2007-05-22 H.J. Lu <hongjiu.lu@intel.com>
[official-gcc.git] / gcc / rtlanal.c
blobce7018b5987a9c4bc78d617897af3beafac6802b
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software
4 Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "hard-reg-set.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "target.h"
34 #include "output.h"
35 #include "tm_p.h"
36 #include "flags.h"
37 #include "real.h"
38 #include "regs.h"
39 #include "function.h"
40 #include "tree.h"
42 /* Information about a subreg of a hard register. */
43 struct subreg_info
45 /* Offset of first hard register involved in the subreg. */
46 int offset;
47 /* Number of hard registers involved in the subreg. */
48 int nregs;
49 /* Whether this subreg can be represented as a hard reg with the new
50 mode. */
51 bool representable_p;
54 /* Forward declarations */
55 static void set_of_1 (rtx, rtx, void *);
56 static bool covers_regno_p (rtx, unsigned int);
57 static bool covers_regno_no_parallel_p (rtx, unsigned int);
58 static int rtx_referenced_p_1 (rtx *, void *);
59 static int computed_jump_p_1 (rtx);
60 static void parms_set (rtx, rtx, void *);
61 static void subreg_get_info (unsigned int, enum machine_mode,
62 unsigned int, enum machine_mode,
63 struct subreg_info *);
65 static unsigned HOST_WIDE_INT cached_nonzero_bits (rtx, enum machine_mode,
66 rtx, enum machine_mode,
67 unsigned HOST_WIDE_INT);
68 static unsigned HOST_WIDE_INT nonzero_bits1 (rtx, enum machine_mode, rtx,
69 enum machine_mode,
70 unsigned HOST_WIDE_INT);
71 static unsigned int cached_num_sign_bit_copies (rtx, enum machine_mode, rtx,
72 enum machine_mode,
73 unsigned int);
74 static unsigned int num_sign_bit_copies1 (rtx, enum machine_mode, rtx,
75 enum machine_mode, unsigned int);
77 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
78 -1 if a code has no such operand. */
79 static int non_rtx_starting_operands[NUM_RTX_CODE];
81 /* Bit flags that specify the machine subtype we are compiling for.
82 Bits are tested using macros TARGET_... defined in the tm.h file
83 and set by `-m...' switches. Must be defined in rtlanal.c. */
85 int target_flags;
87 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
88 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
89 SIGN_EXTEND then while narrowing we also have to enforce the
90 representation and sign-extend the value to mode DESTINATION_REP.
92 If the value is already sign-extended to DESTINATION_REP mode we
93 can just switch to DESTINATION mode on it. For each pair of
94 integral modes SOURCE and DESTINATION, when truncating from SOURCE
95 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
96 contains the number of high-order bits in SOURCE that have to be
97 copies of the sign-bit so that we can do this mode-switch to
98 DESTINATION. */
100 static unsigned int
101 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
103 /* Return 1 if the value of X is unstable
104 (would be different at a different point in the program).
105 The frame pointer, arg pointer, etc. are considered stable
106 (within one function) and so is anything marked `unchanging'. */
109 rtx_unstable_p (rtx x)
111 RTX_CODE code = GET_CODE (x);
112 int i;
113 const char *fmt;
115 switch (code)
117 case MEM:
118 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
120 case CONST:
121 case CONST_INT:
122 case CONST_DOUBLE:
123 case CONST_VECTOR:
124 case SYMBOL_REF:
125 case LABEL_REF:
126 return 0;
128 case REG:
129 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
130 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
131 /* The arg pointer varies if it is not a fixed register. */
132 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
133 return 0;
134 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
135 /* ??? When call-clobbered, the value is stable modulo the restore
136 that must happen after a call. This currently screws up local-alloc
137 into believing that the restore is not needed. */
138 if (x == pic_offset_table_rtx)
139 return 0;
140 #endif
141 return 1;
143 case ASM_OPERANDS:
144 if (MEM_VOLATILE_P (x))
145 return 1;
147 /* Fall through. */
149 default:
150 break;
153 fmt = GET_RTX_FORMAT (code);
154 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
155 if (fmt[i] == 'e')
157 if (rtx_unstable_p (XEXP (x, i)))
158 return 1;
160 else if (fmt[i] == 'E')
162 int j;
163 for (j = 0; j < XVECLEN (x, i); j++)
164 if (rtx_unstable_p (XVECEXP (x, i, j)))
165 return 1;
168 return 0;
171 /* Return 1 if X has a value that can vary even between two
172 executions of the program. 0 means X can be compared reliably
173 against certain constants or near-constants.
174 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
175 zero, we are slightly more conservative.
176 The frame pointer and the arg pointer are considered constant. */
179 rtx_varies_p (rtx x, int for_alias)
181 RTX_CODE code;
182 int i;
183 const char *fmt;
185 if (!x)
186 return 0;
188 code = GET_CODE (x);
189 switch (code)
191 case MEM:
192 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
194 case CONST:
195 case CONST_INT:
196 case CONST_DOUBLE:
197 case CONST_VECTOR:
198 case SYMBOL_REF:
199 case LABEL_REF:
200 return 0;
202 case REG:
203 /* Note that we have to test for the actual rtx used for the frame
204 and arg pointers and not just the register number in case we have
205 eliminated the frame and/or arg pointer and are using it
206 for pseudos. */
207 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
208 /* The arg pointer varies if it is not a fixed register. */
209 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
210 return 0;
211 if (x == pic_offset_table_rtx
212 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
213 /* ??? When call-clobbered, the value is stable modulo the restore
214 that must happen after a call. This currently screws up
215 local-alloc into believing that the restore is not needed, so we
216 must return 0 only if we are called from alias analysis. */
217 && for_alias
218 #endif
220 return 0;
221 return 1;
223 case LO_SUM:
224 /* The operand 0 of a LO_SUM is considered constant
225 (in fact it is related specifically to operand 1)
226 during alias analysis. */
227 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
228 || rtx_varies_p (XEXP (x, 1), for_alias);
230 case ASM_OPERANDS:
231 if (MEM_VOLATILE_P (x))
232 return 1;
234 /* Fall through. */
236 default:
237 break;
240 fmt = GET_RTX_FORMAT (code);
241 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
242 if (fmt[i] == 'e')
244 if (rtx_varies_p (XEXP (x, i), for_alias))
245 return 1;
247 else if (fmt[i] == 'E')
249 int j;
250 for (j = 0; j < XVECLEN (x, i); j++)
251 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
252 return 1;
255 return 0;
258 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
259 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
260 whether nonzero is returned for unaligned memory accesses on strict
261 alignment machines. */
263 static int
264 rtx_addr_can_trap_p_1 (rtx x, enum machine_mode mode, bool unaligned_mems)
266 enum rtx_code code = GET_CODE (x);
268 switch (code)
270 case SYMBOL_REF:
271 return SYMBOL_REF_WEAK (x);
273 case LABEL_REF:
274 return 0;
276 case REG:
277 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
278 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
279 || x == stack_pointer_rtx
280 /* The arg pointer varies if it is not a fixed register. */
281 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
282 return 0;
283 /* All of the virtual frame registers are stack references. */
284 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
285 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
286 return 0;
287 return 1;
289 case CONST:
290 return rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems);
292 case PLUS:
293 /* An address is assumed not to trap if:
294 - it is an address that can't trap plus a constant integer,
295 with the proper remainder modulo the mode size if we are
296 considering unaligned memory references. */
297 if (!rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems)
298 && GET_CODE (XEXP (x, 1)) == CONST_INT)
300 HOST_WIDE_INT offset;
302 if (!STRICT_ALIGNMENT
303 || !unaligned_mems
304 || GET_MODE_SIZE (mode) == 0)
305 return 0;
307 offset = INTVAL (XEXP (x, 1));
309 #ifdef SPARC_STACK_BOUNDARY_HACK
310 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
311 the real alignment of %sp. However, when it does this, the
312 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
313 if (SPARC_STACK_BOUNDARY_HACK
314 && (XEXP (x, 0) == stack_pointer_rtx
315 || XEXP (x, 0) == hard_frame_pointer_rtx))
316 offset -= STACK_POINTER_OFFSET;
317 #endif
319 return offset % GET_MODE_SIZE (mode) != 0;
322 /* - or it is the pic register plus a constant. */
323 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
324 return 0;
326 return 1;
328 case LO_SUM:
329 case PRE_MODIFY:
330 return rtx_addr_can_trap_p_1 (XEXP (x, 1), mode, unaligned_mems);
332 case PRE_DEC:
333 case PRE_INC:
334 case POST_DEC:
335 case POST_INC:
336 case POST_MODIFY:
337 return rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems);
339 default:
340 break;
343 /* If it isn't one of the case above, it can cause a trap. */
344 return 1;
347 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
350 rtx_addr_can_trap_p (rtx x)
352 return rtx_addr_can_trap_p_1 (x, VOIDmode, false);
355 /* Return true if X is an address that is known to not be zero. */
357 bool
358 nonzero_address_p (rtx x)
360 enum rtx_code code = GET_CODE (x);
362 switch (code)
364 case SYMBOL_REF:
365 return !SYMBOL_REF_WEAK (x);
367 case LABEL_REF:
368 return true;
370 case REG:
371 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
372 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
373 || x == stack_pointer_rtx
374 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
375 return true;
376 /* All of the virtual frame registers are stack references. */
377 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
378 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
379 return true;
380 return false;
382 case CONST:
383 return nonzero_address_p (XEXP (x, 0));
385 case PLUS:
386 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
387 return nonzero_address_p (XEXP (x, 0));
388 /* Handle PIC references. */
389 else if (XEXP (x, 0) == pic_offset_table_rtx
390 && CONSTANT_P (XEXP (x, 1)))
391 return true;
392 return false;
394 case PRE_MODIFY:
395 /* Similar to the above; allow positive offsets. Further, since
396 auto-inc is only allowed in memories, the register must be a
397 pointer. */
398 if (GET_CODE (XEXP (x, 1)) == CONST_INT
399 && INTVAL (XEXP (x, 1)) > 0)
400 return true;
401 return nonzero_address_p (XEXP (x, 0));
403 case PRE_INC:
404 /* Similarly. Further, the offset is always positive. */
405 return true;
407 case PRE_DEC:
408 case POST_DEC:
409 case POST_INC:
410 case POST_MODIFY:
411 return nonzero_address_p (XEXP (x, 0));
413 case LO_SUM:
414 return nonzero_address_p (XEXP (x, 1));
416 default:
417 break;
420 /* If it isn't one of the case above, might be zero. */
421 return false;
424 /* Return 1 if X refers to a memory location whose address
425 cannot be compared reliably with constant addresses,
426 or if X refers to a BLKmode memory object.
427 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
428 zero, we are slightly more conservative. */
431 rtx_addr_varies_p (rtx x, int for_alias)
433 enum rtx_code code;
434 int i;
435 const char *fmt;
437 if (x == 0)
438 return 0;
440 code = GET_CODE (x);
441 if (code == MEM)
442 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
444 fmt = GET_RTX_FORMAT (code);
445 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
446 if (fmt[i] == 'e')
448 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
449 return 1;
451 else if (fmt[i] == 'E')
453 int j;
454 for (j = 0; j < XVECLEN (x, i); j++)
455 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
456 return 1;
458 return 0;
461 /* Return the value of the integer term in X, if one is apparent;
462 otherwise return 0.
463 Only obvious integer terms are detected.
464 This is used in cse.c with the `related_value' field. */
466 HOST_WIDE_INT
467 get_integer_term (rtx x)
469 if (GET_CODE (x) == CONST)
470 x = XEXP (x, 0);
472 if (GET_CODE (x) == MINUS
473 && GET_CODE (XEXP (x, 1)) == CONST_INT)
474 return - INTVAL (XEXP (x, 1));
475 if (GET_CODE (x) == PLUS
476 && GET_CODE (XEXP (x, 1)) == CONST_INT)
477 return INTVAL (XEXP (x, 1));
478 return 0;
481 /* If X is a constant, return the value sans apparent integer term;
482 otherwise return 0.
483 Only obvious integer terms are detected. */
486 get_related_value (rtx x)
488 if (GET_CODE (x) != CONST)
489 return 0;
490 x = XEXP (x, 0);
491 if (GET_CODE (x) == PLUS
492 && GET_CODE (XEXP (x, 1)) == CONST_INT)
493 return XEXP (x, 0);
494 else if (GET_CODE (x) == MINUS
495 && GET_CODE (XEXP (x, 1)) == CONST_INT)
496 return XEXP (x, 0);
497 return 0;
500 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
501 to somewhere in the same object or object_block as SYMBOL. */
503 bool
504 offset_within_block_p (rtx symbol, HOST_WIDE_INT offset)
506 tree decl;
508 if (GET_CODE (symbol) != SYMBOL_REF)
509 return false;
511 if (offset == 0)
512 return true;
514 if (offset > 0)
516 if (CONSTANT_POOL_ADDRESS_P (symbol)
517 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
518 return true;
520 decl = SYMBOL_REF_DECL (symbol);
521 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
522 return true;
525 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
526 && SYMBOL_REF_BLOCK (symbol)
527 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
528 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
529 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
530 return true;
532 return false;
535 /* Split X into a base and a constant offset, storing them in *BASE_OUT
536 and *OFFSET_OUT respectively. */
538 void
539 split_const (rtx x, rtx *base_out, rtx *offset_out)
541 if (GET_CODE (x) == CONST)
543 x = XEXP (x, 0);
544 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
546 *base_out = XEXP (x, 0);
547 *offset_out = XEXP (x, 1);
548 return;
551 *base_out = x;
552 *offset_out = const0_rtx;
555 /* Return the number of places FIND appears within X. If COUNT_DEST is
556 zero, we do not count occurrences inside the destination of a SET. */
559 count_occurrences (rtx x, rtx find, int count_dest)
561 int i, j;
562 enum rtx_code code;
563 const char *format_ptr;
564 int count;
566 if (x == find)
567 return 1;
569 code = GET_CODE (x);
571 switch (code)
573 case REG:
574 case CONST_INT:
575 case CONST_DOUBLE:
576 case CONST_VECTOR:
577 case SYMBOL_REF:
578 case CODE_LABEL:
579 case PC:
580 case CC0:
581 return 0;
583 case EXPR_LIST:
584 count = count_occurrences (XEXP (x, 0), find, count_dest);
585 if (XEXP (x, 1))
586 count += count_occurrences (XEXP (x, 1), find, count_dest);
587 return count;
589 case MEM:
590 if (MEM_P (find) && rtx_equal_p (x, find))
591 return 1;
592 break;
594 case SET:
595 if (SET_DEST (x) == find && ! count_dest)
596 return count_occurrences (SET_SRC (x), find, count_dest);
597 break;
599 default:
600 break;
603 format_ptr = GET_RTX_FORMAT (code);
604 count = 0;
606 for (i = 0; i < GET_RTX_LENGTH (code); i++)
608 switch (*format_ptr++)
610 case 'e':
611 count += count_occurrences (XEXP (x, i), find, count_dest);
612 break;
614 case 'E':
615 for (j = 0; j < XVECLEN (x, i); j++)
616 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
617 break;
620 return count;
623 /* Nonzero if register REG appears somewhere within IN.
