* configure.ac: If the compiler supports -Qunused-arguments, use
[official-gcc.git] / gcc / function.c
blob2becdfb591e49e0f8d1e9533460425eac0a3c402
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl-error.h"
39 #include "tree.h"
40 #include "stor-layout.h"
41 #include "varasm.h"
42 #include "stringpool.h"
43 #include "flags.h"
44 #include "except.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "optabs.h"
48 #include "libfuncs.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "output.h"
54 #include "hashtab.h"
55 #include "tm_p.h"
56 #include "langhooks.h"
57 #include "target.h"
58 #include "common/common-target.h"
59 #include "gimple-expr.h"
60 #include "gimplify.h"
61 #include "tree-pass.h"
62 #include "predict.h"
63 #include "df.h"
64 #include "params.h"
65 #include "bb-reorder.h"
66 #include "shrink-wrap.h"
67 #include "toplev.h"
68 #include "rtl-iter.h"
70 /* So we can assign to cfun in this file. */
71 #undef cfun
73 #ifndef STACK_ALIGNMENT_NEEDED
74 #define STACK_ALIGNMENT_NEEDED 1
75 #endif
77 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
79 /* Round a value to the lowest integer less than it that is a multiple of
80 the required alignment. Avoid using division in case the value is
81 negative. Assume the alignment is a power of two. */
82 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
84 /* Similar, but round to the next highest integer that meets the
85 alignment. */
86 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
88 /* Nonzero once virtual register instantiation has been done.
89 assign_stack_local uses frame_pointer_rtx when this is nonzero.
90 calls.c:emit_library_call_value_1 uses it to set up
91 post-instantiation libcalls. */
92 int virtuals_instantiated;
94 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
95 static GTY(()) int funcdef_no;
97 /* These variables hold pointers to functions to create and destroy
98 target specific, per-function data structures. */
99 struct machine_function * (*init_machine_status) (void);
101 /* The currently compiled function. */
102 struct function *cfun = 0;
104 /* These hashes record the prologue and epilogue insns. */
105 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
106 htab_t prologue_insn_hash;
107 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
108 htab_t epilogue_insn_hash;
111 hash_table<used_type_hasher> *types_used_by_vars_hash = NULL;
112 vec<tree, va_gc> *types_used_by_cur_var_decl;
114 /* Forward declarations. */
116 static struct temp_slot *find_temp_slot_from_address (rtx);
117 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
118 static void pad_below (struct args_size *, enum machine_mode, tree);
119 static void reorder_blocks_1 (rtx_insn *, tree, vec<tree> *);
120 static int all_blocks (tree, tree *);
121 static tree *get_block_vector (tree, int *);
122 extern tree debug_find_var_in_block_tree (tree, tree);
123 /* We always define `record_insns' even if it's not used so that we
124 can always export `prologue_epilogue_contains'. */
125 static void record_insns (rtx_insn *, rtx, htab_t *) ATTRIBUTE_UNUSED;
126 static bool contains (const_rtx, htab_t);
127 static void prepare_function_start (void);
128 static void do_clobber_return_reg (rtx, void *);
129 static void do_use_return_reg (rtx, void *);
131 /* Stack of nested functions. */
132 /* Keep track of the cfun stack. */
134 typedef struct function *function_p;
136 static vec<function_p> function_context_stack;
138 /* Save the current context for compilation of a nested function.
139 This is called from language-specific code. */
141 void
142 push_function_context (void)
144 if (cfun == 0)
145 allocate_struct_function (NULL, false);
147 function_context_stack.safe_push (cfun);
148 set_cfun (NULL);
151 /* Restore the last saved context, at the end of a nested function.
152 This function is called from language-specific code. */
154 void
155 pop_function_context (void)
157 struct function *p = function_context_stack.pop ();
158 set_cfun (p);
159 current_function_decl = p->decl;
161 /* Reset variables that have known state during rtx generation. */
162 virtuals_instantiated = 0;
163 generating_concat_p = 1;
166 /* Clear out all parts of the state in F that can safely be discarded
167 after the function has been parsed, but not compiled, to let
168 garbage collection reclaim the memory. */
170 void
171 free_after_parsing (struct function *f)
173 f->language = 0;
176 /* Clear out all parts of the state in F that can safely be discarded
177 after the function has been compiled, to let garbage collection
178 reclaim the memory. */
180 void
181 free_after_compilation (struct function *f)
183 prologue_insn_hash = NULL;
184 epilogue_insn_hash = NULL;
186 free (crtl->emit.regno_pointer_align);
188 memset (crtl, 0, sizeof (struct rtl_data));
189 f->eh = NULL;
190 f->machine = NULL;
191 f->cfg = NULL;
193 regno_reg_rtx = NULL;
196 /* Return size needed for stack frame based on slots so far allocated.
197 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
198 the caller may have to do that. */
200 HOST_WIDE_INT
201 get_frame_size (void)
203 if (FRAME_GROWS_DOWNWARD)
204 return -frame_offset;
205 else
206 return frame_offset;
209 /* Issue an error message and return TRUE if frame OFFSET overflows in
210 the signed target pointer arithmetics for function FUNC. Otherwise
211 return FALSE. */
213 bool
214 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
216 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
218 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
219 /* Leave room for the fixed part of the frame. */
220 - 64 * UNITS_PER_WORD)
222 error_at (DECL_SOURCE_LOCATION (func),
223 "total size of local objects too large");
224 return TRUE;
227 return FALSE;
230 /* Return stack slot alignment in bits for TYPE and MODE. */
232 static unsigned int
233 get_stack_local_alignment (tree type, enum machine_mode mode)
235 unsigned int alignment;
237 if (mode == BLKmode)
238 alignment = BIGGEST_ALIGNMENT;
239 else
240 alignment = GET_MODE_ALIGNMENT (mode);
242 /* Allow the frond-end to (possibly) increase the alignment of this
243 stack slot. */
244 if (! type)
245 type = lang_hooks.types.type_for_mode (mode, 0);
247 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
250 /* Determine whether it is possible to fit a stack slot of size SIZE and
251 alignment ALIGNMENT into an area in the stack frame that starts at
252 frame offset START and has a length of LENGTH. If so, store the frame
253 offset to be used for the stack slot in *POFFSET and return true;
254 return false otherwise. This function will extend the frame size when
255 given a start/length pair that lies at the end of the frame. */
257 static bool
258 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
259 HOST_WIDE_INT size, unsigned int alignment,
260 HOST_WIDE_INT *poffset)
262 HOST_WIDE_INT this_frame_offset;
263 int frame_off, frame_alignment, frame_phase;
265 /* Calculate how many bytes the start of local variables is off from
266 stack alignment. */
267 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
268 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
269 frame_phase = frame_off ? frame_alignment - frame_off : 0;
271 /* Round the frame offset to the specified alignment. */
273 /* We must be careful here, since FRAME_OFFSET might be negative and
274 division with a negative dividend isn't as well defined as we might
275 like. So we instead assume that ALIGNMENT is a power of two and
276 use logical operations which are unambiguous. */
277 if (FRAME_GROWS_DOWNWARD)
278 this_frame_offset
279 = (FLOOR_ROUND (start + length - size - frame_phase,
280 (unsigned HOST_WIDE_INT) alignment)
281 + frame_phase);
282 else
283 this_frame_offset
284 = (CEIL_ROUND (start - frame_phase,
285 (unsigned HOST_WIDE_INT) alignment)
286 + frame_phase);
288 /* See if it fits. If this space is at the edge of the frame,
289 consider extending the frame to make it fit. Our caller relies on
290 this when allocating a new slot. */
291 if (frame_offset == start && this_frame_offset < frame_offset)
292 frame_offset = this_frame_offset;
293 else if (this_frame_offset < start)
294 return false;
295 else if (start + length == frame_offset
296 && this_frame_offset + size > start + length)
297 frame_offset = this_frame_offset + size;
298 else if (this_frame_offset + size > start + length)
299 return false;
301 *poffset = this_frame_offset;
302 return true;
305 /* Create a new frame_space structure describing free space in the stack
306 frame beginning at START and ending at END, and chain it into the
307 function's frame_space_list. */
309 static void
310 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
312 struct frame_space *space = ggc_alloc<frame_space> ();
313 space->next = crtl->frame_space_list;
314 crtl->frame_space_list = space;
315 space->start = start;
316 space->length = end - start;
319 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
320 with machine mode MODE.
322 ALIGN controls the amount of alignment for the address of the slot:
323 0 means according to MODE,
324 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
325 -2 means use BITS_PER_UNIT,
326 positive specifies alignment boundary in bits.
328 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
329 alignment and ASLK_RECORD_PAD bit set if we should remember
330 extra space we allocated for alignment purposes. When we are
331 called from assign_stack_temp_for_type, it is not set so we don't
332 track the same stack slot in two independent lists.
334 We do not round to stack_boundary here. */
337 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
338 int align, int kind)
340 rtx x, addr;
341 int bigend_correction = 0;
342 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
343 unsigned int alignment, alignment_in_bits;
345 if (align == 0)
347 alignment = get_stack_local_alignment (NULL, mode);
348 alignment /= BITS_PER_UNIT;
350 else if (align == -1)
352 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
353 size = CEIL_ROUND (size, alignment);
355 else if (align == -2)
356 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
357 else
358 alignment = align / BITS_PER_UNIT;
360 alignment_in_bits = alignment * BITS_PER_UNIT;
362 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
363 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
365 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
366 alignment = alignment_in_bits / BITS_PER_UNIT;
369 if (SUPPORTS_STACK_ALIGNMENT)
371 if (crtl->stack_alignment_estimated < alignment_in_bits)
373 if (!crtl->stack_realign_processed)
374 crtl->stack_alignment_estimated = alignment_in_bits;
375 else
377 /* If stack is realigned and stack alignment value
378 hasn't been finalized, it is OK not to increase
379 stack_alignment_estimated. The bigger alignment
380 requirement is recorded in stack_alignment_needed
381 below. */
382 gcc_assert (!crtl->stack_realign_finalized);
383 if (!crtl->stack_realign_needed)
385 /* It is OK to reduce the alignment as long as the
386 requested size is 0 or the estimated stack
387 alignment >= mode alignment. */
388 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
389 || size == 0
390 || (crtl->stack_alignment_estimated
391 >= GET_MODE_ALIGNMENT (mode)));
392 alignment_in_bits = crtl->stack_alignment_estimated;
393 alignment = alignment_in_bits / BITS_PER_UNIT;
399 if (crtl->stack_alignment_needed < alignment_in_bits)
400 crtl->stack_alignment_needed = alignment_in_bits;
401 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
402 crtl->max_used_stack_slot_alignment = alignment_in_bits;
404 if (mode != BLKmode || size != 0)
406 if (kind & ASLK_RECORD_PAD)
408 struct frame_space **psp;
410 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
412 struct frame_space *space = *psp;
413 if (!try_fit_stack_local (space->start, space->length, size,
414 alignment, &slot_offset))
415 continue;
416 *psp = space->next;
417 if (slot_offset > space->start)
418 add_frame_space (space->start, slot_offset);
419 if (slot_offset + size < space->start + space->length)
420 add_frame_space (slot_offset + size,
421 space->start + space->length);
422 goto found_space;
426 else if (!STACK_ALIGNMENT_NEEDED)
428 slot_offset = frame_offset;
429 goto found_space;
432 old_frame_offset = frame_offset;
434 if (FRAME_GROWS_DOWNWARD)
436 frame_offset -= size;
437 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
439 if (kind & ASLK_RECORD_PAD)
441 if (slot_offset > frame_offset)
442 add_frame_space (frame_offset, slot_offset);
443 if (slot_offset + size < old_frame_offset)
444 add_frame_space (slot_offset + size, old_frame_offset);
447 else
449 frame_offset += size;
450 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
452 if (kind & ASLK_RECORD_PAD)
454 if (slot_offset > old_frame_offset)
455 add_frame_space (old_frame_offset, slot_offset);
456 if (slot_offset + size < frame_offset)
457 add_frame_space (slot_offset + size, frame_offset);
461 found_space:
462 /* On a big-endian machine, if we are allocating more space than we will use,
463 use the least significant bytes of those that are allocated. */
464 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
465 bigend_correction = size - GET_MODE_SIZE (mode);
467 /* If we have already instantiated virtual registers, return the actual
468 address relative to the frame pointer. */
469 if (virtuals_instantiated)
470 addr = plus_constant (Pmode, frame_pointer_rtx,
471 trunc_int_for_mode
472 (slot_offset + bigend_correction
473 + STARTING_FRAME_OFFSET, Pmode));
474 else
475 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
476 trunc_int_for_mode
477 (slot_offset + bigend_correction,
478 Pmode));
480 x = gen_rtx_MEM (mode, addr);
481 set_mem_align (x, alignment_in_bits);
482 MEM_NOTRAP_P (x) = 1;
484 stack_slot_list
485 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
487 if (frame_offset_overflow (frame_offset, current_function_decl))
488 frame_offset = 0;
490 return x;
493 /* Wrap up assign_stack_local_1 with last parameter as false. */
496 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
498 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
501 /* In order to evaluate some expressions, such as function calls returning
502 structures in memory, we need to temporarily allocate stack locations.
503 We record each allocated temporary in the following structure.
505 Associated with each temporary slot is a nesting level. When we pop up
506 one level, all temporaries associated with the previous level are freed.
507 Normally, all temporaries are freed after the execution of the statement
508 in which they were created. However, if we are inside a ({...}) grouping,
509 the result may be in a temporary and hence must be preserved. If the
510 result could be in a temporary, we preserve it if we can determine which
511 one it is in. If we cannot determine which temporary may contain the
512 result, all temporaries are preserved. A temporary is preserved by
513 pretending it was allocated at the previous nesting level. */
515 struct GTY(()) temp_slot {
516 /* Points to next temporary slot. */
517 struct temp_slot *next;
518 /* Points to previous temporary slot. */
519 struct temp_slot *prev;
520 /* The rtx to used to reference the slot. */
521 rtx slot;
522 /* The size, in units, of the slot. */
523 HOST_WIDE_INT size;
524 /* The type of the object in the slot, or zero if it doesn't correspond
525 to a type. We use this to determine whether a slot can be reused.
526 It can be reused if objects of the type of the new slot will always
527 conflict with objects of the type of the old slot. */
528 tree type;
529 /* The alignment (in bits) of the slot. */
530 unsigned int align;
531 /* Nonzero if this temporary is currently in use. */
532 char in_use;
533 /* Nesting level at which this slot is being used. */
534 int level;
535 /* The offset of the slot from the frame_pointer, including extra space
536 for alignment. This info is for combine_temp_slots. */
537 HOST_WIDE_INT base_offset;
538 /* The size of the slot, including extra space for alignment. This
539 info is for combine_temp_slots. */
540 HOST_WIDE_INT full_size;
543 /* Entry for the below hash table. */
544 struct GTY((for_user)) temp_slot_address_entry {
545 hashval_t hash;
546 rtx address;
547 struct temp_slot *temp_slot;
550 struct temp_address_hasher : ggc_hasher<temp_slot_address_entry *>
552 static hashval_t hash (temp_slot_address_entry *);
553 static bool equal (temp_slot_address_entry *, temp_slot_address_entry *);
556 /* A table of addresses that represent a stack slot. The table is a mapping
557 from address RTXen to a temp slot. */
558 static GTY(()) hash_table<temp_address_hasher> *temp_slot_address_table;
559 static size_t n_temp_slots_in_use;
561 /* Removes temporary slot TEMP from LIST. */
563 static void
564 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
566 if (temp->next)
567 temp->next->prev = temp->prev;
568 if (temp->prev)
569 temp->prev->next = temp->next;
570 else
571 *list = temp->next;
573 temp->prev = temp->next = NULL;
576 /* Inserts temporary slot TEMP to LIST. */
578 static void
579 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
581 temp->next = *list;
582 if (*list)
583 (*list)->prev = temp;
584 temp->prev = NULL;
585 *list = temp;
588 /* Returns the list of used temp slots at LEVEL. */
590 static struct temp_slot **
591 temp_slots_at_level (int level)
593 if (level >= (int) vec_safe_length (used_temp_slots))
594 vec_safe_grow_cleared (used_temp_slots, level + 1);
596 return &(*used_temp_slots)[level];
599 /* Returns the maximal temporary slot level. */
601 static int
602 max_slot_level (void)
604 if (!used_temp_slots)
605 return -1;
607 return used_temp_slots->length () - 1;
610 /* Moves temporary slot TEMP to LEVEL. */
612 static void
613 move_slot_to_level (struct temp_slot *temp, int level)
615 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
616 insert_slot_to_list (temp, temp_slots_at_level (level));
617 temp->level = level;
620 /* Make temporary slot TEMP available. */
622 static void
623 make_slot_available (struct temp_slot *temp)
625 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
626 insert_slot_to_list (temp, &avail_temp_slots);
627 temp->in_use = 0;
628 temp->level = -1;
629 n_temp_slots_in_use--;
632 /* Compute the hash value for an address -> temp slot mapping.
633 The value is cached on the mapping entry. */
634 static hashval_t
635 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
637 int do_not_record = 0;
638 return hash_rtx (t->address, GET_MODE (t->address),
639 &do_not_record, NULL, false);
642 /* Return the hash value for an address -> temp slot mapping. */
643 hashval_t
644 temp_address_hasher::hash (temp_slot_address_entry *t)
646 return t->hash;
649 /* Compare two address -> temp slot mapping entries. */
650 bool
651 temp_address_hasher::equal (temp_slot_address_entry *t1,
652 temp_slot_address_entry *t2)
654 return exp_equiv_p (t1->address, t2->address, 0, true);
657 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
658 static void
659 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
661 struct temp_slot_address_entry *t = ggc_alloc<temp_slot_address_entry> ();
662 t->address = address;
663 t->temp_slot = temp_slot;
664 t->hash = temp_slot_address_compute_hash (t);
665 *temp_slot_address_table->find_slot_with_hash (t, t->hash, INSERT) = t;
668 /* Remove an address -> temp slot mapping entry if the temp slot is
669 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
671 remove_unused_temp_slot_addresses_1 (temp_slot_address_entry **slot, void *)
673 const struct temp_slot_address_entry *t = *slot;
674 if (! t->temp_slot->in_use)
675 temp_slot_address_table->clear_slot (slot);
676 return 1;
679 /* Remove all mappings of addresses to unused temp slots. */
680 static void
681 remove_unused_temp_slot_addresses (void)
683 /* Use quicker clearing if there aren't any active temp slots. */
684 if (n_temp_slots_in_use)
685 temp_slot_address_table->traverse
686 <void *, remove_unused_temp_slot_addresses_1> (NULL);
687 else
688 temp_slot_address_table->empty ();
691 /* Find the temp slot corresponding to the object at address X. */
693 static struct temp_slot *
694 find_temp_slot_from_address (rtx x)
696 struct temp_slot *p;
697 struct temp_slot_address_entry tmp, *t;
699 /* First try the easy way:
700 See if X exists in the address -> temp slot mapping. */
701 tmp.address = x;
702 tmp.temp_slot = NULL;
703 tmp.hash = temp_slot_address_compute_hash (&tmp);
704 t = temp_slot_address_table->find_with_hash (&tmp, tmp.hash);
705 if (t)
706 return t->temp_slot;
708 /* If we have a sum involving a register, see if it points to a temp
709 slot. */
710 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
711 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
712 return p;
713 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
714 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
715 return p;
717 /* Last resort: Address is a virtual stack var address. */
718 if (GET_CODE (x) == PLUS
719 && XEXP (x, 0) == virtual_stack_vars_rtx
720 && CONST_INT_P (XEXP (x, 1)))
722 int i;
723 for (i = max_slot_level (); i >= 0; i--)
724 for (p = *temp_slots_at_level (i); p; p = p->next)
726 if (INTVAL (XEXP (x, 1)) >= p->base_offset
727 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
728 return p;
732 return NULL;
735 /* Allocate a temporary stack slot and record it for possible later
736 reuse.
738 MODE is the machine mode to be given to the returned rtx.
740 SIZE is the size in units of the space required. We do no rounding here
741 since assign_stack_local will do any required rounding.
743 TYPE is the type that will be used for the stack slot. */
746 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
747 tree type)
749 unsigned int align;
750 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
751 rtx slot;
753 /* If SIZE is -1 it means that somebody tried to allocate a temporary
754 of a variable size. */
755 gcc_assert (size != -1);
757 align = get_stack_local_alignment (type, mode);
759 /* Try to find an available, already-allocated temporary of the proper
760 mode which meets the size and alignment requirements. Choose the
761 smallest one with the closest alignment.
763 If assign_stack_temp is called outside of the tree->rtl expansion,
764 we cannot reuse the stack slots (that may still refer to
765 VIRTUAL_STACK_VARS_REGNUM). */
766 if (!virtuals_instantiated)
768 for (p = avail_temp_slots; p; p = p->next)
770 if (p->align >= align && p->size >= size
771 && GET_MODE (p->slot) == mode
772 && objects_must_conflict_p (p->type, type)
773 && (best_p == 0 || best_p->size > p->size
774 || (best_p->size == p->size && best_p->align > p->align)))
776 if (p->align == align && p->size == size)
778 selected = p;
779 cut_slot_from_list (selected, &avail_temp_slots);
780 best_p = 0;
781 break;
783 best_p = p;
788 /* Make our best, if any, the one to use. */
789 if (best_p)
791 selected = best_p;
792 cut_slot_from_list (selected, &avail_temp_slots);
794 /* If there are enough aligned bytes left over, make them into a new
795 temp_slot so that the extra bytes don't get wasted. Do this only
796 for BLKmode slots, so that we can be sure of the alignment. */
797 if (GET_MODE (best_p->slot) == BLKmode)
799 int alignment = best_p->align / BITS_PER_UNIT;
800 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
802 if (best_p->size - rounded_size >= alignment)
804 p = ggc_alloc<temp_slot> ();
805 p->in_use = 0;
806 p->size = best_p->size - rounded_size;
807 p->base_offset = best_p->base_offset + rounded_size;
808 p->full_size = best_p->full_size - rounded_size;
809 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
810 p->align = best_p->align;
811 p->type = best_p->type;
812 insert_slot_to_list (p, &avail_temp_slots);
814 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
815 stack_slot_list);
817 best_p->size = rounded_size;
818 best_p->full_size = rounded_size;
823 /* If we still didn't find one, make a new temporary. */
824 if (selected == 0)
826 HOST_WIDE_INT frame_offset_old = frame_offset;
828 p = ggc_alloc<temp_slot> ();
830 /* We are passing an explicit alignment request to assign_stack_local.
