Replace "GNU CC" with "GCC"
[official-gcc.git] / gcc / gcse.c
blobda4632cb0aa0a7923e5cded7a267f81016762c66
1 /* Global common subexpression elimination/Partial redundancy elimination
2 and global constant/copy propagation for GNU compiler.
3 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
23 /* TODO
24 - reordering of memory allocation and freeing to be more space efficient
25 - do rough calc of how many regs are needed in each block, and a rough
26 calc of how many regs are available in each class and use that to
27 throttle back the code in cases where RTX_COST is minimal.
28 - a store to the same address as a load does not kill the load if the
29 source of the store is also the destination of the load. Handling this
30 allows more load motion, particularly out of loops.
31 - ability to realloc sbitmap vectors would allow one initial computation
32 of reg_set_in_block with only subsequent additions, rather than
33 recomputing it for each pass
37 /* References searched while implementing this.
39 Compilers Principles, Techniques and Tools
40 Aho, Sethi, Ullman
41 Addison-Wesley, 1988
43 Global Optimization by Suppression of Partial Redundancies
44 E. Morel, C. Renvoise
45 communications of the acm, Vol. 22, Num. 2, Feb. 1979
47 A Portable Machine-Independent Global Optimizer - Design and Measurements
48 Frederick Chow
49 Stanford Ph.D. thesis, Dec. 1983
51 A Fast Algorithm for Code Movement Optimization
52 D.M. Dhamdhere
53 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
55 A Solution to a Problem with Morel and Renvoise's
56 Global Optimization by Suppression of Partial Redundancies
57 K-H Drechsler, M.P. Stadel
58 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
60 Practical Adaptation of the Global Optimization
61 Algorithm of Morel and Renvoise
62 D.M. Dhamdhere
63 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
65 Efficiently Computing Static Single Assignment Form and the Control
66 Dependence Graph
67 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
68 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
70 Lazy Code Motion
71 J. Knoop, O. Ruthing, B. Steffen
72 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
74 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
75 Time for Reducible Flow Control
76 Thomas Ball
77 ACM Letters on Programming Languages and Systems,
78 Vol. 2, Num. 1-4, Mar-Dec 1993
80 An Efficient Representation for Sparse Sets
81 Preston Briggs, Linda Torczon
82 ACM Letters on Programming Languages and Systems,
83 Vol. 2, Num. 1-4, Mar-Dec 1993
85 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
86 K-H Drechsler, M.P. Stadel
87 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
89 Partial Dead Code Elimination
90 J. Knoop, O. Ruthing, B. Steffen
91 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
93 Effective Partial Redundancy Elimination
94 P. Briggs, K.D. Cooper
95 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
97 The Program Structure Tree: Computing Control Regions in Linear Time
98 R. Johnson, D. Pearson, K. Pingali
99 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
101 Optimal Code Motion: Theory and Practice
102 J. Knoop, O. Ruthing, B. Steffen
103 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
105 The power of assignment motion
106 J. Knoop, O. Ruthing, B. Steffen
107 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
109 Global code motion / global value numbering
110 C. Click
111 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
113 Value Driven Redundancy Elimination
114 L.T. Simpson
115 Rice University Ph.D. thesis, Apr. 1996
117 Value Numbering
118 L.T. Simpson
119 Massively Scalar Compiler Project, Rice University, Sep. 1996
121 High Performance Compilers for Parallel Computing
122 Michael Wolfe
123 Addison-Wesley, 1996
125 Advanced Compiler Design and Implementation
126 Steven Muchnick
127 Morgan Kaufmann, 1997
129 Building an Optimizing Compiler
130 Robert Morgan
131 Digital Press, 1998
133 People wishing to speed up the code here should read:
134 Elimination Algorithms for Data Flow Analysis
135 B.G. Ryder, M.C. Paull
136 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
138 How to Analyze Large Programs Efficiently and Informatively
139 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
140 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
142 People wishing to do something different can find various possibilities
143 in the above papers and elsewhere.
146 #include "config.h"
147 #include "system.h"
148 #include "coretypes.h"
149 #include "tm.h"
150 #include "toplev.h"
152 #include "rtl.h"
153 #include "tm_p.h"
154 #include "regs.h"
155 #include "hard-reg-set.h"
156 #include "flags.h"
157 #include "real.h"
158 #include "insn-config.h"
159 #include "recog.h"
160 #include "basic-block.h"
161 #include "output.h"
162 #include "function.h"
163 #include "expr.h"
164 #include "except.h"
165 #include "ggc.h"
166 #include "params.h"
167 #include "cselib.h"
169 #include "obstack.h"
171 /* Propagate flow information through back edges and thus enable PRE's
172 moving loop invariant calculations out of loops.
174 Originally this tended to create worse overall code, but several
175 improvements during the development of PRE seem to have made following
176 back edges generally a win.
178 Note much of the loop invariant code motion done here would normally
179 be done by loop.c, which has more heuristics for when to move invariants
180 out of loops. At some point we might need to move some of those
181 heuristics into gcse.c. */
183 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
184 are a superset of those done by GCSE.
186 We perform the following steps:
188 1) Compute basic block information.
190 2) Compute table of places where registers are set.
192 3) Perform copy/constant propagation.
194 4) Perform global cse.
196 5) Perform another pass of copy/constant propagation.
198 Two passes of copy/constant propagation are done because the first one
199 enables more GCSE and the second one helps to clean up the copies that
200 GCSE creates. This is needed more for PRE than for Classic because Classic
201 GCSE will try to use an existing register containing the common
202 subexpression rather than create a new one. This is harder to do for PRE
203 because of the code motion (which Classic GCSE doesn't do).
205 Expressions we are interested in GCSE-ing are of the form
206 (set (pseudo-reg) (expression)).
207 Function want_to_gcse_p says what these are.
209 PRE handles moving invariant expressions out of loops (by treating them as
210 partially redundant).
212 Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
213 assignment) based GVN (global value numbering). L. T. Simpson's paper
214 (Rice University) on value numbering is a useful reference for this.
216 **********************
218 We used to support multiple passes but there are diminishing returns in
219 doing so. The first pass usually makes 90% of the changes that are doable.
220 A second pass can make a few more changes made possible by the first pass.
221 Experiments show any further passes don't make enough changes to justify
222 the expense.
224 A study of spec92 using an unlimited number of passes:
225 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
226 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
227 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
229 It was found doing copy propagation between each pass enables further
230 substitutions.
232 PRE is quite expensive in complicated functions because the DFA can take
233 awhile to converge. Hence we only perform one pass. The parameter max-gcse-passes can
234 be modified if one wants to experiment.
236 **********************
238 The steps for PRE are:
240 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
242 2) Perform the data flow analysis for PRE.
244 3) Delete the redundant instructions
246 4) Insert the required copies [if any] that make the partially
247 redundant instructions fully redundant.
249 5) For other reaching expressions, insert an instruction to copy the value
250 to a newly created pseudo that will reach the redundant instruction.
252 The deletion is done first so that when we do insertions we
253 know which pseudo reg to use.
255 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
256 argue it is not. The number of iterations for the algorithm to converge
257 is typically 2-4 so I don't view it as that expensive (relatively speaking).
259 PRE GCSE depends heavily on the second CSE pass to clean up the copies
260 we create. To make an expression reach the place where it's redundant,
261 the result of the expression is copied to a new register, and the redundant
262 expression is deleted by replacing it with this new register. Classic GCSE
263 doesn't have this problem as much as it computes the reaching defs of
264 each register in each block and thus can try to use an existing register.
266 **********************
268 A fair bit of simplicity is created by creating small functions for simple
269 tasks, even when the function is only called in one place. This may
270 measurably slow things down [or may not] by creating more function call
271 overhead than is necessary. The source is laid out so that it's trivial
272 to make the affected functions inline so that one can measure what speed
273 up, if any, can be achieved, and maybe later when things settle things can
274 be rearranged.
276 Help stamp out big monolithic functions! */
278 /* GCSE global vars. */
280 /* -dG dump file. */
281 static FILE *gcse_file;
283 /* Note whether or not we should run jump optimization after gcse. We
284 want to do this for two cases.
286 * If we changed any jumps via cprop.
288 * If we added any labels via edge splitting. */
290 static int run_jump_opt_after_gcse;
292 /* Bitmaps are normally not included in debugging dumps.
293 However it's useful to be able to print them from GDB.
294 We could create special functions for this, but it's simpler to
295 just allow passing stderr to the dump_foo fns. Since stderr can
296 be a macro, we store a copy here. */
297 static FILE *debug_stderr;
299 /* An obstack for our working variables. */
300 static struct obstack gcse_obstack;
302 struct reg_use {rtx reg_rtx; };
304 /* Hash table of expressions. */
306 struct expr
308 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
309 rtx expr;
310 /* Index in the available expression bitmaps. */
311 int bitmap_index;
312 /* Next entry with the same hash. */
313 struct expr *next_same_hash;
314 /* List of anticipatable occurrences in basic blocks in the function.
315 An "anticipatable occurrence" is one that is the first occurrence in the
316 basic block, the operands are not modified in the basic block prior
317 to the occurrence and the output is not used between the start of
318 the block and the occurrence. */
319 struct occr *antic_occr;
320 /* List of available occurrence in basic blocks in the function.
321 An "available occurrence" is one that is the last occurrence in the
322 basic block and the operands are not modified by following statements in
323 the basic block [including this insn]. */
324 struct occr *avail_occr;
325 /* Non-null if the computation is PRE redundant.
326 The value is the newly created pseudo-reg to record a copy of the
327 expression in all the places that reach the redundant copy. */
328 rtx reaching_reg;
331 /* Occurrence of an expression.
332 There is one per basic block. If a pattern appears more than once the
333 last appearance is used [or first for anticipatable expressions]. */
335 struct occr
337 /* Next occurrence of this expression. */
338 struct occr *next;
339 /* The insn that computes the expression. */
340 rtx insn;
341 /* Nonzero if this [anticipatable] occurrence has been deleted. */
342 char deleted_p;
343 /* Nonzero if this [available] occurrence has been copied to
344 reaching_reg. */
345 /* ??? This is mutually exclusive with deleted_p, so they could share
346 the same byte. */
347 char copied_p;
350 /* Expression and copy propagation hash tables.
351 Each hash table is an array of buckets.
352 ??? It is known that if it were an array of entries, structure elements
353 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
354 not clear whether in the final analysis a sufficient amount of memory would
355 be saved as the size of the available expression bitmaps would be larger
356 [one could build a mapping table without holes afterwards though].
357 Someday I'll perform the computation and figure it out. */
359 struct hash_table
361 /* The table itself.
362 This is an array of `expr_hash_table_size' elements. */
363 struct expr **table;
365 /* Size of the hash table, in elements. */
366 unsigned int size;
368 /* Number of hash table elements. */
369 unsigned int n_elems;
371 /* Whether the table is expression of copy propagation one. */
372 int set_p;
375 /* Expression hash table. */
376 static struct hash_table expr_hash_table;
378 /* Copy propagation hash table. */
379 static struct hash_table set_hash_table;
381 /* Mapping of uids to cuids.
382 Only real insns get cuids. */
383 static int *uid_cuid;
385 /* Highest UID in UID_CUID. */
386 static int max_uid;
388 /* Get the cuid of an insn. */
389 #ifdef ENABLE_CHECKING
390 #define INSN_CUID(INSN) (INSN_UID (INSN) > max_uid ? (abort (), 0) : uid_cuid[INSN_UID (INSN)])
391 #else
392 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
393 #endif
395 /* Number of cuids. */
396 static int max_cuid;
398 /* Mapping of cuids to insns. */
399 static rtx *cuid_insn;
401 /* Get insn from cuid. */
402 #define CUID_INSN(CUID) (cuid_insn[CUID])
404 /* Maximum register number in function prior to doing gcse + 1.
405 Registers created during this pass have regno >= max_gcse_regno.
406 This is named with "gcse" to not collide with global of same name. */
407 static unsigned int max_gcse_regno;
409 /* Table of registers that are modified.
411 For each register, each element is a list of places where the pseudo-reg
412 is set.
414 For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only
415 requires knowledge of which blocks kill which regs [and thus could use
416 a bitmap instead of the lists `reg_set_table' uses].
418 `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
419 num-regs) [however perhaps it may be useful to keep the data as is]. One
420 advantage of recording things this way is that `reg_set_table' is fairly
421 sparse with respect to pseudo regs but for hard regs could be fairly dense
422 [relatively speaking]. And recording sets of pseudo-regs in lists speeds
423 up functions like compute_transp since in the case of pseudo-regs we only
424 need to iterate over the number of times a pseudo-reg is set, not over the
425 number of basic blocks [clearly there is a bit of a slow down in the cases
426 where a pseudo is set more than once in a block, however it is believed
427 that the net effect is to speed things up]. This isn't done for hard-regs
428 because recording call-clobbered hard-regs in `reg_set_table' at each
429 function call can consume a fair bit of memory, and iterating over
430 hard-regs stored this way in compute_transp will be more expensive. */
432 typedef struct reg_set
434 /* The next setting of this register. */
435 struct reg_set *next;
436 /* The insn where it was set. */
437 rtx insn;
438 } reg_set;
440 static reg_set **reg_set_table;
442 /* Size of `reg_set_table'.
443 The table starts out at max_gcse_regno + slop, and is enlarged as
444 necessary. */
445 static int reg_set_table_size;
447 /* Amount to grow `reg_set_table' by when it's full. */
448 #define REG_SET_TABLE_SLOP 100
450 /* This is a list of expressions which are MEMs and will be used by load
451 or store motion.
452 Load motion tracks MEMs which aren't killed by
453 anything except itself. (ie, loads and stores to a single location).
454 We can then allow movement of these MEM refs with a little special
455 allowance. (all stores copy the same value to the reaching reg used
456 for the loads). This means all values used to store into memory must have
457 no side effects so we can re-issue the setter value.
458 Store Motion uses this structure as an expression table to track stores
459 which look interesting, and might be moveable towards the exit block. */
461 struct ls_expr
463 struct expr * expr; /* Gcse expression reference for LM. */
464 rtx pattern; /* Pattern of this mem. */
465 rtx pattern_regs; /* List of registers mentioned by the mem. */
466 rtx loads; /* INSN list of loads seen. */
467 rtx stores; /* INSN list of stores seen. */
468 struct ls_expr * next; /* Next in the list. */
469 int invalid; /* Invalid for some reason. */
470 int index; /* If it maps to a bitmap index. */
471 int hash_index; /* Index when in a hash table. */
472 rtx reaching_reg; /* Register to use when re-writing. */
475 /* Array of implicit set patterns indexed by basic block index. */
476 static rtx *implicit_sets;
478 /* Head of the list of load/store memory refs. */
479 static struct ls_expr * pre_ldst_mems = NULL;
481 /* Bitmap containing one bit for each register in the program.
482 Used when performing GCSE to track which registers have been set since
483 the start of the basic block. */
484 static regset reg_set_bitmap;
486 /* For each block, a bitmap of registers set in the block.
487 This is used by expr_killed_p and compute_transp.
488 It is computed during hash table computation and not by compute_sets
489 as it includes registers added since the last pass (or between cprop and
490 gcse) and it's currently not easy to realloc sbitmap vectors. */
491 static sbitmap *reg_set_in_block;
493 /* Array, indexed by basic block number for a list of insns which modify
494 memory within that block. */
495 static rtx * modify_mem_list;
496 bitmap modify_mem_list_set;
498 /* This array parallels modify_mem_list, but is kept canonicalized. */
499 static rtx * canon_modify_mem_list;
500 bitmap canon_modify_mem_list_set;
501 /* Various variables for statistics gathering. */
503 /* Memory used in a pass.
504 This isn't intended to be absolutely precise. Its intent is only
505 to keep an eye on memory usage. */
506 static int bytes_used;
508 /* GCSE substitutions made. */
509 static int gcse_subst_count;
510 /* Number of copy instructions created. */
511 static int gcse_create_count;
512 /* Number of constants propagated. */
513 static int const_prop_count;
514 /* Number of copys propagated. */
515 static int copy_prop_count;
517 /* These variables are used by classic GCSE.
518 Normally they'd be defined a bit later, but `rd_gen' needs to
519 be declared sooner. */
521 /* Each block has a bitmap of each type.
522 The length of each blocks bitmap is:
524 max_cuid - for reaching definitions
525 n_exprs - for available expressions
527 Thus we view the bitmaps as 2 dimensional arrays. i.e.
528 rd_kill[block_num][cuid_num]
529 ae_kill[block_num][expr_num] */
531 /* For reaching defs */
532 static sbitmap *rd_kill, *rd_gen, *reaching_defs, *rd_out;
534 /* for available exprs */
535 static sbitmap *ae_kill, *ae_gen, *ae_in, *ae_out;
537 /* Objects of this type are passed around by the null-pointer check
538 removal routines. */
539 struct null_pointer_info
541 /* The basic block being processed. */
542 basic_block current_block;
543 /* The first register to be handled in this pass. */
544 unsigned int min_reg;
545 /* One greater than the last register to be handled in this pass. */
546 unsigned int max_reg;
547 sbitmap *nonnull_local;
548 sbitmap *nonnull_killed;
551 static void compute_can_copy PARAMS ((void));
552 static char *gmalloc PARAMS ((unsigned int));
553 static char *grealloc PARAMS ((char *, unsigned int));
554 static char *gcse_alloc PARAMS ((unsigned long));
555 static void alloc_gcse_mem PARAMS ((rtx));
556 static void free_gcse_mem PARAMS ((void));
557 static void alloc_reg_set_mem PARAMS ((int));
558 static void free_reg_set_mem PARAMS ((void));
559 static int get_bitmap_width PARAMS ((int, int, int));
560 static void record_one_set PARAMS ((int, rtx));
561 static void record_set_info PARAMS ((rtx, rtx, void *));
562 static void compute_sets PARAMS ((rtx));
563 static void hash_scan_insn PARAMS ((rtx, struct hash_table *, int));
564 static void hash_scan_set PARAMS ((rtx, rtx, struct hash_table *));
565 static void hash_scan_clobber PARAMS ((rtx, rtx, struct hash_table *));
566 static void hash_scan_call PARAMS ((rtx, rtx, struct hash_table *));
567 static int want_to_gcse_p PARAMS ((rtx));
568 static bool gcse_constant_p PARAMS ((rtx));
569 static int oprs_unchanged_p PARAMS ((rtx, rtx, int));
570 static int oprs_anticipatable_p PARAMS ((rtx, rtx));
571 static int oprs_available_p PARAMS ((rtx, rtx));
572 static void insert_expr_in_table PARAMS ((rtx, enum machine_mode, rtx,
573 int, int, struct hash_table *));
574 static void insert_set_in_table PARAMS ((rtx, rtx, struct hash_table *));
575 static unsigned int hash_expr PARAMS ((rtx, enum machine_mode, int *, int));
576 static unsigned int hash_expr_1 PARAMS ((rtx, enum machine_mode, int *));
577 static unsigned int hash_string_1 PARAMS ((const char *));
578 static unsigned int hash_set PARAMS ((int, int));
579 static int expr_equiv_p PARAMS ((rtx, rtx));
580 static void record_last_reg_set_info PARAMS ((rtx, int));
581 static void record_last_mem_set_info PARAMS ((rtx));
582 static void record_last_set_info PARAMS ((rtx, rtx, void *));
583 static void compute_hash_table PARAMS ((struct hash_table *));
584 static void alloc_hash_table PARAMS ((int, struct hash_table *, int));
585 static void free_hash_table PARAMS ((struct hash_table *));
586 static void compute_hash_table_work PARAMS ((struct hash_table *));
587 static void dump_hash_table PARAMS ((FILE *, const char *,
588 struct hash_table *));
589 static struct expr *lookup_expr PARAMS ((rtx, struct hash_table *));
590 static struct expr *lookup_set PARAMS ((unsigned int, struct hash_table *));
591 static struct expr *next_set PARAMS ((unsigned int, struct expr *));
592 static void reset_opr_set_tables PARAMS ((void));
593 static int oprs_not_set_p PARAMS ((rtx, rtx));
594 static void mark_call PARAMS ((rtx));
595 static void mark_set PARAMS ((rtx, rtx));
596 static void mark_clobber PARAMS ((rtx, rtx));
597 static void mark_oprs_set PARAMS ((rtx));
598 static void alloc_cprop_mem PARAMS ((int, int));
599 static void free_cprop_mem PARAMS ((void));
600 static void compute_transp PARAMS ((rtx, int, sbitmap *, int));
601 static void compute_transpout PARAMS ((void));
602 static void compute_local_properties PARAMS ((sbitmap *, sbitmap *, sbitmap *,
603 struct hash_table *));
604 static void compute_cprop_data PARAMS ((void));
605 static void find_used_regs PARAMS ((rtx *, void *));
606 static int try_replace_reg PARAMS ((rtx, rtx, rtx));
607 static struct expr *find_avail_set PARAMS ((int, rtx));
608 static int cprop_jump PARAMS ((basic_block, rtx, rtx, rtx, rtx));
609 static void mems_conflict_for_gcse_p PARAMS ((rtx, rtx, void *));
610 static int load_killed_in_block_p PARAMS ((basic_block, int, rtx, int));
611 static void canon_list_insert PARAMS ((rtx, rtx, void *));
612 static int cprop_insn PARAMS ((rtx, int));
613 static int cprop PARAMS ((int));
614 static rtx fis_get_condition PARAMS ((rtx));
615 static void find_implicit_sets PARAMS ((void));
616 static int one_cprop_pass PARAMS ((int, int, int));
617 static bool constprop_register PARAMS ((rtx, rtx, rtx, int));
618 static struct expr *find_bypass_set PARAMS ((int, int));
619 static bool reg_killed_on_edge PARAMS ((rtx, edge));
620 static int bypass_block PARAMS ((basic_block, rtx, rtx));
621 static int bypass_conditional_jumps PARAMS ((void));
622 static void alloc_pre_mem PARAMS ((int, int));
623 static void free_pre_mem PARAMS ((void));
624 static void compute_pre_data PARAMS ((void));
625 static int pre_expr_reaches_here_p PARAMS ((basic_block, struct expr *,
626 basic_block));
627 static void insert_insn_end_bb PARAMS ((struct expr *, basic_block, int));
628 static void pre_insert_copy_insn PARAMS ((struct expr *, rtx));
629 static void pre_insert_copies PARAMS ((void));
630 static int pre_delete PARAMS ((void));
631 static int pre_gcse PARAMS ((void));
632 static int one_pre_gcse_pass PARAMS ((int));
633 static void add_label_notes PARAMS ((rtx, rtx));
634 static void alloc_code_hoist_mem PARAMS ((int, int));
635 static void free_code_hoist_mem PARAMS ((void));
636 static void compute_code_hoist_vbeinout PARAMS ((void));
637 static void compute_code_hoist_data PARAMS ((void));
638 static int hoist_expr_reaches_here_p PARAMS ((basic_block, int, basic_block,
639 char *));
640 static void hoist_code PARAMS ((void));
641 static int one_code_hoisting_pass PARAMS ((void));
642 static void alloc_rd_mem PARAMS ((int, int));
643 static void free_rd_mem PARAMS ((void));
644 static void handle_rd_kill_set PARAMS ((rtx, int, basic_block));
645 static void compute_kill_rd PARAMS ((void));
646 static void compute_rd PARAMS ((void));
647 static void alloc_avail_expr_mem PARAMS ((int, int));
648 static void free_avail_expr_mem PARAMS ((void));
649 static void compute_ae_gen PARAMS ((struct hash_table *));
650 static int expr_killed_p PARAMS ((rtx, basic_block));
651 static void compute_ae_kill PARAMS ((sbitmap *, sbitmap *, struct hash_table *));
652 static int expr_reaches_here_p PARAMS ((struct occr *, struct expr *,
653 basic_block, int));
654 static rtx computing_insn PARAMS ((struct expr *, rtx));
655 static int def_reaches_here_p PARAMS ((rtx, rtx));
656 static int can_disregard_other_sets PARAMS ((struct reg_set **, rtx, int));
657 static int handle_avail_expr PARAMS ((rtx, struct expr *));
658 static int classic_gcse PARAMS ((void));
659 static int one_classic_gcse_pass PARAMS ((int));
660 static void invalidate_nonnull_info PARAMS ((rtx, rtx, void *));
661 static int delete_null_pointer_checks_1 PARAMS ((unsigned int *,
662 sbitmap *, sbitmap *,
663 struct null_pointer_info *));
664 static rtx process_insert_insn PARAMS ((struct expr *));
665 static int pre_edge_insert PARAMS ((struct edge_list *, struct expr **));
666 static int expr_reaches_here_p_work PARAMS ((struct occr *, struct expr *,
667 basic_block, int, char *));
668 static int pre_expr_reaches_here_p_work PARAMS ((basic_block, struct expr *,
669 basic_block, char *));
670 static struct ls_expr * ldst_entry PARAMS ((rtx));
671 static void free_ldst_entry PARAMS ((struct ls_expr *));
672 static void free_ldst_mems PARAMS ((void));
673 static void print_ldst_list PARAMS ((FILE *));
674 static struct ls_expr * find_rtx_in_ldst PARAMS ((rtx));
675 static int enumerate_ldsts PARAMS ((void));
676 static inline struct ls_expr * first_ls_expr PARAMS ((void));
677 static inline struct ls_expr * next_ls_expr PARAMS ((struct ls_expr *));
678 static int simple_mem PARAMS ((rtx));
679 static void invalidate_any_buried_refs PARAMS ((rtx));
680 static void compute_ld_motion_mems PARAMS ((void));
681 static void trim_ld_motion_mems PARAMS ((void));
682 static void update_ld_motion_stores PARAMS ((struct expr *));
683 static void reg_set_info PARAMS ((rtx, rtx, void *));
684 static bool store_ops_ok PARAMS ((rtx, int *));
685 static rtx extract_mentioned_regs PARAMS ((rtx));
686 static rtx extract_mentioned_regs_helper PARAMS ((rtx, rtx));
687 static void find_moveable_store PARAMS ((rtx, int *, int *));
688 static int compute_store_table PARAMS ((void));
689 static bool load_kills_store PARAMS ((rtx, rtx));
690 static bool find_loads PARAMS ((rtx, rtx));
691 static bool store_killed_in_insn PARAMS ((rtx, rtx, rtx));
692 static bool store_killed_after PARAMS ((rtx, rtx, rtx, basic_block,
693 int *, rtx *));
694 static bool store_killed_before PARAMS ((rtx, rtx, rtx, basic_block,
695 int *));
696 static void build_store_vectors PARAMS ((void));
697 static void insert_insn_start_bb PARAMS ((rtx, basic_block));
698 static int insert_store PARAMS ((struct ls_expr *, edge));
699 static void replace_store_insn PARAMS ((rtx, rtx, basic_block));
700 static void delete_store PARAMS ((struct ls_expr *,
701 basic_block));
702 static void free_store_memory PARAMS ((void));
703 static void store_motion PARAMS ((void));
704 static void free_insn_expr_list_list PARAMS ((rtx *));
705 static void clear_modify_mem_tables PARAMS ((void));
706 static void free_modify_mem_tables PARAMS ((void));
707 static rtx gcse_emit_move_after PARAMS ((rtx, rtx, rtx));
708 static void local_cprop_find_used_regs PARAMS ((rtx *, void *));
709 static bool do_local_cprop PARAMS ((rtx, rtx, int, rtx*));
710 static bool adjust_libcall_notes PARAMS ((rtx, rtx, rtx, rtx*));
711 static void local_cprop_pass PARAMS ((int));
713 /* Entry point for global common subexpression elimination.
714 F is the first instruction in the function. */
717 gcse_main (f, file)
718 rtx f;
719 FILE *file;
721 int changed, pass;
722 /* Bytes used at start of pass. */
723 int initial_bytes_used;
724 /* Maximum number of bytes used by a pass. */
725 int max_pass_bytes;
726 /* Point to release obstack data from for each pass. */
727 char *gcse_obstack_bottom;
729 /* We do not construct an accurate cfg in functions which call
730 setjmp, so just punt to be safe. */
731 if (current_function_calls_setjmp)
732 return 0;
734 /* Assume that we do not need to run jump optimizations after gcse. */
735 run_jump_opt_after_gcse = 0;
737 /* For calling dump_foo fns from gdb. */
738 debug_stderr = stderr;
739 gcse_file = file;
741 /* Identify the basic block information for this function, including
742 successors and predecessors. */
743 max_gcse_regno = max_reg_num ();
745 if (file)
746 dump_flow_info (file);
748 /* Return if there's nothing to do. */
749 if (n_basic_blocks <= 1)
750 return 0;
752 /* Trying to perform global optimizations on flow graphs which have
753 a high connectivity will take a long time and is unlikely to be
754 particularly useful.
756 In normal circumstances a cfg should have about twice as many edges
757 as blocks. But we do not want to punish small functions which have
758 a couple switch statements. So we require a relatively large number
759 of basic blocks and the ratio of edges to blocks to be high. */
760 if (n_basic_blocks > 1000 && n_edges / n_basic_blocks >= 20)
762 if (warn_disabled_optimization)
763 warning ("GCSE disabled: %d > 1000 basic blocks and %d >= 20 edges/basic block",
764 n_basic_blocks, n_edges / n_basic_blocks);
765 return 0;
768 /* If allocating memory for the cprop bitmap would take up too much
769 storage it's better just to disable the optimization. */
770 if ((n_basic_blocks
771 * SBITMAP_SET_SIZE (max_gcse_regno)
772 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
774 if (warn_disabled_optimization)
775 warning ("GCSE disabled: %d basic blocks and %d registers",
776 n_basic_blocks, max_gcse_regno);
778 return 0;
781 gcc_obstack_init (&gcse_obstack);
782 bytes_used = 0;
784 /* We need alias. */
785 init_alias_analysis ();
786 /* Record where pseudo-registers are set. This data is kept accurate
787 during each pass. ??? We could also record hard-reg information here
788 [since it's unchanging], however it is currently done during hash table
789 computation.
