* config/arm/arm.md (addsi3_cbranch_scratch): Correct constraints.
[official-gcc.git] / gcc / reload.c
blobf3c5978164e4134cb4c1deed01bd509672255ee3
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
29 Before processing the first insn of the function, call `init_reload'.
30 init_reload actually has to be called earlier anyway.
32 To scan an insn, call `find_reloads'. This does two things:
33 1. sets up tables describing which values must be reloaded
34 for this insn, and what kind of hard regs they must be reloaded into;
35 2. optionally record the locations where those values appear in
36 the data, so they can be replaced properly later.
37 This is done only if the second arg to `find_reloads' is nonzero.
39 The third arg to `find_reloads' specifies the number of levels
40 of indirect addressing supported by the machine. If it is zero,
41 indirect addressing is not valid. If it is one, (MEM (REG n))
42 is valid even if (REG n) did not get a hard register; if it is two,
43 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
44 hard register, and similarly for higher values.
46 Then you must choose the hard regs to reload those pseudo regs into,
47 and generate appropriate load insns before this insn and perhaps
48 also store insns after this insn. Set up the array `reload_reg_rtx'
49 to contain the REG rtx's for the registers you used. In some
50 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
51 for certain reloads. Then that tells you which register to use,
52 so you do not need to allocate one. But you still do need to add extra
53 instructions to copy the value into and out of that register.
55 Finally you must call `subst_reloads' to substitute the reload reg rtx's
56 into the locations already recorded.
58 NOTE SIDE EFFECTS:
60 find_reloads can alter the operands of the instruction it is called on.
62 1. Two operands of any sort may be interchanged, if they are in a
63 commutative instruction.
64 This happens only if find_reloads thinks the instruction will compile
65 better that way.
67 2. Pseudo-registers that are equivalent to constants are replaced
68 with those constants if they are not in hard registers.
70 1 happens every time find_reloads is called.
71 2 happens only when REPLACE is 1, which is only when
72 actually doing the reloads, not when just counting them.
74 Using a reload register for several reloads in one insn:
76 When an insn has reloads, it is considered as having three parts:
77 the input reloads, the insn itself after reloading, and the output reloads.
78 Reloads of values used in memory addresses are often needed for only one part.
80 When this is so, reload_when_needed records which part needs the reload.
81 Two reloads for different parts of the insn can share the same reload
82 register.
84 When a reload is used for addresses in multiple parts, or when it is
85 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
86 a register with any other reload. */
88 #define REG_OK_STRICT
90 #include "config.h"
91 #include "system.h"
92 #include "coretypes.h"
93 #include "tm.h"
94 #include "rtl.h"
95 #include "tm_p.h"
96 #include "insn-config.h"
97 #include "expr.h"
98 #include "optabs.h"
99 #include "recog.h"
100 #include "reload.h"
101 #include "regs.h"
102 #include "hard-reg-set.h"
103 #include "flags.h"
104 #include "real.h"
105 #include "output.h"
106 #include "function.h"
107 #include "toplev.h"
108 #include "params.h"
109 #include "target.h"
111 #ifndef REGNO_MODE_OK_FOR_BASE_P
112 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
113 #endif
115 #ifndef REG_MODE_OK_FOR_BASE_P
116 #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
117 #endif
119 /* True if X is a constant that can be forced into the constant pool. */
120 #define CONST_POOL_OK_P(X) \
121 (CONSTANT_P (X) \
122 && GET_CODE (X) != HIGH \
123 && !targetm.cannot_force_const_mem (X))
125 /* All reloads of the current insn are recorded here. See reload.h for
126 comments. */
127 int n_reloads;
128 struct reload rld[MAX_RELOADS];
130 /* All the "earlyclobber" operands of the current insn
131 are recorded here. */
132 int n_earlyclobbers;
133 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
135 int reload_n_operands;
137 /* Replacing reloads.
139 If `replace_reloads' is nonzero, then as each reload is recorded
140 an entry is made for it in the table `replacements'.
141 Then later `subst_reloads' can look through that table and
142 perform all the replacements needed. */
144 /* Nonzero means record the places to replace. */
145 static int replace_reloads;
147 /* Each replacement is recorded with a structure like this. */
148 struct replacement
150 rtx *where; /* Location to store in */
151 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
152 a SUBREG; 0 otherwise. */
153 int what; /* which reload this is for */
154 enum machine_mode mode; /* mode it must have */
157 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
159 /* Number of replacements currently recorded. */
160 static int n_replacements;
162 /* Used to track what is modified by an operand. */
163 struct decomposition
165 int reg_flag; /* Nonzero if referencing a register. */
166 int safe; /* Nonzero if this can't conflict with anything. */
167 rtx base; /* Base address for MEM. */
168 HOST_WIDE_INT start; /* Starting offset or register number. */
169 HOST_WIDE_INT end; /* Ending offset or register number. */
172 #ifdef SECONDARY_MEMORY_NEEDED
174 /* Save MEMs needed to copy from one class of registers to another. One MEM
175 is used per mode, but normally only one or two modes are ever used.
177 We keep two versions, before and after register elimination. The one
178 after register elimination is record separately for each operand. This
179 is done in case the address is not valid to be sure that we separately
180 reload each. */
182 static rtx secondary_memlocs[NUM_MACHINE_MODES];
183 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
184 static int secondary_memlocs_elim_used = 0;
185 #endif
187 /* The instruction we are doing reloads for;
188 so we can test whether a register dies in it. */
189 static rtx this_insn;
191 /* Nonzero if this instruction is a user-specified asm with operands. */
192 static int this_insn_is_asm;
194 /* If hard_regs_live_known is nonzero,
195 we can tell which hard regs are currently live,
196 at least enough to succeed in choosing dummy reloads. */
197 static int hard_regs_live_known;
199 /* Indexed by hard reg number,
200 element is nonnegative if hard reg has been spilled.
201 This vector is passed to `find_reloads' as an argument
202 and is not changed here. */
203 static short *static_reload_reg_p;
205 /* Set to 1 in subst_reg_equivs if it changes anything. */
206 static int subst_reg_equivs_changed;
208 /* On return from push_reload, holds the reload-number for the OUT
209 operand, which can be different for that from the input operand. */
210 static int output_reloadnum;
212 /* Compare two RTX's. */
213 #define MATCHES(x, y) \
214 (x == y || (x != 0 && (REG_P (x) \
215 ? REG_P (y) && REGNO (x) == REGNO (y) \
216 : rtx_equal_p (x, y) && ! side_effects_p (x))))
218 /* Indicates if two reloads purposes are for similar enough things that we
219 can merge their reloads. */
220 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
221 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
222 || ((when1) == (when2) && (op1) == (op2)) \
223 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
224 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
225 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
226 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
227 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
229 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
230 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
231 ((when1) != (when2) \
232 || ! ((op1) == (op2) \
233 || (when1) == RELOAD_FOR_INPUT \
234 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
235 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
237 /* If we are going to reload an address, compute the reload type to
238 use. */
239 #define ADDR_TYPE(type) \
240 ((type) == RELOAD_FOR_INPUT_ADDRESS \
241 ? RELOAD_FOR_INPADDR_ADDRESS \
242 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
243 ? RELOAD_FOR_OUTADDR_ADDRESS \
244 : (type)))
246 #ifdef HAVE_SECONDARY_RELOADS
247 static int push_secondary_reload (int, rtx, int, int, enum reg_class,
248 enum machine_mode, enum reload_type,
249 enum insn_code *);
250 #endif
251 static enum reg_class find_valid_class (enum machine_mode, int, unsigned int);
252 static int reload_inner_reg_of_subreg (rtx, enum machine_mode, int);
253 static void push_replacement (rtx *, int, enum machine_mode);
254 static void dup_replacements (rtx *, rtx *);
255 static void combine_reloads (void);
256 static int find_reusable_reload (rtx *, rtx, enum reg_class,
257 enum reload_type, int, int);
258 static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
259 enum machine_mode, enum reg_class, int, int);
260 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
261 static struct decomposition decompose (rtx);
262 static int immune_p (rtx, rtx, struct decomposition);
263 static int alternative_allows_memconst (const char *, int);
264 static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
265 int *);
266 static rtx make_memloc (rtx, int);
267 static int maybe_memory_address_p (enum machine_mode, rtx, rtx *);
268 static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
269 int, enum reload_type, int, rtx);
270 static rtx subst_reg_equivs (rtx, rtx);
271 static rtx subst_indexed_address (rtx);
272 static void update_auto_inc_notes (rtx, int, int);
273 static int find_reloads_address_1 (enum machine_mode, rtx, int, rtx *,
274 int, enum reload_type,int, rtx);
275 static void find_reloads_address_part (rtx, rtx *, enum reg_class,
276 enum machine_mode, int,
277 enum reload_type, int);
278 static rtx find_reloads_subreg_address (rtx, int, int, enum reload_type,
279 int, rtx);
280 static void copy_replacements_1 (rtx *, rtx *, int);
281 static int find_inc_amount (rtx, rtx);
283 #ifdef HAVE_SECONDARY_RELOADS
285 /* Determine if any secondary reloads are needed for loading (if IN_P is
286 nonzero) or storing (if IN_P is zero) X to or from a reload register of
287 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
288 are needed, push them.
290 Return the reload number of the secondary reload we made, or -1 if
291 we didn't need one. *PICODE is set to the insn_code to use if we do
292 need a secondary reload. */
294 static int
295 push_secondary_reload (int in_p, rtx x, int opnum, int optional,
296 enum reg_class reload_class,
297 enum machine_mode reload_mode, enum reload_type type,
298 enum insn_code *picode)
300 enum reg_class class = NO_REGS;
301 enum machine_mode mode = reload_mode;
302 enum insn_code icode = CODE_FOR_nothing;
303 enum reg_class t_class = NO_REGS;
304 enum machine_mode t_mode = VOIDmode;
305 enum insn_code t_icode = CODE_FOR_nothing;
306 enum reload_type secondary_type;
307 int s_reload, t_reload = -1;
309 if (type == RELOAD_FOR_INPUT_ADDRESS
310 || type == RELOAD_FOR_OUTPUT_ADDRESS
311 || type == RELOAD_FOR_INPADDR_ADDRESS
312 || type == RELOAD_FOR_OUTADDR_ADDRESS)
313 secondary_type = type;
314 else
315 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
317 *picode = CODE_FOR_nothing;
319 /* If X is a paradoxical SUBREG, use the inner value to determine both the
320 mode and object being reloaded. */
321 if (GET_CODE (x) == SUBREG
322 && (GET_MODE_SIZE (GET_MODE (x))
323 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
325 x = SUBREG_REG (x);
326 reload_mode = GET_MODE (x);
329 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
330 is still a pseudo-register by now, it *must* have an equivalent MEM
331 but we don't want to assume that), use that equivalent when seeing if
332 a secondary reload is needed since whether or not a reload is needed
333 might be sensitive to the form of the MEM. */
335 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
336 && reg_equiv_mem[REGNO (x)] != 0)
337 x = reg_equiv_mem[REGNO (x)];
339 #ifdef SECONDARY_INPUT_RELOAD_CLASS
340 if (in_p)
341 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
342 #endif
344 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
345 if (! in_p)
346 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
347 #endif
349 /* If we don't need any secondary registers, done. */
350 if (class == NO_REGS)
351 return -1;
353 /* Get a possible insn to use. If the predicate doesn't accept X, don't
354 use the insn. */
356 icode = (in_p ? reload_in_optab[(int) reload_mode]
357 : reload_out_optab[(int) reload_mode]);
359 if (icode != CODE_FOR_nothing
360 && insn_data[(int) icode].operand[in_p].predicate
361 && (! (insn_data[(int) icode].operand[in_p].predicate) (x, reload_mode)))
362 icode = CODE_FOR_nothing;
364 /* If we will be using an insn, see if it can directly handle the reload
365 register we will be using. If it can, the secondary reload is for a
366 scratch register. If it can't, we will use the secondary reload for
367 an intermediate register and require a tertiary reload for the scratch
368 register. */
370 if (icode != CODE_FOR_nothing)
372 /* If IN_P is nonzero, the reload register will be the output in
373 operand 0. If IN_P is zero, the reload register will be the input
374 in operand 1. Outputs should have an initial "=", which we must
375 skip. */
377 enum reg_class insn_class;
379 if (insn_data[(int) icode].operand[!in_p].constraint[0] == 0)
380 insn_class = ALL_REGS;
381 else
383 const char *insn_constraint
384 = &insn_data[(int) icode].operand[!in_p].constraint[in_p];
385 char insn_letter = *insn_constraint;
386 insn_class
387 = (insn_letter == 'r' ? GENERAL_REGS
388 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) insn_letter,
389 insn_constraint));
391 gcc_assert (insn_class != NO_REGS);
392 gcc_assert (!in_p
393 || insn_data[(int) icode].operand[!in_p].constraint[0]
394 == '=');
397 /* The scratch register's constraint must start with "=&". */
398 gcc_assert (insn_data[(int) icode].operand[2].constraint[0] == '='
399 && insn_data[(int) icode].operand[2].constraint[1] == '&');
401 if (reg_class_subset_p (reload_class, insn_class))
402 mode = insn_data[(int) icode].operand[2].mode;
403 else
405 const char *t_constraint
406 = &insn_data[(int) icode].operand[2].constraint[2];
407 char t_letter = *t_constraint;
408 class = insn_class;
409 t_mode = insn_data[(int) icode].operand[2].mode;
410 t_class = (t_letter == 'r' ? GENERAL_REGS
411 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) t_letter,
412 t_constraint));
413 t_icode = icode;
414 icode = CODE_FOR_nothing;
418 /* This case isn't valid, so fail. Reload is allowed to use the same
419 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
420 in the case of a secondary register, we actually need two different
421 registers for correct code. We fail here to prevent the possibility of
422 silently generating incorrect code later.
424 The convention is that secondary input reloads are valid only if the
425 secondary_class is different from class. If you have such a case, you
426 can not use secondary reloads, you must work around the problem some
427 other way.
429 Allow this when a reload_in/out pattern is being used. I.e. assume
430 that the generated code handles this case. */
432 gcc_assert (!in_p || class != reload_class || icode != CODE_FOR_nothing
433 || t_icode != CODE_FOR_nothing);
435 /* If we need a tertiary reload, see if we have one we can reuse or else
436 make a new one. */
438 if (t_class != NO_REGS)
440 for (t_reload = 0; t_reload < n_reloads; t_reload++)
441 if (rld[t_reload].secondary_p
442 && (reg_class_subset_p (t_class, rld[t_reload].class)
443 || reg_class_subset_p (rld[t_reload].class, t_class))
444 && ((in_p && rld[t_reload].inmode == t_mode)
445 || (! in_p && rld[t_reload].outmode == t_mode))
446 && ((in_p && (rld[t_reload].secondary_in_icode
447 == CODE_FOR_nothing))
448 || (! in_p &&(rld[t_reload].secondary_out_icode
449 == CODE_FOR_nothing)))
450 && (reg_class_size[(int) t_class] == 1 || SMALL_REGISTER_CLASSES)
451 && MERGABLE_RELOADS (secondary_type,
452 rld[t_reload].when_needed,
453 opnum, rld[t_reload].opnum))
455 if (in_p)
456 rld[t_reload].inmode = t_mode;
457 if (! in_p)
458 rld[t_reload].outmode = t_mode;
460 if (reg_class_subset_p (t_class, rld[t_reload].class))
461 rld[t_reload].class = t_class;
463 rld[t_reload].opnum = MIN (rld[t_reload].opnum, opnum);
464 rld[t_reload].optional &= optional;
465 rld[t_reload].secondary_p = 1;
466 if (MERGE_TO_OTHER (secondary_type, rld[t_reload].when_needed,
467 opnum, rld[t_reload].opnum))
468 rld[t_reload].when_needed = RELOAD_OTHER;
471 if (t_reload == n_reloads)
473 /* We need to make a new tertiary reload for this register class. */
474 rld[t_reload].in = rld[t_reload].out = 0;
475 rld[t_reload].class = t_class;
476 rld[t_reload].inmode = in_p ? t_mode : VOIDmode;
477 rld[t_reload].outmode = ! in_p ? t_mode : VOIDmode;
478 rld[t_reload].reg_rtx = 0;
479 rld[t_reload].optional = optional;
480 rld[t_reload].inc = 0;
481 /* Maybe we could combine these, but it seems too tricky. */
482 rld[t_reload].nocombine = 1;
483 rld[t_reload].in_reg = 0;
484 rld[t_reload].out_reg = 0;
485 rld[t_reload].opnum = opnum;
486 rld[t_reload].when_needed = secondary_type;
487 rld[t_reload].secondary_in_reload = -1;
488 rld[t_reload].secondary_out_reload = -1;
489 rld[t_reload].secondary_in_icode = CODE_FOR_nothing;
490 rld[t_reload].secondary_out_icode = CODE_FOR_nothing;
491 rld[t_reload].secondary_p = 1;
493 n_reloads++;
497 /* See if we can reuse an existing secondary reload. */
498 for (s_reload = 0; s_reload < n_reloads; s_reload++)
499 if (rld[s_reload].secondary_p
500 && (reg_class_subset_p (class, rld[s_reload].class)
501 || reg_class_subset_p (rld[s_reload].class, class))
502 && ((in_p && rld[s_reload].inmode == mode)
503 || (! in_p && rld[s_reload].outmode == mode))
504 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
505 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
506 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
507 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
508 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
509 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
510 opnum, rld[s_reload].opnum))
512 if (in_p)
513 rld[s_reload].inmode = mode;
514 if (! in_p)
515 rld[s_reload].outmode = mode;
517 if (reg_class_subset_p (class, rld[s_reload].class))
518 rld[s_reload].class = class;
520 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
521 rld[s_reload].optional &= optional;
522 rld[s_reload].secondary_p = 1;
523 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
524 opnum, rld[s_reload].opnum))
525 rld[s_reload].when_needed = RELOAD_OTHER;
528 if (s_reload == n_reloads)
530 #ifdef SECONDARY_MEMORY_NEEDED
531 /* If we need a memory location to copy between the two reload regs,
532 set it up now. Note that we do the input case before making
533 the reload and the output case after. This is due to the
534 way reloads are output. */
536 if (in_p && icode == CODE_FOR_nothing
537 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
539 get_secondary_mem (x, reload_mode, opnum, type);
541 /* We may have just added new reloads. Make sure we add
542 the new reload at the end. */
543 s_reload = n_reloads;
545 #endif
547 /* We need to make a new secondary reload for this register class. */
548 rld[s_reload].in = rld[s_reload].out = 0;
549 rld[s_reload].class = class;
551 rld[s_reload].inmode = in_p ? mode : VOIDmode;
552 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
553 rld[s_reload].reg_rtx = 0;
554 rld[s_reload].optional = optional;
555 rld[s_reload].inc = 0;
556 /* Maybe we could combine these, but it seems too tricky. */
557 rld[s_reload].nocombine = 1;
558 rld[s_reload].in_reg = 0;
559 rld[s_reload].out_reg = 0;
560 rld[s_reload].opnum = opnum;
561 rld[s_reload].when_needed = secondary_type;
562 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
563 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
564 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
565 rld[s_reload].secondary_out_icode
566 = ! in_p ? t_icode : CODE_FOR_nothing;
567 rld[s_reload].secondary_p = 1;
569 n_reloads++;
571 #ifdef SECONDARY_MEMORY_NEEDED
572 if (! in_p && icode == CODE_FOR_nothing
573 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
574 get_secondary_mem (x, mode, opnum, type);
575 #endif
578 *picode = icode;
579 return s_reload;
581 #endif /* HAVE_SECONDARY_RELOADS */
583 #ifdef SECONDARY_MEMORY_NEEDED
585 /* Return a memory location that will be used to copy X in mode MODE.
586 If we haven't already made a location for this mode in this insn,
587 call find_reloads_address on the location being returned. */
590 get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
591 int opnum, enum reload_type type)
593 rtx loc;
594 int mem_valid;
596 /* By default, if MODE is narrower than a word, widen it to a word.
597 This is required because most machines that require these memory
598 locations do not support short load and stores from all registers
599 (e.g., FP registers). */
601 #ifdef SECONDARY_MEMORY_NEEDED_MODE
602 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
603 #else
604 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
605 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
606 #endif
608 /* If we already have made a MEM for this operand in MODE, return it. */
609 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
610 return secondary_memlocs_elim[(int) mode][opnum];
612 /* If this is the first time we've tried to get a MEM for this mode,
613 allocate a new one. `something_changed' in reload will get set
614 by noticing that the frame size has changed. */
616 if (secondary_memlocs[(int) mode] == 0)
618 #ifdef SECONDARY_MEMORY_NEEDED_RTX
619 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
620 #else
621 secondary_memlocs[(int) mode]
622 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
623 #endif
626 /* Get a version of the address doing any eliminations needed. If that
627 didn't give us a new MEM, make a new one if it isn't valid. */
629 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
630 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
632 if (! mem_valid && loc == secondary_memlocs[(int) mode])
633 loc = copy_rtx (loc);
635 /* The only time the call below will do anything is if the stack
636 offset is too large. In that case IND_LEVELS doesn't matter, so we
637 can just pass a zero. Adjust the type to be the address of the
638 corresponding object. If the address was valid, save the eliminated
639 address. If it wasn't valid, we need to make a reload each time, so
640 don't save it. */
642 if (! mem_valid)
644 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
645 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
646 : RELOAD_OTHER);
648 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
649 opnum, type, 0, 0);
652 secondary_memlocs_elim[(int) mode][opnum] = loc;
653 if (secondary_memlocs_elim_used <= (int)mode)
654 secondary_memlocs_elim_used = (int)mode + 1;
655 return loc;
658 /* Clear any secondary memory locations we've made. */
660 void
661 clear_secondary_mem (void)
663 memset (secondary_memlocs, 0, sizeof secondary_memlocs);
665 #endif /* SECONDARY_MEMORY_NEEDED */
667 /* Find the largest class for which every register number plus N is valid in
668 M1 (if in range) and is cheap to move into REGNO.
669 Abort if no such class exists. */
671 static enum reg_class
672 find_valid_class (enum machine_mode m1 ATTRIBUTE_UNUSED, int n,
673 unsigned int dest_regno ATTRIBUTE_UNUSED)
675 int best_cost = -1;
676 int class;
677 int regno;
678 enum reg_class best_class = NO_REGS;
679 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
680 unsigned int best_size = 0;
681 int cost;
683 for (class = 1; class < N_REG_CLASSES; class++)
685 int bad = 0;
686 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && ! bad; regno++)
687 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
688 && TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
689 && ! HARD_REGNO_MODE_OK (regno + n, m1))
690 bad = 1;
692 if (bad)
693 continue;
694 cost = REGISTER_MOVE_COST (m1, class, dest_class);
696 if ((reg_class_size[class] > best_size
697 && (best_cost < 0 || best_cost >= cost))
698 || best_cost > cost)
700 best_class = class;
701 best_size = reg_class_size[class];
702 best_cost = REGISTER_MOVE_COST (m1, class, dest_class);
706 gcc_assert (best_size != 0);
708 return best_class;
711 /* Return the number of a previously made reload that can be combined with
712 a new one, or n_reloads if none of the existing reloads can be used.
713 OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
714 push_reload, they determine the kind of the new reload that we try to
715 combine. P_IN points to the corresponding value of IN, which can be
716 modified by this function.
717 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
719 static int
720 find_reusable_reload (rtx *p_in, rtx out, enum reg_class class,
721 enum reload_type type, int opnum, int dont_share)
723 rtx in = *p_in;
724 int i;
725 /* We can't merge two reloads if the output of either one is
726 earlyclobbered. */
728 if (earlyclobber_operand_p (out))
729 return n_reloads;
731 /* We can use an existing reload if the class is right
732 and at least one of IN and OUT is a match
733 and the other is at worst neutral.
734 (A zero compared against anything is neutral.)
736 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
737 for the same thing since that can cause us to need more reload registers
738 than we otherwise would. */
740 for (i = 0; i < n_reloads; i++)
741 if ((reg_class_subset_p (class, rld[i].class)
742 || reg_class_subset_p (rld[i].class, class))
743 /* If the existing reload has a register, it must fit our class. */
744 && (rld[i].reg_rtx == 0
745 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
746 true_regnum (rld[i].reg_rtx)))
747 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
748 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
749 || (out != 0 && MATCHES (rld[i].out, out)
750 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
751 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
752 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
753 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
754 return i;
756 /* Reloading a plain reg for input can match a reload to postincrement
757 that reg, since the postincrement's value is the right value.
758 Likewise, it can match a preincrement reload, since we regard
759 the preincrementation as happening before any ref in this insn
760 to that register. */
761 for (i = 0; i < n_reloads; i++)
762 if ((reg_class_subset_p (class, rld[i].class)
763 || reg_class_subset_p (rld[i].class, class))
764 /* If the existing reload has a register, it must fit our
765 class. */
766 && (rld[i].reg_rtx == 0
767 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
768 true_regnum (rld[i].reg_rtx)))
769 && out == 0 && rld[i].out == 0 && rld[i].in != 0
770 && ((REG_P (in)
771 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
772 && MATCHES (XEXP (rld[i].in, 0), in))
773 || (REG_P (rld[i].in)
774 && GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
775 && MATCHES (XEXP (in, 0), rld[i].in)))
776 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
777 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
778 && MERGABLE_RELOADS (type, rld[i].when_needed,
779 opnum, rld[i].opnum))
781 /* Make sure reload_in ultimately has the increment,
782 not the plain register. */
783 if (REG_P (in))
784 *p_in = rld[i].in;
785 return i;
787 return n_reloads;
790 /* Return nonzero if X is a SUBREG which will require reloading of its
791 SUBREG_REG expression. */
793 static int
794 reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, int output)
796 rtx inner;
798 /* Only SUBREGs are problematical. */
799 if (GET_CODE (x) != SUBREG)
800 return 0;
802 inner = SUBREG_REG (x);
804 /* If INNER is a constant or PLUS, then INNER must be reloaded. */
805 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
806 return 1;
808 /* If INNER is not a hard register, then INNER will not need to
809 be reloaded. */
810 if (!REG_P (inner)
811 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
812 return 0;
814 /* If INNER is not ok for MODE, then INNER will need reloading. */
815 if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
816 return 1;
818 /* If the outer part is a word or smaller, INNER larger than a
819 word and the number of regs for INNER is not the same as the
820 number of words in INNER, then INNER will need reloading. */
821 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
822 && output
823 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
824 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
825 != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
828 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
829 requiring an extra reload register. The caller has already found that
830 IN contains some reference to REGNO, so check that we can produce the
831 new value in a single step. E.g. if we have
832 (set (reg r13) (plus (reg r13) (const int 1))), and there is an
833 instruction that adds one to a register, this should succeed.
834 However, if we have something like
835 (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
836 needs to be loaded into a register first, we need a separate reload
837 register.
838 Such PLUS reloads are generated by find_reload_address_part.
839 The out-of-range PLUS expressions are usually introduced in the instruction
840 patterns by register elimination and substituting pseudos without a home
841 by their function-invariant equivalences. */
842 static int
843 can_reload_into (rtx in, int regno, enum machine_mode mode)
845 rtx dst, test_insn;
846 int r = 0;
847 struct recog_data save_recog_data;
849 /* For matching constraints, we often get notional input reloads where
850 we want to use the original register as the reload register. I.e.
