_unw
== arg0
)
6805 shorter_type
= TREE_TYPE (arg0_unw
);
6807 #ifdef HAVE_canonicalize_funcptr_for_compare
6808 /* Disable this optimization if we're casting a function pointer
6809 type on targets that require function pointer canonicalization. */
6810 if (HAVE_canonicalize_funcptr_for_compare
6811 && TREE_CODE (shorter_type
) == POINTER_TYPE
6812 && TREE_CODE (TREE_TYPE (shorter_type
)) == FUNCTION_TYPE
)
6816 if (TYPE_PRECISION (TREE_TYPE (arg0
)) <= TYPE_PRECISION (shorter_type
))
6819 arg1_unw
= get_unwidened (arg1
, NULL_TREE
);
6821 /* If possible, express the comparison in the shorter mode. */
6822 if ((code
== EQ_EXPR
|| code
== NE_EXPR
6823 || TYPE_UNSIGNED (TREE_TYPE (arg0
)) == TYPE_UNSIGNED (shorter_type
))
6824 && (TREE_TYPE (arg1_unw
) == shorter_type
6825 || ((TYPE_PRECISION (shorter_type
)
6826 >= TYPE_PRECISION (TREE_TYPE (arg1_unw
)))
6827 && (TYPE_UNSIGNED (shorter_type
)
6828 == TYPE_UNSIGNED (TREE_TYPE (arg1_unw
))))
6829 || (TREE_CODE (arg1_unw
) == INTEGER_CST
6830 && (TREE_CODE (shorter_type
) == INTEGER_TYPE
6831 || TREE_CODE (shorter_type
) == BOOLEAN_TYPE
)
6832 && int_fits_type_p (arg1_unw
, shorter_type
))))
6833 return fold_build2_loc (loc
, code
, type
, arg0_unw
,
6834 fold_convert_loc (loc
, shorter_type
, arg1_unw
));
6836 if (TREE_CODE (arg1_unw
) != INTEGER_CST
6837 || TREE_CODE (shorter_type
) != INTEGER_TYPE
6838 || !int_fits_type_p (arg1_unw
, shorter_type
))
6841 /* If we are comparing with the integer that does not fit into the range
6842 of the shorter type, the result is known. */
6843 outer_type
= TREE_TYPE (arg1_unw
);
6844 min
= lower_bound_in_type (outer_type
, shorter_type
);
6845 max
= upper_bound_in_type (outer_type
, shorter_type
);
6847 above
= integer_nonzerop (fold_relational_const (LT_EXPR
, type
,
6849 below
= integer_nonzerop (fold_relational_const (LT_EXPR
, type
,
6856 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
6861 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg0
);
6867 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg0
);
6869 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
6874 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
6876 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg0
);
6885 /* Fold comparison ARG0 CODE ARG1 (with result in TYPE), where for
6886 ARG0 just the signedness is changed. */
6889 fold_sign_changed_comparison (location_t loc
, enum tree_code code
, tree type
,
6890 tree arg0
, tree arg1
)
6893 tree inner_type
, outer_type
;
6895 if (!CONVERT_EXPR_P (arg0
))
6898 outer_type
= TREE_TYPE (arg0
);
6899 arg0_inner
= TREE_OPERAND (arg0
, 0);
6900 inner_type
= TREE_TYPE (arg0_inner
);
6902 #ifdef HAVE_canonicalize_funcptr_for_compare
6903 /* Disable this optimization if we're casting a function pointer
6904 type on targets that require function pointer canonicalization. */
6905 if (HAVE_canonicalize_funcptr_for_compare
6906 && TREE_CODE (inner_type
) == POINTER_TYPE
6907 && TREE_CODE (TREE_TYPE (inner_type
)) == FUNCTION_TYPE
)
6911 if (TYPE_PRECISION (inner_type
) != TYPE_PRECISION (outer_type
))
6914 if (TREE_CODE (arg1
) != INTEGER_CST
6915 && !(CONVERT_EXPR_P (arg1
)
6916 && TREE_TYPE (TREE_OPERAND (arg1
, 0)) == inner_type
))
6919 if (TYPE_UNSIGNED (inner_type
) != TYPE_UNSIGNED (outer_type
)
6924 if (POINTER_TYPE_P (inner_type
) != POINTER_TYPE_P (outer_type
))
6927 if (TREE_CODE (arg1
) == INTEGER_CST
)
6928 arg1
= force_fit_type_double (inner_type
, tree_to_double_int (arg1
),
6929 0, TREE_OVERFLOW (arg1
));
6931 arg1
= fold_convert_loc (loc
, inner_type
, arg1
);
6933 return fold_build2_loc (loc
, code
, type
, arg0_inner
, arg1
);
6936 /* Tries to replace &a[idx] p+ s * delta with &a[idx + delta], if s is
6937 step of the array. Reconstructs s and delta in the case of s *
6938 delta being an integer constant (and thus already folded). ADDR is
6939 the address. MULT is the multiplicative expression. If the
6940 function succeeds, the new address expression is returned.
6941 Otherwise NULL_TREE is returned. LOC is the location of the
6942 resulting expression. */
6945 try_move_mult_to_index (location_t loc
, tree addr
, tree op1
)
6947 tree s
, delta
, step
;
6948 tree ref
= TREE_OPERAND (addr
, 0), pref
;
6953 /* Strip the nops that might be added when converting op1 to sizetype. */
6956 /* Canonicalize op1 into a possibly non-constant delta
6957 and an INTEGER_CST s. */
6958 if (TREE_CODE (op1
) == MULT_EXPR
)
6960 tree arg0
= TREE_OPERAND (op1
, 0), arg1
= TREE_OPERAND (op1
, 1);
6965 if (TREE_CODE (arg0
) == INTEGER_CST
)
6970 else if (TREE_CODE (arg1
) == INTEGER_CST
)
6978 else if (TREE_CODE (op1
) == INTEGER_CST
)
6985 /* Simulate we are delta * 1. */
6987 s
= integer_one_node
;
6990 /* Handle &x.array the same as we would handle &x.array[0]. */
6991 if (TREE_CODE (ref
) == COMPONENT_REF
6992 && TREE_CODE (TREE_TYPE (ref
)) == ARRAY_TYPE
)
6996 /* Remember if this was a multi-dimensional array. */
6997 if (TREE_CODE (TREE_OPERAND (ref
, 0)) == ARRAY_REF
)
7000 domain
= TYPE_DOMAIN (TREE_TYPE (ref
));
7003 itype
= TREE_TYPE (domain
);
7005 step
= TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (ref
)));
7006 if (TREE_CODE (step
) != INTEGER_CST
)
7011 if (! tree_int_cst_equal (step
, s
))
7016 /* Try if delta is a multiple of step. */
7017 tree tmp
= div_if_zero_remainder (EXACT_DIV_EXPR
, op1
, step
);
7023 /* Only fold here if we can verify we do not overflow one
7024 dimension of a multi-dimensional array. */
7029 if (!TYPE_MIN_VALUE (domain
)
7030 || !TYPE_MAX_VALUE (domain
)
7031 || TREE_CODE (TYPE_MAX_VALUE (domain
)) != INTEGER_CST
)
7034 tmp
= fold_binary_loc (loc
, PLUS_EXPR
, itype
,
7035 fold_convert_loc (loc
, itype
,
7036 TYPE_MIN_VALUE (domain
)),
7037 fold_convert_loc (loc
, itype
, delta
));
7038 if (TREE_CODE (tmp
) != INTEGER_CST
7039 || tree_int_cst_lt (TYPE_MAX_VALUE (domain
), tmp
))
7043 /* We found a suitable component reference. */
7045 pref
= TREE_OPERAND (addr
, 0);
7046 ret
= copy_node (pref
);
7047 SET_EXPR_LOCATION (ret
, loc
);
7049 ret
= build4_loc (loc
, ARRAY_REF
, TREE_TYPE (TREE_TYPE (ref
)), ret
,
7051 (loc
, PLUS_EXPR
, itype
,
7052 fold_convert_loc (loc
, itype
,
7054 (TYPE_DOMAIN (TREE_TYPE (ref
)))),
7055 fold_convert_loc (loc
, itype
, delta
)),
7056 NULL_TREE
, NULL_TREE
);
7057 return build_fold_addr_expr_loc (loc
, ret
);
7062 for (;; ref
= TREE_OPERAND (ref
, 0))
7064 if (TREE_CODE (ref
) == ARRAY_REF
)
7068 /* Remember if this was a multi-dimensional array. */
7069 if (TREE_CODE (TREE_OPERAND (ref
, 0)) == ARRAY_REF
)
7072 domain
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (ref
, 0)));
7075 itype
= TREE_TYPE (domain
);
7077 step
= array_ref_element_size (ref
);
7078 if (TREE_CODE (step
) != INTEGER_CST
)
7083 if (! tree_int_cst_equal (step
, s
))
7088 /* Try if delta is a multiple of step. */
7089 tree tmp
= div_if_zero_remainder (EXACT_DIV_EXPR
, op1
, step
);
7095 /* Only fold here if we can verify we do not overflow one
7096 dimension of a multi-dimensional array. */
7101 if (TREE_CODE (TREE_OPERAND (ref
, 1)) != INTEGER_CST
7102 || !TYPE_MAX_VALUE (domain
)
7103 || TREE_CODE (TYPE_MAX_VALUE (domain
)) != INTEGER_CST
)
7106 tmp
= fold_binary_loc (loc
, PLUS_EXPR
, itype
,
7107 fold_convert_loc (loc
, itype
,
7108 TREE_OPERAND (ref
, 1)),
7109 fold_convert_loc (loc
, itype
, delta
));
7111 || TREE_CODE (tmp
) != INTEGER_CST
7112 || tree_int_cst_lt (TYPE_MAX_VALUE (domain
), tmp
))
7121 if (!handled_component_p (ref
))
7125 /* We found the suitable array reference. So copy everything up to it,
7126 and replace the index. */
7128 pref
= TREE_OPERAND (addr
, 0);
7129 ret
= copy_node (pref
);
7130 SET_EXPR_LOCATION (ret
, loc
);
7135 pref
= TREE_OPERAND (pref
, 0);
7136 TREE_OPERAND (pos
, 0) = copy_node (pref
);
7137 pos
= TREE_OPERAND (pos
, 0);
7140 TREE_OPERAND (pos
, 1)
7141 = fold_build2_loc (loc
, PLUS_EXPR
, itype
,
7142 fold_convert_loc (loc
, itype
, TREE_OPERAND (pos
, 1)),
7143 fold_convert_loc (loc
, itype
, delta
));
7144 return fold_build1_loc (loc
, ADDR_EXPR
, TREE_TYPE (addr
), ret
);
7148 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
7149 means A >= Y && A != MAX, but in this case we know that
7150 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
7153 fold_to_nonsharp_ineq_using_bound (location_t loc
, tree ineq
, tree bound
)
7155 tree a
, typea
, type
= TREE_TYPE (ineq
), a1
, diff
, y
;
7157 if (TREE_CODE (bound
) == LT_EXPR
)
7158 a
= TREE_OPERAND (bound
, 0);
7159 else if (TREE_CODE (bound
) == GT_EXPR
)
7160 a
= TREE_OPERAND (bound
, 1);
7164 typea
= TREE_TYPE (a
);
7165 if (!INTEGRAL_TYPE_P (typea
)
7166 && !POINTER_TYPE_P (typea
))
7169 if (TREE_CODE (ineq
) == LT_EXPR
)
7171 a1
= TREE_OPERAND (ineq
, 1);
7172 y
= TREE_OPERAND (ineq
, 0);
7174 else if (TREE_CODE (ineq
) == GT_EXPR
)
7176 a1
= TREE_OPERAND (ineq
, 0);
7177 y
= TREE_OPERAND (ineq
, 1);
7182 if (TREE_TYPE (a1
) != typea
)
7185 if (POINTER_TYPE_P (typea
))
7187 /* Convert the pointer types into integer before taking the difference. */
7188 tree ta
= fold_convert_loc (loc
, ssizetype
, a
);
7189 tree ta1
= fold_convert_loc (loc
, ssizetype
, a1
);
7190 diff
= fold_binary_loc (loc
, MINUS_EXPR
, ssizetype
, ta1
, ta
);
7193 diff
= fold_binary_loc (loc
, MINUS_EXPR
, typea
, a1
, a
);
7195 if (!diff
|| !integer_onep (diff
))
7198 return fold_build2_loc (loc
, GE_EXPR
, type
, a
, y
);
7201 /* Fold a sum or difference of at least one multiplication.
7202 Returns the folded tree or NULL if no simplification could be made. */
7205 fold_plusminus_mult_expr (location_t loc
, enum tree_code code
, tree type
,
7206 tree arg0
, tree arg1
)
7208 tree arg00
, arg01
, arg10
, arg11
;
7209 tree alt0
= NULL_TREE
, alt1
= NULL_TREE
, same
;
7211 /* (A * C) +- (B * C) -> (A+-B) * C.
7212 (A * C) +- A -> A * (C+-1).
7213 We are most concerned about the case where C is a constant,
7214 but other combinations show up during loop reduction. Since
7215 it is not difficult, try all four possibilities. */
7217 if (TREE_CODE (arg0
) == MULT_EXPR
)
7219 arg00
= TREE_OPERAND (arg0
, 0);
7220 arg01
= TREE_OPERAND (arg0
, 1);
7222 else if (TREE_CODE (arg0
) == INTEGER_CST
)
7224 arg00
= build_one_cst (type
);
7229 /* We cannot generate constant 1 for fract. */
7230 if (ALL_FRACT_MODE_P (TYPE_MODE (type
)))
7233 arg01
= build_one_cst (type
);
7235 if (TREE_CODE (arg1
) == MULT_EXPR
)
7237 arg10
= TREE_OPERAND (arg1
, 0);
7238 arg11
= TREE_OPERAND (arg1
, 1);
7240 else if (TREE_CODE (arg1
) == INTEGER_CST
)
7242 arg10
= build_one_cst (type
);
7243 /* As we canonicalize A - 2 to A + -2 get rid of that sign for
7244 the purpose of this canonicalization. */
7245 if (TREE_INT_CST_HIGH (arg1
) == -1
7246 && negate_expr_p (arg1
)
7247 && code
== PLUS_EXPR
)
7249 arg11
= negate_expr (arg1
);
7257 /* We cannot generate constant 1 for fract. */
7258 if (ALL_FRACT_MODE_P (TYPE_MODE (type
)))
7261 arg11
= build_one_cst (type
);
7265 if (operand_equal_p (arg01
, arg11
, 0))
7266 same
= arg01
, alt0
= arg00
, alt1
= arg10
;
7267 else if (operand_equal_p (arg00
, arg10
, 0))
7268 same
= arg00
, alt0
= arg01
, alt1
= arg11
;
7269 else if (operand_equal_p (arg00
, arg11
, 0))
7270 same
= arg00
, alt0
= arg01
, alt1
= arg10
;
7271 else if (operand_equal_p (arg01
, arg10
, 0))
7272 same
= arg01
, alt0
= arg00
, alt1
= arg11
;
7274 /* No identical multiplicands; see if we can find a common
7275 power-of-two factor in non-power-of-two multiplies. This
7276 can help in multi-dimensional array access. */
7277 else if (tree_fits_shwi_p (arg01
)
7278 && tree_fits_shwi_p (arg11
))
7280 HOST_WIDE_INT int01
, int11
, tmp
;
7283 int01
= tree_to_shwi (arg01
);
7284 int11
= tree_to_shwi (arg11
);
7286 /* Move min of absolute values to int11. */
7287 if (absu_hwi (int01
) < absu_hwi (int11
))
7289 tmp
= int01
, int01
= int11
, int11
= tmp
;
7290 alt0
= arg00
, arg00
= arg10
, arg10
= alt0
;
7297 if (exact_log2 (absu_hwi (int11
)) > 0 && int01
% int11
== 0
7298 /* The remainder should not be a constant, otherwise we
7299 end up folding i * 4 + 2 to (i * 2 + 1) * 2 which has
7300 increased the number of multiplications necessary. */
7301 && TREE_CODE (arg10
) != INTEGER_CST
)
7303 alt0
= fold_build2_loc (loc
, MULT_EXPR
, TREE_TYPE (arg00
), arg00
,
7304 build_int_cst (TREE_TYPE (arg00
),
7309 maybe_same
= alt0
, alt0
= alt1
, alt1
= maybe_same
;
7314 return fold_build2_loc (loc
, MULT_EXPR
, type
,
7315 fold_build2_loc (loc
, code
, type
,
7316 fold_convert_loc (loc
, type
, alt0
),
7317 fold_convert_loc (loc
, type
, alt1
)),
7318 fold_convert_loc (loc
, type
, same
));
7323 /* Subroutine of native_encode_expr. Encode the INTEGER_CST
7324 specified by EXPR into the buffer PTR of length LEN bytes.
7325 Return the number of bytes placed in the buffer, or zero
7329 native_encode_int (const_tree expr
, unsigned char *ptr
, int len
)
7331 tree type
= TREE_TYPE (expr
);
7332 int total_bytes
= GET_MODE_SIZE (TYPE_MODE (type
));
7333 int byte
, offset
, word
, words
;
7334 unsigned char value
;
7336 if (total_bytes
> len
)
7338 words
= total_bytes
/ UNITS_PER_WORD
;
7340 for (byte
= 0; byte
< total_bytes
; byte
++)
7342 int bitpos
= byte
* BITS_PER_UNIT
;
7343 if (bitpos
< HOST_BITS_PER_WIDE_INT
)
7344 value
= (unsigned char) (TREE_INT_CST_LOW (expr
) >> bitpos
);
7346 value
= (unsigned char) (TREE_INT_CST_HIGH (expr
)
7347 >> (bitpos
- HOST_BITS_PER_WIDE_INT
));
7349 if (total_bytes
> UNITS_PER_WORD
)
7351 word
= byte
/ UNITS_PER_WORD
;
7352 if (WORDS_BIG_ENDIAN
)
7353 word
= (words
- 1) - word
;
7354 offset
= word
* UNITS_PER_WORD
;
7355 if (BYTES_BIG_ENDIAN
)
7356 offset
+= (UNITS_PER_WORD
- 1) - (byte
% UNITS_PER_WORD
);
7358 offset
+= byte
% UNITS_PER_WORD
;
7361 offset
= BYTES_BIG_ENDIAN
? (total_bytes
- 1) - byte
: byte
;
7362 ptr
[offset
] = value
;
7368 /* Subroutine of native_encode_expr. Encode the FIXED_CST
7369 specified by EXPR into the buffer PTR of length LEN bytes.
7370 Return the number of bytes placed in the buffer, or zero
7374 native_encode_fixed (const_tree expr
, unsigned char *ptr
, int len
)
7376 tree type
= TREE_TYPE (expr
);
7377 enum machine_mode mode
= TYPE_MODE (type
);
7378 int total_bytes
= GET_MODE_SIZE (mode
);
7379 FIXED_VALUE_TYPE value
;
7380 tree i_value
, i_type
;
7382 if (total_bytes
* BITS_PER_UNIT
> HOST_BITS_PER_DOUBLE_INT
)
7385 i_type
= lang_hooks
.types
.type_for_size (GET_MODE_BITSIZE (mode
), 1);
7387 if (NULL_TREE
== i_type
7388 || TYPE_PRECISION (i_type
) != total_bytes
)
7391 value
= TREE_FIXED_CST (expr
);
7392 i_value
= double_int_to_tree (i_type
, value
.data
);
7394 return native_encode_int (i_value
, ptr
, len
);
7398 /* Subroutine of native_encode_expr. Encode the REAL_CST
7399 specified by EXPR into the buffer PTR of length LEN bytes.
7400 Return the number of bytes placed in the buffer, or zero
7404 native_encode_real (const_tree expr
, unsigned char *ptr
, int len
)
7406 tree type
= TREE_TYPE (expr
);
7407 int total_bytes
= GET_MODE_SIZE (TYPE_MODE (type
));
7408 int byte
, offset
, word
, words
, bitpos
;
7409 unsigned char value
;
7411 /* There are always 32 bits in each long, no matter the size of
7412 the hosts long. We handle floating point representations with
7416 if (total_bytes
> len
)
7418 words
= (32 / BITS_PER_UNIT
) / UNITS_PER_WORD
;
7420 real_to_target (tmp
, TREE_REAL_CST_PTR (expr
), TYPE_MODE (type
));
7422 for (bitpos
= 0; bitpos
< total_bytes
* BITS_PER_UNIT
;
7423 bitpos
+= BITS_PER_UNIT
)
7425 byte
= (bitpos
/ BITS_PER_UNIT
) & 3;
7426 value
= (unsigned char) (tmp
[bitpos
/ 32] >> (bitpos
& 31));
7428 if (UNITS_PER_WORD
< 4)
7430 word
= byte
/ UNITS_PER_WORD
;
7431 if (WORDS_BIG_ENDIAN
)
7432 word
= (words
- 1) - word
;
7433 offset
= word
* UNITS_PER_WORD
;
7434 if (BYTES_BIG_ENDIAN
)
7435 offset
+= (UNITS_PER_WORD
- 1) - (byte
% UNITS_PER_WORD
);
7437 offset
+= byte
% UNITS_PER_WORD
;
7440 offset
= BYTES_BIG_ENDIAN
? 3 - byte
: byte
;
7441 ptr
[offset
+ ((bitpos
/ BITS_PER_UNIT
) & ~3)] = value
;
7446 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST
7447 specified by EXPR into the buffer PTR of length LEN bytes.
7448 Return the number of bytes placed in the buffer, or zero
7452 native_encode_complex (const_tree expr
, unsigned char *ptr
, int len
)
7457 part
= TREE_REALPART (expr
);
7458 rsize
= native_encode_expr (part
, ptr
, len
);
7461 part
= TREE_IMAGPART (expr
);
7462 isize
= native_encode_expr (part
, ptr
+rsize
, len
-rsize
);
7465 return rsize
+ isize
;
7469 /* Subroutine of native_encode_expr. Encode the VECTOR_CST
7470 specified by EXPR into the buffer PTR of length LEN bytes.
7471 Return the number of bytes placed in the buffer, or zero
7475 native_encode_vector (const_tree expr
, unsigned char *ptr
, int len
)
7482 count
= VECTOR_CST_NELTS (expr
);
7483 itype
= TREE_TYPE (TREE_TYPE (expr
));
7484 size
= GET_MODE_SIZE (TYPE_MODE (itype
));
7485 for (i
= 0; i
< count
; i
++)
7487 elem
= VECTOR_CST_ELT (expr
, i
);
7488 if (native_encode_expr (elem
, ptr
+offset
, len
-offset
) != size
)
7496 /* Subroutine of native_encode_expr. Encode the STRING_CST
7497 specified by EXPR into the buffer PTR of length LEN bytes.
7498 Return the number of bytes placed in the buffer, or zero
7502 native_encode_string (const_tree expr
, unsigned char *ptr
, int len
)
7504 tree type
= TREE_TYPE (expr
);
7505 HOST_WIDE_INT total_bytes
;
7507 if (TREE_CODE (type
) != ARRAY_TYPE
7508 || TREE_CODE (TREE_TYPE (type
)) != INTEGER_TYPE
7509 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type
))) != BITS_PER_UNIT
7510 || !tree_fits_shwi_p (TYPE_SIZE_UNIT (type
)))
7512 total_bytes
= tree_to_shwi (TYPE_SIZE_UNIT (type
));
7513 if (total_bytes
> len
)
7515 if (TREE_STRING_LENGTH (expr
) < total_bytes
)
7517 memcpy (ptr
, TREE_STRING_POINTER (expr
), TREE_STRING_LENGTH (expr
));
7518 memset (ptr
+ TREE_STRING_LENGTH (expr
), 0,
7519 total_bytes
- TREE_STRING_LENGTH (expr
));
7522 memcpy (ptr
, TREE_STRING_POINTER (expr
), total_bytes
);
7527 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST,
7528 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the
7529 buffer PTR of length LEN bytes. Return the number of bytes
7530 placed in the buffer, or zero upon failure. */
7533 native_encode_expr (const_tree expr
, unsigned char *ptr
, int len
)
7535 switch (TREE_CODE (expr
))
7538 return native_encode_int (expr
, ptr
, len
);
7541 return native_encode_real (expr
, ptr
, len
);
7544 return native_encode_fixed (expr
, ptr
, len
);
7547 return native_encode_complex (expr
, ptr
, len
);
7550 return native_encode_vector (expr
, ptr
, len
);
7553 return native_encode_string (expr
, ptr
, len
);
7561 /* Subroutine of native_interpret_expr. Interpret the contents of
7562 the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
7563 If the buffer cannot be interpreted, return NULL_TREE. */
7566 native_interpret_int (tree type
, const unsigned char *ptr
, int len
)
7568 int total_bytes
= GET_MODE_SIZE (TYPE_MODE (type
));
7571 if (total_bytes
> len
7572 || total_bytes
* BITS_PER_UNIT
> HOST_BITS_PER_DOUBLE_INT
)
7575 result
= double_int::from_buffer (ptr
, total_bytes
);
7577 return double_int_to_tree (type
, result
);
7581 /* Subroutine of native_interpret_expr. Interpret the contents of
7582 the buffer PTR of length LEN as a FIXED_CST of type TYPE.
7583 If the buffer cannot be interpreted, return NULL_TREE. */
7586 native_interpret_fixed (tree type
, const unsigned char *ptr
, int len
)
7588 int total_bytes
= GET_MODE_SIZE (TYPE_MODE (type
));
7590 FIXED_VALUE_TYPE fixed_value
;
7592 if (total_bytes
> len
7593 || total_bytes
* BITS_PER_UNIT
> HOST_BITS_PER_DOUBLE_INT
)
7596 result
= double_int::from_buffer (ptr
, total_bytes
);
7597 fixed_value
= fixed_from_double_int (result
, TYPE_MODE (type
));
7599 return build_fixed (type
, fixed_value
);
7603 /* Subroutine of native_interpret_expr. Interpret the contents of
7604 the buffer PTR of length LEN as a REAL_CST of type TYPE.
7605 If the buffer cannot be interpreted, return NULL_TREE. */
7608 native_interpret_real (tree type
, const unsigned char *ptr
, int len
)
7610 enum machine_mode mode
= TYPE_MODE (type
);
7611 int total_bytes
= GET_MODE_SIZE (mode
);
7612 int byte
, offset
, word
, words
, bitpos
;
7613 unsigned char value
;
7614 /* There are always 32 bits in each long, no matter the size of
7615 the hosts long. We handle floating point representations with
7620 total_bytes
= GET_MODE_SIZE (TYPE_MODE (type
));
7621 if (total_bytes
> len
|| total_bytes
> 24)
7623 words
= (32 / BITS_PER_UNIT
) / UNITS_PER_WORD
;
7625 memset (tmp
, 0, sizeof (tmp
));
7626 for (bitpos
= 0; bitpos
< total_bytes
* BITS_PER_UNIT
;
7627 bitpos
+= BITS_PER_UNIT
)
7629 byte
= (bitpos
/ BITS_PER_UNIT
) & 3;
7630 if (UNITS_PER_WORD
< 4)
7632 word
= byte
/ UNITS_PER_WORD
;
7633 if (WORDS_BIG_ENDIAN
)
7634 word
= (words
- 1) - word
;
7635 offset
= word
* UNITS_PER_WORD
;
7636 if (BYTES_BIG_ENDIAN
)
7637 offset
+= (UNITS_PER_WORD
- 1) - (byte
% UNITS_PER_WORD
);
7639 offset
+= byte
% UNITS_PER_WORD
;
7642 offset
= BYTES_BIG_ENDIAN
? 3 - byte
: byte
;
7643 value
= ptr
[offset
+ ((bitpos
/ BITS_PER_UNIT
) & ~3)];
7645 tmp
[bitpos
/ 32] |= (unsigned long)value
<< (bitpos
& 31);
7648 real_from_target (&r
, tmp
, mode
);
7649 return build_real (type
, r
);
7653 /* Subroutine of native_interpret_expr. Interpret the contents of
7654 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
7655 If the buffer cannot be interpreted, return NULL_TREE. */
7658 native_interpret_complex (tree type
, const unsigned char *ptr
, int len
)
7660 tree etype
, rpart
, ipart
;
7663 etype
= TREE_TYPE (type
);
7664 size
= GET_MODE_SIZE (TYPE_MODE (etype
));
7667 rpart
= native_interpret_expr (etype
, ptr
, size
);
7670 ipart
= native_interpret_expr (etype
, ptr
+size
, size
);
7673 return build_complex (type
, rpart
, ipart
);
7677 /* Subroutine of native_interpret_expr. Interpret the contents of
7678 the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
7679 If the buffer cannot be interpreted, return NULL_TREE. */
7682 native_interpret_vector (tree type
, const unsigned char *ptr
, int len
)
7688 etype
= TREE_TYPE (type
);
7689 size
= GET_MODE_SIZE (TYPE_MODE (etype
));
7690 count
= TYPE_VECTOR_SUBPARTS (type
);
7691 if (size
* count
> len
)
7694 elements
= XALLOCAVEC (tree
, count
);
7695 for (i
= count
- 1; i
>= 0; i
--)
7697 elem
= native_interpret_expr (etype
, ptr
+(i
*size
), size
);
7702 return build_vector (type
, elements
);
7706 /* Subroutine of fold_view_convert_expr. Interpret the contents of
7707 the buffer PTR of length LEN as a constant of type TYPE. For
7708 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
7709 we return a REAL_CST, etc... If the buffer cannot be interpreted,
7710 return NULL_TREE. */
7713 native_interpret_expr (tree type
, const unsigned char *ptr
, int len
)
7715 switch (TREE_CODE (type
))
7721 case REFERENCE_TYPE
:
7722 return native_interpret_int (type
, ptr
, len
);
7725 return native_interpret_real (type
, ptr
, len
);
7727 case FIXED_POINT_TYPE
:
7728 return native_interpret_fixed (type
, ptr
, len
);
7731 return native_interpret_complex (type
, ptr
, len
);
7734 return native_interpret_vector (type
, ptr
, len
);
7741 /* Returns true if we can interpret the contents of a native encoding
7745 can_native_interpret_type_p (tree type
)
7747 switch (TREE_CODE (type
))
7753 case REFERENCE_TYPE
:
7754 case FIXED_POINT_TYPE
:
7764 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
7765 TYPE at compile-time. If we're unable to perform the conversion
7766 return NULL_TREE. */
7769 fold_view_convert_expr (tree type
, tree expr
)
7771 /* We support up to 512-bit values (for V8DFmode). */
7772 unsigned char buffer
[64];
7775 /* Check that the host and target are sane. */
7776 if (CHAR_BIT
!= 8 || BITS_PER_UNIT
!= 8)
7779 len
= native_encode_expr (expr
, buffer
, sizeof (buffer
));
7783 return native_interpret_expr (type
, buffer
, len
);
7786 /* Build an expression for the address of T. Folds away INDIRECT_REF
7787 to avoid confusing the gimplify process. */
7790 build_fold_addr_expr_with_type_loc (location_t loc
, tree t
, tree ptrtype
)
7792 /* The size of the object is not relevant when talking about its address. */
7793 if (TREE_CODE (t
) == WITH_SIZE_EXPR
)
7794 t
= TREE_OPERAND (t
, 0);
7796 if (TREE_CODE (t
) == INDIRECT_REF
)
7798 t
= TREE_OPERAND (t
, 0);
7800 if (TREE_TYPE (t
) != ptrtype
)
7801 t
= build1_loc (loc
, NOP_EXPR
, ptrtype
, t
);
7803 else if (TREE_CODE (t
) == MEM_REF
7804 && integer_zerop (TREE_OPERAND (t
, 1)))
7805 return TREE_OPERAND (t
, 0);
7806 else if (TREE_CODE (t
) == MEM_REF
7807 && TREE_CODE (TREE_OPERAND (t
, 0)) == INTEGER_CST
)
7808 return fold_binary (POINTER_PLUS_EXPR
, ptrtype
,
7809 TREE_OPERAND (t
, 0),
7810 convert_to_ptrofftype (TREE_OPERAND (t
, 1)));
7811 else if (TREE_CODE (t
) == VIEW_CONVERT_EXPR
)
7813 t
= build_fold_addr_expr_loc (loc
, TREE_OPERAND (t
, 0));
7815 if (TREE_TYPE (t
) != ptrtype
)
7816 t
= fold_convert_loc (loc
, ptrtype
, t
);
7819 t
= build1_loc (loc
, ADDR_EXPR
, ptrtype
, t
);
7824 /* Build an expression for the address of T. */
7827 build_fold_addr_expr_loc (location_t loc
, tree t
)
7829 tree ptrtype
= build_pointer_type (TREE_TYPE (t
));
7831 return build_fold_addr_expr_with_type_loc (loc
, t
, ptrtype
);
7834 static bool vec_cst_ctor_to_array (tree
, tree
*);
7836 /* Fold a unary expression of code CODE and type TYPE with operand
7837 OP0. Return the folded expression if folding is successful.
7838 Otherwise, return NULL_TREE. */
7841 fold_unary_loc (location_t loc
, enum tree_code code
, tree type
, tree op0
)
7845 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
7847 gcc_assert (IS_EXPR_CODE_CLASS (kind
)
7848 && TREE_CODE_LENGTH (code
) == 1);
7853 if (CONVERT_EXPR_CODE_P (code
)
7854 || code
== FLOAT_EXPR
|| code
== ABS_EXPR
|| code
== NEGATE_EXPR
)
7856 /* Don't use STRIP_NOPS, because signedness of argument type
7858 STRIP_SIGN_NOPS (arg0
);
7862 /* Strip any conversions that don't change the mode. This
7863 is safe for every expression, except for a comparison
7864 expression because its signedness is derived from its
7867 Note that this is done as an internal manipulation within
7868 the constant folder, in order to find the simplest
7869 representation of the arguments so that their form can be
7870 studied. In any cases, the appropriate type conversions
7871 should be put back in the tree that will get out of the
7877 if (TREE_CODE_CLASS (code
) == tcc_unary
)
7879 if (TREE_CODE (arg0
) == COMPOUND_EXPR
)
7880 return build2 (COMPOUND_EXPR
, type
, TREE_OPERAND (arg0
, 0),
7881 fold_build1_loc (loc
, code
, type
,
7882 fold_convert_loc (loc
, TREE_TYPE (op0
),
7883 TREE_OPERAND (arg0
, 1))));
7884 else if (TREE_CODE (arg0
) == COND_EXPR
)
7886 tree arg01
= TREE_OPERAND (arg0
, 1);
7887 tree arg02
= TREE_OPERAND (arg0
, 2);
7888 if (! VOID_TYPE_P (TREE_TYPE (arg01
)))
7889 arg01
= fold_build1_loc (loc
, code
, type
,
7890 fold_convert_loc (loc
,
7891 TREE_TYPE (op0
), arg01
));
7892 if (! VOID_TYPE_P (TREE_TYPE (arg02
)))
7893 arg02
= fold_build1_loc (loc
, code
, type
,
7894 fold_convert_loc (loc
,
7895 TREE_TYPE (op0
), arg02
));
7896 tem
= fold_build3_loc (loc
, COND_EXPR
, type
, TREE_OPERAND (arg0
, 0),
7899 /* If this was a conversion, and all we did was to move into
7900 inside the COND_EXPR, bring it back out. But leave it if
7901 it is a conversion from integer to integer and the
7902 result precision is no wider than a word since such a
7903 conversion is cheap and may be optimized away by combine,
7904 while it couldn't if it were outside the COND_EXPR. Then return
7905 so we don't get into an infinite recursion loop taking the
7906 conversion out and then back in. */
7908 if ((CONVERT_EXPR_CODE_P (code
)
7909 || code
== NON_LVALUE_EXPR
)
7910 && TREE_CODE (tem
) == COND_EXPR
7911 && TREE_CODE (TREE_OPERAND (tem
, 1)) == code
7912 && TREE_CODE (TREE_OPERAND (tem
, 2)) == code
7913 && ! VOID_TYPE_P (TREE_OPERAND (tem
, 1))
7914 && ! VOID_TYPE_P (TREE_OPERAND (tem
, 2))
7915 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem
, 1), 0))
7916 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem
, 2), 0)))
7917 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem
))
7919 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem
, 1), 0))))
7920 && TYPE_PRECISION (TREE_TYPE (tem
)) <= BITS_PER_WORD
)
7921 || flag_syntax_only
))
7922 tem
= build1_loc (loc
, code
, type
,
7924 TREE_TYPE (TREE_OPERAND
7925 (TREE_OPERAND (tem
, 1), 0)),
7926 TREE_OPERAND (tem
, 0),
7927 TREE_OPERAND (TREE_OPERAND (tem
, 1), 0),
7928 TREE_OPERAND (TREE_OPERAND (tem
, 2),
7937 /* Re-association barriers around constants and other re-association
7938 barriers can be removed. */
7939 if (CONSTANT_CLASS_P (op0
)
7940 || TREE_CODE (op0
) == PAREN_EXPR
)
7941 return fold_convert_loc (loc
, type
, op0
);
7946 case FIX_TRUNC_EXPR
:
7947 if (TREE_TYPE (op0
) == type
)
7950 if (COMPARISON_CLASS_P (op0
))
7952 /* If we have (type) (a CMP b) and type is an integral type, return
7953 new expression involving the new type. Canonicalize
7954 (type) (a CMP b) to (a CMP b) ? (type) true : (type) false for
7956 Do not fold the result as that would not simplify further, also
7957 folding again results in recursions. */
7958 if (TREE_CODE (type
) == BOOLEAN_TYPE
)
7959 return build2_loc (loc
, TREE_CODE (op0
), type
,
7960 TREE_OPERAND (op0
, 0),
7961 TREE_OPERAND (op0
, 1));
7962 else if (!INTEGRAL_TYPE_P (type
) && !VOID_TYPE_P (type
)
7963 && TREE_CODE (type
) != VECTOR_TYPE
)
7964 return build3_loc (loc
, COND_EXPR
, type
, op0
,
7965 constant_boolean_node (true, type
),
7966 constant_boolean_node (false, type
));
7969 /* Handle cases of two conversions in a row. */
7970 if (CONVERT_EXPR_P (op0
))
7972 tree inside_type
= TREE_TYPE (TREE_OPERAND (op0
, 0));
7973 tree inter_type
= TREE_TYPE (op0
);
7974 int inside_int
= INTEGRAL_TYPE_P (inside_type
);
7975 int inside_ptr
= POINTER_TYPE_P (inside_type
);
7976 int inside_float
= FLOAT_TYPE_P (inside_type
);
7977 int inside_vec
= TREE_CODE (inside_type
) == VECTOR_TYPE
;
7978 unsigned int inside_prec
= TYPE_PRECISION (inside_type
);
7979 int inside_unsignedp
= TYPE_UNSIGNED (inside_type
);
7980 int inter_int
= INTEGRAL_TYPE_P (inter_type
);
7981 int inter_ptr
= POINTER_TYPE_P (inter_type
);
7982 int inter_float
= FLOAT_TYPE_P (inter_type
);
7983 int inter_vec
= TREE_CODE (inter_type
) == VECTOR_TYPE
;
7984 unsigned int inter_prec
= TYPE_PRECISION (inter_type
);
7985 int inter_unsignedp
= TYPE_UNSIGNED (inter_type
);
7986 int final_int
= INTEGRAL_TYPE_P (type
);
7987 int final_ptr
= POINTER_TYPE_P (type
);
7988 int final_float
= FLOAT_TYPE_P (type
);
7989 int final_vec
= TREE_CODE (type
) == VECTOR_TYPE
;
7990 unsigned int final_prec
= TYPE_PRECISION (type
);
7991 int final_unsignedp
= TYPE_UNSIGNED (type
);
7993 /* In addition to the cases of two conversions in a row
7994 handled below, if we are converting something to its own
7995 type via an object of identical or wider precision, neither
7996 conversion is needed. */
7997 if (TYPE_MAIN_VARIANT (inside_type
) == TYPE_MAIN_VARIANT (type
)
7998 && (((inter_int
|| inter_ptr
) && final_int
)
7999 || (inter_float
&& final_float
))
8000 && inter_prec
>= final_prec
)
8001 return fold_build1_loc (loc
, code
, type
, TREE_OPERAND (op0
, 0));
8003 /* Likewise, if the intermediate and initial types are either both
8004 float or both integer, we don't need the middle conversion if the
8005 former is wider than the latter and doesn't change the signedness
8006 (for integers). Avoid this if the final type is a pointer since
8007 then we sometimes need the middle conversion. Likewise if the
8008 final type has a precision not equal to the size of its mode. */
8009 if (((inter_int
&& inside_int
)
8010 || (inter_float
&& inside_float
)
8011 || (inter_vec
&& inside_vec
))
8012 && inter_prec
>= inside_prec
8013 && (inter_float
|| inter_vec
8014 || inter_unsignedp
== inside_unsignedp
)
8015 && ! (final_prec
!= GET_MODE_PRECISION (TYPE_MODE (type
))
8016 && TYPE_MODE (type
) == TYPE_MODE (inter_type
))
8018 && (! final_vec
|| inter_prec
== inside_prec
))
8019 return fold_build1_loc (loc
, code
, type
, TREE_OPERAND (op0
, 0));
8021 /* If we have a sign-extension of a zero-extended value, we can
8022 replace that by a single zero-extension. Likewise if the
8023 final conversion does not change precision we can drop the
8024 intermediate conversion. */
8025 if (inside_int
&& inter_int
&& final_int
8026 && ((inside_prec
< inter_prec
&& inter_prec
< final_prec
8027 && inside_unsignedp
&& !inter_unsignedp
)
8028 || final_prec
== inter_prec
))
8029 return fold_build1_loc (loc
, code
, type
, TREE_OPERAND (op0
, 0));
8031 /* Two conversions in a row are not needed unless:
8032 - some conversion is floating-point (overstrict for now), or
8033 - some conversion is a vector (overstrict for now), or
8034 - the intermediate type is narrower than both initial and
8036 - the intermediate type and innermost type differ in signedness,
8037 and the outermost type is wider than the intermediate, or
8038 - the initial type is a pointer type and the precisions of the
8039 intermediate and final types differ, or
8040 - the final type is a pointer type and the precisions of the
8041 initial and intermediate types differ. */
8042 if (! inside_float
&& ! inter_float
&& ! final_float
8043 && ! inside_vec
&& ! inter_vec
&& ! final_vec
8044 && (inter_prec
>= inside_prec
|| inter_prec
>= final_prec
)
8045 && ! (inside_int
&& inter_int
8046 && inter_unsignedp
!= inside_unsignedp
8047 && inter_prec
< final_prec
)
8048 && ((inter_unsignedp
&& inter_prec
> inside_prec
)
8049 == (final_unsignedp
&& final_prec
> inter_prec
))
8050 && ! (inside_ptr
&& inter_prec
!= final_prec
)
8051 && ! (final_ptr
&& inside_prec
!= inter_prec
)
8052 && ! (final_prec
!= GET_MODE_PRECISION (TYPE_MODE (type
))
8053 && TYPE_MODE (type
) == TYPE_MODE (inter_type
)))
8054 return fold_build1_loc (loc
, code
, type
, TREE_OPERAND (op0
, 0));
8057 /* Handle (T *)&A.B.C for A being of type T and B and C
8058 living at offset zero. This occurs frequently in
8059 C++ upcasting and then accessing the base. */
8060 if (TREE_CODE (op0
) == ADDR_EXPR
8061 && POINTER_TYPE_P (type
)
8062 && handled_component_p (TREE_OPERAND (op0
, 0)))
8064 HOST_WIDE_INT bitsize
, bitpos
;
8066 enum machine_mode mode
;
8067 int unsignedp
, volatilep
;
8068 tree base
= TREE_OPERAND (op0
, 0);
8069 base
= get_inner_reference (base
, &bitsize
, &bitpos
, &offset
,
8070 &mode
, &unsignedp
, &volatilep
, false);
8071 /* If the reference was to a (constant) zero offset, we can use
8072 the address of the base if it has the same base type
8073 as the result type and the pointer type is unqualified. */
8074 if (! offset
&& bitpos
== 0
8075 && (TYPE_MAIN_VARIANT (TREE_TYPE (type
))
8076 == TYPE_MAIN_VARIANT (TREE_TYPE (base
)))
8077 && TYPE_QUALS (type
) == TYPE_UNQUALIFIED
)
8078 return fold_convert_loc (loc
, type
,
8079 build_fold_addr_expr_loc (loc
, base
));
8082 if (TREE_CODE (op0
) == MODIFY_EXPR
8083 && TREE_CONSTANT (TREE_OPERAND (op0
, 1))
8084 /* Detect assigning a bitfield. */
8085 && !(TREE_CODE (TREE_OPERAND (op0
, 0)) == COMPONENT_REF
8087 (TREE_OPERAND (TREE_OPERAND (op0
, 0), 1))))
8089 /* Don't leave an assignment inside a conversion
8090 unless assigning a bitfield. */
8091 tem
= fold_build1_loc (loc
, code
, type
, TREE_OPERAND (op0
, 1));
8092 /* First do the assignment, then return converted constant. */
8093 tem
= build2_loc (loc
, COMPOUND_EXPR
, TREE_TYPE (tem
), op0
, tem
);
8094 TREE_NO_WARNING (tem
) = 1;
8095 TREE_USED (tem
) = 1;
8099 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
8100 constants (if x has signed type, the sign bit cannot be set
8101 in c). This folds extension into the BIT_AND_EXPR.
