1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is the final pass of the compiler.
21 It looks at the rtl code for a function and outputs assembler code.
23 Call `final_start_function' to output the assembler code for function entry,
24 `final' to output assembler code for some RTL code,
25 `final_end_function' to output assembler code for function exit.
26 If a function is compiled in several pieces, each piece is
27 output separately with `final'.
29 Some optimizations are also done at this level.
30 Move instructions that were made unnecessary by good register allocation
31 are detected and omitted from the output. (Though most of these
32 are removed by the last jump pass.)
34 Instructions to set the condition codes are omitted when it can be
35 seen that the condition codes already had the desired values.
37 In some cases it is sufficient if the inherited condition codes
38 have related values, but this may require the following insn
39 (the one that tests the condition codes) to be modified.
41 The code for the function prologue and epilogue are generated
42 directly in assembler by the target functions function_prologue and
43 function_epilogue. Those instructions never exist as rtl. */
47 #include "coretypes.h"
52 #include "hard-reg-set.h"
56 #include "insn-config.h"
57 #include "insn-attr.h"
59 #include "conditions.h"
64 #include "rtl-error.h"
65 #include "toplev.h" /* exact_log2, floor_log2 */
68 #include "basic-block.h"
70 #include "targhooks.h"
73 #include "tree-pass.h"
81 #include "tree-pretty-print.h" /* for dump_function_header */
83 #include "wide-int-print.h"
86 #ifdef XCOFF_DEBUGGING_INFO
87 #include "xcoffout.h" /* Needed for external data
88 declarations for e.g. AIX 4.x. */
91 #include "dwarf2out.h"
93 #ifdef DBX_DEBUGGING_INFO
97 #ifdef SDB_DEBUGGING_INFO
101 /* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT.
102 So define a null default for it to save conditionalization later. */
103 #ifndef CC_STATUS_INIT
104 #define CC_STATUS_INIT
107 /* Is the given character a logical line separator for the assembler? */
108 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
109 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
112 #ifndef JUMP_TABLES_IN_TEXT_SECTION
113 #define JUMP_TABLES_IN_TEXT_SECTION 0
116 /* Bitflags used by final_scan_insn. */
118 #define SEEN_EMITTED 2
120 /* Last insn processed by final_scan_insn. */
121 static rtx_insn
*debug_insn
;
122 rtx_insn
*current_output_insn
;
124 /* Line number of last NOTE. */
125 static int last_linenum
;
127 /* Last discriminator written to assembly. */
128 static int last_discriminator
;
130 /* Discriminator of current block. */
131 static int discriminator
;
133 /* Highest line number in current block. */
134 static int high_block_linenum
;
136 /* Likewise for function. */
137 static int high_function_linenum
;
139 /* Filename of last NOTE. */
140 static const char *last_filename
;
142 /* Override filename and line number. */
143 static const char *override_filename
;
144 static int override_linenum
;
146 /* Whether to force emission of a line note before the next insn. */
147 static bool force_source_line
= false;
149 extern const int length_unit_log
; /* This is defined in insn-attrtab.c. */
151 /* Nonzero while outputting an `asm' with operands.
152 This means that inconsistencies are the user's fault, so don't die.
153 The precise value is the insn being output, to pass to error_for_asm. */
154 const rtx_insn
*this_is_asm_operands
;
156 /* Number of operands of this insn, for an `asm' with operands. */
157 static unsigned int insn_noperands
;
159 /* Compare optimization flag. */
161 static rtx last_ignored_compare
= 0;
163 /* Assign a unique number to each insn that is output.
164 This can be used to generate unique local labels. */
166 static int insn_counter
= 0;
169 /* This variable contains machine-dependent flags (defined in tm.h)
170 set and examined by output routines
171 that describe how to interpret the condition codes properly. */
175 /* During output of an insn, this contains a copy of cc_status
176 from before the insn. */
178 CC_STATUS cc_prev_status
;
181 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
183 static int block_depth
;
185 /* Nonzero if have enabled APP processing of our assembler output. */
189 /* If we are outputting an insn sequence, this contains the sequence rtx.
192 rtx_sequence
*final_sequence
;
194 #ifdef ASSEMBLER_DIALECT
196 /* Number of the assembler dialect to use, starting at 0. */
197 static int dialect_number
;
200 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
201 rtx current_insn_predicate
;
203 /* True if printing into -fdump-final-insns= dump. */
204 bool final_insns_dump_p
;
206 /* True if profile_function should be called, but hasn't been called yet. */
207 static bool need_profile_function
;
209 static int asm_insn_count (rtx
);
210 static void profile_function (FILE *);
211 static void profile_after_prologue (FILE *);
212 static bool notice_source_line (rtx_insn
*, bool *);
213 static rtx
walk_alter_subreg (rtx
*, bool *);
214 static void output_asm_name (void);
215 static void output_alternate_entry_point (FILE *, rtx_insn
*);
216 static tree
get_mem_expr_from_op (rtx
, int *);
217 static void output_asm_operand_names (rtx
*, int *, int);
218 #ifdef LEAF_REGISTERS
219 static void leaf_renumber_regs (rtx_insn
*);
222 static int alter_cond (rtx
);
224 #ifndef ADDR_VEC_ALIGN
225 static int final_addr_vec_align (rtx
);
227 static int align_fuzz (rtx
, rtx
, int, unsigned);
228 static void collect_fn_hard_reg_usage (void);
229 static tree
get_call_fndecl (rtx_insn
*);
231 /* Initialize data in final at the beginning of a compilation. */
234 init_final (const char *filename ATTRIBUTE_UNUSED
)
239 #ifdef ASSEMBLER_DIALECT
240 dialect_number
= ASSEMBLER_DIALECT
;
244 /* Default target function prologue and epilogue assembler output.
246 If not overridden for epilogue code, then the function body itself
247 contains return instructions wherever needed. */
249 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED
,
250 HOST_WIDE_INT size ATTRIBUTE_UNUSED
)
255 default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED
,
256 tree decl ATTRIBUTE_UNUSED
,
257 bool new_is_cold ATTRIBUTE_UNUSED
)
261 /* Default target hook that outputs nothing to a stream. */
263 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED
)
267 /* Enable APP processing of subsequent output.
268 Used before the output from an `asm' statement. */
275 fputs (ASM_APP_ON
, asm_out_file
);
280 /* Disable APP processing of subsequent output.
281 Called from varasm.c before most kinds of output. */
288 fputs (ASM_APP_OFF
, asm_out_file
);
293 /* Return the number of slots filled in the current
294 delayed branch sequence (we don't count the insn needing the
295 delay slot). Zero if not in a delayed branch sequence. */
299 dbr_sequence_length (void)
301 if (final_sequence
!= 0)
302 return XVECLEN (final_sequence
, 0) - 1;
308 /* The next two pages contain routines used to compute the length of an insn
309 and to shorten branches. */
311 /* Arrays for insn lengths, and addresses. The latter is referenced by
312 `insn_current_length'. */
314 static int *insn_lengths
;
316 vec
<int> insn_addresses_
;
318 /* Max uid for which the above arrays are valid. */
319 static int insn_lengths_max_uid
;
321 /* Address of insn being processed. Used by `insn_current_length'. */
322 int insn_current_address
;
324 /* Address of insn being processed in previous iteration. */
325 int insn_last_address
;
327 /* known invariant alignment of insn being processed. */
328 int insn_current_align
;
330 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
331 gives the next following alignment insn that increases the known
332 alignment, or NULL_RTX if there is no such insn.
333 For any alignment obtained this way, we can again index uid_align with
334 its uid to obtain the next following align that in turn increases the
335 alignment, till we reach NULL_RTX; the sequence obtained this way
336 for each insn we'll call the alignment chain of this insn in the following
339 struct label_alignment
345 static rtx
*uid_align
;
346 static int *uid_shuid
;
347 static struct label_alignment
*label_align
;
349 /* Indicate that branch shortening hasn't yet been done. */
352 init_insn_lengths (void)
363 insn_lengths_max_uid
= 0;
365 if (HAVE_ATTR_length
)
366 INSN_ADDRESSES_FREE ();
374 /* Obtain the current length of an insn. If branch shortening has been done,
375 get its actual length. Otherwise, use FALLBACK_FN to calculate the
378 get_attr_length_1 (rtx_insn
*insn
, int (*fallback_fn
) (rtx_insn
*))
384 if (!HAVE_ATTR_length
)
387 if (insn_lengths_max_uid
> INSN_UID (insn
))
388 return insn_lengths
[INSN_UID (insn
)];
390 switch (GET_CODE (insn
))
400 length
= fallback_fn (insn
);
404 body
= PATTERN (insn
);
405 if (GET_CODE (body
) == USE
|| GET_CODE (body
) == CLOBBER
)
408 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
409 length
= asm_insn_count (body
) * fallback_fn (insn
);
410 else if (rtx_sequence
*seq
= dyn_cast
<rtx_sequence
*> (body
))
411 for (i
= 0; i
< seq
->len (); i
++)
412 length
+= get_attr_length_1 (seq
->insn (i
), fallback_fn
);
414 length
= fallback_fn (insn
);
421 #ifdef ADJUST_INSN_LENGTH
422 ADJUST_INSN_LENGTH (insn
, length
);
427 /* Obtain the current length of an insn. If branch shortening has been done,
428 get its actual length. Otherwise, get its maximum length. */
430 get_attr_length (rtx_insn
*insn
)
432 return get_attr_length_1 (insn
, insn_default_length
);
435 /* Obtain the current length of an insn. If branch shortening has been done,
436 get its actual length. Otherwise, get its minimum length. */
438 get_attr_min_length (rtx_insn
*insn
)
440 return get_attr_length_1 (insn
, insn_min_length
);
443 /* Code to handle alignment inside shorten_branches. */
445 /* Here is an explanation how the algorithm in align_fuzz can give
448 Call a sequence of instructions beginning with alignment point X
449 and continuing until the next alignment point `block X'. When `X'
450 is used in an expression, it means the alignment value of the
453 Call the distance between the start of the first insn of block X, and
454 the end of the last insn of block X `IX', for the `inner size of X'.
455 This is clearly the sum of the instruction lengths.
457 Likewise with the next alignment-delimited block following X, which we
460 Call the distance between the start of the first insn of block X, and
461 the start of the first insn of block Y `OX', for the `outer size of X'.
463 The estimated padding is then OX - IX.
465 OX can be safely estimated as
470 OX = round_up(IX, X) + Y - X
472 Clearly est(IX) >= real(IX), because that only depends on the
473 instruction lengths, and those being overestimated is a given.
475 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
476 we needn't worry about that when thinking about OX.
478 When X >= Y, the alignment provided by Y adds no uncertainty factor
479 for branch ranges starting before X, so we can just round what we have.
480 But when X < Y, we don't know anything about the, so to speak,
481 `middle bits', so we have to assume the worst when aligning up from an
482 address mod X to one mod Y, which is Y - X. */
485 #define LABEL_ALIGN(LABEL) align_labels_log
489 #define LOOP_ALIGN(LABEL) align_loops_log
492 #ifndef LABEL_ALIGN_AFTER_BARRIER
493 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
497 #define JUMP_ALIGN(LABEL) align_jumps_log
501 default_label_align_after_barrier_max_skip (rtx_insn
*insn ATTRIBUTE_UNUSED
)
507 default_loop_align_max_skip (rtx_insn
*insn ATTRIBUTE_UNUSED
)
509 return align_loops_max_skip
;
513 default_label_align_max_skip (rtx_insn
*insn ATTRIBUTE_UNUSED
)
515 return align_labels_max_skip
;
519 default_jump_align_max_skip (rtx_insn
*insn ATTRIBUTE_UNUSED
)
521 return align_jumps_max_skip
;
524 #ifndef ADDR_VEC_ALIGN
526 final_addr_vec_align (rtx addr_vec
)
528 int align
= GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec
)));
530 if (align
> BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
)
531 align
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
532 return exact_log2 (align
);
536 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
539 #ifndef INSN_LENGTH_ALIGNMENT
540 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
543 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
545 static int min_labelno
, max_labelno
;
547 #define LABEL_TO_ALIGNMENT(LABEL) \
548 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
550 #define LABEL_TO_MAX_SKIP(LABEL) \
551 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
553 /* For the benefit of port specific code do this also as a function. */
556 label_to_alignment (rtx label
)
558 if (CODE_LABEL_NUMBER (label
) <= max_labelno
)
559 return LABEL_TO_ALIGNMENT (label
);
564 label_to_max_skip (rtx label
)
566 if (CODE_LABEL_NUMBER (label
) <= max_labelno
)
567 return LABEL_TO_MAX_SKIP (label
);
571 /* The differences in addresses
572 between a branch and its target might grow or shrink depending on
573 the alignment the start insn of the range (the branch for a forward
574 branch or the label for a backward branch) starts out on; if these
575 differences are used naively, they can even oscillate infinitely.
576 We therefore want to compute a 'worst case' address difference that
577 is independent of the alignment the start insn of the range end
578 up on, and that is at least as large as the actual difference.
579 The function align_fuzz calculates the amount we have to add to the
580 naively computed difference, by traversing the part of the alignment
581 chain of the start insn of the range that is in front of the end insn
582 of the range, and considering for each alignment the maximum amount
583 that it might contribute to a size increase.
585 For casesi tables, we also want to know worst case minimum amounts of
586 address difference, in case a machine description wants to introduce
587 some common offset that is added to all offsets in a table.
588 For this purpose, align_fuzz with a growth argument of 0 computes the
589 appropriate adjustment. */
591 /* Compute the maximum delta by which the difference of the addresses of
592 START and END might grow / shrink due to a different address for start
593 which changes the size of alignment insns between START and END.
594 KNOWN_ALIGN_LOG is the alignment known for START.
595 GROWTH should be ~0 if the objective is to compute potential code size
596 increase, and 0 if the objective is to compute potential shrink.
597 The return value is undefined for any other value of GROWTH. */
600 align_fuzz (rtx start
, rtx end
, int known_align_log
, unsigned int growth
)
602 int uid
= INSN_UID (start
);
604 int known_align
= 1 << known_align_log
;
605 int end_shuid
= INSN_SHUID (end
);
608 for (align_label
= uid_align
[uid
]; align_label
; align_label
= uid_align
[uid
])
610 int align_addr
, new_align
;
612 uid
= INSN_UID (align_label
);
613 align_addr
= INSN_ADDRESSES (uid
) - insn_lengths
[uid
];
614 if (uid_shuid
[uid
] > end_shuid
)
616 known_align_log
= LABEL_TO_ALIGNMENT (align_label
);
617 new_align
= 1 << known_align_log
;
618 if (new_align
< known_align
)
620 fuzz
+= (-align_addr
^ growth
) & (new_align
- known_align
);
621 known_align
= new_align
;
626 /* Compute a worst-case reference address of a branch so that it
627 can be safely used in the presence of aligned labels. Since the
628 size of the branch itself is unknown, the size of the branch is
629 not included in the range. I.e. for a forward branch, the reference
630 address is the end address of the branch as known from the previous
631 branch shortening pass, minus a value to account for possible size
632 increase due to alignment. For a backward branch, it is the start
633 address of the branch as known from the current pass, plus a value
634 to account for possible size increase due to alignment.
635 NB.: Therefore, the maximum offset allowed for backward branches needs
636 to exclude the branch size. */
639 insn_current_reference_address (rtx_insn
*branch
)
644 if (! INSN_ADDRESSES_SET_P ())
647 seq
= NEXT_INSN (PREV_INSN (branch
));
648 seq_uid
= INSN_UID (seq
);
649 if (!JUMP_P (branch
))
650 /* This can happen for example on the PA; the objective is to know the
651 offset to address something in front of the start of the function.
652 Thus, we can treat it like a backward branch.
653 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
654 any alignment we'd encounter, so we skip the call to align_fuzz. */
655 return insn_current_address
;
656 dest
= JUMP_LABEL (branch
);
658 /* BRANCH has no proper alignment chain set, so use SEQ.