851 technically this is a non-optional input-output reload, but IN is
852 already a valid register, and has been chosen as the reload register.
853 Speed this up, since it trivially works. */
854 if (REG_P (in))
855 return 1;
857 /* To test MEMs properly, we'd have to take into account all the reloads
858 that are already scheduled, which can become quite complicated.
859 And since we've already handled address reloads for this MEM, it
860 should always succeed anyway. */
861 if (MEM_P (in))
862 return 1;
864 /* If we can make a simple SET insn that does the job, everything should
865 be fine. */
866 dst = gen_rtx_REG (mode, regno);
867 test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
868 save_recog_data = recog_data;
869 if (recog_memoized (test_insn) >= 0)
871 extract_insn (test_insn);
872 r = constrain_operands (1);
874 recog_data = save_recog_data;
875 return r;
878 /* Record one reload that needs to be performed.
879 IN is an rtx saying where the data are to be found before this instruction.
880 OUT says where they must be stored after the instruction.
881 (IN is zero for data not read, and OUT is zero for data not written.)
882 INLOC and OUTLOC point to the places in the instructions where
883 IN and OUT were found.
884 If IN and OUT are both nonzero, it means the same register must be used
885 to reload both IN and OUT.
887 CLASS is a register class required for the reloaded data.
888 INMODE is the machine mode that the instruction requires
889 for the reg that replaces IN and OUTMODE is likewise for OUT.
891 If IN is zero, then OUT's location and mode should be passed as
892 INLOC and INMODE.
894 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
896 OPTIONAL nonzero means this reload does not need to be performed:
897 it can be discarded if that is more convenient.
899 OPNUM and TYPE say what the purpose of this reload is.
901 The return value is the reload-number for this reload.
903 If both IN and OUT are nonzero, in some rare cases we might
904 want to make two separate reloads. (Actually we never do this now.)
905 Therefore, the reload-number for OUT is stored in
906 output_reloadnum when we return; the return value applies to IN.
907 Usually (presently always), when IN and OUT are nonzero,
908 the two reload-numbers are equal, but the caller should be careful to
909 distinguish them. */
912 push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
913 enum reg_class class, enum machine_mode inmode,
914 enum machine_mode outmode, int strict_low, int optional,
915 int opnum, enum reload_type type)
917 int i;
918 int dont_share = 0;
919 int dont_remove_subreg = 0;
920 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
921 int secondary_in_reload = -1, secondary_out_reload = -1;
922 enum insn_code secondary_in_icode = CODE_FOR_nothing;
923 enum insn_code secondary_out_icode = CODE_FOR_nothing;
925 /* INMODE and/or OUTMODE could be VOIDmode if no mode
926 has been specified for the operand. In that case,
927 use the operand's mode as the mode to reload. */
928 if (inmode == VOIDmode && in != 0)
929 inmode = GET_MODE (in);
930 if (outmode == VOIDmode && out != 0)
931 outmode = GET_MODE (out);
933 /* If IN is a pseudo register everywhere-equivalent to a constant, and
934 it is not in a hard register, reload straight from the constant,
935 since we want to get rid of such pseudo registers.
936 Often this is done earlier, but not always in find_reloads_address. */
937 if (in != 0 && REG_P (in))
939 int regno = REGNO (in);
941 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
942 && reg_equiv_constant[regno] != 0)
943 in = reg_equiv_constant[regno];
946 /* Likewise for OUT. Of course, OUT will never be equivalent to
947 an actual constant, but it might be equivalent to a memory location
948 (in the case of a parameter). */
949 if (out != 0 && REG_P (out))
951 int regno = REGNO (out);
953 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
954 && reg_equiv_constant[regno] != 0)
955 out = reg_equiv_constant[regno];
958 /* If we have a read-write operand with an address side-effect,
959 change either IN or OUT so the side-effect happens only once. */
960 if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
961 switch (GET_CODE (XEXP (in, 0)))
963 case POST_INC: case POST_DEC: case POST_MODIFY:
964 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
965 break;
967 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
968 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
969 break;
971 default:
972 break;
975 /* If we are reloading a (SUBREG constant ...), really reload just the
976 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
977 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
978 a pseudo and hence will become a MEM) with M1 wider than M2 and the
979 register is a pseudo, also reload the inside expression.
980 For machines that extend byte loads, do this for any SUBREG of a pseudo
981 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
982 M2 is an integral mode that gets extended when loaded.
983 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
984 either M1 is not valid for R or M2 is wider than a word but we only
985 need one word to store an M2-sized quantity in R.
986 (However, if OUT is nonzero, we need to reload the reg *and*
987 the subreg, so do nothing here, and let following statement handle it.)
989 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
990 we can't handle it here because CONST_INT does not indicate a mode.
992 Similarly, we must reload the inside expression if we have a
993 STRICT_LOW_PART (presumably, in == out in the cas).
995 Also reload the inner expression if it does not require a secondary
996 reload but the SUBREG does.
998 Finally, reload the inner expression if it is a register that is in
999 the class whose registers cannot be referenced in a different size
1000 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
1001 cannot reload just the inside since we might end up with the wrong
1002 register class. But if it is inside a STRICT_LOW_PART, we have
1003 no choice, so we hope we do get the right register class there. */
1005 if (in != 0 && GET_CODE (in) == SUBREG
1006 && (subreg_lowpart_p (in) || strict_low)
1007 #ifdef CANNOT_CHANGE_MODE_CLASS
1008 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, class)
1009 #endif
1010 && (CONSTANT_P (SUBREG_REG (in))
1011 || GET_CODE (SUBREG_REG (in)) == PLUS
1012 || strict_low
1013 || (((REG_P (SUBREG_REG (in))
1014 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
1015 || MEM_P (SUBREG_REG (in)))
1016 && ((GET_MODE_SIZE (inmode)
1017 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1018 #ifdef LOAD_EXTEND_OP
1019 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1020 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1021 <= UNITS_PER_WORD)
1022 && (GET_MODE_SIZE (inmode)
1023 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1024 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
1025 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != UNKNOWN)
1026 #endif
1027 #ifdef WORD_REGISTER_OPERATIONS
1028 || ((GET_MODE_SIZE (inmode)
1029 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1030 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1031 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1032 / UNITS_PER_WORD)))
1033 #endif
1035 || (REG_P (SUBREG_REG (in))
1036 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1037 /* The case where out is nonzero
1038 is handled differently in the following statement. */
1039 && (out == 0 || subreg_lowpart_p (in))
1040 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1041 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1042 > UNITS_PER_WORD)
1043 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1044 / UNITS_PER_WORD)
1045 != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
1046 [GET_MODE (SUBREG_REG (in))]))
1047 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1048 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1049 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
1050 && (SECONDARY_INPUT_RELOAD_CLASS (class,
1051 GET_MODE (SUBREG_REG (in)),
1052 SUBREG_REG (in))
1053 == NO_REGS))
1054 #endif
1055 #ifdef CANNOT_CHANGE_MODE_CLASS
1056 || (REG_P (SUBREG_REG (in))
1057 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1058 && REG_CANNOT_CHANGE_MODE_P
1059 (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1060 #endif
1063 in_subreg_loc = inloc;
1064 inloc = &SUBREG_REG (in);
1065 in = *inloc;
1066 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1067 if (MEM_P (in))
1068 /* This is supposed to happen only for paradoxical subregs made by
1069 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1070 gcc_assert (GET_MODE_SIZE (GET_MODE (in)) <= GET_MODE_SIZE (inmode));
1071 #endif
1072 inmode = GET_MODE (in);
1075 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1076 either M1 is not valid for R or M2 is wider than a word but we only
1077 need one word to store an M2-sized quantity in R.
1079 However, we must reload the inner reg *as well as* the subreg in
1080 that case. */
1082 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1083 code above. This can happen if SUBREG_BYTE != 0. */
1085 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, 0))
1087 enum reg_class in_class = class;
1089 if (REG_P (SUBREG_REG (in)))
1090 in_class
1091 = find_valid_class (inmode,
1092 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1093 GET_MODE (SUBREG_REG (in)),
1094 SUBREG_BYTE (in),
1095 GET_MODE (in)),
1096 REGNO (SUBREG_REG (in)));
1098 /* This relies on the fact that emit_reload_insns outputs the
1099 instructions for input reloads of type RELOAD_OTHER in the same
1100 order as the reloads. Thus if the outer reload is also of type
1101 RELOAD_OTHER, we are guaranteed that this inner reload will be
1102 output before the outer reload. */
1103 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1104 in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1105 dont_remove_subreg = 1;
1108 /* Similarly for paradoxical and problematical SUBREGs on the output.
1109 Note that there is no reason we need worry about the previous value
1110 of SUBREG_REG (out); even if wider than out,
1111 storing in a subreg is entitled to clobber it all
1112 (except in the case of STRICT_LOW_PART,
1113 and in that case the constraint should label it input-output.) */
1114 if (out != 0 && GET_CODE (out) == SUBREG
1115 && (subreg_lowpart_p (out) || strict_low)
1116 #ifdef CANNOT_CHANGE_MODE_CLASS
1117 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, class)
1118 #endif
1119 && (CONSTANT_P (SUBREG_REG (out))
1120 || strict_low
1121 || (((REG_P (SUBREG_REG (out))
1122 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1123 || MEM_P (SUBREG_REG (out)))
1124 && ((GET_MODE_SIZE (outmode)
1125 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1126 #ifdef WORD_REGISTER_OPERATIONS
1127 || ((GET_MODE_SIZE (outmode)
1128 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1129 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1130 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1131 / UNITS_PER_WORD)))
1132 #endif
1134 || (REG_P (SUBREG_REG (out))
1135 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1136 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1137 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1138 > UNITS_PER_WORD)
1139 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1140 / UNITS_PER_WORD)
1141 != (int) hard_regno_nregs[REGNO (SUBREG_REG (out))]
1142 [GET_MODE (SUBREG_REG (out))]))
1143 || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1144 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1145 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
1146 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1147 GET_MODE (SUBREG_REG (out)),
1148 SUBREG_REG (out))
1149 == NO_REGS))
1150 #endif
1151 #ifdef CANNOT_CHANGE_MODE_CLASS
1152 || (REG_P (SUBREG_REG (out))
1153 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1154 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1155 GET_MODE (SUBREG_REG (out)),
1156 outmode))
1157 #endif
1160 out_subreg_loc = outloc;
1161 outloc = &SUBREG_REG (out);
1162 out = *outloc;
1163 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1164 gcc_assert (!MEM_P (out)
1165 || GET_MODE_SIZE (GET_MODE (out))
1166 <= GET_MODE_SIZE (outmode));
1167 #endif
1168 outmode = GET_MODE (out);
1171 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1172 either M1 is not valid for R or M2 is wider than a word but we only
1173 need one word to store an M2-sized quantity in R.
1175 However, we must reload the inner reg *as well as* the subreg in
1176 that case. In this case, the inner reg is an in-out reload. */
1178 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, 1))
1180 /* This relies on the fact that emit_reload_insns outputs the
1181 instructions for output reloads of type RELOAD_OTHER in reverse
1182 order of the reloads. Thus if the outer reload is also of type
1183 RELOAD_OTHER, we are guaranteed that this inner reload will be
1184 output after the outer reload. */
1185 dont_remove_subreg = 1;
1186 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1187 &SUBREG_REG (out),
1188 find_valid_class (outmode,
1189 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1190 GET_MODE (SUBREG_REG (out)),
1191 SUBREG_BYTE (out),
1192 GET_MODE (out)),
1193 REGNO (SUBREG_REG (out))),
1194 VOIDmode, VOIDmode, 0, 0,
1195 opnum, RELOAD_OTHER);
1198 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1199 if (in != 0 && out != 0 && MEM_P (out)
1200 && (REG_P (in) || MEM_P (in))
1201 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1202 dont_share = 1;
1204 /* If IN is a SUBREG of a hard register, make a new REG. This
1205 simplifies some of the cases below. */
1207 if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
1208 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1209 && ! dont_remove_subreg)
1210 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1212 /* Similarly for OUT. */
1213 if (out != 0 && GET_CODE (out) == SUBREG
1214 && REG_P (SUBREG_REG (out))
1215 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1216 && ! dont_remove_subreg)
1217 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1219 /* Narrow down the class of register wanted if that is
1220 desirable on this machine for efficiency. */
1221 if (in != 0)
1222 class = PREFERRED_RELOAD_CLASS (in, class);
1224 /* Output reloads may need analogous treatment, different in detail. */
1225 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1226 if (out != 0)
1227 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1228 #endif
1230 /* Make sure we use a class that can handle the actual pseudo
1231 inside any subreg. For example, on the 386, QImode regs
1232 can appear within SImode subregs. Although GENERAL_REGS
1233 can handle SImode, QImode needs a smaller class. */
1234 #ifdef LIMIT_RELOAD_CLASS
1235 if (in_subreg_loc)
1236 class = LIMIT_RELOAD_CLASS (inmode, class);
1237 else if (in != 0 && GET_CODE (in) == SUBREG)
1238 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1240 if (out_subreg_loc)
1241 class = LIMIT_RELOAD_CLASS (outmode, class);
1242 if (out != 0 && GET_CODE (out) == SUBREG)
1243 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1244 #endif
1246 /* Verify that this class is at least possible for the mode that
1247 is specified. */
1248 if (this_insn_is_asm)
1250 enum machine_mode mode;
1251 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1252 mode = inmode;
1253 else
1254 mode = outmode;
1255 if (mode == VOIDmode)
1257 error_for_asm (this_insn, "cannot reload integer constant "
1258 "operand in %<asm%>");
1259 mode = word_mode;
1260 if (in != 0)
1261 inmode = word_mode;
1262 if (out != 0)
1263 outmode = word_mode;
1265 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1266 if (HARD_REGNO_MODE_OK (i, mode)
1267 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1269 int nregs = hard_regno_nregs[i][mode];
1271 int j;
1272 for (j = 1; j < nregs; j++)
1273 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1274 break;
1275 if (j == nregs)
1276 break;
1278 if (i == FIRST_PSEUDO_REGISTER)
1280 error_for_asm (this_insn, "impossible register constraint "
1281 "in %<asm%>");
1282 class = ALL_REGS;
1286 /* Optional output reloads are always OK even if we have no register class,
1287 since the function of these reloads is only to have spill_reg_store etc.
1288 set, so that the storing insn can be deleted later. */
1289 gcc_assert (class != NO_REGS
1290 || (optional != 0 && type == RELOAD_FOR_OUTPUT));
1292 i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
1294 if (i == n_reloads)
1296 /* See if we need a secondary reload register to move between CLASS
1297 and IN or CLASS and OUT. Get the icode and push any required reloads
1298 needed for each of them if so. */
1300 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1301 if (in != 0)
1302 secondary_in_reload
1303 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1304 &secondary_in_icode);
1305 #endif
1307 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1308 if (out != 0 && GET_CODE (out) != SCRATCH)
1309 secondary_out_reload
1310 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1311 type, &secondary_out_icode);
1312 #endif
1314 /* We found no existing reload suitable for re-use.
1315 So add an additional reload. */
1317 #ifdef SECONDARY_MEMORY_NEEDED
1318 /* If a memory location is needed for the copy, make one. */
1319 if (in != 0 && (REG_P (in) || GET_CODE (in) == SUBREG)
1320 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
1321 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
1322 class, inmode))
1323 get_secondary_mem (in, inmode, opnum, type);
1324 #endif
1326 i = n_reloads;
1327 rld[i].in = in;
1328 rld[i].out = out;
1329 rld[i].class = class;
1330 rld[i].inmode = inmode;
1331 rld[i].outmode = outmode;
1332 rld[i].reg_rtx = 0;
1333 rld[i].optional = optional;
1334 rld[i].inc = 0;
1335 rld[i].nocombine = 0;
1336 rld[i].in_reg = inloc ? *inloc : 0;
1337 rld[i].out_reg = outloc ? *outloc : 0;
1338 rld[i].opnum = opnum;
1339 rld[i].when_needed = type;
1340 rld[i].secondary_in_reload = secondary_in_reload;
1341 rld[i].secondary_out_reload = secondary_out_reload;
1342 rld[i].secondary_in_icode = secondary_in_icode;
1343 rld[i].secondary_out_icode = secondary_out_icode;
1344 rld[i].secondary_p = 0;
1346 n_reloads++;
1348 #ifdef SECONDARY_MEMORY_NEEDED
1349 if (out != 0 && (REG_P (out) || GET_CODE (out) == SUBREG)
1350 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1351 && SECONDARY_MEMORY_NEEDED (class,
1352 REGNO_REG_CLASS (reg_or_subregno (out)),
1353 outmode))
1354 get_secondary_mem (out, outmode, opnum, type);
1355 #endif
1357 else
1359 /* We are reusing an existing reload,
1360 but we may have additional information for it.
1361 For example, we may now have both IN and OUT
1362 while the old one may have just one of them. */
1364 /* The modes can be different. If they are, we want to reload in
1365 the larger mode, so that the value is valid for both modes. */
1366 if (inmode != VOIDmode
1367 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1368 rld[i].inmode = inmode;
1369 if (outmode != VOIDmode
1370 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1371 rld[i].outmode = outmode;
1372 if (in != 0)
1374 rtx in_reg = inloc ? *inloc : 0;
1375 /* If we merge reloads for two distinct rtl expressions that
1376 are identical in content, there might be duplicate address
1377 reloads. Remove the extra set now, so that if we later find
1378 that we can inherit this reload, we can get rid of the
1379 address reloads altogether.
1381 Do not do this if both reloads are optional since the result
1382 would be an optional reload which could potentially leave
1383 unresolved address replacements.
1385 It is not sufficient to call transfer_replacements since
1386 choose_reload_regs will remove the replacements for address
1387 reloads of inherited reloads which results in the same
1388 problem. */
1389 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1390 && ! (rld[i].optional && optional))
1392 /* We must keep the address reload with the lower operand
1393 number alive. */
1394 if (opnum > rld[i].opnum)
1396 remove_address_replacements (in);
1397 in = rld[i].in;
1398 in_reg = rld[i].in_reg;
1400 else
1401 remove_address_replacements (rld[i].in);
1403 rld[i].in = in;
1404 rld[i].in_reg = in_reg;
1406 if (out != 0)
1408 rld[i].out = out;
1409 rld[i].out_reg = outloc ? *outloc : 0;
1411 if (reg_class_subset_p (class, rld[i].class))
1412 rld[i].class = class;
1413 rld[i].optional &= optional;
1414 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1415 opnum, rld[i].opnum))
1416 rld[i].when_needed = RELOAD_OTHER;
1417 rld[i].opnum = MIN (rld[i].opnum, opnum);
1420 /* If the ostensible rtx being reloaded differs from the rtx found
1421 in the location to substitute, this reload is not safe to combine
1422 because we cannot reliably tell whether it appears in the insn. */
1424 if (in != 0 && in != *inloc)
1425 rld[i].nocombine = 1;
1427 #if 0
1428 /* This was replaced by changes in find_reloads_address_1 and the new
1429 function inc_for_reload, which go with a new meaning of reload_inc. */
1431 /* If this is an IN/OUT reload in an insn that sets the CC,
1432 it must be for an autoincrement. It doesn't work to store
1433 the incremented value after the insn because that would clobber the CC.
1434 So we must do the increment of the value reloaded from,
1435 increment it, store it back, then decrement again. */
1436 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1438 out = 0;
1439 rld[i].out = 0;
1440 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1441 /* If we did not find a nonzero amount-to-increment-by,
1442 that contradicts the belief that IN is being incremented
1443 in an address in this insn. */
1444 gcc_assert (rld[i].inc != 0);
1446 #endif
1448 /* If we will replace IN and OUT with the reload-reg,
1449 record where they are located so that substitution need
1450 not do a tree walk. */
1452 if (replace_reloads)
1454 if (inloc != 0)
1456 struct replacement *r = &replacements[n_replacements++];
1457 r->what = i;
1458 r->subreg_loc = in_subreg_loc;
1459 r->where = inloc;
1460 r->mode = inmode;
1462 if (outloc != 0 && outloc != inloc)
1464 struct replacement *r = &replacements[n_replacements++];
1465 r->what = i;
1466 r->where = outloc;
1467 r->subreg_loc = out_subreg_loc;
1468 r->mode = outmode;
1472 /* If this reload is just being introduced and it has both
1473 an incoming quantity and an outgoing quantity that are
1474 supposed to be made to match, see if either one of the two
1475 can serve as the place to reload into.
1477 If one of them is acceptable, set rld[i].reg_rtx
1478 to that one. */
1480 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1482 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1483 inmode, outmode,
1484 rld[i].class, i,
1485 earlyclobber_operand_p (out));
1487 /* If the outgoing register already contains the same value
1488 as the incoming one, we can dispense with loading it.
1489 The easiest way to tell the caller that is to give a phony
1490 value for the incoming operand (same as outgoing one). */
1491 if (rld[i].reg_rtx == out
1492 && (REG_P (in) || CONSTANT_P (in))
1493 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1494 static_reload_reg_p, i, inmode))
1495 rld[i].in = out;
1498 /* If this is an input reload and the operand contains a register that
1499 dies in this insn and is used nowhere else, see if it is the right class
1500 to be used for this reload. Use it if so. (This occurs most commonly
1501 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1502 this if it is also an output reload that mentions the register unless
1503 the output is a SUBREG that clobbers an entire register.
1505 Note that the operand might be one of the spill regs, if it is a
1506 pseudo reg and we are in a block where spilling has not taken place.
1507 But if there is no spilling in this block, that is OK.
1508 An explicitly used hard reg cannot be a spill reg. */
1510 if (rld[i].reg_rtx == 0 && in != 0)
1512 rtx note;
1513 int regno;
1514 enum machine_mode rel_mode = inmode;
1516 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1517 rel_mode = outmode;
1519 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1520 if (REG_NOTE_KIND (note) == REG_DEAD
1521 && REG_P (XEXP (note, 0))
1522 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1523 && reg_mentioned_p (XEXP (note, 0), in)
1524 && ! refers_to_regno_for_reload_p (regno,
1525 (regno
1526 + hard_regno_nregs[regno]
1527 [rel_mode]),
1528 PATTERN (this_insn), inloc)
1529 /* If this is also an output reload, IN cannot be used as
1530 the reload register if it is set in this insn unless IN
1531 is also OUT. */
1532 && (out == 0 || in == out
1533 || ! hard_reg_set_here_p (regno,
1534 (regno
1535 + hard_regno_nregs[regno]
1536 [rel_mode]),
1537 PATTERN (this_insn)))
1538 /* ??? Why is this code so different from the previous?
1539 Is there any simple coherent way to describe the two together?
1540 What's going on here. */
1541 && (in != out
1542 || (GET_CODE (in) == SUBREG
1543 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1544 / UNITS_PER_WORD)
1545 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1546 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1547 /* Make sure the operand fits in the reg that dies. */
1548 && (GET_MODE_SIZE (rel_mode)
1549 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1550 && HARD_REGNO_MODE_OK (regno, inmode)
1551 && HARD_REGNO_MODE_OK (regno, outmode))
1553 unsigned int offs;
1554 unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
1555 hard_regno_nregs[regno][outmode]);
1557 for (offs = 0; offs < nregs; offs++)
1558 if (fixed_regs[regno + offs]
1559 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1560 regno + offs))
1561 break;
1563 if (offs == nregs
1564 && (! (refers_to_regno_for_reload_p
1565 (regno, (regno + hard_regno_nregs[regno][inmode]),
1566 in, (rtx *)0))
1567 || can_reload_into (in, regno, inmode)))
1569 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1570 break;
1575 if (out)
1576 output_reloadnum = i;
1578 return i;
1581 /* Record an additional place we must replace a value
1582 for which we have already recorded a reload.
1583 RELOADNUM is the value returned by push_reload
1584 when the reload was recorded.
1585 This is used in insn patterns that use match_dup. */
1587 static void
1588 push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
1590 if (replace_reloads)
1592 struct replacement *r = &replacements[n_replacements++];
1593 r->what = reloadnum;
1594 r->where = loc;
1595 r->subreg_loc = 0;
1596 r->mode = mode;
1600 /* Duplicate any replacement we have recorded to apply at
1601 location ORIG_LOC to also be performed at DUP_LOC.
1602 This is used in insn patterns that use match_dup. */
1604 static void
1605 dup_replacements (rtx *dup_loc, rtx *orig_loc)
1607 int i, n = n_replacements;
1609 for (i = 0; i < n; i++)
1611 struct replacement *r = &replacements[i];
1612 if (r->where == orig_loc)
1613 push_replacement (dup_loc, r->what, r->mode);
1617 /* Transfer all replacements that used to be in reload FROM to be in
1618 reload TO. */
1620 void
1621 transfer_replacements (int to, int from)
1623 int i;
1625 for (i = 0; i < n_replacements; i++)
1626 if (replacements[i].what == from)
1627 replacements[i].what = to;
1630 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1631 or a subpart of it. If we have any replacements registered for IN_RTX,
1632 cancel the reloads that were supposed to load them.
1633 Return nonzero if we canceled any reloads. */
1635 remove_address_replacements (rtx in_rtx)
1637 int i, j;
1638 char reload_flags[MAX_RELOADS];
1639 int something_changed = 0;
1641 memset (reload_flags, 0, sizeof reload_flags);
1642 for (i = 0, j = 0; i < n_replacements; i++)
1644 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1645 reload_flags[replacements[i].what] |= 1;
1646 else
1648 replacements[j++] = replacements[i];
1649 reload_flags[replacements[i].what] |= 2;
1652 /* Note that the following store must be done before the recursive calls. */
1653 n_replacements = j;
1655 for (i = n_reloads - 1; i >= 0; i--)
1657 if (reload_flags[i] == 1)
1659 deallocate_reload_reg (i);
1660 remove_address_replacements (rld[i].in);
1661 rld[i].in = 0;
1662 something_changed = 1;
1665 return something_changed;
1668 /* If there is only one output reload, and it is not for an earlyclobber
1669 operand, try to combine it with a (logically unrelated) input reload
1670 to reduce the number of reload registers needed.
1672 This is safe if the input reload does not appear in
1673 the value being output-reloaded, because this implies
1674 it is not needed any more once the original insn completes.
