2002-05-02 David S. Miller <davem@redhat.com>
[official-gcc.git] / gcc / df.c
blobed0fd77029beee46d883941b1779f5df8ae2b46c
1 /* Dataflow support routines.
2 Copyright (C) 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
3 Contributed by Michael P. Hayes (m.hayes@elec.canterbury.ac.nz,
4 mhayes@redhat.com)
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA.
24 OVERVIEW:
26 This file provides some dataflow routines for computing reaching defs,
27 upward exposed uses, live variables, def-use chains, and use-def
28 chains. The global dataflow is performed using simple iterative
29 methods with a worklist and could be sped up by ordering the blocks
30 with a depth first search order.
32 A `struct ref' data structure (ref) is allocated for every register
33 reference (def or use) and this records the insn and bb the ref is
34 found within. The refs are linked together in chains of uses and defs
35 for each insn and for each register. Each ref also has a chain field
36 that links all the use refs for a def or all the def refs for a use.
37 This is used to create use-def or def-use chains.
40 USAGE:
42 Here's an example of using the dataflow routines.
44 struct df *df;
46 df = df_init ();
48 df_analyse (df, 0, DF_ALL);
50 df_dump (df, DF_ALL, stderr);
52 df_finish (df);
55 df_init simply creates a poor man's object (df) that needs to be
56 passed to all the dataflow routines. df_finish destroys this
57 object and frees up any allocated memory.
59 df_analyse performs the following:
61 1. Records defs and uses by scanning the insns in each basic block
62 or by scanning the insns queued by df_insn_modify.
63 2. Links defs and uses into insn-def and insn-use chains.
64 3. Links defs and uses into reg-def and reg-use chains.
65 4. Assigns LUIDs to each insn (for modified blocks).
66 5. Calculates local reaching definitions.
67 6. Calculates global reaching definitions.
68 7. Creates use-def chains.
69 8. Calculates local reaching uses (upwards exposed uses).
70 9. Calculates global reaching uses.
71 10. Creates def-use chains.
72 11. Calculates local live registers.
73 12. Calculates global live registers.
74 13. Calculates register lifetimes and determines local registers.
77 PHILOSOPHY:
79 Note that the dataflow information is not updated for every newly
80 deleted or created insn. If the dataflow information requires
81 updating then all the changed, new, or deleted insns needs to be
82 marked with df_insn_modify (or df_insns_modify) either directly or
83 indirectly (say through calling df_insn_delete). df_insn_modify
84 marks all the modified insns to get processed the next time df_analyse
85 is called.
87 Beware that tinkering with insns may invalidate the dataflow information.
88 The philosophy behind these routines is that once the dataflow
89 information has been gathered, the user should store what they require
90 before they tinker with any insn. Once a reg is replaced, for example,
91 then the reg-def/reg-use chains will point to the wrong place. Once a
92 whole lot of changes have been made, df_analyse can be called again
93 to update the dataflow information. Currently, this is not very smart
94 with regard to propagating changes to the dataflow so it should not
95 be called very often.
98 DATA STRUCTURES:
100 The basic object is a REF (reference) and this may either be a DEF
101 (definition) or a USE of a register.
103 These are linked into a variety of lists; namely reg-def, reg-use,
104 insn-def, insn-use, def-use, and use-def lists. For example,
105 the reg-def lists contain all the refs that define a given register
106 while the insn-use lists contain all the refs used by an insn.
108 Note that the reg-def and reg-use chains are generally short (except for the
109 hard registers) and thus it is much faster to search these chains
110 rather than searching the def or use bitmaps.
112 If the insns are in SSA form then the reg-def and use-def lists
113 should only contain the single defining ref.
115 TODO:
117 1) Incremental dataflow analysis.
119 Note that if a loop invariant insn is hoisted (or sunk), we do not
120 need to change the def-use or use-def chains. All we have to do is to
121 change the bb field for all the associated defs and uses and to
122 renumber the LUIDs for the original and new basic blocks of the insn.
124 When shadowing loop mems we create new uses and defs for new pseudos
125 so we do not affect the existing dataflow information.
127 My current strategy is to queue up all modified, created, or deleted
128 insns so when df_analyse is called we can easily determine all the new
129 or deleted refs. Currently the global dataflow information is
130 recomputed from scratch but this could be propagated more efficiently.
132 2) Improved global data flow computation using depth first search.
134 3) Reduced memory requirements.
136 We could operate a pool of ref structures. When a ref is deleted it
137 gets returned to the pool (say by linking on to a chain of free refs).
138 This will require a pair of bitmaps for defs and uses so that we can
139 tell which ones have been changed. Alternatively, we could
140 periodically squeeze the def and use tables and associated bitmaps and
141 renumber the def and use ids.
143 4) Ordering of reg-def and reg-use lists.
145 Should the first entry in the def list be the first def (within a BB)?
146 Similarly, should the first entry in the use list be the last use
147 (within a BB)?
149 5) Working with a sub-CFG.
151 Often the whole CFG does not need to be analysed, for example,
152 when optimising a loop, only certain registers are of interest.
153 Perhaps there should be a bitmap argument to df_analyse to specify
154 which registers should be analysed? */
156 #define HANDLE_SUBREG
158 #include "config.h"
159 #include "system.h"
160 #include "rtl.h"
161 #include "tm_p.h"
162 #include "insn-config.h"
163 #include "recog.h"
164 #include "function.h"
165 #include "regs.h"
166 #include "obstack.h"
167 #include "hard-reg-set.h"
168 #include "basic-block.h"
169 #include "sbitmap.h"
170 #include "bitmap.h"
171 #include "df.h"
172 #include "fibheap.h"
174 #define FOR_ALL_BBS(BB, CODE) \
175 do { \
176 int node_; \
177 for (node_ = 0; node_ < n_basic_blocks; node_++) \
178 {(BB) = BASIC_BLOCK (node_); CODE;};} while (0)
180 #define FOR_EACH_BB_IN_BITMAP(BITMAP, MIN, BB, CODE) \
181 do { \
182 unsigned int node_; \
183 EXECUTE_IF_SET_IN_BITMAP (BITMAP, MIN, node_, \
184 {(BB) = BASIC_BLOCK (node_); CODE;});} while (0)
186 #define FOR_EACH_BB_IN_BITMAP_REV(BITMAP, MIN, BB, CODE) \
187 do { \
188 unsigned int node_; \
189 EXECUTE_IF_SET_IN_BITMAP_REV (BITMAP, node_, \
190 {(BB) = BASIC_BLOCK (node_); CODE;});} while (0)
192 #define FOR_EACH_BB_IN_SBITMAP(BITMAP, MIN, BB, CODE) \
193 do { \
194 unsigned int node_; \
195 EXECUTE_IF_SET_IN_SBITMAP (BITMAP, MIN, node_, \
196 {(BB) = BASIC_BLOCK (node_); CODE;});} while (0)
198 #define obstack_chunk_alloc xmalloc
199 #define obstack_chunk_free free
201 static struct obstack df_ref_obstack;
202 static struct df *ddf;
204 static void df_reg_table_realloc PARAMS((struct df *, int));
205 #if 0
206 static void df_def_table_realloc PARAMS((struct df *, int));
207 #endif
208 static void df_insn_table_realloc PARAMS((struct df *, int));
209 static void df_bitmaps_alloc PARAMS((struct df *, int));
210 static void df_bitmaps_free PARAMS((struct df *, int));
211 static void df_free PARAMS((struct df *));
212 static void df_alloc PARAMS((struct df *, int));
214 static rtx df_reg_clobber_gen PARAMS((unsigned int));
215 static rtx df_reg_use_gen PARAMS((unsigned int));
217 static inline struct df_link *df_link_create PARAMS((struct ref *,
218 struct df_link *));
219 static struct df_link *df_ref_unlink PARAMS((struct df_link **, struct ref *));
220 static void df_def_unlink PARAMS((struct df *, struct ref *));
221 static void df_use_unlink PARAMS((struct df *, struct ref *));
222 static void df_insn_refs_unlink PARAMS ((struct df *, basic_block, rtx));
223 #if 0
224 static void df_bb_refs_unlink PARAMS ((struct df *, basic_block));
225 static void df_refs_unlink PARAMS ((struct df *, bitmap));
226 #endif
228 static struct ref *df_ref_create PARAMS((struct df *,
229 rtx, rtx *, rtx,
230 enum df_ref_type, enum df_ref_flags));
231 static void df_ref_record_1 PARAMS((struct df *, rtx, rtx *,
232 rtx, enum df_ref_type,
233 enum df_ref_flags));
234 static void df_ref_record PARAMS((struct df *, rtx, rtx *,
235 rtx, enum df_ref_type,
236 enum df_ref_flags));
237 static void df_def_record_1 PARAMS((struct df *, rtx, basic_block, rtx));
238 static void df_defs_record PARAMS((struct df *, rtx, basic_block, rtx));
239 static void df_uses_record PARAMS((struct df *, rtx *,
240 enum df_ref_type, basic_block, rtx,
241 enum df_ref_flags));
242 static void df_insn_refs_record PARAMS((struct df *, basic_block, rtx));
243 static void df_bb_refs_record PARAMS((struct df *, basic_block));
244 static void df_refs_record PARAMS((struct df *, bitmap));
246 static void df_bb_reg_def_chain_create PARAMS((struct df *, basic_block));
247 static void df_reg_def_chain_create PARAMS((struct df *, bitmap));
248 static void df_bb_reg_use_chain_create PARAMS((struct df *, basic_block));
249 static void df_reg_use_chain_create PARAMS((struct df *, bitmap));
250 static void df_bb_du_chain_create PARAMS((struct df *, basic_block, bitmap));
251 static void df_du_chain_create PARAMS((struct df *, bitmap));
252 static void df_bb_ud_chain_create PARAMS((struct df *, basic_block));
253 static void df_ud_chain_create PARAMS((struct df *, bitmap));
254 static void df_bb_rd_local_compute PARAMS((struct df *, basic_block));
255 static void df_rd_local_compute PARAMS((struct df *, bitmap));
256 static void df_bb_ru_local_compute PARAMS((struct df *, basic_block));
257 static void df_ru_local_compute PARAMS((struct df *, bitmap));
258 static void df_bb_lr_local_compute PARAMS((struct df *, basic_block));
259 static void df_lr_local_compute PARAMS((struct df *, bitmap));
260 static void df_bb_reg_info_compute PARAMS((struct df *, basic_block, bitmap));
261 static void df_reg_info_compute PARAMS((struct df *, bitmap));
263 static int df_bb_luids_set PARAMS((struct df *df, basic_block));
264 static int df_luids_set PARAMS((struct df *df, bitmap));
266 static int df_modified_p PARAMS ((struct df *, bitmap));
267 static int df_refs_queue PARAMS ((struct df *));
268 static int df_refs_process PARAMS ((struct df *));
269 static int df_bb_refs_update PARAMS ((struct df *, basic_block));
270 static int df_refs_update PARAMS ((struct df *));
271 static void df_analyse_1 PARAMS((struct df *, bitmap, int, int));
273 static void df_insns_modify PARAMS((struct df *, basic_block,
274 rtx, rtx));
275 static int df_rtx_mem_replace PARAMS ((rtx *, void *));
276 static int df_rtx_reg_replace PARAMS ((rtx *, void *));
277 void df_refs_reg_replace PARAMS ((struct df *, bitmap,
278 struct df_link *, rtx, rtx));
280 static int df_def_dominates_all_uses_p PARAMS((struct df *, struct ref *def));
281 static int df_def_dominates_uses_p PARAMS((struct df *,
282 struct ref *def, bitmap));
283 static struct ref *df_bb_regno_last_use_find PARAMS((struct df *, basic_block,
284 unsigned int));
285 static struct ref *df_bb_regno_first_def_find PARAMS((struct df *, basic_block,
286 unsigned int));
287 static struct ref *df_bb_insn_regno_last_use_find PARAMS((struct df *,
288 basic_block,
289 rtx, unsigned int));
290 static struct ref *df_bb_insn_regno_first_def_find PARAMS((struct df *,
291 basic_block,
292 rtx, unsigned int));
294 static void df_chain_dump PARAMS((struct df_link *, FILE *file));
295 static void df_chain_dump_regno PARAMS((struct df_link *, FILE *file));
296 static void df_regno_debug PARAMS ((struct df *, unsigned int, FILE *));
297 static void df_ref_debug PARAMS ((struct df *, struct ref *, FILE *));
298 static void df_rd_transfer_function PARAMS ((int, int *, bitmap, bitmap,
299 bitmap, bitmap, void *));
300 static void df_ru_transfer_function PARAMS ((int, int *, bitmap, bitmap,
301 bitmap, bitmap, void *));
302 static void df_lr_transfer_function PARAMS ((int, int *, bitmap, bitmap,
303 bitmap, bitmap, void *));
304 static void hybrid_search_bitmap PARAMS ((basic_block, bitmap *, bitmap *,
305 bitmap *, bitmap *, enum df_flow_dir,
306 enum df_confluence_op,
307 transfer_function_bitmap,
308 sbitmap, sbitmap, void *));
309 static void hybrid_search_sbitmap PARAMS ((basic_block, sbitmap *, sbitmap *,
310 sbitmap *, sbitmap *, enum df_flow_dir,
311 enum df_confluence_op,
312 transfer_function_sbitmap,
313 sbitmap, sbitmap, void *));
314 static inline bool read_modify_subreg_p PARAMS ((rtx));
317 /* Local memory allocation/deallocation routines. */
320 /* Increase the insn info table by SIZE more elements. */
321 static void
322 df_insn_table_realloc (df, size)
323 struct df *df;
324 int size;
326 /* Make table 25 percent larger by default. */