831 One side effect of that is assign_stack_local will not round SIZE
832 to ensure the frame offset remains suitably aligned.
834 So for requests which depended on the rounding of SIZE, we go ahead
835 and round it now. We also make sure ALIGNMENT is at least
836 BIGGEST_ALIGNMENT. */
837 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
838 p->slot = assign_stack_local_1 (mode,
839 (mode == BLKmode
840 ? CEIL_ROUND (size,
841 (int) align
842 / BITS_PER_UNIT)
843 : size),
844 align, 0);
846 p->align = align;
848 /* The following slot size computation is necessary because we don't
849 know the actual size of the temporary slot until assign_stack_local
850 has performed all the frame alignment and size rounding for the
851 requested temporary. Note that extra space added for alignment
852 can be either above or below this stack slot depending on which
853 way the frame grows. We include the extra space if and only if it
854 is above this slot. */
855 if (FRAME_GROWS_DOWNWARD)
856 p->size = frame_offset_old - frame_offset;
857 else
858 p->size = size;
860 /* Now define the fields used by combine_temp_slots. */
861 if (FRAME_GROWS_DOWNWARD)
863 p->base_offset = frame_offset;
864 p->full_size = frame_offset_old - frame_offset;
866 else
868 p->base_offset = frame_offset_old;
869 p->full_size = frame_offset - frame_offset_old;
872 selected = p;
875 p = selected;
876 p->in_use = 1;
877 p->type = type;
878 p->level = temp_slot_level;
879 n_temp_slots_in_use++;
881 pp = temp_slots_at_level (p->level);
882 insert_slot_to_list (p, pp);
883 insert_temp_slot_address (XEXP (p->slot, 0), p);
885 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
886 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
887 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
889 /* If we know the alias set for the memory that will be used, use
890 it. If there's no TYPE, then we don't know anything about the
891 alias set for the memory. */
892 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
893 set_mem_align (slot, align);
895 /* If a type is specified, set the relevant flags. */
896 if (type != 0)
897 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
898 MEM_NOTRAP_P (slot) = 1;
900 return slot;
903 /* Allocate a temporary stack slot and record it for possible later
904 reuse. First two arguments are same as in preceding function. */
907 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size)
909 return assign_stack_temp_for_type (mode, size, NULL_TREE);
912 /* Assign a temporary.
913 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
914 and so that should be used in error messages. In either case, we
915 allocate of the given type.
916 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
917 it is 0 if a register is OK.
918 DONT_PROMOTE is 1 if we should not promote values in register
919 to wider modes. */
922 assign_temp (tree type_or_decl, int memory_required,
923 int dont_promote ATTRIBUTE_UNUSED)
925 tree type, decl;
926 enum machine_mode mode;
927 #ifdef PROMOTE_MODE
928 int unsignedp;
929 #endif
931 if (DECL_P (type_or_decl))
932 decl = type_or_decl, type = TREE_TYPE (decl);
933 else
934 decl = NULL, type = type_or_decl;
936 mode = TYPE_MODE (type);
937 #ifdef PROMOTE_MODE
938 unsignedp = TYPE_UNSIGNED (type);
939 #endif
941 if (mode == BLKmode || memory_required)
943 HOST_WIDE_INT size = int_size_in_bytes (type);
944 rtx tmp;
946 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
947 problems with allocating the stack space. */
948 if (size == 0)
949 size = 1;
951 /* Unfortunately, we don't yet know how to allocate variable-sized
952 temporaries. However, sometimes we can find a fixed upper limit on
953 the size, so try that instead. */
954 else if (size == -1)
955 size = max_int_size_in_bytes (type);
957 /* The size of the temporary may be too large to fit into an integer. */
958 /* ??? Not sure this should happen except for user silliness, so limit
959 this to things that aren't compiler-generated temporaries. The
960 rest of the time we'll die in assign_stack_temp_for_type. */
961 if (decl && size == -1
962 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
964 error ("size of variable %q+D is too large", decl);
965 size = 1;
968 tmp = assign_stack_temp_for_type (mode, size, type);
969 return tmp;
972 #ifdef PROMOTE_MODE
973 if (! dont_promote)
974 mode = promote_mode (type, mode, &unsignedp);
975 #endif
977 return gen_reg_rtx (mode);
980 /* Combine temporary stack slots which are adjacent on the stack.
982 This allows for better use of already allocated stack space. This is only
983 done for BLKmode slots because we can be sure that we won't have alignment
984 problems in this case. */
986 static void
987 combine_temp_slots (void)
989 struct temp_slot *p, *q, *next, *next_q;
990 int num_slots;
992 /* We can't combine slots, because the information about which slot
993 is in which alias set will be lost. */
994 if (flag_strict_aliasing)
995 return;
997 /* If there are a lot of temp slots, don't do anything unless
998 high levels of optimization. */
999 if (! flag_expensive_optimizations)
1000 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1001 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1002 return;
1004 for (p = avail_temp_slots; p; p = next)
1006 int delete_p = 0;
1008 next = p->next;
1010 if (GET_MODE (p->slot) != BLKmode)
1011 continue;
1013 for (q = p->next; q; q = next_q)
1015 int delete_q = 0;
1017 next_q = q->next;
1019 if (GET_MODE (q->slot) != BLKmode)
1020 continue;
1022 if (p->base_offset + p->full_size == q->base_offset)
1024 /* Q comes after P; combine Q into P. */
1025 p->size += q->size;
1026 p->full_size += q->full_size;
1027 delete_q = 1;
1029 else if (q->base_offset + q->full_size == p->base_offset)
1031 /* P comes after Q; combine P into Q. */
1032 q->size += p->size;
1033 q->full_size += p->full_size;
1034 delete_p = 1;
1035 break;
1037 if (delete_q)
1038 cut_slot_from_list (q, &avail_temp_slots);
1041 /* Either delete P or advance past it. */
1042 if (delete_p)
1043 cut_slot_from_list (p, &avail_temp_slots);
1047 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1048 slot that previously was known by OLD_RTX. */
1050 void
1051 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1053 struct temp_slot *p;
1055 if (rtx_equal_p (old_rtx, new_rtx))
1056 return;
1058 p = find_temp_slot_from_address (old_rtx);
1060 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1061 NEW_RTX is a register, see if one operand of the PLUS is a
1062 temporary location. If so, NEW_RTX points into it. Otherwise,
1063 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1064 in common between them. If so, try a recursive call on those
1065 values. */
1066 if (p == 0)
1068 if (GET_CODE (old_rtx) != PLUS)
1069 return;
1071 if (REG_P (new_rtx))
1073 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1074 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1075 return;
1077 else if (GET_CODE (new_rtx) != PLUS)
1078 return;
1080 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1081 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1082 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1083 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1084 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1085 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1086 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1087 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1089 return;
1092 /* Otherwise add an alias for the temp's address. */
1093 insert_temp_slot_address (new_rtx, p);
1096 /* If X could be a reference to a temporary slot, mark that slot as
1097 belonging to the to one level higher than the current level. If X
1098 matched one of our slots, just mark that one. Otherwise, we can't
1099 easily predict which it is, so upgrade all of them.
1101 This is called when an ({...}) construct occurs and a statement
1102 returns a value in memory. */
1104 void
1105 preserve_temp_slots (rtx x)
1107 struct temp_slot *p = 0, *next;
1109 if (x == 0)
1110 return;
1112 /* If X is a register that is being used as a pointer, see if we have
1113 a temporary slot we know it points to. */
1114 if (REG_P (x) && REG_POINTER (x))
1115 p = find_temp_slot_from_address (x);
1117 /* If X is not in memory or is at a constant address, it cannot be in
1118 a temporary slot. */
1119 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1120 return;
1122 /* First see if we can find a match. */
1123 if (p == 0)
1124 p = find_temp_slot_from_address (XEXP (x, 0));
1126 if (p != 0)
1128 if (p->level == temp_slot_level)
1129 move_slot_to_level (p, temp_slot_level - 1);
1130 return;
1133 /* Otherwise, preserve all non-kept slots at this level. */
1134 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1136 next = p->next;
1137 move_slot_to_level (p, temp_slot_level - 1);
1141 /* Free all temporaries used so far. This is normally called at the
1142 end of generating code for a statement. */
1144 void
1145 free_temp_slots (void)
1147 struct temp_slot *p, *next;
1148 bool some_available = false;
1150 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1152 next = p->next;
1153 make_slot_available (p);
1154 some_available = true;
1157 if (some_available)
1159 remove_unused_temp_slot_addresses ();
1160 combine_temp_slots ();
1164 /* Push deeper into the nesting level for stack temporaries. */
1166 void
1167 push_temp_slots (void)
1169 temp_slot_level++;
1172 /* Pop a temporary nesting level. All slots in use in the current level
1173 are freed. */
1175 void
1176 pop_temp_slots (void)
1178 free_temp_slots ();
1179 temp_slot_level--;
1182 /* Initialize temporary slots. */
1184 void
1185 init_temp_slots (void)
1187 /* We have not allocated any temporaries yet. */
1188 avail_temp_slots = 0;
1189 vec_alloc (used_temp_slots, 0);
1190 temp_slot_level = 0;
1191 n_temp_slots_in_use = 0;
1193 /* Set up the table to map addresses to temp slots. */
1194 if (! temp_slot_address_table)
1195 temp_slot_address_table = hash_table<temp_address_hasher>::create_ggc (32);
1196 else
1197 temp_slot_address_table->empty ();
1200 /* Functions and data structures to keep track of the values hard regs
1201 had at the start of the function. */
1203 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1204 and has_hard_reg_initial_val.. */
1205 typedef struct GTY(()) initial_value_pair {
1206 rtx hard_reg;
1207 rtx pseudo;
1208 } initial_value_pair;
1209 /* ??? This could be a VEC but there is currently no way to define an
1210 opaque VEC type. This could be worked around by defining struct
1211 initial_value_pair in function.h. */
1212 typedef struct GTY(()) initial_value_struct {
1213 int num_entries;
1214 int max_entries;
1215 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1216 } initial_value_struct;
1218 /* If a pseudo represents an initial hard reg (or expression), return
1219 it, else return NULL_RTX. */
1222 get_hard_reg_initial_reg (rtx reg)
1224 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1225 int i;
1227 if (ivs == 0)
1228 return NULL_RTX;
1230 for (i = 0; i < ivs->num_entries; i++)
1231 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1232 return ivs->entries[i].hard_reg;
1234 return NULL_RTX;
1237 /* Make sure that there's a pseudo register of mode MODE that stores the
1238 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1241 get_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1243 struct initial_value_struct *ivs;
1244 rtx rv;
1246 rv = has_hard_reg_initial_val (mode, regno);
1247 if (rv)
1248 return rv;
1250 ivs = crtl->hard_reg_initial_vals;
1251 if (ivs == 0)
1253 ivs = ggc_alloc<initial_value_struct> ();
1254 ivs->num_entries = 0;
1255 ivs->max_entries = 5;
1256 ivs->entries = ggc_vec_alloc<initial_value_pair> (5);
1257 crtl->hard_reg_initial_vals = ivs;
1260 if (ivs->num_entries >= ivs->max_entries)
1262 ivs->max_entries += 5;
1263 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1264 ivs->max_entries);
1267 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1268 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1270 return ivs->entries[ivs->num_entries++].pseudo;
1273 /* See if get_hard_reg_initial_val has been used to create a pseudo
1274 for the initial value of hard register REGNO in mode MODE. Return
1275 the associated pseudo if so, otherwise return NULL. */
1278 has_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1280 struct initial_value_struct *ivs;
1281 int i;
1283 ivs = crtl->hard_reg_initial_vals;
1284 if (ivs != 0)
1285 for (i = 0; i < ivs->num_entries; i++)
1286 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1287 && REGNO (ivs->entries[i].hard_reg) == regno)
1288 return ivs->entries[i].pseudo;
1290 return NULL_RTX;
1293 unsigned int
1294 emit_initial_value_sets (void)
1296 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1297 int i;
1298 rtx_insn *seq;
1300 if (ivs == 0)
1301 return 0;
1303 start_sequence ();
1304 for (i = 0; i < ivs->num_entries; i++)
1305 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1306 seq = get_insns ();
1307 end_sequence ();
1309 emit_insn_at_entry (seq);
1310 return 0;
1313 /* Return the hardreg-pseudoreg initial values pair entry I and
1314 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1315 bool
1316 initial_value_entry (int i, rtx *hreg, rtx *preg)
1318 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1319 if (!ivs || i >= ivs->num_entries)
1320 return false;
1322 *hreg = ivs->entries[i].hard_reg;
1323 *preg = ivs->entries[i].pseudo;
1324 return true;
1327 /* These routines are responsible for converting virtual register references
1328 to the actual hard register references once RTL generation is complete.
1330 The following four variables are used for communication between the
1331 routines. They contain the offsets of the virtual registers from their
1332 respective hard registers. */
1334 static int in_arg_offset;
1335 static int var_offset;
1336 static int dynamic_offset;
1337 static int out_arg_offset;
1338 static int cfa_offset;
1340 /* In most machines, the stack pointer register is equivalent to the bottom
1341 of the stack. */
1343 #ifndef STACK_POINTER_OFFSET
1344 #define STACK_POINTER_OFFSET 0
1345 #endif
1347 #if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE)
1348 #define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE
1349 #endif
1351 /* If not defined, pick an appropriate default for the offset of dynamically
1352 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1353 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1355 #ifndef STACK_DYNAMIC_OFFSET
1357 /* The bottom of the stack points to the actual arguments. If
1358 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1359 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1360 stack space for register parameters is not pushed by the caller, but
1361 rather part of the fixed stack areas and hence not included in
1362 `crtl->outgoing_args_size'. Nevertheless, we must allow
1363 for it when allocating stack dynamic objects. */
1365 #ifdef INCOMING_REG_PARM_STACK_SPACE
1366 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1367 ((ACCUMULATE_OUTGOING_ARGS \
1368 ? (crtl->outgoing_args_size \
1369 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1370 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \
1371 : 0) + (STACK_POINTER_OFFSET))
1372 #else
1373 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1374 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1375 + (STACK_POINTER_OFFSET))
1376 #endif
1377 #endif
1380 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1381 is a virtual register, return the equivalent hard register and set the
1382 offset indirectly through the pointer. Otherwise, return 0. */
1384 static rtx
1385 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1387 rtx new_rtx;
1388 HOST_WIDE_INT offset;
1390 if (x == virtual_incoming_args_rtx)
1392 if (stack_realign_drap)
1394 /* Replace virtual_incoming_args_rtx with internal arg
1395 pointer if DRAP is used to realign stack. */
1396 new_rtx = crtl->args.internal_arg_pointer;
1397 offset = 0;
1399 else
1400 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1402 else if (x == virtual_stack_vars_rtx)
1403 new_rtx = frame_pointer_rtx, offset = var_offset;
1404 else if (x == virtual_stack_dynamic_rtx)
1405 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1406 else if (x == virtual_outgoing_args_rtx)
1407 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1408 else if (x == virtual_cfa_rtx)
1410 #ifdef FRAME_POINTER_CFA_OFFSET
1411 new_rtx = frame_pointer_rtx;
1412 #else
1413 new_rtx = arg_pointer_rtx;
1414 #endif
1415 offset = cfa_offset;
1417 else if (x == virtual_preferred_stack_boundary_rtx)
1419 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1420 offset = 0;
1422 else
1423 return NULL_RTX;
1425 *poffset = offset;
1426 return new_rtx;
1429 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1430 registers present inside of *LOC. The expression is simplified,
1431 as much as possible, but is not to be considered "valid" in any sense
1432 implied by the target. Return true if any change is made. */
1434 static bool
1435 instantiate_virtual_regs_in_rtx (rtx *loc)
1437 if (!*loc)
1438 return false;
1439 bool changed = false;
1440 subrtx_ptr_iterator::array_type array;
1441 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
1443 rtx *loc = *iter;
1444 if (rtx x = *loc)
1446 rtx new_rtx;
1447 HOST_WIDE_INT offset;
1448 switch (GET_CODE (x))
1450 case REG:
1451 new_rtx = instantiate_new_reg (x, &offset);
1452 if (new_rtx)
1454 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1455 changed = true;
1457 iter.skip_subrtxes ();
1458 break;
1460 case PLUS:
1461 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1462 if (new_rtx)
1464 XEXP (x, 0) = new_rtx;
1465 *loc = plus_constant (GET_MODE (x), x, offset, true);
1466 changed = true;
1467 iter.skip_subrtxes ();
1468 break;
1471 /* FIXME -- from old code */
1472 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1473 we can commute the PLUS and SUBREG because pointers into the
1474 frame are well-behaved. */
1475 break;
1477 default:
1478 break;
1482 return changed;
1485 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1486 matches the predicate for insn CODE operand OPERAND. */
1488 static int
1489 safe_insn_predicate (int code, int operand, rtx x)
1491 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1494 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1495 registers present inside of insn. The result will be a valid insn. */
1497 static void
1498 instantiate_virtual_regs_in_insn (rtx_insn *insn)
1500 HOST_WIDE_INT offset;
1501 int insn_code, i;
1502 bool any_change = false;
1503 rtx set, new_rtx, x;
1504 rtx_insn *seq;
1506 /* There are some special cases to be handled first. */
1507 set = single_set (insn);
1508 if (set)
1510 /* We're allowed to assign to a virtual register. This is interpreted
1511 to mean that the underlying register gets assigned the inverse
1512 transformation. This is used, for example, in the handling of
1513 non-local gotos. */
1514 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1515 if (new_rtx)
1517 start_sequence ();
1519 instantiate_virtual_regs_in_rtx (&SET_SRC (set));
1520 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1521 gen_int_mode (-offset, GET_MODE (new_rtx)));
1522 x = force_operand (x, new_rtx);
1523 if (x != new_rtx)
1524 emit_move_insn (new_rtx, x);
1526 seq = get_insns ();
1527 end_sequence ();
1529 emit_insn_before (seq, insn);
1530 delete_insn (insn);
1531 return;
1534 /* Handle a straight copy from a virtual register by generating a
1535 new add insn. The difference between this and falling through
1536 to the generic case is avoiding a new pseudo and eliminating a
1537 move insn in the initial rtl stream. */
1538 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1539 if (new_rtx && offset != 0
1540 && REG_P (SET_DEST (set))
1541 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1543 start_sequence ();
1545 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
1546 gen_int_mode (offset,
1547 GET_MODE (SET_DEST (set))),
1548 SET_DEST (set), 1, OPTAB_LIB_WIDEN);
1549 if (x != SET_DEST (set))
1550 emit_move_insn (SET_DEST (set), x);
1552 seq = get_insns ();
1553 end_sequence ();
1555 emit_insn_before (seq, insn);
1556 delete_insn (insn);
1557 return;
1560 extract_insn (insn);
1561 insn_code = INSN_CODE (insn);
1563 /* Handle a plus involving a virtual register by determining if the
1564 operands remain valid if they're modified in place. */
1565 if (GET_CODE (SET_SRC (set)) == PLUS
1566 && recog_data.n_operands >= 3
1567 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1568 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1569 && CONST_INT_P (recog_data.operand[2])
1570 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1572 offset += INTVAL (recog_data.operand[2]);
1574 /* If the sum is zero, then replace with a plain move. */
1575 if (offset == 0
1576 && REG_P (SET_DEST (set))
1577 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1579 start_sequence ();
1580 emit_move_insn (SET_DEST (set), new_rtx);
1581 seq = get_insns ();
1582 end_sequence ();
1584 emit_insn_before (seq, insn);
1585 delete_insn (insn);
1586 return;
1589 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1591 /* Using validate_change and apply_change_group here leaves
1592 recog_data in an invalid state. Since we know exactly what
1593 we want to check, do those two by hand. */
1594 if (safe_insn_predicate (insn_code, 1, new_rtx)
1595 && safe_insn_predicate (insn_code, 2, x))
1597 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1598 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1599 any_change = true;
1601 /* Fall through into the regular operand fixup loop in
1602 order to take care of operands other than 1 and 2. */
1606 else
1608 extract_insn (insn);
1609 insn_code = INSN_CODE (insn);
1612 /* In the general case, we expect virtual registers to appear only in
1613 operands, and then only as either bare registers or inside memories. */
1614 for (i = 0; i < recog_data.n_operands; ++i)
1616 x = recog_data.operand[i];
1617 switch (GET_CODE (x))
1619 case MEM:
1621 rtx addr = XEXP (x, 0);
1623 if (!instantiate_virtual_regs_in_rtx (&addr))
1624 continue;
1626 start_sequence ();
1627 x = replace_equiv_address (x, addr, true);
1628 /* It may happen that the address with the virtual reg
1629 was valid (e.g. based on the virtual stack reg, which might
1630 be acceptable to the predicates with all offsets), whereas
1631 the address now isn't anymore, for instance when the address
1632 is still offsetted, but the base reg isn't virtual-stack-reg
1633 anymore. Below we would do a force_reg on the whole operand,
1634 but this insn might actually only accept memory. Hence,
1635 before doing that last resort, try to reload the address into
1636 a register, so this operand stays a MEM. */
1637 if (!safe_insn_predicate (insn_code, i, x))
1639 addr = force_reg (GET_MODE (addr), addr);
1640 x = replace_equiv_address (x, addr, true);
1642 seq = get_insns ();
1643 end_sequence ();
1644 if (seq)
1645 emit_insn_before (seq, insn);
1647 break;
1649 case REG:
1650 new_rtx = instantiate_new_reg (x, &offset);
1651 if (new_rtx == NULL)
1652 continue;
1653 if (offset == 0)
1654 x = new_rtx;
1655 else
1657 start_sequence ();
1659 /* Careful, special mode predicates may have stuff in
1660 insn_data[insn_code].operand[i].mode that isn't useful
1661 to us for computing a new value. */
1662 /* ??? Recognize address_operand and/or "p" constraints
1663 to see if (plus new offset) is a valid before we put
1664 this through expand_simple_binop. */
1665 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1666 gen_int_mode (offset, GET_MODE (x)),
1667 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1668 seq = get_insns ();
1669 end_sequence ();
1670 emit_insn_before (seq, insn);
1672 break;
1674 case SUBREG:
1675 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1676 if (new_rtx == NULL)
1677 continue;
1678 if (offset != 0)
1680 start_sequence ();
1681 new_rtx = expand_simple_binop
1682 (GET_MODE (new_rtx), PLUS, new_rtx,
1683 gen_int_mode (offset, GET_MODE (new_rtx)),
1684 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1685 seq = get_insns ();
1686 end_sequence ();
1687 emit_insn_before (seq, insn);
1689 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1690 GET_MODE (new_rtx), SUBREG_BYTE (x));
1691 gcc_assert (x);
1692 break;
1694 default:
1695 continue;
1698 /* At this point, X contains the new value for the operand.