1676 If that doesn't work, see we can use any of the registers that
1677 die in this insn as a reload register. We can if it is of the right
1678 class and does not appear in the value being output-reloaded. */
1680 static void
1681 combine_reloads (void)
1683 int i;
1684 int output_reload = -1;
1685 int secondary_out = -1;
1686 rtx note;
1688 /* Find the output reload; return unless there is exactly one
1689 and that one is mandatory. */
1691 for (i = 0; i < n_reloads; i++)
1692 if (rld[i].out != 0)
1694 if (output_reload >= 0)
1695 return;
1696 output_reload = i;
1699 if (output_reload < 0 || rld[output_reload].optional)
1700 return;
1702 /* An input-output reload isn't combinable. */
1704 if (rld[output_reload].in != 0)
1705 return;
1707 /* If this reload is for an earlyclobber operand, we can't do anything. */
1708 if (earlyclobber_operand_p (rld[output_reload].out))
1709 return;
1711 /* If there is a reload for part of the address of this operand, we would
1712 need to chnage it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1713 its life to the point where doing this combine would not lower the
1714 number of spill registers needed. */
1715 for (i = 0; i < n_reloads; i++)
1716 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1717 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1718 && rld[i].opnum == rld[output_reload].opnum)
1719 return;
1721 /* Check each input reload; can we combine it? */
1723 for (i = 0; i < n_reloads; i++)
1724 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1725 /* Life span of this reload must not extend past main insn. */
1726 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1727 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1728 && rld[i].when_needed != RELOAD_OTHER
1729 && (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
1730 == CLASS_MAX_NREGS (rld[output_reload].class,
1731 rld[output_reload].outmode))
1732 && rld[i].inc == 0
1733 && rld[i].reg_rtx == 0
1734 #ifdef SECONDARY_MEMORY_NEEDED
1735 /* Don't combine two reloads with different secondary
1736 memory locations. */
1737 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1738 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1739 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1740 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1741 #endif
1742 && (SMALL_REGISTER_CLASSES
1743 ? (rld[i].class == rld[output_reload].class)
1744 : (reg_class_subset_p (rld[i].class,
1745 rld[output_reload].class)
1746 || reg_class_subset_p (rld[output_reload].class,
1747 rld[i].class)))
1748 && (MATCHES (rld[i].in, rld[output_reload].out)
1749 /* Args reversed because the first arg seems to be
1750 the one that we imagine being modified
1751 while the second is the one that might be affected. */
1752 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1753 rld[i].in)
1754 /* However, if the input is a register that appears inside
1755 the output, then we also can't share.
1756 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1757 If the same reload reg is used for both reg 69 and the
1758 result to be stored in memory, then that result
1759 will clobber the address of the memory ref. */
1760 && ! (REG_P (rld[i].in)
1761 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1762 rld[output_reload].out))))
1763 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1764 rld[i].when_needed != RELOAD_FOR_INPUT)
1765 && (reg_class_size[(int) rld[i].class]
1766 || SMALL_REGISTER_CLASSES)
1767 /* We will allow making things slightly worse by combining an
1768 input and an output, but no worse than that. */
1769 && (rld[i].when_needed == RELOAD_FOR_INPUT
1770 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1772 int j;
1774 /* We have found a reload to combine with! */
1775 rld[i].out = rld[output_reload].out;
1776 rld[i].out_reg = rld[output_reload].out_reg;
1777 rld[i].outmode = rld[output_reload].outmode;
1778 /* Mark the old output reload as inoperative. */
1779 rld[output_reload].out = 0;
1780 /* The combined reload is needed for the entire insn. */
1781 rld[i].when_needed = RELOAD_OTHER;
1782 /* If the output reload had a secondary reload, copy it. */
1783 if (rld[output_reload].secondary_out_reload != -1)
1785 rld[i].secondary_out_reload
1786 = rld[output_reload].secondary_out_reload;
1787 rld[i].secondary_out_icode
1788 = rld[output_reload].secondary_out_icode;
1791 #ifdef SECONDARY_MEMORY_NEEDED
1792 /* Copy any secondary MEM. */
1793 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1794 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1795 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1796 #endif
1797 /* If required, minimize the register class. */
1798 if (reg_class_subset_p (rld[output_reload].class,
1799 rld[i].class))
1800 rld[i].class = rld[output_reload].class;
1802 /* Transfer all replacements from the old reload to the combined. */
1803 for (j = 0; j < n_replacements; j++)
1804 if (replacements[j].what == output_reload)
1805 replacements[j].what = i;
1807 return;
1810 /* If this insn has only one operand that is modified or written (assumed
1811 to be the first), it must be the one corresponding to this reload. It
1812 is safe to use anything that dies in this insn for that output provided
1813 that it does not occur in the output (we already know it isn't an
1814 earlyclobber. If this is an asm insn, give up. */
1816 if (INSN_CODE (this_insn) == -1)
1817 return;
1819 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1820 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1821 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1822 return;
1824 /* See if some hard register that dies in this insn and is not used in
1825 the output is the right class. Only works if the register we pick
1826 up can fully hold our output reload. */
1827 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1828 if (REG_NOTE_KIND (note) == REG_DEAD
1829 && REG_P (XEXP (note, 0))
1830 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1831 rld[output_reload].out)
1832 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1833 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1834 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
1835 REGNO (XEXP (note, 0)))
1836 && (hard_regno_nregs[REGNO (XEXP (note, 0))][rld[output_reload].outmode]
1837 <= hard_regno_nregs[REGNO (XEXP (note, 0))][GET_MODE (XEXP (note, 0))])
1838 /* Ensure that a secondary or tertiary reload for this output
1839 won't want this register. */
1840 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1841 || (! (TEST_HARD_REG_BIT
1842 (reg_class_contents[(int) rld[secondary_out].class],
1843 REGNO (XEXP (note, 0))))
1844 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1845 || ! (TEST_HARD_REG_BIT
1846 (reg_class_contents[(int) rld[secondary_out].class],
1847 REGNO (XEXP (note, 0)))))))
1848 && ! fixed_regs[REGNO (XEXP (note, 0))])
1850 rld[output_reload].reg_rtx
1851 = gen_rtx_REG (rld[output_reload].outmode,
1852 REGNO (XEXP (note, 0)));
1853 return;
1857 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1858 See if one of IN and OUT is a register that may be used;
1859 this is desirable since a spill-register won't be needed.
1860 If so, return the register rtx that proves acceptable.
1862 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1863 CLASS is the register class required for the reload.
1865 If FOR_REAL is >= 0, it is the number of the reload,
1866 and in some cases when it can be discovered that OUT doesn't need
1867 to be computed, clear out rld[FOR_REAL].out.
1869 If FOR_REAL is -1, this should not be done, because this call
1870 is just to see if a register can be found, not to find and install it.
1872 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1873 puts an additional constraint on being able to use IN for OUT since
1874 IN must not appear elsewhere in the insn (it is assumed that IN itself
1875 is safe from the earlyclobber). */
1877 static rtx
1878 find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1879 enum machine_mode inmode, enum machine_mode outmode,
1880 enum reg_class class, int for_real, int earlyclobber)
1882 rtx in = real_in;
1883 rtx out = real_out;
1884 int in_offset = 0;
1885 int out_offset = 0;
1886 rtx value = 0;
1888 /* If operands exceed a word, we can't use either of them
1889 unless they have the same size. */
1890 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1891 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1892 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1893 return 0;
1895 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1896 respectively refers to a hard register. */
1898 /* Find the inside of any subregs. */
1899 while (GET_CODE (out) == SUBREG)
1901 if (REG_P (SUBREG_REG (out))
1902 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1903 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1904 GET_MODE (SUBREG_REG (out)),
1905 SUBREG_BYTE (out),
1906 GET_MODE (out));
1907 out = SUBREG_REG (out);
1909 while (GET_CODE (in) == SUBREG)
1911 if (REG_P (SUBREG_REG (in))
1912 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1913 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1914 GET_MODE (SUBREG_REG (in)),
1915 SUBREG_BYTE (in),
1916 GET_MODE (in));
1917 in = SUBREG_REG (in);
1920 /* Narrow down the reg class, the same way push_reload will;
1921 otherwise we might find a dummy now, but push_reload won't. */
1922 class = PREFERRED_RELOAD_CLASS (in, class);
1924 /* See if OUT will do. */
1925 if (REG_P (out)
1926 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1928 unsigned int regno = REGNO (out) + out_offset;
1929 unsigned int nwords = hard_regno_nregs[regno][outmode];
1930 rtx saved_rtx;
1932 /* When we consider whether the insn uses OUT,
1933 ignore references within IN. They don't prevent us
1934 from copying IN into OUT, because those refs would
1935 move into the insn that reloads IN.
1937 However, we only ignore IN in its role as this reload.
1938 If the insn uses IN elsewhere and it contains OUT,
1939 that counts. We can't be sure it's the "same" operand
1940 so it might not go through this reload. */
1941 saved_rtx = *inloc;
1942 *inloc = const0_rtx;
1944 if (regno < FIRST_PSEUDO_REGISTER
1945 && HARD_REGNO_MODE_OK (regno, outmode)
1946 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1947 PATTERN (this_insn), outloc))
1949 unsigned int i;
1951 for (i = 0; i < nwords; i++)
1952 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1953 regno + i))
1954 break;
1956 if (i == nwords)
1958 if (REG_P (real_out))
1959 value = real_out;
1960 else
1961 value = gen_rtx_REG (outmode, regno);
1965 *inloc = saved_rtx;
1968 /* Consider using IN if OUT was not acceptable
1969 or if OUT dies in this insn (like the quotient in a divmod insn).
1970 We can't use IN unless it is dies in this insn,
1971 which means we must know accurately which hard regs are live.
1972 Also, the result can't go in IN if IN is used within OUT,
1973 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1974 if (hard_regs_live_known
1975 && REG_P (in)
1976 && REGNO (in) < FIRST_PSEUDO_REGISTER
1977 && (value == 0
1978 || find_reg_note (this_insn, REG_UNUSED, real_out))
1979 && find_reg_note (this_insn, REG_DEAD, real_in)
1980 && !fixed_regs[REGNO (in)]
1981 && HARD_REGNO_MODE_OK (REGNO (in),
1982 /* The only case where out and real_out might
1983 have different modes is where real_out
1984 is a subreg, and in that case, out
1985 has a real mode. */
1986 (GET_MODE (out) != VOIDmode
1987 ? GET_MODE (out) : outmode)))
1989 unsigned int regno = REGNO (in) + in_offset;
1990 unsigned int nwords = hard_regno_nregs[regno][inmode];
1992 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
1993 && ! hard_reg_set_here_p (regno, regno + nwords,
1994 PATTERN (this_insn))
1995 && (! earlyclobber
1996 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
1997 PATTERN (this_insn), inloc)))
1999 unsigned int i;
2001 for (i = 0; i < nwords; i++)
2002 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
2003 regno + i))
2004 break;
2006 if (i == nwords)
2008 /* If we were going to use OUT as the reload reg
2009 and changed our mind, it means OUT is a dummy that
2010 dies here. So don't bother copying value to it. */
2011 if (for_real >= 0 && value == real_out)
2012 rld[for_real].out = 0;
2013 if (REG_P (real_in))
2014 value = real_in;
2015 else
2016 value = gen_rtx_REG (inmode, regno);
2021 return value;
2024 /* This page contains subroutines used mainly for determining
2025 whether the IN or an OUT of a reload can serve as the
2026 reload register. */
2028 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2031 earlyclobber_operand_p (rtx x)
2033 int i;
2035 for (i = 0; i < n_earlyclobbers; i++)
2036 if (reload_earlyclobbers[i] == x)
2037 return 1;
2039 return 0;
2042 /* Return 1 if expression X alters a hard reg in the range
2043 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2044 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2045 X should be the body of an instruction. */
2047 static int
2048 hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2050 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2052 rtx op0 = SET_DEST (x);
2054 while (GET_CODE (op0) == SUBREG)
2055 op0 = SUBREG_REG (op0);
2056 if (REG_P (op0))
2058 unsigned int r = REGNO (op0);
2060 /* See if this reg overlaps range under consideration. */
2061 if (r < end_regno
2062 && r + hard_regno_nregs[r][GET_MODE (op0)] > beg_regno)
2063 return 1;
2066 else if (GET_CODE (x) == PARALLEL)
2068 int i = XVECLEN (x, 0) - 1;
2070 for (; i >= 0; i--)
2071 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2072 return 1;
2075 return 0;
2078 /* Return 1 if ADDR is a valid memory address for mode MODE,
2079 and check that each pseudo reg has the proper kind of
2080 hard reg. */
2083 strict_memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx addr)
2085 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2086 return 0;
2088 win:
2089 return 1;
2092 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2093 if they are the same hard reg, and has special hacks for
2094 autoincrement and autodecrement.
2095 This is specifically intended for find_reloads to use
2096 in determining whether two operands match.
2097 X is the operand whose number is the lower of the two.
2099 The value is 2 if Y contains a pre-increment that matches
2100 a non-incrementing address in X. */
2102 /* ??? To be completely correct, we should arrange to pass
2103 for X the output operand and for Y the input operand.
2104 For now, we assume that the output operand has the lower number
2105 because that is natural in (SET output (... input ...)). */
2108 operands_match_p (rtx x, rtx y)
2110 int i;
2111 RTX_CODE code = GET_CODE (x);
2112 const char *fmt;
2113 int success_2;
2115 if (x == y)
2116 return 1;
2117 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2118 && (REG_P (y) || (GET_CODE (y) == SUBREG
2119 && REG_P (SUBREG_REG (y)))))
2121 int j;
2123 if (code == SUBREG)
2125 i = REGNO (SUBREG_REG (x));
2126 if (i >= FIRST_PSEUDO_REGISTER)
2127 goto slow;
2128 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2129 GET_MODE (SUBREG_REG (x)),
2130 SUBREG_BYTE (x),
2131 GET_MODE (x));
2133 else
2134 i = REGNO (x);
2136 if (GET_CODE (y) == SUBREG)
2138 j = REGNO (SUBREG_REG (y));
2139 if (j >= FIRST_PSEUDO_REGISTER)
2140 goto slow;
2141 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2142 GET_MODE (SUBREG_REG (y)),
2143 SUBREG_BYTE (y),
2144 GET_MODE (y));
2146 else
2147 j = REGNO (y);
2149 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2150 multiple hard register group, so that for example (reg:DI 0) and
2151 (reg:SI 1) will be considered the same register. */
2152 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2153 && i < FIRST_PSEUDO_REGISTER)
2154 i += hard_regno_nregs[i][GET_MODE (x)] - 1;
2155 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2156 && j < FIRST_PSEUDO_REGISTER)
2157 j += hard_regno_nregs[j][GET_MODE (y)] - 1;
2159 return i == j;
2161 /* If two operands must match, because they are really a single
2162 operand of an assembler insn, then two postincrements are invalid
2163 because the assembler insn would increment only once.
2164 On the other hand, a postincrement matches ordinary indexing
2165 if the postincrement is the output operand. */
2166 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2167 return operands_match_p (XEXP (x, 0), y);
2168 /* Two preincrements are invalid
2169 because the assembler insn would increment only once.
2170 On the other hand, a preincrement matches ordinary indexing
2171 if the preincrement is the input operand.
2172 In this case, return 2, since some callers need to do special
2173 things when this happens. */
2174 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2175 || GET_CODE (y) == PRE_MODIFY)
2176 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2178 slow:
2180 /* Now we have disposed of all the cases
2181 in which different rtx codes can match. */
2182 if (code != GET_CODE (y))
2183 return 0;
2184 if (code == LABEL_REF)
2185 return XEXP (x, 0) == XEXP (y, 0);
2186 if (code == SYMBOL_REF)
2187 return XSTR (x, 0) == XSTR (y, 0);
2189 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2191 if (GET_MODE (x) != GET_MODE (y))
2192 return 0;
2194 /* Compare the elements. If any pair of corresponding elements
2195 fail to match, return 0 for the whole things. */
2197 success_2 = 0;
2198 fmt = GET_RTX_FORMAT (code);
2199 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2201 int val, j;
2202 switch (fmt[i])
2204 case 'w':
2205 if (XWINT (x, i) != XWINT (y, i))
2206 return 0;
2207 break;
2209 case 'i':
2210 if (XINT (x, i) != XINT (y, i))
2211 return 0;
2212 break;
2214 case 'e':
2215 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2216 if (val == 0)
2217 return 0;
2218 /* If any subexpression returns 2,
2219 we should return 2 if we are successful. */
2220 if (val == 2)
2221 success_2 = 1;
2222 break;
2224 case '0':
2225 break;
2227 case 'E':
2228 if (XVECLEN (x, i) != XVECLEN (y, i))
2229 return 0;
2230 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2232 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2233 if (val == 0)
2234 return 0;
2235 if (val == 2)
2236 success_2 = 1;
2238 break;
2240 /* It is believed that rtx's at this level will never
2241 contain anything but integers and other rtx's,
2242 except for within LABEL_REFs and SYMBOL_REFs. */
2243 default:
2244 gcc_unreachable ();
2247 return 1 + success_2;
2250 /* Describe the range of registers or memory referenced by X.
2251 If X is a register, set REG_FLAG and put the first register
2252 number into START and the last plus one into END.
2253 If X is a memory reference, put a base address into BASE
2254 and a range of integer offsets into START and END.
2255 If X is pushing on the stack, we can assume it causes no trouble,
2256 so we set the SAFE field. */
2258 static struct decomposition
2259 decompose (rtx x)
2261 struct decomposition val;
2262 int all_const = 0;
2264 memset (&val, 0, sizeof (val));
2266 switch (GET_CODE (x))
2268 case MEM:
2270 rtx base = NULL_RTX, offset = 0;
2271 rtx addr = XEXP (x, 0);
2273 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2274 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2276 val.base = XEXP (addr, 0);
2277 val.start = -GET_MODE_SIZE (GET_MODE (x));
2278 val.end = GET_MODE_SIZE (GET_MODE (x));
2279 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2280 return val;
2283 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2285 if (GET_CODE (XEXP (addr, 1)) == PLUS
2286 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2287 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2289 val.base = XEXP (addr, 0);
2290 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2291 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2292 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2293 return val;
2297 if (GET_CODE (addr) == CONST)
2299 addr = XEXP (addr, 0);
2300 all_const = 1;
2302 if (GET_CODE (addr) == PLUS)
2304 if (CONSTANT_P (XEXP (addr, 0)))
2306 base = XEXP (addr, 1);
2307 offset = XEXP (addr, 0);
2309 else if (CONSTANT_P (XEXP (addr, 1)))
2311 base = XEXP (addr, 0);
2312 offset = XEXP (addr, 1);
2316 if (offset == 0)
2318 base = addr;
2319 offset = const0_rtx;
2321 if (GET_CODE (offset) == CONST)
2322 offset = XEXP (offset, 0);
2323 if (GET_CODE (offset) == PLUS)
2325 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2327 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2328 offset = XEXP (offset, 0);
2330 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2332 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2333 offset = XEXP (offset, 1);
2335 else
2337 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2338 offset = const0_rtx;
2341 else if (GET_CODE (offset) != CONST_INT)
2343 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2344 offset = const0_rtx;
2347 if (all_const && GET_CODE (base) == PLUS)
2348 base = gen_rtx_CONST (GET_MODE (base), base);
2350 gcc_assert (GET_CODE (offset) == CONST_INT);
2352 val.start = INTVAL (offset);
2353 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2354 val.base = base;
2356 break;
2358 case REG:
2359 val.reg_flag = 1;
2360 val.start = true_regnum (x);
2361 if (val.start < 0)
2363 /* A pseudo with no hard reg. */
2364 val.start = REGNO (x);
2365 val.end = val.start + 1;
2367 else
2368 /* A hard reg. */
2369 val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
2370 break;
2372 case SUBREG:
2373 if (!REG_P (SUBREG_REG (x)))
2374 /* This could be more precise, but it's good enough. */
2375 return decompose (SUBREG_REG (x));
2376 val.reg_flag = 1;
2377 val.start = true_regnum (x);
2378 if (val.start < 0)
2379 return decompose (SUBREG_REG (x));
2380 else
2381 /* A hard reg. */
2382 val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
2383 break;
2385 case SCRATCH:
2386 /* This hasn't been assigned yet, so it can't conflict yet. */
2387 val.safe = 1;
2388 break;
2390 default:
2391 gcc_assert (CONSTANT_P (x));
2392 val.safe = 1;
2393 break;
2395 return val;
2398 /* Return 1 if altering Y will not modify the value of X.
2399 Y is also described by YDATA, which should be decompose (Y). */
2401 static int
2402 immune_p (rtx x, rtx y, struct decomposition ydata)
2404 struct decomposition xdata;
2406 if (ydata.reg_flag)
2407 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2408 if (ydata.safe)
2409 return 1;
2411 gcc_assert (MEM_P (y));
2412 /* If Y is memory and X is not, Y can't affect X. */
2413 if (!MEM_P (x))
2414 return 1;
2416 xdata = decompose (x);
2418 if (! rtx_equal_p (xdata.base, ydata.base))
2420 /* If bases are distinct symbolic constants, there is no overlap. */
2421 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2422 return 1;
2423 /* Constants and stack slots never overlap. */
2424 if (CONSTANT_P (xdata.base)
2425 && (ydata.base == frame_pointer_rtx
2426 || ydata.base == hard_frame_pointer_rtx
2427 || ydata.base == stack_pointer_rtx))
2428 return 1;
2429 if (CONSTANT_P (ydata.base)
2430 && (xdata.base == frame_pointer_rtx
2431 || xdata.base == hard_frame_pointer_rtx
2432 || xdata.base == stack_pointer_rtx))
2433 return 1;
2434 /* If either base is variable, we don't know anything. */
2435 return 0;
2438 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2441 /* Similar, but calls decompose. */
2444 safe_from_earlyclobber (rtx op, rtx clobber)
2446 struct decomposition early_data;
2448 early_data = decompose (clobber);
2449 return immune_p (op, clobber, early_data);
2452 /* Main entry point of this file: search the body of INSN
2453 for values that need reloading and record them with push_reload.
2454 REPLACE nonzero means record also where the values occur
2455 so that subst_reloads can be used.
2457 IND_LEVELS says how many levels of indirection are supported by this
2458 machine; a value of zero means that a memory reference is not a valid
2459 memory address.
2461 LIVE_KNOWN says we have valid information about which hard
2462 regs are live at each point in the program; this is true when
2463 we are called from global_alloc but false when stupid register
2464 allocation has been done.
2466 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2467 which is nonnegative if the reg has been commandeered for reloading into.
2468 It is copied into STATIC_RELOAD_REG_P and referenced from there
2469 by various subroutines.
2471 Return TRUE if some operands need to be changed, because of swapping
2472 commutative operands, reg_equiv_address substitution, or whatever. */
2475 find_reloads (rtx insn, int replace, int ind_levels, int live_known,
2476 short *reload_reg_p)
2478 int insn_code_number;
2479 int i, j;
2480 int noperands;
2481 /* These start out as the constraints for the insn
2482 and they are chewed up as we consider alternatives. */
2483 char *constraints[MAX_RECOG_OPERANDS];
2484 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2485 a register. */
2486 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2487 char pref_or_nothing[MAX_RECOG_OPERANDS];
2488 /* Nonzero for a MEM operand whose entire address needs a reload.
2489 May be -1 to indicate the entire address may or may not need a reload. */
2490 int address_reloaded[MAX_RECOG_OPERANDS];
2491 /* Nonzero for an address operand that needs to be completely reloaded.
2492 May be -1 to indicate the entire operand may or may not need a reload. */
2493 int address_operand_reloaded[MAX_RECOG_OPERANDS];
2494 /* Value of enum reload_type to use for operand. */
2495 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2496 /* Value of enum reload_type to use within address of operand. */
2497 enum reload_type address_type[MAX_RECOG_OPERANDS];
2498 /* Save the usage of each operand. */
2499 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2500 int no_input_reloads = 0, no_output_reloads = 0;
2501 int n_alternatives;
2502 int this_alternative[MAX_RECOG_OPERANDS];
2503 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2504 char this_alternative_win[MAX_RECOG_OPERANDS];
2505 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2506 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2507 int this_alternative_matches[MAX_RECOG_OPERANDS];
2508 int swapped;
2509 int goal_alternative[MAX_RECOG_OPERANDS];
2510 int this_alternative_number;
2511 int goal_alternative_number = 0;
2512 int operand_reloadnum[MAX_RECOG_OPERANDS];
2513 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2514 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2515 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2516 char goal_alternative_win[MAX_RECOG_OPERANDS];
2517 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2518 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2519 int goal_alternative_swapped;
2520 int best;
2521 int commutative;
2522 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2523 rtx substed_operand[MAX_RECOG_OPERANDS];
2524 rtx body = PATTERN (insn);
2525 rtx set = single_set (insn);
2526 int goal_earlyclobber = 0, this_earlyclobber;
2527 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2528 int retval = 0;
2530 this_insn = insn;
2531 n_reloads = 0;
2532 n_replacements = 0;
2533 n_earlyclobbers = 0;
2534 replace_reloads = replace;
2535 hard_regs_live_known = live_known;
2536 static_reload_reg_p = reload_reg_p;
2538 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2539 neither are insns that SET cc0. Insns that use CC0 are not allowed
2540 to have any input reloads. */
2541 if (JUMP_P (insn) || CALL_P (insn))
2542 no_output_reloads = 1;
2544 #ifdef HAVE_cc0
2545 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2546 no_input_reloads = 1;
2547 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2548 no_output_reloads = 1;
2549 #endif
2551 #ifdef SECONDARY_MEMORY_NEEDED
2552 /* The eliminated forms of any secondary memory locations are per-insn, so
2553 clear them out here. */
2555 if (secondary_memlocs_elim_used)
2557 memset (secondary_memlocs_elim, 0,
2558 sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2559 secondary_memlocs_elim_used = 0;
2561 #endif
2563 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2564 is cheap to move between them. If it is not, there may not be an insn
2565 to do the copy, so we may need a reload. */
2566 if (GET_CODE (body) == SET
2567 && REG_P (SET_DEST (body))
2568 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2569 && REG_P (SET_SRC (body))
2570 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2571 && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2572 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2573 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2574 return 0;
2576 extract_insn (insn);
2578 noperands = reload_n_operands = recog_data.n_operands;
2579 n_alternatives = recog_data.n_alternatives;
2581 /* Just return "no reloads" if insn has no operands with constraints. */
2582 if (noperands == 0 || n_alternatives == 0)
2583 return 0;
2585 insn_code_number = INSN_CODE (insn);
2586 this_insn_is_asm = insn_code_number < 0;
2588 memcpy (operand_mode, recog_data.operand_mode,
2589 noperands * sizeof (enum machine_mode));
2590 memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
2592 commutative = -1;
2594 /* If we will need to know, later, whether some pair of operands
2595 are the same, we must compare them now and save the result.