327 if (! size)
328 size = df->insn_size / 4;
330 size += df->insn_size;
332 df->insns = (struct insn_info *)
333 xrealloc (df->insns, size * sizeof (struct insn_info));
335 memset (df->insns + df->insn_size, 0,
336 (size - df->insn_size) * sizeof (struct insn_info));
338 df->insn_size = size;
340 if (! df->insns_modified)
342 df->insns_modified = BITMAP_XMALLOC ();
343 bitmap_zero (df->insns_modified);
348 /* Increase the reg info table by SIZE more elements. */
349 static void
350 df_reg_table_realloc (df, size)
351 struct df *df;
352 int size;
354 /* Make table 25 percent larger by default. */
355 if (! size)
356 size = df->reg_size / 4;
358 size += df->reg_size;
360 df->regs = (struct reg_info *)
361 xrealloc (df->regs, size * sizeof (struct reg_info));
363 /* Zero the new entries. */
364 memset (df->regs + df->reg_size, 0,
365 (size - df->reg_size) * sizeof (struct reg_info));
367 df->reg_size = size;
371 #if 0
372 /* Not currently used. */
373 static void
374 df_def_table_realloc (df, size)
375 struct df *df;
376 int size;
378 int i;
379 struct ref *refs;
381 /* Make table 25 percent larger by default. */
382 if (! size)
383 size = df->def_size / 4;
385 df->def_size += size;
386 df->defs = xrealloc (df->defs,
387 df->def_size * sizeof (*df->defs));
389 /* Allocate a new block of memory and link into list of blocks
390 that will need to be freed later. */
392 refs = xmalloc (size * sizeof (*refs));
394 /* Link all the new refs together, overloading the chain field. */
395 for (i = 0; i < size - 1; i++)
396 refs[i].chain = (struct df_link *)(refs + i + 1);
397 refs[size - 1].chain = 0;
399 #endif
403 /* Allocate bitmaps for each basic block. */
404 static void
405 df_bitmaps_alloc (df, flags)
406 struct df *df;
407 int flags;
409 unsigned int i;
410 int dflags = 0;
412 /* Free the bitmaps if they need resizing. */
413 if ((flags & DF_LR) && df->n_regs < (unsigned int)max_reg_num ())
414 dflags |= DF_LR | DF_RU;
415 if ((flags & DF_RU) && df->n_uses < df->use_id)
416 dflags |= DF_RU;
417 if ((flags & DF_RD) && df->n_defs < df->def_id)
418 dflags |= DF_RD;
420 if (dflags)
421 df_bitmaps_free (df, dflags);
423 df->n_defs = df->def_id;
424 df->n_uses = df->use_id;
426 for (i = 0; i < df->n_bbs; i++)
428 basic_block bb = BASIC_BLOCK (i);
429 struct bb_info *bb_info = DF_BB_INFO (df, bb);
431 if (flags & DF_RD && ! bb_info->rd_in)
433 /* Allocate bitmaps for reaching definitions. */
434 bb_info->rd_kill = BITMAP_XMALLOC ();
435 bitmap_zero (bb_info->rd_kill);
436 bb_info->rd_gen = BITMAP_XMALLOC ();
437 bitmap_zero (bb_info->rd_gen);
438 bb_info->rd_in = BITMAP_XMALLOC ();
439 bb_info->rd_out = BITMAP_XMALLOC ();
440 bb_info->rd_valid = 0;
443 if (flags & DF_RU && ! bb_info->ru_in)
445 /* Allocate bitmaps for upward exposed uses. */
446 bb_info->ru_kill = BITMAP_XMALLOC ();
447 bitmap_zero (bb_info->ru_kill);
448 /* Note the lack of symmetry. */
449 bb_info->ru_gen = BITMAP_XMALLOC ();
450 bitmap_zero (bb_info->ru_gen);
451 bb_info->ru_in = BITMAP_XMALLOC ();
452 bb_info->ru_out = BITMAP_XMALLOC ();
453 bb_info->ru_valid = 0;
456 if (flags & DF_LR && ! bb_info->lr_in)
458 /* Allocate bitmaps for live variables. */
459 bb_info->lr_def = BITMAP_XMALLOC ();
460 bitmap_zero (bb_info->lr_def);
461 bb_info->lr_use = BITMAP_XMALLOC ();
462 bitmap_zero (bb_info->lr_use);
463 bb_info->lr_in = BITMAP_XMALLOC ();
464 bb_info->lr_out = BITMAP_XMALLOC ();
465 bb_info->lr_valid = 0;
471 /* Free bitmaps for each basic block. */
472 static void
473 df_bitmaps_free (df, flags)
474 struct df *df ATTRIBUTE_UNUSED;
475 int flags;
477 unsigned int i;
479 for (i = 0; i < df->n_bbs; i++)
481 basic_block bb = BASIC_BLOCK (i);
482 struct bb_info *bb_info = DF_BB_INFO (df, bb);
484 if (!bb_info)
485 continue;
487 if ((flags & DF_RD) && bb_info->rd_in)
489 /* Free bitmaps for reaching definitions. */
490 BITMAP_XFREE (bb_info->rd_kill);
491 bb_info->rd_kill = NULL;
492 BITMAP_XFREE (bb_info->rd_gen);
493 bb_info->rd_gen = NULL;
494 BITMAP_XFREE (bb_info->rd_in);
495 bb_info->rd_in = NULL;
496 BITMAP_XFREE (bb_info->rd_out);
497 bb_info->rd_out = NULL;
500 if ((flags & DF_RU) && bb_info->ru_in)
502 /* Free bitmaps for upward exposed uses. */
503 BITMAP_XFREE (bb_info->ru_kill);
504 bb_info->ru_kill = NULL;
505 BITMAP_XFREE (bb_info->ru_gen);
506 bb_info->ru_gen = NULL;
507 BITMAP_XFREE (bb_info->ru_in);
508 bb_info->ru_in = NULL;
509 BITMAP_XFREE (bb_info->ru_out);
510 bb_info->ru_out = NULL;
513 if ((flags & DF_LR) && bb_info->lr_in)
515 /* Free bitmaps for live variables. */
516 BITMAP_XFREE (bb_info->lr_def);
517 bb_info->lr_def = NULL;
518 BITMAP_XFREE (bb_info->lr_use);
519 bb_info->lr_use = NULL;
520 BITMAP_XFREE (bb_info->lr_in);
521 bb_info->lr_in = NULL;
522 BITMAP_XFREE (bb_info->lr_out);
523 bb_info->lr_out = NULL;
526 df->flags &= ~(flags & (DF_RD | DF_RU | DF_LR));
530 /* Allocate and initialise dataflow memory. */
531 static void
532 df_alloc (df, n_regs)
533 struct df *df;
534 int n_regs;
536 int n_insns;
537 int i;
539 gcc_obstack_init (&df_ref_obstack);
541 /* Perhaps we should use LUIDs to save memory for the insn_refs
542 table. This is only a small saving; a few pointers. */
543 n_insns = get_max_uid () + 1;
545 df->def_id = 0;
546 df->n_defs = 0;
547 /* Approximate number of defs by number of insns. */
548 df->def_size = n_insns;
549 df->defs = xmalloc (df->def_size * sizeof (*df->defs));
551 df->use_id = 0;
552 df->n_uses = 0;
553 /* Approximate number of uses by twice number of insns. */
554 df->use_size = n_insns * 2;
555 df->uses = xmalloc (df->use_size * sizeof (*df->uses));
557 df->n_regs = n_regs;
558 df->n_bbs = n_basic_blocks;
560 /* Allocate temporary working array used during local dataflow analysis. */
561 df->reg_def_last = xmalloc (df->n_regs * sizeof (struct ref *));
563 df_insn_table_realloc (df, n_insns);
565 df_reg_table_realloc (df, df->n_regs);
567 df->bbs_modified = BITMAP_XMALLOC ();
568 bitmap_zero (df->bbs_modified);
570 df->flags = 0;
572 df->bbs = xcalloc (df->n_bbs, sizeof (struct bb_info));
574 df->all_blocks = BITMAP_XMALLOC ();
575 for (i = 0; i < n_basic_blocks; i++)
576 bitmap_set_bit (df->all_blocks, i);
580 /* Free all the dataflow info. */
581 static void
582 df_free (df)
583 struct df *df;
585 df_bitmaps_free (df, DF_ALL);
587 if (df->bbs)
588 free (df->bbs);
589 df->bbs = 0;
591 if (df->insns)
592 free (df->insns);
593 df->insns = 0;
594 df->insn_size = 0;
596 if (df->defs)
597 free (df->defs);
598 df->defs = 0;
599 df->def_size = 0;
600 df->def_id = 0;
602 if (df->uses)
603 free (df->uses);
604 df->uses = 0;
605 df->use_size = 0;
606 df->use_id = 0;
608 if (df->regs)
609 free (df->regs);
610 df->regs = 0;
611 df->reg_size = 0;
613 if (df->bbs_modified)
614 BITMAP_XFREE (df->bbs_modified);
615 df->bbs_modified = 0;
617 if (df->insns_modified)
618 BITMAP_XFREE (df->insns_modified);
619 df->insns_modified = 0;
621 BITMAP_XFREE (df->all_blocks);
622 df->all_blocks = 0;
624 obstack_free (&df_ref_obstack, NULL);
627 /* Local miscellaneous routines. */
629 /* Return a USE for register REGNO. */
630 static rtx df_reg_use_gen (regno)
631 unsigned int regno;
633 rtx reg;
634 rtx use;
636 reg = regno >= FIRST_PSEUDO_REGISTER
637 ? regno_reg_rtx[regno] : gen_rtx_REG (reg_raw_mode[regno], regno);
639 use = gen_rtx_USE (GET_MODE (reg), reg);
640 return use;
644 /* Return a CLOBBER for register REGNO. */
645 static rtx df_reg_clobber_gen (regno)
646 unsigned int regno;
648 rtx reg;
649 rtx use;
651 reg = regno >= FIRST_PSEUDO_REGISTER
652 ? regno_reg_rtx[regno] : gen_rtx_REG (reg_raw_mode[regno], regno);
654 use = gen_rtx_CLOBBER (GET_MODE (reg), reg);
655 return use;
658 /* Local chain manipulation routines. */
660 /* Create a link in a def-use or use-def chain. */
661 static inline struct df_link *
662 df_link_create (ref, next)
663 struct ref *ref;
664 struct df_link *next;
666 struct df_link *link;
668 link = (struct df_link *) obstack_alloc (&df_ref_obstack,
669 sizeof (*link));
670 link->next = next;
671 link->ref = ref;
672 return link;
676 /* Add REF to chain head pointed to by PHEAD. */
677 static struct df_link *
678 df_ref_unlink (phead, ref)
679 struct df_link **phead;
680 struct ref *ref;
682 struct df_link *link = *phead;
684 if (link)
686 if (! link->next)
688 /* Only a single ref. It must be the one we want.
689 If not, the def-use and use-def chains are likely to
690 be inconsistent. */
691 if (link->ref != ref)
692 abort ();
693 /* Now have an empty chain. */
694 *phead = NULL;
696 else
698 /* Multiple refs. One of them must be us. */
699 if (link->ref == ref)
700 *phead = link->next;
701 else
703 /* Follow chain. */
704 for (; link->next; link = link->next)
706 if (link->next->ref == ref)
708 /* Unlink from list. */
709 link->next = link->next->next;
710 return link->next;
716 return link;
720 /* Unlink REF from all def-use/use-def chains, etc. */
722 df_ref_remove (df, ref)
723 struct df *df;
724 struct ref *ref;
726 if (DF_REF_REG_DEF_P (ref))
728 df_def_unlink (df, ref);
729 df_ref_unlink (&df->insns[DF_REF_INSN_UID (ref)].defs, ref);
731 else
733 df_use_unlink (df, ref);
734 df_ref_unlink (&df->insns[DF_REF_INSN_UID (ref)].uses, ref);
736 return 1;
740 /* Unlink DEF from use-def and reg-def chains. */
741 static void
742 df_def_unlink (df, def)
743 struct df *df ATTRIBUTE_UNUSED;
744 struct ref *def;
746 struct df_link *du_link;
747 unsigned int dregno = DF_REF_REGNO (def);
749 /* Follow def-use chain to find all the uses of this def. */
750 for (du_link = DF_REF_CHAIN (def); du_link; du_link = du_link->next)
752 struct ref *use = du_link->ref;
754 /* Unlink this def from the use-def chain. */
755 df_ref_unlink (&DF_REF_CHAIN (use), def);
757 DF_REF_CHAIN (def) = 0;
759 /* Unlink def from reg-def chain. */
760 df_ref_unlink (&df->regs[dregno].defs, def);
762 df->defs[DF_REF_ID (def)] = 0;
766 /* Unlink use from def-use and reg-use chains. */
767 static void
768 df_use_unlink (df, use)
769 struct df *df ATTRIBUTE_UNUSED;
770 struct ref *use;
772 struct df_link *ud_link;
773 unsigned int uregno = DF_REF_REGNO (use);
775 /* Follow use-def chain to find all the defs of this use. */
776 for (ud_link = DF_REF_CHAIN (use); ud_link; ud_link = ud_link->next)
778 struct ref *def = ud_link->ref;
780 /* Unlink this use from the def-use chain. */
781 df_ref_unlink (&DF_REF_CHAIN (def), use);
783 DF_REF_CHAIN (use) = 0;
785 /* Unlink use from reg-use chain. */
786 df_ref_unlink (&df->regs[uregno].uses, use);
788 df->uses[DF_REF_ID (use)] = 0;
791 /* Local routines for recording refs. */
794 /* Create a new ref of type DF_REF_TYPE for register REG at address
795 LOC within INSN of BB. */
796 static struct ref *
797 df_ref_create (df, reg, loc, insn, ref_type, ref_flags)
798 struct df *df;
799 rtx reg;
800 rtx *loc;
801 rtx insn;
802 enum df_ref_type ref_type;
803 enum df_ref_flags ref_flags;
805 struct ref *this_ref;
806 unsigned int uid;
808 this_ref = (struct ref *) obstack_alloc (&df_ref_obstack,
809 sizeof (*this_ref));
810 DF_REF_REG (this_ref) = reg;
811 DF_REF_LOC (this_ref) = loc;
812 DF_REF_INSN (this_ref) = insn;
813 DF_REF_CHAIN (this_ref) = 0;
814 DF_REF_TYPE (this_ref) = ref_type;
815 DF_REF_FLAGS (this_ref) = ref_flags;
816 uid = INSN_UID (insn);
818 if (ref_type == DF_REF_REG_DEF)
820 if (df->def_id >= df->def_size)
822 /* Make table 25 percent larger. */
823 df->def_size += (df->def_size / 4);
824 df->defs = xrealloc (df->defs,
825 df->def_size * sizeof (*df->defs));
827 DF_REF_ID (this_ref) = df->def_id;
828 df->defs[df->def_id++] = this_ref;
830 else
832 if (df->use_id >= df->use_size)
834 /* Make table 25 percent larger. */
835 df->use_size += (df->use_size / 4);
836 df->uses = xrealloc (df->uses,
837 df->use_size * sizeof (*df->uses));
839 DF_REF_ID (this_ref) = df->use_id;
840 df->uses[df->use_id++] = this_ref;
842 return this_ref;
846 /* Create a new reference of type DF_REF_TYPE for a single register REG,
847 used inside the LOC rtx of INSN. */
848 static void
849 df_ref_record_1 (df, reg, loc, insn, ref_type, ref_flags)
850 struct df *df;
851 rtx reg;
852 rtx *loc;
853 rtx insn;
854 enum df_ref_type ref_type;
855 enum df_ref_flags ref_flags;
857 df_ref_create (df, reg, loc, insn, ref_type, ref_flags);
861 /* Create new references of type DF_REF_TYPE for each part of register REG
862 at address LOC within INSN of BB. */
863 static void
864 df_ref_record (df, reg, loc, insn, ref_type, ref_flags)
865 struct df *df;
866 rtx reg;
867 rtx *loc;
868 rtx insn;
869 enum df_ref_type ref_type;
870 enum df_ref_flags ref_flags;
872 unsigned int regno;
874 if (GET_CODE (reg) != REG && GET_CODE (reg) != SUBREG)
875 abort ();
877 /* For the reg allocator we are interested in some SUBREG rtx's, but not
878 all. Notably only those representing a word extraction from a multi-word
879 reg. As written in the docu those should have the form
880 (subreg:SI (reg:M A) N), with size(SImode) > size(Mmode).
