Replace "GNU CC" with "GCC"
[official-gcc.git] / gcc / function.c
blob699fd21e6d477399081ff3dfe97af5a06cd422f8
1 /* Expands front end tree to back end RTL for GNU C-Compiler
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register.
36 Call `put_var_into_stack' when you learn, belatedly, that a variable
37 previously given a pseudo-register must in fact go in the stack.
38 This function changes the DECL_RTL to be a stack slot instead of a reg
39 then scans all the RTL instructions so far generated to correct them. */
41 #include "config.h"
42 #include "system.h"
43 #include "coretypes.h"
44 #include "tm.h"
45 #include "rtl.h"
46 #include "tree.h"
47 #include "flags.h"
48 #include "except.h"
49 #include "function.h"
50 #include "expr.h"
51 #include "libfuncs.h"
52 #include "regs.h"
53 #include "hard-reg-set.h"
54 #include "insn-config.h"
55 #include "recog.h"
56 #include "output.h"
57 #include "basic-block.h"
58 #include "toplev.h"
59 #include "hashtab.h"
60 #include "ggc.h"
61 #include "tm_p.h"
62 #include "integrate.h"
63 #include "langhooks.h"
65 #ifndef TRAMPOLINE_ALIGNMENT
66 #define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY
67 #endif
69 #ifndef LOCAL_ALIGNMENT
70 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
71 #endif
73 #ifndef STACK_ALIGNMENT_NEEDED
74 #define STACK_ALIGNMENT_NEEDED 1
75 #endif
77 /* Some systems use __main in a way incompatible with its use in gcc, in these
78 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
79 give the same symbol without quotes for an alternative entry point. You
80 must define both, or neither. */
81 #ifndef NAME__MAIN
82 #define NAME__MAIN "__main"
83 #endif
85 /* Round a value to the lowest integer less than it that is a multiple of
86 the required alignment. Avoid using division in case the value is
87 negative. Assume the alignment is a power of two. */
88 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
90 /* Similar, but round to the next highest integer that meets the
91 alignment. */
92 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
94 /* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
95 during rtl generation. If they are different register numbers, this is
96 always true. It may also be true if
97 FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
98 generation. See fix_lexical_addr for details. */
100 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
101 #define NEED_SEPARATE_AP
102 #endif
104 /* Nonzero if function being compiled doesn't contain any calls
105 (ignoring the prologue and epilogue). This is set prior to
106 local register allocation and is valid for the remaining
107 compiler passes. */
108 int current_function_is_leaf;
110 /* Nonzero if function being compiled doesn't contain any instructions
111 that can throw an exception. This is set prior to final. */
113 int current_function_nothrow;
115 /* Nonzero if function being compiled doesn't modify the stack pointer
116 (ignoring the prologue and epilogue). This is only valid after
117 life_analysis has run. */
118 int current_function_sp_is_unchanging;
120 /* Nonzero if the function being compiled is a leaf function which only
121 uses leaf registers. This is valid after reload (specifically after
122 sched2) and is useful only if the port defines LEAF_REGISTERS. */
123 int current_function_uses_only_leaf_regs;
125 /* Nonzero once virtual register instantiation has been done.
126 assign_stack_local uses frame_pointer_rtx when this is nonzero.
127 calls.c:emit_library_call_value_1 uses it to set up
128 post-instantiation libcalls. */
129 int virtuals_instantiated;
131 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
132 static GTY(()) int funcdef_no;
134 /* These variables hold pointers to functions to create and destroy
135 target specific, per-function data structures. */
136 struct machine_function * (*init_machine_status) PARAMS ((void));
138 /* The FUNCTION_DECL for an inline function currently being expanded. */
139 tree inline_function_decl;
141 /* The currently compiled function. */
142 struct function *cfun = 0;
144 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
145 static GTY(()) varray_type prologue;
146 static GTY(()) varray_type epilogue;
148 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
149 in this function. */
150 static GTY(()) varray_type sibcall_epilogue;
152 /* In order to evaluate some expressions, such as function calls returning
153 structures in memory, we need to temporarily allocate stack locations.
154 We record each allocated temporary in the following structure.
156 Associated with each temporary slot is a nesting level. When we pop up
157 one level, all temporaries associated with the previous level are freed.
158 Normally, all temporaries are freed after the execution of the statement
159 in which they were created. However, if we are inside a ({...}) grouping,
160 the result may be in a temporary and hence must be preserved. If the
161 result could be in a temporary, we preserve it if we can determine which
162 one it is in. If we cannot determine which temporary may contain the
163 result, all temporaries are preserved. A temporary is preserved by
164 pretending it was allocated at the previous nesting level.
166 Automatic variables are also assigned temporary slots, at the nesting
167 level where they are defined. They are marked a "kept" so that
168 free_temp_slots will not free them. */
170 struct temp_slot GTY(())
172 /* Points to next temporary slot. */
173 struct temp_slot *next;
174 /* The rtx to used to reference the slot. */
175 rtx slot;
176 /* The rtx used to represent the address if not the address of the
177 slot above. May be an EXPR_LIST if multiple addresses exist. */
178 rtx address;
179 /* The alignment (in bits) of the slot. */
180 unsigned int align;
181 /* The size, in units, of the slot. */
182 HOST_WIDE_INT size;
183 /* The type of the object in the slot, or zero if it doesn't correspond
184 to a type. We use this to determine whether a slot can be reused.
185 It can be reused if objects of the type of the new slot will always
186 conflict with objects of the type of the old slot. */
187 tree type;
188 /* The value of `sequence_rtl_expr' when this temporary is allocated. */
189 tree rtl_expr;
190 /* Nonzero if this temporary is currently in use. */
191 char in_use;
192 /* Nonzero if this temporary has its address taken. */
193 char addr_taken;
194 /* Nesting level at which this slot is being used. */
195 int level;
196 /* Nonzero if this should survive a call to free_temp_slots. */
197 int keep;
198 /* The offset of the slot from the frame_pointer, including extra space
199 for alignment. This info is for combine_temp_slots. */
200 HOST_WIDE_INT base_offset;
201 /* The size of the slot, including extra space for alignment. This
202 info is for combine_temp_slots. */
203 HOST_WIDE_INT full_size;
206 /* This structure is used to record MEMs or pseudos used to replace VAR, any
207 SUBREGs of VAR, and any MEMs containing VAR as an address. We need to
208 maintain this list in case two operands of an insn were required to match;
209 in that case we must ensure we use the same replacement. */
211 struct fixup_replacement GTY(())
213 rtx old;
214 rtx new;
215 struct fixup_replacement *next;
218 struct insns_for_mem_entry
220 /* A MEM. */
221 rtx key;
222 /* These are the INSNs which reference the MEM. */
223 rtx insns;
226 /* Forward declarations. */
228 static rtx assign_stack_local_1 PARAMS ((enum machine_mode, HOST_WIDE_INT,
229 int, struct function *));
230 static struct temp_slot *find_temp_slot_from_address PARAMS ((rtx));
231 static void put_reg_into_stack PARAMS ((struct function *, rtx, tree,
232 enum machine_mode, enum machine_mode,
233 int, unsigned int, int,
234 htab_t));
235 static void schedule_fixup_var_refs PARAMS ((struct function *, rtx, tree,
236 enum machine_mode,
237 htab_t));
238 static void fixup_var_refs PARAMS ((rtx, enum machine_mode, int, rtx,
239 htab_t));
240 static struct fixup_replacement
241 *find_fixup_replacement PARAMS ((struct fixup_replacement **, rtx));
242 static void fixup_var_refs_insns PARAMS ((rtx, rtx, enum machine_mode,
243 int, int, rtx));
244 static void fixup_var_refs_insns_with_hash
245 PARAMS ((htab_t, rtx,
246 enum machine_mode, int, rtx));
247 static void fixup_var_refs_insn PARAMS ((rtx, rtx, enum machine_mode,
248 int, int, rtx));
249 static void fixup_var_refs_1 PARAMS ((rtx, enum machine_mode, rtx *, rtx,
250 struct fixup_replacement **, rtx));
251 static rtx fixup_memory_subreg PARAMS ((rtx, rtx, enum machine_mode, int));
252 static rtx walk_fixup_memory_subreg PARAMS ((rtx, rtx, enum machine_mode,
253 int));
254 static rtx fixup_stack_1 PARAMS ((rtx, rtx));
255 static void optimize_bit_field PARAMS ((rtx, rtx, rtx *));
256 static void instantiate_decls PARAMS ((tree, int));
257 static void instantiate_decls_1 PARAMS ((tree, int));
258 static void instantiate_decl PARAMS ((rtx, HOST_WIDE_INT, int));
259 static rtx instantiate_new_reg PARAMS ((rtx, HOST_WIDE_INT *));
260 static int instantiate_virtual_regs_1 PARAMS ((rtx *, rtx, int));
261 static void delete_handlers PARAMS ((void));
262 static void pad_to_arg_alignment PARAMS ((struct args_size *, int,
263 struct args_size *));
264 static void pad_below PARAMS ((struct args_size *, enum machine_mode,
265 tree));
266 static rtx round_trampoline_addr PARAMS ((rtx));
267 static rtx adjust_trampoline_addr PARAMS ((rtx));
268 static tree *identify_blocks_1 PARAMS ((rtx, tree *, tree *, tree *));
269 static void reorder_blocks_0 PARAMS ((tree));
270 static void reorder_blocks_1 PARAMS ((rtx, tree, varray_type *));
271 static void reorder_fix_fragments PARAMS ((tree));
272 static tree blocks_nreverse PARAMS ((tree));
273 static int all_blocks PARAMS ((tree, tree *));
274 static tree *get_block_vector PARAMS ((tree, int *));
275 extern tree debug_find_var_in_block_tree PARAMS ((tree, tree));
276 /* We always define `record_insns' even if its not used so that we
277 can always export `prologue_epilogue_contains'. */
278 static void record_insns PARAMS ((rtx, varray_type *)) ATTRIBUTE_UNUSED;
279 static int contains PARAMS ((rtx, varray_type));
280 #ifdef HAVE_return
281 static void emit_return_into_block PARAMS ((basic_block, rtx));
282 #endif
283 static void put_addressof_into_stack PARAMS ((rtx, htab_t));
284 static bool purge_addressof_1 PARAMS ((rtx *, rtx, int, int, int, htab_t));
285 static void purge_single_hard_subreg_set PARAMS ((rtx));
286 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
287 static rtx keep_stack_depressed PARAMS ((rtx));
288 #endif
289 static int is_addressof PARAMS ((rtx *, void *));
290 static hashval_t insns_for_mem_hash PARAMS ((const void *));
291 static int insns_for_mem_comp PARAMS ((const void *, const void *));
292 static int insns_for_mem_walk PARAMS ((rtx *, void *));
293 static void compute_insns_for_mem PARAMS ((rtx, rtx, htab_t));
294 static void prepare_function_start PARAMS ((void));
295 static void do_clobber_return_reg PARAMS ((rtx, void *));
296 static void do_use_return_reg PARAMS ((rtx, void *));
297 static void instantiate_virtual_regs_lossage PARAMS ((rtx));
299 /* Pointer to chain of `struct function' for containing functions. */
300 static GTY(()) struct function *outer_function_chain;
302 /* List of insns that were postponed by purge_addressof_1. */
303 static rtx postponed_insns;
305 /* Given a function decl for a containing function,
306 return the `struct function' for it. */
308 struct function *
309 find_function_data (decl)
310 tree decl;
312 struct function *p;
314 for (p = outer_function_chain; p; p = p->outer)
315 if (p->decl == decl)
316 return p;
318 abort ();
321 /* Save the current context for compilation of a nested function.
322 This is called from language-specific code. The caller should use
323 the enter_nested langhook to save any language-specific state,
324 since this function knows only about language-independent
325 variables. */
327 void
328 push_function_context_to (context)
329 tree context;
331 struct function *p;
333 if (context)
335 if (context == current_function_decl)
336 cfun->contains_functions = 1;
337 else
339 struct function *containing = find_function_data (context);
340 containing->contains_functions = 1;
344 if (cfun == 0)
345 init_dummy_function_start ();
346 p = cfun;
348 p->outer = outer_function_chain;
349 outer_function_chain = p;
350 p->fixup_var_refs_queue = 0;
352 (*lang_hooks.function.enter_nested) (p);
354 cfun = 0;
357 void
358 push_function_context ()
360 push_function_context_to (current_function_decl);
363 /* Restore the last saved context, at the end of a nested function.
364 This function is called from language-specific code. */
366 void
367 pop_function_context_from (context)
368 tree context ATTRIBUTE_UNUSED;
370 struct function *p = outer_function_chain;
371 struct var_refs_queue *queue;
373 cfun = p;
374 outer_function_chain = p->outer;
376 current_function_decl = p->decl;
377 reg_renumber = 0;
379 restore_emit_status (p);
381 (*lang_hooks.function.leave_nested) (p);
383 /* Finish doing put_var_into_stack for any of our variables which became
384 addressable during the nested function. If only one entry has to be
385 fixed up, just do that one. Otherwise, first make a list of MEMs that
386 are not to be unshared. */
387 if (p->fixup_var_refs_queue == 0)
389 else if (p->fixup_var_refs_queue->next == 0)
390 fixup_var_refs (p->fixup_var_refs_queue->modified,
391 p->fixup_var_refs_queue->promoted_mode,
392 p->fixup_var_refs_queue->unsignedp,
393 p->fixup_var_refs_queue->modified, 0);
394 else
396 rtx list = 0;
398 for (queue = p->fixup_var_refs_queue; queue; queue = queue->next)
399 list = gen_rtx_EXPR_LIST (VOIDmode, queue->modified, list);
401 for (queue = p->fixup_var_refs_queue; queue; queue = queue->next)
402 fixup_var_refs (queue->modified, queue->promoted_mode,
403 queue->unsignedp, list, 0);
407 p->fixup_var_refs_queue = 0;
409 /* Reset variables that have known state during rtx generation. */
410 rtx_equal_function_value_matters = 1;
411 virtuals_instantiated = 0;
412 generating_concat_p = 1;
415 void
416 pop_function_context ()
418 pop_function_context_from (current_function_decl);
421 /* Clear out all parts of the state in F that can safely be discarded
422 after the function has been parsed, but not compiled, to let
423 garbage collection reclaim the memory. */
425 void
426 free_after_parsing (f)
427 struct function *f;
429 /* f->expr->forced_labels is used by code generation. */
430 /* f->emit->regno_reg_rtx is used by code generation. */
431 /* f->varasm is used by code generation. */
432 /* f->eh->eh_return_stub_label is used by code generation. */
434 (*lang_hooks.function.final) (f);
435 f->stmt = NULL;
438 /* Clear out all parts of the state in F that can safely be discarded
439 after the function has been compiled, to let garbage collection
440 reclaim the memory. */
442 void
443 free_after_compilation (f)
444 struct function *f;
446 f->eh = NULL;
447 f->expr = NULL;
448 f->emit = NULL;
449 f->varasm = NULL;
450 f->machine = NULL;
452 f->x_temp_slots = NULL;
453 f->arg_offset_rtx = NULL;
454 f->return_rtx = NULL;
455 f->internal_arg_pointer = NULL;
456 f->x_nonlocal_labels = NULL;
457 f->x_nonlocal_goto_handler_slots = NULL;
458 f->x_nonlocal_goto_handler_labels = NULL;
459 f->x_nonlocal_goto_stack_level = NULL;
460 f->x_cleanup_label = NULL;
461 f->x_return_label = NULL;
462 f->computed_goto_common_label = NULL;
463 f->computed_goto_common_reg = NULL;
464 f->x_save_expr_regs = NULL;
465 f->x_stack_slot_list = NULL;
466 f->x_rtl_expr_chain = NULL;
467 f->x_tail_recursion_label = NULL;
468 f->x_tail_recursion_reentry = NULL;
469 f->x_arg_pointer_save_area = NULL;
470 f->x_clobber_return_insn = NULL;
471 f->x_context_display = NULL;
472 f->x_trampoline_list = NULL;
473 f->x_parm_birth_insn = NULL;
474 f->x_last_parm_insn = NULL;
475 f->x_parm_reg_stack_loc = NULL;
476 f->fixup_var_refs_queue = NULL;
477 f->original_arg_vector = NULL;
478 f->original_decl_initial = NULL;
479 f->inl_last_parm_insn = NULL;
480 f->epilogue_delay_list = NULL;
483 /* Allocate fixed slots in the stack frame of the current function. */
485 /* Return size needed for stack frame based on slots so far allocated in
486 function F.
487 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
488 the caller may have to do that. */
490 HOST_WIDE_INT
491 get_func_frame_size (f)
492 struct function *f;
494 #ifdef FRAME_GROWS_DOWNWARD
495 return -f->x_frame_offset;
496 #else
497 return f->x_frame_offset;
498 #endif
501 /* Return size needed for stack frame based on slots so far allocated.
502 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
503 the caller may have to do that. */
504 HOST_WIDE_INT
505 get_frame_size ()
507 return get_func_frame_size (cfun);
510 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
511 with machine mode MODE.
513 ALIGN controls the amount of alignment for the address of the slot:
514 0 means according to MODE,
515 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
516 positive specifies alignment boundary in bits.
518 We do not round to stack_boundary here.
520 FUNCTION specifies the function to allocate in. */
522 static rtx
523 assign_stack_local_1 (mode, size, align, function)
524 enum machine_mode mode;
525 HOST_WIDE_INT size;
526 int align;
527 struct function *function;
529 rtx x, addr;
530 int bigend_correction = 0;
531 int alignment;
532 int frame_off, frame_alignment, frame_phase;
534 if (align == 0)
536 tree type;
538 if (mode == BLKmode)
539 alignment = BIGGEST_ALIGNMENT;
540 else
541 alignment = GET_MODE_ALIGNMENT (mode);
543 /* Allow the target to (possibly) increase the alignment of this
544 stack slot. */
545 type = (*lang_hooks.types.type_for_mode) (mode, 0);
546 if (type)
547 alignment = LOCAL_ALIGNMENT (type, alignment);
549 alignment /= BITS_PER_UNIT;
551 else if (align == -1)
553 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
554 size = CEIL_ROUND (size, alignment);
556 else
557 alignment = align / BITS_PER_UNIT;
559 #ifdef FRAME_GROWS_DOWNWARD
560 function->x_frame_offset -= size;
561 #endif
563 /* Ignore alignment we can't do with expected alignment of the boundary. */
564 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
565 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
567 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
568 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
570 /* Calculate how many bytes the start of local variables is off from
571 stack alignment. */
572 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
573 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
574 frame_phase = frame_off ? frame_alignment - frame_off : 0;
576 /* Round the frame offset to the specified alignment. The default is
577 to always honor requests to align the stack but a port may choose to
578 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
579 if (STACK_ALIGNMENT_NEEDED
580 || mode != BLKmode
581 || size != 0)
583 /* We must be careful here, since FRAME_OFFSET might be negative and
584 division with a negative dividend isn't as well defined as we might
585 like. So we instead assume that ALIGNMENT is a power of two and
586 use logical operations which are unambiguous. */
587 #ifdef FRAME_GROWS_DOWNWARD
588 function->x_frame_offset
589 = (FLOOR_ROUND (function->x_frame_offset - frame_phase, alignment)
590 + frame_phase);
591 #else
592 function->x_frame_offset
593 = (CEIL_ROUND (function->x_frame_offset - frame_phase, alignment)
594 + frame_phase);
595 #endif
598 /* On a big-endian machine, if we are allocating more space than we will use,
599 use the least significant bytes of those that are allocated. */
600 if (BYTES_BIG_ENDIAN && mode != BLKmode)
601 bigend_correction = size - GET_MODE_SIZE (mode);
603 /* If we have already instantiated virtual registers, return the actual
604 address relative to the frame pointer. */
605 if (function == cfun && virtuals_instantiated)
606 addr = plus_constant (frame_pointer_rtx,
607 trunc_int_for_mode
608 (frame_offset + bigend_correction
609 + STARTING_FRAME_OFFSET, Pmode));
610 else
611 addr = plus_constant (virtual_stack_vars_rtx,
612 trunc_int_for_mode
613 (function->x_frame_offset + bigend_correction,
614 Pmode));
616 #ifndef FRAME_GROWS_DOWNWARD
617 function->x_frame_offset += size;
618 #endif
620 x = gen_rtx_MEM (mode, addr);
622 function->x_stack_slot_list
623 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
625 return x;
628 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
629 current function. */
632 assign_stack_local (mode, size, align)
633 enum machine_mode mode;
634 HOST_WIDE_INT size;
635 int align;
637 return assign_stack_local_1 (mode, size, align, cfun);
640 /* Allocate a temporary stack slot and record it for possible later
641 reuse.
643 MODE is the machine mode to be given to the returned rtx.
645 SIZE is the size in units of the space required. We do no rounding here
646 since assign_stack_local will do any required rounding.
648 KEEP is 1 if this slot is to be retained after a call to
649 free_temp_slots. Automatic variables for a block are allocated
650 with this flag. KEEP is 2 if we allocate a longer term temporary,
651 whose lifetime is controlled by CLEANUP_POINT_EXPRs. KEEP is 3
652 if we are to allocate something at an inner level to be treated as
653 a variable in the block (e.g., a SAVE_EXPR).
655 TYPE is the type that will be used for the stack slot. */
658 assign_stack_temp_for_type (mode, size, keep, type)
659 enum machine_mode mode;
660 HOST_WIDE_INT size;
661 int keep;
662 tree type;
664 unsigned int align;
665 struct temp_slot *p, *best_p = 0;
666 rtx slot;
668 /* If SIZE is -1 it means that somebody tried to allocate a temporary
669 of a variable size. */
670 if (size == -1)
671 abort ();
673 if (mode == BLKmode)
674 align = BIGGEST_ALIGNMENT;
675 else
676 align = GET_MODE_ALIGNMENT (mode);
678 if (! type)
679 type = (*lang_hooks.types.type_for_mode) (mode, 0);
681 if (type)
682 align = LOCAL_ALIGNMENT (type, align);
684 /* Try to find an available, already-allocated temporary of the proper
685 mode which meets the size and alignment requirements. Choose the
686 smallest one with the closest alignment. */
687 for (p = temp_slots; p; p = p->next)
688 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
689 && ! p->in_use
690 && objects_must_conflict_p (p->type, type)
691 && (best_p == 0 || best_p->size > p->size
692 || (best_p->size == p->size && best_p->align > p->align)))
694 if (p->align == align && p->size == size)
696 best_p = 0;
697 break;
699 best_p = p;
702 /* Make our best, if any, the one to use. */
703 if (best_p)
705 /* If there are enough aligned bytes left over, make them into a new
706 temp_slot so that the extra bytes don't get wasted. Do this only
707 for BLKmode slots, so that we can be sure of the alignment. */
708 if (GET_MODE (best_p->slot) == BLKmode)
710 int alignment = best_p->align / BITS_PER_UNIT;
711 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
713 if (best_p->size - rounded_size >= alignment)
715 p = (struct temp_slot *) ggc_alloc (sizeof (struct temp_slot));
716 p->in_use = p->addr_taken = 0;
717 p->size = best_p->size - rounded_size;
718 p->base_offset = best_p->base_offset + rounded_size;
719 p->full_size = best_p->full_size - rounded_size;
720 p->slot = gen_rtx_MEM (BLKmode,
721 plus_constant (XEXP (best_p->slot, 0),
722 rounded_size));
723 p->align = best_p->align;
724 p->address = 0;
725 p->rtl_expr = 0;
726 p->type = best_p->type;
727 p->next = temp_slots;
728 temp_slots = p;
730 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
731 stack_slot_list);
733 best_p->size = rounded_size;
734 best_p->full_size = rounded_size;
738 p = best_p;
741 /* If we still didn't find one, make a new temporary. */
742 if (p == 0)
744 HOST_WIDE_INT frame_offset_old = frame_offset;
746 p = (struct temp_slot *) ggc_alloc (sizeof (struct temp_slot));
748 /* We are passing an explicit alignment request to assign_stack_local.
749 One side effect of that is assign_stack_local will not round SIZE
750 to ensure the frame offset remains suitably aligned.
752 So for requests which depended on the rounding of SIZE, we go ahead
753 and round it now. We also make sure ALIGNMENT is at least
754 BIGGEST_ALIGNMENT. */
755 if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
756 abort ();
757 p->slot = assign_stack_local (mode,
758 (mode == BLKmode
759 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
760 : size),
761 align);
763 p->align = align;
765 /* The following slot size computation is necessary because we don't
766 know the actual size of the temporary slot until assign_stack_local
767 has performed all the frame alignment and size rounding for the
768 requested temporary. Note that extra space added for alignment
769 can be either above or below this stack slot depending on which
770 way the frame grows. We include the extra space if and only if it
771 is above this slot. */
772 #ifdef FRAME_GROWS_DOWNWARD
773 p->size = frame_offset_old - frame_offset;
774 #else
775 p->size = size;
776 #endif
778 /* Now define the fields used by combine_temp_slots. */
779 #ifdef FRAME_GROWS_DOWNWARD
780 p->base_offset = frame_offset;
781 p->full_size = frame_offset_old - frame_offset;
782 #else
783 p->base_offset = frame_offset_old;
784 p->full_size = frame_offset - frame_offset_old;
785 #endif
786 p->address = 0;
787 p->next = temp_slots;
788 temp_slots = p;
791 p->in_use = 1;
792 p->addr_taken = 0;
793 p->rtl_expr = seq_rtl_expr;
794 p->type = type;
796 if (keep == 2)
798 p->level = target_temp_slot_level;
799 p->keep = 0;
801 else if (keep == 3)
803 p->level = var_temp_slot_level;
804 p->keep = 0;
806 else
808 p->level = temp_slot_level;
809 p->keep = keep;
813 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
814 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
815 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
817 /* If we know the alias set for the memory that will be used, use
818 it. If there's no TYPE, then we don't know anything about the
819 alias set for the memory. */
820 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
821 set_mem_align (slot, align);
823 /* If a type is specified, set the relevant flags. */
824 if (type != 0)
826 RTX_UNCHANGING_P (slot) = (lang_hooks.honor_readonly
827 && TYPE_READONLY (type));
828 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
829 MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
832 return slot;
835 /* Allocate a temporary stack slot and record it for possible later
836 reuse. First three arguments are same as in preceding function. */
839 assign_stack_temp (mode, size, keep)
840 enum machine_mode mode;
841 HOST_WIDE_INT size;
842 int keep;
844 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
847 /* Assign a temporary.
848 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
849 and so that should be used in error messages. In either case, we
850 allocate of the given type.
851 KEEP is as for assign_stack_temp.
852 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
853 it is 0 if a register is OK.
854 DONT_PROMOTE is 1 if we should not promote values in register
855 to wider modes. */
858 assign_temp (type_or_decl, keep, memory_required, dont_promote)
859 tree type_or_decl;
860 int keep;
861 int memory_required;
862 int dont_promote ATTRIBUTE_UNUSED;
864 tree type, decl;
865 enum machine_mode mode;
866 #ifndef PROMOTE_FOR_CALL_ONLY
867 int unsignedp;
868 #endif
870 if (DECL_P (type_or_decl))
871 decl = type_or_decl, type = TREE_TYPE (decl);
872 else
873 decl = NULL, type = type_or_decl;
875 mode = TYPE_MODE (type);
876 #ifndef PROMOTE_FOR_CALL_ONLY
877 unsignedp = TREE_UNSIGNED (type);
878 #endif
880 if (mode == BLKmode || memory_required)
882 HOST_WIDE_INT size = int_size_in_bytes (type);
883 rtx tmp;
885 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
886 problems with allocating the stack space. */
887 if (size == 0)
888 size = 1;
890 /* Unfortunately, we don't yet know how to allocate variable-sized
891 temporaries. However, sometimes we have a fixed upper limit on
892 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
893 instead. This is the case for Chill variable-sized strings. */
894 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
895 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
896 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
897 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
899 /* The size of the temporary may be too large to fit into an integer. */
900 /* ??? Not sure this should happen except for user silliness, so limit
901 this to things that aren't compiler-generated temporaries. The
902 rest of the time we'll abort in assign_stack_temp_for_type. */
903 if (decl && size == -1
904 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
906 error_with_decl (decl, "size of variable `%s' is too large");
907 size = 1;
910 tmp = assign_stack_temp_for_type (mode, size, keep, type);
911 return tmp;
914 #ifndef PROMOTE_FOR_CALL_ONLY
915 if (! dont_promote)
916 mode = promote_mode (type, mode, &unsignedp, 0);
917 #endif
919 return gen_reg_rtx (mode);
922 /* Combine temporary stack slots which are adjacent on the stack.
924 This allows for better use of already allocated stack space. This is only
925 done for BLKmode slots because we can be sure that we won't have alignment
926 problems in this case. */
928 void
929 combine_temp_slots ()
931 struct temp_slot *p, *q;
932 struct temp_slot *prev_p, *prev_q;
933 int num_slots;
935 /* We can't combine slots, because the information about which slot
936 is in which alias set will be lost. */
937 if (flag_strict_aliasing)
938 return;
940 /* If there are a lot of temp slots, don't do anything unless
941 high levels of optimization. */
942 if (! flag_expensive_optimizations)
943 for (p = temp_slots, num_slots = 0; p; p = p->next, num_slots++)
944 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
945 return;
947 for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots)
949 int delete_p = 0;
951 if (! p->in_use && GET_MODE (p->slot) == BLKmode)
952 for (q = p->next, prev_q = p; q; q = prev_q->next)
954 int delete_q = 0;
955 if (! q->in_use && GET_MODE (q->slot) == BLKmode)
957 if (p->base_offset + p->full_size == q->base_offset)
959 /* Q comes after P; combine Q into P. */
960 p->size += q->size;
961 p->full_size += q->full_size;
962 delete_q = 1;
964 else if (q->base_offset + q->full_size == p->base_offset)
966 /* P comes after Q; combine P into Q. */
967 q->size += p->size;
968 q->full_size += p->full_size;
969 delete_p = 1;
970 break;
973 /* Either delete Q or advance past it. */
974 if (delete_q)
975 prev_q->next = q->next;
976 else
977 prev_q = q;
979 /* Either delete P or advance past it. */
980 if (delete_p)
982 if (prev_p)
983 prev_p->next = p->next;
984 else
985 temp_slots = p->next;
987 else
988 prev_p = p;
992 /* Find the temp slot corresponding to the object at address X. */
994 static struct temp_slot *
995 find_temp_slot_from_address (x)
996 rtx x;
998 struct temp_slot *p;
999 rtx next;
1001 for (p = temp_slots; p; p = p->next)
1003 if (! p->in_use)
1004 continue;
1006 else if (XEXP (p->slot, 0) == x
1007 || p->address == x
1008 || (GET_CODE (x) == PLUS
1009 && XEXP (x, 0) == virtual_stack_vars_rtx
1010 && GET_CODE (XEXP (x, 1)) == CONST_INT
1011 && INTVAL (XEXP (x, 1)) >= p->base_offset
1012 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
1013 return p;
1015 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
1016 for (next = p->address; next; next = XEXP (next, 1))
1017 if (XEXP (next, 0) == x)
1018 return p;
1021 /* If we have a sum involving a register, see if it points to a temp
1022 slot. */
1023 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == REG
1024 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
1025 return p;
1026 else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG
1027 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
1028 return p;
1030 return 0;
1033 /* Indicate that NEW is an alternate way of referring to the temp slot
1034 that previously was known by OLD. */
1036 void
1037 update_temp_slot_address (old, new)
1038 rtx old, new;
1040 struct temp_slot *p;
1042 if (rtx_equal_p (old, new))
1043 return;
1045 p = find_temp_slot_from_address (old);
1047 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
1048 is a register, see if one operand of the PLUS is a temporary
1049 location. If so, NEW points into it. Otherwise, if both OLD and
1050 NEW are a PLUS and if there is a register in common between them.
1051 If so, try a recursive call on those values. */
1052 if (p == 0)
1054 if (GET_CODE (old) != PLUS)
1055 return;
1057 if (GET_CODE (new) == REG)
1059 update_temp_slot_address (XEXP (old, 0), new);
1060 update_temp_slot_address (XEXP (old, 1), new);
1061 return;
1063 else if (GET_CODE (new) != PLUS)
1064 return;
1066 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
1067 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
1068 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
1069 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
1070 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
1071 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
1072 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1073 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1075 return;
1078 /* Otherwise add an alias for the temp's address. */
1079 else if (p->address == 0)
1080 p->address = new;
1081 else
1083 if (GET_CODE (p->address) != EXPR_LIST)
1084 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1086 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1090 /* If X could be a reference to a temporary slot, mark the fact that its
1091 address was taken. */
1093 void
1094 mark_temp_addr_taken (x)
1095 rtx x;
1097 struct temp_slot *p;
1099 if (x == 0)
1100 return;
1102 /* If X is not in memory or is at a constant address, it cannot be in
1103 a temporary slot. */
1104 if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1105 return;
1107 p = find_temp_slot_from_address (XEXP (x, 0));
1108 if (p != 0)
1109 p->addr_taken = 1;
1112 /* If X could be a reference to a temporary slot, mark that slot as
1113 belonging to the to one level higher than the current level. If X
1114 matched one of our slots, just mark that one. Otherwise, we can't
1115 easily predict which it is, so upgrade all of them. Kept slots
1116 need not be touched.