659 BRANCH also has no INSN_SHUID. */
660 if (INSN_SHUID (seq
) < INSN_SHUID (dest
))
662 /* Forward branch. */
663 return (insn_last_address
+ insn_lengths
[seq_uid
]
664 - align_fuzz (seq
, dest
, length_unit_log
, ~0));
668 /* Backward branch. */
669 return (insn_current_address
670 + align_fuzz (dest
, seq
, length_unit_log
, ~0));
674 /* Compute branch alignments based on frequency information in the
678 compute_alignments (void)
680 int log
, max_skip
, max_log
;
683 int freq_threshold
= 0;
691 max_labelno
= max_label_num ();
692 min_labelno
= get_first_label_num ();
693 label_align
= XCNEWVEC (struct label_alignment
, max_labelno
- min_labelno
+ 1);
695 /* If not optimizing or optimizing for size, don't assign any alignments. */
696 if (! optimize
|| optimize_function_for_size_p (cfun
))
701 dump_reg_info (dump_file
);
702 dump_flow_info (dump_file
, TDF_DETAILS
);
703 flow_loops_dump (dump_file
, NULL
, 1);
705 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
706 FOR_EACH_BB_FN (bb
, cfun
)
707 if (bb
->frequency
> freq_max
)
708 freq_max
= bb
->frequency
;
709 freq_threshold
= freq_max
/ PARAM_VALUE (PARAM_ALIGN_THRESHOLD
);
712 fprintf (dump_file
, "freq_max: %i\n",freq_max
);
713 FOR_EACH_BB_FN (bb
, cfun
)
715 rtx_insn
*label
= BB_HEAD (bb
);
716 int fallthru_frequency
= 0, branch_frequency
= 0, has_fallthru
= 0;
721 || optimize_bb_for_size_p (bb
))
725 "BB %4i freq %4i loop %2i loop_depth %2i skipped.\n",
726 bb
->index
, bb
->frequency
, bb
->loop_father
->num
,
730 max_log
= LABEL_ALIGN (label
);
731 max_skip
= targetm
.asm_out
.label_align_max_skip (label
);
733 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
735 if (e
->flags
& EDGE_FALLTHRU
)
736 has_fallthru
= 1, fallthru_frequency
+= EDGE_FREQUENCY (e
);
738 branch_frequency
+= EDGE_FREQUENCY (e
);
742 fprintf (dump_file
, "BB %4i freq %4i loop %2i loop_depth"
743 " %2i fall %4i branch %4i",
744 bb
->index
, bb
->frequency
, bb
->loop_father
->num
,
746 fallthru_frequency
, branch_frequency
);
747 if (!bb
->loop_father
->inner
&& bb
->loop_father
->num
)
748 fprintf (dump_file
, " inner_loop");
749 if (bb
->loop_father
->header
== bb
)
750 fprintf (dump_file
, " loop_header");
751 fprintf (dump_file
, "\n");
754 /* There are two purposes to align block with no fallthru incoming edge:
755 1) to avoid fetch stalls when branch destination is near cache boundary
756 2) to improve cache efficiency in case the previous block is not executed
757 (so it does not need to be in the cache).
759 We to catch first case, we align frequently executed blocks.
760 To catch the second, we align blocks that are executed more frequently
761 than the predecessor and the predecessor is likely to not be executed
762 when function is called. */
765 && (branch_frequency
> freq_threshold
766 || (bb
->frequency
> bb
->prev_bb
->frequency
* 10
767 && (bb
->prev_bb
->frequency
768 <= ENTRY_BLOCK_PTR_FOR_FN (cfun
)->frequency
/ 2))))
770 log
= JUMP_ALIGN (label
);
772 fprintf (dump_file
, " jump alignment added.\n");
776 max_skip
= targetm
.asm_out
.jump_align_max_skip (label
);
779 /* In case block is frequent and reached mostly by non-fallthru edge,
780 align it. It is most likely a first block of loop. */
782 && !(single_succ_p (bb
)
783 && single_succ (bb
) == EXIT_BLOCK_PTR_FOR_FN (cfun
))
784 && optimize_bb_for_speed_p (bb
)
785 && branch_frequency
+ fallthru_frequency
> freq_threshold
787 > fallthru_frequency
* PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS
)))
789 log
= LOOP_ALIGN (label
);
791 fprintf (dump_file
, " internal loop alignment added.\n");
795 max_skip
= targetm
.asm_out
.loop_align_max_skip (label
);
798 LABEL_TO_ALIGNMENT (label
) = max_log
;
799 LABEL_TO_MAX_SKIP (label
) = max_skip
;
802 loop_optimizer_finalize ();
803 free_dominance_info (CDI_DOMINATORS
);
807 /* Grow the LABEL_ALIGN array after new labels are created. */
810 grow_label_align (void)
812 int old
= max_labelno
;
816 max_labelno
= max_label_num ();
818 n_labels
= max_labelno
- min_labelno
+ 1;
819 n_old_labels
= old
- min_labelno
+ 1;
821 label_align
= XRESIZEVEC (struct label_alignment
, label_align
, n_labels
);
823 /* Range of labels grows monotonically in the function. Failing here
824 means that the initialization of array got lost. */
825 gcc_assert (n_old_labels
<= n_labels
);
827 memset (label_align
+ n_old_labels
, 0,
828 (n_labels
- n_old_labels
) * sizeof (struct label_alignment
));
831 /* Update the already computed alignment information. LABEL_PAIRS is a vector
832 made up of pairs of labels for which the alignment information of the first
833 element will be copied from that of the second element. */
836 update_alignments (vec
<rtx
> &label_pairs
)
839 rtx iter
, label
= NULL_RTX
;
841 if (max_labelno
!= max_label_num ())
844 FOR_EACH_VEC_ELT (label_pairs
, i
, iter
)
847 LABEL_TO_ALIGNMENT (label
) = LABEL_TO_ALIGNMENT (iter
);
848 LABEL_TO_MAX_SKIP (label
) = LABEL_TO_MAX_SKIP (iter
);
856 const pass_data pass_data_compute_alignments
=
859 "alignments", /* name */
860 OPTGROUP_NONE
, /* optinfo_flags */
862 0, /* properties_required */
863 0, /* properties_provided */
864 0, /* properties_destroyed */
865 0, /* todo_flags_start */
866 0, /* todo_flags_finish */
869 class pass_compute_alignments
: public rtl_opt_pass
872 pass_compute_alignments (gcc::context
*ctxt
)
873 : rtl_opt_pass (pass_data_compute_alignments
, ctxt
)
876 /* opt_pass methods: */
877 virtual unsigned int execute (function
*) { return compute_alignments (); }
879 }; // class pass_compute_alignments
884 make_pass_compute_alignments (gcc::context
*ctxt
)
886 return new pass_compute_alignments (ctxt
);
890 /* Make a pass over all insns and compute their actual lengths by shortening
891 any branches of variable length if possible. */
893 /* shorten_branches might be called multiple times: for example, the SH
894 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
895 In order to do this, it needs proper length information, which it obtains
896 by calling shorten_branches. This cannot be collapsed with
897 shorten_branches itself into a single pass unless we also want to integrate
898 reorg.c, since the branch splitting exposes new instructions with delay
902 shorten_branches (rtx_insn
*first
)
909 #define MAX_CODE_ALIGN 16
911 int something_changed
= 1;
912 char *varying_length
;
915 rtx align_tab
[MAX_CODE_ALIGN
];
917 /* Compute maximum UID and allocate label_align / uid_shuid. */
918 max_uid
= get_max_uid ();
920 /* Free uid_shuid before reallocating it. */
923 uid_shuid
= XNEWVEC (int, max_uid
);
925 if (max_labelno
!= max_label_num ())
928 /* Initialize label_align and set up uid_shuid to be strictly
929 monotonically rising with insn order. */
930 /* We use max_log here to keep track of the maximum alignment we want to
931 impose on the next CODE_LABEL (or the current one if we are processing
932 the CODE_LABEL itself). */
937 for (insn
= get_insns (), i
= 1; insn
; insn
= NEXT_INSN (insn
))
941 INSN_SHUID (insn
) = i
++;
948 bool next_is_jumptable
;
950 /* Merge in alignments computed by compute_alignments. */
951 log
= LABEL_TO_ALIGNMENT (insn
);
955 max_skip
= LABEL_TO_MAX_SKIP (insn
);
958 next
= next_nonnote_insn (insn
);
959 next_is_jumptable
= next
&& JUMP_TABLE_DATA_P (next
);
960 if (!next_is_jumptable
)
962 log
= LABEL_ALIGN (insn
);
966 max_skip
= targetm
.asm_out
.label_align_max_skip (insn
);
969 /* ADDR_VECs only take room if read-only data goes into the text
971 if ((JUMP_TABLES_IN_TEXT_SECTION
972 || readonly_data_section
== text_section
)
973 && next_is_jumptable
)
975 log
= ADDR_VEC_ALIGN (next
);
979 max_skip
= targetm
.asm_out
.label_align_max_skip (insn
);
982 LABEL_TO_ALIGNMENT (insn
) = max_log
;
983 LABEL_TO_MAX_SKIP (insn
) = max_skip
;
987 else if (BARRIER_P (insn
))
991 for (label
= insn
; label
&& ! INSN_P (label
);
992 label
= NEXT_INSN (label
))
995 log
= LABEL_ALIGN_AFTER_BARRIER (insn
);
999 max_skip
= targetm
.asm_out
.label_align_after_barrier_max_skip (label
);
1005 if (!HAVE_ATTR_length
)
1008 /* Allocate the rest of the arrays. */
1009 insn_lengths
= XNEWVEC (int, max_uid
);
1010 insn_lengths_max_uid
= max_uid
;
1011 /* Syntax errors can lead to labels being outside of the main insn stream.
1012 Initialize insn_addresses, so that we get reproducible results. */
1013 INSN_ADDRESSES_ALLOC (max_uid
);
1015 varying_length
= XCNEWVEC (char, max_uid
);
1017 /* Initialize uid_align. We scan instructions
1018 from end to start, and keep in align_tab[n] the last seen insn
1019 that does an alignment of at least n+1, i.e. the successor
1020 in the alignment chain for an insn that does / has a known
1022 uid_align
= XCNEWVEC (rtx
, max_uid
);
1024 for (i
= MAX_CODE_ALIGN
; --i
>= 0;)
1025 align_tab
[i
] = NULL_RTX
;
1026 seq
= get_last_insn ();
1027 for (; seq
; seq
= PREV_INSN (seq
))
1029 int uid
= INSN_UID (seq
);
1031 log
= (LABEL_P (seq
) ? LABEL_TO_ALIGNMENT (seq
) : 0);
1032 uid_align
[uid
] = align_tab
[0];
1035 /* Found an alignment label. */
1036 uid_align
[uid
] = align_tab
[log
];
1037 for (i
= log
- 1; i
>= 0; i
--)
1042 /* When optimizing, we start assuming minimum length, and keep increasing
1043 lengths as we find the need for this, till nothing changes.
1044 When not optimizing, we start assuming maximum lengths, and
1045 do a single pass to update the lengths. */
1046 bool increasing
= optimize
!= 0;
1048 #ifdef CASE_VECTOR_SHORTEN_MODE
1051 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1054 int min_shuid
= INSN_SHUID (get_insns ()) - 1;
1055 int max_shuid
= INSN_SHUID (get_last_insn ()) + 1;
1058 for (insn
= first
; insn
!= 0; insn
= NEXT_INSN (insn
))
1060 rtx min_lab
= NULL_RTX
, max_lab
= NULL_RTX
, pat
;
1061 int len
, i
, min
, max
, insn_shuid
;
1063 addr_diff_vec_flags flags
;
1065 if (! JUMP_TABLE_DATA_P (insn
)
1066 || GET_CODE (PATTERN (insn
)) != ADDR_DIFF_VEC
)
1068 pat
= PATTERN (insn
);
1069 len
= XVECLEN (pat
, 1);
1070 gcc_assert (len
> 0);
1071 min_align
= MAX_CODE_ALIGN
;
1072 for (min
= max_shuid
, max
= min_shuid
, i
= len
- 1; i
>= 0; i
--)
1074 rtx lab
= XEXP (XVECEXP (pat
, 1, i
), 0);
1075 int shuid
= INSN_SHUID (lab
);
1086 if (min_align
> LABEL_TO_ALIGNMENT (lab
))
1087 min_align
= LABEL_TO_ALIGNMENT (lab
);
1089 XEXP (pat
, 2) = gen_rtx_LABEL_REF (Pmode
, min_lab
);
1090 XEXP (pat
, 3) = gen_rtx_LABEL_REF (Pmode
, max_lab
);
1091 insn_shuid
= INSN_SHUID (insn
);
1092 rel
= INSN_SHUID (XEXP (XEXP (pat
, 0), 0));
1093 memset (&flags
, 0, sizeof (flags
));
1094 flags
.min_align
= min_align
;
1095 flags
.base_after_vec
= rel
> insn_shuid
;
1096 flags
.min_after_vec
= min
> insn_shuid
;
1097 flags
.max_after_vec
= max
> insn_shuid
;
1098 flags
.min_after_base
= min
> rel
;
1099 flags
.max_after_base
= max
> rel
;
1100 ADDR_DIFF_VEC_FLAGS (pat
) = flags
;
1103 PUT_MODE (pat
, CASE_VECTOR_SHORTEN_MODE (0, 0, pat
));
1106 #endif /* CASE_VECTOR_SHORTEN_MODE */
1108 /* Compute initial lengths, addresses, and varying flags for each insn. */
1109 int (*length_fun
) (rtx_insn
*) = increasing
? insn_min_length
: insn_default_length
;
1111 for (insn_current_address
= 0, insn
= first
;
1113 insn_current_address
+= insn_lengths
[uid
], insn
= NEXT_INSN (insn
))
1115 uid
= INSN_UID (insn
);
1117 insn_lengths
[uid
] = 0;
1121 int log
= LABEL_TO_ALIGNMENT (insn
);
1124 int align
= 1 << log
;
1125 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1126 insn_lengths
[uid
] = new_address
- insn_current_address
;
1130 INSN_ADDRESSES (uid
) = insn_current_address
+ insn_lengths
[uid
];
1132 if (NOTE_P (insn
) || BARRIER_P (insn
)
1133 || LABEL_P (insn
) || DEBUG_INSN_P (insn
))
1135 if (insn
->deleted ())
1138 body
= PATTERN (insn
);
1139 if (JUMP_TABLE_DATA_P (insn
))
1141 /* This only takes room if read-only data goes into the text
1143 if (JUMP_TABLES_IN_TEXT_SECTION
1144 || readonly_data_section
== text_section
)
1145 insn_lengths
[uid
] = (XVECLEN (body
,
1146 GET_CODE (body
) == ADDR_DIFF_VEC
)
1147 * GET_MODE_SIZE (GET_MODE (body
)));
1148 /* Alignment is handled by ADDR_VEC_ALIGN. */
1150 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
1151 insn_lengths
[uid
] = asm_insn_count (body
) * insn_default_length (insn
);
1152 else if (rtx_sequence
*body_seq
= dyn_cast
<rtx_sequence
*> (body
))
1155 int const_delay_slots
;
1157 const_delay_slots
= const_num_delay_slots (body_seq
->insn (0));
1159 const_delay_slots
= 0;
1161 int (*inner_length_fun
) (rtx_insn
*)
1162 = const_delay_slots
? length_fun
: insn_default_length
;
1163 /* Inside a delay slot sequence, we do not do any branch shortening
1164 if the shortening could change the number of delay slots
1166 for (i
= 0; i
< body_seq
->len (); i
++)
1168 rtx_insn
*inner_insn
= body_seq
->insn (i
);
1169 int inner_uid
= INSN_UID (inner_insn
);
1172 if (GET_CODE (body
) == ASM_INPUT
1173 || asm_noperands (PATTERN (inner_insn
)) >= 0)
1174 inner_length
= (asm_insn_count (PATTERN (inner_insn
))
1175 * insn_default_length (inner_insn
));
1177 inner_length
= inner_length_fun (inner_insn
);
1179 insn_lengths
[inner_uid
] = inner_length
;
1180 if (const_delay_slots
)
1182 if ((varying_length
[inner_uid
]
1183 = insn_variable_length_p (inner_insn
)) != 0)
1184 varying_length
[uid
] = 1;
1185 INSN_ADDRESSES (inner_uid
) = (insn_current_address
1186 + insn_lengths
[uid
]);
1189 varying_length
[inner_uid
] = 0;
1190 insn_lengths
[uid
] += inner_length
;
1193 else if (GET_CODE (body
) != USE
&& GET_CODE (body
) != CLOBBER
)
1195 insn_lengths
[uid
] = length_fun (insn
);
1196 varying_length
[uid
] = insn_variable_length_p (insn
);
1199 /* If needed, do any adjustment. */
1200 #ifdef ADJUST_INSN_LENGTH
1201 ADJUST_INSN_LENGTH (insn
, insn_lengths
[uid
]);
1202 if (insn_lengths
[uid
] < 0)
1203 fatal_insn ("negative insn length", insn
);
1207 /* Now loop over all the insns finding varying length insns. For each,
1208 get the current insn length. If it has changed, reflect the change.