881 XXX Is that true? We could also use the global word_mode variable. */
882 if (GET_CODE (reg) == SUBREG
883 && (GET_MODE_SIZE (GET_MODE (reg)) < GET_MODE_SIZE (word_mode)
884 || GET_MODE_SIZE (GET_MODE (reg))
885 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (reg)))))
887 loc = &SUBREG_REG (reg);
888 reg = *loc;
891 regno = REGNO (GET_CODE (reg) == SUBREG ? SUBREG_REG (reg) : reg);
892 if (regno < FIRST_PSEUDO_REGISTER)
894 int i;
895 int endregno;
897 if (! (df->flags & DF_HARD_REGS))
898 return;
900 /* GET_MODE (reg) is correct here. We don't want to go into a SUBREG
901 for the mode, because we only want to add references to regs, which
902 are really referenced. E.g. a (subreg:SI (reg:DI 0) 0) does _not_
903 reference the whole reg 0 in DI mode (which would also include
904 reg 1, at least, if 0 and 1 are SImode registers). */
905 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
907 for (i = regno; i < endregno; i++)
908 df_ref_record_1 (df, gen_rtx_REG (reg_raw_mode[i], i),
909 loc, insn, ref_type, ref_flags);
911 else
913 df_ref_record_1 (df, reg, loc, insn, ref_type, ref_flags);
917 /* Writes to SUBREG of inndermode wider than word and outermode shorter than
918 word are read-modify-write. */
920 static inline bool
921 read_modify_subreg_p (x)
922 rtx x;
924 if (GET_CODE (x) != SUBREG)
925 return false;
926 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) <= UNITS_PER_WORD)
927 return false;
928 if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
929 return false;
930 return true;
933 /* Process all the registers defined in the rtx, X. */
934 static void
935 df_def_record_1 (df, x, bb, insn)
936 struct df *df;
937 rtx x;
938 basic_block bb;
939 rtx insn;
941 rtx *loc = &SET_DEST (x);
942 rtx dst = *loc;
943 enum df_ref_flags flags = 0;
945 /* Some targets place small structures in registers for
946 return values of functions. */
947 if (GET_CODE (dst) == PARALLEL && GET_MODE (dst) == BLKmode)
949 int i;
951 for (i = XVECLEN (dst, 0) - 1; i >= 0; i--)
952 df_def_record_1 (df, XVECEXP (dst, 0, i), bb, insn);
953 return;
956 /* May be, we should flag the use of strict_low_part somehow. Might be
957 handy for the reg allocator. */
958 while (GET_CODE (dst) == STRICT_LOW_PART
959 || GET_CODE (dst) == ZERO_EXTRACT
960 || GET_CODE (dst) == SIGN_EXTRACT
961 || read_modify_subreg_p (dst))
963 /* Strict low part always contains SUBREG, but we don't want to make
964 it appear outside, as whole register is always considered. */
965 if (GET_CODE (dst) == STRICT_LOW_PART)
967 loc = &XEXP (dst, 0);
968 dst = *loc;
970 loc = &XEXP (dst, 0);
971 dst = *loc;
972 flags |= DF_REF_READ_WRITE;
975 if (GET_CODE (dst) == REG
976 || (GET_CODE (dst) == SUBREG && GET_CODE (SUBREG_REG (dst)) == REG))
977 df_ref_record (df, dst, loc, insn, DF_REF_REG_DEF, flags);
981 /* Process all the registers defined in the pattern rtx, X. */
982 static void
983 df_defs_record (df, x, bb, insn)
984 struct df *df;
985 rtx x;
986 basic_block bb;
987 rtx insn;
989 RTX_CODE code = GET_CODE (x);
991 if (code == SET || code == CLOBBER)
993 /* Mark the single def within the pattern. */
994 df_def_record_1 (df, x, bb, insn);
996 else if (code == PARALLEL)
998 int i;
1000 /* Mark the multiple defs within the pattern. */
1001 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1003 code = GET_CODE (XVECEXP (x, 0, i));
1004 if (code == SET || code == CLOBBER)
1005 df_def_record_1 (df, XVECEXP (x, 0, i), bb, insn);
1011 /* Process all the registers used in the rtx at address LOC. */
1012 static void
1013 df_uses_record (df, loc, ref_type, bb, insn, flags)
1014 struct df *df;
1015 rtx *loc;
1016 enum df_ref_type ref_type;
1017 basic_block bb;
1018 rtx insn;
1019 enum df_ref_flags flags;
1021 RTX_CODE code;
1022 rtx x;
1023 retry:
1024 x = *loc;
1025 if (!x)
1026 return;
1027 code = GET_CODE (x);
1028 switch (code)
1030 case LABEL_REF:
1031 case SYMBOL_REF:
1032 case CONST_INT:
1033 case CONST:
1034 case CONST_DOUBLE:
1035 case CONST_VECTOR:
1036 case PC:
1037 case ADDR_VEC:
1038 case ADDR_DIFF_VEC:
1039 return;
1041 case CLOBBER:
1042 /* If we are clobbering a MEM, mark any registers inside the address
1043 as being used. */
1044 if (GET_CODE (XEXP (x, 0)) == MEM)
1045 df_uses_record (df, &XEXP (XEXP (x, 0), 0),
1046 DF_REF_REG_MEM_STORE, bb, insn, flags);
1048 /* If we're clobbering a REG then we have a def so ignore. */
1049 return;
1051 case MEM:
1052 df_uses_record (df, &XEXP (x, 0), DF_REF_REG_MEM_LOAD, bb, insn, flags);
1053 return;
1055 case SUBREG:
1056 /* While we're here, optimize this case. */
1058 /* In case the SUBREG is not of a register, don't optimize. */
1059 if (GET_CODE (SUBREG_REG (x)) != REG)
1061 loc = &SUBREG_REG (x);
1062 df_uses_record (df, loc, ref_type, bb, insn, flags);
1063 return;
1066 /* ... Fall through ... */
1068 case REG:
1069 /* See a register (or subreg) other than being set. */
1070 df_ref_record (df, x, loc, insn, ref_type, flags);
1071 return;
1073 case SET:
1075 rtx dst = SET_DEST (x);
1077 df_uses_record (df, &SET_SRC (x), DF_REF_REG_USE, bb, insn, 0);
1079 switch (GET_CODE (dst))
1081 case SUBREG:
1082 if (read_modify_subreg_p (dst))
1084 df_uses_record (df, &SUBREG_REG (dst), DF_REF_REG_USE, bb,
1085 insn, DF_REF_READ_WRITE);
1086 break;
1088 /* ... FALLTHRU ... */
1089 case REG:
1090 case PC:
1091 break;
1092 case MEM:
1093 df_uses_record (df, &XEXP (dst, 0),
1094 DF_REF_REG_MEM_STORE,
1095 bb, insn, 0);
1096 break;
1097 case STRICT_LOW_PART:
1098 /* A strict_low_part uses the whole reg not only the subreg. */
1099 dst = XEXP (dst, 0);
1100 if (GET_CODE (dst) != SUBREG)
1101 abort ();
1102 df_uses_record (df, &SUBREG_REG (dst), DF_REF_REG_USE, bb,
1103 insn, DF_REF_READ_WRITE);
1104 break;
1105 case ZERO_EXTRACT:
1106 case SIGN_EXTRACT:
1107 df_uses_record (df, &XEXP (dst, 0), DF_REF_REG_USE, bb, insn,
1108 DF_REF_READ_WRITE);
1109 df_uses_record (df, &XEXP (dst, 1), DF_REF_REG_USE, bb, insn, 0);
1110 df_uses_record (df, &XEXP (dst, 2), DF_REF_REG_USE, bb, insn, 0);
1111 dst = XEXP (dst, 0);
1112 break;
1113 default:
1114 abort ();
1116 return;
1119 case RETURN:
1120 break;
1122 case ASM_OPERANDS:
1123 case UNSPEC_VOLATILE:
1124 case TRAP_IF:
1125 case ASM_INPUT:
1127 /* Traditional and volatile asm instructions must be considered to use
1128 and clobber all hard registers, all pseudo-registers and all of
1129 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
1131 Consider for instance a volatile asm that changes the fpu rounding
1132 mode. An insn should not be moved across this even if it only uses
1133 pseudo-regs because it might give an incorrectly rounded result.
1135 For now, just mark any regs we can find in ASM_OPERANDS as
1136 used. */
1138 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
1139 We can not just fall through here since then we would be confused
1140 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
1141 traditional asms unlike their normal usage. */
1142 if (code == ASM_OPERANDS)
1144 int j;
1146 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
1147 df_uses_record (df, &ASM_OPERANDS_INPUT (x, j),
1148 DF_REF_REG_USE, bb, insn, 0);
1149 return;
1151 break;
1154 case PRE_DEC:
1155 case POST_DEC:
1156 case PRE_INC:
1157 case POST_INC:
1158 case PRE_MODIFY:
1159 case POST_MODIFY:
1160 /* Catch the def of the register being modified. */
1161 df_ref_record (df, XEXP (x, 0), &XEXP (x, 0), insn, DF_REF_REG_DEF, DF_REF_READ_WRITE);
1163 /* ... Fall through to handle uses ... */
1165 default:
1166 break;
1169 /* Recursively scan the operands of this expression. */
1171 const char *fmt = GET_RTX_FORMAT (code);
1172 int i;
1174 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1176 if (fmt[i] == 'e')
1178 /* Tail recursive case: save a function call level. */
1179 if (i == 0)
1181 loc = &XEXP (x, 0);
1182 goto retry;
1184 df_uses_record (df, &XEXP (x, i), ref_type, bb, insn, flags);
1186 else if (fmt[i] == 'E')
1188 int j;
1189 for (j = 0; j < XVECLEN (x, i); j++)
1190 df_uses_record (df, &XVECEXP (x, i, j), ref_type,
1191 bb, insn, flags);
1198 /* Record all the df within INSN of basic block BB. */
1199 static void
1200 df_insn_refs_record (df, bb, insn)
1201 struct df *df;
1202 basic_block bb;
1203 rtx insn;
1205 int i;
1207 if (INSN_P (insn))
1209 rtx note;
1211 /* Record register defs */
1212 df_defs_record (df, PATTERN (insn), bb, insn);
1214 if (df->flags & DF_EQUIV_NOTES)
1215 for (note = REG_NOTES (insn); note;
1216 note = XEXP (note, 1))
1218 switch (REG_NOTE_KIND (note))
1220 case REG_EQUIV:
1221 case REG_EQUAL:
1222 df_uses_record (df, &XEXP (note, 0), DF_REF_REG_USE,
1223 bb, insn, 0);
1224 default:
1225 break;
1229 if (GET_CODE (insn) == CALL_INSN)
1231 rtx note;
1232 rtx x;
1234 /* Record the registers used to pass arguments. */
1235 for (note = CALL_INSN_FUNCTION_USAGE (insn); note;
1236 note = XEXP (note, 1))
1238 if (GET_CODE (XEXP (note, 0)) == USE)
1239 df_uses_record (df, &XEXP (XEXP (note, 0), 0), DF_REF_REG_USE,
1240 bb, insn, 0);
1243 /* The stack ptr is used (honorarily) by a CALL insn. */
1244 x = df_reg_use_gen (STACK_POINTER_REGNUM);
1245 df_uses_record (df, &XEXP (x, 0), DF_REF_REG_USE, bb, insn, 0);
1247 if (df->flags & DF_HARD_REGS)
1249 /* Calls may also reference any of the global registers,
1250 so they are recorded as used. */
1251 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1252 if (global_regs[i])
1254 x = df_reg_use_gen (i);
1255 df_uses_record (df, &SET_DEST (x),
1256 DF_REF_REG_USE, bb, insn, 0);
1261 /* Record the register uses. */
1262 df_uses_record (df, &PATTERN (insn),
1263 DF_REF_REG_USE, bb, insn, 0);
1266 if (GET_CODE (insn) == CALL_INSN)
1268 rtx note;
1270 if (df->flags & DF_HARD_REGS)
1272 /* Kill all registers invalidated by a call. */
1273 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1274 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1276 rtx reg_clob = df_reg_clobber_gen (i);
1277 df_defs_record (df, reg_clob, bb, insn);
1281 /* There may be extra registers to be clobbered. */
1282 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1283 note;
1284 note = XEXP (note, 1))
1285 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1286 df_defs_record (df, XEXP (note, 0), bb, insn);
1292 /* Record all the refs within the basic block BB. */
1293 static void
1294 df_bb_refs_record (df, bb)
1295 struct df *df;
1296 basic_block bb;
1298 rtx insn;
1300 /* Scan the block an insn at a time from beginning to end. */
1301 for (insn = bb->head; ; insn = NEXT_INSN (insn))
1303 if (INSN_P (insn))
1305 /* Record defs within INSN. */
1306 df_insn_refs_record (df, bb, insn);
1308 if (insn == bb->end)
1309 break;
1314 /* Record all the refs in the basic blocks specified by BLOCKS. */
1315 static void
1316 df_refs_record (df, blocks)
1317 struct df *df;
1318 bitmap blocks;
1320 basic_block bb;
1322 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1324 df_bb_refs_record (df, bb);
1328 /* Dataflow analysis routines. */
1331 /* Create reg-def chains for basic block BB. These are a list of
1332 definitions for each register. */
1333 static void
1334 df_bb_reg_def_chain_create (df, bb)
1335 struct df *df;
1336 basic_block bb;
1338 rtx insn;
1340 /* Perhaps the defs should be sorted using a depth first search
1341 of the CFG (or possibly a breadth first search). We currently
1342 scan the basic blocks in reverse order so that the first defs
1343 appear at the start of the chain. */
1345 for (insn = bb->end; insn && insn != PREV_INSN (bb->head);
1346 insn = PREV_INSN (insn))
1348 struct df_link *link;
1349 unsigned int uid = INSN_UID (insn);
1351 if (! INSN_P (insn))
1352 continue;
1354 for (link = df->insns[uid].defs; link; link = link->next)
1356 struct ref *def = link->ref;
1357 unsigned int dregno = DF_REF_REGNO (def);
1359 df->regs[dregno].defs
1360 = df_link_create (def, df->regs[dregno].defs);
1366 /* Create reg-def chains for each basic block within BLOCKS. These
1367 are a list of definitions for each register. */
1368 static void
1369 df_reg_def_chain_create (df, blocks)
1370 struct df *df;
1371 bitmap blocks;
1373 basic_block bb;
1375 FOR_EACH_BB_IN_BITMAP/*_REV*/ (blocks, 0, bb,
1377 df_bb_reg_def_chain_create (df, bb);
1382 /* Create reg-use chains for basic block BB. These are a list of uses
1383 for each register. */
1384 static void
1385 df_bb_reg_use_chain_create (df, bb)
1386 struct df *df;
1387 basic_block bb;
1389 rtx insn;
1391 /* Scan in forward order so that the last uses appear at the