2596 Reloading the base and index registers will clobber them
2597 and afterward they will fail to match. */
2599 for (i = 0; i < noperands; i++)
2601 char *p;
2602 int c;
2604 substed_operand[i] = recog_data.operand[i];
2605 p = constraints[i];
2607 modified[i] = RELOAD_READ;
2609 /* Scan this operand's constraint to see if it is an output operand,
2610 an in-out operand, is commutative, or should match another. */
2612 while ((c = *p))
2614 p += CONSTRAINT_LEN (c, p);
2615 switch (c)
2617 case '=':
2618 modified[i] = RELOAD_WRITE;
2619 break;
2620 case '+':
2621 modified[i] = RELOAD_READ_WRITE;
2622 break;
2623 case '%':
2625 /* The last operand should not be marked commutative. */
2626 gcc_assert (i != noperands - 1);
2628 /* We currently only support one commutative pair of
2629 operands. Some existing asm code currently uses more
2630 than one pair. Previously, that would usually work,
2631 but sometimes it would crash the compiler. We
2632 continue supporting that case as well as we can by
2633 silently ignoring all but the first pair. In the
2634 future we may handle it correctly. */
2635 if (commutative < 0)
2636 commutative = i;
2637 else
2638 gcc_assert (this_insn_is_asm);
2640 break;
2641 /* Use of ISDIGIT is tempting here, but it may get expensive because
2642 of locale support we don't want. */
2643 case '0': case '1': case '2': case '3': case '4':
2644 case '5': case '6': case '7': case '8': case '9':
2646 c = strtoul (p - 1, &p, 10);
2648 operands_match[c][i]
2649 = operands_match_p (recog_data.operand[c],
2650 recog_data.operand[i]);
2652 /* An operand may not match itself. */
2653 gcc_assert (c != i);
2655 /* If C can be commuted with C+1, and C might need to match I,
2656 then C+1 might also need to match I. */
2657 if (commutative >= 0)
2659 if (c == commutative || c == commutative + 1)
2661 int other = c + (c == commutative ? 1 : -1);
2662 operands_match[other][i]
2663 = operands_match_p (recog_data.operand[other],
2664 recog_data.operand[i]);
2666 if (i == commutative || i == commutative + 1)
2668 int other = i + (i == commutative ? 1 : -1);
2669 operands_match[c][other]
2670 = operands_match_p (recog_data.operand[c],
2671 recog_data.operand[other]);
2673 /* Note that C is supposed to be less than I.
2674 No need to consider altering both C and I because in
2675 that case we would alter one into the other. */
2682 /* Examine each operand that is a memory reference or memory address
2683 and reload parts of the addresses into index registers.
2684 Also here any references to pseudo regs that didn't get hard regs
2685 but are equivalent to constants get replaced in the insn itself
2686 with those constants. Nobody will ever see them again.
2688 Finally, set up the preferred classes of each operand. */
2690 for (i = 0; i < noperands; i++)
2692 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2694 address_reloaded[i] = 0;
2695 address_operand_reloaded[i] = 0;
2696 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2697 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2698 : RELOAD_OTHER);
2699 address_type[i]
2700 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2701 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2702 : RELOAD_OTHER);
2704 if (*constraints[i] == 0)
2705 /* Ignore things like match_operator operands. */
2707 else if (constraints[i][0] == 'p'
2708 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
2710 address_operand_reloaded[i]
2711 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2712 recog_data.operand[i],
2713 recog_data.operand_loc[i],
2714 i, operand_type[i], ind_levels, insn);
2716 /* If we now have a simple operand where we used to have a
2717 PLUS or MULT, re-recognize and try again. */
2718 if ((OBJECT_P (*recog_data.operand_loc[i])
2719 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2720 && (GET_CODE (recog_data.operand[i]) == MULT
2721 || GET_CODE (recog_data.operand[i]) == PLUS))
2723 INSN_CODE (insn) = -1;
2724 retval = find_reloads (insn, replace, ind_levels, live_known,
2725 reload_reg_p);
2726 return retval;
2729 recog_data.operand[i] = *recog_data.operand_loc[i];
2730 substed_operand[i] = recog_data.operand[i];
2732 /* Address operands are reloaded in their existing mode,
2733 no matter what is specified in the machine description. */
2734 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2736 else if (code == MEM)
2738 address_reloaded[i]
2739 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2740 recog_data.operand_loc[i],
2741 XEXP (recog_data.operand[i], 0),
2742 &XEXP (recog_data.operand[i], 0),
2743 i, address_type[i], ind_levels, insn);
2744 recog_data.operand[i] = *recog_data.operand_loc[i];
2745 substed_operand[i] = recog_data.operand[i];
2747 else if (code == SUBREG)
2749 rtx reg = SUBREG_REG (recog_data.operand[i]);
2750 rtx op
2751 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2752 ind_levels,
2753 set != 0
2754 && &SET_DEST (set) == recog_data.operand_loc[i],
2755 insn,
2756 &address_reloaded[i]);
2758 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2759 that didn't get a hard register, emit a USE with a REG_EQUAL
2760 note in front so that we might inherit a previous, possibly
2761 wider reload. */
2763 if (replace
2764 && MEM_P (op)
2765 && REG_P (reg)
2766 && (GET_MODE_SIZE (GET_MODE (reg))
2767 >= GET_MODE_SIZE (GET_MODE (op))))
2768 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2769 insn),
2770 REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
2772 substed_operand[i] = recog_data.operand[i] = op;
2774 else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
2775 /* We can get a PLUS as an "operand" as a result of register
2776 elimination. See eliminate_regs and gen_reload. We handle
2777 a unary operator by reloading the operand. */
2778 substed_operand[i] = recog_data.operand[i]
2779 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2780 ind_levels, 0, insn,
2781 &address_reloaded[i]);
2782 else if (code == REG)
2784 /* This is equivalent to calling find_reloads_toplev.
2785 The code is duplicated for speed.
2786 When we find a pseudo always equivalent to a constant,
2787 we replace it by the constant. We must be sure, however,
2788 that we don't try to replace it in the insn in which it
2789 is being set. */
2790 int regno = REGNO (recog_data.operand[i]);
2791 if (reg_equiv_constant[regno] != 0
2792 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2794 /* Record the existing mode so that the check if constants are
2795 allowed will work when operand_mode isn't specified. */
2797 if (operand_mode[i] == VOIDmode)
2798 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2800 substed_operand[i] = recog_data.operand[i]
2801 = reg_equiv_constant[regno];
2803 if (reg_equiv_memory_loc[regno] != 0
2804 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2805 /* We need not give a valid is_set_dest argument since the case
2806 of a constant equivalence was checked above. */
2807 substed_operand[i] = recog_data.operand[i]
2808 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2809 ind_levels, 0, insn,
2810 &address_reloaded[i]);
2812 /* If the operand is still a register (we didn't replace it with an
2813 equivalent), get the preferred class to reload it into. */
2814 code = GET_CODE (recog_data.operand[i]);
2815 preferred_class[i]
2816 = ((code == REG && REGNO (recog_data.operand[i])
2817 >= FIRST_PSEUDO_REGISTER)
2818 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2819 : NO_REGS);
2820 pref_or_nothing[i]
2821 = (code == REG
2822 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2823 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2826 /* If this is simply a copy from operand 1 to operand 0, merge the
2827 preferred classes for the operands. */
2828 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2829 && recog_data.operand[1] == SET_SRC (set))
2831 preferred_class[0] = preferred_class[1]
2832 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2833 pref_or_nothing[0] |= pref_or_nothing[1];
2834 pref_or_nothing[1] |= pref_or_nothing[0];
2837 /* Now see what we need for pseudo-regs that didn't get hard regs
2838 or got the wrong kind of hard reg. For this, we must consider
2839 all the operands together against the register constraints. */
2841 best = MAX_RECOG_OPERANDS * 2 + 600;
2843 swapped = 0;
2844 goal_alternative_swapped = 0;
2845 try_swapped:
2847 /* The constraints are made of several alternatives.
2848 Each operand's constraint looks like foo,bar,... with commas
2849 separating the alternatives. The first alternatives for all
2850 operands go together, the second alternatives go together, etc.
2852 First loop over alternatives. */
2854 for (this_alternative_number = 0;
2855 this_alternative_number < n_alternatives;
2856 this_alternative_number++)
2858 /* Loop over operands for one constraint alternative. */
2859 /* LOSERS counts those that don't fit this alternative
2860 and would require loading. */
2861 int losers = 0;
2862 /* BAD is set to 1 if it some operand can't fit this alternative
2863 even after reloading. */
2864 int bad = 0;
2865 /* REJECT is a count of how undesirable this alternative says it is
2866 if any reloading is required. If the alternative matches exactly
2867 then REJECT is ignored, but otherwise it gets this much
2868 counted against it in addition to the reloading needed. Each
2869 ? counts three times here since we want the disparaging caused by
2870 a bad register class to only count 1/3 as much. */
2871 int reject = 0;
2873 this_earlyclobber = 0;
2875 for (i = 0; i < noperands; i++)
2877 char *p = constraints[i];
2878 char *end;
2879 int len;
2880 int win = 0;
2881 int did_match = 0;
2882 /* 0 => this operand can be reloaded somehow for this alternative. */
2883 int badop = 1;
2884 /* 0 => this operand can be reloaded if the alternative allows regs. */
2885 int winreg = 0;
2886 int c;
2887 int m;
2888 rtx operand = recog_data.operand[i];
2889 int offset = 0;
2890 /* Nonzero means this is a MEM that must be reloaded into a reg
2891 regardless of what the constraint says. */
2892 int force_reload = 0;
2893 int offmemok = 0;
2894 /* Nonzero if a constant forced into memory would be OK for this
2895 operand. */
2896 int constmemok = 0;
2897 int earlyclobber = 0;
2899 /* If the predicate accepts a unary operator, it means that
2900 we need to reload the operand, but do not do this for
2901 match_operator and friends. */
2902 if (UNARY_P (operand) && *p != 0)
2903 operand = XEXP (operand, 0);
2905 /* If the operand is a SUBREG, extract
2906 the REG or MEM (or maybe even a constant) within.
2907 (Constants can occur as a result of reg_equiv_constant.) */
2909 while (GET_CODE (operand) == SUBREG)
2911 /* Offset only matters when operand is a REG and
2912 it is a hard reg. This is because it is passed
2913 to reg_fits_class_p if it is a REG and all pseudos
2914 return 0 from that function. */
2915 if (REG_P (SUBREG_REG (operand))
2916 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
2918 if (!subreg_offset_representable_p
2919 (REGNO (SUBREG_REG (operand)),
2920 GET_MODE (SUBREG_REG (operand)),
2921 SUBREG_BYTE (operand),
2922 GET_MODE (operand)))
2923 force_reload = 1;
2924 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
2925 GET_MODE (SUBREG_REG (operand)),
2926 SUBREG_BYTE (operand),
2927 GET_MODE (operand));
2929 operand = SUBREG_REG (operand);
2930 /* Force reload if this is a constant or PLUS or if there may
2931 be a problem accessing OPERAND in the outer mode. */
2932 if (CONSTANT_P (operand)
2933 || GET_CODE (operand) == PLUS
2934 /* We must force a reload of paradoxical SUBREGs
2935 of a MEM because the alignment of the inner value
2936 may not be enough to do the outer reference. On
2937 big-endian machines, it may also reference outside
2938 the object.
2940 On machines that extend byte operations and we have a
2941 SUBREG where both the inner and outer modes are no wider
2942 than a word and the inner mode is narrower, is integral,
2943 and gets extended when loaded from memory, combine.c has
2944 made assumptions about the behavior of the machine in such
2945 register access. If the data is, in fact, in memory we
2946 must always load using the size assumed to be in the
2947 register and let the insn do the different-sized
2948 accesses.
2950 This is doubly true if WORD_REGISTER_OPERATIONS. In
2951 this case eliminate_regs has left non-paradoxical
2952 subregs for push_reload to see. Make sure it does
2953 by forcing the reload.
2955 ??? When is it right at this stage to have a subreg
2956 of a mem that is _not_ to be handled specially? IMO
2957 those should have been reduced to just a mem. */
2958 || ((MEM_P (operand)
2959 || (REG_P (operand)
2960 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
2961 #ifndef WORD_REGISTER_OPERATIONS
2962 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2963 < BIGGEST_ALIGNMENT)
2964 && (GET_MODE_SIZE (operand_mode[i])
2965 > GET_MODE_SIZE (GET_MODE (operand))))
2966 || BYTES_BIG_ENDIAN
2967 #ifdef LOAD_EXTEND_OP
2968 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2969 && (GET_MODE_SIZE (GET_MODE (operand))
2970 <= UNITS_PER_WORD)
2971 && (GET_MODE_SIZE (operand_mode[i])
2972 > GET_MODE_SIZE (GET_MODE (operand)))
2973 && INTEGRAL_MODE_P (GET_MODE (operand))
2974 && LOAD_EXTEND_OP (GET_MODE (operand)) != UNKNOWN)
2975 #endif
2977 #endif
2980 force_reload = 1;
2983 this_alternative[i] = (int) NO_REGS;
2984 this_alternative_win[i] = 0;
2985 this_alternative_match_win[i] = 0;
2986 this_alternative_offmemok[i] = 0;
2987 this_alternative_earlyclobber[i] = 0;
2988 this_alternative_matches[i] = -1;
2990 /* An empty constraint or empty alternative
2991 allows anything which matched the pattern. */
2992 if (*p == 0 || *p == ',')
2993 win = 1, badop = 0;
2995 /* Scan this alternative's specs for this operand;
2996 set WIN if the operand fits any letter in this alternative.
2997 Otherwise, clear BADOP if this operand could
2998 fit some letter after reloads,
2999 or set WINREG if this operand could fit after reloads
3000 provided the constraint allows some registers. */
3003 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
3005 case '\0':
3006 len = 0;
3007 break;
3008 case ',':
3009 c = '\0';
3010 break;
3012 case '=': case '+': case '*':
3013 break;
3015 case '%':
3016 /* We only support one commutative marker, the first
3017 one. We already set commutative above. */
3018 break;
3020 case '?':
3021 reject += 6;
3022 break;
3024 case '!':
3025 reject = 600;
3026 break;
3028 case '#':
3029 /* Ignore rest of this alternative as far as
3030 reloading is concerned. */
3032 p++;
3033 while (*p && *p != ',');
3034 len = 0;
3035 break;
3037 case '0': case '1': case '2': case '3': case '4':
3038 case '5': case '6': case '7': case '8': case '9':
3039 m = strtoul (p, &end, 10);
3040 p = end;
3041 len = 0;
3043 this_alternative_matches[i] = m;
3044 /* We are supposed to match a previous operand.
3045 If we do, we win if that one did.
3046 If we do not, count both of the operands as losers.
3047 (This is too conservative, since most of the time
3048 only a single reload insn will be needed to make
3049 the two operands win. As a result, this alternative
3050 may be rejected when it is actually desirable.) */
3051 if ((swapped && (m != commutative || i != commutative + 1))
3052 /* If we are matching as if two operands were swapped,
3053 also pretend that operands_match had been computed
3054 with swapped.
3055 But if I is the second of those and C is the first,
3056 don't exchange them, because operands_match is valid
3057 only on one side of its diagonal. */
3058 ? (operands_match
3059 [(m == commutative || m == commutative + 1)
3060 ? 2 * commutative + 1 - m : m]
3061 [(i == commutative || i == commutative + 1)
3062 ? 2 * commutative + 1 - i : i])
3063 : operands_match[m][i])
3065 /* If we are matching a non-offsettable address where an
3066 offsettable address was expected, then we must reject
3067 this combination, because we can't reload it. */
3068 if (this_alternative_offmemok[m]
3069 && MEM_P (recog_data.operand[m])
3070 && this_alternative[m] == (int) NO_REGS
3071 && ! this_alternative_win[m])
3072 bad = 1;
3074 did_match = this_alternative_win[m];
3076 else
3078 /* Operands don't match. */
3079 rtx value;
3080 int loc1, loc2;
3081 /* Retroactively mark the operand we had to match
3082 as a loser, if it wasn't already. */
3083 if (this_alternative_win[m])
3084 losers++;
3085 this_alternative_win[m] = 0;
3086 if (this_alternative[m] == (int) NO_REGS)
3087 bad = 1;
3088 /* But count the pair only once in the total badness of
3089 this alternative, if the pair can be a dummy reload.
3090 The pointers in operand_loc are not swapped; swap
3091 them by hand if necessary. */
3092 if (swapped && i == commutative)
3093 loc1 = commutative + 1;
3094 else if (swapped && i == commutative + 1)
3095 loc1 = commutative;
3096 else
3097 loc1 = i;
3098 if (swapped && m == commutative)
3099 loc2 = commutative + 1;
3100 else if (swapped && m == commutative + 1)
3101 loc2 = commutative;
3102 else
3103 loc2 = m;
3104 value
3105 = find_dummy_reload (recog_data.operand[i],
3106 recog_data.operand[m],
3107 recog_data.operand_loc[loc1],
3108 recog_data.operand_loc[loc2],
3109 operand_mode[i], operand_mode[m],
3110 this_alternative[m], -1,
3111 this_alternative_earlyclobber[m]);
3113 if (value != 0)
3114 losers--;
3116 /* This can be fixed with reloads if the operand
3117 we are supposed to match can be fixed with reloads. */
3118 badop = 0;
3119 this_alternative[i] = this_alternative[m];
3121 /* If we have to reload this operand and some previous
3122 operand also had to match the same thing as this
3123 operand, we don't know how to do that. So reject this
3124 alternative. */
3125 if (! did_match || force_reload)
3126 for (j = 0; j < i; j++)
3127 if (this_alternative_matches[j]
3128 == this_alternative_matches[i])
3129 badop = 1;
3130 break;
3132 case 'p':
3133 /* All necessary reloads for an address_operand
3134 were handled in find_reloads_address. */
3135 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3136 win = 1;
3137 badop = 0;
3138 break;
3140 case 'm':
3141 if (force_reload)
3142 break;
3143 if (MEM_P (operand)
3144 || (REG_P (operand)
3145 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3146 && reg_renumber[REGNO (operand)] < 0))
3147 win = 1;
3148 if (CONST_POOL_OK_P (operand))
3149 badop = 0;
3150 constmemok = 1;
3151 break;
3153 case '<':
3154 if (MEM_P (operand)
3155 && ! address_reloaded[i]
3156 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3157 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3158 win = 1;
3159 break;
3161 case '>':
3162 if (MEM_P (operand)
3163 && ! address_reloaded[i]
3164 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3165 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3166 win = 1;
3167 break;
3169 /* Memory operand whose address is not offsettable. */
3170 case 'V':
3171 if (force_reload)
3172 break;
3173 if (MEM_P (operand)
3174 && ! (ind_levels ? offsettable_memref_p (operand)
3175 : offsettable_nonstrict_memref_p (operand))
3176 /* Certain mem addresses will become offsettable
3177 after they themselves are reloaded. This is important;
3178 we don't want our own handling of unoffsettables
3179 to override the handling of reg_equiv_address. */
3180 && !(REG_P (XEXP (operand, 0))
3181 && (ind_levels == 0
3182 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3183 win = 1;
3184 break;
3186 /* Memory operand whose address is offsettable. */
3187 case 'o':
3188 if (force_reload)
3189 break;
3190 if ((MEM_P (operand)
3191 /* If IND_LEVELS, find_reloads_address won't reload a
3192 pseudo that didn't get a hard reg, so we have to
3193 reject that case. */
3194 && ((ind_levels ? offsettable_memref_p (operand)
3195 : offsettable_nonstrict_memref_p (operand))
3196 /* A reloaded address is offsettable because it is now
3197 just a simple register indirect. */
3198 || address_reloaded[i] == 1))
3199 || (REG_P (operand)
3200 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3201 && reg_renumber[REGNO (operand)] < 0
3202 /* If reg_equiv_address is nonzero, we will be
3203 loading it into a register; hence it will be
3204 offsettable, but we cannot say that reg_equiv_mem
3205 is offsettable without checking. */
3206 && ((reg_equiv_mem[REGNO (operand)] != 0
3207 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3208 || (reg_equiv_address[REGNO (operand)] != 0))))
3209 win = 1;
3210 if (CONST_POOL_OK_P (operand)
3211 || MEM_P (operand))
3212 badop = 0;
3213 constmemok = 1;
3214 offmemok = 1;
3215 break;
3217 case '&':
3218 /* Output operand that is stored before the need for the
3219 input operands (and their index registers) is over. */
3220 earlyclobber = 1, this_earlyclobber = 1;
3221 break;
3223 case 'E':
3224 case 'F':
3225 if (GET_CODE (operand) == CONST_DOUBLE
3226 || (GET_CODE (operand) == CONST_VECTOR
3227 && (GET_MODE_CLASS (GET_MODE (operand))
3228 == MODE_VECTOR_FLOAT)))
3229 win = 1;
3230 break;
3232 case 'G':
3233 case 'H':
3234 if (GET_CODE (operand) == CONST_DOUBLE
3235 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
3236 win = 1;
3237 break;
3239 case 's':
3240 if (GET_CODE (operand) == CONST_INT
3241 || (GET_CODE (operand) == CONST_DOUBLE
3242 && GET_MODE (operand) == VOIDmode))
3243 break;
3244 case 'i':
3245 if (CONSTANT_P (operand)
3246 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand)))
3247 win = 1;
3248 break;
3250 case 'n':
3251 if (GET_CODE (operand) == CONST_INT
3252 || (GET_CODE (operand) == CONST_DOUBLE
3253 && GET_MODE (operand) == VOIDmode))
3254 win = 1;
3255 break;
3257 case 'I':
3258 case 'J':
3259 case 'K':
3260 case 'L':
3261 case 'M':
3262 case 'N':
3263 case 'O':
3264 case 'P':
3265 if (GET_CODE (operand) == CONST_INT
3266 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
3267 win = 1;
3268 break;
3270 case 'X':
3271 win = 1;
3272 break;
3274 case 'g':
3275 if (! force_reload
3276 /* A PLUS is never a valid operand, but reload can make
3277 it from a register when eliminating registers. */
3278 && GET_CODE (operand) != PLUS
3279 /* A SCRATCH is not a valid operand. */
3280 && GET_CODE (operand) != SCRATCH
3281 && (! CONSTANT_P (operand)
3282 || ! flag_pic
3283 || LEGITIMATE_PIC_OPERAND_P (operand))
3284 && (GENERAL_REGS == ALL_REGS
3285 || !REG_P (operand)
3286 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3287 && reg_renumber[REGNO (operand)] < 0)))
3288 win = 1;
3289 /* Drop through into 'r' case. */
3291 case 'r':
3292 this_alternative[i]
3293 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3294 goto reg;
3296 default:
3297 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
3299 #ifdef EXTRA_CONSTRAINT_STR
3300 if (EXTRA_MEMORY_CONSTRAINT (c, p))
3302 if (force_reload)
3303 break;
3304 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3305 win = 1;
3306 /* If the address was already reloaded,
3307 we win as well. */
3308 else if (MEM_P (operand)
3309 && address_reloaded[i] == 1)
3310 win = 1;
3311 /* Likewise if the address will be reloaded because
3312 reg_equiv_address is nonzero. For reg_equiv_mem
3313 we have to check. */
3314 else if (REG_P (operand)
3315 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3316 && reg_renumber[REGNO (operand)] < 0
3317 && ((reg_equiv_mem[REGNO (operand)] != 0
3318 && EXTRA_CONSTRAINT_STR (reg_equiv_mem[REGNO (operand)], c, p))
3319 || (reg_equiv_address[REGNO (operand)] != 0)))
3320 win = 1;
3322 /* If we didn't already win, we can reload
3323 constants via force_const_mem, and other
3324 MEMs by reloading the address like for 'o'. */
3325 if (CONST_POOL_OK_P (operand)
3326 || MEM_P (operand))
3327 badop = 0;
3328 constmemok = 1;
3329 offmemok = 1;
3330 break;
3332 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
3334 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3335 win = 1;
3337 /* If we didn't already win, we can reload
3338 the address into a base register. */
3339 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3340 badop = 0;
3341 break;
3344 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3345 win = 1;
3346 #endif
3347 break;
3350 this_alternative[i]
3351 = (int) (reg_class_subunion
3352 [this_alternative[i]]
3353 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
3354 reg:
3355 if (GET_MODE (operand) == BLKmode)
3356 break;
3357 winreg = 1;
3358 if (REG_P (operand)
3359 && reg_fits_class_p (operand, this_alternative[i],
3360 offset, GET_MODE (recog_data.operand[i])))
3361 win = 1;
3362 break;
3364 while ((p += len), c);
3366 constraints[i] = p;
3368 /* If this operand could be handled with a reg,
3369 and some reg is allowed, then this operand can be handled. */
3370 if (winreg && this_alternative[i] != (int) NO_REGS)
3371 badop = 0;
3373 /* Record which operands fit this alternative. */
3374 this_alternative_earlyclobber[i] = earlyclobber;
3375 if (win && ! force_reload)
3376 this_alternative_win[i] = 1;
3377 else if (did_match && ! force_reload)
3378 this_alternative_match_win[i] = 1;
3379 else
3381 int const_to_mem = 0;
3383 this_alternative_offmemok[i] = offmemok;
3384 losers++;
3385 if (badop)
3386 bad = 1;
3387 /* Alternative loses if it has no regs for a reg operand. */
3388 if (REG_P (operand)
3389 && this_alternative[i] == (int) NO_REGS
3390 && this_alternative_matches[i] < 0)
3391 bad = 1;
3393 /* If this is a constant that is reloaded into the desired
3394 class by copying it to memory first, count that as another
3395 reload. This is consistent with other code and is
3396 required to avoid choosing another alternative when
3397 the constant is moved into memory by this function on
3398 an early reload pass. Note that the test here is
3399 precisely the same as in the code below that calls
3400 force_const_mem. */
3401 if (CONST_POOL_OK_P (operand)
3402 && ((PREFERRED_RELOAD_CLASS (operand,
3403 (enum reg_class) this_alternative[i])
3404 == NO_REGS)
3405 || no_input_reloads)
3406 && operand_mode[i] != VOIDmode)
3408 const_to_mem = 1;
3409 if (this_alternative[i] != (int) NO_REGS)
3410 losers++;
3413 /* If we can't reload this value at all, reject this
3414 alternative. Note that we could also lose due to
3415 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3416 here. */
3418 if (! CONSTANT_P (operand)
3419 && (enum reg_class) this_alternative[i] != NO_REGS
3420 && (PREFERRED_RELOAD_CLASS (operand,
3421 (enum reg_class) this_alternative[i])
3422 == NO_REGS))
3423 bad = 1;
3425 /* Alternative loses if it requires a type of reload not
3426 permitted for this insn. We can always reload SCRATCH
3427 and objects with a REG_UNUSED note. */
3428 else if (GET_CODE (operand) != SCRATCH
3429 && modified[i] != RELOAD_READ && no_output_reloads
3430 && ! find_reg_note (insn, REG_UNUSED, operand))
3431 bad = 1;
3432 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3433 && ! const_to_mem)
3434 bad = 1;
3436 /* We prefer to reload pseudos over reloading other things,
3437 since such reloads may be able to be eliminated later.
3438 If we are reloading a SCRATCH, we won't be generating any
3439 insns, just using a register, so it is also preferred.
3440 So bump REJECT in other cases. Don't do this in the
3441 case where we are forcing a constant into memory and
3442 it will then win since we don't want to have a different
3443 alternative match then. */
3444 if (! (REG_P (operand)
3445 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3446 && GET_CODE (operand) != SCRATCH
3447 && ! (const_to_mem && constmemok))
3448 reject += 2;
3450 /* Input reloads can be inherited more often than output
3451 reloads can be removed, so penalize output reloads. */
3452 if (operand_type[i] != RELOAD_FOR_INPUT
3453 && GET_CODE (operand) != SCRATCH)
3454 reject++;
3457 /* If this operand is a pseudo register that didn't get a hard
3458 reg and this alternative accepts some register, see if the
3459 class that we want is a subset of the preferred class for this
3460 register. If not, but it intersects that class, use the
3461 preferred class instead. If it does not intersect the preferred
3462 class, show that usage of this alternative should be discouraged;
3463 it will be discouraged more still if the register is `preferred
3464 or nothing'. We do this because it increases the chance of
3465 reusing our spill register in a later insn and avoiding a pair
3466 of memory stores and loads.
