final.c: Use rtx_sequence
[official-gcc.git] / gcc / ada / a-coorse.adb
blob0f45308d6696f9d2880d9532a9498b5450e2c426
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT LIBRARY COMPONENTS --
4 -- --
5 -- A D A . C O N T A I N E R S . O R D E R E D _ S E T S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 2004-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- This unit was originally developed by Matthew J Heaney. --
28 ------------------------------------------------------------------------------
30 with Ada.Unchecked_Deallocation;
32 with Ada.Containers.Red_Black_Trees.Generic_Operations;
33 pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Operations);
35 with Ada.Containers.Red_Black_Trees.Generic_Keys;
36 pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Keys);
38 with Ada.Containers.Red_Black_Trees.Generic_Set_Operations;
39 pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Set_Operations);
41 with System; use type System.Address;
43 package body Ada.Containers.Ordered_Sets is
45 ------------------------------
46 -- Access to Fields of Node --
47 ------------------------------
49 -- These subprograms provide functional notation for access to fields
50 -- of a node, and procedural notation for modifying these fields.
52 function Color (Node : Node_Access) return Color_Type;
53 pragma Inline (Color);
55 function Left (Node : Node_Access) return Node_Access;
56 pragma Inline (Left);
58 function Parent (Node : Node_Access) return Node_Access;
59 pragma Inline (Parent);
61 function Right (Node : Node_Access) return Node_Access;
62 pragma Inline (Right);
64 procedure Set_Color (Node : Node_Access; Color : Color_Type);
65 pragma Inline (Set_Color);
67 procedure Set_Left (Node : Node_Access; Left : Node_Access);
68 pragma Inline (Set_Left);
70 procedure Set_Right (Node : Node_Access; Right : Node_Access);
71 pragma Inline (Set_Right);
73 procedure Set_Parent (Node : Node_Access; Parent : Node_Access);
74 pragma Inline (Set_Parent);
76 -----------------------
77 -- Local Subprograms --
78 -----------------------
80 function Copy_Node (Source : Node_Access) return Node_Access;
81 pragma Inline (Copy_Node);
83 procedure Free (X : in out Node_Access);
85 procedure Insert_Sans_Hint
86 (Tree : in out Tree_Type;
87 New_Item : Element_Type;
88 Node : out Node_Access;
89 Inserted : out Boolean);
91 procedure Insert_With_Hint
92 (Dst_Tree : in out Tree_Type;
93 Dst_Hint : Node_Access;
94 Src_Node : Node_Access;
95 Dst_Node : out Node_Access);
97 function Is_Equal_Node_Node (L, R : Node_Access) return Boolean;
98 pragma Inline (Is_Equal_Node_Node);
100 function Is_Greater_Element_Node
101 (Left : Element_Type;
102 Right : Node_Access) return Boolean;
103 pragma Inline (Is_Greater_Element_Node);
105 function Is_Less_Element_Node
106 (Left : Element_Type;
107 Right : Node_Access) return Boolean;
108 pragma Inline (Is_Less_Element_Node);
110 function Is_Less_Node_Node (L, R : Node_Access) return Boolean;
111 pragma Inline (Is_Less_Node_Node);
113 procedure Replace_Element
114 (Tree : in out Tree_Type;
115 Node : Node_Access;
116 Item : Element_Type);
118 --------------------------
119 -- Local Instantiations --
120 --------------------------
122 package Tree_Operations is
123 new Red_Black_Trees.Generic_Operations (Tree_Types);
125 procedure Delete_Tree is
126 new Tree_Operations.Generic_Delete_Tree (Free);
128 function Copy_Tree is
129 new Tree_Operations.Generic_Copy_Tree (Copy_Node, Delete_Tree);
131 use Tree_Operations;
133 function Is_Equal is
134 new Tree_Operations.Generic_Equal (Is_Equal_Node_Node);
136 package Element_Keys is
137 new Red_Black_Trees.Generic_Keys
138 (Tree_Operations => Tree_Operations,
139 Key_Type => Element_Type,
140 Is_Less_Key_Node => Is_Less_Element_Node,
141 Is_Greater_Key_Node => Is_Greater_Element_Node);
143 package Set_Ops is
144 new Generic_Set_Operations
145 (Tree_Operations => Tree_Operations,
146 Insert_With_Hint => Insert_With_Hint,
147 Copy_Tree => Copy_Tree,
148 Delete_Tree => Delete_Tree,
149 Is_Less => Is_Less_Node_Node,
150 Free => Free);
152 ---------
153 -- "<" --
154 ---------
156 function "<" (Left, Right : Cursor) return Boolean is
157 begin
158 if Left.Node = null then
159 raise Constraint_Error with "Left cursor equals No_Element";
160 end if;
162 if Right.Node = null then
163 raise Constraint_Error with "Right cursor equals No_Element";
164 end if;
166 pragma Assert (Vet (Left.Container.Tree, Left.Node),
167 "bad Left cursor in ""<""");
169 pragma Assert (Vet (Right.Container.Tree, Right.Node),
170 "bad Right cursor in ""<""");
172 return Left.Node.Element < Right.Node.Element;
173 end "<";
175 function "<" (Left : Cursor; Right : Element_Type) return Boolean is
176 begin
177 if Left.Node = null then
178 raise Constraint_Error with "Left cursor equals No_Element";
179 end if;
181 pragma Assert (Vet (Left.Container.Tree, Left.Node),
182 "bad Left cursor in ""<""");
184 return Left.Node.Element < Right;
185 end "<";
187 function "<" (Left : Element_Type; Right : Cursor) return Boolean is
188 begin
189 if Right.Node = null then
190 raise Constraint_Error with "Right cursor equals No_Element";
191 end if;
193 pragma Assert (Vet (Right.Container.Tree, Right.Node),
194 "bad Right cursor in ""<""");
196 return Left < Right.Node.Element;
197 end "<";
199 ---------
200 -- "=" --
201 ---------
203 function "=" (Left, Right : Set) return Boolean is
204 begin
205 return Is_Equal (Left.Tree, Right.Tree);
206 end "=";
208 ---------
209 -- ">" --
210 ---------
212 function ">" (Left, Right : Cursor) return Boolean is
213 begin
214 if Left.Node = null then
215 raise Constraint_Error with "Left cursor equals No_Element";
216 end if;
218 if Right.Node = null then
219 raise Constraint_Error with "Right cursor equals No_Element";
220 end if;
222 pragma Assert (Vet (Left.Container.Tree, Left.Node),
223 "bad Left cursor in "">""");
225 pragma Assert (Vet (Right.Container.Tree, Right.Node),
226 "bad Right cursor in "">""");
228 -- L > R same as R < L
230 return Right.Node.Element < Left.Node.Element;
231 end ">";
233 function ">" (Left : Element_Type; Right : Cursor) return Boolean is
234 begin
235 if Right.Node = null then
236 raise Constraint_Error with "Right cursor equals No_Element";
237 end if;
239 pragma Assert (Vet (Right.Container.Tree, Right.Node),
240 "bad Right cursor in "">""");
242 return Right.Node.Element < Left;
243 end ">";
245 function ">" (Left : Cursor; Right : Element_Type) return Boolean is
246 begin
247 if Left.Node = null then
248 raise Constraint_Error with "Left cursor equals No_Element";
249 end if;
251 pragma Assert (Vet (Left.Container.Tree, Left.Node),
252 "bad Left cursor in "">""");
254 return Right < Left.Node.Element;
255 end ">";
257 ------------
258 -- Adjust --
259 ------------
261 procedure Adjust is new Tree_Operations.Generic_Adjust (Copy_Tree);
263 procedure Adjust (Container : in out Set) is
264 begin
265 Adjust (Container.Tree);
266 end Adjust;
268 procedure Adjust (Control : in out Reference_Control_Type) is
269 begin
270 if Control.Container /= null then
271 declare
272 Tree : Tree_Type renames Control.Container.all.Tree;
273 B : Natural renames Tree.Busy;
274 L : Natural renames Tree.Lock;
275 begin
276 B := B + 1;
277 L := L + 1;
278 end;
279 end if;
280 end Adjust;
282 ------------
283 -- Assign --
284 ------------
286 procedure Assign (Target : in out Set; Source : Set) is
287 begin
288 if Target'Address = Source'Address then
289 return;
290 end if;
292 Target.Clear;
293 Target.Union (Source);
294 end Assign;
296 -------------
297 -- Ceiling --
298 -------------
300 function Ceiling (Container : Set; Item : Element_Type) return Cursor is