1118 This is called when an ({...}) construct occurs and a statement
1119 returns a value in memory. */
1121 void
1122 preserve_temp_slots (x)
1123 rtx x;
1125 struct temp_slot *p = 0;
1127 /* If there is no result, we still might have some objects whose address
1128 were taken, so we need to make sure they stay around. */
1129 if (x == 0)
1131 for (p = temp_slots; p; p = p->next)
1132 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1133 p->level--;
1135 return;
1138 /* If X is a register that is being used as a pointer, see if we have
1139 a temporary slot we know it points to. To be consistent with
1140 the code below, we really should preserve all non-kept slots
1141 if we can't find a match, but that seems to be much too costly. */
1142 if (GET_CODE (x) == REG && REG_POINTER (x))
1143 p = find_temp_slot_from_address (x);
1145 /* If X is not in memory or is at a constant address, it cannot be in
1146 a temporary slot, but it can contain something whose address was
1147 taken. */
1148 if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
1150 for (p = temp_slots; p; p = p->next)
1151 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1152 p->level--;
1154 return;
1157 /* First see if we can find a match. */
1158 if (p == 0)
1159 p = find_temp_slot_from_address (XEXP (x, 0));
1161 if (p != 0)
1163 /* Move everything at our level whose address was taken to our new
1164 level in case we used its address. */
1165 struct temp_slot *q;
1167 if (p->level == temp_slot_level)
1169 for (q = temp_slots; q; q = q->next)
1170 if (q != p && q->addr_taken && q->level == p->level)
1171 q->level--;
1173 p->level--;
1174 p->addr_taken = 0;
1176 return;
1179 /* Otherwise, preserve all non-kept slots at this level. */
1180 for (p = temp_slots; p; p = p->next)
1181 if (p->in_use && p->level == temp_slot_level && ! p->keep)
1182 p->level--;
1185 /* X is the result of an RTL_EXPR. If it is a temporary slot associated
1186 with that RTL_EXPR, promote it into a temporary slot at the present
1187 level so it will not be freed when we free slots made in the
1188 RTL_EXPR. */
1190 void
1191 preserve_rtl_expr_result (x)
1192 rtx x;
1194 struct temp_slot *p;
1196 /* If X is not in memory or is at a constant address, it cannot be in
1197 a temporary slot. */
1198 if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1199 return;
1201 /* If we can find a match, move it to our level unless it is already at
1202 an upper level. */
1203 p = find_temp_slot_from_address (XEXP (x, 0));
1204 if (p != 0)
1206 p->level = MIN (p->level, temp_slot_level);
1207 p->rtl_expr = 0;
1210 return;
1213 /* Free all temporaries used so far. This is normally called at the end
1214 of generating code for a statement. Don't free any temporaries
1215 currently in use for an RTL_EXPR that hasn't yet been emitted.
1216 We could eventually do better than this since it can be reused while
1217 generating the same RTL_EXPR, but this is complex and probably not
1218 worthwhile. */
1220 void
1221 free_temp_slots ()
1223 struct temp_slot *p;
1225 for (p = temp_slots; p; p = p->next)
1226 if (p->in_use && p->level == temp_slot_level && ! p->keep
1227 && p->rtl_expr == 0)
1228 p->in_use = 0;
1230 combine_temp_slots ();
1233 /* Free all temporary slots used in T, an RTL_EXPR node. */
1235 void
1236 free_temps_for_rtl_expr (t)
1237 tree t;
1239 struct temp_slot *p;
1241 for (p = temp_slots; p; p = p->next)
1242 if (p->rtl_expr == t)
1244 /* If this slot is below the current TEMP_SLOT_LEVEL, then it
1245 needs to be preserved. This can happen if a temporary in
1246 the RTL_EXPR was addressed; preserve_temp_slots will move
1247 the temporary into a higher level. */
1248 if (temp_slot_level <= p->level)
1249 p->in_use = 0;
1250 else
1251 p->rtl_expr = NULL_TREE;
1254 combine_temp_slots ();
1257 /* Mark all temporaries ever allocated in this function as not suitable
1258 for reuse until the current level is exited. */
1260 void
1261 mark_all_temps_used ()
1263 struct temp_slot *p;
1265 for (p = temp_slots; p; p = p->next)
1267 p->in_use = p->keep = 1;
1268 p->level = MIN (p->level, temp_slot_level);
1272 /* Push deeper into the nesting level for stack temporaries. */
1274 void
1275 push_temp_slots ()
1277 temp_slot_level++;
1280 /* Pop a temporary nesting level. All slots in use in the current level
1281 are freed. */
1283 void
1284 pop_temp_slots ()
1286 struct temp_slot *p;
1288 for (p = temp_slots; p; p = p->next)
1289 if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0)
1290 p->in_use = 0;
1292 combine_temp_slots ();
1294 temp_slot_level--;
1297 /* Initialize temporary slots. */
1299 void
1300 init_temp_slots ()
1302 /* We have not allocated any temporaries yet. */
1303 temp_slots = 0;
1304 temp_slot_level = 0;
1305 var_temp_slot_level = 0;
1306 target_temp_slot_level = 0;
1309 /* Retroactively move an auto variable from a register to a stack
1310 slot. This is done when an address-reference to the variable is
1311 seen. If RESCAN is true, all previously emitted instructions are
1312 examined and modified to handle the fact that DECL is now
1313 addressable. */
1315 void
1316 put_var_into_stack (decl, rescan)
1317 tree decl;
1318 int rescan;
1320 rtx reg;
1321 enum machine_mode promoted_mode, decl_mode;
1322 struct function *function = 0;
1323 tree context;
1324 int can_use_addressof;
1325 int volatilep = TREE_CODE (decl) != SAVE_EXPR && TREE_THIS_VOLATILE (decl);
1326 int usedp = (TREE_USED (decl)
1327 || (TREE_CODE (decl) != SAVE_EXPR && DECL_INITIAL (decl) != 0));
1329 context = decl_function_context (decl);
1331 /* Get the current rtl used for this object and its original mode. */
1332 reg = (TREE_CODE (decl) == SAVE_EXPR
1333 ? SAVE_EXPR_RTL (decl)
1334 : DECL_RTL_IF_SET (decl));
1336 /* No need to do anything if decl has no rtx yet
1337 since in that case caller is setting TREE_ADDRESSABLE
1338 and a stack slot will be assigned when the rtl is made. */
1339 if (reg == 0)
1340 return;
1342 /* Get the declared mode for this object. */
1343 decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
1344 : DECL_MODE (decl));
1345 /* Get the mode it's actually stored in. */
1346 promoted_mode = GET_MODE (reg);
1348 /* If this variable comes from an outer function, find that
1349 function's saved context. Don't use find_function_data here,
1350 because it might not be in any active function.
1351 FIXME: Is that really supposed to happen?
1352 It does in ObjC at least. */
1353 if (context != current_function_decl && context != inline_function_decl)
1354 for (function = outer_function_chain; function; function = function->outer)
1355 if (function->decl == context)
1356 break;
1358 /* If this is a variable-size object with a pseudo to address it,
1359 put that pseudo into the stack, if the var is nonlocal. */
1360 if (TREE_CODE (decl) != SAVE_EXPR && DECL_NONLOCAL (decl)
1361 && GET_CODE (reg) == MEM
1362 && GET_CODE (XEXP (reg, 0)) == REG
1363 && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
1365 reg = XEXP (reg, 0);
1366 decl_mode = promoted_mode = GET_MODE (reg);
1369 can_use_addressof
1370 = (function == 0
1371 && optimize > 0
1372 /* FIXME make it work for promoted modes too */
1373 && decl_mode == promoted_mode
1374 #ifdef NON_SAVING_SETJMP
1375 && ! (NON_SAVING_SETJMP && current_function_calls_setjmp)
1376 #endif
1379 /* If we can't use ADDRESSOF, make sure we see through one we already
1380 generated. */
1381 if (! can_use_addressof && GET_CODE (reg) == MEM
1382 && GET_CODE (XEXP (reg, 0)) == ADDRESSOF)
1383 reg = XEXP (XEXP (reg, 0), 0);
1385 /* Now we should have a value that resides in one or more pseudo regs. */
1387 if (GET_CODE (reg) == REG)
1389 /* If this variable lives in the current function and we don't need
1390 to put things in the stack for the sake of setjmp, try to keep it
1391 in a register until we know we actually need the address. */
1392 if (can_use_addressof)
1393 gen_mem_addressof (reg, decl, rescan);
1394 else
1395 put_reg_into_stack (function, reg, TREE_TYPE (decl), promoted_mode,
1396 decl_mode, volatilep, 0, usedp, 0);
1398 else if (GET_CODE (reg) == CONCAT)
1400 /* A CONCAT contains two pseudos; put them both in the stack.
1401 We do it so they end up consecutive.
1402 We fixup references to the parts only after we fixup references
1403 to the whole CONCAT, lest we do double fixups for the latter
1404 references. */
1405 enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
1406 tree part_type = (*lang_hooks.types.type_for_mode) (part_mode, 0);
1407 rtx lopart = XEXP (reg, 0);
1408 rtx hipart = XEXP (reg, 1);
1409 #ifdef FRAME_GROWS_DOWNWARD
1410 /* Since part 0 should have a lower address, do it second. */
1411 put_reg_into_stack (function, hipart, part_type, part_mode,
1412 part_mode, volatilep, 0, 0, 0);
1413 put_reg_into_stack (function, lopart, part_type, part_mode,
1414 part_mode, volatilep, 0, 0, 0);
1415 #else
1416 put_reg_into_stack (function, lopart, part_type, part_mode,
1417 part_mode, volatilep, 0, 0, 0);
1418 put_reg_into_stack (function, hipart, part_type, part_mode,
1419 part_mode, volatilep, 0, 0, 0);
1420 #endif
1422 /* Change the CONCAT into a combined MEM for both parts. */
1423 PUT_CODE (reg, MEM);
1424 MEM_ATTRS (reg) = 0;
1426 /* set_mem_attributes uses DECL_RTL to avoid re-generating of
1427 already computed alias sets. Here we want to re-generate. */
1428 if (DECL_P (decl))
1429 SET_DECL_RTL (decl, NULL);
1430 set_mem_attributes (reg, decl, 1);
1431 if (DECL_P (decl))
1432 SET_DECL_RTL (decl, reg);
1434 /* The two parts are in memory order already.
1435 Use the lower parts address as ours. */
1436 XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
1437 /* Prevent sharing of rtl that might lose. */
1438 if (GET_CODE (XEXP (reg, 0)) == PLUS)
1439 XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
1440 if (usedp && rescan)
1442 schedule_fixup_var_refs (function, reg, TREE_TYPE (decl),
1443 promoted_mode, 0);
1444 schedule_fixup_var_refs (function, lopart, part_type, part_mode, 0);
1445 schedule_fixup_var_refs (function, hipart, part_type, part_mode, 0);
1448 else
1449 return;
1452 /* Subroutine of put_var_into_stack. This puts a single pseudo reg REG
1453 into the stack frame of FUNCTION (0 means the current function).
1454 DECL_MODE is the machine mode of the user-level data type.
1455 PROMOTED_MODE is the machine mode of the register.
1456 VOLATILE_P is nonzero if this is for a "volatile" decl.
1457 USED_P is nonzero if this reg might have already been used in an insn. */
1459 static void
1460 put_reg_into_stack (function, reg, type, promoted_mode, decl_mode, volatile_p,
1461 original_regno, used_p, ht)
1462 struct function *function;
1463 rtx reg;
1464 tree type;
1465 enum machine_mode promoted_mode, decl_mode;
1466 int volatile_p;
1467 unsigned int original_regno;
1468 int used_p;
1469 htab_t ht;
1471 struct function *func = function ? function : cfun;
1472 rtx new = 0;
1473 unsigned int regno = original_regno;
1475 if (regno == 0)
1476 regno = REGNO (reg);
1478 if (regno < func->x_max_parm_reg)
1479 new = func->x_parm_reg_stack_loc[regno];
1481 if (new == 0)
1482 new = assign_stack_local_1 (decl_mode, GET_MODE_SIZE (decl_mode), 0, func);
1484 PUT_CODE (reg, MEM);
1485 PUT_MODE (reg, decl_mode);
1486 XEXP (reg, 0) = XEXP (new, 0);
1487 MEM_ATTRS (reg) = 0;
1488 /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
1489 MEM_VOLATILE_P (reg) = volatile_p;
1491 /* If this is a memory ref that contains aggregate components,
1492 mark it as such for cse and loop optimize. If we are reusing a
1493 previously generated stack slot, then we need to copy the bit in
1494 case it was set for other reasons. For instance, it is set for
1495 __builtin_va_alist. */
1496 if (type)
1498 MEM_SET_IN_STRUCT_P (reg,
1499 AGGREGATE_TYPE_P (type) || MEM_IN_STRUCT_P (new));
1500 set_mem_alias_set (reg, get_alias_set (type));
1503 if (used_p)
1504 schedule_fixup_var_refs (function, reg, type, promoted_mode, ht);
1507 /* Make sure that all refs to the variable, previously made
1508 when it was a register, are fixed up to be valid again.
1509 See function above for meaning of arguments. */
1511 static void
1512 schedule_fixup_var_refs (function, reg, type, promoted_mode, ht)
1513 struct function *function;
1514 rtx reg;
1515 tree type;
1516 enum machine_mode promoted_mode;
1517 htab_t ht;
1519 int unsigned_p = type ? TREE_UNSIGNED (type) : 0;
1521 if (function != 0)
1523 struct var_refs_queue *temp;
1525 temp
1526 = (struct var_refs_queue *) ggc_alloc (sizeof (struct var_refs_queue));
1527 temp->modified = reg;
1528 temp->promoted_mode = promoted_mode;
1529 temp->unsignedp = unsigned_p;
1530 temp->next = function->fixup_var_refs_queue;
1531 function->fixup_var_refs_queue = temp;
1533 else
1534 /* Variable is local; fix it up now. */
1535 fixup_var_refs (reg, promoted_mode, unsigned_p, reg, ht);
1538 static void
1539 fixup_var_refs (var, promoted_mode, unsignedp, may_share, ht)
1540 rtx var;
1541 enum machine_mode promoted_mode;
1542 int unsignedp;
1543 htab_t ht;
1544 rtx may_share;
1546 tree pending;
1547 rtx first_insn = get_insns ();
1548 struct sequence_stack *stack = seq_stack;
1549 tree rtl_exps = rtl_expr_chain;
1551 /* If there's a hash table, it must record all uses of VAR. */
1552 if (ht)
1554 if (stack != 0)
1555 abort ();
1556 fixup_var_refs_insns_with_hash (ht, var, promoted_mode, unsignedp,
1557 may_share);
1558 return;
1561 fixup_var_refs_insns (first_insn, var, promoted_mode, unsignedp,
1562 stack == 0, may_share);
1564 /* Scan all pending sequences too. */
1565 for (; stack; stack = stack->next)
1567 push_to_full_sequence (stack->first, stack->last);
1568 fixup_var_refs_insns (stack->first, var, promoted_mode, unsignedp,
1569 stack->next != 0, may_share);
1570 /* Update remembered end of sequence
1571 in case we added an insn at the end. */
1572 stack->last = get_last_insn ();
1573 end_sequence ();
1576 /* Scan all waiting RTL_EXPRs too. */
1577 for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
1579 rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
1580 if (seq != const0_rtx && seq != 0)
1582 push_to_sequence (seq);
1583 fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0,
1584 may_share);
1585 end_sequence ();
1590 /* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
1591 some part of an insn. Return a struct fixup_replacement whose OLD
1592 value is equal to X. Allocate a new structure if no such entry exists. */
1594 static struct fixup_replacement *
1595 find_fixup_replacement (replacements, x)
1596 struct fixup_replacement **replacements;
1597 rtx x;
1599 struct fixup_replacement *p;
1601 /* See if we have already replaced this. */
1602 for (p = *replacements; p != 0 && ! rtx_equal_p (p->old, x); p = p->next)
1605 if (p == 0)
1607 p = (struct fixup_replacement *) xmalloc (sizeof (struct fixup_replacement));
1608 p->old = x;
1609 p->new = 0;
1610 p->next = *replacements;
1611 *replacements = p;
1614 return p;
1617 /* Scan the insn-chain starting with INSN for refs to VAR and fix them
1618 up. TOPLEVEL is nonzero if this chain is the main chain of insns
1619 for the current function. MAY_SHARE is either a MEM that is not
1620 to be unshared or a list of them. */
1622 static void
1623 fixup_var_refs_insns (insn, var, promoted_mode, unsignedp, toplevel, may_share)
1624 rtx insn;
1625 rtx var;
1626 enum machine_mode promoted_mode;
1627 int unsignedp;
1628 int toplevel;
1629 rtx may_share;
1631 while (insn)
1633 /* fixup_var_refs_insn might modify insn, so save its next
1634 pointer now. */
1635 rtx next = NEXT_INSN (insn);
1637 /* CALL_PLACEHOLDERs are special; we have to switch into each of
1638 the three sequences they (potentially) contain, and process
1639 them recursively. The CALL_INSN itself is not interesting. */
1641 if (GET_CODE (insn) == CALL_INSN
1642 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
1644 int i;
1646 /* Look at the Normal call, sibling call and tail recursion
1647 sequences attached to the CALL_PLACEHOLDER. */
1648 for (i = 0; i < 3; i++)
1650 rtx seq = XEXP (PATTERN (insn), i);
1651 if (seq)
1653 push_to_sequence (seq);
1654 fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0,
1655 may_share);
1656 XEXP (PATTERN (insn), i) = get_insns ();
1657 end_sequence ();
1662 else if (INSN_P (insn))
1663 fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, toplevel,
1664 may_share);
1666 insn = next;
1670 /* Look up the insns which reference VAR in HT and fix them up. Other
1671 arguments are the same as fixup_var_refs_insns.
1673 N.B. No need for special processing of CALL_PLACEHOLDERs here,
1674 because the hash table will point straight to the interesting insn
1675 (inside the CALL_PLACEHOLDER). */
1677 static void
1678 fixup_var_refs_insns_with_hash (ht, var, promoted_mode, unsignedp, may_share)
1679 htab_t ht;
1680 rtx var;
1681 enum machine_mode promoted_mode;
1682 int unsignedp;
1683 rtx may_share;
1685 struct insns_for_mem_entry tmp;
1686 struct insns_for_mem_entry *ime;
1687 rtx insn_list;
1689 tmp.key = var;
1690 ime = (struct insns_for_mem_entry *) htab_find (ht, &tmp);
1691 for (insn_list = ime->insns; insn_list != 0; insn_list = XEXP (insn_list, 1))
1692 if (INSN_P (XEXP (insn_list, 0)))
1693 fixup_var_refs_insn (XEXP (insn_list, 0), var, promoted_mode,
1694 unsignedp, 1, may_share);
1698 /* Per-insn processing by fixup_var_refs_insns(_with_hash). INSN is
1699 the insn under examination, VAR is the variable to fix up
1700 references to, PROMOTED_MODE and UNSIGNEDP describe VAR, and
1701 TOPLEVEL is nonzero if this is the main insn chain for this
1702 function. */
1704 static void
1705 fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, toplevel, no_share)
1706 rtx insn;
1707 rtx var;
1708 enum machine_mode promoted_mode;
1709 int unsignedp;
1710 int toplevel;
1711 rtx no_share;
1713 rtx call_dest = 0;
1714 rtx set, prev, prev_set;
1715 rtx note;
1717 /* Remember the notes in case we delete the insn. */
1718 note = REG_NOTES (insn);
1720 /* If this is a CLOBBER of VAR, delete it.
1722 If it has a REG_LIBCALL note, delete the REG_LIBCALL
1723 and REG_RETVAL notes too. */
1724 if (GET_CODE (PATTERN (insn)) == CLOBBER
1725 && (XEXP (PATTERN (insn), 0) == var
1726 || (GET_CODE (XEXP (PATTERN (insn), 0)) == CONCAT
1727 && (XEXP (XEXP (PATTERN (insn), 0), 0) == var
1728 || XEXP (XEXP (PATTERN (insn), 0), 1) == var))))
1730 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
1731 /* The REG_LIBCALL note will go away since we are going to
1732 turn INSN into a NOTE, so just delete the
1733 corresponding REG_RETVAL note. */
1734 remove_note (XEXP (note, 0),
1735 find_reg_note (XEXP (note, 0), REG_RETVAL,
1736 NULL_RTX));
1738 delete_insn (insn);
1741 /* The insn to load VAR from a home in the arglist
1742 is now a no-op. When we see it, just delete it.
1743 Similarly if this is storing VAR from a register from which
1744 it was loaded in the previous insn. This will occur
1745 when an ADDRESSOF was made for an arglist slot. */
1746 else if (toplevel
1747 && (set = single_set (insn)) != 0
1748 && SET_DEST (set) == var
1749 /* If this represents the result of an insn group,
1750 don't delete the insn. */
1751 && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
1752 && (rtx_equal_p (SET_SRC (set), var)
1753 || (GET_CODE (SET_SRC (set)) == REG
1754 && (prev = prev_nonnote_insn (insn)) != 0
1755 && (prev_set = single_set (prev)) != 0
1756 && SET_DEST (prev_set) == SET_SRC (set)
1757 && rtx_equal_p (SET_SRC (prev_set), var))))
1759 delete_insn (insn);
1761 else
1763 struct fixup_replacement *replacements = 0;
1764 rtx next_insn = NEXT_INSN (insn);
1766 if (SMALL_REGISTER_CLASSES)
1768 /* If the insn that copies the results of a CALL_INSN
1769 into a pseudo now references VAR, we have to use an
1770 intermediate pseudo since we want the life of the
1771 return value register to be only a single insn.
1773 If we don't use an intermediate pseudo, such things as
1774 address computations to make the address of VAR valid
1775 if it is not can be placed between the CALL_INSN and INSN.
1777 To make sure this doesn't happen, we record the destination
1778 of the CALL_INSN and see if the next insn uses both that
1779 and VAR. */
1781 if (call_dest != 0 && GET_CODE (insn) == INSN
1782 && reg_mentioned_p (var, PATTERN (insn))
1783 && reg_mentioned_p (call_dest, PATTERN (insn)))
1785 rtx temp = gen_reg_rtx (GET_MODE (call_dest));
1787 emit_insn_before (gen_move_insn (temp, call_dest), insn);
1789 PATTERN (insn) = replace_rtx (PATTERN (insn),
1790 call_dest, temp);
1793 if (GET_CODE (insn) == CALL_INSN
1794 && GET_CODE (PATTERN (insn)) == SET)
1795 call_dest = SET_DEST (PATTERN (insn));
1796 else if (GET_CODE (insn) == CALL_INSN
1797 && GET_CODE (PATTERN (insn)) == PARALLEL
1798 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1799 call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
1800 else
1801 call_dest = 0;
1804 /* See if we have to do anything to INSN now that VAR is in
1805 memory. If it needs to be loaded into a pseudo, use a single
1806 pseudo for the entire insn in case there is a MATCH_DUP
1807 between two operands. We pass a pointer to the head of
1808 a list of struct fixup_replacements. If fixup_var_refs_1
1809 needs to allocate pseudos or replacement MEMs (for SUBREGs),
1810 it will record them in this list.
1812 If it allocated a pseudo for any replacement, we copy into
1813 it here. */
1815 fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
1816 &replacements, no_share);
1818 /* If this is last_parm_insn, and any instructions were output
1819 after it to fix it up, then we must set last_parm_insn to
1820 the last such instruction emitted. */
1821 if (insn == last_parm_insn)
1822 last_parm_insn = PREV_INSN (next_insn);
1824 while (replacements)
1826 struct fixup_replacement *next;
1828 if (GET_CODE (replacements->new) == REG)
1830 rtx insert_before;
1831 rtx seq;
1833 /* OLD might be a (subreg (mem)). */
1834 if (GET_CODE (replacements->old) == SUBREG)
1835 replacements->old
1836 = fixup_memory_subreg (replacements->old, insn,
1837 promoted_mode, 0);
1838 else
1839 replacements->old
1840 = fixup_stack_1 (replacements->old, insn);
1842 insert_before = insn;
1844 /* If we are changing the mode, do a conversion.
1845 This might be wasteful, but combine.c will
1846 eliminate much of the waste. */
1848 if (GET_MODE (replacements->new)
1849 != GET_MODE (replacements->old))
1851 start_sequence ();
1852 convert_move (replacements->new,
1853 replacements->old, unsignedp);
1854 seq = get_insns ();
1855 end_sequence ();
1857 else
1858 seq = gen_move_insn (replacements->new,
1859 replacements->old);
1861 emit_insn_before (seq, insert_before);
1864 next = replacements->next;
1865 free (replacements);
1866 replacements = next;
1870 /* Also fix up any invalid exprs in the REG_NOTES of this insn.
1871 But don't touch other insns referred to by reg-notes;
1872 we will get them elsewhere. */
1873 while (note)
1875 if (GET_CODE (note) != INSN_LIST)
1876 XEXP (note, 0)
1877 = walk_fixup_memory_subreg (XEXP (note, 0), insn,
1878 promoted_mode, 1);
1879 note = XEXP (note, 1);
1883 /* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
1884 See if the rtx expression at *LOC in INSN needs to be changed.
1886 REPLACEMENTS is a pointer to a list head that starts out zero, but may
1887 contain a list of original rtx's and replacements. If we find that we need
1888 to modify this insn by replacing a memory reference with a pseudo or by
1889 making a new MEM to implement a SUBREG, we consult that list to see if
1890 we have already chosen a replacement. If none has already been allocated,
1891 we allocate it and update the list. fixup_var_refs_insn will copy VAR
1892 or the SUBREG, as appropriate, to the pseudo. */
1894 static void
1895 fixup_var_refs_1 (var, promoted_mode, loc, insn, replacements, no_share)
1896 rtx var;
1897 enum machine_mode promoted_mode;
1898 rtx *loc;
1899 rtx insn;
1900 struct fixup_replacement **replacements;
1901 rtx no_share;
1903 int i;
1904 rtx x = *loc;
1905 RTX_CODE code = GET_CODE (x);
1906 const char *fmt;
1907 rtx tem, tem1;
1908 struct fixup_replacement *replacement;
1910 switch (code)
1912 case ADDRESSOF:
1913 if (XEXP (x, 0) == var)
1915 /* Prevent sharing of rtl that might lose. */
1916 rtx sub = copy_rtx (XEXP (var, 0));
1918 if (! validate_change (insn, loc, sub, 0))
1920 rtx y = gen_reg_rtx (GET_MODE (sub));
1921 rtx seq, new_insn;
1923 /* We should be able to replace with a register or all is lost.
1924 Note that we can't use validate_change to verify this, since
1925 we're not caring for replacing all dups simultaneously. */
1926 if (! validate_replace_rtx (*loc, y, insn))
1927 abort ();
1929 /* Careful! First try to recognize a direct move of the
1930 value, mimicking how things are done in gen_reload wrt
1931 PLUS. Consider what happens when insn is a conditional
1932 move instruction and addsi3 clobbers flags. */
1934 start_sequence ();
1935 new_insn = emit_insn (gen_rtx_SET (VOIDmode, y, sub));
1936 seq = get_insns ();
1937 end_sequence ();
1939 if (recog_memoized (new_insn) < 0)
1941 /* That failed. Fall back on force_operand and hope. */
1943 start_sequence ();
1944 sub = force_operand (sub, y);
1945 if (sub != y)
1946 emit_insn (gen_move_insn (y, sub));
1947 seq = get_insns ();
1948 end_sequence ();
1951 #ifdef HAVE_cc0
1952 /* Don't separate setter from user. */
1953 if (PREV_INSN (insn) && sets_cc0_p (PREV_INSN (insn)))
1954 insn = PREV_INSN (insn);
1955 #endif
1957 emit_insn_before (seq, insn);
1960 return;
1962 case MEM:
1963 if (var == x)
1965 /* If we already have a replacement, use it. Otherwise,
1966 try to fix up this address in case it is invalid. */
1968 replacement = find_fixup_replacement (replacements, var);
1969 if (replacement->new)
1971 *loc = replacement->new;
1972 return;
1975 *loc = replacement->new = x = fixup_stack_1 (x, insn);
1977 /* Unless we are forcing memory to register or we changed the mode,
1978 we can leave things the way they are if the insn is valid. */
1980 INSN_CODE (insn) = -1;
1981 if (! flag_force_mem && GET_MODE (x) == promoted_mode
1982 && recog_memoized (insn) >= 0)
1983 return;
1985 *loc = replacement->new = gen_reg_rtx (promoted_mode);
1986 return;
1989 /* If X contains VAR, we need to unshare it here so that we update
1990 each occurrence separately. But all identical MEMs in one insn
1991 must be replaced with the same rtx because of the possibility of
1992 MATCH_DUPs. */
1994 if (reg_mentioned_p (var, x))
1996 replacement = find_fixup_replacement (replacements, x);
1997 if (replacement->new == 0)
1998 replacement->new = copy_most_rtx (x, no_share);
2000 *loc = x = replacement->new;
2001 code = GET_CODE (x);
2003 break;
2005 case REG:
2006 case CC0:
2007 case PC:
2008 case CONST_INT:
2009 case CONST:
2010 case SYMBOL_REF:
2011 case LABEL_REF:
2012 case CONST_DOUBLE:
2013 case CONST_VECTOR:
2014 return;
2016 case SIGN_EXTRACT:
2017 case ZERO_EXTRACT:
2018 /* Note that in some cases those types of expressions are altered
2019 by optimize_bit_field, and do not survive to get here. */
2020 if (XEXP (x, 0) == var
2021 || (GET_CODE (XEXP (x, 0)) == SUBREG
2022 && SUBREG_REG (XEXP (x, 0)) == var))
2024 /* Get TEM as a valid MEM in the mode presently in the insn.
