1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Debug
; use Debug
;
30 with Elists
; use Elists
;
31 with Einfo
; use Einfo
;
32 with Errout
; use Errout
;
33 with Eval_Fat
; use Eval_Fat
;
34 with Exp_Ch3
; use Exp_Ch3
;
35 with Exp_Ch9
; use Exp_Ch9
;
36 with Exp_Disp
; use Exp_Disp
;
37 with Exp_Dist
; use Exp_Dist
;
38 with Exp_Tss
; use Exp_Tss
;
39 with Exp_Util
; use Exp_Util
;
40 with Fname
; use Fname
;
41 with Freeze
; use Freeze
;
42 with Ghost
; use Ghost
;
43 with Itypes
; use Itypes
;
44 with Layout
; use Layout
;
46 with Lib
.Xref
; use Lib
.Xref
;
47 with Namet
; use Namet
;
48 with Nmake
; use Nmake
;
50 with Restrict
; use Restrict
;
51 with Rident
; use Rident
;
52 with Rtsfind
; use Rtsfind
;
54 with Sem_Aux
; use Sem_Aux
;
55 with Sem_Case
; use Sem_Case
;
56 with Sem_Cat
; use Sem_Cat
;
57 with Sem_Ch6
; use Sem_Ch6
;
58 with Sem_Ch7
; use Sem_Ch7
;
59 with Sem_Ch8
; use Sem_Ch8
;
60 with Sem_Ch10
; use Sem_Ch10
;
61 with Sem_Ch12
; use Sem_Ch12
;
62 with Sem_Ch13
; use Sem_Ch13
;
63 with Sem_Dim
; use Sem_Dim
;
64 with Sem_Disp
; use Sem_Disp
;
65 with Sem_Dist
; use Sem_Dist
;
66 with Sem_Elim
; use Sem_Elim
;
67 with Sem_Eval
; use Sem_Eval
;
68 with Sem_Mech
; use Sem_Mech
;
69 with Sem_Prag
; use Sem_Prag
;
70 with Sem_Res
; use Sem_Res
;
71 with Sem_Smem
; use Sem_Smem
;
72 with Sem_Type
; use Sem_Type
;
73 with Sem_Util
; use Sem_Util
;
74 with Sem_Warn
; use Sem_Warn
;
75 with Stand
; use Stand
;
76 with Sinfo
; use Sinfo
;
77 with Sinput
; use Sinput
;
78 with Snames
; use Snames
;
79 with Targparm
; use Targparm
;
80 with Tbuild
; use Tbuild
;
81 with Ttypes
; use Ttypes
;
82 with Uintp
; use Uintp
;
83 with Urealp
; use Urealp
;
85 package body Sem_Ch3
is
87 -----------------------
88 -- Local Subprograms --
89 -----------------------
91 procedure Add_Interface_Tag_Components
(N
: Node_Id
; Typ
: Entity_Id
);
92 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
93 -- abstract interface types implemented by a record type or a derived
96 procedure Analyze_Object_Contract
(Obj_Id
: Entity_Id
);
97 -- Analyze all delayed pragmas chained on the contract of object Obj_Id as
98 -- if they appeared at the end of the declarative region. The pragmas to be
106 procedure Build_Derived_Type
108 Parent_Type
: Entity_Id
;
109 Derived_Type
: Entity_Id
;
110 Is_Completion
: Boolean;
111 Derive_Subps
: Boolean := True);
112 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
113 -- the N_Full_Type_Declaration node containing the derived type definition.
114 -- Parent_Type is the entity for the parent type in the derived type
115 -- definition and Derived_Type the actual derived type. Is_Completion must
116 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
117 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
118 -- completion of a private type declaration. If Is_Completion is set to
119 -- True, N is the completion of a private type declaration and Derived_Type
120 -- is different from the defining identifier inside N (i.e. Derived_Type /=
121 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
122 -- subprograms should be derived. The only case where this parameter is
123 -- False is when Build_Derived_Type is recursively called to process an
124 -- implicit derived full type for a type derived from a private type (in
125 -- that case the subprograms must only be derived for the private view of
128 -- ??? These flags need a bit of re-examination and re-documentation:
129 -- ??? are they both necessary (both seem related to the recursion)?
131 procedure Build_Derived_Access_Type
133 Parent_Type
: Entity_Id
;
134 Derived_Type
: Entity_Id
);
135 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
136 -- create an implicit base if the parent type is constrained or if the
137 -- subtype indication has a constraint.
139 procedure Build_Derived_Array_Type
141 Parent_Type
: Entity_Id
;
142 Derived_Type
: Entity_Id
);
143 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
144 -- create an implicit base if the parent type is constrained or if the
145 -- subtype indication has a constraint.
147 procedure Build_Derived_Concurrent_Type
149 Parent_Type
: Entity_Id
;
150 Derived_Type
: Entity_Id
);
151 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
152 -- protected type, inherit entries and protected subprograms, check
153 -- legality of discriminant constraints if any.
155 procedure Build_Derived_Enumeration_Type
157 Parent_Type
: Entity_Id
;
158 Derived_Type
: Entity_Id
);
159 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
160 -- type, we must create a new list of literals. Types derived from
161 -- Character and [Wide_]Wide_Character are special-cased.
163 procedure Build_Derived_Numeric_Type
165 Parent_Type
: Entity_Id
;
166 Derived_Type
: Entity_Id
);
167 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
168 -- an anonymous base type, and propagate constraint to subtype if needed.
170 procedure Build_Derived_Private_Type
172 Parent_Type
: Entity_Id
;
173 Derived_Type
: Entity_Id
;
174 Is_Completion
: Boolean;
175 Derive_Subps
: Boolean := True);
176 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
177 -- because the parent may or may not have a completion, and the derivation
178 -- may itself be a completion.
180 procedure Build_Derived_Record_Type
182 Parent_Type
: Entity_Id
;
183 Derived_Type
: Entity_Id
;
184 Derive_Subps
: Boolean := True);
185 -- Subsidiary procedure used for tagged and untagged record types
186 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
187 -- All parameters are as in Build_Derived_Type except that N, in
188 -- addition to being an N_Full_Type_Declaration node, can also be an
189 -- N_Private_Extension_Declaration node. See the definition of this routine
190 -- for much more info. Derive_Subps indicates whether subprograms should be
191 -- derived from the parent type. The only case where Derive_Subps is False
192 -- is for an implicit derived full type for a type derived from a private
193 -- type (see Build_Derived_Type).
195 procedure Build_Discriminal
(Discrim
: Entity_Id
);
196 -- Create the discriminal corresponding to discriminant Discrim, that is
197 -- the parameter corresponding to Discrim to be used in initialization
198 -- procedures for the type where Discrim is a discriminant. Discriminals
199 -- are not used during semantic analysis, and are not fully defined
200 -- entities until expansion. Thus they are not given a scope until
201 -- initialization procedures are built.
203 function Build_Discriminant_Constraints
206 Derived_Def
: Boolean := False) return Elist_Id
;
207 -- Validate discriminant constraints and return the list of the constraints
208 -- in order of discriminant declarations, where T is the discriminated
209 -- unconstrained type. Def is the N_Subtype_Indication node where the
210 -- discriminants constraints for T are specified. Derived_Def is True
211 -- when building the discriminant constraints in a derived type definition
212 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
213 -- type and Def is the constraint "(xxx)" on T and this routine sets the
214 -- Corresponding_Discriminant field of the discriminants in the derived
215 -- type D to point to the corresponding discriminants in the parent type T.
217 procedure Build_Discriminated_Subtype
221 Related_Nod
: Node_Id
;
222 For_Access
: Boolean := False);
223 -- Subsidiary procedure to Constrain_Discriminated_Type and to
224 -- Process_Incomplete_Dependents. Given
226 -- T (a possibly discriminated base type)
227 -- Def_Id (a very partially built subtype for T),
229 -- the call completes Def_Id to be the appropriate E_*_Subtype.
231 -- The Elist is the list of discriminant constraints if any (it is set
232 -- to No_Elist if T is not a discriminated type, and to an empty list if
233 -- T has discriminants but there are no discriminant constraints). The
234 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
235 -- The For_Access says whether or not this subtype is really constraining
236 -- an access type. That is its sole purpose is the designated type of an
237 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
238 -- is built to avoid freezing T when the access subtype is frozen.
240 function Build_Scalar_Bound
243 Der_T
: Entity_Id
) return Node_Id
;
244 -- The bounds of a derived scalar type are conversions of the bounds of
245 -- the parent type. Optimize the representation if the bounds are literals.
246 -- Needs a more complete spec--what are the parameters exactly, and what
247 -- exactly is the returned value, and how is Bound affected???
249 procedure Build_Underlying_Full_View
253 -- If the completion of a private type is itself derived from a private
254 -- type, or if the full view of a private subtype is itself private, the
255 -- back-end has no way to compute the actual size of this type. We build
256 -- an internal subtype declaration of the proper parent type to convey
257 -- this information. This extra mechanism is needed because a full
258 -- view cannot itself have a full view (it would get clobbered during
261 procedure Check_Access_Discriminant_Requires_Limited
264 -- Check the restriction that the type to which an access discriminant
265 -- belongs must be a concurrent type or a descendant of a type with
266 -- the reserved word 'limited' in its declaration.
268 procedure Check_Anonymous_Access_Components
272 Comp_List
: Node_Id
);
273 -- Ada 2005 AI-382: an access component in a record definition can refer to
274 -- the enclosing record, in which case it denotes the type itself, and not
275 -- the current instance of the type. We create an anonymous access type for
276 -- the component, and flag it as an access to a component, so accessibility
277 -- checks are properly performed on it. The declaration of the access type
278 -- is placed ahead of that of the record to prevent order-of-elaboration
279 -- circularity issues in Gigi. We create an incomplete type for the record
280 -- declaration, which is the designated type of the anonymous access.
282 procedure Check_Delta_Expression
(E
: Node_Id
);
283 -- Check that the expression represented by E is suitable for use as a
284 -- delta expression, i.e. it is of real type and is static.
286 procedure Check_Digits_Expression
(E
: Node_Id
);
287 -- Check that the expression represented by E is suitable for use as a
288 -- digits expression, i.e. it is of integer type, positive and static.
290 procedure Check_Initialization
(T
: Entity_Id
; Exp
: Node_Id
);
291 -- Validate the initialization of an object declaration. T is the required
292 -- type, and Exp is the initialization expression.
294 procedure Check_Interfaces
(N
: Node_Id
; Def
: Node_Id
);
295 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
297 procedure Check_Or_Process_Discriminants
300 Prev
: Entity_Id
:= Empty
);
301 -- If N is the full declaration of the completion T of an incomplete or
302 -- private type, check its discriminants (which are already known to be
303 -- conformant with those of the partial view, see Find_Type_Name),
304 -- otherwise process them. Prev is the entity of the partial declaration,
307 procedure Check_Real_Bound
(Bound
: Node_Id
);
308 -- Check given bound for being of real type and static. If not, post an
309 -- appropriate message, and rewrite the bound with the real literal zero.
311 procedure Constant_Redeclaration
315 -- Various checks on legality of full declaration of deferred constant.
316 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
317 -- node. The caller has not yet set any attributes of this entity.
319 function Contain_Interface
321 Ifaces
: Elist_Id
) return Boolean;
322 -- Ada 2005: Determine whether Iface is present in the list Ifaces
324 procedure Convert_Scalar_Bounds
326 Parent_Type
: Entity_Id
;
327 Derived_Type
: Entity_Id
;
329 -- For derived scalar types, convert the bounds in the type definition to
330 -- the derived type, and complete their analysis. Given a constraint of the
331 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
332 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
333 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
334 -- subtype are conversions of those bounds to the derived_type, so that
335 -- their typing is consistent.
337 procedure Copy_Array_Base_Type_Attributes
(T1
, T2
: Entity_Id
);
338 -- Copies attributes from array base type T2 to array base type T1. Copies
339 -- only attributes that apply to base types, but not subtypes.
341 procedure Copy_Array_Subtype_Attributes
(T1
, T2
: Entity_Id
);
342 -- Copies attributes from array subtype T2 to array subtype T1. Copies
343 -- attributes that apply to both subtypes and base types.
345 procedure Create_Constrained_Components
349 Constraints
: Elist_Id
);
350 -- Build the list of entities for a constrained discriminated record
351 -- subtype. If a component depends on a discriminant, replace its subtype
352 -- using the discriminant values in the discriminant constraint. Subt
353 -- is the defining identifier for the subtype whose list of constrained
354 -- entities we will create. Decl_Node is the type declaration node where
355 -- we will attach all the itypes created. Typ is the base discriminated
356 -- type for the subtype Subt. Constraints is the list of discriminant
357 -- constraints for Typ.
359 function Constrain_Component_Type
361 Constrained_Typ
: Entity_Id
;
362 Related_Node
: Node_Id
;
364 Constraints
: Elist_Id
) return Entity_Id
;
365 -- Given a discriminated base type Typ, a list of discriminant constraints,
366 -- Constraints, for Typ and a component Comp of Typ, create and return the
367 -- type corresponding to Etype (Comp) where all discriminant references
368 -- are replaced with the corresponding constraint. If Etype (Comp) contains
369 -- no discriminant references then it is returned as-is. Constrained_Typ
370 -- is the final constrained subtype to which the constrained component
371 -- belongs. Related_Node is the node where we attach all created itypes.
373 procedure Constrain_Access
374 (Def_Id
: in out Entity_Id
;
376 Related_Nod
: Node_Id
);
377 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
378 -- an anonymous type created for a subtype indication. In that case it is
379 -- created in the procedure and attached to Related_Nod.
381 procedure Constrain_Array
382 (Def_Id
: in out Entity_Id
;
384 Related_Nod
: Node_Id
;
385 Related_Id
: Entity_Id
;
387 -- Apply a list of index constraints to an unconstrained array type. The
388 -- first parameter is the entity for the resulting subtype. A value of
389 -- Empty for Def_Id indicates that an implicit type must be created, but
390 -- creation is delayed (and must be done by this procedure) because other
391 -- subsidiary implicit types must be created first (which is why Def_Id
392 -- is an in/out parameter). The second parameter is a subtype indication
393 -- node for the constrained array to be created (e.g. something of the
394 -- form string (1 .. 10)). Related_Nod gives the place where this type
395 -- has to be inserted in the tree. The Related_Id and Suffix parameters
396 -- are used to build the associated Implicit type name.
398 procedure Constrain_Concurrent
399 (Def_Id
: in out Entity_Id
;
401 Related_Nod
: Node_Id
;
402 Related_Id
: Entity_Id
;
404 -- Apply list of discriminant constraints to an unconstrained concurrent
407 -- SI is the N_Subtype_Indication node containing the constraint and
408 -- the unconstrained type to constrain.
410 -- Def_Id is the entity for the resulting constrained subtype. A value
411 -- of Empty for Def_Id indicates that an implicit type must be created,
412 -- but creation is delayed (and must be done by this procedure) because
413 -- other subsidiary implicit types must be created first (which is why
414 -- Def_Id is an in/out parameter).
416 -- Related_Nod gives the place where this type has to be inserted
419 -- The last two arguments are used to create its external name if needed.
421 function Constrain_Corresponding_Record
422 (Prot_Subt
: Entity_Id
;
423 Corr_Rec
: Entity_Id
;
424 Related_Nod
: Node_Id
) return Entity_Id
;
425 -- When constraining a protected type or task type with discriminants,
426 -- constrain the corresponding record with the same discriminant values.
428 procedure Constrain_Decimal
(Def_Id
: Node_Id
; S
: Node_Id
);
429 -- Constrain a decimal fixed point type with a digits constraint and/or a
430 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
432 procedure Constrain_Discriminated_Type
435 Related_Nod
: Node_Id
;
436 For_Access
: Boolean := False);
437 -- Process discriminant constraints of composite type. Verify that values
438 -- have been provided for all discriminants, that the original type is
439 -- unconstrained, and that the types of the supplied expressions match
440 -- the discriminant types. The first three parameters are like in routine
441 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
444 procedure Constrain_Enumeration
(Def_Id
: Node_Id
; S
: Node_Id
);
445 -- Constrain an enumeration type with a range constraint. This is identical
446 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
448 procedure Constrain_Float
(Def_Id
: Node_Id
; S
: Node_Id
);
449 -- Constrain a floating point type with either a digits constraint
450 -- and/or a range constraint, building a E_Floating_Point_Subtype.