624 Also works if REG is not a register; in this case it checks
625 for a subexpression of IN that is Lisp "equal" to REG. */
628 reg_mentioned_p (rtx reg, rtx in)
630 const char *fmt;
631 int i;
632 enum rtx_code code;
634 if (in == 0)
635 return 0;
637 if (reg == in)
638 return 1;
640 if (GET_CODE (in) == LABEL_REF)
641 return reg == XEXP (in, 0);
643 code = GET_CODE (in);
645 switch (code)
647 /* Compare registers by number. */
648 case REG:
649 return REG_P (reg) && REGNO (in) == REGNO (reg);
651 /* These codes have no constituent expressions
652 and are unique. */
653 case SCRATCH:
654 case CC0:
655 case PC:
656 return 0;
658 case CONST_INT:
659 case CONST_VECTOR:
660 case CONST_DOUBLE:
661 /* These are kept unique for a given value. */
662 return 0;
664 default:
665 break;
668 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
669 return 1;
671 fmt = GET_RTX_FORMAT (code);
673 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
675 if (fmt[i] == 'E')
677 int j;
678 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
679 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
680 return 1;
682 else if (fmt[i] == 'e'
683 && reg_mentioned_p (reg, XEXP (in, i)))
684 return 1;
686 return 0;
689 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
690 no CODE_LABEL insn. */
693 no_labels_between_p (rtx beg, rtx end)
695 rtx p;
696 if (beg == end)
697 return 0;
698 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
699 if (LABEL_P (p))
700 return 0;
701 return 1;
704 /* Nonzero if register REG is used in an insn between
705 FROM_INSN and TO_INSN (exclusive of those two). */
708 reg_used_between_p (rtx reg, rtx from_insn, rtx to_insn)
710 rtx insn;
712 if (from_insn == to_insn)
713 return 0;
715 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
716 if (INSN_P (insn)
717 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
718 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
719 return 1;
720 return 0;
723 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
724 is entirely replaced by a new value and the only use is as a SET_DEST,
725 we do not consider it a reference. */
728 reg_referenced_p (rtx x, rtx body)
730 int i;
732 switch (GET_CODE (body))
734 case SET:
735 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
736 return 1;
738 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
739 of a REG that occupies all of the REG, the insn references X if
740 it is mentioned in the destination. */
741 if (GET_CODE (SET_DEST (body)) != CC0
742 && GET_CODE (SET_DEST (body)) != PC
743 && !REG_P (SET_DEST (body))
744 && ! (GET_CODE (SET_DEST (body)) == SUBREG
745 && REG_P (SUBREG_REG (SET_DEST (body)))
746 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
747 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
748 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
749 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
750 && reg_overlap_mentioned_p (x, SET_DEST (body)))
751 return 1;
752 return 0;
754 case ASM_OPERANDS:
755 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
756 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
757 return 1;
758 return 0;
760 case CALL:
761 case USE:
762 case IF_THEN_ELSE:
763 return reg_overlap_mentioned_p (x, body);
765 case TRAP_IF:
766 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
768 case PREFETCH:
769 return reg_overlap_mentioned_p (x, XEXP (body, 0));
771 case UNSPEC:
772 case UNSPEC_VOLATILE:
773 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
774 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
775 return 1;
776 return 0;
778 case PARALLEL:
779 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
780 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
781 return 1;
782 return 0;
784 case CLOBBER:
785 if (MEM_P (XEXP (body, 0)))
786 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
787 return 1;
788 return 0;
790 case COND_EXEC:
791 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
792 return 1;
793 return reg_referenced_p (x, COND_EXEC_CODE (body));
795 default:
796 return 0;
800 /* Nonzero if register REG is set or clobbered in an insn between
801 FROM_INSN and TO_INSN (exclusive of those two). */
804 reg_set_between_p (rtx reg, rtx from_insn, rtx to_insn)
806 rtx insn;
808 if (from_insn == to_insn)
809 return 0;
811 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
812 if (INSN_P (insn) && reg_set_p (reg, insn))
813 return 1;
814 return 0;
817 /* Internals of reg_set_between_p. */
819 reg_set_p (rtx reg, rtx insn)
821 /* We can be passed an insn or part of one. If we are passed an insn,
822 check if a side-effect of the insn clobbers REG. */
823 if (INSN_P (insn)
824 && (FIND_REG_INC_NOTE (insn, reg)
825 || (CALL_P (insn)
826 && ((REG_P (reg)
827 && REGNO (reg) < FIRST_PSEUDO_REGISTER
828 && TEST_HARD_REG_BIT (regs_invalidated_by_call,
829 REGNO (reg)))
830 || MEM_P (reg)
831 || find_reg_fusage (insn, CLOBBER, reg)))))
832 return 1;
834 return set_of (reg, insn) != NULL_RTX;
837 /* Similar to reg_set_between_p, but check all registers in X. Return 0
838 only if none of them are modified between START and END. Return 1 if
839 X contains a MEM; this routine does usememory aliasing. */
842 modified_between_p (rtx x, rtx start, rtx end)
844 enum rtx_code code = GET_CODE (x);
845 const char *fmt;
846 int i, j;
847 rtx insn;
849 if (start == end)
850 return 0;
852 switch (code)
854 case CONST_INT:
855 case CONST_DOUBLE:
856 case CONST_VECTOR:
857 case CONST:
858 case SYMBOL_REF:
859 case LABEL_REF:
860 return 0;
862 case PC:
863 case CC0:
864 return 1;
866 case MEM:
867 if (modified_between_p (XEXP (x, 0), start, end))
868 return 1;
869 if (MEM_READONLY_P (x))
870 return 0;
871 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
872 if (memory_modified_in_insn_p (x, insn))
873 return 1;
874 return 0;
875 break;
877 case REG:
878 return reg_set_between_p (x, start, end);
880 default:
881 break;
884 fmt = GET_RTX_FORMAT (code);
885 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
887 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
888 return 1;
890 else if (fmt[i] == 'E')
891 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
892 if (modified_between_p (XVECEXP (x, i, j), start, end))
893 return 1;
896 return 0;
899 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
900 of them are modified in INSN. Return 1 if X contains a MEM; this routine
901 does use memory aliasing. */
904 modified_in_p (rtx x, rtx insn)
906 enum rtx_code code = GET_CODE (x);
907 const char *fmt;
908 int i, j;
910 switch (code)
912 case CONST_INT:
913 case CONST_DOUBLE:
914 case CONST_VECTOR:
915 case CONST:
916 case SYMBOL_REF:
917 case LABEL_REF:
918 return 0;
920 case PC:
921 case CC0:
922 return 1;
924 case MEM:
925 if (modified_in_p (XEXP (x, 0), insn))
926 return 1;
927 if (MEM_READONLY_P (x))
928 return 0;
929 if (memory_modified_in_insn_p (x, insn))
930 return 1;
931 return 0;
932 break;
934 case REG:
935 return reg_set_p (x, insn);
937 default:
938 break;
941 fmt = GET_RTX_FORMAT (code);
942 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
944 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
945 return 1;
947 else if (fmt[i] == 'E')
948 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
949 if (modified_in_p (XVECEXP (x, i, j), insn))
950 return 1;
953 return 0;
956 /* Helper function for set_of. */
957 struct set_of_data
959 rtx found;
960 rtx pat;
963 static void
964 set_of_1 (rtx x, rtx pat, void *data1)
966 struct set_of_data *data = (struct set_of_data *) (data1);
967 if (rtx_equal_p (x, data->pat)
968 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
969 data->found = pat;
972 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
973 (either directly or via STRICT_LOW_PART and similar modifiers). */
975 set_of (rtx pat, rtx insn)
977 struct set_of_data data;
978 data.found = NULL_RTX;
979 data.pat = pat;
980 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
981 return data.found;
984 /* Given an INSN, return a SET expression if this insn has only a single SET.
985 It may also have CLOBBERs, USEs, or SET whose output
986 will not be used, which we ignore. */
989 single_set_2 (rtx insn, rtx pat)
991 rtx set = NULL;
992 int set_verified = 1;
993 int i;
995 if (GET_CODE (pat) == PARALLEL)
997 for (i = 0; i < XVECLEN (pat, 0); i++)
999 rtx sub = XVECEXP (pat, 0, i);
1000 switch (GET_CODE (sub))
1002 case USE:
1003 case CLOBBER:
1004 break;
1006 case SET:
1007 /* We can consider insns having multiple sets, where all
1008 but one are dead as single set insns. In common case
1009 only single set is present in the pattern so we want
1010 to avoid checking for REG_UNUSED notes unless necessary.
1012 When we reach set first time, we just expect this is
1013 the single set we are looking for and only when more
1014 sets are found in the insn, we check them. */
1015 if (!set_verified)
1017 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1018 && !side_effects_p (set))
1019 set = NULL;
1020 else
1021 set_verified = 1;
1023 if (!set)
1024 set = sub, set_verified = 0;
1025 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1026 || side_effects_p (sub))
1027 return NULL_RTX;
1028 break;
1030 default:
1031 return NULL_RTX;
1035 return set;
1038 /* Given an INSN, return nonzero if it has more than one SET, else return
1039 zero. */
1042 multiple_sets (rtx insn)
1044 int found;
1045 int i;
1047 /* INSN must be an insn. */
1048 if (! INSN_P (insn))
1049 return 0;
1051 /* Only a PARALLEL can have multiple SETs. */
1052 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1054 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1055 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1057 /* If we have already found a SET, then return now. */
1058 if (found)
1059 return 1;
1060 else
1061 found = 1;
1065 /* Either zero or one SET. */
1066 return 0;
1069 /* Return nonzero if the destination of SET equals the source
1070 and there are no side effects. */
1073 set_noop_p (rtx set)
1075 rtx src = SET_SRC (set);
1076 rtx dst = SET_DEST (set);
1078 if (dst == pc_rtx && src == pc_rtx)
1079 return 1;
1081 if (MEM_P (dst) && MEM_P (src))
1082 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1084 if (GET_CODE (dst) == ZERO_EXTRACT)
1085 return rtx_equal_p (XEXP (dst, 0), src)
1086 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1087 && !side_effects_p (src);
1089 if (GET_CODE (dst) == STRICT_LOW_PART)
1090 dst = XEXP (dst, 0);
1092 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1094 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1095 return 0;
1096 src = SUBREG_REG (src);
1097 dst = SUBREG_REG (dst);
1100 return (REG_P (src) && REG_P (dst)
1101 && REGNO (src) == REGNO (dst));
1104 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1105 value to itself. */
1108 noop_move_p (rtx insn)
1110 rtx pat = PATTERN (insn);
1112 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1113 return 1;
1115 /* Insns carrying these notes are useful later on. */
1116 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1117 return 0;
1119 /* For now treat an insn with a REG_RETVAL note as a
1120 a special insn which should not be considered a no-op. */
1121 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
1122 return 0;
1124 if (GET_CODE (pat) == SET && set_noop_p (pat))
1125 return 1;
1127 if (GET_CODE (pat) == PARALLEL)
1129 int i;
1130 /* If nothing but SETs of registers to themselves,
1131 this insn can also be deleted. */
1132 for (i = 0; i < XVECLEN (pat, 0); i++)
1134 rtx tem = XVECEXP (pat, 0, i);
1136 if (GET_CODE (tem) == USE
1137 || GET_CODE (tem) == CLOBBER)
1138 continue;
1140 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1141 return 0;
1144 return 1;
1146 return 0;
1150 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1151 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1152 If the object was modified, if we hit a partial assignment to X, or hit a
1153 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1154 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1155 be the src. */
1158 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1160 rtx p;
1162 for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1163 p = PREV_INSN (p))
1164 if (INSN_P (p))
1166 rtx set = single_set (p);
1167 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1169 if (set && rtx_equal_p (x, SET_DEST (set)))
1171 rtx src = SET_SRC (set);
1173 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1174 src = XEXP (note, 0);
1176 if ((valid_to == NULL_RTX
1177 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1178 /* Reject hard registers because we don't usually want
1179 to use them; we'd rather use a pseudo. */
1180 && (! (REG_P (src)
1181 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1183 *pinsn = p;
1184 return src;
1188 /* If set in non-simple way, we don't have a value. */
1189 if (reg_set_p (x, p))
1190 break;
1193 return x;
1196 /* Return nonzero if register in range [REGNO, ENDREGNO)
1197 appears either explicitly or implicitly in X
1198 other than being stored into.
1200 References contained within the substructure at LOC do not count.
1201 LOC may be zero, meaning don't ignore anything. */
1204 refers_to_regno_p (unsigned int regno, unsigned int endregno, rtx x,
1205 rtx *loc)
1207 int i;
1208 unsigned int x_regno;
1209 RTX_CODE code;
1210 const char *fmt;
1212 repeat:
1213 /* The contents of a REG_NONNEG note is always zero, so we must come here
1214 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1215 if (x == 0)
1216 return 0;
1218 code = GET_CODE (x);
1220 switch (code)
1222 case REG:
1223 x_regno = REGNO (x);
1225 /* If we modifying the stack, frame, or argument pointer, it will
1226 clobber a virtual register. In fact, we could be more precise,
1227 but it isn't worth it. */
1228 if ((x_regno == STACK_POINTER_REGNUM
1229 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1230 || x_regno == ARG_POINTER_REGNUM
1231 #endif
1232 || x_regno == FRAME_POINTER_REGNUM)
1233 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1234 return 1;
1236 return (endregno > x_regno
1237 && regno < x_regno + (x_regno < FIRST_PSEUDO_REGISTER
1238 ? hard_regno_nregs[x_regno][GET_MODE (x)]
1239 : 1));
1241 case SUBREG:
1242 /* If this is a SUBREG of a hard reg, we can see exactly which
1243 registers are being modified. Otherwise, handle normally. */
1244 if (REG_P (SUBREG_REG (x))
1245 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1247 unsigned int inner_regno = subreg_regno (x);
1248 unsigned int inner_endregno
1249 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1250 ? subreg_nregs (x) : 1);
1252 return endregno > inner_regno && regno < inner_endregno;
1254 break;
1256 case CLOBBER:
1257 case SET:
1258 if (&SET_DEST (x) != loc
1259 /* Note setting a SUBREG counts as referring to the REG it is in for
1260 a pseudo but not for hard registers since we can
1261 treat each word individually. */
1262 && ((GET_CODE (SET_DEST (x)) == SUBREG
1263 && loc != &SUBREG_REG (SET_DEST (x))
1264 && REG_P (SUBREG_REG (SET_DEST (x)))
1265 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1266 && refers_to_regno_p (regno, endregno,
1267 SUBREG_REG (SET_DEST (x)), loc))
1268 || (!REG_P (SET_DEST (x))
1269 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1270 return 1;
1272 if (code == CLOBBER || loc == &SET_SRC (x))
1273 return 0;
1274 x = SET_SRC (x);
1275 goto repeat;
1277 default:
1278 break;
1281 /* X does not match, so try its subexpressions. */
1283 fmt = GET_RTX_FORMAT (code);
1284 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1286 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1288 if (i == 0)
1290 x = XEXP (x, 0);
1291 goto repeat;
1293 else
1294 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1295 return 1;
1297 else if (fmt[i] == 'E')
1299 int j;
1300 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1301 if (loc != &XVECEXP (x, i, j)
1302 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1303 return 1;
1306 return 0;
1309 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1310 we check if any register number in X conflicts with the relevant register
1311 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1312 contains a MEM (we don't bother checking for memory addresses that can't
1313 conflict because we expect this to be a rare case. */
1316 reg_overlap_mentioned_p (rtx x, rtx in)
1318 unsigned int regno, endregno;
1320 /* If either argument is a constant, then modifying X can not
1321 affect IN. Here we look at IN, we can profitably combine
1322 CONSTANT_P (x) with the switch statement below. */
1323 if (CONSTANT_P (in))
1324 return 0;
1326 recurse:
1327 switch (GET_CODE (x))
1329 case STRICT_LOW_PART:
1330 case ZERO_EXTRACT:
1331 case SIGN_EXTRACT:
1332 /* Overly conservative. */
1333 x = XEXP (x, 0);
1334 goto recurse;
1336 case SUBREG:
1337 regno = REGNO (SUBREG_REG (x));
1338 if (regno < FIRST_PSEUDO_REGISTER)
1339 regno = subreg_regno (x);
1340 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1341 ? subreg_nregs (x) : 1);
1342 goto do_reg;
1344 case REG:
1345 regno = REGNO (x);
1346 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1347 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
1348 do_reg:
1349 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1351 case MEM:
1353 const char *fmt;
1354 int i;
1356 if (MEM_P (in))
1357 return 1;
1359 fmt = GET_RTX_FORMAT (GET_CODE (in));
1360 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1361 if (fmt[i] == 'e')
1363 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1364 return 1;
1366 else if (fmt[i] == 'E')
1368 int j;
1369 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1370 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1371 return 1;
1374 return 0;
1377 case SCRATCH:
1378 case PC:
1379 case CC0:
1380 return reg_mentioned_p (x, in);
1382 case PARALLEL:
1384 int i;
1386 /* If any register in here refers to it we return true. */
1387 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1388 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1389 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1390 return 1;
1391 return 0;
1394 default:
1395 gcc_assert (CONSTANT_P (x));
1396 return 0;
1400 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1401 (X would be the pattern of an insn).