791 It may be tempting to compute MEM set information here too, but MEM sets
792 will be subject to code motion one day and thus we need to compute
793 information about memory sets when we build the hash tables. */
795 alloc_reg_set_mem (max_gcse_regno);
796 compute_sets (f);
798 pass = 0;
799 initial_bytes_used = bytes_used;
800 max_pass_bytes = 0;
801 gcse_obstack_bottom = gcse_alloc (1);
802 changed = 1;
803 while (changed && pass < MAX_GCSE_PASSES)
805 changed = 0;
806 if (file)
807 fprintf (file, "GCSE pass %d\n\n", pass + 1);
809 /* Initialize bytes_used to the space for the pred/succ lists,
810 and the reg_set_table data. */
811 bytes_used = initial_bytes_used;
813 /* Each pass may create new registers, so recalculate each time. */
814 max_gcse_regno = max_reg_num ();
816 alloc_gcse_mem (f);
818 /* Don't allow constant propagation to modify jumps
819 during this pass. */
820 changed = one_cprop_pass (pass + 1, 0, 0);
822 if (optimize_size)
823 changed |= one_classic_gcse_pass (pass + 1);
824 else
826 changed |= one_pre_gcse_pass (pass + 1);
827 /* We may have just created new basic blocks. Release and
828 recompute various things which are sized on the number of
829 basic blocks. */
830 if (changed)
832 free_modify_mem_tables ();
833 modify_mem_list
834 = (rtx *) gmalloc (last_basic_block * sizeof (rtx));
835 canon_modify_mem_list
836 = (rtx *) gmalloc (last_basic_block * sizeof (rtx));
837 memset ((char *) modify_mem_list, 0, last_basic_block * sizeof (rtx));
838 memset ((char *) canon_modify_mem_list, 0, last_basic_block * sizeof (rtx));
840 free_reg_set_mem ();
841 alloc_reg_set_mem (max_reg_num ());
842 compute_sets (f);
843 run_jump_opt_after_gcse = 1;
846 if (max_pass_bytes < bytes_used)
847 max_pass_bytes = bytes_used;
849 /* Free up memory, then reallocate for code hoisting. We can
850 not re-use the existing allocated memory because the tables
851 will not have info for the insns or registers created by
852 partial redundancy elimination. */
853 free_gcse_mem ();
855 /* It does not make sense to run code hoisting unless we optimizing
856 for code size -- it rarely makes programs faster, and can make
857 them bigger if we did partial redundancy elimination (when optimizing
858 for space, we use a classic gcse algorithm instead of partial
859 redundancy algorithms). */
860 if (optimize_size)
862 max_gcse_regno = max_reg_num ();
863 alloc_gcse_mem (f);
864 changed |= one_code_hoisting_pass ();
865 free_gcse_mem ();
867 if (max_pass_bytes < bytes_used)
868 max_pass_bytes = bytes_used;
871 if (file)
873 fprintf (file, "\n");
874 fflush (file);
877 obstack_free (&gcse_obstack, gcse_obstack_bottom);
878 pass++;
881 /* Do one last pass of copy propagation, including cprop into
882 conditional jumps. */
884 max_gcse_regno = max_reg_num ();
885 alloc_gcse_mem (f);
886 /* This time, go ahead and allow cprop to alter jumps. */
887 one_cprop_pass (pass + 1, 1, 0);
888 free_gcse_mem ();
890 if (file)
892 fprintf (file, "GCSE of %s: %d basic blocks, ",
893 current_function_name, n_basic_blocks);
894 fprintf (file, "%d pass%s, %d bytes\n\n",
895 pass, pass > 1 ? "es" : "", max_pass_bytes);
898 obstack_free (&gcse_obstack, NULL);
899 free_reg_set_mem ();
900 /* We are finished with alias. */
901 end_alias_analysis ();
902 allocate_reg_info (max_reg_num (), FALSE, FALSE);
904 if (!optimize_size && flag_gcse_sm)
905 store_motion ();
907 /* Record where pseudo-registers are set. */
908 return run_jump_opt_after_gcse;
911 /* Misc. utilities. */
913 /* Nonzero for each mode that supports (set (reg) (reg)).
914 This is trivially true for integer and floating point values.
915 It may or may not be true for condition codes. */
916 static char can_copy[(int) NUM_MACHINE_MODES];
918 /* Compute which modes support reg/reg copy operations. */
920 static void
921 compute_can_copy ()
923 int i;
924 #ifndef AVOID_CCMODE_COPIES
925 rtx reg, insn;
926 #endif
927 memset (can_copy, 0, NUM_MACHINE_MODES);
929 start_sequence ();
930 for (i = 0; i < NUM_MACHINE_MODES; i++)
931 if (GET_MODE_CLASS (i) == MODE_CC)
933 #ifdef AVOID_CCMODE_COPIES
934 can_copy[i] = 0;
935 #else
936 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
937 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
938 if (recog (PATTERN (insn), insn, NULL) >= 0)
939 can_copy[i] = 1;
940 #endif
942 else
943 can_copy[i] = 1;
945 end_sequence ();
948 /* Returns whether the mode supports reg/reg copy operations. */
950 bool
951 can_copy_p (mode)
952 enum machine_mode mode;
954 static bool can_copy_init_p = false;
956 if (! can_copy_init_p)
958 compute_can_copy ();
959 can_copy_init_p = true;
962 return can_copy[mode] != 0;
965 /* Cover function to xmalloc to record bytes allocated. */
967 static char *
968 gmalloc (size)
969 unsigned int size;
971 bytes_used += size;
972 return xmalloc (size);
975 /* Cover function to xrealloc.
976 We don't record the additional size since we don't know it.
977 It won't affect memory usage stats much anyway. */
979 static char *
980 grealloc (ptr, size)
981 char *ptr;
982 unsigned int size;
984 return xrealloc (ptr, size);
987 /* Cover function to obstack_alloc. */
989 static char *
990 gcse_alloc (size)
991 unsigned long size;
993 bytes_used += size;
994 return (char *) obstack_alloc (&gcse_obstack, size);
997 /* Allocate memory for the cuid mapping array,
998 and reg/memory set tracking tables.
1000 This is called at the start of each pass. */
1002 static void
1003 alloc_gcse_mem (f)
1004 rtx f;
1006 int i, n;
1007 rtx insn;
1009 /* Find the largest UID and create a mapping from UIDs to CUIDs.
1010 CUIDs are like UIDs except they increase monotonically, have no gaps,
1011 and only apply to real insns. */
1013 max_uid = get_max_uid ();
1014 n = (max_uid + 1) * sizeof (int);
1015 uid_cuid = (int *) gmalloc (n);
1016 memset ((char *) uid_cuid, 0, n);
1017 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
1019 if (INSN_P (insn))
1020 uid_cuid[INSN_UID (insn)] = i++;
1021 else
1022 uid_cuid[INSN_UID (insn)] = i;
1025 /* Create a table mapping cuids to insns. */
1027 max_cuid = i;
1028 n = (max_cuid + 1) * sizeof (rtx);
1029 cuid_insn = (rtx *) gmalloc (n);
1030 memset ((char *) cuid_insn, 0, n);
1031 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
1032 if (INSN_P (insn))
1033 CUID_INSN (i++) = insn;
1035 /* Allocate vars to track sets of regs. */
1036 reg_set_bitmap = BITMAP_XMALLOC ();
1038 /* Allocate vars to track sets of regs, memory per block. */
1039 reg_set_in_block = (sbitmap *) sbitmap_vector_alloc (last_basic_block,
1040 max_gcse_regno);
1041 /* Allocate array to keep a list of insns which modify memory in each
1042 basic block. */
1043 modify_mem_list = (rtx *) gmalloc (last_basic_block * sizeof (rtx));
1044 canon_modify_mem_list = (rtx *) gmalloc (last_basic_block * sizeof (rtx));
1045 memset ((char *) modify_mem_list, 0, last_basic_block * sizeof (rtx));
1046 memset ((char *) canon_modify_mem_list, 0, last_basic_block * sizeof (rtx));
1047 modify_mem_list_set = BITMAP_XMALLOC ();
1048 canon_modify_mem_list_set = BITMAP_XMALLOC ();
1051 /* Free memory allocated by alloc_gcse_mem. */
1053 static void
1054 free_gcse_mem ()
1056 free (uid_cuid);
1057 free (cuid_insn);
1059 BITMAP_XFREE (reg_set_bitmap);
1061 sbitmap_vector_free (reg_set_in_block);
1062 free_modify_mem_tables ();
1063 BITMAP_XFREE (modify_mem_list_set);
1064 BITMAP_XFREE (canon_modify_mem_list_set);
1067 /* Many of the global optimization algorithms work by solving dataflow
1068 equations for various expressions. Initially, some local value is
1069 computed for each expression in each block. Then, the values across the
1070 various blocks are combined (by following flow graph edges) to arrive at
1071 global values. Conceptually, each set of equations is independent. We
1072 may therefore solve all the equations in parallel, solve them one at a
1073 time, or pick any intermediate approach.
1075 When you're going to need N two-dimensional bitmaps, each X (say, the
1076 number of blocks) by Y (say, the number of expressions), call this
1077 function. It's not important what X and Y represent; only that Y
1078 correspond to the things that can be done in parallel. This function will
1079 return an appropriate chunking factor C; you should solve C sets of
1080 equations in parallel. By going through this function, we can easily
1081 trade space against time; by solving fewer equations in parallel we use
1082 less space. */
1084 static int
1085 get_bitmap_width (n, x, y)
1086 int n;
1087 int x;
1088 int y;
1090 /* It's not really worth figuring out *exactly* how much memory will
1091 be used by a particular choice. The important thing is to get
1092 something approximately right. */
1093 size_t max_bitmap_memory = 10 * 1024 * 1024;
1095 /* The number of bytes we'd use for a single column of minimum
1096 width. */
1097 size_t column_size = n * x * sizeof (SBITMAP_ELT_TYPE);
1099 /* Often, it's reasonable just to solve all the equations in
1100 parallel. */
1101 if (column_size * SBITMAP_SET_SIZE (y) <= max_bitmap_memory)
1102 return y;
1104 /* Otherwise, pick the largest width we can, without going over the
1105 limit. */
1106 return SBITMAP_ELT_BITS * ((max_bitmap_memory + column_size - 1)
1107 / column_size);
1110 /* Compute the local properties of each recorded expression.
1112 Local properties are those that are defined by the block, irrespective of
1113 other blocks.
1115 An expression is transparent in a block if its operands are not modified
1116 in the block.
1118 An expression is computed (locally available) in a block if it is computed
1119 at least once and expression would contain the same value if the
1120 computation was moved to the end of the block.
1122 An expression is locally anticipatable in a block if it is computed at
1123 least once and expression would contain the same value if the computation
1124 was moved to the beginning of the block.
1126 We call this routine for cprop, pre and code hoisting. They all compute
1127 basically the same information and thus can easily share this code.
1129 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
1130 properties. If NULL, then it is not necessary to compute or record that
1131 particular property.
1133 TABLE controls which hash table to look at. If it is set hash table,
1134 additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
1135 ABSALTERED. */
1137 static void
1138 compute_local_properties (transp, comp, antloc, table)
1139 sbitmap *transp;
1140 sbitmap *comp;
1141 sbitmap *antloc;
1142 struct hash_table *table;
1144 unsigned int i;
1146 /* Initialize any bitmaps that were passed in. */
1147 if (transp)
1149 if (table->set_p)
1150 sbitmap_vector_zero (transp, last_basic_block);
1151 else
1152 sbitmap_vector_ones (transp, last_basic_block);
1155 if (comp)
1156 sbitmap_vector_zero (comp, last_basic_block);
1157 if (antloc)
1158 sbitmap_vector_zero (antloc, last_basic_block);
1160 for (i = 0; i < table->size; i++)
1162 struct expr *expr;
1164 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1166 int indx = expr->bitmap_index;
1167 struct occr *occr;
1169 /* The expression is transparent in this block if it is not killed.
1170 We start by assuming all are transparent [none are killed], and
1171 then reset the bits for those that are. */
1172 if (transp)
1173 compute_transp (expr->expr, indx, transp, table->set_p);
1175 /* The occurrences recorded in antic_occr are exactly those that
1176 we want to set to nonzero in ANTLOC. */
1177 if (antloc)
1178 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
1180 SET_BIT (antloc[BLOCK_NUM (occr->insn)], indx);
1182 /* While we're scanning the table, this is a good place to
1183 initialize this. */
1184 occr->deleted_p = 0;
1187 /* The occurrences recorded in avail_occr are exactly those that
1188 we want to set to nonzero in COMP. */
1189 if (comp)
1190 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1192 SET_BIT (comp[BLOCK_NUM (occr->insn)], indx);
1194 /* While we're scanning the table, this is a good place to
1195 initialize this. */
1196 occr->copied_p = 0;
1199 /* While we're scanning the table, this is a good place to
1200 initialize this. */
1201 expr->reaching_reg = 0;
1206 /* Register set information.
1208 `reg_set_table' records where each register is set or otherwise
1209 modified. */
1211 static struct obstack reg_set_obstack;
1213 static void
1214 alloc_reg_set_mem (n_regs)
1215 int n_regs;
1217 unsigned int n;
1219 reg_set_table_size = n_regs + REG_SET_TABLE_SLOP;
1220 n = reg_set_table_size * sizeof (struct reg_set *);
1221 reg_set_table = (struct reg_set **) gmalloc (n);
1222 memset ((char *) reg_set_table, 0, n);
1224 gcc_obstack_init (&reg_set_obstack);
1227 static void
1228 free_reg_set_mem ()
1230 free (reg_set_table);
1231 obstack_free (&reg_set_obstack, NULL);
1234 /* Record REGNO in the reg_set table. */
1236 static void
1237 record_one_set (regno, insn)
1238 int regno;
1239 rtx insn;
1241 /* Allocate a new reg_set element and link it onto the list. */
1242 struct reg_set *new_reg_info;
1244 /* If the table isn't big enough, enlarge it. */
1245 if (regno >= reg_set_table_size)
1247 int new_size = regno + REG_SET_TABLE_SLOP;
1249 reg_set_table
1250 = (struct reg_set **) grealloc ((char *) reg_set_table,
1251 new_size * sizeof (struct reg_set *));
1252 memset ((char *) (reg_set_table + reg_set_table_size), 0,
1253 (new_size - reg_set_table_size) * sizeof (struct reg_set *));
1254 reg_set_table_size = new_size;
1257 new_reg_info = (struct reg_set *) obstack_alloc (&reg_set_obstack,
1258 sizeof (struct reg_set));
1259 bytes_used += sizeof (struct reg_set);
1260 new_reg_info->insn = insn;
1261 new_reg_info->next = reg_set_table[regno];
1262 reg_set_table[regno] = new_reg_info;
1265 /* Called from compute_sets via note_stores to handle one SET or CLOBBER in
1266 an insn. The DATA is really the instruction in which the SET is
1267 occurring. */
1269 static void
1270 record_set_info (dest, setter, data)
1271 rtx dest, setter ATTRIBUTE_UNUSED;
1272 void *data;
1274 rtx record_set_insn = (rtx) data;
1276 if (GET_CODE (dest) == REG && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
1277 record_one_set (REGNO (dest), record_set_insn);
1280 /* Scan the function and record each set of each pseudo-register.
1282 This is called once, at the start of the gcse pass. See the comments for
1283 `reg_set_table' for further documentation. */
1285 static void
1286 compute_sets (f)
1287 rtx f;
1289 rtx insn;
1291 for (insn = f; insn != 0; insn = NEXT_INSN (insn))
1292 if (INSN_P (insn))
1293 note_stores (PATTERN (insn), record_set_info, insn);
1296 /* Hash table support. */
1298 struct reg_avail_info
1300 basic_block last_bb;
1301 int first_set;
1302 int last_set;
1305 static struct reg_avail_info *reg_avail_info;
1306 static basic_block current_bb;
1309 /* See whether X, the source of a set, is something we want to consider for
1310 GCSE. */
1312 static GTY(()) rtx test_insn;
1313 static int
1314 want_to_gcse_p (x)
1315 rtx x;
1317 int num_clobbers = 0;
1318 int icode;
1320 switch (GET_CODE (x))
1322 case REG:
1323 case SUBREG:
1324 case CONST_INT:
1325 case CONST_DOUBLE:
1326 case CONST_VECTOR:
1327 case CALL:
1328 case CONSTANT_P_RTX:
1329 return 0;
1331 default:
1332 break;
1335 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
1336 if (general_operand (x, GET_MODE (x)))
1337 return 1;
1338 else if (GET_MODE (x) == VOIDmode)
1339 return 0;
1341 /* Otherwise, check if we can make a valid insn from it. First initialize
1342 our test insn if we haven't already. */
1343 if (test_insn == 0)
1345 test_insn
1346 = make_insn_raw (gen_rtx_SET (VOIDmode,
1347 gen_rtx_REG (word_mode,
1348 FIRST_PSEUDO_REGISTER * 2),
1349 const0_rtx));
1350 NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
1353 /* Now make an insn like the one we would make when GCSE'ing and see if
1354 valid. */
1355 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
1356 SET_SRC (PATTERN (test_insn)) = x;
1357 return ((icode = recog (PATTERN (test_insn), test_insn, &num_clobbers)) >= 0
1358 && (num_clobbers == 0 || ! added_clobbers_hard_reg_p (icode)));
1361 /* Return nonzero if the operands of expression X are unchanged from the
1362 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
1363 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
1365 static int
1366 oprs_unchanged_p (x, insn, avail_p)
1367 rtx x, insn;
1368 int avail_p;
1370 int i, j;
1371 enum rtx_code code;
1372 const char *fmt;
1374 if (x == 0)
1375 return 1;
1377 code = GET_CODE (x);
1378 switch (code)
1380 case REG:
1382 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
1384 if (info->last_bb != current_bb)
1385 return 1;
1386 if (avail_p)
1387 return info->last_set < INSN_CUID (insn);
1388 else
1389 return info->first_set >= INSN_CUID (insn);
1392 case MEM:
1393 if (load_killed_in_block_p (current_bb, INSN_CUID (insn),
1394 x, avail_p))
1395 return 0;
1396 else
1397 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
1399 case PRE_DEC:
1400 case PRE_INC:
1401 case POST_DEC:
1402 case POST_INC:
1403 case PRE_MODIFY:
1404 case POST_MODIFY:
1405 return 0;
1407 case PC:
1408 case CC0: /*FIXME*/
1409 case CONST:
1410 case CONST_INT:
1411 case CONST_DOUBLE:
1412 case CONST_VECTOR:
1413 case SYMBOL_REF:
1414 case LABEL_REF:
1415 case ADDR_VEC:
1416 case ADDR_DIFF_VEC:
1417 return 1;
1419 default:
1420 break;
1423 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1425 if (fmt[i] == 'e')
1427 /* If we are about to do the last recursive call needed at this
1428 level, change it into iteration. This function is called enough
1429 to be worth it. */
1430 if (i == 0)
1431 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
1433 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
1434 return 0;
1436 else if (fmt[i] == 'E')
1437 for (j = 0; j < XVECLEN (x, i); j++)
1438 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
1439 return 0;
1442 return 1;
1445 /* Used for communication between mems_conflict_for_gcse_p and
1446 load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
1447 conflict between two memory references. */
1448 static int gcse_mems_conflict_p;
1450 /* Used for communication between mems_conflict_for_gcse_p and
1451 load_killed_in_block_p. A memory reference for a load instruction,
1452 mems_conflict_for_gcse_p will see if a memory store conflicts with
1453 this memory load. */
1454 static rtx gcse_mem_operand;
1456 /* DEST is the output of an instruction. If it is a memory reference, and
1457 possibly conflicts with the load found in gcse_mem_operand, then set
1458 gcse_mems_conflict_p to a nonzero value. */
1460 static void
1461 mems_conflict_for_gcse_p (dest, setter, data)
1462 rtx dest, setter ATTRIBUTE_UNUSED;
1463 void *data ATTRIBUTE_UNUSED;
1465 while (GET_CODE (dest) == SUBREG
1466 || GET_CODE (dest) == ZERO_EXTRACT
1467 || GET_CODE (dest) == SIGN_EXTRACT
1468 || GET_CODE (dest) == STRICT_LOW_PART)
1469 dest = XEXP (dest, 0);
1471 /* If DEST is not a MEM, then it will not conflict with the load. Note
1472 that function calls are assumed to clobber memory, but are handled
1473 elsewhere. */
1474 if (GET_CODE (dest) != MEM)
1475 return;
1477 /* If we are setting a MEM in our list of specially recognized MEMs,
1478 don't mark as killed this time. */
1480 if (expr_equiv_p (dest, gcse_mem_operand) && pre_ldst_mems != NULL)
1482 if (!find_rtx_in_ldst (dest))
1483 gcse_mems_conflict_p = 1;
1484 return;
1487 if (true_dependence (dest, GET_MODE (dest), gcse_mem_operand,
1488 rtx_addr_varies_p))
1489 gcse_mems_conflict_p = 1;
1492 /* Return nonzero if the expression in X (a memory reference) is killed
1493 in block BB before or after the insn with the CUID in UID_LIMIT.
1494 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1495 before UID_LIMIT.
1497 To check the entire block, set UID_LIMIT to max_uid + 1 and
1498 AVAIL_P to 0. */
1500 static int
1501 load_killed_in_block_p (bb, uid_limit, x, avail_p)
1502 basic_block bb;
1503 int uid_limit;
1504 rtx x;
1505 int avail_p;
1507 rtx list_entry = modify_mem_list[bb->index];
1508 while (list_entry)
1510 rtx setter;
1511 /* Ignore entries in the list that do not apply. */
1512 if ((avail_p
1513 && INSN_CUID (XEXP (list_entry, 0)) < uid_limit)
1514 || (! avail_p
1515 && INSN_CUID (XEXP (list_entry, 0)) > uid_limit))
1517 list_entry = XEXP (list_entry, 1);
1518 continue;
1521 setter = XEXP (list_entry, 0);
1523 /* If SETTER is a call everything is clobbered. Note that calls
1524 to pure functions are never put on the list, so we need not
1525 worry about them. */
1526 if (GET_CODE (setter) == CALL_INSN)
1527 return 1;
1529 /* SETTER must be an INSN of some kind that sets memory. Call
1530 note_stores to examine each hunk of memory that is modified.
1532 The note_stores interface is pretty limited, so we have to
1533 communicate via global variables. Yuk. */
1534 gcse_mem_operand = x;
1535 gcse_mems_conflict_p = 0;
1536 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, NULL);
1537 if (gcse_mems_conflict_p)
1538 return 1;
1539 list_entry = XEXP (list_entry, 1);
1541 return 0;
1544 /* Return nonzero if the operands of expression X are unchanged from
1545 the start of INSN's basic block up to but not including INSN. */
1547 static int
1548 oprs_anticipatable_p (x, insn)
1549 rtx x, insn;
1551 return oprs_unchanged_p (x, insn, 0);
1554 /* Return nonzero if the operands of expression X are unchanged from
1555 INSN to the end of INSN's basic block. */
1557 static int
1558 oprs_available_p (x, insn)
1559 rtx x, insn;
1561 return oprs_unchanged_p (x, insn, 1);
1564 /* Hash expression X.
1566 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1567 indicating if a volatile operand is found or if the expression contains
1568 something we don't want to insert in the table.
1570 ??? One might want to merge this with canon_hash. Later. */
1572 static unsigned int
1573 hash_expr (x, mode, do_not_record_p, hash_table_size)
1574 rtx x;
1575 enum machine_mode mode;
1576 int *do_not_record_p;
1577 int hash_table_size;
1579 unsigned int hash;
1581 *do_not_record_p = 0;
1583 hash = hash_expr_1 (x, mode, do_not_record_p);
1584 return hash % hash_table_size;
1587 /* Hash a string. Just add its bytes up. */
1589 static inline unsigned
1590 hash_string_1 (ps)
1591 const char *ps;
1593 unsigned hash = 0;
1594 const unsigned char *p = (const unsigned char *) ps;
1596 if (p)
1597 while (*p)
1598 hash += *p++;
1600 return hash;
1603 /* Subroutine of hash_expr to do the actual work. */
1605 static unsigned int
1606 hash_expr_1 (x, mode, do_not_record_p)
1607 rtx x;
1608 enum machine_mode mode;
1609 int *do_not_record_p;
1611 int i, j;
1612 unsigned hash = 0;
1613 enum rtx_code code;
1614 const char *fmt;
1616 /* Used to turn recursion into iteration. We can't rely on GCC's
1617 tail-recursion elimination since we need to keep accumulating values
1618 in HASH. */
1620 if (x == 0)
1621 return hash;
1623 repeat:
1624 code = GET_CODE (x);
1625 switch (code)
1627 case REG:
1628 hash += ((unsigned int) REG << 7) + REGNO (x);
1629 return hash;
1631 case CONST_INT:
1632 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
1633 + (unsigned int) INTVAL (x));
1634 return hash;
1636 case CONST_DOUBLE:
1637 /* This is like the general case, except that it only counts
1638 the integers representing the constant. */
1639 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
1640 if (GET_MODE (x) != VOIDmode)
1641 for (i = 2; i < GET_RTX_LENGTH (CONST_DOUBLE); i++)
1642 hash += (unsigned int) XWINT (x, i);
1643 else
1644 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
1645 + (unsigned int) CONST_DOUBLE_HIGH (x));
1646 return hash;
1648 case CONST_VECTOR:
1650 int units;
1651 rtx elt;
1653 units = CONST_VECTOR_NUNITS (x);
1655 for (i = 0; i < units; ++i)
1657 elt = CONST_VECTOR_ELT (x, i);
1658 hash += hash_expr_1 (elt, GET_MODE (elt), do_not_record_p);
1661 return hash;
1664 /* Assume there is only one rtx object for any given label. */
1665 case LABEL_REF:
1666 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
1667 differences and differences between each stage's debugging dumps. */
1668 hash += (((unsigned int) LABEL_REF << 7)
1669 + CODE_LABEL_NUMBER (XEXP (x, 0)));
1670 return hash;
1672 case SYMBOL_REF:
1674 /* Don't hash on the symbol's address to avoid bootstrap differences.
1675 Different hash values may cause expressions to be recorded in
1676 different orders and thus different registers to be used in the
1677 final assembler. This also avoids differences in the dump files
1678 between various stages. */
1679 unsigned int h = 0;
1680 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
1682 while (*p)
1683 h += (h << 7) + *p++; /* ??? revisit */
1685 hash += ((unsigned int) SYMBOL_REF << 7) + h;
1686 return hash;
1689 case MEM:
1690 if (MEM_VOLATILE_P (x))
1692 *do_not_record_p = 1;
1693 return 0;
1696 hash += (unsigned int) MEM;
1697 /* We used alias set for hashing, but this is not good, since the alias
1698 set may differ in -fprofile-arcs and -fbranch-probabilities compilation
1699 causing the profiles to fail to match. */
1700 x = XEXP (x, 0);
1701 goto repeat;
1703 case PRE_DEC:
1704 case PRE_INC:
1705 case POST_DEC:
1706 case POST_INC:
1707 case PC:
1708 case CC0:
1709 case CALL:
1710 case UNSPEC_VOLATILE:
1711 *do_not_record_p = 1;
1712 return 0;
1714 case ASM_OPERANDS:
1715 if (MEM_VOLATILE_P (x))
1717 *do_not_record_p = 1;
1718 return 0;
1720 else
1722 /* We don't want to take the filename and line into account. */
1723 hash += (unsigned) code + (unsigned) GET_MODE (x)
1724 + hash_string_1 (ASM_OPERANDS_TEMPLATE (x))
1725 + hash_string_1 (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
1726 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
1728 if (ASM_OPERANDS_INPUT_LENGTH (x))
1730 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
1732 hash += (hash_expr_1 (ASM_OPERANDS_INPUT (x, i),
1733 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
1734 do_not_record_p)
1735 + hash_string_1 (ASM_OPERANDS_INPUT_CONSTRAINT
1736 (x, i)));
1739 hash += hash_string_1 (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
1740 x = ASM_OPERANDS_INPUT (x, 0);
1741 mode = GET_MODE (x);
1742 goto repeat;
1744 return hash;
1747 default:
1748 break;
1751 hash += (unsigned) code + (unsigned) GET_MODE (x);
1752 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1754 if (fmt[i] == 'e')
1756 /* If we are about to do the last recursive call
1757 needed at this level, change it into iteration.
1758 This function is called enough to be worth it. */
1759 if (i == 0)
1761 x = XEXP (x, i);
1762 goto repeat;
1765 hash += hash_expr_1 (XEXP (x, i), 0, do_not_record_p);
1766 if (*do_not_record_p)
1767 return 0;
1770 else if (fmt[i] == 'E')
1771 for (j = 0; j < XVECLEN (x, i); j++)
1773 hash += hash_expr_1 (XVECEXP (x, i, j), 0, do_not_record_p);
1774 if (*do_not_record_p)
1775 return 0;
1778 else if (fmt[i] == 's')
1779 hash += hash_string_1 (XSTR (x, i));
1780 else if (fmt[i] == 'i')
1781 hash += (unsigned int) XINT (x, i);
1782 else
1783 abort ();
1786 return hash;
1789 /* Hash a set of register REGNO.
1791 Sets are hashed on the register that is set. This simplifies the PRE copy
1792 propagation code.
1794 ??? May need to make things more elaborate. Later, as necessary. */
1796 static unsigned int
1797 hash_set (regno, hash_table_size)
1798 int regno;
1799 int hash_table_size;
1801 unsigned int hash;
1803 hash = regno;
1804 return hash % hash_table_size;
1807 /* Return nonzero if exp1 is equivalent to exp2.