452 procedure Constrain_Index
455 Related_Nod
: Node_Id
;
456 Related_Id
: Entity_Id
;
459 -- Process an index constraint S in a constrained array declaration. The
460 -- constraint can be a subtype name, or a range with or without an explicit
461 -- subtype mark. The index is the corresponding index of the unconstrained
462 -- array. The Related_Id and Suffix parameters are used to build the
463 -- associated Implicit type name.
465 procedure Constrain_Integer
(Def_Id
: Node_Id
; S
: Node_Id
);
466 -- Build subtype of a signed or modular integer type
468 procedure Constrain_Ordinary_Fixed
(Def_Id
: Node_Id
; S
: Node_Id
);
469 -- Constrain an ordinary fixed point type with a range constraint, and
470 -- build an E_Ordinary_Fixed_Point_Subtype entity.
472 procedure Copy_And_Swap
(Priv
, Full
: Entity_Id
);
473 -- Copy the Priv entity into the entity of its full declaration then swap
474 -- the two entities in such a manner that the former private type is now
475 -- seen as a full type.
477 procedure Decimal_Fixed_Point_Type_Declaration
480 -- Create a new decimal fixed point type, and apply the constraint to
481 -- obtain a subtype of this new type.
483 procedure Complete_Private_Subtype
486 Full_Base
: Entity_Id
;
487 Related_Nod
: Node_Id
);
488 -- Complete the implicit full view of a private subtype by setting the
489 -- appropriate semantic fields. If the full view of the parent is a record
490 -- type, build constrained components of subtype.
492 procedure Derive_Progenitor_Subprograms
493 (Parent_Type
: Entity_Id
;
494 Tagged_Type
: Entity_Id
);
495 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
496 -- operations of progenitors of Tagged_Type, and replace the subsidiary
497 -- subtypes with Tagged_Type, to build the specs of the inherited interface
498 -- primitives. The derived primitives are aliased to those of the
499 -- interface. This routine takes care also of transferring to the full view
500 -- subprograms associated with the partial view of Tagged_Type that cover
501 -- interface primitives.
503 procedure Derived_Standard_Character
505 Parent_Type
: Entity_Id
;
506 Derived_Type
: Entity_Id
);
507 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
508 -- derivations from types Standard.Character and Standard.Wide_Character.
510 procedure Derived_Type_Declaration
513 Is_Completion
: Boolean);
514 -- Process a derived type declaration. Build_Derived_Type is invoked
515 -- to process the actual derived type definition. Parameters N and
516 -- Is_Completion have the same meaning as in Build_Derived_Type.
517 -- T is the N_Defining_Identifier for the entity defined in the
518 -- N_Full_Type_Declaration node N, that is T is the derived type.
520 procedure Enumeration_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
521 -- Insert each literal in symbol table, as an overloadable identifier. Each
522 -- enumeration type is mapped into a sequence of integers, and each literal
523 -- is defined as a constant with integer value. If any of the literals are
524 -- character literals, the type is a character type, which means that
525 -- strings are legal aggregates for arrays of components of the type.
527 function Expand_To_Stored_Constraint
529 Constraint
: Elist_Id
) return Elist_Id
;
530 -- Given a constraint (i.e. a list of expressions) on the discriminants of
531 -- Typ, expand it into a constraint on the stored discriminants and return
532 -- the new list of expressions constraining the stored discriminants.
534 function Find_Type_Of_Object
536 Related_Nod
: Node_Id
) return Entity_Id
;
537 -- Get type entity for object referenced by Obj_Def, attaching the implicit
538 -- types generated to Related_Nod.
540 procedure Floating_Point_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
541 -- Create a new float and apply the constraint to obtain subtype of it
543 function Has_Range_Constraint
(N
: Node_Id
) return Boolean;
544 -- Given an N_Subtype_Indication node N, return True if a range constraint
545 -- is present, either directly, or as part of a digits or delta constraint.
546 -- In addition, a digits constraint in the decimal case returns True, since
547 -- it establishes a default range if no explicit range is present.
549 function Inherit_Components
551 Parent_Base
: Entity_Id
;
552 Derived_Base
: Entity_Id
;
554 Inherit_Discr
: Boolean;
555 Discs
: Elist_Id
) return Elist_Id
;
556 -- Called from Build_Derived_Record_Type to inherit the components of
557 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
558 -- For more information on derived types and component inheritance please
559 -- consult the comment above the body of Build_Derived_Record_Type.
561 -- N is the original derived type declaration
563 -- Is_Tagged is set if we are dealing with tagged types
565 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
566 -- Parent_Base, otherwise no discriminants are inherited.
568 -- Discs gives the list of constraints that apply to Parent_Base in the
569 -- derived type declaration. If Discs is set to No_Elist, then we have
570 -- the following situation:
572 -- type Parent (D1..Dn : ..) is [tagged] record ...;
573 -- type Derived is new Parent [with ...];
575 -- which gets treated as
577 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
579 -- For untagged types the returned value is an association list. The list
580 -- starts from the association (Parent_Base => Derived_Base), and then it
581 -- contains a sequence of the associations of the form
583 -- (Old_Component => New_Component),
585 -- where Old_Component is the Entity_Id of a component in Parent_Base and
586 -- New_Component is the Entity_Id of the corresponding component in
587 -- Derived_Base. For untagged records, this association list is needed when
588 -- copying the record declaration for the derived base. In the tagged case
589 -- the value returned is irrelevant.
591 procedure Inherit_Predicate_Flags
(Subt
, Par
: Entity_Id
);
592 -- Propagate static and dynamic predicate flags from a parent to the
593 -- subtype in a subtype declaration with and without constraints.
595 function Is_EVF_Procedure
(Subp
: Entity_Id
) return Boolean;
596 -- Subsidiary to Check_Abstract_Overriding and Derive_Subprogram.
597 -- Determine whether subprogram Subp is a procedure subject to pragma
598 -- Extensions_Visible with value False and has at least one controlling
599 -- parameter of mode OUT.
601 function Is_Valid_Constraint_Kind
603 Constraint_Kind
: Node_Kind
) return Boolean;
604 -- Returns True if it is legal to apply the given kind of constraint to the
605 -- given kind of type (index constraint to an array type, for example).
607 procedure Modular_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
608 -- Create new modular type. Verify that modulus is in bounds
610 procedure New_Concatenation_Op
(Typ
: Entity_Id
);
611 -- Create an abbreviated declaration for an operator in order to
612 -- materialize concatenation on array types.
614 procedure Ordinary_Fixed_Point_Type_Declaration
617 -- Create a new ordinary fixed point type, and apply the constraint to
618 -- obtain subtype of it.
620 procedure Prepare_Private_Subtype_Completion
622 Related_Nod
: Node_Id
);
623 -- Id is a subtype of some private type. Creates the full declaration
624 -- associated with Id whenever possible, i.e. when the full declaration
625 -- of the base type is already known. Records each subtype into
626 -- Private_Dependents of the base type.
628 procedure Process_Incomplete_Dependents
632 -- Process all entities that depend on an incomplete type. There include
633 -- subtypes, subprogram types that mention the incomplete type in their
634 -- profiles, and subprogram with access parameters that designate the
637 -- Inc_T is the defining identifier of an incomplete type declaration, its
638 -- Ekind is E_Incomplete_Type.
640 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
642 -- Full_T is N's defining identifier.
644 -- Subtypes of incomplete types with discriminants are completed when the
645 -- parent type is. This is simpler than private subtypes, because they can
646 -- only appear in the same scope, and there is no need to exchange views.
647 -- Similarly, access_to_subprogram types may have a parameter or a return
648 -- type that is an incomplete type, and that must be replaced with the
651 -- If the full type is tagged, subprogram with access parameters that
652 -- designated the incomplete may be primitive operations of the full type,
653 -- and have to be processed accordingly.
655 procedure Process_Real_Range_Specification
(Def
: Node_Id
);
656 -- Given the type definition for a real type, this procedure processes and
657 -- checks the real range specification of this type definition if one is
658 -- present. If errors are found, error messages are posted, and the
659 -- Real_Range_Specification of Def is reset to Empty.
661 procedure Propagate_Default_Init_Cond_Attributes
662 (From_Typ
: Entity_Id
;
664 Parent_To_Derivation
: Boolean := False;
665 Private_To_Full_View
: Boolean := False);
666 -- Subsidiary to routines Build_Derived_Type and Process_Full_View. Inherit
667 -- all attributes related to pragma Default_Initial_Condition from From_Typ
668 -- to To_Typ. Flag Parent_To_Derivation should be set when the context is
669 -- the creation of a derived type. Flag Private_To_Full_View should be set
670 -- when processing both views of a private type.
672 procedure Record_Type_Declaration
676 -- Process a record type declaration (for both untagged and tagged
677 -- records). Parameters T and N are exactly like in procedure
678 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
679 -- for this routine. If this is the completion of an incomplete type
680 -- declaration, Prev is the entity of the incomplete declaration, used for
681 -- cross-referencing. Otherwise Prev = T.
683 procedure Record_Type_Definition
(Def
: Node_Id
; Prev_T
: Entity_Id
);
684 -- This routine is used to process the actual record type definition (both
685 -- for untagged and tagged records). Def is a record type definition node.
686 -- This procedure analyzes the components in this record type definition.
687 -- Prev_T is the entity for the enclosing record type. It is provided so
688 -- that its Has_Task flag can be set if any of the component have Has_Task
689 -- set. If the declaration is the completion of an incomplete type
690 -- declaration, Prev_T is the original incomplete type, whose full view is
693 procedure Replace_Components
(Typ
: Entity_Id
; Decl
: Node_Id
);
694 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
695 -- build a copy of the declaration tree of the parent, and we create
696 -- independently the list of components for the derived type. Semantic
697 -- information uses the component entities, but record representation
698 -- clauses are validated on the declaration tree. This procedure replaces
699 -- discriminants and components in the declaration with those that have
700 -- been created by Inherit_Components.
702 procedure Set_Fixed_Range
707 -- Build a range node with the given bounds and set it as the Scalar_Range
708 -- of the given fixed-point type entity. Loc is the source location used
709 -- for the constructed range. See body for further details.
711 procedure Set_Scalar_Range_For_Subtype
715 -- This routine is used to set the scalar range field for a subtype given
716 -- Def_Id, the entity for the subtype, and R, the range expression for the
717 -- scalar range. Subt provides the parent subtype to be used to analyze,
718 -- resolve, and check the given range.
720 procedure Set_Default_SSO
(T
: Entity_Id
);
721 -- T is the entity for an array or record being declared. This procedure
722 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
723 -- to the setting of Opt.Default_SSO.
725 procedure Signed_Integer_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
726 -- Create a new signed integer entity, and apply the constraint to obtain
727 -- the required first named subtype of this type.
729 procedure Set_Stored_Constraint_From_Discriminant_Constraint
731 -- E is some record type. This routine computes E's Stored_Constraint
732 -- from its Discriminant_Constraint.
734 procedure Diagnose_Interface
(N
: Node_Id
; E
: Entity_Id
);
735 -- Check that an entity in a list of progenitors is an interface,
736 -- emit error otherwise.
738 -----------------------
739 -- Access_Definition --
740 -----------------------
742 function Access_Definition
743 (Related_Nod
: Node_Id
;
744 N
: Node_Id
) return Entity_Id
746 Anon_Type
: Entity_Id
;
747 Anon_Scope
: Entity_Id
;
748 Desig_Type
: Entity_Id
;
749 Enclosing_Prot_Type
: Entity_Id
:= Empty
;
752 Check_SPARK_05_Restriction
("access type is not allowed", N
);
754 if Is_Entry
(Current_Scope
)
755 and then Is_Task_Type
(Etype
(Scope
(Current_Scope
)))
757 Error_Msg_N
("task entries cannot have access parameters", N
);
761 -- Ada 2005: For an object declaration the corresponding anonymous
762 -- type is declared in the current scope.
764 -- If the access definition is the return type of another access to
765 -- function, scope is the current one, because it is the one of the
766 -- current type declaration, except for the pathological case below.
768 if Nkind_In
(Related_Nod
, N_Object_Declaration
,
769 N_Access_Function_Definition
)
771 Anon_Scope
:= Current_Scope
;
773 -- A pathological case: function returning access functions that
774 -- return access functions, etc. Each anonymous access type created
775 -- is in the enclosing scope of the outermost function.
782 while Nkind_In
(Par
, N_Access_Function_Definition
,
788 if Nkind
(Par
) = N_Function_Specification
then
789 Anon_Scope
:= Scope
(Defining_Entity
(Par
));
793 -- For the anonymous function result case, retrieve the scope of the
794 -- function specification's associated entity rather than using the
795 -- current scope. The current scope will be the function itself if the
796 -- formal part is currently being analyzed, but will be the parent scope
797 -- in the case of a parameterless function, and we always want to use
798 -- the function's parent scope. Finally, if the function is a child
799 -- unit, we must traverse the tree to retrieve the proper entity.
801 elsif Nkind
(Related_Nod
) = N_Function_Specification
802 and then Nkind
(Parent
(N
)) /= N_Parameter_Specification
804 -- If the current scope is a protected type, the anonymous access
805 -- is associated with one of the protected operations, and must
806 -- be available in the scope that encloses the protected declaration.
807 -- Otherwise the type is in the scope enclosing the subprogram.
809 -- If the function has formals, The return type of a subprogram
810 -- declaration is analyzed in the scope of the subprogram (see
811 -- Process_Formals) and thus the protected type, if present, is
812 -- the scope of the current function scope.
814 if Ekind
(Current_Scope
) = E_Protected_Type
then
815 Enclosing_Prot_Type
:= Current_Scope
;
817 elsif Ekind
(Current_Scope
) = E_Function
818 and then Ekind
(Scope
(Current_Scope
)) = E_Protected_Type
820 Enclosing_Prot_Type
:= Scope
(Current_Scope
);
823 if Present
(Enclosing_Prot_Type
) then
824 Anon_Scope
:= Scope
(Enclosing_Prot_Type
);
827 Anon_Scope
:= Scope
(Defining_Entity
(Related_Nod
));
830 -- For an access type definition, if the current scope is a child
831 -- unit it is the scope of the type.
833 elsif Is_Compilation_Unit
(Current_Scope
) then
834 Anon_Scope
:= Current_Scope
;
836 -- For access formals, access components, and access discriminants, the
837 -- scope is that of the enclosing declaration,
840 Anon_Scope
:= Scope
(Current_Scope
);
845 (E_Anonymous_Access_Type
, Related_Nod
, Scope_Id
=> Anon_Scope
);
848 and then Ada_Version
>= Ada_2005
850 Error_Msg_N
("ALL is not permitted for anonymous access types", N
);
853 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
854 -- the corresponding semantic routine
856 if Present
(Access_To_Subprogram_Definition
(N
)) then
858 -- Compiler runtime units are compiled in Ada 2005 mode when building
859 -- the runtime library but must also be compilable in Ada 95 mode
860 -- (when bootstrapping the compiler).
862 Check_Compiler_Unit
("anonymous access to subprogram", N
);
864 Access_Subprogram_Declaration
865 (T_Name
=> Anon_Type
,
866 T_Def
=> Access_To_Subprogram_Definition
(N
));
868 if Ekind
(Anon_Type
) = E_Access_Protected_Subprogram_Type
then
870 (Anon_Type
, E_Anonymous_Access_Protected_Subprogram_Type
);
872 Set_Ekind
(Anon_Type
, E_Anonymous_Access_Subprogram_Type
);
875 Set_Can_Use_Internal_Rep
876 (Anon_Type
, not Always_Compatible_Rep_On_Target
);
878 -- If the anonymous access is associated with a protected operation,
879 -- create a reference to it after the enclosing protected definition
880 -- because the itype will be used in the subsequent bodies.
