PR c++/11645
[official-gcc.git] / gcc / cfganal.c
blobe45b48465e2c1539dc66ebeeebc892ce26697ded
1 /* Control flow graph analysis code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains various simple utilities to analyze the CFG. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "hard-reg-set.h"
29 #include "basic-block.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "toplev.h"
33 #include "tm_p.h"
35 /* Store the data structures necessary for depth-first search. */
36 struct depth_first_search_dsS {
37 /* stack for backtracking during the algorithm */
38 basic_block *stack;
40 /* number of edges in the stack. That is, positions 0, ..., sp-1
41 have edges. */
42 unsigned int sp;
44 /* record of basic blocks already seen by depth-first search */
45 sbitmap visited_blocks;
47 typedef struct depth_first_search_dsS *depth_first_search_ds;
49 static void flow_dfs_compute_reverse_init (depth_first_search_ds);
50 static void flow_dfs_compute_reverse_add_bb (depth_first_search_ds,
51 basic_block);
52 static basic_block flow_dfs_compute_reverse_execute (depth_first_search_ds);
53 static void flow_dfs_compute_reverse_finish (depth_first_search_ds);
54 static void remove_fake_successors (basic_block);
55 static bool need_fake_edge_p (rtx);
56 static bool flow_active_insn_p (rtx);
58 /* Like active_insn_p, except keep the return value clobber around
59 even after reload. */
61 static bool
62 flow_active_insn_p (rtx insn)
64 if (active_insn_p (insn))
65 return true;
67 /* A clobber of the function return value exists for buggy
68 programs that fail to return a value. Its effect is to
69 keep the return value from being live across the entire
70 function. If we allow it to be skipped, we introduce the
71 possibility for register livetime aborts. */
72 if (GET_CODE (PATTERN (insn)) == CLOBBER
73 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG
74 && REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))
75 return true;
77 return false;
80 /* Return true if the block has no effect and only forwards control flow to
81 its single destination. */
83 bool
84 forwarder_block_p (basic_block bb)
86 rtx insn;
88 if (bb == EXIT_BLOCK_PTR || bb == ENTRY_BLOCK_PTR
89 || !bb->succ || bb->succ->succ_next)
90 return false;
92 for (insn = bb->head; insn != bb->end; insn = NEXT_INSN (insn))
93 if (INSN_P (insn) && flow_active_insn_p (insn))
94 return false;
96 return (!INSN_P (insn)
97 || (GET_CODE (insn) == JUMP_INSN && simplejump_p (insn))
98 || !flow_active_insn_p (insn));
101 /* Return nonzero if we can reach target from src by falling through. */
103 bool
104 can_fallthru (basic_block src, basic_block target)
106 rtx insn = src->end;
107 rtx insn2 = target == EXIT_BLOCK_PTR ? NULL : target->head;
109 if (src->next_bb != target)
110 return 0;
112 if (insn2 && !active_insn_p (insn2))
113 insn2 = next_active_insn (insn2);
115 /* ??? Later we may add code to move jump tables offline. */
116 return next_active_insn (insn) == insn2;
119 /* Mark the back edges in DFS traversal.