1699 Validate the new value vs the insn predicate. Note that
1700 asm insns will have insn_code -1 here. */
1701 if (!safe_insn_predicate (insn_code, i, x))
1703 start_sequence ();
1704 if (REG_P (x))
1706 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1707 x = copy_to_reg (x);
1709 else
1710 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1711 seq = get_insns ();
1712 end_sequence ();
1713 if (seq)
1714 emit_insn_before (seq, insn);
1717 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1718 any_change = true;
1721 if (any_change)
1723 /* Propagate operand changes into the duplicates. */
1724 for (i = 0; i < recog_data.n_dups; ++i)
1725 *recog_data.dup_loc[i]
1726 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1728 /* Force re-recognition of the instruction for validation. */
1729 INSN_CODE (insn) = -1;
1732 if (asm_noperands (PATTERN (insn)) >= 0)
1734 if (!check_asm_operands (PATTERN (insn)))
1736 error_for_asm (insn, "impossible constraint in %<asm%>");
1737 /* For asm goto, instead of fixing up all the edges
1738 just clear the template and clear input operands
1739 (asm goto doesn't have any output operands). */
1740 if (JUMP_P (insn))
1742 rtx asm_op = extract_asm_operands (PATTERN (insn));
1743 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1744 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1745 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1747 else
1748 delete_insn (insn);
1751 else
1753 if (recog_memoized (insn) < 0)
1754 fatal_insn_not_found (insn);
1758 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1759 do any instantiation required. */
1761 void
1762 instantiate_decl_rtl (rtx x)
1764 rtx addr;
1766 if (x == 0)
1767 return;
1769 /* If this is a CONCAT, recurse for the pieces. */
1770 if (GET_CODE (x) == CONCAT)
1772 instantiate_decl_rtl (XEXP (x, 0));
1773 instantiate_decl_rtl (XEXP (x, 1));
1774 return;
1777 /* If this is not a MEM, no need to do anything. Similarly if the
1778 address is a constant or a register that is not a virtual register. */
1779 if (!MEM_P (x))
1780 return;
1782 addr = XEXP (x, 0);
1783 if (CONSTANT_P (addr)
1784 || (REG_P (addr)
1785 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1786 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1787 return;
1789 instantiate_virtual_regs_in_rtx (&XEXP (x, 0));
1792 /* Helper for instantiate_decls called via walk_tree: Process all decls
1793 in the given DECL_VALUE_EXPR. */
1795 static tree
1796 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1798 tree t = *tp;
1799 if (! EXPR_P (t))
1801 *walk_subtrees = 0;
1802 if (DECL_P (t))
1804 if (DECL_RTL_SET_P (t))
1805 instantiate_decl_rtl (DECL_RTL (t));
1806 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1807 && DECL_INCOMING_RTL (t))
1808 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1809 if ((TREE_CODE (t) == VAR_DECL
1810 || TREE_CODE (t) == RESULT_DECL)
1811 && DECL_HAS_VALUE_EXPR_P (t))
1813 tree v = DECL_VALUE_EXPR (t);
1814 walk_tree (&v, instantiate_expr, NULL, NULL);
1818 return NULL;
1821 /* Subroutine of instantiate_decls: Process all decls in the given
1822 BLOCK node and all its subblocks. */
1824 static void
1825 instantiate_decls_1 (tree let)
1827 tree t;
1829 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1831 if (DECL_RTL_SET_P (t))
1832 instantiate_decl_rtl (DECL_RTL (t));
1833 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1835 tree v = DECL_VALUE_EXPR (t);
1836 walk_tree (&v, instantiate_expr, NULL, NULL);
1840 /* Process all subblocks. */
1841 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1842 instantiate_decls_1 (t);
1845 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1846 all virtual registers in their DECL_RTL's. */
1848 static void
1849 instantiate_decls (tree fndecl)
1851 tree decl;
1852 unsigned ix;
1854 /* Process all parameters of the function. */
1855 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1857 instantiate_decl_rtl (DECL_RTL (decl));
1858 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1859 if (DECL_HAS_VALUE_EXPR_P (decl))
1861 tree v = DECL_VALUE_EXPR (decl);
1862 walk_tree (&v, instantiate_expr, NULL, NULL);
1866 if ((decl = DECL_RESULT (fndecl))
1867 && TREE_CODE (decl) == RESULT_DECL)
1869 if (DECL_RTL_SET_P (decl))
1870 instantiate_decl_rtl (DECL_RTL (decl));
1871 if (DECL_HAS_VALUE_EXPR_P (decl))
1873 tree v = DECL_VALUE_EXPR (decl);
1874 walk_tree (&v, instantiate_expr, NULL, NULL);
1878 /* Process the saved static chain if it exists. */
1879 decl = DECL_STRUCT_FUNCTION (fndecl)->static_chain_decl;
1880 if (decl && DECL_HAS_VALUE_EXPR_P (decl))
1881 instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl)));
1883 /* Now process all variables defined in the function or its subblocks. */
1884 instantiate_decls_1 (DECL_INITIAL (fndecl));
1886 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1887 if (DECL_RTL_SET_P (decl))
1888 instantiate_decl_rtl (DECL_RTL (decl));
1889 vec_free (cfun->local_decls);
1892 /* Pass through the INSNS of function FNDECL and convert virtual register
1893 references to hard register references. */
1895 static unsigned int
1896 instantiate_virtual_regs (void)
1898 rtx_insn *insn;
1900 /* Compute the offsets to use for this function. */
1901 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1902 var_offset = STARTING_FRAME_OFFSET;
1903 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1904 out_arg_offset = STACK_POINTER_OFFSET;
1905 #ifdef FRAME_POINTER_CFA_OFFSET
1906 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1907 #else
1908 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1909 #endif
1911 /* Initialize recognition, indicating that volatile is OK. */
1912 init_recog ();
1914 /* Scan through all the insns, instantiating every virtual register still
1915 present. */
1916 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1917 if (INSN_P (insn))
1919 /* These patterns in the instruction stream can never be recognized.
1920 Fortunately, they shouldn't contain virtual registers either. */
1921 if (GET_CODE (PATTERN (insn)) == USE
1922 || GET_CODE (PATTERN (insn)) == CLOBBER
1923 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1924 continue;
1925 else if (DEBUG_INSN_P (insn))
1926 instantiate_virtual_regs_in_rtx (&INSN_VAR_LOCATION (insn));
1927 else
1928 instantiate_virtual_regs_in_insn (insn);
1930 if (insn->deleted ())
1931 continue;
1933 instantiate_virtual_regs_in_rtx (&REG_NOTES (insn));
1935 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1936 if (CALL_P (insn))
1937 instantiate_virtual_regs_in_rtx (&CALL_INSN_FUNCTION_USAGE (insn));
1940 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1941 instantiate_decls (current_function_decl);
1943 targetm.instantiate_decls ();
1945 /* Indicate that, from now on, assign_stack_local should use
1946 frame_pointer_rtx. */
1947 virtuals_instantiated = 1;
1949 return 0;
1952 namespace {
1954 const pass_data pass_data_instantiate_virtual_regs =
1956 RTL_PASS, /* type */
1957 "vregs", /* name */
1958 OPTGROUP_NONE, /* optinfo_flags */
1959 TV_NONE, /* tv_id */
1960 0, /* properties_required */
1961 0, /* properties_provided */
1962 0, /* properties_destroyed */
1963 0, /* todo_flags_start */
1964 0, /* todo_flags_finish */
1967 class pass_instantiate_virtual_regs : public rtl_opt_pass
1969 public:
1970 pass_instantiate_virtual_regs (gcc::context *ctxt)
1971 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
1974 /* opt_pass methods: */
1975 virtual unsigned int execute (function *)
1977 return instantiate_virtual_regs ();
1980 }; // class pass_instantiate_virtual_regs
1982 } // anon namespace
1984 rtl_opt_pass *
1985 make_pass_instantiate_virtual_regs (gcc::context *ctxt)
1987 return new pass_instantiate_virtual_regs (ctxt);
1991 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1992 This means a type for which function calls must pass an address to the
1993 function or get an address back from the function.
1994 EXP may be a type node or an expression (whose type is tested). */
1997 aggregate_value_p (const_tree exp, const_tree fntype)
1999 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
2000 int i, regno, nregs;
2001 rtx reg;
2003 if (fntype)
2004 switch (TREE_CODE (fntype))
2006 case CALL_EXPR:
2008 tree fndecl = get_callee_fndecl (fntype);
2009 fntype = (fndecl
2010 ? TREE_TYPE (fndecl)
2011 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
2013 break;
2014 case FUNCTION_DECL:
2015 fntype = TREE_TYPE (fntype);
2016 break;
2017 case FUNCTION_TYPE:
2018 case METHOD_TYPE:
2019 break;
2020 case IDENTIFIER_NODE:
2021 fntype = NULL_TREE;
2022 break;
2023 default:
2024 /* We don't expect other tree types here. */
2025 gcc_unreachable ();
2028 if (VOID_TYPE_P (type))
2029 return 0;
2031 /* If a record should be passed the same as its first (and only) member
2032 don't pass it as an aggregate. */
2033 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2034 return aggregate_value_p (first_field (type), fntype);
2036 /* If the front end has decided that this needs to be passed by
2037 reference, do so. */
2038 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2039 && DECL_BY_REFERENCE (exp))
2040 return 1;
2042 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2043 if (fntype && TREE_ADDRESSABLE (fntype))
2044 return 1;
2046 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2047 and thus can't be returned in registers. */
2048 if (TREE_ADDRESSABLE (type))
2049 return 1;
2051 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2052 return 1;
2054 if (targetm.calls.return_in_memory (type, fntype))
2055 return 1;
2057 /* Make sure we have suitable call-clobbered regs to return
2058 the value in; if not, we must return it in memory. */
2059 reg = hard_function_value (type, 0, fntype, 0);
2061 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2062 it is OK. */
2063 if (!REG_P (reg))
2064 return 0;
2066 regno = REGNO (reg);
2067 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2068 for (i = 0; i < nregs; i++)
2069 if (! call_used_regs[regno + i])
2070 return 1;
2072 return 0;
2075 /* Return true if we should assign DECL a pseudo register; false if it
2076 should live on the local stack. */
2078 bool
2079 use_register_for_decl (const_tree decl)
2081 if (!targetm.calls.allocate_stack_slots_for_args ())
2082 return true;
2084 /* Honor volatile. */
2085 if (TREE_SIDE_EFFECTS (decl))
2086 return false;
2088 /* Honor addressability. */
2089 if (TREE_ADDRESSABLE (decl))
2090 return false;
2092 /* Only register-like things go in registers. */
2093 if (DECL_MODE (decl) == BLKmode)
2094 return false;
2096 /* If -ffloat-store specified, don't put explicit float variables
2097 into registers. */
2098 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2099 propagates values across these stores, and it probably shouldn't. */
2100 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2101 return false;
2103 /* If we're not interested in tracking debugging information for
2104 this decl, then we can certainly put it in a register. */
2105 if (DECL_IGNORED_P (decl))
2106 return true;
2108 if (optimize)
2109 return true;
2111 if (!DECL_REGISTER (decl))
2112 return false;
2114 switch (TREE_CODE (TREE_TYPE (decl)))
2116 case RECORD_TYPE:
2117 case UNION_TYPE:
2118 case QUAL_UNION_TYPE:
2119 /* When not optimizing, disregard register keyword for variables with
2120 types containing methods, otherwise the methods won't be callable
2121 from the debugger. */
2122 if (TYPE_METHODS (TREE_TYPE (decl)))
2123 return false;
2124 break;
2125 default:
2126 break;
2129 return true;
2132 /* Return true if TYPE should be passed by invisible reference. */
2134 bool
2135 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2136 tree type, bool named_arg)
2138 if (type)
2140 /* If this type contains non-trivial constructors, then it is
2141 forbidden for the middle-end to create any new copies. */
2142 if (TREE_ADDRESSABLE (type))
2143 return true;
2145 /* GCC post 3.4 passes *all* variable sized types by reference. */
2146 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2147 return true;
2149 /* If a record type should be passed the same as its first (and only)
2150 member, use the type and mode of that member. */
2151 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2153 type = TREE_TYPE (first_field (type));
2154 mode = TYPE_MODE (type);
2158 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
2159 type, named_arg);
2162 /* Return true if TYPE, which is passed by reference, should be callee
2163 copied instead of caller copied. */
2165 bool
2166 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2167 tree type, bool named_arg)
2169 if (type && TREE_ADDRESSABLE (type))
2170 return false;
2171 return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
2172 named_arg);
2175 /* Structures to communicate between the subroutines of assign_parms.
2176 The first holds data persistent across all parameters, the second
2177 is cleared out for each parameter. */
2179 struct assign_parm_data_all
2181 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2182 should become a job of the target or otherwise encapsulated. */
2183 CUMULATIVE_ARGS args_so_far_v;
2184 cumulative_args_t args_so_far;
2185 struct args_size stack_args_size;
2186 tree function_result_decl;
2187 tree orig_fnargs;
2188 rtx_insn *first_conversion_insn;
2189 rtx_insn *last_conversion_insn;
2190 HOST_WIDE_INT pretend_args_size;
2191 HOST_WIDE_INT extra_pretend_bytes;
2192 int reg_parm_stack_space;
2195 struct assign_parm_data_one
2197 tree nominal_type;
2198 tree passed_type;
2199 rtx entry_parm;
2200 rtx stack_parm;
2201 enum machine_mode nominal_mode;
2202 enum machine_mode passed_mode;
2203 enum machine_mode promoted_mode;
2204 struct locate_and_pad_arg_data locate;
2205 int partial;
2206 BOOL_BITFIELD named_arg : 1;
2207 BOOL_BITFIELD passed_pointer : 1;
2208 BOOL_BITFIELD on_stack : 1;
2209 BOOL_BITFIELD loaded_in_reg : 1;
2212 /* A subroutine of assign_parms. Initialize ALL. */
2214 static void
2215 assign_parms_initialize_all (struct assign_parm_data_all *all)
2217 tree fntype ATTRIBUTE_UNUSED;
2219 memset (all, 0, sizeof (*all));
2221 fntype = TREE_TYPE (current_function_decl);
2223 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2224 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2225 #else
2226 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2227 current_function_decl, -1);
2228 #endif
2229 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2231 #ifdef INCOMING_REG_PARM_STACK_SPACE
2232 all->reg_parm_stack_space
2233 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl);
2234 #endif
2237 /* If ARGS contains entries with complex types, split the entry into two
2238 entries of the component type. Return a new list of substitutions are
2239 needed, else the old list. */
2241 static void
2242 split_complex_args (vec<tree> *args)
2244 unsigned i;
2245 tree p;
2247 FOR_EACH_VEC_ELT (*args, i, p)
2249 tree type = TREE_TYPE (p);
2250 if (TREE_CODE (type) == COMPLEX_TYPE
2251 && targetm.calls.split_complex_arg (type))
2253 tree decl;
2254 tree subtype = TREE_TYPE (type);
2255 bool addressable = TREE_ADDRESSABLE (p);
2257 /* Rewrite the PARM_DECL's type with its component. */
2258 p = copy_node (p);
2259 TREE_TYPE (p) = subtype;
2260 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2261 DECL_MODE (p) = VOIDmode;
2262 DECL_SIZE (p) = NULL;
2263 DECL_SIZE_UNIT (p) = NULL;
2264 /* If this arg must go in memory, put it in a pseudo here.
2265 We can't allow it to go in memory as per normal parms,
2266 because the usual place might not have the imag part
2267 adjacent to the real part. */
2268 DECL_ARTIFICIAL (p) = addressable;
2269 DECL_IGNORED_P (p) = addressable;
2270 TREE_ADDRESSABLE (p) = 0;
2271 layout_decl (p, 0);
2272 (*args)[i] = p;
2274 /* Build a second synthetic decl. */
2275 decl = build_decl (EXPR_LOCATION (p),
2276 PARM_DECL, NULL_TREE, subtype);
2277 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2278 DECL_ARTIFICIAL (decl) = addressable;
2279 DECL_IGNORED_P (decl) = addressable;
2280 layout_decl (decl, 0);
2281 args->safe_insert (++i, decl);
2286 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2287 the hidden struct return argument, and (abi willing) complex args.
2288 Return the new parameter list. */
2290 static vec<tree>
2291 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2293 tree fndecl = current_function_decl;
2294 tree fntype = TREE_TYPE (fndecl);
2295 vec<tree> fnargs = vNULL;
2296 tree arg;
2298 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2299 fnargs.safe_push (arg);
2301 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2303 /* If struct value address is treated as the first argument, make it so. */
2304 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2305 && ! cfun->returns_pcc_struct
2306 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2308 tree type = build_pointer_type (TREE_TYPE (fntype));
2309 tree decl;
2311 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2312 PARM_DECL, get_identifier (".result_ptr"), type);
2313 DECL_ARG_TYPE (decl) = type;
2314 DECL_ARTIFICIAL (decl) = 1;
2315 DECL_NAMELESS (decl) = 1;
2316 TREE_CONSTANT (decl) = 1;
2318 DECL_CHAIN (decl) = all->orig_fnargs;
2319 all->orig_fnargs = decl;
2320 fnargs.safe_insert (0, decl);
2322 all->function_result_decl = decl;
2325 /* If the target wants to split complex arguments into scalars, do so. */
2326 if (targetm.calls.split_complex_arg)
2327 split_complex_args (&fnargs);
2329 return fnargs;
2332 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2333 data for the parameter. Incorporate ABI specifics such as pass-by-
2334 reference and type promotion. */
2336 static void
2337 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2338 struct assign_parm_data_one *data)
2340 tree nominal_type, passed_type;
2341 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2342 int unsignedp;
2344 memset (data, 0, sizeof (*data));
2346 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2347 if (!cfun->stdarg)
2348 data->named_arg = 1; /* No variadic parms. */
2349 else if (DECL_CHAIN (parm))
2350 data->named_arg = 1; /* Not the last non-variadic parm. */
2351 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2352 data->named_arg = 1; /* Only variadic ones are unnamed. */
2353 else
2354 data->named_arg = 0; /* Treat as variadic. */
2356 nominal_type = TREE_TYPE (parm);
2357 passed_type = DECL_ARG_TYPE (parm);
2359 /* Look out for errors propagating this far. Also, if the parameter's
2360 type is void then its value doesn't matter. */
2361 if (TREE_TYPE (parm) == error_mark_node
2362 /* This can happen after weird syntax errors
2363 or if an enum type is defined among the parms. */
2364 || TREE_CODE (parm) != PARM_DECL
2365 || passed_type == NULL
2366 || VOID_TYPE_P (nominal_type))
2368 nominal_type = passed_type = void_type_node;
2369 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2370 goto egress;
2373 /* Find mode of arg as it is passed, and mode of arg as it should be
2374 during execution of this function. */
2375 passed_mode = TYPE_MODE (passed_type);
2376 nominal_mode = TYPE_MODE (nominal_type);
2378 /* If the parm is to be passed as a transparent union or record, use the
2379 type of the first field for the tests below. We have already verified
2380 that the modes are the same. */
2381 if ((TREE_CODE (passed_type) == UNION_TYPE
2382 || TREE_CODE (passed_type) == RECORD_TYPE)
2383 && TYPE_TRANSPARENT_AGGR (passed_type))
2384 passed_type = TREE_TYPE (first_field (passed_type));
2386 /* See if this arg was passed by invisible reference. */
2387 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2388 passed_type, data->named_arg))
2390 passed_type = nominal_type = build_pointer_type (passed_type);
2391 data->passed_pointer = true;
2392 passed_mode = nominal_mode = TYPE_MODE (nominal_type);
2395 /* Find mode as it is passed by the ABI. */
2396 unsignedp = TYPE_UNSIGNED (passed_type);
2397 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2398 TREE_TYPE (current_function_decl), 0);
2400 egress:
2401 data->nominal_type = nominal_type;
2402 data->passed_type = passed_type;
2403 data->nominal_mode = nominal_mode;
2404 data->passed_mode = passed_mode;
2405 data->promoted_mode = promoted_mode;
2408 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2410 static void
2411 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2412 struct assign_parm_data_one *data, bool no_rtl)
2414 int varargs_pretend_bytes = 0;
2416 targetm.calls.setup_incoming_varargs (all->args_so_far,
2417 data->promoted_mode,
2418 data->passed_type,
2419 &varargs_pretend_bytes, no_rtl);
2421 /* If the back-end has requested extra stack space, record how much is
2422 needed. Do not change pretend_args_size otherwise since it may be
2423 nonzero from an earlier partial argument. */
2424 if (varargs_pretend_bytes > 0)
2425 all->pretend_args_size = varargs_pretend_bytes;
2428 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2429 the incoming location of the current parameter. */
2431 static void
2432 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2433 struct assign_parm_data_one *data)
2435 HOST_WIDE_INT pretend_bytes = 0;
2436 rtx entry_parm;
2437 bool in_regs;
2439 if (data->promoted_mode == VOIDmode)
2441 data->entry_parm = data->stack_parm = const0_rtx;
2442 return;
2445 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2446 data->promoted_mode,
2447 data->passed_type,
2448 data->named_arg);
2450 if (entry_parm == 0)
2451 data->promoted_mode = data->passed_mode;
2453 /* Determine parm's home in the stack, in case it arrives in the stack
2454 or we should pretend it did. Compute the stack position and rtx where
2455 the argument arrives and its size.
2457 There is one complexity here: If this was a parameter that would
2458 have been passed in registers, but wasn't only because it is
2459 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2460 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2461 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2462 as it was the previous time. */
2463 in_regs = entry_parm != 0;
2464 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2465 in_regs = true;
2466 #endif
2467 if (!in_regs && !data->named_arg)
2469 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2471 rtx tem;
2472 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2473 data->promoted_mode,
2474 data->passed_type, true);
2475 in_regs = tem != NULL;
2479 /* If this parameter was passed both in registers and in the stack, use
2480 the copy on the stack. */
2481 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2482 data->passed_type))
2483 entry_parm = 0;
2485 if (entry_parm)
2487 int partial;
2489 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2490 data->promoted_mode,
2491 data->passed_type,
2492 data->named_arg);
2493 data->partial = partial;
2495 /* The caller might already have allocated stack space for the
2496 register parameters. */
2497 if (partial != 0 && all->reg_parm_stack_space == 0)
2499 /* Part of this argument is passed in registers and part
2500 is passed on the stack. Ask the prologue code to extend
2501 the stack part so that we can recreate the full value.