1808 ??? Borrowed from cse.c. Might want to remerge with cse.c. Later. */
1810 static int
1811 expr_equiv_p (x, y)
1812 rtx x, y;
1814 int i, j;
1815 enum rtx_code code;
1816 const char *fmt;
1818 if (x == y)
1819 return 1;
1821 if (x == 0 || y == 0)
1822 return x == y;
1824 code = GET_CODE (x);
1825 if (code != GET_CODE (y))
1826 return 0;
1828 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1829 if (GET_MODE (x) != GET_MODE (y))
1830 return 0;
1832 switch (code)
1834 case PC:
1835 case CC0:
1836 return x == y;
1838 case CONST_INT:
1839 return INTVAL (x) == INTVAL (y);
1841 case LABEL_REF:
1842 return XEXP (x, 0) == XEXP (y, 0);
1844 case SYMBOL_REF:
1845 return XSTR (x, 0) == XSTR (y, 0);
1847 case REG:
1848 return REGNO (x) == REGNO (y);
1850 case MEM:
1851 /* Can't merge two expressions in different alias sets, since we can
1852 decide that the expression is transparent in a block when it isn't,
1853 due to it being set with the different alias set. */
1854 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
1855 return 0;
1856 break;
1858 /* For commutative operations, check both orders. */
1859 case PLUS:
1860 case MULT:
1861 case AND:
1862 case IOR:
1863 case XOR:
1864 case NE:
1865 case EQ:
1866 return ((expr_equiv_p (XEXP (x, 0), XEXP (y, 0))
1867 && expr_equiv_p (XEXP (x, 1), XEXP (y, 1)))
1868 || (expr_equiv_p (XEXP (x, 0), XEXP (y, 1))
1869 && expr_equiv_p (XEXP (x, 1), XEXP (y, 0))));
1871 case ASM_OPERANDS:
1872 /* We don't use the generic code below because we want to
1873 disregard filename and line numbers. */
1875 /* A volatile asm isn't equivalent to any other. */
1876 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
1877 return 0;
1879 if (GET_MODE (x) != GET_MODE (y)
1880 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
1881 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
1882 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
1883 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
1884 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
1885 return 0;
1887 if (ASM_OPERANDS_INPUT_LENGTH (x))
1889 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
1890 if (! expr_equiv_p (ASM_OPERANDS_INPUT (x, i),
1891 ASM_OPERANDS_INPUT (y, i))
1892 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
1893 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
1894 return 0;
1897 return 1;
1899 default:
1900 break;
1903 /* Compare the elements. If any pair of corresponding elements
1904 fail to match, return 0 for the whole thing. */
1906 fmt = GET_RTX_FORMAT (code);
1907 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1909 switch (fmt[i])
1911 case 'e':
1912 if (! expr_equiv_p (XEXP (x, i), XEXP (y, i)))
1913 return 0;
1914 break;
1916 case 'E':
1917 if (XVECLEN (x, i) != XVECLEN (y, i))
1918 return 0;
1919 for (j = 0; j < XVECLEN (x, i); j++)
1920 if (! expr_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1921 return 0;
1922 break;
1924 case 's':
1925 if (strcmp (XSTR (x, i), XSTR (y, i)))
1926 return 0;
1927 break;
1929 case 'i':
1930 if (XINT (x, i) != XINT (y, i))
1931 return 0;
1932 break;
1934 case 'w':
1935 if (XWINT (x, i) != XWINT (y, i))
1936 return 0;
1937 break;
1939 case '0':
1940 break;
1942 default:
1943 abort ();
1947 return 1;
1950 /* Insert expression X in INSN in the hash TABLE.
1951 If it is already present, record it as the last occurrence in INSN's
1952 basic block.
1954 MODE is the mode of the value X is being stored into.
1955 It is only used if X is a CONST_INT.
1957 ANTIC_P is nonzero if X is an anticipatable expression.
1958 AVAIL_P is nonzero if X is an available expression. */
1960 static void
1961 insert_expr_in_table (x, mode, insn, antic_p, avail_p, table)
1962 rtx x;
1963 enum machine_mode mode;
1964 rtx insn;
1965 int antic_p, avail_p;
1966 struct hash_table *table;
1968 int found, do_not_record_p;
1969 unsigned int hash;
1970 struct expr *cur_expr, *last_expr = NULL;
1971 struct occr *antic_occr, *avail_occr;
1972 struct occr *last_occr = NULL;
1974 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1976 /* Do not insert expression in table if it contains volatile operands,
1977 or if hash_expr determines the expression is something we don't want
1978 to or can't handle. */
1979 if (do_not_record_p)
1980 return;
1982 cur_expr = table->table[hash];
1983 found = 0;
1985 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1987 /* If the expression isn't found, save a pointer to the end of
1988 the list. */
1989 last_expr = cur_expr;
1990 cur_expr = cur_expr->next_same_hash;
1993 if (! found)
1995 cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr));
1996 bytes_used += sizeof (struct expr);
1997 if (table->table[hash] == NULL)
1998 /* This is the first pattern that hashed to this index. */
1999 table->table[hash] = cur_expr;
2000 else
2001 /* Add EXPR to end of this hash chain. */
2002 last_expr->next_same_hash = cur_expr;
2004 /* Set the fields of the expr element. */
2005 cur_expr->expr = x;
2006 cur_expr->bitmap_index = table->n_elems++;
2007 cur_expr->next_same_hash = NULL;
2008 cur_expr->antic_occr = NULL;
2009 cur_expr->avail_occr = NULL;
2012 /* Now record the occurrence(s). */
2013 if (antic_p)
2015 antic_occr = cur_expr->antic_occr;
2017 /* Search for another occurrence in the same basic block. */
2018 while (antic_occr && BLOCK_NUM (antic_occr->insn) != BLOCK_NUM (insn))
2020 /* If an occurrence isn't found, save a pointer to the end of
2021 the list. */
2022 last_occr = antic_occr;
2023 antic_occr = antic_occr->next;
2026 if (antic_occr)
2027 /* Found another instance of the expression in the same basic block.
2028 Prefer the currently recorded one. We want the first one in the
2029 block and the block is scanned from start to end. */
2030 ; /* nothing to do */
2031 else
2033 /* First occurrence of this expression in this basic block. */
2034 antic_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
2035 bytes_used += sizeof (struct occr);
2036 /* First occurrence of this expression in any block? */
2037 if (cur_expr->antic_occr == NULL)
2038 cur_expr->antic_occr = antic_occr;
2039 else
2040 last_occr->next = antic_occr;
2042 antic_occr->insn = insn;
2043 antic_occr->next = NULL;
2047 if (avail_p)
2049 avail_occr = cur_expr->avail_occr;
2051 /* Search for another occurrence in the same basic block. */
2052 while (avail_occr && BLOCK_NUM (avail_occr->insn) != BLOCK_NUM (insn))
2054 /* If an occurrence isn't found, save a pointer to the end of
2055 the list. */
2056 last_occr = avail_occr;
2057 avail_occr = avail_occr->next;
2060 if (avail_occr)
2061 /* Found another instance of the expression in the same basic block.
2062 Prefer this occurrence to the currently recorded one. We want
2063 the last one in the block and the block is scanned from start
2064 to end. */
2065 avail_occr->insn = insn;
2066 else
2068 /* First occurrence of this expression in this basic block. */
2069 avail_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
2070 bytes_used += sizeof (struct occr);
2072 /* First occurrence of this expression in any block? */
2073 if (cur_expr->avail_occr == NULL)
2074 cur_expr->avail_occr = avail_occr;
2075 else
2076 last_occr->next = avail_occr;
2078 avail_occr->insn = insn;
2079 avail_occr->next = NULL;
2084 /* Insert pattern X in INSN in the hash table.
2085 X is a SET of a reg to either another reg or a constant.
2086 If it is already present, record it as the last occurrence in INSN's
2087 basic block. */
2089 static void
2090 insert_set_in_table (x, insn, table)
2091 rtx x;
2092 rtx insn;
2093 struct hash_table *table;
2095 int found;
2096 unsigned int hash;
2097 struct expr *cur_expr, *last_expr = NULL;
2098 struct occr *cur_occr, *last_occr = NULL;
2100 if (GET_CODE (x) != SET
2101 || GET_CODE (SET_DEST (x)) != REG)
2102 abort ();
2104 hash = hash_set (REGNO (SET_DEST (x)), table->size);
2106 cur_expr = table->table[hash];
2107 found = 0;
2109 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
2111 /* If the expression isn't found, save a pointer to the end of
2112 the list. */
2113 last_expr = cur_expr;
2114 cur_expr = cur_expr->next_same_hash;
2117 if (! found)
2119 cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr));
2120 bytes_used += sizeof (struct expr);
2121 if (table->table[hash] == NULL)
2122 /* This is the first pattern that hashed to this index. */
2123 table->table[hash] = cur_expr;
2124 else
2125 /* Add EXPR to end of this hash chain. */
2126 last_expr->next_same_hash = cur_expr;
2128 /* Set the fields of the expr element.
2129 We must copy X because it can be modified when copy propagation is
2130 performed on its operands. */
2131 cur_expr->expr = copy_rtx (x);
2132 cur_expr->bitmap_index = table->n_elems++;
2133 cur_expr->next_same_hash = NULL;
2134 cur_expr->antic_occr = NULL;
2135 cur_expr->avail_occr = NULL;
2138 /* Now record the occurrence. */
2139 cur_occr = cur_expr->avail_occr;
2141 /* Search for another occurrence in the same basic block. */
2142 while (cur_occr && BLOCK_NUM (cur_occr->insn) != BLOCK_NUM (insn))
2144 /* If an occurrence isn't found, save a pointer to the end of
2145 the list. */
2146 last_occr = cur_occr;
2147 cur_occr = cur_occr->next;
2150 if (cur_occr)
2151 /* Found another instance of the expression in the same basic block.
2152 Prefer this occurrence to the currently recorded one. We want the
2153 last one in the block and the block is scanned from start to end. */
2154 cur_occr->insn = insn;
2155 else
2157 /* First occurrence of this expression in this basic block. */
2158 cur_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
2159 bytes_used += sizeof (struct occr);
2161 /* First occurrence of this expression in any block? */
2162 if (cur_expr->avail_occr == NULL)
2163 cur_expr->avail_occr = cur_occr;
2164 else
2165 last_occr->next = cur_occr;
2167 cur_occr->insn = insn;
2168 cur_occr->next = NULL;
2172 /* Determine whether the rtx X should be treated as a constant for
2173 the purposes of GCSE's constant propagation. */
2175 static bool
2176 gcse_constant_p (x)
2177 rtx x;
2179 /* Consider a COMPARE of two integers constant. */
2180 if (GET_CODE (x) == COMPARE
2181 && GET_CODE (XEXP (x, 0)) == CONST_INT
2182 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2183 return true;
2185 if (GET_CODE (x) == CONSTANT_P_RTX)
2186 return false;
2188 return CONSTANT_P (x);
2191 /* Scan pattern PAT of INSN and add an entry to the hash TABLE (set or
2192 expression one). */
2194 static void
2195 hash_scan_set (pat, insn, table)
2196 rtx pat, insn;
2197 struct hash_table *table;
2199 rtx src = SET_SRC (pat);
2200 rtx dest = SET_DEST (pat);
2201 rtx note;
2203 if (GET_CODE (src) == CALL)
2204 hash_scan_call (src, insn, table);
2206 else if (GET_CODE (dest) == REG)
2208 unsigned int regno = REGNO (dest);
2209 rtx tmp;
2211 /* If this is a single set and we are doing constant propagation,
2212 see if a REG_NOTE shows this equivalent to a constant. */
2213 if (table->set_p && (note = find_reg_equal_equiv_note (insn)) != 0
2214 && gcse_constant_p (XEXP (note, 0)))
2215 src = XEXP (note, 0), pat = gen_rtx_SET (VOIDmode, dest, src);
2217 /* Only record sets of pseudo-regs in the hash table. */
2218 if (! table->set_p
2219 && regno >= FIRST_PSEUDO_REGISTER
2220 /* Don't GCSE something if we can't do a reg/reg copy. */
2221 && can_copy_p (GET_MODE (dest))
2222 /* GCSE commonly inserts instruction after the insn. We can't
2223 do that easily for EH_REGION notes so disable GCSE on these
2224 for now. */
2225 && !find_reg_note (insn, REG_EH_REGION, NULL_RTX)
2226 /* Is SET_SRC something we want to gcse? */
2227 && want_to_gcse_p (src)
2228 /* Don't CSE a nop. */
2229 && ! set_noop_p (pat)
2230 /* Don't GCSE if it has attached REG_EQUIV note.
2231 At this point this only function parameters should have
2232 REG_EQUIV notes and if the argument slot is used somewhere
2233 explicitly, it means address of parameter has been taken,
2234 so we should not extend the lifetime of the pseudo. */
2235 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
2236 || GET_CODE (XEXP (note, 0)) != MEM))
2238 /* An expression is not anticipatable if its operands are
2239 modified before this insn or if this is not the only SET in
2240 this insn. */
2241 int antic_p = oprs_anticipatable_p (src, insn) && single_set (insn);
2242 /* An expression is not available if its operands are
2243 subsequently modified, including this insn. It's also not
2244 available if this is a branch, because we can't insert
2245 a set after the branch. */
2246 int avail_p = (oprs_available_p (src, insn)
2247 && ! JUMP_P (insn));
2249 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p, table);
2252 /* Record sets for constant/copy propagation. */
2253 else if (table->set_p
2254 && regno >= FIRST_PSEUDO_REGISTER
2255 && ((GET_CODE (src) == REG
2256 && REGNO (src) >= FIRST_PSEUDO_REGISTER
2257 && can_copy_p (GET_MODE (dest))
2258 && REGNO (src) != regno)
2259 || gcse_constant_p (src))
2260 /* A copy is not available if its src or dest is subsequently
2261 modified. Here we want to search from INSN+1 on, but
2262 oprs_available_p searches from INSN on. */
2263 && (insn == BLOCK_END (BLOCK_NUM (insn))
2264 || ((tmp = next_nonnote_insn (insn)) != NULL_RTX
2265 && oprs_available_p (pat, tmp))))
2266 insert_set_in_table (pat, insn, table);
2270 static void
2271 hash_scan_clobber (x, insn, table)
2272 rtx x ATTRIBUTE_UNUSED, insn ATTRIBUTE_UNUSED;
2273 struct hash_table *table ATTRIBUTE_UNUSED;
2275 /* Currently nothing to do. */
2278 static void
2279 hash_scan_call (x, insn, table)
2280 rtx x ATTRIBUTE_UNUSED, insn ATTRIBUTE_UNUSED;
2281 struct hash_table *table ATTRIBUTE_UNUSED;
2283 /* Currently nothing to do. */
2286 /* Process INSN and add hash table entries as appropriate.
2288 Only available expressions that set a single pseudo-reg are recorded.
2290 Single sets in a PARALLEL could be handled, but it's an extra complication
2291 that isn't dealt with right now. The trick is handling the CLOBBERs that
2292 are also in the PARALLEL. Later.
2294 If SET_P is nonzero, this is for the assignment hash table,
2295 otherwise it is for the expression hash table.
2296 If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
2297 not record any expressions. */
2299 static void
2300 hash_scan_insn (insn, table, in_libcall_block)
2301 rtx insn;
2302 struct hash_table *table;
2303 int in_libcall_block;
2305 rtx pat = PATTERN (insn);
2306 int i;
2308 if (in_libcall_block)
2309 return;
2311 /* Pick out the sets of INSN and for other forms of instructions record
2312 what's been modified. */
2314 if (GET_CODE (pat) == SET)
2315 hash_scan_set (pat, insn, table);
2316 else if (GET_CODE (pat) == PARALLEL)
2317 for (i = 0; i < XVECLEN (pat, 0); i++)
2319 rtx x = XVECEXP (pat, 0, i);
2321 if (GET_CODE (x) == SET)
2322 hash_scan_set (x, insn, table);
2323 else if (GET_CODE (x) == CLOBBER)
2324 hash_scan_clobber (x, insn, table);
2325 else if (GET_CODE (x) == CALL)
2326 hash_scan_call (x, insn, table);
2329 else if (GET_CODE (pat) == CLOBBER)
2330 hash_scan_clobber (pat, insn, table);
2331 else if (GET_CODE (pat) == CALL)
2332 hash_scan_call (pat, insn, table);
2335 static void
2336 dump_hash_table (file, name, table)
2337 FILE *file;
2338 const char *name;
2339 struct hash_table *table;
2341 int i;
2342 /* Flattened out table, so it's printed in proper order. */
2343 struct expr **flat_table;
2344 unsigned int *hash_val;
2345 struct expr *expr;
2347 flat_table
2348 = (struct expr **) xcalloc (table->n_elems, sizeof (struct expr *));
2349 hash_val = (unsigned int *) xmalloc (table->n_elems * sizeof (unsigned int));
2351 for (i = 0; i < (int) table->size; i++)
2352 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
2354 flat_table[expr->bitmap_index] = expr;
2355 hash_val[expr->bitmap_index] = i;
2358 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
2359 name, table->size, table->n_elems);
2361 for (i = 0; i < (int) table->n_elems; i++)
2362 if (flat_table[i] != 0)
2364 expr = flat_table[i];
2365 fprintf (file, "Index %d (hash value %d)\n ",
2366 expr->bitmap_index, hash_val[i]);
2367 print_rtl (file, expr->expr);
2368 fprintf (file, "\n");
2371 fprintf (file, "\n");
2373 free (flat_table);
2374 free (hash_val);
2377 /* Record register first/last/block set information for REGNO in INSN.
2379 first_set records the first place in the block where the register
2380 is set and is used to compute "anticipatability".
2382 last_set records the last place in the block where the register
2383 is set and is used to compute "availability".
2385 last_bb records the block for which first_set and last_set are
2386 valid, as a quick test to invalidate them.
2388 reg_set_in_block records whether the register is set in the block
2389 and is used to compute "transparency". */
2391 static void
2392 record_last_reg_set_info (insn, regno)
2393 rtx insn;
2394 int regno;
2396 struct reg_avail_info *info = &reg_avail_info[regno];
2397 int cuid = INSN_CUID (insn);
2399 info->last_set = cuid;
2400 if (info->last_bb != current_bb)
2402 info->last_bb = current_bb;
2403 info->first_set = cuid;
2404 SET_BIT (reg_set_in_block[current_bb->index], regno);
2409 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
2410 Note we store a pair of elements in the list, so they have to be
2411 taken off pairwise. */
2413 static void
2414 canon_list_insert (dest, unused1, v_insn)
2415 rtx dest ATTRIBUTE_UNUSED;
2416 rtx unused1 ATTRIBUTE_UNUSED;
2417 void * v_insn;
2419 rtx dest_addr, insn;
2420 int bb;
2422 while (GET_CODE (dest) == SUBREG
2423 || GET_CODE (dest) == ZERO_EXTRACT
2424 || GET_CODE (dest) == SIGN_EXTRACT
2425 || GET_CODE (dest) == STRICT_LOW_PART)
2426 dest = XEXP (dest, 0);
2428 /* If DEST is not a MEM, then it will not conflict with a load. Note
2429 that function calls are assumed to clobber memory, but are handled
2430 elsewhere. */
2432 if (GET_CODE (dest) != MEM)
2433 return;
2435 dest_addr = get_addr (XEXP (dest, 0));
2436 dest_addr = canon_rtx (dest_addr);
2437 insn = (rtx) v_insn;
2438 bb = BLOCK_NUM (insn);
2440 canon_modify_mem_list[bb] =
2441 alloc_EXPR_LIST (VOIDmode, dest_addr, canon_modify_mem_list[bb]);
2442 canon_modify_mem_list[bb] =
2443 alloc_EXPR_LIST (VOIDmode, dest, canon_modify_mem_list[bb]);
2444 bitmap_set_bit (canon_modify_mem_list_set, bb);
2447 /* Record memory modification information for INSN. We do not actually care
2448 about the memory location(s) that are set, or even how they are set (consider
2449 a CALL_INSN). We merely need to record which insns modify memory. */
2451 static void
2452 record_last_mem_set_info (insn)
2453 rtx insn;
2455 int bb = BLOCK_NUM (insn);
2457 /* load_killed_in_block_p will handle the case of calls clobbering
2458 everything. */
2459 modify_mem_list[bb] = alloc_INSN_LIST (insn, modify_mem_list[bb]);
2460 bitmap_set_bit (modify_mem_list_set, bb);
2462 if (GET_CODE (insn) == CALL_INSN)
2464 /* Note that traversals of this loop (other than for free-ing)
2465 will break after encountering a CALL_INSN. So, there's no
2466 need to insert a pair of items, as canon_list_insert does. */
2467 canon_modify_mem_list[bb] =
2468 alloc_INSN_LIST (insn, canon_modify_mem_list[bb]);
2469 bitmap_set_bit (canon_modify_mem_list_set, bb);
2471 else
2472 note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
2475 /* Called from compute_hash_table via note_stores to handle one
2476 SET or CLOBBER in an insn. DATA is really the instruction in which
2477 the SET is taking place. */
2479 static void
2480 record_last_set_info (dest, setter, data)
2481 rtx dest, setter ATTRIBUTE_UNUSED;
2482 void *data;
2484 rtx last_set_insn = (rtx) data;
2486 if (GET_CODE (dest) == SUBREG)
2487 dest = SUBREG_REG (dest);
2489 if (GET_CODE (dest) == REG)
2490 record_last_reg_set_info (last_set_insn, REGNO (dest));
2491 else if (GET_CODE (dest) == MEM
2492 /* Ignore pushes, they clobber nothing. */
2493 && ! push_operand (dest, GET_MODE (dest)))
2494 record_last_mem_set_info (last_set_insn);
2497 /* Top level function to create an expression or assignment hash table.
2499 Expression entries are placed in the hash table if
2500 - they are of the form (set (pseudo-reg) src),
2501 - src is something we want to perform GCSE on,
2502 - none of the operands are subsequently modified in the block
2504 Assignment entries are placed in the hash table if
2505 - they are of the form (set (pseudo-reg) src),
2506 - src is something we want to perform const/copy propagation on,
2507 - none of the operands or target are subsequently modified in the block
2509 Currently src must be a pseudo-reg or a const_int.
2511 TABLE is the table computed. */
2513 static void
2514 compute_hash_table_work (table)
2515 struct hash_table *table;
2517 unsigned int i;
2519 /* While we compute the hash table we also compute a bit array of which
2520 registers are set in which blocks.
2521 ??? This isn't needed during const/copy propagation, but it's cheap to
2522 compute. Later. */
2523 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
2525 /* re-Cache any INSN_LIST nodes we have allocated. */
2526 clear_modify_mem_tables ();
2527 /* Some working arrays used to track first and last set in each block. */
2528 reg_avail_info = (struct reg_avail_info*)
2529 gmalloc (max_gcse_regno * sizeof (struct reg_avail_info));
2531 for (i = 0; i < max_gcse_regno; ++i)
2532 reg_avail_info[i].last_bb = NULL;
2534 FOR_EACH_BB (current_bb)
2536 rtx insn;
2537 unsigned int regno;
2538 int in_libcall_block;
2540 /* First pass over the instructions records information used to
2541 determine when registers and memory are first and last set.
2542 ??? hard-reg reg_set_in_block computation
2543 could be moved to compute_sets since they currently don't change. */
2545 for (insn = current_bb->head;
2546 insn && insn != NEXT_INSN (current_bb->end);
2547 insn = NEXT_INSN (insn))
2549 if (! INSN_P (insn))
2550 continue;
2552 if (GET_CODE (insn) == CALL_INSN)
2554 bool clobbers_all = false;
2555 #ifdef NON_SAVING_SETJMP
2556 if (NON_SAVING_SETJMP
2557 && find_reg_note (insn, REG_SETJMP, NULL_RTX))
2558 clobbers_all = true;
2559 #endif
2561 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2562 if (clobbers_all
2563 || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2564 record_last_reg_set_info (insn, regno);
2566 mark_call (insn);
2569 note_stores (PATTERN (insn), record_last_set_info, insn);
2572 /* Insert implicit sets in the hash table. */
2573 if (table->set_p
2574 && implicit_sets[current_bb->index] != NULL_RTX)
2575 hash_scan_set (implicit_sets[current_bb->index],
2576 current_bb->head, table);
2578 /* The next pass builds the hash table. */
2580 for (insn = current_bb->head, in_libcall_block = 0;
2581 insn && insn != NEXT_INSN (current_bb->end);
2582 insn = NEXT_INSN (insn))
2583 if (INSN_P (insn))
2585 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
2586 in_libcall_block = 1;
2587 else if (table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2588 in_libcall_block = 0;
2589 hash_scan_insn (insn, table, in_libcall_block);
2590 if (!table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2591 in_libcall_block = 0;
2595 free (reg_avail_info);
2596 reg_avail_info = NULL;
2599 /* Allocate space for the set/expr hash TABLE.
2600 N_INSNS is the number of instructions in the function.
2601 It is used to determine the number of buckets to use.
2602 SET_P determines whether set or expression table will
2603 be created. */
2605 static void
2606 alloc_hash_table (n_insns, table, set_p)
2607 int n_insns;
2608 struct hash_table *table;
2609 int set_p;
2611 int n;
2613 table->size = n_insns / 4;
2614 if (table->size < 11)
2615 table->size = 11;
2617 /* Attempt to maintain efficient use of hash table.
2618 Making it an odd number is simplest for now.
2619 ??? Later take some measurements. */
2620 table->size |= 1;
2621 n = table->size * sizeof (struct expr *);
2622 table->table = (struct expr **) gmalloc (n);
2623 table->set_p = set_p;
2626 /* Free things allocated by alloc_hash_table. */
2628 static void
2629 free_hash_table (table)
2630 struct hash_table *table;
2632 free (table->table);
2635 /* Compute the hash TABLE for doing copy/const propagation or
2636 expression hash table. */
2638 static void
2639 compute_hash_table (table)
2640 struct hash_table *table;
2642 /* Initialize count of number of entries in hash table. */
2643 table->n_elems = 0;
2644 memset ((char *) table->table, 0,
2645 table->size * sizeof (struct expr *));
2647 compute_hash_table_work (table);
2650 /* Expression tracking support. */
2652 /* Lookup pattern PAT in the expression TABLE.
2653 The result is a pointer to the table entry, or NULL if not found. */
2655 static struct expr *
2656 lookup_expr (pat, table)
2657 rtx pat;
2658 struct hash_table *table;
2660 int do_not_record_p;
2661 unsigned int hash = hash_expr (pat, GET_MODE (pat), &do_not_record_p,
2662 table->size);
2663 struct expr *expr;
2665 if (do_not_record_p)
2666 return NULL;
2668 expr = table->table[hash];
2670 while (expr && ! expr_equiv_p (expr->expr, pat))
2671 expr = expr->next_same_hash;
2673 return expr;
2676 /* Lookup REGNO in the set TABLE. The result is a pointer to the
2677 table entry, or NULL if not found. */
2679 static struct expr *
2680 lookup_set (regno, table)
2681 unsigned int regno;
2682 struct hash_table *table;
2684 unsigned int hash = hash_set (regno, table->size);
2685 struct expr *expr;
2687 expr = table->table[hash];
2689 while (expr && REGNO (SET_DEST (expr->expr)) != regno)
2690 expr = expr->next_same_hash;
2692 return expr;
2695 /* Return the next entry for REGNO in list EXPR. */
2697 static struct expr *
2698 next_set (regno, expr)
2699 unsigned int regno;
2700 struct expr *expr;
2703 expr = expr->next_same_hash;
2704 while (expr && REGNO (SET_DEST (expr->expr)) != regno);
2706 return expr;
2709 /* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node
2710 types may be mixed. */
2712 static void
2713 free_insn_expr_list_list (listp)
2714 rtx *listp;
2716 rtx list, next;
2718 for (list = *listp; list ; list = next)
2720 next = XEXP (list, 1);
2721 if (GET_CODE (list) == EXPR_LIST)
2722 free_EXPR_LIST_node (list);
2723 else
2724 free_INSN_LIST_node (list);
2727 *listp = NULL;
2730 /* Clear canon_modify_mem_list and modify_mem_list tables. */
2731 static void
2732 clear_modify_mem_tables ()
2734 int i;
2736 EXECUTE_IF_SET_IN_BITMAP
2737 (modify_mem_list_set, 0, i, free_INSN_LIST_list (modify_mem_list + i));
2738 bitmap_clear (modify_mem_list_set);
2740 EXECUTE_IF_SET_IN_BITMAP
2741 (canon_modify_mem_list_set, 0, i,
2742 free_insn_expr_list_list (canon_modify_mem_list + i));
2743 bitmap_clear (canon_modify_mem_list_set);
2746 /* Release memory used by modify_mem_list_set and canon_modify_mem_list_set. */
2748 static void
2749 free_modify_mem_tables ()
2751 clear_modify_mem_tables ();
2752 free (modify_mem_list);
2753 free (canon_modify_mem_list);
2754 modify_mem_list = 0;
2755 canon_modify_mem_list = 0;
2758 /* Reset tables used to keep track of what's still available [since the
2759 start of the block]. */
2761 static void
2762 reset_opr_set_tables ()
2764 /* Maintain a bitmap of which regs have been set since beginning of
2765 the block. */
2766 CLEAR_REG_SET (reg_set_bitmap);
2768 /* Also keep a record of the last instruction to modify memory.
2769 For now this is very trivial, we only record whether any memory
2770 location has been modified. */
2771 clear_modify_mem_tables ();
2774 /* Return nonzero if the operands of X are not set before INSN in
2775 INSN's basic block. */
2777 static int
2778 oprs_not_set_p (x, insn)
2779 rtx x, insn;
2781 int i, j;
2782 enum rtx_code code;
2783 const char *fmt;
2785 if (x == 0)
2786 return 1;
2788 code = GET_CODE (x);
2789 switch (code)
2791 case PC:
2792 case CC0:
2793 case CONST:
2794 case CONST_INT:
2795 case CONST_DOUBLE:
2796 case CONST_VECTOR:
2797 case SYMBOL_REF:
2798 case LABEL_REF:
2799 case ADDR_VEC:
2800 case ADDR_DIFF_VEC:
2801 return 1;
2803 case MEM:
2804 if (load_killed_in_block_p (BLOCK_FOR_INSN (insn),
2805 INSN_CUID (insn), x, 0))
2806 return 0;
2807 else
2808 return oprs_not_set_p (XEXP (x, 0), insn);
2810 case REG:
2811 return ! REGNO_REG_SET_P (reg_set_bitmap, REGNO (x));
2813 default:
2814 break;
2817 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2819 if (fmt[i] == 'e')
2821 /* If we are about to do the last recursive call
2822 needed at this level, change it into iteration.
2823 This function is called enough to be worth it. */
2824 if (i == 0)
2825 return oprs_not_set_p (XEXP (x, i), insn);
2827 if (! oprs_not_set_p (XEXP (x, i), insn))
2828 return 0;
2830 else if (fmt[i] == 'E')
2831 for (j = 0; j < XVECLEN (x, i); j++)
2832 if (! oprs_not_set_p (XVECEXP (x, i, j), insn))
2833 return 0;
2836 return 1;
2839 /* Mark things set by a CALL. */
2841 static void
2842 mark_call (insn)
2843 rtx insn;
2845 if (! CONST_OR_PURE_CALL_P (insn))
2846 record_last_mem_set_info (insn);
2849 /* Mark things set by a SET. */
2851 static void
2852 mark_set (pat, insn)
2853 rtx pat, insn;
2855 rtx dest = SET_DEST (pat);
2857 while (GET_CODE (dest) == SUBREG
2858 || GET_CODE (dest) == ZERO_EXTRACT
2859 || GET_CODE (dest) == SIGN_EXTRACT
2860 || GET_CODE (dest) == STRICT_LOW_PART)
2861 dest = XEXP (dest, 0);
2863 if (GET_CODE (dest) == REG)
2864 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (dest));
2865 else if (GET_CODE (dest) == MEM)
2866 record_last_mem_set_info (insn);
2868 if (GET_CODE (SET_SRC (pat)) == CALL)
2869 mark_call (insn);
2872 /* Record things set by a CLOBBER. */
2874 static void
2875 mark_clobber (pat, insn)
2876 rtx pat, insn;
2878 rtx clob = XEXP (pat, 0);
2880 while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART)
2881 clob = XEXP (clob, 0);
2883 if (GET_CODE (clob) == REG)
2884 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (clob));
2885 else
2886 record_last_mem_set_info (insn);
2889 /* Record things set by INSN.