1209 When nothing changes for a full pass, we are done. */
1211 while (something_changed
)
1213 something_changed
= 0;
1214 insn_current_align
= MAX_CODE_ALIGN
- 1;
1215 for (insn_current_address
= 0, insn
= first
;
1217 insn
= NEXT_INSN (insn
))
1220 #ifdef ADJUST_INSN_LENGTH
1225 uid
= INSN_UID (insn
);
1229 int log
= LABEL_TO_ALIGNMENT (insn
);
1231 #ifdef CASE_VECTOR_SHORTEN_MODE
1232 /* If the mode of a following jump table was changed, we
1233 may need to update the alignment of this label. */
1235 bool next_is_jumptable
;
1237 next
= next_nonnote_insn (insn
);
1238 next_is_jumptable
= next
&& JUMP_TABLE_DATA_P (next
);
1239 if ((JUMP_TABLES_IN_TEXT_SECTION
1240 || readonly_data_section
== text_section
)
1241 && next_is_jumptable
)
1243 int newlog
= ADDR_VEC_ALIGN (next
);
1247 LABEL_TO_ALIGNMENT (insn
) = log
;
1248 something_changed
= 1;
1253 if (log
> insn_current_align
)
1255 int align
= 1 << log
;
1256 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1257 insn_lengths
[uid
] = new_address
- insn_current_address
;
1258 insn_current_align
= log
;
1259 insn_current_address
= new_address
;
1262 insn_lengths
[uid
] = 0;
1263 INSN_ADDRESSES (uid
) = insn_current_address
;
1267 length_align
= INSN_LENGTH_ALIGNMENT (insn
);
1268 if (length_align
< insn_current_align
)
1269 insn_current_align
= length_align
;
1271 insn_last_address
= INSN_ADDRESSES (uid
);
1272 INSN_ADDRESSES (uid
) = insn_current_address
;
1274 #ifdef CASE_VECTOR_SHORTEN_MODE
1276 && JUMP_TABLE_DATA_P (insn
)
1277 && GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
)
1279 rtx body
= PATTERN (insn
);
1280 int old_length
= insn_lengths
[uid
];
1282 safe_as_a
<rtx_insn
*> (XEXP (XEXP (body
, 0), 0));
1283 rtx min_lab
= XEXP (XEXP (body
, 2), 0);
1284 rtx max_lab
= XEXP (XEXP (body
, 3), 0);
1285 int rel_addr
= INSN_ADDRESSES (INSN_UID (rel_lab
));
1286 int min_addr
= INSN_ADDRESSES (INSN_UID (min_lab
));
1287 int max_addr
= INSN_ADDRESSES (INSN_UID (max_lab
));
1290 addr_diff_vec_flags flags
;
1291 enum machine_mode vec_mode
;
1293 /* Avoid automatic aggregate initialization. */
1294 flags
= ADDR_DIFF_VEC_FLAGS (body
);
1296 /* Try to find a known alignment for rel_lab. */
1297 for (prev
= rel_lab
;
1299 && ! insn_lengths
[INSN_UID (prev
)]
1300 && ! (varying_length
[INSN_UID (prev
)] & 1);
1301 prev
= PREV_INSN (prev
))
1302 if (varying_length
[INSN_UID (prev
)] & 2)
1304 rel_align
= LABEL_TO_ALIGNMENT (prev
);
1308 /* See the comment on addr_diff_vec_flags in rtl.h for the
1309 meaning of the flags values. base: REL_LAB vec: INSN */
1310 /* Anything after INSN has still addresses from the last
1311 pass; adjust these so that they reflect our current
1312 estimate for this pass. */
1313 if (flags
.base_after_vec
)
1314 rel_addr
+= insn_current_address
- insn_last_address
;
1315 if (flags
.min_after_vec
)
1316 min_addr
+= insn_current_address
- insn_last_address
;
1317 if (flags
.max_after_vec
)
1318 max_addr
+= insn_current_address
- insn_last_address
;
1319 /* We want to know the worst case, i.e. lowest possible value
1320 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1321 its offset is positive, and we have to be wary of code shrink;
1322 otherwise, it is negative, and we have to be vary of code
1324 if (flags
.min_after_base
)
1326 /* If INSN is between REL_LAB and MIN_LAB, the size
1327 changes we are about to make can change the alignment
1328 within the observed offset, therefore we have to break
1329 it up into two parts that are independent. */
1330 if (! flags
.base_after_vec
&& flags
.min_after_vec
)
1332 min_addr
-= align_fuzz (rel_lab
, insn
, rel_align
, 0);
1333 min_addr
-= align_fuzz (insn
, min_lab
, 0, 0);
1336 min_addr
-= align_fuzz (rel_lab
, min_lab
, rel_align
, 0);
1340 if (flags
.base_after_vec
&& ! flags
.min_after_vec
)
1342 min_addr
-= align_fuzz (min_lab
, insn
, 0, ~0);
1343 min_addr
-= align_fuzz (insn
, rel_lab
, 0, ~0);
1346 min_addr
-= align_fuzz (min_lab
, rel_lab
, 0, ~0);
1348 /* Likewise, determine the highest lowest possible value
1349 for the offset of MAX_LAB. */
1350 if (flags
.max_after_base
)
1352 if (! flags
.base_after_vec
&& flags
.max_after_vec
)
1354 max_addr
+= align_fuzz (rel_lab
, insn
, rel_align
, ~0);
1355 max_addr
+= align_fuzz (insn
, max_lab
, 0, ~0);
1358 max_addr
+= align_fuzz (rel_lab
, max_lab
, rel_align
, ~0);
1362 if (flags
.base_after_vec
&& ! flags
.max_after_vec
)
1364 max_addr
+= align_fuzz (max_lab
, insn
, 0, 0);
1365 max_addr
+= align_fuzz (insn
, rel_lab
, 0, 0);
1368 max_addr
+= align_fuzz (max_lab
, rel_lab
, 0, 0);
1370 vec_mode
= CASE_VECTOR_SHORTEN_MODE (min_addr
- rel_addr
,
1371 max_addr
- rel_addr
, body
);
1373 || (GET_MODE_SIZE (vec_mode
)
1374 >= GET_MODE_SIZE (GET_MODE (body
))))
1375 PUT_MODE (body
, vec_mode
);
1376 if (JUMP_TABLES_IN_TEXT_SECTION
1377 || readonly_data_section
== text_section
)
1380 = (XVECLEN (body
, 1) * GET_MODE_SIZE (GET_MODE (body
)));
1381 insn_current_address
+= insn_lengths
[uid
];
1382 if (insn_lengths
[uid
] != old_length
)
1383 something_changed
= 1;
1388 #endif /* CASE_VECTOR_SHORTEN_MODE */
1390 if (! (varying_length
[uid
]))
1392 if (NONJUMP_INSN_P (insn
)
1393 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1397 body
= PATTERN (insn
);
1398 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1400 rtx inner_insn
= XVECEXP (body
, 0, i
);
1401 int inner_uid
= INSN_UID (inner_insn
);
1403 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1405 insn_current_address
+= insn_lengths
[inner_uid
];
1409 insn_current_address
+= insn_lengths
[uid
];
1414 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1416 rtx_sequence
*seqn
= as_a
<rtx_sequence
*> (PATTERN (insn
));
1419 body
= PATTERN (insn
);
1421 for (i
= 0; i
< seqn
->len (); i
++)
1423 rtx_insn
*inner_insn
= seqn
->insn (i
);
1424 int inner_uid
= INSN_UID (inner_insn
);
1427 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1429 /* insn_current_length returns 0 for insns with a
1430 non-varying length. */
1431 if (! varying_length
[inner_uid
])
1432 inner_length
= insn_lengths
[inner_uid
];
1434 inner_length
= insn_current_length (inner_insn
);
1436 if (inner_length
!= insn_lengths
[inner_uid
])
1438 if (!increasing
|| inner_length
> insn_lengths
[inner_uid
])
1440 insn_lengths
[inner_uid
] = inner_length
;
1441 something_changed
= 1;
1444 inner_length
= insn_lengths
[inner_uid
];
1446 insn_current_address
+= inner_length
;
1447 new_length
+= inner_length
;
1452 new_length
= insn_current_length (insn
);
1453 insn_current_address
+= new_length
;
1456 #ifdef ADJUST_INSN_LENGTH
1457 /* If needed, do any adjustment. */
1458 tmp_length
= new_length
;
1459 ADJUST_INSN_LENGTH (insn
, new_length
);
1460 insn_current_address
+= (new_length
- tmp_length
);
1463 if (new_length
!= insn_lengths
[uid
]
1464 && (!increasing
|| new_length
> insn_lengths
[uid
]))
1466 insn_lengths
[uid
] = new_length
;
1467 something_changed
= 1;
1470 insn_current_address
+= insn_lengths
[uid
] - new_length
;
1472 /* For a non-optimizing compile, do only a single pass. */
1477 free (varying_length
);
1480 /* Given the body of an INSN known to be generated by an ASM statement, return
1481 the number of machine instructions likely to be generated for this insn.
1482 This is used to compute its length. */
1485 asm_insn_count (rtx body
)
1489 if (GET_CODE (body
) == ASM_INPUT
)
1490 templ
= XSTR (body
, 0);
1492 templ
= decode_asm_operands (body
, NULL
, NULL
, NULL
, NULL
, NULL
);
1494 return asm_str_count (templ
);
1497 /* Return the number of machine instructions likely to be generated for the
1498 inline-asm template. */
1500 asm_str_count (const char *templ
)
1507 for (; *templ
; templ
++)
1508 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ
, templ
)
1515 /* ??? This is probably the wrong place for these. */
1516 /* Structure recording the mapping from source file and directory
1517 names at compile time to those to be embedded in debug
1519 typedef struct debug_prefix_map
1521 const char *old_prefix
;
1522 const char *new_prefix
;
1525 struct debug_prefix_map
*next
;
1528 /* Linked list of such structures. */
1529 static debug_prefix_map
*debug_prefix_maps
;
1532 /* Record a debug file prefix mapping. ARG is the argument to
1533 -fdebug-prefix-map and must be of the form OLD=NEW. */
1536 add_debug_prefix_map (const char *arg
)
1538 debug_prefix_map
*map
;
1541 p
= strchr (arg
, '=');
1544 error ("invalid argument %qs to -fdebug-prefix-map", arg
);
1547 map
= XNEW (debug_prefix_map
);
1548 map
->old_prefix
= xstrndup (arg
, p
- arg
);
1549 map
->old_len
= p
- arg
;
1551 map
->new_prefix
= xstrdup (p
);
1552 map
->new_len
= strlen (p
);
1553 map
->next
= debug_prefix_maps
;
1554 debug_prefix_maps
= map
;
1557 /* Perform user-specified mapping of debug filename prefixes. Return
1558 the new name corresponding to FILENAME. */
1561 remap_debug_filename (const char *filename
)
1563 debug_prefix_map
*map
;
1568 for (map
= debug_prefix_maps
; map
; map
= map
->next
)
1569 if (filename_ncmp (filename
, map
->old_prefix
, map
->old_len
) == 0)
1573 name
= filename
+ map
->old_len
;
1574 name_len
= strlen (name
) + 1;
1575 s
= (char *) alloca (name_len
+ map
->new_len
);
1576 memcpy (s
, map
->new_prefix
, map
->new_len
);
1577 memcpy (s
+ map
->new_len
, name
, name_len
);
1578 return ggc_strdup (s
);
1581 /* Return true if DWARF2 debug info can be emitted for DECL. */
1584 dwarf2_debug_info_emitted_p (tree decl
)
1586 if (write_symbols
!= DWARF2_DEBUG
&& write_symbols
!= VMS_AND_DWARF2_DEBUG
)
1589 if (DECL_IGNORED_P (decl
))
1595 /* Return scope resulting from combination of S1 and S2. */
1597 choose_inner_scope (tree s1
, tree s2
)
1603 if (BLOCK_NUMBER (s1
) > BLOCK_NUMBER (s2
))
1608 /* Emit lexical block notes needed to change scope from S1 to S2. */
1611 change_scope (rtx_insn
*orig_insn
, tree s1
, tree s2
)
1613 rtx_insn
*insn
= orig_insn
;
1614 tree com
= NULL_TREE
;
1615 tree ts1
= s1
, ts2
= s2
;
1620 gcc_assert (ts1
&& ts2
);
1621 if (BLOCK_NUMBER (ts1
) > BLOCK_NUMBER (ts2
))
1622 ts1
= BLOCK_SUPERCONTEXT (ts1
);
1623 else if (BLOCK_NUMBER (ts1
) < BLOCK_NUMBER (ts2
))
1624 ts2
= BLOCK_SUPERCONTEXT (ts2
);
1627 ts1
= BLOCK_SUPERCONTEXT (ts1
);
1628 ts2
= BLOCK_SUPERCONTEXT (ts2
);
1637 rtx_note
*note
= emit_note_before (NOTE_INSN_BLOCK_END
, insn
);
1638 NOTE_BLOCK (note
) = s
;
1639 s
= BLOCK_SUPERCONTEXT (s
);
1646 insn
= emit_note_before (NOTE_INSN_BLOCK_BEG
, insn
);
1647 NOTE_BLOCK (insn
) = s
;
1648 s
= BLOCK_SUPERCONTEXT (s
);
1652 /* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
1653 on the scope tree and the newly reordered instructions. */
1656 reemit_insn_block_notes (void)
1658 tree cur_block
= DECL_INITIAL (cfun
->decl
);
1662 insn
= get_insns ();
1663 for (; insn
; insn
= NEXT_INSN (insn
))
1667 /* Prevent lexical blocks from straddling section boundaries. */
1668 if (NOTE_P (insn
) && NOTE_KIND (insn
) == NOTE_INSN_SWITCH_TEXT_SECTIONS
)
1670 for (tree s
= cur_block
; s
!= DECL_INITIAL (cfun
->decl
);
1671 s
= BLOCK_SUPERCONTEXT (s
))
1673 rtx_note
*note
= emit_note_before (NOTE_INSN_BLOCK_END
, insn
);
1674 NOTE_BLOCK (note
) = s
;
1675 note
= emit_note_after (NOTE_INSN_BLOCK_BEG
, insn
);
1676 NOTE_BLOCK (note
) = s
;
1680 if (!active_insn_p (insn
))
1683 /* Avoid putting scope notes between jump table and its label. */
1684 if (JUMP_TABLE_DATA_P (insn
))
1687 this_block
= insn_scope (insn
);
1688 /* For sequences compute scope resulting from merging all scopes
1689 of instructions nested inside. */
1690 if (rtx_sequence
*body
= dyn_cast
<rtx_sequence
*> (PATTERN (insn
)))
1695 for (i
= 0; i
< body
->len (); i
++)
1696 this_block
= choose_inner_scope (this_block
,
1697 insn_scope (body
->insn (i
)));
1701 if (INSN_LOCATION (insn
) == UNKNOWN_LOCATION
)
1704 this_block
= DECL_INITIAL (cfun
->decl
);
1707 if (this_block
!= cur_block
)
1709 change_scope (insn
, cur_block
, this_block
);
1710 cur_block
= this_block
;
1714 /* change_scope emits before the insn, not after. */
1715 note
= emit_note (NOTE_INSN_DELETED
);
1716 change_scope (note
, cur_block
, DECL_INITIAL (cfun
->decl
));
1722 static const char *some_local_dynamic_name
;
1724 /* Locate some local-dynamic symbol still in use by this function
1725 so that we can print its name in local-dynamic base patterns.
1726 Return null if there are no local-dynamic references. */
1729 get_some_local_dynamic_name ()
1731 subrtx_iterator::array_type array
;
1734 if (some_local_dynamic_name
)
1735 return some_local_dynamic_name
;
1737 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
1738 if (NONDEBUG_INSN_P (insn
))
1739 FOR_EACH_SUBRTX (iter
, array
, PATTERN (insn
), ALL
)
1741 const_rtx x
= *iter
;
1742 if (GET_CODE (x
) == SYMBOL_REF
)
1744 if (SYMBOL_REF_TLS_MODEL (x
) == TLS_MODEL_LOCAL_DYNAMIC
)
1745 return some_local_dynamic_name
= XSTR (x
, 0);
1746 if (CONSTANT_POOL_ADDRESS_P (x
))
1747 iter
.substitute (get_pool_constant (x
));
1754 /* Output assembler code for the start of a function,
1755 and initialize some of the variables in this file
1756 for the new function. The label for the function and associated
1757 assembler pseudo-ops have already been output in `assemble_start_function'.