8102 ??? We don't do it for BOOLEAN_TYPE or ENUMERAL_TYPE because they
8103 very likely don't have maximal range for their precision and this
8104 transformation effectively doesn't preserve non-maximal ranges. */
8105 if (TREE_CODE (type
) == INTEGER_TYPE
8106 && TREE_CODE (op0
) == BIT_AND_EXPR
8107 && TREE_CODE (TREE_OPERAND (op0
, 1)) == INTEGER_CST
)
8109 tree and_expr
= op0
;
8110 tree and0
= TREE_OPERAND (and_expr
, 0);
8111 tree and1
= TREE_OPERAND (and_expr
, 1);
8114 if (TYPE_UNSIGNED (TREE_TYPE (and_expr
))
8115 || (TYPE_PRECISION (type
)
8116 <= TYPE_PRECISION (TREE_TYPE (and_expr
))))
8118 else if (TYPE_PRECISION (TREE_TYPE (and1
))
8119 <= HOST_BITS_PER_WIDE_INT
8120 && tree_fits_uhwi_p (and1
))
8122 unsigned HOST_WIDE_INT cst
;
8124 cst
= tree_to_uhwi (and1
);
8125 cst
&= HOST_WIDE_INT_M1U
8126 << (TYPE_PRECISION (TREE_TYPE (and1
)) - 1);
8127 change
= (cst
== 0);
8128 #ifdef LOAD_EXTEND_OP
8130 && !flag_syntax_only
8131 && (LOAD_EXTEND_OP (TYPE_MODE (TREE_TYPE (and0
)))
8134 tree uns
= unsigned_type_for (TREE_TYPE (and0
));
8135 and0
= fold_convert_loc (loc
, uns
, and0
);
8136 and1
= fold_convert_loc (loc
, uns
, and1
);
8142 tem
= force_fit_type_double (type
, tree_to_double_int (and1
),
8143 0, TREE_OVERFLOW (and1
));
8144 return fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
8145 fold_convert_loc (loc
, type
, and0
), tem
);
8149 /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type,
8150 when one of the new casts will fold away. Conservatively we assume
8151 that this happens when X or Y is NOP_EXPR or Y is INTEGER_CST. */
8152 if (POINTER_TYPE_P (type
)
8153 && TREE_CODE (arg0
) == POINTER_PLUS_EXPR
8154 && (!TYPE_RESTRICT (type
) || TYPE_RESTRICT (TREE_TYPE (arg0
)))
8155 && (TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
8156 || TREE_CODE (TREE_OPERAND (arg0
, 0)) == NOP_EXPR
8157 || TREE_CODE (TREE_OPERAND (arg0
, 1)) == NOP_EXPR
))
8159 tree arg00
= TREE_OPERAND (arg0
, 0);
8160 tree arg01
= TREE_OPERAND (arg0
, 1);
8162 return fold_build_pointer_plus_loc
8163 (loc
, fold_convert_loc (loc
, type
, arg00
), arg01
);
8166 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
8167 of the same precision, and X is an integer type not narrower than
8168 types T1 or T2, i.e. the cast (T2)X isn't an extension. */
8169 if (INTEGRAL_TYPE_P (type
)
8170 && TREE_CODE (op0
) == BIT_NOT_EXPR
8171 && INTEGRAL_TYPE_P (TREE_TYPE (op0
))
8172 && CONVERT_EXPR_P (TREE_OPERAND (op0
, 0))
8173 && TYPE_PRECISION (type
) == TYPE_PRECISION (TREE_TYPE (op0
)))
8175 tem
= TREE_OPERAND (TREE_OPERAND (op0
, 0), 0);
8176 if (INTEGRAL_TYPE_P (TREE_TYPE (tem
))
8177 && TYPE_PRECISION (type
) <= TYPE_PRECISION (TREE_TYPE (tem
)))
8178 return fold_build1_loc (loc
, BIT_NOT_EXPR
, type
,
8179 fold_convert_loc (loc
, type
, tem
));
8182 /* Convert (T1)(X * Y) into (T1)X * (T1)Y if T1 is narrower than the
8183 type of X and Y (integer types only). */
8184 if (INTEGRAL_TYPE_P (type
)
8185 && TREE_CODE (op0
) == MULT_EXPR
8186 && INTEGRAL_TYPE_P (TREE_TYPE (op0
))
8187 && TYPE_PRECISION (type
) < TYPE_PRECISION (TREE_TYPE (op0
)))
8189 /* Be careful not to introduce new overflows. */
8191 if (TYPE_OVERFLOW_WRAPS (type
))
8194 mult_type
= unsigned_type_for (type
);
8196 if (TYPE_PRECISION (mult_type
) < TYPE_PRECISION (TREE_TYPE (op0
)))
8198 tem
= fold_build2_loc (loc
, MULT_EXPR
, mult_type
,
8199 fold_convert_loc (loc
, mult_type
,
8200 TREE_OPERAND (op0
, 0)),
8201 fold_convert_loc (loc
, mult_type
,
8202 TREE_OPERAND (op0
, 1)));
8203 return fold_convert_loc (loc
, type
, tem
);
8207 tem
= fold_convert_const (code
, type
, op0
);
8208 return tem
? tem
: NULL_TREE
;
8210 case ADDR_SPACE_CONVERT_EXPR
:
8211 if (integer_zerop (arg0
))
8212 return fold_convert_const (code
, type
, arg0
);
8215 case FIXED_CONVERT_EXPR
:
8216 tem
= fold_convert_const (code
, type
, arg0
);
8217 return tem
? tem
: NULL_TREE
;
8219 case VIEW_CONVERT_EXPR
:
8220 if (TREE_TYPE (op0
) == type
)
8222 if (TREE_CODE (op0
) == VIEW_CONVERT_EXPR
)
8223 return fold_build1_loc (loc
, VIEW_CONVERT_EXPR
,
8224 type
, TREE_OPERAND (op0
, 0));
8225 if (TREE_CODE (op0
) == MEM_REF
)
8226 return fold_build2_loc (loc
, MEM_REF
, type
,
8227 TREE_OPERAND (op0
, 0), TREE_OPERAND (op0
, 1));
8229 /* For integral conversions with the same precision or pointer
8230 conversions use a NOP_EXPR instead. */
8231 if ((INTEGRAL_TYPE_P (type
)
8232 || POINTER_TYPE_P (type
))
8233 && (INTEGRAL_TYPE_P (TREE_TYPE (op0
))
8234 || POINTER_TYPE_P (TREE_TYPE (op0
)))
8235 && TYPE_PRECISION (type
) == TYPE_PRECISION (TREE_TYPE (op0
)))
8236 return fold_convert_loc (loc
, type
, op0
);
8238 /* Strip inner integral conversions that do not change the precision. */
8239 if (CONVERT_EXPR_P (op0
)
8240 && (INTEGRAL_TYPE_P (TREE_TYPE (op0
))
8241 || POINTER_TYPE_P (TREE_TYPE (op0
)))
8242 && (INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (op0
, 0)))
8243 || POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (op0
, 0))))
8244 && (TYPE_PRECISION (TREE_TYPE (op0
))
8245 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op0
, 0)))))
8246 return fold_build1_loc (loc
, VIEW_CONVERT_EXPR
,
8247 type
, TREE_OPERAND (op0
, 0));
8249 return fold_view_convert_expr (type
, op0
);
8252 tem
= fold_negate_expr (loc
, arg0
);
8254 return fold_convert_loc (loc
, type
, tem
);
8258 if (TREE_CODE (arg0
) == INTEGER_CST
|| TREE_CODE (arg0
) == REAL_CST
)
8259 return fold_abs_const (arg0
, type
);
8260 else if (TREE_CODE (arg0
) == NEGATE_EXPR
)
8261 return fold_build1_loc (loc
, ABS_EXPR
, type
, TREE_OPERAND (arg0
, 0));
8262 /* Convert fabs((double)float) into (double)fabsf(float). */
8263 else if (TREE_CODE (arg0
) == NOP_EXPR
8264 && TREE_CODE (type
) == REAL_TYPE
)
8266 tree targ0
= strip_float_extensions (arg0
);
8268 return fold_convert_loc (loc
, type
,
8269 fold_build1_loc (loc
, ABS_EXPR
,
8273 /* ABS_EXPR<ABS_EXPR<x>> = ABS_EXPR<x> even if flag_wrapv is on. */
8274 else if (TREE_CODE (arg0
) == ABS_EXPR
)
8276 else if (tree_expr_nonnegative_p (arg0
))
8279 /* Strip sign ops from argument. */
8280 if (TREE_CODE (type
) == REAL_TYPE
)
8282 tem
= fold_strip_sign_ops (arg0
);
8284 return fold_build1_loc (loc
, ABS_EXPR
, type
,
8285 fold_convert_loc (loc
, type
, tem
));
8290 if (TREE_CODE (TREE_TYPE (arg0
)) != COMPLEX_TYPE
)
8291 return fold_convert_loc (loc
, type
, arg0
);
8292 if (TREE_CODE (arg0
) == COMPLEX_EXPR
)
8294 tree itype
= TREE_TYPE (type
);
8295 tree rpart
= fold_convert_loc (loc
, itype
, TREE_OPERAND (arg0
, 0));
8296 tree ipart
= fold_convert_loc (loc
, itype
, TREE_OPERAND (arg0
, 1));
8297 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rpart
,
8298 negate_expr (ipart
));
8300 if (TREE_CODE (arg0
) == COMPLEX_CST
)
8302 tree itype
= TREE_TYPE (type
);
8303 tree rpart
= fold_convert_loc (loc
, itype
, TREE_REALPART (arg0
));
8304 tree ipart
= fold_convert_loc (loc
, itype
, TREE_IMAGPART (arg0
));
8305 return build_complex (type
, rpart
, negate_expr (ipart
));
8307 if (TREE_CODE (arg0
) == CONJ_EXPR
)
8308 return fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
8312 if (TREE_CODE (arg0
) == INTEGER_CST
)
8313 return fold_not_const (arg0
, type
);
8314 else if (TREE_CODE (arg0
) == BIT_NOT_EXPR
)
8315 return fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
8316 /* Convert ~ (-A) to A - 1. */
8317 else if (INTEGRAL_TYPE_P (type
) && TREE_CODE (arg0
) == NEGATE_EXPR
)
8318 return fold_build2_loc (loc
, MINUS_EXPR
, type
,
8319 fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0)),
8320 build_int_cst (type
, 1));
8321 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
8322 else if (INTEGRAL_TYPE_P (type
)
8323 && ((TREE_CODE (arg0
) == MINUS_EXPR
8324 && integer_onep (TREE_OPERAND (arg0
, 1)))
8325 || (TREE_CODE (arg0
) == PLUS_EXPR
8326 && integer_all_onesp (TREE_OPERAND (arg0
, 1)))))
8327 return fold_build1_loc (loc
, NEGATE_EXPR
, type
,
8328 fold_convert_loc (loc
, type
,
8329 TREE_OPERAND (arg0
, 0)));
8330 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
8331 else if (TREE_CODE (arg0
) == BIT_XOR_EXPR
8332 && (tem
= fold_unary_loc (loc
, BIT_NOT_EXPR
, type
,
8333 fold_convert_loc (loc
, type
,
8334 TREE_OPERAND (arg0
, 0)))))
8335 return fold_build2_loc (loc
, BIT_XOR_EXPR
, type
, tem
,
8336 fold_convert_loc (loc
, type
,
8337 TREE_OPERAND (arg0
, 1)));
8338 else if (TREE_CODE (arg0
) == BIT_XOR_EXPR
8339 && (tem
= fold_unary_loc (loc
, BIT_NOT_EXPR
, type
,
8340 fold_convert_loc (loc
, type
,
8341 TREE_OPERAND (arg0
, 1)))))
8342 return fold_build2_loc (loc
, BIT_XOR_EXPR
, type
,
8343 fold_convert_loc (loc
, type
,
8344 TREE_OPERAND (arg0
, 0)), tem
);
8345 /* Perform BIT_NOT_EXPR on each element individually. */
8346 else if (TREE_CODE (arg0
) == VECTOR_CST
)
8350 unsigned count
= VECTOR_CST_NELTS (arg0
), i
;
8352 elements
= XALLOCAVEC (tree
, count
);
8353 for (i
= 0; i
< count
; i
++)
8355 elem
= VECTOR_CST_ELT (arg0
, i
);
8356 elem
= fold_unary_loc (loc
, BIT_NOT_EXPR
, TREE_TYPE (type
), elem
);
8357 if (elem
== NULL_TREE
)
8362 return build_vector (type
, elements
);
8364 else if (COMPARISON_CLASS_P (arg0
)
8365 && (VECTOR_TYPE_P (type
)
8366 || (INTEGRAL_TYPE_P (type
) && TYPE_PRECISION (type
) == 1)))
8368 tree op_type
= TREE_TYPE (TREE_OPERAND (arg0
, 0));
8369 enum tree_code subcode
= invert_tree_comparison (TREE_CODE (arg0
),
8370 HONOR_NANS (TYPE_MODE (op_type
)));
8371 if (subcode
!= ERROR_MARK
)
8372 return build2_loc (loc
, subcode
, type
, TREE_OPERAND (arg0
, 0),
8373 TREE_OPERAND (arg0
, 1));
8379 case TRUTH_NOT_EXPR
:
8380 /* Note that the operand of this must be an int
8381 and its values must be 0 or 1.
8382 ("true" is a fixed value perhaps depending on the language,
8383 but we don't handle values other than 1 correctly yet.) */
8384 tem
= fold_truth_not_expr (loc
, arg0
);
8387 return fold_convert_loc (loc
, type
, tem
);
8390 if (TREE_CODE (TREE_TYPE (arg0
)) != COMPLEX_TYPE
)
8391 return fold_convert_loc (loc
, type
, arg0
);
8392 if (TREE_CODE (arg0
) == COMPLEX_EXPR
)
8393 return omit_one_operand_loc (loc
, type
, TREE_OPERAND (arg0
, 0),
8394 TREE_OPERAND (arg0
, 1));
8395 if (TREE_CODE (arg0
) == COMPLEX_CST
)
8396 return fold_convert_loc (loc
, type
, TREE_REALPART (arg0
));
8397 if (TREE_CODE (arg0
) == PLUS_EXPR
|| TREE_CODE (arg0
) == MINUS_EXPR
)
8399 tree itype
= TREE_TYPE (TREE_TYPE (arg0
));
8400 tem
= fold_build2_loc (loc
, TREE_CODE (arg0
), itype
,
8401 fold_build1_loc (loc
, REALPART_EXPR
, itype
,
8402 TREE_OPERAND (arg0
, 0)),
8403 fold_build1_loc (loc
, REALPART_EXPR
, itype
,
8404 TREE_OPERAND (arg0
, 1)));
8405 return fold_convert_loc (loc
, type
, tem
);
8407 if (TREE_CODE (arg0
) == CONJ_EXPR
)
8409 tree itype
= TREE_TYPE (TREE_TYPE (arg0
));
8410 tem
= fold_build1_loc (loc
, REALPART_EXPR
, itype
,
8411 TREE_OPERAND (arg0
, 0));
8412 return fold_convert_loc (loc
, type
, tem
);
8414 if (TREE_CODE (arg0
) == CALL_EXPR
)
8416 tree fn
= get_callee_fndecl (arg0
);
8417 if (fn
&& DECL_BUILT_IN_CLASS (fn
) == BUILT_IN_NORMAL
)
8418 switch (DECL_FUNCTION_CODE (fn
))
8420 CASE_FLT_FN (BUILT_IN_CEXPI
):
8421 fn
= mathfn_built_in (type
, BUILT_IN_COS
);
8423 return build_call_expr_loc (loc
, fn
, 1, CALL_EXPR_ARG (arg0
, 0));
8433 if (TREE_CODE (TREE_TYPE (arg0
)) != COMPLEX_TYPE
)
8434 return build_zero_cst (type
);
8435 if (TREE_CODE (arg0
) == COMPLEX_EXPR
)
8436 return omit_one_operand_loc (loc
, type
, TREE_OPERAND (arg0
, 1),
8437 TREE_OPERAND (arg0
, 0));
8438 if (TREE_CODE (arg0
) == COMPLEX_CST
)
8439 return fold_convert_loc (loc
, type
, TREE_IMAGPART (arg0
));
8440 if (TREE_CODE (arg0
) == PLUS_EXPR
|| TREE_CODE (arg0
) == MINUS_EXPR
)
8442 tree itype
= TREE_TYPE (TREE_TYPE (arg0
));
8443 tem
= fold_build2_loc (loc
, TREE_CODE (arg0
), itype
,
8444 fold_build1_loc (loc
, IMAGPART_EXPR
, itype
,
8445 TREE_OPERAND (arg0
, 0)),
8446 fold_build1_loc (loc
, IMAGPART_EXPR
, itype
,
8447 TREE_OPERAND (arg0
, 1)));
8448 return fold_convert_loc (loc
, type
, tem
);
8450 if (TREE_CODE (arg0
) == CONJ_EXPR
)
8452 tree itype
= TREE_TYPE (TREE_TYPE (arg0
));
8453 tem
= fold_build1_loc (loc
, IMAGPART_EXPR
, itype
, TREE_OPERAND (arg0
, 0));
8454 return fold_convert_loc (loc
, type
, negate_expr (tem
));
8456 if (TREE_CODE (arg0
) == CALL_EXPR
)
8458 tree fn
= get_callee_fndecl (arg0
);
8459 if (fn
&& DECL_BUILT_IN_CLASS (fn
) == BUILT_IN_NORMAL
)
8460 switch (DECL_FUNCTION_CODE (fn
))
8462 CASE_FLT_FN (BUILT_IN_CEXPI
):
8463 fn
= mathfn_built_in (type
, BUILT_IN_SIN
);
8465 return build_call_expr_loc (loc
, fn
, 1, CALL_EXPR_ARG (arg0
, 0));
8475 /* Fold *&X to X if X is an lvalue. */
8476 if (TREE_CODE (op0
) == ADDR_EXPR
)
8478 tree op00
= TREE_OPERAND (op0
, 0);
8479 if ((TREE_CODE (op00
) == VAR_DECL
8480 || TREE_CODE (op00
) == PARM_DECL
8481 || TREE_CODE (op00
) == RESULT_DECL
)
8482 && !TREE_READONLY (op00
))
8487 case VEC_UNPACK_LO_EXPR
:
8488 case VEC_UNPACK_HI_EXPR
:
8489 case VEC_UNPACK_FLOAT_LO_EXPR
:
8490 case VEC_UNPACK_FLOAT_HI_EXPR
:
8492 unsigned int nelts
= TYPE_VECTOR_SUBPARTS (type
), i
;
8494 enum tree_code subcode
;
8496 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0
)) == nelts
* 2);
8497 if (TREE_CODE (arg0
) != VECTOR_CST
)
8500 elts
= XALLOCAVEC (tree
, nelts
* 2);
8501 if (!vec_cst_ctor_to_array (arg0
, elts
))
8504 if ((!BYTES_BIG_ENDIAN
) ^ (code
== VEC_UNPACK_LO_EXPR
8505 || code
== VEC_UNPACK_FLOAT_LO_EXPR
))
8508 if (code
== VEC_UNPACK_LO_EXPR
|| code
== VEC_UNPACK_HI_EXPR
)
8511 subcode
= FLOAT_EXPR
;
8513 for (i
= 0; i
< nelts
; i
++)
8515 elts
[i
] = fold_convert_const (subcode
, TREE_TYPE (type
), elts
[i
]);
8516 if (elts
[i
] == NULL_TREE
|| !CONSTANT_CLASS_P (elts
[i
]))
8520 return build_vector (type
, elts
);
8523 case REDUC_MIN_EXPR
:
8524 case REDUC_MAX_EXPR
:
8525 case REDUC_PLUS_EXPR
:
8527 unsigned int nelts
= TYPE_VECTOR_SUBPARTS (type
), i
;
8529 enum tree_code subcode
;
8531 if (TREE_CODE (op0
) != VECTOR_CST
)
8534 elts
= XALLOCAVEC (tree
, nelts
);
8535 if (!vec_cst_ctor_to_array (op0
, elts
))
8540 case REDUC_MIN_EXPR
: subcode
= MIN_EXPR
; break;
8541 case REDUC_MAX_EXPR
: subcode
= MAX_EXPR
; break;
8542 case REDUC_PLUS_EXPR
: subcode
= PLUS_EXPR
; break;
8543 default: gcc_unreachable ();
8546 for (i
= 1; i
< nelts
; i
++)
8548 elts
[0] = const_binop (subcode
, elts
[0], elts
[i
]);
8549 if (elts
[0] == NULL_TREE
|| !CONSTANT_CLASS_P (elts
[0]))
8551 elts
[i
] = build_zero_cst (TREE_TYPE (type
));
8554 return build_vector (type
, elts
);
8559 } /* switch (code) */
8563 /* If the operation was a conversion do _not_ mark a resulting constant
8564 with TREE_OVERFLOW if the original constant was not. These conversions
8565 have implementation defined behavior and retaining the TREE_OVERFLOW
8566 flag here would confuse later passes such as VRP. */
8568 fold_unary_ignore_overflow_loc (location_t loc
, enum tree_code code
,
8569 tree type
, tree op0
)
8571 tree res
= fold_unary_loc (loc
, code
, type
, op0
);
8573 && TREE_CODE (res
) == INTEGER_CST
8574 && TREE_CODE (op0
) == INTEGER_CST
8575 && CONVERT_EXPR_CODE_P (code
))
8576 TREE_OVERFLOW (res
) = TREE_OVERFLOW (op0
);
8581 /* Fold a binary bitwise/truth expression of code CODE and type TYPE with
8582 operands OP0 and OP1. LOC is the location of the resulting expression.
8583 ARG0 and ARG1 are the NOP_STRIPed results of OP0 and OP1.
8584 Return the folded expression if folding is successful. Otherwise,
8585 return NULL_TREE. */
8587 fold_truth_andor (location_t loc
, enum tree_code code
, tree type
,
8588 tree arg0
, tree arg1
, tree op0
, tree op1
)
8592 /* We only do these simplifications if we are optimizing. */
8596 /* Check for things like (A || B) && (A || C). We can convert this
8597 to A || (B && C). Note that either operator can be any of the four
8598 truth and/or operations and the transformation will still be
8599 valid. Also note that we only care about order for the
8600 ANDIF and ORIF operators. If B contains side effects, this
8601 might change the truth-value of A. */
8602 if (TREE_CODE (arg0
) == TREE_CODE (arg1
)
8603 && (TREE_CODE (arg0
) == TRUTH_ANDIF_EXPR
8604 || TREE_CODE (arg0
) == TRUTH_ORIF_EXPR
8605 || TREE_CODE (arg0
) == TRUTH_AND_EXPR
8606 || TREE_CODE (arg0
) == TRUTH_OR_EXPR
)
8607 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0
, 1)))
8609 tree a00
= TREE_OPERAND (arg0
, 0);
8610 tree a01
= TREE_OPERAND (arg0
, 1);
8611 tree a10
= TREE_OPERAND (arg1
, 0);
8612 tree a11
= TREE_OPERAND (arg1
, 1);
8613 int commutative
= ((TREE_CODE (arg0
) == TRUTH_OR_EXPR
8614 || TREE_CODE (arg0
) == TRUTH_AND_EXPR
)
8615 && (code
== TRUTH_AND_EXPR
8616 || code
== TRUTH_OR_EXPR
));
8618 if (operand_equal_p (a00
, a10
, 0))
8619 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
, a00
,
8620 fold_build2_loc (loc
, code
, type
, a01
, a11
));
8621 else if (commutative
&& operand_equal_p (a00
, a11
, 0))
8622 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
, a00
,
8623 fold_build2_loc (loc
, code
, type
, a01
, a10
));
8624 else if (commutative
&& operand_equal_p (a01
, a10
, 0))
8625 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
, a01
,
8626 fold_build2_loc (loc
, code
, type
, a00
, a11
));
8628 /* This case if tricky because we must either have commutative
8629 operators or else A10 must not have side-effects. */
8631 else if ((commutative
|| ! TREE_SIDE_EFFECTS (a10
))
8632 && operand_equal_p (a01
, a11
, 0))
8633 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
,
8634 fold_build2_loc (loc
, code
, type
, a00
, a10
),
8638 /* See if we can build a range comparison. */
8639 if (0 != (tem
= fold_range_test (loc
, code
, type
, op0
, op1
)))
8642 if ((code
== TRUTH_ANDIF_EXPR
&& TREE_CODE (arg0
) == TRUTH_ORIF_EXPR
)
8643 || (code
== TRUTH_ORIF_EXPR
&& TREE_CODE (arg0
) == TRUTH_ANDIF_EXPR
))
8645 tem
= merge_truthop_with_opposite_arm (loc
, arg0
, arg1
, true);
8647 return fold_build2_loc (loc
, code
, type
, tem
, arg1
);
8650 if ((code
== TRUTH_ANDIF_EXPR
&& TREE_CODE (arg1
) == TRUTH_ORIF_EXPR
)
8651 || (code
== TRUTH_ORIF_EXPR
&& TREE_CODE (arg1
) == TRUTH_ANDIF_EXPR
))
8653 tem
= merge_truthop_with_opposite_arm (loc
, arg1
, arg0
, false);
8655 return fold_build2_loc (loc
, code
, type
, arg0
, tem
);
8658 /* Check for the possibility of merging component references. If our
8659 lhs is another similar operation, try to merge its rhs with our
8660 rhs. Then try to merge our lhs and rhs. */
8661 if (TREE_CODE (arg0
) == code
8662 && 0 != (tem
= fold_truth_andor_1 (loc
, code
, type
,
8663 TREE_OPERAND (arg0
, 1), arg1
)))
8664 return fold_build2_loc (loc
, code
, type
, TREE_OPERAND (arg0
, 0), tem
);
8666 if ((tem
= fold_truth_andor_1 (loc
, code
, type
, arg0
, arg1
)) != 0)
8669 if (LOGICAL_OP_NON_SHORT_CIRCUIT
8670 && (code
== TRUTH_AND_EXPR
8671 || code
== TRUTH_ANDIF_EXPR
8672 || code
== TRUTH_OR_EXPR
8673 || code
== TRUTH_ORIF_EXPR
))
8675 enum tree_code ncode
, icode
;
8677 ncode
= (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_AND_EXPR
)
8678 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
;
8679 icode
= ncode
== TRUTH_AND_EXPR
? TRUTH_ANDIF_EXPR
: TRUTH_ORIF_EXPR
;
8681 /* Transform ((A AND-IF B) AND[-IF] C) into (A AND-IF (B AND C)),
8682 or ((A OR-IF B) OR[-IF] C) into (A OR-IF (B OR C))
8683 We don't want to pack more than two leafs to a non-IF AND/OR
8685 If tree-code of left-hand operand isn't an AND/OR-IF code and not
8686 equal to IF-CODE, then we don't want to add right-hand operand.
8687 If the inner right-hand side of left-hand operand has
8688 side-effects, or isn't simple, then we can't add to it,
8689 as otherwise we might destroy if-sequence. */
8690 if (TREE_CODE (arg0
) == icode
8691 && simple_operand_p_2 (arg1
)
8692 /* Needed for sequence points to handle trappings, and
8694 && simple_operand_p_2 (TREE_OPERAND (arg0
, 1)))
8696 tem
= fold_build2_loc (loc
, ncode
, type
, TREE_OPERAND (arg0
, 1),
8698 return fold_build2_loc (loc
, icode
, type
, TREE_OPERAND (arg0
, 0),
8701 /* Same as abouve but for (A AND[-IF] (B AND-IF C)) -> ((A AND B) AND-IF C),
8702 or (A OR[-IF] (B OR-IF C) -> ((A OR B) OR-IF C). */
8703 else if (TREE_CODE (arg1
) == icode
8704 && simple_operand_p_2 (arg0
)
8705 /* Needed for sequence points to handle trappings, and
8707 && simple_operand_p_2 (TREE_OPERAND (arg1
, 0)))
8709 tem
= fold_build2_loc (loc
, ncode
, type
,
8710 arg0
, TREE_OPERAND (arg1
, 0));
8711 return fold_build2_loc (loc
, icode
, type
, tem
,
8712 TREE_OPERAND (arg1
, 1));
8714 /* Transform (A AND-IF B) into (A AND B), or (A OR-IF B)
8716 For sequence point consistancy, we need to check for trapping,
8717 and side-effects. */
8718 else if (code
== icode
&& simple_operand_p_2 (arg0
)
8719 && simple_operand_p_2 (arg1
))
8720 return fold_build2_loc (loc
, ncode
, type
, arg0
, arg1
);
8726 /* Fold a binary expression of code CODE and type TYPE with operands
8727 OP0 and OP1, containing either a MIN-MAX or a MAX-MIN combination.
8728 Return the folded expression if folding is successful. Otherwise,
8729 return NULL_TREE. */
8732 fold_minmax (location_t loc
, enum tree_code code
, tree type
, tree op0
, tree op1
)
8734 enum tree_code compl_code
;
8736 if (code
== MIN_EXPR
)
8737 compl_code
= MAX_EXPR
;
8738 else if (code
== MAX_EXPR
)
8739 compl_code
= MIN_EXPR
;
8743 /* MIN (MAX (a, b), b) == b. */
8744 if (TREE_CODE (op0
) == compl_code
8745 && operand_equal_p (TREE_OPERAND (op0
, 1), op1
, 0))
8746 return omit_one_operand_loc (loc
, type
, op1
, TREE_OPERAND (op0
, 0));
8748 /* MIN (MAX (b, a), b) == b. */
8749 if (TREE_CODE (op0
) == compl_code
8750 && operand_equal_p (TREE_OPERAND (op0
, 0), op1
, 0)
8751 && reorder_operands_p (TREE_OPERAND (op0
, 1), op1
))
8752 return omit_one_operand_loc (loc
, type
, op1
, TREE_OPERAND (op0
, 1));
8754 /* MIN (a, MAX (a, b)) == a. */
8755 if (TREE_CODE (op1
) == compl_code
8756 && operand_equal_p (op0
, TREE_OPERAND (op1
, 0), 0)
8757 && reorder_operands_p (op0
, TREE_OPERAND (op1
, 1)))
8758 return omit_one_operand_loc (loc
, type
, op0
, TREE_OPERAND (op1
, 1));
8760 /* MIN (a, MAX (b, a)) == a. */
8761 if (TREE_CODE (op1
) == compl_code
8762 && operand_equal_p (op0
, TREE_OPERAND (op1
, 1), 0)
8763 && reorder_operands_p (op0
, TREE_OPERAND (op1
, 0)))
8764 return omit_one_operand_loc (loc
, type
, op0
, TREE_OPERAND (op1
, 0));
8769 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1
8770 by changing CODE to reduce the magnitude of constants involved in
8771 ARG0 of the comparison.
8772 Returns a canonicalized comparison tree if a simplification was
8773 possible, otherwise returns NULL_TREE.
8774 Set *STRICT_OVERFLOW_P to true if the canonicalization is only
8775 valid if signed overflow is undefined. */
8778 maybe_canonicalize_comparison_1 (location_t loc
, enum tree_code code
, tree type
,
8779 tree arg0
, tree arg1
,
8780 bool *strict_overflow_p
)
8782 enum tree_code code0
= TREE_CODE (arg0
);
8783 tree t
, cst0
= NULL_TREE
;
8787 /* Match A +- CST code arg1 and CST code arg1. We can change the
8788 first form only if overflow is undefined. */
8789 if (!((TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0
))
8790 /* In principle pointers also have undefined overflow behavior,
8791 but that causes problems elsewhere. */
8792 && !POINTER_TYPE_P (TREE_TYPE (arg0
))
8793 && (code0
== MINUS_EXPR
8794 || code0
== PLUS_EXPR
)
8795 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
8796 || code0
== INTEGER_CST
))
8799 /* Identify the constant in arg0 and its sign. */
8800 if (code0
== INTEGER_CST
)
8803 cst0
= TREE_OPERAND (arg0
, 1);
8804 sgn0
= tree_int_cst_sgn (cst0
);
8806 /* Overflowed constants and zero will cause problems. */
8807 if (integer_zerop (cst0
)
8808 || TREE_OVERFLOW (cst0
))
8811 /* See if we can reduce the magnitude of the constant in
8812 arg0 by changing the comparison code. */
8813 if (code0
== INTEGER_CST
)
8815 /* CST <= arg1 -> CST-1 < arg1. */
8816 if (code
== LE_EXPR
&& sgn0
== 1)
8818 /* -CST < arg1 -> -CST-1 <= arg1. */
8819 else if (code
== LT_EXPR
&& sgn0
== -1)
8821 /* CST > arg1 -> CST-1 >= arg1. */
8822 else if (code
== GT_EXPR
&& sgn0
== 1)
8824 /* -CST >= arg1 -> -CST-1 > arg1. */
8825 else if (code
== GE_EXPR
&& sgn0
== -1)
8829 /* arg1 code' CST' might be more canonical. */
8834 /* A - CST < arg1 -> A - CST-1 <= arg1. */
8836 && code0
== ((sgn0
== -1) ? PLUS_EXPR
: MINUS_EXPR
))
8838 /* A + CST > arg1 -> A + CST-1 >= arg1. */
8839 else if (code
== GT_EXPR
8840 && code0
== ((sgn0
== -1) ? MINUS_EXPR
: PLUS_EXPR
))
8842 /* A + CST <= arg1 -> A + CST-1 < arg1. */
8843 else if (code
== LE_EXPR
8844 && code0
== ((sgn0
== -1) ? MINUS_EXPR
: PLUS_EXPR
))
8846 /* A - CST >= arg1 -> A - CST-1 > arg1. */
8847 else if (code
== GE_EXPR
8848 && code0
== ((sgn0
== -1) ? PLUS_EXPR
: MINUS_EXPR
))
8852 *strict_overflow_p
= true;
8855 /* Now build the constant reduced in magnitude. But not if that
8856 would produce one outside of its types range. */
8857 if (INTEGRAL_TYPE_P (TREE_TYPE (cst0
))
8859 && TYPE_MIN_VALUE (TREE_TYPE (cst0
))
8860 && tree_int_cst_equal (cst0
, TYPE_MIN_VALUE (TREE_TYPE (cst0
))))
8862 && TYPE_MAX_VALUE (TREE_TYPE (cst0
))
8863 && tree_int_cst_equal (cst0
, TYPE_MAX_VALUE (TREE_TYPE (cst0
))))))
8864 /* We cannot swap the comparison here as that would cause us to
8865 endlessly recurse. */
8868 t
= int_const_binop (sgn0
== -1 ? PLUS_EXPR
: MINUS_EXPR
,
8869 cst0
, build_int_cst (TREE_TYPE (cst0
), 1));
8870 if (code0
!= INTEGER_CST
)
8871 t
= fold_build2_loc (loc
, code0
, TREE_TYPE (arg0
), TREE_OPERAND (arg0
, 0), t
);
8872 t
= fold_convert (TREE_TYPE (arg1
), t
);
8874 /* If swapping might yield to a more canonical form, do so. */
8876 return fold_build2_loc (loc
, swap_tree_comparison (code
), type
, arg1
, t
);
8878 return fold_build2_loc (loc
, code
, type
, t
, arg1
);
8881 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined
8882 overflow further. Try to decrease the magnitude of constants involved
8883 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa
8884 and put sole constants at the second argument position.
8885 Returns the canonicalized tree if changed, otherwise NULL_TREE. */
8888 maybe_canonicalize_comparison (location_t loc
, enum tree_code code
, tree type
,
8889 tree arg0
, tree arg1
)
8892 bool strict_overflow_p
;
8893 const char * const warnmsg
= G_("assuming signed overflow does not occur "
8894 "when reducing constant in comparison");
8896 /* Try canonicalization by simplifying arg0. */
8897 strict_overflow_p
= false;
8898 t
= maybe_canonicalize_comparison_1 (loc
, code
, type
, arg0
, arg1
,
8899 &strict_overflow_p
);
8902 if (strict_overflow_p
)
8903 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_MAGNITUDE
);
8907 /* Try canonicalization by simplifying arg1 using the swapped
8909 code
= swap_tree_comparison (code
);
8910 strict_overflow_p
= false;
8911 t
= maybe_canonicalize_comparison_1 (loc
, code
, type
, arg1
, arg0
,
8912 &strict_overflow_p
);
8913 if (t
&& strict_overflow_p
)
8914 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_MAGNITUDE
);
8918 /* Return whether BASE + OFFSET + BITPOS may wrap around the address
8919 space. This is used to avoid issuing overflow warnings for
8920 expressions like &p->x which can not wrap. */
8923 pointer_may_wrap_p (tree base
, tree offset
, HOST_WIDE_INT bitpos
)
8925 double_int di_offset
, total
;
8927 if (!POINTER_TYPE_P (TREE_TYPE (base
)))
8933 if (offset
== NULL_TREE
)
8934 di_offset
= double_int_zero
;
8935 else if (TREE_CODE (offset
) != INTEGER_CST
|| TREE_OVERFLOW (offset
))
8938 di_offset
= TREE_INT_CST (offset
);
8941 double_int units
= double_int::from_uhwi (bitpos
/ BITS_PER_UNIT
);
8942 total
= di_offset
.add_with_sign (units
, true, &overflow
);
8946 if (total
.high
!= 0)
8949 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (TREE_TYPE (base
)));
8953 /* We can do slightly better for SIZE if we have an ADDR_EXPR of an
8955 if (TREE_CODE (base
) == ADDR_EXPR
)
8957 HOST_WIDE_INT base_size
;
8959 base_size
= int_size_in_bytes (TREE_TYPE (TREE_OPERAND (base
, 0)));
8960 if (base_size
> 0 && size
< base_size
)
8964 return total
.low
> (unsigned HOST_WIDE_INT
) size
;
8967 /* Return the HOST_WIDE_INT least significant bits of T, a sizetype
8968 kind INTEGER_CST. This makes sure to properly sign-extend the
8971 static HOST_WIDE_INT
8972 size_low_cst (const_tree t
)
8974 double_int d
= tree_to_double_int (t
);
8975 return d
.sext (TYPE_PRECISION (TREE_TYPE (t
))).low
;
8978 /* Subroutine of fold_binary. This routine performs all of the
8979 transformations that are common to the equality/inequality
8980 operators (EQ_EXPR and NE_EXPR) and the ordering operators
8981 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than
8982 fold_binary should call fold_binary. Fold a comparison with
8983 tree code CODE and type TYPE with operands OP0 and OP1. Return
8984 the folded comparison or NULL_TREE. */
8987 fold_comparison (location_t loc
, enum tree_code code
, tree type
,
8990 tree arg0
, arg1
, tem
;
8995 STRIP_SIGN_NOPS (arg0
);
8996 STRIP_SIGN_NOPS (arg1
);
8998 tem
= fold_relational_const (code
, type
, arg0
, arg1
);
8999 if (tem
!= NULL_TREE
)
9002 /* If one arg is a real or integer constant, put it last. */
9003 if (tree_swap_operands_p (arg0
, arg1
, true))
9004 return fold_build2_loc (loc
, swap_tree_comparison (code
), type
, op1
, op0
);
9006 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 +- C1. */
9007 if ((TREE_CODE (arg0
) == PLUS_EXPR
|| TREE_CODE (arg0
) == MINUS_EXPR
)
9008 && (TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
9009 && !TREE_OVERFLOW (TREE_OPERAND (arg0
, 1))
9010 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1
)))
9011 && (TREE_CODE (arg1
) == INTEGER_CST
9012 && !TREE_OVERFLOW (arg1
)))
9014 tree const1
= TREE_OPERAND (arg0
, 1);
9016 tree variable
= TREE_OPERAND (arg0
, 0);
9019 lhs_add
= TREE_CODE (arg0
) != PLUS_EXPR
;
9021 lhs
= fold_build2_loc (loc
, lhs_add
? PLUS_EXPR
: MINUS_EXPR
,
9022 TREE_TYPE (arg1
), const2
, const1
);
9024 /* If the constant operation overflowed this can be
9025 simplified as a comparison against INT_MAX/INT_MIN. */
9026 if (TREE_CODE (lhs
) == INTEGER_CST
9027 && TREE_OVERFLOW (lhs
)
9028 && !TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0
)))
9030 int const1_sgn
= tree_int_cst_sgn (const1
);
9031 enum tree_code code2
= code
;
9033 /* Get the sign of the constant on the lhs if the
9034 operation were VARIABLE + CONST1. */
9035 if (TREE_CODE (arg0
) == MINUS_EXPR
)
9036 const1_sgn
= -const1_sgn
;
9038 /* The sign of the constant determines if we overflowed
9039 INT_MAX (const1_sgn == -1) or INT_MIN (const1_sgn == 1).
9040 Canonicalize to the INT_MIN overflow by swapping the comparison
9042 if (const1_sgn
== -1)
9043 code2
= swap_tree_comparison (code
);
9045 /* We now can look at the canonicalized case
9046 VARIABLE + 1 CODE2 INT_MIN
9047 and decide on the result. */
9048 if (code2
== LT_EXPR
9050 || code2
== EQ_EXPR
)
9051 return omit_one_operand_loc (loc
, type
, boolean_false_node
, variable
);
9052 else if (code2
== NE_EXPR
9054 || code2
== GT_EXPR
)
9055 return omit_one_operand_loc (loc
, type
, boolean_true_node
, variable
);
9058 if (TREE_CODE (lhs
) == TREE_CODE (arg1
)
9059 && (TREE_CODE (lhs
) != INTEGER_CST
9060 || !TREE_OVERFLOW (lhs
)))
9062 if (code
!= EQ_EXPR
&& code
!= NE_EXPR
)
9063 fold_overflow_warning ("assuming signed overflow does not occur "
9064 "when changing X +- C1 cmp C2 to "
9066 WARN_STRICT_OVERFLOW_COMPARISON
);
9067 return fold_build2_loc (loc
, code
, type
, variable
, lhs
);
9071 /* For comparisons of pointers we can decompose it to a compile time
9072 comparison of the base objects and the offsets into the object.
9073 This requires at least one operand being an ADDR_EXPR or a
9074 POINTER_PLUS_EXPR to do more than the operand_equal_p test below. */
9075 if (POINTER_TYPE_P (TREE_TYPE (arg0
))
9076 && (TREE_CODE (arg0
) == ADDR_EXPR
9077 || TREE_CODE (arg1
) == ADDR_EXPR
9078 || TREE_CODE (arg0
) == POINTER_PLUS_EXPR
9079 || TREE_CODE (arg1
) == POINTER_PLUS_EXPR
))
9081 tree base0
, base1
, offset0
= NULL_TREE
, offset1
= NULL_TREE
;
9082 HOST_WIDE_INT bitsize
, bitpos0
= 0, bitpos1
= 0;
9083 enum machine_mode mode
;
9084 int volatilep
, unsignedp
;
9085 bool indirect_base0
= false, indirect_base1
= false;
9087 /* Get base and offset for the access. Strip ADDR_EXPR for
9088 get_inner_reference, but put it back by stripping INDIRECT_REF
9089 off the base object if possible. indirect_baseN will be true
9090 if baseN is not an address but refers to the object itself. */
9092 if (TREE_CODE (arg0
) == ADDR_EXPR
)
9094 base0
= get_inner_reference (TREE_OPERAND (arg0
, 0),
9095 &bitsize
, &bitpos0
, &offset0
, &mode
,
9096 &unsignedp
, &volatilep
, false);
9097 if (TREE_CODE (base0
) == INDIRECT_REF
)
9098 base0
= TREE_OPERAND (base0
, 0);
9100 indirect_base0
= true;
9102 else if (TREE_CODE (arg0
) == POINTER_PLUS_EXPR
)
9104 base0
= TREE_OPERAND (arg0
, 0);
9105 STRIP_SIGN_NOPS (base0
);
9106 if (TREE_CODE (base0
) == ADDR_EXPR
)
9108 base0
= TREE_OPERAND (base0
, 0);
9109 indirect_base0
= true;
9111 offset0
= TREE_OPERAND (arg0
, 1);
9112 if (tree_fits_shwi_p (offset0
))
9114 HOST_WIDE_INT off
= size_low_cst (offset0
);
9115 if ((HOST_WIDE_INT
) (((unsigned HOST_WIDE_INT
) off
)
9117 / BITS_PER_UNIT
== (HOST_WIDE_INT
) off
)
9119 bitpos0
= off
* BITS_PER_UNIT
;
9120 offset0
= NULL_TREE
;
9126 if (TREE_CODE (arg1
) == ADDR_EXPR
)
9128 base1
= get_inner_reference (TREE_OPERAND (arg1
, 0),
9129 &bitsize
, &bitpos1
, &offset1
, &mode
,
9130 &unsignedp
, &volatilep
, false);
9131 if (TREE_CODE (base1
) == INDIRECT_REF
)
9132 base1
= TREE_OPERAND (base1
, 0);
9134 indirect_base1
= true;
9136 else if (TREE_CODE (arg1
) == POINTER_PLUS_EXPR
)
9138 base1
= TREE_OPERAND (arg1
, 0);
9139 STRIP_SIGN_NOPS (base1
);
9140 if (TREE_CODE (base1
) == ADDR_EXPR
)
9142 base1
= TREE_OPERAND (base1
, 0);
9143 indirect_base1
= true;
9145 offset1
= TREE_OPERAND (arg1
, 1);
9146 if (tree_fits_shwi_p (offset1
))
9148 HOST_WIDE_INT off
= size_low_cst (offset1
);
9149 if ((HOST_WIDE_INT
) (((unsigned HOST_WIDE_INT
) off
)
9151 / BITS_PER_UNIT
== (HOST_WIDE_INT
) off
)
9153 bitpos1
= off
* BITS_PER_UNIT
;
9154 offset1
= NULL_TREE
;
9159 /* A local variable can never be pointed to by
9160 the default SSA name of an incoming parameter. */
9161 if ((TREE_CODE (arg0
) == ADDR_EXPR
9163 && TREE_CODE (base0
) == VAR_DECL
9164 && auto_var_in_fn_p (base0
, current_function_decl
)
9166 && TREE_CODE (base1
) == SSA_NAME
9167 && SSA_NAME_IS_DEFAULT_DEF (base1
)
9168 && TREE_CODE (SSA_NAME_VAR (base1
)) == PARM_DECL
)
9169 || (TREE_CODE (arg1
) == ADDR_EXPR
9171 && TREE_CODE (base1
) == VAR_DECL
9172 && auto_var_in_fn_p (base1
, current_function_decl
)
9174 && TREE_CODE (base0
) == SSA_NAME
9175 && SSA_NAME_IS_DEFAULT_DEF (base0
)
9176 && TREE_CODE (SSA_NAME_VAR (base0
)) == PARM_DECL
))
9178 if (code
== NE_EXPR
)
9179 return constant_boolean_node (1, type
);
9180 else if (code
== EQ_EXPR
)
9181 return constant_boolean_node (0, type
);
9183 /* If we have equivalent bases we might be able to simplify. */
9184 else if (indirect_base0
== indirect_base1
9185 && operand_equal_p (base0
, base1
, 0))
9187 /* We can fold this expression to a constant if the non-constant
9188 offset parts are equal. */
9189 if ((offset0
== offset1
9190 || (offset0
&& offset1
9191 && operand_equal_p (offset0
, offset1
, 0)))
9194 || (indirect_base0
&& DECL_P (base0
))
9195 || POINTER_TYPE_OVERFLOW_UNDEFINED
))
9200 && bitpos0
!= bitpos1
9201 && (pointer_may_wrap_p (base0
, offset0
, bitpos0
)
9202 || pointer_may_wrap_p (base1
, offset1
, bitpos1
)))
9203 fold_overflow_warning (("assuming pointer wraparound does not "
9204 "occur when comparing P +- C1 with "
9206 WARN_STRICT_OVERFLOW_CONDITIONAL
);
9211 return constant_boolean_node (bitpos0
== bitpos1
, type
);
9213 return constant_boolean_node (bitpos0
!= bitpos1
, type
);
9215 return constant_boolean_node (bitpos0
< bitpos1
, type
);
9217 return constant_boolean_node (bitpos0
<= bitpos1
, type
);
9219 return constant_boolean_node (bitpos0
>= bitpos1
, type
);
9221 return constant_boolean_node (bitpos0
> bitpos1
, type
);
9225 /* We can simplify the comparison to a comparison of the variable
9226 offset parts if the constant offset parts are equal.
9227 Be careful to use signed sizetype here because otherwise we
9228 mess with array offsets in the wrong way. This is possible
9229 because pointer arithmetic is restricted to retain within an
9230 object and overflow on pointer differences is undefined as of
9231 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */
9232 else if (bitpos0
== bitpos1
9233 && ((code
== EQ_EXPR
|| code
== NE_EXPR
)
9234 || (indirect_base0
&& DECL_P (base0
))
9235 || POINTER_TYPE_OVERFLOW_UNDEFINED
))
9237 /* By converting to signed sizetype we cover middle-end pointer
9238 arithmetic which operates on unsigned pointer types of size
9239 type size and ARRAY_REF offsets which are properly sign or
9240 zero extended from their type in case it is narrower than
9242 if (offset0
== NULL_TREE
)
9243 offset0
= build_int_cst (ssizetype
, 0);
9245 offset0
= fold_convert_loc (loc
, ssizetype
, offset0
);
9246 if (offset1
== NULL_TREE
)
9247 offset1
= build_int_cst (ssizetype
, 0);
9249 offset1
= fold_convert_loc (loc
, ssizetype
, offset1
);
9253 && (pointer_may_wrap_p (base0
, offset0
, bitpos0
)
9254 || pointer_may_wrap_p (base1
, offset1
, bitpos1
)))
9255 fold_overflow_warning (("assuming pointer wraparound does not "
9256 "occur when comparing P +- C1 with "
9258 WARN_STRICT_OVERFLOW_COMPARISON
);
9260 return fold_build2_loc (loc
, code
, type
, offset0
, offset1
);
9263 /* For non-equal bases we can simplify if they are addresses
9264 of local binding decls or constants. */
9265 else if (indirect_base0
&& indirect_base1
9266 /* We know that !operand_equal_p (base0, base1, 0)
9267 because the if condition was false. But make
9268 sure two decls are not the same. */
9270 && TREE_CODE (arg0
) == ADDR_EXPR
9271 && TREE_CODE (arg1
) == ADDR_EXPR
9272 && (((TREE_CODE (base0
) == VAR_DECL
9273 || TREE_CODE (base0
) == PARM_DECL
)
9274 && (targetm
.binds_local_p (base0
)
9275 || CONSTANT_CLASS_P (base1
)))
9276 || CONSTANT_CLASS_P (base0
))
9277 && (((TREE_CODE (base1
) == VAR_DECL
9278 || TREE_CODE (base1
) == PARM_DECL
)
9279 && (targetm
.binds_local_p (base1
)
9280 || CONSTANT_CLASS_P (base0
)))
9281 || CONSTANT_CLASS_P (base1
)))
9283 if (code
== EQ_EXPR
)
9284 return omit_two_operands_loc (loc
, type
, boolean_false_node
,
9286 else if (code
== NE_EXPR
)
9287 return omit_two_operands_loc (loc
, type
, boolean_true_node
,
9290 /* For equal offsets we can simplify to a comparison of the
9292 else if (bitpos0
== bitpos1
9294 ? base0
!= TREE_OPERAND (arg0
, 0) : base0
!= arg0
)
9296 ? base1
!= TREE_OPERAND (arg1
, 0) : base1
!= arg1
)
9297 && ((offset0
== offset1
)
9298 || (offset0
&& offset1
9299 && operand_equal_p (offset0
, offset1
, 0))))
9302 base0
= build_fold_addr_expr_loc (loc
, base0
);
9304 base1
= build_fold_addr_expr_loc (loc
, base1
);
9305 return fold_build2_loc (loc
, code
, type
, base0
, base1
);
9309 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to
9310 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
9311 the resulting offset is smaller in absolute value than the
9312 original one and has the same sign. */
9313 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0
))
9314 && (TREE_CODE (arg0
) == PLUS_EXPR
|| TREE_CODE (arg0
) == MINUS_EXPR
)
9315 && (TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
9316 && !TREE_OVERFLOW (TREE_OPERAND (arg0
, 1)))
9317 && (TREE_CODE (arg1
) == PLUS_EXPR
|| TREE_CODE (arg1
) == MINUS_EXPR
)
9318 && (TREE_CODE (TREE_OPERAND (arg1
, 1)) == INTEGER_CST
9319 && !TREE_OVERFLOW (TREE_OPERAND (arg1
, 1))))
9321 tree const1
= TREE_OPERAND (arg0
, 1);
9322 tree const2
= TREE_OPERAND (arg1
, 1);
9323 tree variable1
= TREE_OPERAND (arg0
, 0);
9324 tree variable2
= TREE_OPERAND (arg1
, 0);
9326 const char * const warnmsg
= G_("assuming signed overflow does not "
9327 "occur when combining constants around "
9330 /* Put the constant on the side where it doesn't overflow and is
9331 of lower absolute value and of same sign than before. */
9332 cst
= int_const_binop (TREE_CODE (arg0
) == TREE_CODE (arg1
)
9333 ? MINUS_EXPR
: PLUS_EXPR
,
9335 if (!TREE_OVERFLOW (cst
)
9336 && tree_int_cst_compare (const2
, cst
) == tree_int_cst_sgn (const2
)
9337 && tree_int_cst_sgn (cst
) == tree_int_cst_sgn (const2
))
9339 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_COMPARISON
);
9340 return fold_build2_loc (loc
, code
, type
,
9342 fold_build2_loc (loc
, TREE_CODE (arg1
),
9347 cst
= int_const_binop (TREE_CODE (arg0
) == TREE_CODE (arg1
)
9348 ? MINUS_EXPR
: PLUS_EXPR
,
9350 if (!TREE_OVERFLOW (cst
)
9351 && tree_int_cst_compare (const1
, cst
) == tree_int_cst_sgn (const1
)
9352 && tree_int_cst_sgn (cst
) == tree_int_cst_sgn (const1
))
9354 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_COMPARISON
);
9355 return fold_build2_loc (loc
, code
, type
,
9356 fold_build2_loc (loc
, TREE_CODE (arg0
),
9363 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
9364 signed arithmetic case. That form is created by the compiler
9365 often enough for folding it to be of value. One example is in
9366 computing loop trip counts after Operator Strength Reduction. */
9367 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0
))
9368 && TREE_CODE (arg0
) == MULT_EXPR
9369 && (TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
9370 && !TREE_OVERFLOW (TREE_OPERAND (arg0
, 1)))
9371 && integer_zerop (arg1
))
9373 tree const1
= TREE_OPERAND (arg0
, 1);
9374 tree const2
= arg1
; /* zero */
9375 tree variable1
= TREE_OPERAND (arg0
, 0);
9376 enum tree_code cmp_code
= code
;
9378 /* Handle unfolded multiplication by zero. */
9379 if (integer_zerop (const1
))
9380 return fold_build2_loc (loc
, cmp_code
, type
, const1
, const2
);
9382 fold_overflow_warning (("assuming signed overflow does not occur when "
9383 "eliminating multiplication in comparison "
9385 WARN_STRICT_OVERFLOW_COMPARISON
);
9387 /* If const1 is negative we swap the sense of the comparison. */
9388 if (tree_int_cst_sgn (const1
) < 0)
9389 cmp_code
= swap_tree_comparison (cmp_code
);
9391 return fold_build2_loc (loc
, cmp_code
, type
, variable1
, const2
);
9394 tem
= maybe_canonicalize_comparison (loc
, code
, type
, arg0
, arg1
);
9398 if (FLOAT_TYPE_P (TREE_TYPE (arg0
)))
9400 tree targ0
= strip_float_extensions (arg0
);
9401 tree targ1
= strip_float_extensions (arg1
);
9402 tree newtype
= TREE_TYPE (targ0
);
9404 if (TYPE_PRECISION (TREE_TYPE (targ1
)) > TYPE_PRECISION (newtype
))
9405 newtype
= TREE_TYPE (targ1
);
9407 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
9408 if (TYPE_PRECISION (newtype
) < TYPE_PRECISION (TREE_TYPE (arg0
)))
9409 return fold_build2_loc (loc
, code
, type
,
9410 fold_convert_loc (loc
, newtype
, targ0
),
9411 fold_convert_loc (loc
, newtype
, targ1
));
9413 /* (-a) CMP (-b) -> b CMP a */
9414 if (TREE_CODE (arg0
) == NEGATE_EXPR
9415 && TREE_CODE (arg1
) == NEGATE_EXPR
)
9416 return fold_build2_loc (loc
, code
, type
, TREE_OPERAND (arg1
, 0),
9417 TREE_OPERAND (arg0
, 0));
9419 if (TREE_CODE (arg1
) == REAL_CST
)
9421 REAL_VALUE_TYPE cst
;
9422 cst
= TREE_REAL_CST (arg1
);
9424 /* (-a) CMP CST -> a swap(CMP) (-CST) */
9425 if (TREE_CODE (arg0
) == NEGATE_EXPR
)
9426 return fold_build2_loc (loc
, swap_tree_comparison (code
), type
,
9427 TREE_OPERAND (arg0
, 0),
9428 build_real (TREE_TYPE (arg1
),
9429 real_value_negate (&cst
)));
9431 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
9432 /* a CMP (-0) -> a CMP 0 */
9433 if (REAL_VALUE_MINUS_ZERO (cst
))
9434 return fold_build2_loc (loc
, code
, type
, arg0
,
9435 build_real (TREE_TYPE (arg1
), dconst0
));
9437 /* x != NaN is always true, other ops are always false. */
9438 if (REAL_VALUE_ISNAN (cst
)
9439 && ! HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1
))))
9441 tem
= (code
== NE_EXPR
) ? integer_one_node
: integer_zero_node
;
9442 return omit_one_operand_loc (loc
, type
, tem
, arg0
);
9445 /* Fold comparisons against infinity. */
9446 if (REAL_VALUE_ISINF (cst
)
9447 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1
))))
9449 tem
= fold_inf_compare (loc
, code
, type
, arg0
, arg1
);
9450 if (tem
!= NULL_TREE
)
9455 /* If this is a comparison of a real constant with a PLUS_EXPR
9456 or a MINUS_EXPR of a real constant, we can convert it into a
9457 comparison with a revised real constant as long as no overflow
9458 occurs when unsafe_math_optimizations are enabled. */
9459 if (flag_unsafe_math_optimizations
9460 && TREE_CODE (arg1
) == REAL_CST
9461 && (TREE_CODE (arg0
) == PLUS_EXPR
9462 || TREE_CODE (arg0
) == MINUS_EXPR
)
9463 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == REAL_CST
9464 && 0 != (tem
= const_binop (TREE_CODE (arg0
) == PLUS_EXPR
9465 ? MINUS_EXPR
: PLUS_EXPR
,
9466 arg1
, TREE_OPERAND (arg0
, 1)))
9467 && !TREE_OVERFLOW (tem
))
9468 return fold_build2_loc (loc
, code
, type
, TREE_OPERAND (arg0
, 0), tem
);
9470 /* Likewise, we can simplify a comparison of a real constant with
9471 a MINUS_EXPR whose first operand is also a real constant, i.e.