120 Return nonzero if a loop (natural or otherwise) is present.
121 Inspired by Depth_First_Search_PP described in:
123 Advanced Compiler Design and Implementation
124 Steven Muchnick
125 Morgan Kaufmann, 1997
127 and heavily borrowed from flow_depth_first_order_compute. */
129 bool
130 mark_dfs_back_edges (void)
132 edge *stack;
133 int *pre;
134 int *post;
135 int sp;
136 int prenum = 1;
137 int postnum = 1;
138 sbitmap visited;
139 bool found = false;
141 /* Allocate the preorder and postorder number arrays. */
142 pre = xcalloc (last_basic_block, sizeof (int));
143 post = xcalloc (last_basic_block, sizeof (int));
145 /* Allocate stack for back-tracking up CFG. */
146 stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge));
147 sp = 0;
149 /* Allocate bitmap to track nodes that have been visited. */
150 visited = sbitmap_alloc (last_basic_block);
152 /* None of the nodes in the CFG have been visited yet. */
153 sbitmap_zero (visited);
155 /* Push the first edge on to the stack. */
156 stack[sp++] = ENTRY_BLOCK_PTR->succ;
158 while (sp)
160 edge e;
161 basic_block src;
162 basic_block dest;
164 /* Look at the edge on the top of the stack. */
165 e = stack[sp - 1];
166 src = e->src;
167 dest = e->dest;
168 e->flags &= ~EDGE_DFS_BACK;
170 /* Check if the edge destination has been visited yet. */
171 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
173 /* Mark that we have visited the destination. */
174 SET_BIT (visited, dest->index);
176 pre[dest->index] = prenum++;
177 if (dest->succ)
179 /* Since the DEST node has been visited for the first
180 time, check its successors. */
181 stack[sp++] = dest->succ;
183 else
184 post[dest->index] = postnum++;
186 else
188 if (dest != EXIT_BLOCK_PTR && src != ENTRY_BLOCK_PTR
189 && pre[src->index] >= pre[dest->index]
190 && post[dest->index] == 0)
191 e->flags |= EDGE_DFS_BACK, found = true;
193 if (! e->succ_next && src != ENTRY_BLOCK_PTR)
194 post[src->index] = postnum++;
196 if (e->succ_next)
197 stack[sp - 1] = e->succ_next;
198 else
199 sp--;
203 free (pre);
204 free (post);
205 free (stack);
206 sbitmap_free (visited);
208 return found;
211 /* Set the flag EDGE_CAN_FALLTHRU for edges that can be fallthru. */
213 void
214 set_edge_can_fallthru_flag (void)
216 basic_block bb;
218 FOR_EACH_BB (bb)
220 edge e;
222 for (e = bb->succ; e; e = e->succ_next)
224 e->flags &= ~EDGE_CAN_FALLTHRU;
226 /* The FALLTHRU edge is also CAN_FALLTHRU edge. */
227 if (e->flags & EDGE_FALLTHRU)
228 e->flags |= EDGE_CAN_FALLTHRU;
231 /* If the BB ends with an invertible condjump all (2) edges are
232 CAN_FALLTHRU edges. */
233 if (!bb->succ || !bb->succ->succ_next || bb->succ->succ_next->succ_next)
234 continue;
235 if (!any_condjump_p (bb->end))
236 continue;
237 if (!invert_jump (bb->end, JUMP_LABEL (bb->end), 0))
238 continue;
239 invert_jump (bb->end, JUMP_LABEL (bb->end), 0);
240 bb->succ->flags |= EDGE_CAN_FALLTHRU;
241 bb->succ->succ_next->flags |= EDGE_CAN_FALLTHRU;
245 /* Return true if we need to add fake edge to exit.
246 Helper function for the flow_call_edges_add. */
248 static bool
249 need_fake_edge_p (rtx insn)
251 if (!INSN_P (insn))
252 return false;
254 if ((GET_CODE (insn) == CALL_INSN
255 && !SIBLING_CALL_P (insn)
256 && !find_reg_note (insn, REG_NORETURN, NULL)
257 && !find_reg_note (insn, REG_ALWAYS_RETURN, NULL)
258 && !CONST_OR_PURE_CALL_P (insn)))
259 return true;
261 return ((GET_CODE (PATTERN (insn)) == ASM_OPERANDS
262 && MEM_VOLATILE_P (PATTERN (insn)))
263 || (GET_CODE (PATTERN (insn)) == PARALLEL
264 && asm_noperands (insn) != -1
265 && MEM_VOLATILE_P (XVECEXP (PATTERN (insn), 0, 0)))
266 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
269 /* Add fake edges to the function exit for any non constant and non noreturn
270 calls, volatile inline assembly in the bitmap of blocks specified by
271 BLOCKS or to the whole CFG if BLOCKS is zero. Return the number of blocks
272 that were split.
