2014-09-24 François Dumont <fdumont@gcc.gnu.org>
[official-gcc.git] / libstdc++-v3 / include / bits / stl_multimap.h
blobab0c59bf6c35d256475f06160c3cca5d7fea17a3
1 // Multimap implementation -*- C++ -*-
3 // Copyright (C) 2001-2014 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
27 * Copyright (c) 1994
28 * Hewlett-Packard Company
30 * Permission to use, copy, modify, distribute and sell this software
31 * and its documentation for any purpose is hereby granted without fee,
32 * provided that the above copyright notice appear in all copies and
33 * that both that copyright notice and this permission notice appear
34 * in supporting documentation. Hewlett-Packard Company makes no
35 * representations about the suitability of this software for any
36 * purpose. It is provided "as is" without express or implied warranty.
39 * Copyright (c) 1996,1997
40 * Silicon Graphics Computer Systems, Inc.
42 * Permission to use, copy, modify, distribute and sell this software
43 * and its documentation for any purpose is hereby granted without fee,
44 * provided that the above copyright notice appear in all copies and
45 * that both that copyright notice and this permission notice appear
46 * in supporting documentation. Silicon Graphics makes no
47 * representations about the suitability of this software for any
48 * purpose. It is provided "as is" without express or implied warranty.
51 /** @file bits/stl_multimap.h
52 * This is an internal header file, included by other library headers.
53 * Do not attempt to use it directly. @headername{map}
56 #ifndef _STL_MULTIMAP_H
57 #define _STL_MULTIMAP_H 1
59 #include <bits/concept_check.h>
60 #if __cplusplus >= 201103L
61 #include <initializer_list>
62 #endif
64 namespace std _GLIBCXX_VISIBILITY(default)
66 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
68 /**
69 * @brief A standard container made up of (key,value) pairs, which can be
70 * retrieved based on a key, in logarithmic time.
72 * @ingroup associative_containers
74 * @tparam _Key Type of key objects.
75 * @tparam _Tp Type of mapped objects.
76 * @tparam _Compare Comparison function object type, defaults to less<_Key>.
77 * @tparam _Alloc Allocator type, defaults to
78 * allocator<pair<const _Key, _Tp>.
80 * Meets the requirements of a <a href="tables.html#65">container</a>, a
81 * <a href="tables.html#66">reversible container</a>, and an
82 * <a href="tables.html#69">associative container</a> (using equivalent
83 * keys). For a @c multimap<Key,T> the key_type is Key, the mapped_type
84 * is T, and the value_type is std::pair<const Key,T>.
86 * Multimaps support bidirectional iterators.
88 * The private tree data is declared exactly the same way for map and
89 * multimap; the distinction is made entirely in how the tree functions are
90 * called (*_unique versus *_equal, same as the standard).
92 template <typename _Key, typename _Tp,
93 typename _Compare = std::less<_Key>,
94 typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
95 class multimap
97 public:
98 typedef _Key key_type;
99 typedef _Tp mapped_type;
100 typedef std::pair<const _Key, _Tp> value_type;
101 typedef _Compare key_compare;
102 typedef _Alloc allocator_type;
104 private:
105 // concept requirements
106 typedef typename _Alloc::value_type _Alloc_value_type;
107 __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
108 __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
109 _BinaryFunctionConcept)
110 __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)
112 public:
113 class value_compare
114 : public std::binary_function<value_type, value_type, bool>
116 friend class multimap<_Key, _Tp, _Compare, _Alloc>;
117 protected:
118 _Compare comp;
120 value_compare(_Compare __c)
121 : comp(__c) { }
123 public:
124 bool operator()(const value_type& __x, const value_type& __y) const
125 { return comp(__x.first, __y.first); }
128 private:
129 /// This turns a red-black tree into a [multi]map.
130 typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template
131 rebind<value_type>::other _Pair_alloc_type;
133 typedef _Rb_tree<key_type, value_type, _Select1st<value_type>,
134 key_compare, _Pair_alloc_type> _Rep_type;
135 /// The actual tree structure.