1759 FIRST is the first insn of the rtl for the function being compiled.
1760 FILE is the file to write assembler code to.
1761 OPTIMIZE_P is nonzero if we should eliminate redundant
1762 test and compare insns. */
1765 final_start_function (rtx_insn
*first
, FILE *file
,
1766 int optimize_p ATTRIBUTE_UNUSED
)
1770 this_is_asm_operands
= 0;
1772 need_profile_function
= false;
1774 last_filename
= LOCATION_FILE (prologue_location
);
1775 last_linenum
= LOCATION_LINE (prologue_location
);
1776 last_discriminator
= discriminator
= 0;
1778 high_block_linenum
= high_function_linenum
= last_linenum
;
1780 if (flag_sanitize
& SANITIZE_ADDRESS
)
1781 asan_function_start ();
1783 if (!DECL_IGNORED_P (current_function_decl
))
1784 debug_hooks
->begin_prologue (last_linenum
, last_filename
);
1786 if (!dwarf2_debug_info_emitted_p (current_function_decl
))
1787 dwarf2out_begin_prologue (0, NULL
);
1789 #ifdef LEAF_REG_REMAP
1790 if (crtl
->uses_only_leaf_regs
)
1791 leaf_renumber_regs (first
);
1794 /* The Sun386i and perhaps other machines don't work right
1795 if the profiling code comes after the prologue. */
1796 if (targetm
.profile_before_prologue () && crtl
->profile
)
1798 if (targetm
.asm_out
.function_prologue
1799 == default_function_pro_epilogue
1800 #ifdef HAVE_prologue
1806 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1812 else if (NOTE_KIND (insn
) == NOTE_INSN_BASIC_BLOCK
1813 || NOTE_KIND (insn
) == NOTE_INSN_FUNCTION_BEG
)
1815 else if (NOTE_KIND (insn
) == NOTE_INSN_DELETED
1816 || NOTE_KIND (insn
) == NOTE_INSN_VAR_LOCATION
)
1825 need_profile_function
= true;
1827 profile_function (file
);
1830 profile_function (file
);
1833 /* If debugging, assign block numbers to all of the blocks in this
1837 reemit_insn_block_notes ();
1838 number_blocks (current_function_decl
);
1839 /* We never actually put out begin/end notes for the top-level
1840 block in the function. But, conceptually, that block is
1842 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl
)) = 1;
1845 if (warn_frame_larger_than
1846 && get_frame_size () > frame_larger_than_size
)
1848 /* Issue a warning */
1849 warning (OPT_Wframe_larger_than_
,
1850 "the frame size of %wd bytes is larger than %wd bytes",
1851 get_frame_size (), frame_larger_than_size
);
1854 /* First output the function prologue: code to set up the stack frame. */
1855 targetm
.asm_out
.function_prologue (file
, get_frame_size ());
1857 /* If the machine represents the prologue as RTL, the profiling code must
1858 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1859 #ifdef HAVE_prologue
1860 if (! HAVE_prologue
)
1862 profile_after_prologue (file
);
1866 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED
)
1868 if (!targetm
.profile_before_prologue () && crtl
->profile
)
1869 profile_function (file
);
1873 profile_function (FILE *file ATTRIBUTE_UNUSED
)
1875 #ifndef NO_PROFILE_COUNTERS
1876 # define NO_PROFILE_COUNTERS 0
1878 #ifdef ASM_OUTPUT_REG_PUSH
1879 rtx sval
= NULL
, chain
= NULL
;
1881 if (cfun
->returns_struct
)
1882 sval
= targetm
.calls
.struct_value_rtx (TREE_TYPE (current_function_decl
),
1884 if (cfun
->static_chain_decl
)
1885 chain
= targetm
.calls
.static_chain (current_function_decl
, true);
1886 #endif /* ASM_OUTPUT_REG_PUSH */
1888 if (! NO_PROFILE_COUNTERS
)
1890 int align
= MIN (BIGGEST_ALIGNMENT
, LONG_TYPE_SIZE
);
1891 switch_to_section (data_section
);
1892 ASM_OUTPUT_ALIGN (file
, floor_log2 (align
/ BITS_PER_UNIT
));
1893 targetm
.asm_out
.internal_label (file
, "LP", current_function_funcdef_no
);
1894 assemble_integer (const0_rtx
, LONG_TYPE_SIZE
/ BITS_PER_UNIT
, align
, 1);
1897 switch_to_section (current_function_section ());
1899 #ifdef ASM_OUTPUT_REG_PUSH
1900 if (sval
&& REG_P (sval
))
1901 ASM_OUTPUT_REG_PUSH (file
, REGNO (sval
));
1902 if (chain
&& REG_P (chain
))
1903 ASM_OUTPUT_REG_PUSH (file
, REGNO (chain
));
1906 FUNCTION_PROFILER (file
, current_function_funcdef_no
);
1908 #ifdef ASM_OUTPUT_REG_PUSH
1909 if (chain
&& REG_P (chain
))
1910 ASM_OUTPUT_REG_POP (file
, REGNO (chain
));
1911 if (sval
&& REG_P (sval
))
1912 ASM_OUTPUT_REG_POP (file
, REGNO (sval
));
1916 /* Output assembler code for the end of a function.
1917 For clarity, args are same as those of `final_start_function'
1918 even though not all of them are needed. */
1921 final_end_function (void)
1925 if (!DECL_IGNORED_P (current_function_decl
))
1926 debug_hooks
->end_function (high_function_linenum
);
1928 /* Finally, output the function epilogue:
1929 code to restore the stack frame and return to the caller. */
1930 targetm
.asm_out
.function_epilogue (asm_out_file
, get_frame_size ());
1932 /* And debug output. */
1933 if (!DECL_IGNORED_P (current_function_decl
))
1934 debug_hooks
->end_epilogue (last_linenum
, last_filename
);
1936 if (!dwarf2_debug_info_emitted_p (current_function_decl
)
1937 && dwarf2out_do_frame ())
1938 dwarf2out_end_epilogue (last_linenum
, last_filename
);
1940 some_local_dynamic_name
= 0;
1944 /* Dumper helper for basic block information. FILE is the assembly
1945 output file, and INSN is the instruction being emitted. */
1948 dump_basic_block_info (FILE *file
, rtx_insn
*insn
, basic_block
*start_to_bb
,
1949 basic_block
*end_to_bb
, int bb_map_size
, int *bb_seqn
)
1953 if (!flag_debug_asm
)
1956 if (INSN_UID (insn
) < bb_map_size
1957 && (bb
= start_to_bb
[INSN_UID (insn
)]) != NULL
)
1962 fprintf (file
, "%s BLOCK %d", ASM_COMMENT_START
, bb
->index
);
1964 fprintf (file
, " freq:%d", bb
->frequency
);
1966 fprintf (file
, " count:%"PRId64
,
1968 fprintf (file
, " seq:%d", (*bb_seqn
)++);
1969 fprintf (file
, "\n%s PRED:", ASM_COMMENT_START
);
1970 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1972 dump_edge_info (file
, e
, TDF_DETAILS
, 0);
1974 fprintf (file
, "\n");
1976 if (INSN_UID (insn
) < bb_map_size
1977 && (bb
= end_to_bb
[INSN_UID (insn
)]) != NULL
)
1982 fprintf (asm_out_file
, "%s SUCC:", ASM_COMMENT_START
);
1983 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1985 dump_edge_info (asm_out_file
, e
, TDF_DETAILS
, 1);
1987 fprintf (file
, "\n");
1991 /* Output assembler code for some insns: all or part of a function.
1992 For description of args, see `final_start_function', above. */
1995 final (rtx_insn
*first
, FILE *file
, int optimize_p
)
1997 rtx_insn
*insn
, *next
;
2000 /* Used for -dA dump. */
2001 basic_block
*start_to_bb
= NULL
;
2002 basic_block
*end_to_bb
= NULL
;
2003 int bb_map_size
= 0;
2006 last_ignored_compare
= 0;
2009 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2011 /* If CC tracking across branches is enabled, record the insn which
2012 jumps to each branch only reached from one place. */
2013 if (optimize_p
&& JUMP_P (insn
))
2015 rtx lab
= JUMP_LABEL (insn
);
2016 if (lab
&& LABEL_P (lab
) && LABEL_NUSES (lab
) == 1)
2018 LABEL_REFS (lab
) = insn
;
2032 bb_map_size
= get_max_uid () + 1;
2033 start_to_bb
= XCNEWVEC (basic_block
, bb_map_size
);
2034 end_to_bb
= XCNEWVEC (basic_block
, bb_map_size
);
2036 /* There is no cfg for a thunk. */
2037 if (!cfun
->is_thunk
)
2038 FOR_EACH_BB_REVERSE_FN (bb
, cfun
)
2040 start_to_bb
[INSN_UID (BB_HEAD (bb
))] = bb
;
2041 end_to_bb
[INSN_UID (BB_END (bb
))] = bb
;
2045 /* Output the insns. */
2046 for (insn
= first
; insn
;)
2048 if (HAVE_ATTR_length
)
2050 if ((unsigned) INSN_UID (insn
) >= INSN_ADDRESSES_SIZE ())
2052 /* This can be triggered by bugs elsewhere in the compiler if
2053 new insns are created after init_insn_lengths is called. */
2054 gcc_assert (NOTE_P (insn
));
2055 insn_current_address
= -1;
2058 insn_current_address
= INSN_ADDRESSES (INSN_UID (insn
));
2061 dump_basic_block_info (file
, insn
, start_to_bb
, end_to_bb
,
2062 bb_map_size
, &bb_seqn
);
2063 insn
= final_scan_insn (insn
, file
, optimize_p
, 0, &seen
);
2072 /* Remove CFI notes, to avoid compare-debug failures. */
2073 for (insn
= first
; insn
; insn
= next
)
2075 next
= NEXT_INSN (insn
);
2077 && (NOTE_KIND (insn
) == NOTE_INSN_CFI
2078 || NOTE_KIND (insn
) == NOTE_INSN_CFI_LABEL
))
2084 get_insn_template (int code
, rtx insn
)
2086 switch (insn_data
[code
].output_format
)
2088 case INSN_OUTPUT_FORMAT_SINGLE
:
2089 return insn_data
[code
].output
.single
;
2090 case INSN_OUTPUT_FORMAT_MULTI
:
2091 return insn_data
[code
].output
.multi
[which_alternative
];
2092 case INSN_OUTPUT_FORMAT_FUNCTION
:
2094 return (*insn_data
[code
].output
.function
) (recog_data
.operand
,
2095 as_a
<rtx_insn
*> (insn
));
2102 /* Emit the appropriate declaration for an alternate-entry-point
2103 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
2104 LABEL_KIND != LABEL_NORMAL.
2106 The case fall-through in this function is intentional. */
2108 output_alternate_entry_point (FILE *file
, rtx_insn
*insn
)
2110 const char *name
= LABEL_NAME (insn
);
2112 switch (LABEL_KIND (insn
))
2114 case LABEL_WEAK_ENTRY
:
2115 #ifdef ASM_WEAKEN_LABEL
2116 ASM_WEAKEN_LABEL (file
, name
);
2118 case LABEL_GLOBAL_ENTRY
:
2119 targetm
.asm_out
.globalize_label (file
, name
);
2120 case LABEL_STATIC_ENTRY
:
2121 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
2122 ASM_OUTPUT_TYPE_DIRECTIVE (file
, name
, "function");
2124 ASM_OUTPUT_LABEL (file
, name
);
2133 /* Given a CALL_INSN, find and return the nested CALL. */
2135 call_from_call_insn (rtx_call_insn
*insn
)
2138 gcc_assert (CALL_P (insn
));
2141 while (GET_CODE (x
) != CALL
)
2143 switch (GET_CODE (x
))
2148 x
= COND_EXEC_CODE (x
);
2151 x
= XVECEXP (x
, 0, 0);
2161 /* The final scan for one insn, INSN.
2162 Args are same as in `final', except that INSN
2163 is the insn being scanned.
2164 Value returned is the next insn to be scanned.
2166 NOPEEPHOLES is the flag to disallow peephole processing (currently
2167 used for within delayed branch sequence output).
2169 SEEN is used to track the end of the prologue, for emitting
2170 debug information. We force the emission of a line note after
2171 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG. */
2174 final_scan_insn (rtx_insn
*insn
, FILE *file
, int optimize_p ATTRIBUTE_UNUSED
,
2175 int nopeepholes ATTRIBUTE_UNUSED
, int *seen
)
2184 /* Ignore deleted insns. These can occur when we split insns (due to a
2185 template of "#") while not optimizing. */
2186 if (insn
->deleted ())
2187 return NEXT_INSN (insn
);
2189 switch (GET_CODE (insn
))
2192 switch (NOTE_KIND (insn
))
2194 case NOTE_INSN_DELETED
:
2197 case NOTE_INSN_SWITCH_TEXT_SECTIONS
:
2198 in_cold_section_p
= !in_cold_section_p
;
2200 if (dwarf2out_do_frame ())
2201 dwarf2out_switch_text_section ();
2202 else if (!DECL_IGNORED_P (current_function_decl
))
2203 debug_hooks
->switch_text_section ();
2205 switch_to_section (current_function_section ());
2206 targetm
.asm_out
.function_switched_text_sections (asm_out_file
,
2207 current_function_decl
,
2209 /* Emit a label for the split cold section. Form label name by
2210 suffixing "cold" to the original function's name. */
2211 if (in_cold_section_p
)
2213 tree cold_function_name
2214 = clone_function_name (current_function_decl
, "cold");
2215 ASM_OUTPUT_LABEL (asm_out_file
,
2216 IDENTIFIER_POINTER (cold_function_name
));
2220 case NOTE_INSN_BASIC_BLOCK
:
2221 if (need_profile_function
)
2223 profile_function (asm_out_file
);
2224 need_profile_function
= false;
2227 if (targetm
.asm_out
.unwind_emit
)
2228 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
2230 discriminator
= NOTE_BASIC_BLOCK (insn
)->discriminator
;
2234 case NOTE_INSN_EH_REGION_BEG
:
2235 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHB",
2236 NOTE_EH_HANDLER (insn
));
2239 case NOTE_INSN_EH_REGION_END
:
2240 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHE",
2241 NOTE_EH_HANDLER (insn
));
2244 case NOTE_INSN_PROLOGUE_END
:
2245 targetm
.asm_out
.function_end_prologue (file
);
2246 profile_after_prologue (file
);
2248 if ((*seen
& (SEEN_EMITTED
| SEEN_NOTE
)) == SEEN_NOTE
)
2250 *seen
|= SEEN_EMITTED
;
2251 force_source_line
= true;
2258 case NOTE_INSN_EPILOGUE_BEG
:
2259 if (!DECL_IGNORED_P (current_function_decl
))
2260 (*debug_hooks
->begin_epilogue
) (last_linenum
, last_filename
);
2261 targetm
.asm_out
.function_begin_epilogue (file
);
2265 dwarf2out_emit_cfi (NOTE_CFI (insn
));
2268 case NOTE_INSN_CFI_LABEL
:
2269 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LCFI",
2270 NOTE_LABEL_NUMBER (insn
));
2273 case NOTE_INSN_FUNCTION_BEG
:
2274 if (need_profile_function
)
2276 profile_function (asm_out_file
);
2277 need_profile_function
= false;
2281 if (!DECL_IGNORED_P (current_function_decl
))
2282 debug_hooks
->end_prologue (last_linenum
, last_filename
);
2284 if ((*seen
& (SEEN_EMITTED
| SEEN_NOTE
)) == SEEN_NOTE
)
2286 *seen
|= SEEN_EMITTED
;
2287 force_source_line
= true;
2294 case NOTE_INSN_BLOCK_BEG
:
2295 if (debug_info_level
== DINFO_LEVEL_NORMAL
2296 || debug_info_level
== DINFO_LEVEL_VERBOSE
2297 || write_symbols
== DWARF2_DEBUG
2298 || write_symbols
== VMS_AND_DWARF2_DEBUG
2299 || write_symbols
== VMS_DEBUG
)
2301 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
2305 high_block_linenum
= last_linenum
;
2307 /* Output debugging info about the symbol-block beginning. */
2308 if (!DECL_IGNORED_P (current_function_decl
))
2309 debug_hooks
->begin_block (last_linenum
, n
);
2311 /* Mark this block as output. */
2312 TREE_ASM_WRITTEN (NOTE_BLOCK (insn
)) = 1;
2314 if (write_symbols
== DBX_DEBUG
2315 || write_symbols
== SDB_DEBUG
)
2317 location_t
*locus_ptr
2318 = block_nonartificial_location (NOTE_BLOCK (insn
));
2320 if (locus_ptr
!= NULL
)
2322 override_filename
= LOCATION_FILE (*locus_ptr
);
2323 override_linenum
= LOCATION_LINE (*locus_ptr
);
2328 case NOTE_INSN_BLOCK_END
:
2329 if (debug_info_level
== DINFO_LEVEL_NORMAL
2330 || debug_info_level
== DINFO_LEVEL_VERBOSE
2331 || write_symbols
== DWARF2_DEBUG
2332 || write_symbols
== VMS_AND_DWARF2_DEBUG
2333 || write_symbols
== VMS_DEBUG
)
2335 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
2339 /* End of a symbol-block. */
2341 gcc_assert (block_depth
>= 0);
2343 if (!DECL_IGNORED_P (current_function_decl
))
2344 debug_hooks
->end_block (high_block_linenum
, n
);
2346 if (write_symbols
== DBX_DEBUG
2347 || write_symbols
== SDB_DEBUG
)
2349 tree outer_block
= BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn
));
2350 location_t
*locus_ptr
2351 = block_nonartificial_location (outer_block
);
2353 if (locus_ptr
!= NULL
)
2355 override_filename
= LOCATION_FILE (*locus_ptr
);
2356 override_linenum
= LOCATION_LINE (*locus_ptr
);
2360 override_filename
= NULL
;
2361 override_linenum
= 0;
2366 case NOTE_INSN_DELETED_LABEL
:
2367 /* Emit the label. We may have deleted the CODE_LABEL because
2368 the label could be proved to be unreachable, though still
2369 referenced (in the form of having its address taken. */
2370 ASM_OUTPUT_DEBUG_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
));
2373 case NOTE_INSN_DELETED_DEBUG_LABEL
:
2374 /* Similarly, but need to use different namespace for it. */
2375 if (CODE_LABEL_NUMBER (insn
) != -1)
2376 ASM_OUTPUT_DEBUG_LABEL (file
, "LDL", CODE_LABEL_NUMBER (insn
));
2379 case NOTE_INSN_VAR_LOCATION
:
2380 case NOTE_INSN_CALL_ARG_LOCATION
:
2381 if (!DECL_IGNORED_P (current_function_decl
))
2382 debug_hooks
->var_location (insn
);
2395 /* The target port might emit labels in the output function for
2396 some insn, e.g. sh.c output_branchy_insn. */
2397 if (CODE_LABEL_NUMBER (insn
) <= max_labelno
)
2399 int align
= LABEL_TO_ALIGNMENT (insn
);
2400 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2401 int max_skip
= LABEL_TO_MAX_SKIP (insn
);
2404 if (align
&& NEXT_INSN (insn
))
2406 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2407 ASM_OUTPUT_MAX_SKIP_ALIGN (file
, align
, max_skip
);
2409 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2410 ASM_OUTPUT_ALIGN_WITH_NOP (file
, align
);
2412 ASM_OUTPUT_ALIGN (file
, align
);
2419 if (!DECL_IGNORED_P (current_function_decl
) && LABEL_NAME (insn
))
2420 debug_hooks
->label (as_a
<rtx_code_label
*> (insn
));
2424 next
= next_nonnote_insn (insn
);
2425 /* If this label is followed by a jump-table, make sure we put
2426 the label in the read-only section. Also possibly write the
2427 label and jump table together. */
2428 if (next
!= 0 && JUMP_TABLE_DATA_P (next
))
2430 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2431 /* In this case, the case vector is being moved by the
2432 target, so don't output the label at all. Leave that
2433 to the back end macros. */
2435 if (! JUMP_TABLES_IN_TEXT_SECTION
)
2439 switch_to_section (targetm
.asm_out
.function_rodata_section
2440 (current_function_decl
));
2442 #ifdef ADDR_VEC_ALIGN
2443 log_align
= ADDR_VEC_ALIGN (next
);
2445 log_align
= exact_log2 (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
);
2447 ASM_OUTPUT_ALIGN (file
, log_align
);
2450 switch_to_section (current_function_section ());
2452 #ifdef ASM_OUTPUT_CASE_LABEL
2453 ASM_OUTPUT_CASE_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
),
2456 targetm
.asm_out
.internal_label (file
, "L", CODE_LABEL_NUMBER (insn
));
2461 if (LABEL_ALT_ENTRY_P (insn
))
2462 output_alternate_entry_point (file
, insn
);
2464 targetm
.asm_out
.internal_label (file
, "L", CODE_LABEL_NUMBER (insn
));
2469 rtx body
= PATTERN (insn
);
2470 int insn_code_number
;
2474 /* Reset this early so it is correct for ASM statements. */
2475 current_insn_predicate
= NULL_RTX
;
2477 /* An INSN, JUMP_INSN or CALL_INSN.