274 The goal is to expose cases in which entering a basic block does not imply
275 that all subsequent instructions must be executed. */
278 flow_call_edges_add (sbitmap blocks)
280 int i;
281 int blocks_split = 0;
282 int last_bb = last_basic_block;
283 bool check_last_block = false;
285 if (n_basic_blocks == 0)
286 return 0;
288 if (! blocks)
289 check_last_block = true;
290 else
291 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
293 /* In the last basic block, before epilogue generation, there will be
294 a fallthru edge to EXIT. Special care is required if the last insn
295 of the last basic block is a call because make_edge folds duplicate
296 edges, which would result in the fallthru edge also being marked
297 fake, which would result in the fallthru edge being removed by
298 remove_fake_edges, which would result in an invalid CFG.
300 Moreover, we can't elide the outgoing fake edge, since the block
301 profiler needs to take this into account in order to solve the minimal
302 spanning tree in the case that the call doesn't return.
304 Handle this by adding a dummy instruction in a new last basic block. */
305 if (check_last_block)
307 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
308 rtx insn = bb->end;
310 /* Back up past insns that must be kept in the same block as a call. */
311 while (insn != bb->head
312 && keep_with_call_p (insn))
313 insn = PREV_INSN (insn);
315 if (need_fake_edge_p (insn))
317 edge e;
319 for (e = bb->succ; e; e = e->succ_next)
320 if (e->dest == EXIT_BLOCK_PTR)
322 insert_insn_on_edge (gen_rtx_USE (VOIDmode, const0_rtx), e);
323 commit_edge_insertions ();
324 break;
329 /* Now add fake edges to the function exit for any non constant
330 calls since there is no way that we can determine if they will
331 return or not... */
333 for (i = 0; i < last_bb; i++)
335 basic_block bb = BASIC_BLOCK (i);
336 rtx insn;
337 rtx prev_insn;
339 if (!bb)
340 continue;
342 if (blocks && !TEST_BIT (blocks, i))
343 continue;
345 for (insn = bb->end; ; insn = prev_insn)
347 prev_insn = PREV_INSN (insn);
348 if (need_fake_edge_p (insn))
350 edge e;
351 rtx split_at_insn = insn;
353 /* Don't split the block between a call and an insn that should
354 remain in the same block as the call. */
355 if (GET_CODE (insn) == CALL_INSN)
356 while (split_at_insn != bb->end
357 && keep_with_call_p (NEXT_INSN (split_at_insn)))
358 split_at_insn = NEXT_INSN (split_at_insn);
360 /* The handling above of the final block before the epilogue
361 should be enough to verify that there is no edge to the exit
362 block in CFG already. Calling make_edge in such case would
363 cause us to mark that edge as fake and remove it later. */
365 #ifdef ENABLE_CHECKING
366 if (split_at_insn == bb->end)
367 for (e = bb->succ; e; e = e->succ_next)
368 if (e->dest == EXIT_BLOCK_PTR)
369 abort ();
370 #endif
372 /* Note that the following may create a new basic block
373 and renumber the existing basic blocks. */
374 if (split_at_insn != bb->end)
376 e = split_block (bb, split_at_insn);
377 if (e)
378 blocks_split++;
381 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
384 if (insn == bb->head)
385 break;
389 if (blocks_split)
390 verify_flow_info ();
392 return blocks_split;
395 /* Find unreachable blocks. An unreachable block will have 0 in
396 the reachable bit in block->flags. A nonzero value indicates the
397 block is reachable. */
399 void
400 find_unreachable_blocks (void)
402 edge e;
403 basic_block *tos, *worklist, bb;
405 tos = worklist = xmalloc (sizeof (basic_block) * n_basic_blocks);
407 /* Clear all the reachability flags. */
409 FOR_EACH_BB (bb)
410 bb->flags &= ~BB_REACHABLE;
412 /* Add our starting points to the worklist. Almost always there will
413 be only one. It isn't inconceivable that we might one day directly
414 support Fortran alternate entry points. */
416 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
418 *tos++ = e->dest;
420 /* Mark the block reachable. */
421 e->dest->flags |= BB_REACHABLE;
424 /* Iterate: find everything reachable from what we've already seen. */
426 while (tos != worklist)
428 basic_block b = *--tos;
430 for (e = b->succ; e; e = e->succ_next)
431 if (!(e->dest->flags & BB_REACHABLE))
433 *tos++ = e->dest;
434 e->dest->flags |= BB_REACHABLE;
438 free (worklist);
441 /* Functions to access an edge list with a vector representation.