2503 PRETEND_BYTES is the size of the registers we need to store.
2504 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2505 stack space that the prologue should allocate.
2507 Internally, gcc assumes that the argument pointer is aligned
2508 to STACK_BOUNDARY bits. This is used both for alignment
2509 optimizations (see init_emit) and to locate arguments that are
2510 aligned to more than PARM_BOUNDARY bits. We must preserve this
2511 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2512 a stack boundary. */
2514 /* We assume at most one partial arg, and it must be the first
2515 argument on the stack. */
2516 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2518 pretend_bytes = partial;
2519 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2521 /* We want to align relative to the actual stack pointer, so
2522 don't include this in the stack size until later. */
2523 all->extra_pretend_bytes = all->pretend_args_size;
2527 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2528 all->reg_parm_stack_space,
2529 entry_parm ? data->partial : 0, current_function_decl,
2530 &all->stack_args_size, &data->locate);
2532 /* Update parm_stack_boundary if this parameter is passed in the
2533 stack. */
2534 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2535 crtl->parm_stack_boundary = data->locate.boundary;
2537 /* Adjust offsets to include the pretend args. */
2538 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2539 data->locate.slot_offset.constant += pretend_bytes;
2540 data->locate.offset.constant += pretend_bytes;
2542 data->entry_parm = entry_parm;
2545 /* A subroutine of assign_parms. If there is actually space on the stack
2546 for this parm, count it in stack_args_size and return true. */
2548 static bool
2549 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2550 struct assign_parm_data_one *data)
2552 /* Trivially true if we've no incoming register. */
2553 if (data->entry_parm == NULL)
2555 /* Also true if we're partially in registers and partially not,
2556 since we've arranged to drop the entire argument on the stack. */
2557 else if (data->partial != 0)
2559 /* Also true if the target says that it's passed in both registers
2560 and on the stack. */
2561 else if (GET_CODE (data->entry_parm) == PARALLEL
2562 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2564 /* Also true if the target says that there's stack allocated for
2565 all register parameters. */
2566 else if (all->reg_parm_stack_space > 0)
2568 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2569 else
2570 return false;
2572 all->stack_args_size.constant += data->locate.size.constant;
2573 if (data->locate.size.var)
2574 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2576 return true;
2579 /* A subroutine of assign_parms. Given that this parameter is allocated
2580 stack space by the ABI, find it. */
2582 static void
2583 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2585 rtx offset_rtx, stack_parm;
2586 unsigned int align, boundary;
2588 /* If we're passing this arg using a reg, make its stack home the
2589 aligned stack slot. */
2590 if (data->entry_parm)
2591 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2592 else
2593 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2595 stack_parm = crtl->args.internal_arg_pointer;
2596 if (offset_rtx != const0_rtx)
2597 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2598 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2600 if (!data->passed_pointer)
2602 set_mem_attributes (stack_parm, parm, 1);
2603 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2604 while promoted mode's size is needed. */
2605 if (data->promoted_mode != BLKmode
2606 && data->promoted_mode != DECL_MODE (parm))
2608 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2609 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2611 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2612 data->promoted_mode);
2613 if (offset)
2614 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2619 boundary = data->locate.boundary;
2620 align = BITS_PER_UNIT;
2622 /* If we're padding upward, we know that the alignment of the slot
2623 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2624 intentionally forcing upward padding. Otherwise we have to come
2625 up with a guess at the alignment based on OFFSET_RTX. */
2626 if (data->locate.where_pad != downward || data->entry_parm)
2627 align = boundary;
2628 else if (CONST_INT_P (offset_rtx))
2630 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2631 align = align & -align;
2633 set_mem_align (stack_parm, align);
2635 if (data->entry_parm)
2636 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2638 data->stack_parm = stack_parm;
2641 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2642 always valid and contiguous. */
2644 static void
2645 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2647 rtx entry_parm = data->entry_parm;
2648 rtx stack_parm = data->stack_parm;
2650 /* If this parm was passed part in regs and part in memory, pretend it
2651 arrived entirely in memory by pushing the register-part onto the stack.
2652 In the special case of a DImode or DFmode that is split, we could put
2653 it together in a pseudoreg directly, but for now that's not worth
2654 bothering with. */
2655 if (data->partial != 0)
2657 /* Handle calls that pass values in multiple non-contiguous
2658 locations. The Irix 6 ABI has examples of this. */
2659 if (GET_CODE (entry_parm) == PARALLEL)
2660 emit_group_store (validize_mem (copy_rtx (stack_parm)), entry_parm,
2661 data->passed_type,
2662 int_size_in_bytes (data->passed_type));
2663 else
2665 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2666 move_block_from_reg (REGNO (entry_parm),
2667 validize_mem (copy_rtx (stack_parm)),
2668 data->partial / UNITS_PER_WORD);
2671 entry_parm = stack_parm;
2674 /* If we didn't decide this parm came in a register, by default it came
2675 on the stack. */
2676 else if (entry_parm == NULL)
2677 entry_parm = stack_parm;
2679 /* When an argument is passed in multiple locations, we can't make use
2680 of this information, but we can save some copying if the whole argument
2681 is passed in a single register. */
2682 else if (GET_CODE (entry_parm) == PARALLEL
2683 && data->nominal_mode != BLKmode
2684 && data->passed_mode != BLKmode)
2686 size_t i, len = XVECLEN (entry_parm, 0);
2688 for (i = 0; i < len; i++)
2689 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2690 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2691 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2692 == data->passed_mode)
2693 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2695 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2696 break;
2700 data->entry_parm = entry_parm;
2703 /* A subroutine of assign_parms. Reconstitute any values which were
2704 passed in multiple registers and would fit in a single register. */
2706 static void
2707 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2709 rtx entry_parm = data->entry_parm;
2711 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2712 This can be done with register operations rather than on the
2713 stack, even if we will store the reconstituted parameter on the
2714 stack later. */
2715 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2717 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2718 emit_group_store (parmreg, entry_parm, data->passed_type,
2719 GET_MODE_SIZE (GET_MODE (entry_parm)));
2720 entry_parm = parmreg;
2723 data->entry_parm = entry_parm;
2726 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2727 always valid and properly aligned. */
2729 static void
2730 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2732 rtx stack_parm = data->stack_parm;
2734 /* If we can't trust the parm stack slot to be aligned enough for its
2735 ultimate type, don't use that slot after entry. We'll make another
2736 stack slot, if we need one. */
2737 if (stack_parm
2738 && ((STRICT_ALIGNMENT
2739 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2740 || (data->nominal_type
2741 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2742 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2743 stack_parm = NULL;
2745 /* If parm was passed in memory, and we need to convert it on entry,
2746 don't store it back in that same slot. */
2747 else if (data->entry_parm == stack_parm
2748 && data->nominal_mode != BLKmode
2749 && data->nominal_mode != data->passed_mode)
2750 stack_parm = NULL;
2752 /* If stack protection is in effect for this function, don't leave any
2753 pointers in their passed stack slots. */
2754 else if (crtl->stack_protect_guard
2755 && (flag_stack_protect == 2
2756 || data->passed_pointer
2757 || POINTER_TYPE_P (data->nominal_type)))
2758 stack_parm = NULL;
2760 data->stack_parm = stack_parm;
2763 /* A subroutine of assign_parms. Return true if the current parameter
2764 should be stored as a BLKmode in the current frame. */
2766 static bool
2767 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2769 if (data->nominal_mode == BLKmode)
2770 return true;
2771 if (GET_MODE (data->entry_parm) == BLKmode)
2772 return true;
2774 #ifdef BLOCK_REG_PADDING
2775 /* Only assign_parm_setup_block knows how to deal with register arguments
2776 that are padded at the least significant end. */
2777 if (REG_P (data->entry_parm)
2778 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2779 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2780 == (BYTES_BIG_ENDIAN ? upward : downward)))
2781 return true;
2782 #endif
2784 return false;
2787 /* A subroutine of assign_parms. Arrange for the parameter to be
2788 present and valid in DATA->STACK_RTL. */
2790 static void
2791 assign_parm_setup_block (struct assign_parm_data_all *all,
2792 tree parm, struct assign_parm_data_one *data)
2794 rtx entry_parm = data->entry_parm;
2795 rtx stack_parm = data->stack_parm;
2796 HOST_WIDE_INT size;
2797 HOST_WIDE_INT size_stored;
2799 if (GET_CODE (entry_parm) == PARALLEL)
2800 entry_parm = emit_group_move_into_temps (entry_parm);
2802 size = int_size_in_bytes (data->passed_type);
2803 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2804 if (stack_parm == 0)
2806 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2807 stack_parm = assign_stack_local (BLKmode, size_stored,
2808 DECL_ALIGN (parm));
2809 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2810 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2811 set_mem_attributes (stack_parm, parm, 1);
2814 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2815 calls that pass values in multiple non-contiguous locations. */
2816 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2818 rtx mem;
2820 /* Note that we will be storing an integral number of words.
2821 So we have to be careful to ensure that we allocate an
2822 integral number of words. We do this above when we call
2823 assign_stack_local if space was not allocated in the argument
2824 list. If it was, this will not work if PARM_BOUNDARY is not
2825 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2826 if it becomes a problem. Exception is when BLKmode arrives
2827 with arguments not conforming to word_mode. */
2829 if (data->stack_parm == 0)
2831 else if (GET_CODE (entry_parm) == PARALLEL)
2833 else
2834 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2836 mem = validize_mem (copy_rtx (stack_parm));
2838 /* Handle values in multiple non-contiguous locations. */
2839 if (GET_CODE (entry_parm) == PARALLEL)
2841 push_to_sequence2 (all->first_conversion_insn,
2842 all->last_conversion_insn);
2843 emit_group_store (mem, entry_parm, data->passed_type, size);
2844 all->first_conversion_insn = get_insns ();
2845 all->last_conversion_insn = get_last_insn ();
2846 end_sequence ();
2849 else if (size == 0)
2852 /* If SIZE is that of a mode no bigger than a word, just use
2853 that mode's store operation. */
2854 else if (size <= UNITS_PER_WORD)
2856 enum machine_mode mode
2857 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2859 if (mode != BLKmode
2860 #ifdef BLOCK_REG_PADDING
2861 && (size == UNITS_PER_WORD
2862 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2863 != (BYTES_BIG_ENDIAN ? upward : downward)))
2864 #endif
2867 rtx reg;
2869 /* We are really truncating a word_mode value containing
2870 SIZE bytes into a value of mode MODE. If such an
2871 operation requires no actual instructions, we can refer
2872 to the value directly in mode MODE, otherwise we must
2873 start with the register in word_mode and explicitly
2874 convert it. */
2875 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2876 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2877 else
2879 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2880 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2882 emit_move_insn (change_address (mem, mode, 0), reg);
2885 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2886 machine must be aligned to the left before storing
2887 to memory. Note that the previous test doesn't
2888 handle all cases (e.g. SIZE == 3). */
2889 else if (size != UNITS_PER_WORD
2890 #ifdef BLOCK_REG_PADDING
2891 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2892 == downward)
2893 #else
2894 && BYTES_BIG_ENDIAN
2895 #endif
2898 rtx tem, x;
2899 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2900 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2902 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
2903 tem = change_address (mem, word_mode, 0);
2904 emit_move_insn (tem, x);
2906 else
2907 move_block_from_reg (REGNO (entry_parm), mem,
2908 size_stored / UNITS_PER_WORD);
2910 else
2911 move_block_from_reg (REGNO (entry_parm), mem,
2912 size_stored / UNITS_PER_WORD);
2914 else if (data->stack_parm == 0)
2916 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2917 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2918 BLOCK_OP_NORMAL);
2919 all->first_conversion_insn = get_insns ();
2920 all->last_conversion_insn = get_last_insn ();
2921 end_sequence ();
2924 data->stack_parm = stack_parm;
2925 SET_DECL_RTL (parm, stack_parm);
2928 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2929 parameter. Get it there. Perform all ABI specified conversions. */
2931 static void
2932 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2933 struct assign_parm_data_one *data)
2935 rtx parmreg, validated_mem;
2936 rtx equiv_stack_parm;
2937 enum machine_mode promoted_nominal_mode;
2938 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2939 bool did_conversion = false;
2940 bool need_conversion, moved;
2942 /* Store the parm in a pseudoregister during the function, but we may
2943 need to do it in a wider mode. Using 2 here makes the result
2944 consistent with promote_decl_mode and thus expand_expr_real_1. */
2945 promoted_nominal_mode
2946 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2947 TREE_TYPE (current_function_decl), 2);
2949 parmreg = gen_reg_rtx (promoted_nominal_mode);
2951 if (!DECL_ARTIFICIAL (parm))
2952 mark_user_reg (parmreg);
2954 /* If this was an item that we received a pointer to,
2955 set DECL_RTL appropriately. */
2956 if (data->passed_pointer)
2958 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2959 set_mem_attributes (x, parm, 1);
2960 SET_DECL_RTL (parm, x);
2962 else
2963 SET_DECL_RTL (parm, parmreg);
2965 assign_parm_remove_parallels (data);
2967 /* Copy the value into the register, thus bridging between
2968 assign_parm_find_data_types and expand_expr_real_1. */
2970 equiv_stack_parm = data->stack_parm;
2971 validated_mem = validize_mem (copy_rtx (data->entry_parm));
2973 need_conversion = (data->nominal_mode != data->passed_mode
2974 || promoted_nominal_mode != data->promoted_mode);
2975 moved = false;
2977 if (need_conversion
2978 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
2979 && data->nominal_mode == data->passed_mode
2980 && data->nominal_mode == GET_MODE (data->entry_parm))
2982 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2983 mode, by the caller. We now have to convert it to
2984 NOMINAL_MODE, if different. However, PARMREG may be in
2985 a different mode than NOMINAL_MODE if it is being stored
2986 promoted.
2988 If ENTRY_PARM is a hard register, it might be in a register
2989 not valid for operating in its mode (e.g., an odd-numbered
2990 register for a DFmode). In that case, moves are the only
2991 thing valid, so we can't do a convert from there. This
2992 occurs when the calling sequence allow such misaligned
2993 usages.
2995 In addition, the conversion may involve a call, which could
2996 clobber parameters which haven't been copied to pseudo
2997 registers yet.
2999 First, we try to emit an insn which performs the necessary
3000 conversion. We verify that this insn does not clobber any
3001 hard registers. */
3003 enum insn_code icode;
3004 rtx op0, op1;
3006 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
3007 unsignedp);
3009 op0 = parmreg;
3010 op1 = validated_mem;
3011 if (icode != CODE_FOR_nothing
3012 && insn_operand_matches (icode, 0, op0)
3013 && insn_operand_matches (icode, 1, op1))
3015 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3016 rtx_insn *insn, *insns;
3017 rtx t = op1;
3018 HARD_REG_SET hardregs;
3020 start_sequence ();
3021 /* If op1 is a hard register that is likely spilled, first
3022 force it into a pseudo, otherwise combiner might extend
3023 its lifetime too much. */
3024 if (GET_CODE (t) == SUBREG)
3025 t = SUBREG_REG (t);
3026 if (REG_P (t)
3027 && HARD_REGISTER_P (t)
3028 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3029 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3031 t = gen_reg_rtx (GET_MODE (op1));
3032 emit_move_insn (t, op1);
3034 else
3035 t = op1;
3036 rtx pat = gen_extend_insn (op0, t, promoted_nominal_mode,
3037 data->passed_mode, unsignedp);
3038 emit_insn (pat);
3039 insns = get_insns ();
3041 moved = true;
3042 CLEAR_HARD_REG_SET (hardregs);
3043 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3045 if (INSN_P (insn))
3046 note_stores (PATTERN (insn), record_hard_reg_sets,
3047 &hardregs);
3048 if (!hard_reg_set_empty_p (hardregs))
3049 moved = false;
3052 end_sequence ();
3054 if (moved)
3056 emit_insn (insns);
3057 if (equiv_stack_parm != NULL_RTX)
3058 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3059 equiv_stack_parm);
3064 if (moved)
3065 /* Nothing to do. */
3067 else if (need_conversion)
3069 /* We did not have an insn to convert directly, or the sequence
3070 generated appeared unsafe. We must first copy the parm to a
3071 pseudo reg, and save the conversion until after all
3072 parameters have been moved. */
3074 int save_tree_used;
3075 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3077 emit_move_insn (tempreg, validated_mem);
3079 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3080 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3082 if (GET_CODE (tempreg) == SUBREG
3083 && GET_MODE (tempreg) == data->nominal_mode
3084 && REG_P (SUBREG_REG (tempreg))
3085 && data->nominal_mode == data->passed_mode
3086 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3087 && GET_MODE_SIZE (GET_MODE (tempreg))
3088 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3090 /* The argument is already sign/zero extended, so note it
3091 into the subreg. */
3092 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3093 SUBREG_PROMOTED_SET (tempreg, unsignedp);
3096 /* TREE_USED gets set erroneously during expand_assignment. */
3097 save_tree_used = TREE_USED (parm);
3098 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3099 TREE_USED (parm) = save_tree_used;
3100 all->first_conversion_insn = get_insns ();
3101 all->last_conversion_insn = get_last_insn ();
3102 end_sequence ();
3104 did_conversion = true;
3106 else
3107 emit_move_insn (parmreg, validated_mem);
3109 /* If we were passed a pointer but the actual value can safely live
3110 in a register, retrieve it and use it directly. */
3111 if (data->passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
3113 /* We can't use nominal_mode, because it will have been set to
3114 Pmode above. We must use the actual mode of the parm. */
3115 if (use_register_for_decl (parm))
3117 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3118 mark_user_reg (parmreg);
3120 else
3122 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3123 TYPE_MODE (TREE_TYPE (parm)),
3124 TYPE_ALIGN (TREE_TYPE (parm)));
3125 parmreg
3126 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
3127 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
3128 align);
3129 set_mem_attributes (parmreg, parm, 1);
3132 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3134 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3135 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3137 push_to_sequence2 (all->first_conversion_insn,
3138 all->last_conversion_insn);
3139 emit_move_insn (tempreg, DECL_RTL (parm));
3140 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3141 emit_move_insn (parmreg, tempreg);
3142 all->first_conversion_insn = get_insns ();
3143 all->last_conversion_insn = get_last_insn ();
3144 end_sequence ();
3146 did_conversion = true;
3148 else
3149 emit_move_insn (parmreg, DECL_RTL (parm));
3151 SET_DECL_RTL (parm, parmreg);
3153 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3154 now the parm. */
3155 data->stack_parm = NULL;
3158 /* Mark the register as eliminable if we did no conversion and it was
3159 copied from memory at a fixed offset, and the arg pointer was not
3160 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3161 offset formed an invalid address, such memory-equivalences as we
3162 make here would screw up life analysis for it. */
3163 if (data->nominal_mode == data->passed_mode
3164 && !did_conversion
3165 && data->stack_parm != 0
3166 && MEM_P (data->stack_parm)
3167 && data->locate.offset.var == 0
3168 && reg_mentioned_p (virtual_incoming_args_rtx,
3169 XEXP (data->stack_parm, 0)))
3171 rtx_insn *linsn = get_last_insn ();
3172 rtx_insn *sinsn;
3173 rtx set;
3175 /* Mark complex types separately. */
3176 if (GET_CODE (parmreg) == CONCAT)
3178 enum machine_mode submode
3179 = GET_MODE_INNER (GET_MODE (parmreg));
3180 int regnor = REGNO (XEXP (parmreg, 0));
3181 int regnoi = REGNO (XEXP (parmreg, 1));
3182 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3183 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3184 GET_MODE_SIZE (submode));
3186 /* Scan backwards for the set of the real and
3187 imaginary parts. */
3188 for (sinsn = linsn; sinsn != 0;
3189 sinsn = prev_nonnote_insn (sinsn))
3191 set = single_set (sinsn);
3192 if (set == 0)
3193 continue;
3195 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3196 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3197 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3198 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3201 else
3202 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3205 /* For pointer data type, suggest pointer register. */
3206 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3207 mark_reg_pointer (parmreg,
3208 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3211 /* A subroutine of assign_parms. Allocate stack space to hold the current
3212 parameter. Get it there. Perform all ABI specified conversions. */
3214 static void
3215 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3216 struct assign_parm_data_one *data)
3218 /* Value must be stored in the stack slot STACK_PARM during function
3219 execution. */
3220 bool to_conversion = false;
3222 assign_parm_remove_parallels (data);
3224 if (data->promoted_mode != data->nominal_mode)
3226 /* Conversion is required. */
3227 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3229 emit_move_insn (tempreg, validize_mem (copy_rtx (data->entry_parm)));
3231 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3232 to_conversion = true;
3234 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3235 TYPE_UNSIGNED (TREE_TYPE (parm)));
3237 if (data->stack_parm)
3239 int offset = subreg_lowpart_offset (data->nominal_mode,
3240 GET_MODE (data->stack_parm));
3241 /* ??? This may need a big-endian conversion on sparc64. */
3242 data->stack_parm
3243 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3244 if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
3245 set_mem_offset (data->stack_parm,
3246 MEM_OFFSET (data->stack_parm) + offset);
3250 if (data->entry_parm != data->stack_parm)
3252 rtx src, dest;
3254 if (data->stack_parm == 0)
3256 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3257 GET_MODE (data->entry_parm),
3258 TYPE_ALIGN (data->passed_type));
3259 data->stack_parm
3260 = assign_stack_local (GET_MODE (data->entry_parm),
3261 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3262 align);
3263 set_mem_attributes (data->stack_parm, parm, 1);
3266 dest = validize_mem (copy_rtx (data->stack_parm));
3267 src = validize_mem (copy_rtx (data->entry_parm));
3269 if (MEM_P (src))
3271 /* Use a block move to handle potentially misaligned entry_parm. */
3272 if (!to_conversion)
3273 push_to_sequence2 (all->first_conversion_insn,
3274 all->last_conversion_insn);
3275 to_conversion = true;
3277 emit_block_move (dest, src,
3278 GEN_INT (int_size_in_bytes (data->passed_type)),