2026 We don't worry about the possibility of MATCH_DUP here; it
2027 is highly unlikely and would be tricky to handle. */
2029 tem = XEXP (x, 0);
2030 if (GET_CODE (tem) == SUBREG)
2032 if (GET_MODE_BITSIZE (GET_MODE (tem))
2033 > GET_MODE_BITSIZE (GET_MODE (var)))
2035 replacement = find_fixup_replacement (replacements, var);
2036 if (replacement->new == 0)
2037 replacement->new = gen_reg_rtx (GET_MODE (var));
2038 SUBREG_REG (tem) = replacement->new;
2040 /* The following code works only if we have a MEM, so we
2041 need to handle the subreg here. We directly substitute
2042 it assuming that a subreg must be OK here. We already
2043 scheduled a replacement to copy the mem into the
2044 subreg. */
2045 XEXP (x, 0) = tem;
2046 return;
2048 else
2049 tem = fixup_memory_subreg (tem, insn, promoted_mode, 0);
2051 else
2052 tem = fixup_stack_1 (tem, insn);
2054 /* Unless we want to load from memory, get TEM into the proper mode
2055 for an extract from memory. This can only be done if the
2056 extract is at a constant position and length. */
2058 if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
2059 && GET_CODE (XEXP (x, 2)) == CONST_INT
2060 && ! mode_dependent_address_p (XEXP (tem, 0))
2061 && ! MEM_VOLATILE_P (tem))
2063 enum machine_mode wanted_mode = VOIDmode;
2064 enum machine_mode is_mode = GET_MODE (tem);
2065 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
2067 if (GET_CODE (x) == ZERO_EXTRACT)
2069 enum machine_mode new_mode
2070 = mode_for_extraction (EP_extzv, 1);
2071 if (new_mode != MAX_MACHINE_MODE)
2072 wanted_mode = new_mode;
2074 else if (GET_CODE (x) == SIGN_EXTRACT)
2076 enum machine_mode new_mode
2077 = mode_for_extraction (EP_extv, 1);
2078 if (new_mode != MAX_MACHINE_MODE)
2079 wanted_mode = new_mode;
2082 /* If we have a narrower mode, we can do something. */
2083 if (wanted_mode != VOIDmode
2084 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2086 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2087 rtx old_pos = XEXP (x, 2);
2088 rtx newmem;
2090 /* If the bytes and bits are counted differently, we
2091 must adjust the offset. */
2092 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2093 offset = (GET_MODE_SIZE (is_mode)
2094 - GET_MODE_SIZE (wanted_mode) - offset);
2096 pos %= GET_MODE_BITSIZE (wanted_mode);
2098 newmem = adjust_address_nv (tem, wanted_mode, offset);
2100 /* Make the change and see if the insn remains valid. */
2101 INSN_CODE (insn) = -1;
2102 XEXP (x, 0) = newmem;
2103 XEXP (x, 2) = GEN_INT (pos);
2105 if (recog_memoized (insn) >= 0)
2106 return;
2108 /* Otherwise, restore old position. XEXP (x, 0) will be
2109 restored later. */
2110 XEXP (x, 2) = old_pos;
2114 /* If we get here, the bitfield extract insn can't accept a memory
2115 reference. Copy the input into a register. */
2117 tem1 = gen_reg_rtx (GET_MODE (tem));
2118 emit_insn_before (gen_move_insn (tem1, tem), insn);
2119 XEXP (x, 0) = tem1;
2120 return;
2122 break;
2124 case SUBREG:
2125 if (SUBREG_REG (x) == var)
2127 /* If this is a special SUBREG made because VAR was promoted
2128 from a wider mode, replace it with VAR and call ourself
2129 recursively, this time saying that the object previously
2130 had its current mode (by virtue of the SUBREG). */
2132 if (SUBREG_PROMOTED_VAR_P (x))
2134 *loc = var;
2135 fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements,
2136 no_share);
2137 return;
2140 /* If this SUBREG makes VAR wider, it has become a paradoxical
2141 SUBREG with VAR in memory, but these aren't allowed at this
2142 stage of the compilation. So load VAR into a pseudo and take
2143 a SUBREG of that pseudo. */
2144 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
2146 replacement = find_fixup_replacement (replacements, var);
2147 if (replacement->new == 0)
2148 replacement->new = gen_reg_rtx (promoted_mode);
2149 SUBREG_REG (x) = replacement->new;
2150 return;
2153 /* See if we have already found a replacement for this SUBREG.
2154 If so, use it. Otherwise, make a MEM and see if the insn
2155 is recognized. If not, or if we should force MEM into a register,
2156 make a pseudo for this SUBREG. */
2157 replacement = find_fixup_replacement (replacements, x);
2158 if (replacement->new)
2160 *loc = replacement->new;
2161 return;
2164 replacement->new = *loc = fixup_memory_subreg (x, insn,
2165 promoted_mode, 0);
2167 INSN_CODE (insn) = -1;
2168 if (! flag_force_mem && recog_memoized (insn) >= 0)
2169 return;
2171 *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
2172 return;
2174 break;
2176 case SET:
2177 /* First do special simplification of bit-field references. */
2178 if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
2179 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2180 optimize_bit_field (x, insn, 0);
2181 if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
2182 || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
2183 optimize_bit_field (x, insn, 0);
2185 /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
2186 into a register and then store it back out. */
2187 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2188 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
2189 && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
2190 && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2191 > GET_MODE_SIZE (GET_MODE (var))))
2193 replacement = find_fixup_replacement (replacements, var);
2194 if (replacement->new == 0)
2195 replacement->new = gen_reg_rtx (GET_MODE (var));
2197 SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
2198 emit_insn_after (gen_move_insn (var, replacement->new), insn);
2201 /* If SET_DEST is now a paradoxical SUBREG, put the result of this
2202 insn into a pseudo and store the low part of the pseudo into VAR. */
2203 if (GET_CODE (SET_DEST (x)) == SUBREG
2204 && SUBREG_REG (SET_DEST (x)) == var
2205 && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2206 > GET_MODE_SIZE (GET_MODE (var))))
2208 SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
2209 emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
2210 tem)),
2211 insn);
2212 break;
2216 rtx dest = SET_DEST (x);
2217 rtx src = SET_SRC (x);
2218 rtx outerdest = dest;
2220 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2221 || GET_CODE (dest) == SIGN_EXTRACT
2222 || GET_CODE (dest) == ZERO_EXTRACT)
2223 dest = XEXP (dest, 0);
2225 if (GET_CODE (src) == SUBREG)
2226 src = SUBREG_REG (src);
2228 /* If VAR does not appear at the top level of the SET
2229 just scan the lower levels of the tree. */
2231 if (src != var && dest != var)
2232 break;
2234 /* We will need to rerecognize this insn. */
2235 INSN_CODE (insn) = -1;
2237 if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var
2238 && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
2240 /* Since this case will return, ensure we fixup all the
2241 operands here. */
2242 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
2243 insn, replacements, no_share);
2244 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
2245 insn, replacements, no_share);
2246 fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
2247 insn, replacements, no_share);
2249 tem = XEXP (outerdest, 0);
2251 /* Clean up (SUBREG:SI (MEM:mode ...) 0)
2252 that may appear inside a ZERO_EXTRACT.
2253 This was legitimate when the MEM was a REG. */
2254 if (GET_CODE (tem) == SUBREG
2255 && SUBREG_REG (tem) == var)
2256 tem = fixup_memory_subreg (tem, insn, promoted_mode, 0);
2257 else
2258 tem = fixup_stack_1 (tem, insn);
2260 if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
2261 && GET_CODE (XEXP (outerdest, 2)) == CONST_INT
2262 && ! mode_dependent_address_p (XEXP (tem, 0))
2263 && ! MEM_VOLATILE_P (tem))
2265 enum machine_mode wanted_mode;
2266 enum machine_mode is_mode = GET_MODE (tem);
2267 HOST_WIDE_INT pos = INTVAL (XEXP (outerdest, 2));
2269 wanted_mode = mode_for_extraction (EP_insv, 0);
2271 /* If we have a narrower mode, we can do something. */
2272 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2274 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2275 rtx old_pos = XEXP (outerdest, 2);
2276 rtx newmem;
2278 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2279 offset = (GET_MODE_SIZE (is_mode)
2280 - GET_MODE_SIZE (wanted_mode) - offset);
2282 pos %= GET_MODE_BITSIZE (wanted_mode);
2284 newmem = adjust_address_nv (tem, wanted_mode, offset);
2286 /* Make the change and see if the insn remains valid. */
2287 INSN_CODE (insn) = -1;
2288 XEXP (outerdest, 0) = newmem;
2289 XEXP (outerdest, 2) = GEN_INT (pos);
2291 if (recog_memoized (insn) >= 0)
2292 return;
2294 /* Otherwise, restore old position. XEXP (x, 0) will be
2295 restored later. */
2296 XEXP (outerdest, 2) = old_pos;
2300 /* If we get here, the bit-field store doesn't allow memory
2301 or isn't located at a constant position. Load the value into
2302 a register, do the store, and put it back into memory. */
2304 tem1 = gen_reg_rtx (GET_MODE (tem));
2305 emit_insn_before (gen_move_insn (tem1, tem), insn);
2306 emit_insn_after (gen_move_insn (tem, tem1), insn);
2307 XEXP (outerdest, 0) = tem1;
2308 return;
2311 /* STRICT_LOW_PART is a no-op on memory references
2312 and it can cause combinations to be unrecognizable,
2313 so eliminate it. */
2315 if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2316 SET_DEST (x) = XEXP (SET_DEST (x), 0);
2318 /* A valid insn to copy VAR into or out of a register
2319 must be left alone, to avoid an infinite loop here.
2320 If the reference to VAR is by a subreg, fix that up,
2321 since SUBREG is not valid for a memref.
2322 Also fix up the address of the stack slot.
2324 Note that we must not try to recognize the insn until
2325 after we know that we have valid addresses and no
2326 (subreg (mem ...) ...) constructs, since these interfere
2327 with determining the validity of the insn. */
2329 if ((SET_SRC (x) == var
2330 || (GET_CODE (SET_SRC (x)) == SUBREG
2331 && SUBREG_REG (SET_SRC (x)) == var))
2332 && (GET_CODE (SET_DEST (x)) == REG
2333 || (GET_CODE (SET_DEST (x)) == SUBREG
2334 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
2335 && GET_MODE (var) == promoted_mode
2336 && x == single_set (insn))
2338 rtx pat, last;
2340 if (GET_CODE (SET_SRC (x)) == SUBREG
2341 && (GET_MODE_SIZE (GET_MODE (SET_SRC (x)))
2342 > GET_MODE_SIZE (GET_MODE (var))))
2344 /* This (subreg VAR) is now a paradoxical subreg. We need
2345 to replace VAR instead of the subreg. */
2346 replacement = find_fixup_replacement (replacements, var);
2347 if (replacement->new == NULL_RTX)
2348 replacement->new = gen_reg_rtx (GET_MODE (var));
2349 SUBREG_REG (SET_SRC (x)) = replacement->new;
2351 else
2353 replacement = find_fixup_replacement (replacements, SET_SRC (x));
2354 if (replacement->new)
2355 SET_SRC (x) = replacement->new;
2356 else if (GET_CODE (SET_SRC (x)) == SUBREG)
2357 SET_SRC (x) = replacement->new
2358 = fixup_memory_subreg (SET_SRC (x), insn, promoted_mode,
2360 else
2361 SET_SRC (x) = replacement->new
2362 = fixup_stack_1 (SET_SRC (x), insn);
2365 if (recog_memoized (insn) >= 0)
2366 return;
2368 /* INSN is not valid, but we know that we want to
2369 copy SET_SRC (x) to SET_DEST (x) in some way. So
2370 we generate the move and see whether it requires more
2371 than one insn. If it does, we emit those insns and
2372 delete INSN. Otherwise, we can just replace the pattern
2373 of INSN; we have already verified above that INSN has
2374 no other function that to do X. */
2376 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2377 if (NEXT_INSN (pat) != NULL_RTX)
2379 last = emit_insn_before (pat, insn);
2381 /* INSN might have REG_RETVAL or other important notes, so
2382 we need to store the pattern of the last insn in the
2383 sequence into INSN similarly to the normal case. LAST
2384 should not have REG_NOTES, but we allow them if INSN has
2385 no REG_NOTES. */
2386 if (REG_NOTES (last) && REG_NOTES (insn))
2387 abort ();
2388 if (REG_NOTES (last))
2389 REG_NOTES (insn) = REG_NOTES (last);
2390 PATTERN (insn) = PATTERN (last);
2392 delete_insn (last);
2394 else
2395 PATTERN (insn) = PATTERN (pat);
2397 return;
2400 if ((SET_DEST (x) == var
2401 || (GET_CODE (SET_DEST (x)) == SUBREG
2402 && SUBREG_REG (SET_DEST (x)) == var))
2403 && (GET_CODE (SET_SRC (x)) == REG
2404 || (GET_CODE (SET_SRC (x)) == SUBREG
2405 && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
2406 && GET_MODE (var) == promoted_mode
2407 && x == single_set (insn))
2409 rtx pat, last;
2411 if (GET_CODE (SET_DEST (x)) == SUBREG)
2412 SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn,
2413 promoted_mode, 0);
2414 else
2415 SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
2417 if (recog_memoized (insn) >= 0)
2418 return;
2420 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2421 if (NEXT_INSN (pat) != NULL_RTX)
2423 last = emit_insn_before (pat, insn);
2425 /* INSN might have REG_RETVAL or other important notes, so
2426 we need to store the pattern of the last insn in the
2427 sequence into INSN similarly to the normal case. LAST
2428 should not have REG_NOTES, but we allow them if INSN has
2429 no REG_NOTES. */
2430 if (REG_NOTES (last) && REG_NOTES (insn))
2431 abort ();
2432 if (REG_NOTES (last))
2433 REG_NOTES (insn) = REG_NOTES (last);
2434 PATTERN (insn) = PATTERN (last);
2436 delete_insn (last);
2438 else
2439 PATTERN (insn) = PATTERN (pat);
2441 return;
2444 /* Otherwise, storing into VAR must be handled specially
2445 by storing into a temporary and copying that into VAR
2446 with a new insn after this one. Note that this case
2447 will be used when storing into a promoted scalar since
2448 the insn will now have different modes on the input
2449 and output and hence will be invalid (except for the case
2450 of setting it to a constant, which does not need any
2451 change if it is valid). We generate extra code in that case,
2452 but combine.c will eliminate it. */
2454 if (dest == var)
2456 rtx temp;
2457 rtx fixeddest = SET_DEST (x);
2458 enum machine_mode temp_mode;
2460 /* STRICT_LOW_PART can be discarded, around a MEM. */
2461 if (GET_CODE (fixeddest) == STRICT_LOW_PART)
2462 fixeddest = XEXP (fixeddest, 0);
2463 /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
2464 if (GET_CODE (fixeddest) == SUBREG)
2466 fixeddest = fixup_memory_subreg (fixeddest, insn,
2467 promoted_mode, 0);
2468 temp_mode = GET_MODE (fixeddest);
2470 else
2472 fixeddest = fixup_stack_1 (fixeddest, insn);
2473 temp_mode = promoted_mode;
2476 temp = gen_reg_rtx (temp_mode);
2478 emit_insn_after (gen_move_insn (fixeddest,
2479 gen_lowpart (GET_MODE (fixeddest),
2480 temp)),
2481 insn);
2483 SET_DEST (x) = temp;
2487 default:
2488 break;
2491 /* Nothing special about this RTX; fix its operands. */
2493 fmt = GET_RTX_FORMAT (code);
2494 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2496 if (fmt[i] == 'e')
2497 fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements,
2498 no_share);
2499 else if (fmt[i] == 'E')
2501 int j;
2502 for (j = 0; j < XVECLEN (x, i); j++)
2503 fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
2504 insn, replacements, no_share);
2509 /* Previously, X had the form (SUBREG:m1 (REG:PROMOTED_MODE ...)).
2510 The REG was placed on the stack, so X now has the form (SUBREG:m1
2511 (MEM:m2 ...)).
2513 Return an rtx (MEM:m1 newaddr) which is equivalent. If any insns
2514 must be emitted to compute NEWADDR, put them before INSN.
2516 UNCRITICAL nonzero means accept paradoxical subregs.
2517 This is used for subregs found inside REG_NOTES. */
2519 static rtx
2520 fixup_memory_subreg (x, insn, promoted_mode, uncritical)
2521 rtx x;
2522 rtx insn;
2523 enum machine_mode promoted_mode;
2524 int uncritical;
2526 int offset;
2527 rtx mem = SUBREG_REG (x);
2528 rtx addr = XEXP (mem, 0);
2529 enum machine_mode mode = GET_MODE (x);
2530 rtx result, seq;
2532 /* Paradoxical SUBREGs are usually invalid during RTL generation. */
2533 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (mem)) && ! uncritical)
2534 abort ();
2536 offset = SUBREG_BYTE (x);
2537 if (BYTES_BIG_ENDIAN)
2538 /* If the PROMOTED_MODE is wider than the mode of the MEM, adjust
2539 the offset so that it points to the right location within the
2540 MEM. */
2541 offset -= (GET_MODE_SIZE (promoted_mode) - GET_MODE_SIZE (GET_MODE (mem)));
2543 if (!flag_force_addr
2544 && memory_address_p (mode, plus_constant (addr, offset)))
2545 /* Shortcut if no insns need be emitted. */
2546 return adjust_address (mem, mode, offset);
2548 start_sequence ();
2549 result = adjust_address (mem, mode, offset);
2550 seq = get_insns ();
2551 end_sequence ();
2553 emit_insn_before (seq, insn);
2554 return result;
2557 /* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
2558 Replace subexpressions of X in place.
2559 If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
2560 Otherwise return X, with its contents possibly altered.
2562 INSN, PROMOTED_MODE and UNCRITICAL are as for
2563 fixup_memory_subreg. */
2565 static rtx
2566 walk_fixup_memory_subreg (x, insn, promoted_mode, uncritical)
2567 rtx x;
2568 rtx insn;
2569 enum machine_mode promoted_mode;
2570 int uncritical;
2572 enum rtx_code code;
2573 const char *fmt;
2574 int i;
2576 if (x == 0)
2577 return 0;
2579 code = GET_CODE (x);
2581 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
2582 return fixup_memory_subreg (x, insn, promoted_mode, uncritical);
2584 /* Nothing special about this RTX; fix its operands. */
2586 fmt = GET_RTX_FORMAT (code);
2587 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2589 if (fmt[i] == 'e')
2590 XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn,
2591 promoted_mode, uncritical);
2592 else if (fmt[i] == 'E')
2594 int j;
2595 for (j = 0; j < XVECLEN (x, i); j++)
2596 XVECEXP (x, i, j)
2597 = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn,
2598 promoted_mode, uncritical);
2601 return x;
2604 /* For each memory ref within X, if it refers to a stack slot
2605 with an out of range displacement, put the address in a temp register
2606 (emitting new insns before INSN to load these registers)
2607 and alter the memory ref to use that register.
2608 Replace each such MEM rtx with a copy, to avoid clobberage. */
2610 static rtx
2611 fixup_stack_1 (x, insn)
2612 rtx x;
2613 rtx insn;
2615 int i;
2616 RTX_CODE code = GET_CODE (x);
2617 const char *fmt;
2619 if (code == MEM)
2621 rtx ad = XEXP (x, 0);
2622 /* If we have address of a stack slot but it's not valid
2623 (displacement is too large), compute the sum in a register. */
2624 if (GET_CODE (ad) == PLUS
2625 && GET_CODE (XEXP (ad, 0)) == REG
2626 && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
2627 && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
2628 || REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM
2629 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2630 || REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM
2631 #endif
2632 || REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM
2633 || REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM
2634 || XEXP (ad, 0) == current_function_internal_arg_pointer)
2635 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
2637 rtx temp, seq;
2638 if (memory_address_p (GET_MODE (x), ad))
2639 return x;
2641 start_sequence ();
2642 temp = copy_to_reg (ad);
2643 seq = get_insns ();
2644 end_sequence ();
2645 emit_insn_before (seq, insn);
2646 return replace_equiv_address (x, temp);
2648 return x;
2651 fmt = GET_RTX_FORMAT (code);
2652 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2654 if (fmt[i] == 'e')
2655 XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
2656 else if (fmt[i] == 'E')
2658 int j;
2659 for (j = 0; j < XVECLEN (x, i); j++)
2660 XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
2663 return x;
2666 /* Optimization: a bit-field instruction whose field
2667 happens to be a byte or halfword in memory
2668 can be changed to a move instruction.
2670 We call here when INSN is an insn to examine or store into a bit-field.
2671 BODY is the SET-rtx to be altered.
2673 EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
2674 (Currently this is called only from function.c, and EQUIV_MEM
2675 is always 0.) */
2677 static void
2678 optimize_bit_field (body, insn, equiv_mem)
2679 rtx body;
2680 rtx insn;
2681 rtx *equiv_mem;
2683 rtx bitfield;
2684 int destflag;
2685 rtx seq = 0;
2686 enum machine_mode mode;
2688 if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
2689 || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
2690 bitfield = SET_DEST (body), destflag = 1;
2691 else
2692 bitfield = SET_SRC (body), destflag = 0;
2694 /* First check that the field being stored has constant size and position
2695 and is in fact a byte or halfword suitably aligned. */
2697 if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
2698 && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
2699 && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
2700 != BLKmode)
2701 && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
2703 rtx memref = 0;
2705 /* Now check that the containing word is memory, not a register,
2706 and that it is safe to change the machine mode. */
2708 if (GET_CODE (XEXP (bitfield, 0)) == MEM)
2709 memref = XEXP (bitfield, 0);
2710 else if (GET_CODE (XEXP (bitfield, 0)) == REG
2711 && equiv_mem != 0)
2712 memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
2713 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2714 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
2715 memref = SUBREG_REG (XEXP (bitfield, 0));
2716 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2717 && equiv_mem != 0
2718 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
2719 memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
2721 if (memref
2722 && ! mode_dependent_address_p (XEXP (memref, 0))
2723 && ! MEM_VOLATILE_P (memref))
2725 /* Now adjust the address, first for any subreg'ing
2726 that we are now getting rid of,
2727 and then for which byte of the word is wanted. */
2729 HOST_WIDE_INT offset = INTVAL (XEXP (bitfield, 2));
2730 rtx insns;
2732 /* Adjust OFFSET to count bits from low-address byte. */
2733 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2734 offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
2735 - offset - INTVAL (XEXP (bitfield, 1)));
2737 /* Adjust OFFSET to count bytes from low-address byte. */
2738 offset /= BITS_PER_UNIT;
2739 if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
2741 offset += (SUBREG_BYTE (XEXP (bitfield, 0))
2742 / UNITS_PER_WORD) * UNITS_PER_WORD;
2743 if (BYTES_BIG_ENDIAN)
2744 offset -= (MIN (UNITS_PER_WORD,
2745 GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
2746 - MIN (UNITS_PER_WORD,
2747 GET_MODE_SIZE (GET_MODE (memref))));
2750 start_sequence ();
2751 memref = adjust_address (memref, mode, offset);
2752 insns = get_insns ();
2753 end_sequence ();
2754 emit_insn_before (insns, insn);
2756 /* Store this memory reference where
2757 we found the bit field reference. */
2759 if (destflag)
2761 validate_change (insn, &SET_DEST (body), memref, 1);
2762 if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
2764 rtx src = SET_SRC (body);
2765 while (GET_CODE (src) == SUBREG
2766 && SUBREG_BYTE (src) == 0)
2767 src = SUBREG_REG (src);
2768 if (GET_MODE (src) != GET_MODE (memref))
2769 src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
2770 validate_change (insn, &SET_SRC (body), src, 1);
2772 else if (GET_MODE (SET_SRC (body)) != VOIDmode
2773 && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
2774 /* This shouldn't happen because anything that didn't have
2775 one of these modes should have got converted explicitly
2776 and then referenced through a subreg.
2777 This is so because the original bit-field was
2778 handled by agg_mode and so its tree structure had
2779 the same mode that memref now has. */
2780 abort ();
2782 else
2784 rtx dest = SET_DEST (body);
2786 while (GET_CODE (dest) == SUBREG
2787 && SUBREG_BYTE (dest) == 0
2788 && (GET_MODE_CLASS (GET_MODE (dest))
2789 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest))))
2790 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
2791 <= UNITS_PER_WORD))
2792 dest = SUBREG_REG (dest);
2794 validate_change (insn, &SET_DEST (body), dest, 1);
2796 if (GET_MODE (dest) == GET_MODE (memref))
2797 validate_change (insn, &SET_SRC (body), memref, 1);
2798 else
2800 /* Convert the mem ref to the destination mode. */
2801 rtx newreg = gen_reg_rtx (GET_MODE (dest));
2803 start_sequence ();
2804 convert_move (newreg, memref,
2805 GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
2806 seq = get_insns ();
2807 end_sequence ();
2809 validate_change (insn, &SET_SRC (body), newreg, 1);
2813 /* See if we can convert this extraction or insertion into
2814 a simple move insn. We might not be able to do so if this
2815 was, for example, part of a PARALLEL.
2817 If we succeed, write out any needed conversions. If we fail,
2818 it is hard to guess why we failed, so don't do anything
2819 special; just let the optimization be suppressed. */
2821 if (apply_change_group () && seq)
2822 emit_insn_before (seq, insn);
2827 /* These routines are responsible for converting virtual register references
2828 to the actual hard register references once RTL generation is complete.
2830 The following four variables are used for communication between the
2831 routines. They contain the offsets of the virtual registers from their
2832 respective hard registers. */
2834 static int in_arg_offset;
2835 static int var_offset;
2836 static int dynamic_offset;
2837 static int out_arg_offset;
2838 static int cfa_offset;
2840 /* In most machines, the stack pointer register is equivalent to the bottom
2841 of the stack. */
2843 #ifndef STACK_POINTER_OFFSET
2844 #define STACK_POINTER_OFFSET 0
2845 #endif
2847 /* If not defined, pick an appropriate default for the offset of dynamically
2848 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
2849 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
2851 #ifndef STACK_DYNAMIC_OFFSET
2853 /* The bottom of the stack points to the actual arguments. If
2854 REG_PARM_STACK_SPACE is defined, this includes the space for the register
2855 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
2856 stack space for register parameters is not pushed by the caller, but
2857 rather part of the fixed stack areas and hence not included in
2858 `current_function_outgoing_args_size'. Nevertheless, we must allow
2859 for it when allocating stack dynamic objects. */
2861 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
2862 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2863 ((ACCUMULATE_OUTGOING_ARGS \
2864 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
2865 + (STACK_POINTER_OFFSET)) \
2867 #else
2868 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2869 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
2870 + (STACK_POINTER_OFFSET))
2871 #endif
2872 #endif
2874 /* On most machines, the CFA coincides with the first incoming parm. */
2876 #ifndef ARG_POINTER_CFA_OFFSET
2877 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
2878 #endif
2880 /* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just
2881 had its address taken. DECL is the decl or SAVE_EXPR for the
2882 object stored in the register, for later use if we do need to force
2883 REG into the stack. REG is overwritten by the MEM like in
2884 put_reg_into_stack. RESCAN is true if previously emitted
2885 instructions must be rescanned and modified now that the REG has
2886 been transformed. */
2889 gen_mem_addressof (reg, decl, rescan)
2890 rtx reg;
2891 tree decl;
2892 int rescan;
2894 rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)),
2895 REGNO (reg), decl);
2897 /* Calculate this before we start messing with decl's RTL. */
2898 HOST_WIDE_INT set = decl ? get_alias_set (decl) : 0;
2900 /* If the original REG was a user-variable, then so is the REG whose
2901 address is being taken. Likewise for unchanging. */
2902 REG_USERVAR_P (XEXP (r, 0)) = REG_USERVAR_P (reg);
2903 RTX_UNCHANGING_P (XEXP (r, 0)) = RTX_UNCHANGING_P (reg);
2905 PUT_CODE (reg, MEM);
2906 MEM_ATTRS (reg) = 0;
2907 XEXP (reg, 0) = r;
2909 if (decl)
2911 tree type = TREE_TYPE (decl);
2912 enum machine_mode decl_mode
2913 = (DECL_P (decl) ? DECL_MODE (decl) : TYPE_MODE (TREE_TYPE (decl)));
2914 rtx decl_rtl = (TREE_CODE (decl) == SAVE_EXPR ? SAVE_EXPR_RTL (decl)
2915 : DECL_RTL_IF_SET (decl));
2917 PUT_MODE (reg, decl_mode);
2919 /* Clear DECL_RTL momentarily so functions below will work
2920 properly, then set it again. */
2921 if (DECL_P (decl) && decl_rtl == reg)
2922 SET_DECL_RTL (decl, 0);
2924 set_mem_attributes (reg, decl, 1);
2925 set_mem_alias_set (reg, set);
2927 if (DECL_P (decl) && decl_rtl == reg)
2928 SET_DECL_RTL (decl, reg);
2930 if (rescan
2931 && (TREE_USED (decl) || (DECL_P (decl) && DECL_INITIAL (decl) != 0)))
2932 fixup_var_refs (reg, GET_MODE (reg), TREE_UNSIGNED (type), reg, 0);
2934 else if (rescan)
2935 fixup_var_refs (reg, GET_MODE (reg), 0, reg, 0);
2937 return reg;
2940 /* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */
2942 void
2943 flush_addressof (decl)
2944 tree decl;
2946 if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL)
2947 && DECL_RTL (decl) != 0
2948 && GET_CODE (DECL_RTL (decl)) == MEM
2949 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF
2950 && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG)
2951 put_addressof_into_stack (XEXP (DECL_RTL (decl), 0), 0);
2954 /* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */
2956 static void
2957 put_addressof_into_stack (r, ht)
2958 rtx r;
2959 htab_t ht;
2961 tree decl, type;
2962 int volatile_p, used_p;
2964 rtx reg = XEXP (r, 0);
2966 if (GET_CODE (reg) != REG)
2967 abort ();
2969 decl = ADDRESSOF_DECL (r);
2970 if (decl)
2972 type = TREE_TYPE (decl);
2973 volatile_p = (TREE_CODE (decl) != SAVE_EXPR
2974 && TREE_THIS_VOLATILE (decl));
2975 used_p = (TREE_USED (decl)
2976 || (DECL_P (decl) && DECL_INITIAL (decl) != 0));
2978 else
2980 type = NULL_TREE;
2981 volatile_p = 0;
2982 used_p = 1;
2985 put_reg_into_stack (0, reg, type, GET_MODE (reg), GET_MODE (reg),
2986 volatile_p, ADDRESSOF_REGNO (r), used_p, ht);
2989 /* List of replacements made below in purge_addressof_1 when creating
2990 bitfield insertions. */
2991 static rtx purge_bitfield_addressof_replacements;
2993 /* List of replacements made below in purge_addressof_1 for patterns
2994 (MEM (ADDRESSOF (REG ...))). The key of the list entry is the
2995 corresponding (ADDRESSOF (REG ...)) and value is a substitution for
2996 the all pattern. List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not
2997 enough in complex cases, e.g. when some field values can be
2998 extracted by usage MEM with narrower mode. */
2999 static rtx purge_addressof_replacements;
3001 /* Helper function for purge_addressof. See if the rtx expression at *LOC
3002 in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into
3003 the stack. If the function returns FALSE then the replacement could not
3004 be made. If MAY_POSTPONE is true and we would not put the addressof
3005 to stack, postpone processing of the insn. */
3007 static bool
3008 purge_addressof_1 (loc, insn, force, store, may_postpone, ht)
3009 rtx *loc;
3010 rtx insn;
3011 int force, store, may_postpone;
3012 htab_t ht;
3014 rtx x;
3015 RTX_CODE code;
3016 int i, j;
3017 const char *fmt;
3018 bool result = true;
3020 /* Re-start here to avoid recursion in common cases. */
3021 restart:
3023 x = *loc;
3024 if (x == 0)
3025 return true;
3027 code = GET_CODE (x);
3029 /* If we don't return in any of the cases below, we will recurse inside
3030 the RTX, which will normally result in any ADDRESSOF being forced into
3031 memory. */
3032 if (code == SET)
3034 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1,
3035 may_postpone, ht);
3036 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0,
3037 may_postpone, ht);
3038 return result;
3040 else if (code == ADDRESSOF)
3042 rtx sub, insns;
3044 if (GET_CODE (XEXP (x, 0)) != MEM)
3045 put_addressof_into_stack (x, ht);
3047 /* We must create a copy of the rtx because it was created by
3048 overwriting a REG rtx which is always shared. */
3049 sub = copy_rtx (XEXP (XEXP (x, 0), 0));
3050 if (validate_change (insn, loc, sub, 0)
3051 || validate_replace_rtx (x, sub, insn))
3052 return true;
3054 start_sequence ();
3055 sub = force_operand (sub, NULL_RTX);
3056 if (! validate_change (insn, loc, sub, 0)
3057 && ! validate_replace_rtx (x, sub, insn))
3058 abort ();
3060 insns = get_insns ();
3061 end_sequence ();
3062 emit_insn_before (insns, insn);
3063 return true;
3066 else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force)
3068 rtx sub = XEXP (XEXP (x, 0), 0);
3070 if (may_postpone)
3072 if (!postponed_insns || XEXP (postponed_insns, 0) != insn)
3073 postponed_insns = alloc_INSN_LIST (insn, postponed_insns);
3074 return true;
3077 if (GET_CODE (sub) == MEM)
3078 sub = adjust_address_nv (sub, GET_MODE (x), 0);
3079 else if (GET_CODE (sub) == REG
3080 && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
3082 else if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub))
3084 int size_x, size_sub;
3086 if (!insn)
3088 /* When processing REG_NOTES look at the list of
3089 replacements done on the insn to find the register that X
3090 was replaced by. */
3091 rtx tem;
3093 for (tem = purge_bitfield_addressof_replacements;
3094 tem != NULL_RTX;
3095 tem = XEXP (XEXP (tem, 1), 1))
3096 if (rtx_equal_p (x, XEXP (tem, 0)))
3098 *loc = XEXP (XEXP (tem, 1), 0);
3099 return true;
3102 /* See comment for purge_addressof_replacements. */
3103 for (tem = purge_addressof_replacements;
3104 tem != NULL_RTX;
3105 tem = XEXP (XEXP (tem, 1), 1))
3106 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3108 rtx z = XEXP (XEXP (tem, 1), 0);
3110 if (GET_MODE (x) == GET_MODE (z)
3111 || (GET_CODE (XEXP (XEXP (tem, 1), 0)) != REG
3112 && GET_CODE (XEXP (XEXP (tem, 1), 0)) != SUBREG))
3113 abort ();
3115 /* It can happen that the note may speak of things
3116 in a wider (or just different) mode than the
3117 code did. This is especially true of
3118 REG_RETVAL. */
3120 if (GET_CODE (z) == SUBREG && SUBREG_BYTE (z) == 0)
3121 z = SUBREG_REG (z);
3123 if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
3124 && (GET_MODE_SIZE (GET_MODE (x))
3125 > GET_MODE_SIZE (GET_MODE (z))))
3127 /* This can occur as a result in invalid
3128 pointer casts, e.g. float f; ...