1402 FUN receives two arguments:
1403 the REG, MEM, CC0 or PC being stored in or clobbered,
1404 the SET or CLOBBER rtx that does the store.
1406 If the item being stored in or clobbered is a SUBREG of a hard register,
1407 the SUBREG will be passed. */
1409 void
1410 note_stores (rtx x, void (*fun) (rtx, rtx, void *), void *data)
1412 int i;
1414 if (GET_CODE (x) == COND_EXEC)
1415 x = COND_EXEC_CODE (x);
1417 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1419 rtx dest = SET_DEST (x);
1421 while ((GET_CODE (dest) == SUBREG
1422 && (!REG_P (SUBREG_REG (dest))
1423 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1424 || GET_CODE (dest) == ZERO_EXTRACT
1425 || GET_CODE (dest) == STRICT_LOW_PART)
1426 dest = XEXP (dest, 0);
1428 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1429 each of whose first operand is a register. */
1430 if (GET_CODE (dest) == PARALLEL)
1432 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1433 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1434 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1436 else
1437 (*fun) (dest, x, data);
1440 else if (GET_CODE (x) == PARALLEL)
1441 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1442 note_stores (XVECEXP (x, 0, i), fun, data);
1445 /* Like notes_stores, but call FUN for each expression that is being
1446 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1447 FUN for each expression, not any interior subexpressions. FUN receives a
1448 pointer to the expression and the DATA passed to this function.
1450 Note that this is not quite the same test as that done in reg_referenced_p
1451 since that considers something as being referenced if it is being
1452 partially set, while we do not. */
1454 void
1455 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1457 rtx body = *pbody;
1458 int i;
1460 switch (GET_CODE (body))
1462 case COND_EXEC:
1463 (*fun) (&COND_EXEC_TEST (body), data);
1464 note_uses (&COND_EXEC_CODE (body), fun, data);
1465 return;
1467 case PARALLEL:
1468 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1469 note_uses (&XVECEXP (body, 0, i), fun, data);
1470 return;
1472 case SEQUENCE:
1473 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1474 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1475 return;
1477 case USE:
1478 (*fun) (&XEXP (body, 0), data);
1479 return;
1481 case ASM_OPERANDS:
1482 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1483 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1484 return;
1486 case TRAP_IF:
1487 (*fun) (&TRAP_CONDITION (body), data);
1488 return;
1490 case PREFETCH:
1491 (*fun) (&XEXP (body, 0), data);
1492 return;
1494 case UNSPEC:
1495 case UNSPEC_VOLATILE:
1496 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1497 (*fun) (&XVECEXP (body, 0, i), data);
1498 return;
1500 case CLOBBER:
1501 if (MEM_P (XEXP (body, 0)))
1502 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1503 return;
1505 case SET:
1507 rtx dest = SET_DEST (body);
1509 /* For sets we replace everything in source plus registers in memory
1510 expression in store and operands of a ZERO_EXTRACT. */
1511 (*fun) (&SET_SRC (body), data);
1513 if (GET_CODE (dest) == ZERO_EXTRACT)
1515 (*fun) (&XEXP (dest, 1), data);
1516 (*fun) (&XEXP (dest, 2), data);
1519 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1520 dest = XEXP (dest, 0);
1522 if (MEM_P (dest))
1523 (*fun) (&XEXP (dest, 0), data);
1525 return;
1527 default:
1528 /* All the other possibilities never store. */
1529 (*fun) (pbody, data);
1530 return;
1534 /* Return nonzero if X's old contents don't survive after INSN.
1535 This will be true if X is (cc0) or if X is a register and
1536 X dies in INSN or because INSN entirely sets X.
1538 "Entirely set" means set directly and not through a SUBREG, or
1539 ZERO_EXTRACT, so no trace of the old contents remains.
1540 Likewise, REG_INC does not count.
1542 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1543 but for this use that makes no difference, since regs don't overlap
1544 during their lifetimes. Therefore, this function may be used
1545 at any time after deaths have been computed (in flow.c).
1547 If REG is a hard reg that occupies multiple machine registers, this
1548 function will only return 1 if each of those registers will be replaced
1549 by INSN. */
1552 dead_or_set_p (rtx insn, rtx x)
1554 unsigned int regno, last_regno;
1555 unsigned int i;
1557 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1558 if (GET_CODE (x) == CC0)
1559 return 1;
1561 gcc_assert (REG_P (x));
1563 regno = REGNO (x);
1564 last_regno = (regno >= FIRST_PSEUDO_REGISTER ? regno
1565 : regno + hard_regno_nregs[regno][GET_MODE (x)] - 1);
1567 for (i = regno; i <= last_regno; i++)
1568 if (! dead_or_set_regno_p (insn, i))
1569 return 0;
1571 return 1;
1574 /* Return TRUE iff DEST is a register or subreg of a register and
1575 doesn't change the number of words of the inner register, and any
1576 part of the register is TEST_REGNO. */
1578 static bool
1579 covers_regno_no_parallel_p (rtx dest, unsigned int test_regno)
1581 unsigned int regno, endregno;
1583 if (GET_CODE (dest) == SUBREG
1584 && (((GET_MODE_SIZE (GET_MODE (dest))
1585 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1586 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1587 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1588 dest = SUBREG_REG (dest);
1590 if (!REG_P (dest))
1591 return false;
1593 regno = REGNO (dest);
1594 endregno = (regno >= FIRST_PSEUDO_REGISTER ? regno + 1
1595 : regno + hard_regno_nregs[regno][GET_MODE (dest)]);
1596 return (test_regno >= regno && test_regno < endregno);
1599 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1600 any member matches the covers_regno_no_parallel_p criteria. */
1602 static bool
1603 covers_regno_p (rtx dest, unsigned int test_regno)
1605 if (GET_CODE (dest) == PARALLEL)
1607 /* Some targets place small structures in registers for return
1608 values of functions, and those registers are wrapped in
1609 PARALLELs that we may see as the destination of a SET. */
1610 int i;
1612 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1614 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1615 if (inner != NULL_RTX
1616 && covers_regno_no_parallel_p (inner, test_regno))
1617 return true;
1620 return false;
1622 else
1623 return covers_regno_no_parallel_p (dest, test_regno);
1626 /* Utility function for dead_or_set_p to check an individual register. Also
1627 called from flow.c. */
1630 dead_or_set_regno_p (rtx insn, unsigned int test_regno)
1632 rtx pattern;
1634 /* See if there is a death note for something that includes TEST_REGNO. */
1635 if (find_regno_note (insn, REG_DEAD, test_regno))
1636 return 1;
1638 if (CALL_P (insn)
1639 && find_regno_fusage (insn, CLOBBER, test_regno))
1640 return 1;
1642 pattern = PATTERN (insn);
1644 if (GET_CODE (pattern) == COND_EXEC)
1645 pattern = COND_EXEC_CODE (pattern);
1647 if (GET_CODE (pattern) == SET)
1648 return covers_regno_p (SET_DEST (pattern), test_regno);
1649 else if (GET_CODE (pattern) == PARALLEL)
1651 int i;
1653 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1655 rtx body = XVECEXP (pattern, 0, i);
1657 if (GET_CODE (body) == COND_EXEC)
1658 body = COND_EXEC_CODE (body);
1660 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1661 && covers_regno_p (SET_DEST (body), test_regno))
1662 return 1;
1666 return 0;
1669 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1670 If DATUM is nonzero, look for one whose datum is DATUM. */
1673 find_reg_note (rtx insn, enum reg_note kind, rtx datum)
1675 rtx link;
1677 gcc_assert (insn);
1679 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1680 if (! INSN_P (insn))
1681 return 0;
1682 if (datum == 0)
1684 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1685 if (REG_NOTE_KIND (link) == kind)
1686 return link;
1687 return 0;
1690 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1691 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1692 return link;
1693 return 0;
1696 /* Return the reg-note of kind KIND in insn INSN which applies to register
1697 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1698 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1699 it might be the case that the note overlaps REGNO. */
1702 find_regno_note (rtx insn, enum reg_note kind, unsigned int regno)
1704 rtx link;
1706 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1707 if (! INSN_P (insn))
1708 return 0;
1710 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1711 if (REG_NOTE_KIND (link) == kind
1712 /* Verify that it is a register, so that scratch and MEM won't cause a
1713 problem here. */
1714 && REG_P (XEXP (link, 0))
1715 && REGNO (XEXP (link, 0)) <= regno
1716 && ((REGNO (XEXP (link, 0))
1717 + (REGNO (XEXP (link, 0)) >= FIRST_PSEUDO_REGISTER ? 1
1718 : hard_regno_nregs[REGNO (XEXP (link, 0))]
1719 [GET_MODE (XEXP (link, 0))]))
1720 > regno))
1721 return link;
1722 return 0;
1725 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1726 has such a note. */
1729 find_reg_equal_equiv_note (rtx insn)
1731 rtx link;
1733 if (!INSN_P (insn))
1734 return 0;
1736 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1737 if (REG_NOTE_KIND (link) == REG_EQUAL
1738 || REG_NOTE_KIND (link) == REG_EQUIV)
1740 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1741 insns that have multiple sets. Checking single_set to
1742 make sure of this is not the proper check, as explained
1743 in the comment in set_unique_reg_note.
1745 This should be changed into an assert. */
1746 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1747 return 0;
1748 return link;
1750 return NULL;
1753 /* Check whether INSN is a single_set whose source is known to be
1754 equivalent to a constant. Return that constant if so, otherwise
1755 return null. */
1758 find_constant_src (rtx insn)
1760 rtx note, set, x;
1762 set = single_set (insn);
1763 if (set)
1765 x = avoid_constant_pool_reference (SET_SRC (set));
1766 if (CONSTANT_P (x))
1767 return x;
1770 note = find_reg_equal_equiv_note (insn);
1771 if (note && CONSTANT_P (XEXP (note, 0)))
1772 return XEXP (note, 0);
1774 return NULL_RTX;
1777 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1778 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1781 find_reg_fusage (rtx insn, enum rtx_code code, rtx datum)
1783 /* If it's not a CALL_INSN, it can't possibly have a
1784 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1785 if (!CALL_P (insn))
1786 return 0;
1788 gcc_assert (datum);
1790 if (!REG_P (datum))
1792 rtx link;
1794 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1795 link;
1796 link = XEXP (link, 1))
1797 if (GET_CODE (XEXP (link, 0)) == code
1798 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1799 return 1;
1801 else
1803 unsigned int regno = REGNO (datum);
1805 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1806 to pseudo registers, so don't bother checking. */
1808 if (regno < FIRST_PSEUDO_REGISTER)
1810 unsigned int end_regno
1811 = regno + hard_regno_nregs[regno][GET_MODE (datum)];
1812 unsigned int i;
1814 for (i = regno; i < end_regno; i++)
1815 if (find_regno_fusage (insn, code, i))
1816 return 1;
1820 return 0;
1823 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1824 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1827 find_regno_fusage (rtx insn, enum rtx_code code, unsigned int regno)
1829 rtx link;
1831 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1832 to pseudo registers, so don't bother checking. */
1834 if (regno >= FIRST_PSEUDO_REGISTER
1835 || !CALL_P (insn) )
1836 return 0;
1838 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1840 unsigned int regnote;
1841 rtx op, reg;
1843 if (GET_CODE (op = XEXP (link, 0)) == code
1844 && REG_P (reg = XEXP (op, 0))
1845 && (regnote = REGNO (reg)) <= regno
1846 && regnote + hard_regno_nregs[regnote][GET_MODE (reg)] > regno)
1847 return 1;
1850 return 0;
1853 /* Return true if INSN is a call to a pure function. */
1856 pure_call_p (rtx insn)
1858 rtx link;
1860 if (!CALL_P (insn) || ! CONST_OR_PURE_CALL_P (insn))
1861 return 0;
1863 /* Look for the note that differentiates const and pure functions. */
1864 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1866 rtx u, m;
1868 if (GET_CODE (u = XEXP (link, 0)) == USE
1869 && MEM_P (m = XEXP (u, 0)) && GET_MODE (m) == BLKmode
1870 && GET_CODE (XEXP (m, 0)) == SCRATCH)
1871 return 1;
1874 return 0;
1877 /* Remove register note NOTE from the REG_NOTES of INSN. */
1879 void
1880 remove_note (rtx insn, rtx note)
1882 rtx link;
1884 if (note == NULL_RTX)
1885 return;
1887 if (REG_NOTES (insn) == note)
1889 REG_NOTES (insn) = XEXP (note, 1);
1890 return;
1893 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1894 if (XEXP (link, 1) == note)
1896 XEXP (link, 1) = XEXP (note, 1);
1897 return;
1900 gcc_unreachable ();
1903 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
1905 void
1906 remove_reg_equal_equiv_notes (rtx insn)
1908 rtx *loc;
1910 loc = &REG_NOTES (insn);
1911 while (*loc)
1913 enum reg_note kind = REG_NOTE_KIND (*loc);
1914 if (kind == REG_EQUAL || kind == REG_EQUIV)
1915 *loc = XEXP (*loc, 1);
1916 else
1917 loc = &XEXP (*loc, 1);
1921 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1922 return 1 if it is found. A simple equality test is used to determine if
1923 NODE matches. */
1926 in_expr_list_p (rtx listp, rtx node)
1928 rtx x;
1930 for (x = listp; x; x = XEXP (x, 1))
1931 if (node == XEXP (x, 0))
1932 return 1;
1934 return 0;
1937 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1938 remove that entry from the list if it is found.
