final.c: Use rtx_sequence
[official-gcc.git] / gcc / ada / a-cforse.adb
blob966853a18289441c69a5bdf4204dcae6649f1e33
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT LIBRARY COMPONENTS --
4 -- --
5 -- A D A . C O N T A I N E R S . F O R M A L _ O R D E R E D _ S E T S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 2010-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 ------------------------------------------------------------------------------
28 with Ada.Containers.Red_Black_Trees.Generic_Bounded_Operations;
29 pragma Elaborate_All
30 (Ada.Containers.Red_Black_Trees.Generic_Bounded_Operations);
32 with Ada.Containers.Red_Black_Trees.Generic_Bounded_Keys;
33 pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Bounded_Keys);
35 with Ada.Containers.Red_Black_Trees.Generic_Bounded_Set_Operations;
36 pragma Elaborate_All
37 (Ada.Containers.Red_Black_Trees.Generic_Bounded_Set_Operations);
39 with System; use type System.Address;
41 package body Ada.Containers.Formal_Ordered_Sets is
42 pragma SPARK_Mode (Off);
44 ------------------------------
45 -- Access to Fields of Node --
46 ------------------------------
48 -- These subprograms provide functional notation for access to fields
49 -- of a node, and procedural notation for modifiying these fields.
51 function Color (Node : Node_Type) return Red_Black_Trees.Color_Type;
52 pragma Inline (Color);
54 function Left_Son (Node : Node_Type) return Count_Type;
55 pragma Inline (Left_Son);
57 function Parent (Node : Node_Type) return Count_Type;
58 pragma Inline (Parent);
60 function Right_Son (Node : Node_Type) return Count_Type;
61 pragma Inline (Right_Son);
63 procedure Set_Color
64 (Node : in out Node_Type;
65 Color : Red_Black_Trees.Color_Type);
66 pragma Inline (Set_Color);
68 procedure Set_Left (Node : in out Node_Type; Left : Count_Type);
69 pragma Inline (Set_Left);
71 procedure Set_Right (Node : in out Node_Type; Right : Count_Type);
72 pragma Inline (Set_Right);
74 procedure Set_Parent (Node : in out Node_Type; Parent : Count_Type);
75 pragma Inline (Set_Parent);
77 -----------------------
78 -- Local Subprograms --
79 -----------------------
81 -- Comments needed???
83 generic
84 with procedure Set_Element (Node : in out Node_Type);
85 procedure Generic_Allocate
86 (Tree : in out Tree_Types.Tree_Type'Class;
87 Node : out Count_Type);
89 procedure Free (Tree : in out Set; X : Count_Type);
91 procedure Insert_Sans_Hint
92 (Container : in out Set;
93 New_Item : Element_Type;
94 Node : out Count_Type;
95 Inserted : out Boolean);
97 procedure Insert_With_Hint
98 (Dst_Set : in out Set;
99 Dst_Hint : Count_Type;
100 Src_Node : Node_Type;
101 Dst_Node : out Count_Type);
103 function Is_Greater_Element_Node
104 (Left : Element_Type;
105 Right : Node_Type) return Boolean;
106 pragma Inline (Is_Greater_Element_Node);
108 function Is_Less_Element_Node
109 (Left : Element_Type;
110 Right : Node_Type) return Boolean;
111 pragma Inline (Is_Less_Element_Node);
113 function Is_Less_Node_Node (L, R : Node_Type) return Boolean;
114 pragma Inline (Is_Less_Node_Node);
116 procedure Replace_Element
117 (Tree : in out Set;
118 Node : Count_Type;
119 Item : Element_Type);
121 --------------------------
122 -- Local Instantiations --
123 --------------------------
125 package Tree_Operations is
126 new Red_Black_Trees.Generic_Bounded_Operations
127 (Tree_Types,
128 Left => Left_Son,
129 Right => Right_Son);
131 use Tree_Operations;
133 package Element_Keys is
134 new Red_Black_Trees.Generic_Bounded_Keys
135 (Tree_Operations => Tree_Operations,
136 Key_Type => Element_Type,
137 Is_Less_Key_Node => Is_Less_Element_Node,
138 Is_Greater_Key_Node => Is_Greater_Element_Node);
140 package Set_Ops is
141 new Red_Black_Trees.Generic_Bounded_Set_Operations
142 (Tree_Operations => Tree_Operations,
143 Set_Type => Set,
144 Assign => Assign,
145 Insert_With_Hint => Insert_With_Hint,
146 Is_Less => Is_Less_Node_Node);
148 ---------
149 -- "=" --
150 ---------
152 function "=" (Left, Right : Set) return Boolean is
153 Lst : Count_Type;
154 Node : Count_Type;
155 ENode : Count_Type;
157 begin
158 if Length (Left) /= Length (Right) then
159 return False;
160 end if;
162 if Is_Empty (Left) then
163 return True;
164 end if;
166 Lst := Next (Left, Last (Left).Node);
168 Node := First (Left).Node;
169 while Node /= Lst loop
170 ENode := Find (Right, Left.Nodes (Node).Element).Node;
171 if ENode = 0
172 or else Left.Nodes (Node).Element /= Right.Nodes (ENode).Element
173 then
174 return False;
175 end if;
177 Node := Next (Left, Node);
178 end loop;
180 return True;
181 end "=";
183 ------------