3129 *(long long int *)&f.
3130 ??? We could emit a warning here, but
3131 without a line number that wouldn't be
3132 very helpful. */
3133 z = gen_rtx_SUBREG (GET_MODE (x), z, 0);
3135 else
3136 z = gen_lowpart (GET_MODE (x), z);
3138 *loc = z;
3139 return true;
3142 /* Sometimes we may not be able to find the replacement. For
3143 example when the original insn was a MEM in a wider mode,
3144 and the note is part of a sign extension of a narrowed
3145 version of that MEM. Gcc testcase compile/990829-1.c can
3146 generate an example of this situation. Rather than complain
3147 we return false, which will prompt our caller to remove the
3148 offending note. */
3149 return false;
3152 size_x = GET_MODE_BITSIZE (GET_MODE (x));
3153 size_sub = GET_MODE_BITSIZE (GET_MODE (sub));
3155 /* Do not frob unchanging MEMs. If a later reference forces the
3156 pseudo to the stack, we can wind up with multiple writes to
3157 an unchanging memory, which is invalid. */
3158 if (RTX_UNCHANGING_P (x) && size_x != size_sub)
3161 /* Don't even consider working with paradoxical subregs,
3162 or the moral equivalent seen here. */
3163 else if (size_x <= size_sub
3164 && int_mode_for_mode (GET_MODE (sub)) != BLKmode)
3166 /* Do a bitfield insertion to mirror what would happen
3167 in memory. */
3169 rtx val, seq;
3171 if (store)
3173 rtx p = PREV_INSN (insn);
3175 start_sequence ();
3176 val = gen_reg_rtx (GET_MODE (x));
3177 if (! validate_change (insn, loc, val, 0))
3179 /* Discard the current sequence and put the
3180 ADDRESSOF on stack. */
3181 end_sequence ();
3182 goto give_up;
3184 seq = get_insns ();
3185 end_sequence ();
3186 emit_insn_before (seq, insn);
3187 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3188 insn, ht);
3190 start_sequence ();
3191 store_bit_field (sub, size_x, 0, GET_MODE (x),
3192 val, GET_MODE_SIZE (GET_MODE (sub)));
3194 /* Make sure to unshare any shared rtl that store_bit_field
3195 might have created. */
3196 unshare_all_rtl_again (get_insns ());
3198 seq = get_insns ();
3199 end_sequence ();
3200 p = emit_insn_after (seq, insn);
3201 if (NEXT_INSN (insn))
3202 compute_insns_for_mem (NEXT_INSN (insn),
3203 p ? NEXT_INSN (p) : NULL_RTX,
3204 ht);
3206 else
3208 rtx p = PREV_INSN (insn);
3210 start_sequence ();
3211 val = extract_bit_field (sub, size_x, 0, 1, NULL_RTX,
3212 GET_MODE (x), GET_MODE (x),
3213 GET_MODE_SIZE (GET_MODE (sub)));
3215 if (! validate_change (insn, loc, val, 0))
3217 /* Discard the current sequence and put the
3218 ADDRESSOF on stack. */
3219 end_sequence ();
3220 goto give_up;
3223 seq = get_insns ();
3224 end_sequence ();
3225 emit_insn_before (seq, insn);
3226 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3227 insn, ht);
3230 /* Remember the replacement so that the same one can be done
3231 on the REG_NOTES. */
3232 purge_bitfield_addressof_replacements
3233 = gen_rtx_EXPR_LIST (VOIDmode, x,
3234 gen_rtx_EXPR_LIST
3235 (VOIDmode, val,
3236 purge_bitfield_addressof_replacements));
3238 /* We replaced with a reg -- all done. */
3239 return true;
3243 else if (validate_change (insn, loc, sub, 0))
3245 /* Remember the replacement so that the same one can be done
3246 on the REG_NOTES. */
3247 if (GET_CODE (sub) == REG || GET_CODE (sub) == SUBREG)
3249 rtx tem;
3251 for (tem = purge_addressof_replacements;
3252 tem != NULL_RTX;
3253 tem = XEXP (XEXP (tem, 1), 1))
3254 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3256 XEXP (XEXP (tem, 1), 0) = sub;
3257 return true;
3259 purge_addressof_replacements
3260 = gen_rtx (EXPR_LIST, VOIDmode, XEXP (x, 0),
3261 gen_rtx_EXPR_LIST (VOIDmode, sub,
3262 purge_addressof_replacements));
3263 return true;
3265 goto restart;
3269 give_up:
3270 /* Scan all subexpressions. */
3271 fmt = GET_RTX_FORMAT (code);
3272 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3274 if (*fmt == 'e')
3275 result &= purge_addressof_1 (&XEXP (x, i), insn, force, 0,
3276 may_postpone, ht);
3277 else if (*fmt == 'E')
3278 for (j = 0; j < XVECLEN (x, i); j++)
3279 result &= purge_addressof_1 (&XVECEXP (x, i, j), insn, force, 0,
3280 may_postpone, ht);
3283 return result;
3286 /* Return a hash value for K, a REG. */
3288 static hashval_t
3289 insns_for_mem_hash (k)
3290 const void * k;
3292 /* Use the address of the key for the hash value. */
3293 struct insns_for_mem_entry *m = (struct insns_for_mem_entry *) k;
3294 return htab_hash_pointer (m->key);
3297 /* Return nonzero if K1 and K2 (two REGs) are the same. */
3299 static int
3300 insns_for_mem_comp (k1, k2)
3301 const void * k1;
3302 const void * k2;
3304 struct insns_for_mem_entry *m1 = (struct insns_for_mem_entry *) k1;
3305 struct insns_for_mem_entry *m2 = (struct insns_for_mem_entry *) k2;
3306 return m1->key == m2->key;
3309 struct insns_for_mem_walk_info
3311 /* The hash table that we are using to record which INSNs use which
3312 MEMs. */
3313 htab_t ht;
3315 /* The INSN we are currently processing. */
3316 rtx insn;
3318 /* Zero if we are walking to find ADDRESSOFs, one if we are walking
3319 to find the insns that use the REGs in the ADDRESSOFs. */
3320 int pass;
3323 /* Called from compute_insns_for_mem via for_each_rtx. If R is a REG
3324 that might be used in an ADDRESSOF expression, record this INSN in
3325 the hash table given by DATA (which is really a pointer to an
3326 insns_for_mem_walk_info structure). */
3328 static int
3329 insns_for_mem_walk (r, data)
3330 rtx *r;
3331 void *data;
3333 struct insns_for_mem_walk_info *ifmwi
3334 = (struct insns_for_mem_walk_info *) data;
3335 struct insns_for_mem_entry tmp;
3336 tmp.insns = NULL_RTX;
3338 if (ifmwi->pass == 0 && *r && GET_CODE (*r) == ADDRESSOF
3339 && GET_CODE (XEXP (*r, 0)) == REG)
3341 PTR *e;
3342 tmp.key = XEXP (*r, 0);
3343 e = htab_find_slot (ifmwi->ht, &tmp, INSERT);
3344 if (*e == NULL)
3346 *e = ggc_alloc (sizeof (tmp));
3347 memcpy (*e, &tmp, sizeof (tmp));
3350 else if (ifmwi->pass == 1 && *r && GET_CODE (*r) == REG)
3352 struct insns_for_mem_entry *ifme;
3353 tmp.key = *r;
3354 ifme = (struct insns_for_mem_entry *) htab_find (ifmwi->ht, &tmp);
3356 /* If we have not already recorded this INSN, do so now. Since
3357 we process the INSNs in order, we know that if we have
3358 recorded it it must be at the front of the list. */
3359 if (ifme && (!ifme->insns || XEXP (ifme->insns, 0) != ifmwi->insn))
3360 ifme->insns = gen_rtx_EXPR_LIST (VOIDmode, ifmwi->insn,
3361 ifme->insns);
3364 return 0;
3367 /* Walk the INSNS, until we reach LAST_INSN, recording which INSNs use
3368 which REGs in HT. */
3370 static void
3371 compute_insns_for_mem (insns, last_insn, ht)
3372 rtx insns;
3373 rtx last_insn;
3374 htab_t ht;
3376 rtx insn;
3377 struct insns_for_mem_walk_info ifmwi;
3378 ifmwi.ht = ht;
3380 for (ifmwi.pass = 0; ifmwi.pass < 2; ++ifmwi.pass)
3381 for (insn = insns; insn != last_insn; insn = NEXT_INSN (insn))
3382 if (INSN_P (insn))
3384 ifmwi.insn = insn;
3385 for_each_rtx (&insn, insns_for_mem_walk, &ifmwi);
3389 /* Helper function for purge_addressof called through for_each_rtx.
3390 Returns true iff the rtl is an ADDRESSOF. */
3392 static int
3393 is_addressof (rtl, data)
3394 rtx *rtl;
3395 void *data ATTRIBUTE_UNUSED;
3397 return GET_CODE (*rtl) == ADDRESSOF;
3400 /* Eliminate all occurrences of ADDRESSOF from INSNS. Elide any remaining
3401 (MEM (ADDRESSOF)) patterns, and force any needed registers into the
3402 stack. */
3404 void
3405 purge_addressof (insns)
3406 rtx insns;
3408 rtx insn, tmp;
3409 htab_t ht;
3411 /* When we actually purge ADDRESSOFs, we turn REGs into MEMs. That
3412 requires a fixup pass over the instruction stream to correct
3413 INSNs that depended on the REG being a REG, and not a MEM. But,
3414 these fixup passes are slow. Furthermore, most MEMs are not
3415 mentioned in very many instructions. So, we speed up the process
3416 by pre-calculating which REGs occur in which INSNs; that allows
3417 us to perform the fixup passes much more quickly. */
3418 ht = htab_create_ggc (1000, insns_for_mem_hash, insns_for_mem_comp, NULL);
3419 compute_insns_for_mem (insns, NULL_RTX, ht);
3421 postponed_insns = NULL;
3423 for (insn = insns; insn; insn = NEXT_INSN (insn))
3424 if (INSN_P (insn))
3426 if (! purge_addressof_1 (&PATTERN (insn), insn,
3427 asm_noperands (PATTERN (insn)) > 0, 0, 1, ht))
3428 /* If we could not replace the ADDRESSOFs in the insn,
3429 something is wrong. */
3430 abort ();
3432 if (! purge_addressof_1 (&REG_NOTES (insn), NULL_RTX, 0, 0, 0, ht))
3434 /* If we could not replace the ADDRESSOFs in the insn's notes,
3435 we can just remove the offending notes instead. */
3436 rtx note;
3438 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3440 /* If we find a REG_RETVAL note then the insn is a libcall.
3441 Such insns must have REG_EQUAL notes as well, in order
3442 for later passes of the compiler to work. So it is not
3443 safe to delete the notes here, and instead we abort. */
3444 if (REG_NOTE_KIND (note) == REG_RETVAL)
3445 abort ();
3446 if (for_each_rtx (&note, is_addressof, NULL))
3447 remove_note (insn, note);
3452 /* Process the postponed insns. */
3453 while (postponed_insns)
3455 insn = XEXP (postponed_insns, 0);
3456 tmp = postponed_insns;
3457 postponed_insns = XEXP (postponed_insns, 1);
3458 free_INSN_LIST_node (tmp);
3460 if (! purge_addressof_1 (&PATTERN (insn), insn,
3461 asm_noperands (PATTERN (insn)) > 0, 0, 0, ht))
3462 abort ();
3465 /* Clean up. */
3466 purge_bitfield_addressof_replacements = 0;
3467 purge_addressof_replacements = 0;
3469 /* REGs are shared. purge_addressof will destructively replace a REG
3470 with a MEM, which creates shared MEMs.
3472 Unfortunately, the children of put_reg_into_stack assume that MEMs
3473 referring to the same stack slot are shared (fixup_var_refs and
3474 the associated hash table code).
3476 So, we have to do another unsharing pass after we have flushed any
3477 REGs that had their address taken into the stack.
3479 It may be worth tracking whether or not we converted any REGs into
3480 MEMs to avoid this overhead when it is not needed. */
3481 unshare_all_rtl_again (get_insns ());
3484 /* Convert a SET of a hard subreg to a set of the appropriate hard
3485 register. A subroutine of purge_hard_subreg_sets. */
3487 static void
3488 purge_single_hard_subreg_set (pattern)
3489 rtx pattern;
3491 rtx reg = SET_DEST (pattern);
3492 enum machine_mode mode = GET_MODE (SET_DEST (pattern));
3493 int offset = 0;
3495 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG
3496 && REGNO (SUBREG_REG (reg)) < FIRST_PSEUDO_REGISTER)
3498 offset = subreg_regno_offset (REGNO (SUBREG_REG (reg)),
3499 GET_MODE (SUBREG_REG (reg)),
3500 SUBREG_BYTE (reg),
3501 GET_MODE (reg));
3502 reg = SUBREG_REG (reg);
3506 if (GET_CODE (reg) == REG && REGNO (reg) < FIRST_PSEUDO_REGISTER)
3508 reg = gen_rtx_REG (mode, REGNO (reg) + offset);
3509 SET_DEST (pattern) = reg;
3513 /* Eliminate all occurrences of SETs of hard subregs from INSNS. The
3514 only such SETs that we expect to see are those left in because
3515 integrate can't handle sets of parts of a return value register.
3517 We don't use alter_subreg because we only want to eliminate subregs
3518 of hard registers. */
3520 void
3521 purge_hard_subreg_sets (insn)
3522 rtx insn;
3524 for (; insn; insn = NEXT_INSN (insn))
3526 if (INSN_P (insn))
3528 rtx pattern = PATTERN (insn);
3529 switch (GET_CODE (pattern))
3531 case SET:
3532 if (GET_CODE (SET_DEST (pattern)) == SUBREG)
3533 purge_single_hard_subreg_set (pattern);
3534 break;
3535 case PARALLEL:
3537 int j;
3538 for (j = XVECLEN (pattern, 0) - 1; j >= 0; j--)
3540 rtx inner_pattern = XVECEXP (pattern, 0, j);
3541 if (GET_CODE (inner_pattern) == SET
3542 && GET_CODE (SET_DEST (inner_pattern)) == SUBREG)
3543 purge_single_hard_subreg_set (inner_pattern);
3546 break;
3547 default:
3548 break;
3554 /* Pass through the INSNS of function FNDECL and convert virtual register
3555 references to hard register references. */
3557 void
3558 instantiate_virtual_regs (fndecl, insns)
3559 tree fndecl;
3560 rtx insns;
3562 rtx insn;
3563 unsigned int i;
3565 /* Compute the offsets to use for this function. */
3566 in_arg_offset = FIRST_PARM_OFFSET (fndecl);
3567 var_offset = STARTING_FRAME_OFFSET;
3568 dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
3569 out_arg_offset = STACK_POINTER_OFFSET;
3570 cfa_offset = ARG_POINTER_CFA_OFFSET (fndecl);
3572 /* Scan all variables and parameters of this function. For each that is
3573 in memory, instantiate all virtual registers if the result is a valid
3574 address. If not, we do it later. That will handle most uses of virtual
3575 regs on many machines. */
3576 instantiate_decls (fndecl, 1);
3578 /* Initialize recognition, indicating that volatile is OK. */
3579 init_recog ();
3581 /* Scan through all the insns, instantiating every virtual register still
3582 present. */
3583 for (insn = insns; insn; insn = NEXT_INSN (insn))
3584 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3585 || GET_CODE (insn) == CALL_INSN)
3587 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
3588 if (INSN_DELETED_P (insn))
3589 continue;
3590 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
3591 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
3592 if (GET_CODE (insn) == CALL_INSN)
3593 instantiate_virtual_regs_1 (&CALL_INSN_FUNCTION_USAGE (insn),
3594 NULL_RTX, 0);
3596 /* Past this point all ASM statements should match. Verify that
3597 to avoid failures later in the compilation process. */
3598 if (asm_noperands (PATTERN (insn)) >= 0
3599 && ! check_asm_operands (PATTERN (insn)))
3600 instantiate_virtual_regs_lossage (insn);
3603 /* Instantiate the stack slots for the parm registers, for later use in
3604 addressof elimination. */
3605 for (i = 0; i < max_parm_reg; ++i)
3606 if (parm_reg_stack_loc[i])
3607 instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0);
3609 /* Now instantiate the remaining register equivalences for debugging info.
3610 These will not be valid addresses. */
3611 instantiate_decls (fndecl, 0);
3613 /* Indicate that, from now on, assign_stack_local should use
3614 frame_pointer_rtx. */
3615 virtuals_instantiated = 1;
3618 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
3619 all virtual registers in their DECL_RTL's.
3621 If VALID_ONLY, do this only if the resulting address is still valid.
3622 Otherwise, always do it. */
3624 static void
3625 instantiate_decls (fndecl, valid_only)
3626 tree fndecl;
3627 int valid_only;
3629 tree decl;
3631 /* Process all parameters of the function. */
3632 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
3634 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
3635 HOST_WIDE_INT size_rtl;
3637 instantiate_decl (DECL_RTL (decl), size, valid_only);
3639 /* If the parameter was promoted, then the incoming RTL mode may be
3640 larger than the declared type size. We must use the larger of
3641 the two sizes. */
3642 size_rtl = GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl)));
3643 size = MAX (size_rtl, size);
3644 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
3647 /* Now process all variables defined in the function or its subblocks. */
3648 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
3651 /* Subroutine of instantiate_decls: Process all decls in the given
3652 BLOCK node and all its subblocks. */
3654 static void
3655 instantiate_decls_1 (let, valid_only)
3656 tree let;
3657 int valid_only;
3659 tree t;
3661 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
3662 if (DECL_RTL_SET_P (t))
3663 instantiate_decl (DECL_RTL (t),
3664 int_size_in_bytes (TREE_TYPE (t)),
3665 valid_only);
3667 /* Process all subblocks. */
3668 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
3669 instantiate_decls_1 (t, valid_only);
3672 /* Subroutine of the preceding procedures: Given RTL representing a
3673 decl and the size of the object, do any instantiation required.
3675 If VALID_ONLY is nonzero, it means that the RTL should only be
3676 changed if the new address is valid. */
3678 static void
3679 instantiate_decl (x, size, valid_only)
3680 rtx x;
3681 HOST_WIDE_INT size;
3682 int valid_only;
3684 enum machine_mode mode;
3685 rtx addr;
3687 /* If this is not a MEM, no need to do anything. Similarly if the
3688 address is a constant or a register that is not a virtual register. */
3690 if (x == 0 || GET_CODE (x) != MEM)
3691 return;
3693 addr = XEXP (x, 0);
3694 if (CONSTANT_P (addr)
3695 || (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == REG)
3696 || (GET_CODE (addr) == REG
3697 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
3698 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
3699 return;
3701 /* If we should only do this if the address is valid, copy the address.
3702 We need to do this so we can undo any changes that might make the
3703 address invalid. This copy is unfortunate, but probably can't be
3704 avoided. */
3706 if (valid_only)
3707 addr = copy_rtx (addr);
3709 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
3711 if (valid_only && size >= 0)
3713 unsigned HOST_WIDE_INT decl_size = size;
3715 /* Now verify that the resulting address is valid for every integer or
3716 floating-point mode up to and including SIZE bytes long. We do this
3717 since the object might be accessed in any mode and frame addresses
3718 are shared. */
3720 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3721 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3722 mode = GET_MODE_WIDER_MODE (mode))
3723 if (! memory_address_p (mode, addr))
3724 return;
3726 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3727 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3728 mode = GET_MODE_WIDER_MODE (mode))
3729 if (! memory_address_p (mode, addr))
3730 return;
3733 /* Put back the address now that we have updated it and we either know
3734 it is valid or we don't care whether it is valid. */
3736 XEXP (x, 0) = addr;
3739 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
3740 is a virtual register, return the equivalent hard register and set the
3741 offset indirectly through the pointer. Otherwise, return 0. */
3743 static rtx
3744 instantiate_new_reg (x, poffset)
3745 rtx x;
3746 HOST_WIDE_INT *poffset;
3748 rtx new;
3749 HOST_WIDE_INT offset;
3751 if (x == virtual_incoming_args_rtx)
3752 new = arg_pointer_rtx, offset = in_arg_offset;
3753 else if (x == virtual_stack_vars_rtx)
3754 new = frame_pointer_rtx, offset = var_offset;
3755 else if (x == virtual_stack_dynamic_rtx)
3756 new = stack_pointer_rtx, offset = dynamic_offset;
3757 else if (x == virtual_outgoing_args_rtx)
3758 new = stack_pointer_rtx, offset = out_arg_offset;
3759 else if (x == virtual_cfa_rtx)
3760 new = arg_pointer_rtx, offset = cfa_offset;
3761 else
3762 return 0;
3764 *poffset = offset;
3765 return new;
3769 /* Called when instantiate_virtual_regs has failed to update the instruction.
3770 Usually this means that non-matching instruction has been emit, however for
3771 asm statements it may be the problem in the constraints. */
3772 static void
3773 instantiate_virtual_regs_lossage (insn)
3774 rtx insn;
3776 if (asm_noperands (PATTERN (insn)) >= 0)
3778 error_for_asm (insn, "impossible constraint in `asm'");
3779 delete_insn (insn);
3781 else
3782 abort ();
3784 /* Given a pointer to a piece of rtx and an optional pointer to the
3785 containing object, instantiate any virtual registers present in it.
3787 If EXTRA_INSNS, we always do the replacement and generate
3788 any extra insns before OBJECT. If it zero, we do nothing if replacement
3789 is not valid.
3791 Return 1 if we either had nothing to do or if we were able to do the
3792 needed replacement. Return 0 otherwise; we only return zero if
3793 EXTRA_INSNS is zero.
3795 We first try some simple transformations to avoid the creation of extra
3796 pseudos. */
3798 static int
3799 instantiate_virtual_regs_1 (loc, object, extra_insns)
3800 rtx *loc;
3801 rtx object;
3802 int extra_insns;
3804 rtx x;
3805 RTX_CODE code;
3806 rtx new = 0;
3807 HOST_WIDE_INT offset = 0;
3808 rtx temp;
3809 rtx seq;
3810 int i, j;
3811 const char *fmt;
3813 /* Re-start here to avoid recursion in common cases. */
3814 restart:
3816 x = *loc;
3817 if (x == 0)
3818 return 1;
3820 /* We may have detected and deleted invalid asm statements. */
3821 if (object && INSN_P (object) && INSN_DELETED_P (object))
3822 return 1;
3824 code = GET_CODE (x);
3826 /* Check for some special cases. */
3827 switch (code)
3829 case CONST_INT:
3830 case CONST_DOUBLE:
3831 case CONST_VECTOR:
3832 case CONST:
3833 case SYMBOL_REF:
3834 case CODE_LABEL:
3835 case PC:
3836 case CC0:
3837 case ASM_INPUT:
3838 case ADDR_VEC:
3839 case ADDR_DIFF_VEC:
3840 case RETURN:
3841 return 1;
3843 case SET:
3844 /* We are allowed to set the virtual registers. This means that
3845 the actual register should receive the source minus the
3846 appropriate offset. This is used, for example, in the handling
3847 of non-local gotos. */
3848 if ((new = instantiate_new_reg (SET_DEST (x), &offset)) != 0)
3850 rtx src = SET_SRC (x);
3852 /* We are setting the register, not using it, so the relevant
3853 offset is the negative of the offset to use were we using
3854 the register. */
3855 offset = - offset;
3856 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
3858 /* The only valid sources here are PLUS or REG. Just do
3859 the simplest possible thing to handle them. */
3860 if (GET_CODE (src) != REG && GET_CODE (src) != PLUS)
3862 instantiate_virtual_regs_lossage (object);
3863 return 1;
3866 start_sequence ();
3867 if (GET_CODE (src) != REG)
3868 temp = force_operand (src, NULL_RTX);
3869 else
3870 temp = src;
3871 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
3872 seq = get_insns ();
3873 end_sequence ();
3875 emit_insn_before (seq, object);
3876 SET_DEST (x) = new;
3878 if (! validate_change (object, &SET_SRC (x), temp, 0)
3879 || ! extra_insns)
3880 instantiate_virtual_regs_lossage (object);
3882 return 1;
3885 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
3886 loc = &SET_SRC (x);
3887 goto restart;
3889 case PLUS:
3890 /* Handle special case of virtual register plus constant. */
3891 if (CONSTANT_P (XEXP (x, 1)))
3893 rtx old, new_offset;
3895 /* Check for (plus (plus VIRT foo) (const_int)) first. */
3896 if (GET_CODE (XEXP (x, 0)) == PLUS)
3898 if ((new = instantiate_new_reg (XEXP (XEXP (x, 0), 0), &offset)))
3900 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
3901 extra_insns);
3902 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
3904 else
3906 loc = &XEXP (x, 0);
3907 goto restart;
3911 #ifdef POINTERS_EXTEND_UNSIGNED
3912 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
3913 we can commute the PLUS and SUBREG because pointers into the
3914 frame are well-behaved. */
3915 else if (GET_CODE (XEXP (x, 0)) == SUBREG && GET_MODE (x) == ptr_mode
3916 && GET_CODE (XEXP (x, 1)) == CONST_INT
3917 && 0 != (new
3918 = instantiate_new_reg (SUBREG_REG (XEXP (x, 0)),
3919 &offset))
3920 && validate_change (object, loc,
3921 plus_constant (gen_lowpart (ptr_mode,
3922 new),
3923 offset
3924 + INTVAL (XEXP (x, 1))),
3926 return 1;
3927 #endif
3928 else if ((new = instantiate_new_reg (XEXP (x, 0), &offset)) == 0)
3930 /* We know the second operand is a constant. Unless the
3931 first operand is a REG (which has been already checked),
3932 it needs to be checked. */
3933 if (GET_CODE (XEXP (x, 0)) != REG)
3935 loc = &XEXP (x, 0);
3936 goto restart;
3938 return 1;
3941 new_offset = plus_constant (XEXP (x, 1), offset);
3943 /* If the new constant is zero, try to replace the sum with just
3944 the register. */
3945 if (new_offset == const0_rtx
3946 && validate_change (object, loc, new, 0))
3947 return 1;
3949 /* Next try to replace the register and new offset.