301 Node : constant Node_Access :=
302 Element_Keys.Ceiling (Container.Tree, Item);
303 begin
304 return (if Node = null then No_Element
305 else Cursor'(Container'Unrestricted_Access, Node));
306 end Ceiling;
308 -----------
309 -- Clear --
310 -----------
312 procedure Clear is new Tree_Operations.Generic_Clear (Delete_Tree);
314 procedure Clear (Container : in out Set) is
315 begin
316 Clear (Container.Tree);
317 end Clear;
319 -----------
320 -- Color --
321 -----------
323 function Color (Node : Node_Access) return Color_Type is
324 begin
325 return Node.Color;
326 end Color;
328 ------------------------
329 -- Constant_Reference --
330 ------------------------
332 function Constant_Reference
333 (Container : aliased Set;
334 Position : Cursor) return Constant_Reference_Type
336 begin
337 if Position.Container = null then
338 raise Constraint_Error with "Position cursor has no element";
339 end if;
341 if Position.Container /= Container'Unrestricted_Access then
342 raise Program_Error with
343 "Position cursor designates wrong container";
344 end if;
346 pragma Assert
347 (Vet (Container.Tree, Position.Node),
348 "bad cursor in Constant_Reference");
350 declare
351 Tree : Tree_Type renames Position.Container.all.Tree;
352 B : Natural renames Tree.Busy;
353 L : Natural renames Tree.Lock;
354 begin
355 return R : constant Constant_Reference_Type :=
356 (Element => Position.Node.Element'Access,
357 Control => (Controlled with Container'Unrestricted_Access))
359 B := B + 1;
360 L := L + 1;
361 end return;
362 end;
363 end Constant_Reference;
365 --------------
366 -- Contains --
367 --------------
369 function Contains
370 (Container : Set;
371 Item : Element_Type) return Boolean
373 begin
374 return Find (Container, Item) /= No_Element;
375 end Contains;
377 ----------
378 -- Copy --
379 ----------
381 function Copy (Source : Set) return Set is
382 begin
383 return Target : Set do
384 Target.Assign (Source);
385 end return;
386 end Copy;
388 ---------------
389 -- Copy_Node --
390 ---------------
392 function Copy_Node (Source : Node_Access) return Node_Access is
393 Target : constant Node_Access :=
394 new Node_Type'(Parent => null,
395 Left => null,
396 Right => null,
397 Color => Source.Color,
398 Element => Source.Element);
399 begin
400 return Target;
401 end Copy_Node;
403 ------------
404 -- Delete --
405 ------------
407 procedure Delete (Container : in out Set; Position : in out Cursor) is
408 begin
409 if Position.Node = null then
410 raise Constraint_Error with "Position cursor equals No_Element";
411 end if;
413 if Position.Container /= Container'Unrestricted_Access then
414 raise Program_Error with "Position cursor designates wrong set";
415 end if;
417 pragma Assert (Vet (Container.Tree, Position.Node),
418 "bad cursor in Delete");
420 Tree_Operations.Delete_Node_Sans_Free (Container.Tree, Position.Node);
421 Free (Position.Node);
422 Position.Container := null;
423 end Delete;
425 procedure Delete (Container : in out Set; Item : Element_Type) is
426 X : Node_Access := Element_Keys.Find (Container.Tree, Item);
428 begin
429 if X = null then
430 raise Constraint_Error with "attempt to delete element not in set";
431 end if;
433 Tree_Operations.Delete_Node_Sans_Free (Container.Tree, X);
434 Free (X);
435 end Delete;
437 ------------------
438 -- Delete_First --
439 ------------------
441 procedure Delete_First (Container : in out Set) is
442 Tree : Tree_Type renames Container.Tree;
443 X : Node_Access := Tree.First;
444 begin
445 if X /= null then
446 Tree_Operations.Delete_Node_Sans_Free (Tree, X);
447 Free (X);
448 end if;
449 end Delete_First;
451 -----------------
452 -- Delete_Last --
453 -----------------
455 procedure Delete_Last (Container : in out Set) is
456 Tree : Tree_Type renames Container.Tree;
457 X : Node_Access := Tree.Last;
458 begin
459 if X /= null then
460 Tree_Operations.Delete_Node_Sans_Free (Tree, X);
461 Free (X);
462 end if;
463 end Delete_Last;
465 ----------------
466 -- Difference --
467 ----------------
469 procedure Difference (Target : in out Set; Source : Set) is
470 begin
471 Set_Ops.Difference (Target.Tree, Source.Tree);
472 end Difference;
474 function Difference (Left, Right : Set) return Set is
475 Tree : constant Tree_Type := Set_Ops.Difference (Left.Tree, Right.Tree);
476 begin
477 return Set'(Controlled with Tree);
478 end Difference;
480 -------------
481 -- Element --
482 -------------
484 function Element (Position : Cursor) return Element_Type is
485 begin
486 if Position.Node = null then
487 raise Constraint_Error with "Position cursor equals No_Element";
488 end if;
490 pragma Assert (Vet (Position.Container.Tree, Position.Node),
491 "bad cursor in Element");
493 return Position.Node.Element;
494 end Element;
496 -------------------------
497 -- Equivalent_Elements --
498 -------------------------
500 function Equivalent_Elements (Left, Right : Element_Type) return Boolean is
501 begin
502 return (if Left < Right or else Right < Left then False else True);
503 end Equivalent_Elements;
505 ---------------------
506 -- Equivalent_Sets --
507 ---------------------
509 function Equivalent_Sets (Left, Right : Set) return Boolean is
510 function Is_Equivalent_Node_Node (L, R : Node_Access) return Boolean;
511 pragma Inline (Is_Equivalent_Node_Node);
513 function Is_Equivalent is
514 new Tree_Operations.Generic_Equal (Is_Equivalent_Node_Node);
516 -----------------------------
517 -- Is_Equivalent_Node_Node --
518 -----------------------------
520 function Is_Equivalent_Node_Node (L, R : Node_Access) return Boolean is
521 begin
522 return (if L.Element < R.Element then False
523 elsif R.Element < L.Element then False
524 else True);
525 end Is_Equivalent_Node_Node;
527 -- Start of processing for Equivalent_Sets
529 begin
530 return Is_Equivalent (Left.Tree, Right.Tree);
531 end Equivalent_Sets;
533 -------------
534 -- Exclude --
535 -------------
537 procedure Exclude (Container : in out Set; Item : Element_Type) is
538 X : Node_Access := Element_Keys.Find (Container.Tree, Item);
540 begin
541 if X /= null then
542 Tree_Operations.Delete_Node_Sans_Free (Container.Tree, X);
543 Free (X);
544 end if;
545 end Exclude;
547 --------------
548 -- Finalize --
549 --------------
551 procedure Finalize (Object : in out Iterator) is
552 begin
553 if Object.Container /= null then
554 declare
555 B : Natural renames Object.Container.all.Tree.Busy;
556 begin
557 B := B - 1;
558 end;
559 end if;
560 end Finalize;
562 procedure Finalize (Control : in out Reference_Control_Type) is
563 begin
564 if Control.Container /= null then
565 declare
566 Tree : Tree_Type renames Control.Container.all.Tree;
567 B : Natural renames Tree.Busy;
568 L : Natural renames Tree.Lock;
569 begin
570 B := B - 1;
571 L := L - 1;
572 end;
574 Control.Container := null;
575 end if;
576 end Finalize;
578 ----------
579 -- Find --
580 ----------
582 function Find (Container : Set; Item : Element_Type) return Cursor is
583 Node : constant Node_Access := Element_Keys.Find (Container.Tree, Item);
584 begin
585 return (if Node = null then No_Element
586 else Cursor'(Container'Unrestricted_Access, Node));
587 end Find;
589 -----------
590 -- First --
591 -----------
593 function First (Container : Set) return Cursor is
594 begin
595 return
596 (if Container.Tree.First = null then No_Element
597 else Cursor'(Container'Unrestricted_Access, Container.Tree.First));
598 end First;
600 function First (Object : Iterator) return Cursor is
601 begin
602 -- The value of the iterator object's Node component influences the
603 -- behavior of the First (and Last) selector function.