9472 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
9473 floating-point types only if -fassociative-math is set. */
9474 if (flag_associative_math
9475 && TREE_CODE (arg1
) == REAL_CST
9476 && TREE_CODE (arg0
) == MINUS_EXPR
9477 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == REAL_CST
9478 && 0 != (tem
= const_binop (MINUS_EXPR
, TREE_OPERAND (arg0
, 0),
9480 && !TREE_OVERFLOW (tem
))
9481 return fold_build2_loc (loc
, swap_tree_comparison (code
), type
,
9482 TREE_OPERAND (arg0
, 1), tem
);
9484 /* Fold comparisons against built-in math functions. */
9485 if (TREE_CODE (arg1
) == REAL_CST
9486 && flag_unsafe_math_optimizations
9487 && ! flag_errno_math
)
9489 enum built_in_function fcode
= builtin_mathfn_code (arg0
);
9491 if (fcode
!= END_BUILTINS
)
9493 tem
= fold_mathfn_compare (loc
, fcode
, code
, type
, arg0
, arg1
);
9494 if (tem
!= NULL_TREE
)
9500 if (TREE_CODE (TREE_TYPE (arg0
)) == INTEGER_TYPE
9501 && CONVERT_EXPR_P (arg0
))
9503 /* If we are widening one operand of an integer comparison,
9504 see if the other operand is similarly being widened. Perhaps we
9505 can do the comparison in the narrower type. */
9506 tem
= fold_widened_comparison (loc
, code
, type
, arg0
, arg1
);
9510 /* Or if we are changing signedness. */
9511 tem
= fold_sign_changed_comparison (loc
, code
, type
, arg0
, arg1
);
9516 /* If this is comparing a constant with a MIN_EXPR or a MAX_EXPR of a
9517 constant, we can simplify it. */
9518 if (TREE_CODE (arg1
) == INTEGER_CST
9519 && (TREE_CODE (arg0
) == MIN_EXPR
9520 || TREE_CODE (arg0
) == MAX_EXPR
)
9521 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
9523 tem
= optimize_minmax_comparison (loc
, code
, type
, op0
, op1
);
9528 /* Simplify comparison of something with itself. (For IEEE
9529 floating-point, we can only do some of these simplifications.) */
9530 if (operand_equal_p (arg0
, arg1
, 0))
9535 if (! FLOAT_TYPE_P (TREE_TYPE (arg0
))
9536 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0
))))
9537 return constant_boolean_node (1, type
);
9542 if (! FLOAT_TYPE_P (TREE_TYPE (arg0
))
9543 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0
))))
9544 return constant_boolean_node (1, type
);
9545 return fold_build2_loc (loc
, EQ_EXPR
, type
, arg0
, arg1
);
9548 /* For NE, we can only do this simplification if integer
9549 or we don't honor IEEE floating point NaNs. */
9550 if (FLOAT_TYPE_P (TREE_TYPE (arg0
))
9551 && HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0
))))
9553 /* ... fall through ... */
9556 return constant_boolean_node (0, type
);
9562 /* If we are comparing an expression that just has comparisons
9563 of two integer values, arithmetic expressions of those comparisons,
9564 and constants, we can simplify it. There are only three cases
9565 to check: the two values can either be equal, the first can be
9566 greater, or the second can be greater. Fold the expression for
9567 those three values. Since each value must be 0 or 1, we have
9568 eight possibilities, each of which corresponds to the constant 0
9569 or 1 or one of the six possible comparisons.
9571 This handles common cases like (a > b) == 0 but also handles
9572 expressions like ((x > y) - (y > x)) > 0, which supposedly
9573 occur in macroized code. */
9575 if (TREE_CODE (arg1
) == INTEGER_CST
&& TREE_CODE (arg0
) != INTEGER_CST
)
9577 tree cval1
= 0, cval2
= 0;
9580 if (twoval_comparison_p (arg0
, &cval1
, &cval2
, &save_p
)
9581 /* Don't handle degenerate cases here; they should already
9582 have been handled anyway. */
9583 && cval1
!= 0 && cval2
!= 0
9584 && ! (TREE_CONSTANT (cval1
) && TREE_CONSTANT (cval2
))
9585 && TREE_TYPE (cval1
) == TREE_TYPE (cval2
)
9586 && INTEGRAL_TYPE_P (TREE_TYPE (cval1
))
9587 && TYPE_MAX_VALUE (TREE_TYPE (cval1
))
9588 && TYPE_MAX_VALUE (TREE_TYPE (cval2
))
9589 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1
)),
9590 TYPE_MAX_VALUE (TREE_TYPE (cval2
)), 0))
9592 tree maxval
= TYPE_MAX_VALUE (TREE_TYPE (cval1
));
9593 tree minval
= TYPE_MIN_VALUE (TREE_TYPE (cval1
));
9595 /* We can't just pass T to eval_subst in case cval1 or cval2
9596 was the same as ARG1. */
9599 = fold_build2_loc (loc
, code
, type
,
9600 eval_subst (loc
, arg0
, cval1
, maxval
,
9604 = fold_build2_loc (loc
, code
, type
,
9605 eval_subst (loc
, arg0
, cval1
, maxval
,
9609 = fold_build2_loc (loc
, code
, type
,
9610 eval_subst (loc
, arg0
, cval1
, minval
,
9614 /* All three of these results should be 0 or 1. Confirm they are.
9615 Then use those values to select the proper code to use. */
9617 if (TREE_CODE (high_result
) == INTEGER_CST
9618 && TREE_CODE (equal_result
) == INTEGER_CST
9619 && TREE_CODE (low_result
) == INTEGER_CST
)
9621 /* Make a 3-bit mask with the high-order bit being the
9622 value for `>', the next for '=', and the low for '<'. */
9623 switch ((integer_onep (high_result
) * 4)
9624 + (integer_onep (equal_result
) * 2)
9625 + integer_onep (low_result
))
9629 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
9650 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg0
);
9655 tem
= save_expr (build2 (code
, type
, cval1
, cval2
));
9656 SET_EXPR_LOCATION (tem
, loc
);
9659 return fold_build2_loc (loc
, code
, type
, cval1
, cval2
);
9664 /* We can fold X/C1 op C2 where C1 and C2 are integer constants
9665 into a single range test. */
9666 if ((TREE_CODE (arg0
) == TRUNC_DIV_EXPR
9667 || TREE_CODE (arg0
) == EXACT_DIV_EXPR
)
9668 && TREE_CODE (arg1
) == INTEGER_CST
9669 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
9670 && !integer_zerop (TREE_OPERAND (arg0
, 1))
9671 && !TREE_OVERFLOW (TREE_OPERAND (arg0
, 1))
9672 && !TREE_OVERFLOW (arg1
))
9674 tem
= fold_div_compare (loc
, code
, type
, arg0
, arg1
);
9675 if (tem
!= NULL_TREE
)
9679 /* Fold ~X op ~Y as Y op X. */
9680 if (TREE_CODE (arg0
) == BIT_NOT_EXPR
9681 && TREE_CODE (arg1
) == BIT_NOT_EXPR
)
9683 tree cmp_type
= TREE_TYPE (TREE_OPERAND (arg0
, 0));
9684 return fold_build2_loc (loc
, code
, type
,
9685 fold_convert_loc (loc
, cmp_type
,
9686 TREE_OPERAND (arg1
, 0)),
9687 TREE_OPERAND (arg0
, 0));
9690 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
9691 if (TREE_CODE (arg0
) == BIT_NOT_EXPR
9692 && (TREE_CODE (arg1
) == INTEGER_CST
|| TREE_CODE (arg1
) == VECTOR_CST
))
9694 tree cmp_type
= TREE_TYPE (TREE_OPERAND (arg0
, 0));
9695 return fold_build2_loc (loc
, swap_tree_comparison (code
), type
,
9696 TREE_OPERAND (arg0
, 0),
9697 fold_build1_loc (loc
, BIT_NOT_EXPR
, cmp_type
,
9698 fold_convert_loc (loc
, cmp_type
, arg1
)));
9705 /* Subroutine of fold_binary. Optimize complex multiplications of the
9706 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The
9707 argument EXPR represents the expression "z" of type TYPE. */
9710 fold_mult_zconjz (location_t loc
, tree type
, tree expr
)
9712 tree itype
= TREE_TYPE (type
);
9713 tree rpart
, ipart
, tem
;
9715 if (TREE_CODE (expr
) == COMPLEX_EXPR
)
9717 rpart
= TREE_OPERAND (expr
, 0);
9718 ipart
= TREE_OPERAND (expr
, 1);
9720 else if (TREE_CODE (expr
) == COMPLEX_CST
)
9722 rpart
= TREE_REALPART (expr
);
9723 ipart
= TREE_IMAGPART (expr
);
9727 expr
= save_expr (expr
);
9728 rpart
= fold_build1_loc (loc
, REALPART_EXPR
, itype
, expr
);
9729 ipart
= fold_build1_loc (loc
, IMAGPART_EXPR
, itype
, expr
);
9732 rpart
= save_expr (rpart
);
9733 ipart
= save_expr (ipart
);
9734 tem
= fold_build2_loc (loc
, PLUS_EXPR
, itype
,
9735 fold_build2_loc (loc
, MULT_EXPR
, itype
, rpart
, rpart
),
9736 fold_build2_loc (loc
, MULT_EXPR
, itype
, ipart
, ipart
));
9737 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, tem
,
9738 build_zero_cst (itype
));
9742 /* Subroutine of fold_binary. If P is the value of EXPR, computes
9743 power-of-two M and (arbitrary) N such that M divides (P-N). This condition
9744 guarantees that P and N have the same least significant log2(M) bits.
9745 N is not otherwise constrained. In particular, N is not normalized to
9746 0 <= N < M as is common. In general, the precise value of P is unknown.
9747 M is chosen as large as possible such that constant N can be determined.
9749 Returns M and sets *RESIDUE to N.
9751 If ALLOW_FUNC_ALIGN is true, do take functions' DECL_ALIGN_UNIT into
9752 account. This is not always possible due to PR 35705.
9755 static unsigned HOST_WIDE_INT
9756 get_pointer_modulus_and_residue (tree expr
, unsigned HOST_WIDE_INT
*residue
,
9757 bool allow_func_align
)
9759 enum tree_code code
;
9763 code
= TREE_CODE (expr
);
9764 if (code
== ADDR_EXPR
)
9766 unsigned int bitalign
;
9767 get_object_alignment_1 (TREE_OPERAND (expr
, 0), &bitalign
, residue
);
9768 *residue
/= BITS_PER_UNIT
;
9769 return bitalign
/ BITS_PER_UNIT
;
9771 else if (code
== POINTER_PLUS_EXPR
)
9774 unsigned HOST_WIDE_INT modulus
;
9775 enum tree_code inner_code
;
9777 op0
= TREE_OPERAND (expr
, 0);
9779 modulus
= get_pointer_modulus_and_residue (op0
, residue
,
9782 op1
= TREE_OPERAND (expr
, 1);
9784 inner_code
= TREE_CODE (op1
);
9785 if (inner_code
== INTEGER_CST
)
9787 *residue
+= TREE_INT_CST_LOW (op1
);
9790 else if (inner_code
== MULT_EXPR
)
9792 op1
= TREE_OPERAND (op1
, 1);
9793 if (TREE_CODE (op1
) == INTEGER_CST
)
9795 unsigned HOST_WIDE_INT align
;
9797 /* Compute the greatest power-of-2 divisor of op1. */
9798 align
= TREE_INT_CST_LOW (op1
);
9801 /* If align is non-zero and less than *modulus, replace
9802 *modulus with align., If align is 0, then either op1 is 0
9803 or the greatest power-of-2 divisor of op1 doesn't fit in an
9804 unsigned HOST_WIDE_INT. In either case, no additional
9805 constraint is imposed. */
9807 modulus
= MIN (modulus
, align
);
9814 /* If we get here, we were unable to determine anything useful about the
9819 /* Helper function for fold_vec_perm. Store elements of VECTOR_CST or
9820 CONSTRUCTOR ARG into array ELTS and return true if successful. */
9823 vec_cst_ctor_to_array (tree arg
, tree
*elts
)
9825 unsigned int nelts
= TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg
)), i
;
9827 if (TREE_CODE (arg
) == VECTOR_CST
)
9829 for (i
= 0; i
< VECTOR_CST_NELTS (arg
); ++i
)
9830 elts
[i
] = VECTOR_CST_ELT (arg
, i
);
9832 else if (TREE_CODE (arg
) == CONSTRUCTOR
)
9834 constructor_elt
*elt
;
9836 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (arg
), i
, elt
)
9837 if (i
>= nelts
|| TREE_CODE (TREE_TYPE (elt
->value
)) == VECTOR_TYPE
)
9840 elts
[i
] = elt
->value
;
9844 for (; i
< nelts
; i
++)
9846 = fold_convert (TREE_TYPE (TREE_TYPE (arg
)), integer_zero_node
);
9850 /* Attempt to fold vector permutation of ARG0 and ARG1 vectors using SEL
9851 selector. Return the folded VECTOR_CST or CONSTRUCTOR if successful,
9852 NULL_TREE otherwise. */
9855 fold_vec_perm (tree type
, tree arg0
, tree arg1
, const unsigned char *sel
)
9857 unsigned int nelts
= TYPE_VECTOR_SUBPARTS (type
), i
;
9859 bool need_ctor
= false;
9861 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0
)) == nelts
9862 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1
)) == nelts
);
9863 if (TREE_TYPE (TREE_TYPE (arg0
)) != TREE_TYPE (type
)
9864 || TREE_TYPE (TREE_TYPE (arg1
)) != TREE_TYPE (type
))
9867 elts
= XALLOCAVEC (tree
, nelts
* 3);
9868 if (!vec_cst_ctor_to_array (arg0
, elts
)
9869 || !vec_cst_ctor_to_array (arg1
, elts
+ nelts
))
9872 for (i
= 0; i
< nelts
; i
++)
9874 if (!CONSTANT_CLASS_P (elts
[sel
[i
]]))
9876 elts
[i
+ 2 * nelts
] = unshare_expr (elts
[sel
[i
]]);
9881 vec
<constructor_elt
, va_gc
> *v
;
9882 vec_alloc (v
, nelts
);
9883 for (i
= 0; i
< nelts
; i
++)
9884 CONSTRUCTOR_APPEND_ELT (v
, NULL_TREE
, elts
[2 * nelts
+ i
]);
9885 return build_constructor (type
, v
);
9888 return build_vector (type
, &elts
[2 * nelts
]);
9891 /* Try to fold a pointer difference of type TYPE two address expressions of
9892 array references AREF0 and AREF1 using location LOC. Return a
9893 simplified expression for the difference or NULL_TREE. */
9896 fold_addr_of_array_ref_difference (location_t loc
, tree type
,
9897 tree aref0
, tree aref1
)
9899 tree base0
= TREE_OPERAND (aref0
, 0);
9900 tree base1
= TREE_OPERAND (aref1
, 0);
9901 tree base_offset
= build_int_cst (type
, 0);
9903 /* If the bases are array references as well, recurse. If the bases
9904 are pointer indirections compute the difference of the pointers.
9905 If the bases are equal, we are set. */
9906 if ((TREE_CODE (base0
) == ARRAY_REF
9907 && TREE_CODE (base1
) == ARRAY_REF
9909 = fold_addr_of_array_ref_difference (loc
, type
, base0
, base1
)))
9910 || (INDIRECT_REF_P (base0
)
9911 && INDIRECT_REF_P (base1
)
9912 && (base_offset
= fold_binary_loc (loc
, MINUS_EXPR
, type
,
9913 TREE_OPERAND (base0
, 0),
9914 TREE_OPERAND (base1
, 0))))
9915 || operand_equal_p (base0
, base1
, 0))
9917 tree op0
= fold_convert_loc (loc
, type
, TREE_OPERAND (aref0
, 1));
9918 tree op1
= fold_convert_loc (loc
, type
, TREE_OPERAND (aref1
, 1));
9919 tree esz
= fold_convert_loc (loc
, type
, array_ref_element_size (aref0
));
9920 tree diff
= build2 (MINUS_EXPR
, type
, op0
, op1
);
9921 return fold_build2_loc (loc
, PLUS_EXPR
, type
,
9923 fold_build2_loc (loc
, MULT_EXPR
, type
,
9929 /* If the real or vector real constant CST of type TYPE has an exact
9930 inverse, return it, else return NULL. */
9933 exact_inverse (tree type
, tree cst
)
9936 tree unit_type
, *elts
;
9937 enum machine_mode mode
;
9938 unsigned vec_nelts
, i
;
9940 switch (TREE_CODE (cst
))
9943 r
= TREE_REAL_CST (cst
);
9945 if (exact_real_inverse (TYPE_MODE (type
), &r
))
9946 return build_real (type
, r
);
9951 vec_nelts
= VECTOR_CST_NELTS (cst
);
9952 elts
= XALLOCAVEC (tree
, vec_nelts
);
9953 unit_type
= TREE_TYPE (type
);
9954 mode
= TYPE_MODE (unit_type
);
9956 for (i
= 0; i
< vec_nelts
; i
++)
9958 r
= TREE_REAL_CST (VECTOR_CST_ELT (cst
, i
));
9959 if (!exact_real_inverse (mode
, &r
))
9961 elts
[i
] = build_real (unit_type
, r
);
9964 return build_vector (type
, elts
);
9971 /* Mask out the tz least significant bits of X of type TYPE where
9972 tz is the number of trailing zeroes in Y. */
9974 mask_with_tz (tree type
, double_int x
, double_int y
)
9976 int tz
= y
.trailing_zeros ();
9982 mask
= ~double_int::mask (tz
);
9983 mask
= mask
.ext (TYPE_PRECISION (type
), TYPE_UNSIGNED (type
));
9989 /* Return true when T is an address and is known to be nonzero.
9990 For floating point we further ensure that T is not denormal.
9991 Similar logic is present in nonzero_address in rtlanal.h.
9993 If the return value is based on the assumption that signed overflow
9994 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
9995 change *STRICT_OVERFLOW_P. */
9998 tree_expr_nonzero_warnv_p (tree t
, bool *strict_overflow_p
)
10000 tree type
= TREE_TYPE (t
);
10001 enum tree_code code
;
10003 /* Doing something useful for floating point would need more work. */
10004 if (!INTEGRAL_TYPE_P (type
) && !POINTER_TYPE_P (type
))
10007 code
= TREE_CODE (t
);
10008 switch (TREE_CODE_CLASS (code
))
10011 return tree_unary_nonzero_warnv_p (code
, type
, TREE_OPERAND (t
, 0),
10012 strict_overflow_p
);
10014 case tcc_comparison
:
10015 return tree_binary_nonzero_warnv_p (code
, type
,
10016 TREE_OPERAND (t
, 0),
10017 TREE_OPERAND (t
, 1),
10018 strict_overflow_p
);
10020 case tcc_declaration
:
10021 case tcc_reference
:
10022 return tree_single_nonzero_warnv_p (t
, strict_overflow_p
);
10030 case TRUTH_NOT_EXPR
:
10031 return tree_unary_nonzero_warnv_p (code
, type
, TREE_OPERAND (t
, 0),
10032 strict_overflow_p
);
10034 case TRUTH_AND_EXPR
:
10035 case TRUTH_OR_EXPR
:
10036 case TRUTH_XOR_EXPR
:
10037 return tree_binary_nonzero_warnv_p (code
, type
,
10038 TREE_OPERAND (t
, 0),
10039 TREE_OPERAND (t
, 1),
10040 strict_overflow_p
);
10047 case WITH_SIZE_EXPR
:
10049 return tree_single_nonzero_warnv_p (t
, strict_overflow_p
);
10051 case COMPOUND_EXPR
:
10054 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 1),
10055 strict_overflow_p
);
10058 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 0),
10059 strict_overflow_p
);
10063 tree fndecl
= get_callee_fndecl (t
);
10064 if (!fndecl
) return false;
10065 if (flag_delete_null_pointer_checks
&& !flag_check_new
10066 && DECL_IS_OPERATOR_NEW (fndecl
)
10067 && !TREE_NOTHROW (fndecl
))
10069 if (flag_delete_null_pointer_checks
10070 && lookup_attribute ("returns_nonnull",
10071 TYPE_ATTRIBUTES (TREE_TYPE (fndecl
))))
10073 return alloca_call_p (t
);
10082 /* Return true when T is an address and is known to be nonzero.
10083 Handle warnings about undefined signed overflow. */
10086 tree_expr_nonzero_p (tree t
)
10088 bool ret
, strict_overflow_p
;
10090 strict_overflow_p
= false;
10091 ret
= tree_expr_nonzero_warnv_p (t
, &strict_overflow_p
);
10092 if (strict_overflow_p
)
10093 fold_overflow_warning (("assuming signed overflow does not occur when "
10094 "determining that expression is always "
10096 WARN_STRICT_OVERFLOW_MISC
);
10100 /* Fold a binary expression of code CODE and type TYPE with operands
10101 OP0 and OP1. LOC is the location of the resulting expression.
10102 Return the folded expression if folding is successful. Otherwise,
10103 return NULL_TREE. */
10106 fold_binary_loc (location_t loc
,
10107 enum tree_code code
, tree type
, tree op0
, tree op1
)
10109 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
10110 tree arg0
, arg1
, tem
;
10111 tree t1
= NULL_TREE
;
10112 bool strict_overflow_p
;
10115 gcc_assert (IS_EXPR_CODE_CLASS (kind
)
10116 && TREE_CODE_LENGTH (code
) == 2
10117 && op0
!= NULL_TREE
10118 && op1
!= NULL_TREE
);
10123 /* Strip any conversions that don't change the mode. This is
10124 safe for every expression, except for a comparison expression
10125 because its signedness is derived from its operands. So, in
10126 the latter case, only strip conversions that don't change the
10127 signedness. MIN_EXPR/MAX_EXPR also need signedness of arguments
10130 Note that this is done as an internal manipulation within the
10131 constant folder, in order to find the simplest representation
10132 of the arguments so that their form can be studied. In any
10133 cases, the appropriate type conversions should be put back in
10134 the tree that will get out of the constant folder. */
10136 if (kind
== tcc_comparison
|| code
== MIN_EXPR
|| code
== MAX_EXPR
)
10138 STRIP_SIGN_NOPS (arg0
);
10139 STRIP_SIGN_NOPS (arg1
);
10147 /* Note that TREE_CONSTANT isn't enough: static var addresses are
10148 constant but we can't do arithmetic on them. */
10149 if ((TREE_CODE (arg0
) == INTEGER_CST
&& TREE_CODE (arg1
) == INTEGER_CST
)
10150 || (TREE_CODE (arg0
) == REAL_CST
&& TREE_CODE (arg1
) == REAL_CST
)
10151 || (TREE_CODE (arg0
) == FIXED_CST
&& TREE_CODE (arg1
) == FIXED_CST
)
10152 || (TREE_CODE (arg0
) == FIXED_CST
&& TREE_CODE (arg1
) == INTEGER_CST
)
10153 || (TREE_CODE (arg0
) == COMPLEX_CST
&& TREE_CODE (arg1
) == COMPLEX_CST
)
10154 || (TREE_CODE (arg0
) == VECTOR_CST
&& TREE_CODE (arg1
) == VECTOR_CST
)
10155 || (TREE_CODE (arg0
) == VECTOR_CST
&& TREE_CODE (arg1
) == INTEGER_CST
))
10157 if (kind
== tcc_binary
)
10159 /* Make sure type and arg0 have the same saturating flag. */
10160 gcc_assert (TYPE_SATURATING (type
)
10161 == TYPE_SATURATING (TREE_TYPE (arg0
)));
10162 tem
= const_binop (code
, arg0
, arg1
);
10164 else if (kind
== tcc_comparison
)
10165 tem
= fold_relational_const (code
, type
, arg0
, arg1
);
10169 if (tem
!= NULL_TREE
)
10171 if (TREE_TYPE (tem
) != type
)
10172 tem
= fold_convert_loc (loc
, type
, tem
);
10177 /* If this is a commutative operation, and ARG0 is a constant, move it
10178 to ARG1 to reduce the number of tests below. */
10179 if (commutative_tree_code (code
)
10180 && tree_swap_operands_p (arg0
, arg1
, true))
10181 return fold_build2_loc (loc
, code
, type
, op1
, op0
);
10183 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
10185 First check for cases where an arithmetic operation is applied to a
10186 compound, conditional, or comparison operation. Push the arithmetic
10187 operation inside the compound or conditional to see if any folding
10188 can then be done. Convert comparison to conditional for this purpose.
10189 The also optimizes non-constant cases that used to be done in
10192 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
10193 one of the operands is a comparison and the other is a comparison, a
10194 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
10195 code below would make the expression more complex. Change it to a
10196 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
10197 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
10199 if ((code
== BIT_AND_EXPR
|| code
== BIT_IOR_EXPR
10200 || code
== EQ_EXPR
|| code
== NE_EXPR
)
10201 && TREE_CODE (type
) != VECTOR_TYPE
10202 && ((truth_value_p (TREE_CODE (arg0
))
10203 && (truth_value_p (TREE_CODE (arg1
))
10204 || (TREE_CODE (arg1
) == BIT_AND_EXPR
10205 && integer_onep (TREE_OPERAND (arg1
, 1)))))
10206 || (truth_value_p (TREE_CODE (arg1
))
10207 && (truth_value_p (TREE_CODE (arg0
))
10208 || (TREE_CODE (arg0
) == BIT_AND_EXPR
10209 && integer_onep (TREE_OPERAND (arg0
, 1)))))))
10211 tem
= fold_build2_loc (loc
, code
== BIT_AND_EXPR
? TRUTH_AND_EXPR
10212 : code
== BIT_IOR_EXPR
? TRUTH_OR_EXPR
10215 fold_convert_loc (loc
, boolean_type_node
, arg0
),
10216 fold_convert_loc (loc
, boolean_type_node
, arg1
));
10218 if (code
== EQ_EXPR
)
10219 tem
= invert_truthvalue_loc (loc
, tem
);
10221 return fold_convert_loc (loc
, type
, tem
);
10224 if (TREE_CODE_CLASS (code
) == tcc_binary
10225 || TREE_CODE_CLASS (code
) == tcc_comparison
)
10227 if (TREE_CODE (arg0
) == COMPOUND_EXPR
)
10229 tem
= fold_build2_loc (loc
, code
, type
,
10230 fold_convert_loc (loc
, TREE_TYPE (op0
),
10231 TREE_OPERAND (arg0
, 1)), op1
);
10232 return build2_loc (loc
, COMPOUND_EXPR
, type
, TREE_OPERAND (arg0
, 0),
10235 if (TREE_CODE (arg1
) == COMPOUND_EXPR
10236 && reorder_operands_p (arg0
, TREE_OPERAND (arg1
, 0)))
10238 tem
= fold_build2_loc (loc
, code
, type
, op0
,
10239 fold_convert_loc (loc
, TREE_TYPE (op1
),
10240 TREE_OPERAND (arg1
, 1)));
10241 return build2_loc (loc
, COMPOUND_EXPR
, type
, TREE_OPERAND (arg1
, 0),
10245 if (TREE_CODE (arg0
) == COND_EXPR
10246 || TREE_CODE (arg0
) == VEC_COND_EXPR
10247 || COMPARISON_CLASS_P (arg0
))
10249 tem
= fold_binary_op_with_conditional_arg (loc
, code
, type
, op0
, op1
,
10251 /*cond_first_p=*/1);
10252 if (tem
!= NULL_TREE
)
10256 if (TREE_CODE (arg1
) == COND_EXPR
10257 || TREE_CODE (arg1
) == VEC_COND_EXPR
10258 || COMPARISON_CLASS_P (arg1
))
10260 tem
= fold_binary_op_with_conditional_arg (loc
, code
, type
, op0
, op1
,
10262 /*cond_first_p=*/0);
10263 if (tem
!= NULL_TREE
)
10271 /* MEM[&MEM[p, CST1], CST2] -> MEM[p, CST1 + CST2]. */
10272 if (TREE_CODE (arg0
) == ADDR_EXPR
10273 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == MEM_REF
)
10275 tree iref
= TREE_OPERAND (arg0
, 0);
10276 return fold_build2 (MEM_REF
, type
,
10277 TREE_OPERAND (iref
, 0),
10278 int_const_binop (PLUS_EXPR
, arg1
,
10279 TREE_OPERAND (iref
, 1)));
10282 /* MEM[&a.b, CST2] -> MEM[&a, offsetof (a, b) + CST2]. */
10283 if (TREE_CODE (arg0
) == ADDR_EXPR
10284 && handled_component_p (TREE_OPERAND (arg0
, 0)))
10287 HOST_WIDE_INT coffset
;
10288 base
= get_addr_base_and_unit_offset (TREE_OPERAND (arg0
, 0),
10292 return fold_build2 (MEM_REF
, type
,
10293 build_fold_addr_expr (base
),
10294 int_const_binop (PLUS_EXPR
, arg1
,
10295 size_int (coffset
)));
10300 case POINTER_PLUS_EXPR
:
10301 /* 0 +p index -> (type)index */
10302 if (integer_zerop (arg0
))
10303 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg1
));
10305 /* PTR +p 0 -> PTR */
10306 if (integer_zerop (arg1
))
10307 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
10309 /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */
10310 if (INTEGRAL_TYPE_P (TREE_TYPE (arg1
))
10311 && INTEGRAL_TYPE_P (TREE_TYPE (arg0
)))
10312 return fold_convert_loc (loc
, type
,
10313 fold_build2_loc (loc
, PLUS_EXPR
, sizetype
,
10314 fold_convert_loc (loc
, sizetype
,
10316 fold_convert_loc (loc
, sizetype
,
10319 /* (PTR +p B) +p A -> PTR +p (B + A) */
10320 if (TREE_CODE (arg0
) == POINTER_PLUS_EXPR
)
10323 tree arg01
= fold_convert_loc (loc
, sizetype
, TREE_OPERAND (arg0
, 1));
10324 tree arg00
= TREE_OPERAND (arg0
, 0);
10325 inner
= fold_build2_loc (loc
, PLUS_EXPR
, sizetype
,
10326 arg01
, fold_convert_loc (loc
, sizetype
, arg1
));
10327 return fold_convert_loc (loc
, type
,
10328 fold_build_pointer_plus_loc (loc
,
10332 /* PTR_CST +p CST -> CST1 */
10333 if (TREE_CODE (arg0
) == INTEGER_CST
&& TREE_CODE (arg1
) == INTEGER_CST
)
10334 return fold_build2_loc (loc
, PLUS_EXPR
, type
, arg0
,
10335 fold_convert_loc (loc
, type
, arg1
));
10337 /* Try replacing &a[i1] +p c * i2 with &a[i1 + i2], if c is step
10338 of the array. Loop optimizer sometimes produce this type of
10340 if (TREE_CODE (arg0
) == ADDR_EXPR
)
10342 tem
= try_move_mult_to_index (loc
, arg0
,
10343 fold_convert_loc (loc
,
10346 return fold_convert_loc (loc
, type
, tem
);
10352 /* A + (-B) -> A - B */
10353 if (TREE_CODE (arg1
) == NEGATE_EXPR
10354 && (flag_sanitize
& SANITIZE_SI_OVERFLOW
) == 0)
10355 return fold_build2_loc (loc
, MINUS_EXPR
, type
,
10356 fold_convert_loc (loc
, type
, arg0
),
10357 fold_convert_loc (loc
, type
,
10358 TREE_OPERAND (arg1
, 0)));
10359 /* (-A) + B -> B - A */
10360 if (TREE_CODE (arg0
) == NEGATE_EXPR
10361 && reorder_operands_p (TREE_OPERAND (arg0
, 0), arg1
)
10362 && (flag_sanitize
& SANITIZE_SI_OVERFLOW
) == 0)
10363 return fold_build2_loc (loc
, MINUS_EXPR
, type
,
10364 fold_convert_loc (loc
, type
, arg1
),
10365 fold_convert_loc (loc
, type
,
10366 TREE_OPERAND (arg0
, 0)));
10368 if (INTEGRAL_TYPE_P (type
) || VECTOR_INTEGER_TYPE_P (type
))
10370 /* Convert ~A + 1 to -A. */
10371 if (TREE_CODE (arg0
) == BIT_NOT_EXPR
10372 && integer_onep (arg1
))
10373 return fold_build1_loc (loc
, NEGATE_EXPR
, type
,
10374 fold_convert_loc (loc
, type
,
10375 TREE_OPERAND (arg0
, 0)));
10377 /* ~X + X is -1. */
10378 if (TREE_CODE (arg0
) == BIT_NOT_EXPR
10379 && !TYPE_OVERFLOW_TRAPS (type
))
10381 tree tem
= TREE_OPERAND (arg0
, 0);
10384 if (operand_equal_p (tem
, arg1
, 0))
10386 t1
= build_all_ones_cst (type
);
10387 return omit_one_operand_loc (loc
, type
, t1
, arg1
);
10391 /* X + ~X is -1. */
10392 if (TREE_CODE (arg1
) == BIT_NOT_EXPR
10393 && !TYPE_OVERFLOW_TRAPS (type
))
10395 tree tem
= TREE_OPERAND (arg1
, 0);
10398 if (operand_equal_p (arg0
, tem
, 0))
10400 t1
= build_all_ones_cst (type
);
10401 return omit_one_operand_loc (loc
, type
, t1
, arg0
);
10405 /* X + (X / CST) * -CST is X % CST. */
10406 if (TREE_CODE (arg1
) == MULT_EXPR
10407 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == TRUNC_DIV_EXPR
10408 && operand_equal_p (arg0
,
10409 TREE_OPERAND (TREE_OPERAND (arg1
, 0), 0), 0))
10411 tree cst0
= TREE_OPERAND (TREE_OPERAND (arg1
, 0), 1);
10412 tree cst1
= TREE_OPERAND (arg1
, 1);
10413 tree sum
= fold_binary_loc (loc
, PLUS_EXPR
, TREE_TYPE (cst1
),
10415 if (sum
&& integer_zerop (sum
))
10416 return fold_convert_loc (loc
, type
,
10417 fold_build2_loc (loc
, TRUNC_MOD_EXPR
,
10418 TREE_TYPE (arg0
), arg0
,
10423 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the same or
10424 one. Make sure the type is not saturating and has the signedness of
10425 the stripped operands, as fold_plusminus_mult_expr will re-associate.
10426 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
10427 if ((TREE_CODE (arg0
) == MULT_EXPR
10428 || TREE_CODE (arg1
) == MULT_EXPR
)
10429 && !TYPE_SATURATING (type
)
10430 && TYPE_UNSIGNED (type
) == TYPE_UNSIGNED (TREE_TYPE (arg0
))
10431 && TYPE_UNSIGNED (type
) == TYPE_UNSIGNED (TREE_TYPE (arg1
))
10432 && (!FLOAT_TYPE_P (type
) || flag_associative_math
))
10434 tree tem
= fold_plusminus_mult_expr (loc
, code
, type
, arg0
, arg1
);
10439 if (! FLOAT_TYPE_P (type
))
10441 if (integer_zerop (arg1
))
10442 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
10444 /* If we are adding two BIT_AND_EXPR's, both of which are and'ing
10445 with a constant, and the two constants have no bits in common,
10446 we should treat this as a BIT_IOR_EXPR since this may produce more
10447 simplifications. */
10448 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10449 && TREE_CODE (arg1
) == BIT_AND_EXPR
10450 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
10451 && TREE_CODE (TREE_OPERAND (arg1
, 1)) == INTEGER_CST
10452 && integer_zerop (const_binop (BIT_AND_EXPR
,
10453 TREE_OPERAND (arg0
, 1),
10454 TREE_OPERAND (arg1
, 1))))
10456 code
= BIT_IOR_EXPR
;
10460 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
10461 (plus (plus (mult) (mult)) (foo)) so that we can
10462 take advantage of the factoring cases below. */
10463 if (TYPE_OVERFLOW_WRAPS (type
)
10464 && (((TREE_CODE (arg0
) == PLUS_EXPR
10465 || TREE_CODE (arg0
) == MINUS_EXPR
)
10466 && TREE_CODE (arg1
) == MULT_EXPR
)
10467 || ((TREE_CODE (arg1
) == PLUS_EXPR
10468 || TREE_CODE (arg1
) == MINUS_EXPR
)
10469 && TREE_CODE (arg0
) == MULT_EXPR
)))
10471 tree parg0
, parg1
, parg
, marg
;
10472 enum tree_code pcode
;
10474 if (TREE_CODE (arg1
) == MULT_EXPR
)
10475 parg
= arg0
, marg
= arg1
;
10477 parg
= arg1
, marg
= arg0
;
10478 pcode
= TREE_CODE (parg
);
10479 parg0
= TREE_OPERAND (parg
, 0);
10480 parg1
= TREE_OPERAND (parg
, 1);
10481 STRIP_NOPS (parg0
);
10482 STRIP_NOPS (parg1
);
10484 if (TREE_CODE (parg0
) == MULT_EXPR
10485 && TREE_CODE (parg1
) != MULT_EXPR
)
10486 return fold_build2_loc (loc
, pcode
, type
,
10487 fold_build2_loc (loc
, PLUS_EXPR
, type
,
10488 fold_convert_loc (loc
, type
,
10490 fold_convert_loc (loc
, type
,
10492 fold_convert_loc (loc
, type
, parg1
));
10493 if (TREE_CODE (parg0
) != MULT_EXPR
10494 && TREE_CODE (parg1
) == MULT_EXPR
)
10496 fold_build2_loc (loc
, PLUS_EXPR
, type
,
10497 fold_convert_loc (loc
, type
, parg0
),
10498 fold_build2_loc (loc
, pcode
, type
,
10499 fold_convert_loc (loc
, type
, marg
),
10500 fold_convert_loc (loc
, type
,
10506 /* See if ARG1 is zero and X + ARG1 reduces to X. */
10507 if (fold_real_zero_addition_p (TREE_TYPE (arg0
), arg1
, 0))
10508 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
10510 /* Likewise if the operands are reversed. */
10511 if (fold_real_zero_addition_p (TREE_TYPE (arg1
), arg0
, 0))
10512 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg1
));
10514 /* Convert X + -C into X - C. */
10515 if (TREE_CODE (arg1
) == REAL_CST
10516 && REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1
)))
10518 tem
= fold_negate_const (arg1
, type
);
10519 if (!TREE_OVERFLOW (arg1
) || !flag_trapping_math
)
10520 return fold_build2_loc (loc
, MINUS_EXPR
, type
,
10521 fold_convert_loc (loc
, type
, arg0
),
10522 fold_convert_loc (loc
, type
, tem
));
10525 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y )
10526 to __complex__ ( x, y ). This is not the same for SNaNs or
10527 if signed zeros are involved. */
10528 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0
)))
10529 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0
)))
10530 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0
)))
10532 tree rtype
= TREE_TYPE (TREE_TYPE (arg0
));
10533 tree arg0r
= fold_unary_loc (loc
, REALPART_EXPR
, rtype
, arg0
);
10534 tree arg0i
= fold_unary_loc (loc
, IMAGPART_EXPR
, rtype
, arg0
);
10535 bool arg0rz
= false, arg0iz
= false;
10536 if ((arg0r
&& (arg0rz
= real_zerop (arg0r
)))
10537 || (arg0i
&& (arg0iz
= real_zerop (arg0i
))))
10539 tree arg1r
= fold_unary_loc (loc
, REALPART_EXPR
, rtype
, arg1
);
10540 tree arg1i
= fold_unary_loc (loc
, IMAGPART_EXPR
, rtype
, arg1
);
10541 if (arg0rz
&& arg1i
&& real_zerop (arg1i
))
10543 tree rp
= arg1r
? arg1r
10544 : build1 (REALPART_EXPR
, rtype
, arg1
);
10545 tree ip
= arg0i
? arg0i
10546 : build1 (IMAGPART_EXPR
, rtype
, arg0
);
10547 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rp
, ip
);
10549 else if (arg0iz
&& arg1r
&& real_zerop (arg1r
))
10551 tree rp
= arg0r
? arg0r
10552 : build1 (REALPART_EXPR
, rtype
, arg0
);
10553 tree ip
= arg1i
? arg1i
10554 : build1 (IMAGPART_EXPR
, rtype
, arg1
);
10555 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rp
, ip
);
10560 if (flag_unsafe_math_optimizations
10561 && (TREE_CODE (arg0
) == RDIV_EXPR
|| TREE_CODE (arg0
) == MULT_EXPR
)
10562 && (TREE_CODE (arg1
) == RDIV_EXPR
|| TREE_CODE (arg1
) == MULT_EXPR
)
10563 && (tem
= distribute_real_division (loc
, code
, type
, arg0
, arg1
)))
10566 /* Convert x+x into x*2.0. */
10567 if (operand_equal_p (arg0
, arg1
, 0)
10568 && SCALAR_FLOAT_TYPE_P (type
))
10569 return fold_build2_loc (loc
, MULT_EXPR
, type
, arg0
,
10570 build_real (type
, dconst2
));
10572 /* Convert a + (b*c + d*e) into (a + b*c) + d*e.
10573 We associate floats only if the user has specified
10574 -fassociative-math. */
10575 if (flag_associative_math
10576 && TREE_CODE (arg1
) == PLUS_EXPR
10577 && TREE_CODE (arg0
) != MULT_EXPR
)
10579 tree tree10
= TREE_OPERAND (arg1
, 0);
10580 tree tree11
= TREE_OPERAND (arg1
, 1);
10581 if (TREE_CODE (tree11
) == MULT_EXPR
10582 && TREE_CODE (tree10
) == MULT_EXPR
)
10585 tree0
= fold_build2_loc (loc
, PLUS_EXPR
, type
, arg0
, tree10
);
10586 return fold_build2_loc (loc
, PLUS_EXPR
, type
, tree0
, tree11
);
10589 /* Convert (b*c + d*e) + a into b*c + (d*e +a).
10590 We associate floats only if the user has specified
10591 -fassociative-math. */
10592 if (flag_associative_math
10593 && TREE_CODE (arg0
) == PLUS_EXPR
10594 && TREE_CODE (arg1
) != MULT_EXPR
)
10596 tree tree00
= TREE_OPERAND (arg0
, 0);
10597 tree tree01
= TREE_OPERAND (arg0
, 1);
10598 if (TREE_CODE (tree01
) == MULT_EXPR
10599 && TREE_CODE (tree00
) == MULT_EXPR
)
10602 tree0
= fold_build2_loc (loc
, PLUS_EXPR
, type
, tree01
, arg1
);
10603 return fold_build2_loc (loc
, PLUS_EXPR
, type
, tree00
, tree0
);
10609 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
10610 is a rotate of A by C1 bits. */
10611 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
10612 is a rotate of A by B bits. */
10614 enum tree_code code0
, code1
;
10616 code0
= TREE_CODE (arg0
);
10617 code1
= TREE_CODE (arg1
);
10618 if (((code0
== RSHIFT_EXPR
&& code1
== LSHIFT_EXPR
)
10619 || (code1
== RSHIFT_EXPR
&& code0
== LSHIFT_EXPR
))
10620 && operand_equal_p (TREE_OPERAND (arg0
, 0),
10621 TREE_OPERAND (arg1
, 0), 0)
10622 && (rtype
= TREE_TYPE (TREE_OPERAND (arg0
, 0)),
10623 TYPE_UNSIGNED (rtype
))
10624 /* Only create rotates in complete modes. Other cases are not
10625 expanded properly. */
10626 && (element_precision (rtype
)
10627 == element_precision (TYPE_MODE (rtype
))))
10629 tree tree01
, tree11
;
10630 enum tree_code code01
, code11
;
10632 tree01
= TREE_OPERAND (arg0
, 1);
10633 tree11
= TREE_OPERAND (arg1
, 1);
10634 STRIP_NOPS (tree01
);
10635 STRIP_NOPS (tree11
);
10636 code01
= TREE_CODE (tree01
);
10637 code11
= TREE_CODE (tree11
);
10638 if (code01
== INTEGER_CST
10639 && code11
== INTEGER_CST
10640 && TREE_INT_CST_HIGH (tree01
) == 0
10641 && TREE_INT_CST_HIGH (tree11
) == 0
10642 && ((TREE_INT_CST_LOW (tree01
) + TREE_INT_CST_LOW (tree11
))
10643 == element_precision (TREE_TYPE (TREE_OPERAND (arg0
, 0)))))
10645 tem
= build2_loc (loc
, LROTATE_EXPR
,
10646 TREE_TYPE (TREE_OPERAND (arg0
, 0)),
10647 TREE_OPERAND (arg0
, 0),
10648 code0
== LSHIFT_EXPR
? tree01
: tree11
);
10649 return fold_convert_loc (loc
, type
, tem
);
10651 else if (code11
== MINUS_EXPR
)
10653 tree tree110
, tree111
;
10654 tree110
= TREE_OPERAND (tree11
, 0);
10655 tree111
= TREE_OPERAND (tree11
, 1);
10656 STRIP_NOPS (tree110
);
10657 STRIP_NOPS (tree111
);
10658 if (TREE_CODE (tree110
) == INTEGER_CST
10659 && 0 == compare_tree_int (tree110
,
10661 (TREE_TYPE (TREE_OPERAND
10663 && operand_equal_p (tree01
, tree111
, 0))
10665 fold_convert_loc (loc
, type
,
10666 build2 ((code0
== LSHIFT_EXPR
10669 TREE_TYPE (TREE_OPERAND (arg0
, 0)),
10670 TREE_OPERAND (arg0
, 0), tree01
));
10672 else if (code01
== MINUS_EXPR
)
10674 tree tree010
, tree011
;
10675 tree010
= TREE_OPERAND (tree01
, 0);
10676 tree011
= TREE_OPERAND (tree01
, 1);
10677 STRIP_NOPS (tree010
);
10678 STRIP_NOPS (tree011
);
10679 if (TREE_CODE (tree010
) == INTEGER_CST
10680 && 0 == compare_tree_int (tree010
,
10682 (TREE_TYPE (TREE_OPERAND
10684 && operand_equal_p (tree11
, tree011
, 0))
10685 return fold_convert_loc
10687 build2 ((code0
!= LSHIFT_EXPR
10690 TREE_TYPE (TREE_OPERAND (arg0
, 0)),
10691 TREE_OPERAND (arg0
, 0), tree11
));
10697 /* In most languages, can't associate operations on floats through
10698 parentheses. Rather than remember where the parentheses were, we
10699 don't associate floats at all, unless the user has specified
10700 -fassociative-math.