3950 There are two changes to validate here and we can't assume that
3951 in the case of old offset equals new just changing the register
3952 will yield a valid insn. In the interests of a little efficiency,
3953 however, we only call validate change once (we don't queue up the
3954 changes and then call apply_change_group). */
3956 old = XEXP (x, 0);
3957 if (offset == 0
3958 ? ! validate_change (object, &XEXP (x, 0), new, 0)
3959 : (XEXP (x, 0) = new,
3960 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
3962 if (! extra_insns)
3964 XEXP (x, 0) = old;
3965 return 0;
3968 /* Otherwise copy the new constant into a register and replace
3969 constant with that register. */
3970 temp = gen_reg_rtx (Pmode);
3971 XEXP (x, 0) = new;
3972 if (validate_change (object, &XEXP (x, 1), temp, 0))
3973 emit_insn_before (gen_move_insn (temp, new_offset), object);
3974 else
3976 /* If that didn't work, replace this expression with a
3977 register containing the sum. */
3979 XEXP (x, 0) = old;
3980 new = gen_rtx_PLUS (Pmode, new, new_offset);
3982 start_sequence ();
3983 temp = force_operand (new, NULL_RTX);
3984 seq = get_insns ();
3985 end_sequence ();
3987 emit_insn_before (seq, object);
3988 if (! validate_change (object, loc, temp, 0)
3989 && ! validate_replace_rtx (x, temp, object))
3991 instantiate_virtual_regs_lossage (object);
3992 return 1;
3997 return 1;
4000 /* Fall through to generic two-operand expression case. */
4001 case EXPR_LIST:
4002 case CALL:
4003 case COMPARE:
4004 case MINUS:
4005 case MULT:
4006 case DIV: case UDIV:
4007 case MOD: case UMOD:
4008 case AND: case IOR: case XOR:
4009 case ROTATERT: case ROTATE:
4010 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
4011 case NE: case EQ:
4012 case GE: case GT: case GEU: case GTU:
4013 case LE: case LT: case LEU: case LTU:
4014 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
4015 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
4016 loc = &XEXP (x, 0);
4017 goto restart;
4019 case MEM:
4020 /* Most cases of MEM that convert to valid addresses have already been
4021 handled by our scan of decls. The only special handling we
4022 need here is to make a copy of the rtx to ensure it isn't being
4023 shared if we have to change it to a pseudo.
4025 If the rtx is a simple reference to an address via a virtual register,
4026 it can potentially be shared. In such cases, first try to make it
4027 a valid address, which can also be shared. Otherwise, copy it and
4028 proceed normally.
4030 First check for common cases that need no processing. These are
4031 usually due to instantiation already being done on a previous instance
4032 of a shared rtx. */
4034 temp = XEXP (x, 0);
4035 if (CONSTANT_ADDRESS_P (temp)
4036 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4037 || temp == arg_pointer_rtx
4038 #endif
4039 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4040 || temp == hard_frame_pointer_rtx
4041 #endif
4042 || temp == frame_pointer_rtx)
4043 return 1;
4045 if (GET_CODE (temp) == PLUS
4046 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
4047 && (XEXP (temp, 0) == frame_pointer_rtx
4048 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4049 || XEXP (temp, 0) == hard_frame_pointer_rtx
4050 #endif
4051 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4052 || XEXP (temp, 0) == arg_pointer_rtx
4053 #endif
4055 return 1;
4057 if (temp == virtual_stack_vars_rtx
4058 || temp == virtual_incoming_args_rtx
4059 || (GET_CODE (temp) == PLUS
4060 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
4061 && (XEXP (temp, 0) == virtual_stack_vars_rtx
4062 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
4064 /* This MEM may be shared. If the substitution can be done without
4065 the need to generate new pseudos, we want to do it in place
4066 so all copies of the shared rtx benefit. The call below will
4067 only make substitutions if the resulting address is still
4068 valid.
4070 Note that we cannot pass X as the object in the recursive call
4071 since the insn being processed may not allow all valid
4072 addresses. However, if we were not passed on object, we can
4073 only modify X without copying it if X will have a valid
4074 address.
4076 ??? Also note that this can still lose if OBJECT is an insn that
4077 has less restrictions on an address that some other insn.
4078 In that case, we will modify the shared address. This case
4079 doesn't seem very likely, though. One case where this could
4080 happen is in the case of a USE or CLOBBER reference, but we
4081 take care of that below. */
4083 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
4084 object ? object : x, 0))
4085 return 1;
4087 /* Otherwise make a copy and process that copy. We copy the entire
4088 RTL expression since it might be a PLUS which could also be
4089 shared. */
4090 *loc = x = copy_rtx (x);
4093 /* Fall through to generic unary operation case. */
4094 case PREFETCH:
4095 case SUBREG:
4096 case STRICT_LOW_PART:
4097 case NEG: case NOT:
4098 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
4099 case SIGN_EXTEND: case ZERO_EXTEND:
4100 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
4101 case FLOAT: case FIX:
4102 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
4103 case ABS:
4104 case SQRT:
4105 case FFS:
4106 case CLZ: case CTZ:
4107 case POPCOUNT: case PARITY:
4108 /* These case either have just one operand or we know that we need not
4109 check the rest of the operands. */
4110 loc = &XEXP (x, 0);
4111 goto restart;
4113 case USE:
4114 case CLOBBER:
4115 /* If the operand is a MEM, see if the change is a valid MEM. If not,
4116 go ahead and make the invalid one, but do it to a copy. For a REG,
4117 just make the recursive call, since there's no chance of a problem. */
4119 if ((GET_CODE (XEXP (x, 0)) == MEM
4120 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
4122 || (GET_CODE (XEXP (x, 0)) == REG
4123 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
4124 return 1;
4126 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
4127 loc = &XEXP (x, 0);
4128 goto restart;
4130 case REG:
4131 /* Try to replace with a PLUS. If that doesn't work, compute the sum
4132 in front of this insn and substitute the temporary. */
4133 if ((new = instantiate_new_reg (x, &offset)) != 0)
4135 temp = plus_constant (new, offset);
4136 if (!validate_change (object, loc, temp, 0))
4138 if (! extra_insns)
4139 return 0;
4141 start_sequence ();
4142 temp = force_operand (temp, NULL_RTX);
4143 seq = get_insns ();
4144 end_sequence ();
4146 emit_insn_before (seq, object);
4147 if (! validate_change (object, loc, temp, 0)
4148 && ! validate_replace_rtx (x, temp, object))
4149 instantiate_virtual_regs_lossage (object);
4153 return 1;
4155 case ADDRESSOF:
4156 if (GET_CODE (XEXP (x, 0)) == REG)
4157 return 1;
4159 else if (GET_CODE (XEXP (x, 0)) == MEM)
4161 /* If we have a (addressof (mem ..)), do any instantiation inside
4162 since we know we'll be making the inside valid when we finally
4163 remove the ADDRESSOF. */
4164 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0);
4165 return 1;
4167 break;
4169 default:
4170 break;
4173 /* Scan all subexpressions. */
4174 fmt = GET_RTX_FORMAT (code);
4175 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
4176 if (*fmt == 'e')
4178 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
4179 return 0;
4181 else if (*fmt == 'E')
4182 for (j = 0; j < XVECLEN (x, i); j++)
4183 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
4184 extra_insns))
4185 return 0;
4187 return 1;
4190 /* Optimization: assuming this function does not receive nonlocal gotos,
4191 delete the handlers for such, as well as the insns to establish
4192 and disestablish them. */
4194 static void
4195 delete_handlers ()
4197 rtx insn;
4198 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4200 /* Delete the handler by turning off the flag that would
4201 prevent jump_optimize from deleting it.
4202 Also permit deletion of the nonlocal labels themselves
4203 if nothing local refers to them. */
4204 if (GET_CODE (insn) == CODE_LABEL)
4206 tree t, last_t;
4208 LABEL_PRESERVE_P (insn) = 0;
4210 /* Remove it from the nonlocal_label list, to avoid confusing
4211 flow. */
4212 for (t = nonlocal_labels, last_t = 0; t;
4213 last_t = t, t = TREE_CHAIN (t))
4214 if (DECL_RTL (TREE_VALUE (t)) == insn)
4215 break;
4216 if (t)
4218 if (! last_t)
4219 nonlocal_labels = TREE_CHAIN (nonlocal_labels);
4220 else
4221 TREE_CHAIN (last_t) = TREE_CHAIN (t);
4224 if (GET_CODE (insn) == INSN)
4226 int can_delete = 0;
4227 rtx t;
4228 for (t = nonlocal_goto_handler_slots; t != 0; t = XEXP (t, 1))
4229 if (reg_mentioned_p (t, PATTERN (insn)))
4231 can_delete = 1;
4232 break;
4234 if (can_delete
4235 || (nonlocal_goto_stack_level != 0
4236 && reg_mentioned_p (nonlocal_goto_stack_level,
4237 PATTERN (insn))))
4238 delete_related_insns (insn);
4243 /* Return the first insn following those generated by `assign_parms'. */
4246 get_first_nonparm_insn ()
4248 if (last_parm_insn)
4249 return NEXT_INSN (last_parm_insn);
4250 return get_insns ();
4253 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
4254 This means a type for which function calls must pass an address to the
4255 function or get an address back from the function.
4256 EXP may be a type node or an expression (whose type is tested). */
4259 aggregate_value_p (exp)
4260 tree exp;
4262 int i, regno, nregs;
4263 rtx reg;
4265 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
4267 if (TREE_CODE (type) == VOID_TYPE)
4268 return 0;
4269 if (RETURN_IN_MEMORY (type))
4270 return 1;
4271 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
4272 and thus can't be returned in registers. */
4273 if (TREE_ADDRESSABLE (type))
4274 return 1;
4275 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
4276 return 1;
4277 /* Make sure we have suitable call-clobbered regs to return
4278 the value in; if not, we must return it in memory. */
4279 reg = hard_function_value (type, 0, 0);
4281 /* If we have something other than a REG (e.g. a PARALLEL), then assume
4282 it is OK. */
4283 if (GET_CODE (reg) != REG)
4284 return 0;
4286 regno = REGNO (reg);
4287 nregs = HARD_REGNO_NREGS (regno, TYPE_MODE (type));
4288 for (i = 0; i < nregs; i++)
4289 if (! call_used_regs[regno + i])
4290 return 1;
4291 return 0;
4294 /* Assign RTL expressions to the function's parameters.
4295 This may involve copying them into registers and using
4296 those registers as the RTL for them. */
4298 void
4299 assign_parms (fndecl)
4300 tree fndecl;
4302 tree parm;
4303 rtx entry_parm = 0;
4304 rtx stack_parm = 0;
4305 CUMULATIVE_ARGS args_so_far;
4306 enum machine_mode promoted_mode, passed_mode;
4307 enum machine_mode nominal_mode, promoted_nominal_mode;
4308 int unsignedp;
4309 /* Total space needed so far for args on the stack,
4310 given as a constant and a tree-expression. */
4311 struct args_size stack_args_size;
4312 tree fntype = TREE_TYPE (fndecl);
4313 tree fnargs = DECL_ARGUMENTS (fndecl);
4314 /* This is used for the arg pointer when referring to stack args. */
4315 rtx internal_arg_pointer;
4316 /* This is a dummy PARM_DECL that we used for the function result if
4317 the function returns a structure. */
4318 tree function_result_decl = 0;
4319 #ifdef SETUP_INCOMING_VARARGS
4320 int varargs_setup = 0;
4321 #endif
4322 rtx conversion_insns = 0;
4323 struct args_size alignment_pad;
4325 /* Nonzero if function takes extra anonymous args.
4326 This means the last named arg must be on the stack
4327 right before the anonymous ones. */
4328 int stdarg
4329 = (TYPE_ARG_TYPES (fntype) != 0
4330 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4331 != void_type_node));
4333 current_function_stdarg = stdarg;
4335 /* If the reg that the virtual arg pointer will be translated into is
4336 not a fixed reg or is the stack pointer, make a copy of the virtual
4337 arg pointer, and address parms via the copy. The frame pointer is
4338 considered fixed even though it is not marked as such.
4340 The second time through, simply use ap to avoid generating rtx. */
4342 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
4343 || ! (fixed_regs[ARG_POINTER_REGNUM]
4344 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
4345 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
4346 else
4347 internal_arg_pointer = virtual_incoming_args_rtx;
4348 current_function_internal_arg_pointer = internal_arg_pointer;
4350 stack_args_size.constant = 0;
4351 stack_args_size.var = 0;
4353 /* If struct value address is treated as the first argument, make it so. */
4354 if (aggregate_value_p (DECL_RESULT (fndecl))
4355 && ! current_function_returns_pcc_struct
4356 && struct_value_incoming_rtx == 0)
4358 tree type = build_pointer_type (TREE_TYPE (fntype));
4360 function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
4362 DECL_ARG_TYPE (function_result_decl) = type;
4363 TREE_CHAIN (function_result_decl) = fnargs;
4364 fnargs = function_result_decl;
4367 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
4368 parm_reg_stack_loc = (rtx *) ggc_alloc_cleared (max_parm_reg * sizeof (rtx));
4370 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
4371 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
4372 #else
4373 INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, fndecl);
4374 #endif
4376 /* We haven't yet found an argument that we must push and pretend the
4377 caller did. */
4378 current_function_pretend_args_size = 0;
4380 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
4382 struct args_size stack_offset;
4383 struct args_size arg_size;
4384 int passed_pointer = 0;
4385 int did_conversion = 0;
4386 tree passed_type = DECL_ARG_TYPE (parm);
4387 tree nominal_type = TREE_TYPE (parm);
4388 int pretend_named;
4389 int last_named = 0, named_arg;
4391 /* Set LAST_NAMED if this is last named arg before last
4392 anonymous args. */
4393 if (stdarg)
4395 tree tem;
4397 for (tem = TREE_CHAIN (parm); tem; tem = TREE_CHAIN (tem))
4398 if (DECL_NAME (tem))
4399 break;
4401 if (tem == 0)
4402 last_named = 1;
4404 /* Set NAMED_ARG if this arg should be treated as a named arg. For
4405 most machines, if this is a varargs/stdarg function, then we treat
4406 the last named arg as if it were anonymous too. */
4407 named_arg = STRICT_ARGUMENT_NAMING ? 1 : ! last_named;
4409 if (TREE_TYPE (parm) == error_mark_node
4410 /* This can happen after weird syntax errors
4411 or if an enum type is defined among the parms. */
4412 || TREE_CODE (parm) != PARM_DECL
4413 || passed_type == NULL)
4415 SET_DECL_RTL (parm, gen_rtx_MEM (BLKmode, const0_rtx));
4416 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
4417 TREE_USED (parm) = 1;
4418 continue;
4421 /* Find mode of arg as it is passed, and mode of arg
4422 as it should be during execution of this function. */
4423 passed_mode = TYPE_MODE (passed_type);
4424 nominal_mode = TYPE_MODE (nominal_type);
4426 /* If the parm's mode is VOID, its value doesn't matter,
4427 and avoid the usual things like emit_move_insn that could crash. */
4428 if (nominal_mode == VOIDmode)
4430 SET_DECL_RTL (parm, const0_rtx);
4431 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
4432 continue;
4435 /* If the parm is to be passed as a transparent union, use the
4436 type of the first field for the tests below. We have already
4437 verified that the modes are the same. */
4438 if (DECL_TRANSPARENT_UNION (parm)
4439 || (TREE_CODE (passed_type) == UNION_TYPE
4440 && TYPE_TRANSPARENT_UNION (passed_type)))
4441 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
4443 /* See if this arg was passed by invisible reference. It is if
4444 it is an object whose size depends on the contents of the
4445 object itself or if the machine requires these objects be passed
4446 that way. */
4448 if ((TREE_CODE (TYPE_SIZE (passed_type)) != INTEGER_CST
4449 && contains_placeholder_p (TYPE_SIZE (passed_type)))
4450 || TREE_ADDRESSABLE (passed_type)
4451 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
4452 || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
4453 passed_type, named_arg)
4454 #endif
4457 passed_type = nominal_type = build_pointer_type (passed_type);
4458 passed_pointer = 1;
4459 passed_mode = nominal_mode = Pmode;
4461 /* See if the frontend wants to pass this by invisible reference. */
4462 else if (passed_type != nominal_type
4463 && POINTER_TYPE_P (passed_type)
4464 && TREE_TYPE (passed_type) == nominal_type)
4466 nominal_type = passed_type;
4467 passed_pointer = 1;
4468 passed_mode = nominal_mode = Pmode;
4471 promoted_mode = passed_mode;
4473 #ifdef PROMOTE_FUNCTION_ARGS
4474 /* Compute the mode in which the arg is actually extended to. */
4475 unsignedp = TREE_UNSIGNED (passed_type);
4476 promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1);
4477 #endif
4479 /* Let machine desc say which reg (if any) the parm arrives in.
4480 0 means it arrives on the stack. */
4481 #ifdef FUNCTION_INCOMING_ARG
4482 entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4483 passed_type, named_arg);
4484 #else
4485 entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
4486 passed_type, named_arg);
4487 #endif
4489 if (entry_parm == 0)
4490 promoted_mode = passed_mode;
4492 #ifdef SETUP_INCOMING_VARARGS
4493 /* If this is the last named parameter, do any required setup for
4494 varargs or stdargs. We need to know about the case of this being an
4495 addressable type, in which case we skip the registers it
4496 would have arrived in.
4498 For stdargs, LAST_NAMED will be set for two parameters, the one that
4499 is actually the last named, and the dummy parameter. We only
4500 want to do this action once.
4502 Also, indicate when RTL generation is to be suppressed. */
4503 if (last_named && !varargs_setup)
4505 SETUP_INCOMING_VARARGS (args_so_far, promoted_mode, passed_type,
4506 current_function_pretend_args_size, 0);
4507 varargs_setup = 1;
4509 #endif
4511 /* Determine parm's home in the stack,
4512 in case it arrives in the stack or we should pretend it did.
4514 Compute the stack position and rtx where the argument arrives
4515 and its size.
4517 There is one complexity here: If this was a parameter that would
4518 have been passed in registers, but wasn't only because it is
4519 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
4520 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
4521 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
4522 0 as it was the previous time. */
4524 pretend_named = named_arg || PRETEND_OUTGOING_VARARGS_NAMED;
4525 locate_and_pad_parm (promoted_mode, passed_type,
4526 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4528 #else
4529 #ifdef FUNCTION_INCOMING_ARG
4530 FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4531 passed_type,
4532 pretend_named) != 0,
4533 #else
4534 FUNCTION_ARG (args_so_far, promoted_mode,
4535 passed_type,
4536 pretend_named) != 0,
4537 #endif
4538 #endif
4539 fndecl, &stack_args_size, &stack_offset, &arg_size,
4540 &alignment_pad);
4543 rtx offset_rtx = ARGS_SIZE_RTX (stack_offset);
4545 if (offset_rtx == const0_rtx)
4546 stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer);
4547 else
4548 stack_parm = gen_rtx_MEM (promoted_mode,
4549 gen_rtx_PLUS (Pmode,
4550 internal_arg_pointer,
4551 offset_rtx));
4553 set_mem_attributes (stack_parm, parm, 1);
4555 /* Set also REG_ATTRS if parameter was passed in a register. */
4556 if (entry_parm)
4557 set_reg_attrs_for_parm (entry_parm, stack_parm);
4560 /* If this parameter was passed both in registers and in the stack,
4561 use the copy on the stack. */
4562 if (MUST_PASS_IN_STACK (promoted_mode, passed_type))
4563 entry_parm = 0;
4565 #ifdef FUNCTION_ARG_PARTIAL_NREGS
4566 /* If this parm was passed part in regs and part in memory,
4567 pretend it arrived entirely in memory
4568 by pushing the register-part onto the stack.
4570 In the special case of a DImode or DFmode that is split,
4571 we could put it together in a pseudoreg directly,
4572 but for now that's not worth bothering with. */
4574 if (entry_parm)
4576 int nregs = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode,
4577 passed_type, named_arg);
4579 if (nregs > 0)
4581 #if defined (REG_PARM_STACK_SPACE) && !defined (MAYBE_REG_PARM_STACK_SPACE)
4582 /* When REG_PARM_STACK_SPACE is nonzero, stack space for
4583 split parameters was allocated by our caller, so we
4584 won't be pushing it in the prolog. */
4585 if (REG_PARM_STACK_SPACE (fndecl) == 0)
4586 #endif
4587 current_function_pretend_args_size
4588 = (((nregs * UNITS_PER_WORD) + (PARM_BOUNDARY / BITS_PER_UNIT) - 1)
4589 / (PARM_BOUNDARY / BITS_PER_UNIT)
4590 * (PARM_BOUNDARY / BITS_PER_UNIT));
4592 /* Handle calls that pass values in multiple non-contiguous
4593 locations. The Irix 6 ABI has examples of this. */
4594 if (GET_CODE (entry_parm) == PARALLEL)
4595 emit_group_store (validize_mem (stack_parm), entry_parm,
4596 int_size_in_bytes (TREE_TYPE (parm)));
4598 else
4599 move_block_from_reg (REGNO (entry_parm),
4600 validize_mem (stack_parm), nregs,
4601 int_size_in_bytes (TREE_TYPE (parm)));
4603 entry_parm = stack_parm;
4606 #endif
4608 /* If we didn't decide this parm came in a register,
4609 by default it came on the stack. */
4610 if (entry_parm == 0)
4611 entry_parm = stack_parm;
4613 /* Record permanently how this parm was passed. */
4614 DECL_INCOMING_RTL (parm) = entry_parm;
4616 /* If there is actually space on the stack for this parm,
4617 count it in stack_args_size; otherwise set stack_parm to 0
4618 to indicate there is no preallocated stack slot for the parm. */
4620 if (entry_parm == stack_parm
4621 || (GET_CODE (entry_parm) == PARALLEL
4622 && XEXP (XVECEXP (entry_parm, 0, 0), 0) == NULL_RTX)
4623 #if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
4624 /* On some machines, even if a parm value arrives in a register
4625 there is still an (uninitialized) stack slot allocated for it.
4627 ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
4628 whether this parameter already has a stack slot allocated,
4629 because an arg block exists only if current_function_args_size
4630 is larger than some threshold, and we haven't calculated that
4631 yet. So, for now, we just assume that stack slots never exist
4632 in this case. */
4633 || REG_PARM_STACK_SPACE (fndecl) > 0
4634 #endif
4637 stack_args_size.constant += arg_size.constant;
4638 if (arg_size.var)
4639 ADD_PARM_SIZE (stack_args_size, arg_size.var);
4641 else
4642 /* No stack slot was pushed for this parm. */
4643 stack_parm = 0;
4645 /* Update info on where next arg arrives in registers. */
4647 FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
4648 passed_type, named_arg);
4650 /* If we can't trust the parm stack slot to be aligned enough
4651 for its ultimate type, don't use that slot after entry.
4652 We'll make another stack slot, if we need one. */
4654 unsigned int thisparm_boundary
4655 = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type);
4657 if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary)
4658 stack_parm = 0;
4661 /* If parm was passed in memory, and we need to convert it on entry,
4662 don't store it back in that same slot. */
4663 if (entry_parm != 0
4664 && nominal_mode != BLKmode && nominal_mode != passed_mode)
4665 stack_parm = 0;
4667 /* When an argument is passed in multiple locations, we can't
4668 make use of this information, but we can save some copying if
4669 the whole argument is passed in a single register. */
4670 if (GET_CODE (entry_parm) == PARALLEL
4671 && nominal_mode != BLKmode && passed_mode != BLKmode)
4673 int i, len = XVECLEN (entry_parm, 0);
4675 for (i = 0; i < len; i++)
4676 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
4677 && GET_CODE (XEXP (XVECEXP (entry_parm, 0, i), 0)) == REG
4678 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
4679 == passed_mode)
4680 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
4682 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
4683 DECL_INCOMING_RTL (parm) = entry_parm;
4684 break;
4688 /* ENTRY_PARM is an RTX for the parameter as it arrives,
4689 in the mode in which it arrives.
4690 STACK_PARM is an RTX for a stack slot where the parameter can live
4691 during the function (in case we want to put it there).
4692 STACK_PARM is 0 if no stack slot was pushed for it.
4694 Now output code if necessary to convert ENTRY_PARM to
4695 the type in which this function declares it,
4696 and store that result in an appropriate place,
4697 which may be a pseudo reg, may be STACK_PARM,
4698 or may be a local stack slot if STACK_PARM is 0.
4700 Set DECL_RTL to that place. */
4702 if (nominal_mode == BLKmode || GET_CODE (entry_parm) == PARALLEL)
4704 /* If a BLKmode arrives in registers, copy it to a stack slot.
4705 Handle calls that pass values in multiple non-contiguous
4706 locations. The Irix 6 ABI has examples of this. */
4707 if (GET_CODE (entry_parm) == REG
4708 || GET_CODE (entry_parm) == PARALLEL)
4710 int size_stored
4711 = CEIL_ROUND (int_size_in_bytes (TREE_TYPE (parm)),
4712 UNITS_PER_WORD);
4714 /* Note that we will be storing an integral number of words.
4715 So we have to be careful to ensure that we allocate an
4716 integral number of words. We do this below in the
4717 assign_stack_local if space was not allocated in the argument
4718 list. If it was, this will not work if PARM_BOUNDARY is not
4719 a multiple of BITS_PER_WORD. It isn't clear how to fix this
4720 if it becomes a problem. */
4722 if (stack_parm == 0)
4724 stack_parm
4725 = assign_stack_local (GET_MODE (entry_parm),
4726 size_stored, 0);
4727 set_mem_attributes (stack_parm, parm, 1);
4730 else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
4731 abort ();
4733 /* Handle calls that pass values in multiple non-contiguous
4734 locations. The Irix 6 ABI has examples of this. */
4735 if (GET_CODE (entry_parm) == PARALLEL)
4736 emit_group_store (validize_mem (stack_parm), entry_parm,
4737 int_size_in_bytes (TREE_TYPE (parm)));
4738 else
4739 move_block_from_reg (REGNO (entry_parm),
4740 validize_mem (stack_parm),
4741 size_stored / UNITS_PER_WORD,
4742 int_size_in_bytes (TREE_TYPE (parm)));
4744 SET_DECL_RTL (parm, stack_parm);
4746 else if (! ((! optimize
4747 && ! DECL_REGISTER (parm))
4748 || TREE_SIDE_EFFECTS (parm)
4749 /* If -ffloat-store specified, don't put explicit
4750 float variables into registers. */
4751 || (flag_float_store
4752 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
4753 /* Always assign pseudo to structure return or item passed
4754 by invisible reference. */
4755 || passed_pointer || parm == function_result_decl)
4757 /* Store the parm in a pseudoregister during the function, but we
4758 may need to do it in a wider mode. */
4760 rtx parmreg;
4761 unsigned int regno, regnoi = 0, regnor = 0;
4763 unsignedp = TREE_UNSIGNED (TREE_TYPE (parm));
4765 promoted_nominal_mode
4766 = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0);
4768 parmreg = gen_reg_rtx (promoted_nominal_mode);
4769 mark_user_reg (parmreg);
4771 /* If this was an item that we received a pointer to, set DECL_RTL
4772 appropriately. */
4773 if (passed_pointer)
4775 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)),
4776 parmreg);
4777 set_mem_attributes (x, parm, 1);
4778 SET_DECL_RTL (parm, x);
4780 else
4782 SET_DECL_RTL (parm, parmreg);
4783 maybe_set_unchanging (DECL_RTL (parm), parm);
4786 /* Copy the value into the register. */
4787 if (nominal_mode != passed_mode
4788 || promoted_nominal_mode != promoted_mode)
4790 int save_tree_used;
4791 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
4792 mode, by the caller. We now have to convert it to
4793 NOMINAL_MODE, if different. However, PARMREG may be in
4794 a different mode than NOMINAL_MODE if it is being stored
4795 promoted.
4797 If ENTRY_PARM is a hard register, it might be in a register
4798 not valid for operating in its mode (e.g., an odd-numbered
4799 register for a DFmode). In that case, moves are the only
4800 thing valid, so we can't do a convert from there. This
4801 occurs when the calling sequence allow such misaligned
4802 usages.
4804 In addition, the conversion may involve a call, which could
4805 clobber parameters which haven't been copied to pseudo
4806 registers yet. Therefore, we must first copy the parm to
4807 a pseudo reg here, and save the conversion until after all
4808 parameters have been moved. */
4810 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4812 emit_move_insn (tempreg, validize_mem (entry_parm));
4814 push_to_sequence (conversion_insns);
4815 tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp);
4817 if (GET_CODE (tempreg) == SUBREG
4818 && GET_MODE (tempreg) == nominal_mode
4819 && GET_CODE (SUBREG_REG (tempreg)) == REG
4820 && nominal_mode == passed_mode
4821 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (entry_parm)
4822 && GET_MODE_SIZE (GET_MODE (tempreg))
4823 < GET_MODE_SIZE (GET_MODE (entry_parm)))
4825 /* The argument is already sign/zero extended, so note it
4826 into the subreg. */
4827 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
4828 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
4831 /* TREE_USED gets set erroneously during expand_assignment. */
4832 save_tree_used = TREE_USED (parm);
4833 expand_assignment (parm,
4834 make_tree (nominal_type, tempreg), 0, 0);
4835 TREE_USED (parm) = save_tree_used;
4836 conversion_insns = get_insns ();
4837 did_conversion = 1;
4838 end_sequence ();
4840 else
4841 emit_move_insn (parmreg, validize_mem (entry_parm));
4843 /* If we were passed a pointer but the actual value
4844 can safely live in a register, put it in one. */
4845 if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
4846 /* If by-reference argument was promoted, demote it. */
4847 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
4848 || ! ((! optimize
4849 && ! DECL_REGISTER (parm))
4850 || TREE_SIDE_EFFECTS (parm)
4851 /* If -ffloat-store specified, don't put explicit
4852 float variables into registers. */
4853 || (flag_float_store
4854 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))))
4856 /* We can't use nominal_mode, because it will have been set to
4857 Pmode above. We must use the actual mode of the parm. */
4858 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
4859 mark_user_reg (parmreg);
4860 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
4862 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
4863 int unsigned_p = TREE_UNSIGNED (TREE_TYPE (parm));
4864 push_to_sequence (conversion_insns);
4865 emit_move_insn (tempreg, DECL_RTL (parm));
4866 SET_DECL_RTL (parm,
4867 convert_to_mode (GET_MODE (parmreg),
4868 tempreg,
4869 unsigned_p));
4870 emit_move_insn (parmreg, DECL_RTL (parm));
4871 conversion_insns = get_insns();
4872 did_conversion = 1;
4873 end_sequence ();
4875 else
4876 emit_move_insn (parmreg, DECL_RTL (parm));
4877 SET_DECL_RTL (parm, parmreg);
4878 /* STACK_PARM is the pointer, not the parm, and PARMREG is
4879 now the parm. */
4880 stack_parm = 0;
4882 #ifdef FUNCTION_ARG_CALLEE_COPIES
4883 /* If we are passed an arg by reference and it is our responsibility
4884 to make a copy, do it now.