2478 First check for special kinds that recog doesn't recognize. */
2480 if (GET_CODE (body
) == USE
/* These are just declarations. */
2481 || GET_CODE (body
) == CLOBBER
)
2486 /* If there is a REG_CC_SETTER note on this insn, it means that
2487 the setting of the condition code was done in the delay slot
2488 of the insn that branched here. So recover the cc status
2489 from the insn that set it. */
2491 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
2494 rtx_insn
*other
= as_a
<rtx_insn
*> (XEXP (note
, 0));
2495 NOTICE_UPDATE_CC (PATTERN (other
), other
);
2496 cc_prev_status
= cc_status
;
2501 /* Detect insns that are really jump-tables
2502 and output them as such. */
2504 if (JUMP_TABLE_DATA_P (insn
))
2506 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2510 if (! JUMP_TABLES_IN_TEXT_SECTION
)
2511 switch_to_section (targetm
.asm_out
.function_rodata_section
2512 (current_function_decl
));
2514 switch_to_section (current_function_section ());
2518 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2519 if (GET_CODE (body
) == ADDR_VEC
)
2521 #ifdef ASM_OUTPUT_ADDR_VEC
2522 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn
), body
);
2529 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2530 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn
), body
);
2536 vlen
= XVECLEN (body
, GET_CODE (body
) == ADDR_DIFF_VEC
);
2537 for (idx
= 0; idx
< vlen
; idx
++)
2539 if (GET_CODE (body
) == ADDR_VEC
)
2541 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2542 ASM_OUTPUT_ADDR_VEC_ELT
2543 (file
, CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 0, idx
), 0)));
2550 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2551 ASM_OUTPUT_ADDR_DIFF_ELT
2554 CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 1, idx
), 0)),
2555 CODE_LABEL_NUMBER (XEXP (XEXP (body
, 0), 0)));
2561 #ifdef ASM_OUTPUT_CASE_END
2562 ASM_OUTPUT_CASE_END (file
,
2563 CODE_LABEL_NUMBER (PREV_INSN (insn
)),
2568 switch_to_section (current_function_section ());
2572 /* Output this line note if it is the first or the last line
2574 if (!DECL_IGNORED_P (current_function_decl
)
2575 && notice_source_line (insn
, &is_stmt
))
2576 (*debug_hooks
->source_line
) (last_linenum
, last_filename
,
2577 last_discriminator
, is_stmt
);
2579 if (GET_CODE (body
) == ASM_INPUT
)
2581 const char *string
= XSTR (body
, 0);
2583 /* There's no telling what that did to the condition codes. */
2588 expanded_location loc
;
2591 loc
= expand_location (ASM_INPUT_SOURCE_LOCATION (body
));
2592 if (*loc
.file
&& loc
.line
)
2593 fprintf (asm_out_file
, "%s %i \"%s\" 1\n",
2594 ASM_COMMENT_START
, loc
.line
, loc
.file
);
2595 fprintf (asm_out_file
, "\t%s\n", string
);
2596 #if HAVE_AS_LINE_ZERO
2597 if (*loc
.file
&& loc
.line
)
2598 fprintf (asm_out_file
, "%s 0 \"\" 2\n", ASM_COMMENT_START
);
2604 /* Detect `asm' construct with operands. */
2605 if (asm_noperands (body
) >= 0)
2607 unsigned int noperands
= asm_noperands (body
);
2608 rtx
*ops
= XALLOCAVEC (rtx
, noperands
);
2611 expanded_location expanded
;
2613 /* There's no telling what that did to the condition codes. */
2616 /* Get out the operand values. */
2617 string
= decode_asm_operands (body
, ops
, NULL
, NULL
, NULL
, &loc
);
2618 /* Inhibit dying on what would otherwise be compiler bugs. */
2619 insn_noperands
= noperands
;
2620 this_is_asm_operands
= insn
;
2621 expanded
= expand_location (loc
);
2623 #ifdef FINAL_PRESCAN_INSN
2624 FINAL_PRESCAN_INSN (insn
, ops
, insn_noperands
);
2627 /* Output the insn using them. */
2631 if (expanded
.file
&& expanded
.line
)
2632 fprintf (asm_out_file
, "%s %i \"%s\" 1\n",
2633 ASM_COMMENT_START
, expanded
.line
, expanded
.file
);
2634 output_asm_insn (string
, ops
);
2635 #if HAVE_AS_LINE_ZERO
2636 if (expanded
.file
&& expanded
.line
)
2637 fprintf (asm_out_file
, "%s 0 \"\" 2\n", ASM_COMMENT_START
);
2641 if (targetm
.asm_out
.final_postscan_insn
)
2642 targetm
.asm_out
.final_postscan_insn (file
, insn
, ops
,
2645 this_is_asm_operands
= 0;
2651 if (rtx_sequence
*seq
= dyn_cast
<rtx_sequence
*> (body
))
2653 /* A delayed-branch sequence */
2656 final_sequence
= seq
;
2658 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2659 force the restoration of a comparison that was previously
2660 thought unnecessary. If that happens, cancel this sequence
2661 and cause that insn to be restored. */
2663 next
= final_scan_insn (seq
->insn (0), file
, 0, 1, seen
);
2664 if (next
!= seq
->insn (1))
2670 for (i
= 1; i
< seq
->len (); i
++)
2672 rtx_insn
*insn
= seq
->insn (i
);
2673 rtx_insn
*next
= NEXT_INSN (insn
);
2674 /* We loop in case any instruction in a delay slot gets
2677 insn
= final_scan_insn (insn
, file
, 0, 1, seen
);
2678 while (insn
!= next
);
2680 #ifdef DBR_OUTPUT_SEQEND
2681 DBR_OUTPUT_SEQEND (file
);
2685 /* If the insn requiring the delay slot was a CALL_INSN, the
2686 insns in the delay slot are actually executed before the
2687 called function. Hence we don't preserve any CC-setting
2688 actions in these insns and the CC must be marked as being
2689 clobbered by the function. */
2690 if (CALL_P (seq
->insn (0)))
2697 /* We have a real machine instruction as rtl. */
2699 body
= PATTERN (insn
);
2702 set
= single_set (insn
);
2704 /* Check for redundant test and compare instructions
2705 (when the condition codes are already set up as desired).
2706 This is done only when optimizing; if not optimizing,
2707 it should be possible for the user to alter a variable
2708 with the debugger in between statements
2709 and the next statement should reexamine the variable
2710 to compute the condition codes. */
2715 && GET_CODE (SET_DEST (set
)) == CC0
2716 && insn
!= last_ignored_compare
)
2719 if (GET_CODE (SET_SRC (set
)) == SUBREG
)
2720 SET_SRC (set
) = alter_subreg (&SET_SRC (set
), true);
2722 src1
= SET_SRC (set
);
2724 if (GET_CODE (SET_SRC (set
)) == COMPARE
)
2726 if (GET_CODE (XEXP (SET_SRC (set
), 0)) == SUBREG
)
2727 XEXP (SET_SRC (set
), 0)
2728 = alter_subreg (&XEXP (SET_SRC (set
), 0), true);
2729 if (GET_CODE (XEXP (SET_SRC (set
), 1)) == SUBREG
)
2730 XEXP (SET_SRC (set
), 1)
2731 = alter_subreg (&XEXP (SET_SRC (set
), 1), true);
2732 if (XEXP (SET_SRC (set
), 1)
2733 == CONST0_RTX (GET_MODE (XEXP (SET_SRC (set
), 0))))
2734 src2
= XEXP (SET_SRC (set
), 0);
2736 if ((cc_status
.value1
!= 0
2737 && rtx_equal_p (src1
, cc_status
.value1
))
2738 || (cc_status
.value2
!= 0
2739 && rtx_equal_p (src1
, cc_status
.value2
))
2740 || (src2
!= 0 && cc_status
.value1
!= 0
2741 && rtx_equal_p (src2
, cc_status
.value1
))
2742 || (src2
!= 0 && cc_status
.value2
!= 0
2743 && rtx_equal_p (src2
, cc_status
.value2
)))
2745 /* Don't delete insn if it has an addressing side-effect. */
2746 if (! FIND_REG_INC_NOTE (insn
, NULL_RTX
)
2747 /* or if anything in it is volatile. */
2748 && ! volatile_refs_p (PATTERN (insn
)))
2750 /* We don't really delete the insn; just ignore it. */
2751 last_ignored_compare
= insn
;
2758 /* If this is a conditional branch, maybe modify it
2759 if the cc's are in a nonstandard state
2760 so that it accomplishes the same thing that it would
2761 do straightforwardly if the cc's were set up normally. */
2763 if (cc_status
.flags
!= 0
2765 && GET_CODE (body
) == SET
2766 && SET_DEST (body
) == pc_rtx
2767 && GET_CODE (SET_SRC (body
)) == IF_THEN_ELSE
2768 && COMPARISON_P (XEXP (SET_SRC (body
), 0))
2769 && XEXP (XEXP (SET_SRC (body
), 0), 0) == cc0_rtx
)
2771 /* This function may alter the contents of its argument
2772 and clear some of the cc_status.flags bits.
2773 It may also return 1 meaning condition now always true
2774 or -1 meaning condition now always false
2775 or 2 meaning condition nontrivial but altered. */
2776 int result
= alter_cond (XEXP (SET_SRC (body
), 0));
2777 /* If condition now has fixed value, replace the IF_THEN_ELSE
2778 with its then-operand or its else-operand. */
2780 SET_SRC (body
) = XEXP (SET_SRC (body
), 1);
2782 SET_SRC (body
) = XEXP (SET_SRC (body
), 2);
2784 /* The jump is now either unconditional or a no-op.
2785 If it has become a no-op, don't try to output it.
2786 (It would not be recognized.) */
2787 if (SET_SRC (body
) == pc_rtx
)
2792 else if (ANY_RETURN_P (SET_SRC (body
)))
2793 /* Replace (set (pc) (return)) with (return). */
2794 PATTERN (insn
) = body
= SET_SRC (body
);
2796 /* Rerecognize the instruction if it has changed. */
2798 INSN_CODE (insn
) = -1;
2801 /* If this is a conditional trap, maybe modify it if the cc's
2802 are in a nonstandard state so that it accomplishes the same
2803 thing that it would do straightforwardly if the cc's were
2805 if (cc_status
.flags
!= 0
2806 && NONJUMP_INSN_P (insn
)
2807 && GET_CODE (body
) == TRAP_IF
2808 && COMPARISON_P (TRAP_CONDITION (body
))
2809 && XEXP (TRAP_CONDITION (body
), 0) == cc0_rtx
)
2811 /* This function may alter the contents of its argument
2812 and clear some of the cc_status.flags bits.
2813 It may also return 1 meaning condition now always true
2814 or -1 meaning condition now always false
2815 or 2 meaning condition nontrivial but altered. */
2816 int result
= alter_cond (TRAP_CONDITION (body
));
2818 /* If TRAP_CONDITION has become always false, delete the
2826 /* If TRAP_CONDITION has become always true, replace
2827 TRAP_CONDITION with const_true_rtx. */
2829 TRAP_CONDITION (body
) = const_true_rtx
;
2831 /* Rerecognize the instruction if it has changed. */
2833 INSN_CODE (insn
) = -1;
2836 /* Make same adjustments to instructions that examine the
2837 condition codes without jumping and instructions that
2838 handle conditional moves (if this machine has either one). */
2840 if (cc_status
.flags
!= 0
2843 rtx cond_rtx
, then_rtx
, else_rtx
;
2846 && GET_CODE (SET_SRC (set
)) == IF_THEN_ELSE
)
2848 cond_rtx
= XEXP (SET_SRC (set
), 0);
2849 then_rtx
= XEXP (SET_SRC (set
), 1);
2850 else_rtx
= XEXP (SET_SRC (set
), 2);
2854 cond_rtx
= SET_SRC (set
);
2855 then_rtx
= const_true_rtx
;
2856 else_rtx
= const0_rtx
;
2859 if (COMPARISON_P (cond_rtx
)
2860 && XEXP (cond_rtx
, 0) == cc0_rtx
)
2863 result
= alter_cond (cond_rtx
);
2865 validate_change (insn
, &SET_SRC (set
), then_rtx
, 0);
2866 else if (result
== -1)
2867 validate_change (insn
, &SET_SRC (set
), else_rtx
, 0);
2868 else if (result
== 2)
2869 INSN_CODE (insn
) = -1;
2870 if (SET_DEST (set
) == SET_SRC (set
))
2877 #ifdef HAVE_peephole
2878 /* Do machine-specific peephole optimizations if desired. */
2880 if (optimize_p
&& !flag_no_peephole
&& !nopeepholes
)
2882 rtx_insn
*next
= peephole (insn
);
2883 /* When peepholing, if there were notes within the peephole,
2884 emit them before the peephole. */
2885 if (next
!= 0 && next
!= NEXT_INSN (insn
))
2887 rtx_insn
*note
, *prev
= PREV_INSN (insn
);
2889 for (note
= NEXT_INSN (insn
); note
!= next
;
2890 note
= NEXT_INSN (note
))
2891 final_scan_insn (note
, file
, optimize_p
, nopeepholes
, seen
);
2893 /* Put the notes in the proper position for a later
2894 rescan. For example, the SH target can do this
2895 when generating a far jump in a delayed branch
2897 note
= NEXT_INSN (insn
);
2898 SET_PREV_INSN (note
) = prev
;
2899 SET_NEXT_INSN (prev
) = note
;
2900 SET_NEXT_INSN (PREV_INSN (next
)) = insn
;
2901 SET_PREV_INSN (insn
) = PREV_INSN (next
);
2902 SET_NEXT_INSN (insn
) = next
;
2903 SET_PREV_INSN (next
) = insn
;
2906 /* PEEPHOLE might have changed this. */
2907 body
= PATTERN (insn
);
2911 /* Try to recognize the instruction.
