PR c++/11645
[official-gcc.git] / gcc / cp / search.c
blob3f8e2daf8a86fbb1fa510bbc6337fec47f178145
1 /* Breadth-first and depth-first routines for
2 searching multiple-inheritance lattice for GNU C++.
3 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2002, 2003 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
24 /* High-level class interface. */
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "cp-tree.h"
32 #include "obstack.h"
33 #include "flags.h"
34 #include "rtl.h"
35 #include "output.h"
36 #include "toplev.h"
37 #include "stack.h"
39 /* Obstack used for remembering decision points of breadth-first. */
41 static struct obstack search_obstack;
43 /* Methods for pushing and popping objects to and from obstacks. */
45 struct stack_level *
46 push_stack_level (struct obstack *obstack, char *tp,/* Sony NewsOS 5.0 compiler doesn't like void * here. */
47 int size)
49 struct stack_level *stack;
50 obstack_grow (obstack, tp, size);
51 stack = (struct stack_level *) ((char*)obstack_next_free (obstack) - size);
52 obstack_finish (obstack);
53 stack->obstack = obstack;
54 stack->first = (tree *) obstack_base (obstack);
55 stack->limit = obstack_room (obstack) / sizeof (tree *);
56 return stack;
59 struct stack_level *
60 pop_stack_level (struct stack_level *stack)
62 struct stack_level *tem = stack;
63 struct obstack *obstack = tem->obstack;
64 stack = tem->prev;
65 obstack_free (obstack, tem);
66 return stack;
69 #define search_level stack_level
70 static struct search_level *search_stack;
72 struct vbase_info
74 /* The class dominating the hierarchy. */
75 tree type;
76 /* A pointer to a complete object of the indicated TYPE. */
77 tree decl_ptr;
78 tree inits;
81 static tree dfs_check_overlap (tree, void *);
82 static tree dfs_no_overlap_yet (tree, int, void *);
83 static base_kind lookup_base_r (tree, tree, base_access, bool, tree *);
84 static int dynamic_cast_base_recurse (tree, tree, bool, tree *);
85 static tree marked_pushdecls_p (tree, int, void *);
86 static tree unmarked_pushdecls_p (tree, int, void *);
87 static tree dfs_debug_unmarkedp (tree, int, void *);
88 static tree dfs_debug_mark (tree, void *);
89 static tree dfs_push_type_decls (tree, void *);
90 static tree dfs_push_decls (tree, void *);
91 static tree dfs_unuse_fields (tree, void *);
92 static tree add_conversions (tree, void *);
93 static int look_for_overrides_r (tree, tree);
94 static struct search_level *push_search_level (struct stack_level *,
95 struct obstack *);
96 static struct search_level *pop_search_level (struct stack_level *);
97 static tree bfs_walk (tree, tree (*) (tree, void *),
98 tree (*) (tree, int, void *), void *);
99 static tree lookup_field_queue_p (tree, int, void *);
100 static int shared_member_p (tree);
101 static tree lookup_field_r (tree, void *);
102 static tree dfs_accessible_queue_p (tree, int, void *);
103 static tree dfs_accessible_p (tree, void *);
104 static tree dfs_access_in_type (tree, void *);
105 static access_kind access_in_type (tree, tree);
106 static int protected_accessible_p (tree, tree, tree);
107 static int friend_accessible_p (tree, tree, tree);
108 static void setup_class_bindings (tree, int);
109 static int template_self_reference_p (tree, tree);
110 static tree dfs_get_pure_virtuals (tree, void *);
112 /* Allocate a level of searching. */
114 static struct search_level *
115 push_search_level (struct stack_level *stack, struct obstack *obstack)
117 struct search_level tem;
119 tem.prev = stack;
120 return push_stack_level (obstack, (char *)&tem, sizeof (tem));
123 /* Discard a level of search allocation. */
125 static struct search_level *
126 pop_search_level (struct stack_level *obstack)
128 register struct search_level *stack = pop_stack_level (obstack);
130 return stack;
133 /* Variables for gathering statistics. */
134 #ifdef GATHER_STATISTICS
135 static int n_fields_searched;
136 static int n_calls_lookup_field, n_calls_lookup_field_1;
137 static int n_calls_lookup_fnfields, n_calls_lookup_fnfields_1;
138 static int n_calls_get_base_type;
139 static int n_outer_fields_searched;
140 static int n_contexts_saved;
141 #endif /* GATHER_STATISTICS */
144 /* Worker for lookup_base. BINFO is the binfo we are searching at,
145 BASE is the RECORD_TYPE we are searching for. ACCESS is the
146 required access checks. IS_VIRTUAL indicates if BINFO is morally
147 virtual.
149 If BINFO is of the required type, then *BINFO_PTR is examined to
150 compare with any other instance of BASE we might have already
151 discovered. *BINFO_PTR is initialized and a base_kind return value
152 indicates what kind of base was located.
154 Otherwise BINFO's bases are searched. */
156 static base_kind
157 lookup_base_r (tree binfo, tree base, base_access access,
158 bool is_virtual, /* inside a virtual part */
159 tree *binfo_ptr)
161 int i;
162 tree bases, accesses;
163 base_kind found = bk_not_base;
165 if (same_type_p (BINFO_TYPE (binfo), base))
167 /* We have found a base. Check against what we have found
168 already. */
169 found = bk_same_type;
170 if (is_virtual)
171 found = bk_via_virtual;
173 if (!*binfo_ptr)
174 *binfo_ptr = binfo;
175 else if (binfo != *binfo_ptr)
177 if (access != ba_any)
178 *binfo_ptr = NULL;
179 else if (!is_virtual)
180 /* Prefer a non-virtual base. */
181 *binfo_ptr = binfo;
182 found = bk_ambig;
185 return found;
188 bases = BINFO_BASETYPES (binfo);
189 accesses = BINFO_BASEACCESSES (binfo);
190 if (!bases)
191 return bk_not_base;
193 for (i = TREE_VEC_LENGTH (bases); i--;)
195 tree base_binfo = TREE_VEC_ELT (bases, i);
196 base_kind bk;
198 bk = lookup_base_r (base_binfo, base,
199 access,
200 is_virtual || TREE_VIA_VIRTUAL (base_binfo),
201 binfo_ptr);
203 switch (bk)
205 case bk_ambig:
206 if (access != ba_any)
207 return bk;
208 found = bk;
209 break;
211 case bk_same_type:
212 bk = bk_proper_base;
213 /* FALLTHROUGH */
214 case bk_proper_base:
215 my_friendly_assert (found == bk_not_base, 20010723);
216 found = bk;
217 break;
219 case bk_via_virtual:
220 if (found != bk_ambig)
221 found = bk;
222 break;
224 case bk_not_base:
225 break;
227 default:
228 abort ();
231 return found;
234 /* Returns true if type BASE is accessible in T. (BASE is known to be
235 a base class of T.) */
237 bool
238 accessible_base_p (tree t, tree base)
240 tree decl;
242 /* [class.access.base]
244 A base class is said to be accessible if an invented public
245 member of the base class is accessible. */
246 /* Rather than inventing a public member, we use the implicit
247 public typedef created in the scope of every class. */
248 decl = TYPE_FIELDS (base);
249 while (!DECL_SELF_REFERENCE_P (decl))
250 decl = TREE_CHAIN (decl);
251 while (ANON_AGGR_TYPE_P (t))
252 t = TYPE_CONTEXT (t);
253 return accessible_p (t, decl);
256 /* Lookup BASE in the hierarchy dominated by T. Do access checking as
257 ACCESS specifies. Return the binfo we discover. If KIND_PTR is
258 non-NULL, fill with information about what kind of base we
259 discovered.
261 If the base is inaccessible, or ambiguous, and the ba_quiet bit is
262 not set in ACCESS, then an error is issued and error_mark_node is
263 returned. If the ba_quiet bit is set, then no error is issued and
264 NULL_TREE is returned. */
266 tree
267 lookup_base (tree t, tree base, base_access access, base_kind *kind_ptr)
269 tree binfo = NULL; /* The binfo we've found so far. */
270 tree t_binfo = NULL;
271 base_kind bk;
273 if (t == error_mark_node || base == error_mark_node)
275 if (kind_ptr)
276 *kind_ptr = bk_not_base;
277 return error_mark_node;
279 my_friendly_assert (TYPE_P (base), 20011127);
281 if (!TYPE_P (t))
283 t_binfo = t;
284 t = BINFO_TYPE (t);
286 else
287 t_binfo = TYPE_BINFO (t);
289 /* Ensure that the types are instantiated. */
290 t = complete_type (TYPE_MAIN_VARIANT (t));
291 base = complete_type (TYPE_MAIN_VARIANT (base));
293 bk = lookup_base_r (t_binfo, base, access, 0, &binfo);
295 /* Check that the base is unambiguous and accessible. */
296 if (access != ba_any)
297 switch (bk)
299 case bk_not_base:
300 break;
302 case bk_ambig:
303 binfo = NULL_TREE;
304 if (!(access & ba_quiet))
306 error ("`%T' is an ambiguous base of `%T'", base, t);
307 binfo = error_mark_node;
309 break;
311 default:
312 if ((access & ~ba_quiet) != ba_ignore
313 /* If BASE is incomplete, then BASE and TYPE are probably
314 the same, in which case BASE is accessible. If they
315 are not the same, then TYPE is invalid. In that case,
316 there's no need to issue another error here, and
317 there's no implicit typedef to use in the code that
318 follows, so we skip the check. */
319 && COMPLETE_TYPE_P (base)
320 && !accessible_base_p (t, base))
322 if (!(access & ba_quiet))
324 error ("`%T' is an inaccessible base of `%T'", base, t);
325 binfo = error_mark_node;
327 else
328 binfo = NULL_TREE;
329 bk = bk_inaccessible;
331 break;
334 if (kind_ptr)
335 *kind_ptr = bk;
337 return binfo;
340 /* Worker function for get_dynamic_cast_base_type. */
342 static int
343 dynamic_cast_base_recurse (tree subtype, tree binfo, bool is_via_virtual,
344 tree *offset_ptr)
346 tree binfos, accesses;
347 int i, n_baselinks;
348 int worst = -2;
350 if (BINFO_TYPE (binfo) == subtype)
352 if (is_via_virtual)
353 return -1;
354 else
356 *offset_ptr = BINFO_OFFSET (binfo);
357 return 0;
361 binfos = BINFO_BASETYPES (binfo);
362 accesses = BINFO_BASEACCESSES (binfo);
363 n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0;
364 for (i = 0; i < n_baselinks; i++)
366 tree base_binfo = TREE_VEC_ELT (binfos, i);
367 tree base_access = TREE_VEC_ELT (accesses, i);
368 int rval;
370 if (base_access != access_public_node)
371 continue;
372 rval = dynamic_cast_base_recurse
373 (subtype, base_binfo,
374 is_via_virtual || TREE_VIA_VIRTUAL (base_binfo), offset_ptr);
375 if (worst == -2)
376 worst = rval;
377 else if (rval >= 0)
378 worst = worst >= 0 ? -3 : worst;
379 else if (rval == -1)
380 worst = -1;
381 else if (rval == -3 && worst != -1)
382 worst = -3;
384 return worst;
387 /* The dynamic cast runtime needs a hint about how the static SUBTYPE type
388 started from is related to the required TARGET type, in order to optimize
389 the inheritance graph search. This information is independent of the
390 current context, and ignores private paths, hence get_base_distance is
391 inappropriate. Return a TREE specifying the base offset, BOFF.