136 _Rep_type _M_t;
138 typedef __gnu_cxx::__alloc_traits<_Pair_alloc_type> _Alloc_traits;
140 public:
141 // many of these are specified differently in ISO, but the following are
142 // "functionally equivalent"
143 typedef typename _Alloc_traits::pointer pointer;
144 typedef typename _Alloc_traits::const_pointer const_pointer;
145 typedef typename _Alloc_traits::reference reference;
146 typedef typename _Alloc_traits::const_reference const_reference;
147 typedef typename _Rep_type::iterator iterator;
148 typedef typename _Rep_type::const_iterator const_iterator;
149 typedef typename _Rep_type::size_type size_type;
150 typedef typename _Rep_type::difference_type difference_type;
151 typedef typename _Rep_type::reverse_iterator reverse_iterator;
152 typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
154 // [23.3.2] construct/copy/destroy
155 // (get_allocator() is also listed in this section)
158 * @brief Default constructor creates no elements.
160 multimap()
161 : _M_t() { }
164 * @brief Creates a %multimap with no elements.
165 * @param __comp A comparison object.
166 * @param __a An allocator object.
168 explicit
169 multimap(const _Compare& __comp,
170 const allocator_type& __a = allocator_type())
171 : _M_t(__comp, _Pair_alloc_type(__a)) { }
174 * @brief %Multimap copy constructor.
175 * @param __x A %multimap of identical element and allocator types.
177 * The newly-created %multimap uses a copy of the allocation object
178 * used by @a __x.
180 multimap(const multimap& __x)
181 : _M_t(__x._M_t) { }
183 #if __cplusplus >= 201103L
185 * @brief %Multimap move constructor.
186 * @param __x A %multimap of identical element and allocator types.
188 * The newly-created %multimap contains the exact contents of @a __x.
189 * The contents of @a __x are a valid, but unspecified %multimap.
191 multimap(multimap&& __x)
192 noexcept(is_nothrow_copy_constructible<_Compare>::value)
193 : _M_t(std::move(__x._M_t)) { }
196 * @brief Builds a %multimap from an initializer_list.
197 * @param __l An initializer_list.
198 * @param __comp A comparison functor.
199 * @param __a An allocator object.
201 * Create a %multimap consisting of copies of the elements from
202 * the initializer_list. This is linear in N if the list is already
203 * sorted, and NlogN otherwise (where N is @a __l.size()).
205 multimap(initializer_list<value_type> __l,
206 const _Compare& __comp = _Compare(),
207 const allocator_type& __a = allocator_type())
208 : _M_t(__comp, _Pair_alloc_type(__a))
209 { _M_t._M_insert_equal(__l.begin(), __l.end()); }
211 /// Allocator-extended default constructor.
212 explicit
213 multimap(const allocator_type& __a)
214 : _M_t(_Compare(), _Pair_alloc_type(__a)) { }
216 /// Allocator-extended copy constructor.
217 multimap(const multimap& __m, const allocator_type& __a)
218 : _M_t(__m._M_t, _Pair_alloc_type(__a)) { }
220 /// Allocator-extended move constructor.
221 multimap(multimap&& __m, const allocator_type& __a)
222 noexcept(is_nothrow_copy_constructible<_Compare>::value
223 && _Alloc_traits::_S_always_equal())
224 : _M_t(std::move(__m._M_t), _Pair_alloc_type(__a)) { }
226 /// Allocator-extended initialier-list constructor.
227 multimap(initializer_list<value_type> __l, const allocator_type& __a)
228 : _M_t(_Compare(), _Pair_alloc_type(__a))
229 { _M_t._M_insert_equal(__l.begin(), __l.end()); }
231 /// Allocator-extended range constructor.
232 template<typename _InputIterator>
233 multimap(_InputIterator __first, _InputIterator __last,
234 const allocator_type& __a)
235 : _M_t(_Compare(), _Pair_alloc_type(__a))
236 { _M_t._M_insert_equal(__first, __last); }
237 #endif
240 * @brief Builds a %multimap from a range.
241 * @param __first An input iterator.
242 * @param __last An input iterator.
244 * Create a %multimap consisting of copies of the elements from
245 * [__first,__last). This is linear in N if the range is already sorted,
246 * and NlogN otherwise (where N is distance(__first,__last)).
248 template<typename _InputIterator>
249 multimap(_InputIterator __first, _InputIterator __last)
250 : _M_t()
251 { _M_t._M_insert_equal(__first, __last); }
254 * @brief Builds a %multimap from a range.
255 * @param __first An input iterator.
256 * @param __last An input iterator.