4885 PASSED_TYPE and PASSED mode now refer to the pointer, not the
4886 original argument, so we must recreate them in the call to
4887 FUNCTION_ARG_CALLEE_COPIES. */
4888 /* ??? Later add code to handle the case that if the argument isn't
4889 modified, don't do the copy. */
4891 else if (passed_pointer
4892 && FUNCTION_ARG_CALLEE_COPIES (args_so_far,
4893 TYPE_MODE (DECL_ARG_TYPE (parm)),
4894 DECL_ARG_TYPE (parm),
4895 named_arg)
4896 && ! TREE_ADDRESSABLE (DECL_ARG_TYPE (parm)))
4898 rtx copy;
4899 tree type = DECL_ARG_TYPE (parm);
4901 /* This sequence may involve a library call perhaps clobbering
4902 registers that haven't been copied to pseudos yet. */
4904 push_to_sequence (conversion_insns);
4906 if (!COMPLETE_TYPE_P (type)
4907 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4908 /* This is a variable sized object. */
4909 copy = gen_rtx_MEM (BLKmode,
4910 allocate_dynamic_stack_space
4911 (expr_size (parm), NULL_RTX,
4912 TYPE_ALIGN (type)));
4913 else
4914 copy = assign_stack_temp (TYPE_MODE (type),
4915 int_size_in_bytes (type), 1);
4916 set_mem_attributes (copy, parm, 1);
4918 store_expr (parm, copy, 0);
4919 emit_move_insn (parmreg, XEXP (copy, 0));
4920 conversion_insns = get_insns ();
4921 did_conversion = 1;
4922 end_sequence ();
4924 #endif /* FUNCTION_ARG_CALLEE_COPIES */
4926 /* In any case, record the parm's desired stack location
4927 in case we later discover it must live in the stack.
4929 If it is a COMPLEX value, store the stack location for both
4930 halves. */
4932 if (GET_CODE (parmreg) == CONCAT)
4933 regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
4934 else
4935 regno = REGNO (parmreg);
4937 if (regno >= max_parm_reg)
4939 rtx *new;
4940 int old_max_parm_reg = max_parm_reg;
4942 /* It's slow to expand this one register at a time,
4943 but it's also rare and we need max_parm_reg to be
4944 precisely correct. */
4945 max_parm_reg = regno + 1;
4946 new = (rtx *) ggc_realloc (parm_reg_stack_loc,
4947 max_parm_reg * sizeof (rtx));
4948 memset ((char *) (new + old_max_parm_reg), 0,
4949 (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
4950 parm_reg_stack_loc = new;
4953 if (GET_CODE (parmreg) == CONCAT)
4955 enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));
4957 regnor = REGNO (gen_realpart (submode, parmreg));
4958 regnoi = REGNO (gen_imagpart (submode, parmreg));
4960 if (stack_parm != 0)
4962 parm_reg_stack_loc[regnor]
4963 = gen_realpart (submode, stack_parm);
4964 parm_reg_stack_loc[regnoi]
4965 = gen_imagpart (submode, stack_parm);
4967 else
4969 parm_reg_stack_loc[regnor] = 0;
4970 parm_reg_stack_loc[regnoi] = 0;
4973 else
4974 parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
4976 /* Mark the register as eliminable if we did no conversion
4977 and it was copied from memory at a fixed offset,
4978 and the arg pointer was not copied to a pseudo-reg.
4979 If the arg pointer is a pseudo reg or the offset formed
4980 an invalid address, such memory-equivalences
4981 as we make here would screw up life analysis for it. */
4982 if (nominal_mode == passed_mode
4983 && ! did_conversion
4984 && stack_parm != 0
4985 && GET_CODE (stack_parm) == MEM
4986 && stack_offset.var == 0
4987 && reg_mentioned_p (virtual_incoming_args_rtx,
4988 XEXP (stack_parm, 0)))
4990 rtx linsn = get_last_insn ();
4991 rtx sinsn, set;
4993 /* Mark complex types separately. */
4994 if (GET_CODE (parmreg) == CONCAT)
4995 /* Scan backwards for the set of the real and
4996 imaginary parts. */
4997 for (sinsn = linsn; sinsn != 0;
4998 sinsn = prev_nonnote_insn (sinsn))
5000 set = single_set (sinsn);
5001 if (set != 0
5002 && SET_DEST (set) == regno_reg_rtx [regnoi])
5003 REG_NOTES (sinsn)
5004 = gen_rtx_EXPR_LIST (REG_EQUIV,
5005 parm_reg_stack_loc[regnoi],
5006 REG_NOTES (sinsn));
5007 else if (set != 0
5008 && SET_DEST (set) == regno_reg_rtx [regnor])
5009 REG_NOTES (sinsn)
5010 = gen_rtx_EXPR_LIST (REG_EQUIV,
5011 parm_reg_stack_loc[regnor],
5012 REG_NOTES (sinsn));
5014 else if ((set = single_set (linsn)) != 0
5015 && SET_DEST (set) == parmreg)
5016 REG_NOTES (linsn)
5017 = gen_rtx_EXPR_LIST (REG_EQUIV,
5018 stack_parm, REG_NOTES (linsn));
5021 /* For pointer data type, suggest pointer register. */
5022 if (POINTER_TYPE_P (TREE_TYPE (parm)))
5023 mark_reg_pointer (parmreg,
5024 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
5026 /* If something wants our address, try to use ADDRESSOF. */
5027 if (TREE_ADDRESSABLE (parm))
5029 /* If we end up putting something into the stack,
5030 fixup_var_refs_insns will need to make a pass over
5031 all the instructions. It looks through the pending
5032 sequences -- but it can't see the ones in the
5033 CONVERSION_INSNS, if they're not on the sequence
5034 stack. So, we go back to that sequence, just so that
5035 the fixups will happen. */
5036 push_to_sequence (conversion_insns);
5037 put_var_into_stack (parm, /*rescan=*/true);
5038 conversion_insns = get_insns ();
5039 end_sequence ();
5042 else
5044 /* Value must be stored in the stack slot STACK_PARM
5045 during function execution. */
5047 if (promoted_mode != nominal_mode)
5049 /* Conversion is required. */
5050 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
5052 emit_move_insn (tempreg, validize_mem (entry_parm));
5054 push_to_sequence (conversion_insns);
5055 entry_parm = convert_to_mode (nominal_mode, tempreg,
5056 TREE_UNSIGNED (TREE_TYPE (parm)));
5057 if (stack_parm)
5058 /* ??? This may need a big-endian conversion on sparc64. */
5059 stack_parm = adjust_address (stack_parm, nominal_mode, 0);
5061 conversion_insns = get_insns ();
5062 did_conversion = 1;
5063 end_sequence ();
5066 if (entry_parm != stack_parm)
5068 if (stack_parm == 0)
5070 stack_parm
5071 = assign_stack_local (GET_MODE (entry_parm),
5072 GET_MODE_SIZE (GET_MODE (entry_parm)), 0);
5073 set_mem_attributes (stack_parm, parm, 1);
5076 if (promoted_mode != nominal_mode)
5078 push_to_sequence (conversion_insns);
5079 emit_move_insn (validize_mem (stack_parm),
5080 validize_mem (entry_parm));
5081 conversion_insns = get_insns ();
5082 end_sequence ();
5084 else
5085 emit_move_insn (validize_mem (stack_parm),
5086 validize_mem (entry_parm));
5089 SET_DECL_RTL (parm, stack_parm);
5093 /* Output all parameter conversion instructions (possibly including calls)
5094 now that all parameters have been copied out of hard registers. */
5095 emit_insn (conversion_insns);
5097 /* If we are receiving a struct value address as the first argument, set up
5098 the RTL for the function result. As this might require code to convert
5099 the transmitted address to Pmode, we do this here to ensure that possible
5100 preliminary conversions of the address have been emitted already. */
5101 if (function_result_decl)
5103 tree result = DECL_RESULT (fndecl);
5104 rtx addr = DECL_RTL (function_result_decl);
5105 rtx x;
5107 #ifdef POINTERS_EXTEND_UNSIGNED
5108 if (GET_MODE (addr) != Pmode)
5109 addr = convert_memory_address (Pmode, addr);
5110 #endif
5112 x = gen_rtx_MEM (DECL_MODE (result), addr);
5113 set_mem_attributes (x, result, 1);
5114 SET_DECL_RTL (result, x);
5117 last_parm_insn = get_last_insn ();
5119 current_function_args_size = stack_args_size.constant;
5121 /* Adjust function incoming argument size for alignment and
5122 minimum length. */
5124 #ifdef REG_PARM_STACK_SPACE
5125 #ifndef MAYBE_REG_PARM_STACK_SPACE
5126 current_function_args_size = MAX (current_function_args_size,
5127 REG_PARM_STACK_SPACE (fndecl));
5128 #endif
5129 #endif
5131 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
5133 current_function_args_size
5134 = ((current_function_args_size + STACK_BYTES - 1)
5135 / STACK_BYTES) * STACK_BYTES;
5137 #ifdef ARGS_GROW_DOWNWARD
5138 current_function_arg_offset_rtx
5139 = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
5140 : expand_expr (size_diffop (stack_args_size.var,
5141 size_int (-stack_args_size.constant)),
5142 NULL_RTX, VOIDmode, 0));
5143 #else
5144 current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
5145 #endif
5147 /* See how many bytes, if any, of its args a function should try to pop
5148 on return. */
5150 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
5151 current_function_args_size);
5153 /* For stdarg.h function, save info about
5154 regs and stack space used by the named args. */
5156 current_function_args_info = args_so_far;
5158 /* Set the rtx used for the function return value. Put this in its
5159 own variable so any optimizers that need this information don't have
5160 to include tree.h. Do this here so it gets done when an inlined
5161 function gets output. */
5163 current_function_return_rtx
5164 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
5165 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
5167 /* If scalar return value was computed in a pseudo-reg, or was a named
5168 return value that got dumped to the stack, copy that to the hard
5169 return register. */
5170 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
5172 tree decl_result = DECL_RESULT (fndecl);
5173 rtx decl_rtl = DECL_RTL (decl_result);
5175 if (REG_P (decl_rtl)
5176 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5177 : DECL_REGISTER (decl_result))
5179 rtx real_decl_rtl;
5181 #ifdef FUNCTION_OUTGOING_VALUE
5182 real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result),
5183 fndecl);
5184 #else
5185 real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result),
5186 fndecl);
5187 #endif
5188 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
5189 /* The delay slot scheduler assumes that current_function_return_rtx
5190 holds the hard register containing the return value, not a
5191 temporary pseudo. */
5192 current_function_return_rtx = real_decl_rtl;
5197 /* Indicate whether REGNO is an incoming argument to the current function
5198 that was promoted to a wider mode. If so, return the RTX for the
5199 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
5200 that REGNO is promoted from and whether the promotion was signed or
5201 unsigned. */
5203 #ifdef PROMOTE_FUNCTION_ARGS
5206 promoted_input_arg (regno, pmode, punsignedp)
5207 unsigned int regno;
5208 enum machine_mode *pmode;
5209 int *punsignedp;
5211 tree arg;
5213 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
5214 arg = TREE_CHAIN (arg))
5215 if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG
5216 && REGNO (DECL_INCOMING_RTL (arg)) == regno
5217 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
5219 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
5220 int unsignedp = TREE_UNSIGNED (TREE_TYPE (arg));
5222 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
5223 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
5224 && mode != DECL_MODE (arg))
5226 *pmode = DECL_MODE (arg);
5227 *punsignedp = unsignedp;
5228 return DECL_INCOMING_RTL (arg);
5232 return 0;
5235 #endif
5237 /* Compute the size and offset from the start of the stacked arguments for a
5238 parm passed in mode PASSED_MODE and with type TYPE.
5240 INITIAL_OFFSET_PTR points to the current offset into the stacked
5241 arguments.
5243 The starting offset and size for this parm are returned in *OFFSET_PTR
5244 and *ARG_SIZE_PTR, respectively.
5246 IN_REGS is nonzero if the argument will be passed in registers. It will
5247 never be set if REG_PARM_STACK_SPACE is not defined.
5249 FNDECL is the function in which the argument was defined.
5251 There are two types of rounding that are done. The first, controlled by
5252 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
5253 list to be aligned to the specific boundary (in bits). This rounding
5254 affects the initial and starting offsets, but not the argument size.
5256 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
5257 optionally rounds the size of the parm to PARM_BOUNDARY. The
5258 initial offset is not affected by this rounding, while the size always
5259 is and the starting offset may be. */
5261 /* offset_ptr will be negative for ARGS_GROW_DOWNWARD case;
5262 initial_offset_ptr is positive because locate_and_pad_parm's
5263 callers pass in the total size of args so far as
5264 initial_offset_ptr. arg_size_ptr is always positive. */
5266 void
5267 locate_and_pad_parm (passed_mode, type, in_regs, fndecl,
5268 initial_offset_ptr, offset_ptr, arg_size_ptr,
5269 alignment_pad)
5270 enum machine_mode passed_mode;
5271 tree type;
5272 int in_regs ATTRIBUTE_UNUSED;
5273 tree fndecl ATTRIBUTE_UNUSED;
5274 struct args_size *initial_offset_ptr;
5275 struct args_size *offset_ptr;
5276 struct args_size *arg_size_ptr;
5277 struct args_size *alignment_pad;
5280 tree sizetree
5281 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
5282 enum direction where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
5283 int boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
5284 #ifdef ARGS_GROW_DOWNWARD
5285 tree s2 = sizetree;
5286 #endif
5288 #ifdef REG_PARM_STACK_SPACE
5289 /* If we have found a stack parm before we reach the end of the
5290 area reserved for registers, skip that area. */
5291 if (! in_regs)
5293 int reg_parm_stack_space = 0;
5295 #ifdef MAYBE_REG_PARM_STACK_SPACE
5296 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
5297 #else
5298 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
5299 #endif
5300 if (reg_parm_stack_space > 0)
5302 if (initial_offset_ptr->var)
5304 initial_offset_ptr->var
5305 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
5306 ssize_int (reg_parm_stack_space));
5307 initial_offset_ptr->constant = 0;
5309 else if (initial_offset_ptr->constant < reg_parm_stack_space)
5310 initial_offset_ptr->constant = reg_parm_stack_space;
5313 #endif /* REG_PARM_STACK_SPACE */
5315 arg_size_ptr->var = 0;
5316 arg_size_ptr->constant = 0;
5317 alignment_pad->var = 0;
5318 alignment_pad->constant = 0;
5320 #ifdef ARGS_GROW_DOWNWARD
5321 if (initial_offset_ptr->var)
5323 offset_ptr->constant = 0;
5324 offset_ptr->var = size_binop (MINUS_EXPR, ssize_int (0),
5325 initial_offset_ptr->var);
5327 else
5329 offset_ptr->constant = -initial_offset_ptr->constant;
5330 offset_ptr->var = 0;
5333 if (where_pad != none
5334 && (!host_integerp (sizetree, 1)
5335 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5336 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
5337 SUB_PARM_SIZE (*offset_ptr, s2);
5339 if (!in_regs
5340 #ifdef REG_PARM_STACK_SPACE
5341 || REG_PARM_STACK_SPACE (fndecl) > 0
5342 #endif
5344 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad);
5346 if (initial_offset_ptr->var)
5347 arg_size_ptr->var = size_binop (MINUS_EXPR,
5348 size_binop (MINUS_EXPR,
5349 ssize_int (0),
5350 initial_offset_ptr->var),
5351 offset_ptr->var);
5353 else
5354 arg_size_ptr->constant = (-initial_offset_ptr->constant
5355 - offset_ptr->constant);
5357 /* Pad_below needs the pre-rounded size to know how much to pad below.
5358 We only pad parameters which are not in registers as they have their
5359 padding done elsewhere. */
5360 if (where_pad == downward
5361 && !in_regs)
5362 pad_below (offset_ptr, passed_mode, sizetree);
5364 #else /* !ARGS_GROW_DOWNWARD */
5365 if (!in_regs
5366 #ifdef REG_PARM_STACK_SPACE
5367 || REG_PARM_STACK_SPACE (fndecl) > 0
5368 #endif
5370 pad_to_arg_alignment (initial_offset_ptr, boundary, alignment_pad);
5371 *offset_ptr = *initial_offset_ptr;
5373 #ifdef PUSH_ROUNDING
5374 if (passed_mode != BLKmode)
5375 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
5376 #endif
5378 /* Pad_below needs the pre-rounded size to know how much to pad below
5379 so this must be done before rounding up. */
5380 if (where_pad == downward
5381 /* However, BLKmode args passed in regs have their padding done elsewhere.
5382 The stack slot must be able to hold the entire register. */
5383 && !(in_regs && passed_mode == BLKmode))
5384 pad_below (offset_ptr, passed_mode, sizetree);
5386 if (where_pad != none
5387 && (!host_integerp (sizetree, 1)
5388 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5389 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5391 ADD_PARM_SIZE (*arg_size_ptr, sizetree);
5392 #endif /* ARGS_GROW_DOWNWARD */
5395 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
5396 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
5398 static void
5399 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad)
5400 struct args_size *offset_ptr;
5401 int boundary;
5402 struct args_size *alignment_pad;
5404 tree save_var = NULL_TREE;
5405 HOST_WIDE_INT save_constant = 0;
5407 int boundary_in_bytes = boundary / BITS_PER_UNIT;
5409 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5411 save_var = offset_ptr->var;
5412 save_constant = offset_ptr->constant;
5415 alignment_pad->var = NULL_TREE;
5416 alignment_pad->constant = 0;
5418 if (boundary > BITS_PER_UNIT)
5420 if (offset_ptr->var)
5422 offset_ptr->var =
5423 #ifdef ARGS_GROW_DOWNWARD
5424 round_down
5425 #else
5426 round_up
5427 #endif
5428 (ARGS_SIZE_TREE (*offset_ptr),
5429 boundary / BITS_PER_UNIT);
5430 offset_ptr->constant = 0; /*?*/
5431 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5432 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
5433 save_var);
5435 else
5437 offset_ptr->constant =
5438 #ifdef ARGS_GROW_DOWNWARD
5439 FLOOR_ROUND (offset_ptr->constant, boundary_in_bytes);
5440 #else
5441 CEIL_ROUND (offset_ptr->constant, boundary_in_bytes);
5442 #endif
5443 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5444 alignment_pad->constant = offset_ptr->constant - save_constant;
5449 static void
5450 pad_below (offset_ptr, passed_mode, sizetree)
5451 struct args_size *offset_ptr;
5452 enum machine_mode passed_mode;
5453 tree sizetree;
5455 if (passed_mode != BLKmode)
5457 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
5458 offset_ptr->constant
5459 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
5460 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
5461 - GET_MODE_SIZE (passed_mode));
5463 else
5465 if (TREE_CODE (sizetree) != INTEGER_CST
5466 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
5468 /* Round the size up to multiple of PARM_BOUNDARY bits. */
5469 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5470 /* Add it in. */
5471 ADD_PARM_SIZE (*offset_ptr, s2);
5472 SUB_PARM_SIZE (*offset_ptr, sizetree);
5477 /* Walk the tree of blocks describing the binding levels within a function
5478 and warn about uninitialized variables.
5479 This is done after calling flow_analysis and before global_alloc
5480 clobbers the pseudo-regs to hard regs. */
5482 void
5483 uninitialized_vars_warning (block)
5484 tree block;
5486 tree decl, sub;
5487 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5489 if (warn_uninitialized
5490 && TREE_CODE (decl) == VAR_DECL
5491 /* These warnings are unreliable for and aggregates
5492 because assigning the fields one by one can fail to convince
5493 flow.c that the entire aggregate was initialized.
5494 Unions are troublesome because members may be shorter. */
5495 && ! AGGREGATE_TYPE_P (TREE_TYPE (decl))
5496 && DECL_RTL (decl) != 0
5497 && GET_CODE (DECL_RTL (decl)) == REG
5498 /* Global optimizations can make it difficult to determine if a
5499 particular variable has been initialized. However, a VAR_DECL
5500 with a nonzero DECL_INITIAL had an initializer, so do not
5501 claim it is potentially uninitialized.
5503 We do not care about the actual value in DECL_INITIAL, so we do
5504 not worry that it may be a dangling pointer. */
5505 && DECL_INITIAL (decl) == NULL_TREE
5506 && regno_uninitialized (REGNO (DECL_RTL (decl))))
5507 warning_with_decl (decl,
5508 "`%s' might be used uninitialized in this function");
5509 if (extra_warnings
5510 && TREE_CODE (decl) == VAR_DECL
5511 && DECL_RTL (decl) != 0
5512 && GET_CODE (DECL_RTL (decl)) == REG
5513 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5514 warning_with_decl (decl,
5515 "variable `%s' might be clobbered by `longjmp' or `vfork'");
5517 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5518 uninitialized_vars_warning (sub);
5521 /* Do the appropriate part of uninitialized_vars_warning
5522 but for arguments instead of local variables. */
5524 void
5525 setjmp_args_warning ()
5527 tree decl;
5528 for (decl = DECL_ARGUMENTS (current_function_decl);
5529 decl; decl = TREE_CHAIN (decl))
5530 if (DECL_RTL (decl) != 0
5531 && GET_CODE (DECL_RTL (decl)) == REG
5532 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5533 warning_with_decl (decl,
5534 "argument `%s' might be clobbered by `longjmp' or `vfork'");
5537 /* If this function call setjmp, put all vars into the stack
5538 unless they were declared `register'. */
5540 void
5541 setjmp_protect (block)
5542 tree block;
5544 tree decl, sub;
5545 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5546 if ((TREE_CODE (decl) == VAR_DECL
5547 || TREE_CODE (decl) == PARM_DECL)
5548 && DECL_RTL (decl) != 0
5549 && (GET_CODE (DECL_RTL (decl)) == REG
5550 || (GET_CODE (DECL_RTL (decl)) == MEM
5551 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5552 /* If this variable came from an inline function, it must be
5553 that its life doesn't overlap the setjmp. If there was a
5554 setjmp in the function, it would already be in memory. We
5555 must exclude such variable because their DECL_RTL might be
5556 set to strange things such as virtual_stack_vars_rtx. */
5557 && ! DECL_FROM_INLINE (decl)
5558 && (
5559 #ifdef NON_SAVING_SETJMP
5560 /* If longjmp doesn't restore the registers,
5561 don't put anything in them. */
5562 NON_SAVING_SETJMP
5564 #endif
5565 ! DECL_REGISTER (decl)))
5566 put_var_into_stack (decl, /*rescan=*/true);
5567 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5568 setjmp_protect (sub);
5571 /* Like the previous function, but for args instead of local variables. */
5573 void
5574 setjmp_protect_args ()
5576 tree decl;
5577 for (decl = DECL_ARGUMENTS (current_function_decl);
5578 decl; decl = TREE_CHAIN (decl))
5579 if ((TREE_CODE (decl) == VAR_DECL
5580 || TREE_CODE (decl) == PARM_DECL)
5581 && DECL_RTL (decl) != 0
5582 && (GET_CODE (DECL_RTL (decl)) == REG
5583 || (GET_CODE (DECL_RTL (decl)) == MEM
5584 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5585 && (
5586 /* If longjmp doesn't restore the registers,
5587 don't put anything in them. */
5588 #ifdef NON_SAVING_SETJMP
5589 NON_SAVING_SETJMP
5591 #endif
5592 ! DECL_REGISTER (decl)))
5593 put_var_into_stack (decl, /*rescan=*/true);
5596 /* Return the context-pointer register corresponding to DECL,
5597 or 0 if it does not need one. */
5600 lookup_static_chain (decl)
5601 tree decl;
5603 tree context = decl_function_context (decl);
5604 tree link;
5606 if (context == 0
5607 || (TREE_CODE (decl) == FUNCTION_DECL && DECL_NO_STATIC_CHAIN (decl)))
5608 return 0;
5610 /* We treat inline_function_decl as an alias for the current function
5611 because that is the inline function whose vars, types, etc.
5612 are being merged into the current function.
5613 See expand_inline_function. */
5614 if (context == current_function_decl || context == inline_function_decl)
5615 return virtual_stack_vars_rtx;
5617 for (link = context_display; link; link = TREE_CHAIN (link))
5618 if (TREE_PURPOSE (link) == context)
5619 return RTL_EXPR_RTL (TREE_VALUE (link));
5621 abort ();
5624 /* Convert a stack slot address ADDR for variable VAR
5625 (from a containing function)
5626 into an address valid in this function (using a static chain). */
5629 fix_lexical_addr (addr, var)
5630 rtx addr;
5631 tree var;
5633 rtx basereg;
5634 HOST_WIDE_INT displacement;
5635 tree context = decl_function_context (var);
5636 struct function *fp;
5637 rtx base = 0;
5639 /* If this is the present function, we need not do anything. */
5640 if (context == current_function_decl || context == inline_function_decl)
5641 return addr;
5643 fp = find_function_data (context);
5645 if (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == MEM)
5646 addr = XEXP (XEXP (addr, 0), 0);
5648 /* Decode given address as base reg plus displacement. */
5649 if (GET_CODE (addr) == REG)
5650 basereg = addr, displacement = 0;
5651 else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
5652 basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
5653 else
5654 abort ();
5656 /* We accept vars reached via the containing function's
5657 incoming arg pointer and via its stack variables pointer. */
5658 if (basereg == fp->internal_arg_pointer)
5660 /* If reached via arg pointer, get the arg pointer value
5661 out of that function's stack frame.
5663 There are two cases: If a separate ap is needed, allocate a
5664 slot in the outer function for it and dereference it that way.
5665 This is correct even if the real ap is actually a pseudo.
5666 Otherwise, just adjust the offset from the frame pointer to
5667 compensate. */
5669 #ifdef NEED_SEPARATE_AP
5670 rtx addr;
5672 addr = get_arg_pointer_save_area (fp);
5673 addr = fix_lexical_addr (XEXP (addr, 0), var);
5674 addr = memory_address (Pmode, addr);
5676 base = gen_rtx_MEM (Pmode, addr);
5677 set_mem_alias_set (base, get_frame_alias_set ());
5678 base = copy_to_reg (base);
5679 #else
5680 displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET);
5681 base = lookup_static_chain (var);
5682 #endif
5685 else if (basereg == virtual_stack_vars_rtx)
5687 /* This is the same code as lookup_static_chain, duplicated here to
5688 avoid an extra call to decl_function_context. */
5689 tree link;
5691 for (link = context_display; link; link = TREE_CHAIN (link))
5692 if (TREE_PURPOSE (link) == context)
5694 base = RTL_EXPR_RTL (TREE_VALUE (link));
5695 break;
5699 if (base == 0)
5700 abort ();
5702 /* Use same offset, relative to appropriate static chain or argument
5703 pointer. */
5704 return plus_constant (base, displacement);
5707 /* Return the address of the trampoline for entering nested fn FUNCTION.
5708 If necessary, allocate a trampoline (in the stack frame)
5709 and emit rtl to initialize its contents (at entry to this function). */
5712 trampoline_address (function)
5713 tree function;
5715 tree link;
5716 tree rtlexp;
5717 rtx tramp;
5718 struct function *fp;
5719 tree fn_context;
5721 /* Find an existing trampoline and return it. */
5722 for (link = trampoline_list; link; link = TREE_CHAIN (link))
5723 if (TREE_PURPOSE (link) == function)
5724 return
5725 adjust_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0));
5727 for (fp = outer_function_chain; fp; fp = fp->outer)
5728 for (link = fp->x_trampoline_list; link; link = TREE_CHAIN (link))
5729 if (TREE_PURPOSE (link) == function)
5731 tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0),
5732 function);
5733 return adjust_trampoline_addr (tramp);
5736 /* None exists; we must make one. */
5738 /* Find the `struct function' for the function containing FUNCTION. */
5739 fp = 0;
5740 fn_context = decl_function_context (function);
5741 if (fn_context != current_function_decl
5742 && fn_context != inline_function_decl)
5743 fp = find_function_data (fn_context);
5745 /* Allocate run-time space for this trampoline
5746 (usually in the defining function's stack frame). */
5747 #ifdef ALLOCATE_TRAMPOLINE
5748 tramp = ALLOCATE_TRAMPOLINE (fp);
5749 #else
5750 /* If rounding needed, allocate extra space
5751 to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */
5752 #define TRAMPOLINE_REAL_SIZE \
5753 (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1)
5754 tramp = assign_stack_local_1 (BLKmode, TRAMPOLINE_REAL_SIZE, 0,
5755 fp ? fp : cfun);
5756 #endif
5758 /* Record the trampoline for reuse and note it for later initialization
5759 by expand_function_end. */
5760 if (fp != 0)
5762 rtlexp = make_node (RTL_EXPR);
5763 RTL_EXPR_RTL (rtlexp) = tramp;
5764 fp->x_trampoline_list = tree_cons (function, rtlexp,
5765 fp->x_trampoline_list);
5767 else
5769 /* Make the RTL_EXPR node temporary, not momentary, so that the
5770 trampoline_list doesn't become garbage. */
5771 rtlexp = make_node (RTL_EXPR);
5773 RTL_EXPR_RTL (rtlexp) = tramp;
5774 trampoline_list = tree_cons (function, rtlexp, trampoline_list);
5777 tramp = fix_lexical_addr (XEXP (tramp, 0), function);
5778 return adjust_trampoline_addr (tramp);
5781 /* Given a trampoline address,
5782 round it to multiple of TRAMPOLINE_ALIGNMENT. */
5784 static rtx
5785 round_trampoline_addr (tramp)
5786 rtx tramp;
5788 /* Round address up to desired boundary. */
5789 rtx temp = gen_reg_rtx (Pmode);
5790 rtx addend = GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1);
5791 rtx mask = GEN_INT (-TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT);
5793 temp = expand_simple_binop (Pmode, PLUS, tramp, addend,
5794 temp, 0, OPTAB_LIB_WIDEN);
5795 tramp = expand_simple_binop (Pmode, AND, temp, mask,
5796 temp, 0, OPTAB_LIB_WIDEN);
5798 return tramp;
5801 /* Given a trampoline address, round it then apply any
5802 platform-specific adjustments so that the result can be used for a
5803 function call . */
5805 static rtx
5806 adjust_trampoline_addr (tramp)
5807 rtx tramp;
5809 tramp = round_trampoline_addr (tramp);
5810 #ifdef TRAMPOLINE_ADJUST_ADDRESS
5811 TRAMPOLINE_ADJUST_ADDRESS (tramp);
5812 #endif
5813 return tramp;
5816 /* Put all this function's BLOCK nodes including those that are chained
5817 onto the first block into a vector, and return it.
5818 Also store in each NOTE for the beginning or end of a block
5819 the index of that block in the vector.
5820 The arguments are BLOCK, the chain of top-level blocks of the function,
5821 and INSNS, the insn chain of the function. */
5823 void
5824 identify_blocks ()
5826 int n_blocks;
5827 tree *block_vector, *last_block_vector;
5828 tree *block_stack;
5829 tree block = DECL_INITIAL (current_function_decl);
5831 if (block == 0)
5832 return;
5834 /* Fill the BLOCK_VECTOR with all of the BLOCKs in this function, in
5835 depth-first order. */
5836 block_vector = get_block_vector (block, &n_blocks);
5837 block_stack = (tree *) xmalloc (n_blocks * sizeof (tree));
5839 last_block_vector = identify_blocks_1 (get_insns (),
5840 block_vector + 1,
5841 block_vector + n_blocks,
5842 block_stack);
5844 /* If we didn't use all of the subblocks, we've misplaced block notes. */
5845 /* ??? This appears to happen all the time. Latent bugs elsewhere? */
5846 if (0 && last_block_vector != block_vector + n_blocks)
5847 abort ();
5849 free (block_vector);
5850 free (block_stack);
5853 /* Subroutine of identify_blocks. Do the block substitution on the
5854 insn chain beginning with INSNS. Recurse for CALL_PLACEHOLDER chains.