392 BOFF >= 0, there is only one public non-virtual SUBTYPE base at offset BOFF,
393 and there are no public virtual SUBTYPE bases.
394 BOFF == -1, SUBTYPE occurs as multiple public virtual or non-virtual bases.
395 BOFF == -2, SUBTYPE is not a public base.
396 BOFF == -3, SUBTYPE occurs as multiple public non-virtual bases. */
398 tree
399 get_dynamic_cast_base_type (tree subtype, tree target)
401 tree offset = NULL_TREE;
402 int boff = dynamic_cast_base_recurse (subtype, TYPE_BINFO (target),
403 false, &offset);
405 if (!boff)
406 return offset;
407 offset = build_int_2 (boff, -1);
408 TREE_TYPE (offset) = ssizetype;
409 return offset;
412 /* Search for a member with name NAME in a multiple inheritance
413 lattice specified by TYPE. If it does not exist, return NULL_TREE.
414 If the member is ambiguously referenced, return `error_mark_node'.
415 Otherwise, return a DECL with the indicated name. If WANT_TYPE is
416 true, type declarations are preferred. */
418 /* Do a 1-level search for NAME as a member of TYPE. The caller must
419 figure out whether it can access this field. (Since it is only one
420 level, this is reasonable.) */
422 tree
423 lookup_field_1 (tree type, tree name, bool want_type)
425 register tree field;
427 if (TREE_CODE (type) == TEMPLATE_TYPE_PARM
428 || TREE_CODE (type) == BOUND_TEMPLATE_TEMPLATE_PARM
429 || TREE_CODE (type) == TYPENAME_TYPE)
430 /* The TYPE_FIELDS of a TEMPLATE_TYPE_PARM and
431 BOUND_TEMPLATE_TEMPLATE_PARM are not fields at all;
432 instead TYPE_FIELDS is the TEMPLATE_PARM_INDEX. (Miraculously,
433 the code often worked even when we treated the index as a list
434 of fields!)
435 The TYPE_FIELDS of TYPENAME_TYPE is its TYPENAME_TYPE_FULLNAME. */
436 return NULL_TREE;
438 if (TYPE_NAME (type)
439 && DECL_LANG_SPECIFIC (TYPE_NAME (type))
440 && DECL_SORTED_FIELDS (TYPE_NAME (type)))
442 tree *fields = &DECL_SORTED_FIELDS (TYPE_NAME (type))->elts[0];
443 int lo = 0, hi = DECL_SORTED_FIELDS (TYPE_NAME (type))->len;
444 int i;
446 while (lo < hi)
448 i = (lo + hi) / 2;
450 #ifdef GATHER_STATISTICS
451 n_fields_searched++;
452 #endif /* GATHER_STATISTICS */
454 if (DECL_NAME (fields[i]) > name)
455 hi = i;
456 else if (DECL_NAME (fields[i]) < name)
457 lo = i + 1;
458 else
460 field = NULL_TREE;
462 /* We might have a nested class and a field with the
463 same name; we sorted them appropriately via
464 field_decl_cmp, so just look for the first or last
465 field with this name. */
466 if (want_type)
469 field = fields[i--];
470 while (i >= lo && DECL_NAME (fields[i]) == name);
471 if (TREE_CODE (field) != TYPE_DECL
472 && !DECL_CLASS_TEMPLATE_P (field))
473 field = NULL_TREE;
475 else
478 field = fields[i++];
479 while (i < hi && DECL_NAME (fields[i]) == name);
481 return field;
484 return NULL_TREE;
487 field = TYPE_FIELDS (type);
489 #ifdef GATHER_STATISTICS
490 n_calls_lookup_field_1++;
491 #endif /* GATHER_STATISTICS */
492 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
494 #ifdef GATHER_STATISTICS
495 n_fields_searched++;
496 #endif /* GATHER_STATISTICS */
497 my_friendly_assert (DECL_P (field), 0);
498 if (DECL_NAME (field) == NULL_TREE
499 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
501 tree temp = lookup_field_1 (TREE_TYPE (field), name, want_type);
502 if (temp)
503 return temp;
505 if (TREE_CODE (field) == USING_DECL)
506 /* For now, we're just treating member using declarations as
507 old ARM-style access declarations. Thus, there's no reason
508 to return a USING_DECL, and the rest of the compiler can't
509 handle it. Once the class is defined, these are purged
510 from TYPE_FIELDS anyhow; see handle_using_decl. */
511 continue;
513 if (DECL_NAME (field) == name
514 && (!want_type
515 || TREE_CODE (field) == TYPE_DECL
516 || DECL_CLASS_TEMPLATE_P (field)))
517 return field;
519 /* Not found. */
520 if (name == vptr_identifier)
522 /* Give the user what s/he thinks s/he wants. */
523 if (TYPE_POLYMORPHIC_P (type))
524 return TYPE_VFIELD (type);
526 return NULL_TREE;
529 /* There are a number of cases we need to be aware of here:
530 current_class_type current_function_decl
531 global NULL NULL
532 fn-local NULL SET
533 class-local SET NULL
534 class->fn SET SET
535 fn->class SET SET
537 Those last two make life interesting. If we're in a function which is
538 itself inside a class, we need decls to go into the fn's decls (our
539 second case below). But if we're in a class and the class itself is
540 inside a function, we need decls to go into the decls for the class. To
541 achieve this last goal, we must see if, when both current_class_ptr and
542 current_function_decl are set, the class was declared inside that
543 function. If so, we know to put the decls into the class's scope. */
545 tree
546 current_scope ()
548 if (current_function_decl == NULL_TREE)
549 return current_class_type;
550 if (current_class_type == NULL_TREE)
551 return current_function_decl;
552 if ((DECL_FUNCTION_MEMBER_P (current_function_decl)
553 && same_type_p (DECL_CONTEXT (current_function_decl),
554 current_class_type))
555 || (DECL_FRIEND_CONTEXT (current_function_decl)
556 && same_type_p (DECL_FRIEND_CONTEXT (current_function_decl),
557 current_class_type)))
558 return current_function_decl;
560 return current_class_type;
563 /* Returns nonzero if we are currently in a function scope. Note
564 that this function returns zero if we are within a local class, but
565 not within a member function body of the local class. */
568 at_function_scope_p ()
570 tree cs = current_scope ();
571 return cs && TREE_CODE (cs) == FUNCTION_DECL;
574 /* Returns true if the innermost active scope is a class scope. */
576 bool
577 at_class_scope_p ()
579 tree cs = current_scope ();
580 return cs && TYPE_P (cs);
583 /* Return the scope of DECL, as appropriate when doing name-lookup. */
585 tree
586 context_for_name_lookup (tree decl)
588 /* [class.union]
590 For the purposes of name lookup, after the anonymous union
591 definition, the members of the anonymous union are considered to
592 have been defined in the scope in which the anonymous union is
593 declared. */
594 tree context = DECL_CONTEXT (decl);
596 while (context && TYPE_P (context) && ANON_AGGR_TYPE_P (context))
597 context = TYPE_CONTEXT (context);
598 if (!context)
599 context = global_namespace;
601 return context;
604 /* The accessibility routines use BINFO_ACCESS for scratch space
605 during the computation of the accssibility of some declaration. */
607 #define BINFO_ACCESS(NODE) \
608 ((access_kind) ((TREE_PUBLIC (NODE) << 1) | TREE_PRIVATE (NODE)))
610 /* Set the access associated with NODE to ACCESS. */
612 #define SET_BINFO_ACCESS(NODE, ACCESS) \
613 ((TREE_PUBLIC (NODE) = ((ACCESS) & 2) != 0), \
614 (TREE_PRIVATE (NODE) = ((ACCESS) & 1) != 0))
616 /* Called from access_in_type via dfs_walk. Calculate the access to
617 DATA (which is really a DECL) in BINFO. */
619 static tree
620 dfs_access_in_type (tree binfo, void *data)
622 tree decl = (tree) data;
623 tree type = BINFO_TYPE (binfo);
624 access_kind access = ak_none;
626 if (context_for_name_lookup (decl) == type)
628 /* If we have desceneded to the scope of DECL, just note the
629 appropriate access. */
630 if (TREE_PRIVATE (decl))
631 access = ak_private;
632 else if (TREE_PROTECTED (decl))
633 access = ak_protected;
634 else
635 access = ak_public;
637 else
639 /* First, check for an access-declaration that gives us more
640 access to the DECL. The CONST_DECL for an enumeration
641 constant will not have DECL_LANG_SPECIFIC, and thus no
642 DECL_ACCESS. */
643 if (DECL_LANG_SPECIFIC (decl) && !DECL_DISCRIMINATOR_P (decl))
645 tree decl_access = purpose_member (type, DECL_ACCESS (decl));
647 if (decl_access)
649 decl_access = TREE_VALUE (decl_access);
651 if (decl_access == access_public_node)
652 access = ak_public;
653 else if (decl_access == access_protected_node)
654 access = ak_protected;
655 else if (decl_access == access_private_node)
656 access = ak_private;
657 else
658 my_friendly_assert (false, 20030217);
662 if (!access)
664 int i;
665 int n_baselinks;
666 tree binfos, accesses;
668 /* Otherwise, scan our baseclasses, and pick the most favorable
669 access. */
670 binfos = BINFO_BASETYPES (binfo);
671 accesses = BINFO_BASEACCESSES (binfo);
672 n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0;
673 for (i = 0; i < n_baselinks; ++i)
675 tree base_binfo = TREE_VEC_ELT (binfos, i);
676 tree base_access = TREE_VEC_ELT (accesses, i);
677 access_kind base_access_now = BINFO_ACCESS (base_binfo);
679 if (base_access_now == ak_none || base_access_now == ak_private)
680 /* If it was not accessible in the base, or only
681 accessible as a private member, we can't access it
682 all. */
683 base_access_now = ak_none;
684 else if (base_access == access_protected_node)
685 /* Public and protected members in the base become
686 protected here. */
687 base_access_now = ak_protected;
688 else if (base_access == access_private_node)
689 /* Public and protected members in the base become
690 private here. */
691 base_access_now = ak_private;
693 /* See if the new access, via this base, gives more
694 access than our previous best access. */
695 if (base_access_now != ak_none
696 && (access == ak_none || base_access_now < access))
698 access = base_access_now;
700 /* If the new access is public, we can't do better. */
701 if (access == ak_public)
702 break;
708 /* Note the access to DECL in TYPE. */
709 SET_BINFO_ACCESS (binfo, access);
711 /* Mark TYPE as visited so that if we reach it again we do not
712 duplicate our efforts here. */
713 BINFO_MARKED (binfo) = 1;
715 return NULL_TREE;
718 /* Return the access to DECL in TYPE. */
720 static access_kind
721 access_in_type (tree type, tree decl)
723 tree binfo = TYPE_BINFO (type);
725 /* We must take into account
727 [class.paths]
729 If a name can be reached by several paths through a multiple
730 inheritance graph, the access is that of the path that gives
731 most access.