2890 This data is used by oprs_not_set_p. */
2892 static void
2893 mark_oprs_set (insn)
2894 rtx insn;
2896 rtx pat = PATTERN (insn);
2897 int i;
2899 if (GET_CODE (pat) == SET)
2900 mark_set (pat, insn);
2901 else if (GET_CODE (pat) == PARALLEL)
2902 for (i = 0; i < XVECLEN (pat, 0); i++)
2904 rtx x = XVECEXP (pat, 0, i);
2906 if (GET_CODE (x) == SET)
2907 mark_set (x, insn);
2908 else if (GET_CODE (x) == CLOBBER)
2909 mark_clobber (x, insn);
2910 else if (GET_CODE (x) == CALL)
2911 mark_call (insn);
2914 else if (GET_CODE (pat) == CLOBBER)
2915 mark_clobber (pat, insn);
2916 else if (GET_CODE (pat) == CALL)
2917 mark_call (insn);
2921 /* Classic GCSE reaching definition support. */
2923 /* Allocate reaching def variables. */
2925 static void
2926 alloc_rd_mem (n_blocks, n_insns)
2927 int n_blocks, n_insns;
2929 rd_kill = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2930 sbitmap_vector_zero (rd_kill, n_blocks);
2932 rd_gen = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2933 sbitmap_vector_zero (rd_gen, n_blocks);
2935 reaching_defs = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2936 sbitmap_vector_zero (reaching_defs, n_blocks);
2938 rd_out = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2939 sbitmap_vector_zero (rd_out, n_blocks);
2942 /* Free reaching def variables. */
2944 static void
2945 free_rd_mem ()
2947 sbitmap_vector_free (rd_kill);
2948 sbitmap_vector_free (rd_gen);
2949 sbitmap_vector_free (reaching_defs);
2950 sbitmap_vector_free (rd_out);
2953 /* Add INSN to the kills of BB. REGNO, set in BB, is killed by INSN. */
2955 static void
2956 handle_rd_kill_set (insn, regno, bb)
2957 rtx insn;
2958 int regno;
2959 basic_block bb;
2961 struct reg_set *this_reg;
2963 for (this_reg = reg_set_table[regno]; this_reg; this_reg = this_reg ->next)
2964 if (BLOCK_NUM (this_reg->insn) != BLOCK_NUM (insn))
2965 SET_BIT (rd_kill[bb->index], INSN_CUID (this_reg->insn));
2968 /* Compute the set of kill's for reaching definitions. */
2970 static void
2971 compute_kill_rd ()
2973 int cuid;
2974 unsigned int regno;
2975 int i;
2976 basic_block bb;
2978 /* For each block
2979 For each set bit in `gen' of the block (i.e each insn which
2980 generates a definition in the block)
2981 Call the reg set by the insn corresponding to that bit regx
2982 Look at the linked list starting at reg_set_table[regx]
2983 For each setting of regx in the linked list, which is not in
2984 this block
2985 Set the bit in `kill' corresponding to that insn. */
2986 FOR_EACH_BB (bb)
2987 for (cuid = 0; cuid < max_cuid; cuid++)
2988 if (TEST_BIT (rd_gen[bb->index], cuid))
2990 rtx insn = CUID_INSN (cuid);
2991 rtx pat = PATTERN (insn);
2993 if (GET_CODE (insn) == CALL_INSN)
2995 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2996 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2997 handle_rd_kill_set (insn, regno, bb);
3000 if (GET_CODE (pat) == PARALLEL)
3002 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
3004 enum rtx_code code = GET_CODE (XVECEXP (pat, 0, i));
3006 if ((code == SET || code == CLOBBER)
3007 && GET_CODE (XEXP (XVECEXP (pat, 0, i), 0)) == REG)
3008 handle_rd_kill_set (insn,
3009 REGNO (XEXP (XVECEXP (pat, 0, i), 0)),
3010 bb);
3013 else if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == REG)
3014 /* Each setting of this register outside of this block
3015 must be marked in the set of kills in this block. */
3016 handle_rd_kill_set (insn, REGNO (SET_DEST (pat)), bb);
3020 /* Compute the reaching definitions as in
3021 Compilers Principles, Techniques, and Tools. Aho, Sethi, Ullman,
3022 Chapter 10. It is the same algorithm as used for computing available
3023 expressions but applied to the gens and kills of reaching definitions. */
3025 static void
3026 compute_rd ()
3028 int changed, passes;
3029 basic_block bb;
3031 FOR_EACH_BB (bb)
3032 sbitmap_copy (rd_out[bb->index] /*dst*/, rd_gen[bb->index] /*src*/);
3034 passes = 0;
3035 changed = 1;
3036 while (changed)
3038 changed = 0;
3039 FOR_EACH_BB (bb)
3041 sbitmap_union_of_preds (reaching_defs[bb->index], rd_out, bb->index);
3042 changed |= sbitmap_union_of_diff_cg (rd_out[bb->index], rd_gen[bb->index],
3043 reaching_defs[bb->index], rd_kill[bb->index]);
3045 passes++;
3048 if (gcse_file)
3049 fprintf (gcse_file, "reaching def computation: %d passes\n", passes);
3052 /* Classic GCSE available expression support. */
3054 /* Allocate memory for available expression computation. */
3056 static void
3057 alloc_avail_expr_mem (n_blocks, n_exprs)
3058 int n_blocks, n_exprs;
3060 ae_kill = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
3061 sbitmap_vector_zero (ae_kill, n_blocks);
3063 ae_gen = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
3064 sbitmap_vector_zero (ae_gen, n_blocks);
3066 ae_in = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
3067 sbitmap_vector_zero (ae_in, n_blocks);
3069 ae_out = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
3070 sbitmap_vector_zero (ae_out, n_blocks);
3073 static void
3074 free_avail_expr_mem ()
3076 sbitmap_vector_free (ae_kill);
3077 sbitmap_vector_free (ae_gen);
3078 sbitmap_vector_free (ae_in);
3079 sbitmap_vector_free (ae_out);
3082 /* Compute the set of available expressions generated in each basic block. */
3084 static void
3085 compute_ae_gen (expr_hash_table)
3086 struct hash_table *expr_hash_table;
3088 unsigned int i;
3089 struct expr *expr;
3090 struct occr *occr;
3092 /* For each recorded occurrence of each expression, set ae_gen[bb][expr].
3093 This is all we have to do because an expression is not recorded if it
3094 is not available, and the only expressions we want to work with are the
3095 ones that are recorded. */
3096 for (i = 0; i < expr_hash_table->size; i++)
3097 for (expr = expr_hash_table->table[i]; expr != 0; expr = expr->next_same_hash)
3098 for (occr = expr->avail_occr; occr != 0; occr = occr->next)
3099 SET_BIT (ae_gen[BLOCK_NUM (occr->insn)], expr->bitmap_index);
3102 /* Return nonzero if expression X is killed in BB. */
3104 static int
3105 expr_killed_p (x, bb)
3106 rtx x;
3107 basic_block bb;
3109 int i, j;
3110 enum rtx_code code;
3111 const char *fmt;
3113 if (x == 0)
3114 return 1;
3116 code = GET_CODE (x);
3117 switch (code)
3119 case REG:
3120 return TEST_BIT (reg_set_in_block[bb->index], REGNO (x));
3122 case MEM:
3123 if (load_killed_in_block_p (bb, get_max_uid () + 1, x, 0))
3124 return 1;
3125 else
3126 return expr_killed_p (XEXP (x, 0), bb);
3128 case PC:
3129 case CC0: /*FIXME*/
3130 case CONST:
3131 case CONST_INT:
3132 case CONST_DOUBLE:
3133 case CONST_VECTOR:
3134 case SYMBOL_REF:
3135 case LABEL_REF:
3136 case ADDR_VEC:
3137 case ADDR_DIFF_VEC:
3138 return 0;
3140 default:
3141 break;
3144 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
3146 if (fmt[i] == 'e')
3148 /* If we are about to do the last recursive call
3149 needed at this level, change it into iteration.
3150 This function is called enough to be worth it. */
3151 if (i == 0)
3152 return expr_killed_p (XEXP (x, i), bb);
3153 else if (expr_killed_p (XEXP (x, i), bb))
3154 return 1;
3156 else if (fmt[i] == 'E')
3157 for (j = 0; j < XVECLEN (x, i); j++)
3158 if (expr_killed_p (XVECEXP (x, i, j), bb))
3159 return 1;
3162 return 0;
3165 /* Compute the set of available expressions killed in each basic block. */
3167 static void
3168 compute_ae_kill (ae_gen, ae_kill, expr_hash_table)
3169 sbitmap *ae_gen, *ae_kill;
3170 struct hash_table *expr_hash_table;
3172 basic_block bb;
3173 unsigned int i;
3174 struct expr *expr;
3176 FOR_EACH_BB (bb)
3177 for (i = 0; i < expr_hash_table->size; i++)
3178 for (expr = expr_hash_table->table[i]; expr; expr = expr->next_same_hash)
3180 /* Skip EXPR if generated in this block. */
3181 if (TEST_BIT (ae_gen[bb->index], expr->bitmap_index))
3182 continue;
3184 if (expr_killed_p (expr->expr, bb))
3185 SET_BIT (ae_kill[bb->index], expr->bitmap_index);
3189 /* Actually perform the Classic GCSE optimizations. */
3191 /* Return nonzero if occurrence OCCR of expression EXPR reaches block BB.
3193 CHECK_SELF_LOOP is nonzero if we should consider a block reaching itself
3194 as a positive reach. We want to do this when there are two computations
3195 of the expression in the block.
3197 VISITED is a pointer to a working buffer for tracking which BB's have
3198 been visited. It is NULL for the top-level call.
3200 We treat reaching expressions that go through blocks containing the same
3201 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
3202 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
3203 2 as not reaching. The intent is to improve the probability of finding
3204 only one reaching expression and to reduce register lifetimes by picking
3205 the closest such expression. */
3207 static int
3208 expr_reaches_here_p_work (occr, expr, bb, check_self_loop, visited)
3209 struct occr *occr;
3210 struct expr *expr;
3211 basic_block bb;
3212 int check_self_loop;
3213 char *visited;
3215 edge pred;
3217 for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
3219 basic_block pred_bb = pred->src;
3221 if (visited[pred_bb->index])
3222 /* This predecessor has already been visited. Nothing to do. */
3224 else if (pred_bb == bb)
3226 /* BB loops on itself. */
3227 if (check_self_loop
3228 && TEST_BIT (ae_gen[pred_bb->index], expr->bitmap_index)
3229 && BLOCK_NUM (occr->insn) == pred_bb->index)
3230 return 1;
3232 visited[pred_bb->index] = 1;
3235 /* Ignore this predecessor if it kills the expression. */
3236 else if (TEST_BIT (ae_kill[pred_bb->index], expr->bitmap_index))
3237 visited[pred_bb->index] = 1;
3239 /* Does this predecessor generate this expression? */
3240 else if (TEST_BIT (ae_gen[pred_bb->index], expr->bitmap_index))
3242 /* Is this the occurrence we're looking for?
3243 Note that there's only one generating occurrence per block
3244 so we just need to check the block number. */
3245 if (BLOCK_NUM (occr->insn) == pred_bb->index)
3246 return 1;
3248 visited[pred_bb->index] = 1;
3251 /* Neither gen nor kill. */
3252 else
3254 visited[pred_bb->index] = 1;
3255 if (expr_reaches_here_p_work (occr, expr, pred_bb, check_self_loop,
3256 visited))
3258 return 1;
3262 /* All paths have been checked. */
3263 return 0;
3266 /* This wrapper for expr_reaches_here_p_work() is to ensure that any
3267 memory allocated for that function is returned. */
3269 static int
3270 expr_reaches_here_p (occr, expr, bb, check_self_loop)
3271 struct occr *occr;
3272 struct expr *expr;
3273 basic_block bb;
3274 int check_self_loop;
3276 int rval;
3277 char *visited = (char *) xcalloc (last_basic_block, 1);
3279 rval = expr_reaches_here_p_work (occr, expr, bb, check_self_loop, visited);
3281 free (visited);
3282 return rval;
3285 /* Return the instruction that computes EXPR that reaches INSN's basic block.
3286 If there is more than one such instruction, return NULL.
3288 Called only by handle_avail_expr. */
3290 static rtx
3291 computing_insn (expr, insn)
3292 struct expr *expr;
3293 rtx insn;
3295 basic_block bb = BLOCK_FOR_INSN (insn);
3297 if (expr->avail_occr->next == NULL)
3299 if (BLOCK_FOR_INSN (expr->avail_occr->insn) == bb)
3300 /* The available expression is actually itself
3301 (i.e. a loop in the flow graph) so do nothing. */
3302 return NULL;
3304 /* (FIXME) Case that we found a pattern that was created by
3305 a substitution that took place. */
3306 return expr->avail_occr->insn;
3308 else
3310 /* Pattern is computed more than once.
3311 Search backwards from this insn to see how many of these
3312 computations actually reach this insn. */
3313 struct occr *occr;
3314 rtx insn_computes_expr = NULL;
3315 int can_reach = 0;
3317 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
3319 if (BLOCK_FOR_INSN (occr->insn) == bb)
3321 /* The expression is generated in this block.
3322 The only time we care about this is when the expression
3323 is generated later in the block [and thus there's a loop].
3324 We let the normal cse pass handle the other cases. */
3325 if (INSN_CUID (insn) < INSN_CUID (occr->insn)
3326 && expr_reaches_here_p (occr, expr, bb, 1))
3328 can_reach++;
3329 if (can_reach > 1)
3330 return NULL;
3332 insn_computes_expr = occr->insn;
3335 else if (expr_reaches_here_p (occr, expr, bb, 0))
3337 can_reach++;
3338 if (can_reach > 1)
3339 return NULL;
3341 insn_computes_expr = occr->insn;
3345 if (insn_computes_expr == NULL)
3346 abort ();
3348 return insn_computes_expr;
3352 /* Return nonzero if the definition in DEF_INSN can reach INSN.
3353 Only called by can_disregard_other_sets. */
3355 static int
3356 def_reaches_here_p (insn, def_insn)
3357 rtx insn, def_insn;
3359 rtx reg;
3361 if (TEST_BIT (reaching_defs[BLOCK_NUM (insn)], INSN_CUID (def_insn)))
3362 return 1;
3364 if (BLOCK_NUM (insn) == BLOCK_NUM (def_insn))
3366 if (INSN_CUID (def_insn) < INSN_CUID (insn))
3368 if (GET_CODE (PATTERN (def_insn)) == PARALLEL)
3369 return 1;
3370 else if (GET_CODE (PATTERN (def_insn)) == CLOBBER)
3371 reg = XEXP (PATTERN (def_insn), 0);
3372 else if (GET_CODE (PATTERN (def_insn)) == SET)
3373 reg = SET_DEST (PATTERN (def_insn));
3374 else
3375 abort ();
3377 return ! reg_set_between_p (reg, NEXT_INSN (def_insn), insn);
3379 else
3380 return 0;
3383 return 0;
3386 /* Return nonzero if *ADDR_THIS_REG can only have one value at INSN. The
3387 value returned is the number of definitions that reach INSN. Returning a
3388 value of zero means that [maybe] more than one definition reaches INSN and
3389 the caller can't perform whatever optimization it is trying. i.e. it is
3390 always safe to return zero. */
3392 static int
3393 can_disregard_other_sets (addr_this_reg, insn, for_combine)
3394 struct reg_set **addr_this_reg;
3395 rtx insn;
3396 int for_combine;
3398 int number_of_reaching_defs = 0;
3399 struct reg_set *this_reg;
3401 for (this_reg = *addr_this_reg; this_reg != 0; this_reg = this_reg->next)
3402 if (def_reaches_here_p (insn, this_reg->insn))
3404 number_of_reaching_defs++;
3405 /* Ignore parallels for now. */
3406 if (GET_CODE (PATTERN (this_reg->insn)) == PARALLEL)
3407 return 0;
3409 if (!for_combine
3410 && (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER
3411 || ! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
3412 SET_SRC (PATTERN (insn)))))
3413 /* A setting of the reg to a different value reaches INSN. */
3414 return 0;
3416 if (number_of_reaching_defs > 1)
3418 /* If in this setting the value the register is being set to is
3419 equal to the previous value the register was set to and this
3420 setting reaches the insn we are trying to do the substitution
3421 on then we are ok. */
3422 if (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER)
3423 return 0;
3424 else if (! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
3425 SET_SRC (PATTERN (insn))))
3426 return 0;
3429 *addr_this_reg = this_reg;
3432 return number_of_reaching_defs;
3435 /* Expression computed by insn is available and the substitution is legal,
3436 so try to perform the substitution.
3438 The result is nonzero if any changes were made. */
3440 static int
3441 handle_avail_expr (insn, expr)
3442 rtx insn;
3443 struct expr *expr;
3445 rtx pat, insn_computes_expr, expr_set;
3446 rtx to;
3447 struct reg_set *this_reg;
3448 int found_setting, use_src;
3449 int changed = 0;
3451 /* We only handle the case where one computation of the expression
3452 reaches this instruction. */
3453 insn_computes_expr = computing_insn (expr, insn);
3454 if (insn_computes_expr == NULL)
3455 return 0;
3456 expr_set = single_set (insn_computes_expr);
3457 if (!expr_set)
3458 abort ();
3460 found_setting = 0;
3461 use_src = 0;
3463 /* At this point we know only one computation of EXPR outside of this
3464 block reaches this insn. Now try to find a register that the
3465 expression is computed into. */
3466 if (GET_CODE (SET_SRC (expr_set)) == REG)
3468 /* This is the case when the available expression that reaches
3469 here has already been handled as an available expression. */
3470 unsigned int regnum_for_replacing
3471 = REGNO (SET_SRC (expr_set));
3473 /* If the register was created by GCSE we can't use `reg_set_table',
3474 however we know it's set only once. */
3475 if (regnum_for_replacing >= max_gcse_regno
3476 /* If the register the expression is computed into is set only once,
3477 or only one set reaches this insn, we can use it. */
3478 || (((this_reg = reg_set_table[regnum_for_replacing]),
3479 this_reg->next == NULL)
3480 || can_disregard_other_sets (&this_reg, insn, 0)))
3482 use_src = 1;
3483 found_setting = 1;
3487 if (!found_setting)
3489 unsigned int regnum_for_replacing
3490 = REGNO (SET_DEST (expr_set));
3492 /* This shouldn't happen. */
3493 if (regnum_for_replacing >= max_gcse_regno)
3494 abort ();
3496 this_reg = reg_set_table[regnum_for_replacing];
3498 /* If the register the expression is computed into is set only once,
3499 or only one set reaches this insn, use it. */
3500 if (this_reg->next == NULL
3501 || can_disregard_other_sets (&this_reg, insn, 0))
3502 found_setting = 1;
3505 if (found_setting)
3507 pat = PATTERN (insn);
3508 if (use_src)
3509 to = SET_SRC (expr_set);
3510 else
3511 to = SET_DEST (expr_set);
3512 changed = validate_change (insn, &SET_SRC (pat), to, 0);
3514 /* We should be able to ignore the return code from validate_change but
3515 to play it safe we check. */
3516 if (changed)
3518 gcse_subst_count++;
3519 if (gcse_file != NULL)
3521 fprintf (gcse_file, "GCSE: Replacing the source in insn %d with",
3522 INSN_UID (insn));
3523 fprintf (gcse_file, " reg %d %s insn %d\n",
3524 REGNO (to), use_src ? "from" : "set in",
3525 INSN_UID (insn_computes_expr));
3530 /* The register that the expr is computed into is set more than once. */
3531 else if (1 /*expensive_op(this_pattrn->op) && do_expensive_gcse)*/)
3533 /* Insert an insn after insnx that copies the reg set in insnx
3534 into a new pseudo register call this new register REGN.
3535 From insnb until end of basic block or until REGB is set
3536 replace all uses of REGB with REGN. */
3537 rtx new_insn;
3539 to = gen_reg_rtx (GET_MODE (SET_DEST (expr_set)));
3541 /* Generate the new insn. */
3542 /* ??? If the change fails, we return 0, even though we created
3543 an insn. I think this is ok. */
3544 new_insn
3545 = emit_insn_after (gen_rtx_SET (VOIDmode, to,
3546 SET_DEST (expr_set)),
3547 insn_computes_expr);
3549 /* Keep register set table up to date. */
3550 record_one_set (REGNO (to), new_insn);
3552 gcse_create_count++;
3553 if (gcse_file != NULL)
3555 fprintf (gcse_file, "GCSE: Creating insn %d to copy value of reg %d",
3556 INSN_UID (NEXT_INSN (insn_computes_expr)),
3557 REGNO (SET_SRC (PATTERN (NEXT_INSN (insn_computes_expr)))));
3558 fprintf (gcse_file, ", computed in insn %d,\n",
3559 INSN_UID (insn_computes_expr));
3560 fprintf (gcse_file, " into newly allocated reg %d\n",
3561 REGNO (to));
3564 pat = PATTERN (insn);
3566 /* Do register replacement for INSN. */
3567 changed = validate_change (insn, &SET_SRC (pat),
3568 SET_DEST (PATTERN
3569 (NEXT_INSN (insn_computes_expr))),
3572 /* We should be able to ignore the return code from validate_change but
3573 to play it safe we check. */
3574 if (changed)
3576 gcse_subst_count++;
3577 if (gcse_file != NULL)
3579 fprintf (gcse_file,
3580 "GCSE: Replacing the source in insn %d with reg %d ",
3581 INSN_UID (insn),
3582 REGNO (SET_DEST (PATTERN (NEXT_INSN
3583 (insn_computes_expr)))));
3584 fprintf (gcse_file, "set in insn %d\n",
3585 INSN_UID (insn_computes_expr));
3590 return changed;
3593 /* Perform classic GCSE. This is called by one_classic_gcse_pass after all
3594 the dataflow analysis has been done.
3596 The result is nonzero if a change was made. */
3598 static int
3599 classic_gcse ()
3601 int changed;
3602 rtx insn;
3603 basic_block bb;
3605 /* Note we start at block 1. */
3607 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3608 return 0;
3610 changed = 0;
3611 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, next_bb)
3613 /* Reset tables used to keep track of what's still valid [since the
3614 start of the block]. */
3615 reset_opr_set_tables ();
3617 for (insn = bb->head;
3618 insn != NULL && insn != NEXT_INSN (bb->end);
3619 insn = NEXT_INSN (insn))
3621 /* Is insn of form (set (pseudo-reg) ...)? */
3622 if (GET_CODE (insn) == INSN
3623 && GET_CODE (PATTERN (insn)) == SET
3624 && GET_CODE (SET_DEST (PATTERN (insn))) == REG
3625 && REGNO (SET_DEST (PATTERN (insn))) >= FIRST_PSEUDO_REGISTER)
3627 rtx pat = PATTERN (insn);
3628 rtx src = SET_SRC (pat);
3629 struct expr *expr;
3631 if (want_to_gcse_p (src)
3632 /* Is the expression recorded? */
3633 && ((expr = lookup_expr (src, &expr_hash_table)) != NULL)
3634 /* Is the expression available [at the start of the
3635 block]? */
3636 && TEST_BIT (ae_in[bb->index], expr->bitmap_index)
3637 /* Are the operands unchanged since the start of the
3638 block? */
3639 && oprs_not_set_p (src, insn))
3640 changed |= handle_avail_expr (insn, expr);
3643 /* Keep track of everything modified by this insn. */
3644 /* ??? Need to be careful w.r.t. mods done to INSN. */
3645 if (INSN_P (insn))
3646 mark_oprs_set (insn);
3650 return changed;
3653 /* Top level routine to perform one classic GCSE pass.
3655 Return nonzero if a change was made. */
3657 static int
3658 one_classic_gcse_pass (pass)
3659 int pass;
3661 int changed = 0;
3663 gcse_subst_count = 0;
3664 gcse_create_count = 0;
3666 alloc_hash_table (max_cuid, &expr_hash_table, 0);
3667 alloc_rd_mem (last_basic_block, max_cuid);
3668 compute_hash_table (&expr_hash_table);
3669 if (gcse_file)
3670 dump_hash_table (gcse_file, "Expression", &expr_hash_table);
3672 if (expr_hash_table.n_elems > 0)
3674 compute_kill_rd ();
3675 compute_rd ();
3676 alloc_avail_expr_mem (last_basic_block, expr_hash_table.n_elems);
3677 compute_ae_gen (&expr_hash_table);
3678 compute_ae_kill (ae_gen, ae_kill, &expr_hash_table);
3679 compute_available (ae_gen, ae_kill, ae_out, ae_in);
3680 changed = classic_gcse ();
3681 free_avail_expr_mem ();
3684 free_rd_mem ();
3685 free_hash_table (&expr_hash_table);
3687 if (gcse_file)
3689 fprintf (gcse_file, "\n");
3690 fprintf (gcse_file, "GCSE of %s, pass %d: %d bytes needed, %d substs,",
3691 current_function_name, pass, bytes_used, gcse_subst_count);
3692 fprintf (gcse_file, "%d insns created\n", gcse_create_count);
3695 return changed;
3698 /* Compute copy/constant propagation working variables. */
3700 /* Local properties of assignments. */
3701 static sbitmap *cprop_pavloc;
3702 static sbitmap *cprop_absaltered;
3704 /* Global properties of assignments (computed from the local properties). */
3705 static sbitmap *cprop_avin;
3706 static sbitmap *cprop_avout;
3708 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
3709 basic blocks. N_SETS is the number of sets. */
3711 static void
3712 alloc_cprop_mem (n_blocks, n_sets)
3713 int n_blocks, n_sets;
3715 cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets);
3716 cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets);
3718 cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets);
3719 cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets);
3722 /* Free vars used by copy/const propagation. */
3724 static void
3725 free_cprop_mem ()
3727 sbitmap_vector_free (cprop_pavloc);
3728 sbitmap_vector_free (cprop_absaltered);
3729 sbitmap_vector_free (cprop_avin);
3730 sbitmap_vector_free (cprop_avout);
3733 /* For each block, compute whether X is transparent. X is either an
3734 expression or an assignment [though we don't care which, for this context
3735 an assignment is treated as an expression]. For each block where an
3736 element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
3737 bit in BMAP. */
3739 static void
3740 compute_transp (x, indx, bmap, set_p)
3741 rtx x;
3742 int indx;
3743 sbitmap *bmap;
3744 int set_p;
3746 int i, j;
3747 basic_block bb;
3748 enum rtx_code code;
3749 reg_set *r;
3750 const char *fmt;
3752 /* repeat is used to turn tail-recursion into iteration since GCC
3753 can't do it when there's no return value. */
3754 repeat:
3756 if (x == 0)
3757 return;
3759 code = GET_CODE (x);
3760 switch (code)
3762 case REG:
3763 if (set_p)
3765 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
3767 FOR_EACH_BB (bb)
3768 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
3769 SET_BIT (bmap[bb->index], indx);
3771 else
3773 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
3774 SET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
3777 else
3779 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
3781 FOR_EACH_BB (bb)
3782 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
3783 RESET_BIT (bmap[bb->index], indx);
3785 else
3787 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
3788 RESET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
3792 return;
3794 case MEM:
3795 FOR_EACH_BB (bb)
3797 rtx list_entry = canon_modify_mem_list[bb->index];
3799 while (list_entry)
3801 rtx dest, dest_addr;
3803 if (GET_CODE (XEXP (list_entry, 0)) == CALL_INSN)
3805 if (set_p)
3806 SET_BIT (bmap[bb->index], indx);
3807 else
3808 RESET_BIT (bmap[bb->index], indx);
3809 break;
3811 /* LIST_ENTRY must be an INSN of some kind that sets memory.
3812 Examine each hunk of memory that is modified. */
3814 dest = XEXP (list_entry, 0);
3815 list_entry = XEXP (list_entry, 1);
3816 dest_addr = XEXP (list_entry, 0);
3818 if (canon_true_dependence (dest, GET_MODE (dest), dest_addr,
3819 x, rtx_addr_varies_p))
3821 if (set_p)
3822 SET_BIT (bmap[bb->index], indx);
3823 else
3824 RESET_BIT (bmap[bb->index], indx);
3825 break;
3827 list_entry = XEXP (list_entry, 1);
3831 x = XEXP (x, 0);
3832 goto repeat;
3834 case PC:
3835 case CC0: /*FIXME*/
3836 case CONST:
3837 case CONST_INT:
3838 case CONST_DOUBLE:
3839 case CONST_VECTOR:
3840 case SYMBOL_REF:
3841 case LABEL_REF:
3842 case ADDR_VEC:
3843 case ADDR_DIFF_VEC:
3844 return;
3846 default:
3847 break;
3850 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
3852 if (fmt[i] == 'e')
3854 /* If we are about to do the last recursive call
3855 needed at this level, change it into iteration.
3856 This function is called enough to be worth it. */
3857 if (i == 0)
3859 x = XEXP (x, i);
3860 goto repeat;
3863 compute_transp (XEXP (x, i), indx, bmap, set_p);
3865 else if (fmt[i] == 'E')
3866 for (j = 0; j < XVECLEN (x, i); j++)
3867 compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
3871 /* Top level routine to do the dataflow analysis needed by copy/const
3872 propagation. */
3874 static void
3875 compute_cprop_data ()
3877 compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, &set_hash_table);
3878 compute_available (cprop_pavloc, cprop_absaltered,
3879 cprop_avout, cprop_avin);
3882 /* Copy/constant propagation. */
3884 /* Maximum number of register uses in an insn that we handle. */
3885 #define MAX_USES 8
3887 /* Table of uses found in an insn.
3888 Allocated statically to avoid alloc/free complexity and overhead. */
3889 static struct reg_use reg_use_table[MAX_USES];
3891 /* Index into `reg_use_table' while building it. */
3892 static int reg_use_count;
3894 /* Set up a list of register numbers used in INSN. The found uses are stored
3895 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
3896 and contains the number of uses in the table upon exit.
3898 ??? If a register appears multiple times we will record it multiple times.
3899 This doesn't hurt anything but it will slow things down. */
3901 static void
3902 find_used_regs (xptr, data)
3903 rtx *xptr;
3904 void *data ATTRIBUTE_UNUSED;
3906 int i, j;
3907 enum rtx_code code;
3908 const char *fmt;
3909 rtx x = *xptr;
3911 /* repeat is used to turn tail-recursion into iteration since GCC
3912 can't do it when there's no return value. */
3913 repeat:
3914 if (x == 0)
3915 return;
3917 code = GET_CODE (x);
3918 if (REG_P (x))
3920 if (reg_use_count == MAX_USES)
3921 return;
3923 reg_use_table[reg_use_count].reg_rtx = x;
3924 reg_use_count++;
3927 /* Recursively scan the operands of this expression. */
3929 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
3931 if (fmt[i] == 'e')
3933 /* If we are about to do the last recursive call
3934 needed at this level, change it into iteration.