3279 BLOCK_OP_NORMAL);
3281 else
3282 emit_move_insn (dest, src);
3285 if (to_conversion)
3287 all->first_conversion_insn = get_insns ();
3288 all->last_conversion_insn = get_last_insn ();
3289 end_sequence ();
3292 SET_DECL_RTL (parm, data->stack_parm);
3295 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3296 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3298 static void
3299 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3300 vec<tree> fnargs)
3302 tree parm;
3303 tree orig_fnargs = all->orig_fnargs;
3304 unsigned i = 0;
3306 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3308 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3309 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3311 rtx tmp, real, imag;
3312 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3314 real = DECL_RTL (fnargs[i]);
3315 imag = DECL_RTL (fnargs[i + 1]);
3316 if (inner != GET_MODE (real))
3318 real = gen_lowpart_SUBREG (inner, real);
3319 imag = gen_lowpart_SUBREG (inner, imag);
3322 if (TREE_ADDRESSABLE (parm))
3324 rtx rmem, imem;
3325 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3326 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3327 DECL_MODE (parm),
3328 TYPE_ALIGN (TREE_TYPE (parm)));
3330 /* split_complex_arg put the real and imag parts in
3331 pseudos. Move them to memory. */
3332 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3333 set_mem_attributes (tmp, parm, 1);
3334 rmem = adjust_address_nv (tmp, inner, 0);
3335 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3336 push_to_sequence2 (all->first_conversion_insn,
3337 all->last_conversion_insn);
3338 emit_move_insn (rmem, real);
3339 emit_move_insn (imem, imag);
3340 all->first_conversion_insn = get_insns ();
3341 all->last_conversion_insn = get_last_insn ();
3342 end_sequence ();
3344 else
3345 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3346 SET_DECL_RTL (parm, tmp);
3348 real = DECL_INCOMING_RTL (fnargs[i]);
3349 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3350 if (inner != GET_MODE (real))
3352 real = gen_lowpart_SUBREG (inner, real);
3353 imag = gen_lowpart_SUBREG (inner, imag);
3355 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3356 set_decl_incoming_rtl (parm, tmp, false);
3357 i++;
3362 /* Assign RTL expressions to the function's parameters. This may involve
3363 copying them into registers and using those registers as the DECL_RTL. */
3365 static void
3366 assign_parms (tree fndecl)
3368 struct assign_parm_data_all all;
3369 tree parm;
3370 vec<tree> fnargs;
3371 unsigned i;
3373 crtl->args.internal_arg_pointer
3374 = targetm.calls.internal_arg_pointer ();
3376 assign_parms_initialize_all (&all);
3377 fnargs = assign_parms_augmented_arg_list (&all);
3379 FOR_EACH_VEC_ELT (fnargs, i, parm)
3381 struct assign_parm_data_one data;
3383 /* Extract the type of PARM; adjust it according to ABI. */
3384 assign_parm_find_data_types (&all, parm, &data);
3386 /* Early out for errors and void parameters. */
3387 if (data.passed_mode == VOIDmode)
3389 SET_DECL_RTL (parm, const0_rtx);
3390 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3391 continue;
3394 /* Estimate stack alignment from parameter alignment. */
3395 if (SUPPORTS_STACK_ALIGNMENT)
3397 unsigned int align
3398 = targetm.calls.function_arg_boundary (data.promoted_mode,
3399 data.passed_type);
3400 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3401 align);
3402 if (TYPE_ALIGN (data.nominal_type) > align)
3403 align = MINIMUM_ALIGNMENT (data.nominal_type,
3404 TYPE_MODE (data.nominal_type),
3405 TYPE_ALIGN (data.nominal_type));
3406 if (crtl->stack_alignment_estimated < align)
3408 gcc_assert (!crtl->stack_realign_processed);
3409 crtl->stack_alignment_estimated = align;
3413 if (cfun->stdarg && !DECL_CHAIN (parm))
3414 assign_parms_setup_varargs (&all, &data, false);
3416 /* Find out where the parameter arrives in this function. */
3417 assign_parm_find_entry_rtl (&all, &data);
3419 /* Find out where stack space for this parameter might be. */
3420 if (assign_parm_is_stack_parm (&all, &data))
3422 assign_parm_find_stack_rtl (parm, &data);
3423 assign_parm_adjust_entry_rtl (&data);
3426 /* Record permanently how this parm was passed. */
3427 if (data.passed_pointer)
3429 rtx incoming_rtl
3430 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3431 data.entry_parm);
3432 set_decl_incoming_rtl (parm, incoming_rtl, true);
3434 else
3435 set_decl_incoming_rtl (parm, data.entry_parm, false);
3437 /* Update info on where next arg arrives in registers. */
3438 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3439 data.passed_type, data.named_arg);
3441 assign_parm_adjust_stack_rtl (&data);
3443 if (assign_parm_setup_block_p (&data))
3444 assign_parm_setup_block (&all, parm, &data);
3445 else if (data.passed_pointer || use_register_for_decl (parm))
3446 assign_parm_setup_reg (&all, parm, &data);
3447 else
3448 assign_parm_setup_stack (&all, parm, &data);
3451 if (targetm.calls.split_complex_arg)
3452 assign_parms_unsplit_complex (&all, fnargs);
3454 fnargs.release ();
3456 /* Initialize pic_offset_table_rtx with a pseudo register
3457 if required. */
3458 if (targetm.use_pseudo_pic_reg ())
3459 pic_offset_table_rtx = gen_reg_rtx (Pmode);
3461 /* Output all parameter conversion instructions (possibly including calls)
3462 now that all parameters have been copied out of hard registers. */
3463 emit_insn (all.first_conversion_insn);
3465 /* Estimate reload stack alignment from scalar return mode. */
3466 if (SUPPORTS_STACK_ALIGNMENT)
3468 if (DECL_RESULT (fndecl))
3470 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3471 enum machine_mode mode = TYPE_MODE (type);
3473 if (mode != BLKmode
3474 && mode != VOIDmode
3475 && !AGGREGATE_TYPE_P (type))
3477 unsigned int align = GET_MODE_ALIGNMENT (mode);
3478 if (crtl->stack_alignment_estimated < align)
3480 gcc_assert (!crtl->stack_realign_processed);
3481 crtl->stack_alignment_estimated = align;
3487 /* If we are receiving a struct value address as the first argument, set up
3488 the RTL for the function result. As this might require code to convert
3489 the transmitted address to Pmode, we do this here to ensure that possible
3490 preliminary conversions of the address have been emitted already. */
3491 if (all.function_result_decl)
3493 tree result = DECL_RESULT (current_function_decl);
3494 rtx addr = DECL_RTL (all.function_result_decl);
3495 rtx x;
3497 if (DECL_BY_REFERENCE (result))
3499 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3500 x = addr;
3502 else
3504 SET_DECL_VALUE_EXPR (result,
3505 build1 (INDIRECT_REF, TREE_TYPE (result),
3506 all.function_result_decl));
3507 addr = convert_memory_address (Pmode, addr);
3508 x = gen_rtx_MEM (DECL_MODE (result), addr);
3509 set_mem_attributes (x, result, 1);
3512 DECL_HAS_VALUE_EXPR_P (result) = 1;
3514 SET_DECL_RTL (result, x);
3517 /* We have aligned all the args, so add space for the pretend args. */
3518 crtl->args.pretend_args_size = all.pretend_args_size;
3519 all.stack_args_size.constant += all.extra_pretend_bytes;
3520 crtl->args.size = all.stack_args_size.constant;
3522 /* Adjust function incoming argument size for alignment and
3523 minimum length. */
3525 crtl->args.size = MAX (crtl->args.size, all.reg_parm_stack_space);
3526 crtl->args.size = CEIL_ROUND (crtl->args.size,
3527 PARM_BOUNDARY / BITS_PER_UNIT);
3529 #ifdef ARGS_GROW_DOWNWARD
3530 crtl->args.arg_offset_rtx
3531 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3532 : expand_expr (size_diffop (all.stack_args_size.var,
3533 size_int (-all.stack_args_size.constant)),
3534 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3535 #else
3536 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3537 #endif
3539 /* See how many bytes, if any, of its args a function should try to pop
3540 on return. */
3542 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3543 TREE_TYPE (fndecl),
3544 crtl->args.size);
3546 /* For stdarg.h function, save info about
3547 regs and stack space used by the named args. */
3549 crtl->args.info = all.args_so_far_v;
3551 /* Set the rtx used for the function return value. Put this in its
3552 own variable so any optimizers that need this information don't have
3553 to include tree.h. Do this here so it gets done when an inlined
3554 function gets output. */
3556 crtl->return_rtx
3557 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3558 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3560 /* If scalar return value was computed in a pseudo-reg, or was a named
3561 return value that got dumped to the stack, copy that to the hard
3562 return register. */
3563 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3565 tree decl_result = DECL_RESULT (fndecl);
3566 rtx decl_rtl = DECL_RTL (decl_result);
3568 if (REG_P (decl_rtl)
3569 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3570 : DECL_REGISTER (decl_result))
3572 rtx real_decl_rtl;
3574 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3575 fndecl, true);
3576 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3577 /* The delay slot scheduler assumes that crtl->return_rtx
3578 holds the hard register containing the return value, not a
3579 temporary pseudo. */
3580 crtl->return_rtx = real_decl_rtl;
3585 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3586 For all seen types, gimplify their sizes. */
3588 static tree
3589 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3591 tree t = *tp;
3593 *walk_subtrees = 0;
3594 if (TYPE_P (t))
3596 if (POINTER_TYPE_P (t))
3597 *walk_subtrees = 1;
3598 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3599 && !TYPE_SIZES_GIMPLIFIED (t))
3601 gimplify_type_sizes (t, (gimple_seq *) data);
3602 *walk_subtrees = 1;
3606 return NULL;
3609 /* Gimplify the parameter list for current_function_decl. This involves
3610 evaluating SAVE_EXPRs of variable sized parameters and generating code
3611 to implement callee-copies reference parameters. Returns a sequence of
3612 statements to add to the beginning of the function. */
3614 gimple_seq
3615 gimplify_parameters (void)
3617 struct assign_parm_data_all all;
3618 tree parm;
3619 gimple_seq stmts = NULL;
3620 vec<tree> fnargs;
3621 unsigned i;
3623 assign_parms_initialize_all (&all);
3624 fnargs = assign_parms_augmented_arg_list (&all);
3626 FOR_EACH_VEC_ELT (fnargs, i, parm)
3628 struct assign_parm_data_one data;
3630 /* Extract the type of PARM; adjust it according to ABI. */
3631 assign_parm_find_data_types (&all, parm, &data);
3633 /* Early out for errors and void parameters. */
3634 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3635 continue;
3637 /* Update info on where next arg arrives in registers. */
3638 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3639 data.passed_type, data.named_arg);
3641 /* ??? Once upon a time variable_size stuffed parameter list
3642 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3643 turned out to be less than manageable in the gimple world.
3644 Now we have to hunt them down ourselves. */
3645 walk_tree_without_duplicates (&data.passed_type,
3646 gimplify_parm_type, &stmts);
3648 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3650 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3651 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3654 if (data.passed_pointer)
3656 tree type = TREE_TYPE (data.passed_type);
3657 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
3658 type, data.named_arg))
3660 tree local, t;
3662 /* For constant-sized objects, this is trivial; for
3663 variable-sized objects, we have to play games. */
3664 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3665 && !(flag_stack_check == GENERIC_STACK_CHECK
3666 && compare_tree_int (DECL_SIZE_UNIT (parm),
3667 STACK_CHECK_MAX_VAR_SIZE) > 0))
3669 local = create_tmp_var (type, get_name (parm));
3670 DECL_IGNORED_P (local) = 0;
3671 /* If PARM was addressable, move that flag over
3672 to the local copy, as its address will be taken,
3673 not the PARMs. Keep the parms address taken
3674 as we'll query that flag during gimplification. */
3675 if (TREE_ADDRESSABLE (parm))
3676 TREE_ADDRESSABLE (local) = 1;
3677 else if (TREE_CODE (type) == COMPLEX_TYPE
3678 || TREE_CODE (type) == VECTOR_TYPE)
3679 DECL_GIMPLE_REG_P (local) = 1;
3681 else
3683 tree ptr_type, addr;
3685 ptr_type = build_pointer_type (type);
3686 addr = create_tmp_reg (ptr_type, get_name (parm));
3687 DECL_IGNORED_P (addr) = 0;
3688 local = build_fold_indirect_ref (addr);
3690 t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
3691 t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
3692 size_int (DECL_ALIGN (parm)));
3694 /* The call has been built for a variable-sized object. */
3695 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3696 t = fold_convert (ptr_type, t);
3697 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3698 gimplify_and_add (t, &stmts);
3701 gimplify_assign (local, parm, &stmts);
3703 SET_DECL_VALUE_EXPR (parm, local);
3704 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3709 fnargs.release ();
3711 return stmts;
3714 /* Compute the size and offset from the start of the stacked arguments for a
3715 parm passed in mode PASSED_MODE and with type TYPE.
3717 INITIAL_OFFSET_PTR points to the current offset into the stacked
3718 arguments.
3720 The starting offset and size for this parm are returned in
3721 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3722 nonzero, the offset is that of stack slot, which is returned in
3723 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3724 padding required from the initial offset ptr to the stack slot.
3726 IN_REGS is nonzero if the argument will be passed in registers. It will
3727 never be set if REG_PARM_STACK_SPACE is not defined.
3729 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
3730 for arguments which are passed in registers.
3732 FNDECL is the function in which the argument was defined.
3734 There are two types of rounding that are done. The first, controlled by
3735 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3736 argument list to be aligned to the specific boundary (in bits). This
3737 rounding affects the initial and starting offsets, but not the argument
3738 size.
3740 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3741 optionally rounds the size of the parm to PARM_BOUNDARY. The
3742 initial offset is not affected by this rounding, while the size always
3743 is and the starting offset may be. */
3745 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3746 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3747 callers pass in the total size of args so far as
3748 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3750 void
3751 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3752 int reg_parm_stack_space, int partial,
3753 tree fndecl ATTRIBUTE_UNUSED,
3754 struct args_size *initial_offset_ptr,
3755 struct locate_and_pad_arg_data *locate)
3757 tree sizetree;
3758 enum direction where_pad;
3759 unsigned int boundary, round_boundary;
3760 int part_size_in_regs;
3762 /* If we have found a stack parm before we reach the end of the
3763 area reserved for registers, skip that area. */
3764 if (! in_regs)
3766 if (reg_parm_stack_space > 0)
3768 if (initial_offset_ptr->var)
3770 initial_offset_ptr->var
3771 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3772 ssize_int (reg_parm_stack_space));
3773 initial_offset_ptr->constant = 0;
3775 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3776 initial_offset_ptr->constant = reg_parm_stack_space;
3780 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3782 sizetree
3783 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3784 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3785 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
3786 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
3787 type);
3788 locate->where_pad = where_pad;
3790 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3791 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3792 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3794 locate->boundary = boundary;
3796 if (SUPPORTS_STACK_ALIGNMENT)
3798 /* stack_alignment_estimated can't change after stack has been
3799 realigned. */
3800 if (crtl->stack_alignment_estimated < boundary)
3802 if (!crtl->stack_realign_processed)
3803 crtl->stack_alignment_estimated = boundary;
3804 else
3806 /* If stack is realigned and stack alignment value
3807 hasn't been finalized, it is OK not to increase
3808 stack_alignment_estimated. The bigger alignment
3809 requirement is recorded in stack_alignment_needed
3810 below. */
3811 gcc_assert (!crtl->stack_realign_finalized
3812 && crtl->stack_realign_needed);
3817 /* Remember if the outgoing parameter requires extra alignment on the
3818 calling function side. */
3819 if (crtl->stack_alignment_needed < boundary)
3820 crtl->stack_alignment_needed = boundary;
3821 if (crtl->preferred_stack_boundary < boundary)
3822 crtl->preferred_stack_boundary = boundary;
3824 #ifdef ARGS_GROW_DOWNWARD
3825 locate->slot_offset.constant = -initial_offset_ptr->constant;
3826 if (initial_offset_ptr->var)
3827 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3828 initial_offset_ptr->var);
3831 tree s2 = sizetree;
3832 if (where_pad != none
3833 && (!tree_fits_uhwi_p (sizetree)
3834 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
3835 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
3836 SUB_PARM_SIZE (locate->slot_offset, s2);
3839 locate->slot_offset.constant += part_size_in_regs;
3841 if (!in_regs || reg_parm_stack_space > 0)
3842 pad_to_arg_alignment (&locate->slot_offset, boundary,
3843 &locate->alignment_pad);
3845 locate->size.constant = (-initial_offset_ptr->constant
3846 - locate->slot_offset.constant);
3847 if (initial_offset_ptr->var)
3848 locate->size.var = size_binop (MINUS_EXPR,
3849 size_binop (MINUS_EXPR,
3850 ssize_int (0),
3851 initial_offset_ptr->var),
3852 locate->slot_offset.var);
3854 /* Pad_below needs the pre-rounded size to know how much to pad
3855 below. */
3856 locate->offset = locate->slot_offset;
3857 if (where_pad == downward)
3858 pad_below (&locate->offset, passed_mode, sizetree);
3860 #else /* !ARGS_GROW_DOWNWARD */
3861 if (!in_regs || reg_parm_stack_space > 0)
3862 pad_to_arg_alignment (initial_offset_ptr, boundary,
3863 &locate->alignment_pad);
3864 locate->slot_offset = *initial_offset_ptr;
3866 #ifdef PUSH_ROUNDING
3867 if (passed_mode != BLKmode)
3868 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3869 #endif
3871 /* Pad_below needs the pre-rounded size to know how much to pad below
3872 so this must be done before rounding up. */
3873 locate->offset = locate->slot_offset;
3874 if (where_pad == downward)
3875 pad_below (&locate->offset, passed_mode, sizetree);
3877 if (where_pad != none
3878 && (!tree_fits_uhwi_p (sizetree)
3879 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
3880 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
3882 ADD_PARM_SIZE (locate->size, sizetree);
3884 locate->size.constant -= part_size_in_regs;
3885 #endif /* ARGS_GROW_DOWNWARD */
3887 #ifdef FUNCTION_ARG_OFFSET
3888 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3889 #endif
3892 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3893 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3895 static void
3896 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3897 struct args_size *alignment_pad)
3899 tree save_var = NULL_TREE;
3900 HOST_WIDE_INT save_constant = 0;
3901 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3902 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3904 #ifdef SPARC_STACK_BOUNDARY_HACK
3905 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3906 the real alignment of %sp. However, when it does this, the
3907 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3908 if (SPARC_STACK_BOUNDARY_HACK)
3909 sp_offset = 0;
3910 #endif
3912 if (boundary > PARM_BOUNDARY)
3914 save_var = offset_ptr->var;
3915 save_constant = offset_ptr->constant;
3918 alignment_pad->var = NULL_TREE;
3919 alignment_pad->constant = 0;
3921 if (boundary > BITS_PER_UNIT)
3923 if (offset_ptr->var)
3925 tree sp_offset_tree = ssize_int (sp_offset);
3926 tree offset = size_binop (PLUS_EXPR,
3927 ARGS_SIZE_TREE (*offset_ptr),
3928 sp_offset_tree);
3929 #ifdef ARGS_GROW_DOWNWARD
3930 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3931 #else
3932 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3933 #endif
3935 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3936 /* ARGS_SIZE_TREE includes constant term. */
3937 offset_ptr->constant = 0;
3938 if (boundary > PARM_BOUNDARY)
3939 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3940 save_var);
3942 else
3944 offset_ptr->constant = -sp_offset +
3945 #ifdef ARGS_GROW_DOWNWARD
3946 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3947 #else
3948 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3949 #endif
3950 if (boundary > PARM_BOUNDARY)
3951 alignment_pad->constant = offset_ptr->constant - save_constant;
3956 static void
3957 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3959 if (passed_mode != BLKmode)
3961 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3962 offset_ptr->constant
3963 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3964 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3965 - GET_MODE_SIZE (passed_mode));
3967 else
3969 if (TREE_CODE (sizetree) != INTEGER_CST
3970 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3972 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3973 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3974 /* Add it in. */
3975 ADD_PARM_SIZE (*offset_ptr, s2);
3976 SUB_PARM_SIZE (*offset_ptr, sizetree);
3982 /* True if register REGNO was alive at a place where `setjmp' was
3983 called and was set more than once or is an argument. Such regs may
3984 be clobbered by `longjmp'. */
3986 static bool
3987 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3989 /* There appear to be cases where some local vars never reach the
3990 backend but have bogus regnos. */
3991 if (regno >= max_reg_num ())
3992 return false;
3994 return ((REG_N_SETS (regno) > 1
3995 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
3996 regno))
3997 && REGNO_REG_SET_P (setjmp_crosses, regno));
4000 /* Walk the tree of blocks describing the binding levels within a
4001 function and warn about variables the might be killed by setjmp or
4002 vfork. This is done after calling flow_analysis before register
4003 allocation since that will clobber the pseudo-regs to hard
4004 regs. */
4006 static void
4007 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
4009 tree decl, sub;
4011 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
4013 if (TREE_CODE (decl) == VAR_DECL
4014 && DECL_RTL_SET_P (decl)
4015 && REG_P (DECL_RTL (decl))
4016 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4017 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
4018 " %<longjmp%> or %<vfork%>", decl);
4021 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4022 setjmp_vars_warning (setjmp_crosses, sub);
4025 /* Do the appropriate part of setjmp_vars_warning
4026 but for arguments instead of local variables. */
4028 static void
4029 setjmp_args_warning (bitmap setjmp_crosses)
4031 tree decl;
4032 for (decl = DECL_ARGUMENTS (current_function_decl);
4033 decl; decl = DECL_CHAIN (decl))
4034 if (DECL_RTL (decl) != 0
4035 && REG_P (DECL_RTL (decl))
4036 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4037 warning (OPT_Wclobbered,
4038 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4039 decl);
4042 /* Generate warning messages for variables live across setjmp. */
4044 void
4045 generate_setjmp_warnings (void)
4047 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4049 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS
4050 || bitmap_empty_p (setjmp_crosses))
4051 return;
4053 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4054 setjmp_args_warning (setjmp_crosses);
4058 /* Reverse the order of elements in the fragment chain T of blocks,
4059 and return the new head of the chain (old last element).
4060 In addition to that clear BLOCK_SAME_RANGE flags when needed
4061 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4062 its super fragment origin. */
4064 static tree
4065 block_fragments_nreverse (tree t)
4067 tree prev = 0, block, next, prev_super = 0;
4068 tree super = BLOCK_SUPERCONTEXT (t);
4069 if (BLOCK_FRAGMENT_ORIGIN (super))
4070 super = BLOCK_FRAGMENT_ORIGIN (super);
4071 for (block = t; block; block = next)
4073 next = BLOCK_FRAGMENT_CHAIN (block);
4074 BLOCK_FRAGMENT_CHAIN (block) = prev;
4075 if ((prev && !BLOCK_SAME_RANGE (prev))
4076 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4077 != prev_super))
4078 BLOCK_SAME_RANGE (block) = 0;
4079 prev_super = BLOCK_SUPERCONTEXT (block);
4080 BLOCK_SUPERCONTEXT (block) = super;
4081 prev = block;
4083 t = BLOCK_FRAGMENT_ORIGIN (t);
4084 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4085 != prev_super)
4086 BLOCK_SAME_RANGE (t) = 0;
4087 BLOCK_SUPERCONTEXT (t) = super;
4088 return prev;
4091 /* Reverse the order of elements in the chain T of blocks,
4092 and return the new head of the chain (old last element).