882 -- If the anonymous access itself is protected, a full type
883 -- declaratiton will be created for it, so that the equivalent
884 -- record type can be constructed. For further details, see
885 -- Replace_Anonymous_Access_To_Protected-Subprogram.
887 if Ekind
(Current_Scope
) = E_Protected_Type
888 and then not Protected_Present
(Access_To_Subprogram_Definition
(N
))
890 Build_Itype_Reference
(Anon_Type
, Parent
(Current_Scope
));
896 Find_Type
(Subtype_Mark
(N
));
897 Desig_Type
:= Entity
(Subtype_Mark
(N
));
899 Set_Directly_Designated_Type
(Anon_Type
, Desig_Type
);
900 Set_Etype
(Anon_Type
, Anon_Type
);
902 -- Make sure the anonymous access type has size and alignment fields
903 -- set, as required by gigi. This is necessary in the case of the
904 -- Task_Body_Procedure.
906 if not Has_Private_Component
(Desig_Type
) then
907 Layout_Type
(Anon_Type
);
910 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
911 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
912 -- the null value is allowed. In Ada 95 the null value is never allowed.
914 if Ada_Version
>= Ada_2005
then
915 Set_Can_Never_Be_Null
(Anon_Type
, Null_Exclusion_Present
(N
));
917 Set_Can_Never_Be_Null
(Anon_Type
, True);
920 -- The anonymous access type is as public as the discriminated type or
921 -- subprogram that defines it. It is imported (for back-end purposes)
922 -- if the designated type is.
924 Set_Is_Public
(Anon_Type
, Is_Public
(Scope
(Anon_Type
)));
926 -- Ada 2005 (AI-231): Propagate the access-constant attribute
928 Set_Is_Access_Constant
(Anon_Type
, Constant_Present
(N
));
930 -- The context is either a subprogram declaration, object declaration,
931 -- or an access discriminant, in a private or a full type declaration.
932 -- In the case of a subprogram, if the designated type is incomplete,
933 -- the operation will be a primitive operation of the full type, to be
934 -- updated subsequently. If the type is imported through a limited_with
935 -- clause, the subprogram is not a primitive operation of the type
936 -- (which is declared elsewhere in some other scope).
938 if Ekind
(Desig_Type
) = E_Incomplete_Type
939 and then not From_Limited_With
(Desig_Type
)
940 and then Is_Overloadable
(Current_Scope
)
942 Append_Elmt
(Current_Scope
, Private_Dependents
(Desig_Type
));
943 Set_Has_Delayed_Freeze
(Current_Scope
);
946 -- Ada 2005: If the designated type is an interface that may contain
947 -- tasks, create a Master entity for the declaration. This must be done
948 -- before expansion of the full declaration, because the declaration may
949 -- include an expression that is an allocator, whose expansion needs the
950 -- proper Master for the created tasks.
952 if Nkind
(Related_Nod
) = N_Object_Declaration
and then Expander_Active
954 if Is_Interface
(Desig_Type
) and then Is_Limited_Record
(Desig_Type
)
956 Build_Class_Wide_Master
(Anon_Type
);
958 -- Similarly, if the type is an anonymous access that designates
959 -- tasks, create a master entity for it in the current context.
961 elsif Has_Task
(Desig_Type
) and then Comes_From_Source
(Related_Nod
)
963 Build_Master_Entity
(Defining_Identifier
(Related_Nod
));
964 Build_Master_Renaming
(Anon_Type
);
968 -- For a private component of a protected type, it is imperative that
969 -- the back-end elaborate the type immediately after the protected
970 -- declaration, because this type will be used in the declarations
971 -- created for the component within each protected body, so we must
972 -- create an itype reference for it now.
974 if Nkind
(Parent
(Related_Nod
)) = N_Protected_Definition
then
975 Build_Itype_Reference
(Anon_Type
, Parent
(Parent
(Related_Nod
)));
977 -- Similarly, if the access definition is the return result of a
978 -- function, create an itype reference for it because it will be used
979 -- within the function body. For a regular function that is not a
980 -- compilation unit, insert reference after the declaration. For a
981 -- protected operation, insert it after the enclosing protected type
982 -- declaration. In either case, do not create a reference for a type
983 -- obtained through a limited_with clause, because this would introduce
984 -- semantic dependencies.
986 -- Similarly, do not create a reference if the designated type is a
987 -- generic formal, because no use of it will reach the backend.
989 elsif Nkind
(Related_Nod
) = N_Function_Specification
990 and then not From_Limited_With
(Desig_Type
)
991 and then not Is_Generic_Type
(Desig_Type
)
993 if Present
(Enclosing_Prot_Type
) then
994 Build_Itype_Reference
(Anon_Type
, Parent
(Enclosing_Prot_Type
));
996 elsif Is_List_Member
(Parent
(Related_Nod
))
997 and then Nkind
(Parent
(N
)) /= N_Parameter_Specification
999 Build_Itype_Reference
(Anon_Type
, Parent
(Related_Nod
));
1002 -- Finally, create an itype reference for an object declaration of an
1003 -- anonymous access type. This is strictly necessary only for deferred
1004 -- constants, but in any case will avoid out-of-scope problems in the
1007 elsif Nkind
(Related_Nod
) = N_Object_Declaration
then
1008 Build_Itype_Reference
(Anon_Type
, Related_Nod
);
1012 end Access_Definition
;
1014 -----------------------------------
1015 -- Access_Subprogram_Declaration --
1016 -----------------------------------
1018 procedure Access_Subprogram_Declaration
1019 (T_Name
: Entity_Id
;
1022 procedure Check_For_Premature_Usage
(Def
: Node_Id
);
1023 -- Check that type T_Name is not used, directly or recursively, as a
1024 -- parameter or a return type in Def. Def is either a subtype, an
1025 -- access_definition, or an access_to_subprogram_definition.
1027 -------------------------------
1028 -- Check_For_Premature_Usage --
1029 -------------------------------
1031 procedure Check_For_Premature_Usage
(Def
: Node_Id
) is
1035 -- Check for a subtype mark
1037 if Nkind
(Def
) in N_Has_Etype
then
1038 if Etype
(Def
) = T_Name
then
1040 ("type& cannot be used before end of its declaration", Def
);
1043 -- If this is not a subtype, then this is an access_definition
1045 elsif Nkind
(Def
) = N_Access_Definition
then
1046 if Present
(Access_To_Subprogram_Definition
(Def
)) then
1047 Check_For_Premature_Usage
1048 (Access_To_Subprogram_Definition
(Def
));
1050 Check_For_Premature_Usage
(Subtype_Mark
(Def
));
1053 -- The only cases left are N_Access_Function_Definition and
1054 -- N_Access_Procedure_Definition.
1057 if Present
(Parameter_Specifications
(Def
)) then
1058 Param
:= First
(Parameter_Specifications
(Def
));
1059 while Present
(Param
) loop
1060 Check_For_Premature_Usage
(Parameter_Type
(Param
));
1061 Param
:= Next
(Param
);
1065 if Nkind
(Def
) = N_Access_Function_Definition
then
1066 Check_For_Premature_Usage
(Result_Definition
(Def
));
1069 end Check_For_Premature_Usage
;
1073 Formals
: constant List_Id
:= Parameter_Specifications
(T_Def
);
1076 Desig_Type
: constant Entity_Id
:=
1077 Create_Itype
(E_Subprogram_Type
, Parent
(T_Def
));
1079 -- Start of processing for Access_Subprogram_Declaration
1082 Check_SPARK_05_Restriction
("access type is not allowed", T_Def
);
1084 -- Associate the Itype node with the inner full-type declaration or
1085 -- subprogram spec or entry body. This is required to handle nested
1086 -- anonymous declarations. For example:
1089 -- (X : access procedure
1090 -- (Y : access procedure
1093 D_Ityp
:= Associated_Node_For_Itype
(Desig_Type
);
1094 while not (Nkind_In
(D_Ityp
, N_Full_Type_Declaration
,
1095 N_Private_Type_Declaration
,
1096 N_Private_Extension_Declaration
,
1097 N_Procedure_Specification
,
1098 N_Function_Specification
,
1102 Nkind_In
(D_Ityp
, N_Object_Declaration
,
1103 N_Object_Renaming_Declaration
,
1104 N_Formal_Object_Declaration
,
1105 N_Formal_Type_Declaration
,
1106 N_Task_Type_Declaration
,
1107 N_Protected_Type_Declaration
))
1109 D_Ityp
:= Parent
(D_Ityp
);
1110 pragma Assert
(D_Ityp
/= Empty
);
1113 Set_Associated_Node_For_Itype
(Desig_Type
, D_Ityp
);
1115 if Nkind_In
(D_Ityp
, N_Procedure_Specification
,
1116 N_Function_Specification
)
1118 Set_Scope
(Desig_Type
, Scope
(Defining_Entity
(D_Ityp
)));
1120 elsif Nkind_In
(D_Ityp
, N_Full_Type_Declaration
,
1121 N_Object_Declaration
,
1122 N_Object_Renaming_Declaration
,
1123 N_Formal_Type_Declaration
)
1125 Set_Scope
(Desig_Type
, Scope
(Defining_Identifier
(D_Ityp
)));
1128 if Nkind
(T_Def
) = N_Access_Function_Definition
then
1129 if Nkind
(Result_Definition
(T_Def
)) = N_Access_Definition
then
1131 Acc
: constant Node_Id
:= Result_Definition
(T_Def
);
1134 if Present
(Access_To_Subprogram_Definition
(Acc
))
1136 Protected_Present
(Access_To_Subprogram_Definition
(Acc
))
1140 Replace_Anonymous_Access_To_Protected_Subprogram
1146 Access_Definition
(T_Def
, Result_Definition
(T_Def
)));
1151 Analyze
(Result_Definition
(T_Def
));
1154 Typ
: constant Entity_Id
:= Entity
(Result_Definition
(T_Def
));
1157 -- If a null exclusion is imposed on the result type, then
1158 -- create a null-excluding itype (an access subtype) and use
1159 -- it as the function's Etype.
1161 if Is_Access_Type
(Typ
)
1162 and then Null_Exclusion_In_Return_Present
(T_Def
)
1164 Set_Etype
(Desig_Type
,
1165 Create_Null_Excluding_Itype
1167 Related_Nod
=> T_Def
,
1168 Scope_Id
=> Current_Scope
));
1171 if From_Limited_With
(Typ
) then
1173 -- AI05-151: Incomplete types are allowed in all basic
1174 -- declarations, including access to subprograms.
1176 if Ada_Version
>= Ada_2012
then
1181 ("illegal use of incomplete type&",
1182 Result_Definition
(T_Def
), Typ
);
1185 elsif Ekind
(Current_Scope
) = E_Package
1186 and then In_Private_Part
(Current_Scope
)
1188 if Ekind
(Typ
) = E_Incomplete_Type
then
1189 Append_Elmt
(Desig_Type
, Private_Dependents
(Typ
));
1191 elsif Is_Class_Wide_Type
(Typ
)
1192 and then Ekind
(Etype
(Typ
)) = E_Incomplete_Type
1195 (Desig_Type
, Private_Dependents
(Etype
(Typ
)));
1199 Set_Etype
(Desig_Type
, Typ
);
1204 if not (Is_Type
(Etype
(Desig_Type
))) then
1206 ("expect type in function specification",
1207 Result_Definition
(T_Def
));
1211 Set_Etype
(Desig_Type
, Standard_Void_Type
);
1214 if Present
(Formals
) then
1215 Push_Scope
(Desig_Type
);
1217 -- Some special tests here. These special tests can be removed
1218 -- if and when Itypes always have proper parent pointers to their
1221 -- Special test 1) Link defining_identifier of formals. Required by
1222 -- First_Formal to provide its functionality.
1228 F
:= First
(Formals
);
1230 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1231 -- when it is part of an unconstrained type and subtype expansion
1232 -- is disabled. To avoid back-end problems with shared profiles,
1233 -- use previous subprogram type as the designated type, and then
1234 -- remove scope added above.
1236 if ASIS_Mode
and then Present
(Scope
(Defining_Identifier
(F
)))
1238 Set_Etype
(T_Name
, T_Name
);
1239 Init_Size_Align
(T_Name
);
1240 Set_Directly_Designated_Type
(T_Name
,
1241 Scope
(Defining_Identifier
(F
)));
1246 while Present
(F
) loop
1247 if No
(Parent
(Defining_Identifier
(F
))) then
1248 Set_Parent
(Defining_Identifier
(F
), F
);
1255 Process_Formals
(Formals
, Parent
(T_Def
));
1257 -- Special test 2) End_Scope requires that the parent pointer be set
1258 -- to something reasonable, but Itypes don't have parent pointers. So
1259 -- we set it and then unset it ???
1261 Set_Parent
(Desig_Type
, T_Name
);
1263 Set_Parent
(Desig_Type
, Empty
);
1266 -- Check for premature usage of the type being defined
1268 Check_For_Premature_Usage
(T_Def
);
1270 -- The return type and/or any parameter type may be incomplete. Mark the
1271 -- subprogram_type as depending on the incomplete type, so that it can
1272 -- be updated when the full type declaration is seen. This only applies
1273 -- to incomplete types declared in some enclosing scope, not to limited
1274 -- views from other packages.
1276 -- Prior to Ada 2012, access to functions can only have in_parameters.
1278 if Present
(Formals
) then
1279 Formal
:= First_Formal
(Desig_Type
);
1280 while Present
(Formal
) loop
1281 if Ekind
(Formal
) /= E_In_Parameter
1282 and then Nkind
(T_Def
) = N_Access_Function_Definition
1283 and then Ada_Version
< Ada_2012
1285 Error_Msg_N
("functions can only have IN parameters", Formal
);
1288 if Ekind
(Etype
(Formal
)) = E_Incomplete_Type
1289 and then In_Open_Scopes
(Scope
(Etype
(Formal
)))
1291 Append_Elmt
(Desig_Type
, Private_Dependents
(Etype
(Formal
)));
1292 Set_Has_Delayed_Freeze
(Desig_Type
);
1295 Next_Formal
(Formal
);
1299 -- Check whether an indirect call without actuals may be possible. This
1300 -- is used when resolving calls whose result is then indexed.
1302 May_Need_Actuals
(Desig_Type
);
1304 -- If the return type is incomplete, this is legal as long as the type
1305 -- is declared in the current scope and will be completed in it (rather
1306 -- than being part of limited view).
1308 if Ekind
(Etype
(Desig_Type
)) = E_Incomplete_Type
1309 and then not Has_Delayed_Freeze
(Desig_Type
)
1310 and then In_Open_Scopes
(Scope
(Etype
(Desig_Type
)))
1312 Append_Elmt
(Desig_Type
, Private_Dependents
(Etype
(Desig_Type
)));
1313 Set_Has_Delayed_Freeze
(Desig_Type
);
1316 Check_Delayed_Subprogram
(Desig_Type
);
1318 if Protected_Present
(T_Def
) then
1319 Set_Ekind
(T_Name
, E_Access_Protected_Subprogram_Type
);
1320 Set_Convention
(Desig_Type
, Convention_Protected
);
1322 Set_Ekind
(T_Name
, E_Access_Subprogram_Type
);
1325 Set_Can_Use_Internal_Rep
(T_Name
, not Always_Compatible_Rep_On_Target
);
1327 Set_Etype
(T_Name
, T_Name
);
1328 Init_Size_Align
(T_Name
);
1329 Set_Directly_Designated_Type
(T_Name
, Desig_Type
);
1331 Generate_Reference_To_Formals
(T_Name
);
1333 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1335 Set_Can_Never_Be_Null
(T_Name
, Null_Exclusion_Present
(T_Def
));
1337 Check_Restriction
(No_Access_Subprograms
, T_Def
);
1338 end Access_Subprogram_Declaration
;
1340 ----------------------------
1341 -- Access_Type_Declaration --
1342 ----------------------------
1344 procedure Access_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
1345 P
: constant Node_Id
:= Parent
(Def
);
1346 S
: constant Node_Id
:= Subtype_Indication
(Def
);
1348 Full_Desig
: Entity_Id
;
1351 Check_SPARK_05_Restriction
("access type is not allowed", Def
);
1353 -- Check for permissible use of incomplete type
1355 if Nkind
(S
) /= N_Subtype_Indication
then
1358 if Ekind
(Root_Type
(Entity
(S
))) = E_Incomplete_Type
then
1359 Set_Directly_Designated_Type
(T
, Entity
(S
));
1361 -- If the designated type is a limited view, we cannot tell if
1362 -- the full view contains tasks, and there is no way to handle
1363 -- that full view in a client. We create a master entity for the
1364 -- scope, which will be used when a client determines that one
1367 if From_Limited_With
(Entity
(S
))
1368 and then not Is_Class_Wide_Type
(Entity
(S
))
1370 Set_Ekind
(T
, E_Access_Type
);
1371 Build_Master_Entity
(T
);
1372 Build_Master_Renaming
(T
);
1376 Set_Directly_Designated_Type
(T
, Process_Subtype
(S
, P
, T
, 'P'));
1379 -- If the access definition is of the form: ACCESS NOT NULL ..