3468 Don't bother with this if this alternative will accept this
3469 operand.
3471 Don't do this for a multiword operand, since it is only a
3472 small win and has the risk of requiring more spill registers,
3473 which could cause a large loss.
3475 Don't do this if the preferred class has only one register
3476 because we might otherwise exhaust the class. */
3478 if (! win && ! did_match
3479 && this_alternative[i] != (int) NO_REGS
3480 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3481 && reg_class_size[(int) preferred_class[i]] > 1)
3483 if (! reg_class_subset_p (this_alternative[i],
3484 preferred_class[i]))
3486 /* Since we don't have a way of forming the intersection,
3487 we just do something special if the preferred class
3488 is a subset of the class we have; that's the most
3489 common case anyway. */
3490 if (reg_class_subset_p (preferred_class[i],
3491 this_alternative[i]))
3492 this_alternative[i] = (int) preferred_class[i];
3493 else
3494 reject += (2 + 2 * pref_or_nothing[i]);
3499 /* Now see if any output operands that are marked "earlyclobber"
3500 in this alternative conflict with any input operands
3501 or any memory addresses. */
3503 for (i = 0; i < noperands; i++)
3504 if (this_alternative_earlyclobber[i]
3505 && (this_alternative_win[i] || this_alternative_match_win[i]))
3507 struct decomposition early_data;
3509 early_data = decompose (recog_data.operand[i]);
3511 gcc_assert (modified[i] != RELOAD_READ);
3513 if (this_alternative[i] == NO_REGS)
3515 this_alternative_earlyclobber[i] = 0;
3516 gcc_assert (this_insn_is_asm);
3517 error_for_asm (this_insn,
3518 "%<&%> constraint used with no register class");
3521 for (j = 0; j < noperands; j++)
3522 /* Is this an input operand or a memory ref? */
3523 if ((MEM_P (recog_data.operand[j])
3524 || modified[j] != RELOAD_WRITE)
3525 && j != i
3526 /* Ignore things like match_operator operands. */
3527 && *recog_data.constraints[j] != 0
3528 /* Don't count an input operand that is constrained to match
3529 the early clobber operand. */
3530 && ! (this_alternative_matches[j] == i
3531 && rtx_equal_p (recog_data.operand[i],
3532 recog_data.operand[j]))
3533 /* Is it altered by storing the earlyclobber operand? */
3534 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3535 early_data))
3537 /* If the output is in a single-reg class,
3538 it's costly to reload it, so reload the input instead. */
3539 if (reg_class_size[this_alternative[i]] == 1
3540 && (REG_P (recog_data.operand[j])
3541 || GET_CODE (recog_data.operand[j]) == SUBREG))
3543 losers++;
3544 this_alternative_win[j] = 0;
3545 this_alternative_match_win[j] = 0;
3547 else
3548 break;
3550 /* If an earlyclobber operand conflicts with something,
3551 it must be reloaded, so request this and count the cost. */
3552 if (j != noperands)
3554 losers++;
3555 this_alternative_win[i] = 0;
3556 this_alternative_match_win[j] = 0;
3557 for (j = 0; j < noperands; j++)
3558 if (this_alternative_matches[j] == i
3559 && this_alternative_match_win[j])
3561 this_alternative_win[j] = 0;
3562 this_alternative_match_win[j] = 0;
3563 losers++;
3568 /* If one alternative accepts all the operands, no reload required,
3569 choose that alternative; don't consider the remaining ones. */
3570 if (losers == 0)
3572 /* Unswap these so that they are never swapped at `finish'. */
3573 if (commutative >= 0)
3575 recog_data.operand[commutative] = substed_operand[commutative];
3576 recog_data.operand[commutative + 1]
3577 = substed_operand[commutative + 1];
3579 for (i = 0; i < noperands; i++)
3581 goal_alternative_win[i] = this_alternative_win[i];
3582 goal_alternative_match_win[i] = this_alternative_match_win[i];
3583 goal_alternative[i] = this_alternative[i];
3584 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3585 goal_alternative_matches[i] = this_alternative_matches[i];
3586 goal_alternative_earlyclobber[i]
3587 = this_alternative_earlyclobber[i];
3589 goal_alternative_number = this_alternative_number;
3590 goal_alternative_swapped = swapped;
3591 goal_earlyclobber = this_earlyclobber;
3592 goto finish;
3595 /* REJECT, set by the ! and ? constraint characters and when a register
3596 would be reloaded into a non-preferred class, discourages the use of
3597 this alternative for a reload goal. REJECT is incremented by six
3598 for each ? and two for each non-preferred class. */
3599 losers = losers * 6 + reject;
3601 /* If this alternative can be made to work by reloading,
3602 and it needs less reloading than the others checked so far,
3603 record it as the chosen goal for reloading. */
3604 if (! bad && best > losers)
3606 for (i = 0; i < noperands; i++)
3608 goal_alternative[i] = this_alternative[i];
3609 goal_alternative_win[i] = this_alternative_win[i];
3610 goal_alternative_match_win[i] = this_alternative_match_win[i];
3611 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3612 goal_alternative_matches[i] = this_alternative_matches[i];
3613 goal_alternative_earlyclobber[i]
3614 = this_alternative_earlyclobber[i];
3616 goal_alternative_swapped = swapped;
3617 best = losers;
3618 goal_alternative_number = this_alternative_number;
3619 goal_earlyclobber = this_earlyclobber;
3623 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3624 then we need to try each alternative twice,
3625 the second time matching those two operands
3626 as if we had exchanged them.
3627 To do this, really exchange them in operands.
3629 If we have just tried the alternatives the second time,
3630 return operands to normal and drop through. */
3632 if (commutative >= 0)
3634 swapped = !swapped;
3635 if (swapped)
3637 enum reg_class tclass;
3638 int t;
3640 recog_data.operand[commutative] = substed_operand[commutative + 1];
3641 recog_data.operand[commutative + 1] = substed_operand[commutative];
3642 /* Swap the duplicates too. */
3643 for (i = 0; i < recog_data.n_dups; i++)
3644 if (recog_data.dup_num[i] == commutative
3645 || recog_data.dup_num[i] == commutative + 1)
3646 *recog_data.dup_loc[i]
3647 = recog_data.operand[(int) recog_data.dup_num[i]];
3649 tclass = preferred_class[commutative];
3650 preferred_class[commutative] = preferred_class[commutative + 1];
3651 preferred_class[commutative + 1] = tclass;
3653 t = pref_or_nothing[commutative];
3654 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3655 pref_or_nothing[commutative + 1] = t;
3657 memcpy (constraints, recog_data.constraints,
3658 noperands * sizeof (char *));
3659 goto try_swapped;
3661 else
3663 recog_data.operand[commutative] = substed_operand[commutative];
3664 recog_data.operand[commutative + 1]
3665 = substed_operand[commutative + 1];
3666 /* Unswap the duplicates too. */
3667 for (i = 0; i < recog_data.n_dups; i++)
3668 if (recog_data.dup_num[i] == commutative
3669 || recog_data.dup_num[i] == commutative + 1)
3670 *recog_data.dup_loc[i]
3671 = recog_data.operand[(int) recog_data.dup_num[i]];
3675 /* The operands don't meet the constraints.
3676 goal_alternative describes the alternative
3677 that we could reach by reloading the fewest operands.
3678 Reload so as to fit it. */
3680 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3682 /* No alternative works with reloads?? */
3683 if (insn_code_number >= 0)
3684 fatal_insn ("unable to generate reloads for:", insn);
3685 error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
3686 /* Avoid further trouble with this insn. */
3687 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3688 n_reloads = 0;
3689 return 0;
3692 /* Jump to `finish' from above if all operands are valid already.
3693 In that case, goal_alternative_win is all 1. */
3694 finish:
3696 /* Right now, for any pair of operands I and J that are required to match,
3697 with I < J,
3698 goal_alternative_matches[J] is I.
3699 Set up goal_alternative_matched as the inverse function:
3700 goal_alternative_matched[I] = J. */
3702 for (i = 0; i < noperands; i++)
3703 goal_alternative_matched[i] = -1;
3705 for (i = 0; i < noperands; i++)
3706 if (! goal_alternative_win[i]
3707 && goal_alternative_matches[i] >= 0)
3708 goal_alternative_matched[goal_alternative_matches[i]] = i;
3710 for (i = 0; i < noperands; i++)
3711 goal_alternative_win[i] |= goal_alternative_match_win[i];
3713 /* If the best alternative is with operands 1 and 2 swapped,
3714 consider them swapped before reporting the reloads. Update the
3715 operand numbers of any reloads already pushed. */
3717 if (goal_alternative_swapped)
3719 rtx tem;
3721 tem = substed_operand[commutative];
3722 substed_operand[commutative] = substed_operand[commutative + 1];
3723 substed_operand[commutative + 1] = tem;
3724 tem = recog_data.operand[commutative];
3725 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3726 recog_data.operand[commutative + 1] = tem;
3727 tem = *recog_data.operand_loc[commutative];
3728 *recog_data.operand_loc[commutative]
3729 = *recog_data.operand_loc[commutative + 1];
3730 *recog_data.operand_loc[commutative + 1] = tem;
3732 for (i = 0; i < n_reloads; i++)
3734 if (rld[i].opnum == commutative)
3735 rld[i].opnum = commutative + 1;
3736 else if (rld[i].opnum == commutative + 1)
3737 rld[i].opnum = commutative;
3741 for (i = 0; i < noperands; i++)
3743 operand_reloadnum[i] = -1;
3745 /* If this is an earlyclobber operand, we need to widen the scope.
3746 The reload must remain valid from the start of the insn being
3747 reloaded until after the operand is stored into its destination.
3748 We approximate this with RELOAD_OTHER even though we know that we
3749 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3751 One special case that is worth checking is when we have an
3752 output that is earlyclobber but isn't used past the insn (typically
3753 a SCRATCH). In this case, we only need have the reload live
3754 through the insn itself, but not for any of our input or output
3755 reloads.
3756 But we must not accidentally narrow the scope of an existing
3757 RELOAD_OTHER reload - leave these alone.
3759 In any case, anything needed to address this operand can remain
3760 however they were previously categorized. */
3762 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3763 operand_type[i]
3764 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3765 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3768 /* Any constants that aren't allowed and can't be reloaded
3769 into registers are here changed into memory references. */
3770 for (i = 0; i < noperands; i++)
3771 if (! goal_alternative_win[i]
3772 && CONST_POOL_OK_P (recog_data.operand[i])
3773 && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
3774 (enum reg_class) goal_alternative[i])
3775 == NO_REGS)
3776 || no_input_reloads)
3777 && operand_mode[i] != VOIDmode)
3779 substed_operand[i] = recog_data.operand[i]
3780 = find_reloads_toplev (force_const_mem (operand_mode[i],
3781 recog_data.operand[i]),
3782 i, address_type[i], ind_levels, 0, insn,
3783 NULL);
3784 if (alternative_allows_memconst (recog_data.constraints[i],
3785 goal_alternative_number))
3786 goal_alternative_win[i] = 1;
3789 /* Record the values of the earlyclobber operands for the caller. */
3790 if (goal_earlyclobber)
3791 for (i = 0; i < noperands; i++)
3792 if (goal_alternative_earlyclobber[i])
3793 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3795 /* Now record reloads for all the operands that need them. */
3796 for (i = 0; i < noperands; i++)
3797 if (! goal_alternative_win[i])
3799 /* Operands that match previous ones have already been handled. */
3800 if (goal_alternative_matches[i] >= 0)
3802 /* Handle an operand with a nonoffsettable address
3803 appearing where an offsettable address will do
3804 by reloading the address into a base register.
3806 ??? We can also do this when the operand is a register and
3807 reg_equiv_mem is not offsettable, but this is a bit tricky,
3808 so we don't bother with it. It may not be worth doing. */
3809 else if (goal_alternative_matched[i] == -1
3810 && goal_alternative_offmemok[i]
3811 && MEM_P (recog_data.operand[i]))
3813 operand_reloadnum[i]
3814 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3815 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
3816 MODE_BASE_REG_CLASS (VOIDmode),
3817 GET_MODE (XEXP (recog_data.operand[i], 0)),
3818 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3819 rld[operand_reloadnum[i]].inc
3820 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3822 /* If this operand is an output, we will have made any
3823 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3824 now we are treating part of the operand as an input, so
3825 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3827 if (modified[i] == RELOAD_WRITE)
3829 for (j = 0; j < n_reloads; j++)
3831 if (rld[j].opnum == i)
3833 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3834 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3835 else if (rld[j].when_needed
3836 == RELOAD_FOR_OUTADDR_ADDRESS)
3837 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
3842 else if (goal_alternative_matched[i] == -1)
3844 operand_reloadnum[i]
3845 = push_reload ((modified[i] != RELOAD_WRITE
3846 ? recog_data.operand[i] : 0),
3847 (modified[i] != RELOAD_READ
3848 ? recog_data.operand[i] : 0),
3849 (modified[i] != RELOAD_WRITE
3850 ? recog_data.operand_loc[i] : 0),
3851 (modified[i] != RELOAD_READ
3852 ? recog_data.operand_loc[i] : 0),
3853 (enum reg_class) goal_alternative[i],
3854 (modified[i] == RELOAD_WRITE
3855 ? VOIDmode : operand_mode[i]),
3856 (modified[i] == RELOAD_READ
3857 ? VOIDmode : operand_mode[i]),
3858 (insn_code_number < 0 ? 0
3859 : insn_data[insn_code_number].operand[i].strict_low),
3860 0, i, operand_type[i]);
3862 /* In a matching pair of operands, one must be input only
3863 and the other must be output only.
3864 Pass the input operand as IN and the other as OUT. */
3865 else if (modified[i] == RELOAD_READ
3866 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3868 operand_reloadnum[i]
3869 = push_reload (recog_data.operand[i],
3870 recog_data.operand[goal_alternative_matched[i]],
3871 recog_data.operand_loc[i],
3872 recog_data.operand_loc[goal_alternative_matched[i]],
3873 (enum reg_class) goal_alternative[i],
3874 operand_mode[i],
3875 operand_mode[goal_alternative_matched[i]],
3876 0, 0, i, RELOAD_OTHER);
3877 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3879 else if (modified[i] == RELOAD_WRITE
3880 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3882 operand_reloadnum[goal_alternative_matched[i]]
3883 = push_reload (recog_data.operand[goal_alternative_matched[i]],
3884 recog_data.operand[i],
3885 recog_data.operand_loc[goal_alternative_matched[i]],
3886 recog_data.operand_loc[i],
3887 (enum reg_class) goal_alternative[i],
3888 operand_mode[goal_alternative_matched[i]],
3889 operand_mode[i],
3890 0, 0, i, RELOAD_OTHER);
3891 operand_reloadnum[i] = output_reloadnum;
3893 else
3895 gcc_assert (insn_code_number < 0);
3896 error_for_asm (insn, "inconsistent operand constraints "
3897 "in an %<asm%>");
3898 /* Avoid further trouble with this insn. */
3899 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3900 n_reloads = 0;
3901 return 0;
3904 else if (goal_alternative_matched[i] < 0
3905 && goal_alternative_matches[i] < 0
3906 && address_operand_reloaded[i] != 1
3907 && optimize)
3909 /* For each non-matching operand that's a MEM or a pseudo-register
3910 that didn't get a hard register, make an optional reload.
3911 This may get done even if the insn needs no reloads otherwise. */
3913 rtx operand = recog_data.operand[i];
3915 while (GET_CODE (operand) == SUBREG)
3916 operand = SUBREG_REG (operand);
3917 if ((MEM_P (operand)
3918 || (REG_P (operand)
3919 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3920 /* If this is only for an output, the optional reload would not
3921 actually cause us to use a register now, just note that
3922 something is stored here. */
3923 && ((enum reg_class) goal_alternative[i] != NO_REGS
3924 || modified[i] == RELOAD_WRITE)
3925 && ! no_input_reloads
3926 /* An optional output reload might allow to delete INSN later.
3927 We mustn't make in-out reloads on insns that are not permitted
3928 output reloads.
3929 If this is an asm, we can't delete it; we must not even call
3930 push_reload for an optional output reload in this case,
3931 because we can't be sure that the constraint allows a register,
3932 and push_reload verifies the constraints for asms. */
3933 && (modified[i] == RELOAD_READ
3934 || (! no_output_reloads && ! this_insn_is_asm)))
3935 operand_reloadnum[i]
3936 = push_reload ((modified[i] != RELOAD_WRITE
3937 ? recog_data.operand[i] : 0),
3938 (modified[i] != RELOAD_READ
3939 ? recog_data.operand[i] : 0),
3940 (modified[i] != RELOAD_WRITE
3941 ? recog_data.operand_loc[i] : 0),
3942 (modified[i] != RELOAD_READ
3943 ? recog_data.operand_loc[i] : 0),
3944 (enum reg_class) goal_alternative[i],
3945 (modified[i] == RELOAD_WRITE
3946 ? VOIDmode : operand_mode[i]),
3947 (modified[i] == RELOAD_READ
3948 ? VOIDmode : operand_mode[i]),
3949 (insn_code_number < 0 ? 0
3950 : insn_data[insn_code_number].operand[i].strict_low),
3951 1, i, operand_type[i]);
3952 /* If a memory reference remains (either as a MEM or a pseudo that
3953 did not get a hard register), yet we can't make an optional
3954 reload, check if this is actually a pseudo register reference;
3955 we then need to emit a USE and/or a CLOBBER so that reload
3956 inheritance will do the right thing. */
3957 else if (replace
3958 && (MEM_P (operand)
3959 || (REG_P (operand)
3960 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3961 && reg_renumber [REGNO (operand)] < 0)))
3963 operand = *recog_data.operand_loc[i];
3965 while (GET_CODE (operand) == SUBREG)
3966 operand = SUBREG_REG (operand);
3967 if (REG_P (operand))
3969 if (modified[i] != RELOAD_WRITE)
3970 /* We mark the USE with QImode so that we recognize
3971 it as one that can be safely deleted at the end
3972 of reload. */
3973 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
3974 insn), QImode);
3975 if (modified[i] != RELOAD_READ)
3976 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
3980 else if (goal_alternative_matches[i] >= 0
3981 && goal_alternative_win[goal_alternative_matches[i]]
3982 && modified[i] == RELOAD_READ
3983 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
3984 && ! no_input_reloads && ! no_output_reloads
3985 && optimize)
3987 /* Similarly, make an optional reload for a pair of matching
3988 objects that are in MEM or a pseudo that didn't get a hard reg. */
3990 rtx operand = recog_data.operand[i];
3992 while (GET_CODE (operand) == SUBREG)
3993 operand = SUBREG_REG (operand);
3994 if ((MEM_P (operand)
3995 || (REG_P (operand)
3996 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3997 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
3998 != NO_REGS))
3999 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
4000 = push_reload (recog_data.operand[goal_alternative_matches[i]],
4001 recog_data.operand[i],
4002 recog_data.operand_loc[goal_alternative_matches[i]],
4003 recog_data.operand_loc[i],
4004 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
4005 operand_mode[goal_alternative_matches[i]],
4006 operand_mode[i],
4007 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
4010 /* Perform whatever substitutions on the operands we are supposed
4011 to make due to commutativity or replacement of registers
4012 with equivalent constants or memory slots. */
4014 for (i = 0; i < noperands; i++)
4016 /* We only do this on the last pass through reload, because it is
4017 possible for some data (like reg_equiv_address) to be changed during
4018 later passes. Moreover, we loose the opportunity to get a useful
4019 reload_{in,out}_reg when we do these replacements. */
4021 if (replace)
4023 rtx substitution = substed_operand[i];
4025 *recog_data.operand_loc[i] = substitution;
4027 /* If we're replacing an operand with a LABEL_REF, we need
4028 to make sure that there's a REG_LABEL note attached to
4029 this instruction. */
4030 if (!JUMP_P (insn)
4031 && GET_CODE (substitution) == LABEL_REF
4032 && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
4033 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
4034 XEXP (substitution, 0),
4035 REG_NOTES (insn));
4037 else
4038 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4041 /* If this insn pattern contains any MATCH_DUP's, make sure that
4042 they will be substituted if the operands they match are substituted.
4043 Also do now any substitutions we already did on the operands.
4045 Don't do this if we aren't making replacements because we might be
4046 propagating things allocated by frame pointer elimination into places
4047 it doesn't expect. */
4049 if (insn_code_number >= 0 && replace)
4050 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4052 int opno = recog_data.dup_num[i];
4053 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4054 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4057 #if 0
4058 /* This loses because reloading of prior insns can invalidate the equivalence
4059 (or at least find_equiv_reg isn't smart enough to find it any more),
4060 causing this insn to need more reload regs than it needed before.
4061 It may be too late to make the reload regs available.
4062 Now this optimization is done safely in choose_reload_regs. */
4064 /* For each reload of a reg into some other class of reg,
4065 search for an existing equivalent reg (same value now) in the right class.
4066 We can use it as long as we don't need to change its contents. */
4067 for (i = 0; i < n_reloads; i++)
4068 if (rld[i].reg_rtx == 0
4069 && rld[i].in != 0
4070 && REG_P (rld[i].in)
4071 && rld[i].out == 0)
4073 rld[i].reg_rtx
4074 = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
4075 static_reload_reg_p, 0, rld[i].inmode);
4076 /* Prevent generation of insn to load the value
4077 because the one we found already has the value. */
4078 if (rld[i].reg_rtx)
4079 rld[i].in = rld[i].reg_rtx;
4081 #endif
4083 /* Perhaps an output reload can be combined with another
4084 to reduce needs by one. */
4085 if (!goal_earlyclobber)
4086 combine_reloads ();
4088 /* If we have a pair of reloads for parts of an address, they are reloading
4089 the same object, the operands themselves were not reloaded, and they
4090 are for two operands that are supposed to match, merge the reloads and
4091 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4093 for (i = 0; i < n_reloads; i++)
4095 int k;
4097 for (j = i + 1; j < n_reloads; j++)
4098 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4099 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4100 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4101 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4102 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4103 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4104 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4105 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4106 && rtx_equal_p (rld[i].in, rld[j].in)
4107 && (operand_reloadnum[rld[i].opnum] < 0
4108 || rld[operand_reloadnum[rld[i].opnum]].optional)
4109 && (operand_reloadnum[rld[j].opnum] < 0
4110 || rld[operand_reloadnum[rld[j].opnum]].optional)
4111 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4112 || (goal_alternative_matches[rld[j].opnum]
4113 == rld[i].opnum)))
4115 for (k = 0; k < n_replacements; k++)
4116 if (replacements[k].what == j)
4117 replacements[k].what = i;
4119 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4120 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4121 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4122 else
4123 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4124 rld[j].in = 0;
4128 /* Scan all the reloads and update their type.
4129 If a reload is for the address of an operand and we didn't reload
4130 that operand, change the type. Similarly, change the operand number
4131 of a reload when two operands match. If a reload is optional, treat it
4132 as though the operand isn't reloaded.
4134 ??? This latter case is somewhat odd because if we do the optional
4135 reload, it means the object is hanging around. Thus we need only
4136 do the address reload if the optional reload was NOT done.
4138 Change secondary reloads to be the address type of their operand, not
4139 the normal type.
4141 If an operand's reload is now RELOAD_OTHER, change any
4142 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4143 RELOAD_FOR_OTHER_ADDRESS. */
4145 for (i = 0; i < n_reloads; i++)
4147 if (rld[i].secondary_p
4148 && rld[i].when_needed == operand_type[rld[i].opnum])
4149 rld[i].when_needed = address_type[rld[i].opnum];
4151 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4152 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4153 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4154 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4155 && (operand_reloadnum[rld[i].opnum] < 0
4156 || rld[operand_reloadnum[rld[i].opnum]].optional))
4158 /* If we have a secondary reload to go along with this reload,
4159 change its type to RELOAD_FOR_OPADDR_ADDR. */
4161 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4162 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4163 && rld[i].secondary_in_reload != -1)
4165 int secondary_in_reload = rld[i].secondary_in_reload;
4167 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4169 /* If there's a tertiary reload we have to change it also. */
4170 if (secondary_in_reload > 0
4171 && rld[secondary_in_reload].secondary_in_reload != -1)
4172 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4173 = RELOAD_FOR_OPADDR_ADDR;
4176 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4177 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4178 && rld[i].secondary_out_reload != -1)
4180 int secondary_out_reload = rld[i].secondary_out_reload;
4182 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4184 /* If there's a tertiary reload we have to change it also. */
4185 if (secondary_out_reload
4186 && rld[secondary_out_reload].secondary_out_reload != -1)
4187 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4188 = RELOAD_FOR_OPADDR_ADDR;
4191 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4192 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4193 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4194 else
4195 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4198 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4199 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4200 && operand_reloadnum[rld[i].opnum] >= 0
4201 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4202 == RELOAD_OTHER))
4203 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4205 if (goal_alternative_matches[rld[i].opnum] >= 0)
4206 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4209 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4210 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4211 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4213 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4214 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4215 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4216 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4217 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4218 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4219 This is complicated by the fact that a single operand can have more
4220 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4221 choose_reload_regs without affecting code quality, and cases that
4222 actually fail are extremely rare, so it turns out to be better to fix
4223 the problem here by not generating cases that choose_reload_regs will
4224 fail for. */
4225 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4226 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4227 a single operand.
4228 We can reduce the register pressure by exploiting that a
4229 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4230 does not conflict with any of them, if it is only used for the first of
4231 the RELOAD_FOR_X_ADDRESS reloads. */
4233 int first_op_addr_num = -2;
4234 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4235 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4236 int need_change = 0;
4237 /* We use last_op_addr_reload and the contents of the above arrays
4238 first as flags - -2 means no instance encountered, -1 means exactly
4239 one instance encountered.