605 -- When the Node component is null, this means the iterator object was
606 -- constructed without a start expression, in which case the (forward)
607 -- iteration starts from the (logical) beginning of the entire sequence
608 -- of items (corresponding to Container.First, for a forward iterator).
610 -- Otherwise, this is iteration over a partial sequence of items. When
611 -- the Node component is non-null, the iterator object was constructed
612 -- with a start expression, that specifies the position from which the
613 -- (forward) partial iteration begins.
615 if Object.Node = null then
616 return Object.Container.First;
617 else
618 return Cursor'(Object.Container, Object.Node);
619 end if;
620 end First;
622 -------------------
623 -- First_Element --
624 -------------------
626 function First_Element (Container : Set) return Element_Type is
627 begin
628 if Container.Tree.First = null then
629 raise Constraint_Error with "set is empty";
630 end if;
632 return Container.Tree.First.Element;
633 end First_Element;
635 -----------
636 -- Floor --
637 -----------
639 function Floor (Container : Set; Item : Element_Type) return Cursor is
640 Node : constant Node_Access := Element_Keys.Floor (Container.Tree, Item);
641 begin
642 return (if Node = null then No_Element
643 else Cursor'(Container'Unrestricted_Access, Node));
644 end Floor;
646 ----------
647 -- Free --
648 ----------
650 procedure Free (X : in out Node_Access) is
651 procedure Deallocate is
652 new Ada.Unchecked_Deallocation (Node_Type, Node_Access);
653 begin
654 if X /= null then
655 X.Parent := X;
656 X.Left := X;
657 X.Right := X;
658 Deallocate (X);
659 end if;
660 end Free;
662 ------------------
663 -- Generic_Keys --
664 ------------------
666 package body Generic_Keys is
668 -----------------------
669 -- Local Subprograms --
670 -----------------------
672 function Is_Greater_Key_Node
673 (Left : Key_Type;
674 Right : Node_Access) return Boolean;
675 pragma Inline (Is_Greater_Key_Node);
677 function Is_Less_Key_Node
678 (Left : Key_Type;
679 Right : Node_Access) return Boolean;
680 pragma Inline (Is_Less_Key_Node);
682 --------------------------
683 -- Local Instantiations --
684 --------------------------
686 package Key_Keys is
687 new Red_Black_Trees.Generic_Keys
688 (Tree_Operations => Tree_Operations,
689 Key_Type => Key_Type,
690 Is_Less_Key_Node => Is_Less_Key_Node,
691 Is_Greater_Key_Node => Is_Greater_Key_Node);
693 ------------
694 -- Adjust --
695 ------------
697 procedure Adjust (Control : in out Reference_Control_Type) is
698 begin
699 if Control.Container /= null then
700 declare
701 Tree : Tree_Type renames Control.Container.Tree;
702 B : Natural renames Tree.Busy;
703 L : Natural renames Tree.Lock;
704 begin
705 B := B + 1;
706 L := L + 1;
707 end;
708 end if;
709 end Adjust;
711 -------------
712 -- Ceiling --
713 -------------
715 function Ceiling (Container : Set; Key : Key_Type) return Cursor is
716 Node : constant Node_Access := Key_Keys.Ceiling (Container.Tree, Key);
717 begin
718 return (if Node = null then No_Element
719 else Cursor'(Container'Unrestricted_Access, Node));
720 end Ceiling;
722 ------------------------
723 -- Constant_Reference --
724 ------------------------
726 function Constant_Reference
727 (Container : aliased Set;
728 Key : Key_Type) return Constant_Reference_Type
730 Node : constant Node_Access := Key_Keys.Find (Container.Tree, Key);
732 begin
733 if Node = null then
734 raise Constraint_Error with "key not in set";
735 end if;
737 declare
738 Tree : Tree_Type renames Container'Unrestricted_Access.all.Tree;
739 B : Natural renames Tree.Busy;
740 L : Natural renames Tree.Lock;
741 begin
742 return R : constant Constant_Reference_Type :=
743 (Element => Node.Element'Access,
744 Control => (Controlled with Container'Unrestricted_Access))
746 B := B + 1;
747 L := L + 1;
748 end return;
749 end;
750 end Constant_Reference;
752 --------------
753 -- Contains --
754 --------------
756 function Contains (Container : Set; Key : Key_Type) return Boolean is
757 begin
758 return Find (Container, Key) /= No_Element;
759 end Contains;
761 ------------
762 -- Delete --
763 ------------
765 procedure Delete (Container : in out Set; Key : Key_Type) is
766 X : Node_Access := Key_Keys.Find (Container.Tree, Key);
768 begin
769 if X = null then
770 raise Constraint_Error with "attempt to delete key not in set";
771 end if;
773 Delete_Node_Sans_Free (Container.Tree, X);
774 Free (X);
775 end Delete;
777 -------------
778 -- Element --
779 -------------
781 function Element (Container : Set; Key : Key_Type) return Element_Type is
782 Node : constant Node_Access := Key_Keys.Find (Container.Tree, Key);
784 begin
785 if Node = null then
786 raise Constraint_Error with "key not in set";
787 end if;
789 return Node.Element;
790 end Element;
792 ---------------------
793 -- Equivalent_Keys --
794 ---------------------
796 function Equivalent_Keys (Left, Right : Key_Type) return Boolean is
797 begin
798 return (if Left < Right or else Right < Left then False else True);
799 end Equivalent_Keys;
801 -------------
802 -- Exclude --
803 -------------
805 procedure Exclude (Container : in out Set; Key : Key_Type) is
806 X : Node_Access := Key_Keys.Find (Container.Tree, Key);
807 begin
808 if X /= null then
809 Delete_Node_Sans_Free (Container.Tree, X);
810 Free (X);
811 end if;
812 end Exclude;
814 --------------
815 -- Finalize --
816 --------------
818 procedure Finalize (Control : in out Reference_Control_Type) is
819 begin
820 if Control.Container /= null then
821 declare
822 Tree : Tree_Type renames Control.Container.Tree;
823 B : Natural renames Tree.Busy;
824 L : Natural renames Tree.Lock;
825 begin
826 B := B - 1;
827 L := L - 1;
828 end;
830 if not (Key (Control.Pos) = Control.Old_Key.all) then
831 Delete (Control.Container.all, Key (Control.Pos));
832 raise Program_Error;
833 end if;
835 Control.Container := null;
836 Control.Old_Key := null;
837 end if;
838 end Finalize;
840 ----------
841 -- Find --
842 ----------
844 function Find (Container : Set; Key : Key_Type) return Cursor is
845 Node : constant Node_Access := Key_Keys.Find (Container.Tree, Key);
846 begin
847 return (if Node = null then No_Element