1380 -- the subtype indication must be of an access type. Create
1381 -- a null-excluding subtype of it.
1383 if Null_Excluding_Subtype
(Def
) then
1384 if not Is_Access_Type
(Entity
(S
)) then
1385 Error_Msg_N
("null exclusion must apply to access type", Def
);
1389 Loc
: constant Source_Ptr
:= Sloc
(S
);
1391 Nam
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
1395 Make_Subtype_Declaration
(Loc
,
1396 Defining_Identifier
=> Nam
,
1397 Subtype_Indication
=>
1398 New_Occurrence_Of
(Entity
(S
), Loc
));
1399 Set_Null_Exclusion_Present
(Decl
);
1400 Insert_Before
(Parent
(Def
), Decl
);
1402 Set_Entity
(S
, Nam
);
1408 Set_Directly_Designated_Type
(T
,
1409 Process_Subtype
(S
, P
, T
, 'P'));
1412 if All_Present
(Def
) or Constant_Present
(Def
) then
1413 Set_Ekind
(T
, E_General_Access_Type
);
1415 Set_Ekind
(T
, E_Access_Type
);
1418 Full_Desig
:= Designated_Type
(T
);
1420 if Base_Type
(Full_Desig
) = T
then
1421 Error_Msg_N
("access type cannot designate itself", S
);
1423 -- In Ada 2005, the type may have a limited view through some unit in
1424 -- its own context, allowing the following circularity that cannot be
1425 -- detected earlier.
1427 elsif Is_Class_Wide_Type
(Full_Desig
) and then Etype
(Full_Desig
) = T
1430 ("access type cannot designate its own classwide type", S
);
1432 -- Clean up indication of tagged status to prevent cascaded errors
1434 Set_Is_Tagged_Type
(T
, False);
1439 -- If the type has appeared already in a with_type clause, it is frozen
1440 -- and the pointer size is already set. Else, initialize.
1442 if not From_Limited_With
(T
) then
1443 Init_Size_Align
(T
);
1446 -- Note that Has_Task is always false, since the access type itself
1447 -- is not a task type. See Einfo for more description on this point.
1448 -- Exactly the same consideration applies to Has_Controlled_Component
1449 -- and to Has_Protected.
1451 Set_Has_Task
(T
, False);
1452 Set_Has_Controlled_Component
(T
, False);
1453 Set_Has_Protected
(T
, False);
1455 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1456 -- problems where an incomplete view of this entity has been previously
1457 -- established by a limited with and an overlaid version of this field
1458 -- (Stored_Constraint) was initialized for the incomplete view.
1460 -- This reset is performed in most cases except where the access type
1461 -- has been created for the purposes of allocating or deallocating a
1462 -- build-in-place object. Such access types have explicitly set pools
1463 -- and finalization masters.
1465 if No
(Associated_Storage_Pool
(T
)) then
1466 Set_Finalization_Master
(T
, Empty
);
1469 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1472 Set_Can_Never_Be_Null
(T
, Null_Exclusion_Present
(Def
));
1473 Set_Is_Access_Constant
(T
, Constant_Present
(Def
));
1474 end Access_Type_Declaration
;
1476 ----------------------------------
1477 -- Add_Interface_Tag_Components --
1478 ----------------------------------
1480 procedure Add_Interface_Tag_Components
(N
: Node_Id
; Typ
: Entity_Id
) is
1481 Loc
: constant Source_Ptr
:= Sloc
(N
);
1485 procedure Add_Tag
(Iface
: Entity_Id
);
1486 -- Add tag for one of the progenitor interfaces
1492 procedure Add_Tag
(Iface
: Entity_Id
) is
1499 pragma Assert
(Is_Tagged_Type
(Iface
) and then Is_Interface
(Iface
));
1501 -- This is a reasonable place to propagate predicates
1503 if Has_Predicates
(Iface
) then
1504 Set_Has_Predicates
(Typ
);
1508 Make_Component_Definition
(Loc
,
1509 Aliased_Present
=> True,
1510 Subtype_Indication
=>
1511 New_Occurrence_Of
(RTE
(RE_Interface_Tag
), Loc
));
1513 Tag
:= Make_Temporary
(Loc
, 'V');
1516 Make_Component_Declaration
(Loc
,
1517 Defining_Identifier
=> Tag
,
1518 Component_Definition
=> Def
);
1520 Analyze_Component_Declaration
(Decl
);
1522 Set_Analyzed
(Decl
);
1523 Set_Ekind
(Tag
, E_Component
);
1525 Set_Is_Aliased
(Tag
);
1526 Set_Related_Type
(Tag
, Iface
);
1527 Init_Component_Location
(Tag
);
1529 pragma Assert
(Is_Frozen
(Iface
));
1531 Set_DT_Entry_Count
(Tag
,
1532 DT_Entry_Count
(First_Entity
(Iface
)));
1534 if No
(Last_Tag
) then
1537 Insert_After
(Last_Tag
, Decl
);
1542 -- If the ancestor has discriminants we need to give special support
1543 -- to store the offset_to_top value of the secondary dispatch tables.
1544 -- For this purpose we add a supplementary component just after the
1545 -- field that contains the tag associated with each secondary DT.
1547 if Typ
/= Etype
(Typ
) and then Has_Discriminants
(Etype
(Typ
)) then
1549 Make_Component_Definition
(Loc
,
1550 Subtype_Indication
=>
1551 New_Occurrence_Of
(RTE
(RE_Storage_Offset
), Loc
));
1553 Offset
:= Make_Temporary
(Loc
, 'V');
1556 Make_Component_Declaration
(Loc
,
1557 Defining_Identifier
=> Offset
,
1558 Component_Definition
=> Def
);
1560 Analyze_Component_Declaration
(Decl
);
1562 Set_Analyzed
(Decl
);
1563 Set_Ekind
(Offset
, E_Component
);
1564 Set_Is_Aliased
(Offset
);
1565 Set_Related_Type
(Offset
, Iface
);
1566 Init_Component_Location
(Offset
);
1567 Insert_After
(Last_Tag
, Decl
);
1578 -- Start of processing for Add_Interface_Tag_Components
1581 if not RTE_Available
(RE_Interface_Tag
) then
1583 ("(Ada 2005) interface types not supported by this run-time!",
1588 if Ekind
(Typ
) /= E_Record_Type
1589 or else (Is_Concurrent_Record_Type
(Typ
)
1590 and then Is_Empty_List
(Abstract_Interface_List
(Typ
)))
1591 or else (not Is_Concurrent_Record_Type
(Typ
)
1592 and then No
(Interfaces
(Typ
))
1593 and then Is_Empty_Elmt_List
(Interfaces
(Typ
)))
1598 -- Find the current last tag
1600 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
1601 Ext
:= Record_Extension_Part
(Type_Definition
(N
));
1603 pragma Assert
(Nkind
(Type_Definition
(N
)) = N_Record_Definition
);
1604 Ext
:= Type_Definition
(N
);
1609 if not (Present
(Component_List
(Ext
))) then
1610 Set_Null_Present
(Ext
, False);
1612 Set_Component_List
(Ext
,
1613 Make_Component_List
(Loc
,
1614 Component_Items
=> L
,
1615 Null_Present
=> False));
1617 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
1618 L
:= Component_Items
1620 (Record_Extension_Part
1621 (Type_Definition
(N
))));
1623 L
:= Component_Items
1625 (Type_Definition
(N
)));
1628 -- Find the last tag component
1631 while Present
(Comp
) loop
1632 if Nkind
(Comp
) = N_Component_Declaration
1633 and then Is_Tag
(Defining_Identifier
(Comp
))
1642 -- At this point L references the list of components and Last_Tag
1643 -- references the current last tag (if any). Now we add the tag
1644 -- corresponding with all the interfaces that are not implemented
1647 if Present
(Interfaces
(Typ
)) then
1648 Elmt
:= First_Elmt
(Interfaces
(Typ
));
1649 while Present
(Elmt
) loop
1650 Add_Tag
(Node
(Elmt
));
1654 end Add_Interface_Tag_Components
;
1656 -------------------------------------
1657 -- Add_Internal_Interface_Entities --
1658 -------------------------------------
1660 procedure Add_Internal_Interface_Entities
(Tagged_Type
: Entity_Id
) is
1663 Iface_Elmt
: Elmt_Id
;
1664 Iface_Prim
: Entity_Id
;
1665 Ifaces_List
: Elist_Id
;
1666 New_Subp
: Entity_Id
:= Empty
;
1668 Restore_Scope
: Boolean := False;
1671 pragma Assert
(Ada_Version
>= Ada_2005
1672 and then Is_Record_Type
(Tagged_Type
)
1673 and then Is_Tagged_Type
(Tagged_Type
)
1674 and then Has_Interfaces
(Tagged_Type
)
1675 and then not Is_Interface
(Tagged_Type
));
1677 -- Ensure that the internal entities are added to the scope of the type
1679 if Scope
(Tagged_Type
) /= Current_Scope
then
1680 Push_Scope
(Scope
(Tagged_Type
));
1681 Restore_Scope
:= True;
1684 Collect_Interfaces
(Tagged_Type
, Ifaces_List
);
1686 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
1687 while Present
(Iface_Elmt
) loop
1688 Iface
:= Node
(Iface_Elmt
);
1690 -- Originally we excluded here from this processing interfaces that
1691 -- are parents of Tagged_Type because their primitives are located
1692 -- in the primary dispatch table (and hence no auxiliary internal
1693 -- entities are required to handle secondary dispatch tables in such
1694 -- case). However, these auxiliary entities are also required to
1695 -- handle derivations of interfaces in formals of generics (see
1696 -- Derive_Subprograms).
1698 Elmt
:= First_Elmt
(Primitive_Operations
(Iface
));
1699 while Present
(Elmt
) loop
1700 Iface_Prim
:= Node
(Elmt
);
1702 if not Is_Predefined_Dispatching_Operation
(Iface_Prim
) then
1704 Find_Primitive_Covering_Interface
1705 (Tagged_Type
=> Tagged_Type
,
1706 Iface_Prim
=> Iface_Prim
);
1708 if No
(Prim
) and then Serious_Errors_Detected
> 0 then
1712 pragma Assert
(Present
(Prim
));
1714 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1715 -- differs from the name of the interface primitive then it is
1716 -- a private primitive inherited from a parent type. In such
1717 -- case, given that Tagged_Type covers the interface, the
1718 -- inherited private primitive becomes visible. For such
1719 -- purpose we add a new entity that renames the inherited
1720 -- private primitive.
1722 if Chars
(Prim
) /= Chars
(Iface_Prim
) then
1723 pragma Assert
(Has_Suffix
(Prim
, 'P'));
1725 (New_Subp
=> New_Subp
,
1726 Parent_Subp
=> Iface_Prim
,
1727 Derived_Type
=> Tagged_Type
,
1728 Parent_Type
=> Iface
);
1729 Set_Alias
(New_Subp
, Prim
);
1730 Set_Is_Abstract_Subprogram
1731 (New_Subp
, Is_Abstract_Subprogram
(Prim
));
1735 (New_Subp
=> New_Subp
,
1736 Parent_Subp
=> Iface_Prim
,
1737 Derived_Type
=> Tagged_Type
,
1738 Parent_Type
=> Iface
);
1740 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1741 -- associated with interface types. These entities are
1742 -- only registered in the list of primitives of its
1743 -- corresponding tagged type because they are only used
1744 -- to fill the contents of the secondary dispatch tables.
1745 -- Therefore they are removed from the homonym chains.
1747 Set_Is_Hidden
(New_Subp
);
1748 Set_Is_Internal
(New_Subp
);
1749 Set_Alias
(New_Subp
, Prim
);
1750 Set_Is_Abstract_Subprogram
1751 (New_Subp
, Is_Abstract_Subprogram
(Prim
));
1752 Set_Interface_Alias
(New_Subp
, Iface_Prim
);
1754 -- If the returned type is an interface then propagate it to
1755 -- the returned type. Needed by the thunk to generate the code
1756 -- which displaces "this" to reference the corresponding
1757 -- secondary dispatch table in the returned object.
1759 if Is_Interface
(Etype
(Iface_Prim
)) then
1760 Set_Etype
(New_Subp
, Etype
(Iface_Prim
));
1763 -- Internal entities associated with interface types are only
1764 -- registered in the list of primitives of the tagged type.
1765 -- They are only used to fill the contents of the secondary
1766 -- dispatch tables. Therefore they are not needed in the
1769 Remove_Homonym
(New_Subp
);
1771 -- Hidden entities associated with interfaces must have set
1772 -- the Has_Delay_Freeze attribute to ensure that, in case
1773 -- of locally defined tagged types (or compiling with static
1774 -- dispatch tables generation disabled) the corresponding
1775 -- entry of the secondary dispatch table is filled when such
1776 -- an entity is frozen. This is an expansion activity that must
1777 -- be suppressed for ASIS because it leads to gigi elaboration
1778 -- issues in annotate mode.
1780 if not ASIS_Mode
then
1781 Set_Has_Delayed_Freeze
(New_Subp
);
1789 Next_Elmt
(Iface_Elmt
);
1792 if Restore_Scope
then
1795 end Add_Internal_Interface_Entities
;
1797 -----------------------------------
1798 -- Analyze_Component_Declaration --
1799 -----------------------------------
1801 procedure Analyze_Component_Declaration
(N
: Node_Id
) is
1802 Loc
: constant Source_Ptr
:= Sloc
(Component_Definition
(N
));
1803 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
1804 E
: constant Node_Id
:= Expression
(N
);
1805 Typ
: constant Node_Id
:=
1806 Subtype_Indication
(Component_Definition
(N
));
1810 function Contains_POC
(Constr
: Node_Id
) return Boolean;
1811 -- Determines whether a constraint uses the discriminant of a record
1812 -- type thus becoming a per-object constraint (POC).
1814 function Is_Known_Limited
(Typ
: Entity_Id
) return Boolean;
1815 -- Typ is the type of the current component, check whether this type is
1816 -- a limited type. Used to validate declaration against that of
1817 -- enclosing record.