2912 If successful, verify that the operands satisfy the
2913 constraints for the instruction. Crash if they don't,
2914 since `reload' should have changed them so that they do. */
2916 insn_code_number
= recog_memoized (insn
);
2917 cleanup_subreg_operands (insn
);
2919 /* Dump the insn in the assembly for debugging (-dAP).
2920 If the final dump is requested as slim RTL, dump slim
2921 RTL to the assembly file also. */
2922 if (flag_dump_rtl_in_asm
)
2924 print_rtx_head
= ASM_COMMENT_START
;
2925 if (! (dump_flags
& TDF_SLIM
))
2926 print_rtl_single (asm_out_file
, insn
);
2928 dump_insn_slim (asm_out_file
, insn
);
2929 print_rtx_head
= "";
2932 if (! constrain_operands_cached (1))
2933 fatal_insn_not_found (insn
);
2935 /* Some target machines need to prescan each insn before
2938 #ifdef FINAL_PRESCAN_INSN
2939 FINAL_PRESCAN_INSN (insn
, recog_data
.operand
, recog_data
.n_operands
);
2942 if (targetm
.have_conditional_execution ()
2943 && GET_CODE (PATTERN (insn
)) == COND_EXEC
)
2944 current_insn_predicate
= COND_EXEC_TEST (PATTERN (insn
));
2947 cc_prev_status
= cc_status
;
2949 /* Update `cc_status' for this instruction.
2950 The instruction's output routine may change it further.
2951 If the output routine for a jump insn needs to depend
2952 on the cc status, it should look at cc_prev_status. */
2954 NOTICE_UPDATE_CC (body
, insn
);
2957 current_output_insn
= debug_insn
= insn
;
2959 /* Find the proper template for this insn. */
2960 templ
= get_insn_template (insn_code_number
, insn
);
2962 /* If the C code returns 0, it means that it is a jump insn
2963 which follows a deleted test insn, and that test insn
2964 needs to be reinserted. */
2969 gcc_assert (prev_nonnote_insn (insn
) == last_ignored_compare
);
2971 /* We have already processed the notes between the setter and
2972 the user. Make sure we don't process them again, this is
2973 particularly important if one of the notes is a block
2974 scope note or an EH note. */
2976 prev
!= last_ignored_compare
;
2977 prev
= PREV_INSN (prev
))
2980 delete_insn (prev
); /* Use delete_note. */
2986 /* If the template is the string "#", it means that this insn must
2988 if (templ
[0] == '#' && templ
[1] == '\0')
2990 rtx_insn
*new_rtx
= try_split (body
, insn
, 0);
2992 /* If we didn't split the insn, go away. */
2993 if (new_rtx
== insn
&& PATTERN (new_rtx
) == body
)
2994 fatal_insn ("could not split insn", insn
);
2996 /* If we have a length attribute, this instruction should have
2997 been split in shorten_branches, to ensure that we would have
2998 valid length info for the splitees. */
2999 gcc_assert (!HAVE_ATTR_length
);
3004 /* ??? This will put the directives in the wrong place if
3005 get_insn_template outputs assembly directly. However calling it
3006 before get_insn_template breaks if the insns is split. */
3007 if (targetm
.asm_out
.unwind_emit_before_insn
3008 && targetm
.asm_out
.unwind_emit
)
3009 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
3011 if (rtx_call_insn
*call_insn
= dyn_cast
<rtx_call_insn
*> (insn
))
3013 rtx x
= call_from_call_insn (call_insn
);
3015 if (x
&& MEM_P (x
) && GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
)
3019 t
= SYMBOL_REF_DECL (x
);
3021 assemble_external (t
);
3023 if (!DECL_IGNORED_P (current_function_decl
))
3024 debug_hooks
->var_location (insn
);
3027 /* Output assembler code from the template. */
3028 output_asm_insn (templ
, recog_data
.operand
);
3030 /* Some target machines need to postscan each insn after
3032 if (targetm
.asm_out
.final_postscan_insn
)
3033 targetm
.asm_out
.final_postscan_insn (file
, insn
, recog_data
.operand
,
3034 recog_data
.n_operands
);
3036 if (!targetm
.asm_out
.unwind_emit_before_insn
3037 && targetm
.asm_out
.unwind_emit
)
3038 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
3040 current_output_insn
= debug_insn
= 0;
3043 return NEXT_INSN (insn
);
3046 /* Return whether a source line note needs to be emitted before INSN.
3047 Sets IS_STMT to TRUE if the line should be marked as a possible
3048 breakpoint location. */
3051 notice_source_line (rtx_insn
*insn
, bool *is_stmt
)
3053 const char *filename
;
3056 if (override_filename
)
3058 filename
= override_filename
;
3059 linenum
= override_linenum
;
3061 else if (INSN_HAS_LOCATION (insn
))
3063 expanded_location xloc
= insn_location (insn
);
3064 filename
= xloc
.file
;
3065 linenum
= xloc
.line
;
3073 if (filename
== NULL
)
3076 if (force_source_line
3077 || filename
!= last_filename
3078 || last_linenum
!= linenum
)
3080 force_source_line
= false;
3081 last_filename
= filename
;
3082 last_linenum
= linenum
;
3083 last_discriminator
= discriminator
;
3085 high_block_linenum
= MAX (last_linenum
, high_block_linenum
);
3086 high_function_linenum
= MAX (last_linenum
, high_function_linenum
);
3090 if (SUPPORTS_DISCRIMINATOR
&& last_discriminator
!= discriminator
)
3092 /* If the discriminator changed, but the line number did not,
3093 output the line table entry with is_stmt false so the
3094 debugger does not treat this as a breakpoint location. */
3095 last_discriminator
= discriminator
;
3103 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3104 directly to the desired hard register. */
3107 cleanup_subreg_operands (rtx_insn
*insn
)
3110 bool changed
= false;
3111 extract_insn_cached (insn
);
3112 for (i
= 0; i
< recog_data
.n_operands
; i
++)
3114 /* The following test cannot use recog_data.operand when testing
3115 for a SUBREG: the underlying object might have been changed
3116 already if we are inside a match_operator expression that
3117 matches the else clause. Instead we test the underlying
3118 expression directly. */
3119 if (GET_CODE (*recog_data
.operand_loc
[i
]) == SUBREG
)
3121 recog_data
.operand
[i
] = alter_subreg (recog_data
.operand_loc
[i
], true);
3124 else if (GET_CODE (recog_data
.operand
[i
]) == PLUS
3125 || GET_CODE (recog_data
.operand
[i
]) == MULT
3126 || MEM_P (recog_data
.operand
[i
]))
3127 recog_data
.operand
[i
] = walk_alter_subreg (recog_data
.operand_loc
[i
], &changed
);
3130 for (i
= 0; i
< recog_data
.n_dups
; i
++)
3132 if (GET_CODE (*recog_data
.dup_loc
[i
]) == SUBREG
)
3134 *recog_data
.dup_loc
[i
] = alter_subreg (recog_data
.dup_loc
[i
], true);
3137 else if (GET_CODE (*recog_data
.dup_loc
[i
]) == PLUS
3138 || GET_CODE (*recog_data
.dup_loc
[i
]) == MULT
3139 || MEM_P (*recog_data
.dup_loc
[i
]))
3140 *recog_data
.dup_loc
[i
] = walk_alter_subreg (recog_data
.dup_loc
[i
], &changed
);
3143 df_insn_rescan (insn
);
3146 /* If X is a SUBREG, try to replace it with a REG or a MEM, based on
3147 the thing it is a subreg of. Do it anyway if FINAL_P. */
3150 alter_subreg (rtx
*xp
, bool final_p
)
3153 rtx y
= SUBREG_REG (x
);
3155 /* simplify_subreg does not remove subreg from volatile references.
3156 We are required to. */
3159 int offset
= SUBREG_BYTE (x
);
3161 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
3162 contains 0 instead of the proper offset. See simplify_subreg. */
3164 && GET_MODE_SIZE (GET_MODE (y
)) < GET_MODE_SIZE (GET_MODE (x
)))
3166 int difference
= GET_MODE_SIZE (GET_MODE (y
))
3167 - GET_MODE_SIZE (GET_MODE (x
));
3168 if (WORDS_BIG_ENDIAN
)
3169 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
3170 if (BYTES_BIG_ENDIAN
)
3171 offset
+= difference
% UNITS_PER_WORD
;
3175 *xp
= adjust_address (y
, GET_MODE (x
), offset
);
3177 *xp
= adjust_address_nv (y
, GET_MODE (x
), offset
);
3181 rtx new_rtx
= simplify_subreg (GET_MODE (x
), y
, GET_MODE (y
),
3186 else if (final_p
&& REG_P (y
))
3188 /* Simplify_subreg can't handle some REG cases, but we have to. */
3190 HOST_WIDE_INT offset
;
3192 regno
= subreg_regno (x
);
3193 if (subreg_lowpart_p (x
))
3194 offset
= byte_lowpart_offset (GET_MODE (x
), GET_MODE (y
));
3196 offset
= SUBREG_BYTE (x
);
3197 *xp
= gen_rtx_REG_offset (y
, GET_MODE (x
), regno
, offset
);
3204 /* Do alter_subreg on all the SUBREGs contained in X. */
3207 walk_alter_subreg (rtx
*xp
, bool *changed
)
3210 switch (GET_CODE (x
))
3215 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0), changed
);
3216 XEXP (x
, 1) = walk_alter_subreg (&XEXP (x
, 1), changed
);
3221 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0), changed
);
3226 return alter_subreg (xp
, true);
3237 /* Given BODY, the body of a jump instruction, alter the jump condition
3238 as required by the bits that are set in cc_status.flags.
3239 Not all of the bits there can be handled at this level in all cases.
3241 The value is normally 0.
3242 1 means that the condition has become always true.
3243 -1 means that the condition has become always false.
3244 2 means that COND has been altered. */
3247 alter_cond (rtx cond
)
3251 if (cc_status
.flags
& CC_REVERSED
)
3254 PUT_CODE (cond
, swap_condition (GET_CODE (cond
)));
3257 if (cc_status
.flags
& CC_INVERTED
)
3260 PUT_CODE (cond
, reverse_condition (GET_CODE (cond
)));
3263 if (cc_status
.flags
& CC_NOT_POSITIVE
)
3264 switch (GET_CODE (cond
))
3269 /* Jump becomes unconditional. */
3275 /* Jump becomes no-op. */
3279 PUT_CODE (cond
, EQ
);
3284 PUT_CODE (cond
, NE
);
3292 if (cc_status
.flags
& CC_NOT_NEGATIVE
)
3293 switch (GET_CODE (cond
))
3297 /* Jump becomes unconditional. */
3302 /* Jump becomes no-op. */
3307 PUT_CODE (cond
, EQ
);
3313 PUT_CODE (cond
, NE
);
3321 if (cc_status
.flags
& CC_NO_OVERFLOW
)
3322 switch (GET_CODE (cond
))
3325 /* Jump becomes unconditional. */
3329 PUT_CODE (cond
, EQ
);
3334 PUT_CODE (cond
, NE
);
3339 /* Jump becomes no-op. */
3346 if (cc_status
.flags
& (CC_Z_IN_NOT_N
| CC_Z_IN_N
))
3347 switch (GET_CODE (cond
))
3353 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? GE
: LT
);
3358 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? LT
: GE
);
3363 if (cc_status
.flags
& CC_NOT_SIGNED
)
3364 /* The flags are valid if signed condition operators are converted
3366 switch (GET_CODE (cond
))
3369 PUT_CODE (cond
, LEU
);
3374 PUT_CODE (cond
, LTU
);
3379 PUT_CODE (cond
, GTU
);
3384 PUT_CODE (cond
, GEU
);
3396 /* Report inconsistency between the assembler template and the operands.
3397 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3400 output_operand_lossage (const char *cmsgid
, ...)
3404 const char *pfx_str
;
3407 va_start (ap
, cmsgid
);
3409 pfx_str
= this_is_asm_operands
? _("invalid 'asm': ") : "output_operand: ";
3410 asprintf (&fmt_string
, "%s%s", pfx_str
, _(cmsgid
));
3411 vasprintf (&new_message
, fmt_string
, ap
);
3413 if (this_is_asm_operands
)
3414 error_for_asm (this_is_asm_operands
, "%s", new_message
);
3416 internal_error ("%s", new_message
);
3423 /* Output of assembler code from a template, and its subroutines. */
3425 /* Annotate the assembly with a comment describing the pattern and
3426 alternative used. */
3429 output_asm_name (void)
3433 int num
= INSN_CODE (debug_insn
);
3434 fprintf (asm_out_file
, "\t%s %d\t%s",
3435 ASM_COMMENT_START
, INSN_UID (debug_insn
),
3436 insn_data
[num
].name
);
3437 if (insn_data
[num
].n_alternatives
> 1)
3438 fprintf (asm_out_file
, "/%d", which_alternative
+ 1);
3440 if (HAVE_ATTR_length
)
3441 fprintf (asm_out_file
, "\t[length = %d]",
3442 get_attr_length (debug_insn
));
3444 /* Clear this so only the first assembler insn
3445 of any rtl insn will get the special comment for -dp. */
3450 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3451 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3452 corresponds to the address of the object and 0 if to the object. */
3455 get_mem_expr_from_op (rtx op
, int *paddressp
)
3463 return REG_EXPR (op
);
3464 else if (!MEM_P (op
))
3467 if (MEM_EXPR (op
) != 0)
3468 return MEM_EXPR (op
);
3470 /* Otherwise we have an address, so indicate it and look at the address. */
3474 /* First check if we have a decl for the address, then look at the right side
3475 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3476 But don't allow the address to itself be indirect. */
3477 if ((expr
= get_mem_expr_from_op (op
, &inner_addressp
)) && ! inner_addressp
)
3479 else if (GET_CODE (op
) == PLUS
3480 && (expr
= get_mem_expr_from_op (XEXP (op
, 1), &inner_addressp
)))
3484 || GET_RTX_CLASS (GET_CODE (op
)) == RTX_BIN_ARITH
)
3487 expr
= get_mem_expr_from_op (op
, &inner_addressp
);
3488 return inner_addressp
? 0 : expr
;
3491 /* Output operand names for assembler instructions. OPERANDS is the
3492 operand vector, OPORDER is the order to write the operands, and NOPS
3493 is the number of operands to write. */
3496 output_asm_operand_names (rtx
*operands
, int *oporder
, int nops
)
3501 for (i
= 0; i
< nops
; i
++)
3504 rtx op
= operands
[oporder
[i
]];
3505 tree expr
= get_mem_expr_from_op (op
, &addressp
);
3507 fprintf (asm_out_file
, "%c%s",
3508 wrote
? ',' : '\t', wrote
? "" : ASM_COMMENT_START
);
3512 fprintf (asm_out_file
, "%s",
3513 addressp
? "*" : "");
3514 print_mem_expr (asm_out_file
, expr
);
3517 else if (REG_P (op
) && ORIGINAL_REGNO (op
)
3518 && ORIGINAL_REGNO (op
) != REGNO (op
))
3519 fprintf (asm_out_file
, " tmp%i", ORIGINAL_REGNO (op
));
3523 #ifdef ASSEMBLER_DIALECT
3524 /* Helper function to parse assembler dialects in the asm string.
3525 This is called from output_asm_insn and asm_fprintf. */
3527 do_assembler_dialects (const char *p
, int *dialect
)
3538 output_operand_lossage ("nested assembly dialect alternatives");
3542 /* If we want the first dialect, do nothing. Otherwise, skip
3543 DIALECT_NUMBER of strings ending with '|'. */
3544 for (i
= 0; i
< dialect_number
; i
++)
3546 while (*p
&& *p
!= '}')
3554 /* Skip over any character after a percent sign. */
3566 output_operand_lossage ("unterminated assembly dialect alternative");
3573 /* Skip to close brace. */
3578 output_operand_lossage ("unterminated assembly dialect alternative");
3582 /* Skip over any character after a percent sign. */
3583 if (*p
== '%' && p
[1])
3597 putc (c
, asm_out_file
);
3602 putc (c
, asm_out_file
);
3613 /* Output text from TEMPLATE to the assembler output file,
3614 obeying %-directions to substitute operands taken from
3615 the vector OPERANDS.