257 * @param __comp A comparison functor.
258 * @param __a An allocator object.
260 * Create a %multimap consisting of copies of the elements from
261 * [__first,__last). This is linear in N if the range is already sorted,
262 * and NlogN otherwise (where N is distance(__first,__last)).
264 template<typename _InputIterator>
265 multimap(_InputIterator __first, _InputIterator __last,
266 const _Compare& __comp,
267 const allocator_type& __a = allocator_type())
268 : _M_t(__comp, _Pair_alloc_type(__a))
269 { _M_t._M_insert_equal(__first, __last); }
271 // FIXME There is no dtor declared, but we should have something generated
272 // by Doxygen. I don't know what tags to add to this paragraph to make
273 // that happen:
275 * The dtor only erases the elements, and note that if the elements
276 * themselves are pointers, the pointed-to memory is not touched in any
277 * way. Managing the pointer is the user's responsibility.
281 * @brief %Multimap assignment operator.
282 * @param __x A %multimap of identical element and allocator types.
284 * All the elements of @a __x are copied, but unlike the copy
285 * constructor, the allocator object is not copied.
287 multimap&
288 operator=(const multimap& __x)
290 _M_t = __x._M_t;
291 return *this;
294 #if __cplusplus >= 201103L
295 /// Move assignment operator.
296 multimap&
297 operator=(multimap&&) = default;
300 * @brief %Multimap list assignment operator.
301 * @param __l An initializer_list.
303 * This function fills a %multimap with copies of the elements
304 * in the initializer list @a __l.
306 * Note that the assignment completely changes the %multimap and
307 * that the resulting %multimap's size is the same as the number
308 * of elements assigned. Old data may be lost.
310 multimap&
311 operator=(initializer_list<value_type> __l)
313 _M_t._M_assign_equal(__l.begin(), __l.end());
314 return *this;
316 #endif
318 /// Get a copy of the memory allocation object.
319 allocator_type
320 get_allocator() const _GLIBCXX_NOEXCEPT
321 { return allocator_type(_M_t.get_allocator()); }
323 // iterators
325 * Returns a read/write iterator that points to the first pair in the
326 * %multimap. Iteration is done in ascending order according to the
327 * keys.
329 iterator
330 begin() _GLIBCXX_NOEXCEPT
331 { return _M_t.begin(); }
334 * Returns a read-only (constant) iterator that points to the first pair
335 * in the %multimap. Iteration is done in ascending order according to
336 * the keys.
338 const_iterator
339 begin() const _GLIBCXX_NOEXCEPT
340 { return _M_t.begin(); }
343 * Returns a read/write iterator that points one past the last pair in
344 * the %multimap. Iteration is done in ascending order according to the
345 * keys.
347 iterator
348 end() _GLIBCXX_NOEXCEPT
349 { return _M_t.end(); }
352 * Returns a read-only (constant) iterator that points one past the last
353 * pair in the %multimap. Iteration is done in ascending order according
354 * to the keys.
356 const_iterator
357 end() const _GLIBCXX_NOEXCEPT
358 { return _M_t.end(); }
361 * Returns a read/write reverse iterator that points to the last pair in
362 * the %multimap. Iteration is done in descending order according to the
363 * keys.
365 reverse_iterator
366 rbegin() _GLIBCXX_NOEXCEPT
367 { return _M_t.rbegin(); }
370 * Returns a read-only (constant) reverse iterator that points to the
371 * last pair in the %multimap. Iteration is done in descending order
372 * according to the keys.
374 const_reverse_iterator
375 rbegin() const _GLIBCXX_NOEXCEPT
376 { return _M_t.rbegin(); }
379 * Returns a read/write reverse iterator that points to one before the
380 * first pair in the %multimap. Iteration is done in descending order
381 * according to the keys.
383 reverse_iterator
384 rend() _GLIBCXX_NOEXCEPT
385 { return _M_t.rend(); }
388 * Returns a read-only (constant) reverse iterator that points to one
389 * before the first pair in the %multimap. Iteration is done in
390 * descending order according to the keys.
392 const_reverse_iterator
393 rend() const _GLIBCXX_NOEXCEPT
394 { return _M_t.rend(); }
396 #if __cplusplus >= 201103L
398 * Returns a read-only (constant) iterator that points to the first pair
399 * in the %multimap. Iteration is done in ascending order according to
400 * the keys.