1823 function Contains_POC
(Constr
: Node_Id
) return Boolean is
1825 -- Prevent cascaded errors
1827 if Error_Posted
(Constr
) then
1831 case Nkind
(Constr
) is
1832 when N_Attribute_Reference
=>
1833 return Attribute_Name
(Constr
) = Name_Access
1834 and then Prefix
(Constr
) = Scope
(Entity
(Prefix
(Constr
)));
1836 when N_Discriminant_Association
=>
1837 return Denotes_Discriminant
(Expression
(Constr
));
1839 when N_Identifier
=>
1840 return Denotes_Discriminant
(Constr
);
1842 when N_Index_Or_Discriminant_Constraint
=>
1847 IDC
:= First
(Constraints
(Constr
));
1848 while Present
(IDC
) loop
1850 -- One per-object constraint is sufficient
1852 if Contains_POC
(IDC
) then
1863 return Denotes_Discriminant
(Low_Bound
(Constr
))
1865 Denotes_Discriminant
(High_Bound
(Constr
));
1867 when N_Range_Constraint
=>
1868 return Denotes_Discriminant
(Range_Expression
(Constr
));
1876 ----------------------
1877 -- Is_Known_Limited --
1878 ----------------------
1880 function Is_Known_Limited
(Typ
: Entity_Id
) return Boolean is
1881 P
: constant Entity_Id
:= Etype
(Typ
);
1882 R
: constant Entity_Id
:= Root_Type
(Typ
);
1885 if Is_Limited_Record
(Typ
) then
1888 -- If the root type is limited (and not a limited interface)
1889 -- so is the current type
1891 elsif Is_Limited_Record
(R
)
1892 and then (not Is_Interface
(R
) or else not Is_Limited_Interface
(R
))
1896 -- Else the type may have a limited interface progenitor, but a
1897 -- limited record parent.
1899 elsif R
/= P
and then Is_Limited_Record
(P
) then
1905 end Is_Known_Limited
;
1907 -- Start of processing for Analyze_Component_Declaration
1910 Generate_Definition
(Id
);
1913 if Present
(Typ
) then
1914 T
:= Find_Type_Of_Object
1915 (Subtype_Indication
(Component_Definition
(N
)), N
);
1917 if not Nkind_In
(Typ
, N_Identifier
, N_Expanded_Name
) then
1918 Check_SPARK_05_Restriction
("subtype mark required", Typ
);
1921 -- Ada 2005 (AI-230): Access Definition case
1924 pragma Assert
(Present
1925 (Access_Definition
(Component_Definition
(N
))));
1927 T
:= Access_Definition
1929 N
=> Access_Definition
(Component_Definition
(N
)));
1930 Set_Is_Local_Anonymous_Access
(T
);
1932 -- Ada 2005 (AI-254)
1934 if Present
(Access_To_Subprogram_Definition
1935 (Access_Definition
(Component_Definition
(N
))))
1936 and then Protected_Present
(Access_To_Subprogram_Definition
1938 (Component_Definition
(N
))))
1940 T
:= Replace_Anonymous_Access_To_Protected_Subprogram
(N
);
1944 -- If the subtype is a constrained subtype of the enclosing record,
1945 -- (which must have a partial view) the back-end does not properly
1946 -- handle the recursion. Rewrite the component declaration with an
1947 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1948 -- the tree directly because side effects have already been removed from
1949 -- discriminant constraints.
1951 if Ekind
(T
) = E_Access_Subtype
1952 and then Is_Entity_Name
(Subtype_Indication
(Component_Definition
(N
)))
1953 and then Comes_From_Source
(T
)
1954 and then Nkind
(Parent
(T
)) = N_Subtype_Declaration
1955 and then Etype
(Directly_Designated_Type
(T
)) = Current_Scope
1958 (Subtype_Indication
(Component_Definition
(N
)),
1959 New_Copy_Tree
(Subtype_Indication
(Parent
(T
))));
1960 T
:= Find_Type_Of_Object
1961 (Subtype_Indication
(Component_Definition
(N
)), N
);
1964 -- If the component declaration includes a default expression, then we
1965 -- check that the component is not of a limited type (RM 3.7(5)),
1966 -- and do the special preanalysis of the expression (see section on
1967 -- "Handling of Default and Per-Object Expressions" in the spec of
1971 Check_SPARK_05_Restriction
("default expression is not allowed", E
);
1972 Preanalyze_Default_Expression
(E
, T
);
1973 Check_Initialization
(T
, E
);
1975 if Ada_Version
>= Ada_2005
1976 and then Ekind
(T
) = E_Anonymous_Access_Type
1977 and then Etype
(E
) /= Any_Type
1979 -- Check RM 3.9.2(9): "if the expected type for an expression is
1980 -- an anonymous access-to-specific tagged type, then the object
1981 -- designated by the expression shall not be dynamically tagged
1982 -- unless it is a controlling operand in a call on a dispatching
1985 if Is_Tagged_Type
(Directly_Designated_Type
(T
))
1987 Ekind
(Directly_Designated_Type
(T
)) /= E_Class_Wide_Type
1989 Ekind
(Directly_Designated_Type
(Etype
(E
))) =
1993 ("access to specific tagged type required (RM 3.9.2(9))", E
);
1996 -- (Ada 2005: AI-230): Accessibility check for anonymous
1999 if Type_Access_Level
(Etype
(E
)) >
2000 Deepest_Type_Access_Level
(T
)
2003 ("expression has deeper access level than component " &
2004 "(RM 3.10.2 (12.2))", E
);
2007 -- The initialization expression is a reference to an access
2008 -- discriminant. The type of the discriminant is always deeper
2009 -- than any access type.
2011 if Ekind
(Etype
(E
)) = E_Anonymous_Access_Type
2012 and then Is_Entity_Name
(E
)
2013 and then Ekind
(Entity
(E
)) = E_In_Parameter
2014 and then Present
(Discriminal_Link
(Entity
(E
)))
2017 ("discriminant has deeper accessibility level than target",
2023 -- The parent type may be a private view with unknown discriminants,
2024 -- and thus unconstrained. Regular components must be constrained.
2026 if Is_Indefinite_Subtype
(T
) and then Chars
(Id
) /= Name_uParent
then
2027 if Is_Class_Wide_Type
(T
) then
2029 ("class-wide subtype with unknown discriminants" &
2030 " in component declaration",
2031 Subtype_Indication
(Component_Definition
(N
)));
2034 ("unconstrained subtype in component declaration",
2035 Subtype_Indication
(Component_Definition
(N
)));
2038 -- Components cannot be abstract, except for the special case of
2039 -- the _Parent field (case of extending an abstract tagged type)
2041 elsif Is_Abstract_Type
(T
) and then Chars
(Id
) /= Name_uParent
then
2042 Error_Msg_N
("type of a component cannot be abstract", N
);
2046 Set_Is_Aliased
(Id
, Aliased_Present
(Component_Definition
(N
)));
2048 -- The component declaration may have a per-object constraint, set
2049 -- the appropriate flag in the defining identifier of the subtype.
2051 if Present
(Subtype_Indication
(Component_Definition
(N
))) then
2053 Sindic
: constant Node_Id
:=
2054 Subtype_Indication
(Component_Definition
(N
));
2056 if Nkind
(Sindic
) = N_Subtype_Indication
2057 and then Present
(Constraint
(Sindic
))
2058 and then Contains_POC
(Constraint
(Sindic
))
2060 Set_Has_Per_Object_Constraint
(Id
);
2065 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2066 -- out some static checks.
2068 if Ada_Version
>= Ada_2005
and then Can_Never_Be_Null
(T
) then
2069 Null_Exclusion_Static_Checks
(N
);
2072 -- If this component is private (or depends on a private type), flag the
2073 -- record type to indicate that some operations are not available.
2075 P
:= Private_Component
(T
);
2079 -- Check for circular definitions
2081 if P
= Any_Type
then
2082 Set_Etype
(Id
, Any_Type
);
2084 -- There is a gap in the visibility of operations only if the
2085 -- component type is not defined in the scope of the record type.
2087 elsif Scope
(P
) = Scope
(Current_Scope
) then
2090 elsif Is_Limited_Type
(P
) then
2091 Set_Is_Limited_Composite
(Current_Scope
);
2094 Set_Is_Private_Composite
(Current_Scope
);
2099 and then Is_Limited_Type
(T
)
2100 and then Chars
(Id
) /= Name_uParent
2101 and then Is_Tagged_Type
(Current_Scope
)
2103 if Is_Derived_Type
(Current_Scope
)
2104 and then not Is_Known_Limited
(Current_Scope
)
2107 ("extension of nonlimited type cannot have limited components",
2110 if Is_Interface
(Root_Type
(Current_Scope
)) then
2112 ("\limitedness is not inherited from limited interface", N
);
2113 Error_Msg_N
("\add LIMITED to type indication", N
);
2116 Explain_Limited_Type
(T
, N
);
2117 Set_Etype
(Id
, Any_Type
);
2118 Set_Is_Limited_Composite
(Current_Scope
, False);
2120 elsif not Is_Derived_Type
(Current_Scope
)
2121 and then not Is_Limited_Record
(Current_Scope
)
2122 and then not Is_Concurrent_Type
(Current_Scope
)
2125 ("nonlimited tagged type cannot have limited components", N
);
2126 Explain_Limited_Type
(T
, N
);
2127 Set_Etype
(Id
, Any_Type
);
2128 Set_Is_Limited_Composite
(Current_Scope
, False);
2132 -- If the component is an unconstrained task or protected type with
2133 -- discriminants, the component and the enclosing record are limited
2134 -- and the component is constrained by its default values. Compute
2135 -- its actual subtype, else it may be allocated the maximum size by
2136 -- the backend, and possibly overflow.
2138 if Is_Concurrent_Type
(T
)
2139 and then not Is_Constrained
(T
)
2140 and then Has_Discriminants
(T
)
2141 and then not Has_Discriminants
(Current_Scope
)
2144 Act_T
: constant Entity_Id
:= Build_Default_Subtype
(T
, N
);
2147 Set_Etype
(Id
, Act_T
);
2149 -- Rewrite component definition to use the constrained subtype
2151 Rewrite
(Component_Definition
(N
),
2152 Make_Component_Definition
(Loc
,
2153 Subtype_Indication
=> New_Occurrence_Of
(Act_T
, Loc
)));
2157 Set_Original_Record_Component
(Id
, Id
);
2159 if Has_Aspects
(N
) then
2160 Analyze_Aspect_Specifications
(N
, Id
);
2163 Analyze_Dimension
(N
);
2164 end Analyze_Component_Declaration
;
2166 --------------------------
2167 -- Analyze_Declarations --
2168 --------------------------
2170 procedure Analyze_Declarations
(L
: List_Id
) is
2173 procedure Adjust_Decl
;
2174 -- Adjust Decl not to include implicit label declarations, since these
2175 -- have strange Sloc values that result in elaboration check problems.
2176 -- (They have the sloc of the label as found in the source, and that
2177 -- is ahead of the current declarative part).
2179 procedure Handle_Late_Controlled_Primitive
(Body_Decl
: Node_Id
);
2180 -- Determine whether Body_Decl denotes the body of a late controlled
2181 -- primitive (either Initialize, Adjust or Finalize). If this is the
2182 -- case, add a proper spec if the body lacks one. The spec is inserted
2183 -- before Body_Decl and immedately analyzed.
2185 procedure Remove_Visible_Refinements
(Spec_Id
: Entity_Id
);
2186 -- Spec_Id is the entity of a package that may define abstract states.
2187 -- If the states have visible refinement, remove the visibility of each
2188 -- constituent at the end of the package body declarations.
2194 procedure Adjust_Decl
is
2196 while Present
(Prev
(Decl
))
2197 and then Nkind
(Decl
) = N_Implicit_Label_Declaration
2203 --------------------------------------
2204 -- Handle_Late_Controlled_Primitive --
2205 --------------------------------------
2207 procedure Handle_Late_Controlled_Primitive
(Body_Decl
: Node_Id
) is
2208 Body_Spec
: constant Node_Id
:= Specification
(Body_Decl
);
2209 Body_Id
: constant Entity_Id
:= Defining_Entity
(Body_Spec
);
2210 Loc
: constant Source_Ptr
:= Sloc
(Body_Id
);
2211 Params
: constant List_Id
:=
2212 Parameter_Specifications
(Body_Spec
);
2214 Spec_Id
: Entity_Id
;
2218 -- Consider only procedure bodies whose name matches one of the three
2219 -- controlled primitives.
2221 if Nkind
(Body_Spec
) /= N_Procedure_Specification
2222 or else not Nam_In
(Chars
(Body_Id
), Name_Adjust
,
2228 -- A controlled primitive must have exactly one formal which is not
2229 -- an anonymous access type.
2231 elsif List_Length
(Params
) /= 1 then
2235 Typ
:= Parameter_Type
(First
(Params
));
2237 if Nkind
(Typ
) = N_Access_Definition
then
2243 -- The type of the formal must be derived from [Limited_]Controlled
2245 if not Is_Controlled
(Entity
(Typ
)) then
2249 -- Check whether a specification exists for this body. We do not
2250 -- analyze the spec of the body in full, because it will be analyzed
2251 -- again when the body is properly analyzed, and we cannot create
2252 -- duplicate entries in the formals chain. We look for an explicit
2253 -- specification because the body may be an overriding operation and
2254 -- an inherited spec may be present.
2256 Spec_Id
:= Current_Entity
(Body_Id
);
2258 while Present
(Spec_Id
) loop
2259 if Ekind_In
(Spec_Id
, E_Procedure
, E_Generic_Procedure
)
2260 and then Scope
(Spec_Id
) = Current_Scope
2261 and then Present
(First_Formal
(Spec_Id
))
2262 and then No
(Next_Formal
(First_Formal
(Spec_Id
)))
2263 and then Etype
(First_Formal
(Spec_Id
)) = Entity
(Typ
)
2264 and then Comes_From_Source
(Spec_Id
)
2269 Spec_Id
:= Homonym
(Spec_Id
);
2272 -- At this point the body is known to be a late controlled primitive.
2273 -- Generate a matching spec and insert it before the body. Note the
2274 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2275 -- tree in this case.
2277 Spec
:= Copy_Separate_Tree
(Body_Spec
);
2279 -- Ensure that the subprogram declaration does not inherit the null
2280 -- indicator from the body as we now have a proper spec/body pair.
2282 Set_Null_Present
(Spec
, False);
2284 Insert_Before_And_Analyze
(Body_Decl
,
2285 Make_Subprogram_Declaration
(Loc
, Specification
=> Spec
));
2286 end Handle_Late_Controlled_Primitive
;
2288 --------------------------------
2289 -- Remove_Visible_Refinements --
2290 --------------------------------
2292 procedure Remove_Visible_Refinements
(Spec_Id
: Entity_Id
) is
2293 State_Elmt
: Elmt_Id
;
2295 if Present
(Abstract_States
(Spec_Id
)) then
2296 State_Elmt
:= First_Elmt
(Abstract_States
(Spec_Id
));
2297 while Present
(State_Elmt
) loop
2298 Set_Has_Visible_Refinement
(Node
(State_Elmt
), False);
2299 Next_Elmt
(State_Elmt
);
2302 end Remove_Visible_Refinements
;
2306 Context
: Node_Id
:= Empty
;
2307 Freeze_From
: Entity_Id
:= Empty
;
2308 Next_Decl
: Node_Id
;
2309 Pack_Decl
: Node_Id
:= Empty
;
2311 Body_Seen
: Boolean := False;
2312 -- Flag set when the first body [stub] is encountered
2314 -- Start of processing for Analyze_Declarations
2317 if Restriction_Check_Required
(SPARK_05
) then
2318 Check_Later_Vs_Basic_Declarations
(L
, During_Parsing
=> False);
2322 while Present
(Decl
) loop
2324 -- Package spec cannot contain a package declaration in SPARK
2326 if Nkind
(Decl
) = N_Package_Declaration
2327 and then Nkind
(Parent
(L
)) = N_Package_Specification
2329 Check_SPARK_05_Restriction
2330 ("package specification cannot contain a package declaration",
2334 -- Complete analysis of declaration
2337 Next_Decl
:= Next
(Decl
);
2339 if No
(Freeze_From
) then
2340 Freeze_From
:= First_Entity
(Current_Scope
);
2343 -- At the end of a declarative part, freeze remaining entities
2344 -- declared in it. The end of the visible declarations of package
2345 -- specification is not the end of a declarative part if private
2346 -- declarations are present. The end of a package declaration is a
2347 -- freezing point only if it a library package. A task definition or
2348 -- protected type definition is not a freeze point either. Finally,
2349 -- we do not freeze entities in generic scopes, because there is no
2350 -- code generated for them and freeze nodes will be generated for
2353 -- The end of a package instantiation is not a freeze point, but
2354 -- for now we make it one, because the generic body is inserted
2355 -- (currently) immediately after. Generic instantiations will not
2356 -- be a freeze point once delayed freezing of bodies is implemented.