442 Enough data is kept such that given an index number, the
443 pred and succ that edge represents can be determined, or
444 given a pred and a succ, its index number can be returned.
445 This allows algorithms which consume a lot of memory to
446 represent the normally full matrix of edge (pred,succ) with a
447 single indexed vector, edge (EDGE_INDEX (pred, succ)), with no
448 wasted space in the client code due to sparse flow graphs. */
450 /* This functions initializes the edge list. Basically the entire
451 flowgraph is processed, and all edges are assigned a number,
452 and the data structure is filled in. */
454 struct edge_list *
455 create_edge_list (void)
457 struct edge_list *elist;
458 edge e;
459 int num_edges;
460 int block_count;
461 basic_block bb;
463 block_count = n_basic_blocks + 2; /* Include the entry and exit blocks. */
465 num_edges = 0;
467 /* Determine the number of edges in the flow graph by counting successor
468 edges on each basic block. */
469 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
471 for (e = bb->succ; e; e = e->succ_next)
472 num_edges++;
475 elist = xmalloc (sizeof (struct edge_list));
476 elist->num_blocks = block_count;
477 elist->num_edges = num_edges;
478 elist->index_to_edge = xmalloc (sizeof (edge) * num_edges);
480 num_edges = 0;
482 /* Follow successors of blocks, and register these edges. */
483 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
484 for (e = bb->succ; e; e = e->succ_next)
485 elist->index_to_edge[num_edges++] = e;
487 return elist;
490 /* This function free's memory associated with an edge list. */
492 void
493 free_edge_list (struct edge_list *elist)
495 if (elist)
497 free (elist->index_to_edge);
498 free (elist);
502 /* This function provides debug output showing an edge list. */
504 void
505 print_edge_list (FILE *f, struct edge_list *elist)
507 int x;
509 fprintf (f, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
510 elist->num_blocks - 2, elist->num_edges);
512 for (x = 0; x < elist->num_edges; x++)
514 fprintf (f, " %-4d - edge(", x);
515 if (INDEX_EDGE_PRED_BB (elist, x) == ENTRY_BLOCK_PTR)
516 fprintf (f, "entry,");
517 else
518 fprintf (f, "%d,", INDEX_EDGE_PRED_BB (elist, x)->index);
520 if (INDEX_EDGE_SUCC_BB (elist, x) == EXIT_BLOCK_PTR)
521 fprintf (f, "exit)\n");
522 else
523 fprintf (f, "%d)\n", INDEX_EDGE_SUCC_BB (elist, x)->index);
527 /* This function provides an internal consistency check of an edge list,
528 verifying that all edges are present, and that there are no
529 extra edges. */
531 void
532 verify_edge_list (FILE *f, struct edge_list *elist)
534 int pred, succ, index;
535 edge e;
536 basic_block bb, p, s;
538 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
540 for (e = bb->succ; e; e = e->succ_next)
542 pred = e->src->index;
543 succ = e->dest->index;
544 index = EDGE_INDEX (elist, e->src, e->dest);
545 if (index == EDGE_INDEX_NO_EDGE)
547 fprintf (f, "*p* No index for edge from %d to %d\n", pred, succ);
548 continue;
551 if (INDEX_EDGE_PRED_BB (elist, index)->index != pred)
552 fprintf (f, "*p* Pred for index %d should be %d not %d\n",
553 index, pred, INDEX_EDGE_PRED_BB (elist, index)->index);
554 if (INDEX_EDGE_SUCC_BB (elist, index)->index != succ)
555 fprintf (f, "*p* Succ for index %d should be %d not %d\n",
