PR c++/11645
[official-gcc.git] / gcc / unroll.c
blob1c66b13fe780945a9f4a3d44c183c03faaf9cd47
1 /* Try to unroll loops, and split induction variables.
2 Copyright (C) 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000, 2001,
3 2002, 2003
4 Free Software Foundation, Inc.
5 Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 02111-1307, USA. */
24 /* Try to unroll a loop, and split induction variables.
26 Loops for which the number of iterations can be calculated exactly are
27 handled specially. If the number of iterations times the insn_count is
28 less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
29 Otherwise, we try to unroll the loop a number of times modulo the number
30 of iterations, so that only one exit test will be needed. It is unrolled
31 a number of times approximately equal to MAX_UNROLLED_INSNS divided by
32 the insn count.
34 Otherwise, if the number of iterations can be calculated exactly at
35 run time, and the loop is always entered at the top, then we try to
36 precondition the loop. That is, at run time, calculate how many times
37 the loop will execute, and then execute the loop body a few times so
38 that the remaining iterations will be some multiple of 4 (or 2 if the
39 loop is large). Then fall through to a loop unrolled 4 (or 2) times,
40 with only one exit test needed at the end of the loop.
42 Otherwise, if the number of iterations can not be calculated exactly,
43 not even at run time, then we still unroll the loop a number of times
44 approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
45 but there must be an exit test after each copy of the loop body.
47 For each induction variable, which is dead outside the loop (replaceable)
48 or for which we can easily calculate the final value, if we can easily
49 calculate its value at each place where it is set as a function of the
50 current loop unroll count and the variable's value at loop entry, then
51 the induction variable is split into `N' different variables, one for
52 each copy of the loop body. One variable is live across the backward
53 branch, and the others are all calculated as a function of this variable.
54 This helps eliminate data dependencies, and leads to further opportunities
55 for cse. */
57 /* Possible improvements follow: */
59 /* ??? Add an extra pass somewhere to determine whether unrolling will
60 give any benefit. E.g. after generating all unrolled insns, compute the
61 cost of all insns and compare against cost of insns in rolled loop.
63 - On traditional architectures, unrolling a non-constant bound loop
64 is a win if there is a giv whose only use is in memory addresses, the
65 memory addresses can be split, and hence giv increments can be
66 eliminated.
67 - It is also a win if the loop is executed many times, and preconditioning
68 can be performed for the loop.
69 Add code to check for these and similar cases. */
71 /* ??? Improve control of which loops get unrolled. Could use profiling
72 info to only unroll the most commonly executed loops. Perhaps have
73 a user specifiable option to control the amount of code expansion,
74 or the percent of loops to consider for unrolling. Etc. */
76 /* ??? Look at the register copies inside the loop to see if they form a
77 simple permutation. If so, iterate the permutation until it gets back to
78 the start state. This is how many times we should unroll the loop, for
79 best results, because then all register copies can be eliminated.
80 For example, the lisp nreverse function should be unrolled 3 times
81 while (this)
83 next = this->cdr;
84 this->cdr = prev;
85 prev = this;
86 this = next;
89 ??? The number of times to unroll the loop may also be based on data
90 references in the loop. For example, if we have a loop that references
91 x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times. */
93 /* ??? Add some simple linear equation solving capability so that we can
94 determine the number of loop iterations for more complex loops.
95 For example, consider this loop from gdb
96 #define SWAP_TARGET_AND_HOST(buffer,len)
98 char tmp;
99 char *p = (char *) buffer;
100 char *q = ((char *) buffer) + len - 1;
101 int iterations = (len + 1) >> 1;
102 int i;
103 for (p; p < q; p++, q--;)
105 tmp = *q;
106 *q = *p;
107 *p = tmp;
110 Note that:
111 start value = p = &buffer + current_iteration
112 end value = q = &buffer + len - 1 - current_iteration
113 Given the loop exit test of "p < q", then there must be "q - p" iterations,
114 set equal to zero and solve for number of iterations:
115 q - p = len - 1 - 2*current_iteration = 0
116 current_iteration = (len - 1) / 2
117 Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
118 iterations of this loop. */
120 /* ??? Currently, no labels are marked as loop invariant when doing loop
121 unrolling. This is because an insn inside the loop, that loads the address
122 of a label inside the loop into a register, could be moved outside the loop
123 by the invariant code motion pass if labels were invariant. If the loop
124 is subsequently unrolled, the code will be wrong because each unrolled
125 body of the loop will use the same address, whereas each actually needs a
126 different address. A case where this happens is when a loop containing
127 a switch statement is unrolled.
129 It would be better to let labels be considered invariant. When we
130 unroll loops here, check to see if any insns using a label local to the
131 loop were moved before the loop. If so, then correct the problem, by
132 moving the insn back into the loop, or perhaps replicate the insn before
133 the loop, one copy for each time the loop is unrolled. */
135 #include "config.h"
136 #include "system.h"
137 #include "coretypes.h"
138 #include "tm.h"
139 #include "rtl.h"
140 #include "tm_p.h"
141 #include "insn-config.h"
142 #include "integrate.h"
143 #include "regs.h"
144 #include "recog.h"
145 #include "flags.h"
146 #include "function.h"
147 #include "expr.h"
148 #include "loop.h"
149 #include "toplev.h"
150 #include "hard-reg-set.h"
151 #include "basic-block.h"
152 #include "predict.h"
153 #include "params.h"
154 #include "cfgloop.h"
156 /* The prime factors looked for when trying to unroll a loop by some
157 number which is modulo the total number of iterations. Just checking
158 for these 4 prime factors will find at least one factor for 75% of
159 all numbers theoretically. Practically speaking, this will succeed
160 almost all of the time since loops are generally a multiple of 2
161 and/or 5. */
163 #define NUM_FACTORS 4
165 static struct _factor { const int factor; int count; }
166 factors[NUM_FACTORS] = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
168 /* Describes the different types of loop unrolling performed. */
170 enum unroll_types
172 UNROLL_COMPLETELY,
173 UNROLL_MODULO,
174 UNROLL_NAIVE
177 /* Indexed by register number, if nonzero, then it contains a pointer
178 to a struct induction for a DEST_REG giv which has been combined with
179 one of more address givs. This is needed because whenever such a DEST_REG
180 giv is modified, we must modify the value of all split address givs
181 that were combined with this DEST_REG giv. */
183 static struct induction **addr_combined_regs;
185 /* Indexed by register number, if this is a splittable induction variable,
186 then this will hold the current value of the register, which depends on the
187 iteration number. */
189 static rtx *splittable_regs;
191 /* Indexed by register number, if this is a splittable induction variable,
192 then this will hold the number of instructions in the loop that modify
193 the induction variable. Used to ensure that only the last insn modifying
194 a split iv will update the original iv of the dest. */
196 static int *splittable_regs_updates;
198 /* Forward declarations. */
200 static rtx simplify_cmp_and_jump_insns (enum rtx_code, enum machine_mode,
201 rtx, rtx, rtx);
202 static void init_reg_map (struct inline_remap *, int);
203 static rtx calculate_giv_inc (rtx, rtx, unsigned int);
204 static rtx initial_reg_note_copy (rtx, struct inline_remap *);
205 static void final_reg_note_copy (rtx *, struct inline_remap *);
206 static void copy_loop_body (struct loop *, rtx, rtx,
207 struct inline_remap *, rtx, int,
208 enum unroll_types, rtx, rtx, rtx, rtx);
209 static int find_splittable_regs (const struct loop *, enum unroll_types,
210 int);
211 static int find_splittable_givs (const struct loop *, struct iv_class *,
212 enum unroll_types, rtx, int);
213 static int reg_dead_after_loop (const struct loop *, rtx);
214 static rtx fold_rtx_mult_add (rtx, rtx, rtx, enum machine_mode);
215 static rtx remap_split_bivs (struct loop *, rtx);
216 static rtx find_common_reg_term (rtx, rtx);
217 static rtx subtract_reg_term (rtx, rtx);
218 static rtx loop_find_equiv_value (const struct loop *, rtx);
219 static rtx ujump_to_loop_cont (rtx, rtx);
221 /* Try to unroll one loop and split induction variables in the loop.
223 The loop is described by the arguments LOOP and INSN_COUNT.
224 STRENGTH_REDUCTION_P indicates whether information generated in the
225 strength reduction pass is available.
227 This function is intended to be called from within `strength_reduce'
228 in loop.c. */
230 void
231 unroll_loop (struct loop *loop, int insn_count, int strength_reduce_p)
233 struct loop_info *loop_info = LOOP_INFO (loop);
234 struct loop_ivs *ivs = LOOP_IVS (loop);
235 int i, j;
236 unsigned int r;
237 unsigned HOST_WIDE_INT temp;
238 int unroll_number = 1;
239 rtx copy_start, copy_end;
240 rtx insn, sequence, pattern, tem;
241 int max_labelno, max_insnno;
242 rtx insert_before;
243 struct inline_remap *map;
244 char *local_label = NULL;
245 char *local_regno;
246 unsigned int max_local_regnum;
247 unsigned int maxregnum;
248 rtx exit_label = 0;
249 rtx start_label;
250 struct iv_class *bl;
251 int splitting_not_safe = 0;
252 enum unroll_types unroll_type = UNROLL_NAIVE;
253 int loop_preconditioned = 0;
254 rtx safety_label;
255 /* This points to the last real insn in the loop, which should be either
256 a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
257 jumps). */
258 rtx last_loop_insn;
259 rtx loop_start = loop->start;
260 rtx loop_end = loop->end;
262 /* Don't bother unrolling huge loops. Since the minimum factor is
263 two, loops greater than one half of MAX_UNROLLED_INSNS will never
264 be unrolled. */
265 if (insn_count > MAX_UNROLLED_INSNS / 2)
267 if (loop_dump_stream)
268 fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
269 return;
272 /* Determine type of unroll to perform. Depends on the number of iterations
273 and the size of the loop. */
275 /* If there is no strength reduce info, then set
276 loop_info->n_iterations to zero. This can happen if
277 strength_reduce can't find any bivs in the loop. A value of zero
278 indicates that the number of iterations could not be calculated. */
280 if (! strength_reduce_p)
281 loop_info->n_iterations = 0;
283 if (loop_dump_stream && loop_info->n_iterations > 0)
284 fprintf (loop_dump_stream, "Loop unrolling: " HOST_WIDE_INT_PRINT_DEC
285 " iterations.\n", loop_info->n_iterations);
287 /* Find and save a pointer to the last nonnote insn in the loop. */
289 last_loop_insn = prev_nonnote_insn (loop_end);
291 /* Calculate how many times to unroll the loop. Indicate whether or
292 not the loop is being completely unrolled. */
294 if (loop_info->n_iterations == 1)
296 /* Handle the case where the loop begins with an unconditional
297 jump to the loop condition. Make sure to delete the jump
298 insn, otherwise the loop body will never execute. */
300 /* FIXME this actually checks for a jump to the continue point, which
301 is not the same as the condition in a for loop. As a result, this
302 optimization fails for most for loops. We should really use flow
303 information rather than instruction pattern matching. */
304 rtx ujump = ujump_to_loop_cont (loop->start, loop->cont);
306 /* If number of iterations is exactly 1, then eliminate the compare and
307 branch at the end of the loop since they will never be taken.
308 Then return, since no other action is needed here. */
310 /* If the last instruction is not a BARRIER or a JUMP_INSN, then
311 don't do anything. */
313 if (GET_CODE (last_loop_insn) == BARRIER)
315 /* Delete the jump insn. This will delete the barrier also. */
316 last_loop_insn = PREV_INSN (last_loop_insn);
319 if (ujump && GET_CODE (last_loop_insn) == JUMP_INSN)
321 #ifdef HAVE_cc0
322 rtx prev = PREV_INSN (last_loop_insn);
323 #endif
324 delete_related_insns (last_loop_insn);
325 #ifdef HAVE_cc0
326 /* The immediately preceding insn may be a compare which must be
327 deleted. */
328 if (only_sets_cc0_p (prev))
329 delete_related_insns (prev);
330 #endif
332 delete_related_insns (ujump);
334 /* Remove the loop notes since this is no longer a loop. */
335 if (loop->vtop)
336 delete_related_insns (loop->vtop);
337 if (loop->cont)
338 delete_related_insns (loop->cont);
339 if (loop_start)
340 delete_related_insns (loop_start);
341 if (loop_end)
342 delete_related_insns (loop_end);
344 return;
348 if (loop_info->n_iterations > 0
349 /* Avoid overflow in the next expression. */
350 && loop_info->n_iterations < (unsigned) MAX_UNROLLED_INSNS
351 && loop_info->n_iterations * insn_count < (unsigned) MAX_UNROLLED_INSNS)
353 unroll_number = loop_info->n_iterations;
354 unroll_type = UNROLL_COMPLETELY;
356 else if (loop_info->n_iterations > 0)
358 /* Try to factor the number of iterations. Don't bother with the
359 general case, only using 2, 3, 5, and 7 will get 75% of all
360 numbers theoretically, and almost all in practice. */
362 for (i = 0; i < NUM_FACTORS; i++)
363 factors[i].count = 0;
365 temp = loop_info->n_iterations;
366 for (i = NUM_FACTORS - 1; i >= 0; i--)
367 while (temp % factors[i].factor == 0)
369 factors[i].count++;
370 temp = temp / factors[i].factor;
373 /* Start with the larger factors first so that we generally
374 get lots of unrolling. */
376 unroll_number = 1;
377 temp = insn_count;
378 for (i = 3; i >= 0; i--)
379 while (factors[i].count--)
381 if (temp * factors[i].factor < (unsigned) MAX_UNROLLED_INSNS)
383 unroll_number *= factors[i].factor;
384 temp *= factors[i].factor;
386 else
387 break;
390 /* If we couldn't find any factors, then unroll as in the normal
391 case. */
392 if (unroll_number == 1)
394 if (loop_dump_stream)
395 fprintf (loop_dump_stream, "Loop unrolling: No factors found.\n");
397 else
398 unroll_type = UNROLL_MODULO;
401 /* Default case, calculate number of times to unroll loop based on its
402 size. */
403 if (unroll_type == UNROLL_NAIVE)
405 if (8 * insn_count < MAX_UNROLLED_INSNS)
406 unroll_number = 8;
407 else if (4 * insn_count < MAX_UNROLLED_INSNS)
408 unroll_number = 4;
409 else
410 unroll_number = 2;
413 /* Now we know how many times to unroll the loop. */
415 if (loop_dump_stream)
416 fprintf (loop_dump_stream, "Unrolling loop %d times.\n", unroll_number);
418 if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
420 /* Loops of these types can start with jump down to the exit condition
421 in rare circumstances.
423 Consider a pair of nested loops where the inner loop is part
424 of the exit code for the outer loop.
426 In this case jump.c will not duplicate the exit test for the outer
427 loop, so it will start with a jump to the exit code.
429 Then consider if the inner loop turns out to iterate once and
430 only once. We will end up deleting the jumps associated with
431 the inner loop. However, the loop notes are not removed from
432 the instruction stream.
434 And finally assume that we can compute the number of iterations
435 for the outer loop.
437 In this case unroll may want to unroll the outer loop even though
438 it starts with a jump to the outer loop's exit code.
440 We could try to optimize this case, but it hardly seems worth it.
441 Just return without unrolling the loop in such cases. */
443 insn = loop_start;
444 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
445 insn = NEXT_INSN (insn);
446 if (GET_CODE (insn) == JUMP_INSN)
447 return;
450 if (unroll_type == UNROLL_COMPLETELY)
452 /* Completely unrolling the loop: Delete the compare and branch at
453 the end (the last two instructions). This delete must done at the
454 very end of loop unrolling, to avoid problems with calls to
455 back_branch_in_range_p, which is called by find_splittable_regs.
456 All increments of splittable bivs/givs are changed to load constant
457 instructions. */
459 copy_start = loop_start;
461 /* Set insert_before to the instruction immediately after the JUMP_INSN
462 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
463 the loop will be correctly handled by copy_loop_body. */
464 insert_before = NEXT_INSN (last_loop_insn);
466 /* Set copy_end to the insn before the jump at the end of the loop. */
467 if (GET_CODE (last_loop_insn) == BARRIER)
468 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
469 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
471 copy_end = PREV_INSN (last_loop_insn);
472 #ifdef HAVE_cc0
473 /* The instruction immediately before the JUMP_INSN may be a compare
474 instruction which we do not want to copy. */
475 if (sets_cc0_p (PREV_INSN (copy_end)))
476 copy_end = PREV_INSN (copy_end);
477 #endif
479 else
481 /* We currently can't unroll a loop if it doesn't end with a
482 JUMP_INSN. There would need to be a mechanism that recognizes
483 this case, and then inserts a jump after each loop body, which
484 jumps to after the last loop body. */
485 if (loop_dump_stream)
486 fprintf (loop_dump_stream,
487 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
488 return;
491 else if (unroll_type == UNROLL_MODULO)
493 /* Partially unrolling the loop: The compare and branch at the end
494 (the last two instructions) must remain. Don't copy the compare
495 and branch instructions at the end of the loop. Insert the unrolled
496 code immediately before the compare/branch at the end so that the
497 code will fall through to them as before. */
499 copy_start = loop_start;
501 /* Set insert_before to the jump insn at the end of the loop.