733 The algorithm we use is to make a post-order depth-first traversal
734 of the base-class hierarchy. As we come up the tree, we annotate
735 each node with the most lenient access. */
736 dfs_walk_real (binfo, 0, dfs_access_in_type, unmarkedp, decl);
737 dfs_walk (binfo, dfs_unmark, markedp, 0);
739 return BINFO_ACCESS (binfo);
742 /* Called from dfs_accessible_p via dfs_walk. */
744 static tree
745 dfs_accessible_queue_p (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
747 tree binfo = BINFO_BASETYPE (derived, ix);
749 if (BINFO_MARKED (binfo))
750 return NULL_TREE;
752 /* If this class is inherited via private or protected inheritance,
753 then we can't see it, unless we are a friend of the derived class. */
754 if (BINFO_BASEACCESS (derived, ix) != access_public_node
755 && !is_friend (BINFO_TYPE (derived), current_scope ()))
756 return NULL_TREE;
758 return binfo;
761 /* Called from dfs_accessible_p via dfs_walk. */
763 static tree
764 dfs_accessible_p (tree binfo, void *data)
766 int protected_ok = data != 0;
767 access_kind access;
769 BINFO_MARKED (binfo) = 1;
770 access = BINFO_ACCESS (binfo);
771 if (access == ak_public || (access == ak_protected && protected_ok))
772 return binfo;
773 else if (access != ak_none
774 && is_friend (BINFO_TYPE (binfo), current_scope ()))
775 return binfo;
777 return NULL_TREE;
780 /* Returns nonzero if it is OK to access DECL through an object
781 indicated by BINFO in the context of DERIVED. */
783 static int
784 protected_accessible_p (tree decl, tree derived, tree binfo)
786 access_kind access;
788 /* We're checking this clause from [class.access.base]
790 m as a member of N is protected, and the reference occurs in a
791 member or friend of class N, or in a member or friend of a
792 class P derived from N, where m as a member of P is private or
793 protected.
795 Here DERIVED is a possible P and DECL is m. accessible_p will
796 iterate over various values of N, but the access to m in DERIVED
797 does not change.
799 Note that I believe that the passage above is wrong, and should read
800 "...is private or protected or public"; otherwise you get bizarre results
801 whereby a public using-decl can prevent you from accessing a protected
802 member of a base. (jason 2000/02/28) */
804 /* If DERIVED isn't derived from m's class, then it can't be a P. */
805 if (!DERIVED_FROM_P (context_for_name_lookup (decl), derived))
806 return 0;
808 access = access_in_type (derived, decl);
810 /* If m is inaccessible in DERIVED, then it's not a P. */
811 if (access == ak_none)
812 return 0;
814 /* [class.protected]
816 When a friend or a member function of a derived class references
817 a protected nonstatic member of a base class, an access check
818 applies in addition to those described earlier in clause
819 _class.access_) Except when forming a pointer to member
820 (_expr.unary.op_), the access must be through a pointer to,
821 reference to, or object of the derived class itself (or any class
822 derived from that class) (_expr.ref_). If the access is to form
823 a pointer to member, the nested-name-specifier shall name the
824 derived class (or any class derived from that class). */
825 if (DECL_NONSTATIC_MEMBER_P (decl))
827 /* We can tell through what the reference is occurring by
828 chasing BINFO up to the root. */
829 tree t = binfo;
830 while (BINFO_INHERITANCE_CHAIN (t))
831 t = BINFO_INHERITANCE_CHAIN (t);
833 if (!DERIVED_FROM_P (derived, BINFO_TYPE (t)))
834 return 0;
837 return 1;
840 /* Returns nonzero if SCOPE is a friend of a type which would be able
841 to access DECL through the object indicated by BINFO. */
843 static int
844 friend_accessible_p (tree scope, tree decl, tree binfo)
846 tree befriending_classes;
847 tree t;
849 if (!scope)
850 return 0;
852 if (TREE_CODE (scope) == FUNCTION_DECL
853 || DECL_FUNCTION_TEMPLATE_P (scope))
854 befriending_classes = DECL_BEFRIENDING_CLASSES (scope);
855 else if (TYPE_P (scope))
856 befriending_classes = CLASSTYPE_BEFRIENDING_CLASSES (scope);
857 else
858 return 0;
860 for (t = befriending_classes; t; t = TREE_CHAIN (t))
861 if (protected_accessible_p (decl, TREE_VALUE (t), binfo))
862 return 1;
864 /* Nested classes are implicitly friends of their enclosing types, as
865 per core issue 45 (this is a change from the standard). */
866 if (TYPE_P (scope))
867 for (t = TYPE_CONTEXT (scope); t && TYPE_P (t); t = TYPE_CONTEXT (t))
868 if (protected_accessible_p (decl, t, binfo))
869 return 1;
871 if (TREE_CODE (scope) == FUNCTION_DECL
872 || DECL_FUNCTION_TEMPLATE_P (scope))
874 /* Perhaps this SCOPE is a member of a class which is a
875 friend. */
876 if (DECL_CLASS_SCOPE_P (decl)
877 && friend_accessible_p (DECL_CONTEXT (scope), decl, binfo))
878 return 1;
880 /* Or an instantiation of something which is a friend. */
881 if (DECL_TEMPLATE_INFO (scope))
882 return friend_accessible_p (DECL_TI_TEMPLATE (scope), decl, binfo);
884 else if (CLASSTYPE_TEMPLATE_INFO (scope))
885 return friend_accessible_p (CLASSTYPE_TI_TEMPLATE (scope), decl, binfo);
887 return 0;
890 /* DECL is a declaration from a base class of TYPE, which was the
891 class used to name DECL. Return nonzero if, in the current
892 context, DECL is accessible. If TYPE is actually a BINFO node,
893 then we can tell in what context the access is occurring by looking
894 at the most derived class along the path indicated by BINFO. */
896 int
897 accessible_p (tree type, tree decl)
899 tree binfo;
900 tree t;
902 /* Nonzero if it's OK to access DECL if it has protected
903 accessibility in TYPE. */
904 int protected_ok = 0;
906 /* If this declaration is in a block or namespace scope, there's no
907 access control. */
908 if (!TYPE_P (context_for_name_lookup (decl)))
909 return 1;
911 /* In a template declaration, we cannot be sure whether the
912 particular specialization that is instantiated will be a friend
913 or not. Therefore, all access checks are deferred until
914 instantiation. */
915 if (processing_template_decl)
916 return 1;
918 if (!TYPE_P (type))
920 binfo = type;
921 type = BINFO_TYPE (type);
923 else
924 binfo = TYPE_BINFO (type);
926 /* [class.access.base]
928 A member m is accessible when named in class N if
930 --m as a member of N is public, or
932 --m as a member of N is private, and the reference occurs in a
933 member or friend of class N, or
935 --m as a member of N is protected, and the reference occurs in a
936 member or friend of class N, or in a member or friend of a
937 class P derived from N, where m as a member of P is private or
938 protected, or
940 --there exists a base class B of N that is accessible at the point
941 of reference, and m is accessible when named in class B.
943 We walk the base class hierarchy, checking these conditions. */
945 /* Figure out where the reference is occurring. Check to see if
946 DECL is private or protected in this scope, since that will
947 determine whether protected access is allowed. */
948 if (current_class_type)
949 protected_ok = protected_accessible_p (decl, current_class_type, binfo);
951 /* Now, loop through the classes of which we are a friend. */
952 if (!protected_ok)
953 protected_ok = friend_accessible_p (current_scope (), decl, binfo);
955 /* Standardize the binfo that access_in_type will use. We don't
956 need to know what path was chosen from this point onwards. */
957 binfo = TYPE_BINFO (type);
959 /* Compute the accessibility of DECL in the class hierarchy
960 dominated by type. */
961 access_in_type (type, decl);
962 /* Walk the hierarchy again, looking for a base class that allows
963 access. */
964 t = dfs_walk (binfo, dfs_accessible_p,
965 dfs_accessible_queue_p,
966 protected_ok ? &protected_ok : 0);
967 /* Clear any mark bits. Note that we have to walk the whole tree
968 here, since we have aborted the previous walk from some point
969 deep in the tree. */
970 dfs_walk (binfo, dfs_unmark, 0, 0);
972 return t != NULL_TREE;
975 struct lookup_field_info {
976 /* The type in which we're looking. */
977 tree type;
978 /* The name of the field for which we're looking. */
979 tree name;
980 /* If non-NULL, the current result of the lookup. */
981 tree rval;
982 /* The path to RVAL. */
983 tree rval_binfo;
984 /* If non-NULL, the lookup was ambiguous, and this is a list of the
985 candidates. */
986 tree ambiguous;
987 /* If nonzero, we are looking for types, not data members. */
988 int want_type;
989 /* If something went wrong, a message indicating what. */
990 const char *errstr;
993 /* Returns nonzero if BINFO is not hidden by the value found by the
994 lookup so far. If BINFO is hidden, then there's no need to look in
995 it. DATA is really a struct lookup_field_info. Called from
996 lookup_field via breadth_first_search. */
998 static tree
999 lookup_field_queue_p (tree derived, int ix, void *data)
1001 tree binfo = BINFO_BASETYPE (derived, ix);
1002 struct lookup_field_info *lfi = (struct lookup_field_info *) data;
1004 /* Don't look for constructors or destructors in base classes. */
1005 if (IDENTIFIER_CTOR_OR_DTOR_P (lfi->name))
1006 return NULL_TREE;
1008 /* If this base class is hidden by the best-known value so far, we
1009 don't need to look. */
1010 if (lfi->rval_binfo && original_binfo (binfo, lfi->rval_binfo))
1011 return NULL_TREE;
1013 /* If this is a dependent base, don't look in it. */
1014 if (BINFO_DEPENDENT_BASE_P (binfo))
1015 return NULL_TREE;
1017 return binfo;
1020 /* Within the scope of a template class, you can refer to the to the
1021 current specialization with the name of the template itself. For
1022 example:
1024 template <typename T> struct S { S* sp; }
1026 Returns nonzero if DECL is such a declaration in a class TYPE. */
1028 static int
1029 template_self_reference_p (tree type, tree decl)
1031 return (CLASSTYPE_USE_TEMPLATE (type)
1032 && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (type))
1033 && TREE_CODE (decl) == TYPE_DECL
1034 && DECL_ARTIFICIAL (decl)
1035 && DECL_NAME (decl) == constructor_name (type));
1039 /* Nonzero for a class member means that it is shared between all objects
1040 of that class.