848 else Cursor'(Container'Unrestricted_Access, Node));
849 end Find;
851 -----------
852 -- Floor --
853 -----------
855 function Floor (Container : Set; Key : Key_Type) return Cursor is
856 Node : constant Node_Access := Key_Keys.Floor (Container.Tree, Key);
857 begin
858 return (if Node = null then No_Element
859 else Cursor'(Container'Unrestricted_Access, Node));
860 end Floor;
862 -------------------------
863 -- Is_Greater_Key_Node --
864 -------------------------
866 function Is_Greater_Key_Node
867 (Left : Key_Type;
868 Right : Node_Access) return Boolean
870 begin
871 return Key (Right.Element) < Left;
872 end Is_Greater_Key_Node;
874 ----------------------
875 -- Is_Less_Key_Node --
876 ----------------------
878 function Is_Less_Key_Node
879 (Left : Key_Type;
880 Right : Node_Access) return Boolean
882 begin
883 return Left < Key (Right.Element);
884 end Is_Less_Key_Node;
886 ---------
887 -- Key --
888 ---------
890 function Key (Position : Cursor) return Key_Type is
891 begin
892 if Position.Node = null then
893 raise Constraint_Error with
894 "Position cursor equals No_Element";
895 end if;
897 pragma Assert (Vet (Position.Container.Tree, Position.Node),
898 "bad cursor in Key");
900 return Key (Position.Node.Element);
901 end Key;
903 ----------
904 -- Read --
905 ----------
907 procedure Read
908 (Stream : not null access Root_Stream_Type'Class;
909 Item : out Reference_Type)
911 begin
912 raise Program_Error with "attempt to stream reference";
913 end Read;
915 ------------------------------
916 -- Reference_Preserving_Key --
917 ------------------------------
919 function Reference_Preserving_Key
920 (Container : aliased in out Set;
921 Position : Cursor) return Reference_Type
923 begin
924 if Position.Container = null then
925 raise Constraint_Error with "Position cursor has no element";
926 end if;
928 if Position.Container /= Container'Unrestricted_Access then
929 raise Program_Error with
930 "Position cursor designates wrong container";
931 end if;
933 pragma Assert
934 (Vet (Container.Tree, Position.Node),
935 "bad cursor in function Reference_Preserving_Key");
937 declare
938 Tree : Tree_Type renames Container.Tree;
939 B : Natural renames Tree.Busy;
940 L : Natural renames Tree.Lock;
942 begin
943 return R : constant Reference_Type :=
944 (Element => Position.Node.Element'Access,
945 Control =>
946 (Controlled with
947 Container => Container'Access,
948 Pos => Position,
949 Old_Key => new Key_Type'(Key (Position))))
951 B := B + 1;
952 L := L + 1;
953 end return;
954 end;
955 end Reference_Preserving_Key;
957 function Reference_Preserving_Key
958 (Container : aliased in out Set;
959 Key : Key_Type) return Reference_Type
961 Node : constant Node_Access := Key_Keys.Find (Container.Tree, Key);
963 begin
964 if Node = null then
965 raise Constraint_Error with "key not in set";
966 end if;
968 declare
969 Tree : Tree_Type renames Container.Tree;
970 B : Natural renames Tree.Busy;
971 L : Natural renames Tree.Lock;
973 begin
974 return R : constant Reference_Type :=
975 (Element => Node.Element'Access,
976 Control =>
977 (Controlled with
978 Container => Container'Access,
979 Pos => Find (Container, Key),
980 Old_Key => new Key_Type'(Key)))
982 B := B + 1;
983 L := L + 1;
984 end return;
985 end;
986 end Reference_Preserving_Key;
988 -------------
989 -- Replace --
990 -------------
992 procedure Replace
993 (Container : in out Set;
994 Key : Key_Type;
995 New_Item : Element_Type)
997 Node : constant Node_Access := Key_Keys.Find (Container.Tree, Key);
999 begin
1000 if Node = null then
1001 raise Constraint_Error with
1002 "attempt to replace key not in set";
1003 end if;
1005 Replace_Element (Container.Tree, Node, New_Item);
1006 end Replace;
1008 -----------------------------------
1009 -- Update_Element_Preserving_Key --
1010 -----------------------------------
1012 procedure Update_Element_Preserving_Key
1013 (Container : in out Set;
1014 Position : Cursor;
1015 Process : not null access procedure (Element : in out Element_Type))
1017 Tree : Tree_Type renames Container.Tree;
1019 begin
1020 if Position.Node = null then
1021 raise Constraint_Error with
1022 "Position cursor equals No_Element";
1023 end if;
1025 if Position.Container /= Container'Unrestricted_Access then
1026 raise Program_Error with
1027 "Position cursor designates wrong set";
1028 end if;
1030 pragma Assert (Vet (Container.Tree, Position.Node),
1031 "bad cursor in Update_Element_Preserving_Key");
1033 declare
1034 E : Element_Type renames Position.Node.Element;
1035 K : constant Key_Type := Key (E);
1037 B : Natural renames Tree.Busy;
1038 L : Natural renames Tree.Lock;
1040 Eq : Boolean;
1042 begin
1043 B := B + 1;
1044 L := L + 1;
1046 begin
1047 Process (E);
1048 Eq := Equivalent_Keys (K, Key (E));
1049 exception
1050 when others =>
1051 L := L - 1;
1052 B := B - 1;
1053 raise;
1054 end;
1056 L := L - 1;
1057 B := B - 1;
1059 if Eq then
1060 return;
1061 end if;
1062 end;
1064 declare
1065 X : Node_Access := Position.Node;
1066 begin
1067 Tree_Operations.Delete_Node_Sans_Free (Tree, X);
1068 Free (X);
1069 end;
1071 raise Program_Error with "key was modified";
1072 end Update_Element_Preserving_Key;
1074 -----------
1075 -- Write --
1076 -----------
1078 procedure Write
1079 (Stream : not null access Root_Stream_Type'Class;
1080 Item : Reference_Type)
1082 begin
1083 raise Program_Error with "attempt to stream reference";
1084 end Write;
1086 end Generic_Keys;
1088 -----------------
1089 -- Has_Element --
1090 -----------------
1092 function Has_Element (Position : Cursor) return Boolean is
1093 begin
1094 return Position /= No_Element;
1095 end Has_Element;
1097 -------------
1098 -- Include --
1099 -------------
1101 procedure Include (Container : in out Set; New_Item : Element_Type) is
1102 Position : Cursor;
1103 Inserted : Boolean;
1105 begin
1106 Insert (Container, New_Item, Position, Inserted);
1108 if not Inserted then
1109 if Container.Tree.Lock > 0 then
1110 raise Program_Error with
1111 "attempt to tamper with elements (set is locked)";
1112 end if;
1114 Position.Node.Element := New_Item;
1115 end if;
1116 end Include;
1118 ------------
1119 -- Insert --
1120 ------------
1122 procedure Insert
1123 (Container : in out Set;