502 Set copy_end to before the jump insn at the end of the loop. */
503 if (GET_CODE (last_loop_insn) == BARRIER)
505 insert_before = PREV_INSN (last_loop_insn);
506 copy_end = PREV_INSN (insert_before);
508 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
510 insert_before = last_loop_insn;
511 #ifdef HAVE_cc0
512 /* The instruction immediately before the JUMP_INSN may be a compare
513 instruction which we do not want to copy or delete. */
514 if (sets_cc0_p (PREV_INSN (insert_before)))
515 insert_before = PREV_INSN (insert_before);
516 #endif
517 copy_end = PREV_INSN (insert_before);
519 else
521 /* We currently can't unroll a loop if it doesn't end with a
522 JUMP_INSN. There would need to be a mechanism that recognizes
523 this case, and then inserts a jump after each loop body, which
524 jumps to after the last loop body. */
525 if (loop_dump_stream)
526 fprintf (loop_dump_stream,
527 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
528 return;
531 else
533 /* Normal case: Must copy the compare and branch instructions at the
534 end of the loop. */
536 if (GET_CODE (last_loop_insn) == BARRIER)
538 /* Loop ends with an unconditional jump and a barrier.
539 Handle this like above, don't copy jump and barrier.
540 This is not strictly necessary, but doing so prevents generating
541 unconditional jumps to an immediately following label.
543 This will be corrected below if the target of this jump is
544 not the start_label. */
546 insert_before = PREV_INSN (last_loop_insn);
547 copy_end = PREV_INSN (insert_before);
549 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
551 /* Set insert_before to immediately after the JUMP_INSN, so that
552 NOTEs at the end of the loop will be correctly handled by
553 copy_loop_body. */
554 insert_before = NEXT_INSN (last_loop_insn);
555 copy_end = last_loop_insn;
557 else
559 /* We currently can't unroll a loop if it doesn't end with a
560 JUMP_INSN. There would need to be a mechanism that recognizes
561 this case, and then inserts a jump after each loop body, which
562 jumps to after the last loop body. */
563 if (loop_dump_stream)
564 fprintf (loop_dump_stream,
565 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
566 return;
569 /* If copying exit test branches because they can not be eliminated,
570 then must convert the fall through case of the branch to a jump past
571 the end of the loop. Create a label to emit after the loop and save
572 it for later use. Do not use the label after the loop, if any, since
573 it might be used by insns outside the loop, or there might be insns
574 added before it later by final_[bg]iv_value which must be after
575 the real exit label. */
576 exit_label = gen_label_rtx ();
578 insn = loop_start;
579 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
580 insn = NEXT_INSN (insn);
582 if (GET_CODE (insn) == JUMP_INSN)
584 /* The loop starts with a jump down to the exit condition test.
585 Start copying the loop after the barrier following this
586 jump insn. */
587 copy_start = NEXT_INSN (insn);
589 /* Splitting induction variables doesn't work when the loop is
590 entered via a jump to the bottom, because then we end up doing
591 a comparison against a new register for a split variable, but
592 we did not execute the set insn for the new register because
593 it was skipped over. */
594 splitting_not_safe = 1;
595 if (loop_dump_stream)
596 fprintf (loop_dump_stream,
597 "Splitting not safe, because loop not entered at top.\n");
599 else
600 copy_start = loop_start;
603 /* This should always be the first label in the loop. */
604 start_label = NEXT_INSN (copy_start);
605 /* There may be a line number note and/or a loop continue note here. */
606 while (GET_CODE (start_label) == NOTE)
607 start_label = NEXT_INSN (start_label);
608 if (GET_CODE (start_label) != CODE_LABEL)
610 /* This can happen as a result of jump threading. If the first insns in
611 the loop test the same condition as the loop's backward jump, or the
612 opposite condition, then the backward jump will be modified to point
613 to elsewhere, and the loop's start label is deleted.
615 This case currently can not be handled by the loop unrolling code. */
617 if (loop_dump_stream)
618 fprintf (loop_dump_stream,
619 "Unrolling failure: unknown insns between BEG note and loop label.\n");
620 return;
622 if (LABEL_NAME (start_label))
624 /* The jump optimization pass must have combined the original start label
625 with a named label for a goto. We can't unroll this case because
626 jumps which go to the named label must be handled differently than
627 jumps to the loop start, and it is impossible to differentiate them
628 in this case. */
629 if (loop_dump_stream)
630 fprintf (loop_dump_stream,
631 "Unrolling failure: loop start label is gone\n");
632 return;
635 if (unroll_type == UNROLL_NAIVE
636 && GET_CODE (last_loop_insn) == BARRIER
637 && GET_CODE (PREV_INSN (last_loop_insn)) == JUMP_INSN
638 && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
640 /* In this case, we must copy the jump and barrier, because they will
641 not be converted to jumps to an immediately following label. */
643 insert_before = NEXT_INSN (last_loop_insn);
644 copy_end = last_loop_insn;
647 if (unroll_type == UNROLL_NAIVE
648 && GET_CODE (last_loop_insn) == JUMP_INSN
649 && start_label != JUMP_LABEL (last_loop_insn))
651 /* ??? The loop ends with a conditional branch that does not branch back
652 to the loop start label. In this case, we must emit an unconditional
653 branch to the loop exit after emitting the final branch.
654 copy_loop_body does not have support for this currently, so we
655 give up. It doesn't seem worthwhile to unroll anyways since
656 unrolling would increase the number of branch instructions
657 executed. */
658 if (loop_dump_stream)
659 fprintf (loop_dump_stream,
660 "Unrolling failure: final conditional branch not to loop start\n");
661 return;
664 /* Allocate a translation table for the labels and insn numbers.
665 They will be filled in as we copy the insns in the loop. */
667 max_labelno = max_label_num ();
668 max_insnno = get_max_uid ();
670 /* Various paths through the unroll code may reach the "egress" label
671 without initializing fields within the map structure.
673 To be safe, we use xcalloc to zero the memory. */
674 map = xcalloc (1, sizeof (struct inline_remap));
676 /* Allocate the label map. */
678 if (max_labelno > 0)
680 map->label_map = xcalloc (max_labelno, sizeof (rtx));
681 local_label = xcalloc (max_labelno, sizeof (char));
684 /* Search the loop and mark all local labels, i.e. the ones which have to
685 be distinct labels when copied. For all labels which might be
686 non-local, set their label_map entries to point to themselves.
687 If they happen to be local their label_map entries will be overwritten
688 before the loop body is copied. The label_map entries for local labels
689 will be set to a different value each time the loop body is copied. */
691 for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
693 rtx note;
695 if (GET_CODE (insn) == CODE_LABEL)
696 local_label[CODE_LABEL_NUMBER (insn)] = 1;
697 else if (GET_CODE (insn) == JUMP_INSN)
699 if (JUMP_LABEL (insn))
700 set_label_in_map (map,
701 CODE_LABEL_NUMBER (JUMP_LABEL (insn)),
702 JUMP_LABEL (insn));
703 else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
704 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
706 rtx pat = PATTERN (insn);
707 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
708 int len = XVECLEN (pat, diff_vec_p);
709 rtx label;
711 for (i = 0; i < len; i++)
713 label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
714 set_label_in_map (map, CODE_LABEL_NUMBER (label), label);
718 if ((note = find_reg_note (insn, REG_LABEL, NULL_RTX)))
719 set_label_in_map (map, CODE_LABEL_NUMBER (XEXP (note, 0)),
720 XEXP (note, 0));
723 /* Allocate space for the insn map. */
725 map->insn_map = xmalloc (max_insnno * sizeof (rtx));
727 /* Set this to zero, to indicate that we are doing loop unrolling,
728 not function inlining. */
729 map->inline_target = 0;
731 /* The register and constant maps depend on the number of registers
732 present, so the final maps can't be created until after
733 find_splittable_regs is called. However, they are needed for
734 preconditioning, so we create temporary maps when preconditioning
735 is performed. */
737 /* The preconditioning code may allocate two new pseudo registers. */
738 maxregnum = max_reg_num ();
740 /* local_regno is only valid for regnos < max_local_regnum. */
741 max_local_regnum = maxregnum;
743 /* Allocate and zero out the splittable_regs and addr_combined_regs
744 arrays. These must be zeroed here because they will be used if
745 loop preconditioning is performed, and must be zero for that case.
747 It is safe to do this here, since the extra registers created by the
748 preconditioning code and find_splittable_regs will never be used
749 to access the splittable_regs[] and addr_combined_regs[] arrays. */
751 splittable_regs = xcalloc (maxregnum, sizeof (rtx));
752 splittable_regs_updates = xcalloc (maxregnum, sizeof (int));
753 addr_combined_regs = xcalloc (maxregnum, sizeof (struct induction *));
754 local_regno = xcalloc (maxregnum, sizeof (char));
756 /* Mark all local registers, i.e. the ones which are referenced only
757 inside the loop. */
758 if (INSN_UID (copy_end) < max_uid_for_loop)
760 int copy_start_luid = INSN_LUID (copy_start);
761 int copy_end_luid = INSN_LUID (copy_end);
763 /* If a register is used in the jump insn, we must not duplicate it
764 since it will also be used outside the loop. */
765 if (GET_CODE (copy_end) == JUMP_INSN)
766 copy_end_luid--;
768 /* If we have a target that uses cc0, then we also must not duplicate
769 the insn that sets cc0 before the jump insn, if one is present. */
770 #ifdef HAVE_cc0
771 if (GET_CODE (copy_end) == JUMP_INSN
772 && sets_cc0_p (PREV_INSN (copy_end)))
773 copy_end_luid--;
774 #endif
776 /* If copy_start points to the NOTE that starts the loop, then we must
777 use the next luid, because invariant pseudo-regs moved out of the loop
778 have their lifetimes modified to start here, but they are not safe
779 to duplicate. */
780 if (copy_start == loop_start)
781 copy_start_luid++;
783 /* If a pseudo's lifetime is entirely contained within this loop, then we
784 can use a different pseudo in each unrolled copy of the loop. This
785 results in better code. */
786 /* We must limit the generic test to max_reg_before_loop, because only
787 these pseudo registers have valid regno_first_uid info. */
788 for (r = FIRST_PSEUDO_REGISTER; r < max_reg_before_loop; ++r)
789 if (REGNO_FIRST_UID (r) > 0 && REGNO_FIRST_UID (r) < max_uid_for_loop
790 && REGNO_FIRST_LUID (r) >= copy_start_luid
791 && REGNO_LAST_UID (r) > 0 && REGNO_LAST_UID (r) < max_uid_for_loop
792 && REGNO_LAST_LUID (r) <= copy_end_luid)
794 /* However, we must also check for loop-carried dependencies.
795 If the value the pseudo has at the end of iteration X is
796 used by iteration X+1, then we can not use a different pseudo
797 for each unrolled copy of the loop. */
798 /* A pseudo is safe if regno_first_uid is a set, and this
799 set dominates all instructions from regno_first_uid to
800 regno_last_uid. */
801 /* ??? This check is simplistic. We would get better code if
802 this check was more sophisticated. */
803 if (set_dominates_use (r, REGNO_FIRST_UID (r), REGNO_LAST_UID (r),
804 copy_start, copy_end))
805 local_regno[r] = 1;
807 if (loop_dump_stream)
809 if (local_regno[r])
810 fprintf (loop_dump_stream, "Marked reg %d as local\n", r);
811 else
812 fprintf (loop_dump_stream, "Did not mark reg %d as local\n",
818 /* If this loop requires exit tests when unrolled, check to see if we
819 can precondition the loop so as to make the exit tests unnecessary.
820 Just like variable splitting, this is not safe if the loop is entered
821 via a jump to the bottom. Also, can not do this if no strength
822 reduce info, because precondition_loop_p uses this info. */
824 /* Must copy the loop body for preconditioning before the following
825 find_splittable_regs call since that will emit insns which need to
826 be after the preconditioned loop copies, but immediately before the
827 unrolled loop copies. */
829 /* Also, it is not safe to split induction variables for the preconditioned
830 copies of the loop body. If we split induction variables, then the code
831 assumes that each induction variable can be represented as a function
832 of its initial value and the loop iteration number. This is not true
833 in this case, because the last preconditioned copy of the loop body
834 could be any iteration from the first up to the `unroll_number-1'th,
835 depending on the initial value of the iteration variable. Therefore
836 we can not split induction variables here, because we can not calculate
837 their value. Hence, this code must occur before find_splittable_regs
838 is called. */
840 if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
842 rtx initial_value, final_value, increment;
843 enum machine_mode mode;
845 if (precondition_loop_p (loop,
846 &initial_value, &final_value, &increment,
847 &mode))
849 rtx diff, insn;
850 rtx *labels;
851 int abs_inc, neg_inc;
852 enum rtx_code cc = loop_info->comparison_code;
853 int less_p = (cc == LE || cc == LEU || cc == LT || cc == LTU);
854 int unsigned_p = (cc == LEU || cc == GEU || cc == LTU || cc == GTU);
856 map->reg_map = xmalloc (maxregnum * sizeof (rtx));
858 VARRAY_CONST_EQUIV_INIT (map->const_equiv_varray, maxregnum,
859 "unroll_loop_precondition");
860 global_const_equiv_varray = map->const_equiv_varray;
862 init_reg_map (map, maxregnum);
864 /* Limit loop unrolling to 4, since this will make 7 copies of
865 the loop body. */
866 if (unroll_number > 4)
867 unroll_number = 4;
869 /* Save the absolute value of the increment, and also whether or
870 not it is negative. */
871 neg_inc = 0;
872 abs_inc = INTVAL (increment);
873 if (abs_inc < 0)
875 abs_inc = -abs_inc;
876 neg_inc = 1;
879 start_sequence ();
881 /* We must copy the final and initial values here to avoid
882 improperly shared rtl. */
883 final_value = copy_rtx (final_value);
884 initial_value = copy_rtx (initial_value);
886 /* Final value may have form of (PLUS val1 const1_rtx). We need
887 to convert it into general operand, so compute the real value. */
889 final_value = force_operand (final_value, NULL_RTX);
890 if (!nonmemory_operand (final_value, VOIDmode))
891 final_value = force_reg (mode, final_value);
893 /* Calculate the difference between the final and initial values.
894 Final value may be a (plus (reg x) (const_int 1)) rtx.
896 We have to deal with for (i = 0; --i < 6;) type loops.
897 For such loops the real final value is the first time the
898 loop variable overflows, so the diff we calculate is the
899 distance from the overflow value. This is 0 or ~0 for
900 unsigned loops depending on the direction, or INT_MAX,
901 INT_MAX+1 for signed loops. We really do not need the
902 exact value, since we are only interested in the diff
903 modulo the increment, and the increment is a power of 2,
904 so we can pretend that the overflow value is 0/~0. */
906 if (cc == NE || less_p != neg_inc)
907 diff = simplify_gen_binary (MINUS, mode, final_value,
908 initial_value);
909 else
910 diff = simplify_gen_unary (neg_inc ? NOT : NEG, mode,
911 initial_value, mode);
912 diff = force_operand (diff, NULL_RTX);
914 /* Now calculate (diff % (unroll * abs (increment))) by using an
915 and instruction. */
916 diff = simplify_gen_binary (AND, mode, diff,
917 GEN_INT (unroll_number*abs_inc - 1));
918 diff = force_operand (diff, NULL_RTX);
920 /* Now emit a sequence of branches to jump to the proper precond
921 loop entry point. */
923 labels = xmalloc (sizeof (rtx) * unroll_number);
924 for (i = 0; i < unroll_number; i++)
925 labels[i] = gen_label_rtx ();
927 /* Check for the case where the initial value is greater than or
928 equal to the final value. In that case, we want to execute
929 exactly one loop iteration. The code below will fail for this
930 case. This check does not apply if the loop has a NE
931 comparison at the end. */
933 if (cc != NE)
935 rtx incremented_initval;
936 enum rtx_code cmp_code;
938 incremented_initval
939 = simplify_gen_binary (PLUS, mode, initial_value, increment);
940 incremented_initval
941 = force_operand (incremented_initval, NULL_RTX);
943 cmp_code = (less_p
944 ? (unsigned_p ? GEU : GE)
945 : (unsigned_p ? LEU : LE));
947 insn = simplify_cmp_and_jump_insns (cmp_code, mode,
948 incremented_initval,
949 final_value, labels[1]);
950 if (insn)
951 predict_insn_def (insn, PRED_LOOP_CONDITION, TAKEN);
954 /* Assuming the unroll_number is 4, and the increment is 2, then
955 for a negative increment: for a positive increment:
956 diff = 0,1 precond 0 diff = 0,7 precond 0
957 diff = 2,3 precond 3 diff = 1,2 precond 1
958 diff = 4,5 precond 2 diff = 3,4 precond 2
959 diff = 6,7 precond 1 diff = 5,6 precond 3 */
961 /* We only need to emit (unroll_number - 1) branches here, the
962 last case just falls through to the following code. */
964 /* ??? This would give better code if we emitted a tree of branches
965 instead of the current linear list of branches. */
967 for (i = 0; i < unroll_number - 1; i++)
969 int cmp_const;
970 enum rtx_code cmp_code;
972 /* For negative increments, must invert the constant compared
973 against, except when comparing against zero. */
974 if (i == 0)
976 cmp_const = 0;
977 cmp_code = EQ;
979 else if (neg_inc)
981 cmp_const = unroll_number - i;
982 cmp_code = GE;
984 else
986 cmp_const = i;
987 cmp_code = LE;
990 insn = simplify_cmp_and_jump_insns (cmp_code, mode, diff,
991 GEN_INT (abs_inc*cmp_const),
992 labels[i]);
993 if (insn)
994 predict_insn (insn, PRED_LOOP_PRECONDITIONING,
995 REG_BR_PROB_BASE / (unroll_number - i));
998 /* If the increment is greater than one, then we need another branch,
999 to handle other cases equivalent to 0. */
1001 /* ??? This should be merged into the code above somehow to help
1002 simplify the code here, and reduce the number of branches emitted.