402 const_iterator
403 cbegin() const noexcept
404 { return _M_t.begin(); }
407 * Returns a read-only (constant) iterator that points one past the last
408 * pair in the %multimap. Iteration is done in ascending order according
409 * to the keys.
411 const_iterator
412 cend() const noexcept
413 { return _M_t.end(); }
416 * Returns a read-only (constant) reverse iterator that points to the
417 * last pair in the %multimap. Iteration is done in descending order
418 * according to the keys.
420 const_reverse_iterator
421 crbegin() const noexcept
422 { return _M_t.rbegin(); }
425 * Returns a read-only (constant) reverse iterator that points to one
426 * before the first pair in the %multimap. Iteration is done in
427 * descending order according to the keys.
429 const_reverse_iterator
430 crend() const noexcept
431 { return _M_t.rend(); }
432 #endif
434 // capacity
435 /** Returns true if the %multimap is empty. */
436 bool
437 empty() const _GLIBCXX_NOEXCEPT
438 { return _M_t.empty(); }
440 /** Returns the size of the %multimap. */
441 size_type
442 size() const _GLIBCXX_NOEXCEPT
443 { return _M_t.size(); }
445 /** Returns the maximum size of the %multimap. */
446 size_type
447 max_size() const _GLIBCXX_NOEXCEPT
448 { return _M_t.max_size(); }
450 // modifiers
451 #if __cplusplus >= 201103L
453 * @brief Build and insert a std::pair into the %multimap.
455 * @param __args Arguments used to generate a new pair instance (see
456 * std::piecewise_contruct for passing arguments to each
457 * part of the pair constructor).
459 * @return An iterator that points to the inserted (key,value) pair.
461 * This function builds and inserts a (key, value) %pair into the
462 * %multimap.
463 * Contrary to a std::map the %multimap does not rely on unique keys and
464 * thus multiple pairs with the same key can be inserted.
466 * Insertion requires logarithmic time.
468 template<typename... _Args>
469 iterator
470 emplace(_Args&&... __args)
471 { return _M_t._M_emplace_equal(std::forward<_Args>(__args)...); }
474 * @brief Builds and inserts a std::pair into the %multimap.
476 * @param __pos An iterator that serves as a hint as to where the pair
477 * should be inserted.
478 * @param __args Arguments used to generate a new pair instance (see
479 * std::piecewise_contruct for passing arguments to each
480 * part of the pair constructor).
481 * @return An iterator that points to the inserted (key,value) pair.
483 * This function inserts a (key, value) pair into the %multimap.
484 * Contrary to a std::map the %multimap does not rely on unique keys and
485 * thus multiple pairs with the same key can be inserted.
486 * Note that the first parameter is only a hint and can potentially
487 * improve the performance of the insertion process. A bad hint would
488 * cause no gains in efficiency.
490 * For more on @a hinting, see:
491 * https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
493 * Insertion requires logarithmic time (if the hint is not taken).
495 template<typename... _Args>
496 iterator
497 emplace_hint(const_iterator __pos, _Args&&... __args)
499 return _M_t._M_emplace_hint_equal(__pos,
500 std::forward<_Args>(__args)...);
502 #endif
505 * @brief Inserts a std::pair into the %multimap.
506 * @param __x Pair to be inserted (see std::make_pair for easy creation
507 * of pairs).
508 * @return An iterator that points to the inserted (key,value) pair.
510 * This function inserts a (key, value) pair into the %multimap.
511 * Contrary to a std::map the %multimap does not rely on unique keys and
512 * thus multiple pairs with the same key can be inserted.
514 * Insertion requires logarithmic time.
516 iterator
517 insert(const value_type& __x)
518 { return _M_t._M_insert_equal(__x); }
520 #if __cplusplus >= 201103L
521 template<typename _Pair, typename = typename
522 std::enable_if<std::is_constructible<value_type,
523 _Pair&&>::value>::type>
524 iterator
525 insert(_Pair&& __x)
526 { return _M_t._M_insert_equal(std::forward<_Pair>(__x)); }
527 #endif
530 * @brief Inserts a std::pair into the %multimap.
531 * @param __position An iterator that serves as a hint as to where the
532 * pair should be inserted.
533 * @param __x Pair to be inserted (see std::make_pair for easy creation
534 * of pairs).