1124 New_Item : Element_Type;
1125 Position : out Cursor;
1126 Inserted : out Boolean)
1128 begin
1129 Insert_Sans_Hint
1130 (Container.Tree,
1131 New_Item,
1132 Position.Node,
1133 Inserted);
1135 Position.Container := Container'Unrestricted_Access;
1136 end Insert;
1138 procedure Insert
1139 (Container : in out Set;
1140 New_Item : Element_Type)
1142 Position : Cursor;
1143 pragma Unreferenced (Position);
1145 Inserted : Boolean;
1147 begin
1148 Insert (Container, New_Item, Position, Inserted);
1150 if not Inserted then
1151 raise Constraint_Error with
1152 "attempt to insert element already in set";
1153 end if;
1154 end Insert;
1156 ----------------------
1157 -- Insert_Sans_Hint --
1158 ----------------------
1160 procedure Insert_Sans_Hint
1161 (Tree : in out Tree_Type;
1162 New_Item : Element_Type;
1163 Node : out Node_Access;
1164 Inserted : out Boolean)
1166 function New_Node return Node_Access;
1167 pragma Inline (New_Node);
1169 procedure Insert_Post is
1170 new Element_Keys.Generic_Insert_Post (New_Node);
1172 procedure Conditional_Insert_Sans_Hint is
1173 new Element_Keys.Generic_Conditional_Insert (Insert_Post);
1175 --------------
1176 -- New_Node --
1177 --------------
1179 function New_Node return Node_Access is
1180 begin
1181 return new Node_Type'(Parent => null,
1182 Left => null,
1183 Right => null,
1184 Color => Red_Black_Trees.Red,
1185 Element => New_Item);
1186 end New_Node;
1188 -- Start of processing for Insert_Sans_Hint
1190 begin
1191 Conditional_Insert_Sans_Hint
1192 (Tree,
1193 New_Item,
1194 Node,
1195 Inserted);
1196 end Insert_Sans_Hint;
1198 ----------------------
1199 -- Insert_With_Hint --
1200 ----------------------
1202 procedure Insert_With_Hint
1203 (Dst_Tree : in out Tree_Type;
1204 Dst_Hint : Node_Access;
1205 Src_Node : Node_Access;
1206 Dst_Node : out Node_Access)
1208 Success : Boolean;
1209 pragma Unreferenced (Success);
1211 function New_Node return Node_Access;
1212 pragma Inline (New_Node);
1214 procedure Insert_Post is
1215 new Element_Keys.Generic_Insert_Post (New_Node);
1217 procedure Insert_Sans_Hint is
1218 new Element_Keys.Generic_Conditional_Insert (Insert_Post);
1220 procedure Local_Insert_With_Hint is
1221 new Element_Keys.Generic_Conditional_Insert_With_Hint
1222 (Insert_Post,
1223 Insert_Sans_Hint);
1225 --------------
1226 -- New_Node --
1227 --------------
1229 function New_Node return Node_Access is
1230 Node : constant Node_Access :=
1231 new Node_Type'(Parent => null,
1232 Left => null,
1233 Right => null,
1234 Color => Red,
1235 Element => Src_Node.Element);
1236 begin
1237 return Node;
1238 end New_Node;
1240 -- Start of processing for Insert_With_Hint
1242 begin
1243 Local_Insert_With_Hint
1244 (Dst_Tree,
1245 Dst_Hint,
1246 Src_Node.Element,
1247 Dst_Node,
1248 Success);
1249 end Insert_With_Hint;
1251 ------------------
1252 -- Intersection --
1253 ------------------
1255 procedure Intersection (Target : in out Set; Source : Set) is
1256 begin
1257 Set_Ops.Intersection (Target.Tree, Source.Tree);
1258 end Intersection;
1260 function Intersection (Left, Right : Set) return Set is
1261 Tree : constant Tree_Type :=
1262 Set_Ops.Intersection (Left.Tree, Right.Tree);
1263 begin
1264 return Set'(Controlled with Tree);
1265 end Intersection;
1267 --------------
1268 -- Is_Empty --
1269 --------------
1271 function Is_Empty (Container : Set) return Boolean is
1272 begin
1273 return Container.Tree.Length = 0;
1274 end Is_Empty;
1276 ------------------------
1277 -- Is_Equal_Node_Node --
1278 ------------------------
1280 function Is_Equal_Node_Node (L, R : Node_Access) return Boolean is
1281 begin
1282 return L.Element = R.Element;
1283 end Is_Equal_Node_Node;
1285 -----------------------------
1286 -- Is_Greater_Element_Node --
1287 -----------------------------
1289 function Is_Greater_Element_Node
1290 (Left : Element_Type;
1291 Right : Node_Access) return Boolean
1293 begin
1294 -- Compute e > node same as node < e
1296 return Right.Element < Left;
1297 end Is_Greater_Element_Node;
1299 --------------------------
1300 -- Is_Less_Element_Node --
1301 --------------------------
1303 function Is_Less_Element_Node
1304 (Left : Element_Type;
1305 Right : Node_Access) return Boolean
1307 begin
1308 return Left < Right.Element;
1309 end Is_Less_Element_Node;
1311 -----------------------
1312 -- Is_Less_Node_Node --
1313 -----------------------
1315 function Is_Less_Node_Node (L, R : Node_Access) return Boolean is
1316 begin
1317 return L.Element < R.Element;
1318 end Is_Less_Node_Node;
1320 ---------------
1321 -- Is_Subset --
1322 ---------------
1324 function Is_Subset (Subset : Set; Of_Set : Set) return Boolean is
1325 begin
1326 return Set_Ops.Is_Subset (Subset => Subset.Tree, Of_Set => Of_Set.Tree);
1327 end Is_Subset;
1329 -------------
1330 -- Iterate --
1331 -------------
1333 procedure Iterate
1334 (Container : Set;
1335 Process : not null access procedure (Position : Cursor))
1337 procedure Process_Node (Node : Node_Access);
1338 pragma Inline (Process_Node);
1340 procedure Local_Iterate is
1341 new Tree_Operations.Generic_Iteration (Process_Node);
1343 ------------------
1344 -- Process_Node --
1345 ------------------
1347 procedure Process_Node (Node : Node_Access) is
1348 begin
1349 Process (Cursor'(Container'Unrestricted_Access, Node));
1350 end Process_Node;
1352 T : Tree_Type renames Container'Unrestricted_Access.all.Tree;
1353 B : Natural renames T.Busy;
1355 -- Start of processing for Iterate
1357 begin
1358 B := B + 1;
1360 begin
1361 Local_Iterate (T);
1362 exception
1363 when others =>
1364 B := B - 1;
1365 raise;
1366 end;
1368 B := B - 1;
1369 end Iterate;
1371 function Iterate (Container : Set)
1372 return Set_Iterator_Interfaces.Reversible_Iterator'Class
1374 B : Natural renames Container'Unrestricted_Access.all.Tree.Busy;
1376 begin
1377 -- The value of the Node component influences the behavior of the First
1378 -- and Last selector functions of the iterator object. When the Node
1379 -- component is null (as is the case here), this means the iterator
1380 -- object was constructed without a start expression. This is a complete
1381 -- iterator, meaning that the iteration starts from the (logical)
1382 -- beginning of the sequence of items.