184 -- Assign --
185 ------------
187 procedure Assign (Target : in out Set; Source : Set) is
188 procedure Append_Element (Source_Node : Count_Type);
190 procedure Append_Elements is
191 new Tree_Operations.Generic_Iteration (Append_Element);
193 --------------------
194 -- Append_Element --
195 --------------------
197 procedure Append_Element (Source_Node : Count_Type) is
198 SN : Node_Type renames Source.Nodes (Source_Node);
200 procedure Set_Element (Node : in out Node_Type);
201 pragma Inline (Set_Element);
203 function New_Node return Count_Type;
204 pragma Inline (New_Node);
206 procedure Insert_Post is
207 new Element_Keys.Generic_Insert_Post (New_Node);
209 procedure Unconditional_Insert_Sans_Hint is
210 new Element_Keys.Generic_Unconditional_Insert (Insert_Post);
212 procedure Unconditional_Insert_Avec_Hint is
213 new Element_Keys.Generic_Unconditional_Insert_With_Hint
214 (Insert_Post,
215 Unconditional_Insert_Sans_Hint);
217 procedure Allocate is new Generic_Allocate (Set_Element);
219 --------------
220 -- New_Node --
221 --------------
223 function New_Node return Count_Type is
224 Result : Count_Type;
225 begin
226 Allocate (Target, Result);
227 return Result;
228 end New_Node;
230 -----------------
231 -- Set_Element --
232 -----------------
234 procedure Set_Element (Node : in out Node_Type) is
235 begin
236 Node.Element := SN.Element;
237 end Set_Element;
239 -- Local variables
241 Target_Node : Count_Type;
243 -- Start of processing for Append_Element
245 begin
246 Unconditional_Insert_Avec_Hint
247 (Tree => Target,
248 Hint => 0,
249 Key => SN.Element,
250 Node => Target_Node);
251 end Append_Element;
253 -- Start of processing for Assign
255 begin
256 if Target'Address = Source'Address then
257 return;
258 end if;
260 if Target.Capacity < Source.Length then
261 raise Constraint_Error
262 with "Target capacity is less than Source length";
263 end if;
265 Tree_Operations.Clear_Tree (Target);
266 Append_Elements (Source);
267 end Assign;
269 -------------
270 -- Ceiling --
271 -------------
273 function Ceiling (Container : Set; Item : Element_Type) return Cursor is
274 Node : constant Count_Type := Element_Keys.Ceiling (Container, Item);
276 begin
277 if Node = 0 then
278 return No_Element;
279 end if;
281 return (Node => Node);
282 end Ceiling;
284 -----------
285 -- Clear --
286 -----------
288 procedure Clear (Container : in out Set) is
289 begin
290 Tree_Operations.Clear_Tree (Container);
291 end Clear;
293 -----------
294 -- Color --
295 -----------
297 function Color (Node : Node_Type) return Red_Black_Trees.Color_Type is
298 begin
299 return Node.Color;
300 end Color;
302 --------------
303 -- Contains --
304 --------------
306 function Contains
307 (Container : Set;
308 Item : Element_Type) return Boolean
310 begin
311 return Find (Container, Item) /= No_Element;
312 end Contains;
314 ----------
315 -- Copy --
316 ----------
318 function Copy (Source : Set; Capacity : Count_Type := 0) return Set is
319 Node : Count_Type;
320 N : Count_Type;
321 Target : Set (Count_Type'Max (Source.Capacity, Capacity));
323 begin
324 if 0 < Capacity and then Capacity < Source.Capacity then
325 raise Capacity_Error;
326 end if;
328 if Length (Source) > 0 then
329 Target.Length := Source.Length;
330 Target.Root := Source.Root;
331 Target.First := Source.First;
332 Target.Last := Source.Last;
333 Target.Free := Source.Free;
335 Node := 1;
336 while Node <= Source.Capacity loop
337 Target.Nodes (Node).Element :=
338 Source.Nodes (Node).Element;
339 Target.Nodes (Node).Parent :=
340 Source.Nodes (Node).Parent;
341 Target.Nodes (Node).Left :=
342 Source.Nodes (Node).Left;
343 Target.Nodes (Node).Right :=
344 Source.Nodes (Node).Right;
345 Target.Nodes (Node).Color :=
346 Source.Nodes (Node).Color;
347 Target.Nodes (Node).Has_Element :=
348 Source.Nodes (Node).Has_Element;
349 Node := Node + 1;
350 end loop;
352 while Node <= Target.Capacity loop
353 N := Node;
354 Formal_Ordered_Sets.Free (Tree => Target, X => N);
355 Node := Node + 1;
356 end loop;
357 end if;
359 return Target;
360 end Copy;
362 ---------------------
363 -- Current_To_Last --
364 ---------------------
366 function Current_To_Last (Container : Set; Current : Cursor) return Set is
367 Curs : Cursor := First (Container);
368 C : Set (Container.Capacity) := Copy (Container, Container.Capacity);
369 Node : Count_Type;
371 begin
372 if Curs = No_Element then
373 Clear (C);
374 return C;
375 end if;
377 if Current /= No_Element and not Has_Element (Container, Current) then
378 raise Constraint_Error;
379 end if;
381 while Curs.Node /= Current.Node loop
382 Node := Curs.Node;