1003 For the negative increment case, the branch here could easily
1004 be merged with the `0' case branch above. For the positive
1005 increment case, it is not clear how this can be simplified. */
1007 if (abs_inc != 1)
1009 int cmp_const;
1010 enum rtx_code cmp_code;
1012 if (neg_inc)
1014 cmp_const = abs_inc - 1;
1015 cmp_code = LE;
1017 else
1019 cmp_const = abs_inc * (unroll_number - 1) + 1;
1020 cmp_code = GE;
1023 simplify_cmp_and_jump_insns (cmp_code, mode, diff,
1024 GEN_INT (cmp_const), labels[0]);
1027 sequence = get_insns ();
1028 end_sequence ();
1029 loop_insn_hoist (loop, sequence);
1031 /* Only the last copy of the loop body here needs the exit
1032 test, so set copy_end to exclude the compare/branch here,
1033 and then reset it inside the loop when get to the last
1034 copy. */
1036 if (GET_CODE (last_loop_insn) == BARRIER)
1037 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1038 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
1040 copy_end = PREV_INSN (last_loop_insn);
1041 #ifdef HAVE_cc0
1042 /* The immediately preceding insn may be a compare which
1043 we do not want to copy. */
1044 if (sets_cc0_p (PREV_INSN (copy_end)))
1045 copy_end = PREV_INSN (copy_end);
1046 #endif
1048 else
1049 abort ();
1051 for (i = 1; i < unroll_number; i++)
1053 emit_label_after (labels[unroll_number - i],
1054 PREV_INSN (loop_start));
1056 memset (map->insn_map, 0, max_insnno * sizeof (rtx));
1057 memset (&VARRAY_CONST_EQUIV (map->const_equiv_varray, 0),
1058 0, (VARRAY_SIZE (map->const_equiv_varray)
1059 * sizeof (struct const_equiv_data)));
1060 map->const_age = 0;
1062 for (j = 0; j < max_labelno; j++)
1063 if (local_label[j])
1064 set_label_in_map (map, j, gen_label_rtx ());
1066 for (r = FIRST_PSEUDO_REGISTER; r < max_local_regnum; r++)
1067 if (local_regno[r])
1069 map->reg_map[r]
1070 = gen_reg_rtx (GET_MODE (regno_reg_rtx[r]));
1071 record_base_value (REGNO (map->reg_map[r]),
1072 regno_reg_rtx[r], 0);
1074 /* The last copy needs the compare/branch insns at the end,
1075 so reset copy_end here if the loop ends with a conditional
1076 branch. */
1078 if (i == unroll_number - 1)
1080 if (GET_CODE (last_loop_insn) == BARRIER)
1081 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1082 else
1083 copy_end = last_loop_insn;
1086 /* None of the copies are the `last_iteration', so just
1087 pass zero for that parameter. */
1088 copy_loop_body (loop, copy_start, copy_end, map, exit_label, 0,
1089 unroll_type, start_label, loop_end,
1090 loop_start, copy_end);
1092 emit_label_after (labels[0], PREV_INSN (loop_start));
1094 if (GET_CODE (last_loop_insn) == BARRIER)
1096 insert_before = PREV_INSN (last_loop_insn);
1097 copy_end = PREV_INSN (insert_before);
1099 else
1101 insert_before = last_loop_insn;
1102 #ifdef HAVE_cc0
1103 /* The instruction immediately before the JUMP_INSN may
1104 be a compare instruction which we do not want to copy
1105 or delete. */
1106 if (sets_cc0_p (PREV_INSN (insert_before)))
1107 insert_before = PREV_INSN (insert_before);
1108 #endif
1109 copy_end = PREV_INSN (insert_before);
1112 /* Set unroll type to MODULO now. */
1113 unroll_type = UNROLL_MODULO;
1114 loop_preconditioned = 1;
1116 /* Clean up. */
1117 free (labels);
1121 /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
1122 the loop unless all loops are being unrolled. */
1123 if (unroll_type == UNROLL_NAIVE && ! flag_old_unroll_all_loops)
1125 if (loop_dump_stream)
1126 fprintf (loop_dump_stream,
1127 "Unrolling failure: Naive unrolling not being done.\n");
1128 goto egress;
1131 /* At this point, we are guaranteed to unroll the loop. */
1133 /* Keep track of the unroll factor for the loop. */
1134 loop_info->unroll_number = unroll_number;
1136 /* And whether the loop has been preconditioned. */
1137 loop_info->preconditioned = loop_preconditioned;
1139 /* Remember whether it was preconditioned for the second loop pass. */
1140 NOTE_PRECONDITIONED (loop->end) = loop_preconditioned;
1142 /* For each biv and giv, determine whether it can be safely split into
1143 a different variable for each unrolled copy of the loop body.
1144 We precalculate and save this info here, since computing it is
1145 expensive.
1147 Do this before deleting any instructions from the loop, so that
1148 back_branch_in_range_p will work correctly. */
1150 if (splitting_not_safe)
1151 temp = 0;
1152 else
1153 temp = find_splittable_regs (loop, unroll_type, unroll_number);
1155 /* find_splittable_regs may have created some new registers, so must
1156 reallocate the reg_map with the new larger size, and must realloc
1157 the constant maps also. */
1159 maxregnum = max_reg_num ();
1160 map->reg_map = xmalloc (maxregnum * sizeof (rtx));
1162 init_reg_map (map, maxregnum);
1164 if (map->const_equiv_varray == 0)
1165 VARRAY_CONST_EQUIV_INIT (map->const_equiv_varray,
1166 maxregnum + temp * unroll_number * 2,
1167 "unroll_loop");
1168 global_const_equiv_varray = map->const_equiv_varray;
1170 /* Search the list of bivs and givs to find ones which need to be remapped
1171 when split, and set their reg_map entry appropriately. */
1173 for (bl = ivs->list; bl; bl = bl->next)
1175 if (REGNO (bl->biv->src_reg) != bl->regno)
1176 map->reg_map[bl->regno] = bl->biv->src_reg;
1177 #if 0
1178 /* Currently, non-reduced/final-value givs are never split. */
1179 for (v = bl->giv; v; v = v->next_iv)
1180 if (REGNO (v->src_reg) != bl->regno)
1181 map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1182 #endif
1185 /* Use our current register alignment and pointer flags. */
1186 map->regno_pointer_align = cfun->emit->regno_pointer_align;
1187 map->x_regno_reg_rtx = cfun->emit->x_regno_reg_rtx;
1189 /* If the loop is being partially unrolled, and the iteration variables
1190 are being split, and are being renamed for the split, then must fix up
1191 the compare/jump instruction at the end of the loop to refer to the new
1192 registers. This compare isn't copied, so the registers used in it
1193 will never be replaced if it isn't done here. */
1195 if (unroll_type == UNROLL_MODULO)
1197 insn = NEXT_INSN (copy_end);
1198 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
1199 PATTERN (insn) = remap_split_bivs (loop, PATTERN (insn));
1202 /* For unroll_number times, make a copy of each instruction
1203 between copy_start and copy_end, and insert these new instructions
1204 before the end of the loop. */
1206 for (i = 0; i < unroll_number; i++)
1208 memset (map->insn_map, 0, max_insnno * sizeof (rtx));
1209 memset (&VARRAY_CONST_EQUIV (map->const_equiv_varray, 0), 0,
1210 VARRAY_SIZE (map->const_equiv_varray) * sizeof (struct const_equiv_data));
1211 map->const_age = 0;
1213 for (j = 0; j < max_labelno; j++)
1214 if (local_label[j])
1215 set_label_in_map (map, j, gen_label_rtx ());
1217 for (r = FIRST_PSEUDO_REGISTER; r < max_local_regnum; r++)
1218 if (local_regno[r])
1220 map->reg_map[r] = gen_reg_rtx (GET_MODE (regno_reg_rtx[r]));
1221 record_base_value (REGNO (map->reg_map[r]),
1222 regno_reg_rtx[r], 0);
1225 /* If loop starts with a branch to the test, then fix it so that
1226 it points to the test of the first unrolled copy of the loop. */
1227 if (i == 0 && loop_start != copy_start)
1229 insn = PREV_INSN (copy_start);
1230 pattern = PATTERN (insn);
1232 tem = get_label_from_map (map,
1233 CODE_LABEL_NUMBER
1234 (XEXP (SET_SRC (pattern), 0)));
1235 SET_SRC (pattern) = gen_rtx_LABEL_REF (VOIDmode, tem);
1237 /* Set the jump label so that it can be used by later loop unrolling
1238 passes. */
1239 JUMP_LABEL (insn) = tem;
1240 LABEL_NUSES (tem)++;
1243 copy_loop_body (loop, copy_start, copy_end, map, exit_label,
1244 i == unroll_number - 1, unroll_type, start_label,
1245 loop_end, insert_before, insert_before);
1248 /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1249 insn to be deleted. This prevents any runaway delete_insn call from
1250 more insns that it should, as it always stops at a CODE_LABEL. */
1252 /* Delete the compare and branch at the end of the loop if completely
1253 unrolling the loop. Deleting the backward branch at the end also
1254 deletes the code label at the start of the loop. This is done at
1255 the very end to avoid problems with back_branch_in_range_p. */
1257 if (unroll_type == UNROLL_COMPLETELY)
1258 safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1259 else
1260 safety_label = emit_label_after (gen_label_rtx (), copy_end);
1262 /* Delete all of the original loop instructions. Don't delete the
1263 LOOP_BEG note, or the first code label in the loop. */
1265 insn = NEXT_INSN (copy_start);
1266 while (insn != safety_label)
1268 /* ??? Don't delete named code labels. They will be deleted when the
1269 jump that references them is deleted. Otherwise, we end up deleting
1270 them twice, which causes them to completely disappear instead of turn
1271 into NOTE_INSN_DELETED_LABEL notes. This in turn causes aborts in
1272 dwarfout.c/dwarf2out.c. We could perhaps fix the dwarf*out.c files
1273 to handle deleted labels instead. Or perhaps fix DECL_RTL of the
1274 associated LABEL_DECL to point to one of the new label instances. */
1275 /* ??? Likewise, we can't delete a NOTE_INSN_DELETED_LABEL note. */
1276 if (insn != start_label
1277 && ! (GET_CODE (insn) == CODE_LABEL && LABEL_NAME (insn))
1278 && ! (GET_CODE (insn) == NOTE
1279 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))
1280 insn = delete_related_insns (insn);
1281 else
1282 insn = NEXT_INSN (insn);
1285 /* Can now delete the 'safety' label emitted to protect us from runaway
1286 delete_related_insns calls. */
1287 if (INSN_DELETED_P (safety_label))
1288 abort ();
1289 delete_related_insns (safety_label);
1291 /* If exit_label exists, emit it after the loop. Doing the emit here
1292 forces it to have a higher INSN_UID than any insn in the unrolled loop.
1293 This is needed so that mostly_true_jump in reorg.c will treat jumps
1294 to this loop end label correctly, i.e. predict that they are usually
1295 not taken. */
1296 if (exit_label)
1297 emit_label_after (exit_label, loop_end);
1299 egress:
1300 if (unroll_type == UNROLL_COMPLETELY)
1302 /* Remove the loop notes since this is no longer a loop. */
1303 if (loop->vtop)
1304 delete_related_insns (loop->vtop);
1305 if (loop->cont)
1306 delete_related_insns (loop->cont);
1307 if (loop_start)
1308 delete_related_insns (loop_start);
1309 if (loop_end)
1310 delete_related_insns (loop_end);
1313 if (map->const_equiv_varray)
1314 VARRAY_FREE (map->const_equiv_varray);
1315 if (map->label_map)
1317 free (map->label_map);
1318 free (local_label);
1320 free (map->insn_map);
1321 free (splittable_regs);
1322 free (splittable_regs_updates);
1323 free (addr_combined_regs);
1324 free (local_regno);
1325 if (map->reg_map)
1326 free (map->reg_map);
1327 free (map);
1330 /* A helper function for unroll_loop. Emit a compare and branch to
1331 satisfy (CMP OP1 OP2), but pass this through the simplifier first.
1332 If the branch turned out to be conditional, return it, otherwise
1333 return NULL. */
1335 static rtx
1336 simplify_cmp_and_jump_insns (enum rtx_code code, enum machine_mode mode,
1337 rtx op0, rtx op1, rtx label)
1339 rtx t, insn;
1341 t = simplify_relational_operation (code, mode, op0, op1);
1342 if (!t)
1344 enum rtx_code scode = signed_condition (code);
1345 emit_cmp_and_jump_insns (op0, op1, scode, NULL_RTX, mode,
1346 code != scode, label);
1347 insn = get_last_insn ();
1349 JUMP_LABEL (insn) = label;
1350 LABEL_NUSES (label) += 1;
1352 return insn;
1354 else if (t == const_true_rtx)
1356 insn = emit_jump_insn (gen_jump (label));
1357 emit_barrier ();
1358 JUMP_LABEL (insn) = label;
1359 LABEL_NUSES (label) += 1;
1362 return NULL_RTX;
1365 /* Return true if the loop can be safely, and profitably, preconditioned
1366 so that the unrolled copies of the loop body don't need exit tests.
1368 This only works if final_value, initial_value and increment can be
1369 determined, and if increment is a constant power of 2.
1370 If increment is not a power of 2, then the preconditioning modulo
1371 operation would require a real modulo instead of a boolean AND, and this
1372 is not considered `profitable'. */
1374 /* ??? If the loop is known to be executed very many times, or the machine
1375 has a very cheap divide instruction, then preconditioning is a win even
1376 when the increment is not a power of 2. Use RTX_COST to compute
1377 whether divide is cheap.
1378 ??? A divide by constant doesn't actually need a divide, look at
1379 expand_divmod. The reduced cost of this optimized modulo is not
1380 reflected in RTX_COST. */
1383 precondition_loop_p (const struct loop *loop, rtx *initial_value,
1384 rtx *final_value, rtx *increment,
1385 enum machine_mode *mode)
1387 rtx loop_start = loop->start;
1388 struct loop_info *loop_info = LOOP_INFO (loop);
1390 if (loop_info->n_iterations > 0)
1392 if (INTVAL (loop_info->increment) > 0)
1394 *initial_value = const0_rtx;
1395 *increment = const1_rtx;
1396 *final_value = GEN_INT (loop_info->n_iterations);
1398 else
1400 *initial_value = GEN_INT (loop_info->n_iterations);
1401 *increment = constm1_rtx;
1402 *final_value = const0_rtx;
1404 *mode = word_mode;
1406 if (loop_dump_stream)
1407 fprintf (loop_dump_stream,
1408 "Preconditioning: Success, number of iterations known, "
1409 HOST_WIDE_INT_PRINT_DEC ".\n",
1410 loop_info->n_iterations);
1411 return 1;
1414 if (loop_info->iteration_var == 0)
1416 if (loop_dump_stream)
1417 fprintf (loop_dump_stream,
1418 "Preconditioning: Could not find iteration variable.\n");
1419 return 0;
1421 else if (loop_info->initial_value == 0)
1423 if (loop_dump_stream)
1424 fprintf (loop_dump_stream,
1425 "Preconditioning: Could not find initial value.\n");
1426 return 0;
1428 else if (loop_info->increment == 0)
1430 if (loop_dump_stream)
1431 fprintf (loop_dump_stream,
1432 "Preconditioning: Could not find increment value.\n");
1433 return 0;
1435 else if (GET_CODE (loop_info->increment) != CONST_INT)
1437 if (loop_dump_stream)
1438 fprintf (loop_dump_stream,
1439 "Preconditioning: Increment not a constant.\n");
1440 return 0;
1442 else if ((exact_log2 (INTVAL (loop_info->increment)) < 0)
1443 && (exact_log2 (-INTVAL (loop_info->increment)) < 0))
1445 if (loop_dump_stream)
1446 fprintf (loop_dump_stream,
1447 "Preconditioning: Increment not a constant power of 2.\n");
1448 return 0;
1451 /* Unsigned_compare and compare_dir can be ignored here, since they do
1452 not matter for preconditioning. */
1454 if (loop_info->final_value == 0)
1456 if (loop_dump_stream)
1457 fprintf (loop_dump_stream,
1458 "Preconditioning: EQ comparison loop.\n");
1459 return 0;
1462 /* Must ensure that final_value is invariant, so call
1463 loop_invariant_p to check. Before doing so, must check regno
1464 against max_reg_before_loop to make sure that the register is in
1465 the range covered by loop_invariant_p. If it isn't, then it is
1466 most likely a biv/giv which by definition are not invariant. */
1467 if ((GET_CODE (loop_info->final_value) == REG
1468 && REGNO (loop_info->final_value) >= max_reg_before_loop)
1469 || (GET_CODE (loop_info->final_value) == PLUS
1470 && REGNO (XEXP (loop_info->final_value, 0)) >= max_reg_before_loop)
1471 || ! loop_invariant_p (loop, loop_info->final_value))
1473 if (loop_dump_stream)
1474 fprintf (loop_dump_stream,
1475 "Preconditioning: Final value not invariant.\n");
1476 return 0;
1479 /* Fail for floating point values, since the caller of this function
1480 does not have code to deal with them. */
1481 if (GET_MODE_CLASS (GET_MODE (loop_info->final_value)) == MODE_FLOAT
1482 || GET_MODE_CLASS (GET_MODE (loop_info->initial_value)) == MODE_FLOAT)
1484 if (loop_dump_stream)
1485 fprintf (loop_dump_stream,
1486 "Preconditioning: Floating point final or initial value.\n");
1487 return 0;
1490 /* Fail if loop_info->iteration_var is not live before loop_start,
1491 since we need to test its value in the preconditioning code. */
1493 if (REGNO_FIRST_LUID (REGNO (loop_info->iteration_var))
1494 > INSN_LUID (loop_start))
1496 if (loop_dump_stream)
1497 fprintf (loop_dump_stream,
1498 "Preconditioning: Iteration var not live before loop start.\n");
1499 return 0;
1502 /* Note that loop_iterations biases the initial value for GIV iterators
1503 such as "while (i-- > 0)" so that we can calculate the number of
1504 iterations just like for BIV iterators.