1392 start of the chain. */
1394 for (insn = bb->head; insn && insn != NEXT_INSN (bb->end);
1395 insn = NEXT_INSN (insn))
1397 struct df_link *link;
1398 unsigned int uid = INSN_UID (insn);
1400 if (! INSN_P (insn))
1401 continue;
1403 for (link = df->insns[uid].uses; link; link = link->next)
1405 struct ref *use = link->ref;
1406 unsigned int uregno = DF_REF_REGNO (use);
1408 df->regs[uregno].uses
1409 = df_link_create (use, df->regs[uregno].uses);
1415 /* Create reg-use chains for each basic block within BLOCKS. These
1416 are a list of uses for each register. */
1417 static void
1418 df_reg_use_chain_create (df, blocks)
1419 struct df *df;
1420 bitmap blocks;
1422 basic_block bb;
1424 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1426 df_bb_reg_use_chain_create (df, bb);
1431 /* Create def-use chains from reaching use bitmaps for basic block BB. */
1432 static void
1433 df_bb_du_chain_create (df, bb, ru)
1434 struct df *df;
1435 basic_block bb;
1436 bitmap ru;
1438 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1439 rtx insn;
1441 bitmap_copy (ru, bb_info->ru_out);
1443 /* For each def in BB create a linked list (chain) of uses
1444 reached from the def. */
1445 for (insn = bb->end; insn && insn != PREV_INSN (bb->head);
1446 insn = PREV_INSN (insn))
1448 struct df_link *def_link;
1449 struct df_link *use_link;
1450 unsigned int uid = INSN_UID (insn);
1452 if (! INSN_P (insn))
1453 continue;
1455 /* For each def in insn... */
1456 for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
1458 struct ref *def = def_link->ref;
1459 unsigned int dregno = DF_REF_REGNO (def);
1461 DF_REF_CHAIN (def) = 0;
1463 /* While the reg-use chains are not essential, it
1464 is _much_ faster to search these short lists rather
1465 than all the reaching uses, especially for large functions. */
1466 for (use_link = df->regs[dregno].uses; use_link;
1467 use_link = use_link->next)
1469 struct ref *use = use_link->ref;
1471 if (bitmap_bit_p (ru, DF_REF_ID (use)))
1473 DF_REF_CHAIN (def)
1474 = df_link_create (use, DF_REF_CHAIN (def));
1476 bitmap_clear_bit (ru, DF_REF_ID (use));
1481 /* For each use in insn... */
1482 for (use_link = df->insns[uid].uses; use_link; use_link = use_link->next)
1484 struct ref *use = use_link->ref;
1485 bitmap_set_bit (ru, DF_REF_ID (use));
1491 /* Create def-use chains from reaching use bitmaps for basic blocks
1492 in BLOCKS. */
1493 static void
1494 df_du_chain_create (df, blocks)
1495 struct df *df;
1496 bitmap blocks;
1498 bitmap ru;
1499 basic_block bb;
1501 ru = BITMAP_XMALLOC ();
1503 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1505 df_bb_du_chain_create (df, bb, ru);
1508 BITMAP_XFREE (ru);
1512 /* Create use-def chains from reaching def bitmaps for basic block BB. */
1513 static void
1514 df_bb_ud_chain_create (df, bb)
1515 struct df *df;
1516 basic_block bb;
1518 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1519 struct ref **reg_def_last = df->reg_def_last;
1520 rtx insn;
1522 memset (reg_def_last, 0, df->n_regs * sizeof (struct ref *));
1524 /* For each use in BB create a linked list (chain) of defs
1525 that reach the use. */
1526 for (insn = bb->head; insn && insn != NEXT_INSN (bb->end);
1527 insn = NEXT_INSN (insn))
1529 unsigned int uid = INSN_UID (insn);
1530 struct df_link *use_link;
1531 struct df_link *def_link;
1533 if (! INSN_P (insn))
1534 continue;
1536 /* For each use in insn... */
1537 for (use_link = df->insns[uid].uses; use_link; use_link = use_link->next)
1539 struct ref *use = use_link->ref;
1540 unsigned int regno = DF_REF_REGNO (use);
1542 DF_REF_CHAIN (use) = 0;
1544 /* Has regno been defined in this BB yet? If so, use
1545 the last def as the single entry for the use-def
1546 chain for this use. Otherwise, we need to add all
1547 the defs using this regno that reach the start of
1548 this BB. */
1549 if (reg_def_last[regno])
1551 DF_REF_CHAIN (use)
1552 = df_link_create (reg_def_last[regno], 0);
1554 else
1556 /* While the reg-def chains are not essential, it is
1557 _much_ faster to search these short lists rather than
1558 all the reaching defs, especially for large
1559 functions. */
1560 for (def_link = df->regs[regno].defs; def_link;
1561 def_link = def_link->next)
1563 struct ref *def = def_link->ref;
1565 if (bitmap_bit_p (bb_info->rd_in, DF_REF_ID (def)))
1567 DF_REF_CHAIN (use)
1568 = df_link_create (def, DF_REF_CHAIN (use));
1575 /* For each def in insn...record the last def of each reg. */
1576 for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
1578 struct ref *def = def_link->ref;
1579 int dregno = DF_REF_REGNO (def);
1581 reg_def_last[dregno] = def;
1587 /* Create use-def chains from reaching def bitmaps for basic blocks
1588 within BLOCKS. */
1589 static void
1590 df_ud_chain_create (df, blocks)
1591 struct df *df;
1592 bitmap blocks;
1594 basic_block bb;
1596 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1598 df_bb_ud_chain_create (df, bb);
1604 static void
1605 df_rd_transfer_function (bb, changed, in, out, gen, kill, data)
1606 int bb ATTRIBUTE_UNUSED;
1607 int *changed;
1608 bitmap in, out, gen, kill;
1609 void *data ATTRIBUTE_UNUSED;
1611 *changed = bitmap_union_of_diff (out, gen, in, kill);
1613 static void
1614 df_ru_transfer_function (bb, changed, in, out, gen, kill, data)
1615 int bb ATTRIBUTE_UNUSED;
1616 int *changed;
1617 bitmap in, out, gen, kill;
1618 void *data ATTRIBUTE_UNUSED;
1620 *changed = bitmap_union_of_diff (in, gen, out, kill);
1623 static void
1624 df_lr_transfer_function (bb, changed, in, out, use, def, data)
1625 int bb ATTRIBUTE_UNUSED;
1626 int *changed;
1627 bitmap in, out, use, def;
1628 void *data ATTRIBUTE_UNUSED;
1630 *changed = bitmap_union_of_diff (in, use, out, def);
1634 /* Compute local reaching def info for basic block BB. */
1635 static void
1636 df_bb_rd_local_compute (df, bb)
1637 struct df *df;
1638 basic_block bb;
1640 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1641 rtx insn;
1643 for (insn = bb->head; insn && insn != NEXT_INSN (bb->end);
1644 insn = NEXT_INSN (insn))
1646 unsigned int uid = INSN_UID (insn);
1647 struct df_link *def_link;
1649 if (! INSN_P (insn))
1650 continue;
1652 for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
1654 struct ref *def = def_link->ref;
1655 unsigned int regno = DF_REF_REGNO (def);
1656 struct df_link *def2_link;
1658 for (def2_link = df->regs[regno].defs; def2_link;
1659 def2_link = def2_link->next)
1661 struct ref *def2 = def2_link->ref;
1663 /* Add all defs of this reg to the set of kills. This
1664 is greedy since many of these defs will not actually
1665 be killed by this BB but it keeps things a lot
1666 simpler. */
1667 bitmap_set_bit (bb_info->rd_kill, DF_REF_ID (def2));
1669 /* Zap from the set of gens for this BB. */
1670 bitmap_clear_bit (bb_info->rd_gen, DF_REF_ID (def2));
1673 bitmap_set_bit (bb_info->rd_gen, DF_REF_ID (def));
1677 bb_info->rd_valid = 1;
1681 /* Compute local reaching def info for each basic block within BLOCKS. */
1682 static void
1683 df_rd_local_compute (df, blocks)
1684 struct df *df;
1685 bitmap blocks;
1687 basic_block bb;
1689 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1691 df_bb_rd_local_compute (df, bb);
1696 /* Compute local reaching use (upward exposed use) info for basic
1697 block BB. */
1698 static void
1699 df_bb_ru_local_compute (df, bb)
1700 struct df *df;
1701 basic_block bb;
1703 /* This is much more tricky than computing reaching defs. With
1704 reaching defs, defs get killed by other defs. With upwards
1705 exposed uses, these get killed by defs with the same regno. */
1707 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1708 rtx insn;
1711 for (insn = bb->end; insn && insn != PREV_INSN (bb->head);
1712 insn = PREV_INSN (insn))
1714 unsigned int uid = INSN_UID (insn);
1715 struct df_link *def_link;
1716 struct df_link *use_link;
1718 if (! INSN_P (insn))
1719 continue;
1721 for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
1723 struct ref *def = def_link->ref;
1724 unsigned int dregno = DF_REF_REGNO (def);
1726 for (use_link = df->regs[dregno].uses; use_link;
1727 use_link = use_link->next)
1729 struct ref *use = use_link->ref;
1731 /* Add all uses of this reg to the set of kills. This
1732 is greedy since many of these uses will not actually
1733 be killed by this BB but it keeps things a lot
1734 simpler. */
1735 bitmap_set_bit (bb_info->ru_kill, DF_REF_ID (use));
1737 /* Zap from the set of gens for this BB. */
1738 bitmap_clear_bit (bb_info->ru_gen, DF_REF_ID (use));
1742 for (use_link = df->insns[uid].uses; use_link; use_link = use_link->next)
1744 struct ref *use = use_link->ref;
1745 /* Add use to set of gens in this BB. */
1746 bitmap_set_bit (bb_info->ru_gen, DF_REF_ID (use));
1749 bb_info->ru_valid = 1;
1753 /* Compute local reaching use (upward exposed use) info for each basic
1754 block within BLOCKS. */
1755 static void
1756 df_ru_local_compute (df, blocks)
1757 struct df *df;
1758 bitmap blocks;
1760 basic_block bb;
1762 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1764 df_bb_ru_local_compute (df, bb);
1769 /* Compute local live variable info for basic block BB. */
1770 static void
1771 df_bb_lr_local_compute (df, bb)
1772 struct df *df;
1773 basic_block bb;
1775 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1776 rtx insn;
1778 for (insn = bb->end; insn && insn != PREV_INSN (bb->head);
1779 insn = PREV_INSN (insn))
1781 unsigned int uid = INSN_UID (insn);
1782 struct df_link *link;
1784 if (! INSN_P (insn))
1785 continue;
1787 for (link = df->insns[uid].defs; link; link = link->next)
1789 struct ref *def = link->ref;
1790 unsigned int dregno = DF_REF_REGNO (def);
1792 /* Add def to set of defs in this BB. */
1793 bitmap_set_bit (bb_info->lr_def, dregno);
1795 bitmap_clear_bit (bb_info->lr_use, dregno);
1798 for (link = df->insns[uid].uses; link; link = link->next)
1800 struct ref *use = link->ref;
1801 /* Add use to set of uses in this BB. */
1802 bitmap_set_bit (bb_info->lr_use, DF_REF_REGNO (use));
1805 bb_info->lr_valid = 1;
1809 /* Compute local live variable info for each basic block within BLOCKS. */
1810 static void
1811 df_lr_local_compute (df, blocks)
1812 struct df *df;
1813 bitmap blocks;
1815 basic_block bb;
1817 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1819 df_bb_lr_local_compute (df, bb);
1824 /* Compute register info: lifetime, bb, and number of defs and uses
1825 for basic block BB. */
1826 static void
1827 df_bb_reg_info_compute (df, bb, live)
1828 struct df *df;
1829 basic_block bb;
1830 bitmap live;
1832 struct reg_info *reg_info = df->regs;
1833 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1834 rtx insn;
1836 bitmap_copy (live, bb_info->lr_out);
1838 for (insn = bb->end; insn && insn != PREV_INSN (bb->head);
1839 insn = PREV_INSN (insn))
1841 unsigned int uid = INSN_UID (insn);
1842 unsigned int regno;
1843 struct df_link *link;
1845 if (! INSN_P (insn))
1846 continue;
1848 for (link = df->insns[uid].defs; link; link = link->next)
1850 struct ref *def = link->ref;
1851 unsigned int dregno = DF_REF_REGNO (def);
1853 /* Kill this register. */
1854 bitmap_clear_bit (live, dregno);
1855 reg_info[dregno].n_defs++;
1858 for (link = df->insns[uid].uses; link; link = link->next)
1860 struct ref *use = link->ref;
1861 unsigned int uregno = DF_REF_REGNO (use);
1863 /* This register is now live. */
1864 bitmap_set_bit (live, uregno);
1865 reg_info[uregno].n_uses++;
1868 /* Increment lifetimes of all live registers. */
1869 EXECUTE_IF_SET_IN_BITMAP (live, 0, regno,
1871 reg_info[regno].lifetime++;
1877 /* Compute register info: lifetime, bb, and number of defs and uses. */
1878 static void
1879 df_reg_info_compute (df, blocks)
1880 struct df *df;
1881 bitmap blocks;
1883 basic_block bb;
1884 bitmap live;
1886 live = BITMAP_XMALLOC ();
1888 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1890 df_bb_reg_info_compute (df, bb, live);
1893 BITMAP_XFREE (live);
1897 /* Assign LUIDs for BB. */
1898 static int
1899 df_bb_luids_set (df, bb)
1900 struct df *df;
1901 basic_block bb;
1903 rtx insn;
1904 int luid = 0;
1906 /* The LUIDs are monotonically increasing for each basic block. */
1908 for (insn = bb->head; ; insn = NEXT_INSN (insn))
1910 if (INSN_P (insn))
1911 DF_INSN_LUID (df, insn) = luid++;
1912 DF_INSN_LUID (df, insn) = luid;
1914 if (insn == bb->end)
1915 break;
1917 return luid;
1921 /* Assign LUIDs for each basic block within BLOCKS. */
1922 static int
1923 df_luids_set (df, blocks)
1924 struct df *df;