1940 A simple equality test is used to determine if NODE matches. */
1942 void
1943 remove_node_from_expr_list (rtx node, rtx *listp)
1945 rtx temp = *listp;
1946 rtx prev = NULL_RTX;
1948 while (temp)
1950 if (node == XEXP (temp, 0))
1952 /* Splice the node out of the list. */
1953 if (prev)
1954 XEXP (prev, 1) = XEXP (temp, 1);
1955 else
1956 *listp = XEXP (temp, 1);
1958 return;
1961 prev = temp;
1962 temp = XEXP (temp, 1);
1966 /* Nonzero if X contains any volatile instructions. These are instructions
1967 which may cause unpredictable machine state instructions, and thus no
1968 instructions should be moved or combined across them. This includes
1969 only volatile asms and UNSPEC_VOLATILE instructions. */
1972 volatile_insn_p (rtx x)
1974 RTX_CODE code;
1976 code = GET_CODE (x);
1977 switch (code)
1979 case LABEL_REF:
1980 case SYMBOL_REF:
1981 case CONST_INT:
1982 case CONST:
1983 case CONST_DOUBLE:
1984 case CONST_VECTOR:
1985 case CC0:
1986 case PC:
1987 case REG:
1988 case SCRATCH:
1989 case CLOBBER:
1990 case ADDR_VEC:
1991 case ADDR_DIFF_VEC:
1992 case CALL:
1993 case MEM:
1994 return 0;
1996 case UNSPEC_VOLATILE:
1997 /* case TRAP_IF: This isn't clear yet. */
1998 return 1;
2000 case ASM_INPUT:
2001 case ASM_OPERANDS:
2002 if (MEM_VOLATILE_P (x))
2003 return 1;
2005 default:
2006 break;
2009 /* Recursively scan the operands of this expression. */
2012 const char *fmt = GET_RTX_FORMAT (code);
2013 int i;
2015 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2017 if (fmt[i] == 'e')
2019 if (volatile_insn_p (XEXP (x, i)))
2020 return 1;
2022 else if (fmt[i] == 'E')
2024 int j;
2025 for (j = 0; j < XVECLEN (x, i); j++)
2026 if (volatile_insn_p (XVECEXP (x, i, j)))
2027 return 1;
2031 return 0;
2034 /* Nonzero if X contains any volatile memory references
2035 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2038 volatile_refs_p (rtx x)
2040 RTX_CODE code;
2042 code = GET_CODE (x);
2043 switch (code)
2045 case LABEL_REF:
2046 case SYMBOL_REF:
2047 case CONST_INT:
2048 case CONST:
2049 case CONST_DOUBLE:
2050 case CONST_VECTOR:
2051 case CC0:
2052 case PC:
2053 case REG:
2054 case SCRATCH:
2055 case CLOBBER:
2056 case ADDR_VEC:
2057 case ADDR_DIFF_VEC:
2058 return 0;
2060 case UNSPEC_VOLATILE:
2061 return 1;
2063 case MEM:
2064 case ASM_INPUT:
2065 case ASM_OPERANDS:
2066 if (MEM_VOLATILE_P (x))
2067 return 1;
2069 default:
2070 break;
2073 /* Recursively scan the operands of this expression. */
2076 const char *fmt = GET_RTX_FORMAT (code);
2077 int i;
2079 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2081 if (fmt[i] == 'e')
2083 if (volatile_refs_p (XEXP (x, i)))
2084 return 1;
2086 else if (fmt[i] == 'E')
2088 int j;
2089 for (j = 0; j < XVECLEN (x, i); j++)
2090 if (volatile_refs_p (XVECEXP (x, i, j)))
2091 return 1;
2095 return 0;
2098 /* Similar to above, except that it also rejects register pre- and post-
2099 incrementing. */
2102 side_effects_p (rtx x)
2104 RTX_CODE code;
2106 code = GET_CODE (x);
2107 switch (code)
2109 case LABEL_REF:
2110 case SYMBOL_REF:
2111 case CONST_INT:
2112 case CONST:
2113 case CONST_DOUBLE:
2114 case CONST_VECTOR:
2115 case CC0:
2116 case PC:
2117 case REG:
2118 case SCRATCH:
2119 case ADDR_VEC:
2120 case ADDR_DIFF_VEC:
2121 return 0;
2123 case CLOBBER:
2124 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2125 when some combination can't be done. If we see one, don't think
2126 that we can simplify the expression. */
2127 return (GET_MODE (x) != VOIDmode);
2129 case PRE_INC:
2130 case PRE_DEC:
2131 case POST_INC:
2132 case POST_DEC:
2133 case PRE_MODIFY:
2134 case POST_MODIFY:
2135 case CALL:
2136 case UNSPEC_VOLATILE:
2137 /* case TRAP_IF: This isn't clear yet. */
2138 return 1;
2140 case MEM:
2141 case ASM_INPUT:
2142 case ASM_OPERANDS:
2143 if (MEM_VOLATILE_P (x))
2144 return 1;
2146 default:
2147 break;
2150 /* Recursively scan the operands of this expression. */
2153 const char *fmt = GET_RTX_FORMAT (code);
2154 int i;
2156 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2158 if (fmt[i] == 'e')
2160 if (side_effects_p (XEXP (x, i)))
2161 return 1;
2163 else if (fmt[i] == 'E')
2165 int j;
2166 for (j = 0; j < XVECLEN (x, i); j++)
2167 if (side_effects_p (XVECEXP (x, i, j)))
2168 return 1;
2172 return 0;
2175 enum may_trap_p_flags
2177 MTP_UNALIGNED_MEMS = 1,
2178 MTP_AFTER_MOVE = 2
2180 /* Return nonzero if evaluating rtx X might cause a trap.
2181 (FLAGS & MTP_UNALIGNED_MEMS) controls whether nonzero is returned for
2182 unaligned memory accesses on strict alignment machines. If
2183 (FLAGS & AFTER_MOVE) is true, returns nonzero even in case the expression
2184 cannot trap at its current location, but it might become trapping if moved
2185 elsewhere. */
2187 static int
2188 may_trap_p_1 (rtx x, unsigned flags)
2190 int i;
2191 enum rtx_code code;
2192 const char *fmt;
2193 bool unaligned_mems = (flags & MTP_UNALIGNED_MEMS) != 0;
2195 if (x == 0)
2196 return 0;
2197 code = GET_CODE (x);
2198 switch (code)
2200 /* Handle these cases quickly. */
2201 case CONST_INT:
2202 case CONST_DOUBLE:
2203 case CONST_VECTOR:
2204 case SYMBOL_REF:
2205 case LABEL_REF:
2206 case CONST:
2207 case PC:
2208 case CC0:
2209 case REG:
2210 case SCRATCH:
2211 return 0;
2213 case ASM_INPUT:
2214 case UNSPEC_VOLATILE:
2215 case TRAP_IF:
2216 return 1;
2218 case ASM_OPERANDS:
2219 return MEM_VOLATILE_P (x);
2221 /* Memory ref can trap unless it's a static var or a stack slot. */
2222 case MEM:
2223 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2224 reference; moving it out of condition might cause its address
2225 become invalid. */
2226 !(flags & MTP_AFTER_MOVE)
2227 && MEM_NOTRAP_P (x)
2228 && (!STRICT_ALIGNMENT || !unaligned_mems))
2229 return 0;
2230 return
2231 rtx_addr_can_trap_p_1 (XEXP (x, 0), GET_MODE (x), unaligned_mems);
2233 /* Division by a non-constant might trap. */
2234 case DIV:
2235 case MOD:
2236 case UDIV:
2237 case UMOD:
2238 if (HONOR_SNANS (GET_MODE (x)))
2239 return 1;
2240 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2241 return flag_trapping_math;
2242 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2243 return 1;
2244 break;
2246 case EXPR_LIST:
2247 /* An EXPR_LIST is used to represent a function call. This
2248 certainly may trap. */
2249 return 1;
2251 case GE:
2252 case GT:
2253 case LE:
2254 case LT:
2255 case LTGT:
2256 case COMPARE:
2257 /* Some floating point comparisons may trap. */
2258 if (!flag_trapping_math)
2259 break;
2260 /* ??? There is no machine independent way to check for tests that trap
2261 when COMPARE is used, though many targets do make this distinction.
2262 For instance, sparc uses CCFPE for compares which generate exceptions
2263 and CCFP for compares which do not generate exceptions. */
2264 if (HONOR_NANS (GET_MODE (x)))
2265 return 1;
2266 /* But often the compare has some CC mode, so check operand
2267 modes as well. */
2268 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2269 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2270 return 1;
2271 break;
2273 case EQ:
2274 case NE:
2275 if (HONOR_SNANS (GET_MODE (x)))
2276 return 1;
2277 /* Often comparison is CC mode, so check operand modes. */
2278 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2279 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2280 return 1;
2281 break;
2283 case FIX:
2284 /* Conversion of floating point might trap. */
2285 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2286 return 1;
2287 break;
2289 case NEG:
2290 case ABS:
2291 case SUBREG:
2292 /* These operations don't trap even with floating point. */
2293 break;
2295 default:
2296 /* Any floating arithmetic may trap. */
2297 if (SCALAR_FLOAT_MODE_P (GET_MODE (x))
2298 && flag_trapping_math)
2299 return 1;
2302 fmt = GET_RTX_FORMAT (code);
2303 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2305 if (fmt[i] == 'e')
2307 if (may_trap_p_1 (XEXP (x, i), flags))
2308 return 1;
2310 else if (fmt[i] == 'E')
2312 int j;
2313 for (j = 0; j < XVECLEN (x, i); j++)
2314 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2315 return 1;
2318 return 0;
2321 /* Return nonzero if evaluating rtx X might cause a trap. */
2324 may_trap_p (rtx x)
2326 return may_trap_p_1 (x, 0);
2329 /* Return nonzero if evaluating rtx X might cause a trap, when the expression
2330 is moved from its current location by some optimization. */
2333 may_trap_after_code_motion_p (rtx x)
2335 return may_trap_p_1 (x, MTP_AFTER_MOVE);
2338 /* Same as above, but additionally return nonzero if evaluating rtx X might
2339 cause a fault. We define a fault for the purpose of this function as a
2340 erroneous execution condition that cannot be encountered during the normal
2341 execution of a valid program; the typical example is an unaligned memory
2342 access on a strict alignment machine. The compiler guarantees that it
2343 doesn't generate code that will fault from a valid program, but this
2344 guarantee doesn't mean anything for individual instructions. Consider
2345 the following example:
2347 struct S { int d; union { char *cp; int *ip; }; };
2349 int foo(struct S *s)
2351 if (s->d == 1)
2352 return *s->ip;
2353 else
2354 return *s->cp;
2357 on a strict alignment machine. In a valid program, foo will never be
2358 invoked on a structure for which d is equal to 1 and the underlying
2359 unique field of the union not aligned on a 4-byte boundary, but the
2360 expression *s->ip might cause a fault if considered individually.
2362 At the RTL level, potentially problematic expressions will almost always
2363 verify may_trap_p; for example, the above dereference can be emitted as
2364 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2365 However, suppose that foo is inlined in a caller that causes s->cp to
2366 point to a local character variable and guarantees that s->d is not set
2367 to 1; foo may have been effectively translated into pseudo-RTL as:
2369 if ((reg:SI) == 1)
2370 (set (reg:SI) (mem:SI (%fp - 7)))
2371 else
2372 (set (reg:QI) (mem:QI (%fp - 7)))
2374 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2375 memory reference to a stack slot, but it will certainly cause a fault
2376 on a strict alignment machine. */
2379 may_trap_or_fault_p (rtx x)
2381 return may_trap_p_1 (x, MTP_UNALIGNED_MEMS);
2384 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2385 i.e., an inequality. */
2388 inequality_comparisons_p (rtx x)
2390 const char *fmt;
2391 int len, i;
2392 enum rtx_code code = GET_CODE (x);
2394 switch (code)
2396 case REG:
2397 case SCRATCH:
2398 case PC:
2399 case CC0:
2400 case CONST_INT:
2401 case CONST_DOUBLE:
2402 case CONST_VECTOR:
2403 case CONST:
2404 case LABEL_REF:
2405 case SYMBOL_REF:
2406 return 0;
2408 case LT:
2409 case LTU:
2410 case GT:
2411 case GTU:
2412 case LE:
2413 case LEU:
2414 case GE:
2415 case GEU:
2416 return 1;
2418 default:
2419 break;
2422 len = GET_RTX_LENGTH (code);
2423 fmt = GET_RTX_FORMAT (code);
2425 for (i = 0; i < len; i++)
2427 if (fmt[i] == 'e')
2429 if (inequality_comparisons_p (XEXP (x, i)))
2430 return 1;
2432 else if (fmt[i] == 'E')
2434 int j;
2435 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2436 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2437 return 1;
2441 return 0;
2444 /* Replace any occurrence of FROM in X with TO. The function does
2445 not enter into CONST_DOUBLE for the replace.
2447 Note that copying is not done so X must not be shared unless all copies
2448 are to be modified. */
2451 replace_rtx (rtx x, rtx from, rtx to)
2453 int i, j;
2454 const char *fmt;
2456 /* The following prevents loops occurrence when we change MEM in
2457 CONST_DOUBLE onto the same CONST_DOUBLE. */
2458 if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2459 return x;
2461 if (x == from)
2462 return to;
2464 /* Allow this function to make replacements in EXPR_LISTs. */
2465 if (x == 0)
2466 return 0;
2468 if (GET_CODE (x) == SUBREG)
2470 rtx new = replace_rtx (SUBREG_REG (x), from, to);
2472 if (GET_CODE (new) == CONST_INT)
2474 x = simplify_subreg (GET_MODE (x), new,
2475 GET_MODE (SUBREG_REG (x)),
2476 SUBREG_BYTE (x));
2477 gcc_assert (x);
2479 else
2480 SUBREG_REG (x) = new;
2482 return x;
2484 else if (GET_CODE (x) == ZERO_EXTEND)
2486 rtx new = replace_rtx (XEXP (x, 0), from, to);
2488 if (GET_CODE (new) == CONST_INT)
2490 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2491 new, GET_MODE (XEXP (x, 0)));
2492 gcc_assert (x);
2494 else
2495 XEXP (x, 0) = new;
2497 return x;
2500 fmt = GET_RTX_FORMAT (GET_CODE (x));
2501 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2503 if (fmt[i] == 'e')
2504 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2505 else if (fmt[i] == 'E')
2506 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2507 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2510 return x;
2513 /* Replace occurrences of the old label in *X with the new one.