1506 Also note that the absolute values of initial_value and
1507 final_value are unimportant as only their difference is used for
1508 calculating the number of loop iterations. */
1509 *initial_value = loop_info->initial_value;
1510 *increment = loop_info->increment;
1511 *final_value = loop_info->final_value;
1513 /* Decide what mode to do these calculations in. Choose the larger
1514 of final_value's mode and initial_value's mode, or a full-word if
1515 both are constants. */
1516 *mode = GET_MODE (*final_value);
1517 if (*mode == VOIDmode)
1519 *mode = GET_MODE (*initial_value);
1520 if (*mode == VOIDmode)
1521 *mode = word_mode;
1523 else if (*mode != GET_MODE (*initial_value)
1524 && (GET_MODE_SIZE (*mode)
1525 < GET_MODE_SIZE (GET_MODE (*initial_value))))
1526 *mode = GET_MODE (*initial_value);
1528 /* Success! */
1529 if (loop_dump_stream)
1530 fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1531 return 1;
1534 /* All pseudo-registers must be mapped to themselves. Two hard registers
1535 must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1536 REGNUM, to avoid function-inlining specific conversions of these
1537 registers. All other hard regs can not be mapped because they may be
1538 used with different
1539 modes. */
1541 static void
1542 init_reg_map (struct inline_remap *map, int maxregnum)
1544 int i;
1546 for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1547 map->reg_map[i] = regno_reg_rtx[i];
1548 /* Just clear the rest of the entries. */
1549 for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1550 map->reg_map[i] = 0;
1552 map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1553 = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1554 map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1555 = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1558 /* Strength-reduction will often emit code for optimized biv/givs which
1559 calculates their value in a temporary register, and then copies the result
1560 to the iv. This procedure reconstructs the pattern computing the iv;
1561 verifying that all operands are of the proper form.
1563 PATTERN must be the result of single_set.
1564 The return value is the amount that the giv is incremented by. */
1566 static rtx
1567 calculate_giv_inc (rtx pattern, rtx src_insn, unsigned int regno)
1569 rtx increment;
1570 rtx increment_total = 0;
1571 int tries = 0;
1573 retry:
1574 /* Verify that we have an increment insn here. First check for a plus
1575 as the set source. */
1576 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1578 /* SR sometimes computes the new giv value in a temp, then copies it
1579 to the new_reg. */
1580 src_insn = PREV_INSN (src_insn);
1581 pattern = single_set (src_insn);
1582 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1583 abort ();
1585 /* The last insn emitted is not needed, so delete it to avoid confusing
1586 the second cse pass. This insn sets the giv unnecessarily. */
1587 delete_related_insns (get_last_insn ());
1590 /* Verify that we have a constant as the second operand of the plus. */
1591 increment = XEXP (SET_SRC (pattern), 1);
1592 if (GET_CODE (increment) != CONST_INT)
1594 /* SR sometimes puts the constant in a register, especially if it is
1595 too big to be an add immed operand. */
1596 increment = find_last_value (increment, &src_insn, NULL_RTX, 0);
1598 /* SR may have used LO_SUM to compute the constant if it is too large
1599 for a load immed operand. In this case, the constant is in operand
1600 one of the LO_SUM rtx. */
1601 if (GET_CODE (increment) == LO_SUM)
1602 increment = XEXP (increment, 1);
1604 /* Some ports store large constants in memory and add a REG_EQUAL
1605 note to the store insn. */
1606 else if (GET_CODE (increment) == MEM)
1608 rtx note = find_reg_note (src_insn, REG_EQUAL, 0);
1609 if (note)
1610 increment = XEXP (note, 0);
1613 else if (GET_CODE (increment) == IOR
1614 || GET_CODE (increment) == PLUS
1615 || GET_CODE (increment) == ASHIFT
1616 || GET_CODE (increment) == LSHIFTRT)
1618 /* The rs6000 port loads some constants with IOR.
1619 The alpha port loads some constants with ASHIFT and PLUS.
1620 The sparc64 port loads some constants with LSHIFTRT. */
1621 rtx second_part = XEXP (increment, 1);
1622 enum rtx_code code = GET_CODE (increment);
1624 increment = find_last_value (XEXP (increment, 0),
1625 &src_insn, NULL_RTX, 0);
1626 /* Don't need the last insn anymore. */
1627 delete_related_insns (get_last_insn ());
1629 if (GET_CODE (second_part) != CONST_INT
1630 || GET_CODE (increment) != CONST_INT)
1631 abort ();
1633 if (code == IOR)
1634 increment = GEN_INT (INTVAL (increment) | INTVAL (second_part));
1635 else if (code == PLUS)
1636 increment = GEN_INT (INTVAL (increment) + INTVAL (second_part));
1637 else if (code == ASHIFT)
1638 increment = GEN_INT (INTVAL (increment) << INTVAL (second_part));
1639 else
1640 increment = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (increment) >> INTVAL (second_part));
1643 if (GET_CODE (increment) != CONST_INT)
1644 abort ();
1646 /* The insn loading the constant into a register is no longer needed,
1647 so delete it. */
1648 delete_related_insns (get_last_insn ());
1651 if (increment_total)
1652 increment_total = GEN_INT (INTVAL (increment_total) + INTVAL (increment));
1653 else
1654 increment_total = increment;
1656 /* Check that the source register is the same as the register we expected
1657 to see as the source. If not, something is seriously wrong. */
1658 if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
1659 || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
1661 /* Some machines (e.g. the romp), may emit two add instructions for
1662 certain constants, so lets try looking for another add immediately
1663 before this one if we have only seen one add insn so far. */
1665 if (tries == 0)
1667 tries++;
1669 src_insn = PREV_INSN (src_insn);
1670 pattern = single_set (src_insn);
1672 delete_related_insns (get_last_insn ());
1674 goto retry;
1677 abort ();
1680 return increment_total;
1683 /* Copy REG_NOTES, except for insn references, because not all insn_map
1684 entries are valid yet. We do need to copy registers now though, because
1685 the reg_map entries can change during copying. */
1687 static rtx
1688 initial_reg_note_copy (rtx notes, struct inline_remap *map)
1690 rtx copy;
1692 if (notes == 0)
1693 return 0;
1695 copy = rtx_alloc (GET_CODE (notes));
1696 PUT_REG_NOTE_KIND (copy, REG_NOTE_KIND (notes));
1698 if (GET_CODE (notes) == EXPR_LIST)
1699 XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (notes, 0), map, 0);
1700 else if (GET_CODE (notes) == INSN_LIST)
1701 /* Don't substitute for these yet. */
1702 XEXP (copy, 0) = copy_rtx (XEXP (notes, 0));
1703 else
1704 abort ();
1706 XEXP (copy, 1) = initial_reg_note_copy (XEXP (notes, 1), map);
1708 return copy;
1711 /* Fixup insn references in copied REG_NOTES. */
1713 static void
1714 final_reg_note_copy (rtx *notesp, struct inline_remap *map)
1716 while (*notesp)
1718 rtx note = *notesp;
1720 if (GET_CODE (note) == INSN_LIST)
1722 rtx insn = map->insn_map[INSN_UID (XEXP (note, 0))];
1724 /* If we failed to remap the note, something is awry.
1725 Allow REG_LABEL as it may reference label outside
1726 the unrolled loop. */
1727 if (!insn)
1729 if (REG_NOTE_KIND (note) != REG_LABEL)
1730 abort ();
1732 else
1733 XEXP (note, 0) = insn;
1736 notesp = &XEXP (note, 1);
1740 /* Copy each instruction in the loop, substituting from map as appropriate.
1741 This is very similar to a loop in expand_inline_function. */
1743 static void
1744 copy_loop_body (struct loop *loop, rtx copy_start, rtx copy_end,
1745 struct inline_remap *map, rtx exit_label,
1746 int last_iteration, enum unroll_types unroll_type,
1747 rtx start_label, rtx loop_end, rtx insert_before,
1748 rtx copy_notes_from)
1750 struct loop_ivs *ivs = LOOP_IVS (loop);
1751 rtx insn, pattern;
1752 rtx set, tem, copy = NULL_RTX;
1753 int dest_reg_was_split, i;
1754 #ifdef HAVE_cc0
1755 rtx cc0_insn = 0;
1756 #endif
1757 rtx final_label = 0;
1758 rtx giv_inc, giv_dest_reg, giv_src_reg;
1760 /* If this isn't the last iteration, then map any references to the
1761 start_label to final_label. Final label will then be emitted immediately
1762 after the end of this loop body if it was ever used.
1764 If this is the last iteration, then map references to the start_label
1765 to itself. */
1766 if (! last_iteration)
1768 final_label = gen_label_rtx ();
1769 set_label_in_map (map, CODE_LABEL_NUMBER (start_label), final_label);
1771 else
1772 set_label_in_map (map, CODE_LABEL_NUMBER (start_label), start_label);
1774 start_sequence ();
1776 insn = copy_start;
1779 insn = NEXT_INSN (insn);
1781 map->orig_asm_operands_vector = 0;
1783 switch (GET_CODE (insn))
1785 case INSN:
1786 pattern = PATTERN (insn);
1787 copy = 0;
1788 giv_inc = 0;
1790 /* Check to see if this is a giv that has been combined with
1791 some split address givs. (Combined in the sense that
1792 `combine_givs' in loop.c has put two givs in the same register.)
1793 In this case, we must search all givs based on the same biv to
1794 find the address givs. Then split the address givs.
1795 Do this before splitting the giv, since that may map the
1796 SET_DEST to a new register. */
1798 if ((set = single_set (insn))
1799 && GET_CODE (SET_DEST (set)) == REG
1800 && addr_combined_regs[REGNO (SET_DEST (set))])
1802 struct iv_class *bl;
1803 struct induction *v, *tv;
1804 unsigned int regno = REGNO (SET_DEST (set));
1806 v = addr_combined_regs[REGNO (SET_DEST (set))];
1807 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
1809 /* Although the giv_inc amount is not needed here, we must call
1810 calculate_giv_inc here since it might try to delete the
1811 last insn emitted. If we wait until later to call it,
1812 we might accidentally delete insns generated immediately
1813 below by emit_unrolled_add. */
1815 giv_inc = calculate_giv_inc (set, insn, regno);
1817 /* Now find all address giv's that were combined with this
1818 giv 'v'. */
1819 for (tv = bl->giv; tv; tv = tv->next_iv)
1820 if (tv->giv_type == DEST_ADDR && tv->same == v)
1822 int this_giv_inc;
1824 /* If this DEST_ADDR giv was not split, then ignore it. */
1825 if (*tv->location != tv->dest_reg)
1826 continue;
1828 /* Scale this_giv_inc if the multiplicative factors of
1829 the two givs are different. */
1830 this_giv_inc = INTVAL (giv_inc);
1831 if (tv->mult_val != v->mult_val)
1832 this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1833 * INTVAL (tv->mult_val));
1835 tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
1836 *tv->location = tv->dest_reg;
1838 if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1840 /* Must emit an insn to increment the split address
1841 giv. Add in the const_adjust field in case there
1842 was a constant eliminated from the address. */
1843 rtx value, dest_reg;
1845 /* tv->dest_reg will be either a bare register,
1846 or else a register plus a constant. */
1847 if (GET_CODE (tv->dest_reg) == REG)
1848 dest_reg = tv->dest_reg;
1849 else
1850 dest_reg = XEXP (tv->dest_reg, 0);
1852 /* Check for shared address givs, and avoid
1853 incrementing the shared pseudo reg more than
1854 once. */
1855 if (! tv->same_insn && ! tv->shared)
1857 /* tv->dest_reg may actually be a (PLUS (REG)
1858 (CONST)) here, so we must call plus_constant
1859 to add the const_adjust amount before calling
1860 emit_unrolled_add below. */
1861 value = plus_constant (tv->dest_reg,
1862 tv->const_adjust);
1864 if (GET_CODE (value) == PLUS)
1866 /* The constant could be too large for an add
1867 immediate, so can't directly emit an insn
1868 here. */
1869 emit_unrolled_add (dest_reg, XEXP (value, 0),
1870 XEXP (value, 1));
1874 /* Reset the giv to be just the register again, in case
1875 it is used after the set we have just emitted.
1876 We must subtract the const_adjust factor added in
1877 above. */
1878 tv->dest_reg = plus_constant (dest_reg,
1879 -tv->const_adjust);
1880 *tv->location = tv->dest_reg;
1885 /* If this is a setting of a splittable variable, then determine
1886 how to split the variable, create a new set based on this split,
1887 and set up the reg_map so that later uses of the variable will
1888 use the new split variable. */
1890 dest_reg_was_split = 0;
1892 if ((set = single_set (insn))
1893 && GET_CODE (SET_DEST (set)) == REG
1894 && splittable_regs[REGNO (SET_DEST (set))])
1896 unsigned int regno = REGNO (SET_DEST (set));
1897 unsigned int src_regno;
1899 dest_reg_was_split = 1;
1901 giv_dest_reg = SET_DEST (set);
1902 giv_src_reg = giv_dest_reg;
1903 /* Compute the increment value for the giv, if it wasn't
1904 already computed above. */
1905 if (giv_inc == 0)
1906 giv_inc = calculate_giv_inc (set, insn, regno);
1908 src_regno = REGNO (giv_src_reg);
1910 if (unroll_type == UNROLL_COMPLETELY)
1912 /* Completely unrolling the loop. Set the induction
1913 variable to a known constant value. */
1915 /* The value in splittable_regs may be an invariant
1916 value, so we must use plus_constant here. */
1917 splittable_regs[regno]
1918 = plus_constant (splittable_regs[src_regno],
1919 INTVAL (giv_inc));
1921 if (GET_CODE (splittable_regs[regno]) == PLUS)
1923 giv_src_reg = XEXP (splittable_regs[regno], 0);
1924 giv_inc = XEXP (splittable_regs[regno], 1);
1926 else
1928 /* The splittable_regs value must be a REG or a
1929 CONST_INT, so put the entire value in the giv_src_reg
1930 variable. */
1931 giv_src_reg = splittable_regs[regno];
1932 giv_inc = const0_rtx;
1935 else
1937 /* Partially unrolling loop. Create a new pseudo
1938 register for the iteration variable, and set it to
1939 be a constant plus the original register. Except
1940 on the last iteration, when the result has to
1941 go back into the original iteration var register. */
1943 /* Handle bivs which must be mapped to a new register
1944 when split. This happens for bivs which need their
1945 final value set before loop entry. The new register
1946 for the biv was stored in the biv's first struct
1947 induction entry by find_splittable_regs. */
1949 if (regno < ivs->n_regs
1950 && REG_IV_TYPE (ivs, regno) == BASIC_INDUCT)
1952 giv_src_reg = REG_IV_CLASS (ivs, regno)->biv->src_reg;
1953 giv_dest_reg = giv_src_reg;
1956 #if 0
1957 /* If non-reduced/final-value givs were split, then
1958 this would have to remap those givs also. See
1959 find_splittable_regs. */
1960 #endif
1962 splittable_regs[regno]
1963 = simplify_gen_binary (PLUS, GET_MODE (giv_src_reg),
1964 giv_inc,
1965 splittable_regs[src_regno]);
1966 giv_inc = splittable_regs[regno];
1968 /* Now split the induction variable by changing the dest
1969 of this insn to a new register, and setting its
1970 reg_map entry to point to this new register.
1972 If this is the last iteration, and this is the last insn
1973 that will update the iv, then reuse the original dest,
1974 to ensure that the iv will have the proper value when
1975 the loop exits or repeats.