3935 This function is called enough to be worth it. */
3936 if (i == 0)
3938 x = XEXP (x, 0);
3939 goto repeat;
3942 find_used_regs (&XEXP (x, i), data);
3944 else if (fmt[i] == 'E')
3945 for (j = 0; j < XVECLEN (x, i); j++)
3946 find_used_regs (&XVECEXP (x, i, j), data);
3950 /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
3951 Returns nonzero is successful. */
3953 static int
3954 try_replace_reg (from, to, insn)
3955 rtx from, to, insn;
3957 rtx note = find_reg_equal_equiv_note (insn);
3958 rtx src = 0;
3959 int success = 0;
3960 rtx set = single_set (insn);
3962 validate_replace_src_group (from, to, insn);
3963 if (num_changes_pending () && apply_change_group ())
3964 success = 1;
3966 if (!success && set && reg_mentioned_p (from, SET_SRC (set)))
3968 /* If above failed and this is a single set, try to simplify the source of
3969 the set given our substitution. We could perhaps try this for multiple
3970 SETs, but it probably won't buy us anything. */
3971 src = simplify_replace_rtx (SET_SRC (set), from, to);
3973 if (!rtx_equal_p (src, SET_SRC (set))
3974 && validate_change (insn, &SET_SRC (set), src, 0))
3975 success = 1;
3977 /* If we've failed to do replacement, have a single SET, and don't already
3978 have a note, add a REG_EQUAL note to not lose information. */
3979 if (!success && note == 0 && set != 0)
3980 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3983 /* If there is already a NOTE, update the expression in it with our
3984 replacement. */
3985 else if (note != 0)
3986 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), from, to);
3988 /* REG_EQUAL may get simplified into register.
3989 We don't allow that. Remove that note. This code ought
3990 not to happen, because previous code ought to synthesize
3991 reg-reg move, but be on the safe side. */
3992 if (note && REG_P (XEXP (note, 0)))
3993 remove_note (insn, note);
3995 return success;
3998 /* Find a set of REGNOs that are available on entry to INSN's block. Returns
3999 NULL no such set is found. */
4001 static struct expr *
4002 find_avail_set (regno, insn)
4003 int regno;
4004 rtx insn;
4006 /* SET1 contains the last set found that can be returned to the caller for
4007 use in a substitution. */
4008 struct expr *set1 = 0;
4010 /* Loops are not possible here. To get a loop we would need two sets
4011 available at the start of the block containing INSN. ie we would
4012 need two sets like this available at the start of the block:
4014 (set (reg X) (reg Y))
4015 (set (reg Y) (reg X))
4017 This can not happen since the set of (reg Y) would have killed the
4018 set of (reg X) making it unavailable at the start of this block. */
4019 while (1)
4021 rtx src;
4022 struct expr *set = lookup_set (regno, &set_hash_table);
4024 /* Find a set that is available at the start of the block
4025 which contains INSN. */
4026 while (set)
4028 if (TEST_BIT (cprop_avin[BLOCK_NUM (insn)], set->bitmap_index))
4029 break;
4030 set = next_set (regno, set);
4033 /* If no available set was found we've reached the end of the
4034 (possibly empty) copy chain. */
4035 if (set == 0)
4036 break;
4038 if (GET_CODE (set->expr) != SET)
4039 abort ();
4041 src = SET_SRC (set->expr);
4043 /* We know the set is available.
4044 Now check that SRC is ANTLOC (i.e. none of the source operands
4045 have changed since the start of the block).
4047 If the source operand changed, we may still use it for the next
4048 iteration of this loop, but we may not use it for substitutions. */
4050 if (gcse_constant_p (src) || oprs_not_set_p (src, insn))
4051 set1 = set;
4053 /* If the source of the set is anything except a register, then
4054 we have reached the end of the copy chain. */
4055 if (GET_CODE (src) != REG)
4056 break;
4058 /* Follow the copy chain, ie start another iteration of the loop
4059 and see if we have an available copy into SRC. */
4060 regno = REGNO (src);
4063 /* SET1 holds the last set that was available and anticipatable at
4064 INSN. */
4065 return set1;
4068 /* Subroutine of cprop_insn that tries to propagate constants into
4069 JUMP_INSNS. JUMP must be a conditional jump. If SETCC is non-NULL
4070 it is the instruction that immediately precedes JUMP, and must be a
4071 single SET of a register. FROM is what we will try to replace,
4072 SRC is the constant we will try to substitute for it. Returns nonzero
4073 if a change was made. */
4075 static int
4076 cprop_jump (bb, setcc, jump, from, src)
4077 basic_block bb;
4078 rtx setcc;
4079 rtx jump;
4080 rtx from;
4081 rtx src;
4083 rtx new, new_set;
4084 rtx set = pc_set (jump);
4086 /* First substitute in the INSN condition as the SET_SRC of the JUMP,
4087 then substitute that given values in this expanded JUMP. */
4088 if (setcc != NULL
4089 && !modified_between_p (from, setcc, jump)
4090 && !modified_between_p (src, setcc, jump))
4092 rtx setcc_set = single_set (setcc);
4093 new_set = simplify_replace_rtx (SET_SRC (set),
4094 SET_DEST (setcc_set),
4095 SET_SRC (setcc_set));
4097 else
4098 new_set = set;
4100 new = simplify_replace_rtx (new_set, from, src);
4102 /* If no simplification can be made, then try the next
4103 register. */
4104 if (rtx_equal_p (new, new_set) || rtx_equal_p (new, SET_SRC (set)))
4105 return 0;
4107 /* If this is now a no-op delete it, otherwise this must be a valid insn. */
4108 if (new == pc_rtx)
4109 delete_insn (jump);
4110 else
4112 /* Ensure the value computed inside the jump insn to be equivalent
4113 to one computed by setcc. */
4114 if (setcc
4115 && modified_in_p (new, setcc))
4116 return 0;
4117 if (! validate_change (jump, &SET_SRC (set), new, 0))
4118 return 0;
4120 /* If this has turned into an unconditional jump,
4121 then put a barrier after it so that the unreachable
4122 code will be deleted. */
4123 if (GET_CODE (SET_SRC (set)) == LABEL_REF)
4124 emit_barrier_after (jump);
4127 #ifdef HAVE_cc0
4128 /* Delete the cc0 setter. */
4129 if (setcc != NULL && CC0_P (SET_DEST (single_set (setcc))))
4130 delete_insn (setcc);
4131 #endif
4133 run_jump_opt_after_gcse = 1;
4135 const_prop_count++;
4136 if (gcse_file != NULL)
4138 fprintf (gcse_file,
4139 "CONST-PROP: Replacing reg %d in jump_insn %d with constant ",
4140 REGNO (from), INSN_UID (jump));
4141 print_rtl (gcse_file, src);
4142 fprintf (gcse_file, "\n");
4144 purge_dead_edges (bb);
4146 return 1;
4149 static bool
4150 constprop_register (insn, from, to, alter_jumps)
4151 rtx insn;
4152 rtx from;
4153 rtx to;
4154 int alter_jumps;
4156 rtx sset;
4158 /* Check for reg or cc0 setting instructions followed by
4159 conditional branch instructions first. */
4160 if (alter_jumps
4161 && (sset = single_set (insn)) != NULL
4162 && NEXT_INSN (insn)
4163 && any_condjump_p (NEXT_INSN (insn)) && onlyjump_p (NEXT_INSN (insn)))
4165 rtx dest = SET_DEST (sset);
4166 if ((REG_P (dest) || CC0_P (dest))
4167 && cprop_jump (BLOCK_FOR_INSN (insn), insn, NEXT_INSN (insn), from, to))
4168 return 1;
4171 /* Handle normal insns next. */
4172 if (GET_CODE (insn) == INSN
4173 && try_replace_reg (from, to, insn))
4174 return 1;
4176 /* Try to propagate a CONST_INT into a conditional jump.
4177 We're pretty specific about what we will handle in this
4178 code, we can extend this as necessary over time.
4180 Right now the insn in question must look like
4181 (set (pc) (if_then_else ...)) */
4182 else if (alter_jumps && any_condjump_p (insn) && onlyjump_p (insn))
4183 return cprop_jump (BLOCK_FOR_INSN (insn), NULL, insn, from, to);
4184 return 0;
4187 /* Perform constant and copy propagation on INSN.
4188 The result is nonzero if a change was made. */
4190 static int
4191 cprop_insn (insn, alter_jumps)
4192 rtx insn;
4193 int alter_jumps;
4195 struct reg_use *reg_used;
4196 int changed = 0;
4197 rtx note;
4199 if (!INSN_P (insn))
4200 return 0;
4202 reg_use_count = 0;
4203 note_uses (&PATTERN (insn), find_used_regs, NULL);
4205 note = find_reg_equal_equiv_note (insn);
4207 /* We may win even when propagating constants into notes. */
4208 if (note)
4209 find_used_regs (&XEXP (note, 0), NULL);
4211 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
4212 reg_used++, reg_use_count--)
4214 unsigned int regno = REGNO (reg_used->reg_rtx);
4215 rtx pat, src;
4216 struct expr *set;
4218 /* Ignore registers created by GCSE.
4219 We do this because ... */
4220 if (regno >= max_gcse_regno)
4221 continue;
4223 /* If the register has already been set in this block, there's
4224 nothing we can do. */
4225 if (! oprs_not_set_p (reg_used->reg_rtx, insn))
4226 continue;
4228 /* Find an assignment that sets reg_used and is available
4229 at the start of the block. */
4230 set = find_avail_set (regno, insn);
4231 if (! set)
4232 continue;
4234 pat = set->expr;
4235 /* ??? We might be able to handle PARALLELs. Later. */
4236 if (GET_CODE (pat) != SET)
4237 abort ();
4239 src = SET_SRC (pat);
4241 /* Constant propagation. */
4242 if (gcse_constant_p (src))
4244 if (constprop_register (insn, reg_used->reg_rtx, src, alter_jumps))
4246 changed = 1;
4247 const_prop_count++;
4248 if (gcse_file != NULL)
4250 fprintf (gcse_file, "GLOBAL CONST-PROP: Replacing reg %d in ", regno);
4251 fprintf (gcse_file, "insn %d with constant ", INSN_UID (insn));
4252 print_rtl (gcse_file, src);
4253 fprintf (gcse_file, "\n");
4257 else if (GET_CODE (src) == REG
4258 && REGNO (src) >= FIRST_PSEUDO_REGISTER
4259 && REGNO (src) != regno)
4261 if (try_replace_reg (reg_used->reg_rtx, src, insn))
4263 changed = 1;
4264 copy_prop_count++;
4265 if (gcse_file != NULL)
4267 fprintf (gcse_file, "GLOBAL COPY-PROP: Replacing reg %d in insn %d",
4268 regno, INSN_UID (insn));
4269 fprintf (gcse_file, " with reg %d\n", REGNO (src));
4272 /* The original insn setting reg_used may or may not now be
4273 deletable. We leave the deletion to flow. */
4274 /* FIXME: If it turns out that the insn isn't deletable,
4275 then we may have unnecessarily extended register lifetimes
4276 and made things worse. */
4281 return changed;
4284 /* Like find_used_regs, but avoid recording uses that appear in
4285 input-output contexts such as zero_extract or pre_dec. This
4286 restricts the cases we consider to those for which local cprop
4287 can legitimately make replacements. */
4289 static void
4290 local_cprop_find_used_regs (xptr, data)
4291 rtx *xptr;
4292 void *data;
4294 rtx x = *xptr;
4296 if (x == 0)
4297 return;
4299 switch (GET_CODE (x))
4301 case ZERO_EXTRACT:
4302 case SIGN_EXTRACT:
4303 case STRICT_LOW_PART:
4304 return;
4306 case PRE_DEC:
4307 case PRE_INC:
4308 case POST_DEC:
4309 case POST_INC:
4310 case PRE_MODIFY:
4311 case POST_MODIFY:
4312 /* Can only legitimately appear this early in the context of
4313 stack pushes for function arguments, but handle all of the
4314 codes nonetheless. */
4315 return;
4317 case SUBREG:
4318 /* Setting a subreg of a register larger than word_mode leaves
4319 the non-written words unchanged. */
4320 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) > BITS_PER_WORD)
4321 return;
4322 break;
4324 default:
4325 break;
4328 find_used_regs (xptr, data);
4331 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
4332 their REG_EQUAL notes need updating. */
4334 static bool
4335 do_local_cprop (x, insn, alter_jumps, libcall_sp)
4336 rtx x;
4337 rtx insn;
4338 int alter_jumps;
4339 rtx *libcall_sp;
4341 rtx newreg = NULL, newcnst = NULL;
4343 /* Rule out USE instructions and ASM statements as we don't want to
4344 change the hard registers mentioned. */
4345 if (GET_CODE (x) == REG
4346 && (REGNO (x) >= FIRST_PSEUDO_REGISTER
4347 || (GET_CODE (PATTERN (insn)) != USE
4348 && asm_noperands (PATTERN (insn)) < 0)))
4350 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0);
4351 struct elt_loc_list *l;
4353 if (!val)
4354 return false;
4355 for (l = val->locs; l; l = l->next)
4357 rtx this_rtx = l->loc;
4358 rtx note;
4360 if (l->in_libcall)
4361 continue;
4363 if (gcse_constant_p (this_rtx))
4364 newcnst = this_rtx;
4365 if (REG_P (this_rtx) && REGNO (this_rtx) >= FIRST_PSEUDO_REGISTER
4366 /* Don't copy propagate if it has attached REG_EQUIV note.
4367 At this point this only function parameters should have
4368 REG_EQUIV notes and if the argument slot is used somewhere
4369 explicitly, it means address of parameter has been taken,
4370 so we should not extend the lifetime of the pseudo. */
4371 && (!(note = find_reg_note (l->setting_insn, REG_EQUIV, NULL_RTX))
4372 || GET_CODE (XEXP (note, 0)) != MEM))
4373 newreg = this_rtx;
4375 if (newcnst && constprop_register (insn, x, newcnst, alter_jumps))
4377 /* If we find a case where we can't fix the retval REG_EQUAL notes
4378 match the new register, we either have to abandon this replacement
4379 or fix delete_trivially_dead_insns to preserve the setting insn,
4380 or make it delete the REG_EUAQL note, and fix up all passes that
4381 require the REG_EQUAL note there. */
4382 if (!adjust_libcall_notes (x, newcnst, insn, libcall_sp))
4383 abort ();
4384 if (gcse_file != NULL)
4386 fprintf (gcse_file, "LOCAL CONST-PROP: Replacing reg %d in ",
4387 REGNO (x));
4388 fprintf (gcse_file, "insn %d with constant ",
4389 INSN_UID (insn));
4390 print_rtl (gcse_file, newcnst);
4391 fprintf (gcse_file, "\n");
4393 const_prop_count++;
4394 return true;
4396 else if (newreg && newreg != x && try_replace_reg (x, newreg, insn))
4398 adjust_libcall_notes (x, newreg, insn, libcall_sp);
4399 if (gcse_file != NULL)
4401 fprintf (gcse_file,
4402 "LOCAL COPY-PROP: Replacing reg %d in insn %d",
4403 REGNO (x), INSN_UID (insn));
4404 fprintf (gcse_file, " with reg %d\n", REGNO (newreg));
4406 copy_prop_count++;
4407 return true;
4410 return false;
4413 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
4414 their REG_EQUAL notes need updating to reflect that OLDREG has been
4415 replaced with NEWVAL in INSN. Return true if all substitutions could
4416 be made. */
4417 static bool
4418 adjust_libcall_notes (oldreg, newval, insn, libcall_sp)
4419 rtx oldreg, newval, insn, *libcall_sp;
4421 rtx end;
4423 while ((end = *libcall_sp++))
4425 rtx note = find_reg_equal_equiv_note (end);
4427 if (! note)
4428 continue;
4430 if (REG_P (newval))
4432 if (reg_set_between_p (newval, PREV_INSN (insn), end))
4436 note = find_reg_equal_equiv_note (end);
4437 if (! note)
4438 continue;
4439 if (reg_mentioned_p (newval, XEXP (note, 0)))
4440 return false;
4442 while ((end = *libcall_sp++));
4443 return true;
4446 XEXP (note, 0) = replace_rtx (XEXP (note, 0), oldreg, newval);
4447 insn = end;
4449 return true;
4452 #define MAX_NESTED_LIBCALLS 9
4454 static void
4455 local_cprop_pass (alter_jumps)
4456 int alter_jumps;
4458 rtx insn;
4459 struct reg_use *reg_used;
4460 rtx libcall_stack[MAX_NESTED_LIBCALLS + 1], *libcall_sp;
4461 bool changed = false;
4463 cselib_init ();
4464 libcall_sp = &libcall_stack[MAX_NESTED_LIBCALLS];
4465 *libcall_sp = 0;
4466 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4468 if (INSN_P (insn))
4470 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
4472 if (note)
4474 if (libcall_sp == libcall_stack)
4475 abort ();
4476 *--libcall_sp = XEXP (note, 0);
4478 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
4479 if (note)
4480 libcall_sp++;
4481 note = find_reg_equal_equiv_note (insn);
4484 reg_use_count = 0;
4485 note_uses (&PATTERN (insn), local_cprop_find_used_regs, NULL);
4486 if (note)
4487 local_cprop_find_used_regs (&XEXP (note, 0), NULL);
4489 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
4490 reg_used++, reg_use_count--)
4491 if (do_local_cprop (reg_used->reg_rtx, insn, alter_jumps,
4492 libcall_sp))
4494 changed = true;
4495 break;
4498 while (reg_use_count);
4500 cselib_process_insn (insn);
4502 cselib_finish ();
4503 /* Global analysis may get into infinite loops for unreachable blocks. */
4504 if (changed && alter_jumps)
4506 delete_unreachable_blocks ();
4507 free_reg_set_mem ();
4508 alloc_reg_set_mem (max_reg_num ());
4509 compute_sets (get_insns ());
4513 /* Forward propagate copies. This includes copies and constants. Return
4514 nonzero if a change was made. */
4516 static int
4517 cprop (alter_jumps)
4518 int alter_jumps;
4520 int changed;
4521 basic_block bb;
4522 rtx insn;
4524 /* Note we start at block 1. */
4525 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
4527 if (gcse_file != NULL)
4528 fprintf (gcse_file, "\n");
4529 return 0;
4532 changed = 0;
4533 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, next_bb)
4535 /* Reset tables used to keep track of what's still valid [since the
4536 start of the block]. */
4537 reset_opr_set_tables ();
4539 for (insn = bb->head;
4540 insn != NULL && insn != NEXT_INSN (bb->end);
4541 insn = NEXT_INSN (insn))
4542 if (INSN_P (insn))
4544 changed |= cprop_insn (insn, alter_jumps);
4546 /* Keep track of everything modified by this insn. */
4547 /* ??? Need to be careful w.r.t. mods done to INSN. Don't
4548 call mark_oprs_set if we turned the insn into a NOTE. */
4549 if (GET_CODE (insn) != NOTE)
4550 mark_oprs_set (insn);
4554 if (gcse_file != NULL)
4555 fprintf (gcse_file, "\n");
4557 return changed;
4560 /* Similar to get_condition, only the resulting condition must be
4561 valid at JUMP, instead of at EARLIEST.
4563 This differs from noce_get_condition in ifcvt.c in that we prefer not to
4564 settle for the condition variable in the jump instruction being integral.
4565 We prefer to be able to record the value of a user variable, rather than
4566 the value of a temporary used in a condition. This could be solved by
4567 recording the value of *every* register scaned by canonicalize_condition,
4568 but this would require some code reorganization. */
4570 static rtx
4571 fis_get_condition (jump)
4572 rtx jump;
4574 rtx cond, set, tmp, insn, earliest;
4575 bool reverse;
4577 if (! any_condjump_p (jump))
4578 return NULL_RTX;
4580 set = pc_set (jump);
4581 cond = XEXP (SET_SRC (set), 0);
4583 /* If this branches to JUMP_LABEL when the condition is false,
4584 reverse the condition. */
4585 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
4586 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));
4588 /* Use canonicalize_condition to do the dirty work of manipulating
4589 MODE_CC values and COMPARE rtx codes. */
4590 tmp = canonicalize_condition (jump, cond, reverse, &earliest, NULL_RTX);
4591 if (!tmp)
4592 return NULL_RTX;
4594 /* Verify that the given condition is valid at JUMP by virtue of not
4595 having been modified since EARLIEST. */
4596 for (insn = earliest; insn != jump; insn = NEXT_INSN (insn))
4597 if (INSN_P (insn) && modified_in_p (tmp, insn))
4598 break;
4599 if (insn == jump)
4600 return tmp;
4602 /* The condition was modified. See if we can get a partial result
4603 that doesn't follow all the reversals. Perhaps combine can fold
4604 them together later. */
4605 tmp = XEXP (tmp, 0);
4606 if (!REG_P (tmp) || GET_MODE_CLASS (GET_MODE (tmp)) != MODE_INT)
4607 return NULL_RTX;
4608 tmp = canonicalize_condition (jump, cond, reverse, &earliest, tmp);
4609 if (!tmp)
4610 return NULL_RTX;
4612 /* For sanity's sake, re-validate the new result. */
4613 for (insn = earliest; insn != jump; insn = NEXT_INSN (insn))
4614 if (INSN_P (insn) && modified_in_p (tmp, insn))
4615 return NULL_RTX;
4617 return tmp;
4620 /* Find the implicit sets of a function. An "implicit set" is a constraint
4621 on the value of a variable, implied by a conditional jump. For example,
4622 following "if (x == 2)", the then branch may be optimized as though the
4623 conditional performed an "explicit set", in this example, "x = 2". This
4624 function records the set patterns that are implicit at the start of each
4625 basic block. */
4627 static void
4628 find_implicit_sets ()
4630 basic_block bb, dest;
4631 unsigned int count;
4632 rtx cond, new;
4634 count = 0;
4635 FOR_EACH_BB (bb)
4636 /* Check for more than one sucessor. */
4637 if (bb->succ && bb->succ->succ_next)
4639 cond = fis_get_condition (bb->end);
4641 if (cond
4642 && (GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
4643 && GET_CODE (XEXP (cond, 0)) == REG
4644 && REGNO (XEXP (cond, 0)) >= FIRST_PSEUDO_REGISTER
4645 && gcse_constant_p (XEXP (cond, 1)))
4647 dest = GET_CODE (cond) == EQ ? BRANCH_EDGE (bb)->dest
4648 : FALLTHRU_EDGE (bb)->dest;
4650 if (dest && ! dest->pred->pred_next
4651 && dest != EXIT_BLOCK_PTR)
4653 new = gen_rtx_SET (VOIDmode, XEXP (cond, 0),
4654 XEXP (cond, 1));
4655 implicit_sets[dest->index] = new;
4656 if (gcse_file)
4658 fprintf(gcse_file, "Implicit set of reg %d in ",
4659 REGNO (XEXP (cond, 0)));
4660 fprintf(gcse_file, "basic block %d\n", dest->index);
4662 count++;
4667 if (gcse_file)
4668 fprintf (gcse_file, "Found %d implicit sets\n", count);
4671 /* Perform one copy/constant propagation pass.
4672 PASS is the pass count. If CPROP_JUMPS is true, perform constant
4673 propagation into conditional jumps. If BYPASS_JUMPS is true,
4674 perform conditional jump bypassing optimizations. */
4676 static int
4677 one_cprop_pass (pass, cprop_jumps, bypass_jumps)
4678 int pass;
4679 int cprop_jumps;
4680 int bypass_jumps;
4682 int changed = 0;
4684 const_prop_count = 0;
4685 copy_prop_count = 0;
4687 local_cprop_pass (cprop_jumps);
4689 /* Determine implicit sets. */
4690 implicit_sets = (rtx *) xcalloc (last_basic_block, sizeof (rtx));
4691 find_implicit_sets ();
4693 alloc_hash_table (max_cuid, &set_hash_table, 1);
4694 compute_hash_table (&set_hash_table);
4696 /* Free implicit_sets before peak usage. */
4697 free (implicit_sets);
4698 implicit_sets = NULL;
4700 if (gcse_file)
4701 dump_hash_table (gcse_file, "SET", &set_hash_table);
4702 if (set_hash_table.n_elems > 0)
4704 alloc_cprop_mem (last_basic_block, set_hash_table.n_elems);
4705 compute_cprop_data ();
4706 changed = cprop (cprop_jumps);
4707 if (bypass_jumps)
4708 changed |= bypass_conditional_jumps ();
4709 free_cprop_mem ();
4712 free_hash_table (&set_hash_table);
4714 if (gcse_file)
4716 fprintf (gcse_file, "CPROP of %s, pass %d: %d bytes needed, ",
4717 current_function_name, pass, bytes_used);
4718 fprintf (gcse_file, "%d const props, %d copy props\n\n",
4719 const_prop_count, copy_prop_count);
4721 /* Global analysis may get into infinite loops for unreachable blocks. */
4722 if (changed && cprop_jumps)
4723 delete_unreachable_blocks ();
4725 return changed;
4728 /* Bypass conditional jumps. */
4730 /* The value of last_basic_block at the beginning of the jump_bypass
4731 pass. The use of redirect_edge_and_branch_force may introduce new
4732 basic blocks, but the data flow analysis is only valid for basic
4733 block indices less than bypass_last_basic_block. */
4735 static int bypass_last_basic_block;
4737 /* Find a set of REGNO to a constant that is available at the end of basic
4738 block BB. Returns NULL if no such set is found. Based heavily upon
4739 find_avail_set. */
4741 static struct expr *
4742 find_bypass_set (regno, bb)
4743 int regno;
4744 int bb;
4746 struct expr *result = 0;
4748 for (;;)
4750 rtx src;
4751 struct expr *set = lookup_set (regno, &set_hash_table);
4753 while (set)
4755 if (TEST_BIT (cprop_avout[bb], set->bitmap_index))
4756 break;
4757 set = next_set (regno, set);
4760 if (set == 0)
4761 break;
4763 if (GET_CODE (set->expr) != SET)
4764 abort ();
4766 src = SET_SRC (set->expr);
4767 if (gcse_constant_p (src))
4768 result = set;
4770 if (GET_CODE (src) != REG)
4771 break;
4773 regno = REGNO (src);
4775 return result;
4779 /* Subroutine of bypass_block that checks whether a pseudo is killed by
4780 any of the instructions inserted on an edge. Jump bypassing places
4781 condition code setters on CFG edges using insert_insn_on_edge. This
4782 function is required to check that our data flow analysis is still
4783 valid prior to commit_edge_insertions. */
4785 static bool
4786 reg_killed_on_edge (reg, e)
4787 rtx reg;
4788 edge e;
4790 rtx insn;
4792 for (insn = e->insns; insn; insn = NEXT_INSN (insn))
4793 if (INSN_P (insn) && reg_set_p (reg, insn))
4794 return true;
4796 return false;
4799 /* Subroutine of bypass_conditional_jumps that attempts to bypass the given
4800 basic block BB which has more than one predecessor. If not NULL, SETCC
4801 is the first instruction of BB, which is immediately followed by JUMP_INSN
4802 JUMP. Otherwise, SETCC is NULL, and JUMP is the first insn of BB.
4803 Returns nonzero if a change was made.
4805 During the jump bypassing pass, we may place copies of SETCC instuctions
4806 on CFG edges. The following routine must be careful to pay attention to
4807 these inserted insns when performing its transformations. */
4809 static int
4810 bypass_block (bb, setcc, jump)
4811 basic_block bb;
4812 rtx setcc, jump;
4814 rtx insn, note;
4815 edge e, enext, edest;
4816 int i, change;
4817 int may_be_loop_header;
4819 insn = (setcc != NULL) ? setcc : jump;
4821 /* Determine set of register uses in INSN. */
4822 reg_use_count = 0;
4823 note_uses (&PATTERN (insn), find_used_regs, NULL);
4824 note = find_reg_equal_equiv_note (insn);
4825 if (note)
4826 find_used_regs (&XEXP (note, 0), NULL);
4828 may_be_loop_header = false;
4829 for (e = bb->pred; e; e = e->pred_next)
4830 if (e->flags & EDGE_DFS_BACK)
4832 may_be_loop_header = true;
4833 break;
4836 change = 0;
4837 for (e = bb->pred; e; e = enext)
4839 enext = e->pred_next;
4840 if (e->flags & EDGE_COMPLEX)
4841 continue;
4843 /* We can't redirect edges from new basic blocks. */
4844 if (e->src->index >= bypass_last_basic_block)
4845 continue;
4847 /* The irreducible loops created by redirecting of edges entering the
4848 loop from outside would decrease effectivity of some of the following
4849 optimalizations, so prevent this. */
4850 if (may_be_loop_header
4851 && !(e->flags & EDGE_DFS_BACK))
4852 continue;
4854 for (i = 0; i < reg_use_count; i++)
4856 struct reg_use *reg_used = &reg_use_table[i];
4857 unsigned int regno = REGNO (reg_used->reg_rtx);
4858 basic_block dest, old_dest;
4859 struct expr *set;
4860 rtx src, new;
4862 if (regno >= max_gcse_regno)
4863 continue;
4865 set = find_bypass_set (regno, e->src->index);
4867 if (! set)
4868 continue;
4870 /* Check the data flow is valid after edge insertions. */
4871 if (e->insns && reg_killed_on_edge (reg_used->reg_rtx, e))
4872 continue;
4874 src = SET_SRC (pc_set (jump));
4876 if (setcc != NULL)
4877 src = simplify_replace_rtx (src,
4878 SET_DEST (PATTERN (setcc)),
4879 SET_SRC (PATTERN (setcc)));
4881 new = simplify_replace_rtx (src, reg_used->reg_rtx,
4882 SET_SRC (set->expr));
4884 /* Jump bypassing may have already placed instructions on
4885 edges of the CFG. We can't bypass an outgoing edge that
4886 has instructions associated with it, as these insns won't
4887 get executed if the incoming edge is redirected. */
4889 if (new == pc_rtx)
4891 edest = FALLTHRU_EDGE (bb);
4892 dest = edest->insns ? NULL : edest->dest;
4894 else if (GET_CODE (new) == LABEL_REF)
4896 dest = BLOCK_FOR_INSN (XEXP (new, 0));
4897 /* Don't bypass edges containing instructions. */
4898 for (edest = bb->succ; edest; edest = edest->succ_next)
4899 if (edest->dest == dest && edest->insns)
4901 dest = NULL;
4902 break;
4905 else
4906 dest = NULL;
4908 old_dest = e->dest;
4909 if (dest != NULL
4910 && dest != old_dest
4911 && dest != EXIT_BLOCK_PTR)
4913 redirect_edge_and_branch_force (e, dest);
4915 /* Copy the register setter to the redirected edge.