383 Delete (C, Curs);
384 Curs := Next (Container, (Node => Node));
385 end loop;
387 return C;
388 end Current_To_Last;
390 ------------
391 -- Delete --
392 ------------
394 procedure Delete (Container : in out Set; Position : in out Cursor) is
395 begin
396 if not Has_Element (Container, Position) then
397 raise Constraint_Error with "Position cursor has no element";
398 end if;
400 pragma Assert (Vet (Container, Position.Node),
401 "bad cursor in Delete");
403 Tree_Operations.Delete_Node_Sans_Free (Container,
404 Position.Node);
405 Formal_Ordered_Sets.Free (Container, Position.Node);
406 Position := No_Element;
407 end Delete;
409 procedure Delete (Container : in out Set; Item : Element_Type) is
410 X : constant Count_Type := Element_Keys.Find (Container, Item);
412 begin
413 if X = 0 then
414 raise Constraint_Error with "attempt to delete element not in set";
415 end if;
417 Tree_Operations.Delete_Node_Sans_Free (Container, X);
418 Formal_Ordered_Sets.Free (Container, X);
419 end Delete;
421 ------------------
422 -- Delete_First --
423 ------------------
425 procedure Delete_First (Container : in out Set) is
426 X : constant Count_Type := Container.First;
427 begin
428 if X /= 0 then
429 Tree_Operations.Delete_Node_Sans_Free (Container, X);
430 Formal_Ordered_Sets.Free (Container, X);
431 end if;
432 end Delete_First;
434 -----------------
435 -- Delete_Last --
436 -----------------
438 procedure Delete_Last (Container : in out Set) is
439 X : constant Count_Type := Container.Last;
440 begin
441 if X /= 0 then
442 Tree_Operations.Delete_Node_Sans_Free (Container, X);
443 Formal_Ordered_Sets.Free (Container, X);
444 end if;
445 end Delete_Last;
447 ----------------
448 -- Difference --
449 ----------------
451 procedure Difference (Target : in out Set; Source : Set) is
452 begin
453 Set_Ops.Set_Difference (Target, Source);
454 end Difference;
456 function Difference (Left, Right : Set) return Set is
457 begin
458 if Left'Address = Right'Address then
459 return Empty_Set;
460 end if;
462 if Length (Left) = 0 then
463 return Empty_Set;
464 end if;
466 if Length (Right) = 0 then
467 return Left.Copy;
468 end if;
470 return S : Set (Length (Left)) do
471 Assign (S, Set_Ops.Set_Difference (Left, Right));
472 end return;
473 end Difference;
475 -------------
476 -- Element --
477 -------------
479 function Element (Container : Set; Position : Cursor) return Element_Type is
480 begin
481 if not Has_Element (Container, Position) then
482 raise Constraint_Error with "Position cursor has no element";
483 end if;
485 pragma Assert (Vet (Container, Position.Node),
486 "bad cursor in Element");
488 return Container.Nodes (Position.Node).Element;
489 end Element;
491 -------------------------
492 -- Equivalent_Elements --
493 -------------------------
495 function Equivalent_Elements (Left, Right : Element_Type) return Boolean is
496 begin
497 if Left < Right
498 or else Right < Left
499 then
500 return False;
501 else
502 return True;
503 end if;
504 end Equivalent_Elements;
506 ---------------------
507 -- Equivalent_Sets --
508 ---------------------
510 function Equivalent_Sets (Left, Right : Set) return Boolean is
511 function Is_Equivalent_Node_Node
512 (L, R : Node_Type) return Boolean;
513 pragma Inline (Is_Equivalent_Node_Node);
515 function Is_Equivalent is
516 new Tree_Operations.Generic_Equal (Is_Equivalent_Node_Node);
518 -----------------------------
519 -- Is_Equivalent_Node_Node --
520 -----------------------------
522 function Is_Equivalent_Node_Node (L, R : Node_Type) return Boolean is
523 begin
524 if L.Element < R.Element then
525 return False;
526 elsif R.Element < L.Element then
527 return False;
528 else
529 return True;
530 end if;
531 end Is_Equivalent_Node_Node;
533 -- Start of processing for Equivalent_Sets
535 begin
536 return Is_Equivalent (Left, Right);
537 end Equivalent_Sets;
539 -------------
540 -- Exclude --
541 -------------
543 procedure Exclude (Container : in out Set; Item : Element_Type) is
544 X : constant Count_Type := Element_Keys.Find (Container, Item);
545 begin
546 if X /= 0 then
547 Tree_Operations.Delete_Node_Sans_Free (Container, X);
548 Formal_Ordered_Sets.Free (Container, X);
549 end if;
550 end Exclude;
552 ----------
553 -- Find --
554 ----------
556 function Find (Container : Set; Item : Element_Type) return Cursor is
557 Node : constant Count_Type := Element_Keys.Find (Container, Item);
559 begin
560 if Node = 0 then
561 return No_Element;
562 end if;
564 return (Node => Node);
565 end Find;
567 -----------
568 -- First --
569 -----------
571 function First (Container : Set) return Cursor is