1384 -- Note: For a forward iterator, Container.First is the beginning, and
1385 -- for a reverse iterator, Container.Last is the beginning.
1387 B := B + 1;
1389 return It : constant Iterator :=
1390 Iterator'(Limited_Controlled with
1391 Container => Container'Unrestricted_Access,
1392 Node => null);
1393 end Iterate;
1395 function Iterate (Container : Set; Start : Cursor)
1396 return Set_Iterator_Interfaces.Reversible_Iterator'Class
1398 B : Natural renames Container'Unrestricted_Access.all.Tree.Busy;
1400 begin
1401 -- It was formerly the case that when Start = No_Element, the partial
1402 -- iterator was defined to behave the same as for a complete iterator,
1403 -- and iterate over the entire sequence of items. However, those
1404 -- semantics were unintuitive and arguably error-prone (it is too easy
1405 -- to accidentally create an endless loop), and so they were changed,
1406 -- per the ARG meeting in Denver on 2011/11. However, there was no
1407 -- consensus about what positive meaning this corner case should have,
1408 -- and so it was decided to simply raise an exception. This does imply,
1409 -- however, that it is not possible to use a partial iterator to specify
1410 -- an empty sequence of items.
1412 if Start = No_Element then
1413 raise Constraint_Error with
1414 "Start position for iterator equals No_Element";
1415 end if;
1417 if Start.Container /= Container'Unrestricted_Access then
1418 raise Program_Error with
1419 "Start cursor of Iterate designates wrong set";
1420 end if;
1422 pragma Assert (Vet (Container.Tree, Start.Node),
1423 "Start cursor of Iterate is bad");
1425 -- The value of the Node component influences the behavior of the First
1426 -- and Last selector functions of the iterator object. When the Node
1427 -- component is non-null (as is the case here), it means that this is a
1428 -- partial iteration, over a subset of the complete sequence of
1429 -- items. The iterator object was constructed with a start expression,
1430 -- indicating the position from which the iteration begins. Note that
1431 -- the start position has the same value irrespective of whether this is
1432 -- a forward or reverse iteration.
1434 B := B + 1;
1436 return It : constant Iterator :=
1437 Iterator'(Limited_Controlled with
1438 Container => Container'Unrestricted_Access,
1439 Node => Start.Node);
1440 end Iterate;
1442 ----------
1443 -- Last --
1444 ----------
1446 function Last (Container : Set) return Cursor is
1447 begin
1448 return
1449 (if Container.Tree.Last = null then No_Element
1450 else Cursor'(Container'Unrestricted_Access, Container.Tree.Last));
1451 end Last;
1453 function Last (Object : Iterator) return Cursor is
1454 begin
1455 -- The value of the iterator object's Node component influences the
1456 -- behavior of the Last (and First) selector function.
1458 -- When the Node component is null, this means the iterator object was
1459 -- constructed without a start expression, in which case the (reverse)
1460 -- iteration starts from the (logical) beginning of the entire sequence
1461 -- (corresponding to Container.Last, for a reverse iterator).
1463 -- Otherwise, this is iteration over a partial sequence of items. When
1464 -- the Node component is non-null, the iterator object was constructed
1465 -- with a start expression, that specifies the position from which the
1466 -- (reverse) partial iteration begins.
1468 if Object.Node = null then
1469 return Object.Container.Last;
1470 else
1471 return Cursor'(Object.Container, Object.Node);
1472 end if;
1473 end Last;
1475 ------------------
1476 -- Last_Element --
1477 ------------------
1479 function Last_Element (Container : Set) return Element_Type is
1480 begin
1481 if Container.Tree.Last = null then
1482 raise Constraint_Error with "set is empty";
1483 else
1484 return Container.Tree.Last.Element;
1485 end if;
1486 end Last_Element;
1488 ----------
1489 -- Left --
1490 ----------
1492 function Left (Node : Node_Access) return Node_Access is
1493 begin
1494 return Node.Left;
1495 end Left;
1497 ------------
1498 -- Length --
1499 ------------
1501 function Length (Container : Set) return Count_Type is
1502 begin
1503 return Container.Tree.Length;
1504 end Length;
1506 ----------
1507 -- Move --
1508 ----------
1510 procedure Move is new Tree_Operations.Generic_Move (Clear);
1512 procedure Move (Target : in out Set; Source : in out Set) is
1513 begin
1514 Move (Target => Target.Tree, Source => Source.Tree);
1515 end Move;
1517 ----------
1518 -- Next --
1519 ----------
1521 function Next (Position : Cursor) return Cursor is
1522 begin
1523 if Position = No_Element then
1524 return No_Element;
1525 end if;
1527 pragma Assert (Vet (Position.Container.Tree, Position.Node),
1528 "bad cursor in Next");
1530 declare
1531 Node : constant Node_Access :=
1532 Tree_Operations.Next (Position.Node);
1533 begin
1534 return (if Node = null then No_Element
1535 else Cursor'(Position.Container, Node));
1536 end;
1537 end Next;
1539 procedure Next (Position : in out Cursor) is
1540 begin
1541 Position := Next (Position);
1542 end Next;
1544 function Next (Object : Iterator; Position : Cursor) return Cursor is
1545 begin
1546 if Position.Container = null then
1547 return No_Element;
1548 end if;
1550 if Position.Container /= Object.Container then
1551 raise Program_Error with
1552 "Position cursor of Next designates wrong set";
1553 end if;
1555 return Next (Position);
1556 end Next;
1558 -------------
1559 -- Overlap --
1560 -------------
1562 function Overlap (Left, Right : Set) return Boolean is
1563 begin
1564 return Set_Ops.Overlap (Left.Tree, Right.Tree);
1565 end Overlap;
1567 ------------
1568 -- Parent --
1569 ------------
1571 function Parent (Node : Node_Access) return Node_Access is
1572 begin
1573 return Node.Parent;
1574 end Parent;
1576 --------------
1577 -- Previous --
1578 --------------
1580 function Previous (Position : Cursor) return Cursor is
1581 begin
1582 if Position = No_Element then
1583 return No_Element;
1584 end if;
1586 pragma Assert (Vet (Position.Container.Tree, Position.Node),
1587 "bad cursor in Previous");
1589 declare
1590 Node : constant Node_Access :=
1591 Tree_Operations.Previous (Position.Node);
1592 begin
1593 return (if Node = null then No_Element
1594 else Cursor'(Position.Container, Node));
1595 end;
1596 end Previous;
1598 procedure Previous (Position : in out Cursor) is
1599 begin
1600 Position := Previous (Position);
1601 end Previous;
1603 function Previous (Object : Iterator; Position : Cursor) return Cursor is
1604 begin
1605 if Position.Container = null then
1606 return No_Element;
1607 end if;
1609 if Position.Container /= Object.Container then