2514 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2517 replace_label (rtx *x, void *data)
2519 rtx l = *x;
2520 rtx old_label = ((replace_label_data *) data)->r1;
2521 rtx new_label = ((replace_label_data *) data)->r2;
2522 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2524 if (l == NULL_RTX)
2525 return 0;
2527 if (GET_CODE (l) == SYMBOL_REF
2528 && CONSTANT_POOL_ADDRESS_P (l))
2530 rtx c = get_pool_constant (l);
2531 if (rtx_referenced_p (old_label, c))
2533 rtx new_c, new_l;
2534 replace_label_data *d = (replace_label_data *) data;
2536 /* Create a copy of constant C; replace the label inside
2537 but do not update LABEL_NUSES because uses in constant pool
2538 are not counted. */
2539 new_c = copy_rtx (c);
2540 d->update_label_nuses = false;
2541 for_each_rtx (&new_c, replace_label, data);
2542 d->update_label_nuses = update_label_nuses;
2544 /* Add the new constant NEW_C to constant pool and replace
2545 the old reference to constant by new reference. */
2546 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2547 *x = replace_rtx (l, l, new_l);
2549 return 0;
2552 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2553 field. This is not handled by for_each_rtx because it doesn't
2554 handle unprinted ('0') fields. */
2555 if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2556 JUMP_LABEL (l) = new_label;
2558 if ((GET_CODE (l) == LABEL_REF
2559 || GET_CODE (l) == INSN_LIST)
2560 && XEXP (l, 0) == old_label)
2562 XEXP (l, 0) = new_label;
2563 if (update_label_nuses)
2565 ++LABEL_NUSES (new_label);
2566 --LABEL_NUSES (old_label);
2568 return 0;
2571 return 0;
2574 /* When *BODY is equal to X or X is directly referenced by *BODY
2575 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2576 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2578 static int
2579 rtx_referenced_p_1 (rtx *body, void *x)
2581 rtx y = (rtx) x;
2583 if (*body == NULL_RTX)
2584 return y == NULL_RTX;
2586 /* Return true if a label_ref *BODY refers to label Y. */
2587 if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2588 return XEXP (*body, 0) == y;
2590 /* If *BODY is a reference to pool constant traverse the constant. */
2591 if (GET_CODE (*body) == SYMBOL_REF
2592 && CONSTANT_POOL_ADDRESS_P (*body))
2593 return rtx_referenced_p (y, get_pool_constant (*body));
2595 /* By default, compare the RTL expressions. */
2596 return rtx_equal_p (*body, y);
2599 /* Return true if X is referenced in BODY. */
2602 rtx_referenced_p (rtx x, rtx body)
2604 return for_each_rtx (&body, rtx_referenced_p_1, x);
2607 /* If INSN is a tablejump return true and store the label (before jump table) to
2608 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2610 bool
2611 tablejump_p (rtx insn, rtx *labelp, rtx *tablep)
2613 rtx label, table;
2615 if (JUMP_P (insn)
2616 && (label = JUMP_LABEL (insn)) != NULL_RTX
2617 && (table = next_active_insn (label)) != NULL_RTX
2618 && JUMP_P (table)
2619 && (GET_CODE (PATTERN (table)) == ADDR_VEC
2620 || GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC))
2622 if (labelp)
2623 *labelp = label;
2624 if (tablep)
2625 *tablep = table;
2626 return true;
2628 return false;
2631 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2632 constant that is not in the constant pool and not in the condition
2633 of an IF_THEN_ELSE. */
2635 static int
2636 computed_jump_p_1 (rtx x)
2638 enum rtx_code code = GET_CODE (x);
2639 int i, j;
2640 const char *fmt;
2642 switch (code)
2644 case LABEL_REF:
2645 case PC:
2646 return 0;
2648 case CONST:
2649 case CONST_INT:
2650 case CONST_DOUBLE:
2651 case CONST_VECTOR:
2652 case SYMBOL_REF:
2653 case REG:
2654 return 1;
2656 case MEM:
2657 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2658 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2660 case IF_THEN_ELSE:
2661 return (computed_jump_p_1 (XEXP (x, 1))
2662 || computed_jump_p_1 (XEXP (x, 2)));
2664 default:
2665 break;
2668 fmt = GET_RTX_FORMAT (code);
2669 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2671 if (fmt[i] == 'e'
2672 && computed_jump_p_1 (XEXP (x, i)))
2673 return 1;
2675 else if (fmt[i] == 'E')
2676 for (j = 0; j < XVECLEN (x, i); j++)
2677 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2678 return 1;
2681 return 0;
2684 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2686 Tablejumps and casesi insns are not considered indirect jumps;
2687 we can recognize them by a (use (label_ref)). */
2690 computed_jump_p (rtx insn)
2692 int i;
2693 if (JUMP_P (insn))
2695 rtx pat = PATTERN (insn);
2697 if (find_reg_note (insn, REG_LABEL, NULL_RTX))
2698 return 0;
2699 else if (GET_CODE (pat) == PARALLEL)
2701 int len = XVECLEN (pat, 0);
2702 int has_use_labelref = 0;
2704 for (i = len - 1; i >= 0; i--)
2705 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2706 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2707 == LABEL_REF))
2708 has_use_labelref = 1;
2710 if (! has_use_labelref)
2711 for (i = len - 1; i >= 0; i--)
2712 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2713 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2714 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2715 return 1;
2717 else if (GET_CODE (pat) == SET
2718 && SET_DEST (pat) == pc_rtx
2719 && computed_jump_p_1 (SET_SRC (pat)))
2720 return 1;
2722 return 0;
2725 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2726 calls. Processes the subexpressions of EXP and passes them to F. */
2727 static int
2728 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2730 int result, i, j;
2731 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2732 rtx *x;
2734 for (; format[n] != '\0'; n++)
2736 switch (format[n])
2738 case 'e':
2739 /* Call F on X. */
2740 x = &XEXP (exp, n);
2741 result = (*f) (x, data);
2742 if (result == -1)
2743 /* Do not traverse sub-expressions. */
2744 continue;
2745 else if (result != 0)
2746 /* Stop the traversal. */
2747 return result;
2749 if (*x == NULL_RTX)
2750 /* There are no sub-expressions. */
2751 continue;
2753 i = non_rtx_starting_operands[GET_CODE (*x)];
2754 if (i >= 0)
2756 result = for_each_rtx_1 (*x, i, f, data);
2757 if (result != 0)
2758 return result;
2760 break;
2762 case 'V':
2763 case 'E':
2764 if (XVEC (exp, n) == 0)
2765 continue;
2766 for (j = 0; j < XVECLEN (exp, n); ++j)
2768 /* Call F on X. */
2769 x = &XVECEXP (exp, n, j);
2770 result = (*f) (x, data);
2771 if (result == -1)
2772 /* Do not traverse sub-expressions. */
2773 continue;
2774 else if (result != 0)
2775 /* Stop the traversal. */
2776 return result;
2778 if (*x == NULL_RTX)
2779 /* There are no sub-expressions. */
2780 continue;
2782 i = non_rtx_starting_operands[GET_CODE (*x)];
2783 if (i >= 0)
2785 result = for_each_rtx_1 (*x, i, f, data);
2786 if (result != 0)
2787 return result;
2790 break;
2792 default:
2793 /* Nothing to do. */
2794 break;
2798 return 0;
2801 /* Traverse X via depth-first search, calling F for each
2802 sub-expression (including X itself). F is also passed the DATA.
2803 If F returns -1, do not traverse sub-expressions, but continue
2804 traversing the rest of the tree. If F ever returns any other
2805 nonzero value, stop the traversal, and return the value returned
2806 by F. Otherwise, return 0. This function does not traverse inside
2807 tree structure that contains RTX_EXPRs, or into sub-expressions
2808 whose format code is `0' since it is not known whether or not those
2809 codes are actually RTL.
2811 This routine is very general, and could (should?) be used to
2812 implement many of the other routines in this file. */
2815 for_each_rtx (rtx *x, rtx_function f, void *data)
2817 int result;
2818 int i;
2820 /* Call F on X. */
2821 result = (*f) (x, data);
2822 if (result == -1)
2823 /* Do not traverse sub-expressions. */
2824 return 0;
2825 else if (result != 0)
2826 /* Stop the traversal. */
2827 return result;
2829 if (*x == NULL_RTX)
2830 /* There are no sub-expressions. */
2831 return 0;
2833 i = non_rtx_starting_operands[GET_CODE (*x)];
2834 if (i < 0)
2835 return 0;
2837 return for_each_rtx_1 (*x, i, f, data);
2841 /* Searches X for any reference to REGNO, returning the rtx of the
2842 reference found if any. Otherwise, returns NULL_RTX. */
2845 regno_use_in (unsigned int regno, rtx x)
2847 const char *fmt;
2848 int i, j;
2849 rtx tem;
2851 if (REG_P (x) && REGNO (x) == regno)
2852 return x;
2854 fmt = GET_RTX_FORMAT (GET_CODE (x));
2855 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2857 if (fmt[i] == 'e')
2859 if ((tem = regno_use_in (regno, XEXP (x, i))))
2860 return tem;
2862 else if (fmt[i] == 'E')
2863 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2864 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
2865 return tem;
2868 return NULL_RTX;
2871 /* Return a value indicating whether OP, an operand of a commutative
2872 operation, is preferred as the first or second operand. The higher
2873 the value, the stronger the preference for being the first operand.
2874 We use negative values to indicate a preference for the first operand
2875 and positive values for the second operand. */
2878 commutative_operand_precedence (rtx op)
2880 enum rtx_code code = GET_CODE (op);
2882 /* Constants always come the second operand. Prefer "nice" constants. */
2883 if (code == CONST_INT)
2884 return -7;
2885 if (code == CONST_DOUBLE)
2886 return -6;
2887 op = avoid_constant_pool_reference (op);
2888 code = GET_CODE (op);
2890 switch (GET_RTX_CLASS (code))
2892 case RTX_CONST_OBJ:
2893 if (code == CONST_INT)
2894 return -5;
2895 if (code == CONST_DOUBLE)
2896 return -4;
2897 return -3;
2899 case RTX_EXTRA:
2900 /* SUBREGs of objects should come second. */
2901 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
2902 return -2;
2904 if (!CONSTANT_P (op))
2905 return 0;
2906 else
2907 /* As for RTX_CONST_OBJ. */
2908 return -3;
2910 case RTX_OBJ:
2911 /* Complex expressions should be the first, so decrease priority
2912 of objects. */
2913 return -1;
2915 case RTX_COMM_ARITH:
2916 /* Prefer operands that are themselves commutative to be first.
2917 This helps to make things linear. In particular,
2918 (and (and (reg) (reg)) (not (reg))) is canonical. */
2919 return 4;
2921 case RTX_BIN_ARITH:
2922 /* If only one operand is a binary expression, it will be the first
2923 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
2924 is canonical, although it will usually be further simplified. */
2925 return 2;
2927 case RTX_UNARY:
2928 /* Then prefer NEG and NOT. */
2929 if (code == NEG || code == NOT)
2930 return 1;
2932 default:
2933 return 0;
2937 /* Return 1 iff it is necessary to swap operands of commutative operation
2938 in order to canonicalize expression. */
2941 swap_commutative_operands_p (rtx x, rtx y)
2943 return (commutative_operand_precedence (x)
2944 < commutative_operand_precedence (y));
2947 /* Return 1 if X is an autoincrement side effect and the register is
2948 not the stack pointer. */
2950 auto_inc_p (rtx x)
2952 switch (GET_CODE (x))
2954 case PRE_INC:
2955 case POST_INC:
2956 case PRE_DEC:
2957 case POST_DEC:
2958 case PRE_MODIFY:
2959 case POST_MODIFY:
2960 /* There are no REG_INC notes for SP. */
2961 if (XEXP (x, 0) != stack_pointer_rtx)
2962 return 1;
2963 default:
2964 break;
2966 return 0;
2969 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
2971 loc_mentioned_in_p (rtx *loc, rtx in)
2973 enum rtx_code code;
2974 const char *fmt;
2975 int i, j;
2977 if (!in)
2978 return 0;
2980 code = GET_CODE (in);
2981 fmt = GET_RTX_FORMAT (code);
2982 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2984 if (loc == &in->u.fld[i].rt_rtx)
2985 return 1;
2986 if (fmt[i] == 'e')
2988 if (loc_mentioned_in_p (loc, XEXP (in, i)))
2989 return 1;
2991 else if (fmt[i] == 'E')
2992 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
2993 if (loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
2994 return 1;
2996 return 0;
2999 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3000 and SUBREG_BYTE, return the bit offset where the subreg begins
3001 (counting from the least significant bit of the operand). */
3003 unsigned int
3004 subreg_lsb_1 (enum machine_mode outer_mode,
3005 enum machine_mode inner_mode,
3006 unsigned int subreg_byte)
3008 unsigned int bitpos;
3009 unsigned int byte;
3010 unsigned int word;
3012 /* A paradoxical subreg begins at bit position 0. */
3013 if (GET_MODE_BITSIZE (outer_mode) > GET_MODE_BITSIZE (inner_mode))
3014 return 0;
3016 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3017 /* If the subreg crosses a word boundary ensure that
3018 it also begins and ends on a word boundary. */
3019 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3020 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3021 && (subreg_byte % UNITS_PER_WORD
3022 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3024 if (WORDS_BIG_ENDIAN)
3025 word = (GET_MODE_SIZE (inner_mode)
3026 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3027 else
3028 word = subreg_byte / UNITS_PER_WORD;
3029 bitpos = word * BITS_PER_WORD;
3031 if (BYTES_BIG_ENDIAN)
3032 byte = (GET_MODE_SIZE (inner_mode)
3033 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3034 else
3035 byte = subreg_byte % UNITS_PER_WORD;
3036 bitpos += byte * BITS_PER_UNIT;
3038 return bitpos;
3041 /* Given a subreg X, return the bit offset where the subreg begins
3042 (counting from the least significant bit of the reg). */
3044 unsigned int
3045 subreg_lsb (rtx x)
3047 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3048 SUBREG_BYTE (x));
3051 /* Fill in information about a subreg of a hard register.
3052 xregno - A regno of an inner hard subreg_reg (or what will become one).
3053 xmode - The mode of xregno.
3054 offset - The byte offset.
3055 ymode - The mode of a top level SUBREG (or what may become one).
3056 info - Pointer to structure to fill in. */
3057 static void
3058 subreg_get_info (unsigned int xregno, enum machine_mode xmode,
3059 unsigned int offset, enum machine_mode ymode,
3060 struct subreg_info *info)
3062 int nregs_xmode, nregs_ymode;
3063 int mode_multiple, nregs_multiple;
3064 int offset_adj, y_offset, y_offset_adj;
3065 int regsize_xmode, regsize_ymode;
3066 bool rknown;
3068 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3070 rknown = false;
3072 /* If there are holes in a non-scalar mode in registers, we expect
3073 that it is made up of its units concatenated together. */
3074 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3076 enum machine_mode xmode_unit;
3078 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3079 if (GET_MODE_INNER (xmode) == VOIDmode)
3080 xmode_unit = xmode;
3081 else
3082 xmode_unit = GET_MODE_INNER (xmode);
3083 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3084 gcc_assert (nregs_xmode
3085 == (GET_MODE_NUNITS (xmode)
3086 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3087 gcc_assert (hard_regno_nregs[xregno][xmode]
3088 == (hard_regno_nregs[xregno][xmode_unit]
3089 * GET_MODE_NUNITS (xmode)));
3091 /* You can only ask for a SUBREG of a value with holes in the middle
3092 if you don't cross the holes. (Such a SUBREG should be done by
3093 picking a different register class, or doing it in memory if
3094 necessary.) An example of a value with holes is XCmode on 32-bit
3095 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3096 3 for each part, but in memory it's two 128-bit parts.
3097 Padding is assumed to be at the end (not necessarily the 'high part')
3098 of each unit. */
3099 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3100 < GET_MODE_NUNITS (xmode))
3101 && (offset / GET_MODE_SIZE (xmode_unit)
3102 != ((offset + GET_MODE_SIZE (ymode) - 1)
3103 / GET_MODE_SIZE (xmode_unit))))
3105 info->representable_p = false;
3106 rknown = true;
3109 else
3110 nregs_xmode = hard_regno_nregs[xregno][xmode];
3112 nregs_ymode = hard_regno_nregs[xregno][ymode];
3114 /* Paradoxical subregs are otherwise valid. */
3115 if (!rknown
3116 && offset == 0
3117 && GET_MODE_SIZE (ymode) > GET_MODE_SIZE (xmode))
3119 info->representable_p = true;
3120 /* If this is a big endian paradoxical subreg, which uses more
3121 actual hard registers than the original register, we must
3122 return a negative offset so that we find the proper highpart
3123 of the register. */
3124 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3125 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3126 info->offset = nregs_xmode - nregs_ymode;
3127 else
3128 info->offset = 0;
3129 info->nregs = nregs_ymode;
3130 return;
3133 /* If registers store different numbers of bits in the different
3134 modes, we cannot generally form this subreg. */
3135 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3136 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3137 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3138 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3140 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3141 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3142 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3144 info->representable_p = false;
3145 info->nregs
3146 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3147 info->offset = offset / regsize_xmode;
3148 return;
3150 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3152 info->representable_p = false;
3153 info->nregs
3154 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3155 info->offset = offset / regsize_xmode;
3156 return;
3160 /* Lowpart subregs are otherwise valid. */
3161 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3163 info->representable_p = true;
3164 rknown = true;
3166 if (offset == 0 || nregs_xmode == nregs_ymode)
3168 info->offset = 0;
3169 info->nregs = nregs_ymode;
3170 return;
3174 /* This should always pass, otherwise we don't know how to verify
3175 the constraint. These conditions may be relaxed but
3176 subreg_regno_offset would need to be redesigned. */
3177 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3178 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3180 /* The XMODE value can be seen as a vector of NREGS_XMODE
3181 values. The subreg must represent a lowpart of given field.
3182 Compute what field it is. */
3183 offset_adj = offset;
3184 offset_adj -= subreg_lowpart_offset (ymode,
3185 mode_for_size (GET_MODE_BITSIZE (xmode)
3186 / nregs_xmode,
3187 MODE_INT, 0));
3189 /* Size of ymode must not be greater than the size of xmode. */
3190 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3191 gcc_assert (mode_multiple != 0);
3193 y_offset = offset / GET_MODE_SIZE (ymode);
3194 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3195 nregs_multiple = nregs_xmode / nregs_ymode;
3197 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3198 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3200 if (!rknown)
3202 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3203 rknown = true;
3205 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3206 info->nregs = nregs_ymode;
3209 /* This function returns the regno offset of a subreg expression.
3210 xregno - A regno of an inner hard subreg_reg (or what will become one).
3211 xmode - The mode of xregno.
3212 offset - The byte offset.
3213 ymode - The mode of a top level SUBREG (or what may become one).
3214 RETURN - The regno offset which would be used. */
3215 unsigned int
3216 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3217 unsigned int offset, enum machine_mode ymode)
3219 struct subreg_info info;
3220 subreg_get_info (xregno, xmode, offset, ymode, &info);
3221 return info.offset;
3224 /* This function returns true when the offset is representable via
3225 subreg_offset in the given regno.
3226 xregno - A regno of an inner hard subreg_reg (or what will become one).
3227 xmode - The mode of xregno.