572 begin
573 if Length (Container) = 0 then
574 return No_Element;
575 end if;
577 return (Node => Container.First);
578 end First;
580 -------------------
581 -- First_Element --
582 -------------------
584 function First_Element (Container : Set) return Element_Type is
585 Fst : constant Count_Type := First (Container).Node;
586 begin
587 if Fst = 0 then
588 raise Constraint_Error with "set is empty";
589 end if;
591 declare
592 N : Tree_Types.Nodes_Type renames Container.Nodes;
593 begin
594 return N (Fst).Element;
595 end;
596 end First_Element;
598 -----------------------
599 -- First_To_Previous --
600 -----------------------
602 function First_To_Previous
603 (Container : Set;
604 Current : Cursor) return Set
606 Curs : Cursor := Current;
607 C : Set (Container.Capacity) := Copy (Container, Container.Capacity);
608 Node : Count_Type;
610 begin
611 if Curs = No_Element then
612 return C;
614 elsif not Has_Element (Container, Curs) then
615 raise Constraint_Error;
617 else
618 while Curs.Node /= 0 loop
619 Node := Curs.Node;
620 Delete (C, Curs);
621 Curs := Next (Container, (Node => Node));
622 end loop;
624 return C;
625 end if;
626 end First_To_Previous;
628 -----------
629 -- Floor --
630 -----------
632 function Floor (Container : Set; Item : Element_Type) return Cursor is
633 begin
634 declare
635 Node : constant Count_Type := Element_Keys.Floor (Container, Item);
637 begin
638 if Node = 0 then
639 return No_Element;
640 end if;
642 return (Node => Node);
643 end;
644 end Floor;
646 ----------
647 -- Free --
648 ----------
650 procedure Free (Tree : in out Set; X : Count_Type) is
651 begin
652 Tree.Nodes (X).Has_Element := False;
653 Tree_Operations.Free (Tree, X);
654 end Free;
656 ----------------------
657 -- Generic_Allocate --
658 ----------------------
660 procedure Generic_Allocate
661 (Tree : in out Tree_Types.Tree_Type'Class;
662 Node : out Count_Type)
664 procedure Allocate is
665 new Tree_Operations.Generic_Allocate (Set_Element);
666 begin
667 Allocate (Tree, Node);
668 Tree.Nodes (Node).Has_Element := True;
669 end Generic_Allocate;
671 ------------------
672 -- Generic_Keys --
673 ------------------
675 package body Generic_Keys is
677 -----------------------
678 -- Local Subprograms --
679 -----------------------
681 function Is_Greater_Key_Node
682 (Left : Key_Type;
683 Right : Node_Type) return Boolean;
684 pragma Inline (Is_Greater_Key_Node);
686 function Is_Less_Key_Node
687 (Left : Key_Type;
688 Right : Node_Type) return Boolean;
689 pragma Inline (Is_Less_Key_Node);
691 --------------------------
692 -- Local Instantiations --
693 --------------------------
695 package Key_Keys is
696 new Red_Black_Trees.Generic_Bounded_Keys
697 (Tree_Operations => Tree_Operations,
698 Key_Type => Key_Type,
699 Is_Less_Key_Node => Is_Less_Key_Node,
700 Is_Greater_Key_Node => Is_Greater_Key_Node);
702 -------------
703 -- Ceiling --
704 -------------
706 function Ceiling (Container : Set; Key : Key_Type) return Cursor is
707 Node : constant Count_Type := Key_Keys.Ceiling (Container, Key);
709 begin
710 if Node = 0 then
711 return No_Element;
712 end if;
714 return (Node => Node);
715 end Ceiling;
717 --------------
718 -- Contains --
719 --------------
721 function Contains (Container : Set; Key : Key_Type) return Boolean is
722 begin
723 return Find (Container, Key) /= No_Element;
724 end Contains;
726 ------------
727 -- Delete --
728 ------------
730 procedure Delete (Container : in out Set; Key : Key_Type) is
731 X : constant Count_Type := Key_Keys.Find (Container, Key);
733 begin
734 if X = 0 then
735 raise Constraint_Error with "attempt to delete key not in set";
736 end if;
738 Delete_Node_Sans_Free (Container, X);
739 Formal_Ordered_Sets.Free (Container, X);
740 end Delete;
742 -------------
743 -- Element --
744 -------------
746 function Element (Container : Set; Key : Key_Type) return Element_Type is
747 Node : constant Count_Type := Key_Keys.Find (Container, Key);
749 begin
750 if Node = 0 then
751 raise Constraint_Error with "key not in set";
752 end if;
754 declare
755 N : Tree_Types.Nodes_Type renames Container.Nodes;
756 begin
757 return N (Node).Element;
758 end;
759 end Element;
761 ---------------------
762 -- Equivalent_Keys --
763 ---------------------
765 function Equivalent_Keys (Left, Right : Key_Type) return Boolean is
766 begin
767 if Left < Right
768 or else Right < Left
769 then
770 return False;
771 else
772 return True;
773 end if;
774 end Equivalent_Keys;
776 -------------
777 -- Exclude --
778 -------------
780 procedure Exclude (Container : in out Set; Key : Key_Type) is