4916 Don't copy CC0 setters, as CC0 is dead after jump. */
4917 if (setcc)
4919 rtx pat = PATTERN (setcc);
4920 if (!CC0_P (SET_DEST (pat)))
4921 insert_insn_on_edge (copy_insn (pat), e);
4924 if (gcse_file != NULL)
4926 fprintf (gcse_file, "JUMP-BYPASS: Proved reg %d in jump_insn %d equals constant ",
4927 regno, INSN_UID (jump));
4928 print_rtl (gcse_file, SET_SRC (set->expr));
4929 fprintf (gcse_file, "\nBypass edge from %d->%d to %d\n",
4930 e->src->index, old_dest->index, dest->index);
4932 change = 1;
4933 break;
4937 return change;
4940 /* Find basic blocks with more than one predecessor that only contain a
4941 single conditional jump. If the result of the comparison is known at
4942 compile-time from any incoming edge, redirect that edge to the
4943 appropriate target. Returns nonzero if a change was made.
4945 This function is now mis-named, because we also handle indirect jumps. */
4947 static int
4948 bypass_conditional_jumps ()
4950 basic_block bb;
4951 int changed;
4952 rtx setcc;
4953 rtx insn;
4954 rtx dest;
4956 /* Note we start at block 1. */
4957 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
4958 return 0;
4960 bypass_last_basic_block = last_basic_block;
4961 mark_dfs_back_edges ();
4963 changed = 0;
4964 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb,
4965 EXIT_BLOCK_PTR, next_bb)
4967 /* Check for more than one predecessor. */
4968 if (bb->pred && bb->pred->pred_next)
4970 setcc = NULL_RTX;
4971 for (insn = bb->head;
4972 insn != NULL && insn != NEXT_INSN (bb->end);
4973 insn = NEXT_INSN (insn))
4974 if (GET_CODE (insn) == INSN)
4976 if (setcc)
4977 break;
4978 if (GET_CODE (PATTERN (insn)) != SET)
4979 break;
4981 dest = SET_DEST (PATTERN (insn));
4982 if (REG_P (dest) || CC0_P (dest))
4983 setcc = insn;
4984 else
4985 break;
4987 else if (GET_CODE (insn) == JUMP_INSN)
4989 if ((any_condjump_p (insn) || computed_jump_p (insn))
4990 && onlyjump_p (insn))
4991 changed |= bypass_block (bb, setcc, insn);
4992 break;
4994 else if (INSN_P (insn))
4995 break;
4999 /* If we bypassed any register setting insns, we inserted a
5000 copy on the redirected edge. These need to be committed. */
5001 if (changed)
5002 commit_edge_insertions();
5004 return changed;
5007 /* Compute PRE+LCM working variables. */
5009 /* Local properties of expressions. */
5010 /* Nonzero for expressions that are transparent in the block. */
5011 static sbitmap *transp;
5013 /* Nonzero for expressions that are transparent at the end of the block.
5014 This is only zero for expressions killed by abnormal critical edge
5015 created by a calls. */
5016 static sbitmap *transpout;
5018 /* Nonzero for expressions that are computed (available) in the block. */
5019 static sbitmap *comp;
5021 /* Nonzero for expressions that are locally anticipatable in the block. */
5022 static sbitmap *antloc;
5024 /* Nonzero for expressions where this block is an optimal computation
5025 point. */
5026 static sbitmap *pre_optimal;
5028 /* Nonzero for expressions which are redundant in a particular block. */
5029 static sbitmap *pre_redundant;
5031 /* Nonzero for expressions which should be inserted on a specific edge. */
5032 static sbitmap *pre_insert_map;
5034 /* Nonzero for expressions which should be deleted in a specific block. */
5035 static sbitmap *pre_delete_map;
5037 /* Contains the edge_list returned by pre_edge_lcm. */
5038 static struct edge_list *edge_list;
5040 /* Redundant insns. */
5041 static sbitmap pre_redundant_insns;
5043 /* Allocate vars used for PRE analysis. */
5045 static void
5046 alloc_pre_mem (n_blocks, n_exprs)
5047 int n_blocks, n_exprs;
5049 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
5050 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
5051 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
5053 pre_optimal = NULL;
5054 pre_redundant = NULL;
5055 pre_insert_map = NULL;
5056 pre_delete_map = NULL;
5057 ae_in = NULL;
5058 ae_out = NULL;
5059 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
5061 /* pre_insert and pre_delete are allocated later. */
5064 /* Free vars used for PRE analysis. */
5066 static void
5067 free_pre_mem ()
5069 sbitmap_vector_free (transp);
5070 sbitmap_vector_free (comp);
5072 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
5074 if (pre_optimal)
5075 sbitmap_vector_free (pre_optimal);
5076 if (pre_redundant)
5077 sbitmap_vector_free (pre_redundant);
5078 if (pre_insert_map)
5079 sbitmap_vector_free (pre_insert_map);
5080 if (pre_delete_map)
5081 sbitmap_vector_free (pre_delete_map);
5082 if (ae_in)
5083 sbitmap_vector_free (ae_in);
5084 if (ae_out)
5085 sbitmap_vector_free (ae_out);
5087 transp = comp = NULL;
5088 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
5089 ae_in = ae_out = NULL;
5092 /* Top level routine to do the dataflow analysis needed by PRE. */
5094 static void
5095 compute_pre_data ()
5097 sbitmap trapping_expr;
5098 basic_block bb;
5099 unsigned int ui;
5101 compute_local_properties (transp, comp, antloc, &expr_hash_table);
5102 sbitmap_vector_zero (ae_kill, last_basic_block);
5104 /* Collect expressions which might trap. */
5105 trapping_expr = sbitmap_alloc (expr_hash_table.n_elems);
5106 sbitmap_zero (trapping_expr);
5107 for (ui = 0; ui < expr_hash_table.size; ui++)
5109 struct expr *e;
5110 for (e = expr_hash_table.table[ui]; e != NULL; e = e->next_same_hash)
5111 if (may_trap_p (e->expr))
5112 SET_BIT (trapping_expr, e->bitmap_index);
5115 /* Compute ae_kill for each basic block using:
5117 ~(TRANSP | COMP)
5119 This is significantly faster than compute_ae_kill. */
5121 FOR_EACH_BB (bb)
5123 edge e;
5125 /* If the current block is the destination of an abnormal edge, we
5126 kill all trapping expressions because we won't be able to properly
5127 place the instruction on the edge. So make them neither
5128 anticipatable nor transparent. This is fairly conservative. */
5129 for (e = bb->pred; e ; e = e->pred_next)
5130 if (e->flags & EDGE_ABNORMAL)
5132 sbitmap_difference (antloc[bb->index], antloc[bb->index], trapping_expr);
5133 sbitmap_difference (transp[bb->index], transp[bb->index], trapping_expr);
5134 break;
5137 sbitmap_a_or_b (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
5138 sbitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
5141 edge_list = pre_edge_lcm (gcse_file, expr_hash_table.n_elems, transp, comp, antloc,
5142 ae_kill, &pre_insert_map, &pre_delete_map);
5143 sbitmap_vector_free (antloc);
5144 antloc = NULL;
5145 sbitmap_vector_free (ae_kill);
5146 ae_kill = NULL;
5147 sbitmap_free (trapping_expr);
5150 /* PRE utilities */
5152 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
5153 block BB.
5155 VISITED is a pointer to a working buffer for tracking which BB's have
5156 been visited. It is NULL for the top-level call.
5158 We treat reaching expressions that go through blocks containing the same
5159 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
5160 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
5161 2 as not reaching. The intent is to improve the probability of finding
5162 only one reaching expression and to reduce register lifetimes by picking
5163 the closest such expression. */
5165 static int
5166 pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited)
5167 basic_block occr_bb;
5168 struct expr *expr;
5169 basic_block bb;
5170 char *visited;
5172 edge pred;
5174 for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
5176 basic_block pred_bb = pred->src;
5178 if (pred->src == ENTRY_BLOCK_PTR
5179 /* Has predecessor has already been visited? */
5180 || visited[pred_bb->index])
5181 ;/* Nothing to do. */
5183 /* Does this predecessor generate this expression? */
5184 else if (TEST_BIT (comp[pred_bb->index], expr->bitmap_index))
5186 /* Is this the occurrence we're looking for?
5187 Note that there's only one generating occurrence per block
5188 so we just need to check the block number. */
5189 if (occr_bb == pred_bb)
5190 return 1;
5192 visited[pred_bb->index] = 1;
5194 /* Ignore this predecessor if it kills the expression. */
5195 else if (! TEST_BIT (transp[pred_bb->index], expr->bitmap_index))
5196 visited[pred_bb->index] = 1;
5198 /* Neither gen nor kill. */
5199 else
5201 visited[pred_bb->index] = 1;
5202 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
5203 return 1;
5207 /* All paths have been checked. */
5208 return 0;
5211 /* The wrapper for pre_expr_reaches_here_work that ensures that any
5212 memory allocated for that function is returned. */
5214 static int
5215 pre_expr_reaches_here_p (occr_bb, expr, bb)
5216 basic_block occr_bb;
5217 struct expr *expr;
5218 basic_block bb;
5220 int rval;
5221 char *visited = (char *) xcalloc (last_basic_block, 1);
5223 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
5225 free (visited);
5226 return rval;
5230 /* Given an expr, generate RTL which we can insert at the end of a BB,
5231 or on an edge. Set the block number of any insns generated to
5232 the value of BB. */
5234 static rtx
5235 process_insert_insn (expr)
5236 struct expr *expr;
5238 rtx reg = expr->reaching_reg;
5239 rtx exp = copy_rtx (expr->expr);
5240 rtx pat;
5242 start_sequence ();
5244 /* If the expression is something that's an operand, like a constant,
5245 just copy it to a register. */
5246 if (general_operand (exp, GET_MODE (reg)))
5247 emit_move_insn (reg, exp);
5249 /* Otherwise, make a new insn to compute this expression and make sure the
5250 insn will be recognized (this also adds any needed CLOBBERs). Copy the
5251 expression to make sure we don't have any sharing issues. */
5252 else if (insn_invalid_p (emit_insn (gen_rtx_SET (VOIDmode, reg, exp))))
5253 abort ();
5255 pat = get_insns ();
5256 end_sequence ();
5258 return pat;
5261 /* Add EXPR to the end of basic block BB.
5263 This is used by both the PRE and code hoisting.
5265 For PRE, we want to verify that the expr is either transparent
5266 or locally anticipatable in the target block. This check makes
5267 no sense for code hoisting. */
5269 static void
5270 insert_insn_end_bb (expr, bb, pre)
5271 struct expr *expr;
5272 basic_block bb;
5273 int pre;
5275 rtx insn = bb->end;
5276 rtx new_insn;
5277 rtx reg = expr->reaching_reg;
5278 int regno = REGNO (reg);
5279 rtx pat, pat_end;
5281 pat = process_insert_insn (expr);
5282 if (pat == NULL_RTX || ! INSN_P (pat))
5283 abort ();
5285 pat_end = pat;
5286 while (NEXT_INSN (pat_end) != NULL_RTX)
5287 pat_end = NEXT_INSN (pat_end);
5289 /* If the last insn is a jump, insert EXPR in front [taking care to
5290 handle cc0, etc. properly]. Similary we need to care trapping
5291 instructions in presence of non-call exceptions. */
5293 if (GET_CODE (insn) == JUMP_INSN
5294 || (GET_CODE (insn) == INSN
5295 && (bb->succ->succ_next || (bb->succ->flags & EDGE_ABNORMAL))))
5297 #ifdef HAVE_cc0
5298 rtx note;
5299 #endif
5300 /* It should always be the case that we can put these instructions
5301 anywhere in the basic block with performing PRE optimizations.
5302 Check this. */
5303 if (GET_CODE (insn) == INSN && pre
5304 && !TEST_BIT (antloc[bb->index], expr->bitmap_index)
5305 && !TEST_BIT (transp[bb->index], expr->bitmap_index))
5306 abort ();
5308 /* If this is a jump table, then we can't insert stuff here. Since
5309 we know the previous real insn must be the tablejump, we insert
5310 the new instruction just before the tablejump. */
5311 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
5312 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
5313 insn = prev_real_insn (insn);
5315 #ifdef HAVE_cc0
5316 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
5317 if cc0 isn't set. */
5318 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
5319 if (note)
5320 insn = XEXP (note, 0);
5321 else
5323 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
5324 if (maybe_cc0_setter
5325 && INSN_P (maybe_cc0_setter)
5326 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
5327 insn = maybe_cc0_setter;
5329 #endif
5330 /* FIXME: What if something in cc0/jump uses value set in new insn? */
5331 new_insn = emit_insn_before (pat, insn);
5334 /* Likewise if the last insn is a call, as will happen in the presence
5335 of exception handling. */
5336 else if (GET_CODE (insn) == CALL_INSN
5337 && (bb->succ->succ_next || (bb->succ->flags & EDGE_ABNORMAL)))
5339 /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
5340 we search backward and place the instructions before the first
5341 parameter is loaded. Do this for everyone for consistency and a
5342 presumption that we'll get better code elsewhere as well.
5344 It should always be the case that we can put these instructions
5345 anywhere in the basic block with performing PRE optimizations.
5346 Check this. */
5348 if (pre
5349 && !TEST_BIT (antloc[bb->index], expr->bitmap_index)
5350 && !TEST_BIT (transp[bb->index], expr->bitmap_index))
5351 abort ();
5353 /* Since different machines initialize their parameter registers
5354 in different orders, assume nothing. Collect the set of all
5355 parameter registers. */
5356 insn = find_first_parameter_load (insn, bb->head);
5358 /* If we found all the parameter loads, then we want to insert
5359 before the first parameter load.
5361 If we did not find all the parameter loads, then we might have
5362 stopped on the head of the block, which could be a CODE_LABEL.
5363 If we inserted before the CODE_LABEL, then we would be putting
5364 the insn in the wrong basic block. In that case, put the insn
5365 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
5366 while (GET_CODE (insn) == CODE_LABEL
5367 || NOTE_INSN_BASIC_BLOCK_P (insn))
5368 insn = NEXT_INSN (insn);
5370 new_insn = emit_insn_before (pat, insn);
5372 else
5373 new_insn = emit_insn_after (pat, insn);
5375 while (1)
5377 if (INSN_P (pat))
5379 add_label_notes (PATTERN (pat), new_insn);
5380 note_stores (PATTERN (pat), record_set_info, pat);
5382 if (pat == pat_end)
5383 break;
5384 pat = NEXT_INSN (pat);
5387 gcse_create_count++;
5389 if (gcse_file)
5391 fprintf (gcse_file, "PRE/HOIST: end of bb %d, insn %d, ",
5392 bb->index, INSN_UID (new_insn));
5393 fprintf (gcse_file, "copying expression %d to reg %d\n",
5394 expr->bitmap_index, regno);
5398 /* Insert partially redundant expressions on edges in the CFG to make
5399 the expressions fully redundant. */
5401 static int
5402 pre_edge_insert (edge_list, index_map)
5403 struct edge_list *edge_list;
5404 struct expr **index_map;
5406 int e, i, j, num_edges, set_size, did_insert = 0;
5407 sbitmap *inserted;
5409 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
5410 if it reaches any of the deleted expressions. */
5412 set_size = pre_insert_map[0]->size;
5413 num_edges = NUM_EDGES (edge_list);
5414 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
5415 sbitmap_vector_zero (inserted, num_edges);
5417 for (e = 0; e < num_edges; e++)
5419 int indx;
5420 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
5422 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
5424 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
5426 for (j = indx; insert && j < (int) expr_hash_table.n_elems; j++, insert >>= 1)
5427 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
5429 struct expr *expr = index_map[j];
5430 struct occr *occr;
5432 /* Now look at each deleted occurrence of this expression. */
5433 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
5435 if (! occr->deleted_p)
5436 continue;
5438 /* Insert this expression on this edge if if it would
5439 reach the deleted occurrence in BB. */
5440 if (!TEST_BIT (inserted[e], j))
5442 rtx insn;
5443 edge eg = INDEX_EDGE (edge_list, e);
5445 /* We can't insert anything on an abnormal and
5446 critical edge, so we insert the insn at the end of
5447 the previous block. There are several alternatives
5448 detailed in Morgans book P277 (sec 10.5) for
5449 handling this situation. This one is easiest for
5450 now. */
5452 if ((eg->flags & EDGE_ABNORMAL) == EDGE_ABNORMAL)
5453 insert_insn_end_bb (index_map[j], bb, 0);
5454 else
5456 insn = process_insert_insn (index_map[j]);
5457 insert_insn_on_edge (insn, eg);
5460 if (gcse_file)
5462 fprintf (gcse_file, "PRE/HOIST: edge (%d,%d), ",
5463 bb->index,
5464 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
5465 fprintf (gcse_file, "copy expression %d\n",
5466 expr->bitmap_index);
5469 update_ld_motion_stores (expr);
5470 SET_BIT (inserted[e], j);
5471 did_insert = 1;
5472 gcse_create_count++;
5479 sbitmap_vector_free (inserted);
5480 return did_insert;
5483 /* Copy the result of INSN to REG. INDX is the expression number. */
5485 static void
5486 pre_insert_copy_insn (expr, insn)
5487 struct expr *expr;
5488 rtx insn;
5490 rtx reg = expr->reaching_reg;
5491 int regno = REGNO (reg);
5492 int indx = expr->bitmap_index;
5493 rtx set = single_set (insn);
5494 rtx new_insn;
5496 if (!set)
5497 abort ();
5499 new_insn = emit_insn_after (gen_move_insn (reg, copy_rtx (SET_DEST (set))), insn);
5501 /* Keep register set table up to date. */
5502 record_one_set (regno, new_insn);
5504 gcse_create_count++;
5506 if (gcse_file)
5507 fprintf (gcse_file,
5508 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
5509 BLOCK_NUM (insn), INSN_UID (new_insn), indx,
5510 INSN_UID (insn), regno);
5511 update_ld_motion_stores (expr);
5514 /* Copy available expressions that reach the redundant expression
5515 to `reaching_reg'. */
5517 static void
5518 pre_insert_copies ()
5520 unsigned int i;
5521 struct expr *expr;
5522 struct occr *occr;
5523 struct occr *avail;
5525 /* For each available expression in the table, copy the result to
5526 `reaching_reg' if the expression reaches a deleted one.
5528 ??? The current algorithm is rather brute force.
5529 Need to do some profiling. */
5531 for (i = 0; i < expr_hash_table.size; i++)
5532 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
5534 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
5535 we don't want to insert a copy here because the expression may not
5536 really be redundant. So only insert an insn if the expression was
5537 deleted. This test also avoids further processing if the
5538 expression wasn't deleted anywhere. */
5539 if (expr->reaching_reg == NULL)
5540 continue;
5542 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
5544 if (! occr->deleted_p)
5545 continue;
5547 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
5549 rtx insn = avail->insn;
5551 /* No need to handle this one if handled already. */
5552 if (avail->copied_p)
5553 continue;
5555 /* Don't handle this one if it's a redundant one. */
5556 if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn)))
5557 continue;
5559 /* Or if the expression doesn't reach the deleted one. */
5560 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
5561 expr,
5562 BLOCK_FOR_INSN (occr->insn)))
5563 continue;
5565 /* Copy the result of avail to reaching_reg. */
5566 pre_insert_copy_insn (expr, insn);
5567 avail->copied_p = 1;
5573 /* Emit move from SRC to DEST noting the equivalence with expression computed
5574 in INSN. */
5575 static rtx
5576 gcse_emit_move_after (src, dest, insn)
5577 rtx src, dest, insn;
5579 rtx new;
5580 rtx set = single_set (insn), set2;
5581 rtx note;
5582 rtx eqv;
5584 /* This should never fail since we're creating a reg->reg copy
5585 we've verified to be valid. */
5587 new = emit_insn_after (gen_move_insn (dest, src), insn);
5589 /* Note the equivalence for local CSE pass. */
5590 set2 = single_set (new);
5591 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
5592 return new;
5593 if ((note = find_reg_equal_equiv_note (insn)))
5594 eqv = XEXP (note, 0);
5595 else
5596 eqv = SET_SRC (set);
5598 set_unique_reg_note (new, REG_EQUAL, copy_insn_1 (eqv));
5600 return new;
5603 /* Delete redundant computations.
5604 Deletion is done by changing the insn to copy the `reaching_reg' of
5605 the expression into the result of the SET. It is left to later passes
5606 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
5608 Returns nonzero if a change is made. */
5610 static int
5611 pre_delete ()
5613 unsigned int i;
5614 int changed;
5615 struct expr *expr;
5616 struct occr *occr;
5618 changed = 0;
5619 for (i = 0; i < expr_hash_table.size; i++)
5620 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
5622 int indx = expr->bitmap_index;
5624 /* We only need to search antic_occr since we require
5625 ANTLOC != 0. */
5627 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
5629 rtx insn = occr->insn;
5630 rtx set;
5631 basic_block bb = BLOCK_FOR_INSN (insn);
5633 if (TEST_BIT (pre_delete_map[bb->index], indx))
5635 set = single_set (insn);
5636 if (! set)
5637 abort ();
5639 /* Create a pseudo-reg to store the result of reaching
5640 expressions into. Get the mode for the new pseudo from
5641 the mode of the original destination pseudo. */
5642 if (expr->reaching_reg == NULL)
5643 expr->reaching_reg
5644 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
5646 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
5647 delete_insn (insn);
5648 occr->deleted_p = 1;
5649 SET_BIT (pre_redundant_insns, INSN_CUID (insn));
5650 changed = 1;
5651 gcse_subst_count++;
5653 if (gcse_file)
5655 fprintf (gcse_file,
5656 "PRE: redundant insn %d (expression %d) in ",
5657 INSN_UID (insn), indx);
5658 fprintf (gcse_file, "bb %d, reaching reg is %d\n",
5659 bb->index, REGNO (expr->reaching_reg));
5665 return changed;
5668 /* Perform GCSE optimizations using PRE.
5669 This is called by one_pre_gcse_pass after all the dataflow analysis
5670 has been done.
5672 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
5673 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
5674 Compiler Design and Implementation.
5676 ??? A new pseudo reg is created to hold the reaching expression. The nice
5677 thing about the classical approach is that it would try to use an existing
5678 reg. If the register can't be adequately optimized [i.e. we introduce
5679 reload problems], one could add a pass here to propagate the new register
5680 through the block.
5682 ??? We don't handle single sets in PARALLELs because we're [currently] not
5683 able to copy the rest of the parallel when we insert copies to create full
5684 redundancies from partial redundancies. However, there's no reason why we
5685 can't handle PARALLELs in the cases where there are no partial
5686 redundancies. */
5688 static int
5689 pre_gcse ()
5691 unsigned int i;
5692 int did_insert, changed;
5693 struct expr **index_map;
5694 struct expr *expr;
5696 /* Compute a mapping from expression number (`bitmap_index') to
5697 hash table entry. */
5699 index_map = (struct expr **) xcalloc (expr_hash_table.n_elems, sizeof (struct expr *));
5700 for (i = 0; i < expr_hash_table.size; i++)
5701 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
5702 index_map[expr->bitmap_index] = expr;
5704 /* Reset bitmap used to track which insns are redundant. */
5705 pre_redundant_insns = sbitmap_alloc (max_cuid);
5706 sbitmap_zero (pre_redundant_insns);
5708 /* Delete the redundant insns first so that
5709 - we know what register to use for the new insns and for the other
5710 ones with reaching expressions
5711 - we know which insns are redundant when we go to create copies */
5713 changed = pre_delete ();
5715 did_insert = pre_edge_insert (edge_list, index_map);
5717 /* In other places with reaching expressions, copy the expression to the
5718 specially allocated pseudo-reg that reaches the redundant expr. */
5719 pre_insert_copies ();
5720 if (did_insert)
5722 commit_edge_insertions ();
5723 changed = 1;
5726 free (index_map);
5727 sbitmap_free (pre_redundant_insns);
5728 return changed;
5731 /* Top level routine to perform one PRE GCSE pass.
5733 Return nonzero if a change was made. */
5735 static int
5736 one_pre_gcse_pass (pass)
5737 int pass;
5739 int changed = 0;
5741 gcse_subst_count = 0;
5742 gcse_create_count = 0;
5744 alloc_hash_table (max_cuid, &expr_hash_table, 0);
5745 add_noreturn_fake_exit_edges ();
5746 if (flag_gcse_lm)
5747 compute_ld_motion_mems ();
5749 compute_hash_table (&expr_hash_table);
5750 trim_ld_motion_mems ();
5751 if (gcse_file)
5752 dump_hash_table (gcse_file, "Expression", &expr_hash_table);
5754 if (expr_hash_table.n_elems > 0)
5756 alloc_pre_mem (last_basic_block, expr_hash_table.n_elems);
5757 compute_pre_data ();
5758 changed |= pre_gcse ();
5759 free_edge_list (edge_list);
5760 free_pre_mem ();
5763 free_ldst_mems ();
5764 remove_fake_edges ();
5765 free_hash_table (&expr_hash_table);
5767 if (gcse_file)
5769 fprintf (gcse_file, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
5770 current_function_name, pass, bytes_used);
5771 fprintf (gcse_file, "%d substs, %d insns created\n",
5772 gcse_subst_count, gcse_create_count);
5775 return changed;
5778 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN.
5779 If notes are added to an insn which references a CODE_LABEL, the
5780 LABEL_NUSES count is incremented. We have to add REG_LABEL notes,
5781 because the following loop optimization pass requires them. */
5783 /* ??? This is very similar to the loop.c add_label_notes function. We
5784 could probably share code here. */
5786 /* ??? If there was a jump optimization pass after gcse and before loop,
5787 then we would not need to do this here, because jump would add the
5788 necessary REG_LABEL notes. */
5790 static void
5791 add_label_notes (x, insn)
5792 rtx x;
5793 rtx insn;
5795 enum rtx_code code = GET_CODE (x);
5796 int i, j;
5797 const char *fmt;
5799 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
5801 /* This code used to ignore labels that referred to dispatch tables to
5802 avoid flow generating (slighly) worse code.
5804 We no longer ignore such label references (see LABEL_REF handling in
5805 mark_jump_label for additional information). */
5807 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, XEXP (x, 0),
5808 REG_NOTES (insn));
5809 if (LABEL_P (XEXP (x, 0)))
5810 LABEL_NUSES (XEXP (x, 0))++;
5811 return;
5814 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
5816 if (fmt[i] == 'e')
5817 add_label_notes (XEXP (x, i), insn);
5818 else if (fmt[i] == 'E')
5819 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5820 add_label_notes (XVECEXP (x, i, j), insn);
5824 /* Compute transparent outgoing information for each block.
5826 An expression is transparent to an edge unless it is killed by
5827 the edge itself. This can only happen with abnormal control flow,
5828 when the edge is traversed through a call. This happens with
5829 non-local labels and exceptions.
5831 This would not be necessary if we split the edge. While this is
5832 normally impossible for abnormal critical edges, with some effort
5833 it should be possible with exception handling, since we still have
5834 control over which handler should be invoked. But due to increased
5835 EH table sizes, this may not be worthwhile. */
5837 static void
5838 compute_transpout ()
5840 basic_block bb;
5841 unsigned int i;
5842 struct expr *expr;
5844 sbitmap_vector_ones (transpout, last_basic_block);
5846 FOR_EACH_BB (bb)
5848 /* Note that flow inserted a nop a the end of basic blocks that
5849 end in call instructions for reasons other than abnormal
5850 control flow. */
5851 if (GET_CODE (bb->end) != CALL_INSN)
5852 continue;
5854 for (i = 0; i < expr_hash_table.size; i++)
5855 for (expr = expr_hash_table.table[i]; expr ; expr = expr->next_same_hash)
5856 if (GET_CODE (expr->expr) == MEM)
5858 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
5859 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
5860 continue;
5862 /* ??? Optimally, we would use interprocedural alias
5863 analysis to determine if this mem is actually killed
5864 by this call. */
5865 RESET_BIT (transpout[bb->index], expr->bitmap_index);
5870 /* Removal of useless null pointer checks */
5872 /* Called via note_stores. X is set by SETTER. If X is a register we must
5873 invalidate nonnull_local and set nonnull_killed. DATA is really a
5874 `null_pointer_info *'.
5876 We ignore hard registers. */
5878 static void
5879 invalidate_nonnull_info (x, setter, data)
5880 rtx x;
5881 rtx setter ATTRIBUTE_UNUSED;
5882 void *data;
5884 unsigned int regno;
5885 struct null_pointer_info *npi = (struct null_pointer_info *) data;
5887 while (GET_CODE (x) == SUBREG)
5888 x = SUBREG_REG (x);
5890 /* Ignore anything that is not a register or is a hard register. */
5891 if (GET_CODE (x) != REG
5892 || REGNO (x) < npi->min_reg
5893 || REGNO (x) >= npi->max_reg)
5894 return;
5896 regno = REGNO (x) - npi->min_reg;
5898 RESET_BIT (npi->nonnull_local[npi->current_block->index], regno);
5899 SET_BIT (npi->nonnull_killed[npi->current_block->index], regno);
5902 /* Do null-pointer check elimination for the registers indicated in
5903 NPI. NONNULL_AVIN and NONNULL_AVOUT are pre-allocated sbitmaps;
5904 they are not our responsibility to free. */
5906 static int
5907 delete_null_pointer_checks_1 (block_reg, nonnull_avin,
5908 nonnull_avout, npi)
5909 unsigned int *block_reg;
5910 sbitmap *nonnull_avin;
5911 sbitmap *nonnull_avout;
5912 struct null_pointer_info *npi;
5914 basic_block bb, current_block;
5915 sbitmap *nonnull_local = npi->nonnull_local;
5916 sbitmap *nonnull_killed = npi->nonnull_killed;
5917 int something_changed = 0;
5919 /* Compute local properties, nonnull and killed. A register will have
5920 the nonnull property if at the end of the current block its value is
5921 known to be nonnull. The killed property indicates that somewhere in
5922 the block any information we had about the register is killed.