535 * @return An iterator that points to the inserted (key,value) pair.
537 * This function inserts a (key, value) pair into the %multimap.
538 * Contrary to a std::map the %multimap does not rely on unique keys and
539 * thus multiple pairs with the same key can be inserted.
540 * Note that the first parameter is only a hint and can potentially
541 * improve the performance of the insertion process. A bad hint would
542 * cause no gains in efficiency.
544 * For more on @a hinting, see:
545 * https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
547 * Insertion requires logarithmic time (if the hint is not taken).
549 iterator
550 #if __cplusplus >= 201103L
551 insert(const_iterator __position, const value_type& __x)
552 #else
553 insert(iterator __position, const value_type& __x)
554 #endif
555 { return _M_t._M_insert_equal_(__position, __x); }
557 #if __cplusplus >= 201103L
558 template<typename _Pair, typename = typename
559 std::enable_if<std::is_constructible<value_type,
560 _Pair&&>::value>::type>
561 iterator
562 insert(const_iterator __position, _Pair&& __x)
563 { return _M_t._M_insert_equal_(__position,
564 std::forward<_Pair>(__x)); }
565 #endif
568 * @brief A template function that attempts to insert a range
569 * of elements.
570 * @param __first Iterator pointing to the start of the range to be
571 * inserted.
572 * @param __last Iterator pointing to the end of the range.
574 * Complexity similar to that of the range constructor.
576 template<typename _InputIterator>
577 void
578 insert(_InputIterator __first, _InputIterator __last)
579 { _M_t._M_insert_equal(__first, __last); }
581 #if __cplusplus >= 201103L
583 * @brief Attempts to insert a list of std::pairs into the %multimap.
584 * @param __l A std::initializer_list<value_type> of pairs to be
585 * inserted.
587 * Complexity similar to that of the range constructor.
589 void
590 insert(initializer_list<value_type> __l)
591 { this->insert(__l.begin(), __l.end()); }
592 #endif
594 #if __cplusplus >= 201103L
595 // _GLIBCXX_RESOLVE_LIB_DEFECTS
596 // DR 130. Associative erase should return an iterator.
598 * @brief Erases an element from a %multimap.
599 * @param __position An iterator pointing to the element to be erased.
600 * @return An iterator pointing to the element immediately following
601 * @a position prior to the element being erased. If no such
602 * element exists, end() is returned.
604 * This function erases an element, pointed to by the given iterator,
605 * from a %multimap. Note that this function only erases the element,
606 * and that if the element is itself a pointer, the pointed-to memory is
607 * not touched in any way. Managing the pointer is the user's
608 * responsibility.
610 iterator
611 erase(const_iterator __position)
612 { return _M_t.erase(__position); }
614 // LWG 2059.
615 _GLIBCXX_ABI_TAG_CXX11
616 iterator
617 erase(iterator __position)
618 { return _M_t.erase(__position); }
619 #else
621 * @brief Erases an element from a %multimap.
622 * @param __position An iterator pointing to the element to be erased.
624 * This function erases an element, pointed to by the given iterator,
625 * from a %multimap. Note that this function only erases the element,
626 * and that if the element is itself a pointer, the pointed-to memory is
627 * not touched in any way. Managing the pointer is the user's
628 * responsibility.
630 void
631 erase(iterator __position)
632 { _M_t.erase(__position); }
633 #endif
636 * @brief Erases elements according to the provided key.
637 * @param __x Key of element to be erased.
638 * @return The number of elements erased.
640 * This function erases all elements located by the given key from a
641 * %multimap.
642 * Note that this function only erases the element, and that if
643 * the element is itself a pointer, the pointed-to memory is not touched
644 * in any way. Managing the pointer is the user's responsibility.
646 size_type
647 erase(const key_type& __x)
648 { return _M_t.erase(__x); }
650 #if __cplusplus >= 201103L
651 // _GLIBCXX_RESOLVE_LIB_DEFECTS
652 // DR 130. Associative erase should return an iterator.
654 * @brief Erases a [first,last) range of elements from a %multimap.
655 * @param __first Iterator pointing to the start of the range to be
656 * erased.
657 * @param __last Iterator pointing to the end of the range to be
658 * erased .
659 * @return The iterator @a __last.
661 * This function erases a sequence of elements from a %multimap.