10701 And, we need to make sure type is not saturating. */
10703 if ((! FLOAT_TYPE_P (type
) || flag_associative_math
)
10704 && !TYPE_SATURATING (type
))
10706 tree var0
, con0
, lit0
, minus_lit0
;
10707 tree var1
, con1
, lit1
, minus_lit1
;
10711 /* Split both trees into variables, constants, and literals. Then
10712 associate each group together, the constants with literals,
10713 then the result with variables. This increases the chances of
10714 literals being recombined later and of generating relocatable
10715 expressions for the sum of a constant and literal. */
10716 var0
= split_tree (arg0
, code
, &con0
, &lit0
, &minus_lit0
, 0);
10717 var1
= split_tree (arg1
, code
, &con1
, &lit1
, &minus_lit1
,
10718 code
== MINUS_EXPR
);
10720 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
10721 if (code
== MINUS_EXPR
)
10724 /* With undefined overflow prefer doing association in a type
10725 which wraps on overflow, if that is one of the operand types. */
10726 if ((POINTER_TYPE_P (type
) && POINTER_TYPE_OVERFLOW_UNDEFINED
)
10727 || (INTEGRAL_TYPE_P (type
) && !TYPE_OVERFLOW_WRAPS (type
)))
10729 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
10730 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0
)))
10731 atype
= TREE_TYPE (arg0
);
10732 else if (INTEGRAL_TYPE_P (TREE_TYPE (arg1
))
10733 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1
)))
10734 atype
= TREE_TYPE (arg1
);
10735 gcc_assert (TYPE_PRECISION (atype
) == TYPE_PRECISION (type
));
10738 /* With undefined overflow we can only associate constants with one
10739 variable, and constants whose association doesn't overflow. */
10740 if ((POINTER_TYPE_P (atype
) && POINTER_TYPE_OVERFLOW_UNDEFINED
)
10741 || (INTEGRAL_TYPE_P (atype
) && !TYPE_OVERFLOW_WRAPS (atype
)))
10748 if (TREE_CODE (tmp0
) == NEGATE_EXPR
)
10749 tmp0
= TREE_OPERAND (tmp0
, 0);
10750 if (CONVERT_EXPR_P (tmp0
)
10751 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp0
, 0)))
10752 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp0
, 0)))
10753 <= TYPE_PRECISION (atype
)))
10754 tmp0
= TREE_OPERAND (tmp0
, 0);
10755 if (TREE_CODE (tmp1
) == NEGATE_EXPR
)
10756 tmp1
= TREE_OPERAND (tmp1
, 0);
10757 if (CONVERT_EXPR_P (tmp1
)
10758 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp1
, 0)))
10759 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp1
, 0)))
10760 <= TYPE_PRECISION (atype
)))
10761 tmp1
= TREE_OPERAND (tmp1
, 0);
10762 /* The only case we can still associate with two variables
10763 is if they are the same, modulo negation and bit-pattern
10764 preserving conversions. */
10765 if (!operand_equal_p (tmp0
, tmp1
, 0))
10770 /* Only do something if we found more than two objects. Otherwise,
10771 nothing has changed and we risk infinite recursion. */
10773 && (2 < ((var0
!= 0) + (var1
!= 0)
10774 + (con0
!= 0) + (con1
!= 0)
10775 + (lit0
!= 0) + (lit1
!= 0)
10776 + (minus_lit0
!= 0) + (minus_lit1
!= 0))))
10778 bool any_overflows
= false;
10779 if (lit0
) any_overflows
|= TREE_OVERFLOW (lit0
);
10780 if (lit1
) any_overflows
|= TREE_OVERFLOW (lit1
);
10781 if (minus_lit0
) any_overflows
|= TREE_OVERFLOW (minus_lit0
);
10782 if (minus_lit1
) any_overflows
|= TREE_OVERFLOW (minus_lit1
);
10783 var0
= associate_trees (loc
, var0
, var1
, code
, atype
);
10784 con0
= associate_trees (loc
, con0
, con1
, code
, atype
);
10785 lit0
= associate_trees (loc
, lit0
, lit1
, code
, atype
);
10786 minus_lit0
= associate_trees (loc
, minus_lit0
, minus_lit1
,
10789 /* Preserve the MINUS_EXPR if the negative part of the literal is
10790 greater than the positive part. Otherwise, the multiplicative
10791 folding code (i.e extract_muldiv) may be fooled in case
10792 unsigned constants are subtracted, like in the following
10793 example: ((X*2 + 4) - 8U)/2. */
10794 if (minus_lit0
&& lit0
)
10796 if (TREE_CODE (lit0
) == INTEGER_CST
10797 && TREE_CODE (minus_lit0
) == INTEGER_CST
10798 && tree_int_cst_lt (lit0
, minus_lit0
))
10800 minus_lit0
= associate_trees (loc
, minus_lit0
, lit0
,
10801 MINUS_EXPR
, atype
);
10806 lit0
= associate_trees (loc
, lit0
, minus_lit0
,
10807 MINUS_EXPR
, atype
);
10812 /* Don't introduce overflows through reassociation. */
10814 && ((lit0
&& TREE_OVERFLOW (lit0
))
10815 || (minus_lit0
&& TREE_OVERFLOW (minus_lit0
))))
10822 fold_convert_loc (loc
, type
,
10823 associate_trees (loc
, var0
, minus_lit0
,
10824 MINUS_EXPR
, atype
));
10827 con0
= associate_trees (loc
, con0
, minus_lit0
,
10828 MINUS_EXPR
, atype
);
10830 fold_convert_loc (loc
, type
,
10831 associate_trees (loc
, var0
, con0
,
10832 PLUS_EXPR
, atype
));
10836 con0
= associate_trees (loc
, con0
, lit0
, code
, atype
);
10838 fold_convert_loc (loc
, type
, associate_trees (loc
, var0
, con0
,
10846 /* Pointer simplifications for subtraction, simple reassociations. */
10847 if (POINTER_TYPE_P (TREE_TYPE (arg1
)) && POINTER_TYPE_P (TREE_TYPE (arg0
)))
10849 /* (PTR0 p+ A) - (PTR1 p+ B) -> (PTR0 - PTR1) + (A - B) */
10850 if (TREE_CODE (arg0
) == POINTER_PLUS_EXPR
10851 && TREE_CODE (arg1
) == POINTER_PLUS_EXPR
)
10853 tree arg00
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10854 tree arg01
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 1));
10855 tree arg10
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg1
, 0));
10856 tree arg11
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg1
, 1));
10857 return fold_build2_loc (loc
, PLUS_EXPR
, type
,
10858 fold_build2_loc (loc
, MINUS_EXPR
, type
,
10860 fold_build2_loc (loc
, MINUS_EXPR
, type
,
10863 /* (PTR0 p+ A) - PTR1 -> (PTR0 - PTR1) + A, assuming PTR0 - PTR1 simplifies. */
10864 else if (TREE_CODE (arg0
) == POINTER_PLUS_EXPR
)
10866 tree arg00
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10867 tree arg01
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 1));
10868 tree tmp
= fold_binary_loc (loc
, MINUS_EXPR
, type
, arg00
,
10869 fold_convert_loc (loc
, type
, arg1
));
10871 return fold_build2_loc (loc
, PLUS_EXPR
, type
, tmp
, arg01
);
10874 /* A - (-B) -> A + B */
10875 if (TREE_CODE (arg1
) == NEGATE_EXPR
)
10876 return fold_build2_loc (loc
, PLUS_EXPR
, type
, op0
,
10877 fold_convert_loc (loc
, type
,
10878 TREE_OPERAND (arg1
, 0)));
10879 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
10880 if (TREE_CODE (arg0
) == NEGATE_EXPR
10881 && negate_expr_p (arg1
)
10882 && reorder_operands_p (arg0
, arg1
))
10883 return fold_build2_loc (loc
, MINUS_EXPR
, type
,
10884 fold_convert_loc (loc
, type
,
10885 negate_expr (arg1
)),
10886 fold_convert_loc (loc
, type
,
10887 TREE_OPERAND (arg0
, 0)));
10888 /* Convert -A - 1 to ~A. */
10889 if (TREE_CODE (type
) != COMPLEX_TYPE
10890 && TREE_CODE (arg0
) == NEGATE_EXPR
10891 && integer_onep (arg1
)
10892 && !TYPE_OVERFLOW_TRAPS (type
))
10893 return fold_build1_loc (loc
, BIT_NOT_EXPR
, type
,
10894 fold_convert_loc (loc
, type
,
10895 TREE_OPERAND (arg0
, 0)));
10897 /* Convert -1 - A to ~A. */
10898 if (TREE_CODE (type
) != COMPLEX_TYPE
10899 && integer_all_onesp (arg0
))
10900 return fold_build1_loc (loc
, BIT_NOT_EXPR
, type
, op1
);
10903 /* X - (X / Y) * Y is X % Y. */
10904 if ((INTEGRAL_TYPE_P (type
) || VECTOR_INTEGER_TYPE_P (type
))
10905 && TREE_CODE (arg1
) == MULT_EXPR
10906 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == TRUNC_DIV_EXPR
10907 && operand_equal_p (arg0
,
10908 TREE_OPERAND (TREE_OPERAND (arg1
, 0), 0), 0)
10909 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg1
, 0), 1),
10910 TREE_OPERAND (arg1
, 1), 0))
10912 fold_convert_loc (loc
, type
,
10913 fold_build2_loc (loc
, TRUNC_MOD_EXPR
, TREE_TYPE (arg0
),
10914 arg0
, TREE_OPERAND (arg1
, 1)));
10916 if (! FLOAT_TYPE_P (type
))
10918 if (integer_zerop (arg0
))
10919 return negate_expr (fold_convert_loc (loc
, type
, arg1
));
10920 if (integer_zerop (arg1
))
10921 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
10923 /* Fold A - (A & B) into ~B & A. */
10924 if (!TREE_SIDE_EFFECTS (arg0
)
10925 && TREE_CODE (arg1
) == BIT_AND_EXPR
)
10927 if (operand_equal_p (arg0
, TREE_OPERAND (arg1
, 1), 0))
10929 tree arg10
= fold_convert_loc (loc
, type
,
10930 TREE_OPERAND (arg1
, 0));
10931 return fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
10932 fold_build1_loc (loc
, BIT_NOT_EXPR
,
10934 fold_convert_loc (loc
, type
, arg0
));
10936 if (operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10938 tree arg11
= fold_convert_loc (loc
,
10939 type
, TREE_OPERAND (arg1
, 1));
10940 return fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
10941 fold_build1_loc (loc
, BIT_NOT_EXPR
,
10943 fold_convert_loc (loc
, type
, arg0
));
10947 /* Fold (A & ~B) - (A & B) into (A ^ B) - B, where B is
10948 any power of 2 minus 1. */
10949 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10950 && TREE_CODE (arg1
) == BIT_AND_EXPR
10951 && operand_equal_p (TREE_OPERAND (arg0
, 0),
10952 TREE_OPERAND (arg1
, 0), 0))
10954 tree mask0
= TREE_OPERAND (arg0
, 1);
10955 tree mask1
= TREE_OPERAND (arg1
, 1);
10956 tree tem
= fold_build1_loc (loc
, BIT_NOT_EXPR
, type
, mask0
);
10958 if (operand_equal_p (tem
, mask1
, 0))
10960 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, type
,
10961 TREE_OPERAND (arg0
, 0), mask1
);
10962 return fold_build2_loc (loc
, MINUS_EXPR
, type
, tem
, mask1
);
10967 /* See if ARG1 is zero and X - ARG1 reduces to X. */
10968 else if (fold_real_zero_addition_p (TREE_TYPE (arg0
), arg1
, 1))
10969 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
10971 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
10972 ARG0 is zero and X + ARG0 reduces to X, since that would mean
10973 (-ARG1 + ARG0) reduces to -ARG1. */
10974 else if (fold_real_zero_addition_p (TREE_TYPE (arg1
), arg0
, 0))
10975 return negate_expr (fold_convert_loc (loc
, type
, arg1
));
10977 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to
10978 __complex__ ( x, -y ). This is not the same for SNaNs or if
10979 signed zeros are involved. */
10980 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0
)))
10981 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0
)))
10982 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0
)))
10984 tree rtype
= TREE_TYPE (TREE_TYPE (arg0
));
10985 tree arg0r
= fold_unary_loc (loc
, REALPART_EXPR
, rtype
, arg0
);
10986 tree arg0i
= fold_unary_loc (loc
, IMAGPART_EXPR
, rtype
, arg0
);
10987 bool arg0rz
= false, arg0iz
= false;
10988 if ((arg0r
&& (arg0rz
= real_zerop (arg0r
)))
10989 || (arg0i
&& (arg0iz
= real_zerop (arg0i
))))
10991 tree arg1r
= fold_unary_loc (loc
, REALPART_EXPR
, rtype
, arg1
);
10992 tree arg1i
= fold_unary_loc (loc
, IMAGPART_EXPR
, rtype
, arg1
);
10993 if (arg0rz
&& arg1i
&& real_zerop (arg1i
))
10995 tree rp
= fold_build1_loc (loc
, NEGATE_EXPR
, rtype
,
10997 : build1 (REALPART_EXPR
, rtype
, arg1
));
10998 tree ip
= arg0i
? arg0i
10999 : build1 (IMAGPART_EXPR
, rtype
, arg0
);
11000 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rp
, ip
);
11002 else if (arg0iz
&& arg1r
&& real_zerop (arg1r
))
11004 tree rp
= arg0r
? arg0r
11005 : build1 (REALPART_EXPR
, rtype
, arg0
);
11006 tree ip
= fold_build1_loc (loc
, NEGATE_EXPR
, rtype
,
11008 : build1 (IMAGPART_EXPR
, rtype
, arg1
));
11009 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rp
, ip
);
11014 /* Fold &x - &x. This can happen from &x.foo - &x.
11015 This is unsafe for certain floats even in non-IEEE formats.
11016 In IEEE, it is unsafe because it does wrong for NaNs.
11017 Also note that operand_equal_p is always false if an operand
11020 if ((!FLOAT_TYPE_P (type
) || !HONOR_NANS (TYPE_MODE (type
)))
11021 && operand_equal_p (arg0
, arg1
, 0))
11022 return build_zero_cst (type
);
11024 /* A - B -> A + (-B) if B is easily negatable. */
11025 if (negate_expr_p (arg1
)
11026 && ((FLOAT_TYPE_P (type
)
11027 /* Avoid this transformation if B is a positive REAL_CST. */
11028 && (TREE_CODE (arg1
) != REAL_CST
11029 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1
))))
11030 || INTEGRAL_TYPE_P (type
)))
11031 return fold_build2_loc (loc
, PLUS_EXPR
, type
,
11032 fold_convert_loc (loc
, type
, arg0
),
11033 fold_convert_loc (loc
, type
,
11034 negate_expr (arg1
)));
11036 /* Try folding difference of addresses. */
11038 HOST_WIDE_INT diff
;
11040 if ((TREE_CODE (arg0
) == ADDR_EXPR
11041 || TREE_CODE (arg1
) == ADDR_EXPR
)
11042 && ptr_difference_const (arg0
, arg1
, &diff
))
11043 return build_int_cst_type (type
, diff
);
11046 /* Fold &a[i] - &a[j] to i-j. */
11047 if (TREE_CODE (arg0
) == ADDR_EXPR
11048 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == ARRAY_REF
11049 && TREE_CODE (arg1
) == ADDR_EXPR
11050 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == ARRAY_REF
)
11052 tree tem
= fold_addr_of_array_ref_difference (loc
, type
,
11053 TREE_OPERAND (arg0
, 0),
11054 TREE_OPERAND (arg1
, 0));
11059 if (FLOAT_TYPE_P (type
)
11060 && flag_unsafe_math_optimizations
11061 && (TREE_CODE (arg0
) == RDIV_EXPR
|| TREE_CODE (arg0
) == MULT_EXPR
)
11062 && (TREE_CODE (arg1
) == RDIV_EXPR
|| TREE_CODE (arg1
) == MULT_EXPR
)
11063 && (tem
= distribute_real_division (loc
, code
, type
, arg0
, arg1
)))
11066 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the same or
11067 one. Make sure the type is not saturating and has the signedness of
11068 the stripped operands, as fold_plusminus_mult_expr will re-associate.
11069 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
11070 if ((TREE_CODE (arg0
) == MULT_EXPR
11071 || TREE_CODE (arg1
) == MULT_EXPR
)
11072 && !TYPE_SATURATING (type
)
11073 && TYPE_UNSIGNED (type
) == TYPE_UNSIGNED (TREE_TYPE (arg0
))
11074 && TYPE_UNSIGNED (type
) == TYPE_UNSIGNED (TREE_TYPE (arg1
))
11075 && (!FLOAT_TYPE_P (type
) || flag_associative_math
))
11077 tree tem
= fold_plusminus_mult_expr (loc
, code
, type
, arg0
, arg1
);
11085 /* (-A) * (-B) -> A * B */
11086 if (TREE_CODE (arg0
) == NEGATE_EXPR
&& negate_expr_p (arg1
))
11087 return fold_build2_loc (loc
, MULT_EXPR
, type
,
11088 fold_convert_loc (loc
, type
,
11089 TREE_OPERAND (arg0
, 0)),
11090 fold_convert_loc (loc
, type
,
11091 negate_expr (arg1
)));
11092 if (TREE_CODE (arg1
) == NEGATE_EXPR
&& negate_expr_p (arg0
))
11093 return fold_build2_loc (loc
, MULT_EXPR
, type
,
11094 fold_convert_loc (loc
, type
,
11095 negate_expr (arg0
)),
11096 fold_convert_loc (loc
, type
,
11097 TREE_OPERAND (arg1
, 0)));
11099 if (! FLOAT_TYPE_P (type
))
11101 if (integer_zerop (arg1
))
11102 return omit_one_operand_loc (loc
, type
, arg1
, arg0
);
11103 if (integer_onep (arg1
))
11104 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
11105 /* Transform x * -1 into -x. Make sure to do the negation
11106 on the original operand with conversions not stripped
11107 because we can only strip non-sign-changing conversions. */
11108 if (integer_minus_onep (arg1
))
11109 return fold_convert_loc (loc
, type
, negate_expr (op0
));
11110 /* Transform x * -C into -x * C if x is easily negatable. */
11111 if (TREE_CODE (arg1
) == INTEGER_CST
11112 && tree_int_cst_sgn (arg1
) == -1
11113 && negate_expr_p (arg0
)
11114 && (tem
= negate_expr (arg1
)) != arg1
11115 && !TREE_OVERFLOW (tem
))
11116 return fold_build2_loc (loc
, MULT_EXPR
, type
,
11117 fold_convert_loc (loc
, type
,
11118 negate_expr (arg0
)),
11121 /* (a * (1 << b)) is (a << b) */
11122 if (TREE_CODE (arg1
) == LSHIFT_EXPR
11123 && integer_onep (TREE_OPERAND (arg1
, 0)))
11124 return fold_build2_loc (loc
, LSHIFT_EXPR
, type
, op0
,
11125 TREE_OPERAND (arg1
, 1));
11126 if (TREE_CODE (arg0
) == LSHIFT_EXPR
11127 && integer_onep (TREE_OPERAND (arg0
, 0)))
11128 return fold_build2_loc (loc
, LSHIFT_EXPR
, type
, op1
,
11129 TREE_OPERAND (arg0
, 1));
11131 /* (A + A) * C -> A * 2 * C */
11132 if (TREE_CODE (arg0
) == PLUS_EXPR
11133 && TREE_CODE (arg1
) == INTEGER_CST
11134 && operand_equal_p (TREE_OPERAND (arg0
, 0),
11135 TREE_OPERAND (arg0
, 1), 0))
11136 return fold_build2_loc (loc
, MULT_EXPR
, type
,
11137 omit_one_operand_loc (loc
, type
,
11138 TREE_OPERAND (arg0
, 0),
11139 TREE_OPERAND (arg0
, 1)),
11140 fold_build2_loc (loc
, MULT_EXPR
, type
,
11141 build_int_cst (type
, 2) , arg1
));
11143 /* ((T) (X /[ex] C)) * C cancels out if the conversion is
11144 sign-changing only. */
11145 if (TREE_CODE (arg1
) == INTEGER_CST
11146 && TREE_CODE (arg0
) == EXACT_DIV_EXPR
11147 && operand_equal_p (arg1
, TREE_OPERAND (arg0
, 1), 0))
11148 return fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
11150 strict_overflow_p
= false;
11151 if (TREE_CODE (arg1
) == INTEGER_CST
11152 && 0 != (tem
= extract_muldiv (op0
, arg1
, code
, NULL_TREE
,
11153 &strict_overflow_p
)))
11155 if (strict_overflow_p
)
11156 fold_overflow_warning (("assuming signed overflow does not "
11157 "occur when simplifying "
11159 WARN_STRICT_OVERFLOW_MISC
);
11160 return fold_convert_loc (loc
, type
, tem
);
11163 /* Optimize z * conj(z) for integer complex numbers. */
11164 if (TREE_CODE (arg0
) == CONJ_EXPR
11165 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
11166 return fold_mult_zconjz (loc
, type
, arg1
);
11167 if (TREE_CODE (arg1
) == CONJ_EXPR
11168 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
11169 return fold_mult_zconjz (loc
, type
, arg0
);
11173 /* Maybe fold x * 0 to 0. The expressions aren't the same
11174 when x is NaN, since x * 0 is also NaN. Nor are they the
11175 same in modes with signed zeros, since multiplying a
11176 negative value by 0 gives -0, not +0. */
11177 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0
)))
11178 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0
)))
11179 && real_zerop (arg1
))
11180 return omit_one_operand_loc (loc
, type
, arg1
, arg0
);
11181 /* In IEEE floating point, x*1 is not equivalent to x for snans.
11182 Likewise for complex arithmetic with signed zeros. */
11183 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0
)))
11184 && (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0
)))
11185 || !COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0
)))
11186 && real_onep (arg1
))
11187 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
11189 /* Transform x * -1.0 into -x. */
11190 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0
)))
11191 && (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0
)))
11192 || !COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0
)))
11193 && real_minus_onep (arg1
))
11194 return fold_convert_loc (loc
, type
, negate_expr (arg0
));
11196 /* Convert (C1/X)*C2 into (C1*C2)/X. This transformation may change
11197 the result for floating point types due to rounding so it is applied
11198 only if -fassociative-math was specify. */
11199 if (flag_associative_math
11200 && TREE_CODE (arg0
) == RDIV_EXPR
11201 && TREE_CODE (arg1
) == REAL_CST
11202 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == REAL_CST
)
11204 tree tem
= const_binop (MULT_EXPR
, TREE_OPERAND (arg0
, 0),
11207 return fold_build2_loc (loc
, RDIV_EXPR
, type
, tem
,
11208 TREE_OPERAND (arg0
, 1));
11211 /* Strip sign operations from X in X*X, i.e. -Y*-Y -> Y*Y. */
11212 if (operand_equal_p (arg0
, arg1
, 0))
11214 tree tem
= fold_strip_sign_ops (arg0
);
11215 if (tem
!= NULL_TREE
)
11217 tem
= fold_convert_loc (loc
, type
, tem
);
11218 return fold_build2_loc (loc
, MULT_EXPR
, type
, tem
, tem
);
11222 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z).
11223 This is not the same for NaNs or if signed zeros are
11225 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0
)))
11226 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0
)))
11227 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0
))
11228 && TREE_CODE (arg1
) == COMPLEX_CST
11229 && real_zerop (TREE_REALPART (arg1
)))
11231 tree rtype
= TREE_TYPE (TREE_TYPE (arg0
));
11232 if (real_onep (TREE_IMAGPART (arg1
)))
11234 fold_build2_loc (loc
, COMPLEX_EXPR
, type
,
11235 negate_expr (fold_build1_loc (loc
, IMAGPART_EXPR
,
11237 fold_build1_loc (loc
, REALPART_EXPR
, rtype
, arg0
));
11238 else if (real_minus_onep (TREE_IMAGPART (arg1
)))
11240 fold_build2_loc (loc
, COMPLEX_EXPR
, type
,
11241 fold_build1_loc (loc
, IMAGPART_EXPR
, rtype
, arg0
),
11242 negate_expr (fold_build1_loc (loc
, REALPART_EXPR
,
11246 /* Optimize z * conj(z) for floating point complex numbers.
11247 Guarded by flag_unsafe_math_optimizations as non-finite
11248 imaginary components don't produce scalar results. */
11249 if (flag_unsafe_math_optimizations
11250 && TREE_CODE (arg0
) == CONJ_EXPR
11251 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
11252 return fold_mult_zconjz (loc
, type
, arg1
);
11253 if (flag_unsafe_math_optimizations
11254 && TREE_CODE (arg1
) == CONJ_EXPR
11255 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
11256 return fold_mult_zconjz (loc
, type
, arg0
);
11258 if (flag_unsafe_math_optimizations
)
11260 enum built_in_function fcode0
= builtin_mathfn_code (arg0
);
11261 enum built_in_function fcode1
= builtin_mathfn_code (arg1
);
11263 /* Optimizations of root(...)*root(...). */
11264 if (fcode0
== fcode1
&& BUILTIN_ROOT_P (fcode0
))
11267 tree arg00
= CALL_EXPR_ARG (arg0
, 0);
11268 tree arg10
= CALL_EXPR_ARG (arg1
, 0);
11270 /* Optimize sqrt(x)*sqrt(x) as x. */
11271 if (BUILTIN_SQRT_P (fcode0
)
11272 && operand_equal_p (arg00
, arg10
, 0)
11273 && ! HONOR_SNANS (TYPE_MODE (type
)))
11276 /* Optimize root(x)*root(y) as root(x*y). */
11277 rootfn
= TREE_OPERAND (CALL_EXPR_FN (arg0
), 0);
11278 arg
= fold_build2_loc (loc
, MULT_EXPR
, type
, arg00
, arg10
);
11279 return build_call_expr_loc (loc
, rootfn
, 1, arg
);
11282 /* Optimize expN(x)*expN(y) as expN(x+y). */
11283 if (fcode0
== fcode1
&& BUILTIN_EXPONENT_P (fcode0
))
11285 tree expfn
= TREE_OPERAND (CALL_EXPR_FN (arg0
), 0);
11286 tree arg
= fold_build2_loc (loc
, PLUS_EXPR
, type
,
11287 CALL_EXPR_ARG (arg0
, 0),
11288 CALL_EXPR_ARG (arg1
, 0));
11289 return build_call_expr_loc (loc
, expfn
, 1, arg
);
11292 /* Optimizations of pow(...)*pow(...). */
11293 if ((fcode0
== BUILT_IN_POW
&& fcode1
== BUILT_IN_POW
)
11294 || (fcode0
== BUILT_IN_POWF
&& fcode1
== BUILT_IN_POWF
)
11295 || (fcode0
== BUILT_IN_POWL
&& fcode1
== BUILT_IN_POWL
))
11297 tree arg00
= CALL_EXPR_ARG (arg0
, 0);
11298 tree arg01
= CALL_EXPR_ARG (arg0
, 1);
11299 tree arg10
= CALL_EXPR_ARG (arg1
, 0);
11300 tree arg11
= CALL_EXPR_ARG (arg1
, 1);
11302 /* Optimize pow(x,y)*pow(z,y) as pow(x*z,y). */
11303 if (operand_equal_p (arg01
, arg11
, 0))
11305 tree powfn
= TREE_OPERAND (CALL_EXPR_FN (arg0
), 0);
11306 tree arg
= fold_build2_loc (loc
, MULT_EXPR
, type
,
11308 return build_call_expr_loc (loc
, powfn
, 2, arg
, arg01
);
11311 /* Optimize pow(x,y)*pow(x,z) as pow(x,y+z). */
11312 if (operand_equal_p (arg00
, arg10
, 0))
11314 tree powfn
= TREE_OPERAND (CALL_EXPR_FN (arg0
), 0);
11315 tree arg
= fold_build2_loc (loc
, PLUS_EXPR
, type
,
11317 return build_call_expr_loc (loc
, powfn
, 2, arg00
, arg
);
11321 /* Optimize tan(x)*cos(x) as sin(x). */
11322 if (((fcode0
== BUILT_IN_TAN
&& fcode1
== BUILT_IN_COS
)
11323 || (fcode0
== BUILT_IN_TANF
&& fcode1
== BUILT_IN_COSF
)
11324 || (fcode0
== BUILT_IN_TANL
&& fcode1
== BUILT_IN_COSL
)
11325 || (fcode0
== BUILT_IN_COS
&& fcode1
== BUILT_IN_TAN
)
11326 || (fcode0
== BUILT_IN_COSF
&& fcode1
== BUILT_IN_TANF
)
11327 || (fcode0
== BUILT_IN_COSL
&& fcode1
== BUILT_IN_TANL
))
11328 && operand_equal_p (CALL_EXPR_ARG (arg0
, 0),
11329 CALL_EXPR_ARG (arg1
, 0), 0))
11331 tree sinfn
= mathfn_built_in (type
, BUILT_IN_SIN
);
11333 if (sinfn
!= NULL_TREE
)
11334 return build_call_expr_loc (loc
, sinfn
, 1,
11335 CALL_EXPR_ARG (arg0
, 0));
11338 /* Optimize x*pow(x,c) as pow(x,c+1). */
11339 if (fcode1
== BUILT_IN_POW
11340 || fcode1
== BUILT_IN_POWF
11341 || fcode1
== BUILT_IN_POWL
)
11343 tree arg10
= CALL_EXPR_ARG (arg1
, 0);
11344 tree arg11
= CALL_EXPR_ARG (arg1
, 1);
11345 if (TREE_CODE (arg11
) == REAL_CST
11346 && !TREE_OVERFLOW (arg11
)
11347 && operand_equal_p (arg0
, arg10
, 0))
11349 tree powfn
= TREE_OPERAND (CALL_EXPR_FN (arg1
), 0);
11353 c
= TREE_REAL_CST (arg11
);
11354 real_arithmetic (&c
, PLUS_EXPR
, &c
, &dconst1
);
11355 arg
= build_real (type
, c
);
11356 return build_call_expr_loc (loc
, powfn
, 2, arg0
, arg
);
11360 /* Optimize pow(x,c)*x as pow(x,c+1). */
11361 if (fcode0
== BUILT_IN_POW
11362 || fcode0
== BUILT_IN_POWF
11363 || fcode0
== BUILT_IN_POWL
)
11365 tree arg00
= CALL_EXPR_ARG (arg0
, 0);
11366 tree arg01
= CALL_EXPR_ARG (arg0
, 1);
11367 if (TREE_CODE (arg01
) == REAL_CST
11368 && !TREE_OVERFLOW (arg01
)
11369 && operand_equal_p (arg1
, arg00
, 0))
11371 tree powfn
= TREE_OPERAND (CALL_EXPR_FN (arg0
), 0);
11375 c
= TREE_REAL_CST (arg01
);
11376 real_arithmetic (&c
, PLUS_EXPR
, &c
, &dconst1
);
11377 arg
= build_real (type
, c
);
11378 return build_call_expr_loc (loc
, powfn
, 2, arg1
, arg
);
11382 /* Canonicalize x*x as pow(x,2.0), which is expanded as x*x. */
11383 if (!in_gimple_form
11385 && operand_equal_p (arg0
, arg1
, 0))
11387 tree powfn
= mathfn_built_in (type
, BUILT_IN_POW
);
11391 tree arg
= build_real (type
, dconst2
);
11392 return build_call_expr_loc (loc
, powfn
, 2, arg0
, arg
);
11401 if (integer_all_onesp (arg1
))
11402 return omit_one_operand_loc (loc
, type
, arg1
, arg0
);
11403 if (integer_zerop (arg1
))
11404 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
11405 if (operand_equal_p (arg0
, arg1
, 0))
11406 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
11408 /* ~X | X is -1. */
11409 if (TREE_CODE (arg0
) == BIT_NOT_EXPR
11410 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
11412 t1
= build_zero_cst (type
);
11413 t1
= fold_unary_loc (loc
, BIT_NOT_EXPR
, type
, t1
);
11414 return omit_one_operand_loc (loc
, type
, t1
, arg1
);
11417 /* X | ~X is -1. */
11418 if (TREE_CODE (arg1
) == BIT_NOT_EXPR
11419 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
11421 t1
= build_zero_cst (type
);
11422 t1
= fold_unary_loc (loc
, BIT_NOT_EXPR
, type
, t1
);
11423 return omit_one_operand_loc (loc
, type
, t1
, arg0
);
11426 /* Canonicalize (X & C1) | C2. */
11427 if (TREE_CODE (arg0
) == BIT_AND_EXPR
11428 && TREE_CODE (arg1
) == INTEGER_CST
11429 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
11431 double_int c1
, c2
, c3
, msk
;
11432 int width
= TYPE_PRECISION (type
), w
;
11434 c1
= tree_to_double_int (TREE_OPERAND (arg0
, 1));
11435 c2
= tree_to_double_int (arg1
);
11437 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
11438 if ((c1
& c2
) == c1
)
11439 return omit_one_operand_loc (loc
, type
, arg1
,
11440 TREE_OPERAND (arg0
, 0));
11442 msk
= double_int::mask (width
);
11444 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
11445 if (msk
.and_not (c1
| c2
).is_zero ())
11446 return fold_build2_loc (loc
, BIT_IOR_EXPR
, type
,
11447 TREE_OPERAND (arg0
, 0), arg1
);
11449 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2,
11450 unless (C1 & ~C2) | (C2 & C3) for some C3 is a mask of some
11451 mode which allows further optimizations. */
11454 c3
= c1
.and_not (c2
);
11455 for (w
= BITS_PER_UNIT
;
11456 w
<= width
&& w
<= HOST_BITS_PER_WIDE_INT
;
11459 unsigned HOST_WIDE_INT mask
11460 = HOST_WIDE_INT_M1U
>> (HOST_BITS_PER_WIDE_INT
- w
);
11461 if (((c1
.low
| c2
.low
) & mask
) == mask
11462 && (c1
.low
& ~mask
) == 0 && c1
.high
== 0)
11464 c3
= double_int::from_uhwi (mask
);
11470 return fold_build2_loc (loc
, BIT_IOR_EXPR
, type
,
11471 fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
11472 TREE_OPERAND (arg0
, 0),
11473 double_int_to_tree (type
,
11478 /* (X & Y) | Y is (X, Y). */
11479 if (TREE_CODE (arg0
) == BIT_AND_EXPR
11480 && operand_equal_p (TREE_OPERAND (arg0
, 1), arg1
, 0))
11481 return omit_one_operand_loc (loc
, type
, arg1
, TREE_OPERAND (arg0
, 0));
11482 /* (X & Y) | X is (Y, X). */
11483 if (TREE_CODE (arg0
) == BIT_AND_EXPR
11484 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0)
11485 && reorder_operands_p (TREE_OPERAND (arg0
, 1), arg1
))
11486 return omit_one_operand_loc (loc
, type
, arg1
, TREE_OPERAND (arg0
, 1));
11487 /* X | (X & Y) is (Y, X). */
11488 if (TREE_CODE (arg1
) == BIT_AND_EXPR
11489 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0)
11490 && reorder_operands_p (arg0
, TREE_OPERAND (arg1
, 1)))
11491 return omit_one_operand_loc (loc
, type
, arg0
, TREE_OPERAND (arg1
, 1));
11492 /* X | (Y & X) is (Y, X). */
11493 if (TREE_CODE (arg1
) == BIT_AND_EXPR
11494 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 1), 0)
11495 && reorder_operands_p (arg0
, TREE_OPERAND (arg1
, 0)))
11496 return omit_one_operand_loc (loc
, type
, arg0
, TREE_OPERAND (arg1
, 0));
11498 /* (X & ~Y) | (~X & Y) is X ^ Y */
11499 if (TREE_CODE (arg0
) == BIT_AND_EXPR
11500 && TREE_CODE (arg1
) == BIT_AND_EXPR
)
11502 tree a0
, a1
, l0
, l1
, n0
, n1
;
11504 a0
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg1
, 0));
11505 a1
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg1
, 1));
11507 l0
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
11508 l1
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 1));
11510 n0
= fold_build1_loc (loc
, BIT_NOT_EXPR
, type
, l0
);
11511 n1
= fold_build1_loc (loc
, BIT_NOT_EXPR
, type
, l1
);
11513 if ((operand_equal_p (n0
, a0
, 0)
11514 && operand_equal_p (n1
, a1
, 0))
11515 || (operand_equal_p (n0
, a1
, 0)
11516 && operand_equal_p (n1
, a0
, 0)))
11517 return fold_build2_loc (loc
, BIT_XOR_EXPR
, type
, l0
, n1
);
11520 t1
= distribute_bit_expr (loc
, code
, type
, arg0
, arg1
);
11521 if (t1
!= NULL_TREE
)
11524 /* Convert (or (not arg0) (not arg1)) to (not (and (arg0) (arg1))).
11526 This results in more efficient code for machines without a NAND
11527 instruction. Combine will canonicalize to the first form
11528 which will allow use of NAND instructions provided by the
11529 backend if they exist. */
11530 if (TREE_CODE (arg0
) == BIT_NOT_EXPR
11531 && TREE_CODE (arg1
) == BIT_NOT_EXPR
)
11534 fold_build1_loc (loc
, BIT_NOT_EXPR
, type
,
11535 build2 (BIT_AND_EXPR
, type
,
11536 fold_convert_loc (loc
, type
,
11537 TREE_OPERAND (arg0
, 0)),
11538 fold_convert_loc (loc
, type
,
11539 TREE_OPERAND (arg1
, 0))));
11542 /* See if this can be simplified into a rotate first. If that
11543 is unsuccessful continue in the association code. */
11547 if (integer_zerop (arg1
))
11548 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
11549 if (integer_all_onesp (arg1
))
11550 return fold_build1_loc (loc
, BIT_NOT_EXPR
, type
, op0
);
11551 if (operand_equal_p (arg0
, arg1
, 0))
11552 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
11554 /* ~X ^ X is -1. */
11555 if (TREE_CODE (arg0
) == BIT_NOT_EXPR
11556 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
11558 t1
= build_zero_cst (type
);
11559 t1
= fold_unary_loc (loc
, BIT_NOT_EXPR
, type
, t1
);
11560 return omit_one_operand_loc (loc
, type
, t1
, arg1
);
11563 /* X ^ ~X is -1. */
11564 if (TREE_CODE (arg1
) == BIT_NOT_EXPR
11565 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
11567 t1
= build_zero_cst (type
);
11568 t1
= fold_unary_loc (loc
, BIT_NOT_EXPR
, type
, t1
);
11569 return omit_one_operand_loc (loc
, type
, t1
, arg0
);
11572 /* If we are XORing two BIT_AND_EXPR's, both of which are and'ing
11573 with a constant, and the two constants have no bits in common,
11574 we should treat this as a BIT_IOR_EXPR since this may produce more
11575 simplifications. */
11576 if (TREE_CODE (arg0
) == BIT_AND_EXPR
11577 && TREE_CODE (arg1
) == BIT_AND_EXPR
11578 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
11579 && TREE_CODE (TREE_OPERAND (arg1
, 1)) == INTEGER_CST
11580 && integer_zerop (const_binop (BIT_AND_EXPR
,
11581 TREE_OPERAND (arg0
, 1),
11582 TREE_OPERAND (arg1
, 1))))
11584 code
= BIT_IOR_EXPR
;
11588 /* (X | Y) ^ X -> Y & ~ X*/
11589 if (TREE_CODE (arg0
) == BIT_IOR_EXPR
11590 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
11592 tree t2
= TREE_OPERAND (arg0
, 1);
11593 t1
= fold_build1_loc (loc
, BIT_NOT_EXPR
, TREE_TYPE (arg1
),
11595 t1
= fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
11596 fold_convert_loc (loc
, type
, t2
),
11597 fold_convert_loc (loc
, type
, t1
));
11601 /* (Y | X) ^ X -> Y & ~ X*/
11602 if (TREE_CODE (arg0
) == BIT_IOR_EXPR
11603 && operand_equal_p (TREE_OPERAND (arg0
, 1), arg1
, 0))
11605 tree t2
= TREE_OPERAND (arg0
, 0);
11606 t1
= fold_build1_loc (loc
, BIT_NOT_EXPR
, TREE_TYPE (arg1
),
11608 t1
= fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
11609 fold_convert_loc (loc
, type
, t2
),
11610 fold_convert_loc (loc
, type
, t1
));
11614 /* X ^ (X | Y) -> Y & ~ X*/
11615 if (TREE_CODE (arg1
) == BIT_IOR_EXPR
11616 && operand_equal_p (TREE_OPERAND (arg1
, 0), arg0
, 0))
11618 tree t2
= TREE_OPERAND (arg1
, 1);
11619 t1
= fold_build1_loc (loc
, BIT_NOT_EXPR
, TREE_TYPE (arg0
),
11621 t1
= fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
11622 fold_convert_loc (loc
, type
, t2
),
11623 fold_convert_loc (loc
, type
, t1
));
11627 /* X ^ (Y | X) -> Y & ~ X*/
11628 if (TREE_CODE (arg1
) == BIT_IOR_EXPR
11629 && operand_equal_p (TREE_OPERAND (arg1
, 1), arg0
, 0))
11631 tree t2
= TREE_OPERAND (arg1
, 0);
11632 t1
= fold_build1_loc (loc
, BIT_NOT_EXPR
, TREE_TYPE (arg0
),
11634 t1
= fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
11635 fold_convert_loc (loc
, type
, t2
),
11636 fold_convert_loc (loc
, type
, t1
));
11640 /* Convert ~X ^ ~Y to X ^ Y. */
11641 if (TREE_CODE (arg0
) == BIT_NOT_EXPR
11642 && TREE_CODE (arg1
) == BIT_NOT_EXPR
)
11643 return fold_build2_loc (loc
, code
, type
,
11644 fold_convert_loc (loc
, type
,
11645 TREE_OPERAND (arg0
, 0)),
11646 fold_convert_loc (loc
, type
,
11647 TREE_OPERAND (arg1
, 0)));
11649 /* Convert ~X ^ C to X ^ ~C. */
11650 if (TREE_CODE (arg0
) == BIT_NOT_EXPR
11651 && TREE_CODE (arg1
) == INTEGER_CST
)
11652 return fold_build2_loc (loc
, code
, type
,
11653 fold_convert_loc (loc
, type
,
11654 TREE_OPERAND (arg0
, 0)),
11655 fold_build1_loc (loc
, BIT_NOT_EXPR
, type
, arg1
));
11657 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */
11658 if (TREE_CODE (arg0
) == BIT_AND_EXPR
11659 && integer_onep (TREE_OPERAND (arg0
, 1))
11660 && integer_onep (arg1
))
11661 return fold_build2_loc (loc
, EQ_EXPR
, type
, arg0
,
11662 build_zero_cst (TREE_TYPE (arg0
)));
11664 /* Fold (X & Y) ^ Y as ~X & Y. */
11665 if (TREE_CODE (arg0
) == BIT_AND_EXPR
11666 && operand_equal_p (TREE_OPERAND (arg0
, 1), arg1
, 0))
11668 tem
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
11669 return fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
11670 fold_build1_loc (loc
, BIT_NOT_EXPR
, type
, tem
),
11671 fold_convert_loc (loc
, type
, arg1
));
11673 /* Fold (X & Y) ^ X as ~Y & X. */
11674 if (TREE_CODE (arg0
) == BIT_AND_EXPR
11675 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0)
11676 && reorder_operands_p (TREE_OPERAND (arg0
, 1), arg1
))
11678 tem
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 1));
11679 return fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
11680 fold_build1_loc (loc
, BIT_NOT_EXPR
, type
, tem
),
11681 fold_convert_loc (loc
, type
, arg1
));
11683 /* Fold X ^ (X & Y) as X & ~Y. */
11684 if (TREE_CODE (arg1
) == BIT_AND_EXPR
11685 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
11687 tem
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg1
, 1));
11688 return fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
11689 fold_convert_loc (loc
, type
, arg0
),
11690 fold_build1_loc (loc
, BIT_NOT_EXPR
, type
, tem
));
11692 /* Fold X ^ (Y & X) as ~Y & X. */
11693 if (TREE_CODE (arg1
) == BIT_AND_EXPR
11694 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 1), 0)
11695 && reorder_operands_p (arg0
, TREE_OPERAND (arg1
, 0)))
11697 tem
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg1
, 0));
11698 return fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
11699 fold_build1_loc (loc
, BIT_NOT_EXPR
, type
, tem
),
11700 fold_convert_loc (loc
, type
, arg0
));
11703 /* See if this can be simplified into a rotate first. If that
11704 is unsuccessful continue in the association code. */
11708 if (integer_all_onesp (arg1
))
11709 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
11710 if (integer_zerop (arg1
))
11711 return omit_one_operand_loc (loc
, type
, arg1
, arg0
);
11712 if (operand_equal_p (arg0
, arg1
, 0))
11713 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
11715 /* ~X & X, (X == 0) & X, and !X & X are always zero. */
11716 if ((TREE_CODE (arg0
) == BIT_NOT_EXPR
11717 || TREE_CODE (arg0
) == TRUTH_NOT_EXPR
11718 || (TREE_CODE (arg0
) == EQ_EXPR
11719 && integer_zerop (TREE_OPERAND (arg0
, 1))))
11720 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
11721 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg1
);
11723 /* X & ~X , X & (X == 0), and X & !X are always zero. */
11724 if ((TREE_CODE (arg1
) == BIT_NOT_EXPR
11725 || TREE_CODE (arg1
) == TRUTH_NOT_EXPR
11726 || (TREE_CODE (arg1
) == EQ_EXPR
11727 && integer_zerop (TREE_OPERAND (arg1
, 1))))
11728 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
11729 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
11731 /* Canonicalize (X | C1) & C2 as (X & C2) | (C1 & C2). */
11732 if (TREE_CODE (arg0
) == BIT_IOR_EXPR
11733 && TREE_CODE (arg1
) == INTEGER_CST
11734 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
11736 tree tmp1
= fold_convert_loc (loc
, type
, arg1
);
11737 tree tmp2
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
11738 tree tmp3
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 1));
11739 tmp2
= fold_build2_loc (loc
, BIT_AND_EXPR
, type
, tmp2
, tmp1
);
11740 tmp3
= fold_build2_loc (loc
, BIT_AND_EXPR
, type
, tmp3
, tmp1
);
11742 fold_convert_loc (loc
, type
,
11743 fold_build2_loc (loc
, BIT_IOR_EXPR
,
11744 type
, tmp2
, tmp3
));
11747 /* (X | Y) & Y is (X, Y). */
11748 if (TREE_CODE (arg0
) == BIT_IOR_EXPR
11749 && operand_equal_p (TREE_OPERAND (arg0
, 1), arg1
, 0))
11750 return omit_one_operand_loc (loc
, type
, arg1
, TREE_OPERAND (arg0
, 0));
11751 /* (X | Y) & X is (Y, X). */
11752 if (TREE_CODE (arg0
) == BIT_IOR_EXPR
11753 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0)
11754 && reorder_operands_p (TREE_OPERAND (arg0
, 1), arg1
))
11755 return omit_one_operand_loc (loc
, type
, arg1
, TREE_OPERAND (arg0
, 1));
11756 /* X & (X | Y) is (Y, X). */
11757 if (TREE_CODE (arg1
) == BIT_IOR_EXPR
11758 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0)
11759 && reorder_operands_p (arg0
, TREE_OPERAND (arg1
, 1)))
11760 return omit_one_operand_loc (loc
, type
, arg0
, TREE_OPERAND (arg1
, 1));
11761 /* X & (Y | X) is (Y, X). */
11762 if (TREE_CODE (arg1
) == BIT_IOR_EXPR
11763 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 1), 0)
11764 && reorder_operands_p (arg0
, TREE_OPERAND (arg1
, 0)))
11765 return omit_one_operand_loc (loc
, type
, arg0
, TREE_OPERAND (arg1
, 0));
11767 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */
11768 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
11769 && integer_onep (TREE_OPERAND (arg0
, 1))
11770 && integer_onep (arg1
))
11773 tem
= TREE_OPERAND (arg0
, 0);
11774 tem2
= fold_convert_loc (loc
, TREE_TYPE (tem
), arg1
);
11775 tem2
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (tem
),
11777 return fold_build2_loc (loc
, EQ_EXPR
, type
, tem2
,
11778 build_zero_cst (TREE_TYPE (tem
)));
11780 /* Fold ~X & 1 as (X & 1) == 0. */
11781 if (TREE_CODE (arg0
) == BIT_NOT_EXPR
11782 && integer_onep (arg1
))
11785 tem
= TREE_OPERAND (arg0
, 0);
11786 tem2
= fold_convert_loc (loc
, TREE_TYPE (tem
), arg1
);
11787 tem2
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (tem
),
11789 return fold_build2_loc (loc
, EQ_EXPR
, type
, tem2
,
11790 build_zero_cst (TREE_TYPE (tem
)));
11792 /* Fold !X & 1 as X == 0. */
11793 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
11794 && integer_onep (arg1
))
11796 tem
= TREE_OPERAND (arg0
, 0);
11797 return fold_build2_loc (loc
, EQ_EXPR
, type
, tem
,
11798 build_zero_cst (TREE_TYPE (tem
)));
11801 /* Fold (X ^ Y) & Y as ~X & Y. */
11802 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
11803 && operand_equal_p (TREE_OPERAND (arg0
, 1), arg1
, 0))
11805 tem
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
11806 return fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
11807 fold_build1_loc (loc
, BIT_NOT_EXPR
, type
, tem
),
11808 fold_convert_loc (loc
, type
, arg1
));
11810 /* Fold (X ^ Y) & X as ~Y & X. */
11811 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
11812 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0)
11813 && reorder_operands_p (TREE_OPERAND (arg0
, 1), arg1
))
11815 tem
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 1));
11816 return fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
11817 fold_build1_loc (loc
, BIT_NOT_EXPR
, type
, tem
),
11818 fold_convert_loc (loc
, type
, arg1
));
11820 /* Fold X & (X ^ Y) as X & ~Y. */
11821 if (TREE_CODE (arg1
) == BIT_XOR_EXPR
11822 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
11824 tem
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg1
, 1));
11825 return fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
11826 fold_convert_loc (loc
, type
, arg0
),
11827 fold_build1_loc (loc
, BIT_NOT_EXPR
, type
, tem
));
11829 /* Fold X & (Y ^ X) as ~Y & X. */
11830 if (TREE_CODE (arg1
) == BIT_XOR_EXPR
11831 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 1), 0)
11832 && reorder_operands_p (arg0
, TREE_OPERAND (arg1
, 0)))
11834 tem
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg1
, 0));
11835 return fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
11836 fold_build1_loc (loc
, BIT_NOT_EXPR
, type
, tem
),
11837 fold_convert_loc (loc
, type
, arg0
));
11840 /* Fold (X * Y) & -(1 << CST) to X * Y if Y is a constant
11841 multiple of 1 << CST. */
11842 if (TREE_CODE (arg1
) == INTEGER_CST
)
11844 double_int cst1
= tree_to_double_int (arg1
);
11845 double_int ncst1
= (-cst1
).ext (TYPE_PRECISION (TREE_TYPE (arg1
)),
11846 TYPE_UNSIGNED (TREE_TYPE (arg1
)));
11847 if ((cst1
& ncst1
) == ncst1
11848 && multiple_of_p (type
, arg0
,
11849 double_int_to_tree (TREE_TYPE (arg1
), ncst1
)))
11850 return fold_convert_loc (loc
, type
, arg0
);
11853 /* Fold (X * CST1) & CST2 to zero if we can, or drop known zero
11855 if (TREE_CODE (arg1
) == INTEGER_CST
11856 && TREE_CODE (arg0
) == MULT_EXPR
11857 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
11859 double_int darg1
= tree_to_double_int (arg1
);
11861 = mask_with_tz (type
, darg1
,
11862 tree_to_double_int (TREE_OPERAND (arg0
, 1)));
11864 if (masked
.is_zero ())
11865 return omit_two_operands_loc (loc
, type
, build_zero_cst (type
),
11867 else if (masked
!= darg1
)
11869 /* Avoid the transform if arg1 is a mask of some
11870 mode which allows further optimizations. */
11871 int pop
= darg1
.popcount ();
11872 if (!(pop
>= BITS_PER_UNIT
11873 && exact_log2 (pop
) != -1
11874 && double_int::mask (pop
) == darg1
))
11875 return fold_build2_loc (loc
, code
, type
, op0
,
11876 double_int_to_tree (type
, masked
));
11880 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
11881 ((A & N) + B) & M -> (A + B) & M
11882 Similarly if (N & M) == 0,
11883 ((A | N) + B) & M -> (A + B) & M
11884 and for - instead of + (or unary - instead of +)
11885 and/or ^ instead of |.