3228 offset - The byte offset.
3229 ymode - The mode of a top level SUBREG (or what may become one).
3230 RETURN - Whether the offset is representable. */
3231 bool
3232 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3233 unsigned int offset, enum machine_mode ymode)
3235 struct subreg_info info;
3236 subreg_get_info (xregno, xmode, offset, ymode, &info);
3237 return info.representable_p;
3240 /* Return the final regno that a subreg expression refers to. */
3241 unsigned int
3242 subreg_regno (rtx x)
3244 unsigned int ret;
3245 rtx subreg = SUBREG_REG (x);
3246 int regno = REGNO (subreg);
3248 ret = regno + subreg_regno_offset (regno,
3249 GET_MODE (subreg),
3250 SUBREG_BYTE (x),
3251 GET_MODE (x));
3252 return ret;
3256 /* Return the number of registers that a subreg expression refers
3257 to. */
3258 unsigned int
3259 subreg_nregs (rtx x)
3261 struct subreg_info info;
3262 rtx subreg = SUBREG_REG (x);
3263 int regno = REGNO (subreg);
3265 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3266 &info);
3267 return info.nregs;
3270 struct parms_set_data
3272 int nregs;
3273 HARD_REG_SET regs;
3276 /* Helper function for noticing stores to parameter registers. */
3277 static void
3278 parms_set (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
3280 struct parms_set_data *d = data;
3281 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3282 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3284 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3285 d->nregs--;
3289 /* Look backward for first parameter to be loaded.
3290 Note that loads of all parameters will not necessarily be
3291 found if CSE has eliminated some of them (e.g., an argument
3292 to the outer function is passed down as a parameter).
3293 Do not skip BOUNDARY. */
3295 find_first_parameter_load (rtx call_insn, rtx boundary)
3297 struct parms_set_data parm;
3298 rtx p, before, first_set;
3300 /* Since different machines initialize their parameter registers
3301 in different orders, assume nothing. Collect the set of all
3302 parameter registers. */
3303 CLEAR_HARD_REG_SET (parm.regs);
3304 parm.nregs = 0;
3305 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3306 if (GET_CODE (XEXP (p, 0)) == USE
3307 && REG_P (XEXP (XEXP (p, 0), 0)))
3309 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3311 /* We only care about registers which can hold function
3312 arguments. */
3313 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3314 continue;
3316 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3317 parm.nregs++;
3319 before = call_insn;
3320 first_set = call_insn;
3322 /* Search backward for the first set of a register in this set. */
3323 while (parm.nregs && before != boundary)
3325 before = PREV_INSN (before);
3327 /* It is possible that some loads got CSEed from one call to
3328 another. Stop in that case. */
3329 if (CALL_P (before))
3330 break;
3332 /* Our caller needs either ensure that we will find all sets
3333 (in case code has not been optimized yet), or take care
3334 for possible labels in a way by setting boundary to preceding
3335 CODE_LABEL. */
3336 if (LABEL_P (before))
3338 gcc_assert (before == boundary);
3339 break;
3342 if (INSN_P (before))
3344 int nregs_old = parm.nregs;
3345 note_stores (PATTERN (before), parms_set, &parm);
3346 /* If we found something that did not set a parameter reg,
3347 we're done. Do not keep going, as that might result
3348 in hoisting an insn before the setting of a pseudo
3349 that is used by the hoisted insn. */
3350 if (nregs_old != parm.nregs)
3351 first_set = before;
3352 else
3353 break;
3356 return first_set;
3359 /* Return true if we should avoid inserting code between INSN and preceding
3360 call instruction. */
3362 bool
3363 keep_with_call_p (rtx insn)
3365 rtx set;
3367 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3369 if (REG_P (SET_DEST (set))
3370 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3371 && fixed_regs[REGNO (SET_DEST (set))]
3372 && general_operand (SET_SRC (set), VOIDmode))
3373 return true;
3374 if (REG_P (SET_SRC (set))
3375 && FUNCTION_VALUE_REGNO_P (REGNO (SET_SRC (set)))
3376 && REG_P (SET_DEST (set))
3377 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3378 return true;
3379 /* There may be a stack pop just after the call and before the store
3380 of the return register. Search for the actual store when deciding
3381 if we can break or not. */
3382 if (SET_DEST (set) == stack_pointer_rtx)
3384 rtx i2 = next_nonnote_insn (insn);
3385 if (i2 && keep_with_call_p (i2))
3386 return true;
3389 return false;
3392 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3393 to non-complex jumps. That is, direct unconditional, conditional,
3394 and tablejumps, but not computed jumps or returns. It also does
3395 not apply to the fallthru case of a conditional jump. */
3397 bool
3398 label_is_jump_target_p (rtx label, rtx jump_insn)
3400 rtx tmp = JUMP_LABEL (jump_insn);
3402 if (label == tmp)
3403 return true;
3405 if (tablejump_p (jump_insn, NULL, &tmp))
3407 rtvec vec = XVEC (PATTERN (tmp),
3408 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3409 int i, veclen = GET_NUM_ELEM (vec);
3411 for (i = 0; i < veclen; ++i)
3412 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3413 return true;
3416 return false;
3420 /* Return an estimate of the cost of computing rtx X.
3421 One use is in cse, to decide which expression to keep in the hash table.
3422 Another is in rtl generation, to pick the cheapest way to multiply.
3423 Other uses like the latter are expected in the future. */
3426 rtx_cost (rtx x, enum rtx_code outer_code ATTRIBUTE_UNUSED)
3428 int i, j;
3429 enum rtx_code code;
3430 const char *fmt;
3431 int total;
3433 if (x == 0)
3434 return 0;
3436 /* Compute the default costs of certain things.
3437 Note that targetm.rtx_costs can override the defaults. */
3439 code = GET_CODE (x);
3440 switch (code)
3442 case MULT:
3443 total = COSTS_N_INSNS (5);
3444 break;
3445 case DIV:
3446 case UDIV:
3447 case MOD:
3448 case UMOD:
3449 total = COSTS_N_INSNS (7);
3450 break;
3451 case USE:
3452 /* Used in combine.c as a marker. */
3453 total = 0;
3454 break;
3455 default:
3456 total = COSTS_N_INSNS (1);
3459 switch (code)
3461 case REG:
3462 return 0;
3464 case SUBREG:
3465 total = 0;
3466 /* If we can't tie these modes, make this expensive. The larger
3467 the mode, the more expensive it is. */
3468 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3469 return COSTS_N_INSNS (2
3470 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
3471 break;
3473 default:
3474 if (targetm.rtx_costs (x, code, outer_code, &total))
3475 return total;
3476 break;
3479 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3480 which is already in total. */
3482 fmt = GET_RTX_FORMAT (code);
3483 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3484 if (fmt[i] == 'e')
3485 total += rtx_cost (XEXP (x, i), code);
3486 else if (fmt[i] == 'E')
3487 for (j = 0; j < XVECLEN (x, i); j++)
3488 total += rtx_cost (XVECEXP (x, i, j), code);
3490 return total;
3493 /* Return cost of address expression X.
3494 Expect that X is properly formed address reference. */
3497 address_cost (rtx x, enum machine_mode mode)
3499 /* We may be asked for cost of various unusual addresses, such as operands
3500 of push instruction. It is not worthwhile to complicate writing
3501 of the target hook by such cases. */
3503 if (!memory_address_p (mode, x))
3504 return 1000;
3506 return targetm.address_cost (x);
3509 /* If the target doesn't override, compute the cost as with arithmetic. */
3512 default_address_cost (rtx x)
3514 return rtx_cost (x, MEM);
3518 unsigned HOST_WIDE_INT
3519 nonzero_bits (rtx x, enum machine_mode mode)
3521 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3524 unsigned int
3525 num_sign_bit_copies (rtx x, enum machine_mode mode)
3527 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3530 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3531 It avoids exponential behavior in nonzero_bits1 when X has
3532 identical subexpressions on the first or the second level. */
3534 static unsigned HOST_WIDE_INT
3535 cached_nonzero_bits (rtx x, enum machine_mode mode, rtx known_x,
3536 enum machine_mode known_mode,
3537 unsigned HOST_WIDE_INT known_ret)
3539 if (x == known_x && mode == known_mode)
3540 return known_ret;
3542 /* Try to find identical subexpressions. If found call
3543 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3544 precomputed value for the subexpression as KNOWN_RET. */
3546 if (ARITHMETIC_P (x))
3548 rtx x0 = XEXP (x, 0);
3549 rtx x1 = XEXP (x, 1);
3551 /* Check the first level. */
3552 if (x0 == x1)
3553 return nonzero_bits1 (x, mode, x0, mode,
3554 cached_nonzero_bits (x0, mode, known_x,
3555 known_mode, known_ret));
3557 /* Check the second level. */
3558 if (ARITHMETIC_P (x0)
3559 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3560 return nonzero_bits1 (x, mode, x1, mode,
3561 cached_nonzero_bits (x1, mode, known_x,
3562 known_mode, known_ret));
3564 if (ARITHMETIC_P (x1)
3565 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3566 return nonzero_bits1 (x, mode, x0, mode,
3567 cached_nonzero_bits (x0, mode, known_x,
3568 known_mode, known_ret));
3571 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3574 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3575 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3576 is less useful. We can't allow both, because that results in exponential
3577 run time recursion. There is a nullstone testcase that triggered
3578 this. This macro avoids accidental uses of num_sign_bit_copies. */
3579 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3581 /* Given an expression, X, compute which bits in X can be nonzero.
3582 We don't care about bits outside of those defined in MODE.
3584 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3585 an arithmetic operation, we can do better. */
3587 static unsigned HOST_WIDE_INT
3588 nonzero_bits1 (rtx x, enum machine_mode mode, rtx known_x,
3589 enum machine_mode known_mode,
3590 unsigned HOST_WIDE_INT known_ret)
3592 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3593 unsigned HOST_WIDE_INT inner_nz;
3594 enum rtx_code code;
3595 unsigned int mode_width = GET_MODE_BITSIZE (mode);
3597 /* For floating-point values, assume all bits are needed. */
3598 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
3599 return nonzero;
3601 /* If X is wider than MODE, use its mode instead. */
3602 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
3604 mode = GET_MODE (x);
3605 nonzero = GET_MODE_MASK (mode);
3606 mode_width = GET_MODE_BITSIZE (mode);
3609 if (mode_width > HOST_BITS_PER_WIDE_INT)
3610 /* Our only callers in this case look for single bit values. So
3611 just return the mode mask. Those tests will then be false. */
3612 return nonzero;
3614 #ifndef WORD_REGISTER_OPERATIONS
3615 /* If MODE is wider than X, but both are a single word for both the host
3616 and target machines, we can compute this from which bits of the
3617 object might be nonzero in its own mode, taking into account the fact
3618 that on many CISC machines, accessing an object in a wider mode
3619 causes the high-order bits to become undefined. So they are
3620 not known to be zero. */
3622 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3623 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
3624 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3625 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
3627 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3628 known_x, known_mode, known_ret);
3629 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3630 return nonzero;
3632 #endif
3634 code = GET_CODE (x);
3635 switch (code)
3637 case REG:
3638 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3639 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3640 all the bits above ptr_mode are known to be zero. */
3641 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3642 && REG_POINTER (x))
3643 nonzero &= GET_MODE_MASK (ptr_mode);
3644 #endif
3646 /* Include declared information about alignment of pointers. */
3647 /* ??? We don't properly preserve REG_POINTER changes across
3648 pointer-to-integer casts, so we can't trust it except for
3649 things that we know must be pointers. See execute/960116-1.c. */
3650 if ((x == stack_pointer_rtx
3651 || x == frame_pointer_rtx
3652 || x == arg_pointer_rtx)
3653 && REGNO_POINTER_ALIGN (REGNO (x)))
3655 unsigned HOST_WIDE_INT alignment
3656 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
3658 #ifdef PUSH_ROUNDING
3659 /* If PUSH_ROUNDING is defined, it is possible for the
3660 stack to be momentarily aligned only to that amount,
3661 so we pick the least alignment. */
3662 if (x == stack_pointer_rtx && PUSH_ARGS)
3663 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
3664 alignment);
3665 #endif
3667 nonzero &= ~(alignment - 1);
3671 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
3672 rtx new = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
3673 known_mode, known_ret,
3674 &nonzero_for_hook);
3676 if (new)
3677 nonzero_for_hook &= cached_nonzero_bits (new, mode, known_x,
3678 known_mode, known_ret);
3680 return nonzero_for_hook;
3683 case CONST_INT:
3684 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
3685 /* If X is negative in MODE, sign-extend the value. */
3686 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
3687 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
3688 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
3689 #endif
3691 return INTVAL (x);
3693 case MEM:
3694 #ifdef LOAD_EXTEND_OP
3695 /* In many, if not most, RISC machines, reading a byte from memory
3696 zeros the rest of the register. Noticing that fact saves a lot
3697 of extra zero-extends. */
3698 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
3699 nonzero &= GET_MODE_MASK (GET_MODE (x));
3700 #endif
3701 break;
3703 case EQ: case NE:
3704 case UNEQ: case LTGT:
3705 case GT: case GTU: case UNGT:
3706 case LT: case LTU: case UNLT:
3707 case GE: case GEU: case UNGE:
3708 case LE: case LEU: case UNLE:
3709 case UNORDERED: case ORDERED:
3710 /* If this produces an integer result, we know which bits are set.