662 * Note that this function only erases the elements, and that if
663 * the elements themselves are pointers, the pointed-to memory is not
664 * touched in any way. Managing the pointer is the user's
665 * responsibility.
667 iterator
668 erase(const_iterator __first, const_iterator __last)
669 { return _M_t.erase(__first, __last); }
670 #else
671 // _GLIBCXX_RESOLVE_LIB_DEFECTS
672 // DR 130. Associative erase should return an iterator.
674 * @brief Erases a [first,last) range of elements from a %multimap.
675 * @param __first Iterator pointing to the start of the range to be
676 * erased.
677 * @param __last Iterator pointing to the end of the range to
678 * be erased.
680 * This function erases a sequence of elements from a %multimap.
681 * Note that this function only erases the elements, and that if
682 * the elements themselves are pointers, the pointed-to memory is not
683 * touched in any way. Managing the pointer is the user's
684 * responsibility.
686 void
687 erase(iterator __first, iterator __last)
688 { _M_t.erase(__first, __last); }
689 #endif
692 * @brief Swaps data with another %multimap.
693 * @param __x A %multimap of the same element and allocator types.
695 * This exchanges the elements between two multimaps in constant time.
696 * (It is only swapping a pointer, an integer, and an instance of
697 * the @c Compare type (which itself is often stateless and empty), so it
698 * should be quite fast.)
699 * Note that the global std::swap() function is specialized such that
700 * std::swap(m1,m2) will feed to this function.
702 void
703 swap(multimap& __x)
704 #if __cplusplus >= 201103L
705 noexcept(_Alloc_traits::_S_nothrow_swap())
706 #endif
707 { _M_t.swap(__x._M_t); }
710 * Erases all elements in a %multimap. Note that this function only
711 * erases the elements, and that if the elements themselves are pointers,
712 * the pointed-to memory is not touched in any way. Managing the pointer
713 * is the user's responsibility.
715 void
716 clear() _GLIBCXX_NOEXCEPT
717 { _M_t.clear(); }
719 // observers
721 * Returns the key comparison object out of which the %multimap
722 * was constructed.
724 key_compare
725 key_comp() const
726 { return _M_t.key_comp(); }
729 * Returns a value comparison object, built from the key comparison
730 * object out of which the %multimap was constructed.
732 value_compare
733 value_comp() const
734 { return value_compare(_M_t.key_comp()); }
736 // multimap operations
738 * @brief Tries to locate an element in a %multimap.
739 * @param __x Key of (key, value) pair to be located.
740 * @return Iterator pointing to sought-after element,
741 * or end() if not found.
743 * This function takes a key and tries to locate the element with which
744 * the key matches. If successful the function returns an iterator
745 * pointing to the sought after %pair. If unsuccessful it returns the
746 * past-the-end ( @c end() ) iterator.
748 iterator
749 find(const key_type& __x)
750 { return _M_t.find(__x); }
753 * @brief Tries to locate an element in a %multimap.
754 * @param __x Key of (key, value) pair to be located.
755 * @return Read-only (constant) iterator pointing to sought-after
756 * element, or end() if not found.
758 * This function takes a key and tries to locate the element with which
759 * the key matches. If successful the function returns a constant
760 * iterator pointing to the sought after %pair. If unsuccessful it
761 * returns the past-the-end ( @c end() ) iterator.
763 const_iterator
764 find(const key_type& __x) const
765 { return _M_t.find(__x); }
768 * @brief Finds the number of elements with given key.
769 * @param __x Key of (key, value) pairs to be located.
770 * @return Number of elements with specified key.
772 size_type
773 count(const key_type& __x) const
774 { return _M_t.count(__x); }
777 * @brief Finds the beginning of a subsequence matching given key.
778 * @param __x Key of (key, value) pair to be located.
779 * @return Iterator pointing to first element equal to or greater
780 * than key, or end().
782 * This function returns the first element of a subsequence of elements
783 * that matches the given key. If unsuccessful it returns an iterator
784 * pointing to the first element that has a greater value than given key
785 * or end() if no such element exists.
787 iterator
788 lower_bound(const key_type& __x)
789 { return _M_t.lower_bound(__x); }
792 * @brief Finds the beginning of a subsequence matching given key.
793 * @param __x Key of (key, value) pair to be located.
794 * @return Read-only (constant) iterator pointing to first element
795 * equal to or greater than key, or end().