5924 Note that a register can have both properties in a single block. That
5925 indicates that it's killed, then later in the block a new value is
5926 computed. */
5927 sbitmap_vector_zero (nonnull_local, last_basic_block);
5928 sbitmap_vector_zero (nonnull_killed, last_basic_block);
5930 FOR_EACH_BB (current_block)
5932 rtx insn, stop_insn;
5934 /* Set the current block for invalidate_nonnull_info. */
5935 npi->current_block = current_block;
5937 /* Scan each insn in the basic block looking for memory references and
5938 register sets. */
5939 stop_insn = NEXT_INSN (current_block->end);
5940 for (insn = current_block->head;
5941 insn != stop_insn;
5942 insn = NEXT_INSN (insn))
5944 rtx set;
5945 rtx reg;
5947 /* Ignore anything that is not a normal insn. */
5948 if (! INSN_P (insn))
5949 continue;
5951 /* Basically ignore anything that is not a simple SET. We do have
5952 to make sure to invalidate nonnull_local and set nonnull_killed
5953 for such insns though. */
5954 set = single_set (insn);
5955 if (!set)
5957 note_stores (PATTERN (insn), invalidate_nonnull_info, npi);
5958 continue;
5961 /* See if we've got a usable memory load. We handle it first
5962 in case it uses its address register as a dest (which kills
5963 the nonnull property). */
5964 if (GET_CODE (SET_SRC (set)) == MEM
5965 && GET_CODE ((reg = XEXP (SET_SRC (set), 0))) == REG
5966 && REGNO (reg) >= npi->min_reg
5967 && REGNO (reg) < npi->max_reg)
5968 SET_BIT (nonnull_local[current_block->index],
5969 REGNO (reg) - npi->min_reg);
5971 /* Now invalidate stuff clobbered by this insn. */
5972 note_stores (PATTERN (insn), invalidate_nonnull_info, npi);
5974 /* And handle stores, we do these last since any sets in INSN can
5975 not kill the nonnull property if it is derived from a MEM
5976 appearing in a SET_DEST. */
5977 if (GET_CODE (SET_DEST (set)) == MEM
5978 && GET_CODE ((reg = XEXP (SET_DEST (set), 0))) == REG
5979 && REGNO (reg) >= npi->min_reg
5980 && REGNO (reg) < npi->max_reg)
5981 SET_BIT (nonnull_local[current_block->index],
5982 REGNO (reg) - npi->min_reg);
5986 /* Now compute global properties based on the local properties. This
5987 is a classic global availability algorithm. */
5988 compute_available (nonnull_local, nonnull_killed,
5989 nonnull_avout, nonnull_avin);
5991 /* Now look at each bb and see if it ends with a compare of a value
5992 against zero. */
5993 FOR_EACH_BB (bb)
5995 rtx last_insn = bb->end;
5996 rtx condition, earliest;
5997 int compare_and_branch;
5999 /* Since MIN_REG is always at least FIRST_PSEUDO_REGISTER, and
6000 since BLOCK_REG[BB] is zero if this block did not end with a
6001 comparison against zero, this condition works. */
6002 if (block_reg[bb->index] < npi->min_reg
6003 || block_reg[bb->index] >= npi->max_reg)
6004 continue;
6006 /* LAST_INSN is a conditional jump. Get its condition. */
6007 condition = get_condition (last_insn, &earliest);
6009 /* If we can't determine the condition then skip. */
6010 if (! condition)
6011 continue;
6013 /* Is the register known to have a nonzero value? */
6014 if (!TEST_BIT (nonnull_avout[bb->index], block_reg[bb->index] - npi->min_reg))
6015 continue;
6017 /* Try to compute whether the compare/branch at the loop end is one or
6018 two instructions. */
6019 if (earliest == last_insn)
6020 compare_and_branch = 1;
6021 else if (earliest == prev_nonnote_insn (last_insn))
6022 compare_and_branch = 2;
6023 else
6024 continue;
6026 /* We know the register in this comparison is nonnull at exit from
6027 this block. We can optimize this comparison. */
6028 if (GET_CODE (condition) == NE)
6030 rtx new_jump;
6032 new_jump = emit_jump_insn_after (gen_jump (JUMP_LABEL (last_insn)),
6033 last_insn);
6034 JUMP_LABEL (new_jump) = JUMP_LABEL (last_insn);
6035 LABEL_NUSES (JUMP_LABEL (new_jump))++;
6036 emit_barrier_after (new_jump);
6039 something_changed = 1;
6040 delete_insn (last_insn);
6041 if (compare_and_branch == 2)
6042 delete_insn (earliest);
6043 purge_dead_edges (bb);
6045 /* Don't check this block again. (Note that BLOCK_END is
6046 invalid here; we deleted the last instruction in the
6047 block.) */
6048 block_reg[bb->index] = 0;
6051 return something_changed;
6054 /* Find EQ/NE comparisons against zero which can be (indirectly) evaluated
6055 at compile time.
6057 This is conceptually similar to global constant/copy propagation and
6058 classic global CSE (it even uses the same dataflow equations as cprop).
6060 If a register is used as memory address with the form (mem (reg)), then we
6061 know that REG can not be zero at that point in the program. Any instruction
6062 which sets REG "kills" this property.
6064 So, if every path leading to a conditional branch has an available memory
6065 reference of that form, then we know the register can not have the value
6066 zero at the conditional branch.
6068 So we merely need to compute the local properties and propagate that data
6069 around the cfg, then optimize where possible.
6071 We run this pass two times. Once before CSE, then again after CSE. This
6072 has proven to be the most profitable approach. It is rare for new
6073 optimization opportunities of this nature to appear after the first CSE
6074 pass.
6076 This could probably be integrated with global cprop with a little work. */
6079 delete_null_pointer_checks (f)
6080 rtx f ATTRIBUTE_UNUSED;
6082 sbitmap *nonnull_avin, *nonnull_avout;
6083 unsigned int *block_reg;
6084 basic_block bb;
6085 int reg;
6086 int regs_per_pass;
6087 int max_reg;
6088 struct null_pointer_info npi;
6089 int something_changed = 0;
6091 /* If we have only a single block, then there's nothing to do. */
6092 if (n_basic_blocks <= 1)
6093 return 0;
6095 /* Trying to perform global optimizations on flow graphs which have
6096 a high connectivity will take a long time and is unlikely to be
6097 particularly useful.
6099 In normal circumstances a cfg should have about twice as many edges
6100 as blocks. But we do not want to punish small functions which have
6101 a couple switch statements. So we require a relatively large number
6102 of basic blocks and the ratio of edges to blocks to be high. */
6103 if (n_basic_blocks > 1000 && n_edges / n_basic_blocks >= 20)
6104 return 0;
6106 /* We need four bitmaps, each with a bit for each register in each
6107 basic block. */
6108 max_reg = max_reg_num ();
6109 regs_per_pass = get_bitmap_width (4, last_basic_block, max_reg);
6111 /* Allocate bitmaps to hold local and global properties. */
6112 npi.nonnull_local = sbitmap_vector_alloc (last_basic_block, regs_per_pass);
6113 npi.nonnull_killed = sbitmap_vector_alloc (last_basic_block, regs_per_pass);
6114 nonnull_avin = sbitmap_vector_alloc (last_basic_block, regs_per_pass);
6115 nonnull_avout = sbitmap_vector_alloc (last_basic_block, regs_per_pass);
6117 /* Go through the basic blocks, seeing whether or not each block
6118 ends with a conditional branch whose condition is a comparison
6119 against zero. Record the register compared in BLOCK_REG. */
6120 block_reg = (unsigned int *) xcalloc (last_basic_block, sizeof (int));
6121 FOR_EACH_BB (bb)
6123 rtx last_insn = bb->end;
6124 rtx condition, earliest, reg;
6126 /* We only want conditional branches. */
6127 if (GET_CODE (last_insn) != JUMP_INSN
6128 || !any_condjump_p (last_insn)
6129 || !onlyjump_p (last_insn))
6130 continue;
6132 /* LAST_INSN is a conditional jump. Get its condition. */
6133 condition = get_condition (last_insn, &earliest);
6135 /* If we were unable to get the condition, or it is not an equality
6136 comparison against zero then there's nothing we can do. */
6137 if (!condition
6138 || (GET_CODE (condition) != NE && GET_CODE (condition) != EQ)
6139 || GET_CODE (XEXP (condition, 1)) != CONST_INT
6140 || (XEXP (condition, 1)
6141 != CONST0_RTX (GET_MODE (XEXP (condition, 0)))))
6142 continue;
6144 /* We must be checking a register against zero. */
6145 reg = XEXP (condition, 0);
6146 if (GET_CODE (reg) != REG)
6147 continue;
6149 block_reg[bb->index] = REGNO (reg);
6152 /* Go through the algorithm for each block of registers. */
6153 for (reg = FIRST_PSEUDO_REGISTER; reg < max_reg; reg += regs_per_pass)
6155 npi.min_reg = reg;
6156 npi.max_reg = MIN (reg + regs_per_pass, max_reg);
6157 something_changed |= delete_null_pointer_checks_1 (block_reg,
6158 nonnull_avin,
6159 nonnull_avout,
6160 &npi);
6163 /* Free the table of registers compared at the end of every block. */
6164 free (block_reg);
6166 /* Free bitmaps. */
6167 sbitmap_vector_free (npi.nonnull_local);
6168 sbitmap_vector_free (npi.nonnull_killed);
6169 sbitmap_vector_free (nonnull_avin);
6170 sbitmap_vector_free (nonnull_avout);
6172 return something_changed;
6175 /* Code Hoisting variables and subroutines. */
6177 /* Very busy expressions. */
6178 static sbitmap *hoist_vbein;
6179 static sbitmap *hoist_vbeout;
6181 /* Hoistable expressions. */
6182 static sbitmap *hoist_exprs;
6184 /* Dominator bitmaps. */
6185 dominance_info dominators;
6187 /* ??? We could compute post dominators and run this algorithm in
6188 reverse to perform tail merging, doing so would probably be
6189 more effective than the tail merging code in jump.c.
6191 It's unclear if tail merging could be run in parallel with
6192 code hoisting. It would be nice. */
6194 /* Allocate vars used for code hoisting analysis. */
6196 static void
6197 alloc_code_hoist_mem (n_blocks, n_exprs)
6198 int n_blocks, n_exprs;
6200 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
6201 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
6202 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
6204 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
6205 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
6206 hoist_exprs = sbitmap_vector_alloc (n_blocks, n_exprs);
6207 transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
6210 /* Free vars used for code hoisting analysis. */
6212 static void
6213 free_code_hoist_mem ()
6215 sbitmap_vector_free (antloc);
6216 sbitmap_vector_free (transp);
6217 sbitmap_vector_free (comp);
6219 sbitmap_vector_free (hoist_vbein);
6220 sbitmap_vector_free (hoist_vbeout);
6221 sbitmap_vector_free (hoist_exprs);
6222 sbitmap_vector_free (transpout);
6224 free_dominance_info (dominators);
6227 /* Compute the very busy expressions at entry/exit from each block.
6229 An expression is very busy if all paths from a given point
6230 compute the expression. */
6232 static void
6233 compute_code_hoist_vbeinout ()
6235 int changed, passes;
6236 basic_block bb;
6238 sbitmap_vector_zero (hoist_vbeout, last_basic_block);
6239 sbitmap_vector_zero (hoist_vbein, last_basic_block);
6241 passes = 0;
6242 changed = 1;
6244 while (changed)
6246 changed = 0;
6248 /* We scan the blocks in the reverse order to speed up
6249 the convergence. */
6250 FOR_EACH_BB_REVERSE (bb)
6252 changed |= sbitmap_a_or_b_and_c_cg (hoist_vbein[bb->index], antloc[bb->index],
6253 hoist_vbeout[bb->index], transp[bb->index]);
6254 if (bb->next_bb != EXIT_BLOCK_PTR)
6255 sbitmap_intersection_of_succs (hoist_vbeout[bb->index], hoist_vbein, bb->index);
6258 passes++;
6261 if (gcse_file)
6262 fprintf (gcse_file, "hoisting vbeinout computation: %d passes\n", passes);
6265 /* Top level routine to do the dataflow analysis needed by code hoisting. */
6267 static void
6268 compute_code_hoist_data ()
6270 compute_local_properties (transp, comp, antloc, &expr_hash_table);
6271 compute_transpout ();
6272 compute_code_hoist_vbeinout ();
6273 dominators = calculate_dominance_info (CDI_DOMINATORS);
6274 if (gcse_file)
6275 fprintf (gcse_file, "\n");
6278 /* Determine if the expression identified by EXPR_INDEX would
6279 reach BB unimpared if it was placed at the end of EXPR_BB.
6281 It's unclear exactly what Muchnick meant by "unimpared". It seems
6282 to me that the expression must either be computed or transparent in
6283 *every* block in the path(s) from EXPR_BB to BB. Any other definition
6284 would allow the expression to be hoisted out of loops, even if
6285 the expression wasn't a loop invariant.
6287 Contrast this to reachability for PRE where an expression is
6288 considered reachable if *any* path reaches instead of *all*
6289 paths. */
6291 static int
6292 hoist_expr_reaches_here_p (expr_bb, expr_index, bb, visited)
6293 basic_block expr_bb;
6294 int expr_index;
6295 basic_block bb;
6296 char *visited;
6298 edge pred;
6299 int visited_allocated_locally = 0;
6302 if (visited == NULL)
6304 visited_allocated_locally = 1;
6305 visited = xcalloc (last_basic_block, 1);
6308 for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
6310 basic_block pred_bb = pred->src;
6312 if (pred->src == ENTRY_BLOCK_PTR)
6313 break;
6314 else if (pred_bb == expr_bb)
6315 continue;
6316 else if (visited[pred_bb->index])
6317 continue;
6319 /* Does this predecessor generate this expression? */
6320 else if (TEST_BIT (comp[pred_bb->index], expr_index))
6321 break;
6322 else if (! TEST_BIT (transp[pred_bb->index], expr_index))
6323 break;
6325 /* Not killed. */
6326 else
6328 visited[pred_bb->index] = 1;
6329 if (! hoist_expr_reaches_here_p (expr_bb, expr_index,
6330 pred_bb, visited))
6331 break;
6334 if (visited_allocated_locally)
6335 free (visited);
6337 return (pred == NULL);
6340 /* Actually perform code hoisting. */
6342 static void
6343 hoist_code ()
6345 basic_block bb, dominated;
6346 basic_block *domby;
6347 unsigned int domby_len;
6348 unsigned int i,j;
6349 struct expr **index_map;
6350 struct expr *expr;
6352 sbitmap_vector_zero (hoist_exprs, last_basic_block);
6354 /* Compute a mapping from expression number (`bitmap_index') to
6355 hash table entry. */
6357 index_map = (struct expr **) xcalloc (expr_hash_table.n_elems, sizeof (struct expr *));
6358 for (i = 0; i < expr_hash_table.size; i++)
6359 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
6360 index_map[expr->bitmap_index] = expr;
6362 /* Walk over each basic block looking for potentially hoistable
6363 expressions, nothing gets hoisted from the entry block. */
6364 FOR_EACH_BB (bb)
6366 int found = 0;
6367 int insn_inserted_p;
6369 domby_len = get_dominated_by (dominators, bb, &domby);
6370 /* Examine each expression that is very busy at the exit of this
6371 block. These are the potentially hoistable expressions. */
6372 for (i = 0; i < hoist_vbeout[bb->index]->n_bits; i++)
6374 int hoistable = 0;
6376 if (TEST_BIT (hoist_vbeout[bb->index], i)
6377 && TEST_BIT (transpout[bb->index], i))
6379 /* We've found a potentially hoistable expression, now
6380 we look at every block BB dominates to see if it
6381 computes the expression. */
6382 for (j = 0; j < domby_len; j++)
6384 dominated = domby[j];
6385 /* Ignore self dominance. */
6386 if (bb == dominated)
6387 continue;
6388 /* We've found a dominated block, now see if it computes
6389 the busy expression and whether or not moving that
6390 expression to the "beginning" of that block is safe. */
6391 if (!TEST_BIT (antloc[dominated->index], i))
6392 continue;
6394 /* Note if the expression would reach the dominated block
6395 unimpared if it was placed at the end of BB.
6397 Keep track of how many times this expression is hoistable
6398 from a dominated block into BB. */
6399 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
6400 hoistable++;
6403 /* If we found more than one hoistable occurrence of this
6404 expression, then note it in the bitmap of expressions to
6405 hoist. It makes no sense to hoist things which are computed
6406 in only one BB, and doing so tends to pessimize register
6407 allocation. One could increase this value to try harder
6408 to avoid any possible code expansion due to register
6409 allocation issues; however experiments have shown that
6410 the vast majority of hoistable expressions are only movable
6411 from two successors, so raising this threshhold is likely
6412 to nullify any benefit we get from code hoisting. */
6413 if (hoistable > 1)
6415 SET_BIT (hoist_exprs[bb->index], i);
6416 found = 1;
6420 /* If we found nothing to hoist, then quit now. */
6421 if (! found)
6423 free (domby);
6424 continue;
6427 /* Loop over all the hoistable expressions. */
6428 for (i = 0; i < hoist_exprs[bb->index]->n_bits; i++)
6430 /* We want to insert the expression into BB only once, so
6431 note when we've inserted it. */
6432 insn_inserted_p = 0;
6434 /* These tests should be the same as the tests above. */
6435 if (TEST_BIT (hoist_vbeout[bb->index], i))
6437 /* We've found a potentially hoistable expression, now
6438 we look at every block BB dominates to see if it
6439 computes the expression. */
6440 for (j = 0; j < domby_len; j++)
6442 dominated = domby[j];
6443 /* Ignore self dominance. */
6444 if (bb == dominated)
6445 continue;
6447 /* We've found a dominated block, now see if it computes
6448 the busy expression and whether or not moving that
6449 expression to the "beginning" of that block is safe. */
6450 if (!TEST_BIT (antloc[dominated->index], i))
6451 continue;
6453 /* The expression is computed in the dominated block and
6454 it would be safe to compute it at the start of the
6455 dominated block. Now we have to determine if the
6456 expression would reach the dominated block if it was
6457 placed at the end of BB. */
6458 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
6460 struct expr *expr = index_map[i];
6461 struct occr *occr = expr->antic_occr;
6462 rtx insn;
6463 rtx set;
6465 /* Find the right occurrence of this expression. */
6466 while (BLOCK_FOR_INSN (occr->insn) != dominated && occr)
6467 occr = occr->next;
6469 /* Should never happen. */
6470 if (!occr)
6471 abort ();
6473 insn = occr->insn;
6475 set = single_set (insn);
6476 if (! set)
6477 abort ();
6479 /* Create a pseudo-reg to store the result of reaching
6480 expressions into. Get the mode for the new pseudo
6481 from the mode of the original destination pseudo. */
6482 if (expr->reaching_reg == NULL)
6483 expr->reaching_reg
6484 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
6486 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
6487 delete_insn (insn);
6488 occr->deleted_p = 1;
6489 if (!insn_inserted_p)
6491 insert_insn_end_bb (index_map[i], bb, 0);
6492 insn_inserted_p = 1;
6498 free (domby);
6501 free (index_map);
6504 /* Top level routine to perform one code hoisting (aka unification) pass
6506 Return nonzero if a change was made. */
6508 static int
6509 one_code_hoisting_pass ()
6511 int changed = 0;
6513 alloc_hash_table (max_cuid, &expr_hash_table, 0);
6514 compute_hash_table (&expr_hash_table);
6515 if (gcse_file)
6516 dump_hash_table (gcse_file, "Code Hosting Expressions", &expr_hash_table);
6518 if (expr_hash_table.n_elems > 0)
6520 alloc_code_hoist_mem (last_basic_block, expr_hash_table.n_elems);
6521 compute_code_hoist_data ();
6522 hoist_code ();
6523 free_code_hoist_mem ();
6526 free_hash_table (&expr_hash_table);
6528 return changed;
6531 /* Here we provide the things required to do store motion towards
6532 the exit. In order for this to be effective, gcse also needed to
6533 be taught how to move a load when it is kill only by a store to itself.
6535 int i;
6536 float a[10];
6538 void foo(float scale)
6540 for (i=0; i<10; i++)
6541 a[i] *= scale;
6544 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
6545 the load out since its live around the loop, and stored at the bottom
6546 of the loop.
6548 The 'Load Motion' referred to and implemented in this file is
6549 an enhancement to gcse which when using edge based lcm, recognizes
6550 this situation and allows gcse to move the load out of the loop.
6552 Once gcse has hoisted the load, store motion can then push this
6553 load towards the exit, and we end up with no loads or stores of 'i'
6554 in the loop. */
6556 /* This will search the ldst list for a matching expression. If it
6557 doesn't find one, we create one and initialize it. */
6559 static struct ls_expr *
6560 ldst_entry (x)
6561 rtx x;
6563 struct ls_expr * ptr;
6565 for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr))
6566 if (expr_equiv_p (ptr->pattern, x))
6567 break;
6569 if (!ptr)
6571 ptr = (struct ls_expr *) xmalloc (sizeof (struct ls_expr));
6573 ptr->next = pre_ldst_mems;
6574 ptr->expr = NULL;
6575 ptr->pattern = x;
6576 ptr->pattern_regs = NULL_RTX;
6577 ptr->loads = NULL_RTX;
6578 ptr->stores = NULL_RTX;
6579 ptr->reaching_reg = NULL_RTX;
6580 ptr->invalid = 0;
6581 ptr->index = 0;
6582 ptr->hash_index = 0;
6583 pre_ldst_mems = ptr;
6586 return ptr;
6589 /* Free up an individual ldst entry. */
6591 static void
6592 free_ldst_entry (ptr)
6593 struct ls_expr * ptr;
6595 free_INSN_LIST_list (& ptr->loads);
6596 free_INSN_LIST_list (& ptr->stores);
6598 free (ptr);
6601 /* Free up all memory associated with the ldst list. */
6603 static void
6604 free_ldst_mems ()
6606 while (pre_ldst_mems)
6608 struct ls_expr * tmp = pre_ldst_mems;
6610 pre_ldst_mems = pre_ldst_mems->next;
6612 free_ldst_entry (tmp);
6615 pre_ldst_mems = NULL;
6618 /* Dump debugging info about the ldst list. */
6620 static void
6621 print_ldst_list (file)
6622 FILE * file;
6624 struct ls_expr * ptr;
6626 fprintf (file, "LDST list: \n");
6628 for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr))
6630 fprintf (file, " Pattern (%3d): ", ptr->index);
6632 print_rtl (file, ptr->pattern);
6634 fprintf (file, "\n Loads : ");
6636 if (ptr->loads)
6637 print_rtl (file, ptr->loads);
6638 else
6639 fprintf (file, "(nil)");
6641 fprintf (file, "\n Stores : ");
6643 if (ptr->stores)
6644 print_rtl (file, ptr->stores);
6645 else
6646 fprintf (file, "(nil)");
6648 fprintf (file, "\n\n");
6651 fprintf (file, "\n");
6654 /* Returns 1 if X is in the list of ldst only expressions. */
6656 static struct ls_expr *
6657 find_rtx_in_ldst (x)
6658 rtx x;
6660 struct ls_expr * ptr;
6662 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
6663 if (expr_equiv_p (ptr->pattern, x) && ! ptr->invalid)
6664 return ptr;
6666 return NULL;
6669 /* Assign each element of the list of mems a monotonically increasing value. */
6671 static int
6672 enumerate_ldsts ()
6674 struct ls_expr * ptr;
6675 int n = 0;
6677 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
6678 ptr->index = n++;
6680 return n;
6683 /* Return first item in the list. */
6685 static inline struct ls_expr *
6686 first_ls_expr ()
6688 return pre_ldst_mems;
6691 /* Return the next item in ther list after the specified one. */
6693 static inline struct ls_expr *
6694 next_ls_expr (ptr)
6695 struct ls_expr * ptr;
6697 return ptr->next;
6700 /* Load Motion for loads which only kill themselves. */
6702 /* Return true if x is a simple MEM operation, with no registers or
6703 side effects. These are the types of loads we consider for the
6704 ld_motion list, otherwise we let the usual aliasing take care of it. */
6706 static int
6707 simple_mem (x)
6708 rtx x;
6710 if (GET_CODE (x) != MEM)
6711 return 0;
6713 if (MEM_VOLATILE_P (x))
6714 return 0;
6716 if (GET_MODE (x) == BLKmode)
6717 return 0;
6719 /* If we are handling exceptions, we must be careful with memory references
6720 that may trap. If we are not, the behavior is undefined, so we may just
6721 continue. */
6722 if (flag_non_call_exceptions && may_trap_p (x))
6723 return 0;
6725 if (side_effects_p (x))
6726 return 0;
6728 /* Do not consider function arguments passed on stack. */
6729 if (reg_mentioned_p (stack_pointer_rtx, x))
6730 return 0;
6732 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
6733 return 0;
6735 return 1;
6738 /* Make sure there isn't a buried reference in this pattern anywhere.
6739 If there is, invalidate the entry for it since we're not capable
6740 of fixing it up just yet.. We have to be sure we know about ALL
6741 loads since the aliasing code will allow all entries in the
6742 ld_motion list to not-alias itself. If we miss a load, we will get
6743 the wrong value since gcse might common it and we won't know to
6744 fix it up. */
6746 static void
6747 invalidate_any_buried_refs (x)
6748 rtx x;
6750 const char * fmt;
6751 int i, j;
6752 struct ls_expr * ptr;
6754 /* Invalidate it in the list. */
6755 if (GET_CODE (x) == MEM && simple_mem (x))
6757 ptr = ldst_entry (x);
6758 ptr->invalid = 1;
6761 /* Recursively process the insn. */
6762 fmt = GET_RTX_FORMAT (GET_CODE (x));
6764 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6766 if (fmt[i] == 'e')
6767 invalidate_any_buried_refs (XEXP (x, i));
6768 else if (fmt[i] == 'E')
6769 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6770 invalidate_any_buried_refs (XVECEXP (x, i, j));
6774 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
6775 being defined as MEM loads and stores to symbols, with no
6776 side effects and no registers in the expression. If there are any
6777 uses/defs which don't match this criteria, it is invalidated and
6778 trimmed out later. */
6780 static void
6781 compute_ld_motion_mems ()
6783 struct ls_expr * ptr;
6784 basic_block bb;
6785 rtx insn;
6787 pre_ldst_mems = NULL;
6789 FOR_EACH_BB (bb)
6791 for (insn = bb->head;
6792 insn && insn != NEXT_INSN (bb->end);
6793 insn = NEXT_INSN (insn))
6795 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
6797 if (GET_CODE (PATTERN (insn)) == SET)
6799 rtx src = SET_SRC (PATTERN (insn));
6800 rtx dest = SET_DEST (PATTERN (insn));
6802 /* Check for a simple LOAD... */
6803 if (GET_CODE (src) == MEM && simple_mem (src))
6805 ptr = ldst_entry (src);
6806 if (GET_CODE (dest) == REG)
6807 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
6808 else
6809 ptr->invalid = 1;
6811 else
6813 /* Make sure there isn't a buried load somewhere. */
6814 invalidate_any_buried_refs (src);
6817 /* Check for stores. Don't worry about aliased ones, they
6818 will block any movement we might do later. We only care
6819 about this exact pattern since those are the only
6820 circumstance that we will ignore the aliasing info. */
6821 if (GET_CODE (dest) == MEM && simple_mem (dest))
6823 ptr = ldst_entry (dest);
6825 if (GET_CODE (src) != MEM
6826 && GET_CODE (src) != ASM_OPERANDS)
6827 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
6828 else
6829 ptr->invalid = 1;
6832 else
6833 invalidate_any_buried_refs (PATTERN (insn));
6839 /* Remove any references that have been either invalidated or are not in the
6840 expression list for pre gcse. */
6842 static void
6843 trim_ld_motion_mems ()
6845 struct ls_expr * last = NULL;
6846 struct ls_expr * ptr = first_ls_expr ();
6848 while (ptr != NULL)
6850 int del = ptr->invalid;
6851 struct expr * expr = NULL;
6853 /* Delete if entry has been made invalid. */
6854 if (!del)
6856 unsigned int i;
6858 del = 1;
6859 /* Delete if we cannot find this mem in the expression list. */
6860 for (i = 0; i < expr_hash_table.size && del; i++)
6862 for (expr = expr_hash_table.table[i];
6863 expr != NULL;
6864 expr = expr->next_same_hash)
6865 if (expr_equiv_p (expr->expr, ptr->pattern))
6867 del = 0;
6868 break;
6873 if (del)
6875 if (last != NULL)
6877 last->next = ptr->next;
6878 free_ldst_entry (ptr);
6879 ptr = last->next;
6881 else
6883 pre_ldst_mems = pre_ldst_mems->next;
6884 free_ldst_entry (ptr);
6885 ptr = pre_ldst_mems;
6888 else
6890 /* Set the expression field if we are keeping it. */
6891 last = ptr;
6892 ptr->expr = expr;
6893 ptr = ptr->next;
6897 /* Show the world what we've found. */
6898 if (gcse_file && pre_ldst_mems != NULL)
6899 print_ldst_list (gcse_file);
6902 /* This routine will take an expression which we are replacing with
6903 a reaching register, and update any stores that are needed if
6904 that expression is in the ld_motion list. Stores are updated by
6905 copying their SRC to the reaching register, and then storeing
6906 the reaching register into the store location. These keeps the
6907 correct value in the reaching register for the loads. */
6909 static void
6910 update_ld_motion_stores (expr)
6911 struct expr * expr;
6913 struct ls_expr * mem_ptr;
6915 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
6917 /* We can try to find just the REACHED stores, but is shouldn't
6918 matter to set the reaching reg everywhere... some might be
6919 dead and should be eliminated later. */
6921 /* We replace SET mem = expr with
6922 SET reg = expr
6923 SET mem = reg , where reg is the
6924 reaching reg used in the load. */
6925 rtx list = mem_ptr->stores;
6927 for ( ; list != NULL_RTX; list = XEXP (list, 1))
6929 rtx insn = XEXP (list, 0);
6930 rtx pat = PATTERN (insn);
6931 rtx src = SET_SRC (pat);
6932 rtx reg = expr->reaching_reg;
6933 rtx copy, new;
6935 /* If we've already copied it, continue. */
6936 if (expr->reaching_reg == src)
6937 continue;
6939 if (gcse_file)
6941 fprintf (gcse_file, "PRE: store updated with reaching reg ");
6942 print_rtl (gcse_file, expr->reaching_reg);
6943 fprintf (gcse_file, ":\n ");
6944 print_inline_rtx (gcse_file, insn, 8);
6945 fprintf (gcse_file, "\n");
6948 copy = gen_move_insn ( reg, copy_rtx (SET_SRC (pat)));
6949 new = emit_insn_before (copy, insn);
6950 record_one_set (REGNO (reg), new);
6951 SET_SRC (pat) = reg;
6953 /* un-recognize this pattern since it's probably different now. */
6954 INSN_CODE (insn) = -1;
6955 gcse_create_count++;
6960 /* Store motion code. */
6962 #define ANTIC_STORE_LIST(x) ((x)->loads)
6963 #define AVAIL_STORE_LIST(x) ((x)->stores)
6964 #define LAST_AVAIL_CHECK_FAILURE(x) ((x)->reaching_reg)
6966 /* This is used to communicate the target bitvector we want to use in the
6967 reg_set_info routine when called via the note_stores mechanism. */
6968 static int * regvec;
6970 /* And current insn, for the same routine. */
6971 static rtx compute_store_table_current_insn;
6973 /* Used in computing the reverse edge graph bit vectors. */
6974 static sbitmap * st_antloc;
6976 /* Global holding the number of store expressions we are dealing with. */
6977 static int num_stores;
6979 /* Checks to set if we need to mark a register set. Called from note_stores. */
6981 static void
6982 reg_set_info (dest, setter, data)
6983 rtx dest, setter ATTRIBUTE_UNUSED;
6984 void * data ATTRIBUTE_UNUSED;
6986 if (GET_CODE (dest) == SUBREG)
6987 dest = SUBREG_REG (dest);
6989 if (GET_CODE (dest) == REG)
6990 regvec[REGNO (dest)] = INSN_UID (compute_store_table_current_insn);
6993 /* Return zero if some of the registers in list X are killed
6994 due to set of registers in bitmap REGS_SET. */
6996 static bool
6997 store_ops_ok (x, regs_set)
6998 rtx x;
6999 int *regs_set;
7001 rtx reg;
7003 for (; x; x = XEXP (x, 1))
7005 reg = XEXP (x, 0);
7006 if (regs_set[REGNO(reg)])
7007 return false;
7010 return true;
7013 /* Returns a list of registers mentioned in X. */
7014 static rtx
7015 extract_mentioned_regs (x)
7016 rtx x;
7018 return extract_mentioned_regs_helper (x, NULL_RTX);
7021 /* Helper for extract_mentioned_regs; ACCUM is used to accumulate used
7022 registers. */
7023 static rtx
7024 extract_mentioned_regs_helper (x, accum)
7025 rtx x;
7026 rtx accum;
7028 int i;
7029 enum rtx_code code;
7030 const char * fmt;
7032 /* Repeat is used to turn tail-recursion into iteration. */
7033 repeat:
7035 if (x == 0)
7036 return accum;
7038 code = GET_CODE (x);
7039 switch (code)
7041 case REG:
7042 return alloc_EXPR_LIST (0, x, accum);
7044 case MEM:
7045 x = XEXP (x, 0);
7046 goto repeat;
7048 case PRE_DEC:
7049 case PRE_INC:
7050 case POST_DEC:
7051 case POST_INC:
7052 /* We do not run this function with arguments having side effects. */
7053 abort ();
7055 case PC:
7056 case CC0: /*FIXME*/
7057 case CONST:
7058 case CONST_INT:
7059 case CONST_DOUBLE:
7060 case CONST_VECTOR:
7061 case SYMBOL_REF:
7062 case LABEL_REF:
7063 case ADDR_VEC:
7064 case ADDR_DIFF_VEC:
7065 return accum;
7067 default:
7068 break;
7071 i = GET_RTX_LENGTH (code) - 1;
7072 fmt = GET_RTX_FORMAT (code);
7074 for (; i >= 0; i--)
7076 if (fmt[i] == 'e')
7078 rtx tem = XEXP (x, i);
7080 /* If we are about to do the last recursive call
7081 needed at this level, change it into iteration. */
7082 if (i == 0)
7084 x = tem;
7085 goto repeat;
7088 accum = extract_mentioned_regs_helper (tem, accum);
7090 else if (fmt[i] == 'E')
7092 int j;
7094 for (j = 0; j < XVECLEN (x, i); j++)
7095 accum = extract_mentioned_regs_helper (XVECEXP (x, i, j), accum);
7099 return accum;
7102 /* Determine whether INSN is MEM store pattern that we will consider moving.