1610 raise Program_Error with
1611 "Position cursor of Previous designates wrong set";
1612 end if;
1614 return Previous (Position);
1615 end Previous;
1617 -------------------
1618 -- Query_Element --
1619 -------------------
1621 procedure Query_Element
1622 (Position : Cursor;
1623 Process : not null access procedure (Element : Element_Type))
1625 begin
1626 if Position.Node = null then
1627 raise Constraint_Error with "Position cursor equals No_Element";
1628 end if;
1630 pragma Assert (Vet (Position.Container.Tree, Position.Node),
1631 "bad cursor in Query_Element");
1633 declare
1634 T : Tree_Type renames Position.Container.Tree;
1636 B : Natural renames T.Busy;
1637 L : Natural renames T.Lock;
1639 begin
1640 B := B + 1;
1641 L := L + 1;
1643 begin
1644 Process (Position.Node.Element);
1645 exception
1646 when others =>
1647 L := L - 1;
1648 B := B - 1;
1649 raise;
1650 end;
1652 L := L - 1;
1653 B := B - 1;
1654 end;
1655 end Query_Element;
1657 ----------
1658 -- Read --
1659 ----------
1661 procedure Read
1662 (Stream : not null access Root_Stream_Type'Class;
1663 Container : out Set)
1665 function Read_Node
1666 (Stream : not null access Root_Stream_Type'Class) return Node_Access;
1667 pragma Inline (Read_Node);
1669 procedure Read is
1670 new Tree_Operations.Generic_Read (Clear, Read_Node);
1672 ---------------
1673 -- Read_Node --
1674 ---------------
1676 function Read_Node
1677 (Stream : not null access Root_Stream_Type'Class) return Node_Access
1679 Node : Node_Access := new Node_Type;
1680 begin
1681 Element_Type'Read (Stream, Node.Element);
1682 return Node;
1683 exception
1684 when others =>
1685 Free (Node);
1686 raise;
1687 end Read_Node;
1689 -- Start of processing for Read
1691 begin
1692 Read (Stream, Container.Tree);
1693 end Read;
1695 procedure Read
1696 (Stream : not null access Root_Stream_Type'Class;
1697 Item : out Cursor)
1699 begin
1700 raise Program_Error with "attempt to stream set cursor";
1701 end Read;
1703 procedure Read
1704 (Stream : not null access Root_Stream_Type'Class;
1705 Item : out Constant_Reference_Type)
1707 begin
1708 raise Program_Error with "attempt to stream reference";
1709 end Read;
1711 -------------
1712 -- Replace --
1713 -------------
1715 procedure Replace (Container : in out Set; New_Item : Element_Type) is
1716 Node : constant Node_Access :=
1717 Element_Keys.Find (Container.Tree, New_Item);
1719 begin
1720 if Node = null then
1721 raise Constraint_Error with
1722 "attempt to replace element not in set";
1723 end if;
1725 if Container.Tree.Lock > 0 then
1726 raise Program_Error with
1727 "attempt to tamper with elements (set is locked)";
1728 end if;
1730 Node.Element := New_Item;
1731 end Replace;
1733 ---------------------
1734 -- Replace_Element --
1735 ---------------------
1737 procedure Replace_Element
1738 (Tree : in out Tree_Type;
1739 Node : Node_Access;
1740 Item : Element_Type)
1742 pragma Assert (Node /= null);
1744 function New_Node return Node_Access;
1745 pragma Inline (New_Node);
1747 procedure Local_Insert_Post is
1748 new Element_Keys.Generic_Insert_Post (New_Node);
1750 procedure Local_Insert_Sans_Hint is
1751 new Element_Keys.Generic_Conditional_Insert (Local_Insert_Post);
1753 procedure Local_Insert_With_Hint is
1754 new Element_Keys.Generic_Conditional_Insert_With_Hint
1755 (Local_Insert_Post,
1756 Local_Insert_Sans_Hint);
1758 --------------
1759 -- New_Node --
1760 --------------
1762 function New_Node return Node_Access is
1763 begin
1764 Node.Element := Item;
1765 Node.Color := Red;
1766 Node.Parent := null;
1767 Node.Right := null;
1768 Node.Left := null;
1769 return Node;
1770 end New_Node;
1772 Hint : Node_Access;
1773 Result : Node_Access;
1774 Inserted : Boolean;
1775 Compare : Boolean;
1777 -- Per AI05-0022, the container implementation is required to detect
1778 -- element tampering by a generic actual subprogram.
1780 B : Natural renames Tree.Busy;
1781 L : Natural renames Tree.Lock;
1783 -- Start of processing for Replace_Element
1785 begin
1786 -- Replace_Element assigns value Item to the element designated by Node,
1787 -- per certain semantic constraints.
1789 -- If Item is equivalent to the element, then element is replaced and
1790 -- there's nothing else to do. This is the easy case.
1792 -- If Item is not equivalent, then the node will (possibly) have to move
1793 -- to some other place in the tree. This is slighly more complicated,
1794 -- because we must ensure that Item is not equivalent to some other
1795 -- element in the tree (in which case, the replacement is not allowed).
1797 -- Determine whether Item is equivalent to element on the specified
1798 -- node.
1800 begin
1801 B := B + 1;
1802 L := L + 1;
1804 Compare := (if Item < Node.Element then False
1805 elsif Node.Element < Item then False
1806 else True);
1808 L := L - 1;
1809 B := B - 1;
1811 exception
1812 when others =>
1813 L := L - 1;
1814 B := B - 1;
1816 raise;
1817 end;
1819 if Compare then
1820 -- Item is equivalent to the node's element, so we will not have to
1821 -- move the node.
1823 if Tree.Lock > 0 then
1824 raise Program_Error with
1825 "attempt to tamper with elements (set is locked)";
1826 end if;
1828 Node.Element := Item;
1829 return;
1830 end if;
1832 -- The replacement Item is not equivalent to the element on the
1833 -- specified node, which means that it will need to be re-inserted in a
1834 -- different position in the tree. We must now determine whether Item is
1835 -- equivalent to some other element in the tree (which would prohibit
1836 -- the assignment and hence the move).
1838 -- Ceiling returns the smallest element equivalent or greater than the
1839 -- specified Item; if there is no such element, then it returns null.
1841 Hint := Element_Keys.Ceiling (Tree, Item);
1843 if Hint /= null then
1844 begin
1845 B := B + 1;
1846 L := L + 1;
1848 Compare := Item < Hint.Element;
1850 L := L - 1;
1851 B := B - 1;
1853 exception
1854 when others =>
1855 L := L - 1;
1856 B := B - 1;
1858 raise;
1859 end;
1861 -- Item >= Hint.Element
1863 if not Compare then
1865 -- Ceiling returns an element that is equivalent or greater
1866 -- than Item. If Item is "not less than" the element, then
1867 -- by elimination we know that Item is equivalent to the element.
1869 -- But this means that it is not possible to assign the value of
1870 -- Item to the specified element (on Node), because a different
1871 -- element (on Hint) equivalent to Item already exsits. (Were we
1872 -- to change Node's element value, we would have to move Node, but
1873 -- we would be unable to move the Node, because its new position
1874 -- in the tree is already occupied by an equivalent element.)