1042 [class.member.lookup]:If the resulting set of declarations are not all
1043 from sub-objects of the same type, or the set has a nonstatic member
1044 and includes members from distinct sub-objects, there is an ambiguity
1045 and the program is ill-formed.
1047 This function checks that T contains no nonstatic members. */
1049 static int
1050 shared_member_p (tree t)
1052 if (TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == TYPE_DECL \
1053 || TREE_CODE (t) == CONST_DECL)
1054 return 1;
1055 if (is_overloaded_fn (t))
1057 for (; t; t = OVL_NEXT (t))
1059 tree fn = OVL_CURRENT (t);
1060 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn))
1061 return 0;
1063 return 1;
1065 return 0;
1068 /* DATA is really a struct lookup_field_info. Look for a field with
1069 the name indicated there in BINFO. If this function returns a
1070 non-NULL value it is the result of the lookup. Called from
1071 lookup_field via breadth_first_search. */
1073 static tree
1074 lookup_field_r (tree binfo, void *data)
1076 struct lookup_field_info *lfi = (struct lookup_field_info *) data;
1077 tree type = BINFO_TYPE (binfo);
1078 tree nval = NULL_TREE;
1080 /* First, look for a function. There can't be a function and a data
1081 member with the same name, and if there's a function and a type
1082 with the same name, the type is hidden by the function. */
1083 if (!lfi->want_type)
1085 int idx = lookup_fnfields_1 (type, lfi->name);
1086 if (idx >= 0)
1087 nval = TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (type), idx);
1090 if (!nval)
1091 /* Look for a data member or type. */
1092 nval = lookup_field_1 (type, lfi->name, lfi->want_type);
1094 /* If there is no declaration with the indicated name in this type,
1095 then there's nothing to do. */
1096 if (!nval)
1097 return NULL_TREE;
1099 /* If we're looking up a type (as with an elaborated type specifier)
1100 we ignore all non-types we find. */
1101 if (lfi->want_type && TREE_CODE (nval) != TYPE_DECL
1102 && !DECL_CLASS_TEMPLATE_P (nval))
1104 if (lfi->name == TYPE_IDENTIFIER (type))
1106 /* If the aggregate has no user defined constructors, we allow
1107 it to have fields with the same name as the enclosing type.
1108 If we are looking for that name, find the corresponding
1109 TYPE_DECL. */
1110 for (nval = TREE_CHAIN (nval); nval; nval = TREE_CHAIN (nval))
1111 if (DECL_NAME (nval) == lfi->name
1112 && TREE_CODE (nval) == TYPE_DECL)
1113 break;
1115 else
1116 nval = NULL_TREE;
1117 if (!nval && CLASSTYPE_NESTED_UTDS (type) != NULL)
1119 binding_entry e = binding_table_find (CLASSTYPE_NESTED_UTDS (type),
1120 lfi->name);
1121 if (e != NULL)
1122 nval = TYPE_MAIN_DECL (e->type);
1123 else
1124 return NULL_TREE;
1128 /* You must name a template base class with a template-id. */
1129 if (!same_type_p (type, lfi->type)
1130 && template_self_reference_p (type, nval))
1131 return NULL_TREE;
1133 /* If the lookup already found a match, and the new value doesn't
1134 hide the old one, we might have an ambiguity. */
1135 if (lfi->rval_binfo && !original_binfo (lfi->rval_binfo, binfo))
1137 if (nval == lfi->rval && shared_member_p (nval))
1138 /* The two things are really the same. */
1140 else if (original_binfo (binfo, lfi->rval_binfo))
1141 /* The previous value hides the new one. */
1143 else
1145 /* We have a real ambiguity. We keep a chain of all the
1146 candidates. */
1147 if (!lfi->ambiguous && lfi->rval)
1149 /* This is the first time we noticed an ambiguity. Add
1150 what we previously thought was a reasonable candidate
1151 to the list. */
1152 lfi->ambiguous = tree_cons (NULL_TREE, lfi->rval, NULL_TREE);
1153 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1156 /* Add the new value. */
1157 lfi->ambiguous = tree_cons (NULL_TREE, nval, lfi->ambiguous);
1158 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1159 lfi->errstr = "request for member `%D' is ambiguous";
1162 else
1164 lfi->rval = nval;
1165 lfi->rval_binfo = binfo;
1168 return NULL_TREE;
1171 /* Return a "baselink" which BASELINK_BINFO, BASELINK_ACCESS_BINFO,
1172 BASELINK_FUNCTIONS, and BASELINK_OPTYPE set to BINFO, ACCESS_BINFO,
1173 FUNCTIONS, and OPTYPE respectively. */
1175 tree
1176 build_baselink (tree binfo, tree access_binfo, tree functions, tree optype)
1178 tree baselink;
1180 my_friendly_assert (TREE_CODE (functions) == FUNCTION_DECL
1181 || TREE_CODE (functions) == TEMPLATE_DECL
1182 || TREE_CODE (functions) == TEMPLATE_ID_EXPR
1183 || TREE_CODE (functions) == OVERLOAD,
1184 20020730);
1185 my_friendly_assert (!optype || TYPE_P (optype), 20020730);
1186 my_friendly_assert (TREE_TYPE (functions), 20020805);
1188 baselink = make_node (BASELINK);
1189 TREE_TYPE (baselink) = TREE_TYPE (functions);
1190 BASELINK_BINFO (baselink) = binfo;
1191 BASELINK_ACCESS_BINFO (baselink) = access_binfo;
1192 BASELINK_FUNCTIONS (baselink) = functions;
1193 BASELINK_OPTYPE (baselink) = optype;
1195 return baselink;