11886 If B is constant and (B & M) == 0, fold into A & M. */
11887 if (tree_fits_uhwi_p (arg1
))
11889 unsigned HOST_WIDE_INT cst1
= tree_to_uhwi (arg1
);
11890 if (~cst1
&& (cst1
& (cst1
+ 1)) == 0
11891 && INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
11892 && (TREE_CODE (arg0
) == PLUS_EXPR
11893 || TREE_CODE (arg0
) == MINUS_EXPR
11894 || TREE_CODE (arg0
) == NEGATE_EXPR
)
11895 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0
))
11896 || TREE_CODE (TREE_TYPE (arg0
)) == INTEGER_TYPE
))
11900 unsigned HOST_WIDE_INT cst0
;
11902 /* Now we know that arg0 is (C + D) or (C - D) or
11903 -C and arg1 (M) is == (1LL << cst) - 1.
11904 Store C into PMOP[0] and D into PMOP[1]. */
11905 pmop
[0] = TREE_OPERAND (arg0
, 0);
11907 if (TREE_CODE (arg0
) != NEGATE_EXPR
)
11909 pmop
[1] = TREE_OPERAND (arg0
, 1);
11913 if (!tree_fits_uhwi_p (TYPE_MAX_VALUE (TREE_TYPE (arg0
)))
11914 || (tree_to_uhwi (TYPE_MAX_VALUE (TREE_TYPE (arg0
)))
11918 for (; which
>= 0; which
--)
11919 switch (TREE_CODE (pmop
[which
]))
11924 if (TREE_CODE (TREE_OPERAND (pmop
[which
], 1))
11927 /* tree_to_[su]hwi not used, because we don't care about
11929 cst0
= TREE_INT_CST_LOW (TREE_OPERAND (pmop
[which
], 1));
11931 if (TREE_CODE (pmop
[which
]) == BIT_AND_EXPR
)
11936 else if (cst0
!= 0)
11938 /* If C or D is of the form (A & N) where
11939 (N & M) == M, or of the form (A | N) or
11940 (A ^ N) where (N & M) == 0, replace it with A. */
11941 pmop
[which
] = TREE_OPERAND (pmop
[which
], 0);
11944 /* If C or D is a N where (N & M) == 0, it can be
11945 omitted (assumed 0). */
11946 if ((TREE_CODE (arg0
) == PLUS_EXPR
11947 || (TREE_CODE (arg0
) == MINUS_EXPR
&& which
== 0))
11948 && (TREE_INT_CST_LOW (pmop
[which
]) & cst1
) == 0)
11949 pmop
[which
] = NULL
;
11955 /* Only build anything new if we optimized one or both arguments
11957 if (pmop
[0] != TREE_OPERAND (arg0
, 0)
11958 || (TREE_CODE (arg0
) != NEGATE_EXPR
11959 && pmop
[1] != TREE_OPERAND (arg0
, 1)))
11961 tree utype
= TREE_TYPE (arg0
);
11962 if (! TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0
)))
11964 /* Perform the operations in a type that has defined
11965 overflow behavior. */
11966 utype
= unsigned_type_for (TREE_TYPE (arg0
));
11967 if (pmop
[0] != NULL
)
11968 pmop
[0] = fold_convert_loc (loc
, utype
, pmop
[0]);
11969 if (pmop
[1] != NULL
)
11970 pmop
[1] = fold_convert_loc (loc
, utype
, pmop
[1]);
11973 if (TREE_CODE (arg0
) == NEGATE_EXPR
)
11974 tem
= fold_build1_loc (loc
, NEGATE_EXPR
, utype
, pmop
[0]);
11975 else if (TREE_CODE (arg0
) == PLUS_EXPR
)
11977 if (pmop
[0] != NULL
&& pmop
[1] != NULL
)
11978 tem
= fold_build2_loc (loc
, PLUS_EXPR
, utype
,
11980 else if (pmop
[0] != NULL
)
11982 else if (pmop
[1] != NULL
)
11985 return build_int_cst (type
, 0);
11987 else if (pmop
[0] == NULL
)
11988 tem
= fold_build1_loc (loc
, NEGATE_EXPR
, utype
, pmop
[1]);
11990 tem
= fold_build2_loc (loc
, MINUS_EXPR
, utype
,
11992 /* TEM is now the new binary +, - or unary - replacement. */
11993 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, utype
, tem
,
11994 fold_convert_loc (loc
, utype
, arg1
));
11995 return fold_convert_loc (loc
, type
, tem
);
12000 t1
= distribute_bit_expr (loc
, code
, type
, arg0
, arg1
);
12001 if (t1
!= NULL_TREE
)
12003 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
12004 if (TREE_CODE (arg1
) == INTEGER_CST
&& TREE_CODE (arg0
) == NOP_EXPR
12005 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0
, 0))))
12007 prec
= TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0
, 0)));
12009 if (prec
< BITS_PER_WORD
&& prec
< HOST_BITS_PER_WIDE_INT
12010 && (~TREE_INT_CST_LOW (arg1
)
12011 & (((HOST_WIDE_INT
) 1 << prec
) - 1)) == 0)
12013 fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
12016 /* Convert (and (not arg0) (not arg1)) to (not (or (arg0) (arg1))).
12018 This results in more efficient code for machines without a NOR
12019 instruction. Combine will canonicalize to the first form
12020 which will allow use of NOR instructions provided by the
12021 backend if they exist. */
12022 if (TREE_CODE (arg0
) == BIT_NOT_EXPR
12023 && TREE_CODE (arg1
) == BIT_NOT_EXPR
)
12025 return fold_build1_loc (loc
, BIT_NOT_EXPR
, type
,
12026 build2 (BIT_IOR_EXPR
, type
,
12027 fold_convert_loc (loc
, type
,
12028 TREE_OPERAND (arg0
, 0)),
12029 fold_convert_loc (loc
, type
,
12030 TREE_OPERAND (arg1
, 0))));
12033 /* If arg0 is derived from the address of an object or function, we may
12034 be able to fold this expression using the object or function's
12036 if (POINTER_TYPE_P (TREE_TYPE (arg0
)) && tree_fits_uhwi_p (arg1
))
12038 unsigned HOST_WIDE_INT modulus
, residue
;
12039 unsigned HOST_WIDE_INT low
= tree_to_uhwi (arg1
);
12041 modulus
= get_pointer_modulus_and_residue (arg0
, &residue
,
12042 integer_onep (arg1
));
12044 /* This works because modulus is a power of 2. If this weren't the
12045 case, we'd have to replace it by its greatest power-of-2
12046 divisor: modulus & -modulus. */
12048 return build_int_cst (type
, residue
& low
);
12051 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
12052 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
12053 if the new mask might be further optimized. */
12054 if ((TREE_CODE (arg0
) == LSHIFT_EXPR
12055 || TREE_CODE (arg0
) == RSHIFT_EXPR
)
12056 && TYPE_PRECISION (TREE_TYPE (arg0
)) <= HOST_BITS_PER_WIDE_INT
12057 && TREE_CODE (arg1
) == INTEGER_CST
12058 && tree_fits_uhwi_p (TREE_OPERAND (arg0
, 1))
12059 && tree_to_uhwi (TREE_OPERAND (arg0
, 1)) > 0
12060 && (tree_to_uhwi (TREE_OPERAND (arg0
, 1))
12061 < TYPE_PRECISION (TREE_TYPE (arg0
))))
12063 unsigned int shiftc
= tree_to_uhwi (TREE_OPERAND (arg0
, 1));
12064 unsigned HOST_WIDE_INT mask
= TREE_INT_CST_LOW (arg1
);
12065 unsigned HOST_WIDE_INT newmask
, zerobits
= 0;
12066 tree shift_type
= TREE_TYPE (arg0
);
12068 if (TREE_CODE (arg0
) == LSHIFT_EXPR
)
12069 zerobits
= ((((unsigned HOST_WIDE_INT
) 1) << shiftc
) - 1);
12070 else if (TREE_CODE (arg0
) == RSHIFT_EXPR
12071 && TYPE_PRECISION (TREE_TYPE (arg0
))
12072 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (arg0
))))
12074 prec
= TYPE_PRECISION (TREE_TYPE (arg0
));
12075 tree arg00
= TREE_OPERAND (arg0
, 0);
12076 /* See if more bits can be proven as zero because of
12078 if (TREE_CODE (arg00
) == NOP_EXPR
12079 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg00
, 0))))
12081 tree inner_type
= TREE_TYPE (TREE_OPERAND (arg00
, 0));
12082 if (TYPE_PRECISION (inner_type
)
12083 == GET_MODE_PRECISION (TYPE_MODE (inner_type
))
12084 && TYPE_PRECISION (inner_type
) < prec
)
12086 prec
= TYPE_PRECISION (inner_type
);
12087 /* See if we can shorten the right shift. */
12089 shift_type
= inner_type
;
12090 /* Otherwise X >> C1 is all zeros, so we'll optimize
12091 it into (X, 0) later on by making sure zerobits
12095 zerobits
= ~(unsigned HOST_WIDE_INT
) 0;
12098 zerobits
>>= HOST_BITS_PER_WIDE_INT
- shiftc
;
12099 zerobits
<<= prec
- shiftc
;
12101 /* For arithmetic shift if sign bit could be set, zerobits
12102 can contain actually sign bits, so no transformation is
12103 possible, unless MASK masks them all away. In that
12104 case the shift needs to be converted into logical shift. */
12105 if (!TYPE_UNSIGNED (TREE_TYPE (arg0
))
12106 && prec
== TYPE_PRECISION (TREE_TYPE (arg0
)))
12108 if ((mask
& zerobits
) == 0)
12109 shift_type
= unsigned_type_for (TREE_TYPE (arg0
));
12115 /* ((X << 16) & 0xff00) is (X, 0). */
12116 if ((mask
& zerobits
) == mask
)
12117 return omit_one_operand_loc (loc
, type
,
12118 build_int_cst (type
, 0), arg0
);
12120 newmask
= mask
| zerobits
;
12121 if (newmask
!= mask
&& (newmask
& (newmask
+ 1)) == 0)
12123 /* Only do the transformation if NEWMASK is some integer
12125 for (prec
= BITS_PER_UNIT
;
12126 prec
< HOST_BITS_PER_WIDE_INT
; prec
<<= 1)
12127 if (newmask
== (((unsigned HOST_WIDE_INT
) 1) << prec
) - 1)
12129 if (prec
< HOST_BITS_PER_WIDE_INT
12130 || newmask
== ~(unsigned HOST_WIDE_INT
) 0)
12134 if (shift_type
!= TREE_TYPE (arg0
))
12136 tem
= fold_build2_loc (loc
, TREE_CODE (arg0
), shift_type
,
12137 fold_convert_loc (loc
, shift_type
,
12138 TREE_OPERAND (arg0
, 0)),
12139 TREE_OPERAND (arg0
, 1));
12140 tem
= fold_convert_loc (loc
, type
, tem
);
12144 newmaskt
= build_int_cst_type (TREE_TYPE (op1
), newmask
);
12145 if (!tree_int_cst_equal (newmaskt
, arg1
))
12146 return fold_build2_loc (loc
, BIT_AND_EXPR
, type
, tem
, newmaskt
);
12154 /* Don't touch a floating-point divide by zero unless the mode
12155 of the constant can represent infinity. */
12156 if (TREE_CODE (arg1
) == REAL_CST
12157 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1
)))
12158 && real_zerop (arg1
))
12161 /* Optimize A / A to 1.0 if we don't care about
12162 NaNs or Infinities. Skip the transformation
12163 for non-real operands. */
12164 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (arg0
))
12165 && ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0
)))
12166 && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg0
)))
12167 && operand_equal_p (arg0
, arg1
, 0))
12169 tree r
= build_real (TREE_TYPE (arg0
), dconst1
);
12171 return omit_two_operands_loc (loc
, type
, r
, arg0
, arg1
);
12174 /* The complex version of the above A / A optimization. */
12175 if (COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0
))
12176 && operand_equal_p (arg0
, arg1
, 0))
12178 tree elem_type
= TREE_TYPE (TREE_TYPE (arg0
));
12179 if (! HONOR_NANS (TYPE_MODE (elem_type
))
12180 && ! HONOR_INFINITIES (TYPE_MODE (elem_type
)))
12182 tree r
= build_real (elem_type
, dconst1
);
12183 /* omit_two_operands will call fold_convert for us. */
12184 return omit_two_operands_loc (loc
, type
, r
, arg0
, arg1
);
12188 /* (-A) / (-B) -> A / B */
12189 if (TREE_CODE (arg0
) == NEGATE_EXPR
&& negate_expr_p (arg1
))
12190 return fold_build2_loc (loc
, RDIV_EXPR
, type
,
12191 TREE_OPERAND (arg0
, 0),
12192 negate_expr (arg1
));
12193 if (TREE_CODE (arg1
) == NEGATE_EXPR
&& negate_expr_p (arg0
))
12194 return fold_build2_loc (loc
, RDIV_EXPR
, type
,
12195 negate_expr (arg0
),
12196 TREE_OPERAND (arg1
, 0));
12198 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
12199 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0
)))
12200 && real_onep (arg1
))
12201 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
12203 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
12204 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0
)))
12205 && real_minus_onep (arg1
))
12206 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
,
12207 negate_expr (arg0
)));
12209 /* If ARG1 is a constant, we can convert this to a multiply by the
12210 reciprocal. This does not have the same rounding properties,
12211 so only do this if -freciprocal-math. We can actually
12212 always safely do it if ARG1 is a power of two, but it's hard to
12213 tell if it is or not in a portable manner. */
12215 && (TREE_CODE (arg1
) == REAL_CST
12216 || (TREE_CODE (arg1
) == COMPLEX_CST
12217 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg1
)))
12218 || (TREE_CODE (arg1
) == VECTOR_CST
12219 && VECTOR_FLOAT_TYPE_P (TREE_TYPE (arg1
)))))
12221 if (flag_reciprocal_math
12222 && 0 != (tem
= const_binop (code
, build_one_cst (type
), arg1
)))
12223 return fold_build2_loc (loc
, MULT_EXPR
, type
, arg0
, tem
);
12224 /* Find the reciprocal if optimizing and the result is exact.
12225 TODO: Complex reciprocal not implemented. */
12226 if (TREE_CODE (arg1
) != COMPLEX_CST
)
12228 tree inverse
= exact_inverse (TREE_TYPE (arg0
), arg1
);
12231 return fold_build2_loc (loc
, MULT_EXPR
, type
, arg0
, inverse
);
12234 /* Convert A/B/C to A/(B*C). */
12235 if (flag_reciprocal_math
12236 && TREE_CODE (arg0
) == RDIV_EXPR
)
12237 return fold_build2_loc (loc
, RDIV_EXPR
, type
, TREE_OPERAND (arg0
, 0),
12238 fold_build2_loc (loc
, MULT_EXPR
, type
,
12239 TREE_OPERAND (arg0
, 1), arg1
));
12241 /* Convert A/(B/C) to (A/B)*C. */
12242 if (flag_reciprocal_math
12243 && TREE_CODE (arg1
) == RDIV_EXPR
)
12244 return fold_build2_loc (loc
, MULT_EXPR
, type
,
12245 fold_build2_loc (loc
, RDIV_EXPR
, type
, arg0
,
12246 TREE_OPERAND (arg1
, 0)),
12247 TREE_OPERAND (arg1
, 1));
12249 /* Convert C1/(X*C2) into (C1/C2)/X. */
12250 if (flag_reciprocal_math
12251 && TREE_CODE (arg1
) == MULT_EXPR
12252 && TREE_CODE (arg0
) == REAL_CST
12253 && TREE_CODE (TREE_OPERAND (arg1
, 1)) == REAL_CST
)
12255 tree tem
= const_binop (RDIV_EXPR
, arg0
,
12256 TREE_OPERAND (arg1
, 1));
12258 return fold_build2_loc (loc
, RDIV_EXPR
, type
, tem
,
12259 TREE_OPERAND (arg1
, 0));
12262 if (flag_unsafe_math_optimizations
)
12264 enum built_in_function fcode0
= builtin_mathfn_code (arg0
);
12265 enum built_in_function fcode1
= builtin_mathfn_code (arg1
);
12267 /* Optimize sin(x)/cos(x) as tan(x). */
12268 if (((fcode0
== BUILT_IN_SIN
&& fcode1
== BUILT_IN_COS
)
12269 || (fcode0
== BUILT_IN_SINF
&& fcode1
== BUILT_IN_COSF
)
12270 || (fcode0
== BUILT_IN_SINL
&& fcode1
== BUILT_IN_COSL
))
12271 && operand_equal_p (CALL_EXPR_ARG (arg0
, 0),
12272 CALL_EXPR_ARG (arg1
, 0), 0))
12274 tree tanfn
= mathfn_built_in (type
, BUILT_IN_TAN
);
12276 if (tanfn
!= NULL_TREE
)
12277 return build_call_expr_loc (loc
, tanfn
, 1, CALL_EXPR_ARG (arg0
, 0));
12280 /* Optimize cos(x)/sin(x) as 1.0/tan(x). */
12281 if (((fcode0
== BUILT_IN_COS
&& fcode1
== BUILT_IN_SIN
)
12282 || (fcode0
== BUILT_IN_COSF
&& fcode1
== BUILT_IN_SINF
)
12283 || (fcode0
== BUILT_IN_COSL
&& fcode1
== BUILT_IN_SINL
))
12284 && operand_equal_p (CALL_EXPR_ARG (arg0
, 0),
12285 CALL_EXPR_ARG (arg1
, 0), 0))
12287 tree tanfn
= mathfn_built_in (type
, BUILT_IN_TAN
);
12289 if (tanfn
!= NULL_TREE
)
12291 tree tmp
= build_call_expr_loc (loc
, tanfn
, 1,
12292 CALL_EXPR_ARG (arg0
, 0));
12293 return fold_build2_loc (loc
, RDIV_EXPR
, type
,
12294 build_real (type
, dconst1
), tmp
);
12298 /* Optimize sin(x)/tan(x) as cos(x) if we don't care about
12299 NaNs or Infinities. */
12300 if (((fcode0
== BUILT_IN_SIN
&& fcode1
== BUILT_IN_TAN
)
12301 || (fcode0
== BUILT_IN_SINF
&& fcode1
== BUILT_IN_TANF
)
12302 || (fcode0
== BUILT_IN_SINL
&& fcode1
== BUILT_IN_TANL
)))
12304 tree arg00
= CALL_EXPR_ARG (arg0
, 0);
12305 tree arg01
= CALL_EXPR_ARG (arg1
, 0);
12307 if (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg00
)))
12308 && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg00
)))
12309 && operand_equal_p (arg00
, arg01
, 0))
12311 tree cosfn
= mathfn_built_in (type
, BUILT_IN_COS
);
12313 if (cosfn
!= NULL_TREE
)
12314 return build_call_expr_loc (loc
, cosfn
, 1, arg00
);
12318 /* Optimize tan(x)/sin(x) as 1.0/cos(x) if we don't care about
12319 NaNs or Infinities. */
12320 if (((fcode0
== BUILT_IN_TAN
&& fcode1
== BUILT_IN_SIN
)
12321 || (fcode0
== BUILT_IN_TANF
&& fcode1
== BUILT_IN_SINF
)
12322 || (fcode0
== BUILT_IN_TANL
&& fcode1
== BUILT_IN_SINL
)))
12324 tree arg00
= CALL_EXPR_ARG (arg0
, 0);
12325 tree arg01
= CALL_EXPR_ARG (arg1
, 0);
12327 if (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg00
)))
12328 && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg00
)))
12329 && operand_equal_p (arg00
, arg01
, 0))
12331 tree cosfn
= mathfn_built_in (type
, BUILT_IN_COS
);
12333 if (cosfn
!= NULL_TREE
)
12335 tree tmp
= build_call_expr_loc (loc
, cosfn
, 1, arg00
);
12336 return fold_build2_loc (loc
, RDIV_EXPR
, type
,
12337 build_real (type
, dconst1
),
12343 /* Optimize pow(x,c)/x as pow(x,c-1). */
12344 if (fcode0
== BUILT_IN_POW
12345 || fcode0
== BUILT_IN_POWF
12346 || fcode0
== BUILT_IN_POWL
)
12348 tree arg00
= CALL_EXPR_ARG (arg0
, 0);
12349 tree arg01
= CALL_EXPR_ARG (arg0
, 1);
12350 if (TREE_CODE (arg01
) == REAL_CST
12351 && !TREE_OVERFLOW (arg01
)
12352 && operand_equal_p (arg1
, arg00
, 0))
12354 tree powfn
= TREE_OPERAND (CALL_EXPR_FN (arg0
), 0);
12358 c
= TREE_REAL_CST (arg01
);
12359 real_arithmetic (&c
, MINUS_EXPR
, &c
, &dconst1
);
12360 arg
= build_real (type
, c
);
12361 return build_call_expr_loc (loc
, powfn
, 2, arg1
, arg
);
12365 /* Optimize a/root(b/c) into a*root(c/b). */
12366 if (BUILTIN_ROOT_P (fcode1
))
12368 tree rootarg
= CALL_EXPR_ARG (arg1
, 0);
12370 if (TREE_CODE (rootarg
) == RDIV_EXPR
)
12372 tree rootfn
= TREE_OPERAND (CALL_EXPR_FN (arg1
), 0);
12373 tree b
= TREE_OPERAND (rootarg
, 0);
12374 tree c
= TREE_OPERAND (rootarg
, 1);
12376 tree tmp
= fold_build2_loc (loc
, RDIV_EXPR
, type
, c
, b
);
12378 tmp
= build_call_expr_loc (loc
, rootfn
, 1, tmp
);
12379 return fold_build2_loc (loc
, MULT_EXPR
, type
, arg0
, tmp
);
12383 /* Optimize x/expN(y) into x*expN(-y). */
12384 if (BUILTIN_EXPONENT_P (fcode1
))
12386 tree expfn
= TREE_OPERAND (CALL_EXPR_FN (arg1
), 0);
12387 tree arg
= negate_expr (CALL_EXPR_ARG (arg1
, 0));
12388 arg1
= build_call_expr_loc (loc
,
12390 fold_convert_loc (loc
, type
, arg
));
12391 return fold_build2_loc (loc
, MULT_EXPR
, type
, arg0
, arg1
);
12394 /* Optimize x/pow(y,z) into x*pow(y,-z). */
12395 if (fcode1
== BUILT_IN_POW
12396 || fcode1
== BUILT_IN_POWF
12397 || fcode1
== BUILT_IN_POWL
)
12399 tree powfn
= TREE_OPERAND (CALL_EXPR_FN (arg1
), 0);
12400 tree arg10
= CALL_EXPR_ARG (arg1
, 0);
12401 tree arg11
= CALL_EXPR_ARG (arg1
, 1);
12402 tree neg11
= fold_convert_loc (loc
, type
,
12403 negate_expr (arg11
));
12404 arg1
= build_call_expr_loc (loc
, powfn
, 2, arg10
, neg11
);
12405 return fold_build2_loc (loc
, MULT_EXPR
, type
, arg0
, arg1
);
12410 case TRUNC_DIV_EXPR
:
12411 /* Optimize (X & (-A)) / A where A is a power of 2,
12413 if (TREE_CODE (arg0
) == BIT_AND_EXPR
12414 && !TYPE_UNSIGNED (type
) && TREE_CODE (arg1
) == INTEGER_CST
12415 && integer_pow2p (arg1
) && tree_int_cst_sgn (arg1
) > 0)
12417 tree sum
= fold_binary_loc (loc
, PLUS_EXPR
, TREE_TYPE (arg1
),
12418 arg1
, TREE_OPERAND (arg0
, 1));
12419 if (sum
&& integer_zerop (sum
)) {
12420 unsigned long pow2
;
12422 if (TREE_INT_CST_LOW (arg1
))
12423 pow2
= exact_log2 (TREE_INT_CST_LOW (arg1
));
12425 pow2
= exact_log2 (TREE_INT_CST_HIGH (arg1
))
12426 + HOST_BITS_PER_WIDE_INT
;
12428 return fold_build2_loc (loc
, RSHIFT_EXPR
, type
,
12429 TREE_OPERAND (arg0
, 0),
12430 build_int_cst (integer_type_node
, pow2
));
12436 case FLOOR_DIV_EXPR
:
12437 /* Simplify A / (B << N) where A and B are positive and B is
12438 a power of 2, to A >> (N + log2(B)). */
12439 strict_overflow_p
= false;
12440 if (TREE_CODE (arg1
) == LSHIFT_EXPR
12441 && (TYPE_UNSIGNED (type
)
12442 || tree_expr_nonnegative_warnv_p (op0
, &strict_overflow_p
)))
12444 tree sval
= TREE_OPERAND (arg1
, 0);
12445 if (integer_pow2p (sval
) && tree_int_cst_sgn (sval
) > 0)
12447 tree sh_cnt
= TREE_OPERAND (arg1
, 1);
12448 unsigned long pow2
;
12450 if (TREE_INT_CST_LOW (sval
))
12451 pow2
= exact_log2 (TREE_INT_CST_LOW (sval
));
12453 pow2
= exact_log2 (TREE_INT_CST_HIGH (sval
))
12454 + HOST_BITS_PER_WIDE_INT
;
12456 if (strict_overflow_p
)
12457 fold_overflow_warning (("assuming signed overflow does not "
12458 "occur when simplifying A / (B << N)"),
12459 WARN_STRICT_OVERFLOW_MISC
);
12461 sh_cnt
= fold_build2_loc (loc
, PLUS_EXPR
, TREE_TYPE (sh_cnt
),
12463 build_int_cst (TREE_TYPE (sh_cnt
),
12465 return fold_build2_loc (loc
, RSHIFT_EXPR
, type
,
12466 fold_convert_loc (loc
, type
, arg0
), sh_cnt
);
12470 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
12471 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
12472 if (INTEGRAL_TYPE_P (type
)
12473 && TYPE_UNSIGNED (type
)
12474 && code
== FLOOR_DIV_EXPR
)
12475 return fold_build2_loc (loc
, TRUNC_DIV_EXPR
, type
, op0
, op1
);
12479 case ROUND_DIV_EXPR
:
12480 case CEIL_DIV_EXPR
:
12481 case EXACT_DIV_EXPR
:
12482 if (integer_onep (arg1
))
12483 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
12484 if (integer_zerop (arg1
))
12486 /* X / -1 is -X. */
12487 if (!TYPE_UNSIGNED (type
)
12488 && TREE_CODE (arg1
) == INTEGER_CST
12489 && TREE_INT_CST_LOW (arg1
) == HOST_WIDE_INT_M1U
12490 && TREE_INT_CST_HIGH (arg1
) == -1)
12491 return fold_convert_loc (loc
, type
, negate_expr (arg0
));
12493 /* Convert -A / -B to A / B when the type is signed and overflow is
12495 if ((!INTEGRAL_TYPE_P (type
) || TYPE_OVERFLOW_UNDEFINED (type
))
12496 && TREE_CODE (arg0
) == NEGATE_EXPR
12497 && negate_expr_p (arg1
))
12499 if (INTEGRAL_TYPE_P (type
))
12500 fold_overflow_warning (("assuming signed overflow does not occur "
12501 "when distributing negation across "
12503 WARN_STRICT_OVERFLOW_MISC
);
12504 return fold_build2_loc (loc
, code
, type
,
12505 fold_convert_loc (loc
, type
,
12506 TREE_OPERAND (arg0
, 0)),
12507 fold_convert_loc (loc
, type
,
12508 negate_expr (arg1
)));
12510 if ((!INTEGRAL_TYPE_P (type
) || TYPE_OVERFLOW_UNDEFINED (type
))
12511 && TREE_CODE (arg1
) == NEGATE_EXPR
12512 && negate_expr_p (arg0
))
12514 if (INTEGRAL_TYPE_P (type
))
12515 fold_overflow_warning (("assuming signed overflow does not occur "
12516 "when distributing negation across "
12518 WARN_STRICT_OVERFLOW_MISC
);
12519 return fold_build2_loc (loc
, code
, type
,
12520 fold_convert_loc (loc
, type
,
12521 negate_expr (arg0
)),
12522 fold_convert_loc (loc
, type
,
12523 TREE_OPERAND (arg1
, 0)));
12526 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
12527 operation, EXACT_DIV_EXPR.
12529 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
12530 At one time others generated faster code, it's not clear if they do
12531 after the last round to changes to the DIV code in expmed.c. */
12532 if ((code
== CEIL_DIV_EXPR
|| code
== FLOOR_DIV_EXPR
)
12533 && multiple_of_p (type
, arg0
, arg1
))
12534 return fold_build2_loc (loc
, EXACT_DIV_EXPR
, type
, arg0
, arg1
);
12536 strict_overflow_p
= false;
12537 if (TREE_CODE (arg1
) == INTEGER_CST
12538 && 0 != (tem
= extract_muldiv (op0
, arg1
, code
, NULL_TREE
,
12539 &strict_overflow_p
)))
12541 if (strict_overflow_p
)
12542 fold_overflow_warning (("assuming signed overflow does not occur "
12543 "when simplifying division"),
12544 WARN_STRICT_OVERFLOW_MISC
);
12545 return fold_convert_loc (loc
, type
, tem
);
12550 case CEIL_MOD_EXPR
:
12551 case FLOOR_MOD_EXPR
:
12552 case ROUND_MOD_EXPR
:
12553 case TRUNC_MOD_EXPR
:
12554 /* X % 1 is always zero, but be sure to preserve any side
12556 if (integer_onep (arg1
))
12557 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
12559 /* X % 0, return X % 0 unchanged so that we can get the
12560 proper warnings and errors. */
12561 if (integer_zerop (arg1
))
12564 /* 0 % X is always zero, but be sure to preserve any side
12565 effects in X. Place this after checking for X == 0. */
12566 if (integer_zerop (arg0
))
12567 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg1
);
12569 /* X % -1 is zero. */
12570 if (!TYPE_UNSIGNED (type
)
12571 && TREE_CODE (arg1
) == INTEGER_CST
12572 && TREE_INT_CST_LOW (arg1
) == HOST_WIDE_INT_M1U
12573 && TREE_INT_CST_HIGH (arg1
) == -1)
12574 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
12576 /* X % -C is the same as X % C. */
12577 if (code
== TRUNC_MOD_EXPR
12578 && !TYPE_UNSIGNED (type
)
12579 && TREE_CODE (arg1
) == INTEGER_CST
12580 && !TREE_OVERFLOW (arg1
)
12581 && TREE_INT_CST_HIGH (arg1
) < 0
12582 && !TYPE_OVERFLOW_TRAPS (type
)
12583 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
12584 && !sign_bit_p (arg1
, arg1
))
12585 return fold_build2_loc (loc
, code
, type
,
12586 fold_convert_loc (loc
, type
, arg0
),
12587 fold_convert_loc (loc
, type
,
12588 negate_expr (arg1
)));
12590 /* X % -Y is the same as X % Y. */
12591 if (code
== TRUNC_MOD_EXPR
12592 && !TYPE_UNSIGNED (type
)
12593 && TREE_CODE (arg1
) == NEGATE_EXPR
12594 && !TYPE_OVERFLOW_TRAPS (type
))
12595 return fold_build2_loc (loc
, code
, type
, fold_convert_loc (loc
, type
, arg0
),
12596 fold_convert_loc (loc
, type
,
12597 TREE_OPERAND (arg1
, 0)));
12599 strict_overflow_p
= false;
12600 if (TREE_CODE (arg1
) == INTEGER_CST
12601 && 0 != (tem
= extract_muldiv (op0
, arg1
, code
, NULL_TREE
,
12602 &strict_overflow_p
)))
12604 if (strict_overflow_p
)
12605 fold_overflow_warning (("assuming signed overflow does not occur "
12606 "when simplifying modulus"),
12607 WARN_STRICT_OVERFLOW_MISC
);
12608 return fold_convert_loc (loc
, type
, tem
);
12611 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
12612 i.e. "X % C" into "X & (C - 1)", if X and C are positive. */
12613 if ((code
== TRUNC_MOD_EXPR
|| code
== FLOOR_MOD_EXPR
)
12614 && (TYPE_UNSIGNED (type
)
12615 || tree_expr_nonnegative_warnv_p (op0
, &strict_overflow_p
)))
12618 /* Also optimize A % (C << N) where C is a power of 2,
12619 to A & ((C << N) - 1). */
12620 if (TREE_CODE (arg1
) == LSHIFT_EXPR
)
12621 c
= TREE_OPERAND (arg1
, 0);
12623 if (integer_pow2p (c
) && tree_int_cst_sgn (c
) > 0)
12626 = fold_build2_loc (loc
, MINUS_EXPR
, TREE_TYPE (arg1
), arg1
,
12627 build_int_cst (TREE_TYPE (arg1
), 1));
12628 if (strict_overflow_p
)
12629 fold_overflow_warning (("assuming signed overflow does not "
12630 "occur when simplifying "
12631 "X % (power of two)"),
12632 WARN_STRICT_OVERFLOW_MISC
);
12633 return fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
12634 fold_convert_loc (loc
, type
, arg0
),
12635 fold_convert_loc (loc
, type
, mask
));
12643 if (integer_all_onesp (arg0
))
12644 return omit_one_operand_loc (loc
, type
, arg0
, arg1
);
12648 /* Optimize -1 >> x for arithmetic right shifts. */
12649 if (integer_all_onesp (arg0
) && !TYPE_UNSIGNED (type
)
12650 && tree_expr_nonnegative_p (arg1
))
12651 return omit_one_operand_loc (loc
, type
, arg0
, arg1
);
12652 /* ... fall through ... */
12656 if (integer_zerop (arg1
))
12657 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
12658 if (integer_zerop (arg0
))
12659 return omit_one_operand_loc (loc
, type
, arg0
, arg1
);
12661 /* Prefer vector1 << scalar to vector1 << vector2
12662 if vector2 is uniform. */
12663 if (VECTOR_TYPE_P (TREE_TYPE (arg1
))
12664 && (tem
= uniform_vector_p (arg1
)) != NULL_TREE
)
12665 return fold_build2_loc (loc
, code
, type
, op0
, tem
);
12667 /* Since negative shift count is not well-defined,
12668 don't try to compute it in the compiler. */
12669 if (TREE_CODE (arg1
) == INTEGER_CST
&& tree_int_cst_sgn (arg1
) < 0)
12672 prec
= element_precision (type
);
12674 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
12675 if (TREE_CODE (op0
) == code
&& tree_fits_uhwi_p (arg1
)
12676 && tree_to_uhwi (arg1
) < prec
12677 && tree_fits_uhwi_p (TREE_OPERAND (arg0
, 1))
12678 && tree_to_uhwi (TREE_OPERAND (arg0
, 1)) < prec
)
12680 unsigned int low
= (tree_to_uhwi (TREE_OPERAND (arg0
, 1))
12681 + tree_to_uhwi (arg1
));
12683 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
12684 being well defined. */
12687 if (code
== LROTATE_EXPR
|| code
== RROTATE_EXPR
)
12689 else if (TYPE_UNSIGNED (type
) || code
== LSHIFT_EXPR
)
12690 return omit_one_operand_loc (loc
, type
, build_zero_cst (type
),
12691 TREE_OPERAND (arg0
, 0));
12696 return fold_build2_loc (loc
, code
, type
, TREE_OPERAND (arg0
, 0),
12697 build_int_cst (TREE_TYPE (arg1
), low
));
12700 /* Transform (x >> c) << c into x & (-1<<c), or transform (x << c) >> c
12701 into x & ((unsigned)-1 >> c) for unsigned types. */
12702 if (((code
== LSHIFT_EXPR
&& TREE_CODE (arg0
) == RSHIFT_EXPR
)
12703 || (TYPE_UNSIGNED (type
)
12704 && code
== RSHIFT_EXPR
&& TREE_CODE (arg0
) == LSHIFT_EXPR
))
12705 && tree_fits_uhwi_p (arg1
)
12706 && tree_to_uhwi (arg1
) < prec
12707 && tree_fits_uhwi_p (TREE_OPERAND (arg0
, 1))
12708 && tree_to_uhwi (TREE_OPERAND (arg0
, 1)) < prec
)
12710 HOST_WIDE_INT low0
= tree_to_uhwi (TREE_OPERAND (arg0
, 1));
12711 HOST_WIDE_INT low1
= tree_to_uhwi (arg1
);
12717 arg00
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
12719 lshift
= build_minus_one_cst (type
);
12720 lshift
= const_binop (code
, lshift
, arg1
);
12722 return fold_build2_loc (loc
, BIT_AND_EXPR
, type
, arg00
, lshift
);
12726 /* Rewrite an LROTATE_EXPR by a constant into an
12727 RROTATE_EXPR by a new constant. */
12728 if (code
== LROTATE_EXPR
&& TREE_CODE (arg1
) == INTEGER_CST
)
12730 tree tem
= build_int_cst (TREE_TYPE (arg1
), prec
);
12731 tem
= const_binop (MINUS_EXPR
, tem
, arg1
);
12732 return fold_build2_loc (loc
, RROTATE_EXPR
, type
, op0
, tem
);
12735 /* If we have a rotate of a bit operation with the rotate count and
12736 the second operand of the bit operation both constant,
12737 permute the two operations. */
12738 if (code
== RROTATE_EXPR
&& TREE_CODE (arg1
) == INTEGER_CST
12739 && (TREE_CODE (arg0
) == BIT_AND_EXPR
12740 || TREE_CODE (arg0
) == BIT_IOR_EXPR
12741 || TREE_CODE (arg0
) == BIT_XOR_EXPR
)
12742 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
12743 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
,
12744 fold_build2_loc (loc
, code
, type
,
12745 TREE_OPERAND (arg0
, 0), arg1
),
12746 fold_build2_loc (loc
, code
, type
,
12747 TREE_OPERAND (arg0
, 1), arg1
));
12749 /* Two consecutive rotates adding up to the precision of the
12750 type can be ignored. */
12751 if (code
== RROTATE_EXPR
&& TREE_CODE (arg1
) == INTEGER_CST
12752 && TREE_CODE (arg0
) == RROTATE_EXPR
12753 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
12754 && TREE_INT_CST_HIGH (arg1
) == 0
12755 && TREE_INT_CST_HIGH (TREE_OPERAND (arg0
, 1)) == 0
12756 && ((TREE_INT_CST_LOW (arg1
)
12757 + TREE_INT_CST_LOW (TREE_OPERAND (arg0
, 1)))
12759 return TREE_OPERAND (arg0
, 0);
12761 /* Fold (X & C2) << C1 into (X << C1) & (C2 << C1)
12762 (X & C2) >> C1 into (X >> C1) & (C2 >> C1)
12763 if the latter can be further optimized. */
12764 if ((code
== LSHIFT_EXPR
|| code
== RSHIFT_EXPR
)
12765 && TREE_CODE (arg0
) == BIT_AND_EXPR
12766 && TREE_CODE (arg1
) == INTEGER_CST
12767 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
12769 tree mask
= fold_build2_loc (loc
, code
, type
,
12770 fold_convert_loc (loc
, type
,
12771 TREE_OPERAND (arg0
, 1)),
12773 tree shift
= fold_build2_loc (loc
, code
, type
,
12774 fold_convert_loc (loc
, type
,
12775 TREE_OPERAND (arg0
, 0)),
12777 tem
= fold_binary_loc (loc
, BIT_AND_EXPR
, type
, shift
, mask
);
12785 if (operand_equal_p (arg0
, arg1
, 0))
12786 return omit_one_operand_loc (loc
, type
, arg0
, arg1
);
12787 if (INTEGRAL_TYPE_P (type
)
12788 && operand_equal_p (arg1
, TYPE_MIN_VALUE (type
), OEP_ONLY_CONST
))
12789 return omit_one_operand_loc (loc
, type
, arg1
, arg0
);
12790 tem
= fold_minmax (loc
, MIN_EXPR
, type
, arg0
, arg1
);
12796 if (operand_equal_p (arg0
, arg1
, 0))
12797 return omit_one_operand_loc (loc
, type
, arg0
, arg1
);
12798 if (INTEGRAL_TYPE_P (type
)
12799 && TYPE_MAX_VALUE (type
)
12800 && operand_equal_p (arg1
, TYPE_MAX_VALUE (type
), OEP_ONLY_CONST
))
12801 return omit_one_operand_loc (loc
, type
, arg1
, arg0
);
12802 tem
= fold_minmax (loc
, MAX_EXPR
, type
, arg0
, arg1
);
12807 case TRUTH_ANDIF_EXPR
:
12808 /* Note that the operands of this must be ints
12809 and their values must be 0 or 1.
12810 ("true" is a fixed value perhaps depending on the language.) */
12811 /* If first arg is constant zero, return it. */
12812 if (integer_zerop (arg0
))
12813 return fold_convert_loc (loc
, type
, arg0
);
12814 case TRUTH_AND_EXPR
:
12815 /* If either arg is constant true, drop it. */
12816 if (TREE_CODE (arg0
) == INTEGER_CST
&& ! integer_zerop (arg0
))
12817 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg1
));
12818 if (TREE_CODE (arg1
) == INTEGER_CST
&& ! integer_zerop (arg1
)
12819 /* Preserve sequence points. */
12820 && (code
!= TRUTH_ANDIF_EXPR
|| ! TREE_SIDE_EFFECTS (arg0
)))
12821 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
12822 /* If second arg is constant zero, result is zero, but first arg
12823 must be evaluated. */
12824 if (integer_zerop (arg1
))
12825 return omit_one_operand_loc (loc
, type
, arg1
, arg0
);
12826 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
12827 case will be handled here. */
12828 if (integer_zerop (arg0
))
12829 return omit_one_operand_loc (loc
, type
, arg0
, arg1
);
12831 /* !X && X is always false. */
12832 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
12833 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
12834 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg1
);
12835 /* X && !X is always false. */
12836 if (TREE_CODE (arg1
) == TRUTH_NOT_EXPR
12837 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
12838 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
12840 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
12841 means A >= Y && A != MAX, but in this case we know that
12844 if (!TREE_SIDE_EFFECTS (arg0
)
12845 && !TREE_SIDE_EFFECTS (arg1
))
12847 tem
= fold_to_nonsharp_ineq_using_bound (loc
, arg0
, arg1
);
12848 if (tem
&& !operand_equal_p (tem
, arg0
, 0))
12849 return fold_build2_loc (loc
, code
, type
, tem
, arg1
);
12851 tem
= fold_to_nonsharp_ineq_using_bound (loc
, arg1
, arg0
);
12852 if (tem
&& !operand_equal_p (tem
, arg1
, 0))
12853 return fold_build2_loc (loc
, code
, type
, arg0
, tem
);
12856 if ((tem
= fold_truth_andor (loc
, code
, type
, arg0
, arg1
, op0
, op1
))
12862 case TRUTH_ORIF_EXPR
:
12863 /* Note that the operands of this must be ints
12864 and their values must be 0 or true.
12865 ("true" is a fixed value perhaps depending on the language.) */
12866 /* If first arg is constant true, return it. */
12867 if (TREE_CODE (arg0
) == INTEGER_CST
&& ! integer_zerop (arg0
))
12868 return fold_convert_loc (loc
, type
, arg0
);
12869 case TRUTH_OR_EXPR
:
12870 /* If either arg is constant zero, drop it. */
12871 if (TREE_CODE (arg0
) == INTEGER_CST
&& integer_zerop (arg0
))
12872 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg1
));
12873 if (TREE_CODE (arg1
) == INTEGER_CST
&& integer_zerop (arg1
)
12874 /* Preserve sequence points. */
12875 && (code
!= TRUTH_ORIF_EXPR
|| ! TREE_SIDE_EFFECTS (arg0
)))
12876 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
12877 /* If second arg is constant true, result is true, but we must
12878 evaluate first arg. */
12879 if (TREE_CODE (arg1
) == INTEGER_CST
&& ! integer_zerop (arg1
))
12880 return omit_one_operand_loc (loc
, type
, arg1
, arg0
);
12881 /* Likewise for first arg, but note this only occurs here for
12883 if (TREE_CODE (arg0
) == INTEGER_CST
&& ! integer_zerop (arg0
))
12884 return omit_one_operand_loc (loc
, type
, arg0
, arg1
);
12886 /* !X || X is always true. */
12887 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
12888 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
12889 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg1
);
12890 /* X || !X is always true. */
12891 if (TREE_CODE (arg1
) == TRUTH_NOT_EXPR
12892 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
12893 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg0
);
12895 /* (X && !Y) || (!X && Y) is X ^ Y */
12896 if (TREE_CODE (arg0
) == TRUTH_AND_EXPR
12897 && TREE_CODE (arg1
) == TRUTH_AND_EXPR
)
12899 tree a0
, a1
, l0
, l1
, n0
, n1
;
12901 a0
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg1
, 0));
12902 a1
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg1
, 1));
12904 l0
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
12905 l1
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 1));
12907 n0
= fold_build1_loc (loc
, TRUTH_NOT_EXPR
, type
, l0
);
12908 n1
= fold_build1_loc (loc
, TRUTH_NOT_EXPR
, type
, l1
);
12910 if ((operand_equal_p (n0
, a0
, 0)
12911 && operand_equal_p (n1
, a1
, 0))
12912 || (operand_equal_p (n0
, a1
, 0)
12913 && operand_equal_p (n1
, a0
, 0)))
12914 return fold_build2_loc (loc
, TRUTH_XOR_EXPR
, type
, l0
, n1
);
12917 if ((tem
= fold_truth_andor (loc
, code
, type
, arg0
, arg1
, op0
, op1
))
12923 case TRUTH_XOR_EXPR
:
12924 /* If the second arg is constant zero, drop it. */
12925 if (integer_zerop (arg1
))
12926 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
12927 /* If the second arg is constant true, this is a logical inversion. */
12928 if (integer_onep (arg1
))
12930 tem
= invert_truthvalue_loc (loc
, arg0
);
12931 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, tem
));
12933 /* Identical arguments cancel to zero. */
12934 if (operand_equal_p (arg0
, arg1
, 0))
12935 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
12937 /* !X ^ X is always true. */
12938 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
12939 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
12940 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg1
);
12942 /* X ^ !X is always true. */
12943 if (TREE_CODE (arg1
) == TRUTH_NOT_EXPR
12944 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
12945 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg0
);
12954 tem
= fold_comparison (loc
, code
, type
, op0
, op1
);
12955 if (tem
!= NULL_TREE
)
12958 /* bool_var != 0 becomes bool_var. */
12959 if (TREE_CODE (TREE_TYPE (arg0
)) == BOOLEAN_TYPE
&& integer_zerop (arg1
)
12960 && code
== NE_EXPR
)
12961 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
12963 /* bool_var == 1 becomes bool_var. */
12964 if (TREE_CODE (TREE_TYPE (arg0
)) == BOOLEAN_TYPE
&& integer_onep (arg1
)
12965 && code
== EQ_EXPR
)
12966 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
12968 /* bool_var != 1 becomes !bool_var. */
12969 if (TREE_CODE (TREE_TYPE (arg0
)) == BOOLEAN_TYPE
&& integer_onep (arg1
)
12970 && code
== NE_EXPR
)
12971 return fold_convert_loc (loc
, type
,
12972 fold_build1_loc (loc
, TRUTH_NOT_EXPR
,
12973 TREE_TYPE (arg0
), arg0
));
12975 /* bool_var == 0 becomes !bool_var. */
12976 if (TREE_CODE (TREE_TYPE (arg0
)) == BOOLEAN_TYPE
&& integer_zerop (arg1
)
12977 && code
== EQ_EXPR
)
12978 return fold_convert_loc (loc
, type
,
12979 fold_build1_loc (loc
, TRUTH_NOT_EXPR
,
12980 TREE_TYPE (arg0
), arg0
));
12982 /* !exp != 0 becomes !exp */
12983 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
&& integer_zerop (arg1
)
12984 && code
== NE_EXPR
)
12985 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
12987 /* If this is an equality comparison of the address of two non-weak,
12988 unaliased symbols neither of which are extern (since we do not
12989 have access to attributes for externs), then we know the result. */
12990 if (TREE_CODE (arg0
) == ADDR_EXPR
12991 && VAR_OR_FUNCTION_DECL_P (TREE_OPERAND (arg0
, 0))
12992 && ! DECL_WEAK (TREE_OPERAND (arg0
, 0))
12993 && ! lookup_attribute ("alias",
12994 DECL_ATTRIBUTES (TREE_OPERAND (arg0
, 0)))
12995 && ! DECL_EXTERNAL (TREE_OPERAND (arg0
, 0))
12996 && TREE_CODE (arg1
) == ADDR_EXPR
12997 && VAR_OR_FUNCTION_DECL_P (TREE_OPERAND (arg1
, 0))
12998 && ! DECL_WEAK (TREE_OPERAND (arg1
, 0))
12999 && ! lookup_attribute ("alias",
13000 DECL_ATTRIBUTES (TREE_OPERAND (arg1
, 0)))
13001 && ! DECL_EXTERNAL (TREE_OPERAND (arg1
, 0)))
13003 /* We know that we're looking at the address of two
13004 non-weak, unaliased, static _DECL nodes.