1876 raise Program_Error with "attempt to replace existing element";
1877 end if;
1879 -- Item is not equivalent to any other element in the tree, so it is
1880 -- safe to assign the value of Item to Node.Element. This means that
1881 -- the node will have to move to a different position in the tree
1882 -- (because its element will have a different value).
1884 -- The nearest (greater) neighbor of Item is Hint. This will be the
1885 -- insertion position of Node (because its element will have Item as
1886 -- its new value).
1888 -- If Node equals Hint, the relative position of Node does not
1889 -- change. This allows us to perform an optimization: we need not
1890 -- remove Node from the tree and then reinsert it with its new value,
1891 -- because it would only be placed in the exact same position.
1893 if Hint = Node then
1894 if Tree.Lock > 0 then
1895 raise Program_Error with
1896 "attempt to tamper with elements (set is locked)";
1897 end if;
1899 Node.Element := Item;
1900 return;
1901 end if;
1902 end if;
1904 -- If we get here, it is because Item was greater than all elements in
1905 -- the tree (Hint = null), or because Item was less than some element at
1906 -- a different place in the tree (Item < Hint.Element). In either case,
1907 -- we remove Node from the tree (without actually deallocating it), and
1908 -- then insert Item into the tree, onto the same Node (so no new node is
1909 -- actually allocated).
1911 Tree_Operations.Delete_Node_Sans_Free (Tree, Node); -- Checks busy-bit
1913 Local_Insert_With_Hint -- use unconditional insert here instead???
1914 (Tree => Tree,
1915 Position => Hint,
1916 Key => Item,
1917 Node => Result,
1918 Inserted => Inserted);
1920 pragma Assert (Inserted);
1921 pragma Assert (Result = Node);
1922 end Replace_Element;
1924 procedure Replace_Element
1925 (Container : in out Set;
1926 Position : Cursor;
1927 New_Item : Element_Type)
1929 begin
1930 if Position.Node = null then
1931 raise Constraint_Error with
1932 "Position cursor equals No_Element";
1933 end if;
1935 if Position.Container /= Container'Unrestricted_Access then
1936 raise Program_Error with
1937 "Position cursor designates wrong set";
1938 end if;
1940 pragma Assert (Vet (Container.Tree, Position.Node),
1941 "bad cursor in Replace_Element");
1943 Replace_Element (Container.Tree, Position.Node, New_Item);
1944 end Replace_Element;
1946 ---------------------
1947 -- Reverse_Iterate --
1948 ---------------------
1950 procedure Reverse_Iterate
1951 (Container : Set;
1952 Process : not null access procedure (Position : Cursor))
1954 procedure Process_Node (Node : Node_Access);
1955 pragma Inline (Process_Node);
1957 procedure Local_Reverse_Iterate is
1958 new Tree_Operations.Generic_Reverse_Iteration (Process_Node);
1960 ------------------
1961 -- Process_Node --
1962 ------------------
1964 procedure Process_Node (Node : Node_Access) is
1965 begin
1966 Process (Cursor'(Container'Unrestricted_Access, Node));
1967 end Process_Node;
1969 T : Tree_Type renames Container.Tree'Unrestricted_Access.all;
1970 B : Natural renames T.Busy;
1972 -- Start of processing for Reverse_Iterate
1974 begin
1975 B := B + 1;
1977 begin
1978 Local_Reverse_Iterate (T);
1979 exception
1980 when others =>
1981 B := B - 1;
1982 raise;
1983 end;
1985 B := B - 1;
1986 end Reverse_Iterate;
1988 -----------
1989 -- Right --
1990 -----------
1992 function Right (Node : Node_Access) return Node_Access is
1993 begin
1994 return Node.Right;
1995 end Right;
1997 ---------------
1998 -- Set_Color --
1999 ---------------
2001 procedure Set_Color (Node : Node_Access; Color : Color_Type) is
2002 begin
2003 Node.Color := Color;
2004 end Set_Color;
2006 --------------
2007 -- Set_Left --
2008 --------------
2010 procedure Set_Left (Node : Node_Access; Left : Node_Access) is
2011 begin
2012 Node.Left := Left;
2013 end Set_Left;
2015 ----------------
2016 -- Set_Parent --
2017 ----------------
2019 procedure Set_Parent (Node : Node_Access; Parent : Node_Access) is
2020 begin
2021 Node.Parent := Parent;
2022 end Set_Parent;
2024 ---------------
2025 -- Set_Right --
2026 ---------------
2028 procedure Set_Right (Node : Node_Access; Right : Node_Access) is
2029 begin
2030 Node.Right := Right;
2031 end Set_Right;
2033 --------------------------
2034 -- Symmetric_Difference --
2035 --------------------------
2037 procedure Symmetric_Difference (Target : in out Set; Source : Set) is
2038 begin
2039 Set_Ops.Symmetric_Difference (Target.Tree, Source.Tree);
2040 end Symmetric_Difference;
2042 function Symmetric_Difference (Left, Right : Set) return Set is
2043 Tree : constant Tree_Type :=
2044 Set_Ops.Symmetric_Difference (Left.Tree, Right.Tree);
2045 begin
2046 return Set'(Controlled with Tree);
2047 end Symmetric_Difference;
2049 ------------
2050 -- To_Set --
2051 ------------
2053 function To_Set (New_Item : Element_Type) return Set is
2054 Tree : Tree_Type;
2055 Node : Node_Access;
2056 Inserted : Boolean;
2057 pragma Unreferenced (Node, Inserted);
2058 begin
2059 Insert_Sans_Hint (Tree, New_Item, Node, Inserted);
2060 return Set'(Controlled with Tree);
2061 end To_Set;
2063 -----------
2064 -- Union --
2065 -----------
2067 procedure Union (Target : in out Set; Source : Set) is
2068 begin
2069 Set_Ops.Union (Target.Tree, Source.Tree);
2070 end Union;
2072 function Union (Left, Right : Set) return Set is
2073 Tree : constant Tree_Type :=
2074 Set_Ops.Union (Left.Tree, Right.Tree);
2075 begin
2076 return Set'(Controlled with Tree);
2077 end Union;
2079 -----------
2080 -- Write --
2081 -----------
2083 procedure Write
2084 (Stream : not null access Root_Stream_Type'Class;
2085 Container : Set)
2087 procedure Write_Node
2088 (Stream : not null access Root_Stream_Type'Class;
2089 Node : Node_Access);
2090 pragma Inline (Write_Node);
2092 procedure Write is
2093 new Tree_Operations.Generic_Write (Write_Node);
2095 ----------------
2096 -- Write_Node --
2097 ----------------
2099 procedure Write_Node
2100 (Stream : not null access Root_Stream_Type'Class;
2101 Node : Node_Access)
2103 begin
2104 Element_Type'Write (Stream, Node.Element);
2105 end Write_Node;
2107 -- Start of processing for Write
2109 begin
2110 Write (Stream, Container.Tree);
2111 end Write;
2113 procedure Write
2114 (Stream : not null access Root_Stream_Type'Class;
2115 Item : Cursor)
2117 begin
2118 raise Program_Error with "attempt to stream set cursor";
2119 end Write;
2121 procedure Write
2122 (Stream : not null access Root_Stream_Type'Class;
2123 Item : Constant_Reference_Type)
2125 begin
2126 raise Program_Error with "attempt to stream reference";
2127 end Write;
2129 end Ada.Containers.Ordered_Sets;