1977 Using splittable_regs_updates here like this is safe,
1978 because it can only be greater than one if all
1979 instructions modifying the iv are always executed in
1980 order. */
1982 if (! last_iteration
1983 || (splittable_regs_updates[regno]-- != 1))
1985 tem = gen_reg_rtx (GET_MODE (giv_src_reg));
1986 giv_dest_reg = tem;
1987 map->reg_map[regno] = tem;
1988 record_base_value (REGNO (tem),
1989 giv_inc == const0_rtx
1990 ? giv_src_reg
1991 : gen_rtx_PLUS (GET_MODE (giv_src_reg),
1992 giv_src_reg, giv_inc),
1995 else
1996 map->reg_map[regno] = giv_src_reg;
1999 /* The constant being added could be too large for an add
2000 immediate, so can't directly emit an insn here. */
2001 emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
2002 copy = get_last_insn ();
2003 pattern = PATTERN (copy);
2005 else
2007 pattern = copy_rtx_and_substitute (pattern, map, 0);
2008 copy = emit_insn (pattern);
2010 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2011 INSN_LOCATOR (copy) = INSN_LOCATOR (insn);
2013 /* If there is a REG_EQUAL note present whose value
2014 is not loop invariant, then delete it, since it
2015 may cause problems with later optimization passes. */
2016 if ((tem = find_reg_note (copy, REG_EQUAL, NULL_RTX))
2017 && !loop_invariant_p (loop, XEXP (tem, 0)))
2018 remove_note (copy, tem);
2020 #ifdef HAVE_cc0
2021 /* If this insn is setting CC0, it may need to look at
2022 the insn that uses CC0 to see what type of insn it is.
2023 In that case, the call to recog via validate_change will
2024 fail. So don't substitute constants here. Instead,
2025 do it when we emit the following insn.
2027 For example, see the pyr.md file. That machine has signed and
2028 unsigned compares. The compare patterns must check the
2029 following branch insn to see which what kind of compare to
2030 emit.
2032 If the previous insn set CC0, substitute constants on it as
2033 well. */
2034 if (sets_cc0_p (PATTERN (copy)) != 0)
2035 cc0_insn = copy;
2036 else
2038 if (cc0_insn)
2039 try_constants (cc0_insn, map);
2040 cc0_insn = 0;
2041 try_constants (copy, map);
2043 #else
2044 try_constants (copy, map);
2045 #endif
2047 /* Make split induction variable constants `permanent' since we
2048 know there are no backward branches across iteration variable
2049 settings which would invalidate this. */
2050 if (dest_reg_was_split)
2052 int regno = REGNO (SET_DEST (set));
2054 if ((size_t) regno < VARRAY_SIZE (map->const_equiv_varray)
2055 && (VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).age
2056 == map->const_age))
2057 VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).age = -1;
2059 break;
2061 case JUMP_INSN:
2062 pattern = copy_rtx_and_substitute (PATTERN (insn), map, 0);
2063 copy = emit_jump_insn (pattern);
2064 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2065 INSN_LOCATOR (copy) = INSN_LOCATOR (insn);
2067 if (JUMP_LABEL (insn))
2069 JUMP_LABEL (copy) = get_label_from_map (map,
2070 CODE_LABEL_NUMBER
2071 (JUMP_LABEL (insn)));
2072 LABEL_NUSES (JUMP_LABEL (copy))++;
2074 if (JUMP_LABEL (insn) == start_label && insn == copy_end
2075 && ! last_iteration)
2078 /* This is a branch to the beginning of the loop; this is the
2079 last insn being copied; and this is not the last iteration.
2080 In this case, we want to change the original fall through
2081 case to be a branch past the end of the loop, and the
2082 original jump label case to fall_through. */
2084 if (!invert_jump (copy, exit_label, 0))
2086 rtx jmp;
2087 rtx lab = gen_label_rtx ();
2088 /* Can't do it by reversing the jump (probably because we
2089 couldn't reverse the conditions), so emit a new
2090 jump_insn after COPY, and redirect the jump around
2091 that. */
2092 jmp = emit_jump_insn_after (gen_jump (exit_label), copy);
2093 JUMP_LABEL (jmp) = exit_label;
2094 LABEL_NUSES (exit_label)++;
2095 jmp = emit_barrier_after (jmp);
2096 emit_label_after (lab, jmp);
2097 LABEL_NUSES (lab) = 0;
2098 if (!redirect_jump (copy, lab, 0))
2099 abort ();
2103 #ifdef HAVE_cc0
2104 if (cc0_insn)
2105 try_constants (cc0_insn, map);
2106 cc0_insn = 0;
2107 #endif
2108 try_constants (copy, map);
2110 /* Set the jump label of COPY correctly to avoid problems with
2111 later passes of unroll_loop, if INSN had jump label set. */
2112 if (JUMP_LABEL (insn))
2114 rtx label = 0;
2116 /* Can't use the label_map for every insn, since this may be
2117 the backward branch, and hence the label was not mapped. */
2118 if ((set = single_set (copy)))
2120 tem = SET_SRC (set);
2121 if (GET_CODE (tem) == LABEL_REF)
2122 label = XEXP (tem, 0);
2123 else if (GET_CODE (tem) == IF_THEN_ELSE)
2125 if (XEXP (tem, 1) != pc_rtx)
2126 label = XEXP (XEXP (tem, 1), 0);
2127 else
2128 label = XEXP (XEXP (tem, 2), 0);
2132 if (label && GET_CODE (label) == CODE_LABEL)
2133 JUMP_LABEL (copy) = label;
2134 else
2136 /* An unrecognizable jump insn, probably the entry jump
2137 for a switch statement. This label must have been mapped,
2138 so just use the label_map to get the new jump label. */
2139 JUMP_LABEL (copy)
2140 = get_label_from_map (map,
2141 CODE_LABEL_NUMBER (JUMP_LABEL (insn)));
2144 /* If this is a non-local jump, then must increase the label
2145 use count so that the label will not be deleted when the
2146 original jump is deleted. */
2147 LABEL_NUSES (JUMP_LABEL (copy))++;
2149 else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
2150 || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
2152 rtx pat = PATTERN (copy);
2153 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
2154 int len = XVECLEN (pat, diff_vec_p);
2155 int i;
2157 for (i = 0; i < len; i++)
2158 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
2161 /* If this used to be a conditional jump insn but whose branch
2162 direction is now known, we must do something special. */
2163 if (any_condjump_p (insn) && onlyjump_p (insn) && map->last_pc_value)
2165 #ifdef HAVE_cc0
2166 /* If the previous insn set cc0 for us, delete it. */
2167 if (only_sets_cc0_p (PREV_INSN (copy)))
2168 delete_related_insns (PREV_INSN (copy));
2169 #endif
2171 /* If this is now a no-op, delete it. */
2172 if (map->last_pc_value == pc_rtx)
2174 delete_insn (copy);
2175 copy = 0;
2177 else
2178 /* Otherwise, this is unconditional jump so we must put a
2179 BARRIER after it. We could do some dead code elimination
2180 here, but jump.c will do it just as well. */
2181 emit_barrier ();
2183 break;
2185 case CALL_INSN:
2186 pattern = copy_rtx_and_substitute (PATTERN (insn), map, 0);
2187 copy = emit_call_insn (pattern);
2188 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2189 INSN_LOCATOR (copy) = INSN_LOCATOR (insn);
2190 SIBLING_CALL_P (copy) = SIBLING_CALL_P (insn);
2191 CONST_OR_PURE_CALL_P (copy) = CONST_OR_PURE_CALL_P (insn);
2193 /* Because the USAGE information potentially contains objects other
2194 than hard registers, we need to copy it. */
2195 CALL_INSN_FUNCTION_USAGE (copy)
2196 = copy_rtx_and_substitute (CALL_INSN_FUNCTION_USAGE (insn),
2197 map, 0);
2199 #ifdef HAVE_cc0
2200 if (cc0_insn)
2201 try_constants (cc0_insn, map);
2202 cc0_insn = 0;
2203 #endif
2204 try_constants (copy, map);
2206 /* Be lazy and assume CALL_INSNs clobber all hard registers. */
2207 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2208 VARRAY_CONST_EQUIV (map->const_equiv_varray, i).rtx = 0;
2209 break;
2211 case CODE_LABEL:
2212 /* If this is the loop start label, then we don't need to emit a
2213 copy of this label since no one will use it. */
2215 if (insn != start_label)
2217 copy = emit_label (get_label_from_map (map,
2218 CODE_LABEL_NUMBER (insn)));
2219 map->const_age++;
2221 break;
2223 case BARRIER:
2224 copy = emit_barrier ();
2225 break;
2227 case NOTE:
2228 /* VTOP and CONT notes are valid only before the loop exit test.
2229 If placed anywhere else, loop may generate bad code. */
2230 /* BASIC_BLOCK notes exist to stabilize basic block structures with
2231 the associated rtl. We do not want to share the structure in
2232 this new block. */
2234 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2235 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED_LABEL
2236 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK
2237 && ((NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
2238 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_CONT)
2239 || (last_iteration
2240 && unroll_type != UNROLL_COMPLETELY)))
2241 copy = emit_note_copy (insn);
2242 else
2243 copy = 0;
2244 break;
2246 default:
2247 abort ();
2250 map->insn_map[INSN_UID (insn)] = copy;
2252 while (insn != copy_end);
2254 /* Now finish coping the REG_NOTES. */
2255 insn = copy_start;
2258 insn = NEXT_INSN (insn);
2259 if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
2260 || GET_CODE (insn) == CALL_INSN)
2261 && map->insn_map[INSN_UID (insn)])
2262 final_reg_note_copy (&REG_NOTES (map->insn_map[INSN_UID (insn)]), map);
2264 while (insn != copy_end);
2266 /* There may be notes between copy_notes_from and loop_end. Emit a copy of
2267 each of these notes here, since there may be some important ones, such as
2268 NOTE_INSN_BLOCK_END notes, in this group. We don't do this on the last
2269 iteration, because the original notes won't be deleted.
2271 We can't use insert_before here, because when from preconditioning,
2272 insert_before points before the loop. We can't use copy_end, because
2273 there may be insns already inserted after it (which we don't want to
2274 copy) when not from preconditioning code. */
2276 if (! last_iteration)
2278 for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
2280 /* VTOP notes are valid only before the loop exit test.
2281 If placed anywhere else, loop may generate bad code.
2282 Although COPY_NOTES_FROM will be at most one or two (for cc0)
2283 instructions before the last insn in the loop, COPY_NOTES_FROM
2284 can be a NOTE_INSN_LOOP_CONT note if there is no VTOP note,
2285 as in a do .. while loop. */
2286 if (GET_CODE (insn) == NOTE
2287 && ((NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2288 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK
2289 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
2290 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_CONT)))
2291 emit_note_copy (insn);
2295 if (final_label && LABEL_NUSES (final_label) > 0)
2296 emit_label (final_label);
2298 tem = get_insns ();
2299 end_sequence ();
2300 loop_insn_emit_before (loop, 0, insert_before, tem);
2303 /* Emit an insn, using the expand_binop to ensure that a valid insn is
2304 emitted. This will correctly handle the case where the increment value
2305 won't fit in the immediate field of a PLUS insns. */
2307 void
2308 emit_unrolled_add (rtx dest_reg, rtx src_reg, rtx increment)
2310 rtx result;
2312 result = expand_simple_binop (GET_MODE (dest_reg), PLUS, src_reg, increment,
2313 dest_reg, 0, OPTAB_LIB_WIDEN);
2315 if (dest_reg != result)
2316 emit_move_insn (dest_reg, result);
2319 /* Searches the insns between INSN and LOOP->END. Returns 1 if there
2320 is a backward branch in that range that branches to somewhere between
2321 LOOP->START and INSN. Returns 0 otherwise. */
2323 /* ??? This is quadratic algorithm. Could be rewritten to be linear.
2324 In practice, this is not a problem, because this function is seldom called,
2325 and uses a negligible amount of CPU time on average. */
2328 back_branch_in_range_p (const struct loop *loop, rtx insn)
2330 rtx p, q, target_insn;
2331 rtx loop_start = loop->start;
2332 rtx loop_end = loop->end;
2333 rtx orig_loop_end = loop->end;
2335 /* Stop before we get to the backward branch at the end of the loop. */
2336 loop_end = prev_nonnote_insn (loop_end);
2337 if (GET_CODE (loop_end) == BARRIER)
2338 loop_end = PREV_INSN (loop_end);
2340 /* Check in case insn has been deleted, search forward for first non
2341 deleted insn following it. */
2342 while (INSN_DELETED_P (insn))
2343 insn = NEXT_INSN (insn);
2345 /* Check for the case where insn is the last insn in the loop. Deal
2346 with the case where INSN was a deleted loop test insn, in which case
2347 it will now be the NOTE_LOOP_END. */
2348 if (insn == loop_end || insn == orig_loop_end)
2349 return 0;
2351 for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
2353 if (GET_CODE (p) == JUMP_INSN)
2355 target_insn = JUMP_LABEL (p);
2357 /* Search from loop_start to insn, to see if one of them is
2358 the target_insn. We can't use INSN_LUID comparisons here,
2359 since insn may not have an LUID entry. */
2360 for (q = loop_start; q != insn; q = NEXT_INSN (q))
2361 if (q == target_insn)
2362 return 1;
2366 return 0;
2369 /* Try to generate the simplest rtx for the expression
2370 (PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
2371 value of giv's. */
2373 static rtx
2374 fold_rtx_mult_add (rtx mult1, rtx mult2, rtx add1, enum machine_mode mode)
2376 rtx temp, mult_res;
2377 rtx result;
2379 /* The modes must all be the same. This should always be true. For now,
2380 check to make sure. */
2381 if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
2382 || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
2383 || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
2384 abort ();
2386 /* Ensure that if at least one of mult1/mult2 are constant, then mult2
2387 will be a constant. */
2388 if (GET_CODE (mult1) == CONST_INT)
2390 temp = mult2;
2391 mult2 = mult1;
2392 mult1 = temp;
2395 mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
2396 if (! mult_res)
2397 mult_res = gen_rtx_MULT (mode, mult1, mult2);
2399 /* Again, put the constant second. */
2400 if (GET_CODE (add1) == CONST_INT)
2402 temp = add1;
2403 add1 = mult_res;
2404 mult_res = temp;
2407 result = simplify_binary_operation (PLUS, mode, add1, mult_res);
2408 if (! result)
2409 result = gen_rtx_PLUS (mode, add1, mult_res);
2411 return result;
2414 /* Searches the list of induction struct's for the biv BL, to try to calculate
2415 the total increment value for one iteration of the loop as a constant.
2417 Returns the increment value as an rtx, simplified as much as possible,
2418 if it can be calculated. Otherwise, returns 0. */
2421 biv_total_increment (const struct iv_class *bl)
2423 struct induction *v;
2424 rtx result;
2426 /* For increment, must check every instruction that sets it. Each
2427 instruction must be executed only once each time through the loop.
2428 To verify this, we check that the insn is always executed, and that
2429 there are no backward branches after the insn that branch to before it.
2430 Also, the insn must have a mult_val of one (to make sure it really is
2431 an increment). */
2433 result = const0_rtx;
2434 for (v = bl->biv; v; v = v->next_iv)
2436 if (v->always_computable && v->mult_val == const1_rtx
2437 && ! v->maybe_multiple
2438 && SCALAR_INT_MODE_P (v->mode))
2439 result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
2440 else
2441 return 0;
2444 return result;
2447 /* For each biv and giv, determine whether it can be safely split into
2448 a different variable for each unrolled copy of the loop body. If it
2449 is safe to split, then indicate that by saving some useful info
2450 in the splittable_regs array.
2452 If the loop is being completely unrolled, then splittable_regs will hold
2453 the current value of the induction variable while the loop is unrolled.
2454 It must be set to the initial value of the induction variable here.
2455 Otherwise, splittable_regs will hold the difference between the current
2456 value of the induction variable and the value the induction variable had
2457 at the top of the loop. It must be set to the value 0 here.