5856 BLOCK_STACK is pushed and popped for each BLOCK_BEGIN/BLOCK_END pair.
5857 BLOCK_VECTOR is incremented for each block seen. */
5859 static tree *
5860 identify_blocks_1 (insns, block_vector, end_block_vector, orig_block_stack)
5861 rtx insns;
5862 tree *block_vector;
5863 tree *end_block_vector;
5864 tree *orig_block_stack;
5866 rtx insn;
5867 tree *block_stack = orig_block_stack;
5869 for (insn = insns; insn; insn = NEXT_INSN (insn))
5871 if (GET_CODE (insn) == NOTE)
5873 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5875 tree b;
5877 /* If there are more block notes than BLOCKs, something
5878 is badly wrong. */
5879 if (block_vector == end_block_vector)
5880 abort ();
5882 b = *block_vector++;
5883 NOTE_BLOCK (insn) = b;
5884 *block_stack++ = b;
5886 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5888 /* If there are more NOTE_INSN_BLOCK_ENDs than
5889 NOTE_INSN_BLOCK_BEGs, something is badly wrong. */
5890 if (block_stack == orig_block_stack)
5891 abort ();
5893 NOTE_BLOCK (insn) = *--block_stack;
5896 else if (GET_CODE (insn) == CALL_INSN
5897 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5899 rtx cp = PATTERN (insn);
5901 block_vector = identify_blocks_1 (XEXP (cp, 0), block_vector,
5902 end_block_vector, block_stack);
5903 if (XEXP (cp, 1))
5904 block_vector = identify_blocks_1 (XEXP (cp, 1), block_vector,
5905 end_block_vector, block_stack);
5906 if (XEXP (cp, 2))
5907 block_vector = identify_blocks_1 (XEXP (cp, 2), block_vector,
5908 end_block_vector, block_stack);
5912 /* If there are more NOTE_INSN_BLOCK_BEGINs than NOTE_INSN_BLOCK_ENDs,
5913 something is badly wrong. */
5914 if (block_stack != orig_block_stack)
5915 abort ();
5917 return block_vector;
5920 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
5921 and create duplicate blocks. */
5922 /* ??? Need an option to either create block fragments or to create
5923 abstract origin duplicates of a source block. It really depends
5924 on what optimization has been performed. */
5926 void
5927 reorder_blocks ()
5929 tree block = DECL_INITIAL (current_function_decl);
5930 varray_type block_stack;
5932 if (block == NULL_TREE)
5933 return;
5935 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
5937 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
5938 reorder_blocks_0 (block);
5940 /* Prune the old trees away, so that they don't get in the way. */
5941 BLOCK_SUBBLOCKS (block) = NULL_TREE;
5942 BLOCK_CHAIN (block) = NULL_TREE;
5944 /* Recreate the block tree from the note nesting. */
5945 reorder_blocks_1 (get_insns (), block, &block_stack);
5946 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
5948 /* Remove deleted blocks from the block fragment chains. */
5949 reorder_fix_fragments (block);
5952 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
5954 static void
5955 reorder_blocks_0 (block)
5956 tree block;
5958 while (block)
5960 TREE_ASM_WRITTEN (block) = 0;
5961 reorder_blocks_0 (BLOCK_SUBBLOCKS (block));
5962 block = BLOCK_CHAIN (block);
5966 static void
5967 reorder_blocks_1 (insns, current_block, p_block_stack)
5968 rtx insns;
5969 tree current_block;
5970 varray_type *p_block_stack;
5972 rtx insn;
5974 for (insn = insns; insn; insn = NEXT_INSN (insn))
5976 if (GET_CODE (insn) == NOTE)
5978 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5980 tree block = NOTE_BLOCK (insn);
5982 /* If we have seen this block before, that means it now
5983 spans multiple address regions. Create a new fragment. */
5984 if (TREE_ASM_WRITTEN (block))
5986 tree new_block = copy_node (block);
5987 tree origin;
5989 origin = (BLOCK_FRAGMENT_ORIGIN (block)
5990 ? BLOCK_FRAGMENT_ORIGIN (block)
5991 : block);
5992 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
5993 BLOCK_FRAGMENT_CHAIN (new_block)
5994 = BLOCK_FRAGMENT_CHAIN (origin);
5995 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
5997 NOTE_BLOCK (insn) = new_block;
5998 block = new_block;
6001 BLOCK_SUBBLOCKS (block) = 0;
6002 TREE_ASM_WRITTEN (block) = 1;
6003 /* When there's only one block for the entire function,
6004 current_block == block and we mustn't do this, it
6005 will cause infinite recursion. */
6006 if (block != current_block)
6008 BLOCK_SUPERCONTEXT (block) = current_block;
6009 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
6010 BLOCK_SUBBLOCKS (current_block) = block;
6011 current_block = block;
6013 VARRAY_PUSH_TREE (*p_block_stack, block);
6015 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
6017 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
6018 VARRAY_POP (*p_block_stack);
6019 BLOCK_SUBBLOCKS (current_block)
6020 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
6021 current_block = BLOCK_SUPERCONTEXT (current_block);
6024 else if (GET_CODE (insn) == CALL_INSN
6025 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
6027 rtx cp = PATTERN (insn);
6028 reorder_blocks_1 (XEXP (cp, 0), current_block, p_block_stack);
6029 if (XEXP (cp, 1))
6030 reorder_blocks_1 (XEXP (cp, 1), current_block, p_block_stack);
6031 if (XEXP (cp, 2))
6032 reorder_blocks_1 (XEXP (cp, 2), current_block, p_block_stack);
6037 /* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer
6038 appears in the block tree, select one of the fragments to become
6039 the new origin block. */
6041 static void
6042 reorder_fix_fragments (block)
6043 tree block;
6045 while (block)
6047 tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
6048 tree new_origin = NULL_TREE;
6050 if (dup_origin)
6052 if (! TREE_ASM_WRITTEN (dup_origin))
6054 new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
6056 /* Find the first of the remaining fragments. There must
6057 be at least one -- the current block. */
6058 while (! TREE_ASM_WRITTEN (new_origin))
6059 new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
6060 BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
6063 else if (! dup_origin)
6064 new_origin = block;
6066 /* Re-root the rest of the fragments to the new origin. In the
6067 case that DUP_ORIGIN was null, that means BLOCK was the origin
6068 of a chain of fragments and we want to remove those fragments
6069 that didn't make it to the output. */
6070 if (new_origin)
6072 tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
6073 tree chain = *pp;
6075 while (chain)
6077 if (TREE_ASM_WRITTEN (chain))
6079 BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
6080 *pp = chain;
6081 pp = &BLOCK_FRAGMENT_CHAIN (chain);
6083 chain = BLOCK_FRAGMENT_CHAIN (chain);
6085 *pp = NULL_TREE;
6088 reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
6089 block = BLOCK_CHAIN (block);
6093 /* Reverse the order of elements in the chain T of blocks,
6094 and return the new head of the chain (old last element). */
6096 static tree
6097 blocks_nreverse (t)
6098 tree t;
6100 tree prev = 0, decl, next;
6101 for (decl = t; decl; decl = next)
6103 next = BLOCK_CHAIN (decl);
6104 BLOCK_CHAIN (decl) = prev;
6105 prev = decl;
6107 return prev;
6110 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
6111 non-NULL, list them all into VECTOR, in a depth-first preorder
6112 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
6113 blocks. */
6115 static int
6116 all_blocks (block, vector)
6117 tree block;
6118 tree *vector;
6120 int n_blocks = 0;
6122 while (block)
6124 TREE_ASM_WRITTEN (block) = 0;
6126 /* Record this block. */
6127 if (vector)
6128 vector[n_blocks] = block;
6130 ++n_blocks;
6132 /* Record the subblocks, and their subblocks... */
6133 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
6134 vector ? vector + n_blocks : 0);
6135 block = BLOCK_CHAIN (block);
6138 return n_blocks;
6141 /* Return a vector containing all the blocks rooted at BLOCK. The
6142 number of elements in the vector is stored in N_BLOCKS_P. The
6143 vector is dynamically allocated; it is the caller's responsibility
6144 to call `free' on the pointer returned. */
6146 static tree *
6147 get_block_vector (block, n_blocks_p)
6148 tree block;
6149 int *n_blocks_p;
6151 tree *block_vector;
6153 *n_blocks_p = all_blocks (block, NULL);
6154 block_vector = (tree *) xmalloc (*n_blocks_p * sizeof (tree));
6155 all_blocks (block, block_vector);
6157 return block_vector;
6160 static GTY(()) int next_block_index = 2;
6162 /* Set BLOCK_NUMBER for all the blocks in FN. */
6164 void
6165 number_blocks (fn)
6166 tree fn;
6168 int i;
6169 int n_blocks;
6170 tree *block_vector;
6172 /* For SDB and XCOFF debugging output, we start numbering the blocks
6173 from 1 within each function, rather than keeping a running
6174 count. */
6175 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
6176 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
6177 next_block_index = 1;
6178 #endif
6180 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
6182 /* The top-level BLOCK isn't numbered at all. */
6183 for (i = 1; i < n_blocks; ++i)
6184 /* We number the blocks from two. */
6185 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
6187 free (block_vector);
6189 return;
6192 /* If VAR is present in a subblock of BLOCK, return the subblock. */
6194 tree
6195 debug_find_var_in_block_tree (var, block)
6196 tree var;
6197 tree block;
6199 tree t;
6201 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
6202 if (t == var)
6203 return block;
6205 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
6207 tree ret = debug_find_var_in_block_tree (var, t);
6208 if (ret)
6209 return ret;
6212 return NULL_TREE;
6215 /* Allocate a function structure and reset its contents to the defaults. */
6217 static void
6218 prepare_function_start ()
6220 cfun = (struct function *) ggc_alloc_cleared (sizeof (struct function));
6222 init_stmt_for_function ();
6223 init_eh_for_function ();
6225 cse_not_expected = ! optimize;
6227 /* Caller save not needed yet. */
6228 caller_save_needed = 0;
6230 /* No stack slots have been made yet. */
6231 stack_slot_list = 0;
6233 current_function_has_nonlocal_label = 0;
6234 current_function_has_nonlocal_goto = 0;
6236 /* There is no stack slot for handling nonlocal gotos. */
6237 nonlocal_goto_handler_slots = 0;
6238 nonlocal_goto_stack_level = 0;
6240 /* No labels have been declared for nonlocal use. */
6241 nonlocal_labels = 0;
6242 nonlocal_goto_handler_labels = 0;
6244 /* No function calls so far in this function. */
6245 function_call_count = 0;
6247 /* No parm regs have been allocated.
6248 (This is important for output_inline_function.) */
6249 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
6251 /* Initialize the RTL mechanism. */
6252 init_emit ();
6254 /* Initialize the queue of pending postincrement and postdecrements,
6255 and some other info in expr.c. */
6256 init_expr ();
6258 /* We haven't done register allocation yet. */
6259 reg_renumber = 0;
6261 init_varasm_status (cfun);
6263 /* Clear out data used for inlining. */
6264 cfun->inlinable = 0;
6265 cfun->original_decl_initial = 0;
6266 cfun->original_arg_vector = 0;
6268 cfun->stack_alignment_needed = STACK_BOUNDARY;
6269 cfun->preferred_stack_boundary = STACK_BOUNDARY;
6271 /* Set if a call to setjmp is seen. */
6272 current_function_calls_setjmp = 0;
6274 /* Set if a call to longjmp is seen. */
6275 current_function_calls_longjmp = 0;
6277 current_function_calls_alloca = 0;
6278 current_function_calls_eh_return = 0;
6279 current_function_calls_constant_p = 0;
6280 current_function_contains_functions = 0;
6281 current_function_is_leaf = 0;
6282 current_function_nothrow = 0;
6283 current_function_sp_is_unchanging = 0;
6284 current_function_uses_only_leaf_regs = 0;
6285 current_function_has_computed_jump = 0;
6286 current_function_is_thunk = 0;
6288 current_function_returns_pcc_struct = 0;
6289 current_function_returns_struct = 0;
6290 current_function_epilogue_delay_list = 0;
6291 current_function_uses_const_pool = 0;
6292 current_function_uses_pic_offset_table = 0;
6293 current_function_cannot_inline = 0;
6295 /* We have not yet needed to make a label to jump to for tail-recursion. */
6296 tail_recursion_label = 0;
6298 /* We haven't had a need to make a save area for ap yet. */
6299 arg_pointer_save_area = 0;
6301 /* No stack slots allocated yet. */
6302 frame_offset = 0;
6304 /* No SAVE_EXPRs in this function yet. */
6305 save_expr_regs = 0;
6307 /* No RTL_EXPRs in this function yet. */
6308 rtl_expr_chain = 0;
6310 /* Set up to allocate temporaries. */
6311 init_temp_slots ();
6313 /* Indicate that we need to distinguish between the return value of the
6314 present function and the return value of a function being called. */
6315 rtx_equal_function_value_matters = 1;
6317 /* Indicate that we have not instantiated virtual registers yet. */
6318 virtuals_instantiated = 0;
6320 /* Indicate that we want CONCATs now. */
6321 generating_concat_p = 1;
6323 /* Indicate we have no need of a frame pointer yet. */
6324 frame_pointer_needed = 0;
6326 /* By default assume not stdarg. */
6327 current_function_stdarg = 0;
6329 /* We haven't made any trampolines for this function yet. */
6330 trampoline_list = 0;
6332 init_pending_stack_adjust ();
6333 inhibit_defer_pop = 0;
6335 current_function_outgoing_args_size = 0;
6337 current_function_funcdef_no = funcdef_no++;
6339 cfun->arc_profile = profile_arc_flag || flag_test_coverage;
6341 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
6343 cfun->max_jumptable_ents = 0;
6345 (*lang_hooks.function.init) (cfun);
6346 if (init_machine_status)
6347 cfun->machine = (*init_machine_status) ();
6350 /* Initialize the rtl expansion mechanism so that we can do simple things
6351 like generate sequences. This is used to provide a context during global
6352 initialization of some passes. */
6353 void
6354 init_dummy_function_start ()
6356 prepare_function_start ();
6359 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
6360 and initialize static variables for generating RTL for the statements
6361 of the function. */
6363 void
6364 init_function_start (subr, filename, line)
6365 tree subr;
6366 const char *filename;
6367 int line;
6369 prepare_function_start ();
6371 current_function_name = (*lang_hooks.decl_printable_name) (subr, 2);
6372 cfun->decl = subr;
6374 /* Nonzero if this is a nested function that uses a static chain. */
6376 current_function_needs_context
6377 = (decl_function_context (current_function_decl) != 0
6378 && ! DECL_NO_STATIC_CHAIN (current_function_decl));
6380 /* Within function body, compute a type's size as soon it is laid out. */
6381 immediate_size_expand++;
6383 /* Prevent ever trying to delete the first instruction of a function.
6384 Also tell final how to output a linenum before the function prologue.
6385 Note linenums could be missing, e.g. when compiling a Java .class file. */
6386 if (line > 0)
6387 emit_line_note (filename, line);
6389 /* Make sure first insn is a note even if we don't want linenums.
6390 This makes sure the first insn will never be deleted.
6391 Also, final expects a note to appear there. */
6392 emit_note (NULL, NOTE_INSN_DELETED);
6394 /* Set flags used by final.c. */
6395 if (aggregate_value_p (DECL_RESULT (subr)))
6397 #ifdef PCC_STATIC_STRUCT_RETURN
6398 current_function_returns_pcc_struct = 1;
6399 #endif
6400 current_function_returns_struct = 1;
6403 /* Warn if this value is an aggregate type,
6404 regardless of which calling convention we are using for it. */
6405 if (warn_aggregate_return
6406 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
6407 warning ("function returns an aggregate");
6409 current_function_returns_pointer
6410 = POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (subr)));
6413 /* Make sure all values used by the optimization passes have sane
6414 defaults. */
6415 void
6416 init_function_for_compilation ()
6418 reg_renumber = 0;
6420 /* No prologue/epilogue insns yet. */
6421 VARRAY_GROW (prologue, 0);
6422 VARRAY_GROW (epilogue, 0);
6423 VARRAY_GROW (sibcall_epilogue, 0);
6426 /* Expand a call to __main at the beginning of a possible main function. */
6428 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
6429 #undef HAS_INIT_SECTION
6430 #define HAS_INIT_SECTION
6431 #endif
6433 void
6434 expand_main_function ()
6436 #ifdef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
6437 if (FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN)
6439 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
6440 rtx tmp, seq;
6442 start_sequence ();
6443 /* Forcibly align the stack. */
6444 #ifdef STACK_GROWS_DOWNWARD
6445 tmp = expand_simple_binop (Pmode, AND, stack_pointer_rtx, GEN_INT(-align),
6446 stack_pointer_rtx, 1, OPTAB_WIDEN);
6447 #else
6448 tmp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
6449 GEN_INT (align - 1), NULL_RTX, 1, OPTAB_WIDEN);
6450 tmp = expand_simple_binop (Pmode, AND, tmp, GEN_INT (-align),
6451 stack_pointer_rtx, 1, OPTAB_WIDEN);
6452 #endif
6453 if (tmp != stack_pointer_rtx)
6454 emit_move_insn (stack_pointer_rtx, tmp);
6456 /* Enlist allocate_dynamic_stack_space to pick up the pieces. */
6457 tmp = force_reg (Pmode, const0_rtx);
6458 allocate_dynamic_stack_space (tmp, NULL_RTX, BIGGEST_ALIGNMENT);
6459 seq = get_insns ();
6460 end_sequence ();
6462 for (tmp = get_last_insn (); tmp; tmp = PREV_INSN (tmp))
6463 if (NOTE_P (tmp) && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_FUNCTION_BEG)
6464 break;
6465 if (tmp)
6466 emit_insn_before (seq, tmp);
6467 else
6468 emit_insn (seq);
6470 #endif
6472 #ifndef HAS_INIT_SECTION
6473 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
6474 #endif
6477 /* The PENDING_SIZES represent the sizes of variable-sized types.
6478 Create RTL for the various sizes now (using temporary variables),
6479 so that we can refer to the sizes from the RTL we are generating
6480 for the current function. The PENDING_SIZES are a TREE_LIST. The
6481 TREE_VALUE of each node is a SAVE_EXPR. */
6483 void
6484 expand_pending_sizes (pending_sizes)
6485 tree pending_sizes;
6487 tree tem;
6489 /* Evaluate now the sizes of any types declared among the arguments. */
6490 for (tem = pending_sizes; tem; tem = TREE_CHAIN (tem))
6492 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode, 0);
6493 /* Flush the queue in case this parameter declaration has
6494 side-effects. */
6495 emit_queue ();
6499 /* Start the RTL for a new function, and set variables used for
6500 emitting RTL.
6501 SUBR is the FUNCTION_DECL node.
6502 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
6503 the function's parameters, which must be run at any return statement. */
6505 void
6506 expand_function_start (subr, parms_have_cleanups)
6507 tree subr;
6508 int parms_have_cleanups;
6510 tree tem;
6511 rtx last_ptr = NULL_RTX;
6513 /* Make sure volatile mem refs aren't considered
6514 valid operands of arithmetic insns. */
6515 init_recog_no_volatile ();
6517 current_function_instrument_entry_exit
6518 = (flag_instrument_function_entry_exit
6519 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6521 current_function_profile
6522 = (profile_flag
6523 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6525 current_function_limit_stack
6526 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
6528 /* If function gets a static chain arg, store it in the stack frame.
6529 Do this first, so it gets the first stack slot offset. */
6530 if (current_function_needs_context)
6532 last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
6534 /* Delay copying static chain if it is not a register to avoid
6535 conflicts with regs used for parameters. */
6536 if (! SMALL_REGISTER_CLASSES
6537 || GET_CODE (static_chain_incoming_rtx) == REG)
6538 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6541 /* If the parameters of this function need cleaning up, get a label
6542 for the beginning of the code which executes those cleanups. This must
6543 be done before doing anything with return_label. */
6544 if (parms_have_cleanups)
6545 cleanup_label = gen_label_rtx ();
6546 else
6547 cleanup_label = 0;
6549 /* Make the label for return statements to jump to. Do not special
6550 case machines with special return instructions -- they will be
6551 handled later during jump, ifcvt, or epilogue creation. */
6552 return_label = gen_label_rtx ();
6554 /* Initialize rtx used to return the value. */
6555 /* Do this before assign_parms so that we copy the struct value address
6556 before any library calls that assign parms might generate. */
6558 /* Decide whether to return the value in memory or in a register. */
6559 if (aggregate_value_p (DECL_RESULT (subr)))
6561 /* Returning something that won't go in a register. */
6562 rtx value_address = 0;
6564 #ifdef PCC_STATIC_STRUCT_RETURN
6565 if (current_function_returns_pcc_struct)
6567 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
6568 value_address = assemble_static_space (size);
6570 else
6571 #endif
6573 /* Expect to be passed the address of a place to store the value.
6574 If it is passed as an argument, assign_parms will take care of
6575 it. */
6576 if (struct_value_incoming_rtx)
6578 value_address = gen_reg_rtx (Pmode);
6579 emit_move_insn (value_address, struct_value_incoming_rtx);
6582 if (value_address)
6584 rtx x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), value_address);
6585 set_mem_attributes (x, DECL_RESULT (subr), 1);
6586 SET_DECL_RTL (DECL_RESULT (subr), x);
6589 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
6590 /* If return mode is void, this decl rtl should not be used. */
6591 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
6592 else
6594 /* Compute the return values into a pseudo reg, which we will copy
6595 into the true return register after the cleanups are done. */
6597 /* In order to figure out what mode to use for the pseudo, we
6598 figure out what the mode of the eventual return register will
6599 actually be, and use that. */
6600 rtx hard_reg
6601 = hard_function_value (TREE_TYPE (DECL_RESULT (subr)),
6602 subr, 1);
6604 /* Structures that are returned in registers are not aggregate_value_p,
6605 so we may see a PARALLEL or a REG. */
6606 if (REG_P (hard_reg))
6607 SET_DECL_RTL (DECL_RESULT (subr), gen_reg_rtx (GET_MODE (hard_reg)));
6608 else if (GET_CODE (hard_reg) == PARALLEL)
6609 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
6610 else
6611 abort ();
6613 /* Set DECL_REGISTER flag so that expand_function_end will copy the
6614 result to the real return register(s). */
6615 DECL_REGISTER (DECL_RESULT (subr)) = 1;
6618 /* Initialize rtx for parameters and local variables.
6619 In some cases this requires emitting insns. */
6621 assign_parms (subr);
6623 /* Copy the static chain now if it wasn't a register. The delay is to
6624 avoid conflicts with the parameter passing registers. */
6626 if (SMALL_REGISTER_CLASSES && current_function_needs_context)
6627 if (GET_CODE (static_chain_incoming_rtx) != REG)
6628 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6630 /* The following was moved from init_function_start.
6631 The move is supposed to make sdb output more accurate. */
6632 /* Indicate the beginning of the function body,
6633 as opposed to parm setup. */
6634 emit_note (NULL, NOTE_INSN_FUNCTION_BEG);
6636 if (GET_CODE (get_last_insn ()) != NOTE)
6637 emit_note (NULL, NOTE_INSN_DELETED);
6638 parm_birth_insn = get_last_insn ();
6640 context_display = 0;
6641 if (current_function_needs_context)
6643 /* Fetch static chain values for containing functions. */
6644 tem = decl_function_context (current_function_decl);
6645 /* Copy the static chain pointer into a pseudo. If we have
6646 small register classes, copy the value from memory if
6647 static_chain_incoming_rtx is a REG. */
6648 if (tem)
6650 /* If the static chain originally came in a register, put it back
6651 there, then move it out in the next insn. The reason for
6652 this peculiar code is to satisfy function integration. */
6653 if (SMALL_REGISTER_CLASSES
6654 && GET_CODE (static_chain_incoming_rtx) == REG)
6655 emit_move_insn (static_chain_incoming_rtx, last_ptr);
6656 last_ptr = copy_to_reg (static_chain_incoming_rtx);
6659 while (tem)
6661 tree rtlexp = make_node (RTL_EXPR);
6663 RTL_EXPR_RTL (rtlexp) = last_ptr;
6664 context_display = tree_cons (tem, rtlexp, context_display);
6665 tem = decl_function_context (tem);
6666 if (tem == 0)
6667 break;
6668 /* Chain thru stack frames, assuming pointer to next lexical frame
6669 is found at the place we always store it. */
6670 #ifdef FRAME_GROWS_DOWNWARD
6671 last_ptr = plus_constant (last_ptr,
6672 -(HOST_WIDE_INT) GET_MODE_SIZE (Pmode));
6673 #endif
6674 last_ptr = gen_rtx_MEM (Pmode, memory_address (Pmode, last_ptr));
6675 set_mem_alias_set (last_ptr, get_frame_alias_set ());
6676 last_ptr = copy_to_reg (last_ptr);
6678 /* If we are not optimizing, ensure that we know that this
6679 piece of context is live over the entire function. */
6680 if (! optimize)
6681 save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, last_ptr,
6682 save_expr_regs);
6686 if (current_function_instrument_entry_exit)
6688 rtx fun = DECL_RTL (current_function_decl);
6689 if (GET_CODE (fun) == MEM)
6690 fun = XEXP (fun, 0);
6691 else
6692 abort ();
6693 emit_library_call (profile_function_entry_libfunc, LCT_NORMAL, VOIDmode,
6694 2, fun, Pmode,
6695 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6697 hard_frame_pointer_rtx),
6698 Pmode);
6701 if (current_function_profile)
6703 #ifdef PROFILE_HOOK
6704 PROFILE_HOOK (current_function_funcdef_no);
6705 #endif
6708 /* After the display initializations is where the tail-recursion label
6709 should go, if we end up needing one. Ensure we have a NOTE here
6710 since some things (like trampolines) get placed before this. */
6711 tail_recursion_reentry = emit_note (NULL, NOTE_INSN_DELETED);
6713 /* Evaluate now the sizes of any types declared among the arguments. */
6714 expand_pending_sizes (nreverse (get_pending_sizes ()));
6716 /* Make sure there is a line number after the function entry setup code. */
6717 force_next_line_note ();
6720 /* Undo the effects of init_dummy_function_start. */
6721 void
6722 expand_dummy_function_end ()
6724 /* End any sequences that failed to be closed due to syntax errors. */
6725 while (in_sequence_p ())
6726 end_sequence ();
6728 /* Outside function body, can't compute type's actual size
6729 until next function's body starts. */
6731 free_after_parsing (cfun);
6732 free_after_compilation (cfun);
6733 cfun = 0;
6736 /* Call DOIT for each hard register used as a return value from
6737 the current function. */
6739 void
6740 diddle_return_value (doit, arg)
6741 void (*doit) PARAMS ((rtx, void *));
6742 void *arg;
6744 rtx outgoing = current_function_return_rtx;
6746 if (! outgoing)
6747 return;
6749 if (GET_CODE (outgoing) == REG)
6750 (*doit) (outgoing, arg);
6751 else if (GET_CODE (outgoing) == PARALLEL)
6753 int i;
6755 for (i = 0; i < XVECLEN (outgoing, 0); i++)
6757 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
6759 if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
6760 (*doit) (x, arg);
6765 static void
6766 do_clobber_return_reg (reg, arg)
6767 rtx reg;
6768 void *arg ATTRIBUTE_UNUSED;
6770 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
6773 void
6774 clobber_return_register ()
6776 diddle_return_value (do_clobber_return_reg, NULL);
6778 /* In case we do use pseudo to return value, clobber it too. */
6779 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
6781 tree decl_result = DECL_RESULT (current_function_decl);
6782 rtx decl_rtl = DECL_RTL (decl_result);
6783 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
6785 do_clobber_return_reg (decl_rtl, NULL);
6790 static void
6791 do_use_return_reg (reg, arg)
6792 rtx reg;
6793 void *arg ATTRIBUTE_UNUSED;
6795 emit_insn (gen_rtx_USE (VOIDmode, reg));
6798 void
6799 use_return_register ()
6801 diddle_return_value (do_use_return_reg, NULL);
6804 static GTY(()) rtx initial_trampoline;
6806 /* Generate RTL for the end of the current function.
6807 FILENAME and LINE are the current position in the source file.
6809 It is up to language-specific callers to do cleanups for parameters--
6810 or else, supply 1 for END_BINDINGS and we will call expand_end_bindings. */
6812 void
6813 expand_function_end (filename, line, end_bindings)
6814 const char *filename;
6815 int line;
6816 int end_bindings;
6818 tree link;
6819 rtx clobber_after;
6821 finish_expr_for_function ();
6823 /* If arg_pointer_save_area was referenced only from a nested
6824 function, we will not have initialized it yet. Do that now. */
6825 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
6826 get_arg_pointer_save_area (cfun);
6828 #ifdef NON_SAVING_SETJMP
6829 /* Don't put any variables in registers if we call setjmp
6830 on a machine that fails to restore the registers. */
6831 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
6833 if (DECL_INITIAL (current_function_decl) != error_mark_node)
6834 setjmp_protect (DECL_INITIAL (current_function_decl));
6836 setjmp_protect_args ();
6838 #endif
6840 /* Initialize any trampolines required by this function. */
6841 for (link = trampoline_list; link; link = TREE_CHAIN (link))
6843 tree function = TREE_PURPOSE (link);
6844 rtx context ATTRIBUTE_UNUSED = lookup_static_chain (function);
6845 rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link));
6846 #ifdef TRAMPOLINE_TEMPLATE
6847 rtx blktramp;
6848 #endif
6849 rtx seq;
6851 #ifdef TRAMPOLINE_TEMPLATE
6852 /* First make sure this compilation has a template for
6853 initializing trampolines. */
6854 if (initial_trampoline == 0)
6856 initial_trampoline
6857 = gen_rtx_MEM (BLKmode, assemble_trampoline_template ());
6858 set_mem_align (initial_trampoline, TRAMPOLINE_ALIGNMENT);
6860 #endif
6862 /* Generate insns to initialize the trampoline. */
6863 start_sequence ();
6864 tramp = round_trampoline_addr (XEXP (tramp, 0));
6865 #ifdef TRAMPOLINE_TEMPLATE
6866 blktramp = replace_equiv_address (initial_trampoline, tramp);
6867 emit_block_move (blktramp, initial_trampoline,
6868 GEN_INT (TRAMPOLINE_SIZE), BLOCK_OP_NORMAL);
6869 #endif
6870 INITIALIZE_TRAMPOLINE (tramp, XEXP (DECL_RTL (function), 0), context);
6871 seq = get_insns ();
6872 end_sequence ();
6874 /* Put those insns at entry to the containing function (this one). */
6875 emit_insn_before (seq, tail_recursion_reentry);
6878 /* If we are doing stack checking and this function makes calls,
6879 do a stack probe at the start of the function to ensure we have enough
6880 space for another stack frame. */
6881 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
6883 rtx insn, seq;
6885 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6886 if (GET_CODE (insn) == CALL_INSN)
6888 start_sequence ();
6889 probe_stack_range (STACK_CHECK_PROTECT,
6890 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
6891 seq = get_insns ();
6892 end_sequence ();
6893 emit_insn_before (seq, tail_recursion_reentry);
6894 break;
6898 /* Warn about unused parms if extra warnings were specified. */
6899 /* Either ``-Wextra -Wunused'' or ``-Wunused-parameter'' enables this
6900 warning. WARN_UNUSED_PARAMETER is negative when set by
6901 -Wunused. Note that -Wall implies -Wunused, so ``-Wall -Wextra'' will
6902 also give these warnings. */
6903 if (warn_unused_parameter > 0
6904 || (warn_unused_parameter < 0 && extra_warnings))
6906 tree decl;
6908 for (decl = DECL_ARGUMENTS (current_function_decl);
6909 decl; decl = TREE_CHAIN (decl))
6910 if (! TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
6911 && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
6912 warning_with_decl (decl, "unused parameter `%s'");
6915 /* Delete handlers for nonlocal gotos if nothing uses them. */
6916 if (nonlocal_goto_handler_slots != 0
6917 && ! current_function_has_nonlocal_label)
6918 delete_handlers ();
6920 /* End any sequences that failed to be closed due to syntax errors. */
6921 while (in_sequence_p ())
6922 end_sequence ();
6924 /* Outside function body, can't compute type's actual size
6925 until next function's body starts. */
6926 immediate_size_expand--;
6928 clear_pending_stack_adjust ();
6929 do_pending_stack_adjust ();
6931 /* Mark the end of the function body.