1198 /* Look for a member named NAME in an inheritance lattice dominated by
1199 XBASETYPE. If PROTECT is 0 or two, we do not check access. If it
1200 is 1, we enforce accessibility. If PROTECT is zero, then, for an
1201 ambiguous lookup, we return NULL. If PROTECT is 1, we issue error
1202 messages about inaccessible or ambiguous lookup. If PROTECT is 2,
1203 we return a TREE_LIST whose TREE_TYPE is error_mark_node and whose
1204 TREE_VALUEs are the list of ambiguous candidates.
1206 WANT_TYPE is 1 when we should only return TYPE_DECLs.
1208 If nothing can be found return NULL_TREE and do not issue an error. */
1210 tree
1211 lookup_member (tree xbasetype, tree name, int protect, bool want_type)
1213 tree rval, rval_binfo = NULL_TREE;
1214 tree type = NULL_TREE, basetype_path = NULL_TREE;
1215 struct lookup_field_info lfi;
1217 /* rval_binfo is the binfo associated with the found member, note,
1218 this can be set with useful information, even when rval is not
1219 set, because it must deal with ALL members, not just non-function
1220 members. It is used for ambiguity checking and the hidden
1221 checks. Whereas rval is only set if a proper (not hidden)
1222 non-function member is found. */
1224 const char *errstr = 0;
1226 my_friendly_assert (TREE_CODE (name) == IDENTIFIER_NODE, 20030624);
1228 if (TREE_CODE (xbasetype) == TREE_VEC)
1230 type = BINFO_TYPE (xbasetype);
1231 basetype_path = xbasetype;
1233 else
1235 my_friendly_assert (IS_AGGR_TYPE_CODE (TREE_CODE (xbasetype)), 20030624);
1236 type = xbasetype;
1237 basetype_path = TYPE_BINFO (type);
1238 my_friendly_assert (!BINFO_INHERITANCE_CHAIN (basetype_path), 980827);
1241 if (type == current_class_type && TYPE_BEING_DEFINED (type)
1242 && IDENTIFIER_CLASS_VALUE (name))
1244 tree field = IDENTIFIER_CLASS_VALUE (name);
1245 if (! is_overloaded_fn (field)
1246 && ! (want_type && TREE_CODE (field) != TYPE_DECL))
1247 /* We're in the scope of this class, and the value has already
1248 been looked up. Just return the cached value. */
1249 return field;
1252 complete_type (type);
1254 #ifdef GATHER_STATISTICS
1255 n_calls_lookup_field++;
1256 #endif /* GATHER_STATISTICS */
1258 memset (&lfi, 0, sizeof (lfi));
1259 lfi.type = type;
1260 lfi.name = name;
1261 lfi.want_type = want_type;
1262 bfs_walk (basetype_path, &lookup_field_r, &lookup_field_queue_p, &lfi);
1263 rval = lfi.rval;
1264 rval_binfo = lfi.rval_binfo;
1265 if (rval_binfo)
1266 type = BINFO_TYPE (rval_binfo);
1267 errstr = lfi.errstr;
1269 /* If we are not interested in ambiguities, don't report them;
1270 just return NULL_TREE. */
1271 if (!protect && lfi.ambiguous)
1272 return NULL_TREE;
1274 if (protect == 2)
1276 if (lfi.ambiguous)
1277 return lfi.ambiguous;
1278 else
1279 protect = 0;
1282 /* [class.access]
1284 In the case of overloaded function names, access control is
1285 applied to the function selected by overloaded resolution. */
1286 if (rval && protect && !is_overloaded_fn (rval))
1287 perform_or_defer_access_check (basetype_path, rval);
1289 if (errstr && protect)
1291 error (errstr, name, type);
1292 if (lfi.ambiguous)
1293 print_candidates (lfi.ambiguous);
1294 rval = error_mark_node;
1297 if (rval && is_overloaded_fn (rval))
1298 rval = build_baselink (rval_binfo, basetype_path, rval,
1299 (IDENTIFIER_TYPENAME_P (name)
1300 ? TREE_TYPE (name): NULL_TREE));
1301 return rval;
1304 /* Like lookup_member, except that if we find a function member we
1305 return NULL_TREE. */
1307 tree
1308 lookup_field (tree xbasetype, tree name, int protect, bool want_type)
1310 tree rval = lookup_member (xbasetype, name, protect, want_type);
1312 /* Ignore functions. */
1313 if (rval && BASELINK_P (rval))
1314 return NULL_TREE;
1316 return rval;
1319 /* Like lookup_member, except that if we find a non-function member we
1320 return NULL_TREE. */
1322 tree
1323 lookup_fnfields (tree xbasetype, tree name, int protect)
1325 tree rval = lookup_member (xbasetype, name, protect, /*want_type=*/false);
1327 /* Ignore non-functions. */
1328 if (rval && !BASELINK_P (rval))
1329 return NULL_TREE;
1331 return rval;
1334 /* Return the index in the CLASSTYPE_METHOD_VEC for CLASS_TYPE
1335 corresponding to "operator TYPE ()", or -1 if there is no such
1336 operator. Only CLASS_TYPE itself is searched; this routine does
1337 not scan the base classes of CLASS_TYPE. */
1339 static int
1340 lookup_conversion_operator (tree class_type, tree type)
1342 int pass;
1343 int i;
1345 tree methods = CLASSTYPE_METHOD_VEC (class_type);
1347 for (pass = 0; pass < 2; ++pass)
1348 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1349 i < TREE_VEC_LENGTH (methods);
1350 ++i)
1352 tree fn = TREE_VEC_ELT (methods, i);
1353 /* The size of the vector may have some unused slots at the
1354 end. */
1355 if (!fn)
1356 break;
1358 /* All the conversion operators come near the beginning of the
1359 class. Therefore, if FN is not a conversion operator, there
1360 is no matching conversion operator in CLASS_TYPE. */
1361 fn = OVL_CURRENT (fn);
1362 if (!DECL_CONV_FN_P (fn))
1363 break;
1365 if (pass == 0)
1367 /* On the first pass we only consider exact matches. If
1368 the types match, this slot is the one where the right
1369 conversion operators can be found. */
1370 if (TREE_CODE (fn) != TEMPLATE_DECL
1371 && same_type_p (DECL_CONV_FN_TYPE (fn), type))
1372 return i;
1374 else
1376 /* On the second pass we look for template conversion
1377 operators. It may be possible to instantiate the
1378 template to get the type desired. All of the template
1379 conversion operators share a slot. By looking for
1380 templates second we ensure that specializations are
1381 preferred over templates. */
1382 if (TREE_CODE (fn) == TEMPLATE_DECL)
1383 return i;
1387 return -1;
1390 /* TYPE is a class type. Return the index of the fields within
1391 the method vector with name NAME, or -1 is no such field exists. */
1394 lookup_fnfields_1 (tree type, tree name)
1396 tree method_vec;
1397 tree *methods;
1398 tree tmp;
1399 int i;
1400 int len;
1402 if (!CLASS_TYPE_P (type))
1403 return -1;
1405 method_vec = CLASSTYPE_METHOD_VEC (type);
1407 if (!method_vec)
1408 return -1;
1410 methods = &TREE_VEC_ELT (method_vec, 0);
1411 len = TREE_VEC_LENGTH (method_vec);
1413 #ifdef GATHER_STATISTICS
1414 n_calls_lookup_fnfields_1++;
1415 #endif /* GATHER_STATISTICS */
1417 /* Constructors are first... */
1418 if (name == ctor_identifier)
1419 return (methods[CLASSTYPE_CONSTRUCTOR_SLOT]
1420 ? CLASSTYPE_CONSTRUCTOR_SLOT : -1);
1421 /* and destructors are second. */
1422 if (name == dtor_identifier)
1423 return (methods[CLASSTYPE_DESTRUCTOR_SLOT]
1424 ? CLASSTYPE_DESTRUCTOR_SLOT : -1);
1425 if (IDENTIFIER_TYPENAME_P (name))
1426 return lookup_conversion_operator (type, TREE_TYPE (name));
1428 /* Skip the conversion operators. */
1429 i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1430 while (i < len && methods[i] && DECL_CONV_FN_P (OVL_CURRENT (methods[i])))
1431 i++;
1433 /* If the type is complete, use binary search. */
1434 if (COMPLETE_TYPE_P (type))
1436 int lo = i;
1437 int hi = len;
1439 while (lo < hi)
1441 i = (lo + hi) / 2;
1443 #ifdef GATHER_STATISTICS
1444 n_outer_fields_searched++;
1445 #endif /* GATHER_STATISTICS */
1447 tmp = methods[i];
1448 /* This slot may be empty; we allocate more slots than we
1449 need. In that case, the entry we're looking for is
1450 closer to the beginning of the list. */
1451 if (tmp)
1452 tmp = DECL_NAME (OVL_CURRENT (tmp));
1453 if (!tmp || tmp > name)
1454 hi = i;
1455 else if (tmp < name)
1456 lo = i + 1;
1457 else
1458 return i;
1461 else
1462 for (; i < len && methods[i]; ++i)
1464 #ifdef GATHER_STATISTICS
1465 n_outer_fields_searched++;
1466 #endif /* GATHER_STATISTICS */
1468 tmp = OVL_CURRENT (methods[i]);
1469 if (DECL_NAME (tmp) == name)
1470 return i;
1473 return -1;
1476 /* DECL is the result of a qualified name lookup. QUALIFYING_SCOPE is
1477 the class or namespace used to qualify the name. CONTEXT_CLASS is
1478 the class corresponding to the object in which DECL will be used.
1479 Return a possibly modified version of DECL that takes into account
1480 the CONTEXT_CLASS.
1482 In particular, consider an expression like `B::m' in the context of
1483 a derived class `D'. If `B::m' has been resolved to a BASELINK,
1484 then the most derived class indicated by the BASELINK_BINFO will be
1485 `B', not `D'. This function makes that adjustment. */
1487 tree
1488 adjust_result_of_qualified_name_lookup (tree decl,
1489 tree qualifying_scope,
1490 tree context_class)
1492 if (context_class && CLASS_TYPE_P (qualifying_scope)
1493 && DERIVED_FROM_P (qualifying_scope, context_class)
1494 && BASELINK_P (decl))
1496 tree base;
1498 my_friendly_assert (CLASS_TYPE_P (context_class), 20020808);
1500 /* Look for the QUALIFYING_SCOPE as a base of the CONTEXT_CLASS.
1501 Because we do not yet know which function will be chosen by
1502 overload resolution, we cannot yet check either accessibility
1503 or ambiguity -- in either case, the choice of a static member
1504 function might make the usage valid. */
1505 base = lookup_base (context_class, qualifying_scope,
1506 ba_ignore | ba_quiet, NULL);
1507 if (base)
1509 BASELINK_ACCESS_BINFO (decl) = base;
1510 BASELINK_BINFO (decl)
1511 = lookup_base (base, BINFO_TYPE (BASELINK_BINFO (decl)),
1512 ba_ignore | ba_quiet,
1513 NULL);
1517 return decl;
1521 /* Walk the class hierarchy dominated by TYPE. FN is called for each
1522 type in the hierarchy, in a breadth-first preorder traversal.
1523 If it ever returns a non-NULL value, that value is immediately
1524 returned and the walk is terminated. At each node, FN is passed a
1525 BINFO indicating the path from the currently visited base-class to
1526 TYPE. Before each base-class is walked QFN is called. If the
1527 value returned is nonzero, the base-class is walked; otherwise it
1528 is not. If QFN is NULL, it is treated as a function which always
1529 returns 1. Both FN and QFN are passed the DATA whenever they are
1530 called.
1532 Implementation notes: Uses a circular queue, which starts off on
1533 the stack but gets moved to the malloc arena if it needs to be
1534 enlarged. The underflow and overflow conditions are
1535 indistinguishable except by context: if head == tail and we just
1536 moved the head pointer, the queue is empty, but if we just moved
1537 the tail pointer, the queue is full.