4093 Also do the same on subblocks and reverse the order of elements
4094 in BLOCK_FRAGMENT_CHAIN as well. */
4096 static tree
4097 blocks_nreverse_all (tree t)
4099 tree prev = 0, block, next;
4100 for (block = t; block; block = next)
4102 next = BLOCK_CHAIN (block);
4103 BLOCK_CHAIN (block) = prev;
4104 if (BLOCK_FRAGMENT_CHAIN (block)
4105 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4107 BLOCK_FRAGMENT_CHAIN (block)
4108 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4109 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4110 BLOCK_SAME_RANGE (block) = 0;
4112 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4113 prev = block;
4115 return prev;
4119 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4120 and create duplicate blocks. */
4121 /* ??? Need an option to either create block fragments or to create
4122 abstract origin duplicates of a source block. It really depends
4123 on what optimization has been performed. */
4125 void
4126 reorder_blocks (void)
4128 tree block = DECL_INITIAL (current_function_decl);
4130 if (block == NULL_TREE)
4131 return;
4133 auto_vec<tree, 10> block_stack;
4135 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4136 clear_block_marks (block);
4138 /* Prune the old trees away, so that they don't get in the way. */
4139 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4140 BLOCK_CHAIN (block) = NULL_TREE;
4142 /* Recreate the block tree from the note nesting. */
4143 reorder_blocks_1 (get_insns (), block, &block_stack);
4144 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4147 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4149 void
4150 clear_block_marks (tree block)
4152 while (block)
4154 TREE_ASM_WRITTEN (block) = 0;
4155 clear_block_marks (BLOCK_SUBBLOCKS (block));
4156 block = BLOCK_CHAIN (block);
4160 static void
4161 reorder_blocks_1 (rtx_insn *insns, tree current_block,
4162 vec<tree> *p_block_stack)
4164 rtx_insn *insn;
4165 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4167 for (insn = insns; insn; insn = NEXT_INSN (insn))
4169 if (NOTE_P (insn))
4171 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4173 tree block = NOTE_BLOCK (insn);
4174 tree origin;
4176 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4177 origin = block;
4179 if (prev_end)
4180 BLOCK_SAME_RANGE (prev_end) = 0;
4181 prev_end = NULL_TREE;
4183 /* If we have seen this block before, that means it now
4184 spans multiple address regions. Create a new fragment. */
4185 if (TREE_ASM_WRITTEN (block))
4187 tree new_block = copy_node (block);
4189 BLOCK_SAME_RANGE (new_block) = 0;
4190 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4191 BLOCK_FRAGMENT_CHAIN (new_block)
4192 = BLOCK_FRAGMENT_CHAIN (origin);
4193 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4195 NOTE_BLOCK (insn) = new_block;
4196 block = new_block;
4199 if (prev_beg == current_block && prev_beg)
4200 BLOCK_SAME_RANGE (block) = 1;
4202 prev_beg = origin;
4204 BLOCK_SUBBLOCKS (block) = 0;
4205 TREE_ASM_WRITTEN (block) = 1;
4206 /* When there's only one block for the entire function,
4207 current_block == block and we mustn't do this, it
4208 will cause infinite recursion. */
4209 if (block != current_block)
4211 tree super;
4212 if (block != origin)
4213 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4214 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4215 (origin))
4216 == current_block);
4217 if (p_block_stack->is_empty ())
4218 super = current_block;
4219 else
4221 super = p_block_stack->last ();
4222 gcc_assert (super == current_block
4223 || BLOCK_FRAGMENT_ORIGIN (super)
4224 == current_block);
4226 BLOCK_SUPERCONTEXT (block) = super;
4227 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4228 BLOCK_SUBBLOCKS (current_block) = block;
4229 current_block = origin;
4231 p_block_stack->safe_push (block);
4233 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4235 NOTE_BLOCK (insn) = p_block_stack->pop ();
4236 current_block = BLOCK_SUPERCONTEXT (current_block);
4237 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4238 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4239 prev_beg = NULL_TREE;
4240 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4241 ? NOTE_BLOCK (insn) : NULL_TREE;
4244 else
4246 prev_beg = NULL_TREE;
4247 if (prev_end)
4248 BLOCK_SAME_RANGE (prev_end) = 0;
4249 prev_end = NULL_TREE;
4254 /* Reverse the order of elements in the chain T of blocks,
4255 and return the new head of the chain (old last element). */
4257 tree
4258 blocks_nreverse (tree t)
4260 tree prev = 0, block, next;
4261 for (block = t; block; block = next)
4263 next = BLOCK_CHAIN (block);
4264 BLOCK_CHAIN (block) = prev;
4265 prev = block;
4267 return prev;
4270 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4271 by modifying the last node in chain 1 to point to chain 2. */
4273 tree
4274 block_chainon (tree op1, tree op2)
4276 tree t1;
4278 if (!op1)
4279 return op2;
4280 if (!op2)
4281 return op1;
4283 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4284 continue;
4285 BLOCK_CHAIN (t1) = op2;
4287 #ifdef ENABLE_TREE_CHECKING
4289 tree t2;
4290 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4291 gcc_assert (t2 != t1);
4293 #endif
4295 return op1;
4298 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4299 non-NULL, list them all into VECTOR, in a depth-first preorder
4300 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4301 blocks. */
4303 static int
4304 all_blocks (tree block, tree *vector)
4306 int n_blocks = 0;
4308 while (block)
4310 TREE_ASM_WRITTEN (block) = 0;
4312 /* Record this block. */
4313 if (vector)
4314 vector[n_blocks] = block;
4316 ++n_blocks;
4318 /* Record the subblocks, and their subblocks... */
4319 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4320 vector ? vector + n_blocks : 0);
4321 block = BLOCK_CHAIN (block);
4324 return n_blocks;
4327 /* Return a vector containing all the blocks rooted at BLOCK. The
4328 number of elements in the vector is stored in N_BLOCKS_P. The
4329 vector is dynamically allocated; it is the caller's responsibility
4330 to call `free' on the pointer returned. */
4332 static tree *
4333 get_block_vector (tree block, int *n_blocks_p)
4335 tree *block_vector;
4337 *n_blocks_p = all_blocks (block, NULL);
4338 block_vector = XNEWVEC (tree, *n_blocks_p);
4339 all_blocks (block, block_vector);
4341 return block_vector;
4344 static GTY(()) int next_block_index = 2;
4346 /* Set BLOCK_NUMBER for all the blocks in FN. */
4348 void
4349 number_blocks (tree fn)
4351 int i;
4352 int n_blocks;
4353 tree *block_vector;
4355 /* For SDB and XCOFF debugging output, we start numbering the blocks
4356 from 1 within each function, rather than keeping a running
4357 count. */
4358 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4359 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4360 next_block_index = 1;
4361 #endif
4363 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4365 /* The top-level BLOCK isn't numbered at all. */
4366 for (i = 1; i < n_blocks; ++i)
4367 /* We number the blocks from two. */
4368 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4370 free (block_vector);
4372 return;
4375 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4377 DEBUG_FUNCTION tree
4378 debug_find_var_in_block_tree (tree var, tree block)
4380 tree t;
4382 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4383 if (t == var)
4384 return block;
4386 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4388 tree ret = debug_find_var_in_block_tree (var, t);
4389 if (ret)
4390 return ret;
4393 return NULL_TREE;
4396 /* Keep track of whether we're in a dummy function context. If we are,
4397 we don't want to invoke the set_current_function hook, because we'll
4398 get into trouble if the hook calls target_reinit () recursively or
4399 when the initial initialization is not yet complete. */
4401 static bool in_dummy_function;
4403 /* Invoke the target hook when setting cfun. Update the optimization options
4404 if the function uses different options than the default. */
4406 static void
4407 invoke_set_current_function_hook (tree fndecl)
4409 if (!in_dummy_function)
4411 tree opts = ((fndecl)
4412 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4413 : optimization_default_node);
4415 if (!opts)
4416 opts = optimization_default_node;
4418 /* Change optimization options if needed. */
4419 if (optimization_current_node != opts)
4421 optimization_current_node = opts;
4422 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4425 targetm.set_current_function (fndecl);
4426 this_fn_optabs = this_target_optabs;
4428 if (opts != optimization_default_node)
4430 init_tree_optimization_optabs (opts);
4431 if (TREE_OPTIMIZATION_OPTABS (opts))
4432 this_fn_optabs = (struct target_optabs *)
4433 TREE_OPTIMIZATION_OPTABS (opts);
4438 /* cfun should never be set directly; use this function. */
4440 void
4441 set_cfun (struct function *new_cfun)
4443 if (cfun != new_cfun)
4445 cfun = new_cfun;
4446 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4450 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4452 static vec<function_p> cfun_stack;
4454 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4455 current_function_decl accordingly. */
4457 void
4458 push_cfun (struct function *new_cfun)
4460 gcc_assert ((!cfun && !current_function_decl)
4461 || (cfun && current_function_decl == cfun->decl));
4462 cfun_stack.safe_push (cfun);
4463 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4464 set_cfun (new_cfun);
4467 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4469 void
4470 pop_cfun (void)
4472 struct function *new_cfun = cfun_stack.pop ();
4473 /* When in_dummy_function, we do have a cfun but current_function_decl is
4474 NULL. We also allow pushing NULL cfun and subsequently changing
4475 current_function_decl to something else and have both restored by
4476 pop_cfun. */
4477 gcc_checking_assert (in_dummy_function
4478 || !cfun
4479 || current_function_decl == cfun->decl);
4480 set_cfun (new_cfun);
4481 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4484 /* Return value of funcdef and increase it. */
4486 get_next_funcdef_no (void)
4488 return funcdef_no++;
4491 /* Return value of funcdef. */
4493 get_last_funcdef_no (void)
4495 return funcdef_no;
4498 /* Allocate a function structure for FNDECL and set its contents
4499 to the defaults. Set cfun to the newly-allocated object.
4500 Some of the helper functions invoked during initialization assume
4501 that cfun has already been set. Therefore, assign the new object
4502 directly into cfun and invoke the back end hook explicitly at the
4503 very end, rather than initializing a temporary and calling set_cfun
4504 on it.
4506 ABSTRACT_P is true if this is a function that will never be seen by
4507 the middle-end. Such functions are front-end concepts (like C++
4508 function templates) that do not correspond directly to functions
4509 placed in object files. */
4511 void
4512 allocate_struct_function (tree fndecl, bool abstract_p)
4514 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4516 cfun = ggc_cleared_alloc<function> ();
4518 init_eh_for_function ();
4520 if (init_machine_status)
4521 cfun->machine = (*init_machine_status) ();
4523 #ifdef OVERRIDE_ABI_FORMAT
4524 OVERRIDE_ABI_FORMAT (fndecl);
4525 #endif
4527 if (fndecl != NULL_TREE)
4529 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4530 cfun->decl = fndecl;
4531 current_function_funcdef_no = get_next_funcdef_no ();
4534 invoke_set_current_function_hook (fndecl);
4536 if (fndecl != NULL_TREE)
4538 tree result = DECL_RESULT (fndecl);
4539 if (!abstract_p && aggregate_value_p (result, fndecl))
4541 #ifdef PCC_STATIC_STRUCT_RETURN
4542 cfun->returns_pcc_struct = 1;
4543 #endif
4544 cfun->returns_struct = 1;
4547 cfun->stdarg = stdarg_p (fntype);
4549 /* Assume all registers in stdarg functions need to be saved. */
4550 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4551 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4553 /* ??? This could be set on a per-function basis by the front-end
4554 but is this worth the hassle? */
4555 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4556 cfun->can_delete_dead_exceptions = flag_delete_dead_exceptions;
4558 if (!profile_flag && !flag_instrument_function_entry_exit)
4559 DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (fndecl) = 1;
4563 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4564 instead of just setting it. */
4566 void
4567 push_struct_function (tree fndecl)
4569 /* When in_dummy_function we might be in the middle of a pop_cfun and
4570 current_function_decl and cfun may not match. */
4571 gcc_assert (in_dummy_function
4572 || (!cfun && !current_function_decl)
4573 || (cfun && current_function_decl == cfun->decl));
4574 cfun_stack.safe_push (cfun);
4575 current_function_decl = fndecl;
4576 allocate_struct_function (fndecl, false);
4579 /* Reset crtl and other non-struct-function variables to defaults as
4580 appropriate for emitting rtl at the start of a function. */
4582 static void
4583 prepare_function_start (void)
4585 gcc_assert (!crtl->emit.x_last_insn);
4586 init_temp_slots ();
4587 init_emit ();
4588 init_varasm_status ();
4589 init_expr ();
4590 default_rtl_profile ();
4592 if (flag_stack_usage_info)
4594 cfun->su = ggc_cleared_alloc<stack_usage> ();
4595 cfun->su->static_stack_size = -1;
4598 cse_not_expected = ! optimize;
4600 /* Caller save not needed yet. */
4601 caller_save_needed = 0;
4603 /* We haven't done register allocation yet. */
4604 reg_renumber = 0;
4606 /* Indicate that we have not instantiated virtual registers yet. */
4607 virtuals_instantiated = 0;
4609 /* Indicate that we want CONCATs now. */
4610 generating_concat_p = 1;
4612 /* Indicate we have no need of a frame pointer yet. */
4613 frame_pointer_needed = 0;
4616 /* Initialize the rtl expansion mechanism so that we can do simple things
4617 like generate sequences. This is used to provide a context during global
4618 initialization of some passes. You must call expand_dummy_function_end
4619 to exit this context. */
4621 void
4622 init_dummy_function_start (void)
4624 gcc_assert (!in_dummy_function);
4625 in_dummy_function = true;
4626 push_struct_function (NULL_TREE);
4627 prepare_function_start ();
4630 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4631 and initialize static variables for generating RTL for the statements
4632 of the function. */
4634 void
4635 init_function_start (tree subr)
4637 if (subr && DECL_STRUCT_FUNCTION (subr))
4638 set_cfun (DECL_STRUCT_FUNCTION (subr));
4639 else
4640 allocate_struct_function (subr, false);
4642 /* Initialize backend, if needed. */
4643 initialize_rtl ();
4645 prepare_function_start ();
4646 decide_function_section (subr);
4648 /* Warn if this value is an aggregate type,
4649 regardless of which calling convention we are using for it. */
4650 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4651 warning (OPT_Waggregate_return, "function returns an aggregate");
4654 /* Expand code to verify the stack_protect_guard. This is invoked at
4655 the end of a function to be protected. */
4657 #ifndef HAVE_stack_protect_test
4658 # define HAVE_stack_protect_test 0
4659 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4660 #endif
4662 void
4663 stack_protect_epilogue (void)
4665 tree guard_decl = targetm.stack_protect_guard ();
4666 rtx_code_label *label = gen_label_rtx ();
4667 rtx x, y, tmp;
4669 x = expand_normal (crtl->stack_protect_guard);
4670 y = expand_normal (guard_decl);
4672 /* Allow the target to compare Y with X without leaking either into
4673 a register. */
4674 switch ((int) (HAVE_stack_protect_test != 0))
4676 case 1:
4677 tmp = gen_stack_protect_test (x, y, label);
4678 if (tmp)
4680 emit_insn (tmp);
4681 break;
4683 /* FALLTHRU */
4685 default:
4686 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4687 break;
4690 /* The noreturn predictor has been moved to the tree level. The rtl-level
4691 predictors estimate this branch about 20%, which isn't enough to get
4692 things moved out of line. Since this is the only extant case of adding
4693 a noreturn function at the rtl level, it doesn't seem worth doing ought
4694 except adding the prediction by hand. */
4695 tmp = get_last_insn ();
4696 if (JUMP_P (tmp))
4697 predict_insn_def (as_a <rtx_insn *> (tmp), PRED_NORETURN, TAKEN);
4699 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
4700 free_temp_slots ();
4701 emit_label (label);
4704 /* Start the RTL for a new function, and set variables used for
4705 emitting RTL.
4706 SUBR is the FUNCTION_DECL node.
4707 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4708 the function's parameters, which must be run at any return statement. */
4710 void
4711 expand_function_start (tree subr)
4713 /* Make sure volatile mem refs aren't considered
4714 valid operands of arithmetic insns. */
4715 init_recog_no_volatile ();
4717 crtl->profile
4718 = (profile_flag
4719 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4721 crtl->limit_stack
4722 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4724 /* Make the label for return statements to jump to. Do not special
4725 case machines with special return instructions -- they will be
4726 handled later during jump, ifcvt, or epilogue creation. */
4727 return_label = gen_label_rtx ();
4729 /* Initialize rtx used to return the value. */
4730 /* Do this before assign_parms so that we copy the struct value address
4731 before any library calls that assign parms might generate. */
4733 /* Decide whether to return the value in memory or in a register. */
4734 if (aggregate_value_p (DECL_RESULT (subr), subr))
4736 /* Returning something that won't go in a register. */
4737 rtx value_address = 0;
4739 #ifdef PCC_STATIC_STRUCT_RETURN
4740 if (cfun->returns_pcc_struct)
4742 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4743 value_address = assemble_static_space (size);
4745 else
4746 #endif
4748 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4749 /* Expect to be passed the address of a place to store the value.
4750 If it is passed as an argument, assign_parms will take care of
4751 it. */
4752 if (sv)
4754 value_address = gen_reg_rtx (Pmode);
4755 emit_move_insn (value_address, sv);
4758 if (value_address)
4760 rtx x = value_address;
4761 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4763 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4764 set_mem_attributes (x, DECL_RESULT (subr), 1);
4766 SET_DECL_RTL (DECL_RESULT (subr), x);
4769 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4770 /* If return mode is void, this decl rtl should not be used. */
4771 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4772 else
4774 /* Compute the return values into a pseudo reg, which we will copy
4775 into the true return register after the cleanups are done. */
4776 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4777 if (TYPE_MODE (return_type) != BLKmode
4778 && targetm.calls.return_in_msb (return_type))
4779 /* expand_function_end will insert the appropriate padding in
4780 this case. Use the return value's natural (unpadded) mode
4781 within the function proper. */
4782 SET_DECL_RTL (DECL_RESULT (subr),
4783 gen_reg_rtx (TYPE_MODE (return_type)));
4784 else
4786 /* In order to figure out what mode to use for the pseudo, we
4787 figure out what the mode of the eventual return register will
4788 actually be, and use that. */
4789 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4791 /* Structures that are returned in registers are not
4792 aggregate_value_p, so we may see a PARALLEL or a REG. */
4793 if (REG_P (hard_reg))
4794 SET_DECL_RTL (DECL_RESULT (subr),
4795 gen_reg_rtx (GET_MODE (hard_reg)));
4796 else
4798 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4799 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4803 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4804 result to the real return register(s). */
4805 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4808 /* Initialize rtx for parameters and local variables.
4809 In some cases this requires emitting insns. */
4810 assign_parms (subr);
4812 /* If function gets a static chain arg, store it. */
4813 if (cfun->static_chain_decl)
4815 tree parm = cfun->static_chain_decl;
4816 rtx local, chain, insn;
4818 local = gen_reg_rtx (Pmode);
4819 chain = targetm.calls.static_chain (current_function_decl, true);
4821 set_decl_incoming_rtl (parm, chain, false);
4822 SET_DECL_RTL (parm, local);
4823 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4825 insn = emit_move_insn (local, chain);
4827 /* Mark the register as eliminable, similar to parameters. */
4828 if (MEM_P (chain)
4829 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
4830 set_dst_reg_note (insn, REG_EQUIV, chain, local);
4832 /* If we aren't optimizing, save the static chain onto the stack. */
4833 if (!optimize)
4835 tree saved_static_chain_decl
4836 = build_decl (DECL_SOURCE_LOCATION (parm), VAR_DECL,
4837 DECL_NAME (parm), TREE_TYPE (parm));
4838 rtx saved_static_chain_rtx
4839 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
4840 SET_DECL_RTL (saved_static_chain_decl, saved_static_chain_rtx);
4841 emit_move_insn (saved_static_chain_rtx, chain);
4842 SET_DECL_VALUE_EXPR (parm, saved_static_chain_decl);
4843 DECL_HAS_VALUE_EXPR_P (parm) = 1;
4847 /* If the function receives a non-local goto, then store the
4848 bits we need to restore the frame pointer. */
4849 if (cfun->nonlocal_goto_save_area)
4851 tree t_save;
4852 rtx r_save;
4854 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4855 gcc_assert (DECL_RTL_SET_P (var));
4857 t_save = build4 (ARRAY_REF,
4858 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
4859 cfun->nonlocal_goto_save_area,
4860 integer_zero_node, NULL_TREE, NULL_TREE);
4861 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4862 gcc_assert (GET_MODE (r_save) == Pmode);
4864 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4865 update_nonlocal_goto_save_area ();
4868 /* The following was moved from init_function_start.