781 X : constant Count_Type := Key_Keys.Find (Container, Key);
782 begin
783 if X /= 0 then
784 Delete_Node_Sans_Free (Container, X);
785 Formal_Ordered_Sets.Free (Container, X);
786 end if;
787 end Exclude;
789 ----------
790 -- Find --
791 ----------
793 function Find (Container : Set; Key : Key_Type) return Cursor is
794 Node : constant Count_Type := Key_Keys.Find (Container, Key);
795 begin
796 return (if Node = 0 then No_Element else (Node => Node));
797 end Find;
799 -----------
800 -- Floor --
801 -----------
803 function Floor (Container : Set; Key : Key_Type) return Cursor is
804 Node : constant Count_Type := Key_Keys.Floor (Container, Key);
805 begin
806 return (if Node = 0 then No_Element else (Node => Node));
807 end Floor;
809 -------------------------
810 -- Is_Greater_Key_Node --
811 -------------------------
813 function Is_Greater_Key_Node
814 (Left : Key_Type;
815 Right : Node_Type) return Boolean
817 begin
818 return Key (Right.Element) < Left;
819 end Is_Greater_Key_Node;
821 ----------------------
822 -- Is_Less_Key_Node --
823 ----------------------
825 function Is_Less_Key_Node
826 (Left : Key_Type;
827 Right : Node_Type) return Boolean
829 begin
830 return Left < Key (Right.Element);
831 end Is_Less_Key_Node;
833 ---------
834 -- Key --
835 ---------
837 function Key (Container : Set; Position : Cursor) return Key_Type is
838 begin
839 if not Has_Element (Container, Position) then
840 raise Constraint_Error with
841 "Position cursor has no element";
842 end if;
844 pragma Assert (Vet (Container, Position.Node),
845 "bad cursor in Key");
847 declare
848 N : Tree_Types.Nodes_Type renames Container.Nodes;
849 begin
850 return Key (N (Position.Node).Element);
851 end;
852 end Key;
854 -------------
855 -- Replace --
856 -------------
858 procedure Replace
859 (Container : in out Set;
860 Key : Key_Type;
861 New_Item : Element_Type)
863 Node : constant Count_Type := Key_Keys.Find (Container, Key);
864 begin
865 if not Has_Element (Container, (Node => Node)) then
866 raise Constraint_Error with
867 "attempt to replace key not in set";
868 else
869 Replace_Element (Container, Node, New_Item);
870 end if;
871 end Replace;
873 end Generic_Keys;
875 -----------------
876 -- Has_Element --
877 -----------------
879 function Has_Element (Container : Set; Position : Cursor) return Boolean is
880 begin
881 if Position.Node = 0 then
882 return False;
883 else
884 return Container.Nodes (Position.Node).Has_Element;
885 end if;
886 end Has_Element;
888 -------------
889 -- Include --
890 -------------
892 procedure Include (Container : in out Set; New_Item : Element_Type) is
893 Position : Cursor;
894 Inserted : Boolean;
896 begin
897 Insert (Container, New_Item, Position, Inserted);
899 if not Inserted then
900 declare
901 N : Tree_Types.Nodes_Type renames Container.Nodes;
902 begin
903 N (Position.Node).Element := New_Item;
904 end;
905 end if;
906 end Include;
908 ------------
909 -- Insert --
910 ------------
912 procedure Insert
913 (Container : in out Set;
914 New_Item : Element_Type;
915 Position : out Cursor;
916 Inserted : out Boolean)
918 begin
919 Insert_Sans_Hint (Container, New_Item, Position.Node, Inserted);
920 end Insert;
922 procedure Insert
923 (Container : in out Set;
924 New_Item : Element_Type)
926 Position : Cursor;
927 Inserted : Boolean;
929 begin
930 Insert (Container, New_Item, Position, Inserted);
932 if not Inserted then
933 raise Constraint_Error with
934 "attempt to insert element already in set";
935 end if;
936 end Insert;
938 ----------------------
939 -- Insert_Sans_Hint --
940 ----------------------
942 procedure Insert_Sans_Hint
943 (Container : in out Set;
944 New_Item : Element_Type;
945 Node : out Count_Type;
946 Inserted : out Boolean)
948 procedure Set_Element (Node : in out Node_Type);
950 function New_Node return Count_Type;
951 pragma Inline (New_Node);
953 procedure Insert_Post is
954 new Element_Keys.Generic_Insert_Post (New_Node);
956 procedure Conditional_Insert_Sans_Hint is
957 new Element_Keys.Generic_Conditional_Insert (Insert_Post);
959 procedure Allocate is new Generic_Allocate (Set_Element);
961 --------------
962 -- New_Node --
963 --------------
965 function New_Node return Count_Type is
966 Result : Count_Type;
967 begin
968 Allocate (Container, Result);
969 return Result;
970 end New_Node;
972 -----------------
973 -- Set_Element --
974 -----------------
976 procedure Set_Element (Node : in out Node_Type) is
977 begin
978 Node.Element := New_Item;
979 end Set_Element;
981 -- Start of processing for Insert_Sans_Hint
983 begin
984 Conditional_Insert_Sans_Hint