2357 -- (This is needed in any case for early instantiations ???).
2359 if No
(Next_Decl
) then
2360 if Nkind_In
(Parent
(L
), N_Component_List
,
2362 N_Protected_Definition
)
2366 elsif Nkind
(Parent
(L
)) /= N_Package_Specification
then
2367 if Nkind
(Parent
(L
)) = N_Package_Body
then
2368 Freeze_From
:= First_Entity
(Current_Scope
);
2371 -- There may have been several freezing points previously,
2372 -- for example object declarations or subprogram bodies, but
2373 -- at the end of a declarative part we check freezing from
2374 -- the beginning, even though entities may already be frozen,
2375 -- in order to perform visibility checks on delayed aspects.
2378 Freeze_All
(First_Entity
(Current_Scope
), Decl
);
2379 Freeze_From
:= Last_Entity
(Current_Scope
);
2381 elsif Scope
(Current_Scope
) /= Standard_Standard
2382 and then not Is_Child_Unit
(Current_Scope
)
2383 and then No
(Generic_Parent
(Parent
(L
)))
2387 elsif L
/= Visible_Declarations
(Parent
(L
))
2388 or else No
(Private_Declarations
(Parent
(L
)))
2389 or else Is_Empty_List
(Private_Declarations
(Parent
(L
)))
2392 Freeze_All
(First_Entity
(Current_Scope
), Decl
);
2393 Freeze_From
:= Last_Entity
(Current_Scope
);
2396 -- If next node is a body then freeze all types before the body.
2397 -- An exception occurs for some expander-generated bodies. If these
2398 -- are generated at places where in general language rules would not
2399 -- allow a freeze point, then we assume that the expander has
2400 -- explicitly checked that all required types are properly frozen,
2401 -- and we do not cause general freezing here. This special circuit
2402 -- is used when the encountered body is marked as having already
2405 -- In all other cases (bodies that come from source, and expander
2406 -- generated bodies that have not been analyzed yet), freeze all
2407 -- types now. Note that in the latter case, the expander must take
2408 -- care to attach the bodies at a proper place in the tree so as to
2409 -- not cause unwanted freezing at that point.
2411 elsif not Analyzed
(Next_Decl
) and then Is_Body
(Next_Decl
) then
2413 -- When a controlled type is frozen, the expander generates stream
2414 -- and controlled type support routines. If the freeze is caused
2415 -- by the stand alone body of Initialize, Adjust and Finalize, the
2416 -- expander will end up using the wrong version of these routines
2417 -- as the body has not been processed yet. To remedy this, detect
2418 -- a late controlled primitive and create a proper spec for it.
2419 -- This ensures that the primitive will override its inherited
2420 -- counterpart before the freeze takes place.
2422 -- If the declaration we just processed is a body, do not attempt
2423 -- to examine Next_Decl as the late primitive idiom can only apply
2424 -- to the first encountered body.
2426 -- The spec of the late primitive is not generated in ASIS mode to
2427 -- ensure a consistent list of primitives that indicates the true
2428 -- semantic structure of the program (which is not relevant when
2429 -- generating executable code.
2431 -- ??? a cleaner approach may be possible and/or this solution
2432 -- could be extended to general-purpose late primitives, TBD.
2434 if not ASIS_Mode
and then not Body_Seen
and then not Is_Body
(Decl
)
2438 if Nkind
(Next_Decl
) = N_Subprogram_Body
then
2439 Handle_Late_Controlled_Primitive
(Next_Decl
);
2444 Freeze_All
(Freeze_From
, Decl
);
2445 Freeze_From
:= Last_Entity
(Current_Scope
);
2451 -- Analyze the contracts of packages and their bodies
2454 Context
:= Parent
(L
);
2456 if Nkind
(Context
) = N_Package_Specification
then
2457 Pack_Decl
:= Parent
(Context
);
2459 -- When a package has private declarations, its contract must be
2460 -- analyzed at the end of the said declarations. This way both the
2461 -- analysis and freeze actions are properly synchronized in case
2462 -- of private type use within the contract.
2464 if L
= Private_Declarations
(Context
) then
2465 Analyze_Package_Contract
(Defining_Entity
(Context
));
2467 -- Build the bodies of the default initial condition procedures
2468 -- for all types subject to pragma Default_Initial_Condition.
2469 -- From a purely Ada stand point, this is a freezing activity,
2470 -- however freezing is not available under GNATprove_Mode. To
2471 -- accomodate both scenarios, the bodies are build at the end
2472 -- of private declaration analysis.
2474 Build_Default_Init_Cond_Procedure_Bodies
(L
);
2476 -- Otherwise the contract is analyzed at the end of the visible
2479 elsif L
= Visible_Declarations
(Context
)
2480 and then No
(Private_Declarations
(Context
))
2482 Analyze_Package_Contract
(Defining_Entity
(Context
));
2485 elsif Nkind
(Context
) = N_Package_Body
then
2486 Pack_Decl
:= Context
;
2487 Analyze_Package_Body_Contract
(Defining_Entity
(Context
));
2490 -- Analyze the contracts of all subprogram declarations, subprogram
2491 -- bodies and variables now due to the delayed visibility needs of
2492 -- of their aspects and pragmas. Capture global references in generic
2493 -- subprograms or bodies.
2496 while Present
(Decl
) loop
2497 if Nkind
(Decl
) = N_Object_Declaration
then
2498 Analyze_Object_Contract
(Defining_Entity
(Decl
));
2500 elsif Nkind_In
(Decl
, N_Abstract_Subprogram_Declaration
,
2501 N_Generic_Subprogram_Declaration
,
2502 N_Subprogram_Declaration
)
2504 Analyze_Subprogram_Contract
(Defining_Entity
(Decl
));
2506 elsif Nkind
(Decl
) = N_Subprogram_Body
then
2507 Analyze_Subprogram_Body_Contract
(Defining_Entity
(Decl
));
2509 elsif Nkind
(Decl
) = N_Subprogram_Body_Stub
then
2510 Analyze_Subprogram_Body_Stub_Contract
(Defining_Entity
(Decl
));
2513 -- Capture all global references in a generic subprogram or a body
2514 -- [stub] now that the contract has been analyzed.
2516 if Nkind_In
(Decl
, N_Generic_Subprogram_Declaration
,
2518 N_Subprogram_Body_Stub
)
2519 and then Is_Generic_Declaration_Or_Body
(Decl
)
2521 Save_Global_References_In_Contract
2522 (Templ
=> Original_Node
(Decl
),
2523 Gen_Id
=> Corresponding_Spec_Of
(Decl
));
2529 -- The owner of the declarations is a package [body]
2531 if Present
(Pack_Decl
) then
2533 -- Capture all global references in a generic package or a body
2534 -- after all nested generic subprograms and bodies were subjected
2535 -- to the same processing.
2537 if Is_Generic_Declaration_Or_Body
(Pack_Decl
) then
2538 Save_Global_References_In_Contract
2539 (Templ
=> Original_Node
(Pack_Decl
),
2540 Gen_Id
=> Corresponding_Spec_Of
(Pack_Decl
));
2543 -- State refinements are visible upto the end the of the package
2544 -- body declarations. Hide the state refinements from visibility
2545 -- to restore the original state conditions.
2547 if Nkind
(Pack_Decl
) = N_Package_Body
then
2548 Remove_Visible_Refinements
(Corresponding_Spec
(Pack_Decl
));
2552 end Analyze_Declarations
;
2554 -----------------------------------
2555 -- Analyze_Full_Type_Declaration --
2556 -----------------------------------
2558 procedure Analyze_Full_Type_Declaration
(N
: Node_Id
) is
2559 Def
: constant Node_Id
:= Type_Definition
(N
);
2560 Def_Id
: constant Entity_Id
:= Defining_Identifier
(N
);
2564 Is_Remote
: constant Boolean :=
2565 (Is_Remote_Types
(Current_Scope
)
2566 or else Is_Remote_Call_Interface
(Current_Scope
))
2567 and then not (In_Private_Part
(Current_Scope
)
2568 or else In_Package_Body
(Current_Scope
));
2570 procedure Check_Ops_From_Incomplete_Type
;
2571 -- If there is a tagged incomplete partial view of the type, traverse
2572 -- the primitives of the incomplete view and change the type of any
2573 -- controlling formals and result to indicate the full view. The
2574 -- primitives will be added to the full type's primitive operations
2575 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2576 -- is called from Process_Incomplete_Dependents).
2578 ------------------------------------
2579 -- Check_Ops_From_Incomplete_Type --
2580 ------------------------------------
2582 procedure Check_Ops_From_Incomplete_Type
is
2589 and then Ekind
(Prev
) = E_Incomplete_Type
2590 and then Is_Tagged_Type
(Prev
)
2591 and then Is_Tagged_Type
(T
)
2593 Elmt
:= First_Elmt
(Primitive_Operations
(Prev
));
2594 while Present
(Elmt
) loop
2597 Formal
:= First_Formal
(Op
);
2598 while Present
(Formal
) loop
2599 if Etype
(Formal
) = Prev
then
2600 Set_Etype
(Formal
, T
);
2603 Next_Formal
(Formal
);
2606 if Etype
(Op
) = Prev
then
2613 end Check_Ops_From_Incomplete_Type
;
2615 -- Start of processing for Analyze_Full_Type_Declaration
2618 Prev
:= Find_Type_Name
(N
);
2620 -- The type declaration may be subject to pragma Ghost with policy
2621 -- Ignore. Set the mode now to ensure that any nodes generated during
2622 -- analysis and expansion are properly flagged as ignored Ghost.
2624 Set_Ghost_Mode
(N
, Prev
);
2626 -- The full view, if present, now points to the current type. If there
2627 -- is an incomplete partial view, set a link to it, to simplify the
2628 -- retrieval of primitive operations of the type.
2630 -- Ada 2005 (AI-50217): If the type was previously decorated when
2631 -- imported through a LIMITED WITH clause, it appears as incomplete
2632 -- but has no full view.
2634 if Ekind
(Prev
) = E_Incomplete_Type
2635 and then Present
(Full_View
(Prev
))
2637 T
:= Full_View
(Prev
);
2638 Set_Incomplete_View
(N
, Parent
(Prev
));
2643 Set_Is_Pure
(T
, Is_Pure
(Current_Scope
));
2645 -- We set the flag Is_First_Subtype here. It is needed to set the
2646 -- corresponding flag for the Implicit class-wide-type created
2647 -- during tagged types processing.
2649 Set_Is_First_Subtype
(T
, True);
2651 -- Only composite types other than array types are allowed to have
2656 -- For derived types, the rule will be checked once we've figured
2657 -- out the parent type.
2659 when N_Derived_Type_Definition
=>
2662 -- For record types, discriminants are allowed, unless we are in
2665 when N_Record_Definition
=>
2666 if Present
(Discriminant_Specifications
(N
)) then
2667 Check_SPARK_05_Restriction
2668 ("discriminant type is not allowed",
2670 (First
(Discriminant_Specifications
(N
))));
2674 if Present
(Discriminant_Specifications
(N
)) then
2676 ("elementary or array type cannot have discriminants",
2678 (First
(Discriminant_Specifications
(N
))));
2682 -- Elaborate the type definition according to kind, and generate
2683 -- subsidiary (implicit) subtypes where needed. We skip this if it was
2684 -- already done (this happens during the reanalysis that follows a call
2685 -- to the high level optimizer).
2687 if not Analyzed
(T
) then
2691 when N_Access_To_Subprogram_Definition
=>
2692 Access_Subprogram_Declaration
(T
, Def
);
2694 -- If this is a remote access to subprogram, we must create the
2695 -- equivalent fat pointer type, and related subprograms.
2698 Process_Remote_AST_Declaration
(N
);
2701 -- Validate categorization rule against access type declaration
2702 -- usually a violation in Pure unit, Shared_Passive unit.
2704 Validate_Access_Type_Declaration
(T
, N
);
2706 when N_Access_To_Object_Definition
=>
2707 Access_Type_Declaration
(T
, Def
);
2709 -- Validate categorization rule against access type declaration
2710 -- usually a violation in Pure unit, Shared_Passive unit.
2712 Validate_Access_Type_Declaration
(T
, N
);
2714 -- If we are in a Remote_Call_Interface package and define a
2715 -- RACW, then calling stubs and specific stream attributes
2719 and then Is_Remote_Access_To_Class_Wide_Type
(Def_Id
)
2721 Add_RACW_Features
(Def_Id
);
2724 when N_Array_Type_Definition
=>
2725 Array_Type_Declaration
(T
, Def
);
2727 when N_Derived_Type_Definition
=>
2728 Derived_Type_Declaration
(T
, N
, T
/= Def_Id
);
2730 when N_Enumeration_Type_Definition
=>
2731 Enumeration_Type_Declaration
(T
, Def
);
2733 when N_Floating_Point_Definition
=>
2734 Floating_Point_Type_Declaration
(T
, Def
);
2736 when N_Decimal_Fixed_Point_Definition
=>
2737 Decimal_Fixed_Point_Type_Declaration
(T
, Def
);
2739 when N_Ordinary_Fixed_Point_Definition
=>
2740 Ordinary_Fixed_Point_Type_Declaration
(T
, Def
);
2742 when N_Signed_Integer_Type_Definition
=>
2743 Signed_Integer_Type_Declaration
(T
, Def
);
2745 when N_Modular_Type_Definition
=>
2746 Modular_Type_Declaration
(T
, Def
);
2748 when N_Record_Definition
=>
2749 Record_Type_Declaration
(T
, N
, Prev
);
2751 -- If declaration has a parse error, nothing to elaborate.
2757 raise Program_Error
;
2762 if Etype
(T
) = Any_Type
then
2766 -- Controlled type is not allowed in SPARK
2768 if Is_Visibly_Controlled
(T
) then
2769 Check_SPARK_05_Restriction
("controlled type is not allowed", N
);
2772 -- A type declared within a Ghost region is automatically Ghost
2773 -- (SPARK RM 6.9(2)).
2775 if Comes_From_Source
(T
) and then Ghost_Mode
> None
then
2776 Set_Is_Ghost_Entity
(T
);
2779 -- Some common processing for all types
2781 Set_Depends_On_Private
(T
, Has_Private_Component
(T
));
2782 Check_Ops_From_Incomplete_Type
;
2784 -- Both the declared entity, and its anonymous base type if one was
2785 -- created, need freeze nodes allocated.
2788 B
: constant Entity_Id
:= Base_Type
(T
);
2791 -- In the case where the base type differs from the first subtype, we
2792 -- pre-allocate a freeze node, and set the proper link to the first
2793 -- subtype. Freeze_Entity will use this preallocated freeze node when
2794 -- it freezes the entity.
2796 -- This does not apply if the base type is a generic type, whose
2797 -- declaration is independent of the current derived definition.
2799 if B
/= T
and then not Is_Generic_Type
(B
) then
2800 Ensure_Freeze_Node
(B
);
2801 Set_First_Subtype_Link
(Freeze_Node
(B
), T
);
2804 -- A type that is imported through a limited_with clause cannot
2805 -- generate any code, and thus need not be frozen. However, an access
2806 -- type with an imported designated type needs a finalization list,
2807 -- which may be referenced in some other package that has non-limited
2808 -- visibility on the designated type. Thus we must create the
2809 -- finalization list at the point the access type is frozen, to
2810 -- prevent unsatisfied references at link time.
2812 if not From_Limited_With
(T
) or else Is_Access_Type
(T
) then
2813 Set_Has_Delayed_Freeze
(T
);
2817 -- Case where T is the full declaration of some private type which has
2818 -- been swapped in Defining_Identifier (N).
2820 if T
/= Def_Id
and then Is_Private_Type
(Def_Id
) then
2821 Process_Full_View
(N
, T
, Def_Id
);
2823 -- Record the reference. The form of this is a little strange, since
2824 -- the full declaration has been swapped in. So the first parameter
2825 -- here represents the entity to which a reference is made which is
2826 -- the "real" entity, i.e. the one swapped in, and the second
2827 -- parameter provides the reference location.