1925 bitmap blocks;
1927 basic_block bb;
1928 int total = 0;
1930 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1932 total += df_bb_luids_set (df, bb);
1934 return total;
1937 /* Perform dataflow analysis using existing DF structure for blocks
1938 within BLOCKS. If BLOCKS is zero, use all basic blocks in the CFG. */
1939 static void
1940 df_analyse_1 (df, blocks, flags, update)
1941 struct df *df;
1942 bitmap blocks;
1943 int flags;
1944 int update;
1946 int aflags;
1947 int dflags;
1948 int i;
1949 dflags = 0;
1950 aflags = flags;
1951 if (flags & DF_UD_CHAIN)
1952 aflags |= DF_RD | DF_RD_CHAIN;
1954 if (flags & DF_DU_CHAIN)
1955 aflags |= DF_RU;
1957 if (flags & DF_RU)
1958 aflags |= DF_RU_CHAIN;
1960 if (flags & DF_REG_INFO)
1961 aflags |= DF_LR;
1963 if (! blocks)
1964 blocks = df->all_blocks;
1966 df->flags = flags;
1967 if (update)
1969 df_refs_update (df);
1970 /* More fine grained incremental dataflow analysis would be
1971 nice. For now recompute the whole shebang for the
1972 modified blocks. */
1973 #if 0
1974 df_refs_unlink (df, blocks);
1975 #endif
1976 /* All the def-use, use-def chains can be potentially
1977 modified by changes in one block. The size of the
1978 bitmaps can also change. */
1980 else
1982 /* Scan the function for all register defs and uses. */
1983 df_refs_queue (df);
1984 df_refs_record (df, blocks);
1986 /* Link all the new defs and uses to the insns. */
1987 df_refs_process (df);
1990 /* Allocate the bitmaps now the total number of defs and uses are
1991 known. If the number of defs or uses have changed, then
1992 these bitmaps need to be reallocated. */
1993 df_bitmaps_alloc (df, aflags);
1995 /* Set the LUIDs for each specified basic block. */
1996 df_luids_set (df, blocks);
1998 /* Recreate reg-def and reg-use chains from scratch so that first
1999 def is at the head of the reg-def chain and the last use is at
2000 the head of the reg-use chain. This is only important for
2001 regs local to a basic block as it speeds up searching. */
2002 if (aflags & DF_RD_CHAIN)
2004 df_reg_def_chain_create (df, blocks);
2007 if (aflags & DF_RU_CHAIN)
2009 df_reg_use_chain_create (df, blocks);
2012 df->dfs_order = xmalloc (sizeof(int) * n_basic_blocks);
2013 df->rc_order = xmalloc (sizeof(int) * n_basic_blocks);
2014 df->rts_order = xmalloc (sizeof(int) * n_basic_blocks);
2015 df->inverse_dfs_map = xmalloc (sizeof(int) * n_basic_blocks);
2016 df->inverse_rc_map = xmalloc (sizeof(int) * n_basic_blocks);
2017 df->inverse_rts_map = xmalloc (sizeof(int) * n_basic_blocks);
2019 flow_depth_first_order_compute (df->dfs_order, df->rc_order);
2020 flow_reverse_top_sort_order_compute (df->rts_order);
2021 for (i = 0; i < n_basic_blocks; i ++)
2023 df->inverse_dfs_map[df->dfs_order[i]] = i;
2024 df->inverse_rc_map[df->rc_order[i]] = i;
2025 df->inverse_rts_map[df->rts_order[i]] = i;
2027 if (aflags & DF_RD)
2029 /* Compute the sets of gens and kills for the defs of each bb. */
2030 df_rd_local_compute (df, df->flags & DF_RD ? blocks : df->all_blocks);
2032 int i;
2033 bitmap *in = xmalloc (sizeof (bitmap) * n_basic_blocks);
2034 bitmap *out = xmalloc (sizeof (bitmap) * n_basic_blocks);
2035 bitmap *gen = xmalloc (sizeof (bitmap) * n_basic_blocks);
2036 bitmap *kill = xmalloc (sizeof (bitmap) * n_basic_blocks);
2037 for (i = 0; i < n_basic_blocks; i ++)
2039 in[i] = DF_BB_INFO (df, BASIC_BLOCK (i))->rd_in;
2040 out[i] = DF_BB_INFO (df, BASIC_BLOCK (i))->rd_out;
2041 gen[i] = DF_BB_INFO (df, BASIC_BLOCK (i))->rd_gen;
2042 kill[i] = DF_BB_INFO (df, BASIC_BLOCK (i))->rd_kill;
2044 iterative_dataflow_bitmap (in, out, gen, kill, df->all_blocks,
2045 FORWARD, UNION, df_rd_transfer_function,
2046 df->inverse_rc_map, NULL);
2047 free (in);
2048 free (out);
2049 free (gen);
2050 free (kill);
2054 if (aflags & DF_UD_CHAIN)
2056 /* Create use-def chains. */
2057 df_ud_chain_create (df, df->all_blocks);
2059 if (! (flags & DF_RD))
2060 dflags |= DF_RD;
2063 if (aflags & DF_RU)
2065 /* Compute the sets of gens and kills for the upwards exposed
2066 uses in each bb. */
2067 df_ru_local_compute (df, df->flags & DF_RU ? blocks : df->all_blocks);
2069 int i;
2070 bitmap *in = xmalloc (sizeof (bitmap) * n_basic_blocks);
2071 bitmap *out = xmalloc (sizeof (bitmap) * n_basic_blocks);
2072 bitmap *gen = xmalloc (sizeof (bitmap) * n_basic_blocks);
2073 bitmap *kill = xmalloc (sizeof (bitmap) * n_basic_blocks);
2074 for (i = 0; i < n_basic_blocks; i ++)
2076 in[i] = DF_BB_INFO (df, BASIC_BLOCK (i))->ru_in;
2077 out[i] = DF_BB_INFO (df, BASIC_BLOCK (i))->ru_out;
2078 gen[i] = DF_BB_INFO (df, BASIC_BLOCK (i))->ru_gen;
2079 kill[i] = DF_BB_INFO (df, BASIC_BLOCK (i))->ru_kill;
2081 iterative_dataflow_bitmap (in, out, gen, kill, df->all_blocks,
2082 BACKWARD, UNION, df_ru_transfer_function,
2083 df->inverse_rts_map, NULL);
2084 free (in);
2085 free (out);
2086 free (gen);
2087 free (kill);
2091 if (aflags & DF_DU_CHAIN)
2093 /* Create def-use chains. */
2094 df_du_chain_create (df, df->all_blocks);
2096 if (! (flags & DF_RU))
2097 dflags |= DF_RU;
2100 /* Free up bitmaps that are no longer required. */
2101 if (dflags)
2102 df_bitmaps_free (df, dflags);
2104 if (aflags & DF_LR)
2106 /* Compute the sets of defs and uses of live variables. */
2107 df_lr_local_compute (df, df->flags & DF_LR ? blocks : df->all_blocks);
2109 int i;
2110 bitmap *in = xmalloc (sizeof (bitmap) * n_basic_blocks);
2111 bitmap *out = xmalloc (sizeof (bitmap) * n_basic_blocks);
2112 bitmap *use = xmalloc (sizeof (bitmap) * n_basic_blocks);
2113 bitmap *def = xmalloc (sizeof (bitmap) * n_basic_blocks);
2114 for (i = 0; i < n_basic_blocks; i ++)
2116 in[i] = DF_BB_INFO (df, BASIC_BLOCK (i))->lr_in;
2117 out[i] = DF_BB_INFO (df, BASIC_BLOCK (i))->lr_out;
2118 use[i] = DF_BB_INFO (df, BASIC_BLOCK (i))->lr_use;
2119 def[i] = DF_BB_INFO (df, BASIC_BLOCK (i))->lr_def;
2121 iterative_dataflow_bitmap (in, out, use, def, df->all_blocks,
2122 BACKWARD, UNION, df_lr_transfer_function,
2123 df->inverse_rts_map, NULL);
2124 free (in);
2125 free (out);
2126 free (use);
2127 free (def);
2131 if (aflags & DF_REG_INFO)
2133 df_reg_info_compute (df, df->all_blocks);
2135 free (df->dfs_order);
2136 free (df->rc_order);
2137 free (df->rts_order);
2138 free (df->inverse_rc_map);
2139 free (df->inverse_dfs_map);
2140 free (df->inverse_rts_map);
2144 /* Initialise dataflow analysis. */
2145 struct df *
2146 df_init ()
2148 struct df *df;
2150 df = xcalloc (1, sizeof (struct df));
2152 /* Squirrel away a global for debugging. */
2153 ddf = df;
2155 return df;
2159 /* Start queuing refs. */
2160 static int
2161 df_refs_queue (df)
2162 struct df *df;
2164 df->def_id_save = df->def_id;
2165 df->use_id_save = df->use_id;
2166 /* ???? Perhaps we should save current obstack state so that we can
2167 unwind it. */
2168 return 0;
2172 /* Process queued refs. */
2173 static int
2174 df_refs_process (df)
2175 struct df *df;
2177 unsigned int i;
2179 /* Build new insn-def chains. */
2180 for (i = df->def_id_save; i != df->def_id; i++)
2182 struct ref *def = df->defs[i];
2183 unsigned int uid = DF_REF_INSN_UID (def);
2185 /* Add def to head of def list for INSN. */
2186 df->insns[uid].defs
2187 = df_link_create (def, df->insns[uid].defs);
2190 /* Build new insn-use chains. */
2191 for (i = df->use_id_save; i != df->use_id; i++)
2193 struct ref *use = df->uses[i];
2194 unsigned int uid = DF_REF_INSN_UID (use);
2196 /* Add use to head of use list for INSN. */
2197 df->insns[uid].uses
2198 = df_link_create (use, df->insns[uid].uses);
2200 return 0;
2204 /* Update refs for basic block BB. */
2205 static int
2206 df_bb_refs_update (df, bb)
2207 struct df *df;
2208 basic_block bb;
2210 rtx insn;
2211 int count = 0;
2213 /* While we have to scan the chain of insns for this BB, we don't
2214 need to allocate and queue a long chain of BB/INSN pairs. Using
2215 a bitmap for insns_modified saves memory and avoids queuing
2216 duplicates. */
2218 for (insn = bb->head; ; insn = NEXT_INSN (insn))
2220 unsigned int uid;
2222 uid = INSN_UID (insn);
2224 if (bitmap_bit_p (df->insns_modified, uid))
2226 /* Delete any allocated refs of this insn. MPH, FIXME. */
2227 df_insn_refs_unlink (df, bb, insn);
2229 /* Scan the insn for refs. */
2230 df_insn_refs_record (df, bb, insn);
2233 bitmap_clear_bit (df->insns_modified, uid);
2234 count++;
2236 if (insn == bb->end)
2237 break;
2239 return count;
2243 /* Process all the modified/deleted insns that were queued. */
2244 static int
2245 df_refs_update (df)
2246 struct df *df;
2248 basic_block bb;
2249 int count = 0;
2251 if ((unsigned int)max_reg_num () >= df->reg_size)
2252 df_reg_table_realloc (df, 0);
2254 df_refs_queue (df);
2256 FOR_EACH_BB_IN_BITMAP (df->bbs_modified, 0, bb,
2258 count += df_bb_refs_update (df, bb);
2261 df_refs_process (df);
2262 return count;
2266 /* Return non-zero if any of the requested blocks in the bitmap
2267 BLOCKS have been modified. */
2268 static int
2269 df_modified_p (df, blocks)
2270 struct df *df;
2271 bitmap blocks;
2273 unsigned int j;
2274 int update = 0;
2276 for (j = 0; j < df->n_bbs; j++)
2277 if (bitmap_bit_p (df->bbs_modified, j)
2278 && (! blocks || (blocks == (bitmap) -1) || bitmap_bit_p (blocks, j)))
2280 update = 1;
2281 break;
2284 return update;
2288 /* Analyse dataflow info for the basic blocks specified by the bitmap
2289 BLOCKS, or for the whole CFG if BLOCKS is zero, or just for the
2290 modified blocks if BLOCKS is -1. */
2292 df_analyse (df, blocks, flags)
2293 struct df *df;
2294 bitmap blocks;
2295 int flags;
2297 int update;
2299 /* We could deal with additional basic blocks being created by
2300 rescanning everything again. */
2301 if (df->n_bbs && df->n_bbs != (unsigned int)n_basic_blocks)
2302 abort ();
2304 update = df_modified_p (df, blocks);
2305 if (update || (flags != df->flags))
2307 if (! blocks)
2309 if (df->n_bbs)
2311 /* Recompute everything from scratch. */
2312 df_free (df);
2314 /* Allocate and initialise data structures. */
2315 df_alloc (df, max_reg_num ());
2316 df_analyse_1 (df, 0, flags, 0);
2317 update = 1;
2319 else
2321 if (blocks == (bitmap) -1)
2322 blocks = df->bbs_modified;
2324 if (! df->n_bbs)
2325 abort ();
2327 df_analyse_1 (df, blocks, flags, 1);
2328 bitmap_zero (df->bbs_modified);
2331 return update;
2335 /* Free all the dataflow info and the DF structure. */
2336 void
2337 df_finish (df)
2338 struct df *df;
2340 df_free (df);
2341 free (df);
2345 /* Unlink INSN from its reference information. */
2346 static void
2347 df_insn_refs_unlink (df, bb, insn)
2348 struct df *df;
2349 basic_block bb ATTRIBUTE_UNUSED;
2350 rtx insn;
2352 struct df_link *link;
2353 unsigned int uid;
2355 uid = INSN_UID (insn);
2357 /* Unlink all refs defined by this insn. */
2358 for (link = df->insns[uid].defs; link; link = link->next)
2359 df_def_unlink (df, link->ref);
2361 /* Unlink all refs used by this insn. */
2362 for (link = df->insns[uid].uses; link; link = link->next)
2363 df_use_unlink (df, link->ref);
2365 df->insns[uid].defs = 0;
2366 df->insns[uid].uses = 0;
2370 #if 0
2371 /* Unlink all the insns within BB from their reference information. */
2372 static void
2373 df_bb_refs_unlink (df, bb)
2374 struct df *df;
2375 basic_block bb;
2377 rtx insn;
2379 /* Scan the block an insn at a time from beginning to end. */
2380 for (insn = bb->head; ; insn = NEXT_INSN (insn))
2382 if (INSN_P (insn))
2384 /* Unlink refs for INSN. */
2385 df_insn_refs_unlink (df, bb, insn);
2387 if (insn == bb->end)
2388 break;
2393 /* Unlink all the refs in the basic blocks specified by BLOCKS.
2394 Not currently used. */
2395 static void
2396 df_refs_unlink (df, blocks)
2397 struct df *df;
2398 bitmap blocks;
2400 basic_block bb;
2402 if (blocks)
2404 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
2406 df_bb_refs_unlink (df, bb);
2409 else
2411 FOR_ALL_BBS (bb,
2413 df_bb_refs_unlink (df, bb);
2417 #endif
2419 /* Functions to modify insns. */
2422 /* Delete INSN and all its reference information. */
2424 df_insn_delete (df, bb, insn)
2425 struct df *df;
2426 basic_block bb ATTRIBUTE_UNUSED;
2427 rtx insn;
2429 /* If the insn is a jump, we should perhaps call delete_insn to
2430 handle the JUMP_LABEL? */
2432 /* We should not be deleting the NOTE_INSN_BASIC_BLOCK or label. */
2433 if (insn == bb->head)
2434 abort ();
2436 /* Delete the insn. */
2437 delete_insn (insn);
2439 df_insn_modify (df, bb, insn);
2441 return NEXT_INSN (insn);
2445 /* Mark that INSN within BB may have changed (created/modified/deleted).