7103 REGS_SET_BEFORE is bitmap of registers set before (and including) the
7104 current insn, REGS_SET_AFTER is bitmap of registers set after (and
7105 including) the insn in this basic block. We must be passing through BB from
7106 head to end, as we are using this fact to speed things up.
7108 The results are stored this way:
7110 -- the first anticipatable expression is added into ANTIC_STORE_LIST
7111 -- if the processed expression is not anticipatable, NULL_RTX is added
7112 there instead, so that we can use it as indicator that no further
7113 expression of this type may be anticipatable
7114 -- if the expression is available, it is added as head of AVAIL_STORE_LIST;
7115 consequently, all of them but this head are dead and may be deleted.
7116 -- if the expression is not available, the insn due to that it fails to be
7117 available is stored in reaching_reg.
7119 The things are complicated a bit by fact that there already may be stores
7120 to the same MEM from other blocks; also caller must take care of the
7121 neccessary cleanup of the temporary markers after end of the basic block.
7124 static void
7125 find_moveable_store (insn, regs_set_before, regs_set_after)
7126 rtx insn;
7127 int *regs_set_before;
7128 int *regs_set_after;
7130 struct ls_expr * ptr;
7131 rtx dest, set, tmp;
7132 int check_anticipatable, check_available;
7133 basic_block bb = BLOCK_FOR_INSN (insn);
7135 set = single_set (insn);
7136 if (!set)
7137 return;
7139 dest = SET_DEST (set);
7141 if (GET_CODE (dest) != MEM || MEM_VOLATILE_P (dest)
7142 || GET_MODE (dest) == BLKmode)
7143 return;
7145 if (side_effects_p (dest))
7146 return;
7148 /* If we are handling exceptions, we must be careful with memory references
7149 that may trap. If we are not, the behavior is undefined, so we may just
7150 continue. */
7151 if (flag_non_call_exceptions && may_trap_p (dest))
7152 return;
7154 ptr = ldst_entry (dest);
7155 if (!ptr->pattern_regs)
7156 ptr->pattern_regs = extract_mentioned_regs (dest);
7158 /* Do not check for anticipatability if we either found one anticipatable
7159 store already, or tested for one and found out that it was killed. */
7160 check_anticipatable = 0;
7161 if (!ANTIC_STORE_LIST (ptr))
7162 check_anticipatable = 1;
7163 else
7165 tmp = XEXP (ANTIC_STORE_LIST (ptr), 0);
7166 if (tmp != NULL_RTX
7167 && BLOCK_FOR_INSN (tmp) != bb)
7168 check_anticipatable = 1;
7170 if (check_anticipatable)
7172 if (store_killed_before (dest, ptr->pattern_regs, insn, bb, regs_set_before))
7173 tmp = NULL_RTX;
7174 else
7175 tmp = insn;
7176 ANTIC_STORE_LIST (ptr) = alloc_INSN_LIST (tmp,
7177 ANTIC_STORE_LIST (ptr));
7180 /* It is not neccessary to check whether store is available if we did
7181 it successfully before; if we failed before, do not bother to check
7182 until we reach the insn that caused us to fail. */
7183 check_available = 0;
7184 if (!AVAIL_STORE_LIST (ptr))
7185 check_available = 1;
7186 else
7188 tmp = XEXP (AVAIL_STORE_LIST (ptr), 0);
7189 if (BLOCK_FOR_INSN (tmp) != bb)
7190 check_available = 1;
7192 if (check_available)
7194 /* Check that we have already reached the insn at that the check
7195 failed last time. */
7196 if (LAST_AVAIL_CHECK_FAILURE (ptr))
7198 for (tmp = bb->end;
7199 tmp != insn && tmp != LAST_AVAIL_CHECK_FAILURE (ptr);
7200 tmp = PREV_INSN (tmp))
7201 continue;
7202 if (tmp == insn)
7203 check_available = 0;
7205 else
7206 check_available = store_killed_after (dest, ptr->pattern_regs, insn,
7207 bb, regs_set_after,
7208 &LAST_AVAIL_CHECK_FAILURE (ptr));
7210 if (!check_available)
7211 AVAIL_STORE_LIST (ptr) = alloc_INSN_LIST (insn, AVAIL_STORE_LIST (ptr));
7214 /* Find available and anticipatable stores. */
7216 static int
7217 compute_store_table ()
7219 int ret;
7220 basic_block bb;
7221 unsigned regno;
7222 rtx insn, pat, tmp;
7223 int *last_set_in, *already_set;
7224 struct ls_expr * ptr, **prev_next_ptr_ptr;
7226 max_gcse_regno = max_reg_num ();
7228 reg_set_in_block = (sbitmap *) sbitmap_vector_alloc (last_basic_block,
7229 max_gcse_regno);
7230 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
7231 pre_ldst_mems = 0;
7232 last_set_in = xmalloc (sizeof (int) * max_gcse_regno);
7233 already_set = xmalloc (sizeof (int) * max_gcse_regno);
7235 /* Find all the stores we care about. */
7236 FOR_EACH_BB (bb)
7238 /* First compute the registers set in this block. */
7239 memset (last_set_in, 0, sizeof (int) * max_gcse_regno);
7240 regvec = last_set_in;
7242 for (insn = bb->head;
7243 insn != NEXT_INSN (bb->end);
7244 insn = NEXT_INSN (insn))
7246 if (! INSN_P (insn))
7247 continue;
7249 if (GET_CODE (insn) == CALL_INSN)
7251 bool clobbers_all = false;
7252 #ifdef NON_SAVING_SETJMP
7253 if (NON_SAVING_SETJMP
7254 && find_reg_note (insn, REG_SETJMP, NULL_RTX))
7255 clobbers_all = true;
7256 #endif
7258 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
7259 if (clobbers_all
7260 || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
7261 last_set_in[regno] = INSN_UID (insn);
7264 pat = PATTERN (insn);
7265 compute_store_table_current_insn = insn;
7266 note_stores (pat, reg_set_info, NULL);
7269 /* Record the set registers. */
7270 for (regno = 0; regno < max_gcse_regno; regno++)
7271 if (last_set_in[regno])
7272 SET_BIT (reg_set_in_block[bb->index], regno);
7274 /* Now find the stores. */
7275 memset (already_set, 0, sizeof (int) * max_gcse_regno);
7276 regvec = already_set;
7277 for (insn = bb->head;
7278 insn != NEXT_INSN (bb->end);
7279 insn = NEXT_INSN (insn))
7281 if (! INSN_P (insn))
7282 continue;
7284 if (GET_CODE (insn) == CALL_INSN)
7286 bool clobbers_all = false;
7287 #ifdef NON_SAVING_SETJMP
7288 if (NON_SAVING_SETJMP
7289 && find_reg_note (insn, REG_SETJMP, NULL_RTX))
7290 clobbers_all = true;
7291 #endif
7293 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
7294 if (clobbers_all
7295 || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
7296 already_set[regno] = 1;
7299 pat = PATTERN (insn);
7300 note_stores (pat, reg_set_info, NULL);
7302 /* Now that we've marked regs, look for stores. */
7303 find_moveable_store (insn, already_set, last_set_in);
7305 /* Unmark regs that are no longer set. */
7306 for (regno = 0; regno < max_gcse_regno; regno++)
7307 if (last_set_in[regno] == INSN_UID (insn))
7308 last_set_in[regno] = 0;
7311 /* Clear temporary marks. */
7312 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
7314 LAST_AVAIL_CHECK_FAILURE(ptr) = NULL_RTX;
7315 if (ANTIC_STORE_LIST (ptr)
7316 && (tmp = XEXP (ANTIC_STORE_LIST (ptr), 0)) == NULL_RTX)
7317 ANTIC_STORE_LIST (ptr) = XEXP (ANTIC_STORE_LIST (ptr), 1);
7321 /* Remove the stores that are not available anywhere, as there will
7322 be no opportunity to optimize them. */
7323 for (ptr = pre_ldst_mems, prev_next_ptr_ptr = &pre_ldst_mems;
7324 ptr != NULL;
7325 ptr = *prev_next_ptr_ptr)
7327 if (!AVAIL_STORE_LIST (ptr))
7329 *prev_next_ptr_ptr = ptr->next;
7330 free_ldst_entry (ptr);
7332 else
7333 prev_next_ptr_ptr = &ptr->next;
7336 ret = enumerate_ldsts ();
7338 if (gcse_file)
7340 fprintf (gcse_file, "ST_avail and ST_antic (shown under loads..)\n");
7341 print_ldst_list (gcse_file);
7344 free (last_set_in);
7345 free (already_set);
7346 return ret;
7349 /* Check to see if the load X is aliased with STORE_PATTERN. */
7351 static bool
7352 load_kills_store (x, store_pattern)
7353 rtx x, store_pattern;
7355 if (true_dependence (x, GET_MODE (x), store_pattern, rtx_addr_varies_p))
7356 return true;
7357 return false;
7360 /* Go through the entire insn X, looking for any loads which might alias
7361 STORE_PATTERN. Return true if found. */
7363 static bool
7364 find_loads (x, store_pattern)
7365 rtx x, store_pattern;
7367 const char * fmt;
7368 int i, j;
7369 int ret = false;
7371 if (!x)
7372 return false;
7374 if (GET_CODE (x) == SET)
7375 x = SET_SRC (x);
7377 if (GET_CODE (x) == MEM)
7379 if (load_kills_store (x, store_pattern))
7380 return true;
7383 /* Recursively process the insn. */
7384 fmt = GET_RTX_FORMAT (GET_CODE (x));
7386 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0 && !ret; i--)
7388 if (fmt[i] == 'e')
7389 ret |= find_loads (XEXP (x, i), store_pattern);
7390 else if (fmt[i] == 'E')
7391 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7392 ret |= find_loads (XVECEXP (x, i, j), store_pattern);
7394 return ret;
7397 /* Check if INSN kills the store pattern X (is aliased with it).
7398 Return true if it it does. */
7400 static bool
7401 store_killed_in_insn (x, x_regs, insn)
7402 rtx x, x_regs, insn;
7404 rtx reg, base;
7406 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
7407 return false;
7409 if (GET_CODE (insn) == CALL_INSN)
7411 /* A normal or pure call might read from pattern,
7412 but a const call will not. */
7413 if (! CONST_OR_PURE_CALL_P (insn) || pure_call_p (insn))
7414 return true;
7416 /* But even a const call reads its parameters. Check whether the
7417 base of some of registers used in mem is stack pointer. */
7418 for (reg = x_regs; reg; reg = XEXP (reg, 1))
7420 base = find_base_term (reg);
7421 if (!base
7422 || (GET_CODE (base) == ADDRESS
7423 && GET_MODE (base) == Pmode
7424 && XEXP (base, 0) == stack_pointer_rtx))
7425 return true;
7428 return false;
7431 if (GET_CODE (PATTERN (insn)) == SET)
7433 rtx pat = PATTERN (insn);
7434 /* Check for memory stores to aliased objects. */
7435 if (GET_CODE (SET_DEST (pat)) == MEM && !expr_equiv_p (SET_DEST (pat), x))
7436 /* pretend its a load and check for aliasing. */
7437 if (find_loads (SET_DEST (pat), x))
7438 return true;
7439 return find_loads (SET_SRC (pat), x);
7441 else
7442 return find_loads (PATTERN (insn), x);
7445 /* Returns true if the expression X is loaded or clobbered on or after INSN
7446 within basic block BB. REGS_SET_AFTER is bitmap of registers set in
7447 or after the insn. X_REGS is list of registers mentioned in X. If the store
7448 is killed, return the last insn in that it occurs in FAIL_INSN. */
7450 static bool
7451 store_killed_after (x, x_regs, insn, bb, regs_set_after, fail_insn)
7452 rtx x, x_regs, insn;
7453 basic_block bb;
7454 int *regs_set_after;
7455 rtx *fail_insn;
7457 rtx last = bb->end, act;
7459 if (!store_ops_ok (x_regs, regs_set_after))
7461 /* We do not know where it will happen. */
7462 if (fail_insn)
7463 *fail_insn = NULL_RTX;
7464 return true;
7467 /* Scan from the end, so that fail_insn is determined correctly. */
7468 for (act = last; act != PREV_INSN (insn); act = PREV_INSN (act))
7469 if (store_killed_in_insn (x, x_regs, act))
7471 if (fail_insn)
7472 *fail_insn = act;
7473 return true;
7476 return false;
7479 /* Returns true if the expression X is loaded or clobbered on or before INSN
7480 within basic block BB. X_REGS is list of registers mentioned in X.
7481 REGS_SET_BEFORE is bitmap of registers set before or in this insn. */
7482 static bool
7483 store_killed_before (x, x_regs, insn, bb, regs_set_before)
7484 rtx x, x_regs, insn;
7485 basic_block bb;
7486 int *regs_set_before;
7488 rtx first = bb->head;
7490 if (!store_ops_ok (x_regs, regs_set_before))
7491 return true;
7493 for ( ; insn != PREV_INSN (first); insn = PREV_INSN (insn))
7494 if (store_killed_in_insn (x, x_regs, insn))
7495 return true;
7497 return false;
7500 /* Fill in available, anticipatable, transparent and kill vectors in
7501 STORE_DATA, based on lists of available and anticipatable stores. */
7502 static void
7503 build_store_vectors ()
7505 basic_block bb;
7506 int *regs_set_in_block;
7507 rtx insn, st;
7508 struct ls_expr * ptr;
7509 unsigned regno;
7511 /* Build the gen_vector. This is any store in the table which is not killed
7512 by aliasing later in its block. */
7513 ae_gen = (sbitmap *) sbitmap_vector_alloc (last_basic_block, num_stores);
7514 sbitmap_vector_zero (ae_gen, last_basic_block);
7516 st_antloc = (sbitmap *) sbitmap_vector_alloc (last_basic_block, num_stores);
7517 sbitmap_vector_zero (st_antloc, last_basic_block);
7519 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
7521 for (st = AVAIL_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
7523 insn = XEXP (st, 0);
7524 bb = BLOCK_FOR_INSN (insn);
7526 /* If we've already seen an available expression in this block,
7527 we can delete this one (It occurs earlier in the block). We'll
7528 copy the SRC expression to an unused register in case there
7529 are any side effects. */
7530 if (TEST_BIT (ae_gen[bb->index], ptr->index))
7532 rtx r = gen_reg_rtx (GET_MODE (ptr->pattern));
7533 if (gcse_file)
7534 fprintf (gcse_file, "Removing redundant store:\n");
7535 replace_store_insn (r, XEXP (st, 0), bb);
7536 continue;
7538 SET_BIT (ae_gen[bb->index], ptr->index);
7541 for (st = ANTIC_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
7543 insn = XEXP (st, 0);
7544 bb = BLOCK_FOR_INSN (insn);
7545 SET_BIT (st_antloc[bb->index], ptr->index);
7549 ae_kill = (sbitmap *) sbitmap_vector_alloc (last_basic_block, num_stores);
7550 sbitmap_vector_zero (ae_kill, last_basic_block);
7552 transp = (sbitmap *) sbitmap_vector_alloc (last_basic_block, num_stores);
7553 sbitmap_vector_zero (transp, last_basic_block);
7554 regs_set_in_block = xmalloc (sizeof (int) * max_gcse_regno);
7556 FOR_EACH_BB (bb)
7558 for (regno = 0; regno < max_gcse_regno; regno++)
7559 regs_set_in_block[regno] = TEST_BIT (reg_set_in_block[bb->index], regno);
7561 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
7563 if (store_killed_after (ptr->pattern, ptr->pattern_regs, bb->head,
7564 bb, regs_set_in_block, NULL))
7566 /* It should not be neccessary to consider the expression
7567 killed if it is both anticipatable and available. */
7568 if (!TEST_BIT (st_antloc[bb->index], ptr->index)
7569 || !TEST_BIT (ae_gen[bb->index], ptr->index))
7570 SET_BIT (ae_kill[bb->index], ptr->index);
7572 else
7573 SET_BIT (transp[bb->index], ptr->index);
7577 free (regs_set_in_block);
7579 if (gcse_file)
7581 dump_sbitmap_vector (gcse_file, "st_antloc", "", st_antloc, last_basic_block);
7582 dump_sbitmap_vector (gcse_file, "st_kill", "", ae_kill, last_basic_block);
7583 dump_sbitmap_vector (gcse_file, "Transpt", "", transp, last_basic_block);
7584 dump_sbitmap_vector (gcse_file, "st_avloc", "", ae_gen, last_basic_block);
7588 /* Insert an instruction at the beginning of a basic block, and update
7589 the BLOCK_HEAD if needed. */
7591 static void
7592 insert_insn_start_bb (insn, bb)
7593 rtx insn;
7594 basic_block bb;
7596 /* Insert at start of successor block. */
7597 rtx prev = PREV_INSN (bb->head);
7598 rtx before = bb->head;
7599 while (before != 0)
7601 if (GET_CODE (before) != CODE_LABEL
7602 && (GET_CODE (before) != NOTE
7603 || NOTE_LINE_NUMBER (before) != NOTE_INSN_BASIC_BLOCK))
7604 break;
7605 prev = before;
7606 if (prev == bb->end)
7607 break;
7608 before = NEXT_INSN (before);
7611 insn = emit_insn_after (insn, prev);
7613 if (gcse_file)
7615 fprintf (gcse_file, "STORE_MOTION insert store at start of BB %d:\n",
7616 bb->index);
7617 print_inline_rtx (gcse_file, insn, 6);
7618 fprintf (gcse_file, "\n");
7622 /* This routine will insert a store on an edge. EXPR is the ldst entry for
7623 the memory reference, and E is the edge to insert it on. Returns nonzero
7624 if an edge insertion was performed. */
7626 static int
7627 insert_store (expr, e)
7628 struct ls_expr * expr;
7629 edge e;
7631 rtx reg, insn;
7632 basic_block bb;
7633 edge tmp;
7635 /* We did all the deleted before this insert, so if we didn't delete a
7636 store, then we haven't set the reaching reg yet either. */
7637 if (expr->reaching_reg == NULL_RTX)
7638 return 0;
7640 reg = expr->reaching_reg;
7641 insn = gen_move_insn (copy_rtx (expr->pattern), reg);
7643 /* If we are inserting this expression on ALL predecessor edges of a BB,
7644 insert it at the start of the BB, and reset the insert bits on the other
7645 edges so we don't try to insert it on the other edges. */
7646 bb = e->dest;
7647 for (tmp = e->dest->pred; tmp ; tmp = tmp->pred_next)
7649 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
7650 if (index == EDGE_INDEX_NO_EDGE)
7651 abort ();
7652 if (! TEST_BIT (pre_insert_map[index], expr->index))
7653 break;
7656 /* If tmp is NULL, we found an insertion on every edge, blank the
7657 insertion vector for these edges, and insert at the start of the BB. */
7658 if (!tmp && bb != EXIT_BLOCK_PTR)
7660 for (tmp = e->dest->pred; tmp ; tmp = tmp->pred_next)
7662 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
7663 RESET_BIT (pre_insert_map[index], expr->index);
7665 insert_insn_start_bb (insn, bb);
7666 return 0;
7669 /* We can't insert on this edge, so we'll insert at the head of the
7670 successors block. See Morgan, sec 10.5. */
7671 if ((e->flags & EDGE_ABNORMAL) == EDGE_ABNORMAL)
7673 insert_insn_start_bb (insn, bb);
7674 return 0;
7677 insert_insn_on_edge (insn, e);
7679 if (gcse_file)
7681 fprintf (gcse_file, "STORE_MOTION insert insn on edge (%d, %d):\n",
7682 e->src->index, e->dest->index);
7683 print_inline_rtx (gcse_file, insn, 6);
7684 fprintf (gcse_file, "\n");
7687 return 1;
7690 /* This routine will replace a store with a SET to a specified register. */
7692 static void
7693 replace_store_insn (reg, del, bb)
7694 rtx reg, del;
7695 basic_block bb;
7697 rtx insn;
7699 insn = gen_move_insn (reg, SET_SRC (single_set (del)));
7700 insn = emit_insn_after (insn, del);
7702 if (gcse_file)
7704 fprintf (gcse_file,
7705 "STORE_MOTION delete insn in BB %d:\n ", bb->index);
7706 print_inline_rtx (gcse_file, del, 6);
7707 fprintf (gcse_file, "\nSTORE MOTION replaced with insn:\n ");
7708 print_inline_rtx (gcse_file, insn, 6);
7709 fprintf (gcse_file, "\n");
7712 delete_insn (del);
7716 /* Delete a store, but copy the value that would have been stored into
7717 the reaching_reg for later storing. */
7719 static void
7720 delete_store (expr, bb)
7721 struct ls_expr * expr;
7722 basic_block bb;
7724 rtx reg, i, del;
7726 if (expr->reaching_reg == NULL_RTX)
7727 expr->reaching_reg = gen_reg_rtx (GET_MODE (expr->pattern));
7729 reg = expr->reaching_reg;
7731 for (i = AVAIL_STORE_LIST (expr); i; i = XEXP (i, 1))
7733 del = XEXP (i, 0);
7734 if (BLOCK_FOR_INSN (del) == bb)
7736 /* We know there is only one since we deleted redundant
7737 ones during the available computation. */
7738 replace_store_insn (reg, del, bb);
7739 break;
7744 /* Free memory used by store motion. */
7746 static void
7747 free_store_memory ()
7749 free_ldst_mems ();
7751 if (ae_gen)
7752 sbitmap_vector_free (ae_gen);
7753 if (ae_kill)
7754 sbitmap_vector_free (ae_kill);
7755 if (transp)
7756 sbitmap_vector_free (transp);
7757 if (st_antloc)
7758 sbitmap_vector_free (st_antloc);
7759 if (pre_insert_map)
7760 sbitmap_vector_free (pre_insert_map);
7761 if (pre_delete_map)
7762 sbitmap_vector_free (pre_delete_map);
7763 if (reg_set_in_block)
7764 sbitmap_vector_free (reg_set_in_block);
7766 ae_gen = ae_kill = transp = st_antloc = NULL;
7767 pre_insert_map = pre_delete_map = reg_set_in_block = NULL;
7770 /* Perform store motion. Much like gcse, except we move expressions the
7771 other way by looking at the flowgraph in reverse. */
7773 static void
7774 store_motion ()
7776 basic_block bb;
7777 int x;
7778 struct ls_expr * ptr;
7779 int update_flow = 0;
7781 if (gcse_file)
7783 fprintf (gcse_file, "before store motion\n");
7784 print_rtl (gcse_file, get_insns ());
7788 init_alias_analysis ();
7790 /* Find all the available and anticipatable stores. */
7791 num_stores = compute_store_table ();
7792 if (num_stores == 0)
7794 sbitmap_vector_free (reg_set_in_block);
7795 end_alias_analysis ();
7796 return;
7799 /* Now compute kill & transp vectors. */
7800 build_store_vectors ();
7801 add_noreturn_fake_exit_edges ();
7803 edge_list = pre_edge_rev_lcm (gcse_file, num_stores, transp, ae_gen,
7804 st_antloc, ae_kill, &pre_insert_map,
7805 &pre_delete_map);
7807 /* Now we want to insert the new stores which are going to be needed. */
7808 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
7810 FOR_EACH_BB (bb)
7811 if (TEST_BIT (pre_delete_map[bb->index], ptr->index))
7812 delete_store (ptr, bb);
7814 for (x = 0; x < NUM_EDGES (edge_list); x++)
7815 if (TEST_BIT (pre_insert_map[x], ptr->index))
7816 update_flow |= insert_store (ptr, INDEX_EDGE (edge_list, x));
7819 if (update_flow)
7820 commit_edge_insertions ();
7822 free_store_memory ();
7823 free_edge_list (edge_list);
7824 remove_fake_edges ();
7825 end_alias_analysis ();
7829 /* Entry point for jump bypassing optimization pass. */
7832 bypass_jumps (file)
7833 FILE *file;
7835 int changed;
7837 /* We do not construct an accurate cfg in functions which call
7838 setjmp, so just punt to be safe. */
7839 if (current_function_calls_setjmp)
7840 return 0;
7842 /* For calling dump_foo fns from gdb. */
7843 debug_stderr = stderr;
7844 gcse_file = file;
7846 /* Identify the basic block information for this function, including
7847 successors and predecessors. */
7848 max_gcse_regno = max_reg_num ();
7850 if (file)
7851 dump_flow_info (file);
7853 /* Return if there's nothing to do. */
7854 if (n_basic_blocks <= 1)
7855 return 0;
7857 /* Trying to perform global optimizations on flow graphs which have
7858 a high connectivity will take a long time and is unlikely to be
7859 particularly useful.
7861 In normal circumstances a cfg should have about twice as many edges
7862 as blocks. But we do not want to punish small functions which have
7863 a couple switch statements. So we require a relatively large number
7864 of basic blocks and the ratio of edges to blocks to be high. */
7865 if (n_basic_blocks > 1000 && n_edges / n_basic_blocks >= 20)
7867 if (warn_disabled_optimization)
7868 warning ("BYPASS disabled: %d > 1000 basic blocks and %d >= 20 edges/basic block",
7869 n_basic_blocks, n_edges / n_basic_blocks);
7870 return 0;
7873 /* If allocating memory for the cprop bitmap would take up too much
7874 storage it's better just to disable the optimization. */
7875 if ((n_basic_blocks
7876 * SBITMAP_SET_SIZE (max_gcse_regno)
7877 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
7879 if (warn_disabled_optimization)
7880 warning ("GCSE disabled: %d basic blocks and %d registers",
7881 n_basic_blocks, max_gcse_regno);
7883 return 0;
7886 gcc_obstack_init (&gcse_obstack);
7887 bytes_used = 0;
7889 /* We need alias. */
7890 init_alias_analysis ();
7892 /* Record where pseudo-registers are set. This data is kept accurate
7893 during each pass. ??? We could also record hard-reg information here
7894 [since it's unchanging], however it is currently done during hash table
7895 computation.
7897 It may be tempting to compute MEM set information here too, but MEM sets
7898 will be subject to code motion one day and thus we need to compute
7899 information about memory sets when we build the hash tables. */
7901 alloc_reg_set_mem (max_gcse_regno);
7902 compute_sets (get_insns ());
7904 max_gcse_regno = max_reg_num ();
7905 alloc_gcse_mem (get_insns ());
7906 changed = one_cprop_pass (1, 1, 1);
7907 free_gcse_mem ();
7909 if (file)
7911 fprintf (file, "BYPASS of %s: %d basic blocks, ",
7912 current_function_name, n_basic_blocks);
7913 fprintf (file, "%d bytes\n\n", bytes_used);
7916 obstack_free (&gcse_obstack, NULL);
7917 free_reg_set_mem ();
7919 /* We are finished with alias. */
7920 end_alias_analysis ();
7921 allocate_reg_info (max_reg_num (), FALSE, FALSE);
7923 return changed;
7926 #include "gt-gcse.h"