3711 Code here used to clear bits outside the mode of X, but that is
3712 now done above. */
3713 /* Mind that MODE is the mode the caller wants to look at this
3714 operation in, and not the actual operation mode. We can wind
3715 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
3716 that describes the results of a vector compare. */
3717 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
3718 && mode_width <= HOST_BITS_PER_WIDE_INT)
3719 nonzero = STORE_FLAG_VALUE;
3720 break;
3722 case NEG:
3723 #if 0
3724 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3725 and num_sign_bit_copies. */
3726 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3727 == GET_MODE_BITSIZE (GET_MODE (x)))
3728 nonzero = 1;
3729 #endif
3731 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
3732 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
3733 break;
3735 case ABS:
3736 #if 0
3737 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3738 and num_sign_bit_copies. */
3739 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3740 == GET_MODE_BITSIZE (GET_MODE (x)))
3741 nonzero = 1;
3742 #endif
3743 break;
3745 case TRUNCATE:
3746 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
3747 known_x, known_mode, known_ret)
3748 & GET_MODE_MASK (mode));
3749 break;
3751 case ZERO_EXTEND:
3752 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3753 known_x, known_mode, known_ret);
3754 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3755 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3756 break;
3758 case SIGN_EXTEND:
3759 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
3760 Otherwise, show all the bits in the outer mode but not the inner
3761 may be nonzero. */
3762 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
3763 known_x, known_mode, known_ret);
3764 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3766 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3767 if (inner_nz
3768 & (((HOST_WIDE_INT) 1
3769 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
3770 inner_nz |= (GET_MODE_MASK (mode)
3771 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
3774 nonzero &= inner_nz;
3775 break;
3777 case AND:
3778 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3779 known_x, known_mode, known_ret)
3780 & cached_nonzero_bits (XEXP (x, 1), mode,
3781 known_x, known_mode, known_ret);
3782 break;
3784 case XOR: case IOR:
3785 case UMIN: case UMAX: case SMIN: case SMAX:
3787 unsigned HOST_WIDE_INT nonzero0 =
3788 cached_nonzero_bits (XEXP (x, 0), mode,
3789 known_x, known_mode, known_ret);
3791 /* Don't call nonzero_bits for the second time if it cannot change
3792 anything. */
3793 if ((nonzero & nonzero0) != nonzero)
3794 nonzero &= nonzero0
3795 | cached_nonzero_bits (XEXP (x, 1), mode,
3796 known_x, known_mode, known_ret);
3798 break;
3800 case PLUS: case MINUS:
3801 case MULT:
3802 case DIV: case UDIV:
3803 case MOD: case UMOD:
3804 /* We can apply the rules of arithmetic to compute the number of
3805 high- and low-order zero bits of these operations. We start by
3806 computing the width (position of the highest-order nonzero bit)
3807 and the number of low-order zero bits for each value. */
3809 unsigned HOST_WIDE_INT nz0 =
3810 cached_nonzero_bits (XEXP (x, 0), mode,
3811 known_x, known_mode, known_ret);
3812 unsigned HOST_WIDE_INT nz1 =
3813 cached_nonzero_bits (XEXP (x, 1), mode,
3814 known_x, known_mode, known_ret);
3815 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
3816 int width0 = floor_log2 (nz0) + 1;
3817 int width1 = floor_log2 (nz1) + 1;
3818 int low0 = floor_log2 (nz0 & -nz0);
3819 int low1 = floor_log2 (nz1 & -nz1);
3820 HOST_WIDE_INT op0_maybe_minusp
3821 = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
3822 HOST_WIDE_INT op1_maybe_minusp
3823 = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
3824 unsigned int result_width = mode_width;
3825 int result_low = 0;
3827 switch (code)
3829 case PLUS:
3830 result_width = MAX (width0, width1) + 1;
3831 result_low = MIN (low0, low1);
3832 break;
3833 case MINUS:
3834 result_low = MIN (low0, low1);
3835 break;
3836 case MULT:
3837 result_width = width0 + width1;
3838 result_low = low0 + low1;
3839 break;
3840 case DIV:
3841 if (width1 == 0)
3842 break;
3843 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3844 result_width = width0;
3845 break;
3846 case UDIV:
3847 if (width1 == 0)
3848 break;
3849 result_width = width0;
3850 break;
3851 case MOD:
3852 if (width1 == 0)
3853 break;
3854 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3855 result_width = MIN (width0, width1);
3856 result_low = MIN (low0, low1);
3857 break;
3858 case UMOD:
3859 if (width1 == 0)
3860 break;
3861 result_width = MIN (width0, width1);
3862 result_low = MIN (low0, low1);
3863 break;
3864 default:
3865 gcc_unreachable ();
3868 if (result_width < mode_width)
3869 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
3871 if (result_low > 0)
3872 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
3874 #ifdef POINTERS_EXTEND_UNSIGNED
3875 /* If pointers extend unsigned and this is an addition or subtraction
3876 to a pointer in Pmode, all the bits above ptr_mode are known to be
3877 zero. */
3878 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
3879 && (code == PLUS || code == MINUS)
3880 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
3881 nonzero &= GET_MODE_MASK (ptr_mode);
3882 #endif
3884 break;
3886 case ZERO_EXTRACT:
3887 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3888 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3889 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
3890 break;
3892 case SUBREG:
3893 /* If this is a SUBREG formed for a promoted variable that has
3894 been zero-extended, we know that at least the high-order bits
3895 are zero, though others might be too. */
3897 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
3898 nonzero = GET_MODE_MASK (GET_MODE (x))
3899 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
3900 known_x, known_mode, known_ret);
3902 /* If the inner mode is a single word for both the host and target
3903 machines, we can compute this from which bits of the inner
3904 object might be nonzero. */
3905 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
3906 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
3907 <= HOST_BITS_PER_WIDE_INT))
3909 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
3910 known_x, known_mode, known_ret);
3912 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
3913 /* If this is a typical RISC machine, we only have to worry
3914 about the way loads are extended. */
3915 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
3916 ? (((nonzero
3917 & (((unsigned HOST_WIDE_INT) 1
3918 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
3919 != 0))
3920 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
3921 || !MEM_P (SUBREG_REG (x)))
3922 #endif
3924 /* On many CISC machines, accessing an object in a wider mode
3925 causes the high-order bits to become undefined. So they are
3926 not known to be zero. */
3927 if (GET_MODE_SIZE (GET_MODE (x))
3928 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3929 nonzero |= (GET_MODE_MASK (GET_MODE (x))
3930 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
3933 break;
3935 case ASHIFTRT:
3936 case LSHIFTRT:
3937 case ASHIFT:
3938 case ROTATE:
3939 /* The nonzero bits are in two classes: any bits within MODE
3940 that aren't in GET_MODE (x) are always significant. The rest of the
3941 nonzero bits are those that are significant in the operand of
3942 the shift when shifted the appropriate number of bits. This
3943 shows that high-order bits are cleared by the right shift and
3944 low-order bits by left shifts. */
3945 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3946 && INTVAL (XEXP (x, 1)) >= 0
3947 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3949 enum machine_mode inner_mode = GET_MODE (x);
3950 unsigned int width = GET_MODE_BITSIZE (inner_mode);
3951 int count = INTVAL (XEXP (x, 1));
3952 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
3953 unsigned HOST_WIDE_INT op_nonzero =
3954 cached_nonzero_bits (XEXP (x, 0), mode,
3955 known_x, known_mode, known_ret);
3956 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
3957 unsigned HOST_WIDE_INT outer = 0;
3959 if (mode_width > width)
3960 outer = (op_nonzero & nonzero & ~mode_mask);
3962 if (code == LSHIFTRT)
3963 inner >>= count;
3964 else if (code == ASHIFTRT)
3966 inner >>= count;
3968 /* If the sign bit may have been nonzero before the shift, we
3969 need to mark all the places it could have been copied to
3970 by the shift as possibly nonzero. */
3971 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
3972 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
3974 else if (code == ASHIFT)
3975 inner <<= count;
3976 else
3977 inner = ((inner << (count % width)
3978 | (inner >> (width - (count % width)))) & mode_mask);
3980 nonzero &= (outer | inner);
3982 break;
3984 case FFS:
3985 case POPCOUNT:
3986 /* This is at most the number of bits in the mode. */
3987 nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
3988 break;
3990 case CLZ:
3991 /* If CLZ has a known value at zero, then the nonzero bits are
3992 that value, plus the number of bits in the mode minus one. */
3993 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
3994 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
3995 else
3996 nonzero = -1;
3997 break;
3999 case CTZ:
4000 /* If CTZ has a known value at zero, then the nonzero bits are
4001 that value, plus the number of bits in the mode minus one. */
4002 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4003 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4004 else
4005 nonzero = -1;
4006 break;
4008 case PARITY:
4009 nonzero = 1;
4010 break;
4012 case IF_THEN_ELSE:
4014 unsigned HOST_WIDE_INT nonzero_true =
4015 cached_nonzero_bits (XEXP (x, 1), mode,
4016 known_x, known_mode, known_ret);
4018 /* Don't call nonzero_bits for the second time if it cannot change
4019 anything. */
4020 if ((nonzero & nonzero_true) != nonzero)
4021 nonzero &= nonzero_true
4022 | cached_nonzero_bits (XEXP (x, 2), mode,
4023 known_x, known_mode, known_ret);
4025 break;
4027 default:
4028 break;
4031 return nonzero;
4034 /* See the macro definition above. */
4035 #undef cached_num_sign_bit_copies
4038 /* The function cached_num_sign_bit_copies is a wrapper around
4039 num_sign_bit_copies1. It avoids exponential behavior in
4040 num_sign_bit_copies1 when X has identical subexpressions on the
4041 first or the second level. */
4043 static unsigned int
4044 cached_num_sign_bit_copies (rtx x, enum machine_mode mode, rtx known_x,
4045 enum machine_mode known_mode,
4046 unsigned int known_ret)
4048 if (x == known_x && mode == known_mode)
4049 return known_ret;
4051 /* Try to find identical subexpressions. If found call
4052 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4053 the precomputed value for the subexpression as KNOWN_RET. */
4055 if (ARITHMETIC_P (x))
4057 rtx x0 = XEXP (x, 0);
4058 rtx x1 = XEXP (x, 1);
4060 /* Check the first level. */
4061 if (x0 == x1)
4062 return
4063 num_sign_bit_copies1 (x, mode, x0, mode,
4064 cached_num_sign_bit_copies (x0, mode, known_x,
4065 known_mode,
4066 known_ret));
4068 /* Check the second level. */
4069 if (ARITHMETIC_P (x0)
4070 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4071 return
4072 num_sign_bit_copies1 (x, mode, x1, mode,
4073 cached_num_sign_bit_copies (x1, mode, known_x,
4074 known_mode,
4075 known_ret));
4077 if (ARITHMETIC_P (x1)
4078 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4079 return
4080 num_sign_bit_copies1 (x, mode, x0, mode,
4081 cached_num_sign_bit_copies (x0, mode, known_x,
4082 known_mode,
4083 known_ret));
4086 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4089 /* Return the number of bits at the high-order end of X that are known to
4090 be equal to the sign bit. X will be used in mode MODE; if MODE is
4091 VOIDmode, X will be used in its own mode. The returned value will always
4092 be between 1 and the number of bits in MODE. */
4094 static unsigned int
4095 num_sign_bit_copies1 (rtx x, enum machine_mode mode, rtx known_x,
4096 enum machine_mode known_mode,
4097 unsigned int known_ret)
4099 enum rtx_code code = GET_CODE (x);
4100 unsigned int bitwidth = GET_MODE_BITSIZE (mode);
4101 int num0, num1, result;
4102 unsigned HOST_WIDE_INT nonzero;
4104 /* If we weren't given a mode, use the mode of X. If the mode is still
4105 VOIDmode, we don't know anything. Likewise if one of the modes is
4106 floating-point. */
4108 if (mode == VOIDmode)
4109 mode = GET_MODE (x);
4111 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
4112 return 1;
4114 /* For a smaller object, just ignore the high bits. */
4115 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
4117 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4118 known_x, known_mode, known_ret);
4119 return MAX (1,
4120 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
4123 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
4125 #ifndef WORD_REGISTER_OPERATIONS
4126 /* If this machine does not do all register operations on the entire
4127 register and MODE is wider than the mode of X, we can say nothing
4128 at all about the high-order bits. */
4129 return 1;
4130 #else
4131 /* Likewise on machines that do, if the mode of the object is smaller
4132 than a word and loads of that size don't sign extend, we can say
4133 nothing about the high order bits. */
4134 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
4135 #ifdef LOAD_EXTEND_OP
4136 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4137 #endif
4139 return 1;
4140 #endif
4143 switch (code)
4145 case REG:
4147 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4148 /* If pointers extend signed and this is a pointer in Pmode, say that
4149 all the bits above ptr_mode are known to be sign bit copies. */
4150 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
4151 && REG_POINTER (x))
4152 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
4153 #endif
4156 unsigned int copies_for_hook = 1, copies = 1;
4157 rtx new = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4158 known_mode, known_ret,
4159 &copies_for_hook);
4161 if (new)
4162 copies = cached_num_sign_bit_copies (new, mode, known_x,
4163 known_mode, known_ret);
4165 if (copies > 1 || copies_for_hook > 1)
4166 return MAX (copies, copies_for_hook);
4168 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4170 break;
4172 case MEM:
4173 #ifdef LOAD_EXTEND_OP
4174 /* Some RISC machines sign-extend all loads of smaller than a word. */
4175 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4176 return MAX (1, ((int) bitwidth
4177 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
4178 #endif
4179 break;
4181 case CONST_INT:
4182 /* If the constant is negative, take its 1's complement and remask.
4183 Then see how many zero bits we have. */
4184 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
4185 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4186 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4187 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4189 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4191 case SUBREG:
4192 /* If this is a SUBREG for a promoted object that is sign-extended
4193 and we are looking at it in a wider mode, we know that at least the
4194 high-order bits are known to be sign bit copies. */
4196 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4198 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4199 known_x, known_mode, known_ret);
4200 return MAX ((int) bitwidth
4201 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
4202 num0);
4205 /* For a smaller object, just ignore the high bits. */
4206 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
4208 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4209 known_x, known_mode, known_ret);
4210 return MAX (1, (num0
4211 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4212 - bitwidth)));
4215 #ifdef WORD_REGISTER_OPERATIONS
4216 #ifdef LOAD_EXTEND_OP
4217 /* For paradoxical SUBREGs on machines where all register operations
4218 affect the entire register, just look inside. Note that we are
4219 passing MODE to the recursive call, so the number of sign bit copies
4220 will remain relative to that mode, not the inner mode. */
4222 /* This works only if loads sign extend. Otherwise, if we get a
4223 reload for the inner part, it may be loaded from the stack, and
4224 then we lose all sign bit copies that existed before the store
4225 to the stack. */
4227 if ((GET_MODE_SIZE (GET_MODE (x))
4228 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4229 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4230 && MEM_P (SUBREG_REG (x)))
4231 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4232 known_x, known_mode, known_ret);
4233 #endif
4234 #endif
4235 break;
4237 case SIGN_EXTRACT:
4238 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4239 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4240 break;
4242 case SIGN_EXTEND:
4243 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4244 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4245 known_x, known_mode, known_ret));
4247 case TRUNCATE:
4248 /* For a smaller object, just ignore the high bits. */
4249 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4250 known_x, known_mode, known_ret);
4251 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4252 - bitwidth)));
4254 case NOT:
4255 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4256 known_x, known_mode, known_ret);
4258 case ROTATE: case ROTATERT:
4259 /* If we are rotating left by a number of bits less than the number
4260 of sign bit copies, we can just subtract that amount from the
4261 number. */
4262 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4263 && INTVAL (XEXP (x, 1)) >= 0
4264 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4266 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4267 known_x, known_mode, known_ret);
4268 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4269 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4271 break;
4273 case NEG:
4274 /* In general, this subtracts one sign bit copy. But if the value
4275 is known to be positive, the number of sign bit copies is the
4276 same as that of the input. Finally, if the input has just one bit
4277 that might be nonzero, all the bits are copies of the sign bit. */
4278 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4279 known_x, known_mode, known_ret);
4280 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4281 return num0 > 1 ? num0 - 1 : 1;
4283 nonzero = nonzero_bits (XEXP (x, 0), mode);
4284 if (nonzero == 1)
4285 return bitwidth;
4287 if (num0 > 1
4288 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4289 num0--;
4291 return num0;
4293 case IOR: case AND: case XOR:
4294 case SMIN: case SMAX: case UMIN: case UMAX:
4295 /* Logical operations will preserve the number of sign-bit copies.