2446 This may be called multiple times for the same insn. There is no
2447 harm calling this function if the insn wasn't changed; it will just
2448 slow down the rescanning of refs. */
2449 void
2450 df_insn_modify (df, bb, insn)
2451 struct df *df;
2452 basic_block bb;
2453 rtx insn;
2455 unsigned int uid;
2457 uid = INSN_UID (insn);
2459 if (uid >= df->insn_size)
2460 df_insn_table_realloc (df, 0);
2462 bitmap_set_bit (df->bbs_modified, bb->index);
2463 bitmap_set_bit (df->insns_modified, uid);
2465 /* For incremental updating on the fly, perhaps we could make a copy
2466 of all the refs of the original insn and turn them into
2467 anti-refs. When df_refs_update finds these anti-refs, it annihilates
2468 the original refs. If validate_change fails then these anti-refs
2469 will just get ignored. */
2473 typedef struct replace_args
2475 rtx match;
2476 rtx replacement;
2477 rtx insn;
2478 int modified;
2479 } replace_args;
2482 /* Replace mem pointed to by PX with its associated pseudo register.
2483 DATA is actually a pointer to a structure describing the
2484 instruction currently being scanned and the MEM we are currently
2485 replacing. */
2486 static int
2487 df_rtx_mem_replace (px, data)
2488 rtx *px;
2489 void *data;
2491 replace_args *args = (replace_args *) data;
2492 rtx mem = *px;
2494 if (mem == NULL_RTX)
2495 return 0;
2497 switch (GET_CODE (mem))
2499 case MEM:
2500 break;
2502 case CONST_DOUBLE:
2503 /* We're not interested in the MEM associated with a
2504 CONST_DOUBLE, so there's no need to traverse into one. */
2505 return -1;
2507 default:
2508 /* This is not a MEM. */
2509 return 0;
2512 if (!rtx_equal_p (args->match, mem))
2513 /* This is not the MEM we are currently replacing. */
2514 return 0;
2516 /* Actually replace the MEM. */
2517 validate_change (args->insn, px, args->replacement, 1);
2518 args->modified++;
2520 return 0;
2525 df_insn_mem_replace (df, bb, insn, mem, reg)
2526 struct df *df;
2527 basic_block bb;
2528 rtx insn;
2529 rtx mem;
2530 rtx reg;
2532 replace_args args;
2534 args.insn = insn;
2535 args.match = mem;
2536 args.replacement = reg;
2537 args.modified = 0;
2539 /* Search and replace all matching mems within insn. */
2540 for_each_rtx (&insn, df_rtx_mem_replace, &args);
2542 if (args.modified)
2543 df_insn_modify (df, bb, insn);
2545 /* ???? FIXME. We may have a new def or one or more new uses of REG
2546 in INSN. REG should be a new pseudo so it won't affect the
2547 dataflow information that we currently have. We should add
2548 the new uses and defs to INSN and then recreate the chains
2549 when df_analyse is called. */
2550 return args.modified;
2554 /* Replace one register with another. Called through for_each_rtx; PX
2555 points to the rtx being scanned. DATA is actually a pointer to a
2556 structure of arguments. */
2557 static int
2558 df_rtx_reg_replace (px, data)
2559 rtx *px;
2560 void *data;
2562 rtx x = *px;
2563 replace_args *args = (replace_args *) data;
2565 if (x == NULL_RTX)
2566 return 0;
2568 if (x == args->match)
2570 validate_change (args->insn, px, args->replacement, 1);
2571 args->modified++;
2574 return 0;
2578 /* Replace the reg within every ref on CHAIN that is within the set
2579 BLOCKS of basic blocks with NEWREG. Also update the regs within
2580 REG_NOTES. */
2581 void
2582 df_refs_reg_replace (df, blocks, chain, oldreg, newreg)
2583 struct df *df;
2584 bitmap blocks;
2585 struct df_link *chain;
2586 rtx oldreg;
2587 rtx newreg;
2589 struct df_link *link;
2590 replace_args args;
2592 if (! blocks)
2593 blocks = df->all_blocks;
2595 args.match = oldreg;
2596 args.replacement = newreg;
2597 args.modified = 0;
2599 for (link = chain; link; link = link->next)
2601 struct ref *ref = link->ref;
2602 rtx insn = DF_REF_INSN (ref);
2604 if (! INSN_P (insn))
2605 continue;
2607 if (bitmap_bit_p (blocks, DF_REF_BBNO (ref)))
2609 df_ref_reg_replace (df, ref, oldreg, newreg);
2611 /* Replace occurrences of the reg within the REG_NOTES. */
2612 if ((! link->next || DF_REF_INSN (ref)
2613 != DF_REF_INSN (link->next->ref))
2614 && REG_NOTES (insn))
2616 args.insn = insn;
2617 for_each_rtx (&REG_NOTES (insn), df_rtx_reg_replace, &args);
2620 else
2622 /* Temporary check to ensure that we have a grip on which
2623 regs should be replaced. */
2624 abort ();
2630 /* Replace all occurrences of register OLDREG with register NEWREG in
2631 blocks defined by bitmap BLOCKS. This also replaces occurrences of
2632 OLDREG in the REG_NOTES but only for insns containing OLDREG. This
2633 routine expects the reg-use and reg-def chains to be valid. */
2635 df_reg_replace (df, blocks, oldreg, newreg)
2636 struct df *df;
2637 bitmap blocks;
2638 rtx oldreg;
2639 rtx newreg;
2641 unsigned int oldregno = REGNO (oldreg);
2643 df_refs_reg_replace (df, blocks, df->regs[oldregno].defs, oldreg, newreg);
2644 df_refs_reg_replace (df, blocks, df->regs[oldregno].uses, oldreg, newreg);
2645 return 1;
2649 /* Try replacing the reg within REF with NEWREG. Do not modify
2650 def-use/use-def chains. */
2652 df_ref_reg_replace (df, ref, oldreg, newreg)
2653 struct df *df;
2654 struct ref *ref;
2655 rtx oldreg;
2656 rtx newreg;
2658 /* Check that insn was deleted by being converted into a NOTE. If
2659 so ignore this insn. */
2660 if (! INSN_P (DF_REF_INSN (ref)))
2661 return 0;
2663 if (oldreg && oldreg != DF_REF_REG (ref))
2664 abort ();
2666 if (! validate_change (DF_REF_INSN (ref), DF_REF_LOC (ref), newreg, 1))
2667 return 0;
2669 df_insn_modify (df, DF_REF_BB (ref), DF_REF_INSN (ref));
2670 return 1;
2674 struct ref*
2675 df_bb_def_use_swap (df, bb, def_insn, use_insn, regno)
2676 struct df * df;
2677 basic_block bb;
2678 rtx def_insn;
2679 rtx use_insn;
2680 unsigned int regno;
2682 struct ref *def;
2683 struct ref *use;
2684 int def_uid;
2685 int use_uid;
2686 struct df_link *link;
2688 def = df_bb_insn_regno_first_def_find (df, bb, def_insn, regno);
2689 if (! def)
2690 return 0;
2692 use = df_bb_insn_regno_last_use_find (df, bb, use_insn, regno);
2693 if (! use)
2694 return 0;
2696 /* The USE no longer exists. */
2697 use_uid = INSN_UID (use_insn);
2698 df_use_unlink (df, use);
2699 df_ref_unlink (&df->insns[use_uid].uses, use);
2701 /* The DEF requires shifting so remove it from DEF_INSN
2702 and add it to USE_INSN by reusing LINK. */
2703 def_uid = INSN_UID (def_insn);
2704 link = df_ref_unlink (&df->insns[def_uid].defs, def);
2705 link->ref = def;
2706 link->next = df->insns[use_uid].defs;
2707 df->insns[use_uid].defs = link;
2709 #if 0
2710 link = df_ref_unlink (&df->regs[regno].defs, def);
2711 link->ref = def;
2712 link->next = df->regs[regno].defs;
2713 df->insns[regno].defs = link;
2714 #endif
2716 DF_REF_INSN (def) = use_insn;
2717 return def;
2721 /* Record df between FIRST_INSN and LAST_INSN inclusive. All new
2722 insns must be processed by this routine. */
2723 static void
2724 df_insns_modify (df, bb, first_insn, last_insn)
2725 struct df *df;
2726 basic_block bb;
2727 rtx first_insn;
2728 rtx last_insn;
2730 rtx insn;
2732 for (insn = first_insn; ; insn = NEXT_INSN (insn))
2734 unsigned int uid;
2736 /* A non-const call should not have slipped through the net. If
2737 it does, we need to create a new basic block. Ouch. The
2738 same applies for a label. */
2739 if ((GET_CODE (insn) == CALL_INSN
2740 && ! CONST_OR_PURE_CALL_P (insn))
2741 || GET_CODE (insn) == CODE_LABEL)
2742 abort ();
2744 uid = INSN_UID (insn);
2746 if (uid >= df->insn_size)
2747 df_insn_table_realloc (df, 0);
2749 df_insn_modify (df, bb, insn);
2751 if (insn == last_insn)
2752 break;
2757 /* Emit PATTERN before INSN within BB. */
2759 df_pattern_emit_before (df, pattern, bb, insn)
2760 struct df *df ATTRIBUTE_UNUSED;
2761 rtx pattern;
2762 basic_block bb;
2763 rtx insn;
2765 rtx ret_insn;
2766 rtx prev_insn = PREV_INSN (insn);
2768 /* We should not be inserting before the start of the block. */
2769 if (insn == bb->head)
2770 abort ();
2771 ret_insn = emit_insn_before (pattern, insn);
2772 if (ret_insn == insn)
2773 return ret_insn;
2775 df_insns_modify (df, bb, NEXT_INSN (prev_insn), ret_insn);
2776 return ret_insn;
2780 /* Emit PATTERN after INSN within BB. */
2782 df_pattern_emit_after (df, pattern, bb, insn)
2783 struct df *df;
2784 rtx pattern;
2785 basic_block bb;
2786 rtx insn;
2788 rtx ret_insn;
2790 ret_insn = emit_insn_after (pattern, insn);
2791 if (ret_insn == insn)
2792 return ret_insn;
2794 df_insns_modify (df, bb, NEXT_INSN (insn), ret_insn);
2795 return ret_insn;
2799 /* Emit jump PATTERN after INSN within BB. */
2801 df_jump_pattern_emit_after (df, pattern, bb, insn)
2802 struct df *df;
2803 rtx pattern;
2804 basic_block bb;
2805 rtx insn;
2807 rtx ret_insn;
2809 ret_insn = emit_jump_insn_after (pattern, insn);
2810 if (ret_insn == insn)
2811 return ret_insn;
2813 df_insns_modify (df, bb, NEXT_INSN (insn), ret_insn);
2814 return ret_insn;
2818 /* Move INSN within BB before BEFORE_INSN within BEFORE_BB.