556 index, succ, INDEX_EDGE_SUCC_BB (elist, index)->index);
560 /* We've verified that all the edges are in the list, now lets make sure
561 there are no spurious edges in the list. */
563 FOR_BB_BETWEEN (p, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
564 FOR_BB_BETWEEN (s, ENTRY_BLOCK_PTR->next_bb, NULL, next_bb)
566 int found_edge = 0;
568 for (e = p->succ; e; e = e->succ_next)
569 if (e->dest == s)
571 found_edge = 1;
572 break;
575 for (e = s->pred; e; e = e->pred_next)
576 if (e->src == p)
578 found_edge = 1;
579 break;
582 if (EDGE_INDEX (elist, p, s)
583 == EDGE_INDEX_NO_EDGE && found_edge != 0)
584 fprintf (f, "*** Edge (%d, %d) appears to not have an index\n",
585 p->index, s->index);
586 if (EDGE_INDEX (elist, p, s)
587 != EDGE_INDEX_NO_EDGE && found_edge == 0)
588 fprintf (f, "*** Edge (%d, %d) has index %d, but there is no edge\n",
589 p->index, s->index, EDGE_INDEX (elist, p, s));
593 /* This routine will determine what, if any, edge there is between
594 a specified predecessor and successor. */
597 find_edge_index (struct edge_list *edge_list, basic_block pred, basic_block succ)
599 int x;
601 for (x = 0; x < NUM_EDGES (edge_list); x++)
602 if (INDEX_EDGE_PRED_BB (edge_list, x) == pred
603 && INDEX_EDGE_SUCC_BB (edge_list, x) == succ)
604 return x;
606 return (EDGE_INDEX_NO_EDGE);
609 /* Dump the list of basic blocks in the bitmap NODES. */
611 void
612 flow_nodes_print (const char *str, const sbitmap nodes, FILE *file)
614 int node;
616 if (! nodes)
617 return;
619 fprintf (file, "%s { ", str);
620 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, node, {fprintf (file, "%d ", node);});
621 fputs ("}\n", file);
624 /* Dump the list of edges in the array EDGE_LIST. */
626 void
627 flow_edge_list_print (const char *str, const edge *edge_list, int num_edges, FILE *file)
629 int i;
631 if (! edge_list)
632 return;
634 fprintf (file, "%s { ", str);
635 for (i = 0; i < num_edges; i++)
636 fprintf (file, "%d->%d ", edge_list[i]->src->index,
637 edge_list[i]->dest->index);
639 fputs ("}\n", file);
643 /* This routine will remove any fake successor edges for a basic block.
644 When the edge is removed, it is also removed from whatever predecessor
645 list it is in. */
647 static void
648 remove_fake_successors (basic_block bb)
650 edge e;
652 for (e = bb->succ; e;)
654 edge tmp = e;
656 e = e->succ_next;
657 if ((tmp->flags & EDGE_FAKE) == EDGE_FAKE)
658 remove_edge (tmp);
662 /* This routine will remove all fake edges from the flow graph. If
663 we remove all fake successors, it will automatically remove all
664 fake predecessors. */
666 void
667 remove_fake_edges (void)
669 basic_block bb;
671 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
672 remove_fake_successors (bb);
675 /* This function will add a fake edge between any block which has no
676 successors, and the exit block. Some data flow equations require these
677 edges to exist. */
679 void
680 add_noreturn_fake_exit_edges (void)
682 basic_block bb;
684 FOR_EACH_BB (bb)
685 if (bb->succ == NULL)
686 make_single_succ_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
689 /* This function adds a fake edge between any infinite loops to the
690 exit block. Some optimizations require a path from each node to
691 the exit node.