13006 It is both wasteful and incorrect to call operand_equal_p
13007 to compare the two ADDR_EXPR nodes. It is wasteful in that
13008 all we need to do is test pointer equality for the arguments
13009 to the two ADDR_EXPR nodes. It is incorrect to use
13010 operand_equal_p as that function is NOT equivalent to a
13011 C equality test. It can in fact return false for two
13012 objects which would test as equal using the C equality
13014 bool equal
= TREE_OPERAND (arg0
, 0) == TREE_OPERAND (arg1
, 0);
13015 return constant_boolean_node (equal
13016 ? code
== EQ_EXPR
: code
!= EQ_EXPR
,
13020 /* If this is an EQ or NE comparison of a constant with a PLUS_EXPR or
13021 a MINUS_EXPR of a constant, we can convert it into a comparison with
13022 a revised constant as long as no overflow occurs. */
13023 if (TREE_CODE (arg1
) == INTEGER_CST
13024 && (TREE_CODE (arg0
) == PLUS_EXPR
13025 || TREE_CODE (arg0
) == MINUS_EXPR
)
13026 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
13027 && 0 != (tem
= const_binop (TREE_CODE (arg0
) == PLUS_EXPR
13028 ? MINUS_EXPR
: PLUS_EXPR
,
13029 fold_convert_loc (loc
, TREE_TYPE (arg0
),
13031 TREE_OPERAND (arg0
, 1)))
13032 && !TREE_OVERFLOW (tem
))
13033 return fold_build2_loc (loc
, code
, type
, TREE_OPERAND (arg0
, 0), tem
);
13035 /* Similarly for a NEGATE_EXPR. */
13036 if (TREE_CODE (arg0
) == NEGATE_EXPR
13037 && TREE_CODE (arg1
) == INTEGER_CST
13038 && 0 != (tem
= negate_expr (fold_convert_loc (loc
, TREE_TYPE (arg0
),
13040 && TREE_CODE (tem
) == INTEGER_CST
13041 && !TREE_OVERFLOW (tem
))
13042 return fold_build2_loc (loc
, code
, type
, TREE_OPERAND (arg0
, 0), tem
);
13044 /* Similarly for a BIT_XOR_EXPR; X ^ C1 == C2 is X == (C1 ^ C2). */
13045 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
13046 && TREE_CODE (arg1
) == INTEGER_CST
13047 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
13048 return fold_build2_loc (loc
, code
, type
, TREE_OPERAND (arg0
, 0),
13049 fold_build2_loc (loc
, BIT_XOR_EXPR
, TREE_TYPE (arg0
),
13050 fold_convert_loc (loc
,
13053 TREE_OPERAND (arg0
, 1)));
13055 /* Transform comparisons of the form X +- Y CMP X to Y CMP 0. */
13056 if ((TREE_CODE (arg0
) == PLUS_EXPR
13057 || TREE_CODE (arg0
) == POINTER_PLUS_EXPR
13058 || TREE_CODE (arg0
) == MINUS_EXPR
)
13059 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg0
,
13062 && (INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
13063 || POINTER_TYPE_P (TREE_TYPE (arg0
))))
13065 tree val
= TREE_OPERAND (arg0
, 1);
13066 return omit_two_operands_loc (loc
, type
,
13067 fold_build2_loc (loc
, code
, type
,
13069 build_int_cst (TREE_TYPE (val
),
13071 TREE_OPERAND (arg0
, 0), arg1
);
13074 /* Transform comparisons of the form C - X CMP X if C % 2 == 1. */
13075 if (TREE_CODE (arg0
) == MINUS_EXPR
13076 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == INTEGER_CST
13077 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg0
,
13080 && (TREE_INT_CST_LOW (TREE_OPERAND (arg0
, 0)) & 1) == 1)
13082 return omit_two_operands_loc (loc
, type
,
13084 ? boolean_true_node
: boolean_false_node
,
13085 TREE_OPERAND (arg0
, 1), arg1
);
13088 /* If we have X - Y == 0, we can convert that to X == Y and similarly
13089 for !=. Don't do this for ordered comparisons due to overflow. */
13090 if (TREE_CODE (arg0
) == MINUS_EXPR
13091 && integer_zerop (arg1
))
13092 return fold_build2_loc (loc
, code
, type
,
13093 TREE_OPERAND (arg0
, 0), TREE_OPERAND (arg0
, 1));
13095 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
13096 if (TREE_CODE (arg0
) == ABS_EXPR
13097 && (integer_zerop (arg1
) || real_zerop (arg1
)))
13098 return fold_build2_loc (loc
, code
, type
, TREE_OPERAND (arg0
, 0), arg1
);
13100 /* If this is an EQ or NE comparison with zero and ARG0 is
13101 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
13102 two operations, but the latter can be done in one less insn
13103 on machines that have only two-operand insns or on which a
13104 constant cannot be the first operand. */
13105 if (TREE_CODE (arg0
) == BIT_AND_EXPR
13106 && integer_zerop (arg1
))
13108 tree arg00
= TREE_OPERAND (arg0
, 0);
13109 tree arg01
= TREE_OPERAND (arg0
, 1);
13110 if (TREE_CODE (arg00
) == LSHIFT_EXPR
13111 && integer_onep (TREE_OPERAND (arg00
, 0)))
13113 tree tem
= fold_build2_loc (loc
, RSHIFT_EXPR
, TREE_TYPE (arg00
),
13114 arg01
, TREE_OPERAND (arg00
, 1));
13115 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg0
), tem
,
13116 build_int_cst (TREE_TYPE (arg0
), 1));
13117 return fold_build2_loc (loc
, code
, type
,
13118 fold_convert_loc (loc
, TREE_TYPE (arg1
), tem
),
13121 else if (TREE_CODE (arg01
) == LSHIFT_EXPR
13122 && integer_onep (TREE_OPERAND (arg01
, 0)))
13124 tree tem
= fold_build2_loc (loc
, RSHIFT_EXPR
, TREE_TYPE (arg01
),
13125 arg00
, TREE_OPERAND (arg01
, 1));
13126 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg0
), tem
,
13127 build_int_cst (TREE_TYPE (arg0
), 1));
13128 return fold_build2_loc (loc
, code
, type
,
13129 fold_convert_loc (loc
, TREE_TYPE (arg1
), tem
),
13134 /* If this is an NE or EQ comparison of zero against the result of a
13135 signed MOD operation whose second operand is a power of 2, make
13136 the MOD operation unsigned since it is simpler and equivalent. */
13137 if (integer_zerop (arg1
)
13138 && !TYPE_UNSIGNED (TREE_TYPE (arg0
))
13139 && (TREE_CODE (arg0
) == TRUNC_MOD_EXPR
13140 || TREE_CODE (arg0
) == CEIL_MOD_EXPR
13141 || TREE_CODE (arg0
) == FLOOR_MOD_EXPR
13142 || TREE_CODE (arg0
) == ROUND_MOD_EXPR
)
13143 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
13145 tree newtype
= unsigned_type_for (TREE_TYPE (arg0
));
13146 tree newmod
= fold_build2_loc (loc
, TREE_CODE (arg0
), newtype
,
13147 fold_convert_loc (loc
, newtype
,
13148 TREE_OPERAND (arg0
, 0)),
13149 fold_convert_loc (loc
, newtype
,
13150 TREE_OPERAND (arg0
, 1)));
13152 return fold_build2_loc (loc
, code
, type
, newmod
,
13153 fold_convert_loc (loc
, newtype
, arg1
));
13156 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
13157 C1 is a valid shift constant, and C2 is a power of two, i.e.
13159 if (TREE_CODE (arg0
) == BIT_AND_EXPR
13160 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == RSHIFT_EXPR
13161 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1))
13163 && integer_pow2p (TREE_OPERAND (arg0
, 1))
13164 && integer_zerop (arg1
))
13166 tree itype
= TREE_TYPE (arg0
);
13167 tree arg001
= TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1);
13168 prec
= TYPE_PRECISION (itype
);
13170 /* Check for a valid shift count. */
13171 if (TREE_INT_CST_HIGH (arg001
) == 0
13172 && TREE_INT_CST_LOW (arg001
) < prec
)
13174 tree arg01
= TREE_OPERAND (arg0
, 1);
13175 tree arg000
= TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0);
13176 unsigned HOST_WIDE_INT log2
= tree_log2 (arg01
);
13177 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0
13178 can be rewritten as (X & (C2 << C1)) != 0. */
13179 if ((log2
+ TREE_INT_CST_LOW (arg001
)) < prec
)
13181 tem
= fold_build2_loc (loc
, LSHIFT_EXPR
, itype
, arg01
, arg001
);
13182 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, itype
, arg000
, tem
);
13183 return fold_build2_loc (loc
, code
, type
, tem
,
13184 fold_convert_loc (loc
, itype
, arg1
));
13186 /* Otherwise, for signed (arithmetic) shifts,
13187 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
13188 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */
13189 else if (!TYPE_UNSIGNED (itype
))
13190 return fold_build2_loc (loc
, code
== EQ_EXPR
? GE_EXPR
: LT_EXPR
, type
,
13191 arg000
, build_int_cst (itype
, 0));
13192 /* Otherwise, of unsigned (logical) shifts,
13193 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
13194 ((X >> C1) & C2) == 0 is rewritten as (X,true). */
13196 return omit_one_operand_loc (loc
, type
,
13197 code
== EQ_EXPR
? integer_one_node
13198 : integer_zero_node
,
13203 /* If we have (A & C) == C where C is a power of 2, convert this into
13204 (A & C) != 0. Similarly for NE_EXPR. */
13205 if (TREE_CODE (arg0
) == BIT_AND_EXPR
13206 && integer_pow2p (TREE_OPERAND (arg0
, 1))
13207 && operand_equal_p (TREE_OPERAND (arg0
, 1), arg1
, 0))
13208 return fold_build2_loc (loc
, code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
, type
,
13209 arg0
, fold_convert_loc (loc
, TREE_TYPE (arg0
),
13210 integer_zero_node
));
13212 /* If we have (A & C) != 0 or (A & C) == 0 and C is the sign
13213 bit, then fold the expression into A < 0 or A >= 0. */
13214 tem
= fold_single_bit_test_into_sign_test (loc
, code
, arg0
, arg1
, type
);
13218 /* If we have (A & C) == D where D & ~C != 0, convert this into 0.
13219 Similarly for NE_EXPR. */
13220 if (TREE_CODE (arg0
) == BIT_AND_EXPR
13221 && TREE_CODE (arg1
) == INTEGER_CST
13222 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
13224 tree notc
= fold_build1_loc (loc
, BIT_NOT_EXPR
,
13225 TREE_TYPE (TREE_OPERAND (arg0
, 1)),
13226 TREE_OPERAND (arg0
, 1));
13228 = fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg0
),
13229 fold_convert_loc (loc
, TREE_TYPE (arg0
), arg1
),
13231 tree rslt
= code
== EQ_EXPR
? integer_zero_node
: integer_one_node
;
13232 if (integer_nonzerop (dandnotc
))
13233 return omit_one_operand_loc (loc
, type
, rslt
, arg0
);
13236 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
13237 Similarly for NE_EXPR. */
13238 if (TREE_CODE (arg0
) == BIT_IOR_EXPR
13239 && TREE_CODE (arg1
) == INTEGER_CST
13240 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
13242 tree notd
= fold_build1_loc (loc
, BIT_NOT_EXPR
, TREE_TYPE (arg1
), arg1
);
13244 = fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg0
),
13245 TREE_OPERAND (arg0
, 1),
13246 fold_convert_loc (loc
, TREE_TYPE (arg0
), notd
));
13247 tree rslt
= code
== EQ_EXPR
? integer_zero_node
: integer_one_node
;
13248 if (integer_nonzerop (candnotd
))
13249 return omit_one_operand_loc (loc
, type
, rslt
, arg0
);
13252 /* If this is a comparison of a field, we may be able to simplify it. */
13253 if ((TREE_CODE (arg0
) == COMPONENT_REF
13254 || TREE_CODE (arg0
) == BIT_FIELD_REF
)
13255 /* Handle the constant case even without -O
13256 to make sure the warnings are given. */
13257 && (optimize
|| TREE_CODE (arg1
) == INTEGER_CST
))
13259 t1
= optimize_bit_field_compare (loc
, code
, type
, arg0
, arg1
);
13264 /* Optimize comparisons of strlen vs zero to a compare of the
13265 first character of the string vs zero. To wit,
13266 strlen(ptr) == 0 => *ptr == 0
13267 strlen(ptr) != 0 => *ptr != 0
13268 Other cases should reduce to one of these two (or a constant)
13269 due to the return value of strlen being unsigned. */
13270 if (TREE_CODE (arg0
) == CALL_EXPR
13271 && integer_zerop (arg1
))
13273 tree fndecl
= get_callee_fndecl (arg0
);
13276 && DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
13277 && DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_STRLEN
13278 && call_expr_nargs (arg0
) == 1
13279 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0
, 0))) == POINTER_TYPE
)
13281 tree iref
= build_fold_indirect_ref_loc (loc
,
13282 CALL_EXPR_ARG (arg0
, 0));
13283 return fold_build2_loc (loc
, code
, type
, iref
,
13284 build_int_cst (TREE_TYPE (iref
), 0));
13288 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
13289 of X. Similarly fold (X >> C) == 0 into X >= 0. */
13290 if (TREE_CODE (arg0
) == RSHIFT_EXPR
13291 && integer_zerop (arg1
)
13292 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
13294 tree arg00
= TREE_OPERAND (arg0
, 0);
13295 tree arg01
= TREE_OPERAND (arg0
, 1);
13296 tree itype
= TREE_TYPE (arg00
);
13297 if (TREE_INT_CST_HIGH (arg01
) == 0
13298 && TREE_INT_CST_LOW (arg01
)
13299 == (unsigned HOST_WIDE_INT
) (element_precision (itype
) - 1))
13301 if (TYPE_UNSIGNED (itype
))
13303 itype
= signed_type_for (itype
);
13304 arg00
= fold_convert_loc (loc
, itype
, arg00
);
13306 return fold_build2_loc (loc
, code
== EQ_EXPR
? GE_EXPR
: LT_EXPR
,
13307 type
, arg00
, build_zero_cst (itype
));
13311 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
13312 if (integer_zerop (arg1
)
13313 && TREE_CODE (arg0
) == BIT_XOR_EXPR
)
13314 return fold_build2_loc (loc
, code
, type
, TREE_OPERAND (arg0
, 0),
13315 TREE_OPERAND (arg0
, 1));
13317 /* (X ^ Y) == Y becomes X == 0. We know that Y has no side-effects. */
13318 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
13319 && operand_equal_p (TREE_OPERAND (arg0
, 1), arg1
, 0))
13320 return fold_build2_loc (loc
, code
, type
, TREE_OPERAND (arg0
, 0),
13321 build_zero_cst (TREE_TYPE (arg0
)));
13322 /* Likewise (X ^ Y) == X becomes Y == 0. X has no side-effects. */
13323 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
13324 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0)
13325 && reorder_operands_p (TREE_OPERAND (arg0
, 1), arg1
))
13326 return fold_build2_loc (loc
, code
, type
, TREE_OPERAND (arg0
, 1),
13327 build_zero_cst (TREE_TYPE (arg0
)));
13329 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
13330 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
13331 && TREE_CODE (arg1
) == INTEGER_CST
13332 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
13333 return fold_build2_loc (loc
, code
, type
, TREE_OPERAND (arg0
, 0),
13334 fold_build2_loc (loc
, BIT_XOR_EXPR
, TREE_TYPE (arg1
),
13335 TREE_OPERAND (arg0
, 1), arg1
));
13337 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
13338 (X & C) == 0 when C is a single bit. */
13339 if (TREE_CODE (arg0
) == BIT_AND_EXPR
13340 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_NOT_EXPR
13341 && integer_zerop (arg1
)
13342 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
13344 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg0
),
13345 TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0),
13346 TREE_OPERAND (arg0
, 1));
13347 return fold_build2_loc (loc
, code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
,
13349 fold_convert_loc (loc
, TREE_TYPE (arg0
),
13353 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
13354 constant C is a power of two, i.e. a single bit. */
13355 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
13356 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_AND_EXPR
13357 && integer_zerop (arg1
)
13358 && integer_pow2p (TREE_OPERAND (arg0
, 1))
13359 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1),
13360 TREE_OPERAND (arg0
, 1), OEP_ONLY_CONST
))
13362 tree arg00
= TREE_OPERAND (arg0
, 0);
13363 return fold_build2_loc (loc
, code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
, type
,
13364 arg00
, build_int_cst (TREE_TYPE (arg00
), 0));
13367 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
13368 when is C is a power of two, i.e. a single bit. */
13369 if (TREE_CODE (arg0
) == BIT_AND_EXPR
13370 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_XOR_EXPR
13371 && integer_zerop (arg1
)
13372 && integer_pow2p (TREE_OPERAND (arg0
, 1))
13373 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1),
13374 TREE_OPERAND (arg0
, 1), OEP_ONLY_CONST
))
13376 tree arg000
= TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0);
13377 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg000
),
13378 arg000
, TREE_OPERAND (arg0
, 1));
13379 return fold_build2_loc (loc
, code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
, type
,
13380 tem
, build_int_cst (TREE_TYPE (tem
), 0));
13383 if (integer_zerop (arg1
)
13384 && tree_expr_nonzero_p (arg0
))
13386 tree res
= constant_boolean_node (code
==NE_EXPR
, type
);
13387 return omit_one_operand_loc (loc
, type
, res
, arg0
);
13390 /* Fold -X op -Y as X op Y, where op is eq/ne. */
13391 if (TREE_CODE (arg0
) == NEGATE_EXPR
13392 && TREE_CODE (arg1
) == NEGATE_EXPR
)
13393 return fold_build2_loc (loc
, code
, type
,
13394 TREE_OPERAND (arg0
, 0),
13395 fold_convert_loc (loc
, TREE_TYPE (arg0
),
13396 TREE_OPERAND (arg1
, 0)));
13398 /* Fold (X & C) op (Y & C) as (X ^ Y) & C op 0", and symmetries. */
13399 if (TREE_CODE (arg0
) == BIT_AND_EXPR
13400 && TREE_CODE (arg1
) == BIT_AND_EXPR
)
13402 tree arg00
= TREE_OPERAND (arg0
, 0);
13403 tree arg01
= TREE_OPERAND (arg0
, 1);
13404 tree arg10
= TREE_OPERAND (arg1
, 0);
13405 tree arg11
= TREE_OPERAND (arg1
, 1);
13406 tree itype
= TREE_TYPE (arg0
);
13408 if (operand_equal_p (arg01
, arg11
, 0))
13409 return fold_build2_loc (loc
, code
, type
,
13410 fold_build2_loc (loc
, BIT_AND_EXPR
, itype
,
13411 fold_build2_loc (loc
,
13412 BIT_XOR_EXPR
, itype
,
13415 build_zero_cst (itype
));
13417 if (operand_equal_p (arg01
, arg10
, 0))
13418 return fold_build2_loc (loc
, code
, type
,
13419 fold_build2_loc (loc
, BIT_AND_EXPR
, itype
,
13420 fold_build2_loc (loc
,
13421 BIT_XOR_EXPR
, itype
,
13424 build_zero_cst (itype
));
13426 if (operand_equal_p (arg00
, arg11
, 0))
13427 return fold_build2_loc (loc
, code
, type
,
13428 fold_build2_loc (loc
, BIT_AND_EXPR
, itype
,
13429 fold_build2_loc (loc
,
13430 BIT_XOR_EXPR
, itype
,
13433 build_zero_cst (itype
));
13435 if (operand_equal_p (arg00
, arg10
, 0))
13436 return fold_build2_loc (loc
, code
, type
,
13437 fold_build2_loc (loc
, BIT_AND_EXPR
, itype
,
13438 fold_build2_loc (loc
,
13439 BIT_XOR_EXPR
, itype
,
13442 build_zero_cst (itype
));
13445 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
13446 && TREE_CODE (arg1
) == BIT_XOR_EXPR
)
13448 tree arg00
= TREE_OPERAND (arg0
, 0);
13449 tree arg01
= TREE_OPERAND (arg0
, 1);
13450 tree arg10
= TREE_OPERAND (arg1
, 0);
13451 tree arg11
= TREE_OPERAND (arg1
, 1);
13452 tree itype
= TREE_TYPE (arg0
);
13454 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries.
13455 operand_equal_p guarantees no side-effects so we don't need
13456 to use omit_one_operand on Z. */
13457 if (operand_equal_p (arg01
, arg11
, 0))
13458 return fold_build2_loc (loc
, code
, type
, arg00
,
13459 fold_convert_loc (loc
, TREE_TYPE (arg00
),
13461 if (operand_equal_p (arg01
, arg10
, 0))
13462 return fold_build2_loc (loc
, code
, type
, arg00
,
13463 fold_convert_loc (loc
, TREE_TYPE (arg00
),
13465 if (operand_equal_p (arg00
, arg11
, 0))
13466 return fold_build2_loc (loc
, code
, type
, arg01
,
13467 fold_convert_loc (loc
, TREE_TYPE (arg01
),
13469 if (operand_equal_p (arg00
, arg10
, 0))
13470 return fold_build2_loc (loc
, code
, type
, arg01
,
13471 fold_convert_loc (loc
, TREE_TYPE (arg01
),
13474 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */
13475 if (TREE_CODE (arg01
) == INTEGER_CST
13476 && TREE_CODE (arg11
) == INTEGER_CST
)
13478 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg01
,
13479 fold_convert_loc (loc
, itype
, arg11
));
13480 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg00
, tem
);
13481 return fold_build2_loc (loc
, code
, type
, tem
,
13482 fold_convert_loc (loc
, itype
, arg10
));
13486 /* Attempt to simplify equality/inequality comparisons of complex
13487 values. Only lower the comparison if the result is known or
13488 can be simplified to a single scalar comparison. */
13489 if ((TREE_CODE (arg0
) == COMPLEX_EXPR
13490 || TREE_CODE (arg0
) == COMPLEX_CST
)
13491 && (TREE_CODE (arg1
) == COMPLEX_EXPR
13492 || TREE_CODE (arg1
) == COMPLEX_CST
))
13494 tree real0
, imag0
, real1
, imag1
;
13497 if (TREE_CODE (arg0
) == COMPLEX_EXPR
)
13499 real0
= TREE_OPERAND (arg0
, 0);
13500 imag0
= TREE_OPERAND (arg0
, 1);
13504 real0
= TREE_REALPART (arg0
);
13505 imag0
= TREE_IMAGPART (arg0
);
13508 if (TREE_CODE (arg1
) == COMPLEX_EXPR
)
13510 real1
= TREE_OPERAND (arg1
, 0);
13511 imag1
= TREE_OPERAND (arg1
, 1);
13515 real1
= TREE_REALPART (arg1
);
13516 imag1
= TREE_IMAGPART (arg1
);
13519 rcond
= fold_binary_loc (loc
, code
, type
, real0
, real1
);
13520 if (rcond
&& TREE_CODE (rcond
) == INTEGER_CST
)
13522 if (integer_zerop (rcond
))
13524 if (code
== EQ_EXPR
)
13525 return omit_two_operands_loc (loc
, type
, boolean_false_node
,
13527 return fold_build2_loc (loc
, NE_EXPR
, type
, imag0
, imag1
);
13531 if (code
== NE_EXPR
)
13532 return omit_two_operands_loc (loc
, type
, boolean_true_node
,
13534 return fold_build2_loc (loc
, EQ_EXPR
, type
, imag0
, imag1
);
13538 icond
= fold_binary_loc (loc
, code
, type
, imag0
, imag1
);
13539 if (icond
&& TREE_CODE (icond
) == INTEGER_CST
)
13541 if (integer_zerop (icond
))
13543 if (code
== EQ_EXPR
)
13544 return omit_two_operands_loc (loc
, type
, boolean_false_node
,
13546 return fold_build2_loc (loc
, NE_EXPR
, type
, real0
, real1
);
13550 if (code
== NE_EXPR
)
13551 return omit_two_operands_loc (loc
, type
, boolean_true_node
,
13553 return fold_build2_loc (loc
, EQ_EXPR
, type
, real0
, real1
);
13564 tem
= fold_comparison (loc
, code
, type
, op0
, op1
);
13565 if (tem
!= NULL_TREE
)
13568 /* Transform comparisons of the form X +- C CMP X. */
13569 if ((TREE_CODE (arg0
) == PLUS_EXPR
|| TREE_CODE (arg0
) == MINUS_EXPR
)
13570 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0)
13571 && ((TREE_CODE (TREE_OPERAND (arg0
, 1)) == REAL_CST
13572 && !HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0
))))
13573 || (TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
13574 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1
)))))
13576 tree arg01
= TREE_OPERAND (arg0
, 1);
13577 enum tree_code code0
= TREE_CODE (arg0
);
13580 if (TREE_CODE (arg01
) == REAL_CST
)
13581 is_positive
= REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01
)) ? -1 : 1;
13583 is_positive
= tree_int_cst_sgn (arg01
);
13585 /* (X - c) > X becomes false. */
13586 if (code
== GT_EXPR
13587 && ((code0
== MINUS_EXPR
&& is_positive
>= 0)
13588 || (code0
== PLUS_EXPR
&& is_positive
<= 0)))
13590 if (TREE_CODE (arg01
) == INTEGER_CST
13591 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1
)))
13592 fold_overflow_warning (("assuming signed overflow does not "
13593 "occur when assuming that (X - c) > X "
13594 "is always false"),
13595 WARN_STRICT_OVERFLOW_ALL
);
13596 return constant_boolean_node (0, type
);
13599 /* Likewise (X + c) < X becomes false. */
13600 if (code
== LT_EXPR
13601 && ((code0
== PLUS_EXPR
&& is_positive
>= 0)
13602 || (code0
== MINUS_EXPR
&& is_positive
<= 0)))
13604 if (TREE_CODE (arg01
) == INTEGER_CST
13605 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1
)))
13606 fold_overflow_warning (("assuming signed overflow does not "
13607 "occur when assuming that "
13608 "(X + c) < X is always false"),
13609 WARN_STRICT_OVERFLOW_ALL
);
13610 return constant_boolean_node (0, type
);
13613 /* Convert (X - c) <= X to true. */
13614 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1
)))
13616 && ((code0
== MINUS_EXPR
&& is_positive
>= 0)
13617 || (code0
== PLUS_EXPR
&& is_positive
<= 0)))
13619 if (TREE_CODE (arg01
) == INTEGER_CST
13620 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1
)))
13621 fold_overflow_warning (("assuming signed overflow does not "
13622 "occur when assuming that "
13623 "(X - c) <= X is always true"),
13624 WARN_STRICT_OVERFLOW_ALL
);
13625 return constant_boolean_node (1, type
);
13628 /* Convert (X + c) >= X to true. */
13629 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1
)))
13631 && ((code0
== PLUS_EXPR
&& is_positive
>= 0)
13632 || (code0
== MINUS_EXPR
&& is_positive
<= 0)))
13634 if (TREE_CODE (arg01
) == INTEGER_CST
13635 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1
)))
13636 fold_overflow_warning (("assuming signed overflow does not "
13637 "occur when assuming that "
13638 "(X + c) >= X is always true"),
13639 WARN_STRICT_OVERFLOW_ALL
);
13640 return constant_boolean_node (1, type
);
13643 if (TREE_CODE (arg01
) == INTEGER_CST
)
13645 /* Convert X + c > X and X - c < X to true for integers. */
13646 if (code
== GT_EXPR
13647 && ((code0
== PLUS_EXPR
&& is_positive
> 0)
13648 || (code0
== MINUS_EXPR
&& is_positive
< 0)))
13650 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1
)))
13651 fold_overflow_warning (("assuming signed overflow does "
13652 "not occur when assuming that "
13653 "(X + c) > X is always true"),
13654 WARN_STRICT_OVERFLOW_ALL
);
13655 return constant_boolean_node (1, type
);
13658 if (code
== LT_EXPR
13659 && ((code0
== MINUS_EXPR
&& is_positive
> 0)
13660 || (code0
== PLUS_EXPR
&& is_positive
< 0)))
13662 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1
)))
13663 fold_overflow_warning (("assuming signed overflow does "
13664 "not occur when assuming that "
13665 "(X - c) < X is always true"),
13666 WARN_STRICT_OVERFLOW_ALL
);
13667 return constant_boolean_node (1, type
);
13670 /* Convert X + c <= X and X - c >= X to false for integers. */
13671 if (code
== LE_EXPR
13672 && ((code0
== PLUS_EXPR
&& is_positive
> 0)
13673 || (code0
== MINUS_EXPR
&& is_positive
< 0)))
13675 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1
)))
13676 fold_overflow_warning (("assuming signed overflow does "
13677 "not occur when assuming that "
13678 "(X + c) <= X is always false"),
13679 WARN_STRICT_OVERFLOW_ALL
);
13680 return constant_boolean_node (0, type
);
13683 if (code
== GE_EXPR
13684 && ((code0
== MINUS_EXPR
&& is_positive
> 0)
13685 || (code0
== PLUS_EXPR
&& is_positive
< 0)))
13687 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1
)))
13688 fold_overflow_warning (("assuming signed overflow does "
13689 "not occur when assuming that "
13690 "(X - c) >= X is always false"),
13691 WARN_STRICT_OVERFLOW_ALL
);
13692 return constant_boolean_node (0, type
);
13697 /* Comparisons with the highest or lowest possible integer of
13698 the specified precision will have known values. */
13700 tree arg1_type
= TREE_TYPE (arg1
);
13701 unsigned int width
= TYPE_PRECISION (arg1_type
);
13703 if (TREE_CODE (arg1
) == INTEGER_CST
13704 && width
<= HOST_BITS_PER_DOUBLE_INT
13705 && (INTEGRAL_TYPE_P (arg1_type
) || POINTER_TYPE_P (arg1_type
)))
13707 HOST_WIDE_INT signed_max_hi
;
13708 unsigned HOST_WIDE_INT signed_max_lo
;
13709 unsigned HOST_WIDE_INT max_hi
, max_lo
, min_hi
, min_lo
;
13711 if (width
<= HOST_BITS_PER_WIDE_INT
)
13713 signed_max_lo
= ((unsigned HOST_WIDE_INT
) 1 << (width
- 1))
13718 if (TYPE_UNSIGNED (arg1_type
))
13720 max_lo
= ((unsigned HOST_WIDE_INT
) 2 << (width
- 1)) - 1;
13726 max_lo
= signed_max_lo
;
13727 min_lo
= (HOST_WIDE_INT_M1U
<< (width
- 1));
13733 width
-= HOST_BITS_PER_WIDE_INT
;
13734 signed_max_lo
= -1;
13735 signed_max_hi
= ((unsigned HOST_WIDE_INT
) 1 << (width
- 1))
13740 if (TYPE_UNSIGNED (arg1_type
))
13742 max_hi
= ((unsigned HOST_WIDE_INT
) 2 << (width
- 1)) - 1;
13747 max_hi
= signed_max_hi
;
13748 min_hi
= (HOST_WIDE_INT_M1U
<< (width
- 1));
13752 if ((unsigned HOST_WIDE_INT
) TREE_INT_CST_HIGH (arg1
) == max_hi
13753 && TREE_INT_CST_LOW (arg1
) == max_lo
)
13757 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
13760 return fold_build2_loc (loc
, EQ_EXPR
, type
, op0
, op1
);
13763 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg0
);
13766 return fold_build2_loc (loc
, NE_EXPR
, type
, op0
, op1
);
13768 /* The GE_EXPR and LT_EXPR cases above are not normally
13769 reached because of previous transformations. */
13774 else if ((unsigned HOST_WIDE_INT
) TREE_INT_CST_HIGH (arg1
)
13776 && TREE_INT_CST_LOW (arg1
) == max_lo
- 1)
13780 arg1
= const_binop (PLUS_EXPR
, arg1
,
13781 build_int_cst (TREE_TYPE (arg1
), 1));
13782 return fold_build2_loc (loc
, EQ_EXPR
, type
,
13783 fold_convert_loc (loc
,
13784 TREE_TYPE (arg1
), arg0
),
13787 arg1
= const_binop (PLUS_EXPR
, arg1
,
13788 build_int_cst (TREE_TYPE (arg1
), 1));
13789 return fold_build2_loc (loc
, NE_EXPR
, type
,
13790 fold_convert_loc (loc
, TREE_TYPE (arg1
),
13796 else if ((unsigned HOST_WIDE_INT
) TREE_INT_CST_HIGH (arg1
)
13798 && TREE_INT_CST_LOW (arg1
) == min_lo
)
13802 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
13805 return fold_build2_loc (loc
, EQ_EXPR
, type
, op0
, op1
);
13808 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg0
);
13811 return fold_build2_loc (loc
, NE_EXPR
, type
, op0
, op1
);
13816 else if ((unsigned HOST_WIDE_INT
) TREE_INT_CST_HIGH (arg1
)
13818 && TREE_INT_CST_LOW (arg1
) == min_lo
+ 1)
13822 arg1
= const_binop (MINUS_EXPR
, arg1
, integer_one_node
);
13823 return fold_build2_loc (loc
, NE_EXPR
, type
,
13824 fold_convert_loc (loc
,
13825 TREE_TYPE (arg1
), arg0
),
13828 arg1
= const_binop (MINUS_EXPR
, arg1
, integer_one_node
);
13829 return fold_build2_loc (loc
, EQ_EXPR
, type
,
13830 fold_convert_loc (loc
, TREE_TYPE (arg1
),
13837 else if (TREE_INT_CST_HIGH (arg1
) == signed_max_hi
13838 && TREE_INT_CST_LOW (arg1
) == signed_max_lo
13839 && TYPE_UNSIGNED (arg1_type
)
13840 /* We will flip the signedness of the comparison operator
13841 associated with the mode of arg1, so the sign bit is
13842 specified by this mode. Check that arg1 is the signed
13843 max associated with this sign bit. */
13844 && width
== GET_MODE_PRECISION (TYPE_MODE (arg1_type
))
13845 /* signed_type does not work on pointer types. */
13846 && INTEGRAL_TYPE_P (arg1_type
))
13848 /* The following case also applies to X < signed_max+1
13849 and X >= signed_max+1 because previous transformations. */
13850 if (code
== LE_EXPR
|| code
== GT_EXPR
)
13852 tree st
= signed_type_for (arg1_type
);
13853 return fold_build2_loc (loc
,
13854 code
== LE_EXPR
? GE_EXPR
: LT_EXPR
,
13855 type
, fold_convert_loc (loc
, st
, arg0
),
13856 build_int_cst (st
, 0));
13862 /* If we are comparing an ABS_EXPR with a constant, we can
13863 convert all the cases into explicit comparisons, but they may
13864 well not be faster than doing the ABS and one comparison.
13865 But ABS (X) <= C is a range comparison, which becomes a subtraction
13866 and a comparison, and is probably faster. */
13867 if (code
== LE_EXPR
13868 && TREE_CODE (arg1
) == INTEGER_CST
13869 && TREE_CODE (arg0
) == ABS_EXPR
13870 && ! TREE_SIDE_EFFECTS (arg0
)
13871 && (0 != (tem
= negate_expr (arg1
)))
13872 && TREE_CODE (tem
) == INTEGER_CST
13873 && !TREE_OVERFLOW (tem
))
13874 return fold_build2_loc (loc
, TRUTH_ANDIF_EXPR
, type
,
13875 build2 (GE_EXPR
, type
,
13876 TREE_OPERAND (arg0
, 0), tem
),
13877 build2 (LE_EXPR
, type
,
13878 TREE_OPERAND (arg0
, 0), arg1
));
13880 /* Convert ABS_EXPR<x> >= 0 to true. */
13881 strict_overflow_p
= false;
13882 if (code
== GE_EXPR
13883 && (integer_zerop (arg1
)
13884 || (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0
)))
13885 && real_zerop (arg1
)))
13886 && tree_expr_nonnegative_warnv_p (arg0
, &strict_overflow_p
))
13888 if (strict_overflow_p
)
13889 fold_overflow_warning (("assuming signed overflow does not occur "
13890 "when simplifying comparison of "
13891 "absolute value and zero"),
13892 WARN_STRICT_OVERFLOW_CONDITIONAL
);
13893 return omit_one_operand_loc (loc
, type
,
13894 constant_boolean_node (true, type
),
13898 /* Convert ABS_EXPR<x> < 0 to false. */
13899 strict_overflow_p
= false;
13900 if (code
== LT_EXPR
13901 && (integer_zerop (arg1
) || real_zerop (arg1
))
13902 && tree_expr_nonnegative_warnv_p (arg0
, &strict_overflow_p
))
13904 if (strict_overflow_p
)
13905 fold_overflow_warning (("assuming signed overflow does not occur "
13906 "when simplifying comparison of "
13907 "absolute value and zero"),
13908 WARN_STRICT_OVERFLOW_CONDITIONAL
);
13909 return omit_one_operand_loc (loc
, type
,
13910 constant_boolean_node (false, type
),
13914 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
13915 and similarly for >= into !=. */
13916 if ((code
== LT_EXPR
|| code
== GE_EXPR
)
13917 && TYPE_UNSIGNED (TREE_TYPE (arg0
))
13918 && TREE_CODE (arg1
) == LSHIFT_EXPR
13919 && integer_onep (TREE_OPERAND (arg1
, 0)))
13920 return build2_loc (loc
, code
== LT_EXPR
? EQ_EXPR
: NE_EXPR
, type
,
13921 build2 (RSHIFT_EXPR
, TREE_TYPE (arg0
), arg0
,
13922 TREE_OPERAND (arg1
, 1)),
13923 build_zero_cst (TREE_TYPE (arg0
)));
13925 /* Similarly for X < (cast) (1 << Y). But cast can't be narrowing,
13926 otherwise Y might be >= # of bits in X's type and thus e.g.
13927 (unsigned char) (1 << Y) for Y 15 might be 0.
13928 If the cast is widening, then 1 << Y should have unsigned type,
13929 otherwise if Y is number of bits in the signed shift type minus 1,
13930 we can't optimize this. E.g. (unsigned long long) (1 << Y) for Y
13931 31 might be 0xffffffff80000000. */
13932 if ((code
== LT_EXPR
|| code
== GE_EXPR
)
13933 && TYPE_UNSIGNED (TREE_TYPE (arg0
))
13934 && CONVERT_EXPR_P (arg1
)
13935 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == LSHIFT_EXPR
13936 && (TYPE_PRECISION (TREE_TYPE (arg1
))
13937 >= TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1
, 0))))
13938 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg1
, 0)))
13939 || (TYPE_PRECISION (TREE_TYPE (arg1
))
13940 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1
, 0)))))
13941 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1
, 0), 0)))
13943 tem
= build2 (RSHIFT_EXPR
, TREE_TYPE (arg0
), arg0
,
13944 TREE_OPERAND (TREE_OPERAND (arg1
, 0), 1));
13945 return build2_loc (loc
, code
== LT_EXPR
? EQ_EXPR
: NE_EXPR
, type
,
13946 fold_convert_loc (loc
, TREE_TYPE (arg0
), tem
),
13947 build_zero_cst (TREE_TYPE (arg0
)));
13952 case UNORDERED_EXPR
:
13960 if (TREE_CODE (arg0
) == REAL_CST
&& TREE_CODE (arg1
) == REAL_CST
)
13962 t1
= fold_relational_const (code
, type
, arg0
, arg1
);
13963 if (t1
!= NULL_TREE
)
13967 /* If the first operand is NaN, the result is constant. */
13968 if (TREE_CODE (arg0
) == REAL_CST
13969 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg0
))
13970 && (code
!= LTGT_EXPR
|| ! flag_trapping_math
))
13972 t1
= (code
== ORDERED_EXPR
|| code
== LTGT_EXPR
)
13973 ? integer_zero_node
13974 : integer_one_node
;
13975 return omit_one_operand_loc (loc
, type
, t1
, arg1
);
13978 /* If the second operand is NaN, the result is constant. */
13979 if (TREE_CODE (arg1
) == REAL_CST
13980 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg1
))
13981 && (code
!= LTGT_EXPR
|| ! flag_trapping_math
))
13983 t1
= (code
== ORDERED_EXPR
|| code
== LTGT_EXPR
)
13984 ? integer_zero_node
13985 : integer_one_node
;
13986 return omit_one_operand_loc (loc
, type
, t1
, arg0
);
13989 /* Simplify unordered comparison of something with itself. */
13990 if ((code
== UNLE_EXPR
|| code
== UNGE_EXPR
|| code
== UNEQ_EXPR
)
13991 && operand_equal_p (arg0
, arg1
, 0))
13992 return constant_boolean_node (1, type
);
13994 if (code
== LTGT_EXPR
13995 && !flag_trapping_math
13996 && operand_equal_p (arg0
, arg1
, 0))
13997 return constant_boolean_node (0, type
);
13999 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
14001 tree targ0
= strip_float_extensions (arg0
);
14002 tree targ1
= strip_float_extensions (arg1
);
14003 tree newtype
= TREE_TYPE (targ0
);
14005 if (TYPE_PRECISION (TREE_TYPE (targ1
)) > TYPE_PRECISION (newtype
))
14006 newtype
= TREE_TYPE (targ1
);
14008 if (TYPE_PRECISION (newtype
) < TYPE_PRECISION (TREE_TYPE (arg0
)))
14009 return fold_build2_loc (loc
, code
, type
,
14010 fold_convert_loc (loc
, newtype
, targ0
),
14011 fold_convert_loc (loc
, newtype
, targ1
));
14016 case COMPOUND_EXPR
:
14017 /* When pedantic, a compound expression can be neither an lvalue
14018 nor an integer constant expression. */
14019 if (TREE_SIDE_EFFECTS (arg0
) || TREE_CONSTANT (arg1
))
14021 /* Don't let (0, 0) be null pointer constant. */
14022 tem
= integer_zerop (arg1
) ? build1 (NOP_EXPR
, type
, arg1
)
14023 : fold_convert_loc (loc
, type
, arg1
);
14024 return pedantic_non_lvalue_loc (loc
, tem
);
14027 if ((TREE_CODE (arg0
) == REAL_CST
14028 && TREE_CODE (arg1
) == REAL_CST
)
14029 || (TREE_CODE (arg0
) == INTEGER_CST
14030 && TREE_CODE (arg1
) == INTEGER_CST
))
14031 return build_complex (type
, arg0
, arg1
);
14032 if (TREE_CODE (arg0
) == REALPART_EXPR
14033 && TREE_CODE (arg1
) == IMAGPART_EXPR
14034 && TREE_TYPE (TREE_OPERAND (arg0
, 0)) == type
14035 && operand_equal_p (TREE_OPERAND (arg0
, 0),
14036 TREE_OPERAND (arg1
, 0), 0))
14037 return omit_one_operand_loc (loc
, type
, TREE_OPERAND (arg0
, 0),
14038 TREE_OPERAND (arg1
, 0));
14042 /* An ASSERT_EXPR should never be passed to fold_binary. */
14043 gcc_unreachable ();
14045 case VEC_PACK_TRUNC_EXPR
:
14046 case VEC_PACK_FIX_TRUNC_EXPR
:
14048 unsigned int nelts
= TYPE_VECTOR_SUBPARTS (type
), i
;
14051 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0
)) == nelts
/ 2
14052 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1
)) == nelts
/ 2);
14053 if (TREE_CODE (arg0
) != VECTOR_CST
|| TREE_CODE (arg1
) != VECTOR_CST
)
14056 elts
= XALLOCAVEC (tree
, nelts
);
14057 if (!vec_cst_ctor_to_array (arg0
, elts
)
14058 || !vec_cst_ctor_to_array (arg1
, elts
+ nelts
/ 2))
14061 for (i
= 0; i
< nelts
; i
++)
14063 elts
[i
] = fold_convert_const (code
== VEC_PACK_TRUNC_EXPR
14064 ? NOP_EXPR
: FIX_TRUNC_EXPR
,
14065 TREE_TYPE (type
), elts
[i
]);
14066 if (elts
[i
] == NULL_TREE
|| !CONSTANT_CLASS_P (elts
[i
]))
14070 return build_vector (type
, elts
);
14073 case VEC_WIDEN_MULT_LO_EXPR
:
14074 case VEC_WIDEN_MULT_HI_EXPR
:
14075 case VEC_WIDEN_MULT_EVEN_EXPR
:
14076 case VEC_WIDEN_MULT_ODD_EXPR
:
14078 unsigned int nelts
= TYPE_VECTOR_SUBPARTS (type
);
14079 unsigned int out
, ofs
, scale
;
14082 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0
)) == nelts
* 2
14083 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1
)) == nelts
* 2);
14084 if (TREE_CODE (arg0
) != VECTOR_CST
|| TREE_CODE (arg1
) != VECTOR_CST
)
14087 elts
= XALLOCAVEC (tree
, nelts
* 4);
14088 if (!vec_cst_ctor_to_array (arg0
, elts
)
14089 || !vec_cst_ctor_to_array (arg1
, elts
+ nelts
* 2))
14092 if (code
== VEC_WIDEN_MULT_LO_EXPR
)
14093 scale
= 0, ofs
= BYTES_BIG_ENDIAN
? nelts
: 0;
14094 else if (code
== VEC_WIDEN_MULT_HI_EXPR
)
14095 scale
= 0, ofs
= BYTES_BIG_ENDIAN
? 0 : nelts
;
14096 else if (code
== VEC_WIDEN_MULT_EVEN_EXPR
)
14097 scale
= 1, ofs
= 0;
14098 else /* if (code == VEC_WIDEN_MULT_ODD_EXPR) */
14099 scale
= 1, ofs
= 1;
14101 for (out
= 0; out
< nelts
; out
++)
14103 unsigned int in1
= (out
<< scale
) + ofs
;
14104 unsigned int in2
= in1
+ nelts
* 2;
14107 t1
= fold_convert_const (NOP_EXPR
, TREE_TYPE (type
), elts
[in1
]);
14108 t2
= fold_convert_const (NOP_EXPR
, TREE_TYPE (type
), elts
[in2
]);
14110 if (t1
== NULL_TREE
|| t2
== NULL_TREE
)
14112 elts
[out
] = const_binop (MULT_EXPR
, t1
, t2
);
14113 if (elts
[out
] == NULL_TREE
|| !CONSTANT_CLASS_P (elts
[out
]))
14117 return build_vector (type
, elts
);
14122 } /* switch (code) */
14125 /* Callback for walk_tree, looking for LABEL_EXPR. Return *TP if it is
14126 a LABEL_EXPR; otherwise return NULL_TREE. Do not check the subtrees
14130 contains_label_1 (tree
*tp
, int *walk_subtrees
, void *data ATTRIBUTE_UNUSED
)
14132 switch (TREE_CODE (*tp
))
14138 *walk_subtrees
= 0;
14140 /* ... fall through ... */
14147 /* Return whether the sub-tree ST contains a label which is accessible from
14148 outside the sub-tree. */
14151 contains_label_p (tree st
)
14154 (walk_tree_without_duplicates (&st
, contains_label_1
, NULL
) != NULL_TREE
);
14157 /* Fold a ternary expression of code CODE and type TYPE with operands
14158 OP0, OP1, and OP2. Return the folded expression if folding is
14159 successful. Otherwise, return NULL_TREE. */
14162 fold_ternary_loc (location_t loc
, enum tree_code code
, tree type
,
14163 tree op0
, tree op1
, tree op2
)
14166 tree arg0
= NULL_TREE
, arg1
= NULL_TREE
, arg2
= NULL_TREE
;
14167 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
14169 gcc_assert (IS_EXPR_CODE_CLASS (kind
)
14170 && TREE_CODE_LENGTH (code
) == 3);
14172 /* Strip any conversions that don't change the mode. This is safe
14173 for every expression, except for a comparison expression because
14174 its signedness is derived from its operands. So, in the latter
14175 case, only strip conversions that don't change the signedness.