797 * This function returns the first element of a subsequence of
798 * elements that matches the given key. If unsuccessful the
799 * iterator will point to the next greatest element or, if no
800 * such greater element exists, to end().
802 const_iterator
803 lower_bound(const key_type& __x) const
804 { return _M_t.lower_bound(__x); }
807 * @brief Finds the end of a subsequence matching given key.
808 * @param __x Key of (key, value) pair to be located.
809 * @return Iterator pointing to the first element
810 * greater than key, or end().
812 iterator
813 upper_bound(const key_type& __x)
814 { return _M_t.upper_bound(__x); }
817 * @brief Finds the end of a subsequence matching given key.
818 * @param __x Key of (key, value) pair to be located.
819 * @return Read-only (constant) iterator pointing to first iterator
820 * greater than key, or end().
822 const_iterator
823 upper_bound(const key_type& __x) const
824 { return _M_t.upper_bound(__x); }
827 * @brief Finds a subsequence matching given key.
828 * @param __x Key of (key, value) pairs to be located.
829 * @return Pair of iterators that possibly points to the subsequence
830 * matching given key.
832 * This function is equivalent to
833 * @code
834 * std::make_pair(c.lower_bound(val),
835 * c.upper_bound(val))
836 * @endcode
837 * (but is faster than making the calls separately).
839 std::pair<iterator, iterator>
840 equal_range(const key_type& __x)
841 { return _M_t.equal_range(__x); }
844 * @brief Finds a subsequence matching given key.
845 * @param __x Key of (key, value) pairs to be located.
846 * @return Pair of read-only (constant) iterators that possibly points
847 * to the subsequence matching given key.
849 * This function is equivalent to
850 * @code
851 * std::make_pair(c.lower_bound(val),
852 * c.upper_bound(val))
853 * @endcode
854 * (but is faster than making the calls separately).
856 std::pair<const_iterator, const_iterator>
857 equal_range(const key_type& __x) const
858 { return _M_t.equal_range(__x); }
860 template<typename _K1, typename _T1, typename _C1, typename _A1>
861 friend bool
862 operator==(const multimap<_K1, _T1, _C1, _A1>&,
863 const multimap<_K1, _T1, _C1, _A1>&);
865 template<typename _K1, typename _T1, typename _C1, typename _A1>
866 friend bool
867 operator<(const multimap<_K1, _T1, _C1, _A1>&,
868 const multimap<_K1, _T1, _C1, _A1>&);
872 * @brief Multimap equality comparison.
873 * @param __x A %multimap.
874 * @param __y A %multimap of the same type as @a __x.
875 * @return True iff the size and elements of the maps are equal.
877 * This is an equivalence relation. It is linear in the size of the
878 * multimaps. Multimaps are considered equivalent if their sizes are equal,
879 * and if corresponding elements compare equal.
881 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
882 inline bool
883 operator==(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
884 const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
885 { return __x._M_t == __y._M_t; }
888 * @brief Multimap ordering relation.
889 * @param __x A %multimap.
890 * @param __y A %multimap of the same type as @a __x.
891 * @return True iff @a x is lexicographically less than @a y.
893 * This is a total ordering relation. It is linear in the size of the
894 * multimaps. The elements must be comparable with @c <.
896 * See std::lexicographical_compare() for how the determination is made.
898 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
899 inline bool
900 operator<(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
901 const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
902 { return __x._M_t < __y._M_t; }
904 /// Based on operator==
905 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
906 inline bool
907 operator!=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
908 const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
909 { return !(__x == __y); }
911 /// Based on operator<
912 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
913 inline bool
914 operator>(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
915 const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
916 { return __y < __x; }
918 /// Based on operator<
919 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
920 inline bool
921 operator<=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
922 const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
923 { return !(__y < __x); }
925 /// Based on operator<
926 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
927 inline bool
928 operator>=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
929 const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
930 { return !(__x < __y); }
932 /// See std::multimap::swap().
933 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
934 inline void
935 swap(multimap<_Key, _Tp, _Compare, _Alloc>& __x,
936 multimap<_Key, _Tp, _Compare, _Alloc>& __y)
937 { __x.swap(__y); }
939 _GLIBCXX_END_NAMESPACE_CONTAINER
940 } // namespace std
942 #endif /* _STL_MULTIMAP_H */