2820 This function should only be used to move loop invariant insns
2821 out of a loop where it has been proven that the def-use info
2822 will still be valid. */
2824 df_insn_move_before (df, bb, insn, before_bb, before_insn)
2825 struct df *df;
2826 basic_block bb;
2827 rtx insn;
2828 basic_block before_bb;
2829 rtx before_insn;
2831 struct df_link *link;
2832 unsigned int uid;
2834 if (! bb)
2835 return df_pattern_emit_before (df, insn, before_bb, before_insn);
2837 uid = INSN_UID (insn);
2839 /* Change bb for all df defined and used by this insn. */
2840 for (link = df->insns[uid].defs; link; link = link->next)
2841 DF_REF_BB (link->ref) = before_bb;
2842 for (link = df->insns[uid].uses; link; link = link->next)
2843 DF_REF_BB (link->ref) = before_bb;
2845 /* The lifetimes of the registers used in this insn will be reduced
2846 while the lifetimes of the registers defined in this insn
2847 are likely to be increased. */
2849 /* ???? Perhaps all the insns moved should be stored on a list
2850 which df_analyse removes when it recalculates data flow. */
2852 return emit_insn_before (insn, before_insn);
2855 /* Functions to query dataflow information. */
2859 df_insn_regno_def_p (df, bb, insn, regno)
2860 struct df *df;
2861 basic_block bb ATTRIBUTE_UNUSED;
2862 rtx insn;
2863 unsigned int regno;
2865 unsigned int uid;
2866 struct df_link *link;
2868 uid = INSN_UID (insn);
2870 for (link = df->insns[uid].defs; link; link = link->next)
2872 struct ref *def = link->ref;
2874 if (DF_REF_REGNO (def) == regno)
2875 return 1;
2878 return 0;
2882 static int
2883 df_def_dominates_all_uses_p (df, def)
2884 struct df *df ATTRIBUTE_UNUSED;
2885 struct ref *def;
2887 struct df_link *du_link;
2889 /* Follow def-use chain to find all the uses of this def. */
2890 for (du_link = DF_REF_CHAIN (def); du_link; du_link = du_link->next)
2892 struct ref *use = du_link->ref;
2893 struct df_link *ud_link;
2895 /* Follow use-def chain to check all the defs for this use. */
2896 for (ud_link = DF_REF_CHAIN (use); ud_link; ud_link = ud_link->next)
2897 if (ud_link->ref != def)
2898 return 0;
2900 return 1;
2905 df_insn_dominates_all_uses_p (df, bb, insn)
2906 struct df *df;
2907 basic_block bb ATTRIBUTE_UNUSED;
2908 rtx insn;
2910 unsigned int uid;
2911 struct df_link *link;
2913 uid = INSN_UID (insn);
2915 for (link = df->insns[uid].defs; link; link = link->next)
2917 struct ref *def = link->ref;
2919 if (! df_def_dominates_all_uses_p (df, def))
2920 return 0;
2923 return 1;
2927 /* Return non-zero if all DF dominates all the uses within the bitmap
2928 BLOCKS. */
2929 static int
2930 df_def_dominates_uses_p (df, def, blocks)
2931 struct df *df ATTRIBUTE_UNUSED;
2932 struct ref *def;
2933 bitmap blocks;
2935 struct df_link *du_link;
2937 /* Follow def-use chain to find all the uses of this def. */
2938 for (du_link = DF_REF_CHAIN (def); du_link; du_link = du_link->next)
2940 struct ref *use = du_link->ref;
2941 struct df_link *ud_link;
2943 /* Only worry about the uses within BLOCKS. For example,
2944 consider a register defined within a loop that is live at the
2945 loop exits. */
2946 if (bitmap_bit_p (blocks, DF_REF_BBNO (use)))
2948 /* Follow use-def chain to check all the defs for this use. */
2949 for (ud_link = DF_REF_CHAIN (use); ud_link; ud_link = ud_link->next)
2950 if (ud_link->ref != def)
2951 return 0;
2954 return 1;
2958 /* Return non-zero if all the defs of INSN within BB dominates
2959 all the corresponding uses. */
2961 df_insn_dominates_uses_p (df, bb, insn, blocks)
2962 struct df *df;
2963 basic_block bb ATTRIBUTE_UNUSED;
2964 rtx insn;
2965 bitmap blocks;
2967 unsigned int uid;
2968 struct df_link *link;
2970 uid = INSN_UID (insn);
2972 for (link = df->insns[uid].defs; link; link = link->next)
2974 struct ref *def = link->ref;
2976 /* Only consider the defs within BLOCKS. */
2977 if (bitmap_bit_p (blocks, DF_REF_BBNO (def))
2978 && ! df_def_dominates_uses_p (df, def, blocks))
2979 return 0;
2981 return 1;
2985 /* Return the basic block that REG referenced in or NULL if referenced
2986 in multiple basic blocks. */
2987 basic_block
2988 df_regno_bb (df, regno)
2989 struct df *df;
2990 unsigned int regno;
2992 struct df_link *defs = df->regs[regno].defs;
2993 struct df_link *uses = df->regs[regno].uses;
2994 struct ref *def = defs ? defs->ref : 0;
2995 struct ref *use = uses ? uses->ref : 0;
2996 basic_block bb_def = def ? DF_REF_BB (def) : 0;
2997 basic_block bb_use = use ? DF_REF_BB (use) : 0;
2999 /* Compare blocks of first def and last use. ???? FIXME. What if
3000 the reg-def and reg-use lists are not correctly ordered. */
3001 return bb_def == bb_use ? bb_def : 0;
3005 /* Return non-zero if REG used in multiple basic blocks. */
3007 df_reg_global_p (df, reg)
3008 struct df *df;
3009 rtx reg;
3011 return df_regno_bb (df, REGNO (reg)) != 0;
3015 /* Return total lifetime (in insns) of REG. */
3017 df_reg_lifetime (df, reg)
3018 struct df *df;
3019 rtx reg;
3021 return df->regs[REGNO (reg)].lifetime;
3025 /* Return non-zero if REG live at start of BB. */
3027 df_bb_reg_live_start_p (df, bb, reg)
3028 struct df *df ATTRIBUTE_UNUSED;
3029 basic_block bb;
3030 rtx reg;
3032 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3034 #ifdef ENABLE_CHECKING
3035 if (! bb_info->lr_in)
3036 abort ();
3037 #endif
3039 return bitmap_bit_p (bb_info->lr_in, REGNO (reg));
3043 /* Return non-zero if REG live at end of BB. */
3045 df_bb_reg_live_end_p (df, bb, reg)
3046 struct df *df ATTRIBUTE_UNUSED;
3047 basic_block bb;
3048 rtx reg;
3050 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3052 #ifdef ENABLE_CHECKING
3053 if (! bb_info->lr_in)
3054 abort ();
3055 #endif
3057 return bitmap_bit_p (bb_info->lr_out, REGNO (reg));
3061 /* Return -1 if life of REG1 before life of REG2, 1 if life of REG1
3062 after life of REG2, or 0, if the lives overlap. */
3064 df_bb_regs_lives_compare (df, bb, reg1, reg2)
3065 struct df *df;
3066 basic_block bb;
3067 rtx reg1;
3068 rtx reg2;
3070 unsigned int regno1 = REGNO (reg1);
3071 unsigned int regno2 = REGNO (reg2);
3072 struct ref *def1;
3073 struct ref *use1;
3074 struct ref *def2;
3075 struct ref *use2;
3078 /* The regs must be local to BB. */
3079 if (df_regno_bb (df, regno1) != bb
3080 || df_regno_bb (df, regno2) != bb)
3081 abort ();
3083 def2 = df_bb_regno_first_def_find (df, bb, regno2);
3084 use1 = df_bb_regno_last_use_find (df, bb, regno1);
3086 if (DF_INSN_LUID (df, DF_REF_INSN (def2))
3087 > DF_INSN_LUID (df, DF_REF_INSN (use1)))
3088 return -1;
3090 def1 = df_bb_regno_first_def_find (df, bb, regno1);
3091 use2 = df_bb_regno_last_use_find (df, bb, regno2);
3093 if (DF_INSN_LUID (df, DF_REF_INSN (def1))
3094 > DF_INSN_LUID (df, DF_REF_INSN (use2)))
3095 return 1;
3097 return 0;
3101 /* Return last use of REGNO within BB. */
3102 static struct ref *
3103 df_bb_regno_last_use_find (df, bb, regno)
3104 struct df * df;
3105 basic_block bb ATTRIBUTE_UNUSED;
3106 unsigned int regno;
3108 struct df_link *link;
3110 /* This assumes that the reg-use list is ordered such that for any
3111 BB, the last use is found first. However, since the BBs are not
3112 ordered, the first use in the chain is not necessarily the last
3113 use in the function. */
3114 for (link = df->regs[regno].uses; link; link = link->next)
3116 struct ref *use = link->ref;
3118 if (DF_REF_BB (use) == bb)
3119 return use;
3121 return 0;
3125 /* Return first def of REGNO within BB. */
3126 static struct ref *
3127 df_bb_regno_first_def_find (df, bb, regno)
3128 struct df * df;
3129 basic_block bb ATTRIBUTE_UNUSED;
3130 unsigned int regno;
3132 struct df_link *link;
3134 /* This assumes that the reg-def list is ordered such that for any
3135 BB, the first def is found first. However, since the BBs are not
3136 ordered, the first def in the chain is not necessarily the first
3137 def in the function. */
3138 for (link = df->regs[regno].defs; link; link = link->next)
3140 struct ref *def = link->ref;
3142 if (DF_REF_BB (def) == bb)
3143 return def;
3145 return 0;
3149 /* Return first use of REGNO inside INSN within BB. */
3150 static struct ref *
3151 df_bb_insn_regno_last_use_find (df, bb, insn, regno)
3152 struct df * df;
3153 basic_block bb ATTRIBUTE_UNUSED;
3154 rtx insn;
3155 unsigned int regno;
3157 unsigned int uid;
3158 struct df_link *link;
3160 uid = INSN_UID (insn);
3162 for (link = df->insns[uid].uses; link; link = link->next)
3164 struct ref *use = link->ref;
3166 if (DF_REF_REGNO (use) == regno)
3167 return use;
3170 return 0;
3174 /* Return first def of REGNO inside INSN within BB. */
3175 static struct ref *
3176 df_bb_insn_regno_first_def_find (df, bb, insn, regno)
3177 struct df * df;
3178 basic_block bb ATTRIBUTE_UNUSED;
3179 rtx insn;
3180 unsigned int regno;
3182 unsigned int uid;
3183 struct df_link *link;
3185 uid = INSN_UID (insn);
3187 for (link = df->insns[uid].defs; link; link = link->next)
3189 struct ref *def = link->ref;
3191 if (DF_REF_REGNO (def) == regno)
3192 return def;
3195 return 0;
3199 /* Return insn using REG if the BB contains only a single
3200 use and def of REG. */
3202 df_bb_single_def_use_insn_find (df, bb, insn, reg)
3203 struct df * df;
3204 basic_block bb;
3205 rtx insn;
3206 rtx reg;
3208 struct ref *def;
3209 struct ref *use;
3210 struct df_link *du_link;
3212 def = df_bb_insn_regno_first_def_find (df, bb, insn, REGNO (reg));
3214 if (! def)
3215 abort ();
3217 du_link = DF_REF_CHAIN (def);
3219 if (! du_link)
3220 return NULL_RTX;
3222 use = du_link->ref;
3224 /* Check if def is dead. */
3225 if (! use)
3226 return NULL_RTX;
3228 /* Check for multiple uses. */
3229 if (du_link->next)
3230 return NULL_RTX;
3232 return DF_REF_INSN (use);
3235 /* Functions for debugging/dumping dataflow information. */
3238 /* Dump a def-use or use-def chain for REF to FILE. */
3239 static void
3240 df_chain_dump (link, file)
3241 struct df_link *link;
3242 FILE *file;
3244 fprintf (file, "{ ");
3245 for (; link; link = link->next)
3247 fprintf (file, "%c%d ",
3248 DF_REF_REG_DEF_P (link->ref) ? 'd' : 'u',
3249 DF_REF_ID (link->ref));
3251 fprintf (file, "}");
3254 static void
3255 df_chain_dump_regno (link, file)
3256 struct df_link *link;
3257 FILE *file;
3259 fprintf (file, "{ ");
3260 for (; link; link = link->next)
3262 fprintf (file, "%c%d(%d) ",
3263 DF_REF_REG_DEF_P (link->ref) ? 'd' : 'u',
3264 DF_REF_ID (link->ref),
3265 DF_REF_REGNO (link->ref));
3267 fprintf (file, "}");
3270 /* Dump dataflow info. */
3271 void
3272 df_dump (df, flags, file)
3273 struct df *df;
3274 int flags;
3275 FILE *file;
3277 unsigned int i;
3278 unsigned int j;
3280 if (! df || ! file)
3281 return;
3283 fprintf (file, "\nDataflow summary:\n");
3284 fprintf (file, "n_regs = %d, n_defs = %d, n_uses = %d, n_bbs = %d\n",
3285 df->n_regs, df->n_defs, df->n_uses, df->n_bbs);
3287 if (flags & DF_RD)
3289 fprintf (file, "Reaching defs:\n");
3290 for (i = 0; i < df->n_bbs; i++)
3292 basic_block bb = BASIC_BLOCK (i);
3293 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3295 if (! bb_info->rd_in)
3296 continue;
3298 fprintf (file, "bb %d in \t", i);
3299 dump_bitmap (file, bb_info->rd_in);
3300 fprintf (file, "bb %d gen \t", i);
3301 dump_bitmap (file, bb_info->rd_gen);
3302 fprintf (file, "bb %d kill\t", i);
3303 dump_bitmap (file, bb_info->rd_kill);
3304 fprintf (file, "bb %d out \t", i);
3305 dump_bitmap (file, bb_info->rd_out);
3309 if (flags & DF_UD_CHAIN)
3311 fprintf (file, "Use-def chains:\n");
3312 for (j = 0; j < df->n_defs; j++)
3314 if (df->defs[j])
3316 fprintf (file, "d%d bb %d luid %d insn %d reg %d ",
3317 j, DF_REF_BBNO (df->defs[j]),
3318 DF_INSN_LUID (df, DF_REF_INSN (df->defs[j])),
3319 DF_REF_INSN_UID (df->defs[j]),
3320 DF_REF_REGNO (df->defs[j]));
3321 if (df->defs[j]->flags & DF_REF_READ_WRITE)
3322 fprintf (file, "read/write ");
3323 df_chain_dump (DF_REF_CHAIN (df->defs[j]), file);
3324 fprintf (file, "\n");
3329 if (flags & DF_RU)
3331 fprintf (file, "Reaching uses:\n");
3332 for (i = 0; i < df->n_bbs; i++)
3334 basic_block bb = BASIC_BLOCK (i);
3335 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3337 if (! bb_info->ru_in)
3338 continue;
3340 fprintf (file, "bb %d in \t", i);
3341 dump_bitmap (file, bb_info->ru_in);
3342 fprintf (file, "bb %d gen \t", i);
3343 dump_bitmap (file, bb_info->ru_gen);
3344 fprintf (file, "bb %d kill\t", i);
3345 dump_bitmap (file, bb_info->ru_kill);
3346 fprintf (file, "bb %d out \t", i);
3347 dump_bitmap (file, bb_info->ru_out);
3351 if (flags & DF_DU_CHAIN)
3353 fprintf (file, "Def-use chains:\n");
3354 for (j = 0; j < df->n_uses; j++)
3356 if (df->uses[j])
3358 fprintf (file, "u%d bb %d luid %d insn %d reg %d ",
3359 j, DF_REF_BBNO (df->uses[j]),
3360 DF_INSN_LUID (df, DF_REF_INSN (df->uses[j])),
3361 DF_REF_INSN_UID (df->uses[j]),
3362 DF_REF_REGNO (df->uses[j]));
3363 if (df->uses[j]->flags & DF_REF_READ_WRITE)
3364 fprintf (file, "read/write ");
3365 df_chain_dump (DF_REF_CHAIN (df->uses[j]), file);
3366 fprintf (file, "\n");
3371 if (flags & DF_LR)
3373 fprintf (file, "Live regs:\n");
3374 for (i = 0; i < df->n_bbs; i++)
3376 basic_block bb = BASIC_BLOCK (i);
3377 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3379 if (! bb_info->lr_in)
3380 continue;
3382 fprintf (file, "bb %d in \t", i);
3383 dump_bitmap (file, bb_info->lr_in);
3384 fprintf (file, "bb %d use \t", i);