985 (Container,
986 New_Item,
987 Node,
988 Inserted);
989 end Insert_Sans_Hint;
991 ----------------------
992 -- Insert_With_Hint --
993 ----------------------
995 procedure Insert_With_Hint
996 (Dst_Set : in out Set;
997 Dst_Hint : Count_Type;
998 Src_Node : Node_Type;
999 Dst_Node : out Count_Type)
1001 Success : Boolean;
1002 pragma Unreferenced (Success);
1004 procedure Set_Element (Node : in out Node_Type);
1006 function New_Node return Count_Type;
1007 pragma Inline (New_Node);
1009 procedure Insert_Post is
1010 new Element_Keys.Generic_Insert_Post (New_Node);
1012 procedure Insert_Sans_Hint is
1013 new Element_Keys.Generic_Conditional_Insert (Insert_Post);
1015 procedure Local_Insert_With_Hint is
1016 new Element_Keys.Generic_Conditional_Insert_With_Hint
1017 (Insert_Post, Insert_Sans_Hint);
1019 procedure Allocate is new Generic_Allocate (Set_Element);
1021 --------------
1022 -- New_Node --
1023 --------------
1025 function New_Node return Count_Type is
1026 Result : Count_Type;
1027 begin
1028 Allocate (Dst_Set, Result);
1029 return Result;
1030 end New_Node;
1032 -----------------
1033 -- Set_Element --
1034 -----------------
1036 procedure Set_Element (Node : in out Node_Type) is
1037 begin
1038 Node.Element := Src_Node.Element;
1039 end Set_Element;
1041 -- Start of processing for Insert_With_Hint
1043 begin
1044 Local_Insert_With_Hint
1045 (Dst_Set,
1046 Dst_Hint,
1047 Src_Node.Element,
1048 Dst_Node,
1049 Success);
1050 end Insert_With_Hint;
1052 ------------------
1053 -- Intersection --
1054 ------------------
1056 procedure Intersection (Target : in out Set; Source : Set) is
1057 begin
1058 Set_Ops.Set_Intersection (Target, Source);
1059 end Intersection;
1061 function Intersection (Left, Right : Set) return Set is
1062 begin
1063 if Left'Address = Right'Address then
1064 return Left.Copy;
1065 end if;
1067 return S : Set (Count_Type'Min (Length (Left), Length (Right))) do
1068 Assign (S, Set_Ops.Set_Intersection (Left, Right));
1069 end return;
1070 end Intersection;
1072 --------------
1073 -- Is_Empty --
1074 --------------
1076 function Is_Empty (Container : Set) return Boolean is
1077 begin
1078 return Length (Container) = 0;
1079 end Is_Empty;
1081 -----------------------------
1082 -- Is_Greater_Element_Node --
1083 -----------------------------
1085 function Is_Greater_Element_Node
1086 (Left : Element_Type;
1087 Right : Node_Type) return Boolean
1089 begin
1090 -- Compute e > node same as node < e
1092 return Right.Element < Left;
1093 end Is_Greater_Element_Node;
1095 --------------------------
1096 -- Is_Less_Element_Node --
1097 --------------------------
1099 function Is_Less_Element_Node
1100 (Left : Element_Type;
1101 Right : Node_Type) return Boolean
1103 begin
1104 return Left < Right.Element;
1105 end Is_Less_Element_Node;
1107 -----------------------
1108 -- Is_Less_Node_Node --
1109 -----------------------
1111 function Is_Less_Node_Node (L, R : Node_Type) return Boolean is
1112 begin
1113 return L.Element < R.Element;
1114 end Is_Less_Node_Node;
1116 ---------------
1117 -- Is_Subset --
1118 ---------------
1120 function Is_Subset (Subset : Set; Of_Set : Set) return Boolean is
1121 begin
1122 return Set_Ops.Set_Subset (Subset, Of_Set => Of_Set);
1123 end Is_Subset;
1125 ----------
1126 -- Last --
1127 ----------
1129 function Last (Container : Set) return Cursor is
1130 begin
1131 return (if Length (Container) = 0
1132 then No_Element
1133 else (Node => Container.Last));
1134 end Last;
1136 ------------------
1137 -- Last_Element --
1138 ------------------
1140 function Last_Element (Container : Set) return Element_Type is
1141 begin
1142 if Last (Container).Node = 0 then
1143 raise Constraint_Error with "set is empty";
1144 end if;
1146 declare
1147 N : Tree_Types.Nodes_Type renames Container.Nodes;
1148 begin
1149 return N (Last (Container).Node).Element;
1150 end;
1151 end Last_Element;
1153 --------------
1154 -- Left_Son --
1155 --------------
1157 function Left_Son (Node : Node_Type) return Count_Type is
1158 begin
1159 return Node.Left;
1160 end Left_Son;
1162 ------------
1163 -- Length --
1164 ------------
1166 function Length (Container : Set) return Count_Type is
1167 begin
1168 return Container.Length;
1169 end Length;
1171 ----------
1172 -- Move --
1173 ----------
1175 procedure Move (Target : in out Set; Source : in out Set) is
1176 N : Tree_Types.Nodes_Type renames Source.Nodes;
1177 X : Count_Type;
1179 begin
1180 if Target'Address = Source'Address then
1181 return;
1182 end if;
1184 if Target.Capacity < Length (Source) then
1185 raise Constraint_Error with -- ???