2829 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
2830 -- since we don't want a complaint about the full type being an
2831 -- unwanted reference to the private type
2834 B
: constant Boolean := Has_Pragma_Unreferenced
(T
);
2836 Set_Has_Pragma_Unreferenced
(T
, False);
2837 Generate_Reference
(T
, T
, 'c');
2838 Set_Has_Pragma_Unreferenced
(T
, B
);
2841 Set_Completion_Referenced
(Def_Id
);
2843 -- For completion of incomplete type, process incomplete dependents
2844 -- and always mark the full type as referenced (it is the incomplete
2845 -- type that we get for any real reference).
2847 elsif Ekind
(Prev
) = E_Incomplete_Type
then
2848 Process_Incomplete_Dependents
(N
, T
, Prev
);
2849 Generate_Reference
(Prev
, Def_Id
, 'c');
2850 Set_Completion_Referenced
(Def_Id
);
2852 -- If not private type or incomplete type completion, this is a real
2853 -- definition of a new entity, so record it.
2856 Generate_Definition
(Def_Id
);
2859 -- Propagate any pending access types whose finalization masters need to
2860 -- be fully initialized from the partial to the full view. Guard against
2861 -- an illegal full view that remains unanalyzed.
2863 if Is_Type
(Def_Id
) and then Is_Incomplete_Or_Private_Type
(Prev
) then
2864 Set_Pending_Access_Types
(Def_Id
, Pending_Access_Types
(Prev
));
2867 if Chars
(Scope
(Def_Id
)) = Name_System
2868 and then Chars
(Def_Id
) = Name_Address
2869 and then Is_Predefined_File_Name
(Unit_File_Name
(Get_Source_Unit
(N
)))
2871 Set_Is_Descendent_Of_Address
(Def_Id
);
2872 Set_Is_Descendent_Of_Address
(Base_Type
(Def_Id
));
2873 Set_Is_Descendent_Of_Address
(Prev
);
2876 Set_Optimize_Alignment_Flags
(Def_Id
);
2877 Check_Eliminated
(Def_Id
);
2879 -- If the declaration is a completion and aspects are present, apply
2880 -- them to the entity for the type which is currently the partial
2881 -- view, but which is the one that will be frozen.
2883 if Has_Aspects
(N
) then
2885 -- In most cases the partial view is a private type, and both views
2886 -- appear in different declarative parts. In the unusual case where
2887 -- the partial view is incomplete, perform the analysis on the
2888 -- full view, to prevent freezing anomalies with the corresponding
2889 -- class-wide type, which otherwise might be frozen before the
2890 -- dispatch table is built.
2893 and then Ekind
(Prev
) /= E_Incomplete_Type
2895 Analyze_Aspect_Specifications
(N
, Prev
);
2900 Analyze_Aspect_Specifications
(N
, Def_Id
);
2903 end Analyze_Full_Type_Declaration
;
2905 ----------------------------------
2906 -- Analyze_Incomplete_Type_Decl --
2907 ----------------------------------
2909 procedure Analyze_Incomplete_Type_Decl
(N
: Node_Id
) is
2910 F
: constant Boolean := Is_Pure
(Current_Scope
);
2914 Check_SPARK_05_Restriction
("incomplete type is not allowed", N
);
2916 Generate_Definition
(Defining_Identifier
(N
));
2918 -- Process an incomplete declaration. The identifier must not have been
2919 -- declared already in the scope. However, an incomplete declaration may
2920 -- appear in the private part of a package, for a private type that has
2921 -- already been declared.
2923 -- In this case, the discriminants (if any) must match
2925 T
:= Find_Type_Name
(N
);
2927 Set_Ekind
(T
, E_Incomplete_Type
);
2928 Init_Size_Align
(T
);
2929 Set_Is_First_Subtype
(T
, True);
2932 -- An incomplete type declared within a Ghost region is automatically
2933 -- Ghost (SPARK RM 6.9(2)).
2935 if Ghost_Mode
> None
then
2936 Set_Is_Ghost_Entity
(T
);
2939 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
2940 -- incomplete types.
2942 if Tagged_Present
(N
) then
2943 Set_Is_Tagged_Type
(T
, True);
2944 Set_No_Tagged_Streams_Pragma
(T
, No_Tagged_Streams
);
2945 Make_Class_Wide_Type
(T
);
2946 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
2951 Set_Stored_Constraint
(T
, No_Elist
);
2953 if Present
(Discriminant_Specifications
(N
)) then
2954 Process_Discriminants
(N
);
2959 -- If the type has discriminants, non-trivial subtypes may be
2960 -- declared before the full view of the type. The full views of those
2961 -- subtypes will be built after the full view of the type.
2963 Set_Private_Dependents
(T
, New_Elmt_List
);
2965 end Analyze_Incomplete_Type_Decl
;
2967 -----------------------------------
2968 -- Analyze_Interface_Declaration --
2969 -----------------------------------
2971 procedure Analyze_Interface_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
2972 CW
: constant Entity_Id
:= Class_Wide_Type
(T
);
2975 Set_Is_Tagged_Type
(T
);
2976 Set_No_Tagged_Streams_Pragma
(T
, No_Tagged_Streams
);
2978 Set_Is_Limited_Record
(T
, Limited_Present
(Def
)
2979 or else Task_Present
(Def
)
2980 or else Protected_Present
(Def
)
2981 or else Synchronized_Present
(Def
));
2983 -- Type is abstract if full declaration carries keyword, or if previous
2984 -- partial view did.
2986 Set_Is_Abstract_Type
(T
);
2987 Set_Is_Interface
(T
);
2989 -- Type is a limited interface if it includes the keyword limited, task,
2990 -- protected, or synchronized.
2992 Set_Is_Limited_Interface
2993 (T
, Limited_Present
(Def
)
2994 or else Protected_Present
(Def
)
2995 or else Synchronized_Present
(Def
)
2996 or else Task_Present
(Def
));
2998 Set_Interfaces
(T
, New_Elmt_List
);
2999 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
3001 -- Complete the decoration of the class-wide entity if it was already
3002 -- built (i.e. during the creation of the limited view)
3004 if Present
(CW
) then
3005 Set_Is_Interface
(CW
);
3006 Set_Is_Limited_Interface
(CW
, Is_Limited_Interface
(T
));
3009 -- Check runtime support for synchronized interfaces
3011 if VM_Target
= No_VM
3012 and then (Is_Task_Interface
(T
)
3013 or else Is_Protected_Interface
(T
)
3014 or else Is_Synchronized_Interface
(T
))
3015 and then not RTE_Available
(RE_Select_Specific_Data
)
3017 Error_Msg_CRT
("synchronized interfaces", T
);
3019 end Analyze_Interface_Declaration
;
3021 -----------------------------
3022 -- Analyze_Itype_Reference --
3023 -----------------------------
3025 -- Nothing to do. This node is placed in the tree only for the benefit of
3026 -- back end processing, and has no effect on the semantic processing.
3028 procedure Analyze_Itype_Reference
(N
: Node_Id
) is
3030 pragma Assert
(Is_Itype
(Itype
(N
)));
3032 end Analyze_Itype_Reference
;
3034 --------------------------------
3035 -- Analyze_Number_Declaration --
3036 --------------------------------
3038 procedure Analyze_Number_Declaration
(N
: Node_Id
) is
3039 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
3040 E
: constant Node_Id
:= Expression
(N
);
3042 Index
: Interp_Index
;
3046 -- The number declaration may be subject to pragma Ghost with policy
3047 -- Ignore. Set the mode now to ensure that any nodes generated during
3048 -- analysis and expansion are properly flagged as ignored Ghost.
3052 Generate_Definition
(Id
);
3055 -- A number declared within a Ghost region is automatically Ghost
3056 -- (SPARK RM 6.9(2)).
3058 if Ghost_Mode
> None
then
3059 Set_Is_Ghost_Entity
(Id
);
3062 -- This is an optimization of a common case of an integer literal
3064 if Nkind
(E
) = N_Integer_Literal
then
3065 Set_Is_Static_Expression
(E
, True);
3066 Set_Etype
(E
, Universal_Integer
);
3068 Set_Etype
(Id
, Universal_Integer
);
3069 Set_Ekind
(Id
, E_Named_Integer
);
3070 Set_Is_Frozen
(Id
, True);
3074 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
3076 -- Process expression, replacing error by integer zero, to avoid
3077 -- cascaded errors or aborts further along in the processing
3079 -- Replace Error by integer zero, which seems least likely to cause
3083 Rewrite
(E
, Make_Integer_Literal
(Sloc
(E
), Uint_0
));
3084 Set_Error_Posted
(E
);
3089 -- Verify that the expression is static and numeric. If
3090 -- the expression is overloaded, we apply the preference
3091 -- rule that favors root numeric types.
3093 if not Is_Overloaded
(E
) then
3095 if Has_Dynamic_Predicate_Aspect
(T
) then
3097 ("subtype has dynamic predicate, "
3098 & "not allowed in number declaration", N
);
3104 Get_First_Interp
(E
, Index
, It
);
3105 while Present
(It
.Typ
) loop
3106 if (Is_Integer_Type
(It
.Typ
) or else Is_Real_Type
(It
.Typ
))
3107 and then (Scope
(Base_Type
(It
.Typ
))) = Standard_Standard
3109 if T
= Any_Type
then
3112 elsif It
.Typ
= Universal_Real
3114 It
.Typ
= Universal_Integer
3116 -- Choose universal interpretation over any other
3123 Get_Next_Interp
(Index
, It
);
3127 if Is_Integer_Type
(T
) then
3129 Set_Etype
(Id
, Universal_Integer
);
3130 Set_Ekind
(Id
, E_Named_Integer
);
3132 elsif Is_Real_Type
(T
) then
3134 -- Because the real value is converted to universal_real, this is a
3135 -- legal context for a universal fixed expression.
3137 if T
= Universal_Fixed
then
3139 Loc
: constant Source_Ptr
:= Sloc
(N
);
3140 Conv
: constant Node_Id
:= Make_Type_Conversion
(Loc
,
3142 New_Occurrence_Of
(Universal_Real
, Loc
),
3143 Expression
=> Relocate_Node
(E
));
3150 elsif T
= Any_Fixed
then
3151 Error_Msg_N
("illegal context for mixed mode operation", E
);
3153 -- Expression is of the form : universal_fixed * integer. Try to
3154 -- resolve as universal_real.
3156 T
:= Universal_Real
;
3161 Set_Etype
(Id
, Universal_Real
);
3162 Set_Ekind
(Id
, E_Named_Real
);
3165 Wrong_Type
(E
, Any_Numeric
);
3169 Set_Ekind
(Id
, E_Constant
);
3170 Set_Never_Set_In_Source
(Id
, True);
3171 Set_Is_True_Constant
(Id
, True);
3175 if Nkind_In
(E
, N_Integer_Literal
, N_Real_Literal
) then
3176 Set_Etype
(E
, Etype
(Id
));
3179 if not Is_OK_Static_Expression
(E
) then
3180 Flag_Non_Static_Expr
3181 ("non-static expression used in number declaration!", E
);
3182 Rewrite
(E
, Make_Integer_Literal
(Sloc
(N
), 1));
3183 Set_Etype
(E
, Any_Type
);
3185 end Analyze_Number_Declaration
;
3187 -----------------------------
3188 -- Analyze_Object_Contract --
3189 -----------------------------
3191 procedure Analyze_Object_Contract
(Obj_Id
: Entity_Id
) is
3192 Obj_Typ
: constant Entity_Id
:= Etype
(Obj_Id
);
3193 AR_Val
: Boolean := False;
3194 AW_Val
: Boolean := False;
3195 ER_Val
: Boolean := False;
3196 EW_Val
: Boolean := False;
3198 Seen
: Boolean := False;
3201 -- The loop parameter in an element iterator over a formal container
3202 -- is declared with an object declaration but no contracts apply.
3204 if Ekind
(Obj_Id
) = E_Loop_Parameter
then
3208 if Ekind
(Obj_Id
) = E_Constant
then
3210 -- A constant cannot be effectively volatile. This check is only
3211 -- relevant with SPARK_Mode on as it is not a standard Ada legality
3212 -- rule. Do not flag internally-generated constants that map generic
3213 -- formals to actuals in instantiations (SPARK RM 7.1.3(6)).
3216 and then Is_Effectively_Volatile
(Obj_Id
)
3217 and then No
(Corresponding_Generic_Association
(Parent
(Obj_Id
)))
3219 -- Don't give this for internally generated entities (such as the
3220 -- FIRST and LAST temporaries generated for bounds).
3222 and then Comes_From_Source
(Obj_Id
)
3224 Error_Msg_N
("constant cannot be volatile", Obj_Id
);
3227 else pragma Assert
(Ekind
(Obj_Id
) = E_Variable
);
3229 -- The following checks are only relevant when SPARK_Mode is on as
3230 -- they are not standard Ada legality rules. Internally generated
3231 -- temporaries are ignored.
3233 if SPARK_Mode
= On
and then Comes_From_Source
(Obj_Id
) then
3234 if Is_Effectively_Volatile
(Obj_Id
) then
3236 -- The declaration of an effectively volatile object must
3237 -- appear at the library level (SPARK RM 7.1.3(7), C.6(6)).
3239 if not Is_Library_Level_Entity
(Obj_Id
) then
3241 ("volatile variable & must be declared at library level",
3244 -- An object of a discriminated type cannot be effectively
3245 -- volatile (SPARK RM C.6(4)).
3247 elsif Has_Discriminants
(Obj_Typ
) then
3249 ("discriminated object & cannot be volatile", Obj_Id
);
3251 -- An object of a tagged type cannot be effectively volatile
3252 -- (SPARK RM C.6(5)).
3254 elsif Is_Tagged_Type
(Obj_Typ
) then
3255 Error_Msg_N
("tagged object & cannot be volatile", Obj_Id
);
3258 -- The object is not effectively volatile
3261 -- A non-effectively volatile object cannot have effectively
3262 -- volatile components (SPARK RM 7.1.3(7)).
3264 if not Is_Effectively_Volatile
(Obj_Id
)
3265 and then Has_Volatile_Component
(Obj_Typ
)
3268 ("non-volatile object & cannot have volatile components",
3274 if Is_Ghost_Entity
(Obj_Id
) then
3276 -- A Ghost object cannot be effectively volatile (SPARK RM 6.9(8))
3278 if Is_Effectively_Volatile
(Obj_Id
) then
3279 Error_Msg_N
("ghost variable & cannot be volatile", Obj_Id
);
3281 -- A Ghost object cannot be imported or exported (SPARK RM 6.9(8))
3283 elsif Is_Imported
(Obj_Id
) then
3284 Error_Msg_N
("ghost object & cannot be imported", Obj_Id
);
3286 elsif Is_Exported
(Obj_Id
) then
3287 Error_Msg_N
("ghost object & cannot be exported", Obj_Id
);
3291 -- Analyze all external properties
3293 Prag
:= Get_Pragma
(Obj_Id
, Pragma_Async_Readers
);
3295 if Present
(Prag
) then
3296 Analyze_External_Property_In_Decl_Part
(Prag
, AR_Val
);
3300 Prag
:= Get_Pragma
(Obj_Id
, Pragma_Async_Writers
);
3302 if Present
(Prag
) then
3303 Analyze_External_Property_In_Decl_Part
(Prag
, AW_Val
);
3307 Prag
:= Get_Pragma
(Obj_Id
, Pragma_Effective_Reads
);
3309 if Present
(Prag
) then
3310 Analyze_External_Property_In_Decl_Part
(Prag
, ER_Val
);
3314 Prag
:= Get_Pragma
(Obj_Id
, Pragma_Effective_Writes
);
3316 if Present
(Prag
) then
3317 Analyze_External_Property_In_Decl_Part
(Prag
, EW_Val
);
3321 -- Verify the mutual interaction of the various external properties
3324 Check_External_Properties
(Obj_Id
, AR_Val
, AW_Val
, ER_Val
, EW_Val
);
3327 -- Check whether the lack of indicator Part_Of agrees with the
3328 -- placement of the variable with respect to the state space.