693 See also Morgan, Figure 3.10, pp. 82-83.
695 The current implementation is ugly, not attempting to minimize the
696 number of inserted fake edges. To reduce the number of fake edges
697 to insert, add fake edges from _innermost_ loops containing only
698 nodes not reachable from the exit block. */
700 void
701 connect_infinite_loops_to_exit (void)
703 basic_block unvisited_block;
704 struct depth_first_search_dsS dfs_ds;
706 /* Perform depth-first search in the reverse graph to find nodes
707 reachable from the exit block. */
708 flow_dfs_compute_reverse_init (&dfs_ds);
709 flow_dfs_compute_reverse_add_bb (&dfs_ds, EXIT_BLOCK_PTR);
711 /* Repeatedly add fake edges, updating the unreachable nodes. */
712 while (1)
714 unvisited_block = flow_dfs_compute_reverse_execute (&dfs_ds);
715 if (!unvisited_block)
716 break;
718 make_edge (unvisited_block, EXIT_BLOCK_PTR, EDGE_FAKE);
719 flow_dfs_compute_reverse_add_bb (&dfs_ds, unvisited_block);
722 flow_dfs_compute_reverse_finish (&dfs_ds);
723 return;
726 /* Compute reverse top sort order. */
728 void
729 flow_reverse_top_sort_order_compute (int *rts_order)
731 edge *stack;
732 int sp;
733 int postnum = 0;
734 sbitmap visited;
736 /* Allocate stack for back-tracking up CFG. */
737 stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge));
738 sp = 0;
740 /* Allocate bitmap to track nodes that have been visited. */
741 visited = sbitmap_alloc (last_basic_block);
743 /* None of the nodes in the CFG have been visited yet. */
744 sbitmap_zero (visited);
746 /* Push the first edge on to the stack. */
747 stack[sp++] = ENTRY_BLOCK_PTR->succ;
749 while (sp)
751 edge e;
752 basic_block src;
753 basic_block dest;
755 /* Look at the edge on the top of the stack. */
756 e = stack[sp - 1];
757 src = e->src;
758 dest = e->dest;
760 /* Check if the edge destination has been visited yet. */
761 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
763 /* Mark that we have visited the destination. */
764 SET_BIT (visited, dest->index);
766 if (dest->succ)
767 /* Since the DEST node has been visited for the first
768 time, check its successors. */
769 stack[sp++] = dest->succ;
770 else
771 rts_order[postnum++] = dest->index;
773 else
775 if (! e->succ_next && src != ENTRY_BLOCK_PTR)
776 rts_order[postnum++] = src->index;
778 if (e->succ_next)
779 stack[sp - 1] = e->succ_next;
780 else
781 sp--;
785 free (stack);
786 sbitmap_free (visited);
789 /* Compute the depth first search order and store in the array
790 DFS_ORDER if nonzero, marking the nodes visited in VISITED. If
791 RC_ORDER is nonzero, return the reverse completion number for each
792 node. Returns the number of nodes visited. A depth first search
793 tries to get as far away from the starting point as quickly as
794 possible. */
797 flow_depth_first_order_compute (int *dfs_order, int *rc_order)
799 edge *stack;
800 int sp;
801 int dfsnum = 0;
802 int rcnum = n_basic_blocks - 1;
803 sbitmap visited;
805 /* Allocate stack for back-tracking up CFG. */
806 stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge));
807 sp = 0;
809 /* Allocate bitmap to track nodes that have been visited. */
810 visited = sbitmap_alloc (last_basic_block);
812 /* None of the nodes in the CFG have been visited yet. */
813 sbitmap_zero (visited);
815 /* Push the first edge on to the stack. */
816 stack[sp++] = ENTRY_BLOCK_PTR->succ;
818 while (sp)
820 edge e;
821 basic_block src;
822 basic_block dest;
824 /* Look at the edge on the top of the stack. */
825 e = stack[sp - 1];
826 src = e->src;
827 dest = e->dest;
829 /* Check if the edge destination has been visited yet. */
830 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
832 /* Mark that we have visited the destination. */
833 SET_BIT (visited, dest->index);
835 if (dfs_order)
836 dfs_order[dfsnum] = dest->index;
838 dfsnum++;
840 if (dest->succ)
841 /* Since the DEST node has been visited for the first
842 time, check its successors. */
843 stack[sp++] = dest->succ;
844 else if (rc_order)
845 /* There are no successors for the DEST node so assign
846 its reverse completion number. */
847 rc_order[rcnum--] = dest->index;
849 else
851 if (! e->succ_next && src != ENTRY_BLOCK_PTR
852 && rc_order)
853 /* There are no more successors for the SRC node
854 so assign its reverse completion number. */
855 rc_order[rcnum--] = src->index;
857 if (e->succ_next)
858 stack[sp - 1] = e->succ_next;
859 else
860 sp--;
864 free (stack);
865 sbitmap_free (visited);
867 /* The number of nodes visited should not be greater than
868 n_basic_blocks. */
869 if (dfsnum > n_basic_blocks)
870 abort ();
872 /* There are some nodes left in the CFG that are unreachable. */
873 if (dfsnum < n_basic_blocks)
874 abort ();
876 return dfsnum;
879 struct dfst_node
881 unsigned nnodes;
882 struct dfst_node **node;
883 struct dfst_node *up;
886 /* Compute a preorder transversal ordering such that a sub-tree which
887 is the source of a cross edge appears before the sub-tree which is
888 the destination of the cross edge. This allows for easy detection
889 of all the entry blocks for a loop.