4869 The move is supposed to make sdb output more accurate. */
4870 /* Indicate the beginning of the function body,
4871 as opposed to parm setup. */
4872 emit_note (NOTE_INSN_FUNCTION_BEG);
4874 gcc_assert (NOTE_P (get_last_insn ()));
4876 parm_birth_insn = get_last_insn ();
4878 if (crtl->profile)
4880 #ifdef PROFILE_HOOK
4881 PROFILE_HOOK (current_function_funcdef_no);
4882 #endif
4885 /* If we are doing generic stack checking, the probe should go here. */
4886 if (flag_stack_check == GENERIC_STACK_CHECK)
4887 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4890 /* Undo the effects of init_dummy_function_start. */
4891 void
4892 expand_dummy_function_end (void)
4894 gcc_assert (in_dummy_function);
4896 /* End any sequences that failed to be closed due to syntax errors. */
4897 while (in_sequence_p ())
4898 end_sequence ();
4900 /* Outside function body, can't compute type's actual size
4901 until next function's body starts. */
4903 free_after_parsing (cfun);
4904 free_after_compilation (cfun);
4905 pop_cfun ();
4906 in_dummy_function = false;
4909 /* Call DOIT for each hard register used as a return value from
4910 the current function. */
4912 void
4913 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4915 rtx outgoing = crtl->return_rtx;
4917 if (! outgoing)
4918 return;
4920 if (REG_P (outgoing))
4921 (*doit) (outgoing, arg);
4922 else if (GET_CODE (outgoing) == PARALLEL)
4924 int i;
4926 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4928 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4930 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4931 (*doit) (x, arg);
4936 static void
4937 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4939 emit_clobber (reg);
4942 void
4943 clobber_return_register (void)
4945 diddle_return_value (do_clobber_return_reg, NULL);
4947 /* In case we do use pseudo to return value, clobber it too. */
4948 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4950 tree decl_result = DECL_RESULT (current_function_decl);
4951 rtx decl_rtl = DECL_RTL (decl_result);
4952 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4954 do_clobber_return_reg (decl_rtl, NULL);
4959 static void
4960 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4962 emit_use (reg);
4965 static void
4966 use_return_register (void)
4968 diddle_return_value (do_use_return_reg, NULL);
4971 /* Possibly warn about unused parameters. */
4972 void
4973 do_warn_unused_parameter (tree fn)
4975 tree decl;
4977 for (decl = DECL_ARGUMENTS (fn);
4978 decl; decl = DECL_CHAIN (decl))
4979 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4980 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4981 && !TREE_NO_WARNING (decl))
4982 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4985 /* Set the location of the insn chain starting at INSN to LOC. */
4987 static void
4988 set_insn_locations (rtx_insn *insn, int loc)
4990 while (insn != NULL)
4992 if (INSN_P (insn))
4993 INSN_LOCATION (insn) = loc;
4994 insn = NEXT_INSN (insn);
4998 /* Generate RTL for the end of the current function. */
5000 void
5001 expand_function_end (void)
5003 rtx clobber_after;
5005 /* If arg_pointer_save_area was referenced only from a nested
5006 function, we will not have initialized it yet. Do that now. */
5007 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
5008 get_arg_pointer_save_area ();
5010 /* If we are doing generic stack checking and this function makes calls,
5011 do a stack probe at the start of the function to ensure we have enough
5012 space for another stack frame. */
5013 if (flag_stack_check == GENERIC_STACK_CHECK)
5015 rtx_insn *insn, *seq;
5017 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5018 if (CALL_P (insn))
5020 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
5021 start_sequence ();
5022 if (STACK_CHECK_MOVING_SP)
5023 anti_adjust_stack_and_probe (max_frame_size, true);
5024 else
5025 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
5026 seq = get_insns ();
5027 end_sequence ();
5028 set_insn_locations (seq, prologue_location);
5029 emit_insn_before (seq, stack_check_probe_note);
5030 break;
5034 /* End any sequences that failed to be closed due to syntax errors. */
5035 while (in_sequence_p ())
5036 end_sequence ();
5038 clear_pending_stack_adjust ();
5039 do_pending_stack_adjust ();
5041 /* Output a linenumber for the end of the function.
5042 SDB depends on this. */
5043 set_curr_insn_location (input_location);
5045 /* Before the return label (if any), clobber the return
5046 registers so that they are not propagated live to the rest of
5047 the function. This can only happen with functions that drop
5048 through; if there had been a return statement, there would
5049 have either been a return rtx, or a jump to the return label.
5051 We delay actual code generation after the current_function_value_rtx
5052 is computed. */
5053 clobber_after = get_last_insn ();
5055 /* Output the label for the actual return from the function. */
5056 emit_label (return_label);
5058 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5060 /* Let except.c know where it should emit the call to unregister
5061 the function context for sjlj exceptions. */
5062 if (flag_exceptions)
5063 sjlj_emit_function_exit_after (get_last_insn ());
5065 else
5067 /* We want to ensure that instructions that may trap are not
5068 moved into the epilogue by scheduling, because we don't
5069 always emit unwind information for the epilogue. */
5070 if (cfun->can_throw_non_call_exceptions)
5071 emit_insn (gen_blockage ());
5074 /* If this is an implementation of throw, do what's necessary to
5075 communicate between __builtin_eh_return and the epilogue. */
5076 expand_eh_return ();
5078 /* If scalar return value was computed in a pseudo-reg, or was a named
5079 return value that got dumped to the stack, copy that to the hard
5080 return register. */
5081 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5083 tree decl_result = DECL_RESULT (current_function_decl);
5084 rtx decl_rtl = DECL_RTL (decl_result);
5086 if (REG_P (decl_rtl)
5087 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5088 : DECL_REGISTER (decl_result))
5090 rtx real_decl_rtl = crtl->return_rtx;
5092 /* This should be set in assign_parms. */
5093 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5095 /* If this is a BLKmode structure being returned in registers,
5096 then use the mode computed in expand_return. Note that if
5097 decl_rtl is memory, then its mode may have been changed,
5098 but that crtl->return_rtx has not. */
5099 if (GET_MODE (real_decl_rtl) == BLKmode)
5100 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5102 /* If a non-BLKmode return value should be padded at the least
5103 significant end of the register, shift it left by the appropriate
5104 amount. BLKmode results are handled using the group load/store
5105 machinery. */
5106 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5107 && REG_P (real_decl_rtl)
5108 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5110 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5111 REGNO (real_decl_rtl)),
5112 decl_rtl);
5113 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5115 /* If a named return value dumped decl_return to memory, then
5116 we may need to re-do the PROMOTE_MODE signed/unsigned
5117 extension. */
5118 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5120 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5121 promote_function_mode (TREE_TYPE (decl_result),
5122 GET_MODE (decl_rtl), &unsignedp,
5123 TREE_TYPE (current_function_decl), 1);
5125 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5127 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5129 /* If expand_function_start has created a PARALLEL for decl_rtl,
5130 move the result to the real return registers. Otherwise, do
5131 a group load from decl_rtl for a named return. */
5132 if (GET_CODE (decl_rtl) == PARALLEL)
5133 emit_group_move (real_decl_rtl, decl_rtl);
5134 else
5135 emit_group_load (real_decl_rtl, decl_rtl,
5136 TREE_TYPE (decl_result),
5137 int_size_in_bytes (TREE_TYPE (decl_result)));
5139 /* In the case of complex integer modes smaller than a word, we'll
5140 need to generate some non-trivial bitfield insertions. Do that
5141 on a pseudo and not the hard register. */
5142 else if (GET_CODE (decl_rtl) == CONCAT
5143 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5144 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5146 int old_generating_concat_p;
5147 rtx tmp;
5149 old_generating_concat_p = generating_concat_p;
5150 generating_concat_p = 0;
5151 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5152 generating_concat_p = old_generating_concat_p;
5154 emit_move_insn (tmp, decl_rtl);
5155 emit_move_insn (real_decl_rtl, tmp);
5157 else
5158 emit_move_insn (real_decl_rtl, decl_rtl);
5162 /* If returning a structure, arrange to return the address of the value
5163 in a place where debuggers expect to find it.
5165 If returning a structure PCC style,
5166 the caller also depends on this value.
5167 And cfun->returns_pcc_struct is not necessarily set. */
5168 if (cfun->returns_struct
5169 || cfun->returns_pcc_struct)
5171 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5172 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5173 rtx outgoing;
5175 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5176 type = TREE_TYPE (type);
5177 else
5178 value_address = XEXP (value_address, 0);
5180 outgoing = targetm.calls.function_value (build_pointer_type (type),
5181 current_function_decl, true);
5183 /* Mark this as a function return value so integrate will delete the
5184 assignment and USE below when inlining this function. */
5185 REG_FUNCTION_VALUE_P (outgoing) = 1;
5187 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5188 value_address = convert_memory_address (GET_MODE (outgoing),
5189 value_address);
5191 emit_move_insn (outgoing, value_address);
5193 /* Show return register used to hold result (in this case the address
5194 of the result. */
5195 crtl->return_rtx = outgoing;
5198 /* Emit the actual code to clobber return register. Don't emit
5199 it if clobber_after is a barrier, then the previous basic block
5200 certainly doesn't fall thru into the exit block. */
5201 if (!BARRIER_P (clobber_after))
5203 rtx seq;
5205 start_sequence ();
5206 clobber_return_register ();
5207 seq = get_insns ();
5208 end_sequence ();
5210 emit_insn_after (seq, clobber_after);
5213 /* Output the label for the naked return from the function. */
5214 if (naked_return_label)
5215 emit_label (naked_return_label);
5217 /* @@@ This is a kludge. We want to ensure that instructions that
5218 may trap are not moved into the epilogue by scheduling, because
5219 we don't always emit unwind information for the epilogue. */
5220 if (cfun->can_throw_non_call_exceptions
5221 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5222 emit_insn (gen_blockage ());
5224 /* If stack protection is enabled for this function, check the guard. */
5225 if (crtl->stack_protect_guard)
5226 stack_protect_epilogue ();
5228 /* If we had calls to alloca, and this machine needs
5229 an accurate stack pointer to exit the function,
5230 insert some code to save and restore the stack pointer. */
5231 if (! EXIT_IGNORE_STACK
5232 && cfun->calls_alloca)
5234 rtx tem = 0, seq;
5236 start_sequence ();
5237 emit_stack_save (SAVE_FUNCTION, &tem);
5238 seq = get_insns ();
5239 end_sequence ();
5240 emit_insn_before (seq, parm_birth_insn);
5242 emit_stack_restore (SAVE_FUNCTION, tem);
5245 /* ??? This should no longer be necessary since stupid is no longer with
5246 us, but there are some parts of the compiler (eg reload_combine, and
5247 sh mach_dep_reorg) that still try and compute their own lifetime info
5248 instead of using the general framework. */
5249 use_return_register ();
5253 get_arg_pointer_save_area (void)
5255 rtx ret = arg_pointer_save_area;
5257 if (! ret)
5259 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5260 arg_pointer_save_area = ret;
5263 if (! crtl->arg_pointer_save_area_init)
5265 rtx seq;
5267 /* Save the arg pointer at the beginning of the function. The
5268 generated stack slot may not be a valid memory address, so we
5269 have to check it and fix it if necessary. */
5270 start_sequence ();
5271 emit_move_insn (validize_mem (copy_rtx (ret)),
5272 crtl->args.internal_arg_pointer);
5273 seq = get_insns ();
5274 end_sequence ();
5276 push_topmost_sequence ();
5277 emit_insn_after (seq, entry_of_function ());
5278 pop_topmost_sequence ();
5280 crtl->arg_pointer_save_area_init = true;
5283 return ret;
5286 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5287 for the first time. */
5289 static void
5290 record_insns (rtx_insn *insns, rtx end, htab_t *hashp)
5292 rtx_insn *tmp;
5293 htab_t hash = *hashp;
5295 if (hash == NULL)
5296 *hashp = hash
5297 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
5299 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5301 void **slot = htab_find_slot (hash, tmp, INSERT);
5302 gcc_assert (*slot == NULL);
5303 *slot = tmp;
5307 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5308 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5309 insn, then record COPY as well. */
5311 void
5312 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5314 htab_t hash;
5315 void **slot;
5317 hash = epilogue_insn_hash;
5318 if (!hash || !htab_find (hash, insn))
5320 hash = prologue_insn_hash;
5321 if (!hash || !htab_find (hash, insn))
5322 return;
5325 slot = htab_find_slot (hash, copy, INSERT);
5326 gcc_assert (*slot == NULL);
5327 *slot = copy;
5330 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5331 we can be running after reorg, SEQUENCE rtl is possible. */
5333 static bool
5334 contains (const_rtx insn, htab_t hash)
5336 if (hash == NULL)
5337 return false;
5339 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5341 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn));
5342 int i;
5343 for (i = seq->len () - 1; i >= 0; i--)
5344 if (htab_find (hash, seq->element (i)))
5345 return true;
5346 return false;
5349 return htab_find (hash, insn) != NULL;
5353 prologue_epilogue_contains (const_rtx insn)
5355 if (contains (insn, prologue_insn_hash))
5356 return 1;
5357 if (contains (insn, epilogue_insn_hash))
5358 return 1;
5359 return 0;
5362 #ifdef HAVE_return
5363 /* Insert use of return register before the end of BB. */
5365 static void
5366 emit_use_return_register_into_block (basic_block bb)
5368 rtx seq, insn;
5369 start_sequence ();
5370 use_return_register ();
5371 seq = get_insns ();
5372 end_sequence ();
5373 insn = BB_END (bb);
5374 #ifdef HAVE_cc0
5375 if (reg_mentioned_p (cc0_rtx, PATTERN (insn)))
5376 insn = prev_cc0_setter (insn);
5377 #endif
5378 emit_insn_before (seq, insn);
5382 /* Create a return pattern, either simple_return or return, depending on
5383 simple_p. */
5385 static rtx
5386 gen_return_pattern (bool simple_p)
5388 #ifdef HAVE_simple_return
5389 return simple_p ? gen_simple_return () : gen_return ();
5390 #else
5391 gcc_assert (!simple_p);
5392 return gen_return ();
5393 #endif
5396 /* Insert an appropriate return pattern at the end of block BB. This
5397 also means updating block_for_insn appropriately. SIMPLE_P is
5398 the same as in gen_return_pattern and passed to it. */
5400 void
5401 emit_return_into_block (bool simple_p, basic_block bb)
5403 rtx jump, pat;
5404 jump = emit_jump_insn_after (gen_return_pattern (simple_p), BB_END (bb));
5405 pat = PATTERN (jump);
5406 if (GET_CODE (pat) == PARALLEL)
5407 pat = XVECEXP (pat, 0, 0);
5408 gcc_assert (ANY_RETURN_P (pat));
5409 JUMP_LABEL (jump) = pat;
5411 #endif
5413 /* Set JUMP_LABEL for a return insn. */
5415 void
5416 set_return_jump_label (rtx returnjump)
5418 rtx pat = PATTERN (returnjump);
5419 if (GET_CODE (pat) == PARALLEL)
5420 pat = XVECEXP (pat, 0, 0);
5421 if (ANY_RETURN_P (pat))
5422 JUMP_LABEL (returnjump) = pat;
5423 else
5424 JUMP_LABEL (returnjump) = ret_rtx;
5427 #if defined (HAVE_return) || defined (HAVE_simple_return)
5428 /* Return true if there are any active insns between HEAD and TAIL. */
5429 bool
5430 active_insn_between (rtx_insn *head, rtx_insn *tail)
5432 while (tail)
5434 if (active_insn_p (tail))
5435 return true;
5436 if (tail == head)
5437 return false;
5438 tail = PREV_INSN (tail);
5440 return false;
5443 /* LAST_BB is a block that exits, and empty of active instructions.
5444 Examine its predecessors for jumps that can be converted to
5445 (conditional) returns. */
5446 vec<edge>
5447 convert_jumps_to_returns (basic_block last_bb, bool simple_p,
5448 vec<edge> unconverted ATTRIBUTE_UNUSED)
5450 int i;
5451 basic_block bb;
5452 rtx label;
5453 edge_iterator ei;
5454 edge e;
5455 auto_vec<basic_block> src_bbs (EDGE_COUNT (last_bb->preds));
5457 FOR_EACH_EDGE (e, ei, last_bb->preds)
5458 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5459 src_bbs.quick_push (e->src);
5461 label = BB_HEAD (last_bb);
5463 FOR_EACH_VEC_ELT (src_bbs, i, bb)
5465 rtx_insn *jump = BB_END (bb);
5467 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5468 continue;
5470 e = find_edge (bb, last_bb);
5472 /* If we have an unconditional jump, we can replace that
5473 with a simple return instruction. */
5474 if (simplejump_p (jump))
5476 /* The use of the return register might be present in the exit
5477 fallthru block. Either:
5478 - removing the use is safe, and we should remove the use in
5479 the exit fallthru block, or
5480 - removing the use is not safe, and we should add it here.
5481 For now, we conservatively choose the latter. Either of the
5482 2 helps in crossjumping. */
5483 emit_use_return_register_into_block (bb);
5485 emit_return_into_block (simple_p, bb);
5486 delete_insn (jump);
5489 /* If we have a conditional jump branching to the last
5490 block, we can try to replace that with a conditional
5491 return instruction. */
5492 else if (condjump_p (jump))
5494 rtx dest;
5496 if (simple_p)
5497 dest = simple_return_rtx;
5498 else
5499 dest = ret_rtx;
5500 if (!redirect_jump (jump, dest, 0))
5502 #ifdef HAVE_simple_return
5503 if (simple_p)
5505 if (dump_file)
5506 fprintf (dump_file,
5507 "Failed to redirect bb %d branch.\n", bb->index);
5508 unconverted.safe_push (e);
5510 #endif
5511 continue;
5514 /* See comment in simplejump_p case above. */
5515 emit_use_return_register_into_block (bb);
5517 /* If this block has only one successor, it both jumps
5518 and falls through to the fallthru block, so we can't
5519 delete the edge. */
5520 if (single_succ_p (bb))
5521 continue;
5523 else
5525 #ifdef HAVE_simple_return
5526 if (simple_p)
5528 if (dump_file)
5529 fprintf (dump_file,
5530 "Failed to redirect bb %d branch.\n", bb->index);
5531 unconverted.safe_push (e);
5533 #endif
5534 continue;
5537 /* Fix up the CFG for the successful change we just made. */
5538 redirect_edge_succ (e, EXIT_BLOCK_PTR_FOR_FN (cfun));
5539 e->flags &= ~EDGE_CROSSING;
5541 src_bbs.release ();
5542 return unconverted;
5545 /* Emit a return insn for the exit fallthru block. */
5546 basic_block
5547 emit_return_for_exit (edge exit_fallthru_edge, bool simple_p)
5549 basic_block last_bb = exit_fallthru_edge->src;
5551 if (JUMP_P (BB_END (last_bb)))
5553 last_bb = split_edge (exit_fallthru_edge);
5554 exit_fallthru_edge = single_succ_edge (last_bb);
5556 emit_barrier_after (BB_END (last_bb));
5557 emit_return_into_block (simple_p, last_bb);
5558 exit_fallthru_edge->flags &= ~EDGE_FALLTHRU;
5559 return last_bb;
5561 #endif
5564 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5565 this into place with notes indicating where the prologue ends and where
5566 the epilogue begins. Update the basic block information when possible.
5568 Notes on epilogue placement:
5569 There are several kinds of edges to the exit block:
5570 * a single fallthru edge from LAST_BB
5571 * possibly, edges from blocks containing sibcalls
5572 * possibly, fake edges from infinite loops
5574 The epilogue is always emitted on the fallthru edge from the last basic
5575 block in the function, LAST_BB, into the exit block.
5577 If LAST_BB is empty except for a label, it is the target of every
5578 other basic block in the function that ends in a return. If a
5579 target has a return or simple_return pattern (possibly with
5580 conditional variants), these basic blocks can be changed so that a
5581 return insn is emitted into them, and their target is adjusted to
5582 the real exit block.
5584 Notes on shrink wrapping: We implement a fairly conservative
5585 version of shrink-wrapping rather than the textbook one. We only
5586 generate a single prologue and a single epilogue. This is
5587 sufficient to catch a number of interesting cases involving early
5588 exits.
5590 First, we identify the blocks that require the prologue to occur before
5591 them. These are the ones that modify a call-saved register, or reference
5592 any of the stack or frame pointer registers. To simplify things, we then
5593 mark everything reachable from these blocks as also requiring a prologue.
5594 This takes care of loops automatically, and avoids the need to examine
5595 whether MEMs reference the frame, since it is sufficient to check for
5596 occurrences of the stack or frame pointer.
5598 We then compute the set of blocks for which the need for a prologue
5599 is anticipatable (borrowing terminology from the shrink-wrapping
5600 description in Muchnick's book). These are the blocks which either
5601 require a prologue themselves, or those that have only successors
5602 where the prologue is anticipatable. The prologue needs to be
5603 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5604 is not. For the moment, we ensure that only one such edge exists.
5606 The epilogue is placed as described above, but we make a
5607 distinction between inserting return and simple_return patterns
5608 when modifying other blocks that end in a return. Blocks that end
5609 in a sibcall omit the sibcall_epilogue if the block is not in
5610 ANTIC. */
5612 static void
5613 thread_prologue_and_epilogue_insns (void)
5615 bool inserted;
5616 #ifdef HAVE_simple_return
5617 vec<edge> unconverted_simple_returns = vNULL;
5618 bitmap_head bb_flags;
5619 #endif
5620 rtx_insn *returnjump;
5621 rtx_insn *epilogue_end ATTRIBUTE_UNUSED;
5622 rtx_insn *prologue_seq ATTRIBUTE_UNUSED, *split_prologue_seq ATTRIBUTE_UNUSED;
5623 edge e, entry_edge, orig_entry_edge, exit_fallthru_edge;
5624 edge_iterator ei;
5626 df_analyze ();
5628 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5630 inserted = false;
5631 epilogue_end = NULL;
5632 returnjump = NULL;
5634 /* Can't deal with multiple successors of the entry block at the
5635 moment. Function should always have at least one entry
5636 point. */
5637 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
5638 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5639 orig_entry_edge = entry_edge;
5641 split_prologue_seq = NULL;
5642 if (flag_split_stack
5643 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
5644 == NULL))
5646 #ifndef HAVE_split_stack_prologue
5647 gcc_unreachable ();
5648 #else
5649 gcc_assert (HAVE_split_stack_prologue);
5651 start_sequence ();
5652 emit_insn (gen_split_stack_prologue ());
5653 split_prologue_seq = get_insns ();
5654 end_sequence ();
5656 record_insns (split_prologue_seq, NULL, &prologue_insn_hash);
5657 set_insn_locations (split_prologue_seq, prologue_location);
5658 #endif
5661 prologue_seq = NULL;
5662 #ifdef HAVE_prologue
5663 if (HAVE_prologue)
5665 start_sequence ();
5666 rtx_insn *seq = safe_as_a <rtx_insn *> (gen_prologue ());
5667 emit_insn (seq);
5669 /* Insert an explicit USE for the frame pointer
5670 if the profiling is on and the frame pointer is required. */
5671 if (crtl->profile && frame_pointer_needed)
5672 emit_use (hard_frame_pointer_rtx);
5674 /* Retain a map of the prologue insns. */
5675 record_insns (seq, NULL, &prologue_insn_hash);
5676 emit_note (NOTE_INSN_PROLOGUE_END);
5678 /* Ensure that instructions are not moved into the prologue when
5679 profiling is on. The call to the profiling routine can be
5680 emitted within the live range of a call-clobbered register. */
5681 if (!targetm.profile_before_prologue () && crtl->profile)
5682 emit_insn (gen_blockage ());
5684 prologue_seq = get_insns ();
5685 end_sequence ();
5686 set_insn_locations (prologue_seq, prologue_location);
5688 #endif
5690 #ifdef HAVE_simple_return
5691 bitmap_initialize (&bb_flags, &bitmap_default_obstack);
5693 /* Try to perform a kind of shrink-wrapping, making sure the
5694 prologue/epilogue is emitted only around those parts of the
5695 function that require it. */
5697 try_shrink_wrapping (&entry_edge, orig_entry_edge, &bb_flags, prologue_seq);
5698 #endif
5700 if (split_prologue_seq != NULL_RTX)
5702 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
5703 inserted = true;
5705 if (prologue_seq != NULL_RTX)
5707 insert_insn_on_edge (prologue_seq, entry_edge);
5708 inserted = true;
5711 /* If the exit block has no non-fake predecessors, we don't need
5712 an epilogue. */
5713 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5714 if ((e->flags & EDGE_FAKE) == 0)
5715 break;
5716 if (e == NULL)
5717 goto epilogue_done;
5719 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
5721 exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
5723 #ifdef HAVE_simple_return
5724 if (entry_edge != orig_entry_edge)
5725 exit_fallthru_edge
5726 = get_unconverted_simple_return (exit_fallthru_edge, bb_flags,
5727 &unconverted_simple_returns,
5728 &returnjump);
5729 #endif
5730 #ifdef HAVE_return
5731 if (HAVE_return)
5733 if (exit_fallthru_edge == NULL)
5734 goto epilogue_done;
5736 if (optimize)
5738 basic_block last_bb = exit_fallthru_edge->src;
5740 if (LABEL_P (BB_HEAD (last_bb))
5741 && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb)))
5742 convert_jumps_to_returns (last_bb, false, vNULL);
5744 if (EDGE_COUNT (last_bb->preds) != 0
5745 && single_succ_p (last_bb))
5747 last_bb = emit_return_for_exit (exit_fallthru_edge, false);
5748 epilogue_end = returnjump = BB_END (last_bb);
5749 #ifdef HAVE_simple_return
5750 /* Emitting the return may add a basic block.