2459 Returns the total number of instructions that set registers that are
2460 splittable. */
2462 /* ?? If the loop is only unrolled twice, then most of the restrictions to
2463 constant values are unnecessary, since we can easily calculate increment
2464 values in this case even if nothing is constant. The increment value
2465 should not involve a multiply however. */
2467 /* ?? Even if the biv/giv increment values aren't constant, it may still
2468 be beneficial to split the variable if the loop is only unrolled a few
2469 times, since multiplies by small integers (1,2,3,4) are very cheap. */
2471 static int
2472 find_splittable_regs (const struct loop *loop,
2473 enum unroll_types unroll_type, int unroll_number)
2475 struct loop_ivs *ivs = LOOP_IVS (loop);
2476 struct iv_class *bl;
2477 struct induction *v;
2478 rtx increment, tem;
2479 rtx biv_final_value;
2480 int biv_splittable;
2481 int result = 0;
2483 for (bl = ivs->list; bl; bl = bl->next)
2485 /* Biv_total_increment must return a constant value,
2486 otherwise we can not calculate the split values. */
2488 increment = biv_total_increment (bl);
2489 if (! increment || GET_CODE (increment) != CONST_INT)
2490 continue;
2492 /* The loop must be unrolled completely, or else have a known number
2493 of iterations and only one exit, or else the biv must be dead
2494 outside the loop, or else the final value must be known. Otherwise,
2495 it is unsafe to split the biv since it may not have the proper
2496 value on loop exit. */
2498 /* loop_number_exit_count is nonzero if the loop has an exit other than
2499 a fall through at the end. */
2501 biv_splittable = 1;
2502 biv_final_value = 0;
2503 if (unroll_type != UNROLL_COMPLETELY
2504 && (loop->exit_count || unroll_type == UNROLL_NAIVE)
2505 && (REGNO_LAST_LUID (bl->regno) >= INSN_LUID (loop->end)
2506 || ! bl->init_insn
2507 || INSN_UID (bl->init_insn) >= max_uid_for_loop
2508 || (REGNO_FIRST_LUID (bl->regno)
2509 < INSN_LUID (bl->init_insn))
2510 || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
2511 && ! (biv_final_value = final_biv_value (loop, bl)))
2512 biv_splittable = 0;
2514 /* If any of the insns setting the BIV don't do so with a simple
2515 PLUS, we don't know how to split it. */
2516 for (v = bl->biv; biv_splittable && v; v = v->next_iv)
2517 if ((tem = single_set (v->insn)) == 0
2518 || GET_CODE (SET_DEST (tem)) != REG
2519 || REGNO (SET_DEST (tem)) != bl->regno
2520 || GET_CODE (SET_SRC (tem)) != PLUS)
2521 biv_splittable = 0;
2523 /* If final value is nonzero, then must emit an instruction which sets
2524 the value of the biv to the proper value. This is done after
2525 handling all of the givs, since some of them may need to use the
2526 biv's value in their initialization code. */
2528 /* This biv is splittable. If completely unrolling the loop, save
2529 the biv's initial value. Otherwise, save the constant zero. */
2531 if (biv_splittable == 1)
2533 if (unroll_type == UNROLL_COMPLETELY)
2535 /* If the initial value of the biv is itself (i.e. it is too
2536 complicated for strength_reduce to compute), or is a hard
2537 register, or it isn't invariant, then we must create a new
2538 pseudo reg to hold the initial value of the biv. */
2540 if (GET_CODE (bl->initial_value) == REG
2541 && (REGNO (bl->initial_value) == bl->regno
2542 || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER
2543 || ! loop_invariant_p (loop, bl->initial_value)))
2545 rtx tem = gen_reg_rtx (bl->biv->mode);
2547 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2548 loop_insn_hoist (loop,
2549 gen_move_insn (tem, bl->biv->src_reg));
2551 if (loop_dump_stream)
2552 fprintf (loop_dump_stream,
2553 "Biv %d initial value remapped to %d.\n",
2554 bl->regno, REGNO (tem));
2556 splittable_regs[bl->regno] = tem;
2558 else
2559 splittable_regs[bl->regno] = bl->initial_value;
2561 else
2562 splittable_regs[bl->regno] = const0_rtx;
2564 /* Save the number of instructions that modify the biv, so that
2565 we can treat the last one specially. */
2567 splittable_regs_updates[bl->regno] = bl->biv_count;
2568 result += bl->biv_count;
2570 if (loop_dump_stream)
2571 fprintf (loop_dump_stream,
2572 "Biv %d safe to split.\n", bl->regno);
2575 /* Check every giv that depends on this biv to see whether it is
2576 splittable also. Even if the biv isn't splittable, givs which
2577 depend on it may be splittable if the biv is live outside the
2578 loop, and the givs aren't. */
2580 result += find_splittable_givs (loop, bl, unroll_type, increment,
2581 unroll_number);
2583 /* If final value is nonzero, then must emit an instruction which sets
2584 the value of the biv to the proper value. This is done after
2585 handling all of the givs, since some of them may need to use the
2586 biv's value in their initialization code. */
2587 if (biv_final_value)
2589 /* If the loop has multiple exits, emit the insns before the
2590 loop to ensure that it will always be executed no matter
2591 how the loop exits. Otherwise emit the insn after the loop,
2592 since this is slightly more efficient. */
2593 if (! loop->exit_count)
2594 loop_insn_sink (loop, gen_move_insn (bl->biv->src_reg,
2595 biv_final_value));
2596 else
2598 /* Create a new register to hold the value of the biv, and then
2599 set the biv to its final value before the loop start. The biv
2600 is set to its final value before loop start to ensure that
2601 this insn will always be executed, no matter how the loop
2602 exits. */
2603 rtx tem = gen_reg_rtx (bl->biv->mode);
2604 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2606 loop_insn_hoist (loop, gen_move_insn (tem, bl->biv->src_reg));
2607 loop_insn_hoist (loop, gen_move_insn (bl->biv->src_reg,
2608 biv_final_value));
2610 if (loop_dump_stream)
2611 fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2612 REGNO (bl->biv->src_reg), REGNO (tem));
2614 /* Set up the mapping from the original biv register to the new
2615 register. */
2616 bl->biv->src_reg = tem;
2620 return result;
2623 /* For every giv based on the biv BL, check to determine whether it is
2624 splittable. This is a subroutine to find_splittable_regs ().
2626 Return the number of instructions that set splittable registers. */
2628 static int
2629 find_splittable_givs (const struct loop *loop, struct iv_class *bl,
2630 enum unroll_types unroll_type, rtx increment,
2631 int unroll_number ATTRIBUTE_UNUSED)
2633 struct loop_ivs *ivs = LOOP_IVS (loop);
2634 struct induction *v, *v2;
2635 rtx final_value;
2636 rtx tem;
2637 int result = 0;
2639 /* Scan the list of givs, and set the same_insn field when there are
2640 multiple identical givs in the same insn. */
2641 for (v = bl->giv; v; v = v->next_iv)
2642 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2643 if (v->insn == v2->insn && rtx_equal_p (v->new_reg, v2->new_reg)
2644 && ! v2->same_insn)
2645 v2->same_insn = v;
2647 for (v = bl->giv; v; v = v->next_iv)
2649 rtx giv_inc, value;
2651 /* Only split the giv if it has already been reduced, or if the loop is
2652 being completely unrolled. */
2653 if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2654 continue;
2656 /* The giv can be split if the insn that sets the giv is executed once
2657 and only once on every iteration of the loop. */
2658 /* An address giv can always be split. v->insn is just a use not a set,
2659 and hence it does not matter whether it is always executed. All that
2660 matters is that all the biv increments are always executed, and we
2661 won't reach here if they aren't. */
2662 if (v->giv_type != DEST_ADDR
2663 && (! v->always_computable
2664 || back_branch_in_range_p (loop, v->insn)))
2665 continue;
2667 /* The giv increment value must be a constant. */
2668 giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2669 v->mode);
2670 if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2671 continue;
2673 /* The loop must be unrolled completely, or else have a known number of
2674 iterations and only one exit, or else the giv must be dead outside
2675 the loop, or else the final value of the giv must be known.
2676 Otherwise, it is not safe to split the giv since it may not have the
2677 proper value on loop exit. */
2679 /* The used outside loop test will fail for DEST_ADDR givs. They are
2680 never used outside the loop anyways, so it is always safe to split a
2681 DEST_ADDR giv. */
2683 final_value = 0;
2684 if (unroll_type != UNROLL_COMPLETELY
2685 && (loop->exit_count || unroll_type == UNROLL_NAIVE)
2686 && v->giv_type != DEST_ADDR
2687 /* The next part is true if the pseudo is used outside the loop.
2688 We assume that this is true for any pseudo created after loop
2689 starts, because we don't have a reg_n_info entry for them. */
2690 && (REGNO (v->dest_reg) >= max_reg_before_loop
2691 || (REGNO_FIRST_UID (REGNO (v->dest_reg)) != INSN_UID (v->insn)
2692 /* Check for the case where the pseudo is set by a shift/add
2693 sequence, in which case the first insn setting the pseudo
2694 is the first insn of the shift/add sequence. */
2695 && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
2696 || (REGNO_FIRST_UID (REGNO (v->dest_reg))
2697 != INSN_UID (XEXP (tem, 0)))))
2698 /* Line above always fails if INSN was moved by loop opt. */
2699 || (REGNO_LAST_LUID (REGNO (v->dest_reg))
2700 >= INSN_LUID (loop->end)))
2701 && ! (final_value = v->final_value))
2702 continue;
2704 #if 0
2705 /* Currently, non-reduced/final-value givs are never split. */
2706 /* Should emit insns after the loop if possible, as the biv final value
2707 code below does. */
2709 /* If the final value is nonzero, and the giv has not been reduced,
2710 then must emit an instruction to set the final value. */
2711 if (final_value && !v->new_reg)
2713 /* Create a new register to hold the value of the giv, and then set
2714 the giv to its final value before the loop start. The giv is set
2715 to its final value before loop start to ensure that this insn
2716 will always be executed, no matter how we exit. */
2717 tem = gen_reg_rtx (v->mode);
2718 loop_insn_hoist (loop, gen_move_insn (tem, v->dest_reg));
2719 loop_insn_hoist (loop, gen_move_insn (v->dest_reg, final_value));
2721 if (loop_dump_stream)
2722 fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2723 REGNO (v->dest_reg), REGNO (tem));
2725 v->src_reg = tem;
2727 #endif
2729 /* This giv is splittable. If completely unrolling the loop, save the
2730 giv's initial value. Otherwise, save the constant zero for it. */
2732 if (unroll_type == UNROLL_COMPLETELY)
2734 /* It is not safe to use bl->initial_value here, because it may not
2735 be invariant. It is safe to use the initial value stored in
2736 the splittable_regs array if it is set. In rare cases, it won't
2737 be set, so then we do exactly the same thing as
2738 find_splittable_regs does to get a safe value. */
2739 rtx biv_initial_value;
2741 if (splittable_regs[bl->regno])
2742 biv_initial_value = splittable_regs[bl->regno];
2743 else if (GET_CODE (bl->initial_value) != REG
2744 || (REGNO (bl->initial_value) != bl->regno
2745 && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
2746 biv_initial_value = bl->initial_value;
2747 else
2749 rtx tem = gen_reg_rtx (bl->biv->mode);
2751 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2752 loop_insn_hoist (loop, gen_move_insn (tem, bl->biv->src_reg));
2753 biv_initial_value = tem;
2755 biv_initial_value = extend_value_for_giv (v, biv_initial_value);
2756 value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
2757 v->add_val, v->mode);
2759 else
2760 value = const0_rtx;
2762 if (v->new_reg)
2764 /* If a giv was combined with another giv, then we can only split
2765 this giv if the giv it was combined with was reduced. This
2766 is because the value of v->new_reg is meaningless in this
2767 case. */
2768 if (v->same && ! v->same->new_reg)
2770 if (loop_dump_stream)
2771 fprintf (loop_dump_stream,
2772 "giv combined with unreduced giv not split.\n");
2773 continue;
2775 /* If the giv is an address destination, it could be something other
2776 than a simple register, these have to be treated differently. */
2777 else if (v->giv_type == DEST_REG)
2779 /* If value is not a constant, register, or register plus
2780 constant, then compute its value into a register before
2781 loop start. This prevents invalid rtx sharing, and should
2782 generate better code. We can use bl->initial_value here
2783 instead of splittable_regs[bl->regno] because this code
2784 is going before the loop start. */
2785 if (unroll_type == UNROLL_COMPLETELY
2786 && GET_CODE (value) != CONST_INT
2787 && GET_CODE (value) != REG
2788 && (GET_CODE (value) != PLUS
2789 || GET_CODE (XEXP (value, 0)) != REG
2790 || GET_CODE (XEXP (value, 1)) != CONST_INT))
2792 rtx tem = gen_reg_rtx (v->mode);
2793 record_base_value (REGNO (tem), v->add_val, 0);
2794 loop_iv_add_mult_hoist (loop, bl->initial_value, v->mult_val,
2795 v->add_val, tem);
2796 value = tem;
2799 splittable_regs[reg_or_subregno (v->new_reg)] = value;
2801 else
2802 continue;
2804 else
2806 #if 0
2807 /* Currently, unreduced giv's can't be split. This is not too much
2808 of a problem since unreduced giv's are not live across loop
2809 iterations anyways. When unrolling a loop completely though,
2810 it makes sense to reduce&split givs when possible, as this will
2811 result in simpler instructions, and will not require that a reg
2812 be live across loop iterations. */
2814 splittable_regs[REGNO (v->dest_reg)] = value;
2815 fprintf (stderr, "Giv %d at insn %d not reduced\n",
2816 REGNO (v->dest_reg), INSN_UID (v->insn));
2817 #else
2818 continue;
2819 #endif
2822 /* Unreduced givs are only updated once by definition. Reduced givs
2823 are updated as many times as their biv is. Mark it so if this is
2824 a splittable register. Don't need to do anything for address givs
2825 where this may not be a register. */
2827 if (GET_CODE (v->new_reg) == REG)
2829 int count = 1;
2830 if (! v->ignore)
2831 count = REG_IV_CLASS (ivs, REGNO (v->src_reg))->biv_count;
2833 splittable_regs_updates[reg_or_subregno (v->new_reg)] = count;
2836 result++;
2838 if (loop_dump_stream)
2840 int regnum;
2842 if (GET_CODE (v->dest_reg) == CONST_INT)
2843 regnum = -1;
2844 else if (GET_CODE (v->dest_reg) != REG)
2845 regnum = REGNO (XEXP (v->dest_reg, 0));
2846 else
2847 regnum = REGNO (v->dest_reg);
2848 fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
2849 regnum, INSN_UID (v->insn));
2853 return result;
2856 /* Try to prove that the register is dead after the loop exits. Trace every
2857 loop exit looking for an insn that will always be executed, which sets
2858 the register to some value, and appears before the first use of the register
2859 is found. If successful, then return 1, otherwise return 0. */
2861 /* ?? Could be made more intelligent in the handling of jumps, so that
2862 it can search past if statements and other similar structures. */
2864 static int
2865 reg_dead_after_loop (const struct loop *loop, rtx reg)
2867 rtx insn, label;
2868 enum rtx_code code;
2869 int jump_count = 0;
2870 int label_count = 0;
2872 /* In addition to checking all exits of this loop, we must also check
2873 all exits of inner nested loops that would exit this loop. We don't
2874 have any way to identify those, so we just give up if there are any
2875 such inner loop exits. */
2877 for (label = loop->exit_labels; label; label = LABEL_NEXTREF (label))
2878 label_count++;
2880 if (label_count != loop->exit_count)
2881 return 0;
2883 /* HACK: Must also search the loop fall through exit, create a label_ref
2884 here which points to the loop->end, and append the loop_number_exit_labels
2885 list to it. */
2886 label = gen_rtx_LABEL_REF (VOIDmode, loop->end);
2887 LABEL_NEXTREF (label) = loop->exit_labels;
2889 for (; label; label = LABEL_NEXTREF (label))
2891 /* Succeed if find an insn which sets the biv or if reach end of
2892 function. Fail if find an insn that uses the biv, or if come to
2893 a conditional jump. */
2895 insn = NEXT_INSN (XEXP (label, 0));
2896 while (insn)
2898 code = GET_CODE (insn);
2899 if (GET_RTX_CLASS (code) == 'i')
2901 rtx set, note;
2903 if (reg_referenced_p (reg, PATTERN (insn)))
2904 return 0;
2906 note = find_reg_equal_equiv_note (insn);
2907 if (note && reg_overlap_mentioned_p (reg, XEXP (note, 0)))
2908 return 0;
2910 set = single_set (insn);
2911 if (set && rtx_equal_p (SET_DEST (set), reg))
2912 break;
2915 if (code == JUMP_INSN)
2917 if (GET_CODE (PATTERN (insn)) == RETURN)
2918 break;
2919 else if (!any_uncondjump_p (insn)
2920 /* Prevent infinite loop following infinite loops. */
2921 || jump_count++ > 20)
2922 return 0;
2923 else
2924 insn = JUMP_LABEL (insn);
2927 insn = NEXT_INSN (insn);
2931 /* Success, the register is dead on all loop exits. */
2932 return 1;
2935 /* Try to calculate the final value of the biv, the value it will have at
2936 the end of the loop. If we can do it, return that value. */
2939 final_biv_value (const struct loop *loop, struct iv_class *bl)
2941 unsigned HOST_WIDE_INT n_iterations = LOOP_INFO (loop)->n_iterations;
2942 rtx increment, tem;
2944 /* ??? This only works for MODE_INT biv's. Reject all others for now. */
2946 if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
2947 return 0;
2949 /* The final value for reversed bivs must be calculated differently than
2950 for ordinary bivs. In this case, there is already an insn after the
2951 loop which sets this biv's final value (if necessary), and there are
2952 no other loop exits, so we can return any value. */
2953 if (bl->reversed)
2955 if (loop_dump_stream)
2956 fprintf (loop_dump_stream,
2957 "Final biv value for %d, reversed biv.\n", bl->regno);
2959 return const0_rtx;
2962 /* Try to calculate the final value as initial value + (number of iterations
2963 * increment). For this to work, increment must be invariant, the only
2964 exit from the loop must be the fall through at the bottom (otherwise
2965 it may not have its final value when the loop exits), and the initial
2966 value of the biv must be invariant. */
2968 if (n_iterations != 0
2969 && ! loop->exit_count
2970 && loop_invariant_p (loop, bl->initial_value))
2972 increment = biv_total_increment (bl);
2974 if (increment && loop_invariant_p (loop, increment))
2976 /* Can calculate the loop exit value, emit insns after loop
2977 end to calculate this value into a temporary register in
2978 case it is needed later. */
2980 tem = gen_reg_rtx (bl->biv->mode);
2981 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2982 loop_iv_add_mult_sink (loop, increment, GEN_INT (n_iterations),
2983 bl->initial_value, tem);
2985 if (loop_dump_stream)
2986 fprintf (loop_dump_stream,
2987 "Final biv value for %d, calculated.\n", bl->regno);
2989 return tem;
2993 /* Check to see if the biv is dead at all loop exits. */
2994 if (reg_dead_after_loop (loop, bl->biv->src_reg))
2996 if (loop_dump_stream)
2997 fprintf (loop_dump_stream,
2998 "Final biv value for %d, biv dead after loop exit.\n",
2999 bl->regno);
3001 return const0_rtx;
3004 return 0;
3007 /* Try to calculate the final value of the giv, the value it will have at
3008 the end of the loop. If we can do it, return that value. */
3011 final_giv_value (const struct loop *loop, struct induction *v)
3013 struct loop_ivs *ivs = LOOP_IVS (loop);
3014 struct iv_class *bl;
3015 rtx insn;
3016 rtx increment, tem;
3017 rtx seq;
3018 rtx loop_end = loop->end;
3019 unsigned HOST_WIDE_INT n_iterations = LOOP_INFO (loop)->n_iterations;
3021 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
3023 /* The final value for givs which depend on reversed bivs must be calculated
3024 differently than for ordinary givs. In this case, there is already an
3025 insn after the loop which sets this giv's final value (if necessary),
3026 and there are no other loop exits, so we can return any value. */
3027 if (bl->reversed)
3029 if (loop_dump_stream)
3030 fprintf (loop_dump_stream,
3031 "Final giv value for %d, depends on reversed biv\n",
3032 REGNO (v->dest_reg));
3033 return const0_rtx;
3036 /* Try to calculate the final value as a function of the biv it depends
3037 upon. The only exit from the loop must be the fall through at the bottom
3038 and the insn that sets the giv must be executed on every iteration
3039 (otherwise the giv may not have its final value when the loop exits). */
3041 /* ??? Can calculate the final giv value by subtracting off the
3042 extra biv increments times the giv's mult_val. The loop must have
3043 only one exit for this to work, but the loop iterations does not need
3044 to be known. */
3046 if (n_iterations != 0
3047 && ! loop->exit_count
3048 && v->always_executed)
3050 /* ?? It is tempting to use the biv's value here since these insns will
3051 be put after the loop, and hence the biv will have its final value
3052 then. However, this fails if the biv is subsequently eliminated.