891 The ordering is compute by:
893 1) Generating a depth first spanning tree.
895 2) Walking the resulting tree from right to left. */
897 void
898 flow_preorder_transversal_compute (int *pot_order)
900 edge e;
901 edge *stack;
902 int i;
903 int max_successors;
904 int sp;
905 sbitmap visited;
906 struct dfst_node *node;
907 struct dfst_node *dfst;
908 basic_block bb;
910 /* Allocate stack for back-tracking up CFG. */
911 stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge));
912 sp = 0;
914 /* Allocate the tree. */
915 dfst = xcalloc (last_basic_block, sizeof (struct dfst_node));
917 FOR_EACH_BB (bb)
919 max_successors = 0;
920 for (e = bb->succ; e; e = e->succ_next)
921 max_successors++;
923 dfst[bb->index].node
924 = (max_successors
925 ? xcalloc (max_successors, sizeof (struct dfst_node *)) : NULL);
928 /* Allocate bitmap to track nodes that have been visited. */
929 visited = sbitmap_alloc (last_basic_block);
931 /* None of the nodes in the CFG have been visited yet. */
932 sbitmap_zero (visited);
934 /* Push the first edge on to the stack. */
935 stack[sp++] = ENTRY_BLOCK_PTR->succ;
937 while (sp)
939 basic_block src;
940 basic_block dest;
942 /* Look at the edge on the top of the stack. */
943 e = stack[sp - 1];
944 src = e->src;
945 dest = e->dest;
947 /* Check if the edge destination has been visited yet. */
948 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
950 /* Mark that we have visited the destination. */
951 SET_BIT (visited, dest->index);
953 /* Add the destination to the preorder tree. */
954 if (src != ENTRY_BLOCK_PTR)
956 dfst[src->index].node[dfst[src->index].nnodes++]
957 = &dfst[dest->index];
958 dfst[dest->index].up = &dfst[src->index];
961 if (dest->succ)
962 /* Since the DEST node has been visited for the first
963 time, check its successors. */
964 stack[sp++] = dest->succ;
967 else if (e->succ_next)
968 stack[sp - 1] = e->succ_next;
969 else
970 sp--;
973 free (stack);
974 sbitmap_free (visited);
976 /* Record the preorder transversal order by
977 walking the tree from right to left. */
979 i = 0;
980 node = &dfst[ENTRY_BLOCK_PTR->next_bb->index];
981 pot_order[i++] = 0;
983 while (node)
985 if (node->nnodes)
987 node = node->node[--node->nnodes];
988 pot_order[i++] = node - dfst;
990 else
991 node = node->up;
994 /* Free the tree. */
996 for (i = 0; i < last_basic_block; i++)
997 if (dfst[i].node)
998 free (dfst[i].node);
1000 free (dfst);
1003 /* Compute the depth first search order on the _reverse_ graph and
1004 store in the array DFS_ORDER, marking the nodes visited in VISITED.
1005 Returns the number of nodes visited.
1007 The computation is split into three pieces:
1009 flow_dfs_compute_reverse_init () creates the necessary data
1010 structures.
1012 flow_dfs_compute_reverse_add_bb () adds a basic block to the data
1013 structures. The block will start the search.
1015 flow_dfs_compute_reverse_execute () continues (or starts) the
1016 search using the block on the top of the stack, stopping when the
1017 stack is empty.
1019 flow_dfs_compute_reverse_finish () destroys the necessary data
1020 structures.