4240 If more than one instance has been encountered, we store the reload
4241 number of the first reload of the kind in question; reload numbers
4242 are known to be non-negative. */
4243 for (i = 0; i < noperands; i++)
4244 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4245 for (i = n_reloads - 1; i >= 0; i--)
4247 switch (rld[i].when_needed)
4249 case RELOAD_FOR_OPERAND_ADDRESS:
4250 if (++first_op_addr_num >= 0)
4252 first_op_addr_num = i;
4253 need_change = 1;
4255 break;
4256 case RELOAD_FOR_INPUT_ADDRESS:
4257 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4259 first_inpaddr_num[rld[i].opnum] = i;
4260 need_change = 1;
4262 break;
4263 case RELOAD_FOR_OUTPUT_ADDRESS:
4264 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4266 first_outpaddr_num[rld[i].opnum] = i;
4267 need_change = 1;
4269 break;
4270 default:
4271 break;
4275 if (need_change)
4277 for (i = 0; i < n_reloads; i++)
4279 int first_num;
4280 enum reload_type type;
4282 switch (rld[i].when_needed)
4284 case RELOAD_FOR_OPADDR_ADDR:
4285 first_num = first_op_addr_num;
4286 type = RELOAD_FOR_OPERAND_ADDRESS;
4287 break;
4288 case RELOAD_FOR_INPADDR_ADDRESS:
4289 first_num = first_inpaddr_num[rld[i].opnum];
4290 type = RELOAD_FOR_INPUT_ADDRESS;
4291 break;
4292 case RELOAD_FOR_OUTADDR_ADDRESS:
4293 first_num = first_outpaddr_num[rld[i].opnum];
4294 type = RELOAD_FOR_OUTPUT_ADDRESS;
4295 break;
4296 default:
4297 continue;
4299 if (first_num < 0)
4300 continue;
4301 else if (i > first_num)
4302 rld[i].when_needed = type;
4303 else
4305 /* Check if the only TYPE reload that uses reload I is
4306 reload FIRST_NUM. */
4307 for (j = n_reloads - 1; j > first_num; j--)
4309 if (rld[j].when_needed == type
4310 && (rld[i].secondary_p
4311 ? rld[j].secondary_in_reload == i
4312 : reg_mentioned_p (rld[i].in, rld[j].in)))
4314 rld[i].when_needed = type;
4315 break;
4323 /* See if we have any reloads that are now allowed to be merged
4324 because we've changed when the reload is needed to
4325 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4326 check for the most common cases. */
4328 for (i = 0; i < n_reloads; i++)
4329 if (rld[i].in != 0 && rld[i].out == 0
4330 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4331 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4332 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4333 for (j = 0; j < n_reloads; j++)
4334 if (i != j && rld[j].in != 0 && rld[j].out == 0
4335 && rld[j].when_needed == rld[i].when_needed
4336 && MATCHES (rld[i].in, rld[j].in)
4337 && rld[i].class == rld[j].class
4338 && !rld[i].nocombine && !rld[j].nocombine
4339 && rld[i].reg_rtx == rld[j].reg_rtx)
4341 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4342 transfer_replacements (i, j);
4343 rld[j].in = 0;
4346 #ifdef HAVE_cc0
4347 /* If we made any reloads for addresses, see if they violate a
4348 "no input reloads" requirement for this insn. But loads that we
4349 do after the insn (such as for output addresses) are fine. */
4350 if (no_input_reloads)
4351 for (i = 0; i < n_reloads; i++)
4352 gcc_assert (rld[i].in == 0
4353 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS
4354 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS);
4355 #endif
4357 /* Compute reload_mode and reload_nregs. */
4358 for (i = 0; i < n_reloads; i++)
4360 rld[i].mode
4361 = (rld[i].inmode == VOIDmode
4362 || (GET_MODE_SIZE (rld[i].outmode)
4363 > GET_MODE_SIZE (rld[i].inmode)))
4364 ? rld[i].outmode : rld[i].inmode;
4366 rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
4369 /* Special case a simple move with an input reload and a
4370 destination of a hard reg, if the hard reg is ok, use it. */
4371 for (i = 0; i < n_reloads; i++)
4372 if (rld[i].when_needed == RELOAD_FOR_INPUT
4373 && GET_CODE (PATTERN (insn)) == SET
4374 && REG_P (SET_DEST (PATTERN (insn)))
4375 && SET_SRC (PATTERN (insn)) == rld[i].in)
4377 rtx dest = SET_DEST (PATTERN (insn));
4378 unsigned int regno = REGNO (dest);
4380 if (regno < FIRST_PSEUDO_REGISTER
4381 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno)
4382 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4384 int nr = hard_regno_nregs[regno][rld[i].mode];
4385 int ok = 1, nri;
4387 for (nri = 1; nri < nr; nri ++)
4388 if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno + nri))
4389 ok = 0;
4391 if (ok)
4392 rld[i].reg_rtx = dest;
4396 return retval;
4399 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4400 accepts a memory operand with constant address. */
4402 static int
4403 alternative_allows_memconst (const char *constraint, int altnum)
4405 int c;
4406 /* Skip alternatives before the one requested. */
4407 while (altnum > 0)
4409 while (*constraint++ != ',');
4410 altnum--;
4412 /* Scan the requested alternative for 'm' or 'o'.
4413 If one of them is present, this alternative accepts memory constants. */
4414 for (; (c = *constraint) && c != ',' && c != '#';
4415 constraint += CONSTRAINT_LEN (c, constraint))
4416 if (c == 'm' || c == 'o' || EXTRA_MEMORY_CONSTRAINT (c, constraint))
4417 return 1;
4418 return 0;
4421 /* Scan X for memory references and scan the addresses for reloading.
4422 Also checks for references to "constant" regs that we want to eliminate
4423 and replaces them with the values they stand for.
4424 We may alter X destructively if it contains a reference to such.
4425 If X is just a constant reg, we return the equivalent value
4426 instead of X.
4428 IND_LEVELS says how many levels of indirect addressing this machine
4429 supports.
4431 OPNUM and TYPE identify the purpose of the reload.
4433 IS_SET_DEST is true if X is the destination of a SET, which is not
4434 appropriate to be replaced by a constant.
4436 INSN, if nonzero, is the insn in which we do the reload. It is used
4437 to determine if we may generate output reloads, and where to put USEs
4438 for pseudos that we have to replace with stack slots.
4440 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4441 result of find_reloads_address. */
4443 static rtx
4444 find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4445 int ind_levels, int is_set_dest, rtx insn,
4446 int *address_reloaded)
4448 RTX_CODE code = GET_CODE (x);
4450 const char *fmt = GET_RTX_FORMAT (code);
4451 int i;
4452 int copied;
4454 if (code == REG)
4456 /* This code is duplicated for speed in find_reloads. */
4457 int regno = REGNO (x);
4458 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4459 x = reg_equiv_constant[regno];
4460 #if 0
4461 /* This creates (subreg (mem...)) which would cause an unnecessary
4462 reload of the mem. */
4463 else if (reg_equiv_mem[regno] != 0)
4464 x = reg_equiv_mem[regno];
4465 #endif
4466 else if (reg_equiv_memory_loc[regno]
4467 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4469 rtx mem = make_memloc (x, regno);
4470 if (reg_equiv_address[regno]
4471 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4473 /* If this is not a toplevel operand, find_reloads doesn't see
4474 this substitution. We have to emit a USE of the pseudo so
4475 that delete_output_reload can see it. */
4476 if (replace_reloads && recog_data.operand[opnum] != x)
4477 /* We mark the USE with QImode so that we recognize it
4478 as one that can be safely deleted at the end of
4479 reload. */
4480 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4481 QImode);
4482 x = mem;
4483 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4484 opnum, type, ind_levels, insn);
4485 if (address_reloaded)
4486 *address_reloaded = i;
4489 return x;
4491 if (code == MEM)
4493 rtx tem = x;
4495 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4496 opnum, type, ind_levels, insn);
4497 if (address_reloaded)
4498 *address_reloaded = i;
4500 return tem;
4503 if (code == SUBREG && REG_P (SUBREG_REG (x)))
4505 /* Check for SUBREG containing a REG that's equivalent to a constant.
4506 If the constant has a known value, truncate it right now.
4507 Similarly if we are extracting a single-word of a multi-word
4508 constant. If the constant is symbolic, allow it to be substituted
4509 normally. push_reload will strip the subreg later. If the
4510 constant is VOIDmode, abort because we will lose the mode of
4511 the register (this should never happen because one of the cases
4512 above should handle it). */
4514 int regno = REGNO (SUBREG_REG (x));
4515 rtx tem;
4517 if (subreg_lowpart_p (x)
4518 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4519 && reg_equiv_constant[regno] != 0
4520 && (tem = gen_lowpart_common (GET_MODE (x),
4521 reg_equiv_constant[regno])) != 0)
4522 return tem;
4524 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4525 && reg_equiv_constant[regno] != 0)
4527 tem =
4528 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant[regno],
4529 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4530 gcc_assert (tem);
4531 return tem;
4534 /* If the subreg contains a reg that will be converted to a mem,
4535 convert the subreg to a narrower memref now.
4536 Otherwise, we would get (subreg (mem ...) ...),
4537 which would force reload of the mem.
4539 We also need to do this if there is an equivalent MEM that is
4540 not offsettable. In that case, alter_subreg would produce an
4541 invalid address on big-endian machines.
4543 For machines that extend byte loads, we must not reload using
4544 a wider mode if we have a paradoxical SUBREG. find_reloads will
4545 force a reload in that case. So we should not do anything here. */
4547 else if (regno >= FIRST_PSEUDO_REGISTER
4548 #ifdef LOAD_EXTEND_OP
4549 && (GET_MODE_SIZE (GET_MODE (x))
4550 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4551 #endif
4552 && (reg_equiv_address[regno] != 0
4553 || (reg_equiv_mem[regno] != 0
4554 && (! strict_memory_address_p (GET_MODE (x),
4555 XEXP (reg_equiv_mem[regno], 0))
4556 || ! offsettable_memref_p (reg_equiv_mem[regno])
4557 || num_not_at_initial_offset))))
4558 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4559 insn);
4562 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4564 if (fmt[i] == 'e')
4566 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4567 ind_levels, is_set_dest, insn,
4568 address_reloaded);
4569 /* If we have replaced a reg with it's equivalent memory loc -
4570 that can still be handled here e.g. if it's in a paradoxical
4571 subreg - we must make the change in a copy, rather than using
4572 a destructive change. This way, find_reloads can still elect
4573 not to do the change. */
4574 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4576 x = shallow_copy_rtx (x);
4577 copied = 1;
4579 XEXP (x, i) = new_part;
4582 return x;
4585 /* Return a mem ref for the memory equivalent of reg REGNO.
4586 This mem ref is not shared with anything. */
4588 static rtx
4589 make_memloc (rtx ad, int regno)
4591 /* We must rerun eliminate_regs, in case the elimination
4592 offsets have changed. */
4593 rtx tem
4594 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4596 /* If TEM might contain a pseudo, we must copy it to avoid
4597 modifying it when we do the substitution for the reload. */
4598 if (rtx_varies_p (tem, 0))
4599 tem = copy_rtx (tem);
4601 tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
4602 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4604 /* Copy the result if it's still the same as the equivalence, to avoid
4605 modifying it when we do the substitution for the reload. */
4606 if (tem == reg_equiv_memory_loc[regno])
4607 tem = copy_rtx (tem);
4608 return tem;
4611 /* Returns true if AD could be turned into a valid memory reference
4612 to mode MODE by reloading the part pointed to by PART into a
4613 register. */
4615 static int
4616 maybe_memory_address_p (enum machine_mode mode, rtx ad, rtx *part)
4618 int retv;
4619 rtx tem = *part;
4620 rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4622 *part = reg;
4623 retv = memory_address_p (mode, ad);
4624 *part = tem;
4626 return retv;
4629 /* Record all reloads needed for handling memory address AD
4630 which appears in *LOC in a memory reference to mode MODE
4631 which itself is found in location *MEMREFLOC.
4632 Note that we take shortcuts assuming that no multi-reg machine mode
4633 occurs as part of an address.
4635 OPNUM and TYPE specify the purpose of this reload.
4637 IND_LEVELS says how many levels of indirect addressing this machine
4638 supports.
4640 INSN, if nonzero, is the insn in which we do the reload. It is used
4641 to determine if we may generate output reloads, and where to put USEs
4642 for pseudos that we have to replace with stack slots.
4644 Value is one if this address is reloaded or replaced as a whole; it is
4645 zero if the top level of this address was not reloaded or replaced, and
4646 it is -1 if it may or may not have been reloaded or replaced.
4648 Note that there is no verification that the address will be valid after
4649 this routine does its work. Instead, we rely on the fact that the address
4650 was valid when reload started. So we need only undo things that reload
4651 could have broken. These are wrong register types, pseudos not allocated
4652 to a hard register, and frame pointer elimination. */
4654 static int
4655 find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
4656 rtx *loc, int opnum, enum reload_type type,
4657 int ind_levels, rtx insn)
4659 int regno;
4660 int removed_and = 0;
4661 int op_index;
4662 rtx tem;
4664 /* If the address is a register, see if it is a legitimate address and
4665 reload if not. We first handle the cases where we need not reload
4666 or where we must reload in a non-standard way. */
4668 if (REG_P (ad))
4670 regno = REGNO (ad);
4672 /* If the register is equivalent to an invariant expression, substitute
4673 the invariant, and eliminate any eliminable register references. */
4674 tem = reg_equiv_constant[regno];
4675 if (tem != 0
4676 && (tem = eliminate_regs (tem, mode, insn))
4677 && strict_memory_address_p (mode, tem))
4679 *loc = ad = tem;
4680 return 0;
4683 tem = reg_equiv_memory_loc[regno];
4684 if (tem != 0)
4686 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4688 tem = make_memloc (ad, regno);
4689 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4691 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4692 &XEXP (tem, 0), opnum,
4693 ADDR_TYPE (type), ind_levels, insn);
4695 /* We can avoid a reload if the register's equivalent memory
4696 expression is valid as an indirect memory address.
4697 But not all addresses are valid in a mem used as an indirect
4698 address: only reg or reg+constant. */
4700 if (ind_levels > 0
4701 && strict_memory_address_p (mode, tem)
4702 && (REG_P (XEXP (tem, 0))
4703 || (GET_CODE (XEXP (tem, 0)) == PLUS
4704 && REG_P (XEXP (XEXP (tem, 0), 0))
4705 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4707 /* TEM is not the same as what we'll be replacing the
4708 pseudo with after reload, put a USE in front of INSN
4709 in the final reload pass. */
4710 if (replace_reloads
4711 && num_not_at_initial_offset
4712 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4714 *loc = tem;
4715 /* We mark the USE with QImode so that we
4716 recognize it as one that can be safely
4717 deleted at the end of reload. */
4718 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4719 insn), QImode);
4721 /* This doesn't really count as replacing the address
4722 as a whole, since it is still a memory access. */
4724 return 0;
4726 ad = tem;
4730 /* The only remaining case where we can avoid a reload is if this is a
4731 hard register that is valid as a base register and which is not the
4732 subject of a CLOBBER in this insn. */
4734 else if (regno < FIRST_PSEUDO_REGISTER
4735 && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
4736 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4737 return 0;
4739 /* If we do not have one of the cases above, we must do the reload. */
4740 push_reload (ad, NULL_RTX, loc, (rtx*) 0, MODE_BASE_REG_CLASS (mode),
4741 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4742 return 1;
4745 if (strict_memory_address_p (mode, ad))
4747 /* The address appears valid, so reloads are not needed.
4748 But the address may contain an eliminable register.
4749 This can happen because a machine with indirect addressing
4750 may consider a pseudo register by itself a valid address even when
4751 it has failed to get a hard reg.
4752 So do a tree-walk to find and eliminate all such regs. */
4754 /* But first quickly dispose of a common case. */
4755 if (GET_CODE (ad) == PLUS
4756 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4757 && REG_P (XEXP (ad, 0))
4758 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4759 return 0;
4761 subst_reg_equivs_changed = 0;
4762 *loc = subst_reg_equivs (ad, insn);
4764 if (! subst_reg_equivs_changed)
4765 return 0;
4767 /* Check result for validity after substitution. */
4768 if (strict_memory_address_p (mode, ad))
4769 return 0;
4772 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4775 if (memrefloc)
4777 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4778 ind_levels, win);
4780 break;
4781 win:
4782 *memrefloc = copy_rtx (*memrefloc);
4783 XEXP (*memrefloc, 0) = ad;
4784 move_replacements (&ad, &XEXP (*memrefloc, 0));
4785 return -1;
4787 while (0);
4788 #endif
4790 /* The address is not valid. We have to figure out why. First see if
4791 we have an outer AND and remove it if so. Then analyze what's inside. */
4793 if (GET_CODE (ad) == AND)
4795 removed_and = 1;
4796 loc = &XEXP (ad, 0);
4797 ad = *loc;
4800 /* One possibility for why the address is invalid is that it is itself
4801 a MEM. This can happen when the frame pointer is being eliminated, a
4802 pseudo is not allocated to a hard register, and the offset between the
4803 frame and stack pointers is not its initial value. In that case the
4804 pseudo will have been replaced by a MEM referring to the
4805 stack pointer. */
4806 if (MEM_P (ad))
4808 /* First ensure that the address in this MEM is valid. Then, unless
4809 indirect addresses are valid, reload the MEM into a register. */
4810 tem = ad;
4811 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4812 opnum, ADDR_TYPE (type),
4813 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4815 /* If tem was changed, then we must create a new memory reference to
4816 hold it and store it back into memrefloc. */
4817 if (tem != ad && memrefloc)
4819 *memrefloc = copy_rtx (*memrefloc);
4820 copy_replacements (tem, XEXP (*memrefloc, 0));
4821 loc = &XEXP (*memrefloc, 0);
4822 if (removed_and)
4823 loc = &XEXP (*loc, 0);
4826 /* Check similar cases as for indirect addresses as above except
4827 that we can allow pseudos and a MEM since they should have been
4828 taken care of above. */
4830 if (ind_levels == 0
4831 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4832 || MEM_P (XEXP (tem, 0))
4833 || ! (REG_P (XEXP (tem, 0))
4834 || (GET_CODE (XEXP (tem, 0)) == PLUS
4835 && REG_P (XEXP (XEXP (tem, 0), 0))
4836 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4838 /* Must use TEM here, not AD, since it is the one that will
4839 have any subexpressions reloaded, if needed. */
4840 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
4841 MODE_BASE_REG_CLASS (mode), GET_MODE (tem),
4842 VOIDmode, 0,
4843 0, opnum, type);
4844 return ! removed_and;
4846 else
4847 return 0;
4850 /* If we have address of a stack slot but it's not valid because the
4851 displacement is too large, compute the sum in a register.
4852 Handle all base registers here, not just fp/ap/sp, because on some
4853 targets (namely SH) we can also get too large displacements from
4854 big-endian corrections. */
4855 else if (GET_CODE (ad) == PLUS
4856 && REG_P (XEXP (ad, 0))
4857 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4858 && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
4859 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4861 /* Unshare the MEM rtx so we can safely alter it. */
4862 if (memrefloc)
4864 *memrefloc = copy_rtx (*memrefloc);
4865 loc = &XEXP (*memrefloc, 0);
4866 if (removed_and)
4867 loc = &XEXP (*loc, 0);
4870 if (double_reg_address_ok)
4872 /* Unshare the sum as well. */
4873 *loc = ad = copy_rtx (ad);
4875 /* Reload the displacement into an index reg.
4876 We assume the frame pointer or arg pointer is a base reg. */
4877 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4878 INDEX_REG_CLASS, GET_MODE (ad), opnum,
4879 type, ind_levels);
4880 return 0;
4882 else
4884 /* If the sum of two regs is not necessarily valid,
4885 reload the sum into a base reg.
4886 That will at least work. */
4887 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
4888 Pmode, opnum, type, ind_levels);
4890 return ! removed_and;
4893 /* If we have an indexed stack slot, there are three possible reasons why
4894 it might be invalid: The index might need to be reloaded, the address
4895 might have been made by frame pointer elimination and hence have a
4896 constant out of range, or both reasons might apply.
4898 We can easily check for an index needing reload, but even if that is the
4899 case, we might also have an invalid constant. To avoid making the
4900 conservative assumption and requiring two reloads, we see if this address
4901 is valid when not interpreted strictly. If it is, the only problem is
4902 that the index needs a reload and find_reloads_address_1 will take care
4903 of it.
4905 Handle all base registers here, not just fp/ap/sp, because on some
4906 targets (namely SPARC) we can also get invalid addresses from preventive
4907 subreg big-endian corrections made by find_reloads_toplev. We
4908 can also get expressions involving LO_SUM (rather than PLUS) from
4909 find_reloads_subreg_address.
4911 If we decide to do something, it must be that `double_reg_address_ok'
4912 is true. We generate a reload of the base register + constant and
4913 rework the sum so that the reload register will be added to the index.
4914 This is safe because we know the address isn't shared.
4916 We check for the base register as both the first and second operand of
4917 the innermost PLUS and/or LO_SUM. */
4919 for (op_index = 0; op_index < 2; ++op_index)
4921 rtx operand;
4923 if (!(GET_CODE (ad) == PLUS
4924 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4925 && (GET_CODE (XEXP (ad, 0)) == PLUS
4926 || GET_CODE (XEXP (ad, 0)) == LO_SUM)))
4927 continue;
4929 operand = XEXP (XEXP (ad, 0), op_index);
4930 if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
4931 continue;
4933 if ((REG_MODE_OK_FOR_BASE_P (operand, mode)
4934 || operand == frame_pointer_rtx
4935 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4936 || operand == hard_frame_pointer_rtx
4937 #endif
4938 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4939 || operand == arg_pointer_rtx
4940 #endif
4941 || operand == stack_pointer_rtx)
4942 && ! maybe_memory_address_p (mode, ad,
4943 &XEXP (XEXP (ad, 0), 1 - op_index)))
4945 rtx offset_reg;
4946 rtx addend;
4948 offset_reg = plus_constant (operand, INTVAL (XEXP (ad, 1)));
4949 addend = XEXP (XEXP (ad, 0), 1 - op_index);
4951 /* Form the adjusted address. */
4952 if (GET_CODE (XEXP (ad, 0)) == PLUS)
4953 ad = gen_rtx_PLUS (GET_MODE (ad),
4954 op_index == 0 ? offset_reg : addend,
4955 op_index == 0 ? addend : offset_reg);
4956 else
4957 ad = gen_rtx_LO_SUM (GET_MODE (ad),
4958 op_index == 0 ? offset_reg : addend,
4959 op_index == 0 ? addend : offset_reg);
4960 *loc = ad;
4962 find_reloads_address_part (XEXP (ad, op_index),
4963 &XEXP (ad, op_index),
4964 MODE_BASE_REG_CLASS (mode),
4965 GET_MODE (ad), opnum, type, ind_levels);
4966 find_reloads_address_1 (mode,
4967 XEXP (ad, 1 - op_index), 1,
4968 &XEXP (ad, 1 - op_index), opnum,
4969 type, 0, insn);
4971 return 0;
4975 /* See if address becomes valid when an eliminable register
4976 in a sum is replaced. */
4978 tem = ad;
4979 if (GET_CODE (ad) == PLUS)
4980 tem = subst_indexed_address (ad);
4981 if (tem != ad && strict_memory_address_p (mode, tem))
4983 /* Ok, we win that way. Replace any additional eliminable
4984 registers. */
4986 subst_reg_equivs_changed = 0;
4987 tem = subst_reg_equivs (tem, insn);
4989 /* Make sure that didn't make the address invalid again. */
4991 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
4993 *loc = tem;
4994 return 0;
4998 /* If constants aren't valid addresses, reload the constant address
4999 into a register. */
5000 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
5002 /* If AD is an address in the constant pool, the MEM rtx may be shared.
5003 Unshare it so we can safely alter it. */
5004 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
5005 && CONSTANT_POOL_ADDRESS_P (ad))
5007 *memrefloc = copy_rtx (*memrefloc);
5008 loc = &XEXP (*memrefloc, 0);
5009 if (removed_and)
5010 loc = &XEXP (*loc, 0);
5013 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
5014 Pmode, opnum, type, ind_levels);
5015 return ! removed_and;
5018 return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
5019 insn);
5022 /* Find all pseudo regs appearing in AD
5023 that are eliminable in favor of equivalent values
5024 and do not have hard regs; replace them by their equivalents.
5025 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
5026 front of it for pseudos that we have to replace with stack slots. */
5028 static rtx
5029 subst_reg_equivs (rtx ad, rtx insn)
5031 RTX_CODE code = GET_CODE (ad);
5032 int i;
5033 const char *fmt;
5035 switch (code)
5037 case HIGH:
5038 case CONST_INT:
5039 case CONST:
5040 case CONST_DOUBLE:
5041 case CONST_VECTOR:
5042 case SYMBOL_REF:
5043 case LABEL_REF:
5044 case PC:
5045 case CC0:
5046 return ad;
5048 case REG:
5050 int regno = REGNO (ad);
5052 if (reg_equiv_constant[regno] != 0)
5054 subst_reg_equivs_changed = 1;
5055 return reg_equiv_constant[regno];
5057 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
5059 rtx mem = make_memloc (ad, regno);
5060 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
5062 subst_reg_equivs_changed = 1;
5063 /* We mark the USE with QImode so that we recognize it
5064 as one that can be safely deleted at the end of
5065 reload. */
5066 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5067 QImode);
5068 return mem;
5072 return ad;
5074 case PLUS:
5075 /* Quickly dispose of a common case. */
5076 if (XEXP (ad, 0) == frame_pointer_rtx
5077 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
5078 return ad;
5079 break;
5081 default:
5082 break;
5085 fmt = GET_RTX_FORMAT (code);
5086 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5087 if (fmt[i] == 'e')
5088 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5089 return ad;
5092 /* Compute the sum of X and Y, making canonicalizations assumed in an
5093 address, namely: sum constant integers, surround the sum of two
5094 constants with a CONST, put the constant as the second operand, and
5095 group the constant on the outermost sum.
5097 This routine assumes both inputs are already in canonical form. */
5100 form_sum (rtx x, rtx y)
5102 rtx tem;
5103 enum machine_mode mode = GET_MODE (x);
5105 if (mode == VOIDmode)
5106 mode = GET_MODE (y);
5108 if (mode == VOIDmode)
5109 mode = Pmode;
5111 if (GET_CODE (x) == CONST_INT)
5112 return plus_constant (y, INTVAL (x));
5113 else if (GET_CODE (y) == CONST_INT)
5114 return plus_constant (x, INTVAL (y));
5115 else if (CONSTANT_P (x))
5116 tem = x, x = y, y = tem;
5118 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5119 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
5121 /* Note that if the operands of Y are specified in the opposite
5122 order in the recursive calls below, infinite recursion will occur. */
5123 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5124 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
5126 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5127 constant will have been placed second. */
5128 if (CONSTANT_P (x) && CONSTANT_P (y))
5130 if (GET_CODE (x) == CONST)
5131 x = XEXP (x, 0);
5132 if (GET_CODE (y) == CONST)
5133 y = XEXP (y, 0);
5135 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5138 return gen_rtx_PLUS (mode, x, y);
5141 /* If ADDR is a sum containing a pseudo register that should be
5142 replaced with a constant (from reg_equiv_constant),
5143 return the result of doing so, and also apply the associative
5144 law so that the result is more likely to be a valid address.
5145 (But it is not guaranteed to be one.)
5147 Note that at most one register is replaced, even if more are
5148 replaceable. Also, we try to put the result into a canonical form
5149 so it is more likely to be a valid address.
5151 In all other cases, return ADDR. */
5153 static rtx
5154 subst_indexed_address (rtx addr)
5156 rtx op0 = 0, op1 = 0, op2 = 0;
5157 rtx tem;
5158 int regno;
5160 if (GET_CODE (addr) == PLUS)
5162 /* Try to find a register to replace. */
5163 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5164 if (REG_P (op0)
5165 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5166 && reg_renumber[regno] < 0
5167 && reg_equiv_constant[regno] != 0)
5168 op0 = reg_equiv_constant[regno];
5169 else if (REG_P (op1)
5170 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5171 && reg_renumber[regno] < 0
5172 && reg_equiv_constant[regno] != 0)
5173 op1 = reg_equiv_constant[regno];
5174 else if (GET_CODE (op0) == PLUS
5175 && (tem = subst_indexed_address (op0)) != op0)
5176 op0 = tem;
5177 else if (GET_CODE (op1) == PLUS
5178 && (tem = subst_indexed_address (op1)) != op1)
5179 op1 = tem;
5180 else
5181 return addr;
5183 /* Pick out up to three things to add. */
5184 if (GET_CODE (op1) == PLUS)
5185 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5186 else if (GET_CODE (op0) == PLUS)
5187 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5189 /* Compute the sum. */
5190 if (op2 != 0)
5191 op1 = form_sum (op1, op2);
5192 if (op1 != 0)
5193 op0 = form_sum (op0, op1);
5195 return op0;
5197 return addr;
5200 /* Update the REG_INC notes for an insn. It updates all REG_INC
5201 notes for the instruction which refer to REGNO the to refer
5202 to the reload number.