3617 %N (for N a digit) means print operand N in usual manner.
3618 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3619 and print the label name with no punctuation.
3620 %cN means require operand N to be a constant
3621 and print the constant expression with no punctuation.
3622 %aN means expect operand N to be a memory address
3623 (not a memory reference!) and print a reference
3625 %nN means expect operand N to be a constant
3626 and print a constant expression for minus the value
3627 of the operand, with no other punctuation. */
3630 output_asm_insn (const char *templ
, rtx
*operands
)
3634 #ifdef ASSEMBLER_DIALECT
3637 int oporder
[MAX_RECOG_OPERANDS
];
3638 char opoutput
[MAX_RECOG_OPERANDS
];
3641 /* An insn may return a null string template
3642 in a case where no assembler code is needed. */
3646 memset (opoutput
, 0, sizeof opoutput
);
3648 putc ('\t', asm_out_file
);
3650 #ifdef ASM_OUTPUT_OPCODE
3651 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3658 if (flag_verbose_asm
)
3659 output_asm_operand_names (operands
, oporder
, ops
);
3660 if (flag_print_asm_name
)
3664 memset (opoutput
, 0, sizeof opoutput
);
3666 putc (c
, asm_out_file
);
3667 #ifdef ASM_OUTPUT_OPCODE
3668 while ((c
= *p
) == '\t')
3670 putc (c
, asm_out_file
);
3673 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3677 #ifdef ASSEMBLER_DIALECT
3681 p
= do_assembler_dialects (p
, &dialect
);
3686 /* %% outputs a single %. %{, %} and %| print {, } and | respectively
3687 if ASSEMBLER_DIALECT defined and these characters have a special
3688 meaning as dialect delimiters.*/
3690 #ifdef ASSEMBLER_DIALECT
3691 || *p
== '{' || *p
== '}' || *p
== '|'
3695 putc (*p
, asm_out_file
);
3698 /* %= outputs a number which is unique to each insn in the entire
3699 compilation. This is useful for making local labels that are
3700 referred to more than once in a given insn. */
3704 fprintf (asm_out_file
, "%d", insn_counter
);
3706 /* % followed by a letter and some digits
3707 outputs an operand in a special way depending on the letter.
3708 Letters `acln' are implemented directly.
3709 Other letters are passed to `output_operand' so that
3710 the TARGET_PRINT_OPERAND hook can define them. */
3711 else if (ISALPHA (*p
))
3714 unsigned long opnum
;
3717 opnum
= strtoul (p
, &endptr
, 10);
3720 output_operand_lossage ("operand number missing "
3722 else if (this_is_asm_operands
&& opnum
>= insn_noperands
)
3723 output_operand_lossage ("operand number out of range");
3724 else if (letter
== 'l')
3725 output_asm_label (operands
[opnum
]);
3726 else if (letter
== 'a')
3727 output_address (operands
[opnum
]);
3728 else if (letter
== 'c')
3730 if (CONSTANT_ADDRESS_P (operands
[opnum
]))
3731 output_addr_const (asm_out_file
, operands
[opnum
]);
3733 output_operand (operands
[opnum
], 'c');
3735 else if (letter
== 'n')
3737 if (CONST_INT_P (operands
[opnum
]))
3738 fprintf (asm_out_file
, HOST_WIDE_INT_PRINT_DEC
,
3739 - INTVAL (operands
[opnum
]));
3742 putc ('-', asm_out_file
);
3743 output_addr_const (asm_out_file
, operands
[opnum
]);
3747 output_operand (operands
[opnum
], letter
);
3749 if (!opoutput
[opnum
])
3750 oporder
[ops
++] = opnum
;
3751 opoutput
[opnum
] = 1;
3756 /* % followed by a digit outputs an operand the default way. */
3757 else if (ISDIGIT (*p
))
3759 unsigned long opnum
;
3762 opnum
= strtoul (p
, &endptr
, 10);
3763 if (this_is_asm_operands
&& opnum
>= insn_noperands
)
3764 output_operand_lossage ("operand number out of range");
3766 output_operand (operands
[opnum
], 0);
3768 if (!opoutput
[opnum
])
3769 oporder
[ops
++] = opnum
;
3770 opoutput
[opnum
] = 1;
3775 /* % followed by punctuation: output something for that
3776 punctuation character alone, with no operand. The
3777 TARGET_PRINT_OPERAND hook decides what is actually done. */
3778 else if (targetm
.asm_out
.print_operand_punct_valid_p ((unsigned char) *p
))
3779 output_operand (NULL_RTX
, *p
++);
3781 output_operand_lossage ("invalid %%-code");
3785 putc (c
, asm_out_file
);
3788 /* Write out the variable names for operands, if we know them. */
3789 if (flag_verbose_asm
)
3790 output_asm_operand_names (operands
, oporder
, ops
);
3791 if (flag_print_asm_name
)
3794 putc ('\n', asm_out_file
);
3797 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3800 output_asm_label (rtx x
)
3804 if (GET_CODE (x
) == LABEL_REF
)
3805 x
= LABEL_REF_LABEL (x
);
3808 && NOTE_KIND (x
) == NOTE_INSN_DELETED_LABEL
))
3809 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3811 output_operand_lossage ("'%%l' operand isn't a label");
3813 assemble_name (asm_out_file
, buf
);
3816 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external. */
3819 mark_symbol_refs_as_used (rtx x
)
3821 subrtx_iterator::array_type array
;
3822 FOR_EACH_SUBRTX (iter
, array
, x
, ALL
)
3824 const_rtx x
= *iter
;
3825 if (GET_CODE (x
) == SYMBOL_REF
)
3826 if (tree t
= SYMBOL_REF_DECL (x
))
3827 assemble_external (t
);
3831 /* Print operand X using machine-dependent assembler syntax.
3832 CODE is a non-digit that preceded the operand-number in the % spec,
3833 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3834 between the % and the digits.
3835 When CODE is a non-letter, X is 0.
3837 The meanings of the letters are machine-dependent and controlled
3838 by TARGET_PRINT_OPERAND. */
3841 output_operand (rtx x
, int code ATTRIBUTE_UNUSED
)
3843 if (x
&& GET_CODE (x
) == SUBREG
)
3844 x
= alter_subreg (&x
, true);
3846 /* X must not be a pseudo reg. */
3847 gcc_assert (!x
|| !REG_P (x
) || REGNO (x
) < FIRST_PSEUDO_REGISTER
);
3849 targetm
.asm_out
.print_operand (asm_out_file
, x
, code
);
3854 mark_symbol_refs_as_used (x
);
3857 /* Print a memory reference operand for address X using
3858 machine-dependent assembler syntax. */
3861 output_address (rtx x
)
3863 bool changed
= false;
3864 walk_alter_subreg (&x
, &changed
);
3865 targetm
.asm_out
.print_operand_address (asm_out_file
, x
);
3868 /* Print an integer constant expression in assembler syntax.
3869 Addition and subtraction are the only arithmetic
3870 that may appear in these expressions. */
3873 output_addr_const (FILE *file
, rtx x
)
3878 switch (GET_CODE (x
))
3885 if (SYMBOL_REF_DECL (x
))
3886 assemble_external (SYMBOL_REF_DECL (x
));
3887 #ifdef ASM_OUTPUT_SYMBOL_REF
3888 ASM_OUTPUT_SYMBOL_REF (file
, x
);
3890 assemble_name (file
, XSTR (x
, 0));
3895 x
= LABEL_REF_LABEL (x
);
3898 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3899 #ifdef ASM_OUTPUT_LABEL_REF
3900 ASM_OUTPUT_LABEL_REF (file
, buf
);
3902 assemble_name (file
, buf
);
3907 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, INTVAL (x
));
3911 /* This used to output parentheses around the expression,
3912 but that does not work on the 386 (either ATT or BSD assembler). */
3913 output_addr_const (file
, XEXP (x
, 0));
3916 case CONST_WIDE_INT
:
3917 /* We do not know the mode here so we have to use a round about
3918 way to build a wide-int to get it printed properly. */
3920 wide_int w
= wide_int::from_array (&CONST_WIDE_INT_ELT (x
, 0),
3921 CONST_WIDE_INT_NUNITS (x
),
3922 CONST_WIDE_INT_NUNITS (x
)
3923 * HOST_BITS_PER_WIDE_INT
,
3925 print_decs (w
, file
);
3930 if (CONST_DOUBLE_AS_INT_P (x
))
3932 /* We can use %d if the number is one word and positive. */
3933 if (CONST_DOUBLE_HIGH (x
))
3934 fprintf (file
, HOST_WIDE_INT_PRINT_DOUBLE_HEX
,
3935 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_HIGH (x
),
3936 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_LOW (x
));
3937 else if (CONST_DOUBLE_LOW (x
) < 0)
3938 fprintf (file
, HOST_WIDE_INT_PRINT_HEX
,
3939 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_LOW (x
));
3941 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, CONST_DOUBLE_LOW (x
));
3944 /* We can't handle floating point constants;
3945 PRINT_OPERAND must handle them. */
3946 output_operand_lossage ("floating constant misused");
3950 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, CONST_FIXED_VALUE_LOW (x
));
3954 /* Some assemblers need integer constants to appear last (eg masm). */
3955 if (CONST_INT_P (XEXP (x
, 0)))
3957 output_addr_const (file
, XEXP (x
, 1));
3958 if (INTVAL (XEXP (x
, 0)) >= 0)
3959 fprintf (file
, "+");
3960 output_addr_const (file
, XEXP (x
, 0));
3964 output_addr_const (file
, XEXP (x
, 0));
3965 if (!CONST_INT_P (XEXP (x
, 1))
3966 || INTVAL (XEXP (x
, 1)) >= 0)
3967 fprintf (file
, "+");
3968 output_addr_const (file
, XEXP (x
, 1));
3973 /* Avoid outputting things like x-x or x+5-x,
3974 since some assemblers can't handle that. */
3975 x
= simplify_subtraction (x
);
3976 if (GET_CODE (x
) != MINUS
)
3979 output_addr_const (file
, XEXP (x
, 0));
3980 fprintf (file
, "-");
3981 if ((CONST_INT_P (XEXP (x
, 1)) && INTVAL (XEXP (x
, 1)) >= 0)
3982 || GET_CODE (XEXP (x
, 1)) == PC
3983 || GET_CODE (XEXP (x
, 1)) == SYMBOL_REF
)
3984 output_addr_const (file
, XEXP (x
, 1));
3987 fputs (targetm
.asm_out
.open_paren
, file
);
3988 output_addr_const (file
, XEXP (x
, 1));
3989 fputs (targetm
.asm_out
.close_paren
, file
);
3997 output_addr_const (file
, XEXP (x
, 0));
4001 if (targetm
.asm_out
.output_addr_const_extra (file
, x
))
4004 output_operand_lossage ("invalid expression as operand");
4008 /* Output a quoted string. */
4011 output_quoted_string (FILE *asm_file
, const char *string
)
4013 #ifdef OUTPUT_QUOTED_STRING
4014 OUTPUT_QUOTED_STRING (asm_file
, string
);
4018 putc ('\"', asm_file
);
4019 while ((c
= *string
++) != 0)
4023 if (c
== '\"' || c
== '\\')
4024 putc ('\\', asm_file
);
4028 fprintf (asm_file
, "\\%03o", (unsigned char) c
);
4030 putc ('\"', asm_file
);
4034 /* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */
4037 fprint_whex (FILE *f
, unsigned HOST_WIDE_INT value
)
4039 char buf
[2 + CHAR_BIT
* sizeof (value
) / 4];
4044 char *p
= buf
+ sizeof (buf
);
4046 *--p
= "0123456789abcdef"[value
% 16];
4047 while ((value
/= 16) != 0);
4050 fwrite (p
, 1, buf
+ sizeof (buf
) - p
, f
);
4054 /* Internal function that prints an unsigned long in decimal in reverse.
4055 The output string IS NOT null-terminated. */
4058 sprint_ul_rev (char *s
, unsigned long value
)
4063 s
[i
] = "0123456789"[value
% 10];
4066 /* alternate version, without modulo */
4067 /* oldval = value; */
4069 /* s[i] = "0123456789" [oldval - 10*value]; */
4076 /* Write an unsigned long as decimal to a file, fast. */
4079 fprint_ul (FILE *f
, unsigned long value
)
4081 /* python says: len(str(2**64)) == 20 */
4085 i
= sprint_ul_rev (s
, value
);
4087 /* It's probably too small to bother with string reversal and fputs. */
4096 /* Write an unsigned long as decimal to a string, fast.
4097 s must be wide enough to not overflow, at least 21 chars.
4098 Returns the length of the string (without terminating '\0'). */
4101 sprint_ul (char *s
, unsigned long value
)
4108 len
= sprint_ul_rev (s
, value
);
4111 /* Reverse the string. */
4125 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
4126 %R prints the value of REGISTER_PREFIX.
4127 %L prints the value of LOCAL_LABEL_PREFIX.
4128 %U prints the value of USER_LABEL_PREFIX.
4129 %I prints the value of IMMEDIATE_PREFIX.
4130 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
4131 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
4133 We handle alternate assembler dialects here, just like output_asm_insn. */
4136 asm_fprintf (FILE *file
, const char *p
, ...)
4140 #ifdef ASSEMBLER_DIALECT
4145 va_start (argptr
, p
);
4152 #ifdef ASSEMBLER_DIALECT
4156 p
= do_assembler_dialects (p
, &dialect
);
4163 while (strchr ("-+ #0", c
))
4168 while (ISDIGIT (c
) || c
== '.')
4179 case 'd': case 'i': case 'u':
4180 case 'x': case 'X': case 'o':
4184 fprintf (file
, buf
, va_arg (argptr
, int));
4188 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
4189 'o' cases, but we do not check for those cases. It
4190 means that the value is a HOST_WIDE_INT, which may be
4191 either `long' or `long long'. */
4192 memcpy (q
, HOST_WIDE_INT_PRINT
, strlen (HOST_WIDE_INT_PRINT
));
4193 q
+= strlen (HOST_WIDE_INT_PRINT
);
4196 fprintf (file
, buf
, va_arg (argptr
, HOST_WIDE_INT
));
4201 #ifdef HAVE_LONG_LONG
4207 fprintf (file
, buf
, va_arg (argptr
, long long));
4214 fprintf (file
, buf
, va_arg (argptr
, long));
4222 fprintf (file
, buf
, va_arg (argptr
, char *));
4226 #ifdef ASM_OUTPUT_OPCODE
4227 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
4232 #ifdef REGISTER_PREFIX
4233 fprintf (file
, "%s", REGISTER_PREFIX
);
4238 #ifdef IMMEDIATE_PREFIX
4239 fprintf (file
, "%s", IMMEDIATE_PREFIX
);
4244 #ifdef LOCAL_LABEL_PREFIX
4245 fprintf (file
, "%s", LOCAL_LABEL_PREFIX
);
4250 fputs (user_label_prefix
, file
);
4253 #ifdef ASM_FPRINTF_EXTENSIONS
4254 /* Uppercase letters are reserved for general use by asm_fprintf
4255 and so are not available to target specific code. In order to
4256 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
4257 they are defined here. As they get turned into real extensions
4258 to asm_fprintf they should be removed from this list. */
4259 case 'A': case 'B': case 'C': case 'D': case 'E':
4260 case 'F': case 'G': case 'H': case 'J': case 'K':
4261 case 'M': case 'N': case 'P': case 'Q': case 'S':
4262 case 'T': case 'V': case 'W': case 'Y': case 'Z':
4265 ASM_FPRINTF_EXTENSIONS (file
, argptr
, p
)
4278 /* Return nonzero if this function has no function calls. */
4281 leaf_function_p (void)
4285 /* Some back-ends (e.g. s390) want leaf functions to stay leaf
4286 functions even if they call mcount. */
4287 if (crtl
->profile
&& !targetm
.keep_leaf_when_profiled ())
4290 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
4293 && ! SIBLING_CALL_P (insn
))
4295 if (NONJUMP_INSN_P (insn
)
4296 && GET_CODE (PATTERN (insn
)) == SEQUENCE
4297 && CALL_P (XVECEXP (PATTERN (insn
), 0, 0))
4298 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn
), 0, 0)))
4305 /* Return 1 if branch is a forward branch.
4306 Uses insn_shuid array, so it works only in the final pass. May be used by
4307 output templates to customary add branch prediction hints.