1022 Thus, the user will probably call ..._init(), call ..._add_bb() to
1023 add a beginning basic block to the stack, call ..._execute(),
1024 possibly add another bb to the stack and again call ..._execute(),
1025 ..., and finally call _finish(). */
1027 /* Initialize the data structures used for depth-first search on the
1028 reverse graph. If INITIALIZE_STACK is nonzero, the exit block is
1029 added to the basic block stack. DATA is the current depth-first
1030 search context. If INITIALIZE_STACK is nonzero, there is an
1031 element on the stack. */
1033 static void
1034 flow_dfs_compute_reverse_init (depth_first_search_ds data)
1036 /* Allocate stack for back-tracking up CFG. */
1037 data->stack = xmalloc ((n_basic_blocks - (INVALID_BLOCK + 1))
1038 * sizeof (basic_block));
1039 data->sp = 0;
1041 /* Allocate bitmap to track nodes that have been visited. */
1042 data->visited_blocks = sbitmap_alloc (last_basic_block - (INVALID_BLOCK + 1));
1044 /* None of the nodes in the CFG have been visited yet. */
1045 sbitmap_zero (data->visited_blocks);
1047 return;
1050 /* Add the specified basic block to the top of the dfs data
1051 structures. When the search continues, it will start at the
1052 block. */
1054 static void
1055 flow_dfs_compute_reverse_add_bb (depth_first_search_ds data, basic_block bb)
1057 data->stack[data->sp++] = bb;
1058 SET_BIT (data->visited_blocks, bb->index - (INVALID_BLOCK + 1));
1061 /* Continue the depth-first search through the reverse graph starting with the
1062 block at the stack's top and ending when the stack is empty. Visited nodes
1063 are marked. Returns an unvisited basic block, or NULL if there is none
1064 available. */
1066 static basic_block
1067 flow_dfs_compute_reverse_execute (depth_first_search_ds data)
1069 basic_block bb;
1070 edge e;
1072 while (data->sp > 0)
1074 bb = data->stack[--data->sp];
1076 /* Perform depth-first search on adjacent vertices. */
1077 for (e = bb->pred; e; e = e->pred_next)
1078 if (!TEST_BIT (data->visited_blocks,
1079 e->src->index - (INVALID_BLOCK + 1)))
1080 flow_dfs_compute_reverse_add_bb (data, e->src);
1083 /* Determine if there are unvisited basic blocks. */
1084 FOR_BB_BETWEEN (bb, EXIT_BLOCK_PTR, NULL, prev_bb)
1085 if (!TEST_BIT (data->visited_blocks, bb->index - (INVALID_BLOCK + 1)))
1086 return bb;
1088 return NULL;
1091 /* Destroy the data structures needed for depth-first search on the
1092 reverse graph. */
1094 static void
1095 flow_dfs_compute_reverse_finish (depth_first_search_ds data)
1097 free (data->stack);
1098 sbitmap_free (data->visited_blocks);
1101 /* Performs dfs search from BB over vertices satisfying PREDICATE;
1102 if REVERSE, go against direction of edges. Returns number of blocks
1103 found and their list in RSLT. RSLT can contain at most RSLT_MAX items. */
1105 dfs_enumerate_from (basic_block bb, int reverse,
1106 bool (*predicate) (basic_block, void *),
1107 basic_block *rslt, int rslt_max, void *data)
1109 basic_block *st, lbb;
1110 int sp = 0, tv = 0;
1112 st = xcalloc (rslt_max, sizeof (basic_block));
1113 rslt[tv++] = st[sp++] = bb;
1114 bb->flags |= BB_VISITED;
1115 while (sp)
1117 edge e;
1118 lbb = st[--sp];
1119 if (reverse)
1121 for (e = lbb->pred; e; e = e->pred_next)
1122 if (!(e->src->flags & BB_VISITED) && predicate (e->src, data))
1124 if (tv == rslt_max)
1125 abort ();
1126 rslt[tv++] = st[sp++] = e->src;
1127 e->src->flags |= BB_VISITED;
1130 else
1132 for (e = lbb->succ; e; e = e->succ_next)
1133 if (!(e->dest->flags & BB_VISITED) && predicate (e->dest, data))
1135 if (tv == rslt_max)
1136 abort ();
1137 rslt[tv++] = st[sp++] = e->dest;
1138 e->dest->flags |= BB_VISITED;
1142 free (st);
1143 for (sp = 0; sp < tv; sp++)
1144 rslt[sp]->flags &= ~BB_VISITED;
1145 return tv;