1186 "Source length exceeds Target capacity";
1187 end if;
1189 Clear (Target);
1191 loop
1192 X := Source.First;
1193 exit when X = 0;
1195 Insert (Target, N (X).Element); -- optimize???
1197 Tree_Operations.Delete_Node_Sans_Free (Source, X);
1198 Formal_Ordered_Sets.Free (Source, X);
1199 end loop;
1200 end Move;
1202 ----------
1203 -- Next --
1204 ----------
1206 function Next (Container : Set; Position : Cursor) return Cursor is
1207 begin
1208 if Position = No_Element then
1209 return No_Element;
1210 end if;
1212 if not Has_Element (Container, Position) then
1213 raise Constraint_Error;
1214 end if;
1216 pragma Assert (Vet (Container, Position.Node),
1217 "bad cursor in Next");
1218 return (Node => Tree_Operations.Next (Container, Position.Node));
1219 end Next;
1221 procedure Next (Container : Set; Position : in out Cursor) is
1222 begin
1223 Position := Next (Container, Position);
1224 end Next;
1226 -------------
1227 -- Overlap --
1228 -------------
1230 function Overlap (Left, Right : Set) return Boolean is
1231 begin
1232 return Set_Ops.Set_Overlap (Left, Right);
1233 end Overlap;
1235 ------------
1236 -- Parent --
1237 ------------
1239 function Parent (Node : Node_Type) return Count_Type is
1240 begin
1241 return Node.Parent;
1242 end Parent;
1244 --------------
1245 -- Previous --
1246 --------------
1248 function Previous (Container : Set; Position : Cursor) return Cursor is
1249 begin
1250 if Position = No_Element then
1251 return No_Element;
1252 end if;
1254 if not Has_Element (Container, Position) then
1255 raise Constraint_Error;
1256 end if;
1258 pragma Assert (Vet (Container, Position.Node),
1259 "bad cursor in Previous");
1261 declare
1262 Node : constant Count_Type :=
1263 Tree_Operations.Previous (Container, Position.Node);
1264 begin
1265 return (if Node = 0 then No_Element else (Node => Node));
1266 end;
1267 end Previous;
1269 procedure Previous (Container : Set; Position : in out Cursor) is
1270 begin
1271 Position := Previous (Container, Position);
1272 end Previous;
1274 -------------
1275 -- Replace --
1276 -------------
1278 procedure Replace (Container : in out Set; New_Item : Element_Type) is
1279 Node : constant Count_Type := Element_Keys.Find (Container, New_Item);
1281 begin
1282 if Node = 0 then
1283 raise Constraint_Error with
1284 "attempt to replace element not in set";
1285 end if;
1287 Container.Nodes (Node).Element := New_Item;
1288 end Replace;
1290 ---------------------
1291 -- Replace_Element --
1292 ---------------------
1294 procedure Replace_Element
1295 (Tree : in out Set;
1296 Node : Count_Type;
1297 Item : Element_Type)
1299 pragma Assert (Node /= 0);
1301 function New_Node return Count_Type;
1302 pragma Inline (New_Node);
1304 procedure Local_Insert_Post is
1305 new Element_Keys.Generic_Insert_Post (New_Node);
1307 procedure Local_Insert_Sans_Hint is
1308 new Element_Keys.Generic_Conditional_Insert (Local_Insert_Post);
1310 procedure Local_Insert_With_Hint is
1311 new Element_Keys.Generic_Conditional_Insert_With_Hint
1312 (Local_Insert_Post,
1313 Local_Insert_Sans_Hint);
1315 NN : Tree_Types.Nodes_Type renames Tree.Nodes;
1317 --------------
1318 -- New_Node --
1319 --------------
1321 function New_Node return Count_Type is
1322 N : Node_Type renames NN (Node);
1323 begin
1324 N.Element := Item;
1325 N.Color := Red;
1326 N.Parent := 0;
1327 N.Right := 0;
1328 N.Left := 0;
1329 return Node;
1330 end New_Node;
1332 Hint : Count_Type;
1333 Result : Count_Type;
1334 Inserted : Boolean;
1336 -- Start of processing for Insert
1338 begin
1339 if Item < NN (Node).Element
1340 or else NN (Node).Element < Item
1341 then
1342 null;
1344 else
1345 NN (Node).Element := Item;
1346 return;
1347 end if;
1349 Hint := Element_Keys.Ceiling (Tree, Item);
1351 if Hint = 0 then
1352 null;
1354 elsif Item < NN (Hint).Element then
1355 if Hint = Node then
1356 NN (Node).Element := Item;
1357 return;
1358 end if;
1360 else
1361 pragma Assert (not (NN (Hint).Element < Item));
1362 raise Program_Error with "attempt to replace existing element";