6932 If control reaches this insn, the function can drop through
6933 without returning a value. */
6934 emit_note (NULL, NOTE_INSN_FUNCTION_END);
6936 /* Must mark the last line number note in the function, so that the test
6937 coverage code can avoid counting the last line twice. This just tells
6938 the code to ignore the immediately following line note, since there
6939 already exists a copy of this note somewhere above. This line number
6940 note is still needed for debugging though, so we can't delete it. */
6941 if (flag_test_coverage)
6942 emit_note (NULL, NOTE_INSN_REPEATED_LINE_NUMBER);
6944 /* Output a linenumber for the end of the function.
6945 SDB depends on this. */
6946 emit_line_note_force (filename, line);
6948 /* Before the return label (if any), clobber the return
6949 registers so that they are not propagated live to the rest of
6950 the function. This can only happen with functions that drop
6951 through; if there had been a return statement, there would
6952 have either been a return rtx, or a jump to the return label.
6954 We delay actual code generation after the current_function_value_rtx
6955 is computed. */
6956 clobber_after = get_last_insn ();
6958 /* Output the label for the actual return from the function,
6959 if one is expected. This happens either because a function epilogue
6960 is used instead of a return instruction, or because a return was done
6961 with a goto in order to run local cleanups, or because of pcc-style
6962 structure returning. */
6963 if (return_label)
6964 emit_label (return_label);
6966 /* C++ uses this. */
6967 if (end_bindings)
6968 expand_end_bindings (0, 0, 0);
6970 if (current_function_instrument_entry_exit)
6972 rtx fun = DECL_RTL (current_function_decl);
6973 if (GET_CODE (fun) == MEM)
6974 fun = XEXP (fun, 0);
6975 else
6976 abort ();
6977 emit_library_call (profile_function_exit_libfunc, LCT_NORMAL, VOIDmode,
6978 2, fun, Pmode,
6979 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6981 hard_frame_pointer_rtx),
6982 Pmode);
6985 /* Let except.c know where it should emit the call to unregister
6986 the function context for sjlj exceptions. */
6987 if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
6988 sjlj_emit_function_exit_after (get_last_insn ());
6990 /* If we had calls to alloca, and this machine needs
6991 an accurate stack pointer to exit the function,
6992 insert some code to save and restore the stack pointer. */
6993 #ifdef EXIT_IGNORE_STACK
6994 if (! EXIT_IGNORE_STACK)
6995 #endif
6996 if (current_function_calls_alloca)
6998 rtx tem = 0;
7000 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
7001 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
7004 /* If scalar return value was computed in a pseudo-reg, or was a named
7005 return value that got dumped to the stack, copy that to the hard
7006 return register. */
7007 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
7009 tree decl_result = DECL_RESULT (current_function_decl);
7010 rtx decl_rtl = DECL_RTL (decl_result);
7012 if (REG_P (decl_rtl)
7013 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
7014 : DECL_REGISTER (decl_result))
7016 rtx real_decl_rtl = current_function_return_rtx;
7018 /* This should be set in assign_parms. */
7019 if (! REG_FUNCTION_VALUE_P (real_decl_rtl))
7020 abort ();
7022 /* If this is a BLKmode structure being returned in registers,
7023 then use the mode computed in expand_return. Note that if
7024 decl_rtl is memory, then its mode may have been changed,
7025 but that current_function_return_rtx has not. */
7026 if (GET_MODE (real_decl_rtl) == BLKmode)
7027 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
7029 /* If a named return value dumped decl_return to memory, then
7030 we may need to re-do the PROMOTE_MODE signed/unsigned
7031 extension. */
7032 if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
7034 int unsignedp = TREE_UNSIGNED (TREE_TYPE (decl_result));
7036 #ifdef PROMOTE_FUNCTION_RETURN
7037 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
7038 &unsignedp, 1);
7039 #endif
7041 convert_move (real_decl_rtl, decl_rtl, unsignedp);
7043 else if (GET_CODE (real_decl_rtl) == PARALLEL)
7045 /* If expand_function_start has created a PARALLEL for decl_rtl,
7046 move the result to the real return registers. Otherwise, do
7047 a group load from decl_rtl for a named return. */
7048 if (GET_CODE (decl_rtl) == PARALLEL)
7049 emit_group_move (real_decl_rtl, decl_rtl);
7050 else
7051 emit_group_load (real_decl_rtl, decl_rtl,
7052 int_size_in_bytes (TREE_TYPE (decl_result)));
7054 else
7055 emit_move_insn (real_decl_rtl, decl_rtl);
7059 /* If returning a structure, arrange to return the address of the value
7060 in a place where debuggers expect to find it.
7062 If returning a structure PCC style,
7063 the caller also depends on this value.
7064 And current_function_returns_pcc_struct is not necessarily set. */
7065 if (current_function_returns_struct
7066 || current_function_returns_pcc_struct)
7068 rtx value_address
7069 = XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
7070 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
7071 #ifdef FUNCTION_OUTGOING_VALUE
7072 rtx outgoing
7073 = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
7074 current_function_decl);
7075 #else
7076 rtx outgoing
7077 = FUNCTION_VALUE (build_pointer_type (type), current_function_decl);
7078 #endif
7080 /* Mark this as a function return value so integrate will delete the
7081 assignment and USE below when inlining this function. */
7082 REG_FUNCTION_VALUE_P (outgoing) = 1;
7084 #ifdef POINTERS_EXTEND_UNSIGNED
7085 /* The address may be ptr_mode and OUTGOING may be Pmode. */
7086 if (GET_MODE (outgoing) != GET_MODE (value_address))
7087 value_address = convert_memory_address (GET_MODE (outgoing),
7088 value_address);
7089 #endif
7091 emit_move_insn (outgoing, value_address);
7093 /* Show return register used to hold result (in this case the address
7094 of the result. */
7095 current_function_return_rtx = outgoing;
7098 /* If this is an implementation of throw, do what's necessary to
7099 communicate between __builtin_eh_return and the epilogue. */
7100 expand_eh_return ();
7102 /* Emit the actual code to clobber return register. */
7104 rtx seq, after;
7106 start_sequence ();
7107 clobber_return_register ();
7108 seq = get_insns ();
7109 end_sequence ();
7111 after = emit_insn_after (seq, clobber_after);
7113 if (clobber_after != after)
7114 cfun->x_clobber_return_insn = after;
7117 /* ??? This should no longer be necessary since stupid is no longer with
7118 us, but there are some parts of the compiler (eg reload_combine, and
7119 sh mach_dep_reorg) that still try and compute their own lifetime info
7120 instead of using the general framework. */
7121 use_return_register ();
7123 /* Fix up any gotos that jumped out to the outermost
7124 binding level of the function.
7125 Must follow emitting RETURN_LABEL. */
7127 /* If you have any cleanups to do at this point,
7128 and they need to create temporary variables,
7129 then you will lose. */
7130 expand_fixups (get_insns ());
7134 get_arg_pointer_save_area (f)
7135 struct function *f;
7137 rtx ret = f->x_arg_pointer_save_area;
7139 if (! ret)
7141 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
7142 f->x_arg_pointer_save_area = ret;
7145 if (f == cfun && ! f->arg_pointer_save_area_init)
7147 rtx seq;
7149 /* Save the arg pointer at the beginning of the function. The
7150 generated stack slot may not be a valid memory address, so we
7151 have to check it and fix it if necessary. */
7152 start_sequence ();
7153 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
7154 seq = get_insns ();
7155 end_sequence ();
7157 push_topmost_sequence ();
7158 emit_insn_after (seq, get_insns ());
7159 pop_topmost_sequence ();
7162 return ret;
7165 /* Extend a vector that records the INSN_UIDs of INSNS
7166 (a list of one or more insns). */
7168 static void
7169 record_insns (insns, vecp)
7170 rtx insns;
7171 varray_type *vecp;
7173 int i, len;
7174 rtx tmp;
7176 tmp = insns;
7177 len = 0;
7178 while (tmp != NULL_RTX)
7180 len++;
7181 tmp = NEXT_INSN (tmp);
7184 i = VARRAY_SIZE (*vecp);
7185 VARRAY_GROW (*vecp, i + len);
7186 tmp = insns;
7187 while (tmp != NULL_RTX)
7189 VARRAY_INT (*vecp, i) = INSN_UID (tmp);
7190 i++;
7191 tmp = NEXT_INSN (tmp);
7195 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
7196 be running after reorg, SEQUENCE rtl is possible. */
7198 static int
7199 contains (insn, vec)
7200 rtx insn;
7201 varray_type vec;
7203 int i, j;
7205 if (GET_CODE (insn) == INSN
7206 && GET_CODE (PATTERN (insn)) == SEQUENCE)
7208 int count = 0;
7209 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
7210 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
7211 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
7212 count++;
7213 return count;
7215 else
7217 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
7218 if (INSN_UID (insn) == VARRAY_INT (vec, j))
7219 return 1;
7221 return 0;
7225 prologue_epilogue_contains (insn)
7226 rtx insn;
7228 if (contains (insn, prologue))
7229 return 1;
7230 if (contains (insn, epilogue))
7231 return 1;
7232 return 0;
7236 sibcall_epilogue_contains (insn)
7237 rtx insn;
7239 if (sibcall_epilogue)
7240 return contains (insn, sibcall_epilogue);
7241 return 0;
7244 #ifdef HAVE_return
7245 /* Insert gen_return at the end of block BB. This also means updating
7246 block_for_insn appropriately. */
7248 static void
7249 emit_return_into_block (bb, line_note)
7250 basic_block bb;
7251 rtx line_note;
7253 emit_jump_insn_after (gen_return (), bb->end);
7254 if (line_note)
7255 emit_line_note_after (NOTE_SOURCE_FILE (line_note),
7256 NOTE_LINE_NUMBER (line_note), PREV_INSN (bb->end));
7258 #endif /* HAVE_return */
7260 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
7262 /* These functions convert the epilogue into a variant that does not modify the
7263 stack pointer. This is used in cases where a function returns an object
7264 whose size is not known until it is computed. The called function leaves the
7265 object on the stack, leaves the stack depressed, and returns a pointer to
7266 the object.
7268 What we need to do is track all modifications and references to the stack
7269 pointer, deleting the modifications and changing the references to point to
7270 the location the stack pointer would have pointed to had the modifications
7271 taken place.
7273 These functions need to be portable so we need to make as few assumptions
7274 about the epilogue as we can. However, the epilogue basically contains
7275 three things: instructions to reset the stack pointer, instructions to
7276 reload registers, possibly including the frame pointer, and an
7277 instruction to return to the caller.
7279 If we can't be sure of what a relevant epilogue insn is doing, we abort.
7280 We also make no attempt to validate the insns we make since if they are
7281 invalid, we probably can't do anything valid. The intent is that these
7282 routines get "smarter" as more and more machines start to use them and
7283 they try operating on different epilogues.
7285 We use the following structure to track what the part of the epilogue that
7286 we've already processed has done. We keep two copies of the SP equivalence,
7287 one for use during the insn we are processing and one for use in the next
7288 insn. The difference is because one part of a PARALLEL may adjust SP
7289 and the other may use it. */
7291 struct epi_info
7293 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
7294 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
7295 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
7296 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
7297 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
7298 should be set to once we no longer need
7299 its value. */
7302 static void handle_epilogue_set PARAMS ((rtx, struct epi_info *));
7303 static void emit_equiv_load PARAMS ((struct epi_info *));
7305 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
7306 no modifications to the stack pointer. Return the new list of insns. */
7308 static rtx
7309 keep_stack_depressed (insns)
7310 rtx insns;
7312 int j;
7313 struct epi_info info;
7314 rtx insn, next;
7316 /* If the epilogue is just a single instruction, it ust be OK as is. */
7318 if (NEXT_INSN (insns) == NULL_RTX)
7319 return insns;
7321 /* Otherwise, start a sequence, initialize the information we have, and
7322 process all the insns we were given. */
7323 start_sequence ();
7325 info.sp_equiv_reg = stack_pointer_rtx;
7326 info.sp_offset = 0;
7327 info.equiv_reg_src = 0;
7329 insn = insns;
7330 next = NULL_RTX;
7331 while (insn != NULL_RTX)
7333 next = NEXT_INSN (insn);
7335 if (!INSN_P (insn))
7337 add_insn (insn);
7338 insn = next;
7339 continue;
7342 /* If this insn references the register that SP is equivalent to and
7343 we have a pending load to that register, we must force out the load
7344 first and then indicate we no longer know what SP's equivalent is. */
7345 if (info.equiv_reg_src != 0
7346 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
7348 emit_equiv_load (&info);
7349 info.sp_equiv_reg = 0;
7352 info.new_sp_equiv_reg = info.sp_equiv_reg;
7353 info.new_sp_offset = info.sp_offset;
7355 /* If this is a (RETURN) and the return address is on the stack,
7356 update the address and change to an indirect jump. */
7357 if (GET_CODE (PATTERN (insn)) == RETURN
7358 || (GET_CODE (PATTERN (insn)) == PARALLEL
7359 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
7361 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
7362 rtx base = 0;
7363 HOST_WIDE_INT offset = 0;
7364 rtx jump_insn, jump_set;
7366 /* If the return address is in a register, we can emit the insn
7367 unchanged. Otherwise, it must be a MEM and we see what the
7368 base register and offset are. In any case, we have to emit any
7369 pending load to the equivalent reg of SP, if any. */
7370 if (GET_CODE (retaddr) == REG)
7372 emit_equiv_load (&info);
7373 add_insn (insn);
7374 insn = next;
7375 continue;
7377 else if (GET_CODE (retaddr) == MEM
7378 && GET_CODE (XEXP (retaddr, 0)) == REG)
7379 base = gen_rtx_REG (Pmode, REGNO (XEXP (retaddr, 0))), offset = 0;
7380 else if (GET_CODE (retaddr) == MEM
7381 && GET_CODE (XEXP (retaddr, 0)) == PLUS
7382 && GET_CODE (XEXP (XEXP (retaddr, 0), 0)) == REG
7383 && GET_CODE (XEXP (XEXP (retaddr, 0), 1)) == CONST_INT)
7385 base = gen_rtx_REG (Pmode, REGNO (XEXP (XEXP (retaddr, 0), 0)));
7386 offset = INTVAL (XEXP (XEXP (retaddr, 0), 1));
7388 else
7389 abort ();
7391 /* If the base of the location containing the return pointer
7392 is SP, we must update it with the replacement address. Otherwise,
7393 just build the necessary MEM. */
7394 retaddr = plus_constant (base, offset);
7395 if (base == stack_pointer_rtx)
7396 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
7397 plus_constant (info.sp_equiv_reg,
7398 info.sp_offset));
7400 retaddr = gen_rtx_MEM (Pmode, retaddr);
7402 /* If there is a pending load to the equivalent register for SP
7403 and we reference that register, we must load our address into
7404 a scratch register and then do that load. */
7405 if (info.equiv_reg_src
7406 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
7408 unsigned int regno;
7409 rtx reg;
7411 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
7412 if (HARD_REGNO_MODE_OK (regno, Pmode)
7413 && !fixed_regs[regno]
7414 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
7415 && !REGNO_REG_SET_P (EXIT_BLOCK_PTR->global_live_at_start,
7416 regno)
7417 && !refers_to_regno_p (regno,
7418 regno + HARD_REGNO_NREGS (regno,
7419 Pmode),
7420 info.equiv_reg_src, NULL))
7421 break;
7423 if (regno == FIRST_PSEUDO_REGISTER)
7424 abort ();
7426 reg = gen_rtx_REG (Pmode, regno);
7427 emit_move_insn (reg, retaddr);
7428 retaddr = reg;
7431 emit_equiv_load (&info);
7432 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
7434 /* Show the SET in the above insn is a RETURN. */
7435 jump_set = single_set (jump_insn);
7436 if (jump_set == 0)
7437 abort ();
7438 else
7439 SET_IS_RETURN_P (jump_set) = 1;
7442 /* If SP is not mentioned in the pattern and its equivalent register, if
7443 any, is not modified, just emit it. Otherwise, if neither is set,
7444 replace the reference to SP and emit the insn. If none of those are
7445 true, handle each SET individually. */
7446 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
7447 && (info.sp_equiv_reg == stack_pointer_rtx
7448 || !reg_set_p (info.sp_equiv_reg, insn)))
7449 add_insn (insn);
7450 else if (! reg_set_p (stack_pointer_rtx, insn)
7451 && (info.sp_equiv_reg == stack_pointer_rtx
7452 || !reg_set_p (info.sp_equiv_reg, insn)))
7454 if (! validate_replace_rtx (stack_pointer_rtx,
7455 plus_constant (info.sp_equiv_reg,
7456 info.sp_offset),
7457 insn))
7458 abort ();
7460 add_insn (insn);
7462 else if (GET_CODE (PATTERN (insn)) == SET)
7463 handle_epilogue_set (PATTERN (insn), &info);
7464 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
7466 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
7467 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
7468 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
7470 else
7471 add_insn (insn);
7473 info.sp_equiv_reg = info.new_sp_equiv_reg;
7474 info.sp_offset = info.new_sp_offset;
7476 insn = next;
7479 insns = get_insns ();
7480 end_sequence ();
7481 return insns;
7484 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
7485 structure that contains information about what we've seen so far. We
7486 process this SET by either updating that data or by emitting one or
7487 more insns. */
7489 static void
7490 handle_epilogue_set (set, p)
7491 rtx set;
7492 struct epi_info *p;
7494 /* First handle the case where we are setting SP. Record what it is being
7495 set from. If unknown, abort. */
7496 if (reg_set_p (stack_pointer_rtx, set))
7498 if (SET_DEST (set) != stack_pointer_rtx)
7499 abort ();
7501 if (GET_CODE (SET_SRC (set)) == PLUS
7502 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
7504 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
7505 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
7507 else
7508 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
7510 /* If we are adjusting SP, we adjust from the old data. */
7511 if (p->new_sp_equiv_reg == stack_pointer_rtx)
7513 p->new_sp_equiv_reg = p->sp_equiv_reg;
7514 p->new_sp_offset += p->sp_offset;
7517 if (p->new_sp_equiv_reg == 0 || GET_CODE (p->new_sp_equiv_reg) != REG)
7518 abort ();
7520 return;
7523 /* Next handle the case where we are setting SP's equivalent register.
7524 If we already have a value to set it to, abort. We could update, but
7525 there seems little point in handling that case. Note that we have
7526 to allow for the case where we are setting the register set in
7527 the previous part of a PARALLEL inside a single insn. But use the
7528 old offset for any updates within this insn. */
7529 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
7531 if (!rtx_equal_p (p->new_sp_equiv_reg, SET_DEST (set))
7532 || p->equiv_reg_src != 0)
7533 abort ();
7534 else
7535 p->equiv_reg_src
7536 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
7537 plus_constant (p->sp_equiv_reg,
7538 p->sp_offset));
7541 /* Otherwise, replace any references to SP in the insn to its new value
7542 and emit the insn. */
7543 else
7545 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
7546 plus_constant (p->sp_equiv_reg,
7547 p->sp_offset));
7548 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
7549 plus_constant (p->sp_equiv_reg,
7550 p->sp_offset));
7551 emit_insn (set);
7555 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
7557 static void
7558 emit_equiv_load (p)
7559 struct epi_info *p;
7561 if (p->equiv_reg_src != 0)
7562 emit_move_insn (p->sp_equiv_reg, p->equiv_reg_src);
7564 p->equiv_reg_src = 0;
7566 #endif
7568 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
7569 this into place with notes indicating where the prologue ends and where
7570 the epilogue begins. Update the basic block information when possible. */
7572 void
7573 thread_prologue_and_epilogue_insns (f)
7574 rtx f ATTRIBUTE_UNUSED;
7576 int inserted = 0;
7577 edge e;
7578 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
7579 rtx seq;
7580 #endif
7581 #ifdef HAVE_prologue
7582 rtx prologue_end = NULL_RTX;
7583 #endif
7584 #if defined (HAVE_epilogue) || defined(HAVE_return)
7585 rtx epilogue_end = NULL_RTX;
7586 #endif
7588 #ifdef HAVE_prologue
7589 if (HAVE_prologue)
7591 start_sequence ();
7592 seq = gen_prologue ();
7593 emit_insn (seq);
7595 /* Retain a map of the prologue insns. */
7596 record_insns (seq, &prologue);
7597 prologue_end = emit_note (NULL, NOTE_INSN_PROLOGUE_END);
7599 seq = get_insns ();
7600 end_sequence ();
7602 /* Can't deal with multiple successors of the entry block
7603 at the moment. Function should always have at least one
7604 entry point. */
7605 if (!ENTRY_BLOCK_PTR->succ || ENTRY_BLOCK_PTR->succ->succ_next)
7606 abort ();
7608 insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ);
7609 inserted = 1;
7611 #endif
7613 /* If the exit block has no non-fake predecessors, we don't need
7614 an epilogue. */
7615 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7616 if ((e->flags & EDGE_FAKE) == 0)
7617 break;
7618 if (e == NULL)
7619 goto epilogue_done;
7621 #ifdef HAVE_return
7622 if (optimize && HAVE_return)
7624 /* If we're allowed to generate a simple return instruction,
7625 then by definition we don't need a full epilogue. Examine
7626 the block that falls through to EXIT. If it does not
7627 contain any code, examine its predecessors and try to
7628 emit (conditional) return instructions. */
7630 basic_block last;
7631 edge e_next;
7632 rtx label;
7634 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7635 if (e->flags & EDGE_FALLTHRU)
7636 break;
7637 if (e == NULL)
7638 goto epilogue_done;
7639 last = e->src;
7641 /* Verify that there are no active instructions in the last block. */
7642 label = last->end;
7643 while (label && GET_CODE (label) != CODE_LABEL)
7645 if (active_insn_p (label))
7646 break;
7647 label = PREV_INSN (label);
7650 if (last->head == label && GET_CODE (label) == CODE_LABEL)
7652 rtx epilogue_line_note = NULL_RTX;
7654 /* Locate the line number associated with the closing brace,
7655 if we can find one. */
7656 for (seq = get_last_insn ();
7657 seq && ! active_insn_p (seq);
7658 seq = PREV_INSN (seq))
7659 if (GET_CODE (seq) == NOTE && NOTE_LINE_NUMBER (seq) > 0)
7661 epilogue_line_note = seq;
7662 break;
7665 for (e = last->pred; e; e = e_next)
7667 basic_block bb = e->src;
7668 rtx jump;
7670 e_next = e->pred_next;
7671 if (bb == ENTRY_BLOCK_PTR)
7672 continue;
7674 jump = bb->end;
7675 if ((GET_CODE (jump) != JUMP_INSN) || JUMP_LABEL (jump) != label)
7676 continue;
7678 /* If we have an unconditional jump, we can replace that
7679 with a simple return instruction. */
7680 if (simplejump_p (jump))
7682 emit_return_into_block (bb, epilogue_line_note);
7683 delete_insn (jump);
7686 /* If we have a conditional jump, we can try to replace
7687 that with a conditional return instruction. */
7688 else if (condjump_p (jump))
7690 if (! redirect_jump (jump, 0, 0))
7691 continue;
7693 /* If this block has only one successor, it both jumps
7694 and falls through to the fallthru block, so we can't
7695 delete the edge. */
7696 if (bb->succ->succ_next == NULL)
7697 continue;
7699 else
7700 continue;
7702 /* Fix up the CFG for the successful change we just made. */
7703 redirect_edge_succ (e, EXIT_BLOCK_PTR);
7706 /* Emit a return insn for the exit fallthru block. Whether
7707 this is still reachable will be determined later. */
7709 emit_barrier_after (last->end);
7710 emit_return_into_block (last, epilogue_line_note);
7711 epilogue_end = last->end;
7712 last->succ->flags &= ~EDGE_FALLTHRU;
7713 goto epilogue_done;
7716 #endif
7717 #ifdef HAVE_epilogue
7718 if (HAVE_epilogue)
7720 /* Find the edge that falls through to EXIT. Other edges may exist
7721 due to RETURN instructions, but those don't need epilogues.
7722 There really shouldn't be a mixture -- either all should have
7723 been converted or none, however... */
7725 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7726 if (e->flags & EDGE_FALLTHRU)
7727 break;
7728 if (e == NULL)
7729 goto epilogue_done;
7731 start_sequence ();
7732 epilogue_end = emit_note (NULL, NOTE_INSN_EPILOGUE_BEG);
7734 seq = gen_epilogue ();
7736 #ifdef INCOMING_RETURN_ADDR_RTX
7737 /* If this function returns with the stack depressed and we can support
7738 it, massage the epilogue to actually do that. */
7739 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
7740 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
7741 seq = keep_stack_depressed (seq);
7742 #endif
7744 emit_jump_insn (seq);
7746 /* Retain a map of the epilogue insns. */
7747 record_insns (seq, &epilogue);
7749 seq = get_insns ();
7750 end_sequence ();
7752 insert_insn_on_edge (seq, e);
7753 inserted = 1;
7755 #endif
7756 epilogue_done:
7758 if (inserted)
7759 commit_edge_insertions ();
7761 #ifdef HAVE_sibcall_epilogue
7762 /* Emit sibling epilogues before any sibling call sites. */
7763 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7765 basic_block bb = e->src;
7766 rtx insn = bb->end;
7767 rtx i;
7768 rtx newinsn;
7770 if (GET_CODE (insn) != CALL_INSN
7771 || ! SIBLING_CALL_P (insn))
7772 continue;
7774 start_sequence ();
7775 emit_insn (gen_sibcall_epilogue ());
7776 seq = get_insns ();
7777 end_sequence ();
7779 /* Retain a map of the epilogue insns. Used in life analysis to
7780 avoid getting rid of sibcall epilogue insns. Do this before we
7781 actually emit the sequence. */
7782 record_insns (seq, &sibcall_epilogue);
7784 i = PREV_INSN (insn);
7785 newinsn = emit_insn_before (seq, insn);
7787 #endif
7789 #ifdef HAVE_prologue
7790 if (prologue_end)
7792 rtx insn, prev;
7794 /* GDB handles `break f' by setting a breakpoint on the first
7795 line note after the prologue. Which means (1) that if
7796 there are line number notes before where we inserted the
7797 prologue we should move them, and (2) we should generate a
7798 note before the end of the first basic block, if there isn't
7799 one already there.
7801 ??? This behavior is completely broken when dealing with
7802 multiple entry functions. We simply place the note always
7803 into first basic block and let alternate entry points
7804 to be missed.
7807 for (insn = prologue_end; insn; insn = prev)
7809 prev = PREV_INSN (insn);
7810 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7812 /* Note that we cannot reorder the first insn in the
7813 chain, since rest_of_compilation relies on that
7814 remaining constant. */
7815 if (prev == NULL)
7816 break;
7817 reorder_insns (insn, insn, prologue_end);
7821 /* Find the last line number note in the first block. */
7822 for (insn = ENTRY_BLOCK_PTR->next_bb->end;
7823 insn != prologue_end && insn;
7824 insn = PREV_INSN (insn))
7825 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7826 break;
7828 /* If we didn't find one, make a copy of the first line number
7829 we run across. */
7830 if (! insn)
7832 for (insn = next_active_insn (prologue_end);
7833 insn;
7834 insn = PREV_INSN (insn))
7835 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7837 emit_line_note_after (NOTE_SOURCE_FILE (insn),
7838 NOTE_LINE_NUMBER (insn),
7839 prologue_end);
7840 break;
7844 #endif
7845 #ifdef HAVE_epilogue
7846 if (epilogue_end)
7848 rtx insn, next;
7850 /* Similarly, move any line notes that appear after the epilogue.
7851 There is no need, however, to be quite so anal about the existence
7852 of such a note. */
7853 for (insn = epilogue_end; insn; insn = next)
7855 next = NEXT_INSN (insn);
7856 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7857 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
7860 #endif
7863 /* Reposition the prologue-end and epilogue-begin notes after instruction
7864 scheduling and delayed branch scheduling. */
7866 void
7867 reposition_prologue_and_epilogue_notes (f)
7868 rtx f ATTRIBUTE_UNUSED;
7870 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
7871 rtx insn, last, note;
7872 int len;
7874 if ((len = VARRAY_SIZE (prologue)) > 0)
7876 last = 0, note = 0;
7878 /* Scan from the beginning until we reach the last prologue insn.
7879 We apparently can't depend on basic_block_{head,end} after
7880 reorg has run. */
7881 for (insn = f; insn; insn = NEXT_INSN (insn))
7883 if (GET_CODE (insn) == NOTE)
7885 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
7886 note = insn;
7888 else if (contains (insn, prologue))
7890 last = insn;
7891 if (--len == 0)
7892 break;
7896 if (last)
7898 /* Find the prologue-end note if we haven't already, and
7899 move it to just after the last prologue insn. */
7900 if (note == 0)
7902 for (note = last; (note = NEXT_INSN (note));)
7903 if (GET_CODE (note) == NOTE
7904 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
7905 break;
7908 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
7909 if (GET_CODE (last) == CODE_LABEL)
7910 last = NEXT_INSN (last);
7911 reorder_insns (note, note, last);
7915 if ((len = VARRAY_SIZE (epilogue)) > 0)
7917 last = 0, note = 0;
7919 /* Scan from the end until we reach the first epilogue insn.
7920 We apparently can't depend on basic_block_{head,end} after
7921 reorg has run. */
7922 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
7924 if (GET_CODE (insn) == NOTE)
7926 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
7927 note = insn;
7929 else if (contains (insn, epilogue))
7931 last = insn;
7932 if (--len == 0)
7933 break;
7937 if (last)
7939 /* Find the epilogue-begin note if we haven't already, and
7940 move it to just before the first epilogue insn. */
7941 if (note == 0)
7943 for (note = insn; (note = PREV_INSN (note));)
7944 if (GET_CODE (note) == NOTE
7945 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
7946 break;
7949 if (PREV_INSN (last) != note)
7950 reorder_insns (note, note, PREV_INSN (last));
7953 #endif /* HAVE_prologue or HAVE_epilogue */
7956 /* Called once, at initialization, to initialize function.c. */
7958 void
7959 init_function_once ()
7961 VARRAY_INT_INIT (prologue, 0, "prologue");
7962 VARRAY_INT_INIT (epilogue, 0, "epilogue");
7963 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
7966 #include "gt-function.h"