14177 Note that this is done as an internal manipulation within the
14178 constant folder, in order to find the simplest representation of
14179 the arguments so that their form can be studied. In any cases,
14180 the appropriate type conversions should be put back in the tree
14181 that will get out of the constant folder. */
14202 case COMPONENT_REF
:
14203 if (TREE_CODE (arg0
) == CONSTRUCTOR
14204 && ! type_contains_placeholder_p (TREE_TYPE (arg0
)))
14206 unsigned HOST_WIDE_INT idx
;
14208 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0
), idx
, field
, value
)
14215 case VEC_COND_EXPR
:
14216 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
14217 so all simple results must be passed through pedantic_non_lvalue. */
14218 if (TREE_CODE (arg0
) == INTEGER_CST
)
14220 tree unused_op
= integer_zerop (arg0
) ? op1
: op2
;
14221 tem
= integer_zerop (arg0
) ? op2
: op1
;
14222 /* Only optimize constant conditions when the selected branch
14223 has the same type as the COND_EXPR. This avoids optimizing
14224 away "c ? x : throw", where the throw has a void type.
14225 Avoid throwing away that operand which contains label. */
14226 if ((!TREE_SIDE_EFFECTS (unused_op
)
14227 || !contains_label_p (unused_op
))
14228 && (! VOID_TYPE_P (TREE_TYPE (tem
))
14229 || VOID_TYPE_P (type
)))
14230 return pedantic_non_lvalue_loc (loc
, tem
);
14233 else if (TREE_CODE (arg0
) == VECTOR_CST
)
14235 if (integer_all_onesp (arg0
))
14236 return pedantic_omit_one_operand_loc (loc
, type
, arg1
, arg2
);
14237 if (integer_zerop (arg0
))
14238 return pedantic_omit_one_operand_loc (loc
, type
, arg2
, arg1
);
14240 if ((TREE_CODE (arg1
) == VECTOR_CST
14241 || TREE_CODE (arg1
) == CONSTRUCTOR
)
14242 && (TREE_CODE (arg2
) == VECTOR_CST
14243 || TREE_CODE (arg2
) == CONSTRUCTOR
))
14245 unsigned int nelts
= TYPE_VECTOR_SUBPARTS (type
), i
;
14246 unsigned char *sel
= XALLOCAVEC (unsigned char, nelts
);
14247 gcc_assert (nelts
== VECTOR_CST_NELTS (arg0
));
14248 for (i
= 0; i
< nelts
; i
++)
14250 tree val
= VECTOR_CST_ELT (arg0
, i
);
14251 if (integer_all_onesp (val
))
14253 else if (integer_zerop (val
))
14254 sel
[i
] = nelts
+ i
;
14255 else /* Currently unreachable. */
14258 tree t
= fold_vec_perm (type
, arg1
, arg2
, sel
);
14259 if (t
!= NULL_TREE
)
14264 if (operand_equal_p (arg1
, op2
, 0))
14265 return pedantic_omit_one_operand_loc (loc
, type
, arg1
, arg0
);
14267 /* If we have A op B ? A : C, we may be able to convert this to a
14268 simpler expression, depending on the operation and the values
14269 of B and C. Signed zeros prevent all of these transformations,
14270 for reasons given above each one.
14272 Also try swapping the arguments and inverting the conditional. */
14273 if (COMPARISON_CLASS_P (arg0
)
14274 && operand_equal_for_comparison_p (TREE_OPERAND (arg0
, 0),
14275 arg1
, TREE_OPERAND (arg0
, 1))
14276 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1
))))
14278 tem
= fold_cond_expr_with_comparison (loc
, type
, arg0
, op1
, op2
);
14283 if (COMPARISON_CLASS_P (arg0
)
14284 && operand_equal_for_comparison_p (TREE_OPERAND (arg0
, 0),
14286 TREE_OPERAND (arg0
, 1))
14287 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (op2
))))
14289 location_t loc0
= expr_location_or (arg0
, loc
);
14290 tem
= fold_invert_truthvalue (loc0
, arg0
);
14291 if (tem
&& COMPARISON_CLASS_P (tem
))
14293 tem
= fold_cond_expr_with_comparison (loc
, type
, tem
, op2
, op1
);
14299 /* If the second operand is simpler than the third, swap them
14300 since that produces better jump optimization results. */
14301 if (truth_value_p (TREE_CODE (arg0
))
14302 && tree_swap_operands_p (op1
, op2
, false))
14304 location_t loc0
= expr_location_or (arg0
, loc
);
14305 /* See if this can be inverted. If it can't, possibly because
14306 it was a floating-point inequality comparison, don't do
14308 tem
= fold_invert_truthvalue (loc0
, arg0
);
14310 return fold_build3_loc (loc
, code
, type
, tem
, op2
, op1
);
14313 /* Convert A ? 1 : 0 to simply A. */
14314 if ((code
== VEC_COND_EXPR
? integer_all_onesp (op1
)
14315 : (integer_onep (op1
)
14316 && !VECTOR_TYPE_P (type
)))
14317 && integer_zerop (op2
)
14318 /* If we try to convert OP0 to our type, the
14319 call to fold will try to move the conversion inside
14320 a COND, which will recurse. In that case, the COND_EXPR
14321 is probably the best choice, so leave it alone. */
14322 && type
== TREE_TYPE (arg0
))
14323 return pedantic_non_lvalue_loc (loc
, arg0
);
14325 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
14326 over COND_EXPR in cases such as floating point comparisons. */
14327 if (integer_zerop (op1
)
14328 && (code
== VEC_COND_EXPR
? integer_all_onesp (op2
)
14329 : (integer_onep (op2
)
14330 && !VECTOR_TYPE_P (type
)))
14331 && truth_value_p (TREE_CODE (arg0
)))
14332 return pedantic_non_lvalue_loc (loc
,
14333 fold_convert_loc (loc
, type
,
14334 invert_truthvalue_loc (loc
,
14337 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
14338 if (TREE_CODE (arg0
) == LT_EXPR
14339 && integer_zerop (TREE_OPERAND (arg0
, 1))
14340 && integer_zerop (op2
)
14341 && (tem
= sign_bit_p (TREE_OPERAND (arg0
, 0), arg1
)))
14343 /* sign_bit_p looks through both zero and sign extensions,
14344 but for this optimization only sign extensions are
14346 tree tem2
= TREE_OPERAND (arg0
, 0);
14347 while (tem
!= tem2
)
14349 if (TREE_CODE (tem2
) != NOP_EXPR
14350 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (tem2
, 0))))
14355 tem2
= TREE_OPERAND (tem2
, 0);
14357 /* sign_bit_p only checks ARG1 bits within A's precision.
14358 If <sign bit of A> has wider type than A, bits outside
14359 of A's precision in <sign bit of A> need to be checked.
14360 If they are all 0, this optimization needs to be done
14361 in unsigned A's type, if they are all 1 in signed A's type,
14362 otherwise this can't be done. */
14364 && TYPE_PRECISION (TREE_TYPE (tem
))
14365 < TYPE_PRECISION (TREE_TYPE (arg1
))
14366 && TYPE_PRECISION (TREE_TYPE (tem
))
14367 < TYPE_PRECISION (type
))
14369 unsigned HOST_WIDE_INT mask_lo
;
14370 HOST_WIDE_INT mask_hi
;
14371 int inner_width
, outer_width
;
14374 inner_width
= TYPE_PRECISION (TREE_TYPE (tem
));
14375 outer_width
= TYPE_PRECISION (TREE_TYPE (arg1
));
14376 if (outer_width
> TYPE_PRECISION (type
))
14377 outer_width
= TYPE_PRECISION (type
);
14379 if (outer_width
> HOST_BITS_PER_WIDE_INT
)
14381 mask_hi
= (HOST_WIDE_INT_M1U
14382 >> (HOST_BITS_PER_DOUBLE_INT
- outer_width
));
14388 mask_lo
= (HOST_WIDE_INT_M1U
14389 >> (HOST_BITS_PER_WIDE_INT
- outer_width
));
14391 if (inner_width
> HOST_BITS_PER_WIDE_INT
)
14393 mask_hi
&= ~(HOST_WIDE_INT_M1U
14394 >> (HOST_BITS_PER_WIDE_INT
- inner_width
));
14398 mask_lo
&= ~(HOST_WIDE_INT_M1U
14399 >> (HOST_BITS_PER_WIDE_INT
- inner_width
));
14401 if ((TREE_INT_CST_HIGH (arg1
) & mask_hi
) == mask_hi
14402 && (TREE_INT_CST_LOW (arg1
) & mask_lo
) == mask_lo
)
14404 tem_type
= signed_type_for (TREE_TYPE (tem
));
14405 tem
= fold_convert_loc (loc
, tem_type
, tem
);
14407 else if ((TREE_INT_CST_HIGH (arg1
) & mask_hi
) == 0
14408 && (TREE_INT_CST_LOW (arg1
) & mask_lo
) == 0)
14410 tem_type
= unsigned_type_for (TREE_TYPE (tem
));
14411 tem
= fold_convert_loc (loc
, tem_type
, tem
);
14419 fold_convert_loc (loc
, type
,
14420 fold_build2_loc (loc
, BIT_AND_EXPR
,
14421 TREE_TYPE (tem
), tem
,
14422 fold_convert_loc (loc
,
14427 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
14428 already handled above. */
14429 if (TREE_CODE (arg0
) == BIT_AND_EXPR
14430 && integer_onep (TREE_OPERAND (arg0
, 1))
14431 && integer_zerop (op2
)
14432 && integer_pow2p (arg1
))
14434 tree tem
= TREE_OPERAND (arg0
, 0);
14436 if (TREE_CODE (tem
) == RSHIFT_EXPR
14437 && TREE_CODE (TREE_OPERAND (tem
, 1)) == INTEGER_CST
14438 && (unsigned HOST_WIDE_INT
) tree_log2 (arg1
) ==
14439 TREE_INT_CST_LOW (TREE_OPERAND (tem
, 1)))
14440 return fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
14441 TREE_OPERAND (tem
, 0), arg1
);
14444 /* A & N ? N : 0 is simply A & N if N is a power of two. This
14445 is probably obsolete because the first operand should be a
14446 truth value (that's why we have the two cases above), but let's
14447 leave it in until we can confirm this for all front-ends. */
14448 if (integer_zerop (op2
)
14449 && TREE_CODE (arg0
) == NE_EXPR
14450 && integer_zerop (TREE_OPERAND (arg0
, 1))
14451 && integer_pow2p (arg1
)
14452 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_AND_EXPR
14453 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1),
14454 arg1
, OEP_ONLY_CONST
))
14455 return pedantic_non_lvalue_loc (loc
,
14456 fold_convert_loc (loc
, type
,
14457 TREE_OPERAND (arg0
, 0)));
14459 /* Disable the transformations below for vectors, since
14460 fold_binary_op_with_conditional_arg may undo them immediately,
14461 yielding an infinite loop. */
14462 if (code
== VEC_COND_EXPR
)
14465 /* Convert A ? B : 0 into A && B if A and B are truth values. */
14466 if (integer_zerop (op2
)
14467 && truth_value_p (TREE_CODE (arg0
))
14468 && truth_value_p (TREE_CODE (arg1
))
14469 && (code
== VEC_COND_EXPR
|| !VECTOR_TYPE_P (type
)))
14470 return fold_build2_loc (loc
, code
== VEC_COND_EXPR
? BIT_AND_EXPR
14471 : TRUTH_ANDIF_EXPR
,
14472 type
, fold_convert_loc (loc
, type
, arg0
), arg1
);
14474 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
14475 if (code
== VEC_COND_EXPR
? integer_all_onesp (op2
) : integer_onep (op2
)
14476 && truth_value_p (TREE_CODE (arg0
))
14477 && truth_value_p (TREE_CODE (arg1
))
14478 && (code
== VEC_COND_EXPR
|| !VECTOR_TYPE_P (type
)))
14480 location_t loc0
= expr_location_or (arg0
, loc
);
14481 /* Only perform transformation if ARG0 is easily inverted. */
14482 tem
= fold_invert_truthvalue (loc0
, arg0
);
14484 return fold_build2_loc (loc
, code
== VEC_COND_EXPR
14487 type
, fold_convert_loc (loc
, type
, tem
),
14491 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
14492 if (integer_zerop (arg1
)
14493 && truth_value_p (TREE_CODE (arg0
))
14494 && truth_value_p (TREE_CODE (op2
))
14495 && (code
== VEC_COND_EXPR
|| !VECTOR_TYPE_P (type
)))
14497 location_t loc0
= expr_location_or (arg0
, loc
);
14498 /* Only perform transformation if ARG0 is easily inverted. */
14499 tem
= fold_invert_truthvalue (loc0
, arg0
);
14501 return fold_build2_loc (loc
, code
== VEC_COND_EXPR
14502 ? BIT_AND_EXPR
: TRUTH_ANDIF_EXPR
,
14503 type
, fold_convert_loc (loc
, type
, tem
),
14507 /* Convert A ? 1 : B into A || B if A and B are truth values. */
14508 if (code
== VEC_COND_EXPR
? integer_all_onesp (arg1
) : integer_onep (arg1
)
14509 && truth_value_p (TREE_CODE (arg0
))
14510 && truth_value_p (TREE_CODE (op2
))
14511 && (code
== VEC_COND_EXPR
|| !VECTOR_TYPE_P (type
)))
14512 return fold_build2_loc (loc
, code
== VEC_COND_EXPR
14513 ? BIT_IOR_EXPR
: TRUTH_ORIF_EXPR
,
14514 type
, fold_convert_loc (loc
, type
, arg0
), op2
);
14519 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses
14520 of fold_ternary on them. */
14521 gcc_unreachable ();
14523 case BIT_FIELD_REF
:
14524 if ((TREE_CODE (arg0
) == VECTOR_CST
14525 || (TREE_CODE (arg0
) == CONSTRUCTOR
14526 && TREE_CODE (TREE_TYPE (arg0
)) == VECTOR_TYPE
))
14527 && (type
== TREE_TYPE (TREE_TYPE (arg0
))
14528 || (TREE_CODE (type
) == VECTOR_TYPE
14529 && TREE_TYPE (type
) == TREE_TYPE (TREE_TYPE (arg0
)))))
14531 tree eltype
= TREE_TYPE (TREE_TYPE (arg0
));
14532 unsigned HOST_WIDE_INT width
= tree_to_uhwi (TYPE_SIZE (eltype
));
14533 unsigned HOST_WIDE_INT n
= tree_to_uhwi (arg1
);
14534 unsigned HOST_WIDE_INT idx
= tree_to_uhwi (op2
);
14537 && (idx
% width
) == 0
14538 && (n
% width
) == 0
14539 && ((idx
+ n
) / width
) <= TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0
)))
14544 if (TREE_CODE (arg0
) == VECTOR_CST
)
14547 return VECTOR_CST_ELT (arg0
, idx
);
14549 tree
*vals
= XALLOCAVEC (tree
, n
);
14550 for (unsigned i
= 0; i
< n
; ++i
)
14551 vals
[i
] = VECTOR_CST_ELT (arg0
, idx
+ i
);
14552 return build_vector (type
, vals
);
14555 /* Constructor elements can be subvectors. */
14556 unsigned HOST_WIDE_INT k
= 1;
14557 if (CONSTRUCTOR_NELTS (arg0
) != 0)
14559 tree cons_elem
= TREE_TYPE (CONSTRUCTOR_ELT (arg0
, 0)->value
);
14560 if (TREE_CODE (cons_elem
) == VECTOR_TYPE
)
14561 k
= TYPE_VECTOR_SUBPARTS (cons_elem
);
14564 /* We keep an exact subset of the constructor elements. */
14565 if ((idx
% k
) == 0 && (n
% k
) == 0)
14567 if (CONSTRUCTOR_NELTS (arg0
) == 0)
14568 return build_constructor (type
, NULL
);
14573 if (idx
< CONSTRUCTOR_NELTS (arg0
))
14574 return CONSTRUCTOR_ELT (arg0
, idx
)->value
;
14575 return build_zero_cst (type
);
14578 vec
<constructor_elt
, va_gc
> *vals
;
14579 vec_alloc (vals
, n
);
14580 for (unsigned i
= 0;
14581 i
< n
&& idx
+ i
< CONSTRUCTOR_NELTS (arg0
);
14583 CONSTRUCTOR_APPEND_ELT (vals
, NULL_TREE
,
14585 (arg0
, idx
+ i
)->value
);
14586 return build_constructor (type
, vals
);
14588 /* The bitfield references a single constructor element. */
14589 else if (idx
+ n
<= (idx
/ k
+ 1) * k
)
14591 if (CONSTRUCTOR_NELTS (arg0
) <= idx
/ k
)
14592 return build_zero_cst (type
);
14594 return CONSTRUCTOR_ELT (arg0
, idx
/ k
)->value
;
14596 return fold_build3_loc (loc
, code
, type
,
14597 CONSTRUCTOR_ELT (arg0
, idx
/ k
)->value
, op1
,
14598 build_int_cst (TREE_TYPE (op2
), (idx
% k
) * width
));
14603 /* A bit-field-ref that referenced the full argument can be stripped. */
14604 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
14605 && TYPE_PRECISION (TREE_TYPE (arg0
)) == tree_to_uhwi (arg1
)
14606 && integer_zerop (op2
))
14607 return fold_convert_loc (loc
, type
, arg0
);
14609 /* On constants we can use native encode/interpret to constant
14610 fold (nearly) all BIT_FIELD_REFs. */
14611 if (CONSTANT_CLASS_P (arg0
)
14612 && can_native_interpret_type_p (type
)
14613 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (TREE_TYPE (arg0
)))
14614 /* This limitation should not be necessary, we just need to
14615 round this up to mode size. */
14616 && tree_to_uhwi (op1
) % BITS_PER_UNIT
== 0
14617 /* Need bit-shifting of the buffer to relax the following. */
14618 && tree_to_uhwi (op2
) % BITS_PER_UNIT
== 0)
14620 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (op2
);
14621 unsigned HOST_WIDE_INT bitsize
= tree_to_uhwi (op1
);
14622 unsigned HOST_WIDE_INT clen
;
14623 clen
= tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (arg0
)));
14624 /* ??? We cannot tell native_encode_expr to start at
14625 some random byte only. So limit us to a reasonable amount
14629 unsigned char *b
= XALLOCAVEC (unsigned char, clen
);
14630 unsigned HOST_WIDE_INT len
= native_encode_expr (arg0
, b
, clen
);
14632 && len
* BITS_PER_UNIT
>= bitpos
+ bitsize
)
14634 tree v
= native_interpret_expr (type
,
14635 b
+ bitpos
/ BITS_PER_UNIT
,
14636 bitsize
/ BITS_PER_UNIT
);
14646 /* For integers we can decompose the FMA if possible. */
14647 if (TREE_CODE (arg0
) == INTEGER_CST
14648 && TREE_CODE (arg1
) == INTEGER_CST
)
14649 return fold_build2_loc (loc
, PLUS_EXPR
, type
,
14650 const_binop (MULT_EXPR
, arg0
, arg1
), arg2
);
14651 if (integer_zerop (arg2
))
14652 return fold_build2_loc (loc
, MULT_EXPR
, type
, arg0
, arg1
);
14654 return fold_fma (loc
, type
, arg0
, arg1
, arg2
);
14656 case VEC_PERM_EXPR
:
14657 if (TREE_CODE (arg2
) == VECTOR_CST
)
14659 unsigned int nelts
= TYPE_VECTOR_SUBPARTS (type
), i
, mask
;
14660 unsigned char *sel
= XALLOCAVEC (unsigned char, nelts
);
14662 bool need_mask_canon
= false;
14663 bool all_in_vec0
= true;
14664 bool all_in_vec1
= true;
14665 bool maybe_identity
= true;
14666 bool single_arg
= (op0
== op1
);
14667 bool changed
= false;
14669 mask
= single_arg
? (nelts
- 1) : (2 * nelts
- 1);
14670 gcc_assert (nelts
== VECTOR_CST_NELTS (arg2
));
14671 for (i
= 0; i
< nelts
; i
++)
14673 tree val
= VECTOR_CST_ELT (arg2
, i
);
14674 if (TREE_CODE (val
) != INTEGER_CST
)
14677 sel
[i
] = TREE_INT_CST_LOW (val
) & mask
;
14678 if (TREE_INT_CST_HIGH (val
)
14679 || ((unsigned HOST_WIDE_INT
)
14680 TREE_INT_CST_LOW (val
) != sel
[i
]))
14681 need_mask_canon
= true;
14683 if (sel
[i
] < nelts
)
14684 all_in_vec1
= false;
14686 all_in_vec0
= false;
14688 if ((sel
[i
] & (nelts
-1)) != i
)
14689 maybe_identity
= false;
14692 if (maybe_identity
)
14702 else if (all_in_vec1
)
14705 for (i
= 0; i
< nelts
; i
++)
14707 need_mask_canon
= true;
14710 if ((TREE_CODE (op0
) == VECTOR_CST
14711 || TREE_CODE (op0
) == CONSTRUCTOR
)
14712 && (TREE_CODE (op1
) == VECTOR_CST
14713 || TREE_CODE (op1
) == CONSTRUCTOR
))
14715 t
= fold_vec_perm (type
, op0
, op1
, sel
);
14716 if (t
!= NULL_TREE
)
14720 if (op0
== op1
&& !single_arg
)
14723 if (need_mask_canon
&& arg2
== op2
)
14725 tree
*tsel
= XALLOCAVEC (tree
, nelts
);
14726 tree eltype
= TREE_TYPE (TREE_TYPE (arg2
));
14727 for (i
= 0; i
< nelts
; i
++)
14728 tsel
[i
] = build_int_cst (eltype
, sel
[i
]);
14729 op2
= build_vector (TREE_TYPE (arg2
), tsel
);
14734 return build3_loc (loc
, VEC_PERM_EXPR
, type
, op0
, op1
, op2
);
14740 } /* switch (code) */
14743 /* Perform constant folding and related simplification of EXPR.
14744 The related simplifications include x*1 => x, x*0 => 0, etc.,
14745 and application of the associative law.
14746 NOP_EXPR conversions may be removed freely (as long as we
14747 are careful not to change the type of the overall expression).
14748 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
14749 but we can constant-fold them if they have constant operands. */
14751 #ifdef ENABLE_FOLD_CHECKING
14752 # define fold(x) fold_1 (x)
14753 static tree
fold_1 (tree
);
14759 const tree t
= expr
;
14760 enum tree_code code
= TREE_CODE (t
);
14761 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
14763 location_t loc
= EXPR_LOCATION (expr
);
14765 /* Return right away if a constant. */
14766 if (kind
== tcc_constant
)
14769 /* CALL_EXPR-like objects with variable numbers of operands are
14770 treated specially. */
14771 if (kind
== tcc_vl_exp
)
14773 if (code
== CALL_EXPR
)
14775 tem
= fold_call_expr (loc
, expr
, false);
14776 return tem
? tem
: expr
;
14781 if (IS_EXPR_CODE_CLASS (kind
))
14783 tree type
= TREE_TYPE (t
);
14784 tree op0
, op1
, op2
;
14786 switch (TREE_CODE_LENGTH (code
))
14789 op0
= TREE_OPERAND (t
, 0);
14790 tem
= fold_unary_loc (loc
, code
, type
, op0
);
14791 return tem
? tem
: expr
;
14793 op0
= TREE_OPERAND (t
, 0);
14794 op1
= TREE_OPERAND (t
, 1);
14795 tem
= fold_binary_loc (loc
, code
, type
, op0
, op1
);
14796 return tem
? tem
: expr
;
14798 op0
= TREE_OPERAND (t
, 0);
14799 op1
= TREE_OPERAND (t
, 1);
14800 op2
= TREE_OPERAND (t
, 2);
14801 tem
= fold_ternary_loc (loc
, code
, type
, op0
, op1
, op2
);
14802 return tem
? tem
: expr
;
14812 tree op0
= TREE_OPERAND (t
, 0);
14813 tree op1
= TREE_OPERAND (t
, 1);
14815 if (TREE_CODE (op1
) == INTEGER_CST
14816 && TREE_CODE (op0
) == CONSTRUCTOR
14817 && ! type_contains_placeholder_p (TREE_TYPE (op0
)))
14819 vec
<constructor_elt
, va_gc
> *elts
= CONSTRUCTOR_ELTS (op0
);
14820 unsigned HOST_WIDE_INT end
= vec_safe_length (elts
);
14821 unsigned HOST_WIDE_INT begin
= 0;
14823 /* Find a matching index by means of a binary search. */
14824 while (begin
!= end
)
14826 unsigned HOST_WIDE_INT middle
= (begin
+ end
) / 2;
14827 tree index
= (*elts
)[middle
].index
;
14829 if (TREE_CODE (index
) == INTEGER_CST
14830 && tree_int_cst_lt (index
, op1
))
14831 begin
= middle
+ 1;
14832 else if (TREE_CODE (index
) == INTEGER_CST
14833 && tree_int_cst_lt (op1
, index
))
14835 else if (TREE_CODE (index
) == RANGE_EXPR
14836 && tree_int_cst_lt (TREE_OPERAND (index
, 1), op1
))
14837 begin
= middle
+ 1;
14838 else if (TREE_CODE (index
) == RANGE_EXPR
14839 && tree_int_cst_lt (op1
, TREE_OPERAND (index
, 0)))
14842 return (*elts
)[middle
].value
;
14849 /* Return a VECTOR_CST if possible. */
14852 tree type
= TREE_TYPE (t
);
14853 if (TREE_CODE (type
) != VECTOR_TYPE
)
14856 tree
*vec
= XALLOCAVEC (tree
, TYPE_VECTOR_SUBPARTS (type
));
14857 unsigned HOST_WIDE_INT idx
, pos
= 0;
14860 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t
), idx
, value
)
14862 if (!CONSTANT_CLASS_P (value
))
14864 if (TREE_CODE (value
) == VECTOR_CST
)
14866 for (unsigned i
= 0; i
< VECTOR_CST_NELTS (value
); ++i
)
14867 vec
[pos
++] = VECTOR_CST_ELT (value
, i
);
14870 vec
[pos
++] = value
;
14872 for (; pos
< TYPE_VECTOR_SUBPARTS (type
); ++pos
)
14873 vec
[pos
] = build_zero_cst (TREE_TYPE (type
));
14875 return build_vector (type
, vec
);
14879 return fold (DECL_INITIAL (t
));
14883 } /* switch (code) */
14886 #ifdef ENABLE_FOLD_CHECKING
14889 static void fold_checksum_tree (const_tree
, struct md5_ctx
*,
14890 hash_table
<pointer_hash
<tree_node
> >);
14891 static void fold_check_failed (const_tree
, const_tree
);
14892 void print_fold_checksum (const_tree
);
14894 /* When --enable-checking=fold, compute a digest of expr before
14895 and after actual fold call to see if fold did not accidentally
14896 change original expr. */
14902 struct md5_ctx ctx
;
14903 unsigned char checksum_before
[16], checksum_after
[16];
14904 hash_table
<pointer_hash
<tree_node
> > ht
;
14907 md5_init_ctx (&ctx
);
14908 fold_checksum_tree (expr
, &ctx
, ht
);
14909 md5_finish_ctx (&ctx
, checksum_before
);
14912 ret
= fold_1 (expr
);
14914 md5_init_ctx (&ctx
);
14915 fold_checksum_tree (expr
, &ctx
, ht
);
14916 md5_finish_ctx (&ctx
, checksum_after
);
14919 if (memcmp (checksum_before
, checksum_after
, 16))
14920 fold_check_failed (expr
, ret
);
14926 print_fold_checksum (const_tree expr
)
14928 struct md5_ctx ctx
;
14929 unsigned char checksum
[16], cnt
;
14930 hash_table
<pointer_hash
<tree_node
> > ht
;
14933 md5_init_ctx (&ctx
);
14934 fold_checksum_tree (expr
, &ctx
, ht
);
14935 md5_finish_ctx (&ctx
, checksum
);
14937 for (cnt
= 0; cnt
< 16; ++cnt
)
14938 fprintf (stderr
, "%02x", checksum
[cnt
]);
14939 putc ('\n', stderr
);
14943 fold_check_failed (const_tree expr ATTRIBUTE_UNUSED
, const_tree ret ATTRIBUTE_UNUSED
)
14945 internal_error ("fold check: original tree changed by fold");
14949 fold_checksum_tree (const_tree expr
, struct md5_ctx
*ctx
,
14950 hash_table
<pointer_hash
<tree_node
> > ht
)
14953 enum tree_code code
;
14954 union tree_node buf
;
14960 slot
= ht
.find_slot (expr
, INSERT
);
14963 *slot
= CONST_CAST_TREE (expr
);
14964 code
= TREE_CODE (expr
);
14965 if (TREE_CODE_CLASS (code
) == tcc_declaration
14966 && DECL_ASSEMBLER_NAME_SET_P (expr
))
14968 /* Allow DECL_ASSEMBLER_NAME to be modified. */
14969 memcpy ((char *) &buf
, expr
, tree_size (expr
));
14970 SET_DECL_ASSEMBLER_NAME ((tree
)&buf
, NULL
);
14971 expr
= (tree
) &buf
;
14973 else if (TREE_CODE_CLASS (code
) == tcc_type
14974 && (TYPE_POINTER_TO (expr
)
14975 || TYPE_REFERENCE_TO (expr
)
14976 || TYPE_CACHED_VALUES_P (expr
)
14977 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr
)
14978 || TYPE_NEXT_VARIANT (expr
)))
14980 /* Allow these fields to be modified. */
14982 memcpy ((char *) &buf
, expr
, tree_size (expr
));
14983 expr
= tmp
= (tree
) &buf
;
14984 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (tmp
) = 0;
14985 TYPE_POINTER_TO (tmp
) = NULL
;
14986 TYPE_REFERENCE_TO (tmp
) = NULL
;
14987 TYPE_NEXT_VARIANT (tmp
) = NULL
;
14988 if (TYPE_CACHED_VALUES_P (tmp
))
14990 TYPE_CACHED_VALUES_P (tmp
) = 0;
14991 TYPE_CACHED_VALUES (tmp
) = NULL
;
14994 md5_process_bytes (expr
, tree_size (expr
), ctx
);
14995 if (CODE_CONTAINS_STRUCT (code
, TS_TYPED
))
14996 fold_checksum_tree (TREE_TYPE (expr
), ctx
, ht
);
14997 if (TREE_CODE_CLASS (code
) != tcc_type
14998 && TREE_CODE_CLASS (code
) != tcc_declaration
14999 && code
!= TREE_LIST
15000 && code
!= SSA_NAME
15001 && CODE_CONTAINS_STRUCT (code
, TS_COMMON
))
15002 fold_checksum_tree (TREE_CHAIN (expr
), ctx
, ht
);
15003 switch (TREE_CODE_CLASS (code
))
15009 md5_process_bytes (TREE_STRING_POINTER (expr
),
15010 TREE_STRING_LENGTH (expr
), ctx
);
15013 fold_checksum_tree (TREE_REALPART (expr
), ctx
, ht
);
15014 fold_checksum_tree (TREE_IMAGPART (expr
), ctx
, ht
);
15017 for (i
= 0; i
< (int) VECTOR_CST_NELTS (expr
); ++i
)
15018 fold_checksum_tree (VECTOR_CST_ELT (expr
, i
), ctx
, ht
);
15024 case tcc_exceptional
:
15028 fold_checksum_tree (TREE_PURPOSE (expr
), ctx
, ht
);
15029 fold_checksum_tree (TREE_VALUE (expr
), ctx
, ht
);
15030 expr
= TREE_CHAIN (expr
);
15031 goto recursive_label
;
15034 for (i
= 0; i
< TREE_VEC_LENGTH (expr
); ++i
)
15035 fold_checksum_tree (TREE_VEC_ELT (expr
, i
), ctx
, ht
);
15041 case tcc_expression
:
15042 case tcc_reference
:
15043 case tcc_comparison
:
15046 case tcc_statement
:
15048 len
= TREE_OPERAND_LENGTH (expr
);
15049 for (i
= 0; i
< len
; ++i
)
15050 fold_checksum_tree (TREE_OPERAND (expr
, i
), ctx
, ht
);
15052 case tcc_declaration
:
15053 fold_checksum_tree (DECL_NAME (expr
), ctx
, ht
);
15054 fold_checksum_tree (DECL_CONTEXT (expr
), ctx
, ht
);
15055 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr
), TS_DECL_COMMON
))
15057 fold_checksum_tree (DECL_SIZE (expr
), ctx
, ht
);
15058 fold_checksum_tree (DECL_SIZE_UNIT (expr
), ctx
, ht
);
15059 fold_checksum_tree (DECL_INITIAL (expr
), ctx
, ht
);
15060 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr
), ctx
, ht
);
15061 fold_checksum_tree (DECL_ATTRIBUTES (expr
), ctx
, ht
);
15063 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr
), TS_DECL_WITH_VIS
))
15064 fold_checksum_tree (DECL_SECTION_NAME (expr
), ctx
, ht
);
15066 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr
), TS_DECL_NON_COMMON
))
15068 fold_checksum_tree (DECL_VINDEX (expr
), ctx
, ht
);
15069 fold_checksum_tree (DECL_RESULT_FLD (expr
), ctx
, ht
);
15070 fold_checksum_tree (DECL_ARGUMENT_FLD (expr
), ctx
, ht
);
15074 if (TREE_CODE (expr
) == ENUMERAL_TYPE
)
15075 fold_checksum_tree (TYPE_VALUES (expr
), ctx
, ht
);
15076 fold_checksum_tree (TYPE_SIZE (expr
), ctx
, ht
);
15077 fold_checksum_tree (TYPE_SIZE_UNIT (expr
), ctx
, ht
);
15078 fold_checksum_tree (TYPE_ATTRIBUTES (expr
), ctx
, ht
);
15079 fold_checksum_tree (TYPE_NAME (expr
), ctx
, ht
);
15080 if (INTEGRAL_TYPE_P (expr
)
15081 || SCALAR_FLOAT_TYPE_P (expr
))
15083 fold_checksum_tree (TYPE_MIN_VALUE (expr
), ctx
, ht
);
15084 fold_checksum_tree (TYPE_MAX_VALUE (expr
), ctx
, ht
);
15086 fold_checksum_tree (TYPE_MAIN_VARIANT (expr
), ctx
, ht
);
15087 if (TREE_CODE (expr
) == RECORD_TYPE
15088 || TREE_CODE (expr
) == UNION_TYPE
15089 || TREE_CODE (expr
) == QUAL_UNION_TYPE
)
15090 fold_checksum_tree (TYPE_BINFO (expr
), ctx
, ht
);
15091 fold_checksum_tree (TYPE_CONTEXT (expr
), ctx
, ht
);
15098 /* Helper function for outputting the checksum of a tree T. When
15099 debugging with gdb, you can "define mynext" to be "next" followed
15100 by "call debug_fold_checksum (op0)", then just trace down till the
15103 DEBUG_FUNCTION
void
15104 debug_fold_checksum (const_tree t
)
15107 unsigned char checksum
[16];
15108 struct md5_ctx ctx
;
15109 hash_table
<pointer_hash
<tree_node
> > ht
;
15112 md5_init_ctx (&ctx
);
15113 fold_checksum_tree (t
, &ctx
, ht
);
15114 md5_finish_ctx (&ctx
, checksum
);
15117 for (i
= 0; i
< 16; i
++)
15118 fprintf (stderr
, "%d ", checksum
[i
]);
15120 fprintf (stderr
, "\n");
15125 /* Fold a unary tree expression with code CODE of type TYPE with an
15126 operand OP0. LOC is the location of the resulting expression.
15127 Return a folded expression if successful. Otherwise, return a tree
15128 expression with code CODE of type TYPE with an operand OP0. */
15131 fold_build1_stat_loc (location_t loc
,
15132 enum tree_code code
, tree type
, tree op0 MEM_STAT_DECL
)
15135 #ifdef ENABLE_FOLD_CHECKING
15136 unsigned char checksum_before
[16], checksum_after
[16];
15137 struct md5_ctx ctx
;
15138 hash_table
<pointer_hash
<tree_node
> > ht
;
15141 md5_init_ctx (&ctx
);
15142 fold_checksum_tree (op0
, &ctx
, ht
);
15143 md5_finish_ctx (&ctx
, checksum_before
);
15147 tem
= fold_unary_loc (loc
, code
, type
, op0
);
15149 tem
= build1_stat_loc (loc
, code
, type
, op0 PASS_MEM_STAT
);
15151 #ifdef ENABLE_FOLD_CHECKING
15152 md5_init_ctx (&ctx
);
15153 fold_checksum_tree (op0
, &ctx
, ht
);
15154 md5_finish_ctx (&ctx
, checksum_after
);
15157 if (memcmp (checksum_before
, checksum_after
, 16))
15158 fold_check_failed (op0
, tem
);
15163 /* Fold a binary tree expression with code CODE of type TYPE with
15164 operands OP0 and OP1. LOC is the location of the resulting
15165 expression. Return a folded expression if successful. Otherwise,
15166 return a tree expression with code CODE of type TYPE with operands
15170 fold_build2_stat_loc (location_t loc
,
15171 enum tree_code code
, tree type
, tree op0
, tree op1
15175 #ifdef ENABLE_FOLD_CHECKING
15176 unsigned char checksum_before_op0
[16],
15177 checksum_before_op1
[16],
15178 checksum_after_op0
[16],
15179 checksum_after_op1
[16];
15180 struct md5_ctx ctx
;
15181 hash_table
<pointer_hash
<tree_node
> > ht
;
15184 md5_init_ctx (&ctx
);
15185 fold_checksum_tree (op0
, &ctx
, ht
);
15186 md5_finish_ctx (&ctx
, checksum_before_op0
);
15189 md5_init_ctx (&ctx
);
15190 fold_checksum_tree (op1
, &ctx
, ht
);
15191 md5_finish_ctx (&ctx
, checksum_before_op1
);
15195 tem
= fold_binary_loc (loc
, code
, type
, op0
, op1
);
15197 tem
= build2_stat_loc (loc
, code
, type
, op0
, op1 PASS_MEM_STAT
);
15199 #ifdef ENABLE_FOLD_CHECKING
15200 md5_init_ctx (&ctx
);
15201 fold_checksum_tree (op0
, &ctx
, ht
);
15202 md5_finish_ctx (&ctx
, checksum_after_op0
);
15205 if (memcmp (checksum_before_op0
, checksum_after_op0
, 16))
15206 fold_check_failed (op0
, tem
);
15208 md5_init_ctx (&ctx
);
15209 fold_checksum_tree (op1
, &ctx
, ht
);
15210 md5_finish_ctx (&ctx
, checksum_after_op1
);
15213 if (memcmp (checksum_before_op1
, checksum_after_op1
, 16))
15214 fold_check_failed (op1
, tem
);
15219 /* Fold a ternary tree expression with code CODE of type TYPE with
15220 operands OP0, OP1, and OP2. Return a folded expression if
15221 successful. Otherwise, return a tree expression with code CODE of
15222 type TYPE with operands OP0, OP1, and OP2. */
15225 fold_build3_stat_loc (location_t loc
, enum tree_code code
, tree type
,
15226 tree op0
, tree op1
, tree op2 MEM_STAT_DECL
)
15229 #ifdef ENABLE_FOLD_CHECKING
15230 unsigned char checksum_before_op0
[16],
15231 checksum_before_op1
[16],
15232 checksum_before_op2
[16],
15233 checksum_after_op0
[16],
15234 checksum_after_op1
[16],
15235 checksum_after_op2
[16];
15236 struct md5_ctx ctx
;
15237 hash_table
<pointer_hash
<tree_node
> > ht
;
15240 md5_init_ctx (&ctx
);
15241 fold_checksum_tree (op0
, &ctx
, ht
);
15242 md5_finish_ctx (&ctx
, checksum_before_op0
);
15245 md5_init_ctx (&ctx
);
15246 fold_checksum_tree (op1
, &ctx
, ht
);
15247 md5_finish_ctx (&ctx
, checksum_before_op1
);
15250 md5_init_ctx (&ctx
);
15251 fold_checksum_tree (op2
, &ctx
, ht
);
15252 md5_finish_ctx (&ctx
, checksum_before_op2
);
15256 gcc_assert (TREE_CODE_CLASS (code
) != tcc_vl_exp
);
15257 tem
= fold_ternary_loc (loc
, code
, type
, op0
, op1
, op2
);
15259 tem
= build3_stat_loc (loc
, code
, type
, op0
, op1
, op2 PASS_MEM_STAT
);
15261 #ifdef ENABLE_FOLD_CHECKING
15262 md5_init_ctx (&ctx
);
15263 fold_checksum_tree (op0
, &ctx
, ht
);
15264 md5_finish_ctx (&ctx
, checksum_after_op0
);
15267 if (memcmp (checksum_before_op0
, checksum_after_op0
, 16))
15268 fold_check_failed (op0
, tem
);
15270 md5_init_ctx (&ctx
);
15271 fold_checksum_tree (op1
, &ctx
, ht
);
15272 md5_finish_ctx (&ctx
, checksum_after_op1
);
15275 if (memcmp (checksum_before_op1
, checksum_after_op1
, 16))
15276 fold_check_failed (op1
, tem
);
15278 md5_init_ctx (&ctx
);
15279 fold_checksum_tree (op2
, &ctx
, ht
);
15280 md5_finish_ctx (&ctx
, checksum_after_op2
);
15283 if (memcmp (checksum_before_op2
, checksum_after_op2
, 16))
15284 fold_check_failed (op2
, tem
);
15289 /* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS
15290 arguments in ARGARRAY, and a null static chain.
15291 Return a folded expression if successful. Otherwise, return a CALL_EXPR
15292 of type TYPE from the given operands as constructed by build_call_array. */
15295 fold_build_call_array_loc (location_t loc
, tree type
, tree fn
,
15296 int nargs
, tree
*argarray
)
15299 #ifdef ENABLE_FOLD_CHECKING
15300 unsigned char checksum_before_fn
[16],
15301 checksum_before_arglist
[16],
15302 checksum_after_fn
[16],
15303 checksum_after_arglist
[16];
15304 struct md5_ctx ctx
;
15305 hash_table
<pointer_hash
<tree_node
> > ht
;
15309 md5_init_ctx (&ctx
);
15310 fold_checksum_tree (fn
, &ctx
, ht
);
15311 md5_finish_ctx (&ctx
, checksum_before_fn
);
15314 md5_init_ctx (&ctx
);
15315 for (i
= 0; i
< nargs
; i
++)
15316 fold_checksum_tree (argarray
[i
], &ctx
, ht
);
15317 md5_finish_ctx (&ctx
, checksum_before_arglist
);
15321 tem
= fold_builtin_call_array (loc
, type
, fn
, nargs
, argarray
);
15323 #ifdef ENABLE_FOLD_CHECKING
15324 md5_init_ctx (&ctx
);
15325 fold_checksum_tree (fn
, &ctx
, ht
);
15326 md5_finish_ctx (&ctx
, checksum_after_fn
);
15329 if (memcmp (checksum_before_fn
, checksum_after_fn
, 16))
15330 fold_check_failed (fn
, tem
);
15332 md5_init_ctx (&ctx
);
15333 for (i
= 0; i
< nargs
; i
++)
15334 fold_checksum_tree (argarray
[i
], &ctx
, ht
);
15335 md5_finish_ctx (&ctx
, checksum_after_arglist
);
15338 if (memcmp (checksum_before_arglist
, checksum_after_arglist
, 16))
15339 fold_check_failed (NULL_TREE
, tem
);
15344 /* Perform constant folding and related simplification of initializer
15345 expression EXPR. These behave identically to "fold_buildN" but ignore
15346 potential run-time traps and exceptions that fold must preserve. */
15348 #define START_FOLD_INIT \
15349 int saved_signaling_nans = flag_signaling_nans;\
15350 int saved_trapping_math = flag_trapping_math;\
15351 int saved_rounding_math = flag_rounding_math;\
15352 int saved_trapv = flag_trapv;\
15353 int saved_folding_initializer = folding_initializer;\
15354 flag_signaling_nans = 0;\
15355 flag_trapping_math = 0;\
15356 flag_rounding_math = 0;\
15358 folding_initializer = 1;
15360 #define END_FOLD_INIT \
15361 flag_signaling_nans = saved_signaling_nans;\
15362 flag_trapping_math = saved_trapping_math;\
15363 flag_rounding_math = saved_rounding_math;\
15364 flag_trapv = saved_trapv;\
15365 folding_initializer = saved_folding_initializer;
15368 fold_build1_initializer_loc (location_t loc
, enum tree_code code
,
15369 tree type
, tree op
)
15374 result
= fold_build1_loc (loc
, code
, type
, op
);
15381 fold_build2_initializer_loc (location_t loc
, enum tree_code code
,
15382 tree type
, tree op0
, tree op1
)
15387 result
= fold_build2_loc (loc
, code
, type
, op0
, op1
);
15394 fold_build_call_array_initializer_loc (location_t loc
, tree type
, tree fn
,
15395 int nargs
, tree
*argarray
)
15400 result
= fold_build_call_array_loc (loc
, type
, fn
, nargs
, argarray
);
15406 #undef START_FOLD_INIT
15407 #undef END_FOLD_INIT
15409 /* Determine if first argument is a multiple of second argument. Return 0 if
15410 it is not, or we cannot easily determined it to be.
15412 An example of the sort of thing we care about (at this point; this routine
15413 could surely be made more general, and expanded to do what the *_DIV_EXPR's
15414 fold cases do now) is discovering that
15416 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
15422 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
15424 This code also handles discovering that
15426 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
15428 is a multiple of 8 so we don't have to worry about dealing with a
15429 possible remainder.