1363 end if;
1365 Tree_Operations.Delete_Node_Sans_Free (Tree, Node);
1367 Local_Insert_With_Hint
1368 (Tree => Tree,
1369 Position => Hint,
1370 Key => Item,
1371 Node => Result,
1372 Inserted => Inserted);
1374 pragma Assert (Inserted);
1375 pragma Assert (Result = Node);
1376 end Replace_Element;
1378 procedure Replace_Element
1379 (Container : in out Set;
1380 Position : Cursor;
1381 New_Item : Element_Type)
1383 begin
1384 if not Has_Element (Container, Position) then
1385 raise Constraint_Error with
1386 "Position cursor has no element";
1387 end if;
1389 pragma Assert (Vet (Container, Position.Node),
1390 "bad cursor in Replace_Element");
1392 Replace_Element (Container, Position.Node, New_Item);
1393 end Replace_Element;
1395 ---------------
1396 -- Right_Son --
1397 ---------------
1399 function Right_Son (Node : Node_Type) return Count_Type is
1400 begin
1401 return Node.Right;
1402 end Right_Son;
1404 ---------------
1405 -- Set_Color --
1406 ---------------
1408 procedure Set_Color
1409 (Node : in out Node_Type;
1410 Color : Red_Black_Trees.Color_Type)
1412 begin
1413 Node.Color := Color;
1414 end Set_Color;
1416 --------------
1417 -- Set_Left --
1418 --------------
1420 procedure Set_Left (Node : in out Node_Type; Left : Count_Type) is
1421 begin
1422 Node.Left := Left;
1423 end Set_Left;
1425 ----------------
1426 -- Set_Parent --
1427 ----------------
1429 procedure Set_Parent (Node : in out Node_Type; Parent : Count_Type) is
1430 begin
1431 Node.Parent := Parent;
1432 end Set_Parent;
1434 ---------------
1435 -- Set_Right --
1436 ---------------
1438 procedure Set_Right (Node : in out Node_Type; Right : Count_Type) is
1439 begin
1440 Node.Right := Right;
1441 end Set_Right;
1443 ------------------
1444 -- Strict_Equal --
1445 ------------------
1447 function Strict_Equal (Left, Right : Set) return Boolean is
1448 LNode : Count_Type := First (Left).Node;
1449 RNode : Count_Type := First (Right).Node;
1451 begin
1452 if Length (Left) /= Length (Right) then
1453 return False;
1454 end if;
1456 while LNode = RNode loop
1457 if LNode = 0 then
1458 return True;
1459 end if;
1461 if Left.Nodes (LNode).Element /= Right.Nodes (RNode).Element then
1462 exit;
1463 end if;
1465 LNode := Next (Left, LNode);
1466 RNode := Next (Right, RNode);
1467 end loop;
1469 return False;
1470 end Strict_Equal;
1472 --------------------------
1473 -- Symmetric_Difference --
1474 --------------------------
1476 procedure Symmetric_Difference (Target : in out Set; Source : Set) is
1477 begin
1478 Set_Ops.Set_Symmetric_Difference (Target, Source);
1479 end Symmetric_Difference;
1481 function Symmetric_Difference (Left, Right : Set) return Set is
1482 begin
1483 if Left'Address = Right'Address then
1484 return Empty_Set;
1485 end if;
1487 if Length (Right) = 0 then
1488 return Left.Copy;
1489 end if;
1491 if Length (Left) = 0 then
1492 return Right.Copy;
1493 end if;
1495 return S : Set (Length (Left) + Length (Right)) do
1496 Assign (S, Set_Ops.Set_Symmetric_Difference (Left, Right));
1497 end return;
1498 end Symmetric_Difference;
1500 ------------
1501 -- To_Set --
1502 ------------
1504 function To_Set (New_Item : Element_Type) return Set is
1505 Node : Count_Type;
1506 Inserted : Boolean;
1507 begin
1508 return S : Set (Capacity => 1) do
1509 Insert_Sans_Hint (S, New_Item, Node, Inserted);
1510 pragma Assert (Inserted);
1511 end return;
1512 end To_Set;
1514 -----------
1515 -- Union --
1516 -----------
1518 procedure Union (Target : in out Set; Source : Set) is
1519 begin
1520 Set_Ops.Set_Union (Target, Source);
1521 end Union;
1523 function Union (Left, Right : Set) return Set is
1524 begin
1525 if Left'Address = Right'Address then
1526 return Left.Copy;
1527 end if;
1529 if Length (Left) = 0 then
1530 return Right.Copy;
1531 end if;
1533 if Length (Right) = 0 then
1534 return Left.Copy;
1535 end if;
1537 return S : Set (Length (Left) + Length (Right)) do
1538 Assign (S, Source => Left);
1539 Union (S, Right);
1540 end return;
1541 end Union;
1543 end Ada.Containers.Formal_Ordered_Sets;