4296 MIN and MAX operations always return one of the operands. */
4297 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4298 known_x, known_mode, known_ret);
4299 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4300 known_x, known_mode, known_ret);
4301 return MIN (num0, num1);
4303 case PLUS: case MINUS:
4304 /* For addition and subtraction, we can have a 1-bit carry. However,
4305 if we are subtracting 1 from a positive number, there will not
4306 be such a carry. Furthermore, if the positive number is known to
4307 be 0 or 1, we know the result is either -1 or 0. */
4309 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4310 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4312 nonzero = nonzero_bits (XEXP (x, 0), mode);
4313 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4314 return (nonzero == 1 || nonzero == 0 ? bitwidth
4315 : bitwidth - floor_log2 (nonzero) - 1);
4318 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4319 known_x, known_mode, known_ret);
4320 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4321 known_x, known_mode, known_ret);
4322 result = MAX (1, MIN (num0, num1) - 1);
4324 #ifdef POINTERS_EXTEND_UNSIGNED
4325 /* If pointers extend signed and this is an addition or subtraction
4326 to a pointer in Pmode, all the bits above ptr_mode are known to be
4327 sign bit copies. */
4328 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4329 && (code == PLUS || code == MINUS)
4330 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4331 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
4332 - GET_MODE_BITSIZE (ptr_mode) + 1),
4333 result);
4334 #endif
4335 return result;
4337 case MULT:
4338 /* The number of bits of the product is the sum of the number of
4339 bits of both terms. However, unless one of the terms if known
4340 to be positive, we must allow for an additional bit since negating
4341 a negative number can remove one sign bit copy. */
4343 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4344 known_x, known_mode, known_ret);
4345 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4346 known_x, known_mode, known_ret);
4348 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4349 if (result > 0
4350 && (bitwidth > HOST_BITS_PER_WIDE_INT
4351 || (((nonzero_bits (XEXP (x, 0), mode)
4352 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4353 && ((nonzero_bits (XEXP (x, 1), mode)
4354 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
4355 result--;
4357 return MAX (1, result);
4359 case UDIV:
4360 /* The result must be <= the first operand. If the first operand
4361 has the high bit set, we know nothing about the number of sign
4362 bit copies. */
4363 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4364 return 1;
4365 else if ((nonzero_bits (XEXP (x, 0), mode)
4366 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4367 return 1;
4368 else
4369 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4370 known_x, known_mode, known_ret);
4372 case UMOD:
4373 /* The result must be <= the second operand. */
4374 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4375 known_x, known_mode, known_ret);
4377 case DIV:
4378 /* Similar to unsigned division, except that we have to worry about
4379 the case where the divisor is negative, in which case we have
4380 to add 1. */
4381 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4382 known_x, known_mode, known_ret);
4383 if (result > 1
4384 && (bitwidth > HOST_BITS_PER_WIDE_INT
4385 || (nonzero_bits (XEXP (x, 1), mode)
4386 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4387 result--;
4389 return result;
4391 case MOD:
4392 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4393 known_x, known_mode, known_ret);
4394 if (result > 1
4395 && (bitwidth > HOST_BITS_PER_WIDE_INT
4396 || (nonzero_bits (XEXP (x, 1), mode)
4397 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4398 result--;
4400 return result;
4402 case ASHIFTRT:
4403 /* Shifts by a constant add to the number of bits equal to the
4404 sign bit. */
4405 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4406 known_x, known_mode, known_ret);
4407 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4408 && INTVAL (XEXP (x, 1)) > 0)
4409 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4411 return num0;
4413 case ASHIFT:
4414 /* Left shifts destroy copies. */
4415 if (GET_CODE (XEXP (x, 1)) != CONST_INT
4416 || INTVAL (XEXP (x, 1)) < 0
4417 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
4418 return 1;
4420 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4421 known_x, known_mode, known_ret);
4422 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4424 case IF_THEN_ELSE:
4425 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4426 known_x, known_mode, known_ret);
4427 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4428 known_x, known_mode, known_ret);
4429 return MIN (num0, num1);
4431 case EQ: case NE: case GE: case GT: case LE: case LT:
4432 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4433 case GEU: case GTU: case LEU: case LTU:
4434 case UNORDERED: case ORDERED:
4435 /* If the constant is negative, take its 1's complement and remask.
4436 Then see how many zero bits we have. */
4437 nonzero = STORE_FLAG_VALUE;
4438 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4439 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4440 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4442 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4444 default:
4445 break;
4448 /* If we haven't been able to figure it out by one of the above rules,
4449 see if some of the high-order bits are known to be zero. If so,
4450 count those bits and return one less than that amount. If we can't
4451 safely compute the mask for this mode, always return BITWIDTH. */
4453 bitwidth = GET_MODE_BITSIZE (mode);
4454 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4455 return 1;
4457 nonzero = nonzero_bits (x, mode);
4458 return nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
4459 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4462 /* Calculate the rtx_cost of a single instruction. A return value of
4463 zero indicates an instruction pattern without a known cost. */
4466 insn_rtx_cost (rtx pat)
4468 int i, cost;
4469 rtx set;
4471 /* Extract the single set rtx from the instruction pattern.
4472 We can't use single_set since we only have the pattern. */
4473 if (GET_CODE (pat) == SET)
4474 set = pat;
4475 else if (GET_CODE (pat) == PARALLEL)
4477 set = NULL_RTX;
4478 for (i = 0; i < XVECLEN (pat, 0); i++)
4480 rtx x = XVECEXP (pat, 0, i);
4481 if (GET_CODE (x) == SET)
4483 if (set)
4484 return 0;
4485 set = x;
4488 if (!set)
4489 return 0;
4491 else
4492 return 0;
4494 cost = rtx_cost (SET_SRC (set), SET);
4495 return cost > 0 ? cost : COSTS_N_INSNS (1);
4498 /* Given an insn INSN and condition COND, return the condition in a
4499 canonical form to simplify testing by callers. Specifically:
4501 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4502 (2) Both operands will be machine operands; (cc0) will have been replaced.
4503 (3) If an operand is a constant, it will be the second operand.
4504 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4505 for GE, GEU, and LEU.
4507 If the condition cannot be understood, or is an inequality floating-point
4508 comparison which needs to be reversed, 0 will be returned.
4510 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4512 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4513 insn used in locating the condition was found. If a replacement test
4514 of the condition is desired, it should be placed in front of that
4515 insn and we will be sure that the inputs are still valid.
4517 If WANT_REG is nonzero, we wish the condition to be relative to that
4518 register, if possible. Therefore, do not canonicalize the condition
4519 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4520 to be a compare to a CC mode register.
4522 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4523 and at INSN. */
4526 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4527 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4529 enum rtx_code code;
4530 rtx prev = insn;
4531 rtx set;
4532 rtx tem;
4533 rtx op0, op1;
4534 int reverse_code = 0;
4535 enum machine_mode mode;
4536 basic_block bb = BLOCK_FOR_INSN (insn);
4538 code = GET_CODE (cond);
4539 mode = GET_MODE (cond);
4540 op0 = XEXP (cond, 0);
4541 op1 = XEXP (cond, 1);
4543 if (reverse)
4544 code = reversed_comparison_code (cond, insn);
4545 if (code == UNKNOWN)
4546 return 0;
4548 if (earliest)
4549 *earliest = insn;
4551 /* If we are comparing a register with zero, see if the register is set
4552 in the previous insn to a COMPARE or a comparison operation. Perform
4553 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4554 in cse.c */
4556 while ((GET_RTX_CLASS (code) == RTX_COMPARE
4557 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4558 && op1 == CONST0_RTX (GET_MODE (op0))
4559 && op0 != want_reg)
4561 /* Set nonzero when we find something of interest. */
4562 rtx x = 0;
4564 #ifdef HAVE_cc0
4565 /* If comparison with cc0, import actual comparison from compare
4566 insn. */
4567 if (op0 == cc0_rtx)
4569 if ((prev = prev_nonnote_insn (prev)) == 0
4570 || !NONJUMP_INSN_P (prev)
4571 || (set = single_set (prev)) == 0
4572 || SET_DEST (set) != cc0_rtx)
4573 return 0;
4575 op0 = SET_SRC (set);
4576 op1 = CONST0_RTX (GET_MODE (op0));
4577 if (earliest)
4578 *earliest = prev;
4580 #endif
4582 /* If this is a COMPARE, pick up the two things being compared. */
4583 if (GET_CODE (op0) == COMPARE)
4585 op1 = XEXP (op0, 1);
4586 op0 = XEXP (op0, 0);
4587 continue;
4589 else if (!REG_P (op0))
4590 break;
4592 /* Go back to the previous insn. Stop if it is not an INSN. We also
4593 stop if it isn't a single set or if it has a REG_INC note because
4594 we don't want to bother dealing with it. */
4596 if ((prev = prev_nonnote_insn (prev)) == 0
4597 || !NONJUMP_INSN_P (prev)
4598 || FIND_REG_INC_NOTE (prev, NULL_RTX)
4599 /* In cfglayout mode, there do not have to be labels at the
4600 beginning of a block, or jumps at the end, so the previous
4601 conditions would not stop us when we reach bb boundary. */
4602 || BLOCK_FOR_INSN (prev) != bb)
4603 break;
4605 set = set_of (op0, prev);
4607 if (set
4608 && (GET_CODE (set) != SET
4609 || !rtx_equal_p (SET_DEST (set), op0)))
4610 break;
4612 /* If this is setting OP0, get what it sets it to if it looks
4613 relevant. */
4614 if (set)
4616 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
4617 #ifdef FLOAT_STORE_FLAG_VALUE
4618 REAL_VALUE_TYPE fsfv;
4619 #endif
4621 /* ??? We may not combine comparisons done in a CCmode with
4622 comparisons not done in a CCmode. This is to aid targets
4623 like Alpha that have an IEEE compliant EQ instruction, and
4624 a non-IEEE compliant BEQ instruction. The use of CCmode is
4625 actually artificial, simply to prevent the combination, but
4626 should not affect other platforms.
4628 However, we must allow VOIDmode comparisons to match either
4629 CCmode or non-CCmode comparison, because some ports have
4630 modeless comparisons inside branch patterns.
4632 ??? This mode check should perhaps look more like the mode check
4633 in simplify_comparison in combine. */
4635 if ((GET_CODE (SET_SRC (set)) == COMPARE
4636 || (((code == NE
4637 || (code == LT
4638 && GET_MODE_CLASS (inner_mode) == MODE_INT
4639 && (GET_MODE_BITSIZE (inner_mode)
4640 <= HOST_BITS_PER_WIDE_INT)
4641 && (STORE_FLAG_VALUE
4642 & ((HOST_WIDE_INT) 1
4643 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4644 #ifdef FLOAT_STORE_FLAG_VALUE
4645 || (code == LT
4646 && SCALAR_FLOAT_MODE_P (inner_mode)
4647 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4648 REAL_VALUE_NEGATIVE (fsfv)))
4649 #endif
4651 && COMPARISON_P (SET_SRC (set))))
4652 && (((GET_MODE_CLASS (mode) == MODE_CC)
4653 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4654 || mode == VOIDmode || inner_mode == VOIDmode))
4655 x = SET_SRC (set);
4656 else if (((code == EQ
4657 || (code == GE
4658 && (GET_MODE_BITSIZE (inner_mode)
4659 <= HOST_BITS_PER_WIDE_INT)
4660 && GET_MODE_CLASS (inner_mode) == MODE_INT
4661 && (STORE_FLAG_VALUE
4662 & ((HOST_WIDE_INT) 1
4663 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4664 #ifdef FLOAT_STORE_FLAG_VALUE
4665 || (code == GE
4666 && SCALAR_FLOAT_MODE_P (inner_mode)
4667 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4668 REAL_VALUE_NEGATIVE (fsfv)))
4669 #endif
4671 && COMPARISON_P (SET_SRC (set))
4672 && (((GET_MODE_CLASS (mode) == MODE_CC)
4673 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4674 || mode == VOIDmode || inner_mode == VOIDmode))
4677 reverse_code = 1;
4678 x = SET_SRC (set);
4680 else
4681 break;
4684 else if (reg_set_p (op0, prev))
4685 /* If this sets OP0, but not directly, we have to give up. */
4686 break;
4688 if (x)
4690 /* If the caller is expecting the condition to be valid at INSN,
4691 make sure X doesn't change before INSN. */
4692 if (valid_at_insn_p)
4693 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
4694 break;
4695 if (COMPARISON_P (x))
4696 code = GET_CODE (x);
4697 if (reverse_code)
4699 code = reversed_comparison_code (x, prev);
4700 if (code == UNKNOWN)
4701 return 0;
4702 reverse_code = 0;
4705 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
4706 if (earliest)
4707 *earliest = prev;
4711 /* If constant is first, put it last. */
4712 if (CONSTANT_P (op0))
4713 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
4715 /* If OP0 is the result of a comparison, we weren't able to find what
4716 was really being compared, so fail. */
4717 if (!allow_cc_mode
4718 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
4719 return 0;
4721 /* Canonicalize any ordered comparison with integers involving equality
4722 if we can do computations in the relevant mode and we do not
4723 overflow. */
4725 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
4726 && GET_CODE (op1) == CONST_INT
4727 && GET_MODE (op0) != VOIDmode
4728 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
4730 HOST_WIDE_INT const_val = INTVAL (op1);
4731 unsigned HOST_WIDE_INT uconst_val = const_val;
4732 unsigned HOST_WIDE_INT max_val
4733 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
4735 switch (code)
4737 case LE:
4738 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
4739 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
4740 break;
4742 /* When cross-compiling, const_val might be sign-extended from
4743 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
4744 case GE:
4745 if ((HOST_WIDE_INT) (const_val & max_val)
4746 != (((HOST_WIDE_INT) 1
4747 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
4748 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
4749 break;
4751 case LEU:
4752 if (uconst_val < max_val)
4753 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
4754 break;
4756 case GEU:
4757 if (uconst_val != 0)
4758 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
4759 break;
4761 default:
4762 break;
4766 /* Never return CC0; return zero instead. */
4767 if (CC0_P (op0))
4768 return 0;
4770 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
4773 /* Given a jump insn JUMP, return the condition that will cause it to branch
4774 to its JUMP_LABEL. If the condition cannot be understood, or is an
4775 inequality floating-point comparison which needs to be reversed, 0 will
4776 be returned.
4778 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4779 insn used in locating the condition was found. If a replacement test
4780 of the condition is desired, it should be placed in front of that
4781 insn and we will be sure that the inputs are still valid. If EARLIEST
4782 is null, the returned condition will be valid at INSN.
4784 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
4785 compare CC mode register.
4787 VALID_AT_INSN_P is the same as for canonicalize_condition. */
4790 get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
4792 rtx cond;
4793 int reverse;
4794 rtx set;
4796 /* If this is not a standard conditional jump, we can't parse it. */
4797 if (!JUMP_P (jump)
4798 || ! any_condjump_p (jump))
4799 return 0;
4800 set = pc_set (jump);
4802 cond = XEXP (SET_SRC (set), 0);
4804 /* If this branches to JUMP_LABEL when the condition is false, reverse
4805 the condition. */
4806 reverse
4807 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
4808 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
4810 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
4811 allow_cc_mode, valid_at_insn_p);
4814 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
4815 TARGET_MODE_REP_EXTENDED.
4817 Note that we assume that the property of
4818 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
4819 narrower than mode B. I.e., if A is a mode narrower than B then in
4820 order to be able to operate on it in mode B, mode A needs to
4821 satisfy the requirements set by the representation of mode B. */
4823 static void
4824 init_num_sign_bit_copies_in_rep (void)
4826 enum machine_mode mode, in_mode;
4828 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
4829 in_mode = GET_MODE_WIDER_MODE (mode))
4830 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
4831 mode = GET_MODE_WIDER_MODE (mode))
4833 enum machine_mode i;
4835 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
4836 extends to the next widest mode. */
4837 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
4838 || GET_MODE_WIDER_MODE (mode) == in_mode);
4840 /* We are in in_mode. Count how many bits outside of mode
4841 have to be copies of the sign-bit. */
4842 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
4844 enum machine_mode wider = GET_MODE_WIDER_MODE (i);
4846 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
4847 /* We can only check sign-bit copies starting from the
4848 top-bit. In order to be able to check the bits we
4849 have already seen we pretend that subsequent bits
4850 have to be sign-bit copies too. */
4851 || num_sign_bit_copies_in_rep [in_mode][mode])
4852 num_sign_bit_copies_in_rep [in_mode][mode]
4853 += GET_MODE_BITSIZE (wider) - GET_MODE_BITSIZE (i);
4858 /* Suppose that truncation from the machine mode of X to MODE is not a
4859 no-op. See if there is anything special about X so that we can
4860 assume it already contains a truncated value of MODE. */
4862 bool
4863 truncated_to_mode (enum machine_mode mode, rtx x)
4865 /* This register has already been used in MODE without explicit
4866 truncation. */
4867 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
4868 return true;
4870 /* See if we already satisfy the requirements of MODE. If yes we
4871 can just switch to MODE. */
4872 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
4873 && (num_sign_bit_copies (x, GET_MODE (x))
4874 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
4875 return true;
4877 return false;
4880 /* Initialize non_rtx_starting_operands, which is used to speed up
4881 for_each_rtx. */
4882 void
4883 init_rtlanal (void)
4885 int i;
4886 for (i = 0; i < NUM_RTX_CODE; i++)
4888 const char *format = GET_RTX_FORMAT (i);
4889 const char *first = strpbrk (format, "eEV");
4890 non_rtx_starting_operands[i] = first ? first - format : -1;
4893 init_num_sign_bit_copies_in_rep ();
4896 /* Check whether this is a constant pool constant. */
4897 bool
4898 constant_pool_constant_p (rtx x)
4900 x = avoid_constant_pool_reference (x);
4901 return GET_CODE (x) == CONST_DOUBLE;