5751 Fix bb_flags for the added block. */
5752 if (last_bb != exit_fallthru_edge->src)
5753 bitmap_set_bit (&bb_flags, last_bb->index);
5754 #endif
5755 goto epilogue_done;
5759 #endif
5761 /* A small fib -- epilogue is not yet completed, but we wish to re-use
5762 this marker for the splits of EH_RETURN patterns, and nothing else
5763 uses the flag in the meantime. */
5764 epilogue_completed = 1;
5766 #ifdef HAVE_eh_return
5767 /* Find non-fallthru edges that end with EH_RETURN instructions. On
5768 some targets, these get split to a special version of the epilogue
5769 code. In order to be able to properly annotate these with unwind
5770 info, try to split them now. If we get a valid split, drop an
5771 EPILOGUE_BEG note and mark the insns as epilogue insns. */
5772 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5774 rtx_insn *prev, *last, *trial;
5776 if (e->flags & EDGE_FALLTHRU)
5777 continue;
5778 last = BB_END (e->src);
5779 if (!eh_returnjump_p (last))
5780 continue;
5782 prev = PREV_INSN (last);
5783 trial = try_split (PATTERN (last), last, 1);
5784 if (trial == last)
5785 continue;
5787 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
5788 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
5790 #endif
5792 /* If nothing falls through into the exit block, we don't need an
5793 epilogue. */
5795 if (exit_fallthru_edge == NULL)
5796 goto epilogue_done;
5798 #ifdef HAVE_epilogue
5799 if (HAVE_epilogue)
5801 start_sequence ();
5802 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5803 rtx_insn *seq = as_a <rtx_insn *> (gen_epilogue ());
5804 if (seq)
5805 emit_jump_insn (seq);
5807 /* Retain a map of the epilogue insns. */
5808 record_insns (seq, NULL, &epilogue_insn_hash);
5809 set_insn_locations (seq, epilogue_location);
5811 seq = get_insns ();
5812 returnjump = get_last_insn ();
5813 end_sequence ();
5815 insert_insn_on_edge (seq, exit_fallthru_edge);
5816 inserted = true;
5818 if (JUMP_P (returnjump))
5819 set_return_jump_label (returnjump);
5821 else
5822 #endif
5824 basic_block cur_bb;
5826 if (! next_active_insn (BB_END (exit_fallthru_edge->src)))
5827 goto epilogue_done;
5828 /* We have a fall-through edge to the exit block, the source is not
5829 at the end of the function, and there will be an assembler epilogue
5830 at the end of the function.
5831 We can't use force_nonfallthru here, because that would try to
5832 use return. Inserting a jump 'by hand' is extremely messy, so
5833 we take advantage of cfg_layout_finalize using
5834 fixup_fallthru_exit_predecessor. */
5835 cfg_layout_initialize (0);
5836 FOR_EACH_BB_FN (cur_bb, cfun)
5837 if (cur_bb->index >= NUM_FIXED_BLOCKS
5838 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5839 cur_bb->aux = cur_bb->next_bb;
5840 cfg_layout_finalize ();
5843 epilogue_done:
5845 default_rtl_profile ();
5847 if (inserted)
5849 sbitmap blocks;
5851 commit_edge_insertions ();
5853 /* Look for basic blocks within the prologue insns. */
5854 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
5855 bitmap_clear (blocks);
5856 bitmap_set_bit (blocks, entry_edge->dest->index);
5857 bitmap_set_bit (blocks, orig_entry_edge->dest->index);
5858 find_many_sub_basic_blocks (blocks);
5859 sbitmap_free (blocks);
5861 /* The epilogue insns we inserted may cause the exit edge to no longer
5862 be fallthru. */
5863 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5865 if (((e->flags & EDGE_FALLTHRU) != 0)
5866 && returnjump_p (BB_END (e->src)))
5867 e->flags &= ~EDGE_FALLTHRU;
5871 #ifdef HAVE_simple_return
5872 convert_to_simple_return (entry_edge, orig_entry_edge, bb_flags, returnjump,
5873 unconverted_simple_returns);
5874 #endif
5876 #ifdef HAVE_sibcall_epilogue
5877 /* Emit sibling epilogues before any sibling call sites. */
5878 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds); (e =
5879 ei_safe_edge (ei));
5882 basic_block bb = e->src;
5883 rtx_insn *insn = BB_END (bb);
5884 rtx ep_seq;
5886 if (!CALL_P (insn)
5887 || ! SIBLING_CALL_P (insn)
5888 #ifdef HAVE_simple_return
5889 || (entry_edge != orig_entry_edge
5890 && !bitmap_bit_p (&bb_flags, bb->index))
5891 #endif
5894 ei_next (&ei);
5895 continue;
5898 ep_seq = gen_sibcall_epilogue ();
5899 if (ep_seq)
5901 start_sequence ();
5902 emit_note (NOTE_INSN_EPILOGUE_BEG);
5903 emit_insn (ep_seq);
5904 rtx_insn *seq = get_insns ();
5905 end_sequence ();
5907 /* Retain a map of the epilogue insns. Used in life analysis to
5908 avoid getting rid of sibcall epilogue insns. Do this before we
5909 actually emit the sequence. */
5910 record_insns (seq, NULL, &epilogue_insn_hash);
5911 set_insn_locations (seq, epilogue_location);
5913 emit_insn_before (seq, insn);
5915 ei_next (&ei);
5917 #endif
5919 #ifdef HAVE_epilogue
5920 if (epilogue_end)
5922 rtx_insn *insn, *next;
5924 /* Similarly, move any line notes that appear after the epilogue.
5925 There is no need, however, to be quite so anal about the existence
5926 of such a note. Also possibly move
5927 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5928 info generation. */
5929 for (insn = epilogue_end; insn; insn = next)
5931 next = NEXT_INSN (insn);
5932 if (NOTE_P (insn)
5933 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
5934 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5937 #endif
5939 #ifdef HAVE_simple_return
5940 bitmap_clear (&bb_flags);
5941 #endif
5943 /* Threading the prologue and epilogue changes the artificial refs
5944 in the entry and exit blocks. */
5945 epilogue_completed = 1;
5946 df_update_entry_exit_and_calls ();
5949 /* Reposition the prologue-end and epilogue-begin notes after
5950 instruction scheduling. */
5952 void
5953 reposition_prologue_and_epilogue_notes (void)
5955 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
5956 || defined (HAVE_sibcall_epilogue)
5957 /* Since the hash table is created on demand, the fact that it is
5958 non-null is a signal that it is non-empty. */
5959 if (prologue_insn_hash != NULL)
5961 size_t len = htab_elements (prologue_insn_hash);
5962 rtx_insn *insn, *last = NULL, *note = NULL;
5964 /* Scan from the beginning until we reach the last prologue insn. */
5965 /* ??? While we do have the CFG intact, there are two problems:
5966 (1) The prologue can contain loops (typically probing the stack),
5967 which means that the end of the prologue isn't in the first bb.
5968 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
5969 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5971 if (NOTE_P (insn))
5973 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
5974 note = insn;
5976 else if (contains (insn, prologue_insn_hash))
5978 last = insn;
5979 if (--len == 0)
5980 break;
5984 if (last)
5986 if (note == NULL)
5988 /* Scan forward looking for the PROLOGUE_END note. It should
5989 be right at the beginning of the block, possibly with other
5990 insn notes that got moved there. */
5991 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
5993 if (NOTE_P (note)
5994 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
5995 break;
5999 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6000 if (LABEL_P (last))
6001 last = NEXT_INSN (last);
6002 reorder_insns (note, note, last);
6006 if (epilogue_insn_hash != NULL)
6008 edge_iterator ei;
6009 edge e;
6011 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6013 rtx_insn *insn, *first = NULL, *note = NULL;
6014 basic_block bb = e->src;
6016 /* Scan from the beginning until we reach the first epilogue insn. */
6017 FOR_BB_INSNS (bb, insn)
6019 if (NOTE_P (insn))
6021 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6023 note = insn;
6024 if (first != NULL)
6025 break;
6028 else if (first == NULL && contains (insn, epilogue_insn_hash))
6030 first = insn;
6031 if (note != NULL)
6032 break;
6036 if (note)
6038 /* If the function has a single basic block, and no real
6039 epilogue insns (e.g. sibcall with no cleanup), the
6040 epilogue note can get scheduled before the prologue
6041 note. If we have frame related prologue insns, having
6042 them scanned during the epilogue will result in a crash.
6043 In this case re-order the epilogue note to just before
6044 the last insn in the block. */
6045 if (first == NULL)
6046 first = BB_END (bb);
6048 if (PREV_INSN (first) != note)
6049 reorder_insns (note, note, PREV_INSN (first));
6053 #endif /* HAVE_prologue or HAVE_epilogue */
6056 /* Returns the name of function declared by FNDECL. */
6057 const char *
6058 fndecl_name (tree fndecl)
6060 if (fndecl == NULL)
6061 return "(nofn)";
6062 return lang_hooks.decl_printable_name (fndecl, 2);
6065 /* Returns the name of function FN. */
6066 const char *
6067 function_name (struct function *fn)
6069 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6070 return fndecl_name (fndecl);
6073 /* Returns the name of the current function. */
6074 const char *
6075 current_function_name (void)
6077 return function_name (cfun);
6081 static unsigned int
6082 rest_of_handle_check_leaf_regs (void)
6084 #ifdef LEAF_REGISTERS
6085 crtl->uses_only_leaf_regs
6086 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6087 #endif
6088 return 0;
6091 /* Insert a TYPE into the used types hash table of CFUN. */
6093 static void
6094 used_types_insert_helper (tree type, struct function *func)
6096 if (type != NULL && func != NULL)
6098 if (func->used_types_hash == NULL)
6099 func->used_types_hash = hash_set<tree>::create_ggc (37);
6101 func->used_types_hash->add (type);
6105 /* Given a type, insert it into the used hash table in cfun. */
6106 void
6107 used_types_insert (tree t)
6109 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6110 if (TYPE_NAME (t))
6111 break;
6112 else
6113 t = TREE_TYPE (t);
6114 if (TREE_CODE (t) == ERROR_MARK)
6115 return;
6116 if (TYPE_NAME (t) == NULL_TREE
6117 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6118 t = TYPE_MAIN_VARIANT (t);
6119 if (debug_info_level > DINFO_LEVEL_NONE)
6121 if (cfun)
6122 used_types_insert_helper (t, cfun);
6123 else
6125 /* So this might be a type referenced by a global variable.
6126 Record that type so that we can later decide to emit its
6127 debug information. */
6128 vec_safe_push (types_used_by_cur_var_decl, t);
6133 /* Helper to Hash a struct types_used_by_vars_entry. */
6135 static hashval_t
6136 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6138 gcc_assert (entry && entry->var_decl && entry->type);
6140 return iterative_hash_object (entry->type,
6141 iterative_hash_object (entry->var_decl, 0));
6144 /* Hash function of the types_used_by_vars_entry hash table. */
6146 hashval_t
6147 used_type_hasher::hash (types_used_by_vars_entry *entry)
6149 return hash_types_used_by_vars_entry (entry);
6152 /*Equality function of the types_used_by_vars_entry hash table. */
6154 bool
6155 used_type_hasher::equal (types_used_by_vars_entry *e1,
6156 types_used_by_vars_entry *e2)
6158 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6161 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6163 void
6164 types_used_by_var_decl_insert (tree type, tree var_decl)
6166 if (type != NULL && var_decl != NULL)
6168 types_used_by_vars_entry **slot;
6169 struct types_used_by_vars_entry e;
6170 e.var_decl = var_decl;
6171 e.type = type;
6172 if (types_used_by_vars_hash == NULL)
6173 types_used_by_vars_hash
6174 = hash_table<used_type_hasher>::create_ggc (37);
6176 slot = types_used_by_vars_hash->find_slot (&e, INSERT);
6177 if (*slot == NULL)
6179 struct types_used_by_vars_entry *entry;
6180 entry = ggc_alloc<types_used_by_vars_entry> ();
6181 entry->type = type;
6182 entry->var_decl = var_decl;
6183 *slot = entry;
6188 namespace {
6190 const pass_data pass_data_leaf_regs =
6192 RTL_PASS, /* type */
6193 "*leaf_regs", /* name */
6194 OPTGROUP_NONE, /* optinfo_flags */
6195 TV_NONE, /* tv_id */
6196 0, /* properties_required */
6197 0, /* properties_provided */
6198 0, /* properties_destroyed */
6199 0, /* todo_flags_start */
6200 0, /* todo_flags_finish */
6203 class pass_leaf_regs : public rtl_opt_pass
6205 public:
6206 pass_leaf_regs (gcc::context *ctxt)
6207 : rtl_opt_pass (pass_data_leaf_regs, ctxt)
6210 /* opt_pass methods: */
6211 virtual unsigned int execute (function *)
6213 return rest_of_handle_check_leaf_regs ();
6216 }; // class pass_leaf_regs
6218 } // anon namespace
6220 rtl_opt_pass *
6221 make_pass_leaf_regs (gcc::context *ctxt)
6223 return new pass_leaf_regs (ctxt);
6226 static unsigned int
6227 rest_of_handle_thread_prologue_and_epilogue (void)
6229 if (optimize)
6230 cleanup_cfg (CLEANUP_EXPENSIVE);
6232 /* On some machines, the prologue and epilogue code, or parts thereof,
6233 can be represented as RTL. Doing so lets us schedule insns between
6234 it and the rest of the code and also allows delayed branch
6235 scheduling to operate in the epilogue. */
6236 thread_prologue_and_epilogue_insns ();
6238 /* Shrink-wrapping can result in unreachable edges in the epilogue,
6239 see PR57320. */
6240 cleanup_cfg (0);
6242 /* The stack usage info is finalized during prologue expansion. */
6243 if (flag_stack_usage_info)
6244 output_stack_usage ();
6246 return 0;
6249 namespace {
6251 const pass_data pass_data_thread_prologue_and_epilogue =
6253 RTL_PASS, /* type */
6254 "pro_and_epilogue", /* name */
6255 OPTGROUP_NONE, /* optinfo_flags */
6256 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6257 0, /* properties_required */
6258 0, /* properties_provided */
6259 0, /* properties_destroyed */
6260 0, /* todo_flags_start */
6261 ( TODO_df_verify | TODO_df_finish ), /* todo_flags_finish */
6264 class pass_thread_prologue_and_epilogue : public rtl_opt_pass
6266 public:
6267 pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6268 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
6271 /* opt_pass methods: */
6272 virtual unsigned int execute (function *)
6274 return rest_of_handle_thread_prologue_and_epilogue ();
6277 }; // class pass_thread_prologue_and_epilogue
6279 } // anon namespace
6281 rtl_opt_pass *
6282 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6284 return new pass_thread_prologue_and_epilogue (ctxt);
6288 /* This mini-pass fixes fall-out from SSA in asm statements that have
6289 in-out constraints. Say you start with
6291 orig = inout;
6292 asm ("": "+mr" (inout));
6293 use (orig);
6295 which is transformed very early to use explicit output and match operands:
6297 orig = inout;
6298 asm ("": "=mr" (inout) : "0" (inout));
6299 use (orig);
6301 Or, after SSA and copyprop,
6303 asm ("": "=mr" (inout_2) : "0" (inout_1));
6304 use (inout_1);
6306 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6307 they represent two separate values, so they will get different pseudo
6308 registers during expansion. Then, since the two operands need to match
6309 per the constraints, but use different pseudo registers, reload can
6310 only register a reload for these operands. But reloads can only be
6311 satisfied by hardregs, not by memory, so we need a register for this
6312 reload, just because we are presented with non-matching operands.
6313 So, even though we allow memory for this operand, no memory can be
6314 used for it, just because the two operands don't match. This can
6315 cause reload failures on register-starved targets.
6317 So it's a symptom of reload not being able to use memory for reloads
6318 or, alternatively it's also a symptom of both operands not coming into
6319 reload as matching (in which case the pseudo could go to memory just
6320 fine, as the alternative allows it, and no reload would be necessary).
6321 We fix the latter problem here, by transforming
6323 asm ("": "=mr" (inout_2) : "0" (inout_1));
6325 back to
6327 inout_2 = inout_1;
6328 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6330 static void
6331 match_asm_constraints_1 (rtx_insn *insn, rtx *p_sets, int noutputs)
6333 int i;
6334 bool changed = false;
6335 rtx op = SET_SRC (p_sets[0]);
6336 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
6337 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
6338 bool *output_matched = XALLOCAVEC (bool, noutputs);
6340 memset (output_matched, 0, noutputs * sizeof (bool));
6341 for (i = 0; i < ninputs; i++)
6343 rtx input, output;
6344 rtx_insn *insns;
6345 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
6346 char *end;
6347 int match, j;
6349 if (*constraint == '%')
6350 constraint++;
6352 match = strtoul (constraint, &end, 10);
6353 if (end == constraint)
6354 continue;
6356 gcc_assert (match < noutputs);
6357 output = SET_DEST (p_sets[match]);
6358 input = RTVEC_ELT (inputs, i);
6359 /* Only do the transformation for pseudos. */
6360 if (! REG_P (output)
6361 || rtx_equal_p (output, input)
6362 || (GET_MODE (input) != VOIDmode
6363 && GET_MODE (input) != GET_MODE (output)))
6364 continue;
6366 /* We can't do anything if the output is also used as input,
6367 as we're going to overwrite it. */
6368 for (j = 0; j < ninputs; j++)
6369 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
6370 break;
6371 if (j != ninputs)
6372 continue;
6374 /* Avoid changing the same input several times. For
6375 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6376 only change in once (to out1), rather than changing it
6377 first to out1 and afterwards to out2. */
6378 if (i > 0)
6380 for (j = 0; j < noutputs; j++)
6381 if (output_matched[j] && input == SET_DEST (p_sets[j]))
6382 break;
6383 if (j != noutputs)
6384 continue;
6386 output_matched[match] = true;
6388 start_sequence ();
6389 emit_move_insn (output, input);
6390 insns = get_insns ();
6391 end_sequence ();
6392 emit_insn_before (insns, insn);
6394 /* Now replace all mentions of the input with output. We can't
6395 just replace the occurrence in inputs[i], as the register might
6396 also be used in some other input (or even in an address of an
6397 output), which would mean possibly increasing the number of
6398 inputs by one (namely 'output' in addition), which might pose
6399 a too complicated problem for reload to solve. E.g. this situation:
6401 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6403 Here 'input' is used in two occurrences as input (once for the
6404 input operand, once for the address in the second output operand).
6405 If we would replace only the occurrence of the input operand (to
6406 make the matching) we would be left with this:
6408 output = input
6409 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6411 Now we suddenly have two different input values (containing the same
6412 value, but different pseudos) where we formerly had only one.
6413 With more complicated asms this might lead to reload failures
6414 which wouldn't have happen without this pass. So, iterate over
6415 all operands and replace all occurrences of the register used. */
6416 for (j = 0; j < noutputs; j++)
6417 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
6418 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
6419 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
6420 input, output);
6421 for (j = 0; j < ninputs; j++)
6422 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
6423 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
6424 input, output);
6426 changed = true;
6429 if (changed)
6430 df_insn_rescan (insn);
6433 namespace {
6435 const pass_data pass_data_match_asm_constraints =
6437 RTL_PASS, /* type */
6438 "asmcons", /* name */
6439 OPTGROUP_NONE, /* optinfo_flags */
6440 TV_NONE, /* tv_id */
6441 0, /* properties_required */
6442 0, /* properties_provided */
6443 0, /* properties_destroyed */
6444 0, /* todo_flags_start */
6445 0, /* todo_flags_finish */
6448 class pass_match_asm_constraints : public rtl_opt_pass
6450 public:
6451 pass_match_asm_constraints (gcc::context *ctxt)
6452 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
6455 /* opt_pass methods: */
6456 virtual unsigned int execute (function *);
6458 }; // class pass_match_asm_constraints
6460 unsigned
6461 pass_match_asm_constraints::execute (function *fun)
6463 basic_block bb;
6464 rtx_insn *insn;
6465 rtx pat, *p_sets;
6466 int noutputs;
6468 if (!crtl->has_asm_statement)
6469 return 0;
6471 df_set_flags (DF_DEFER_INSN_RESCAN);
6472 FOR_EACH_BB_FN (bb, fun)
6474 FOR_BB_INSNS (bb, insn)
6476 if (!INSN_P (insn))
6477 continue;
6479 pat = PATTERN (insn);
6480 if (GET_CODE (pat) == PARALLEL)
6481 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
6482 else if (GET_CODE (pat) == SET)
6483 p_sets = &PATTERN (insn), noutputs = 1;
6484 else
6485 continue;
6487 if (GET_CODE (*p_sets) == SET
6488 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
6489 match_asm_constraints_1 (insn, p_sets, noutputs);
6493 return TODO_df_finish;
6496 } // anon namespace
6498 rtl_opt_pass *
6499 make_pass_match_asm_constraints (gcc::context *ctxt)
6501 return new pass_match_asm_constraints (ctxt);
6505 #include "gt-function.h"