3053 Perhaps determine whether biv's are eliminable before trying to
3054 determine whether giv's are replaceable so that we can use the
3055 biv value here if it is not eliminable. */
3057 /* We are emitting code after the end of the loop, so we must make
3058 sure that bl->initial_value is still valid then. It will still
3059 be valid if it is invariant. */
3061 increment = biv_total_increment (bl);
3063 if (increment && loop_invariant_p (loop, increment)
3064 && loop_invariant_p (loop, bl->initial_value))
3066 /* Can calculate the loop exit value of its biv as
3067 (n_iterations * increment) + initial_value */
3069 /* The loop exit value of the giv is then
3070 (final_biv_value - extra increments) * mult_val + add_val.
3071 The extra increments are any increments to the biv which
3072 occur in the loop after the giv's value is calculated.
3073 We must search from the insn that sets the giv to the end
3074 of the loop to calculate this value. */
3076 /* Put the final biv value in tem. */
3077 tem = gen_reg_rtx (v->mode);
3078 record_base_value (REGNO (tem), bl->biv->add_val, 0);
3079 loop_iv_add_mult_sink (loop, extend_value_for_giv (v, increment),
3080 GEN_INT (n_iterations),
3081 extend_value_for_giv (v, bl->initial_value),
3082 tem);
3084 /* Subtract off extra increments as we find them. */
3085 for (insn = NEXT_INSN (v->insn); insn != loop_end;
3086 insn = NEXT_INSN (insn))
3088 struct induction *biv;
3090 for (biv = bl->biv; biv; biv = biv->next_iv)
3091 if (biv->insn == insn)
3093 start_sequence ();
3094 tem = expand_simple_binop (GET_MODE (tem), MINUS, tem,
3095 biv->add_val, NULL_RTX, 0,
3096 OPTAB_LIB_WIDEN);
3097 seq = get_insns ();
3098 end_sequence ();
3099 loop_insn_sink (loop, seq);
3103 /* Now calculate the giv's final value. */
3104 loop_iv_add_mult_sink (loop, tem, v->mult_val, v->add_val, tem);
3106 if (loop_dump_stream)
3107 fprintf (loop_dump_stream,
3108 "Final giv value for %d, calc from biv's value.\n",
3109 REGNO (v->dest_reg));
3111 return tem;
3115 /* Replaceable giv's should never reach here. */
3116 if (v->replaceable)
3117 abort ();
3119 /* Check to see if the biv is dead at all loop exits. */
3120 if (reg_dead_after_loop (loop, v->dest_reg))
3122 if (loop_dump_stream)
3123 fprintf (loop_dump_stream,
3124 "Final giv value for %d, giv dead after loop exit.\n",
3125 REGNO (v->dest_reg));
3127 return const0_rtx;
3130 return 0;
3133 /* Look back before LOOP->START for the insn that sets REG and return
3134 the equivalent constant if there is a REG_EQUAL note otherwise just
3135 the SET_SRC of REG. */
3137 static rtx
3138 loop_find_equiv_value (const struct loop *loop, rtx reg)
3140 rtx loop_start = loop->start;
3141 rtx insn, set;
3142 rtx ret;
3144 ret = reg;
3145 for (insn = PREV_INSN (loop_start); insn; insn = PREV_INSN (insn))
3147 if (GET_CODE (insn) == CODE_LABEL)
3148 break;
3150 else if (INSN_P (insn) && reg_set_p (reg, insn))
3152 /* We found the last insn before the loop that sets the register.
3153 If it sets the entire register, and has a REG_EQUAL note,
3154 then use the value of the REG_EQUAL note. */
3155 if ((set = single_set (insn))
3156 && (SET_DEST (set) == reg))
3158 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3160 /* Only use the REG_EQUAL note if it is a constant.
3161 Other things, divide in particular, will cause
3162 problems later if we use them. */
3163 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3164 && CONSTANT_P (XEXP (note, 0)))
3165 ret = XEXP (note, 0);
3166 else
3167 ret = SET_SRC (set);
3169 /* We cannot do this if it changes between the
3170 assignment and loop start though. */
3171 if (modified_between_p (ret, insn, loop_start))
3172 ret = reg;
3174 break;
3177 return ret;
3180 /* Return a simplified rtx for the expression OP - REG.
3182 REG must appear in OP, and OP must be a register or the sum of a register
3183 and a second term.
3185 Thus, the return value must be const0_rtx or the second term.
3187 The caller is responsible for verifying that REG appears in OP and OP has
3188 the proper form. */
3190 static rtx
3191 subtract_reg_term (rtx op, rtx reg)
3193 if (op == reg)
3194 return const0_rtx;
3195 if (GET_CODE (op) == PLUS)
3197 if (XEXP (op, 0) == reg)
3198 return XEXP (op, 1);
3199 else if (XEXP (op, 1) == reg)
3200 return XEXP (op, 0);
3202 /* OP does not contain REG as a term. */
3203 abort ();
3206 /* Find and return register term common to both expressions OP0 and
3207 OP1 or NULL_RTX if no such term exists. Each expression must be a
3208 REG or a PLUS of a REG. */
3210 static rtx
3211 find_common_reg_term (rtx op0, rtx op1)
3213 if ((GET_CODE (op0) == REG || GET_CODE (op0) == PLUS)
3214 && (GET_CODE (op1) == REG || GET_CODE (op1) == PLUS))
3216 rtx op00;
3217 rtx op01;
3218 rtx op10;
3219 rtx op11;
3221 if (GET_CODE (op0) == PLUS)
3222 op01 = XEXP (op0, 1), op00 = XEXP (op0, 0);
3223 else
3224 op01 = const0_rtx, op00 = op0;
3226 if (GET_CODE (op1) == PLUS)
3227 op11 = XEXP (op1, 1), op10 = XEXP (op1, 0);
3228 else
3229 op11 = const0_rtx, op10 = op1;
3231 /* Find and return common register term if present. */
3232 if (REG_P (op00) && (op00 == op10 || op00 == op11))
3233 return op00;
3234 else if (REG_P (op01) && (op01 == op10 || op01 == op11))
3235 return op01;
3238 /* No common register term found. */
3239 return NULL_RTX;
3242 /* Determine the loop iterator and calculate the number of loop
3243 iterations. Returns the exact number of loop iterations if it can
3244 be calculated, otherwise returns zero. */
3246 unsigned HOST_WIDE_INT
3247 loop_iterations (struct loop *loop)
3249 struct loop_info *loop_info = LOOP_INFO (loop);
3250 struct loop_ivs *ivs = LOOP_IVS (loop);
3251 rtx comparison, comparison_value;
3252 rtx iteration_var, initial_value, increment, final_value;
3253 enum rtx_code comparison_code;
3254 HOST_WIDE_INT inc;
3255 unsigned HOST_WIDE_INT abs_inc;
3256 unsigned HOST_WIDE_INT abs_diff;
3257 int off_by_one;
3258 int increment_dir;
3259 int unsigned_p, compare_dir, final_larger;
3260 rtx last_loop_insn;
3261 rtx reg_term;
3262 struct iv_class *bl;
3264 loop_info->n_iterations = 0;
3265 loop_info->initial_value = 0;
3266 loop_info->initial_equiv_value = 0;
3267 loop_info->comparison_value = 0;
3268 loop_info->final_value = 0;
3269 loop_info->final_equiv_value = 0;
3270 loop_info->increment = 0;
3271 loop_info->iteration_var = 0;
3272 loop_info->unroll_number = 1;
3273 loop_info->iv = 0;
3275 /* We used to use prev_nonnote_insn here, but that fails because it might
3276 accidentally get the branch for a contained loop if the branch for this
3277 loop was deleted. We can only trust branches immediately before the
3278 loop_end. */
3279 last_loop_insn = PREV_INSN (loop->end);
3281 /* ??? We should probably try harder to find the jump insn
3282 at the end of the loop. The following code assumes that
3283 the last loop insn is a jump to the top of the loop. */
3284 if (GET_CODE (last_loop_insn) != JUMP_INSN)
3286 if (loop_dump_stream)
3287 fprintf (loop_dump_stream,
3288 "Loop iterations: No final conditional branch found.\n");
3289 return 0;
3292 /* If there is a more than a single jump to the top of the loop
3293 we cannot (easily) determine the iteration count. */
3294 if (LABEL_NUSES (JUMP_LABEL (last_loop_insn)) > 1)
3296 if (loop_dump_stream)
3297 fprintf (loop_dump_stream,
3298 "Loop iterations: Loop has multiple back edges.\n");
3299 return 0;
3302 /* If there are multiple conditionalized loop exit tests, they may jump
3303 back to differing CODE_LABELs. */
3304 if (loop->top && loop->cont)
3306 rtx temp = PREV_INSN (last_loop_insn);
3310 if (GET_CODE (temp) == JUMP_INSN)
3312 /* There are some kinds of jumps we can't deal with easily. */
3313 if (JUMP_LABEL (temp) == 0)
3315 if (loop_dump_stream)
3316 fprintf
3317 (loop_dump_stream,
3318 "Loop iterations: Jump insn has null JUMP_LABEL.\n");
3319 return 0;
3322 if (/* Previous unrolling may have generated new insns not
3323 covered by the uid_luid array. */
3324 INSN_UID (JUMP_LABEL (temp)) < max_uid_for_loop
3325 /* Check if we jump back into the loop body. */
3326 && INSN_LUID (JUMP_LABEL (temp)) > INSN_LUID (loop->top)
3327 && INSN_LUID (JUMP_LABEL (temp)) < INSN_LUID (loop->cont))
3329 if (loop_dump_stream)
3330 fprintf
3331 (loop_dump_stream,
3332 "Loop iterations: Loop has multiple back edges.\n");
3333 return 0;
3337 while ((temp = PREV_INSN (temp)) != loop->cont);
3340 /* Find the iteration variable. If the last insn is a conditional
3341 branch, and the insn before tests a register value, make that the
3342 iteration variable. */
3344 comparison = get_condition_for_loop (loop, last_loop_insn);
3345 if (comparison == 0)
3347 if (loop_dump_stream)
3348 fprintf (loop_dump_stream,
3349 "Loop iterations: No final comparison found.\n");
3350 return 0;
3353 /* ??? Get_condition may switch position of induction variable and
3354 invariant register when it canonicalizes the comparison. */
3356 comparison_code = GET_CODE (comparison);
3357 iteration_var = XEXP (comparison, 0);
3358 comparison_value = XEXP (comparison, 1);
3360 if (GET_CODE (iteration_var) != REG)
3362 if (loop_dump_stream)
3363 fprintf (loop_dump_stream,
3364 "Loop iterations: Comparison not against register.\n");
3365 return 0;
3368 /* The only new registers that are created before loop iterations
3369 are givs made from biv increments or registers created by
3370 load_mems. In the latter case, it is possible that try_copy_prop
3371 will propagate a new pseudo into the old iteration register but
3372 this will be marked by having the REG_USERVAR_P bit set. */
3374 if ((unsigned) REGNO (iteration_var) >= ivs->n_regs
3375 && ! REG_USERVAR_P (iteration_var))
3376 abort ();
3378 /* Determine the initial value of the iteration variable, and the amount
3379 that it is incremented each loop. Use the tables constructed by
3380 the strength reduction pass to calculate these values. */
3382 /* Clear the result values, in case no answer can be found. */
3383 initial_value = 0;
3384 increment = 0;
3386 /* The iteration variable can be either a giv or a biv. Check to see
3387 which it is, and compute the variable's initial value, and increment
3388 value if possible. */
3390 /* If this is a new register, can't handle it since we don't have any
3391 reg_iv_type entry for it. */
3392 if ((unsigned) REGNO (iteration_var) >= ivs->n_regs)
3394 if (loop_dump_stream)
3395 fprintf (loop_dump_stream,
3396 "Loop iterations: No reg_iv_type entry for iteration var.\n");
3397 return 0;
3400 /* Reject iteration variables larger than the host wide int size, since they
3401 could result in a number of iterations greater than the range of our
3402 `unsigned HOST_WIDE_INT' variable loop_info->n_iterations. */
3403 else if ((GET_MODE_BITSIZE (GET_MODE (iteration_var))
3404 > HOST_BITS_PER_WIDE_INT))
3406 if (loop_dump_stream)
3407 fprintf (loop_dump_stream,
3408 "Loop iterations: Iteration var rejected because mode too large.\n");
3409 return 0;
3411 else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
3413 if (loop_dump_stream)
3414 fprintf (loop_dump_stream,
3415 "Loop iterations: Iteration var not an integer.\n");
3416 return 0;
3418 else if (REG_IV_TYPE (ivs, REGNO (iteration_var)) == BASIC_INDUCT)
3420 if (REGNO (iteration_var) >= ivs->n_regs)
3421 abort ();
3423 /* Grab initial value, only useful if it is a constant. */
3424 bl = REG_IV_CLASS (ivs, REGNO (iteration_var));
3425 initial_value = bl->initial_value;
3426 if (!bl->biv->always_executed || bl->biv->maybe_multiple)
3428 if (loop_dump_stream)
3429 fprintf (loop_dump_stream,
3430 "Loop iterations: Basic induction var not set once in each iteration.\n");
3431 return 0;
3434 increment = biv_total_increment (bl);
3436 else if (REG_IV_TYPE (ivs, REGNO (iteration_var)) == GENERAL_INDUCT)
3438 HOST_WIDE_INT offset = 0;
3439 struct induction *v = REG_IV_INFO (ivs, REGNO (iteration_var));
3440 rtx biv_initial_value;
3442 if (REGNO (v->src_reg) >= ivs->n_regs)
3443 abort ();
3445 if (!v->always_executed || v->maybe_multiple)
3447 if (loop_dump_stream)
3448 fprintf (loop_dump_stream,
3449 "Loop iterations: General induction var not set once in each iteration.\n");
3450 return 0;
3453 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
3455 /* Increment value is mult_val times the increment value of the biv. */
3457 increment = biv_total_increment (bl);
3458 if (increment)
3460 struct induction *biv_inc;
3462 increment = fold_rtx_mult_add (v->mult_val,
3463 extend_value_for_giv (v, increment),
3464 const0_rtx, v->mode);
3465 /* The caller assumes that one full increment has occurred at the
3466 first loop test. But that's not true when the biv is incremented
3467 after the giv is set (which is the usual case), e.g.:
3468 i = 6; do {;} while (i++ < 9) .