5204 INSN is the insn for which any REG_INC notes need updating.
5206 REGNO is the register number which has been reloaded.
5208 RELOADNUM is the reload number. */
5210 static void
5211 update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5212 int reloadnum ATTRIBUTE_UNUSED)
5214 #ifdef AUTO_INC_DEC
5215 rtx link;
5217 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5218 if (REG_NOTE_KIND (link) == REG_INC
5219 && (int) REGNO (XEXP (link, 0)) == regno)
5220 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5221 #endif
5224 /* Record the pseudo registers we must reload into hard registers in a
5225 subexpression of a would-be memory address, X referring to a value
5226 in mode MODE. (This function is not called if the address we find
5227 is strictly valid.)
5229 CONTEXT = 1 means we are considering regs as index regs,
5230 = 0 means we are considering them as base regs.
5232 OPNUM and TYPE specify the purpose of any reloads made.
5234 IND_LEVELS says how many levels of indirect addressing are
5235 supported at this point in the address.
5237 INSN, if nonzero, is the insn in which we do the reload. It is used
5238 to determine if we may generate output reloads.
5240 We return nonzero if X, as a whole, is reloaded or replaced. */
5242 /* Note that we take shortcuts assuming that no multi-reg machine mode
5243 occurs as part of an address.
5244 Also, this is not fully machine-customizable; it works for machines
5245 such as VAXen and 68000's and 32000's, but other possible machines
5246 could have addressing modes that this does not handle right. */
5248 static int
5249 find_reloads_address_1 (enum machine_mode mode, rtx x, int context,
5250 rtx *loc, int opnum, enum reload_type type,
5251 int ind_levels, rtx insn)
5253 RTX_CODE code = GET_CODE (x);
5255 switch (code)
5257 case PLUS:
5259 rtx orig_op0 = XEXP (x, 0);
5260 rtx orig_op1 = XEXP (x, 1);
5261 RTX_CODE code0 = GET_CODE (orig_op0);
5262 RTX_CODE code1 = GET_CODE (orig_op1);
5263 rtx op0 = orig_op0;
5264 rtx op1 = orig_op1;
5266 if (GET_CODE (op0) == SUBREG)
5268 op0 = SUBREG_REG (op0);
5269 code0 = GET_CODE (op0);
5270 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5271 op0 = gen_rtx_REG (word_mode,
5272 (REGNO (op0) +
5273 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5274 GET_MODE (SUBREG_REG (orig_op0)),
5275 SUBREG_BYTE (orig_op0),
5276 GET_MODE (orig_op0))));
5279 if (GET_CODE (op1) == SUBREG)
5281 op1 = SUBREG_REG (op1);
5282 code1 = GET_CODE (op1);
5283 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5284 /* ??? Why is this given op1's mode and above for
5285 ??? op0 SUBREGs we use word_mode? */
5286 op1 = gen_rtx_REG (GET_MODE (op1),
5287 (REGNO (op1) +
5288 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5289 GET_MODE (SUBREG_REG (orig_op1)),
5290 SUBREG_BYTE (orig_op1),
5291 GET_MODE (orig_op1))));
5293 /* Plus in the index register may be created only as a result of
5294 register remateralization for expression like &localvar*4. Reload it.
5295 It may be possible to combine the displacement on the outer level,
5296 but it is probably not worthwhile to do so. */
5297 if (context)
5299 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5300 opnum, ADDR_TYPE (type), ind_levels, insn);
5301 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5302 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5303 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5304 return 1;
5307 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5308 || code0 == ZERO_EXTEND || code1 == MEM)
5310 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5311 type, ind_levels, insn);
5312 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5313 type, ind_levels, insn);
5316 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5317 || code1 == ZERO_EXTEND || code0 == MEM)
5319 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5320 type, ind_levels, insn);
5321 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5322 type, ind_levels, insn);
5325 else if (code0 == CONST_INT || code0 == CONST
5326 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5327 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5328 type, ind_levels, insn);
5330 else if (code1 == CONST_INT || code1 == CONST
5331 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5332 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5333 type, ind_levels, insn);
5335 else if (code0 == REG && code1 == REG)
5337 if (REG_OK_FOR_INDEX_P (op0)
5338 && REG_MODE_OK_FOR_BASE_P (op1, mode))
5339 return 0;
5340 else if (REG_OK_FOR_INDEX_P (op1)
5341 && REG_MODE_OK_FOR_BASE_P (op0, mode))
5342 return 0;
5343 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
5344 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5345 type, ind_levels, insn);
5346 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
5347 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5348 type, ind_levels, insn);
5349 else if (REG_OK_FOR_INDEX_P (op1))
5350 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5351 type, ind_levels, insn);
5352 else if (REG_OK_FOR_INDEX_P (op0))
5353 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5354 type, ind_levels, insn);
5355 else
5357 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5358 type, ind_levels, insn);
5359 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5360 type, ind_levels, insn);
5364 else if (code0 == REG)
5366 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5367 type, ind_levels, insn);
5368 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5369 type, ind_levels, insn);
5372 else if (code1 == REG)
5374 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5375 type, ind_levels, insn);
5376 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5377 type, ind_levels, insn);
5381 return 0;
5383 case POST_MODIFY:
5384 case PRE_MODIFY:
5386 rtx op0 = XEXP (x, 0);
5387 rtx op1 = XEXP (x, 1);
5388 int regno;
5389 int reloadnum;
5391 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5392 return 0;
5394 /* Currently, we only support {PRE,POST}_MODIFY constructs
5395 where a base register is {inc,dec}remented by the contents
5396 of another register or by a constant value. Thus, these
5397 operands must match. */
5398 gcc_assert (op0 == XEXP (op1, 0));
5400 /* Require index register (or constant). Let's just handle the
5401 register case in the meantime... If the target allows
5402 auto-modify by a constant then we could try replacing a pseudo
5403 register with its equivalent constant where applicable. */
5404 if (REG_P (XEXP (op1, 1)))
5405 if (!REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5406 find_reloads_address_1 (mode, XEXP (op1, 1), 1, &XEXP (op1, 1),
5407 opnum, type, ind_levels, insn);
5409 gcc_assert (REG_P (XEXP (op1, 0)));
5411 regno = REGNO (XEXP (op1, 0));
5413 /* A register that is incremented cannot be constant! */
5414 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5415 || reg_equiv_constant[regno] == 0);
5417 /* Handle a register that is equivalent to a memory location
5418 which cannot be addressed directly. */
5419 if (reg_equiv_memory_loc[regno] != 0
5420 && (reg_equiv_address[regno] != 0
5421 || num_not_at_initial_offset))
5423 rtx tem = make_memloc (XEXP (x, 0), regno);
5425 if (reg_equiv_address[regno]
5426 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5428 /* First reload the memory location's address.
5429 We can't use ADDR_TYPE (type) here, because we need to
5430 write back the value after reading it, hence we actually
5431 need two registers. */
5432 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5433 &XEXP (tem, 0), opnum,
5434 RELOAD_OTHER,
5435 ind_levels, insn);
5437 /* Then reload the memory location into a base
5438 register. */
5439 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5440 &XEXP (op1, 0),
5441 MODE_BASE_REG_CLASS (mode),
5442 GET_MODE (x), GET_MODE (x), 0,
5443 0, opnum, RELOAD_OTHER);
5445 update_auto_inc_notes (this_insn, regno, reloadnum);
5446 return 0;
5450 if (reg_renumber[regno] >= 0)
5451 regno = reg_renumber[regno];
5453 /* We require a base register here... */
5454 if (!REGNO_MODE_OK_FOR_BASE_P (regno, GET_MODE (x)))
5456 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5457 &XEXP (op1, 0), &XEXP (x, 0),
5458 MODE_BASE_REG_CLASS (mode),
5459 GET_MODE (x), GET_MODE (x), 0, 0,
5460 opnum, RELOAD_OTHER);
5462 update_auto_inc_notes (this_insn, regno, reloadnum);
5463 return 0;
5466 return 0;
5468 case POST_INC:
5469 case POST_DEC:
5470 case PRE_INC:
5471 case PRE_DEC:
5472 if (REG_P (XEXP (x, 0)))
5474 int regno = REGNO (XEXP (x, 0));
5475 int value = 0;
5476 rtx x_orig = x;
5478 /* A register that is incremented cannot be constant! */
5479 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5480 || reg_equiv_constant[regno] == 0);
5482 /* Handle a register that is equivalent to a memory location
5483 which cannot be addressed directly. */
5484 if (reg_equiv_memory_loc[regno] != 0
5485 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5487 rtx tem = make_memloc (XEXP (x, 0), regno);
5488 if (reg_equiv_address[regno]
5489 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5491 /* First reload the memory location's address.
5492 We can't use ADDR_TYPE (type) here, because we need to
5493 write back the value after reading it, hence we actually
5494 need two registers. */
5495 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5496 &XEXP (tem, 0), opnum, type,
5497 ind_levels, insn);
5498 /* Put this inside a new increment-expression. */
5499 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5500 /* Proceed to reload that, as if it contained a register. */
5504 /* If we have a hard register that is ok as an index,
5505 don't make a reload. If an autoincrement of a nice register
5506 isn't "valid", it must be that no autoincrement is "valid".
5507 If that is true and something made an autoincrement anyway,
5508 this must be a special context where one is allowed.
5509 (For example, a "push" instruction.)
5510 We can't improve this address, so leave it alone. */
5512 /* Otherwise, reload the autoincrement into a suitable hard reg
5513 and record how much to increment by. */
5515 if (reg_renumber[regno] >= 0)
5516 regno = reg_renumber[regno];
5517 if ((regno >= FIRST_PSEUDO_REGISTER
5518 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5519 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5521 int reloadnum;
5523 /* If we can output the register afterwards, do so, this
5524 saves the extra update.
5525 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5526 CALL_INSN - and it does not set CC0.
5527 But don't do this if we cannot directly address the
5528 memory location, since this will make it harder to
5529 reuse address reloads, and increases register pressure.
5530 Also don't do this if we can probably update x directly. */
5531 rtx equiv = (MEM_P (XEXP (x, 0))
5532 ? XEXP (x, 0)
5533 : reg_equiv_mem[regno]);
5534 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5535 if (insn && NONJUMP_INSN_P (insn) && equiv
5536 && memory_operand (equiv, GET_MODE (equiv))
5537 #ifdef HAVE_cc0
5538 && ! sets_cc0_p (PATTERN (insn))
5539 #endif
5540 && ! (icode != CODE_FOR_nothing
5541 && ((*insn_data[icode].operand[0].predicate)
5542 (equiv, Pmode))
5543 && ((*insn_data[icode].operand[1].predicate)
5544 (equiv, Pmode))))
5546 /* We use the original pseudo for loc, so that
5547 emit_reload_insns() knows which pseudo this
5548 reload refers to and updates the pseudo rtx, not
5549 its equivalent memory location, as well as the
5550 corresponding entry in reg_last_reload_reg. */
5551 loc = &XEXP (x_orig, 0);
5552 x = XEXP (x, 0);
5553 reloadnum
5554 = push_reload (x, x, loc, loc,
5555 (context ? INDEX_REG_CLASS :
5556 MODE_BASE_REG_CLASS (mode)),
5557 GET_MODE (x), GET_MODE (x), 0, 0,
5558 opnum, RELOAD_OTHER);
5560 else
5562 reloadnum
5563 = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5564 (context ? INDEX_REG_CLASS :
5565 MODE_BASE_REG_CLASS (mode)),
5566 GET_MODE (x), GET_MODE (x), 0, 0,
5567 opnum, type);
5568 rld[reloadnum].inc
5569 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5571 value = 1;
5574 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5575 reloadnum);
5577 return value;
5580 else if (MEM_P (XEXP (x, 0)))
5582 /* This is probably the result of a substitution, by eliminate_regs,
5583 of an equivalent address for a pseudo that was not allocated to a
5584 hard register. Verify that the specified address is valid and
5585 reload it into a register. */
5586 /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE. */
5587 rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
5588 rtx link;
5589 int reloadnum;
5591 /* Since we know we are going to reload this item, don't decrement
5592 for the indirection level.
5594 Note that this is actually conservative: it would be slightly
5595 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5596 reload1.c here. */
5597 /* We can't use ADDR_TYPE (type) here, because we need to
5598 write back the value after reading it, hence we actually
5599 need two registers. */
5600 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5601 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5602 opnum, type, ind_levels, insn);
5604 reloadnum = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5605 (context ? INDEX_REG_CLASS :
5606 MODE_BASE_REG_CLASS (mode)),
5607 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5608 rld[reloadnum].inc
5609 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5611 link = FIND_REG_INC_NOTE (this_insn, tem);
5612 if (link != 0)
5613 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5615 return 1;
5617 return 0;
5619 case MEM:
5620 /* This is probably the result of a substitution, by eliminate_regs, of
5621 an equivalent address for a pseudo that was not allocated to a hard
5622 register. Verify that the specified address is valid and reload it
5623 into a register.
5625 Since we know we are going to reload this item, don't decrement for
5626 the indirection level.
5628 Note that this is actually conservative: it would be slightly more
5629 efficient to use the value of SPILL_INDIRECT_LEVELS from
5630 reload1.c here. */
5632 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5633 opnum, ADDR_TYPE (type), ind_levels, insn);
5634 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5635 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5636 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5637 return 1;
5639 case REG:
5641 int regno = REGNO (x);
5643 if (reg_equiv_constant[regno] != 0)
5645 find_reloads_address_part (reg_equiv_constant[regno], loc,
5646 (context ? INDEX_REG_CLASS :
5647 MODE_BASE_REG_CLASS (mode)),
5648 GET_MODE (x), opnum, type, ind_levels);
5649 return 1;
5652 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5653 that feeds this insn. */
5654 if (reg_equiv_mem[regno] != 0)
5656 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
5657 (context ? INDEX_REG_CLASS :
5658 MODE_BASE_REG_CLASS (mode)),
5659 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5660 return 1;
5662 #endif
5664 if (reg_equiv_memory_loc[regno]
5665 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5667 rtx tem = make_memloc (x, regno);
5668 if (reg_equiv_address[regno] != 0
5669 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5671 x = tem;
5672 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5673 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5674 ind_levels, insn);
5678 if (reg_renumber[regno] >= 0)
5679 regno = reg_renumber[regno];
5681 if ((regno >= FIRST_PSEUDO_REGISTER
5682 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5683 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5685 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5686 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5687 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5688 return 1;
5691 /* If a register appearing in an address is the subject of a CLOBBER
5692 in this insn, reload it into some other register to be safe.
5693 The CLOBBER is supposed to make the register unavailable
5694 from before this insn to after it. */
5695 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5697 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5698 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5699 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5700 return 1;
5703 return 0;
5705 case SUBREG:
5706 if (REG_P (SUBREG_REG (x)))
5708 /* If this is a SUBREG of a hard register and the resulting register
5709 is of the wrong class, reload the whole SUBREG. This avoids
5710 needless copies if SUBREG_REG is multi-word. */
5711 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5713 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
5715 if (! (context ? REGNO_OK_FOR_INDEX_P (regno)
5716 : REGNO_MODE_OK_FOR_BASE_P (regno, mode)))
5718 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5719 (context ? INDEX_REG_CLASS :
5720 MODE_BASE_REG_CLASS (mode)),
5721 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5722 return 1;
5725 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5726 is larger than the class size, then reload the whole SUBREG. */
5727 else
5729 enum reg_class class = (context ? INDEX_REG_CLASS
5730 : MODE_BASE_REG_CLASS (mode));
5731 if ((unsigned) CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5732 > reg_class_size[class])
5734 x = find_reloads_subreg_address (x, 0, opnum, type,
5735 ind_levels, insn);
5736 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5737 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5738 return 1;
5742 break;
5744 default:
5745 break;
5749 const char *fmt = GET_RTX_FORMAT (code);
5750 int i;
5752 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5754 if (fmt[i] == 'e')
5755 find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
5756 opnum, type, ind_levels, insn);
5760 return 0;
5763 /* X, which is found at *LOC, is a part of an address that needs to be
5764 reloaded into a register of class CLASS. If X is a constant, or if
5765 X is a PLUS that contains a constant, check that the constant is a
5766 legitimate operand and that we are supposed to be able to load
5767 it into the register.
5769 If not, force the constant into memory and reload the MEM instead.
5771 MODE is the mode to use, in case X is an integer constant.
5773 OPNUM and TYPE describe the purpose of any reloads made.
5775 IND_LEVELS says how many levels of indirect addressing this machine
5776 supports. */
5778 static void
5779 find_reloads_address_part (rtx x, rtx *loc, enum reg_class class,
5780 enum machine_mode mode, int opnum,
5781 enum reload_type type, int ind_levels)
5783 if (CONSTANT_P (x)
5784 && (! LEGITIMATE_CONSTANT_P (x)
5785 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5787 rtx tem;
5789 tem = x = force_const_mem (mode, x);
5790 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5791 opnum, type, ind_levels, 0);
5794 else if (GET_CODE (x) == PLUS
5795 && CONSTANT_P (XEXP (x, 1))
5796 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5797 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5799 rtx tem;
5801 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5802 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5803 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5804 opnum, type, ind_levels, 0);
5807 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5808 mode, VOIDmode, 0, 0, opnum, type);
5811 /* X, a subreg of a pseudo, is a part of an address that needs to be
5812 reloaded.
5814 If the pseudo is equivalent to a memory location that cannot be directly
5815 addressed, make the necessary address reloads.
5817 If address reloads have been necessary, or if the address is changed
5818 by register elimination, return the rtx of the memory location;
5819 otherwise, return X.
5821 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
5822 memory location.
5824 OPNUM and TYPE identify the purpose of the reload.
5826 IND_LEVELS says how many levels of indirect addressing are
5827 supported at this point in the address.
5829 INSN, if nonzero, is the insn in which we do the reload. It is used
5830 to determine where to put USEs for pseudos that we have to replace with
5831 stack slots. */
5833 static rtx
5834 find_reloads_subreg_address (rtx x, int force_replace, int opnum,
5835 enum reload_type type, int ind_levels, rtx insn)
5837 int regno = REGNO (SUBREG_REG (x));
5839 if (reg_equiv_memory_loc[regno])
5841 /* If the address is not directly addressable, or if the address is not
5842 offsettable, then it must be replaced. */
5843 if (! force_replace
5844 && (reg_equiv_address[regno]
5845 || ! offsettable_memref_p (reg_equiv_mem[regno])))
5846 force_replace = 1;
5848 if (force_replace || num_not_at_initial_offset)
5850 rtx tem = make_memloc (SUBREG_REG (x), regno);
5852 /* If the address changes because of register elimination, then
5853 it must be replaced. */
5854 if (force_replace
5855 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5857 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
5858 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
5859 int offset;
5861 /* For big-endian paradoxical subregs, SUBREG_BYTE does not
5862 hold the correct (negative) byte offset. */
5863 if (BYTES_BIG_ENDIAN && outer_size > inner_size)
5864 offset = inner_size - outer_size;
5865 else
5866 offset = SUBREG_BYTE (x);
5868 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
5869 PUT_MODE (tem, GET_MODE (x));
5871 /* If this was a paradoxical subreg that we replaced, the
5872 resulting memory must be sufficiently aligned to allow
5873 us to widen the mode of the memory. */
5874 if (outer_size > inner_size && STRICT_ALIGNMENT)
5876 rtx base;
5878 base = XEXP (tem, 0);
5879 if (GET_CODE (base) == PLUS)
5881 if (GET_CODE (XEXP (base, 1)) == CONST_INT
5882 && INTVAL (XEXP (base, 1)) % outer_size != 0)
5883 return x;
5884 base = XEXP (base, 0);
5886 if (!REG_P (base)
5887 || (REGNO_POINTER_ALIGN (REGNO (base))
5888 < outer_size * BITS_PER_UNIT))
5889 return x;
5892 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5893 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
5894 ind_levels, insn);
5896 /* If this is not a toplevel operand, find_reloads doesn't see
5897 this substitution. We have to emit a USE of the pseudo so
5898 that delete_output_reload can see it. */
5899 if (replace_reloads && recog_data.operand[opnum] != x)
5900 /* We mark the USE with QImode so that we recognize it
5901 as one that can be safely deleted at the end of
5902 reload. */
5903 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
5904 SUBREG_REG (x)),
5905 insn), QImode);
5906 x = tem;
5910 return x;
5913 /* Substitute into the current INSN the registers into which we have reloaded
5914 the things that need reloading. The array `replacements'
5915 contains the locations of all pointers that must be changed
5916 and says what to replace them with.
5918 Return the rtx that X translates into; usually X, but modified. */
5920 void
5921 subst_reloads (rtx insn)
5923 int i;
5925 for (i = 0; i < n_replacements; i++)
5927 struct replacement *r = &replacements[i];
5928 rtx reloadreg = rld[r->what].reg_rtx;
5929 if (reloadreg)
5931 #ifdef ENABLE_CHECKING
5932 /* Internal consistency test. Check that we don't modify
5933 anything in the equivalence arrays. Whenever something from
5934 those arrays needs to be reloaded, it must be unshared before
5935 being substituted into; the equivalence must not be modified.
5936 Otherwise, if the equivalence is used after that, it will
5937 have been modified, and the thing substituted (probably a
5938 register) is likely overwritten and not a usable equivalence. */
5939 int check_regno;
5941 for (check_regno = 0; check_regno < max_regno; check_regno++)
5943 #define CHECK_MODF(ARRAY) \
5944 gcc_assert (!ARRAY[check_regno] \
5945 || !loc_mentioned_in_p (r->where, \
5946 ARRAY[check_regno]))
5948 CHECK_MODF (reg_equiv_constant);
5949 CHECK_MODF (reg_equiv_memory_loc);
5950 CHECK_MODF (reg_equiv_address);
5951 CHECK_MODF (reg_equiv_mem);
5952 #undef CHECK_MODF
5954 #endif /* ENABLE_CHECKING */
5956 /* If we're replacing a LABEL_REF with a register, add a
5957 REG_LABEL note to indicate to flow which label this
5958 register refers to. */
5959 if (GET_CODE (*r->where) == LABEL_REF
5960 && JUMP_P (insn))
5961 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
5962 XEXP (*r->where, 0),
5963 REG_NOTES (insn));
5965 /* Encapsulate RELOADREG so its machine mode matches what
5966 used to be there. Note that gen_lowpart_common will
5967 do the wrong thing if RELOADREG is multi-word. RELOADREG
5968 will always be a REG here. */
5969 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
5970 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
5972 /* If we are putting this into a SUBREG and RELOADREG is a
5973 SUBREG, we would be making nested SUBREGs, so we have to fix
5974 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
5976 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
5978 if (GET_MODE (*r->subreg_loc)
5979 == GET_MODE (SUBREG_REG (reloadreg)))
5980 *r->subreg_loc = SUBREG_REG (reloadreg);
5981 else
5983 int final_offset =
5984 SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
5986 /* When working with SUBREGs the rule is that the byte
5987 offset must be a multiple of the SUBREG's mode. */
5988 final_offset = (final_offset /
5989 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5990 final_offset = (final_offset *
5991 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5993 *r->where = SUBREG_REG (reloadreg);
5994 SUBREG_BYTE (*r->subreg_loc) = final_offset;
5997 else
5998 *r->where = reloadreg;
6000 /* If reload got no reg and isn't optional, something's wrong. */
6001 else
6002 gcc_assert (rld[r->what].optional);
6006 /* Make a copy of any replacements being done into X and move those
6007 copies to locations in Y, a copy of X. */
6009 void
6010 copy_replacements (rtx x, rtx y)
6012 /* We can't support X being a SUBREG because we might then need to know its
6013 location if something inside it was replaced. */
6014 gcc_assert (GET_CODE (x) != SUBREG);
6016 copy_replacements_1 (&x, &y, n_replacements);
6019 static void
6020 copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
6022 int i, j;
6023 rtx x, y;
6024 struct replacement *r;
6025 enum rtx_code code;
6026 const char *fmt;
6028 for (j = 0; j < orig_replacements; j++)
6030 if (replacements[j].subreg_loc == px)
6032 r = &replacements[n_replacements++];
6033 r->where = replacements[j].where;
6034 r->subreg_loc = py;
6035 r->what = replacements[j].what;
6036 r->mode = replacements[j].mode;
6038 else if (replacements[j].where == px)
6040 r = &replacements[n_replacements++];
6041 r->where = py;
6042 r->subreg_loc = 0;
6043 r->what = replacements[j].what;
6044 r->mode = replacements[j].mode;
6048 x = *px;
6049 y = *py;
6050 code = GET_CODE (x);
6051 fmt = GET_RTX_FORMAT (code);
6053 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6055 if (fmt[i] == 'e')
6056 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6057 else if (fmt[i] == 'E')
6058 for (j = XVECLEN (x, i); --j >= 0; )
6059 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6060 orig_replacements);
6064 /* Change any replacements being done to *X to be done to *Y. */
6066 void
6067 move_replacements (rtx *x, rtx *y)
6069 int i;
6071 for (i = 0; i < n_replacements; i++)
6072 if (replacements[i].subreg_loc == x)
6073 replacements[i].subreg_loc = y;
6074 else if (replacements[i].where == x)
6076 replacements[i].where = y;
6077 replacements[i].subreg_loc = 0;
6081 /* If LOC was scheduled to be replaced by something, return the replacement.
6082 Otherwise, return *LOC. */
6085 find_replacement (rtx *loc)
6087 struct replacement *r;
6089 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6091 rtx reloadreg = rld[r->what].reg_rtx;
6093 if (reloadreg && r->where == loc)
6095 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6096 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
6098 return reloadreg;
6100 else if (reloadreg && r->subreg_loc == loc)
6102 /* RELOADREG must be either a REG or a SUBREG.
6104 ??? Is it actually still ever a SUBREG? If so, why? */
6106 if (REG_P (reloadreg))
6107 return gen_rtx_REG (GET_MODE (*loc),
6108 (REGNO (reloadreg) +
6109 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
6110 GET_MODE (SUBREG_REG (*loc)),
6111 SUBREG_BYTE (*loc),
6112 GET_MODE (*loc))));
6113 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
6114 return reloadreg;
6115 else
6117 int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
6119 /* When working with SUBREGs the rule is that the byte
6120 offset must be a multiple of the SUBREG's mode. */
6121 final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
6122 final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
6123 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
6124 final_offset);
6129 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6130 what's inside and make a new rtl if so. */
6131 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6132 || GET_CODE (*loc) == MULT)
6134 rtx x = find_replacement (&XEXP (*loc, 0));
6135 rtx y = find_replacement (&XEXP (*loc, 1));
6137 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6138 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6141 return *loc;
6144 /* Return nonzero if register in range [REGNO, ENDREGNO)
6145 appears either explicitly or implicitly in X
6146 other than being stored into (except for earlyclobber operands).