15431 Note that we *look* inside a SAVE_EXPR only to determine how it was
15432 calculated; it is not safe for fold to do much of anything else with the
15433 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
15434 at run time. For example, the latter example above *cannot* be implemented
15435 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
15436 evaluation time of the original SAVE_EXPR is not necessarily the same at
15437 the time the new expression is evaluated. The only optimization of this
15438 sort that would be valid is changing
15440 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
15444 SAVE_EXPR (I) * SAVE_EXPR (J)
15446 (where the same SAVE_EXPR (J) is used in the original and the
15447 transformed version). */
15450 multiple_of_p (tree type
, const_tree top
, const_tree bottom
)
15452 if (operand_equal_p (top
, bottom
, 0))
15455 if (TREE_CODE (type
) != INTEGER_TYPE
)
15458 switch (TREE_CODE (top
))
15461 /* Bitwise and provides a power of two multiple. If the mask is
15462 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
15463 if (!integer_pow2p (bottom
))
15468 return (multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
)
15469 || multiple_of_p (type
, TREE_OPERAND (top
, 1), bottom
));
15473 return (multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
)
15474 && multiple_of_p (type
, TREE_OPERAND (top
, 1), bottom
));
15477 if (TREE_CODE (TREE_OPERAND (top
, 1)) == INTEGER_CST
)
15481 op1
= TREE_OPERAND (top
, 1);
15482 /* const_binop may not detect overflow correctly,
15483 so check for it explicitly here. */
15484 if (TYPE_PRECISION (TREE_TYPE (size_one_node
))
15485 > TREE_INT_CST_LOW (op1
)
15486 && TREE_INT_CST_HIGH (op1
) == 0
15487 && 0 != (t1
= fold_convert (type
,
15488 const_binop (LSHIFT_EXPR
,
15491 && !TREE_OVERFLOW (t1
))
15492 return multiple_of_p (type
, t1
, bottom
);
15497 /* Can't handle conversions from non-integral or wider integral type. */
15498 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top
, 0))) != INTEGER_TYPE
)
15499 || (TYPE_PRECISION (type
)
15500 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top
, 0)))))
15503 /* .. fall through ... */
15506 return multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
);
15509 return (multiple_of_p (type
, TREE_OPERAND (top
, 1), bottom
)
15510 && multiple_of_p (type
, TREE_OPERAND (top
, 2), bottom
));
15513 if (TREE_CODE (bottom
) != INTEGER_CST
15514 || integer_zerop (bottom
)
15515 || (TYPE_UNSIGNED (type
)
15516 && (tree_int_cst_sgn (top
) < 0
15517 || tree_int_cst_sgn (bottom
) < 0)))
15519 return integer_zerop (int_const_binop (TRUNC_MOD_EXPR
,
15527 /* Return true if CODE or TYPE is known to be non-negative. */
15530 tree_simple_nonnegative_warnv_p (enum tree_code code
, tree type
)
15532 if ((TYPE_PRECISION (type
) != 1 || TYPE_UNSIGNED (type
))
15533 && truth_value_p (code
))
15534 /* Truth values evaluate to 0 or 1, which is nonnegative unless we
15535 have a signed:1 type (where the value is -1 and 0). */
15540 /* Return true if (CODE OP0) is known to be non-negative. If the return
15541 value is based on the assumption that signed overflow is undefined,
15542 set *STRICT_OVERFLOW_P to true; otherwise, don't change
15543 *STRICT_OVERFLOW_P. */
15546 tree_unary_nonnegative_warnv_p (enum tree_code code
, tree type
, tree op0
,
15547 bool *strict_overflow_p
)
15549 if (TYPE_UNSIGNED (type
))
15555 /* We can't return 1 if flag_wrapv is set because
15556 ABS_EXPR<INT_MIN> = INT_MIN. */
15557 if (!INTEGRAL_TYPE_P (type
))
15559 if (TYPE_OVERFLOW_UNDEFINED (type
))
15561 *strict_overflow_p
= true;
15566 case NON_LVALUE_EXPR
:
15568 case FIX_TRUNC_EXPR
:
15569 return tree_expr_nonnegative_warnv_p (op0
,
15570 strict_overflow_p
);
15574 tree inner_type
= TREE_TYPE (op0
);
15575 tree outer_type
= type
;
15577 if (TREE_CODE (outer_type
) == REAL_TYPE
)
15579 if (TREE_CODE (inner_type
) == REAL_TYPE
)
15580 return tree_expr_nonnegative_warnv_p (op0
,
15581 strict_overflow_p
);
15582 if (INTEGRAL_TYPE_P (inner_type
))
15584 if (TYPE_UNSIGNED (inner_type
))
15586 return tree_expr_nonnegative_warnv_p (op0
,
15587 strict_overflow_p
);
15590 else if (INTEGRAL_TYPE_P (outer_type
))
15592 if (TREE_CODE (inner_type
) == REAL_TYPE
)
15593 return tree_expr_nonnegative_warnv_p (op0
,
15594 strict_overflow_p
);
15595 if (INTEGRAL_TYPE_P (inner_type
))
15596 return TYPE_PRECISION (inner_type
) < TYPE_PRECISION (outer_type
)
15597 && TYPE_UNSIGNED (inner_type
);
15603 return tree_simple_nonnegative_warnv_p (code
, type
);
15606 /* We don't know sign of `t', so be conservative and return false. */
15610 /* Return true if (CODE OP0 OP1) is known to be non-negative. If the return
15611 value is based on the assumption that signed overflow is undefined,
15612 set *STRICT_OVERFLOW_P to true; otherwise, don't change
15613 *STRICT_OVERFLOW_P. */
15616 tree_binary_nonnegative_warnv_p (enum tree_code code
, tree type
, tree op0
,
15617 tree op1
, bool *strict_overflow_p
)
15619 if (TYPE_UNSIGNED (type
))
15624 case POINTER_PLUS_EXPR
:
15626 if (FLOAT_TYPE_P (type
))
15627 return (tree_expr_nonnegative_warnv_p (op0
,
15629 && tree_expr_nonnegative_warnv_p (op1
,
15630 strict_overflow_p
));
15632 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
15633 both unsigned and at least 2 bits shorter than the result. */
15634 if (TREE_CODE (type
) == INTEGER_TYPE
15635 && TREE_CODE (op0
) == NOP_EXPR
15636 && TREE_CODE (op1
) == NOP_EXPR
)
15638 tree inner1
= TREE_TYPE (TREE_OPERAND (op0
, 0));
15639 tree inner2
= TREE_TYPE (TREE_OPERAND (op1
, 0));
15640 if (TREE_CODE (inner1
) == INTEGER_TYPE
&& TYPE_UNSIGNED (inner1
)
15641 && TREE_CODE (inner2
) == INTEGER_TYPE
&& TYPE_UNSIGNED (inner2
))
15643 unsigned int prec
= MAX (TYPE_PRECISION (inner1
),
15644 TYPE_PRECISION (inner2
)) + 1;
15645 return prec
< TYPE_PRECISION (type
);
15651 if (FLOAT_TYPE_P (type
) || TYPE_OVERFLOW_UNDEFINED (type
))
15653 /* x * x is always non-negative for floating point x
15654 or without overflow. */
15655 if (operand_equal_p (op0
, op1
, 0)
15656 || (tree_expr_nonnegative_warnv_p (op0
, strict_overflow_p
)
15657 && tree_expr_nonnegative_warnv_p (op1
, strict_overflow_p
)))
15659 if (TYPE_OVERFLOW_UNDEFINED (type
))
15660 *strict_overflow_p
= true;
15665 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
15666 both unsigned and their total bits is shorter than the result. */
15667 if (TREE_CODE (type
) == INTEGER_TYPE
15668 && (TREE_CODE (op0
) == NOP_EXPR
|| TREE_CODE (op0
) == INTEGER_CST
)
15669 && (TREE_CODE (op1
) == NOP_EXPR
|| TREE_CODE (op1
) == INTEGER_CST
))
15671 tree inner0
= (TREE_CODE (op0
) == NOP_EXPR
)
15672 ? TREE_TYPE (TREE_OPERAND (op0
, 0))
15674 tree inner1
= (TREE_CODE (op1
) == NOP_EXPR
)
15675 ? TREE_TYPE (TREE_OPERAND (op1
, 0))
15678 bool unsigned0
= TYPE_UNSIGNED (inner0
);
15679 bool unsigned1
= TYPE_UNSIGNED (inner1
);
15681 if (TREE_CODE (op0
) == INTEGER_CST
)
15682 unsigned0
= unsigned0
|| tree_int_cst_sgn (op0
) >= 0;
15684 if (TREE_CODE (op1
) == INTEGER_CST
)
15685 unsigned1
= unsigned1
|| tree_int_cst_sgn (op1
) >= 0;
15687 if (TREE_CODE (inner0
) == INTEGER_TYPE
&& unsigned0
15688 && TREE_CODE (inner1
) == INTEGER_TYPE
&& unsigned1
)
15690 unsigned int precision0
= (TREE_CODE (op0
) == INTEGER_CST
)
15691 ? tree_int_cst_min_precision (op0
, /*unsignedp=*/true)
15692 : TYPE_PRECISION (inner0
);
15694 unsigned int precision1
= (TREE_CODE (op1
) == INTEGER_CST
)
15695 ? tree_int_cst_min_precision (op1
, /*unsignedp=*/true)
15696 : TYPE_PRECISION (inner1
);
15698 return precision0
+ precision1
< TYPE_PRECISION (type
);
15705 return (tree_expr_nonnegative_warnv_p (op0
,
15707 || tree_expr_nonnegative_warnv_p (op1
,
15708 strict_overflow_p
));
15714 case TRUNC_DIV_EXPR
:
15715 case CEIL_DIV_EXPR
:
15716 case FLOOR_DIV_EXPR
:
15717 case ROUND_DIV_EXPR
:
15718 return (tree_expr_nonnegative_warnv_p (op0
,
15720 && tree_expr_nonnegative_warnv_p (op1
,
15721 strict_overflow_p
));
15723 case TRUNC_MOD_EXPR
:
15724 case CEIL_MOD_EXPR
:
15725 case FLOOR_MOD_EXPR
:
15726 case ROUND_MOD_EXPR
:
15727 return tree_expr_nonnegative_warnv_p (op0
,
15728 strict_overflow_p
);
15730 return tree_simple_nonnegative_warnv_p (code
, type
);
15733 /* We don't know sign of `t', so be conservative and return false. */
15737 /* Return true if T is known to be non-negative. If the return
15738 value is based on the assumption that signed overflow is undefined,
15739 set *STRICT_OVERFLOW_P to true; otherwise, don't change
15740 *STRICT_OVERFLOW_P. */
15743 tree_single_nonnegative_warnv_p (tree t
, bool *strict_overflow_p
)
15745 if (TYPE_UNSIGNED (TREE_TYPE (t
)))
15748 switch (TREE_CODE (t
))
15751 return tree_int_cst_sgn (t
) >= 0;
15754 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t
));
15757 return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t
));
15760 return (tree_expr_nonnegative_warnv_p (TREE_OPERAND (t
, 1),
15762 && tree_expr_nonnegative_warnv_p (TREE_OPERAND (t
, 2),
15763 strict_overflow_p
));
15765 return tree_simple_nonnegative_warnv_p (TREE_CODE (t
),
15768 /* We don't know sign of `t', so be conservative and return false. */
15772 /* Return true if T is known to be non-negative. If the return
15773 value is based on the assumption that signed overflow is undefined,
15774 set *STRICT_OVERFLOW_P to true; otherwise, don't change
15775 *STRICT_OVERFLOW_P. */
15778 tree_call_nonnegative_warnv_p (tree type
, tree fndecl
,
15779 tree arg0
, tree arg1
, bool *strict_overflow_p
)
15781 if (fndecl
&& DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
15782 switch (DECL_FUNCTION_CODE (fndecl
))
15784 CASE_FLT_FN (BUILT_IN_ACOS
):
15785 CASE_FLT_FN (BUILT_IN_ACOSH
):
15786 CASE_FLT_FN (BUILT_IN_CABS
):
15787 CASE_FLT_FN (BUILT_IN_COSH
):
15788 CASE_FLT_FN (BUILT_IN_ERFC
):
15789 CASE_FLT_FN (BUILT_IN_EXP
):
15790 CASE_FLT_FN (BUILT_IN_EXP10
):
15791 CASE_FLT_FN (BUILT_IN_EXP2
):
15792 CASE_FLT_FN (BUILT_IN_FABS
):
15793 CASE_FLT_FN (BUILT_IN_FDIM
):
15794 CASE_FLT_FN (BUILT_IN_HYPOT
):
15795 CASE_FLT_FN (BUILT_IN_POW10
):
15796 CASE_INT_FN (BUILT_IN_FFS
):
15797 CASE_INT_FN (BUILT_IN_PARITY
):
15798 CASE_INT_FN (BUILT_IN_POPCOUNT
):
15799 CASE_INT_FN (BUILT_IN_CLZ
):
15800 CASE_INT_FN (BUILT_IN_CLRSB
):
15801 case BUILT_IN_BSWAP32
:
15802 case BUILT_IN_BSWAP64
:
15806 CASE_FLT_FN (BUILT_IN_SQRT
):
15807 /* sqrt(-0.0) is -0.0. */
15808 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type
)))
15810 return tree_expr_nonnegative_warnv_p (arg0
,
15811 strict_overflow_p
);
15813 CASE_FLT_FN (BUILT_IN_ASINH
):
15814 CASE_FLT_FN (BUILT_IN_ATAN
):
15815 CASE_FLT_FN (BUILT_IN_ATANH
):
15816 CASE_FLT_FN (BUILT_IN_CBRT
):
15817 CASE_FLT_FN (BUILT_IN_CEIL
):
15818 CASE_FLT_FN (BUILT_IN_ERF
):
15819 CASE_FLT_FN (BUILT_IN_EXPM1
):
15820 CASE_FLT_FN (BUILT_IN_FLOOR
):
15821 CASE_FLT_FN (BUILT_IN_FMOD
):
15822 CASE_FLT_FN (BUILT_IN_FREXP
):
15823 CASE_FLT_FN (BUILT_IN_ICEIL
):
15824 CASE_FLT_FN (BUILT_IN_IFLOOR
):
15825 CASE_FLT_FN (BUILT_IN_IRINT
):
15826 CASE_FLT_FN (BUILT_IN_IROUND
):
15827 CASE_FLT_FN (BUILT_IN_LCEIL
):
15828 CASE_FLT_FN (BUILT_IN_LDEXP
):
15829 CASE_FLT_FN (BUILT_IN_LFLOOR
):
15830 CASE_FLT_FN (BUILT_IN_LLCEIL
):
15831 CASE_FLT_FN (BUILT_IN_LLFLOOR
):
15832 CASE_FLT_FN (BUILT_IN_LLRINT
):
15833 CASE_FLT_FN (BUILT_IN_LLROUND
):
15834 CASE_FLT_FN (BUILT_IN_LRINT
):
15835 CASE_FLT_FN (BUILT_IN_LROUND
):
15836 CASE_FLT_FN (BUILT_IN_MODF
):
15837 CASE_FLT_FN (BUILT_IN_NEARBYINT
):
15838 CASE_FLT_FN (BUILT_IN_RINT
):
15839 CASE_FLT_FN (BUILT_IN_ROUND
):
15840 CASE_FLT_FN (BUILT_IN_SCALB
):
15841 CASE_FLT_FN (BUILT_IN_SCALBLN
):
15842 CASE_FLT_FN (BUILT_IN_SCALBN
):
15843 CASE_FLT_FN (BUILT_IN_SIGNBIT
):
15844 CASE_FLT_FN (BUILT_IN_SIGNIFICAND
):
15845 CASE_FLT_FN (BUILT_IN_SINH
):
15846 CASE_FLT_FN (BUILT_IN_TANH
):
15847 CASE_FLT_FN (BUILT_IN_TRUNC
):
15848 /* True if the 1st argument is nonnegative. */
15849 return tree_expr_nonnegative_warnv_p (arg0
,
15850 strict_overflow_p
);
15852 CASE_FLT_FN (BUILT_IN_FMAX
):
15853 /* True if the 1st OR 2nd arguments are nonnegative. */
15854 return (tree_expr_nonnegative_warnv_p (arg0
,
15856 || (tree_expr_nonnegative_warnv_p (arg1
,
15857 strict_overflow_p
)));
15859 CASE_FLT_FN (BUILT_IN_FMIN
):
15860 /* True if the 1st AND 2nd arguments are nonnegative. */
15861 return (tree_expr_nonnegative_warnv_p (arg0
,
15863 && (tree_expr_nonnegative_warnv_p (arg1
,
15864 strict_overflow_p
)));
15866 CASE_FLT_FN (BUILT_IN_COPYSIGN
):
15867 /* True if the 2nd argument is nonnegative. */
15868 return tree_expr_nonnegative_warnv_p (arg1
,
15869 strict_overflow_p
);
15871 CASE_FLT_FN (BUILT_IN_POWI
):
15872 /* True if the 1st argument is nonnegative or the second
15873 argument is an even integer. */
15874 if (TREE_CODE (arg1
) == INTEGER_CST
15875 && (TREE_INT_CST_LOW (arg1
) & 1) == 0)
15877 return tree_expr_nonnegative_warnv_p (arg0
,
15878 strict_overflow_p
);
15880 CASE_FLT_FN (BUILT_IN_POW
):
15881 /* True if the 1st argument is nonnegative or the second
15882 argument is an even integer valued real. */
15883 if (TREE_CODE (arg1
) == REAL_CST
)
15888 c
= TREE_REAL_CST (arg1
);
15889 n
= real_to_integer (&c
);
15892 REAL_VALUE_TYPE cint
;
15893 real_from_integer (&cint
, VOIDmode
, n
,
15894 n
< 0 ? -1 : 0, 0);
15895 if (real_identical (&c
, &cint
))
15899 return tree_expr_nonnegative_warnv_p (arg0
,
15900 strict_overflow_p
);
15905 return tree_simple_nonnegative_warnv_p (CALL_EXPR
,
15909 /* Return true if T is known to be non-negative. If the return
15910 value is based on the assumption that signed overflow is undefined,
15911 set *STRICT_OVERFLOW_P to true; otherwise, don't change
15912 *STRICT_OVERFLOW_P. */
15915 tree_invalid_nonnegative_warnv_p (tree t
, bool *strict_overflow_p
)
15917 enum tree_code code
= TREE_CODE (t
);
15918 if (TYPE_UNSIGNED (TREE_TYPE (t
)))
15925 tree temp
= TARGET_EXPR_SLOT (t
);
15926 t
= TARGET_EXPR_INITIAL (t
);
15928 /* If the initializer is non-void, then it's a normal expression
15929 that will be assigned to the slot. */
15930 if (!VOID_TYPE_P (t
))
15931 return tree_expr_nonnegative_warnv_p (t
, strict_overflow_p
);
15933 /* Otherwise, the initializer sets the slot in some way. One common
15934 way is an assignment statement at the end of the initializer. */
15937 if (TREE_CODE (t
) == BIND_EXPR
)
15938 t
= expr_last (BIND_EXPR_BODY (t
));
15939 else if (TREE_CODE (t
) == TRY_FINALLY_EXPR
15940 || TREE_CODE (t
) == TRY_CATCH_EXPR
)
15941 t
= expr_last (TREE_OPERAND (t
, 0));
15942 else if (TREE_CODE (t
) == STATEMENT_LIST
)
15947 if (TREE_CODE (t
) == MODIFY_EXPR
15948 && TREE_OPERAND (t
, 0) == temp
)
15949 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t
, 1),
15950 strict_overflow_p
);
15957 tree arg0
= call_expr_nargs (t
) > 0 ? CALL_EXPR_ARG (t
, 0) : NULL_TREE
;
15958 tree arg1
= call_expr_nargs (t
) > 1 ? CALL_EXPR_ARG (t
, 1) : NULL_TREE
;
15960 return tree_call_nonnegative_warnv_p (TREE_TYPE (t
),
15961 get_callee_fndecl (t
),
15964 strict_overflow_p
);
15966 case COMPOUND_EXPR
:
15968 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t
, 1),
15969 strict_overflow_p
);
15971 return tree_expr_nonnegative_warnv_p (expr_last (TREE_OPERAND (t
, 1)),
15972 strict_overflow_p
);
15974 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t
, 0),
15975 strict_overflow_p
);
15978 return tree_simple_nonnegative_warnv_p (TREE_CODE (t
),
15982 /* We don't know sign of `t', so be conservative and return false. */
15986 /* Return true if T is known to be non-negative. If the return
15987 value is based on the assumption that signed overflow is undefined,
15988 set *STRICT_OVERFLOW_P to true; otherwise, don't change
15989 *STRICT_OVERFLOW_P. */
15992 tree_expr_nonnegative_warnv_p (tree t
, bool *strict_overflow_p
)
15994 enum tree_code code
;
15995 if (t
== error_mark_node
)
15998 code
= TREE_CODE (t
);
15999 switch (TREE_CODE_CLASS (code
))
16002 case tcc_comparison
:
16003 return tree_binary_nonnegative_warnv_p (TREE_CODE (t
),
16005 TREE_OPERAND (t
, 0),
16006 TREE_OPERAND (t
, 1),
16007 strict_overflow_p
);
16010 return tree_unary_nonnegative_warnv_p (TREE_CODE (t
),
16012 TREE_OPERAND (t
, 0),
16013 strict_overflow_p
);
16016 case tcc_declaration
:
16017 case tcc_reference
:
16018 return tree_single_nonnegative_warnv_p (t
, strict_overflow_p
);
16026 case TRUTH_AND_EXPR
:
16027 case TRUTH_OR_EXPR
:
16028 case TRUTH_XOR_EXPR
:
16029 return tree_binary_nonnegative_warnv_p (TREE_CODE (t
),
16031 TREE_OPERAND (t
, 0),
16032 TREE_OPERAND (t
, 1),
16033 strict_overflow_p
);
16034 case TRUTH_NOT_EXPR
:
16035 return tree_unary_nonnegative_warnv_p (TREE_CODE (t
),
16037 TREE_OPERAND (t
, 0),
16038 strict_overflow_p
);
16045 case WITH_SIZE_EXPR
:
16047 return tree_single_nonnegative_warnv_p (t
, strict_overflow_p
);
16050 return tree_invalid_nonnegative_warnv_p (t
, strict_overflow_p
);
16054 /* Return true if `t' is known to be non-negative. Handle warnings
16055 about undefined signed overflow. */
16058 tree_expr_nonnegative_p (tree t
)
16060 bool ret
, strict_overflow_p
;
16062 strict_overflow_p
= false;
16063 ret
= tree_expr_nonnegative_warnv_p (t
, &strict_overflow_p
);
16064 if (strict_overflow_p
)
16065 fold_overflow_warning (("assuming signed overflow does not occur when "
16066 "determining that expression is always "
16068 WARN_STRICT_OVERFLOW_MISC
);
16073 /* Return true when (CODE OP0) is an address and is known to be nonzero.
16074 For floating point we further ensure that T is not denormal.
16075 Similar logic is present in nonzero_address in rtlanal.h.
16077 If the return value is based on the assumption that signed overflow
16078 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
16079 change *STRICT_OVERFLOW_P. */
16082 tree_unary_nonzero_warnv_p (enum tree_code code
, tree type
, tree op0
,
16083 bool *strict_overflow_p
)
16088 return tree_expr_nonzero_warnv_p (op0
,
16089 strict_overflow_p
);
16093 tree inner_type
= TREE_TYPE (op0
);
16094 tree outer_type
= type
;
16096 return (TYPE_PRECISION (outer_type
) >= TYPE_PRECISION (inner_type
)
16097 && tree_expr_nonzero_warnv_p (op0
,
16098 strict_overflow_p
));
16102 case NON_LVALUE_EXPR
:
16103 return tree_expr_nonzero_warnv_p (op0
,
16104 strict_overflow_p
);
16113 /* Return true when (CODE OP0 OP1) is an address and is known to be nonzero.
16114 For floating point we further ensure that T is not denormal.
16115 Similar logic is present in nonzero_address in rtlanal.h.
16117 If the return value is based on the assumption that signed overflow
16118 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
16119 change *STRICT_OVERFLOW_P. */
16122 tree_binary_nonzero_warnv_p (enum tree_code code
,
16125 tree op1
, bool *strict_overflow_p
)
16127 bool sub_strict_overflow_p
;
16130 case POINTER_PLUS_EXPR
:
16132 if (TYPE_OVERFLOW_UNDEFINED (type
))
16134 /* With the presence of negative values it is hard
16135 to say something. */
16136 sub_strict_overflow_p
= false;
16137 if (!tree_expr_nonnegative_warnv_p (op0
,
16138 &sub_strict_overflow_p
)
16139 || !tree_expr_nonnegative_warnv_p (op1
,
16140 &sub_strict_overflow_p
))
16142 /* One of operands must be positive and the other non-negative. */
16143 /* We don't set *STRICT_OVERFLOW_P here: even if this value
16144 overflows, on a twos-complement machine the sum of two
16145 nonnegative numbers can never be zero. */
16146 return (tree_expr_nonzero_warnv_p (op0
,
16148 || tree_expr_nonzero_warnv_p (op1
,
16149 strict_overflow_p
));
16154 if (TYPE_OVERFLOW_UNDEFINED (type
))
16156 if (tree_expr_nonzero_warnv_p (op0
,
16158 && tree_expr_nonzero_warnv_p (op1
,
16159 strict_overflow_p
))
16161 *strict_overflow_p
= true;
16168 sub_strict_overflow_p
= false;
16169 if (tree_expr_nonzero_warnv_p (op0
,
16170 &sub_strict_overflow_p
)
16171 && tree_expr_nonzero_warnv_p (op1
,
16172 &sub_strict_overflow_p
))
16174 if (sub_strict_overflow_p
)
16175 *strict_overflow_p
= true;
16180 sub_strict_overflow_p
= false;
16181 if (tree_expr_nonzero_warnv_p (op0
,
16182 &sub_strict_overflow_p
))
16184 if (sub_strict_overflow_p
)
16185 *strict_overflow_p
= true;
16187 /* When both operands are nonzero, then MAX must be too. */
16188 if (tree_expr_nonzero_warnv_p (op1
,
16189 strict_overflow_p
))
16192 /* MAX where operand 0 is positive is positive. */
16193 return tree_expr_nonnegative_warnv_p (op0
,
16194 strict_overflow_p
);
16196 /* MAX where operand 1 is positive is positive. */
16197 else if (tree_expr_nonzero_warnv_p (op1
,
16198 &sub_strict_overflow_p
)
16199 && tree_expr_nonnegative_warnv_p (op1
,
16200 &sub_strict_overflow_p
))
16202 if (sub_strict_overflow_p
)
16203 *strict_overflow_p
= true;
16209 return (tree_expr_nonzero_warnv_p (op1
,
16211 || tree_expr_nonzero_warnv_p (op0
,
16212 strict_overflow_p
));
16221 /* Return true when T is an address and is known to be nonzero.
16222 For floating point we further ensure that T is not denormal.
16223 Similar logic is present in nonzero_address in rtlanal.h.
16225 If the return value is based on the assumption that signed overflow
16226 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
16227 change *STRICT_OVERFLOW_P. */
16230 tree_single_nonzero_warnv_p (tree t
, bool *strict_overflow_p
)
16232 bool sub_strict_overflow_p
;
16233 switch (TREE_CODE (t
))
16236 return !integer_zerop (t
);
16240 tree base
= TREE_OPERAND (t
, 0);
16241 if (!DECL_P (base
))
16242 base
= get_base_address (base
);
16247 /* Weak declarations may link to NULL. Other things may also be NULL
16248 so protect with -fdelete-null-pointer-checks; but not variables
16249 allocated on the stack. */
16251 && (flag_delete_null_pointer_checks
16252 || (DECL_CONTEXT (base
)
16253 && TREE_CODE (DECL_CONTEXT (base
)) == FUNCTION_DECL
16254 && auto_var_in_fn_p (base
, DECL_CONTEXT (base
)))))
16255 return !VAR_OR_FUNCTION_DECL_P (base
) || !DECL_WEAK (base
);
16257 /* Constants are never weak. */
16258 if (CONSTANT_CLASS_P (base
))
16265 sub_strict_overflow_p
= false;
16266 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 1),
16267 &sub_strict_overflow_p
)
16268 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 2),
16269 &sub_strict_overflow_p
))
16271 if (sub_strict_overflow_p
)
16272 *strict_overflow_p
= true;
16283 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
16284 attempt to fold the expression to a constant without modifying TYPE,
16287 If the expression could be simplified to a constant, then return
16288 the constant. If the expression would not be simplified to a
16289 constant, then return NULL_TREE. */
16292 fold_binary_to_constant (enum tree_code code
, tree type
, tree op0
, tree op1
)
16294 tree tem
= fold_binary (code
, type
, op0
, op1
);
16295 return (tem
&& TREE_CONSTANT (tem
)) ? tem
: NULL_TREE
;
16298 /* Given the components of a unary expression CODE, TYPE and OP0,
16299 attempt to fold the expression to a constant without modifying
16302 If the expression could be simplified to a constant, then return
16303 the constant. If the expression would not be simplified to a
16304 constant, then return NULL_TREE. */
16307 fold_unary_to_constant (enum tree_code code
, tree type
, tree op0
)
16309 tree tem
= fold_unary (code
, type
, op0
);
16310 return (tem
&& TREE_CONSTANT (tem
)) ? tem
: NULL_TREE
;
16313 /* If EXP represents referencing an element in a constant string
16314 (either via pointer arithmetic or array indexing), return the
16315 tree representing the value accessed, otherwise return NULL. */
16318 fold_read_from_constant_string (tree exp
)
16320 if ((TREE_CODE (exp
) == INDIRECT_REF
16321 || TREE_CODE (exp
) == ARRAY_REF
)
16322 && TREE_CODE (TREE_TYPE (exp
)) == INTEGER_TYPE
)
16324 tree exp1
= TREE_OPERAND (exp
, 0);
16327 location_t loc
= EXPR_LOCATION (exp
);
16329 if (TREE_CODE (exp
) == INDIRECT_REF
)
16330 string
= string_constant (exp1
, &index
);
16333 tree low_bound
= array_ref_low_bound (exp
);
16334 index
= fold_convert_loc (loc
, sizetype
, TREE_OPERAND (exp
, 1));
16336 /* Optimize the special-case of a zero lower bound.
16338 We convert the low_bound to sizetype to avoid some problems
16339 with constant folding. (E.g. suppose the lower bound is 1,
16340 and its mode is QI. Without the conversion,l (ARRAY
16341 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
16342 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
16343 if (! integer_zerop (low_bound
))
16344 index
= size_diffop_loc (loc
, index
,
16345 fold_convert_loc (loc
, sizetype
, low_bound
));
16351 && TYPE_MODE (TREE_TYPE (exp
)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string
)))
16352 && TREE_CODE (string
) == STRING_CST
16353 && TREE_CODE (index
) == INTEGER_CST
16354 && compare_tree_int (index
, TREE_STRING_LENGTH (string
)) < 0
16355 && (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (string
))))
16357 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (string
)))) == 1))
16358 return build_int_cst_type (TREE_TYPE (exp
),
16359 (TREE_STRING_POINTER (string
)
16360 [TREE_INT_CST_LOW (index
)]));
16365 /* Return the tree for neg (ARG0) when ARG0 is known to be either
16366 an integer constant, real, or fixed-point constant.
16368 TYPE is the type of the result. */
16371 fold_negate_const (tree arg0
, tree type
)
16373 tree t
= NULL_TREE
;
16375 switch (TREE_CODE (arg0
))
16379 double_int val
= tree_to_double_int (arg0
);
16381 val
= val
.neg_with_overflow (&overflow
);
16382 t
= force_fit_type_double (type
, val
, 1,
16383 (overflow
| TREE_OVERFLOW (arg0
))
16384 && !TYPE_UNSIGNED (type
));
16389 t
= build_real (type
, real_value_negate (&TREE_REAL_CST (arg0
)));
16394 FIXED_VALUE_TYPE f
;
16395 bool overflow_p
= fixed_arithmetic (&f
, NEGATE_EXPR
,
16396 &(TREE_FIXED_CST (arg0
)), NULL
,
16397 TYPE_SATURATING (type
));
16398 t
= build_fixed (type
, f
);
16399 /* Propagate overflow flags. */
16400 if (overflow_p
| TREE_OVERFLOW (arg0
))
16401 TREE_OVERFLOW (t
) = 1;
16406 gcc_unreachable ();
16412 /* Return the tree for abs (ARG0) when ARG0 is known to be either
16413 an integer constant or real constant.
16415 TYPE is the type of the result. */
16418 fold_abs_const (tree arg0
, tree type
)
16420 tree t
= NULL_TREE
;
16422 switch (TREE_CODE (arg0
))
16426 double_int val
= tree_to_double_int (arg0
);
16428 /* If the value is unsigned or non-negative, then the absolute value
16429 is the same as the ordinary value. */
16430 if (TYPE_UNSIGNED (type
)
16431 || !val
.is_negative ())
16434 /* If the value is negative, then the absolute value is
16439 val
= val
.neg_with_overflow (&overflow
);
16440 t
= force_fit_type_double (type
, val
, -1,
16441 overflow
| TREE_OVERFLOW (arg0
));
16447 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0
)))
16448 t
= build_real (type
, real_value_negate (&TREE_REAL_CST (arg0
)));
16454 gcc_unreachable ();
16460 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
16461 constant. TYPE is the type of the result. */
16464 fold_not_const (const_tree arg0
, tree type
)
16468 gcc_assert (TREE_CODE (arg0
) == INTEGER_CST
);
16470 val
= ~tree_to_double_int (arg0
);
16471 return force_fit_type_double (type
, val
, 0, TREE_OVERFLOW (arg0
));
16474 /* Given CODE, a relational operator, the target type, TYPE and two
16475 constant operands OP0 and OP1, return the result of the
16476 relational operation. If the result is not a compile time
16477 constant, then return NULL_TREE. */
16480 fold_relational_const (enum tree_code code
, tree type
, tree op0
, tree op1
)
16482 int result
, invert
;
16484 /* From here on, the only cases we handle are when the result is
16485 known to be a constant. */
16487 if (TREE_CODE (op0
) == REAL_CST
&& TREE_CODE (op1
) == REAL_CST
)
16489 const REAL_VALUE_TYPE
*c0
= TREE_REAL_CST_PTR (op0
);
16490 const REAL_VALUE_TYPE
*c1
= TREE_REAL_CST_PTR (op1
);
16492 /* Handle the cases where either operand is a NaN. */
16493 if (real_isnan (c0
) || real_isnan (c1
))
16503 case UNORDERED_EXPR
:
16517 if (flag_trapping_math
)
16523 gcc_unreachable ();
16526 return constant_boolean_node (result
, type
);
16529 return constant_boolean_node (real_compare (code
, c0
, c1
), type
);
16532 if (TREE_CODE (op0
) == FIXED_CST
&& TREE_CODE (op1
) == FIXED_CST
)
16534 const FIXED_VALUE_TYPE
*c0
= TREE_FIXED_CST_PTR (op0
);
16535 const FIXED_VALUE_TYPE
*c1
= TREE_FIXED_CST_PTR (op1
);
16536 return constant_boolean_node (fixed_compare (code
, c0
, c1
), type
);
16539 /* Handle equality/inequality of complex constants. */
16540 if (TREE_CODE (op0
) == COMPLEX_CST
&& TREE_CODE (op1
) == COMPLEX_CST
)
16542 tree rcond
= fold_relational_const (code
, type
,
16543 TREE_REALPART (op0
),
16544 TREE_REALPART (op1
));
16545 tree icond
= fold_relational_const (code
, type
,
16546 TREE_IMAGPART (op0
),
16547 TREE_IMAGPART (op1
));
16548 if (code
== EQ_EXPR
)
16549 return fold_build2 (TRUTH_ANDIF_EXPR
, type
, rcond
, icond
);
16550 else if (code
== NE_EXPR
)
16551 return fold_build2 (TRUTH_ORIF_EXPR
, type
, rcond
, icond
);
16556 if (TREE_CODE (op0
) == VECTOR_CST
&& TREE_CODE (op1
) == VECTOR_CST
)
16558 unsigned count
= VECTOR_CST_NELTS (op0
);
16559 tree
*elts
= XALLOCAVEC (tree
, count
);
16560 gcc_assert (VECTOR_CST_NELTS (op1
) == count
16561 && TYPE_VECTOR_SUBPARTS (type
) == count
);
16563 for (unsigned i
= 0; i
< count
; i
++)
16565 tree elem_type
= TREE_TYPE (type
);
16566 tree elem0
= VECTOR_CST_ELT (op0
, i
);
16567 tree elem1
= VECTOR_CST_ELT (op1
, i
);
16569 tree tem
= fold_relational_const (code
, elem_type
,
16572 if (tem
== NULL_TREE
)
16575 elts
[i
] = build_int_cst (elem_type
, integer_zerop (tem
) ? 0 : -1);
16578 return build_vector (type
, elts
);
16581 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
16583 To compute GT, swap the arguments and do LT.
16584 To compute GE, do LT and invert the result.
16585 To compute LE, swap the arguments, do LT and invert the result.
16586 To compute NE, do EQ and invert the result.
16588 Therefore, the code below must handle only EQ and LT. */
16590 if (code
== LE_EXPR
|| code
== GT_EXPR
)
16595 code
= swap_tree_comparison (code
);
16598 /* Note that it is safe to invert for real values here because we
16599 have already handled the one case that it matters. */
16602 if (code
== NE_EXPR
|| code
== GE_EXPR
)
16605 code
= invert_tree_comparison (code
, false);
16608 /* Compute a result for LT or EQ if args permit;
16609 Otherwise return T. */
16610 if (TREE_CODE (op0
) == INTEGER_CST
&& TREE_CODE (op1
) == INTEGER_CST
)
16612 if (code
== EQ_EXPR
)
16613 result
= tree_int_cst_equal (op0
, op1
);
16614 else if (TYPE_UNSIGNED (TREE_TYPE (op0
)))
16615 result
= INT_CST_LT_UNSIGNED (op0
, op1
);
16617 result
= INT_CST_LT (op0
, op1
);
16624 return constant_boolean_node (result
, type
);
16627 /* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the
16628 indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR
16632 fold_build_cleanup_point_expr (tree type
, tree expr
)
16634 /* If the expression does not have side effects then we don't have to wrap
16635 it with a cleanup point expression. */
16636 if (!TREE_SIDE_EFFECTS (expr
))
16639 /* If the expression is a return, check to see if the expression inside the
16640 return has no side effects or the right hand side of the modify expression
16641 inside the return. If either don't have side effects set we don't need to
16642 wrap the expression in a cleanup point expression. Note we don't check the
16643 left hand side of the modify because it should always be a return decl. */
16644 if (TREE_CODE (expr
) == RETURN_EXPR
)
16646 tree op
= TREE_OPERAND (expr
, 0);
16647 if (!op
|| !TREE_SIDE_EFFECTS (op
))
16649 op
= TREE_OPERAND (op
, 1);
16650 if (!TREE_SIDE_EFFECTS (op
))
16654 return build1 (CLEANUP_POINT_EXPR
, type
, expr
);
16657 /* Given a pointer value OP0 and a type TYPE, return a simplified version
16658 of an indirection through OP0, or NULL_TREE if no simplification is
16662 fold_indirect_ref_1 (location_t loc
, tree type
, tree op0
)
16668 subtype
= TREE_TYPE (sub
);
16669 if (!POINTER_TYPE_P (subtype
))
16672 if (TREE_CODE (sub
) == ADDR_EXPR
)
16674 tree op
= TREE_OPERAND (sub
, 0);
16675 tree optype
= TREE_TYPE (op
);
16676 /* *&CONST_DECL -> to the value of the const decl. */
16677 if (TREE_CODE (op
) == CONST_DECL
)
16678 return DECL_INITIAL (op
);
16679 /* *&p => p; make sure to handle *&"str"[cst] here. */
16680 if (type
== optype
)
16682 tree fop
= fold_read_from_constant_string (op
);
16688 /* *(foo *)&fooarray => fooarray[0] */
16689 else if (TREE_CODE (optype
) == ARRAY_TYPE
16690 && type
== TREE_TYPE (optype
)
16691 && (!in_gimple_form
16692 || TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
))
16694 tree type_domain
= TYPE_DOMAIN (optype
);
16695 tree min_val
= size_zero_node
;
16696 if (type_domain
&& TYPE_MIN_VALUE (type_domain
))
16697 min_val
= TYPE_MIN_VALUE (type_domain
);
16699 && TREE_CODE (min_val
) != INTEGER_CST
)
16701 return build4_loc (loc
, ARRAY_REF
, type
, op
, min_val
,
16702 NULL_TREE
, NULL_TREE
);
16704 /* *(foo *)&complexfoo => __real__ complexfoo */
16705 else if (TREE_CODE (optype
) == COMPLEX_TYPE
16706 && type
== TREE_TYPE (optype
))
16707 return fold_build1_loc (loc
, REALPART_EXPR
, type
, op
);
16708 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
16709 else if (TREE_CODE (optype
) == VECTOR_TYPE
16710 && type
== TREE_TYPE (optype
))
16712 tree part_width
= TYPE_SIZE (type
);
16713 tree index
= bitsize_int (0);
16714 return fold_build3_loc (loc
, BIT_FIELD_REF
, type
, op
, part_width
, index
);
16718 if (TREE_CODE (sub
) == POINTER_PLUS_EXPR
16719 && TREE_CODE (TREE_OPERAND (sub
, 1)) == INTEGER_CST
)
16721 tree op00
= TREE_OPERAND (sub
, 0);
16722 tree op01
= TREE_OPERAND (sub
, 1);
16725 if (TREE_CODE (op00
) == ADDR_EXPR
)
16728 op00
= TREE_OPERAND (op00
, 0);
16729 op00type
= TREE_TYPE (op00
);
16731 /* ((foo*)&vectorfoo)[1] => BIT_FIELD_REF<vectorfoo,...> */
16732 if (TREE_CODE (op00type
) == VECTOR_TYPE
16733 && type
== TREE_TYPE (op00type
))
16735 HOST_WIDE_INT offset
= tree_to_shwi (op01
);
16736 tree part_width
= TYPE_SIZE (type
);
16737 unsigned HOST_WIDE_INT part_widthi
= tree_to_shwi (part_width
)/BITS_PER_UNIT
;
16738 unsigned HOST_WIDE_INT indexi
= offset
* BITS_PER_UNIT
;
16739 tree index
= bitsize_int (indexi
);
16741 if (offset
/ part_widthi
< TYPE_VECTOR_SUBPARTS (op00type
))
16742 return fold_build3_loc (loc
,
16743 BIT_FIELD_REF
, type
, op00
,
16744 part_width
, index
);
16747 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
16748 else if (TREE_CODE (op00type
) == COMPLEX_TYPE
16749 && type
== TREE_TYPE (op00type
))
16751 tree size
= TYPE_SIZE_UNIT (type
);
16752 if (tree_int_cst_equal (size
, op01
))
16753 return fold_build1_loc (loc
, IMAGPART_EXPR
, type
, op00
);
16755 /* ((foo *)&fooarray)[1] => fooarray[1] */
16756 else if (TREE_CODE (op00type
) == ARRAY_TYPE
16757 && type
== TREE_TYPE (op00type
))
16759 tree type_domain
= TYPE_DOMAIN (op00type
);
16760 tree min_val
= size_zero_node
;
16761 if (type_domain
&& TYPE_MIN_VALUE (type_domain
))
16762 min_val
= TYPE_MIN_VALUE (type_domain
);
16763 op01
= size_binop_loc (loc
, EXACT_DIV_EXPR
, op01
,
16764 TYPE_SIZE_UNIT (type
));
16765 op01
= size_binop_loc (loc
, PLUS_EXPR
, op01
, min_val
);
16766 return build4_loc (loc
, ARRAY_REF
, type
, op00
, op01
,
16767 NULL_TREE
, NULL_TREE
);
16772 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
16773 if (TREE_CODE (TREE_TYPE (subtype
)) == ARRAY_TYPE
16774 && type
== TREE_TYPE (TREE_TYPE (subtype
))
16775 && (!in_gimple_form
16776 || TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
))
16779 tree min_val
= size_zero_node
;
16780 sub
= build_fold_indirect_ref_loc (loc
, sub
);
16781 type_domain
= TYPE_DOMAIN (TREE_TYPE (sub
));
16782 if (type_domain
&& TYPE_MIN_VALUE (type_domain
))
16783 min_val
= TYPE_MIN_VALUE (type_domain
);
16785 && TREE_CODE (min_val
) != INTEGER_CST
)
16787 return build4_loc (loc
, ARRAY_REF
, type
, sub
, min_val
, NULL_TREE
,
16794 /* Builds an expression for an indirection through T, simplifying some
16798 build_fold_indirect_ref_loc (location_t loc
, tree t
)
16800 tree type
= TREE_TYPE (TREE_TYPE (t
));
16801 tree sub
= fold_indirect_ref_1 (loc
, type
, t
);
16806 return build1_loc (loc
, INDIRECT_REF
, type
, t
);
16809 /* Given an INDIRECT_REF T, return either T or a simplified version. */
16812 fold_indirect_ref_loc (location_t loc
, tree t
)
16814 tree sub
= fold_indirect_ref_1 (loc
, TREE_TYPE (t
), TREE_OPERAND (t
, 0));
16822 /* Strip non-trapping, non-side-effecting tree nodes from an expression
16823 whose result is ignored. The type of the returned tree need not be
16824 the same as the original expression. */
16827 fold_ignored_result (tree t
)
16829 if (!TREE_SIDE_EFFECTS (t
))
16830 return integer_zero_node
;
16833 switch (TREE_CODE_CLASS (TREE_CODE (t
)))
16836 t
= TREE_OPERAND (t
, 0);
16840 case tcc_comparison
:
16841 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 1)))
16842 t
= TREE_OPERAND (t
, 0);
16843 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 0)))
16844 t
= TREE_OPERAND (t
, 1);
16849 case tcc_expression
:
16850 switch (TREE_CODE (t
))
16852 case COMPOUND_EXPR
:
16853 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 1)))
16855 t
= TREE_OPERAND (t
, 0);
16859 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 1))
16860 || TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 2)))
16862 t
= TREE_OPERAND (t
, 0);
16875 /* Return the value of VALUE, rounded up to a multiple of DIVISOR.
16876 This can only be applied to objects of a sizetype. */
16879 round_up_loc (location_t loc
, tree value
, int divisor
)
16881 tree div
= NULL_TREE
;
16883 gcc_assert (divisor
> 0);
16887 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
16888 have to do anything. Only do this when we are not given a const,
16889 because in that case, this check is more expensive than just
16891 if (TREE_CODE (value
) != INTEGER_CST
)
16893 div
= build_int_cst (TREE_TYPE (value
), divisor
);
16895 if (multiple_of_p (TREE_TYPE (value
), value
, div
))
16899 /* If divisor is a power of two, simplify this to bit manipulation. */
16900 if (divisor
== (divisor
& -divisor
))
16902 if (TREE_CODE (value
) == INTEGER_CST
)
16904 double_int val
= tree_to_double_int (value
);
16907 if ((val
.low
& (divisor
- 1)) == 0)
16910 overflow_p
= TREE_OVERFLOW (value
);
16911 val
.low
&= ~(divisor
- 1);
16912 val
.low
+= divisor
;
16920 return force_fit_type_double (TREE_TYPE (value
), val
,
16927 t
= build_int_cst (TREE_TYPE (value
), divisor
- 1);
16928 value
= size_binop_loc (loc
, PLUS_EXPR
, value
, t
);
16929 t
= build_int_cst (TREE_TYPE (value
), -divisor
);
16930 value
= size_binop_loc (loc
, BIT_AND_EXPR
, value
, t
);
16936 div
= build_int_cst (TREE_TYPE (value
), divisor
);
16937 value
= size_binop_loc (loc
, CEIL_DIV_EXPR
, value
, div
);
16938 value
= size_binop_loc (loc
, MULT_EXPR
, value
, div
);
16944 /* Likewise, but round down. */
16947 round_down_loc (location_t loc
, tree value
, int divisor
)
16949 tree div
= NULL_TREE
;
16951 gcc_assert (divisor
> 0);
16955 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
16956 have to do anything. Only do this when we are not given a const,
16957 because in that case, this check is more expensive than just
16959 if (TREE_CODE (value
) != INTEGER_CST
)
16961 div
= build_int_cst (TREE_TYPE (value
), divisor
);
16963 if (multiple_of_p (TREE_TYPE (value
), value
, div
))
16967 /* If divisor is a power of two, simplify this to bit manipulation. */
16968 if (divisor
== (divisor
& -divisor
))
16972 t
= build_int_cst (TREE_TYPE (value
), -divisor
);
16973 value
= size_binop_loc (loc
, BIT_AND_EXPR
, value
, t
);
16978 div
= build_int_cst (TREE_TYPE (value
), divisor
);
16979 value
= size_binop_loc (loc
, FLOOR_DIV_EXPR
, value
, div
);
16980 value
= size_binop_loc (loc
, MULT_EXPR
, value
, div
);
16986 /* Returns the pointer to the base of the object addressed by EXP and
16987 extracts the information about the offset of the access, storing it
16988 to PBITPOS and POFFSET. */
16991 split_address_to_core_and_offset (tree exp
,
16992 HOST_WIDE_INT
*pbitpos
, tree
*poffset
)
16995 enum machine_mode mode
;
16996 int unsignedp
, volatilep
;
16997 HOST_WIDE_INT bitsize
;
16998 location_t loc
= EXPR_LOCATION (exp
);
17000 if (TREE_CODE (exp
) == ADDR_EXPR
)
17002 core
= get_inner_reference (TREE_OPERAND (exp
, 0), &bitsize
, pbitpos
,
17003 poffset
, &mode
, &unsignedp
, &volatilep
,
17005 core
= build_fold_addr_expr_loc (loc
, core
);
17011 *poffset
= NULL_TREE
;
17017 /* Returns true if addresses of E1 and E2 differ by a constant, false
17018 otherwise. If they do, E1 - E2 is stored in *DIFF. */
17021 ptr_difference_const (tree e1
, tree e2
, HOST_WIDE_INT
*diff
)
17024 HOST_WIDE_INT bitpos1
, bitpos2
;
17025 tree toffset1
, toffset2
, tdiff
, type
;
17027 core1
= split_address_to_core_and_offset (e1
, &bitpos1
, &toffset1
);
17028 core2
= split_address_to_core_and_offset (e2
, &bitpos2
, &toffset2
);
17030 if (bitpos1
% BITS_PER_UNIT
!= 0
17031 || bitpos2
% BITS_PER_UNIT
!= 0
17032 || !operand_equal_p (core1
, core2
, 0))
17035 if (toffset1
&& toffset2
)
17037 type
= TREE_TYPE (toffset1
);
17038 if (type
!= TREE_TYPE (toffset2
))
17039 toffset2
= fold_convert (type
, toffset2
);
17041 tdiff
= fold_build2 (MINUS_EXPR
, type
, toffset1
, toffset2
);
17042 if (!cst_and_fits_in_hwi (tdiff
))
17045 *diff
= int_cst_value (tdiff
);
17047 else if (toffset1
|| toffset2
)
17049 /* If only one of the offsets is non-constant, the difference cannot
17056 *diff
+= (bitpos1
- bitpos2
) / BITS_PER_UNIT
;
17060 /* Simplify the floating point expression EXP when the sign of the
17061 result is not significant. Return NULL_TREE if no simplification
17065 fold_strip_sign_ops (tree exp
)
17068 location_t loc
= EXPR_LOCATION (exp
);
17070 switch (TREE_CODE (exp
))
17074 arg0
= fold_strip_sign_ops (TREE_OPERAND (exp
, 0));
17075 return arg0
? arg0
: TREE_OPERAND (exp
, 0);
17079 if (HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (TREE_TYPE (exp
))))
17081 arg0
= fold_strip_sign_ops (TREE_OPERAND (exp
, 0));
17082 arg1
= fold_strip_sign_ops (TREE_OPERAND (exp
, 1));
17083 if (arg0
!= NULL_TREE
|| arg1
!= NULL_TREE
)
17084 return fold_build2_loc (loc
, TREE_CODE (exp
), TREE_TYPE (exp
),
17085 arg0
? arg0
: TREE_OPERAND (exp
, 0),
17086 arg1
? arg1
: TREE_OPERAND (exp
, 1));
17089 case COMPOUND_EXPR
:
17090 arg0
= TREE_OPERAND (exp
, 0);
17091 arg1
= fold_strip_sign_ops (TREE_OPERAND (exp
, 1));
17093 return fold_build2_loc (loc
, COMPOUND_EXPR
, TREE_TYPE (exp
), arg0
, arg1
);
17097 arg0
= fold_strip_sign_ops (TREE_OPERAND (exp
, 1));
17098 arg1
= fold_strip_sign_ops (TREE_OPERAND (exp
, 2));
17100 return fold_build3_loc (loc
,
17101 COND_EXPR
, TREE_TYPE (exp
), TREE_OPERAND (exp
, 0),
17102 arg0
? arg0
: TREE_OPERAND (exp
, 1),
17103 arg1
? arg1
: TREE_OPERAND (exp
, 2));
17108 const enum built_in_function fcode
= builtin_mathfn_code (exp
);
17111 CASE_FLT_FN (BUILT_IN_COPYSIGN
):
17112 /* Strip copysign function call, return the 1st argument. */
17113 arg0
= CALL_EXPR_ARG (exp
, 0);
17114 arg1
= CALL_EXPR_ARG (exp
, 1);
17115 return omit_one_operand_loc (loc
, TREE_TYPE (exp
), arg0
, arg1
);
17118 /* Strip sign ops from the argument of "odd" math functions. */
17119 if (negate_mathfn_p (fcode
))
17121 arg0
= fold_strip_sign_ops (CALL_EXPR_ARG (exp
, 0));
17123 return build_call_expr_loc (loc
, get_callee_fndecl (exp
), 1, arg0
);