3469 Therefore, we bias the initial value by subtracting the amount of
3470 the increment that occurs between the giv set and the giv test. */
3471 for (biv_inc = bl->biv; biv_inc; biv_inc = biv_inc->next_iv)
3473 if (loop_insn_first_p (v->insn, biv_inc->insn))
3475 if (REG_P (biv_inc->add_val))
3477 if (loop_dump_stream)
3478 fprintf (loop_dump_stream,
3479 "Loop iterations: Basic induction var add_val is REG %d.\n",
3480 REGNO (biv_inc->add_val));
3481 return 0;
3484 offset -= INTVAL (biv_inc->add_val);
3488 if (loop_dump_stream)
3489 fprintf (loop_dump_stream,
3490 "Loop iterations: Giv iterator, initial value bias %ld.\n",
3491 (long) offset);
3493 /* Initial value is mult_val times the biv's initial value plus
3494 add_val. Only useful if it is a constant. */
3495 biv_initial_value = extend_value_for_giv (v, bl->initial_value);
3496 initial_value
3497 = fold_rtx_mult_add (v->mult_val,
3498 plus_constant (biv_initial_value, offset),
3499 v->add_val, v->mode);
3501 else
3503 if (loop_dump_stream)
3504 fprintf (loop_dump_stream,
3505 "Loop iterations: Not basic or general induction var.\n");
3506 return 0;
3509 if (initial_value == 0)
3510 return 0;
3512 unsigned_p = 0;
3513 off_by_one = 0;
3514 switch (comparison_code)
3516 case LEU:
3517 unsigned_p = 1;
3518 case LE:
3519 compare_dir = 1;
3520 off_by_one = 1;
3521 break;
3522 case GEU:
3523 unsigned_p = 1;
3524 case GE:
3525 compare_dir = -1;
3526 off_by_one = -1;
3527 break;
3528 case EQ:
3529 /* Cannot determine loop iterations with this case. */
3530 compare_dir = 0;
3531 break;
3532 case LTU:
3533 unsigned_p = 1;
3534 case LT:
3535 compare_dir = 1;
3536 break;
3537 case GTU:
3538 unsigned_p = 1;
3539 case GT:
3540 compare_dir = -1;
3541 case NE:
3542 compare_dir = 0;
3543 break;
3544 default:
3545 abort ();
3548 /* If the comparison value is an invariant register, then try to find
3549 its value from the insns before the start of the loop. */
3551 final_value = comparison_value;
3552 if (GET_CODE (comparison_value) == REG
3553 && loop_invariant_p (loop, comparison_value))
3555 final_value = loop_find_equiv_value (loop, comparison_value);
3557 /* If we don't get an invariant final value, we are better
3558 off with the original register. */
3559 if (! loop_invariant_p (loop, final_value))
3560 final_value = comparison_value;
3563 /* Calculate the approximate final value of the induction variable
3564 (on the last successful iteration). The exact final value
3565 depends on the branch operator, and increment sign. It will be
3566 wrong if the iteration variable is not incremented by one each
3567 time through the loop and (comparison_value + off_by_one -
3568 initial_value) % increment != 0.
3569 ??? Note that the final_value may overflow and thus final_larger
3570 will be bogus. A potentially infinite loop will be classified
3571 as immediate, e.g. for (i = 0x7ffffff0; i <= 0x7fffffff; i++) */
3572 if (off_by_one)
3573 final_value = plus_constant (final_value, off_by_one);
3575 /* Save the calculated values describing this loop's bounds, in case
3576 precondition_loop_p will need them later. These values can not be
3577 recalculated inside precondition_loop_p because strength reduction
3578 optimizations may obscure the loop's structure.
3580 These values are only required by precondition_loop_p and insert_bct
3581 whenever the number of iterations cannot be computed at compile time.
3582 Only the difference between final_value and initial_value is
3583 important. Note that final_value is only approximate. */
3584 loop_info->initial_value = initial_value;
3585 loop_info->comparison_value = comparison_value;
3586 loop_info->final_value = plus_constant (comparison_value, off_by_one);
3587 loop_info->increment = increment;
3588 loop_info->iteration_var = iteration_var;
3589 loop_info->comparison_code = comparison_code;
3590 loop_info->iv = bl;
3592 /* Try to determine the iteration count for loops such
3593 as (for i = init; i < init + const; i++). When running the
3594 loop optimization twice, the first pass often converts simple
3595 loops into this form. */
3597 if (REG_P (initial_value))
3599 rtx reg1;
3600 rtx reg2;
3601 rtx const2;
3603 reg1 = initial_value;
3604 if (GET_CODE (final_value) == PLUS)
3605 reg2 = XEXP (final_value, 0), const2 = XEXP (final_value, 1);
3606 else
3607 reg2 = final_value, const2 = const0_rtx;
3609 /* Check for initial_value = reg1, final_value = reg2 + const2,
3610 where reg1 != reg2. */
3611 if (REG_P (reg2) && reg2 != reg1)
3613 rtx temp;
3615 /* Find what reg1 is equivalent to. Hopefully it will
3616 either be reg2 or reg2 plus a constant. */
3617 temp = loop_find_equiv_value (loop, reg1);
3619 if (find_common_reg_term (temp, reg2))
3620 initial_value = temp;
3621 else if (loop_invariant_p (loop, reg2))
3623 /* Find what reg2 is equivalent to. Hopefully it will
3624 either be reg1 or reg1 plus a constant. Let's ignore
3625 the latter case for now since it is not so common. */
3626 temp = loop_find_equiv_value (loop, reg2);
3628 if (temp == loop_info->iteration_var)
3629 temp = initial_value;
3630 if (temp == reg1)
3631 final_value = (const2 == const0_rtx)
3632 ? reg1 : gen_rtx_PLUS (GET_MODE (reg1), reg1, const2);
3635 else if (loop->vtop && GET_CODE (reg2) == CONST_INT)
3637 rtx temp;
3639 /* When running the loop optimizer twice, check_dbra_loop
3640 further obfuscates reversible loops of the form:
3641 for (i = init; i < init + const; i++). We often end up with
3642 final_value = 0, initial_value = temp, temp = temp2 - init,
3643 where temp2 = init + const. If the loop has a vtop we
3644 can replace initial_value with const. */
3646 temp = loop_find_equiv_value (loop, reg1);
3648 if (GET_CODE (temp) == MINUS && REG_P (XEXP (temp, 0)))
3650 rtx temp2 = loop_find_equiv_value (loop, XEXP (temp, 0));
3652 if (GET_CODE (temp2) == PLUS
3653 && XEXP (temp2, 0) == XEXP (temp, 1))
3654 initial_value = XEXP (temp2, 1);
3659 /* If have initial_value = reg + const1 and final_value = reg +
3660 const2, then replace initial_value with const1 and final_value
3661 with const2. This should be safe since we are protected by the
3662 initial comparison before entering the loop if we have a vtop.
3663 For example, a + b < a + c is not equivalent to b < c for all a
3664 when using modulo arithmetic.
3666 ??? Without a vtop we could still perform the optimization if we check
3667 the initial and final values carefully. */
3668 if (loop->vtop
3669 && (reg_term = find_common_reg_term (initial_value, final_value)))
3671 initial_value = subtract_reg_term (initial_value, reg_term);
3672 final_value = subtract_reg_term (final_value, reg_term);
3675 loop_info->initial_equiv_value = initial_value;
3676 loop_info->final_equiv_value = final_value;
3678 /* For EQ comparison loops, we don't have a valid final value.
3679 Check this now so that we won't leave an invalid value if we
3680 return early for any other reason. */
3681 if (comparison_code == EQ)
3682 loop_info->final_equiv_value = loop_info->final_value = 0;
3684 if (increment == 0)
3686 if (loop_dump_stream)
3687 fprintf (loop_dump_stream,
3688 "Loop iterations: Increment value can't be calculated.\n");
3689 return 0;
3692 if (GET_CODE (increment) != CONST_INT)
3694 /* If we have a REG, check to see if REG holds a constant value. */
3695 /* ??? Other RTL, such as (neg (reg)) is possible here, but it isn't
3696 clear if it is worthwhile to try to handle such RTL. */
3697 if (GET_CODE (increment) == REG || GET_CODE (increment) == SUBREG)
3698 increment = loop_find_equiv_value (loop, increment);
3700 if (GET_CODE (increment) != CONST_INT)
3702 if (loop_dump_stream)
3704 fprintf (loop_dump_stream,
3705 "Loop iterations: Increment value not constant ");
3706 print_simple_rtl (loop_dump_stream, increment);
3707 fprintf (loop_dump_stream, ".\n");
3709 return 0;
3711 loop_info->increment = increment;
3714 if (GET_CODE (initial_value) != CONST_INT)
3716 if (loop_dump_stream)
3718 fprintf (loop_dump_stream,
3719 "Loop iterations: Initial value not constant ");
3720 print_simple_rtl (loop_dump_stream, initial_value);
3721 fprintf (loop_dump_stream, ".\n");
3723 return 0;
3725 else if (GET_CODE (final_value) != CONST_INT)
3727 if (loop_dump_stream)
3729 fprintf (loop_dump_stream,
3730 "Loop iterations: Final value not constant ");
3731 print_simple_rtl (loop_dump_stream, final_value);
3732 fprintf (loop_dump_stream, ".\n");
3734 return 0;
3736 else if (comparison_code == EQ)
3738 rtx inc_once;
3740 if (loop_dump_stream)
3741 fprintf (loop_dump_stream, "Loop iterations: EQ comparison loop.\n");
3743 inc_once = gen_int_mode (INTVAL (initial_value) + INTVAL (increment),
3744 GET_MODE (iteration_var));
3746 if (inc_once == final_value)
3748 /* The iterator value once through the loop is equal to the
3749 comparison value. Either we have an infinite loop, or
3750 we'll loop twice. */
3751 if (increment == const0_rtx)
3752 return 0;
3753 loop_info->n_iterations = 2;
3755 else
3756 loop_info->n_iterations = 1;
3758 if (GET_CODE (loop_info->initial_value) == CONST_INT)
3759 loop_info->final_value
3760 = gen_int_mode ((INTVAL (loop_info->initial_value)
3761 + loop_info->n_iterations * INTVAL (increment)),
3762 GET_MODE (iteration_var));
3763 else
3764 loop_info->final_value
3765 = plus_constant (loop_info->initial_value,
3766 loop_info->n_iterations * INTVAL (increment));
3767 loop_info->final_equiv_value
3768 = gen_int_mode ((INTVAL (initial_value)
3769 + loop_info->n_iterations * INTVAL (increment)),
3770 GET_MODE (iteration_var));
3771 return loop_info->n_iterations;
3774 /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
3775 if (unsigned_p)
3776 final_larger
3777 = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3778 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
3779 - ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3780 < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
3781 else
3782 final_larger = (INTVAL (final_value) > INTVAL (initial_value))
3783 - (INTVAL (final_value) < INTVAL (initial_value));
3785 if (INTVAL (increment) > 0)
3786 increment_dir = 1;
3787 else if (INTVAL (increment) == 0)
3788 increment_dir = 0;
3789 else
3790 increment_dir = -1;
3792 /* There are 27 different cases: compare_dir = -1, 0, 1;
3793 final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
3794 There are 4 normal cases, 4 reverse cases (where the iteration variable
3795 will overflow before the loop exits), 4 infinite loop cases, and 15
3796 immediate exit (0 or 1 iteration depending on loop type) cases.
3797 Only try to optimize the normal cases. */
3799 /* (compare_dir/final_larger/increment_dir)
3800 Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
3801 Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
3802 Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
3803 Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
3805 /* ?? If the meaning of reverse loops (where the iteration variable
3806 will overflow before the loop exits) is undefined, then could
3807 eliminate all of these special checks, and just always assume
3808 the loops are normal/immediate/infinite. Note that this means
3809 the sign of increment_dir does not have to be known. Also,
3810 since it does not really hurt if immediate exit loops or infinite loops
3811 are optimized, then that case could be ignored also, and hence all
3812 loops can be optimized.
3814 According to ANSI Spec, the reverse loop case result is undefined,
3815 because the action on overflow is undefined.
3817 See also the special test for NE loops below. */
3819 if (final_larger == increment_dir && final_larger != 0
3820 && (final_larger == compare_dir || compare_dir == 0))
3821 /* Normal case. */
3823 else
3825 if (loop_dump_stream)
3826 fprintf (loop_dump_stream, "Loop iterations: Not normal loop.\n");
3827 return 0;
3830 /* Calculate the number of iterations, final_value is only an approximation,
3831 so correct for that. Note that abs_diff and n_iterations are
3832 unsigned, because they can be as large as 2^n - 1. */
3834 inc = INTVAL (increment);
3835 if (inc > 0)
3837 abs_diff = INTVAL (final_value) - INTVAL (initial_value);
3838 abs_inc = inc;
3840 else if (inc < 0)
3842 abs_diff = INTVAL (initial_value) - INTVAL (final_value);
3843 abs_inc = -inc;
3845 else
3846 abort ();
3848 /* Given that iteration_var is going to iterate over its own mode,
3849 not HOST_WIDE_INT, disregard higher bits that might have come
3850 into the picture due to sign extension of initial and final
3851 values. */
3852 abs_diff &= ((unsigned HOST_WIDE_INT) 1
3853 << (GET_MODE_BITSIZE (GET_MODE (iteration_var)) - 1)
3854 << 1) - 1;
3856 /* For NE tests, make sure that the iteration variable won't miss
3857 the final value. If abs_diff mod abs_incr is not zero, then the
3858 iteration variable will overflow before the loop exits, and we
3859 can not calculate the number of iterations. */
3860 if (compare_dir == 0 && (abs_diff % abs_inc) != 0)
3861 return 0;
3863 /* Note that the number of iterations could be calculated using
3864 (abs_diff + abs_inc - 1) / abs_inc, provided care was taken to
3865 handle potential overflow of the summation. */
3866 loop_info->n_iterations = abs_diff / abs_inc + ((abs_diff % abs_inc) != 0);
3867 return loop_info->n_iterations;
3870 /* Replace uses of split bivs with their split pseudo register. This is
3871 for original instructions which remain after loop unrolling without
3872 copying. */
3874 static rtx
3875 remap_split_bivs (struct loop *loop, rtx x)
3877 struct loop_ivs *ivs = LOOP_IVS (loop);
3878 enum rtx_code code;
3879 int i;
3880 const char *fmt;
3882 if (x == 0)
3883 return x;
3885 code = GET_CODE (x);
3886 switch (code)
3888 case SCRATCH:
3889 case PC:
3890 case CC0:
3891 case CONST_INT:
3892 case CONST_DOUBLE:
3893 case CONST:
3894 case SYMBOL_REF:
3895 case LABEL_REF:
3896 return x;
3898 case REG:
3899 #if 0
3900 /* If non-reduced/final-value givs were split, then this would also
3901 have to remap those givs also. */
3902 #endif
3903 if (REGNO (x) < ivs->n_regs
3904 && REG_IV_TYPE (ivs, REGNO (x)) == BASIC_INDUCT)
3905 return REG_IV_CLASS (ivs, REGNO (x))->biv->src_reg;
3906 break;
3908 default:
3909 break;
3912 fmt = GET_RTX_FORMAT (code);
3913 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3915 if (fmt[i] == 'e')
3916 XEXP (x, i) = remap_split_bivs (loop, XEXP (x, i));
3917 else if (fmt[i] == 'E')
3919 int j;
3920 for (j = 0; j < XVECLEN (x, i); j++)
3921 XVECEXP (x, i, j) = remap_split_bivs (loop, XVECEXP (x, i, j));
3924 return x;
3927 /* If FIRST_UID is a set of REGNO, and FIRST_UID dominates LAST_UID (e.g.
3928 FIST_UID is always executed if LAST_UID is), then return 1. Otherwise
3929 return 0. COPY_START is where we can start looking for the insns
3930 FIRST_UID and LAST_UID. COPY_END is where we stop looking for these
3931 insns.
3933 If there is no JUMP_INSN between LOOP_START and FIRST_UID, then FIRST_UID
3934 must dominate LAST_UID.
3936 If there is a CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3937 may not dominate LAST_UID.
3939 If there is no CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3940 must dominate LAST_UID. */
3943 set_dominates_use (int regno, int first_uid, int last_uid, rtx copy_start,
3944 rtx copy_end)
3946 int passed_jump = 0;
3947 rtx p = NEXT_INSN (copy_start);
3949 while (INSN_UID (p) != first_uid)
3951 if (GET_CODE (p) == JUMP_INSN)
3952 passed_jump = 1;
3953 /* Could not find FIRST_UID. */
3954 if (p == copy_end)
3955 return 0;
3956 p = NEXT_INSN (p);
3959 /* Verify that FIRST_UID is an insn that entirely sets REGNO. */
3960 if (! INSN_P (p) || ! dead_or_set_regno_p (p, regno))
3961 return 0;
3963 /* FIRST_UID is always executed. */
3964 if (passed_jump == 0)
3965 return 1;
3967 while (INSN_UID (p) != last_uid)
3969 /* If we see a CODE_LABEL between FIRST_UID and LAST_UID, then we
3970 can not be sure that FIRST_UID dominates LAST_UID. */
3971 if (GET_CODE (p) == CODE_LABEL)
3972 return 0;
3973 /* Could not find LAST_UID, but we reached the end of the loop, so
3974 it must be safe. */
3975 else if (p == copy_end)
3976 return 1;
3977 p = NEXT_INSN (p);
3980 /* FIRST_UID is always executed if LAST_UID is executed. */
3981 return 1;
3984 /* This routine is called when the number of iterations for the unrolled
3985 loop is one. The goal is to identify a loop that begins with an
3986 unconditional branch to the loop continuation note (or a label just after).
3987 In this case, the unconditional branch that starts the loop needs to be
3988 deleted so that we execute the single iteration. */
3990 static rtx
3991 ujump_to_loop_cont (rtx loop_start, rtx loop_cont)
3993 rtx x, label, label_ref;
3995 /* See if loop start, or the next insn is an unconditional jump. */
3996 loop_start = next_nonnote_insn (loop_start);
3998 x = pc_set (loop_start);
3999 if (!x)
4000 return NULL_RTX;
4002 label_ref = SET_SRC (x);
4003 if (!label_ref)
4004 return NULL_RTX;
4006 /* Examine insn after loop continuation note. Return if not a label. */
4007 label = next_nonnote_insn (loop_cont);
4008 if (label == 0 || GET_CODE (label) != CODE_LABEL)
4009 return NULL_RTX;
4011 /* Return the loop start if the branch label matches the code label. */
4012 if (CODE_LABEL_NUMBER (label) == CODE_LABEL_NUMBER (XEXP (label_ref, 0)))
4013 return loop_start;
4014 else
4015 return NULL_RTX;