1538 Start with enough room for ten concurrent base classes. That
1539 will be enough for most hierarchies. */
1540 #define BFS_WALK_INITIAL_QUEUE_SIZE 10
1542 static tree
1543 bfs_walk (tree binfo,
1544 tree (*fn) (tree, void *),
1545 tree (*qfn) (tree, int, void *),
1546 void *data)
1548 tree rval = NULL_TREE;
1550 tree bases_initial[BFS_WALK_INITIAL_QUEUE_SIZE];
1551 /* A circular queue of the base classes of BINFO. These will be
1552 built up in breadth-first order, except where QFN prunes the
1553 search. */
1554 size_t head, tail;
1555 size_t base_buffer_size = BFS_WALK_INITIAL_QUEUE_SIZE;
1556 tree *base_buffer = bases_initial;
1558 head = tail = 0;
1559 base_buffer[tail++] = binfo;
1561 while (head != tail)
1563 int n_bases, ix;
1564 tree binfo = base_buffer[head++];
1565 if (head == base_buffer_size)
1566 head = 0;
1568 /* Is this the one we're looking for? If so, we're done. */
1569 rval = fn (binfo, data);
1570 if (rval)
1571 goto done;
1573 n_bases = BINFO_N_BASETYPES (binfo);
1574 for (ix = 0; ix != n_bases; ix++)
1576 tree base_binfo;
1578 if (qfn)
1579 base_binfo = (*qfn) (binfo, ix, data);
1580 else
1581 base_binfo = BINFO_BASETYPE (binfo, ix);
1583 if (base_binfo)
1585 base_buffer[tail++] = base_binfo;
1586 if (tail == base_buffer_size)
1587 tail = 0;
1588 if (tail == head)
1590 tree *new_buffer = xmalloc (2 * base_buffer_size
1591 * sizeof (tree));
1592 memcpy (&new_buffer[0], &base_buffer[0],
1593 tail * sizeof (tree));
1594 memcpy (&new_buffer[head + base_buffer_size],
1595 &base_buffer[head],
1596 (base_buffer_size - head) * sizeof (tree));
1597 if (base_buffer_size != BFS_WALK_INITIAL_QUEUE_SIZE)
1598 free (base_buffer);
1599 base_buffer = new_buffer;
1600 head += base_buffer_size;
1601 base_buffer_size *= 2;
1607 done:
1608 if (base_buffer_size != BFS_WALK_INITIAL_QUEUE_SIZE)
1609 free (base_buffer);
1610 return rval;
1613 /* Exactly like bfs_walk, except that a depth-first traversal is
1614 performed, and PREFN is called in preorder, while POSTFN is called
1615 in postorder. */
1617 tree
1618 dfs_walk_real (tree binfo,
1619 tree (*prefn) (tree, void *),
1620 tree (*postfn) (tree, void *),
1621 tree (*qfn) (tree, int, void *),
1622 void *data)
1624 tree rval = NULL_TREE;
1626 /* Call the pre-order walking function. */
1627 if (prefn)
1629 rval = (*prefn) (binfo, data);
1630 if (rval)
1631 return rval;
1634 /* Process the basetypes. */
1635 if (BINFO_BASETYPES (binfo))
1637 int i, n = TREE_VEC_LENGTH (BINFO_BASETYPES (binfo));
1638 for (i = 0; i != n; i++)
1640 tree base_binfo;
1642 if (qfn)
1643 base_binfo = (*qfn) (binfo, i, data);
1644 else
1645 base_binfo = BINFO_BASETYPE (binfo, i);
1647 if (base_binfo)
1649 rval = dfs_walk_real (base_binfo, prefn, postfn, qfn, data);
1650 if (rval)
1651 return rval;
1656 /* Call the post-order walking function. */
1657 if (postfn)
1658 rval = (*postfn) (binfo, data);
1660 return rval;
1663 /* Exactly like bfs_walk, except that a depth-first post-order traversal is
1664 performed. */
1666 tree
1667 dfs_walk (tree binfo,
1668 tree (*fn) (tree, void *),
1669 tree (*qfn) (tree, int, void *),
1670 void *data)
1672 return dfs_walk_real (binfo, 0, fn, qfn, data);
1675 /* Check that virtual overrider OVERRIDER is acceptable for base function
1676 BASEFN. Issue diagnostic, and return zero, if unacceptable. */
1679 check_final_overrider (tree overrider, tree basefn)
1681 tree over_type = TREE_TYPE (overrider);
1682 tree base_type = TREE_TYPE (basefn);
1683 tree over_return = TREE_TYPE (over_type);
1684 tree base_return = TREE_TYPE (base_type);
1685 tree over_throw = TYPE_RAISES_EXCEPTIONS (over_type);
1686 tree base_throw = TYPE_RAISES_EXCEPTIONS (base_type);
1687 int fail = 0;
1689 if (same_type_p (base_return, over_return))
1690 /* OK */;
1691 else if ((CLASS_TYPE_P (over_return) && CLASS_TYPE_P (base_return))
1692 || (TREE_CODE (base_return) == TREE_CODE (over_return)
1693 && POINTER_TYPE_P (base_return)))
1695 /* Potentially covariant. */
1696 unsigned base_quals, over_quals;
1698 fail = !POINTER_TYPE_P (base_return);
1699 if (!fail)
1701 fail = cp_type_quals (base_return) != cp_type_quals (over_return);
1703 base_return = TREE_TYPE (base_return);
1704 over_return = TREE_TYPE (over_return);
1706 base_quals = cp_type_quals (base_return);
1707 over_quals = cp_type_quals (over_return);
1709 if ((base_quals & over_quals) != over_quals)
1710 fail = 1;
1712 if (CLASS_TYPE_P (base_return) && CLASS_TYPE_P (over_return))
1714 tree binfo = lookup_base (over_return, base_return,
1715 ba_check | ba_quiet, NULL);
1717 if (!binfo)
1718 fail = 1;
1720 else if (!pedantic
1721 && can_convert (TREE_TYPE (base_type), TREE_TYPE (over_type)))
1722 /* GNU extension, allow trivial pointer conversions such as
1723 converting to void *, or qualification conversion. */
1725 /* can_convert will permit user defined conversion from a
1726 (reference to) class type. We must reject them. */
1727 over_return = non_reference (TREE_TYPE (over_type));
1728 if (CLASS_TYPE_P (over_return))
1729 fail = 2;
1731 else
1732 fail = 2;
1734 else
1735 fail = 2;
1736 if (!fail)
1737 /* OK */;
1738 else if (IDENTIFIER_ERROR_LOCUS (DECL_ASSEMBLER_NAME (overrider)))
1739 return 0;
1740 else
1742 if (fail == 1)
1744 cp_error_at ("invalid covariant return type for `%#D'", overrider);
1745 cp_error_at (" overriding `%#D'", basefn);
1747 else
1749 cp_error_at ("conflicting return type specified for `%#D'",
1750 overrider);
1751 cp_error_at (" overriding `%#D'", basefn);
1753 SET_IDENTIFIER_ERROR_LOCUS (DECL_ASSEMBLER_NAME (overrider),
1754 DECL_CONTEXT (overrider));
1755 return 0;
1758 /* Check throw specifier is at least as strict. */
1759 if (!comp_except_specs (base_throw, over_throw, 0))
1761 if (!IDENTIFIER_ERROR_LOCUS (DECL_ASSEMBLER_NAME (overrider)))
1763 cp_error_at ("looser throw specifier for `%#F'", overrider);
1764 cp_error_at (" overriding `%#F'", basefn);
1765 SET_IDENTIFIER_ERROR_LOCUS (DECL_ASSEMBLER_NAME (overrider),
1766 DECL_CONTEXT (overrider));
1768 return 0;
1771 return 1;
1774 /* Given a class TYPE, and a function decl FNDECL, look for
1775 virtual functions in TYPE's hierarchy which FNDECL overrides.
1776 We do not look in TYPE itself, only its bases.
1778 Returns nonzero, if we find any. Set FNDECL's DECL_VIRTUAL_P, if we
1779 find that it overrides anything.
1781 We check that every function which is overridden, is correctly
1782 overridden. */
1785 look_for_overrides (tree type, tree fndecl)
1787 tree binfo = TYPE_BINFO (type);
1788 tree basebinfos = BINFO_BASETYPES (binfo);
1789 int nbasebinfos = basebinfos ? TREE_VEC_LENGTH (basebinfos) : 0;
1790 int ix;
1791 int found = 0;
1793 for (ix = 0; ix != nbasebinfos; ix++)
1795 tree basetype = BINFO_TYPE (TREE_VEC_ELT (basebinfos, ix));
1797 if (TYPE_POLYMORPHIC_P (basetype))
1798 found += look_for_overrides_r (basetype, fndecl);
1800 return found;
1803 /* Look in TYPE for virtual functions with the same signature as
1804 FNDECL. */
1806 tree
1807 look_for_overrides_here (tree type, tree fndecl)
1809 int ix;
1811 if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fndecl))
1812 ix = CLASSTYPE_DESTRUCTOR_SLOT;
1813 else
1814 ix = lookup_fnfields_1 (type, DECL_NAME (fndecl));
1815 if (ix >= 0)
1817 tree fns = TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (type), ix);
1819 for (; fns; fns = OVL_NEXT (fns))
1821 tree fn = OVL_CURRENT (fns);
1823 if (!DECL_VIRTUAL_P (fn))
1824 /* Not a virtual. */;
1825 else if (DECL_CONTEXT (fn) != type)
1826 /* Introduced with a using declaration. */;
1827 else if (DECL_STATIC_FUNCTION_P (fndecl))
1829 tree btypes = TYPE_ARG_TYPES (TREE_TYPE (fn));
1830 tree dtypes = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
1831 if (compparms (TREE_CHAIN (btypes), dtypes))
1832 return fn;
1834 else if (same_signature_p (fndecl, fn))
1835 return fn;
1838 return NULL_TREE;
1841 /* Look in TYPE for virtual functions overridden by FNDECL. Check both
1842 TYPE itself and its bases. */
1844 static int
1845 look_for_overrides_r (tree type, tree fndecl)
1847 tree fn = look_for_overrides_here (type, fndecl);
1848 if (fn)
1850 if (DECL_STATIC_FUNCTION_P (fndecl))
1852 /* A static member function cannot match an inherited
1853 virtual member function. */
1854 cp_error_at ("`%#D' cannot be declared", fndecl);
1855 cp_error_at (" since `%#D' declared in base class", fn);
1857 else
1859 /* It's definitely virtual, even if not explicitly set. */
1860 DECL_VIRTUAL_P (fndecl) = 1;
1861 check_final_overrider (fndecl, fn);
1863 return 1;
1866 /* We failed to find one declared in this class. Look in its bases. */
1867 return look_for_overrides (type, fndecl);
1870 /* Called via dfs_walk from dfs_get_pure_virtuals. */
1872 static tree
1873 dfs_get_pure_virtuals (tree binfo, void *data)
1875 tree type = (tree) data;
1877 /* We're not interested in primary base classes; the derived class
1878 of which they are a primary base will contain the information we
1879 need. */
1880 if (!BINFO_PRIMARY_P (binfo))
1882 tree virtuals;
1884 for (virtuals = BINFO_VIRTUALS (binfo);
1885 virtuals;
1886 virtuals = TREE_CHAIN (virtuals))
1887 if (DECL_PURE_VIRTUAL_P (BV_FN (virtuals)))
1888 CLASSTYPE_PURE_VIRTUALS (type)
1889 = tree_cons (NULL_TREE, BV_FN (virtuals),
1890 CLASSTYPE_PURE_VIRTUALS (type));
1893 BINFO_MARKED (binfo) = 1;
1895 return NULL_TREE;
1898 /* Set CLASSTYPE_PURE_VIRTUALS for TYPE. */
1900 void
1901 get_pure_virtuals (tree type)
1903 tree vbases;
1905 /* Clear the CLASSTYPE_PURE_VIRTUALS list; whatever is already there
1906 is going to be overridden. */
1907 CLASSTYPE_PURE_VIRTUALS (type) = NULL_TREE;
1908 /* Now, run through all the bases which are not primary bases, and
1909 collect the pure virtual functions. We look at the vtable in
1910 each class to determine what pure virtual functions are present.