4310 final_forward_branch_p (rtx_insn
*insn
)
4312 int insn_id
, label_id
;
4314 gcc_assert (uid_shuid
);
4315 insn_id
= INSN_SHUID (insn
);
4316 label_id
= INSN_SHUID (JUMP_LABEL (insn
));
4317 /* We've hit some insns that does not have id information available. */
4318 gcc_assert (insn_id
&& label_id
);
4319 return insn_id
< label_id
;
4322 /* On some machines, a function with no call insns
4323 can run faster if it doesn't create its own register window.
4324 When output, the leaf function should use only the "output"
4325 registers. Ordinarily, the function would be compiled to use
4326 the "input" registers to find its arguments; it is a candidate
4327 for leaf treatment if it uses only the "input" registers.
4328 Leaf function treatment means renumbering so the function
4329 uses the "output" registers instead. */
4331 #ifdef LEAF_REGISTERS
4333 /* Return 1 if this function uses only the registers that can be
4334 safely renumbered. */
4337 only_leaf_regs_used (void)
4340 const char *const permitted_reg_in_leaf_functions
= LEAF_REGISTERS
;
4342 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
4343 if ((df_regs_ever_live_p (i
) || global_regs
[i
])
4344 && ! permitted_reg_in_leaf_functions
[i
])
4347 if (crtl
->uses_pic_offset_table
4348 && pic_offset_table_rtx
!= 0
4349 && REG_P (pic_offset_table_rtx
)
4350 && ! permitted_reg_in_leaf_functions
[REGNO (pic_offset_table_rtx
)])
4356 /* Scan all instructions and renumber all registers into those
4357 available in leaf functions. */
4360 leaf_renumber_regs (rtx_insn
*first
)
4364 /* Renumber only the actual patterns.
4365 The reg-notes can contain frame pointer refs,
4366 and renumbering them could crash, and should not be needed. */
4367 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
4369 leaf_renumber_regs_insn (PATTERN (insn
));
4372 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4373 available in leaf functions. */
4376 leaf_renumber_regs_insn (rtx in_rtx
)
4379 const char *format_ptr
;
4384 /* Renumber all input-registers into output-registers.
4385 renumbered_regs would be 1 for an output-register;
4392 /* Don't renumber the same reg twice. */
4396 newreg
= REGNO (in_rtx
);
4397 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4398 to reach here as part of a REG_NOTE. */
4399 if (newreg
>= FIRST_PSEUDO_REGISTER
)
4404 newreg
= LEAF_REG_REMAP (newreg
);
4405 gcc_assert (newreg
>= 0);
4406 df_set_regs_ever_live (REGNO (in_rtx
), false);
4407 df_set_regs_ever_live (newreg
, true);
4408 SET_REGNO (in_rtx
, newreg
);
4412 if (INSN_P (in_rtx
))
4414 /* Inside a SEQUENCE, we find insns.
4415 Renumber just the patterns of these insns,
4416 just as we do for the top-level insns. */
4417 leaf_renumber_regs_insn (PATTERN (in_rtx
));
4421 format_ptr
= GET_RTX_FORMAT (GET_CODE (in_rtx
));
4423 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (in_rtx
)); i
++)
4424 switch (*format_ptr
++)
4427 leaf_renumber_regs_insn (XEXP (in_rtx
, i
));
4431 if (NULL
!= XVEC (in_rtx
, i
))
4433 for (j
= 0; j
< XVECLEN (in_rtx
, i
); j
++)
4434 leaf_renumber_regs_insn (XVECEXP (in_rtx
, i
, j
));
4453 /* Turn the RTL into assembly. */
4455 rest_of_handle_final (void)
4460 /* Get the function's name, as described by its RTL. This may be
4461 different from the DECL_NAME name used in the source file. */
4463 x
= DECL_RTL (current_function_decl
);
4464 gcc_assert (MEM_P (x
));
4466 gcc_assert (GET_CODE (x
) == SYMBOL_REF
);
4467 fnname
= XSTR (x
, 0);
4469 assemble_start_function (current_function_decl
, fnname
);
4470 final_start_function (get_insns (), asm_out_file
, optimize
);
4471 final (get_insns (), asm_out_file
, optimize
);
4472 if (flag_use_caller_save
)
4473 collect_fn_hard_reg_usage ();
4474 final_end_function ();
4476 /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
4477 directive that closes the procedure descriptor. Similarly, for x64 SEH.
4478 Otherwise it's not strictly necessary, but it doesn't hurt either. */
4479 output_function_exception_table (fnname
);
4481 assemble_end_function (current_function_decl
, fnname
);
4483 user_defined_section_attribute
= false;
4485 /* Free up reg info memory. */
4489 fflush (asm_out_file
);
4491 /* Write DBX symbols if requested. */
4493 /* Note that for those inline functions where we don't initially
4494 know for certain that we will be generating an out-of-line copy,
4495 the first invocation of this routine (rest_of_compilation) will
4496 skip over this code by doing a `goto exit_rest_of_compilation;'.
4497 Later on, wrapup_global_declarations will (indirectly) call
4498 rest_of_compilation again for those inline functions that need
4499 to have out-of-line copies generated. During that call, we
4500 *will* be routed past here. */
4502 timevar_push (TV_SYMOUT
);
4503 if (!DECL_IGNORED_P (current_function_decl
))
4504 debug_hooks
->function_decl (current_function_decl
);
4505 timevar_pop (TV_SYMOUT
);
4507 /* Release the blocks that are linked to DECL_INITIAL() to free the memory. */
4508 DECL_INITIAL (current_function_decl
) = error_mark_node
;
4510 if (DECL_STATIC_CONSTRUCTOR (current_function_decl
)
4511 && targetm
.have_ctors_dtors
)
4512 targetm
.asm_out
.constructor (XEXP (DECL_RTL (current_function_decl
), 0),
4513 decl_init_priority_lookup
4514 (current_function_decl
));
4515 if (DECL_STATIC_DESTRUCTOR (current_function_decl
)
4516 && targetm
.have_ctors_dtors
)
4517 targetm
.asm_out
.destructor (XEXP (DECL_RTL (current_function_decl
), 0),
4518 decl_fini_priority_lookup
4519 (current_function_decl
));
4525 const pass_data pass_data_final
=
4527 RTL_PASS
, /* type */
4529 OPTGROUP_NONE
, /* optinfo_flags */
4530 TV_FINAL
, /* tv_id */
4531 0, /* properties_required */
4532 0, /* properties_provided */
4533 0, /* properties_destroyed */
4534 0, /* todo_flags_start */
4535 0, /* todo_flags_finish */
4538 class pass_final
: public rtl_opt_pass
4541 pass_final (gcc::context
*ctxt
)
4542 : rtl_opt_pass (pass_data_final
, ctxt
)
4545 /* opt_pass methods: */
4546 virtual unsigned int execute (function
*) { return rest_of_handle_final (); }
4548 }; // class pass_final
4553 make_pass_final (gcc::context
*ctxt
)
4555 return new pass_final (ctxt
);
4560 rest_of_handle_shorten_branches (void)
4562 /* Shorten branches. */
4563 shorten_branches (get_insns ());
4569 const pass_data pass_data_shorten_branches
=
4571 RTL_PASS
, /* type */
4572 "shorten", /* name */
4573 OPTGROUP_NONE
, /* optinfo_flags */
4574 TV_SHORTEN_BRANCH
, /* tv_id */
4575 0, /* properties_required */
4576 0, /* properties_provided */
4577 0, /* properties_destroyed */
4578 0, /* todo_flags_start */
4579 0, /* todo_flags_finish */
4582 class pass_shorten_branches
: public rtl_opt_pass
4585 pass_shorten_branches (gcc::context
*ctxt
)
4586 : rtl_opt_pass (pass_data_shorten_branches
, ctxt
)
4589 /* opt_pass methods: */
4590 virtual unsigned int execute (function
*)
4592 return rest_of_handle_shorten_branches ();
4595 }; // class pass_shorten_branches
4600 make_pass_shorten_branches (gcc::context
*ctxt
)
4602 return new pass_shorten_branches (ctxt
);
4607 rest_of_clean_state (void)
4609 rtx_insn
*insn
, *next
;
4610 FILE *final_output
= NULL
;
4611 int save_unnumbered
= flag_dump_unnumbered
;
4612 int save_noaddr
= flag_dump_noaddr
;
4614 if (flag_dump_final_insns
)
4616 final_output
= fopen (flag_dump_final_insns
, "a");
4619 error ("could not open final insn dump file %qs: %m",
4620 flag_dump_final_insns
);
4621 flag_dump_final_insns
= NULL
;
4625 flag_dump_noaddr
= flag_dump_unnumbered
= 1;
4626 if (flag_compare_debug_opt
|| flag_compare_debug
)
4627 dump_flags
|= TDF_NOUID
;
4628 dump_function_header (final_output
, current_function_decl
,
4630 final_insns_dump_p
= true;
4632 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
4634 INSN_UID (insn
) = CODE_LABEL_NUMBER (insn
);
4638 set_block_for_insn (insn
, NULL
);
4639 INSN_UID (insn
) = 0;
4644 /* It is very important to decompose the RTL instruction chain here:
4645 debug information keeps pointing into CODE_LABEL insns inside the function
4646 body. If these remain pointing to the other insns, we end up preserving
4647 whole RTL chain and attached detailed debug info in memory. */
4648 for (insn
= get_insns (); insn
; insn
= next
)
4650 next
= NEXT_INSN (insn
);
4651 SET_NEXT_INSN (insn
) = NULL
;
4652 SET_PREV_INSN (insn
) = NULL
;
4655 && (!NOTE_P (insn
) ||
4656 (NOTE_KIND (insn
) != NOTE_INSN_VAR_LOCATION
4657 && NOTE_KIND (insn
) != NOTE_INSN_CALL_ARG_LOCATION
4658 && NOTE_KIND (insn
) != NOTE_INSN_BLOCK_BEG
4659 && NOTE_KIND (insn
) != NOTE_INSN_BLOCK_END
4660 && NOTE_KIND (insn
) != NOTE_INSN_DELETED_DEBUG_LABEL
)))
4661 print_rtl_single (final_output
, insn
);
4666 flag_dump_noaddr
= save_noaddr
;
4667 flag_dump_unnumbered
= save_unnumbered
;
4668 final_insns_dump_p
= false;
4670 if (fclose (final_output
))
4672 error ("could not close final insn dump file %qs: %m",
4673 flag_dump_final_insns
);
4674 flag_dump_final_insns
= NULL
;
4678 /* In case the function was not output,
4679 don't leave any temporary anonymous types
4680 queued up for sdb output. */
4681 #ifdef SDB_DEBUGGING_INFO
4682 if (write_symbols
== SDB_DEBUG
)
4683 sdbout_types (NULL_TREE
);
4686 flag_rerun_cse_after_global_opts
= 0;
4687 reload_completed
= 0;
4688 epilogue_completed
= 0;
4690 regstack_completed
= 0;
4693 /* Clear out the insn_length contents now that they are no
4695 init_insn_lengths ();
4697 /* Show no temporary slots allocated. */
4700 free_bb_for_insn ();
4704 /* We can reduce stack alignment on call site only when we are sure that
4705 the function body just produced will be actually used in the final
4707 if (decl_binds_to_current_def_p (current_function_decl
))
4709 unsigned int pref
= crtl
->preferred_stack_boundary
;
4710 if (crtl
->stack_alignment_needed
> crtl
->preferred_stack_boundary
)
4711 pref
= crtl
->stack_alignment_needed
;
4712 cgraph_node::rtl_info (current_function_decl
)
4713 ->preferred_incoming_stack_boundary
= pref
;
4716 /* Make sure volatile mem refs aren't considered valid operands for
4717 arithmetic insns. We must call this here if this is a nested inline
4718 function, since the above code leaves us in the init_recog state,
4719 and the function context push/pop code does not save/restore volatile_ok.
4721 ??? Maybe it isn't necessary for expand_start_function to call this
4722 anymore if we do it here? */
4724 init_recog_no_volatile ();
4726 /* We're done with this function. Free up memory if we can. */
4727 free_after_parsing (cfun
);
4728 free_after_compilation (cfun
);
4734 const pass_data pass_data_clean_state
=
4736 RTL_PASS
, /* type */
4737 "*clean_state", /* name */
4738 OPTGROUP_NONE
, /* optinfo_flags */
4739 TV_FINAL
, /* tv_id */
4740 0, /* properties_required */
4741 0, /* properties_provided */
4742 PROP_rtl
, /* properties_destroyed */
4743 0, /* todo_flags_start */
4744 0, /* todo_flags_finish */
4747 class pass_clean_state
: public rtl_opt_pass
4750 pass_clean_state (gcc::context
*ctxt
)
4751 : rtl_opt_pass (pass_data_clean_state
, ctxt
)
4754 /* opt_pass methods: */
4755 virtual unsigned int execute (function
*)
4757 return rest_of_clean_state ();
4760 }; // class pass_clean_state
4765 make_pass_clean_state (gcc::context
*ctxt
)
4767 return new pass_clean_state (ctxt
);
4770 /* Return true if INSN is a call to the the current function. */
4773 self_recursive_call_p (rtx_insn
*insn
)
4775 tree fndecl
= get_call_fndecl (insn
);
4776 return (fndecl
== current_function_decl
4777 && decl_binds_to_current_def_p (fndecl
));
4780 /* Collect hard register usage for the current function. */
4783 collect_fn_hard_reg_usage (void)
4789 struct cgraph_rtl_info
*node
;
4790 HARD_REG_SET function_used_regs
;
4792 /* ??? To be removed when all the ports have been fixed. */
4793 if (!targetm
.call_fusage_contains_non_callee_clobbers
)
4796 CLEAR_HARD_REG_SET (function_used_regs
);
4798 for (insn
= get_insns (); insn
!= NULL_RTX
; insn
= next_insn (insn
))
4800 HARD_REG_SET insn_used_regs
;
4802 if (!NONDEBUG_INSN_P (insn
))
4806 && !self_recursive_call_p (insn
))
4808 if (!get_call_reg_set_usage (insn
, &insn_used_regs
,
4812 IOR_HARD_REG_SET (function_used_regs
, insn_used_regs
);
4815 find_all_hard_reg_sets (insn
, &insn_used_regs
, false);
4816 IOR_HARD_REG_SET (function_used_regs
, insn_used_regs
);
4819 /* Be conservative - mark fixed and global registers as used. */
4820 IOR_HARD_REG_SET (function_used_regs
, fixed_reg_set
);
4823 /* Handle STACK_REGS conservatively, since the df-framework does not
4824 provide accurate information for them. */
4826 for (i
= FIRST_STACK_REG
; i
<= LAST_STACK_REG
; i
++)
4827 SET_HARD_REG_BIT (function_used_regs
, i
);
4830 /* The information we have gathered is only interesting if it exposes a
4831 register from the call_used_regs that is not used in this function. */
4832 if (hard_reg_set_subset_p (call_used_reg_set
, function_used_regs
))
4835 node
= cgraph_node::rtl_info (current_function_decl
);
4836 gcc_assert (node
!= NULL
);
4838 COPY_HARD_REG_SET (node
->function_used_regs
, function_used_regs
);
4839 node
->function_used_regs_valid
= 1;
4842 /* Get the declaration of the function called by INSN. */
4845 get_call_fndecl (rtx_insn
*insn
)
4849 note
= find_reg_note (insn
, REG_CALL_DECL
, NULL_RTX
);
4850 if (note
== NULL_RTX
)
4853 datum
= XEXP (note
, 0);
4854 if (datum
!= NULL_RTX
)
4855 return SYMBOL_REF_DECL (datum
);
4860 /* Return the cgraph_rtl_info of the function called by INSN. Returns NULL for
4861 call targets that can be overwritten. */
4863 static struct cgraph_rtl_info
*
4864 get_call_cgraph_rtl_info (rtx_insn
*insn
)
4868 if (insn
== NULL_RTX
)
4871 fndecl
= get_call_fndecl (insn
);
4872 if (fndecl
== NULL_TREE
4873 || !decl_binds_to_current_def_p (fndecl
))
4876 return cgraph_node::rtl_info (fndecl
);
4879 /* Find hard registers used by function call instruction INSN, and return them
4880 in REG_SET. Return DEFAULT_SET in REG_SET if not found. */
4883 get_call_reg_set_usage (rtx_insn
*insn
, HARD_REG_SET
*reg_set
,
4884 HARD_REG_SET default_set
)
4886 if (flag_use_caller_save
)
4888 struct cgraph_rtl_info
*node
= get_call_cgraph_rtl_info (insn
);
4890 && node
->function_used_regs_valid
)
4892 COPY_HARD_REG_SET (*reg_set
, node
->function_used_regs
);
4893 AND_HARD_REG_SET (*reg_set
, default_set
);
4898 COPY_HARD_REG_SET (*reg_set
, default_set
);