6148 References contained within the substructure at LOC do not count.
6149 LOC may be zero, meaning don't ignore anything.
6151 This is similar to refers_to_regno_p in rtlanal.c except that we
6152 look at equivalences for pseudos that didn't get hard registers. */
6155 refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6156 rtx x, rtx *loc)
6158 int i;
6159 unsigned int r;
6160 RTX_CODE code;
6161 const char *fmt;
6163 if (x == 0)
6164 return 0;
6166 repeat:
6167 code = GET_CODE (x);
6169 switch (code)
6171 case REG:
6172 r = REGNO (x);
6174 /* If this is a pseudo, a hard register must not have been allocated.
6175 X must therefore either be a constant or be in memory. */
6176 if (r >= FIRST_PSEUDO_REGISTER)
6178 if (reg_equiv_memory_loc[r])
6179 return refers_to_regno_for_reload_p (regno, endregno,
6180 reg_equiv_memory_loc[r],
6181 (rtx*) 0);
6183 gcc_assert (reg_equiv_constant[r]);
6184 return 0;
6187 return (endregno > r
6188 && regno < r + (r < FIRST_PSEUDO_REGISTER
6189 ? hard_regno_nregs[r][GET_MODE (x)]
6190 : 1));
6192 case SUBREG:
6193 /* If this is a SUBREG of a hard reg, we can see exactly which
6194 registers are being modified. Otherwise, handle normally. */
6195 if (REG_P (SUBREG_REG (x))
6196 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6198 unsigned int inner_regno = subreg_regno (x);
6199 unsigned int inner_endregno
6200 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6201 ? hard_regno_nregs[inner_regno][GET_MODE (x)] : 1);
6203 return endregno > inner_regno && regno < inner_endregno;
6205 break;
6207 case CLOBBER:
6208 case SET:
6209 if (&SET_DEST (x) != loc
6210 /* Note setting a SUBREG counts as referring to the REG it is in for
6211 a pseudo but not for hard registers since we can
6212 treat each word individually. */
6213 && ((GET_CODE (SET_DEST (x)) == SUBREG
6214 && loc != &SUBREG_REG (SET_DEST (x))
6215 && REG_P (SUBREG_REG (SET_DEST (x)))
6216 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6217 && refers_to_regno_for_reload_p (regno, endregno,
6218 SUBREG_REG (SET_DEST (x)),
6219 loc))
6220 /* If the output is an earlyclobber operand, this is
6221 a conflict. */
6222 || ((!REG_P (SET_DEST (x))
6223 || earlyclobber_operand_p (SET_DEST (x)))
6224 && refers_to_regno_for_reload_p (regno, endregno,
6225 SET_DEST (x), loc))))
6226 return 1;
6228 if (code == CLOBBER || loc == &SET_SRC (x))
6229 return 0;
6230 x = SET_SRC (x);
6231 goto repeat;
6233 default:
6234 break;
6237 /* X does not match, so try its subexpressions. */
6239 fmt = GET_RTX_FORMAT (code);
6240 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6242 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6244 if (i == 0)
6246 x = XEXP (x, 0);
6247 goto repeat;
6249 else
6250 if (refers_to_regno_for_reload_p (regno, endregno,
6251 XEXP (x, i), loc))
6252 return 1;
6254 else if (fmt[i] == 'E')
6256 int j;
6257 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6258 if (loc != &XVECEXP (x, i, j)
6259 && refers_to_regno_for_reload_p (regno, endregno,
6260 XVECEXP (x, i, j), loc))
6261 return 1;
6264 return 0;
6267 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6268 we check if any register number in X conflicts with the relevant register
6269 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6270 contains a MEM (we don't bother checking for memory addresses that can't
6271 conflict because we expect this to be a rare case.
6273 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6274 that we look at equivalences for pseudos that didn't get hard registers. */
6277 reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6279 int regno, endregno;
6281 /* Overly conservative. */
6282 if (GET_CODE (x) == STRICT_LOW_PART
6283 || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
6284 x = XEXP (x, 0);
6286 /* If either argument is a constant, then modifying X can not affect IN. */
6287 if (CONSTANT_P (x) || CONSTANT_P (in))
6288 return 0;
6289 else if (GET_CODE (x) == SUBREG)
6291 regno = REGNO (SUBREG_REG (x));
6292 if (regno < FIRST_PSEUDO_REGISTER)
6293 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6294 GET_MODE (SUBREG_REG (x)),
6295 SUBREG_BYTE (x),
6296 GET_MODE (x));
6298 else if (REG_P (x))
6300 regno = REGNO (x);
6302 /* If this is a pseudo, it must not have been assigned a hard register.
6303 Therefore, it must either be in memory or be a constant. */
6305 if (regno >= FIRST_PSEUDO_REGISTER)
6307 if (reg_equiv_memory_loc[regno])
6308 return refers_to_mem_for_reload_p (in);
6309 gcc_assert (reg_equiv_constant[regno]);
6310 return 0;
6313 else if (MEM_P (x))
6314 return refers_to_mem_for_reload_p (in);
6315 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6316 || GET_CODE (x) == CC0)
6317 return reg_mentioned_p (x, in);
6318 else
6320 gcc_assert (GET_CODE (x) == PLUS);
6322 /* We actually want to know if X is mentioned somewhere inside IN.
6323 We must not say that (plus (sp) (const_int 124)) is in
6324 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6325 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6326 into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
6327 while (MEM_P (in))
6328 in = XEXP (in, 0);
6329 if (REG_P (in))
6330 return 0;
6331 else if (GET_CODE (in) == PLUS)
6332 return (reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6333 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6334 else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6335 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6338 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6339 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
6341 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6344 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6345 registers. */
6348 refers_to_mem_for_reload_p (rtx x)
6350 const char *fmt;
6351 int i;
6353 if (MEM_P (x))
6354 return 1;
6356 if (REG_P (x))
6357 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6358 && reg_equiv_memory_loc[REGNO (x)]);
6360 fmt = GET_RTX_FORMAT (GET_CODE (x));
6361 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6362 if (fmt[i] == 'e'
6363 && (MEM_P (XEXP (x, i))
6364 || refers_to_mem_for_reload_p (XEXP (x, i))))
6365 return 1;
6367 return 0;
6370 /* Check the insns before INSN to see if there is a suitable register
6371 containing the same value as GOAL.
6372 If OTHER is -1, look for a register in class CLASS.
6373 Otherwise, just see if register number OTHER shares GOAL's value.
6375 Return an rtx for the register found, or zero if none is found.
6377 If RELOAD_REG_P is (short *)1,
6378 we reject any hard reg that appears in reload_reg_rtx
6379 because such a hard reg is also needed coming into this insn.
6381 If RELOAD_REG_P is any other nonzero value,
6382 it is a vector indexed by hard reg number
6383 and we reject any hard reg whose element in the vector is nonnegative
6384 as well as any that appears in reload_reg_rtx.
6386 If GOAL is zero, then GOALREG is a register number; we look
6387 for an equivalent for that register.
6389 MODE is the machine mode of the value we want an equivalence for.
6390 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6392 This function is used by jump.c as well as in the reload pass.
6394 If GOAL is the sum of the stack pointer and a constant, we treat it
6395 as if it were a constant except that sp is required to be unchanging. */
6398 find_equiv_reg (rtx goal, rtx insn, enum reg_class class, int other,
6399 short *reload_reg_p, int goalreg, enum machine_mode mode)
6401 rtx p = insn;
6402 rtx goaltry, valtry, value, where;
6403 rtx pat;
6404 int regno = -1;
6405 int valueno;
6406 int goal_mem = 0;
6407 int goal_const = 0;
6408 int goal_mem_addr_varies = 0;
6409 int need_stable_sp = 0;
6410 int nregs;
6411 int valuenregs;
6412 int num = 0;
6414 if (goal == 0)
6415 regno = goalreg;
6416 else if (REG_P (goal))
6417 regno = REGNO (goal);
6418 else if (MEM_P (goal))
6420 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6421 if (MEM_VOLATILE_P (goal))
6422 return 0;
6423 if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
6424 return 0;
6425 /* An address with side effects must be reexecuted. */
6426 switch (code)
6428 case POST_INC:
6429 case PRE_INC:
6430 case POST_DEC:
6431 case PRE_DEC:
6432 case POST_MODIFY:
6433 case PRE_MODIFY:
6434 return 0;
6435 default:
6436 break;
6438 goal_mem = 1;
6440 else if (CONSTANT_P (goal))
6441 goal_const = 1;
6442 else if (GET_CODE (goal) == PLUS
6443 && XEXP (goal, 0) == stack_pointer_rtx
6444 && CONSTANT_P (XEXP (goal, 1)))
6445 goal_const = need_stable_sp = 1;
6446 else if (GET_CODE (goal) == PLUS
6447 && XEXP (goal, 0) == frame_pointer_rtx
6448 && CONSTANT_P (XEXP (goal, 1)))
6449 goal_const = 1;
6450 else
6451 return 0;
6453 num = 0;
6454 /* Scan insns back from INSN, looking for one that copies
6455 a value into or out of GOAL.
6456 Stop and give up if we reach a label. */
6458 while (1)
6460 p = PREV_INSN (p);
6461 num++;
6462 if (p == 0 || LABEL_P (p)
6463 || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
6464 return 0;
6466 if (NONJUMP_INSN_P (p)
6467 /* If we don't want spill regs ... */
6468 && (! (reload_reg_p != 0
6469 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6470 /* ... then ignore insns introduced by reload; they aren't
6471 useful and can cause results in reload_as_needed to be
6472 different from what they were when calculating the need for
6473 spills. If we notice an input-reload insn here, we will
6474 reject it below, but it might hide a usable equivalent.
6475 That makes bad code. It may even abort: perhaps no reg was
6476 spilled for this insn because it was assumed we would find
6477 that equivalent. */
6478 || INSN_UID (p) < reload_first_uid))
6480 rtx tem;
6481 pat = single_set (p);
6483 /* First check for something that sets some reg equal to GOAL. */
6484 if (pat != 0
6485 && ((regno >= 0
6486 && true_regnum (SET_SRC (pat)) == regno
6487 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6489 (regno >= 0
6490 && true_regnum (SET_DEST (pat)) == regno
6491 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6493 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6494 /* When looking for stack pointer + const,
6495 make sure we don't use a stack adjust. */
6496 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6497 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6498 || (goal_mem
6499 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6500 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6501 || (goal_mem
6502 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6503 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6504 /* If we are looking for a constant,
6505 and something equivalent to that constant was copied
6506 into a reg, we can use that reg. */
6507 || (goal_const && REG_NOTES (p) != 0
6508 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6509 && ((rtx_equal_p (XEXP (tem, 0), goal)
6510 && (valueno
6511 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6512 || (REG_P (SET_DEST (pat))
6513 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6514 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6515 == MODE_FLOAT)
6516 && GET_CODE (goal) == CONST_INT
6517 && 0 != (goaltry
6518 = operand_subword (XEXP (tem, 0), 0, 0,
6519 VOIDmode))
6520 && rtx_equal_p (goal, goaltry)
6521 && (valtry
6522 = operand_subword (SET_DEST (pat), 0, 0,
6523 VOIDmode))
6524 && (valueno = true_regnum (valtry)) >= 0)))
6525 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6526 NULL_RTX))
6527 && REG_P (SET_DEST (pat))
6528 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6529 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6530 == MODE_FLOAT)
6531 && GET_CODE (goal) == CONST_INT
6532 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6533 VOIDmode))
6534 && rtx_equal_p (goal, goaltry)
6535 && (valtry
6536 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6537 && (valueno = true_regnum (valtry)) >= 0)))
6539 if (other >= 0)
6541 if (valueno != other)
6542 continue;
6544 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6545 continue;
6546 else
6548 int i;
6550 for (i = hard_regno_nregs[valueno][mode] - 1; i >= 0; i--)
6551 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
6552 valueno + i))
6553 break;
6554 if (i >= 0)
6555 continue;
6557 value = valtry;
6558 where = p;
6559 break;
6564 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6565 (or copying VALUE into GOAL, if GOAL is also a register).
6566 Now verify that VALUE is really valid. */
6568 /* VALUENO is the register number of VALUE; a hard register. */
6570 /* Don't try to re-use something that is killed in this insn. We want
6571 to be able to trust REG_UNUSED notes. */
6572 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6573 return 0;
6575 /* If we propose to get the value from the stack pointer or if GOAL is
6576 a MEM based on the stack pointer, we need a stable SP. */
6577 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6578 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6579 goal)))
6580 need_stable_sp = 1;
6582 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6583 if (GET_MODE (value) != mode)
6584 return 0;
6586 /* Reject VALUE if it was loaded from GOAL
6587 and is also a register that appears in the address of GOAL. */
6589 if (goal_mem && value == SET_DEST (single_set (where))
6590 && refers_to_regno_for_reload_p (valueno,
6591 (valueno
6592 + hard_regno_nregs[valueno][mode]),
6593 goal, (rtx*) 0))
6594 return 0;
6596 /* Reject registers that overlap GOAL. */
6598 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6599 nregs = hard_regno_nregs[regno][mode];
6600 else
6601 nregs = 1;
6602 valuenregs = hard_regno_nregs[valueno][mode];
6604 if (!goal_mem && !goal_const
6605 && regno + nregs > valueno && regno < valueno + valuenregs)
6606 return 0;
6608 /* Reject VALUE if it is one of the regs reserved for reloads.
6609 Reload1 knows how to reuse them anyway, and it would get
6610 confused if we allocated one without its knowledge.
6611 (Now that insns introduced by reload are ignored above,
6612 this case shouldn't happen, but I'm not positive.) */
6614 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6616 int i;
6617 for (i = 0; i < valuenregs; ++i)
6618 if (reload_reg_p[valueno + i] >= 0)
6619 return 0;
6622 /* Reject VALUE if it is a register being used for an input reload
6623 even if it is not one of those reserved. */
6625 if (reload_reg_p != 0)
6627 int i;
6628 for (i = 0; i < n_reloads; i++)
6629 if (rld[i].reg_rtx != 0 && rld[i].in)
6631 int regno1 = REGNO (rld[i].reg_rtx);
6632 int nregs1 = hard_regno_nregs[regno1]
6633 [GET_MODE (rld[i].reg_rtx)];
6634 if (regno1 < valueno + valuenregs
6635 && regno1 + nregs1 > valueno)
6636 return 0;
6640 if (goal_mem)
6641 /* We must treat frame pointer as varying here,
6642 since it can vary--in a nonlocal goto as generated by expand_goto. */
6643 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6645 /* Now verify that the values of GOAL and VALUE remain unaltered
6646 until INSN is reached. */
6648 p = insn;
6649 while (1)
6651 p = PREV_INSN (p);
6652 if (p == where)
6653 return value;
6655 /* Don't trust the conversion past a function call
6656 if either of the two is in a call-clobbered register, or memory. */
6657 if (CALL_P (p))
6659 int i;
6661 if (goal_mem || need_stable_sp)
6662 return 0;
6664 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6665 for (i = 0; i < nregs; ++i)
6666 if (call_used_regs[regno + i])
6667 return 0;
6669 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6670 for (i = 0; i < valuenregs; ++i)
6671 if (call_used_regs[valueno + i])
6672 return 0;
6673 #ifdef NON_SAVING_SETJMP
6674 if (NON_SAVING_SETJMP && find_reg_note (p, REG_SETJMP, NULL))
6675 return 0;
6676 #endif
6679 if (INSN_P (p))
6681 pat = PATTERN (p);
6683 /* Watch out for unspec_volatile, and volatile asms. */
6684 if (volatile_insn_p (pat))
6685 return 0;
6687 /* If this insn P stores in either GOAL or VALUE, return 0.
6688 If GOAL is a memory ref and this insn writes memory, return 0.
6689 If GOAL is a memory ref and its address is not constant,
6690 and this insn P changes a register used in GOAL, return 0. */
6692 if (GET_CODE (pat) == COND_EXEC)
6693 pat = COND_EXEC_CODE (pat);
6694 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6696 rtx dest = SET_DEST (pat);
6697 while (GET_CODE (dest) == SUBREG
6698 || GET_CODE (dest) == ZERO_EXTRACT
6699 || GET_CODE (dest) == SIGN_EXTRACT
6700 || GET_CODE (dest) == STRICT_LOW_PART)
6701 dest = XEXP (dest, 0);
6702 if (REG_P (dest))
6704 int xregno = REGNO (dest);
6705 int xnregs;
6706 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6707 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6708 else
6709 xnregs = 1;
6710 if (xregno < regno + nregs && xregno + xnregs > regno)
6711 return 0;
6712 if (xregno < valueno + valuenregs
6713 && xregno + xnregs > valueno)
6714 return 0;
6715 if (goal_mem_addr_varies
6716 && reg_overlap_mentioned_for_reload_p (dest, goal))
6717 return 0;
6718 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6719 return 0;
6721 else if (goal_mem && MEM_P (dest)
6722 && ! push_operand (dest, GET_MODE (dest)))
6723 return 0;
6724 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6725 && reg_equiv_memory_loc[regno] != 0)
6726 return 0;
6727 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6728 return 0;
6730 else if (GET_CODE (pat) == PARALLEL)
6732 int i;
6733 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6735 rtx v1 = XVECEXP (pat, 0, i);
6736 if (GET_CODE (v1) == COND_EXEC)
6737 v1 = COND_EXEC_CODE (v1);
6738 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6740 rtx dest = SET_DEST (v1);
6741 while (GET_CODE (dest) == SUBREG
6742 || GET_CODE (dest) == ZERO_EXTRACT
6743 || GET_CODE (dest) == SIGN_EXTRACT
6744 || GET_CODE (dest) == STRICT_LOW_PART)
6745 dest = XEXP (dest, 0);
6746 if (REG_P (dest))
6748 int xregno = REGNO (dest);
6749 int xnregs;
6750 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6751 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6752 else
6753 xnregs = 1;
6754 if (xregno < regno + nregs
6755 && xregno + xnregs > regno)
6756 return 0;
6757 if (xregno < valueno + valuenregs
6758 && xregno + xnregs > valueno)
6759 return 0;
6760 if (goal_mem_addr_varies
6761 && reg_overlap_mentioned_for_reload_p (dest,
6762 goal))
6763 return 0;
6764 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6765 return 0;
6767 else if (goal_mem && MEM_P (dest)
6768 && ! push_operand (dest, GET_MODE (dest)))
6769 return 0;
6770 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6771 && reg_equiv_memory_loc[regno] != 0)
6772 return 0;
6773 else if (need_stable_sp
6774 && push_operand (dest, GET_MODE (dest)))
6775 return 0;
6780 if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
6782 rtx link;
6784 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6785 link = XEXP (link, 1))
6787 pat = XEXP (link, 0);
6788 if (GET_CODE (pat) == CLOBBER)
6790 rtx dest = SET_DEST (pat);
6792 if (REG_P (dest))
6794 int xregno = REGNO (dest);
6795 int xnregs
6796 = hard_regno_nregs[xregno][GET_MODE (dest)];
6798 if (xregno < regno + nregs
6799 && xregno + xnregs > regno)
6800 return 0;
6801 else if (xregno < valueno + valuenregs
6802 && xregno + xnregs > valueno)
6803 return 0;
6804 else if (goal_mem_addr_varies
6805 && reg_overlap_mentioned_for_reload_p (dest,
6806 goal))
6807 return 0;
6810 else if (goal_mem && MEM_P (dest)
6811 && ! push_operand (dest, GET_MODE (dest)))
6812 return 0;
6813 else if (need_stable_sp
6814 && push_operand (dest, GET_MODE (dest)))
6815 return 0;
6820 #ifdef AUTO_INC_DEC
6821 /* If this insn auto-increments or auto-decrements
6822 either regno or valueno, return 0 now.
6823 If GOAL is a memory ref and its address is not constant,
6824 and this insn P increments a register used in GOAL, return 0. */
6826 rtx link;
6828 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6829 if (REG_NOTE_KIND (link) == REG_INC
6830 && REG_P (XEXP (link, 0)))
6832 int incno = REGNO (XEXP (link, 0));
6833 if (incno < regno + nregs && incno >= regno)
6834 return 0;
6835 if (incno < valueno + valuenregs && incno >= valueno)
6836 return 0;
6837 if (goal_mem_addr_varies
6838 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6839 goal))
6840 return 0;
6843 #endif
6848 /* Find a place where INCED appears in an increment or decrement operator
6849 within X, and return the amount INCED is incremented or decremented by.
6850 The value is always positive. */
6852 static int
6853 find_inc_amount (rtx x, rtx inced)
6855 enum rtx_code code = GET_CODE (x);
6856 const char *fmt;
6857 int i;
6859 if (code == MEM)
6861 rtx addr = XEXP (x, 0);
6862 if ((GET_CODE (addr) == PRE_DEC
6863 || GET_CODE (addr) == POST_DEC
6864 || GET_CODE (addr) == PRE_INC
6865 || GET_CODE (addr) == POST_INC)
6866 && XEXP (addr, 0) == inced)
6867 return GET_MODE_SIZE (GET_MODE (x));
6868 else if ((GET_CODE (addr) == PRE_MODIFY
6869 || GET_CODE (addr) == POST_MODIFY)
6870 && GET_CODE (XEXP (addr, 1)) == PLUS
6871 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
6872 && XEXP (addr, 0) == inced
6873 && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
6875 i = INTVAL (XEXP (XEXP (addr, 1), 1));
6876 return i < 0 ? -i : i;
6880 fmt = GET_RTX_FORMAT (code);
6881 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6883 if (fmt[i] == 'e')
6885 int tem = find_inc_amount (XEXP (x, i), inced);
6886 if (tem != 0)
6887 return tem;
6889 if (fmt[i] == 'E')
6891 int j;
6892 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6894 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
6895 if (tem != 0)
6896 return tem;
6901 return 0;
6904 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
6905 If SETS is nonzero, also consider SETs. */
6908 regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
6909 int sets)
6911 unsigned int nregs = hard_regno_nregs[regno][mode];
6912 unsigned int endregno = regno + nregs;
6914 if ((GET_CODE (PATTERN (insn)) == CLOBBER
6915 || (sets && GET_CODE (PATTERN (insn)) == SET))
6916 && REG_P (XEXP (PATTERN (insn), 0)))
6918 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
6920 return test >= regno && test < endregno;
6923 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6925 int i = XVECLEN (PATTERN (insn), 0) - 1;
6927 for (; i >= 0; i--)
6929 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6930 if ((GET_CODE (elt) == CLOBBER
6931 || (sets && GET_CODE (PATTERN (insn)) == SET))
6932 && REG_P (XEXP (elt, 0)))
6934 unsigned int test = REGNO (XEXP (elt, 0));
6936 if (test >= regno && test < endregno)
6937 return 1;
6942 return 0;
6945 /* Find the low part, with mode MODE, of a hard regno RELOADREG. */
6947 reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
6949 int regno;
6951 if (GET_MODE (reloadreg) == mode)
6952 return reloadreg;
6954 regno = REGNO (reloadreg);
6956 if (WORDS_BIG_ENDIAN)
6957 regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
6958 - (int) hard_regno_nregs[regno][mode];
6960 return gen_rtx_REG (mode, regno);
6963 static const char *const reload_when_needed_name[] =
6965 "RELOAD_FOR_INPUT",
6966 "RELOAD_FOR_OUTPUT",
6967 "RELOAD_FOR_INSN",
6968 "RELOAD_FOR_INPUT_ADDRESS",
6969 "RELOAD_FOR_INPADDR_ADDRESS",
6970 "RELOAD_FOR_OUTPUT_ADDRESS",
6971 "RELOAD_FOR_OUTADDR_ADDRESS",
6972 "RELOAD_FOR_OPERAND_ADDRESS",
6973 "RELOAD_FOR_OPADDR_ADDR",
6974 "RELOAD_OTHER",
6975 "RELOAD_FOR_OTHER_ADDRESS"
6978 static const char * const reg_class_names[] = REG_CLASS_NAMES;
6980 /* These functions are used to print the variables set by 'find_reloads' */
6982 void
6983 debug_reload_to_stream (FILE *f)
6985 int r;
6986 const char *prefix;
6988 if (! f)
6989 f = stderr;
6990 for (r = 0; r < n_reloads; r++)
6992 fprintf (f, "Reload %d: ", r);
6994 if (rld[r].in != 0)
6996 fprintf (f, "reload_in (%s) = ",
6997 GET_MODE_NAME (rld[r].inmode));
6998 print_inline_rtx (f, rld[r].in, 24);
6999 fprintf (f, "\n\t");
7002 if (rld[r].out != 0)
7004 fprintf (f, "reload_out (%s) = ",
7005 GET_MODE_NAME (rld[r].outmode));
7006 print_inline_rtx (f, rld[r].out, 24);
7007 fprintf (f, "\n\t");
7010 fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
7012 fprintf (f, "%s (opnum = %d)",
7013 reload_when_needed_name[(int) rld[r].when_needed],
7014 rld[r].opnum);
7016 if (rld[r].optional)
7017 fprintf (f, ", optional");
7019 if (rld[r].nongroup)
7020 fprintf (f, ", nongroup");
7022 if (rld[r].inc != 0)
7023 fprintf (f, ", inc by %d", rld[r].inc);
7025 if (rld[r].nocombine)
7026 fprintf (f, ", can't combine");
7028 if (rld[r].secondary_p)
7029 fprintf (f, ", secondary_reload_p");
7031 if (rld[r].in_reg != 0)
7033 fprintf (f, "\n\treload_in_reg: ");
7034 print_inline_rtx (f, rld[r].in_reg, 24);
7037 if (rld[r].out_reg != 0)
7039 fprintf (f, "\n\treload_out_reg: ");
7040 print_inline_rtx (f, rld[r].out_reg, 24);
7043 if (rld[r].reg_rtx != 0)
7045 fprintf (f, "\n\treload_reg_rtx: ");
7046 print_inline_rtx (f, rld[r].reg_rtx, 24);
7049 prefix = "\n\t";
7050 if (rld[r].secondary_in_reload != -1)
7052 fprintf (f, "%ssecondary_in_reload = %d",
7053 prefix, rld[r].secondary_in_reload);
7054 prefix = ", ";
7057 if (rld[r].secondary_out_reload != -1)
7058 fprintf (f, "%ssecondary_out_reload = %d\n",
7059 prefix, rld[r].secondary_out_reload);
7061 prefix = "\n\t";
7062 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7064 fprintf (f, "%ssecondary_in_icode = %s", prefix,
7065 insn_data[rld[r].secondary_in_icode].name);
7066 prefix = ", ";
7069 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7070 fprintf (f, "%ssecondary_out_icode = %s", prefix,
7071 insn_data[rld[r].secondary_out_icode].name);
7073 fprintf (f, "\n");
7077 void
7078 debug_reload (void)
7080 debug_reload_to_stream (stderr);