1911 (A primary base is not interesting because the derived class of
1912 which it is a primary base will contain vtable entries for the
1913 pure virtuals in the base class. */
1914 dfs_walk (TYPE_BINFO (type), dfs_get_pure_virtuals, unmarkedp, type);
1915 dfs_walk (TYPE_BINFO (type), dfs_unmark, markedp, type);
1917 /* Put the pure virtuals in dfs order. */
1918 CLASSTYPE_PURE_VIRTUALS (type) = nreverse (CLASSTYPE_PURE_VIRTUALS (type));
1920 for (vbases = CLASSTYPE_VBASECLASSES (type);
1921 vbases;
1922 vbases = TREE_CHAIN (vbases))
1924 tree virtuals;
1926 for (virtuals = BINFO_VIRTUALS (TREE_VALUE (vbases));
1927 virtuals;
1928 virtuals = TREE_CHAIN (virtuals))
1930 tree base_fndecl = BV_FN (virtuals);
1931 if (DECL_NEEDS_FINAL_OVERRIDER_P (base_fndecl))
1932 error ("`%#D' needs a final overrider", base_fndecl);
1937 /* DEPTH-FIRST SEARCH ROUTINES. */
1939 tree
1940 markedp (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
1942 tree binfo = BINFO_BASETYPE (derived, ix);
1944 return BINFO_MARKED (binfo) ? binfo : NULL_TREE;
1947 tree
1948 unmarkedp (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
1950 tree binfo = BINFO_BASETYPE (derived, ix);
1952 return !BINFO_MARKED (binfo) ? binfo : NULL_TREE;
1955 static tree
1956 marked_pushdecls_p (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
1958 tree binfo = BINFO_BASETYPE (derived, ix);
1960 return (!BINFO_DEPENDENT_BASE_P (binfo)
1961 && BINFO_PUSHDECLS_MARKED (binfo)) ? binfo : NULL_TREE;
1964 static tree
1965 unmarked_pushdecls_p (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
1967 tree binfo = BINFO_BASETYPE (derived, ix);
1969 return (!BINFO_DEPENDENT_BASE_P (binfo)
1970 && !BINFO_PUSHDECLS_MARKED (binfo)) ? binfo : NULL_TREE;
1973 /* The worker functions for `dfs_walk'. These do not need to
1974 test anything (vis a vis marking) if they are paired with
1975 a predicate function (above). */
1977 tree
1978 dfs_unmark (tree binfo, void *data ATTRIBUTE_UNUSED)
1980 BINFO_MARKED (binfo) = 0;
1981 return NULL_TREE;
1985 /* Debug info for C++ classes can get very large; try to avoid
1986 emitting it everywhere.
1988 Note that this optimization wins even when the target supports
1989 BINCL (if only slightly), and reduces the amount of work for the
1990 linker. */
1992 void
1993 maybe_suppress_debug_info (tree t)
1995 /* We can't do the usual TYPE_DECL_SUPPRESS_DEBUG thing with DWARF, which
1996 does not support name references between translation units. It supports
1997 symbolic references between translation units, but only within a single
1998 executable or shared library.
2000 For DWARF 2, we handle TYPE_DECL_SUPPRESS_DEBUG by pretending
2001 that the type was never defined, so we only get the members we
2002 actually define. */
2003 if (write_symbols == DWARF_DEBUG || write_symbols == NO_DEBUG)
2004 return;
2006 /* We might have set this earlier in cp_finish_decl. */
2007 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 0;
2009 /* If we already know how we're handling this class, handle debug info
2010 the same way. */
2011 if (CLASSTYPE_INTERFACE_KNOWN (t))
2013 if (CLASSTYPE_INTERFACE_ONLY (t))
2014 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
2015 /* else don't set it. */
2017 /* If the class has a vtable, write out the debug info along with
2018 the vtable. */
2019 else if (TYPE_CONTAINS_VPTR_P (t))
2020 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
2022 /* Otherwise, just emit the debug info normally. */
2025 /* Note that we want debugging information for a base class of a class
2026 whose vtable is being emitted. Normally, this would happen because
2027 calling the constructor for a derived class implies calling the
2028 constructors for all bases, which involve initializing the
2029 appropriate vptr with the vtable for the base class; but in the
2030 presence of optimization, this initialization may be optimized
2031 away, so we tell finish_vtable_vardecl that we want the debugging
2032 information anyway. */
2034 static tree
2035 dfs_debug_mark (tree binfo, void *data ATTRIBUTE_UNUSED)
2037 tree t = BINFO_TYPE (binfo);
2039 CLASSTYPE_DEBUG_REQUESTED (t) = 1;
2041 return NULL_TREE;
2044 /* Returns BINFO if we haven't already noted that we want debugging
2045 info for this base class. */
2047 static tree
2048 dfs_debug_unmarkedp (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
2050 tree binfo = BINFO_BASETYPE (derived, ix);
2052 return (!CLASSTYPE_DEBUG_REQUESTED (BINFO_TYPE (binfo))
2053 ? binfo : NULL_TREE);
2056 /* Write out the debugging information for TYPE, whose vtable is being
2057 emitted. Also walk through our bases and note that we want to
2058 write out information for them. This avoids the problem of not
2059 writing any debug info for intermediate basetypes whose
2060 constructors, and thus the references to their vtables, and thus
2061 the vtables themselves, were optimized away. */
2063 void
2064 note_debug_info_needed (tree type)
2066 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)))
2068 TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)) = 0;
2069 rest_of_type_compilation (type, toplevel_bindings_p ());
2072 dfs_walk (TYPE_BINFO (type), dfs_debug_mark, dfs_debug_unmarkedp, 0);
2075 /* Subroutines of push_class_decls (). */
2077 static void
2078 setup_class_bindings (tree name, int type_binding_p)
2080 tree type_binding = NULL_TREE;
2081 tree value_binding;
2083 /* If we've already done the lookup for this declaration, we're
2084 done. */
2085 if (IDENTIFIER_CLASS_VALUE (name))
2086 return;
2088 /* First, deal with the type binding. */
2089 if (type_binding_p)
2091 type_binding = lookup_member (current_class_type, name,
2092 /*protect=*/2, /*want_type=*/true);
2093 if (TREE_CODE (type_binding) == TREE_LIST
2094 && TREE_TYPE (type_binding) == error_mark_node)
2095 /* NAME is ambiguous. */
2096 push_class_level_binding (name, type_binding);
2097 else
2098 pushdecl_class_level (type_binding);
2101 /* Now, do the value binding. */
2102 value_binding = lookup_member (current_class_type, name,
2103 /*protect=*/2, /*want_type=*/false);
2105 if (type_binding_p
2106 && (TREE_CODE (value_binding) == TYPE_DECL
2107 || DECL_CLASS_TEMPLATE_P (value_binding)
2108 || (TREE_CODE (value_binding) == TREE_LIST
2109 && TREE_TYPE (value_binding) == error_mark_node
2110 && (TREE_CODE (TREE_VALUE (value_binding))
2111 == TYPE_DECL))))
2112 /* We found a type-binding, even when looking for a non-type
2113 binding. This means that we already processed this binding
2114 above. */;
2115 else if (value_binding)
2117 if (TREE_CODE (value_binding) == TREE_LIST
2118 && TREE_TYPE (value_binding) == error_mark_node)
2119 /* NAME is ambiguous. */
2120 push_class_level_binding (name, value_binding);
2121 else
2123 if (BASELINK_P (value_binding))
2124 /* NAME is some overloaded functions. */
2125 value_binding = BASELINK_FUNCTIONS (value_binding);
2126 pushdecl_class_level (value_binding);
2131 /* Push class-level declarations for any names appearing in BINFO that
2132 are TYPE_DECLS. */
2134 static tree
2135 dfs_push_type_decls (tree binfo, void *data ATTRIBUTE_UNUSED)
2137 tree type;
2138 tree fields;
2140 type = BINFO_TYPE (binfo);
2141 for (fields = TYPE_FIELDS (type); fields; fields = TREE_CHAIN (fields))
2142 if (DECL_NAME (fields) && TREE_CODE (fields) == TYPE_DECL
2143 && !(!same_type_p (type, current_class_type)
2144 && template_self_reference_p (type, fields)))
2145 setup_class_bindings (DECL_NAME (fields), /*type_binding_p=*/1);
2147 /* We can't just use BINFO_MARKED because envelope_add_decl uses
2148 DERIVED_FROM_P, which calls get_base_distance. */
2149 BINFO_PUSHDECLS_MARKED (binfo) = 1;
2151 return NULL_TREE;
2154 /* Push class-level declarations for any names appearing in BINFO that
2155 are not TYPE_DECLS. */
2157 static tree
2158 dfs_push_decls (tree binfo, void *data)
2160 tree type = BINFO_TYPE (binfo);
2161 tree method_vec;
2162 tree fields;
2164 for (fields = TYPE_FIELDS (type); fields; fields = TREE_CHAIN (fields))
2165 if (DECL_NAME (fields)
2166 && TREE_CODE (fields) != TYPE_DECL
2167 && TREE_CODE (fields) != USING_DECL
2168 && !DECL_ARTIFICIAL (fields))
2169 setup_class_bindings (DECL_NAME (fields), /*type_binding_p=*/0);
2170 else if (TREE_CODE (fields) == FIELD_DECL
2171 && ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
2172 dfs_push_decls (TYPE_BINFO (TREE_TYPE (fields)), data);
2174 method_vec = (CLASS_TYPE_P (type)
2175 ? CLASSTYPE_METHOD_VEC (type) : NULL_TREE);
2177 if (method_vec && TREE_VEC_LENGTH (method_vec) >= 3)
2179 tree *methods;
2180 tree *end;
2182 /* Farm out constructors and destructors. */
2183 end = TREE_VEC_END (method_vec);
2185 for (methods = &TREE_VEC_ELT (method_vec, 2);
2186 methods < end && *methods;
2187 methods++)
2188 setup_class_bindings (DECL_NAME (OVL_CURRENT (*methods)),
2189 /*type_binding_p=*/0);
2192 BINFO_PUSHDECLS_MARKED (binfo) = 0;
2194 return NULL_TREE;
2197 /* When entering the scope of a class, we cache all of the
2198 fields that that class provides within its inheritance