3385 dump_bitmap (file, bb_info->lr_use);
3386 fprintf (file, "bb %d def \t", i);
3387 dump_bitmap (file, bb_info->lr_def);
3388 fprintf (file, "bb %d out \t", i);
3389 dump_bitmap (file, bb_info->lr_out);
3393 if (flags & (DF_REG_INFO | DF_RD_CHAIN | DF_RU_CHAIN))
3395 struct reg_info *reg_info = df->regs;
3397 fprintf (file, "Register info:\n");
3398 for (j = 0; j < df->n_regs; j++)
3400 if (((flags & DF_REG_INFO)
3401 && (reg_info[j].n_uses || reg_info[j].n_defs))
3402 || ((flags & DF_RD_CHAIN) && reg_info[j].defs)
3403 || ((flags & DF_RU_CHAIN) && reg_info[j].uses))
3405 fprintf (file, "reg %d", j);
3406 if ((flags & DF_RD_CHAIN) && (flags & DF_RU_CHAIN))
3408 basic_block bb = df_regno_bb (df, j);
3410 if (bb)
3411 fprintf (file, " bb %d", bb->index);
3412 else
3413 fprintf (file, " bb ?");
3415 if (flags & DF_REG_INFO)
3417 fprintf (file, " life %d", reg_info[j].lifetime);
3420 if ((flags & DF_REG_INFO) || (flags & DF_RD_CHAIN))
3422 fprintf (file, " defs ");
3423 if (flags & DF_REG_INFO)
3424 fprintf (file, "%d ", reg_info[j].n_defs);
3425 if (flags & DF_RD_CHAIN)
3426 df_chain_dump (reg_info[j].defs, file);
3429 if ((flags & DF_REG_INFO) || (flags & DF_RU_CHAIN))
3431 fprintf (file, " uses ");
3432 if (flags & DF_REG_INFO)
3433 fprintf (file, "%d ", reg_info[j].n_uses);
3434 if (flags & DF_RU_CHAIN)
3435 df_chain_dump (reg_info[j].uses, file);
3438 fprintf (file, "\n");
3442 fprintf (file, "\n");
3446 void
3447 df_insn_debug (df, insn, file)
3448 struct df *df;
3449 rtx insn;
3450 FILE *file;
3452 unsigned int uid;
3453 int bbi;
3455 uid = INSN_UID (insn);
3456 if (uid >= df->insn_size)
3457 return;
3459 if (df->insns[uid].defs)
3460 bbi = DF_REF_BBNO (df->insns[uid].defs->ref);
3461 else if (df->insns[uid].uses)
3462 bbi = DF_REF_BBNO (df->insns[uid].uses->ref);
3463 else
3464 bbi = -1;
3466 fprintf (file, "insn %d bb %d luid %d defs ",
3467 uid, bbi, DF_INSN_LUID (df, insn));
3468 df_chain_dump (df->insns[uid].defs, file);
3469 fprintf (file, " uses ");
3470 df_chain_dump (df->insns[uid].uses, file);
3471 fprintf (file, "\n");
3474 void
3475 df_insn_debug_regno (df, insn, file)
3476 struct df *df;
3477 rtx insn;
3478 FILE *file;
3480 unsigned int uid;
3481 int bbi;
3483 uid = INSN_UID (insn);
3484 if (uid >= df->insn_size)
3485 return;
3487 if (df->insns[uid].defs)
3488 bbi = DF_REF_BBNO (df->insns[uid].defs->ref);
3489 else if (df->insns[uid].uses)
3490 bbi = DF_REF_BBNO (df->insns[uid].uses->ref);
3491 else
3492 bbi = -1;
3494 fprintf (file, "insn %d bb %d luid %d defs ",
3495 uid, bbi, DF_INSN_LUID (df, insn));
3496 df_chain_dump_regno (df->insns[uid].defs, file);
3497 fprintf (file, " uses ");
3498 df_chain_dump_regno (df->insns[uid].uses, file);
3499 fprintf (file, "\n");
3502 static void
3503 df_regno_debug (df, regno, file)
3504 struct df *df;
3505 unsigned int regno;
3506 FILE *file;
3508 if (regno >= df->reg_size)
3509 return;
3511 fprintf (file, "reg %d life %d defs ",
3512 regno, df->regs[regno].lifetime);
3513 df_chain_dump (df->regs[regno].defs, file);
3514 fprintf (file, " uses ");
3515 df_chain_dump (df->regs[regno].uses, file);
3516 fprintf (file, "\n");
3520 static void
3521 df_ref_debug (df, ref, file)
3522 struct df *df;
3523 struct ref *ref;
3524 FILE *file;
3526 fprintf (file, "%c%d ",
3527 DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
3528 DF_REF_ID (ref));
3529 fprintf (file, "reg %d bb %d luid %d insn %d chain ",
3530 DF_REF_REGNO (ref),
3531 DF_REF_BBNO (ref),
3532 DF_INSN_LUID (df, DF_REF_INSN (ref)),
3533 INSN_UID (DF_REF_INSN (ref)));
3534 df_chain_dump (DF_REF_CHAIN (ref), file);
3535 fprintf (file, "\n");
3539 void
3540 debug_df_insn (insn)
3541 rtx insn;
3543 df_insn_debug (ddf, insn, stderr);
3544 debug_rtx (insn);
3548 void
3549 debug_df_reg (reg)
3550 rtx reg;
3552 df_regno_debug (ddf, REGNO (reg), stderr);
3556 void
3557 debug_df_regno (regno)
3558 unsigned int regno;
3560 df_regno_debug (ddf, regno, stderr);
3564 void
3565 debug_df_ref (ref)
3566 struct ref *ref;
3568 df_ref_debug (ddf, ref, stderr);
3572 void
3573 debug_df_defno (defno)
3574 unsigned int defno;
3576 df_ref_debug (ddf, ddf->defs[defno], stderr);
3580 void
3581 debug_df_useno (defno)
3582 unsigned int defno;
3584 df_ref_debug (ddf, ddf->uses[defno], stderr);
3588 void
3589 debug_df_chain (link)
3590 struct df_link *link;
3592 df_chain_dump (link, stderr);
3593 fputc ('\n', stderr);
3596 /* Hybrid search algorithm from "Implementation Techniques for
3597 Efficient Data-Flow Analysis of Large Programs". */
3598 static void
3599 hybrid_search_bitmap (block, in, out, gen, kill, dir,
3600 conf_op, transfun, visited, pending,
3601 data)
3602 basic_block block;
3603 bitmap *in, *out, *gen, *kill;
3604 enum df_flow_dir dir;
3605 enum df_confluence_op conf_op;
3606 transfer_function_bitmap transfun;
3607 sbitmap visited;
3608 sbitmap pending;
3609 void *data;
3611 int changed;
3612 int i = block->index;
3613 edge e;
3614 basic_block bb= block;
3615 SET_BIT (visited, block->index);
3616 if (TEST_BIT (pending, block->index))
3618 if (dir == FORWARD)
3620 /* Calculate <conf_op> of predecessor_outs */
3621 bitmap_zero (in[i]);
3622 for (e = bb->pred; e != 0; e = e->pred_next)
3624 if (e->src == ENTRY_BLOCK_PTR)
3625 continue;
3626 switch (conf_op)
3628 case UNION:
3629 bitmap_a_or_b (in[i], in[i], out[e->src->index]);
3630 break;
3631 case INTERSECTION:
3632 bitmap_a_and_b (in[i], in[i], out[e->src->index]);
3633 break;
3637 else
3639 /* Calculate <conf_op> of successor ins */
3640 bitmap_zero(out[i]);
3641 for (e = bb->succ; e != 0; e = e->succ_next)
3643 if (e->dest == EXIT_BLOCK_PTR)
3644 continue;
3645 switch (conf_op)
3647 case UNION:
3648 bitmap_a_or_b (out[i], out[i], in[e->dest->index]);
3649 break;
3650 case INTERSECTION:
3651 bitmap_a_and_b (out[i], out[i], in[e->dest->index]);
3652 break;
3656 /* Common part */
3657 (*transfun)(i, &changed, in[i], out[i], gen[i], kill[i], data);
3658 RESET_BIT (pending, i);
3659 if (changed)
3661 if (dir == FORWARD)
3663 for (e = bb->succ; e != 0; e = e->succ_next)
3665 if (e->dest == EXIT_BLOCK_PTR || e->dest->index == i)
3666 continue;
3667 SET_BIT (pending, e->dest->index);
3670 else
3672 for (e = bb->pred; e != 0; e = e->pred_next)
3674 if (e->src == ENTRY_BLOCK_PTR || e->dest->index == i)
3675 continue;
3676 SET_BIT (pending, e->src->index);
3681 if (dir == FORWARD)
3683 for (e = bb->succ; e != 0; e = e->succ_next)
3685 if (e->dest == EXIT_BLOCK_PTR || e->dest->index == i)
3686 continue;
3687 if (!TEST_BIT (visited, e->dest->index))
3688 hybrid_search_bitmap (e->dest, in, out, gen, kill, dir,
3689 conf_op, transfun, visited, pending,
3690 data);
3693 else
3695 for (e = bb->pred; e != 0; e = e->pred_next)
3697 if (e->src == ENTRY_BLOCK_PTR || e->src->index == i)
3698 continue;
3699 if (!TEST_BIT (visited, e->src->index))
3700 hybrid_search_bitmap (e->src, in, out, gen, kill, dir,
3701 conf_op, transfun, visited, pending,
3702 data);
3708 /* Hybrid search for sbitmaps, rather than bitmaps. */
3709 static void
3710 hybrid_search_sbitmap (block, in, out, gen, kill, dir,
3711 conf_op, transfun, visited, pending,
3712 data)
3713 basic_block block;
3714 sbitmap *in, *out, *gen, *kill;
3715 enum df_flow_dir dir;
3716 enum df_confluence_op conf_op;
3717 transfer_function_sbitmap transfun;
3718 sbitmap visited;
3719 sbitmap pending;
3720 void *data;
3722 int changed;
3723 int i = block->index;
3724 edge e;
3725 basic_block bb= block;
3726 SET_BIT (visited, block->index);
3727 if (TEST_BIT (pending, block->index))
3729 if (dir == FORWARD)
3731 /* Calculate <conf_op> of predecessor_outs */
3732 sbitmap_zero (in[i]);
3733 for (e = bb->pred; e != 0; e = e->pred_next)
3735 if (e->src == ENTRY_BLOCK_PTR)
3736 continue;
3737 switch (conf_op)
3739 case UNION:
3740 sbitmap_a_or_b (in[i], in[i], out[e->src->index]);
3741 break;
3742 case INTERSECTION:
3743 sbitmap_a_and_b (in[i], in[i], out[e->src->index]);
3744 break;
3748 else
3750 /* Calculate <conf_op> of successor ins */
3751 sbitmap_zero(out[i]);
3752 for (e = bb->succ; e != 0; e = e->succ_next)
3754 if (e->dest == EXIT_BLOCK_PTR)
3755 continue;
3756 switch (conf_op)
3758 case UNION:
3759 sbitmap_a_or_b (out[i], out[i], in[e->dest->index]);
3760 break;
3761 case INTERSECTION:
3762 sbitmap_a_and_b (out[i], out[i], in[e->dest->index]);
3763 break;
3767 /* Common part */
3768 (*transfun)(i, &changed, in[i], out[i], gen[i], kill[i], data);
3769 RESET_BIT (pending, i);
3770 if (changed)
3772 if (dir == FORWARD)
3774 for (e = bb->succ; e != 0; e = e->succ_next)
3776 if (e->dest == EXIT_BLOCK_PTR || e->dest->index == i)
3777 continue;
3778 SET_BIT (pending, e->dest->index);
3781 else
3783 for (e = bb->pred; e != 0; e = e->pred_next)
3785 if (e->src == ENTRY_BLOCK_PTR || e->dest->index == i)
3786 continue;
3787 SET_BIT (pending, e->src->index);
3792 if (dir == FORWARD)
3794 for (e = bb->succ; e != 0; e = e->succ_next)
3796 if (e->dest == EXIT_BLOCK_PTR || e->dest->index == i)
3797 continue;
3798 if (!TEST_BIT (visited, e->dest->index))
3799 hybrid_search_sbitmap (e->dest, in, out, gen, kill, dir,
3800 conf_op, transfun, visited, pending,
3801 data);
3804 else
3806 for (e = bb->pred; e != 0; e = e->pred_next)
3808 if (e->src == ENTRY_BLOCK_PTR || e->src->index == i)
3809 continue;
3810 if (!TEST_BIT (visited, e->src->index))
3811 hybrid_search_sbitmap (e->src, in, out, gen, kill, dir,
3812 conf_op, transfun, visited, pending,
3813 data);
3821 /* gen = GEN set.
3822 kill = KILL set.
3823 in, out = Filled in by function.
3824 blocks = Blocks to analyze.
3825 dir = Dataflow direction.
3826 conf_op = Confluence operation.
3827 transfun = Transfer function.
3828 order = Order to iterate in. (Should map block numbers -> order)
3829 data = Whatever you want. It's passed to the transfer function.
3831 This function will perform iterative bitvector dataflow, producing
3832 the in and out sets. Even if you only want to perform it for a
3833 small number of blocks, the vectors for in and out must be large
3834 enough for *all* blocks, because changing one block might affect
3835 others. However, it'll only put what you say to analyze on the
3836 initial worklist.
3838 For forward problems, you probably want to pass in a mapping of
3839 block number to rc_order (like df->inverse_rc_map).
3841 void
3842 iterative_dataflow_sbitmap (in, out, gen, kill, blocks,
3843 dir, conf_op, transfun, order, data)
3844 sbitmap *in, *out, *gen, *kill;
3845 bitmap blocks;
3846 enum df_flow_dir dir;
3847 enum df_confluence_op conf_op;
3848 transfer_function_sbitmap transfun;
3849 int *order;
3850 void *data;
3852 int i;
3853 fibheap_t worklist;
3854 basic_block bb;
3855 sbitmap visited, pending;
3856 pending = sbitmap_alloc (n_basic_blocks);
3857 visited = sbitmap_alloc (n_basic_blocks);
3858 sbitmap_zero (pending);
3859 sbitmap_zero (visited);
3860 worklist = fibheap_new ();
3861 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i,
3863 fibheap_insert (worklist, order[i], (void *) (size_t) i);
3864 SET_BIT (pending, i);
3865 if (dir == FORWARD)
3866 sbitmap_copy (out[i], gen[i]);
3867 else
3868 sbitmap_copy (in[i], gen[i]);
3870 while (sbitmap_first_set_bit (pending) != -1)
3872 while (!fibheap_empty (worklist))
3874 i = (size_t) fibheap_extract_min (worklist);
3875 bb = BASIC_BLOCK (i);
3876 if (!TEST_BIT (visited, bb->index))
3877 hybrid_search_sbitmap (bb, in, out, gen, kill, dir,
3878 conf_op, transfun, visited, pending, data);
3880 if (sbitmap_first_set_bit (pending) != -1)
3882 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i,
3884 fibheap_insert (worklist, order[i], (void *) (size_t) i);
3886 sbitmap_zero (visited);
3888 else
3890 break;
3893 sbitmap_free (pending);
3894 sbitmap_free (visited);
3895 fibheap_delete (worklist);
3898 /* Exactly the same as iterative_dataflow_sbitmap, except it works on
3899 bitmaps instead */
3900 void
3901 iterative_dataflow_bitmap (in, out, gen, kill, blocks,
3902 dir, conf_op, transfun, order, data)
3903 bitmap *in, *out, *gen, *kill;
3904 bitmap blocks;
3905 enum df_flow_dir dir;
3906 enum df_confluence_op conf_op;
3907 transfer_function_bitmap transfun;
3908 int *order;
3909 void *data;
3911 int i;
3912 fibheap_t worklist;
3913 basic_block bb;
3914 sbitmap visited, pending;
3915 pending = sbitmap_alloc (n_basic_blocks);
3916 visited = sbitmap_alloc (n_basic_blocks);
3917 sbitmap_zero (pending);
3918 sbitmap_zero (visited);
3919 worklist = fibheap_new ();
3920 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i,
3922 fibheap_insert (worklist, order[i], (void *) (size_t) i);
3923 SET_BIT (pending, i);
3924 if (dir == FORWARD)
3925 bitmap_copy (out[i], gen[i]);
3926 else
3927 bitmap_copy (in[i], gen[i]);
3929 while (sbitmap_first_set_bit (pending) != -1)
3931 while (!fibheap_empty (worklist))
3933 i = (size_t) fibheap_extract_min (worklist);
3934 bb = BASIC_BLOCK (i);
3935 if (!TEST_BIT (visited, bb->index))
3936 hybrid_search_bitmap (bb, in, out, gen, kill, dir,
3937 conf_op, transfun, visited, pending, data);
3939 if (sbitmap_first_set_bit (pending) != -1)
3941 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i,
3943 fibheap_insert (worklist, order[i], (void *) (size_t) i);
3945 sbitmap_zero (visited);
3947 else
3949 break;
3952 sbitmap_free (pending);
3953 sbitmap_free (visited);
3954 fibheap_delete (worklist);