2199 lattice. Where ambiguities result, we mark them
2200 with `error_mark_node' so that if they are encountered
2201 without explicit qualification, we can emit an error
2202 message. */
2204 void
2205 push_class_decls (tree type)
2207 search_stack = push_search_level (search_stack, &search_obstack);
2209 /* Enter type declarations and mark. */
2210 dfs_walk (TYPE_BINFO (type), dfs_push_type_decls, unmarked_pushdecls_p, 0);
2212 /* Enter non-type declarations and unmark. */
2213 dfs_walk (TYPE_BINFO (type), dfs_push_decls, marked_pushdecls_p, 0);
2216 /* Here's a subroutine we need because C lacks lambdas. */
2218 static tree
2219 dfs_unuse_fields (tree binfo, void *data ATTRIBUTE_UNUSED)
2221 tree type = TREE_TYPE (binfo);
2222 tree fields;
2224 for (fields = TYPE_FIELDS (type); fields; fields = TREE_CHAIN (fields))
2226 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
2227 continue;
2229 TREE_USED (fields) = 0;
2230 if (DECL_NAME (fields) == NULL_TREE
2231 && ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
2232 unuse_fields (TREE_TYPE (fields));
2235 return NULL_TREE;
2238 void
2239 unuse_fields (tree type)
2241 dfs_walk (TYPE_BINFO (type), dfs_unuse_fields, unmarkedp, 0);
2244 void
2245 pop_class_decls ()
2247 /* We haven't pushed a search level when dealing with cached classes,
2248 so we'd better not try to pop it. */
2249 if (search_stack)
2250 search_stack = pop_search_level (search_stack);
2253 void
2254 print_search_statistics ()
2256 #ifdef GATHER_STATISTICS
2257 fprintf (stderr, "%d fields searched in %d[%d] calls to lookup_field[_1]\n",
2258 n_fields_searched, n_calls_lookup_field, n_calls_lookup_field_1);
2259 fprintf (stderr, "%d fnfields searched in %d calls to lookup_fnfields\n",
2260 n_outer_fields_searched, n_calls_lookup_fnfields);
2261 fprintf (stderr, "%d calls to get_base_type\n", n_calls_get_base_type);
2262 #else /* GATHER_STATISTICS */
2263 fprintf (stderr, "no search statistics\n");
2264 #endif /* GATHER_STATISTICS */
2267 void
2268 init_search_processing ()
2270 gcc_obstack_init (&search_obstack);
2273 void
2274 reinit_search_statistics ()
2276 #ifdef GATHER_STATISTICS
2277 n_fields_searched = 0;
2278 n_calls_lookup_field = 0, n_calls_lookup_field_1 = 0;
2279 n_calls_lookup_fnfields = 0, n_calls_lookup_fnfields_1 = 0;
2280 n_calls_get_base_type = 0;
2281 n_outer_fields_searched = 0;
2282 n_contexts_saved = 0;
2283 #endif /* GATHER_STATISTICS */
2286 static tree
2287 add_conversions (tree binfo, void *data)
2289 int i;
2290 tree method_vec = CLASSTYPE_METHOD_VEC (BINFO_TYPE (binfo));
2291 tree *conversions = (tree *) data;
2293 /* Some builtin types have no method vector, not even an empty one. */
2294 if (!method_vec)
2295 return NULL_TREE;
2297 for (i = 2; i < TREE_VEC_LENGTH (method_vec); ++i)
2299 tree tmp = TREE_VEC_ELT (method_vec, i);
2300 tree name;
2302 if (!tmp || ! DECL_CONV_FN_P (OVL_CURRENT (tmp)))
2303 break;
2305 name = DECL_NAME (OVL_CURRENT (tmp));
2307 /* Make sure we don't already have this conversion. */
2308 if (! IDENTIFIER_MARKED (name))
2310 *conversions = tree_cons (binfo, tmp, *conversions);
2311 IDENTIFIER_MARKED (name) = 1;
2314 return NULL_TREE;
2317 /* Return a TREE_LIST containing all the non-hidden user-defined
2318 conversion functions for TYPE (and its base-classes). The
2319 TREE_VALUE of each node is a FUNCTION_DECL or an OVERLOAD
2320 containing the conversion functions. The TREE_PURPOSE is the BINFO
2321 from which the conversion functions in this node were selected. */
2323 tree
2324 lookup_conversions (tree type)
2326 tree t;
2327 tree conversions = NULL_TREE;
2329 complete_type (type);
2330 bfs_walk (TYPE_BINFO (type), add_conversions, 0, &conversions);
2332 for (t = conversions; t; t = TREE_CHAIN (t))
2333 IDENTIFIER_MARKED (DECL_NAME (OVL_CURRENT (TREE_VALUE (t)))) = 0;
2335 return conversions;
2338 struct overlap_info
2340 tree compare_type;
2341 int found_overlap;
2344 /* Check whether the empty class indicated by EMPTY_BINFO is also present
2345 at offset 0 in COMPARE_TYPE, and set found_overlap if so. */
2347 static tree
2348 dfs_check_overlap (tree empty_binfo, void *data)
2350 struct overlap_info *oi = (struct overlap_info *) data;
2351 tree binfo;
2352 for (binfo = TYPE_BINFO (oi->compare_type);
2354 binfo = BINFO_BASETYPE (binfo, 0))
2356 if (BINFO_TYPE (binfo) == BINFO_TYPE (empty_binfo))
2358 oi->found_overlap = 1;
2359 break;
2361 else if (BINFO_BASETYPES (binfo) == NULL_TREE)
2362 break;
2365 return NULL_TREE;
2368 /* Trivial function to stop base traversal when we find something. */
2370 static tree
2371 dfs_no_overlap_yet (tree derived, int ix, void *data)
2373 tree binfo = BINFO_BASETYPE (derived, ix);
2374 struct overlap_info *oi = (struct overlap_info *) data;
2376 return !oi->found_overlap ? binfo : NULL_TREE;
2379 /* Returns nonzero if EMPTY_TYPE or any of its bases can also be found at
2380 offset 0 in NEXT_TYPE. Used in laying out empty base class subobjects. */
2383 types_overlap_p (tree empty_type, tree next_type)
2385 struct overlap_info oi;
2387 if (! IS_AGGR_TYPE (next_type))
2388 return 0;
2389 oi.compare_type = next_type;
2390 oi.found_overlap = 0;
2391 dfs_walk (TYPE_BINFO (empty_type), dfs_check_overlap,
2392 dfs_no_overlap_yet, &oi);
2393 return oi.found_overlap;
2396 /* Given a vtable VAR, determine which of the inherited classes the vtable
2397 inherits (in a loose sense) functions from.
2399 FIXME: This does not work with the new ABI. */
2401 tree
2402 binfo_for_vtable (tree var)
2404 tree main_binfo = TYPE_BINFO (DECL_CONTEXT (var));
2405 tree binfos = TYPE_BINFO_BASETYPES (BINFO_TYPE (main_binfo));
2406 int n_baseclasses = CLASSTYPE_N_BASECLASSES (BINFO_TYPE (main_binfo));
2407 int i;
2409 for (i = 0; i < n_baseclasses; i++)
2411 tree base_binfo = TREE_VEC_ELT (binfos, i);
2412 if (base_binfo != NULL_TREE && BINFO_VTABLE (base_binfo) == var)
2413 return base_binfo;
2416 /* If no secondary base classes matched, return the primary base, if
2417 there is one. */
2418 if (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (main_binfo)))
2419 return get_primary_binfo (main_binfo);
2421 return main_binfo;
2424 /* Returns the binfo of the first direct or indirect virtual base derived
2425 from BINFO, or NULL if binfo is not via virtual. */
2427 tree
2428 binfo_from_vbase (tree binfo)
2430 for (; binfo; binfo = BINFO_INHERITANCE_CHAIN (binfo))
2432 if (TREE_VIA_VIRTUAL (binfo))
2433 return binfo;
2435 return NULL_TREE;
2438 /* Returns the binfo of the first direct or indirect virtual base derived
2439 from BINFO up to the TREE_TYPE, LIMIT, or NULL if binfo is not
2440 via virtual. */
2442 tree
2443 binfo_via_virtual (tree binfo, tree limit)
2445 for (; binfo && (!limit || !same_type_p (BINFO_TYPE (binfo), limit));
2446 binfo = BINFO_INHERITANCE_CHAIN (binfo))
2448 if (TREE_VIA_VIRTUAL (binfo))
2449 return binfo;
2451 return NULL_TREE;
2454 /* BINFO is a base binfo in the complete type BINFO_TYPE (HERE).
2455 Find the equivalent binfo within whatever graph HERE is located.
2456 This is the inverse of original_binfo. */
2458 tree
2459 copied_binfo (tree binfo, tree here)
2461 tree result = NULL_TREE;
2463 if (TREE_VIA_VIRTUAL (binfo))
2465 tree t;
2467 for (t = here; BINFO_INHERITANCE_CHAIN (t);
2468 t = BINFO_INHERITANCE_CHAIN (t))
2469 continue;
2471 result = purpose_member (BINFO_TYPE (binfo),
2472 CLASSTYPE_VBASECLASSES (BINFO_TYPE (t)));
2473 result = TREE_VALUE (result);
2475 else if (BINFO_INHERITANCE_CHAIN (binfo))
2477 tree base_binfos;
2478 int ix, n;
2480 base_binfos = copied_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2481 base_binfos = BINFO_BASETYPES (base_binfos);
2482 n = TREE_VEC_LENGTH (base_binfos);
2483 for (ix = 0; ix != n; ix++)
2485 tree base = TREE_VEC_ELT (base_binfos, ix);
2487 if (BINFO_TYPE (base) == BINFO_TYPE (binfo))
2489 result = base;
2490 break;
2494 else
2496 my_friendly_assert (BINFO_TYPE (here) == BINFO_TYPE (binfo), 20030202);
2497 result = here;
2500 my_friendly_assert (result, 20030202);
2501 return result;
2504 /* BINFO is some base binfo of HERE, within some other
2505 hierarchy. Return the equivalent binfo, but in the hierarchy
2506 dominated by HERE. This is the inverse of copied_binfo. If BINFO
2507 is not a base binfo of HERE, returns NULL_TREE. */
2509 tree
2510 original_binfo (tree binfo, tree here)
2512 tree result = NULL;
2514 if (BINFO_TYPE (binfo) == BINFO_TYPE (here))
2515 result = here;
2516 else if (TREE_VIA_VIRTUAL (binfo))
2518 result = purpose_member (BINFO_TYPE (binfo),
2519 CLASSTYPE_VBASECLASSES (BINFO_TYPE (here)));
2520 if (result)
2521 result = TREE_VALUE (result);
2523 else if (BINFO_INHERITANCE_CHAIN (binfo))
2525 tree base_binfos;
2527 base_binfos = original_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2528 if (base_binfos)
2530 int ix, n;
2532 base_binfos = BINFO_BASETYPES (base_binfos);
2533 n = TREE_VEC_LENGTH (base_binfos);
2534 for (ix = 0; ix != n; ix++)
2536 tree base = TREE_VEC_ELT (base_binfos, ix);
2538 if (BINFO_TYPE (base) == BINFO_TYPE (binfo))
2540 result = base;
2541 break;
2547 return result;