3330 Prag
:= Get_Pragma
(Obj_Id
, Pragma_Part_Of
);
3333 Check_Missing_Part_Of
(Obj_Id
);
3337 -- A ghost object cannot be imported or exported (SPARK RM 6.9(8))
3339 if Is_Ghost_Entity
(Obj_Id
) then
3340 if Is_Exported
(Obj_Id
) then
3341 Error_Msg_N
("ghost object & cannot be exported", Obj_Id
);
3343 elsif Is_Imported
(Obj_Id
) then
3344 Error_Msg_N
("ghost object & cannot be imported", Obj_Id
);
3347 end Analyze_Object_Contract
;
3349 --------------------------------
3350 -- Analyze_Object_Declaration --
3351 --------------------------------
3353 procedure Analyze_Object_Declaration
(N
: Node_Id
) is
3354 Loc
: constant Source_Ptr
:= Sloc
(N
);
3355 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
3359 E
: Node_Id
:= Expression
(N
);
3360 -- E is set to Expression (N) throughout this routine. When
3361 -- Expression (N) is modified, E is changed accordingly.
3363 Prev_Entity
: Entity_Id
:= Empty
;
3365 function Count_Tasks
(T
: Entity_Id
) return Uint
;
3366 -- This function is called when a non-generic library level object of a
3367 -- task type is declared. Its function is to count the static number of
3368 -- tasks declared within the type (it is only called if Has_Tasks is set
3369 -- for T). As a side effect, if an array of tasks with non-static bounds
3370 -- or a variant record type is encountered, Check_Restrictions is called
3371 -- indicating the count is unknown.
3373 function Delayed_Aspect_Present
return Boolean;
3374 -- If the declaration has an expression that is an aggregate, and it
3375 -- has aspects that require delayed analysis, the resolution of the
3376 -- aggregate must be deferred to the freeze point of the objet. This
3377 -- special processing was created for address clauses, but it must
3378 -- also apply to Alignment. This must be done before the aspect
3379 -- specifications are analyzed because we must handle the aggregate
3380 -- before the analysis of the object declaration is complete.
3382 -- Any other relevant delayed aspects on object declarations ???
3388 function Count_Tasks
(T
: Entity_Id
) return Uint
is
3394 if Is_Task_Type
(T
) then
3397 elsif Is_Record_Type
(T
) then
3398 if Has_Discriminants
(T
) then
3399 Check_Restriction
(Max_Tasks
, N
);
3404 C
:= First_Component
(T
);
3405 while Present
(C
) loop
3406 V
:= V
+ Count_Tasks
(Etype
(C
));
3413 elsif Is_Array_Type
(T
) then
3414 X
:= First_Index
(T
);
3415 V
:= Count_Tasks
(Component_Type
(T
));
3416 while Present
(X
) loop
3419 if not Is_OK_Static_Subtype
(C
) then
3420 Check_Restriction
(Max_Tasks
, N
);
3423 V
:= V
* (UI_Max
(Uint_0
,
3424 Expr_Value
(Type_High_Bound
(C
)) -
3425 Expr_Value
(Type_Low_Bound
(C
)) + Uint_1
));
3438 ----------------------------
3439 -- Delayed_Aspect_Present --
3440 ----------------------------
3442 function Delayed_Aspect_Present
return Boolean is
3447 if Present
(Aspect_Specifications
(N
)) then
3448 A
:= First
(Aspect_Specifications
(N
));
3449 A_Id
:= Get_Aspect_Id
(Chars
(Identifier
(A
)));
3450 while Present
(A
) loop
3451 if A_Id
= Aspect_Alignment
or else A_Id
= Aspect_Address
then
3460 end Delayed_Aspect_Present
;
3462 -- Start of processing for Analyze_Object_Declaration
3465 -- There are three kinds of implicit types generated by an
3466 -- object declaration:
3468 -- 1. Those generated by the original Object Definition
3470 -- 2. Those generated by the Expression
3472 -- 3. Those used to constrain the Object Definition with the
3473 -- expression constraints when the definition is unconstrained.
3475 -- They must be generated in this order to avoid order of elaboration
3476 -- issues. Thus the first step (after entering the name) is to analyze
3477 -- the object definition.
3479 if Constant_Present
(N
) then
3480 Prev_Entity
:= Current_Entity_In_Scope
(Id
);
3482 if Present
(Prev_Entity
)
3484 -- If the homograph is an implicit subprogram, it is overridden
3485 -- by the current declaration.
3487 ((Is_Overloadable
(Prev_Entity
)
3488 and then Is_Inherited_Operation
(Prev_Entity
))
3490 -- The current object is a discriminal generated for an entry
3491 -- family index. Even though the index is a constant, in this
3492 -- particular context there is no true constant redeclaration.
3493 -- Enter_Name will handle the visibility.
3496 (Is_Discriminal
(Id
)
3497 and then Ekind
(Discriminal_Link
(Id
)) =
3498 E_Entry_Index_Parameter
)
3500 -- The current object is the renaming for a generic declared
3501 -- within the instance.
3504 (Ekind
(Prev_Entity
) = E_Package
3505 and then Nkind
(Parent
(Prev_Entity
)) =
3506 N_Package_Renaming_Declaration
3507 and then not Comes_From_Source
(Prev_Entity
)
3509 Is_Generic_Instance
(Renamed_Entity
(Prev_Entity
))))
3511 Prev_Entity
:= Empty
;
3515 -- The object declaration may be subject to pragma Ghost with policy
3516 -- Ignore. Set the mode now to ensure that any nodes generated during
3517 -- analysis and expansion are properly flagged as ignored Ghost.
3519 Set_Ghost_Mode
(N
, Prev_Entity
);
3521 if Present
(Prev_Entity
) then
3522 Constant_Redeclaration
(Id
, N
, T
);
3524 Generate_Reference
(Prev_Entity
, Id
, 'c');
3525 Set_Completion_Referenced
(Id
);
3527 if Error_Posted
(N
) then
3529 -- Type mismatch or illegal redeclaration, Do not analyze
3530 -- expression to avoid cascaded errors.
3532 T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
3534 Set_Ekind
(Id
, E_Variable
);
3538 -- In the normal case, enter identifier at the start to catch premature
3539 -- usage in the initialization expression.
3542 Generate_Definition
(Id
);
3545 Mark_Coextensions
(N
, Object_Definition
(N
));
3547 T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
3549 if Nkind
(Object_Definition
(N
)) = N_Access_Definition
3551 (Access_To_Subprogram_Definition
(Object_Definition
(N
)))
3552 and then Protected_Present
3553 (Access_To_Subprogram_Definition
(Object_Definition
(N
)))
3555 T
:= Replace_Anonymous_Access_To_Protected_Subprogram
(N
);
3558 if Error_Posted
(Id
) then
3560 Set_Ekind
(Id
, E_Variable
);
3565 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
3566 -- out some static checks
3568 if Ada_Version
>= Ada_2005
and then Can_Never_Be_Null
(T
) then
3570 -- In case of aggregates we must also take care of the correct
3571 -- initialization of nested aggregates bug this is done at the
3572 -- point of the analysis of the aggregate (see sem_aggr.adb).
3574 if Present
(Expression
(N
))
3575 and then Nkind
(Expression
(N
)) = N_Aggregate
3581 Save_Typ
: constant Entity_Id
:= Etype
(Id
);
3583 Set_Etype
(Id
, T
); -- Temp. decoration for static checks
3584 Null_Exclusion_Static_Checks
(N
);
3585 Set_Etype
(Id
, Save_Typ
);
3590 -- Object is marked pure if it is in a pure scope
3592 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
3594 -- If deferred constant, make sure context is appropriate. We detect
3595 -- a deferred constant as a constant declaration with no expression.
3596 -- A deferred constant can appear in a package body if its completion
3597 -- is by means of an interface pragma.
3599 if Constant_Present
(N
) and then No
(E
) then
3601 -- A deferred constant may appear in the declarative part of the
3602 -- following constructs:
3606 -- extended return statements
3609 -- subprogram bodies
3612 -- When declared inside a package spec, a deferred constant must be
3613 -- completed by a full constant declaration or pragma Import. In all
3614 -- other cases, the only proper completion is pragma Import. Extended
3615 -- return statements are flagged as invalid contexts because they do
3616 -- not have a declarative part and so cannot accommodate the pragma.
3618 if Ekind
(Current_Scope
) = E_Return_Statement
then
3620 ("invalid context for deferred constant declaration (RM 7.4)",
3623 ("\declaration requires an initialization expression",
3625 Set_Constant_Present
(N
, False);
3627 -- In Ada 83, deferred constant must be of private type
3629 elsif not Is_Private_Type
(T
) then
3630 if Ada_Version
= Ada_83
and then Comes_From_Source
(N
) then
3632 ("(Ada 83) deferred constant must be private type", N
);
3636 -- If not a deferred constant, then the object declaration freezes
3637 -- its type, unless the object is of an anonymous type and has delayed
3638 -- aspects. In that case the type is frozen when the object itself is.
3641 Check_Fully_Declared
(T
, N
);
3643 if Has_Delayed_Aspects
(Id
)
3644 and then Is_Array_Type
(T
)
3645 and then Is_Itype
(T
)
3647 Set_Has_Delayed_Freeze
(T
);
3649 Freeze_Before
(N
, T
);
3653 -- If the object was created by a constrained array definition, then
3654 -- set the link in both the anonymous base type and anonymous subtype
3655 -- that are built to represent the array type to point to the object.
3657 if Nkind
(Object_Definition
(Declaration_Node
(Id
))) =
3658 N_Constrained_Array_Definition
3660 Set_Related_Array_Object
(T
, Id
);
3661 Set_Related_Array_Object
(Base_Type
(T
), Id
);
3664 -- Special checks for protected objects not at library level
3666 if Is_Protected_Type
(T
)
3667 and then not Is_Library_Level_Entity
(Id
)
3669 Check_Restriction
(No_Local_Protected_Objects
, Id
);
3671 -- Protected objects with interrupt handlers must be at library level
3673 -- Ada 2005: This test is not needed (and the corresponding clause
3674 -- in the RM is removed) because accessibility checks are sufficient
3675 -- to make handlers not at the library level illegal.
3677 -- AI05-0303: The AI is in fact a binding interpretation, and thus
3678 -- applies to the '95 version of the language as well.
3680 if Has_Interrupt_Handler
(T
) and then Ada_Version
< Ada_95
then
3682 ("interrupt object can only be declared at library level", Id
);
3686 -- The actual subtype of the object is the nominal subtype, unless
3687 -- the nominal one is unconstrained and obtained from the expression.
3691 -- These checks should be performed before the initialization expression
3692 -- is considered, so that the Object_Definition node is still the same
3693 -- as in source code.
3695 -- In SPARK, the nominal subtype is always given by a subtype mark
3696 -- and must not be unconstrained. (The only exception to this is the
3697 -- acceptance of declarations of constants of type String.)
3699 if not Nkind_In
(Object_Definition
(N
), N_Expanded_Name
, N_Identifier
)
3701 Check_SPARK_05_Restriction
3702 ("subtype mark required", Object_Definition
(N
));
3704 elsif Is_Array_Type
(T
)
3705 and then not Is_Constrained
(T
)
3706 and then T
/= Standard_String
3708 Check_SPARK_05_Restriction
3709 ("subtype mark of constrained type expected",
3710 Object_Definition
(N
));
3713 -- There are no aliased objects in SPARK
3715 if Aliased_Present
(N
) then
3716 Check_SPARK_05_Restriction
("aliased object is not allowed", N
);
3719 -- Process initialization expression if present and not in error
3721 if Present
(E
) and then E
/= Error
then
3723 -- Generate an error in case of CPP class-wide object initialization.
3724 -- Required because otherwise the expansion of the class-wide
3725 -- assignment would try to use 'size to initialize the object
3726 -- (primitive that is not available in CPP tagged types).
3728 if Is_Class_Wide_Type
(Act_T
)
3730 (Is_CPP_Class
(Root_Type
(Etype
(Act_T
)))
3732 (Present
(Full_View
(Root_Type
(Etype
(Act_T
))))
3734 Is_CPP_Class
(Full_View
(Root_Type
(Etype
(Act_T
))))))
3737 ("predefined assignment not available for 'C'P'P tagged types",
3741 Mark_Coextensions
(N
, E
);
3744 -- In case of errors detected in the analysis of the expression,
3745 -- decorate it with the expected type to avoid cascaded errors
3747 if No
(Etype
(E
)) then
3751 -- If an initialization expression is present, then we set the
3752 -- Is_True_Constant flag. It will be reset if this is a variable
3753 -- and it is indeed modified.
3755 Set_Is_True_Constant
(Id
, True);
3757 -- If we are analyzing a constant declaration, set its completion
3758 -- flag after analyzing and resolving the expression.
3760 if Constant_Present
(N
) then
3761 Set_Has_Completion
(Id
);
3764 -- Set type and resolve (type may be overridden later on). Note:
3765 -- Ekind (Id) must still be E_Void at this point so that incorrect
3766 -- early usage within E is properly diagnosed.
3770 -- If the expression is an aggregate we must look ahead to detect
3771 -- the possible presence of an address clause, and defer resolution
3772 -- and expansion of the aggregate to the freeze point of the entity.
3774 if Comes_From_Source
(N
)
3775 and then Expander_Active
3776 and then Nkind
(E
) = N_Aggregate
3777 and then (Present
(Following_Address_Clause
(N
))
3778 or else Delayed_Aspect_Present
)
3786 -- No further action needed if E is a call to an inlined function
3787 -- which returns an unconstrained type and it has been expanded into
3788 -- a procedure call. In that case N has been replaced by an object
3789 -- declaration without initializing expression and it has been
3790 -- analyzed (see Expand_Inlined_Call).
3792 if Back_End_Inlining
3793 and then Expander_Active
3794 and then Nkind
(E
) = N_Function_Call
3795 and then Nkind
(Name
(E
)) in N_Has_Entity
3796 and then Is_Inlined
(Entity
(Name
(E
)))
3797 and then not Is_Constrained
(Etype
(E
))
3798 and then Analyzed
(N
)
3799 and then No
(Expression
(N
))
3804 -- If E is null and has been replaced by an N_Raise_Constraint_Error
3805 -- node (which was marked already-analyzed), we need to set the type
3806 -- to something other than Any_Access in order to keep gigi happy.
3808 if Etype
(E
) = Any_Access
then
3812 -- If the object is an access to variable, the initialization
3813 -- expression cannot be an access to constant.
3815 if Is_Access_Type
(T
)
3816 and then not Is_Access_Constant
(T
)
3817 and then Is_Access_Type
(Etype
(E
))
3818 and then Is_Access_Constant
(Etype
(E
))
3821 ("access to variable cannot be initialized with an "
3822 & "access-to-constant expression", E
);
3825 if not Assignment_OK
(N
) then
3826 Check_Initialization
(T
, E
);
3829 Check_Unset_Reference
(E
);
3831 -- If this is a variable, then set current value. If this is a
3832 -- declared constant of a scalar type with a static expression,
3833 -- indicate that it is always valid.
3835 if not Constant_Present
(N
) then
3836 if Compile_Time_Known_Value
(E
) then
3837 Set_Current_Value
(Id
, E
);
3840 elsif Is_Scalar_Type
(T
) and then Is_OK_Static_Expression
(E
) then
3841 Set_Is_Known_Valid
(Id
);
3844 -- Deal with setting of null flags
3846 if Is_Access_Type
(T
) then
3847 if Known_Non_Null
(E
) then
3848 Set_Is_Known_Non_Null
(Id
, True);
3849 elsif Known_Null
(E
) and then not Can_Never_Be_Null
(Id
) then
3850 Set_Is_Known_Null
(Id
, True);
3854 -- Check incorrect use of dynamically tagged expressions
3856 if Is_Tagged_Type
(T
) then
3857 Check_Dynamically_Tagged_Expression
3863 Apply_Scalar_Range_Check
(E
, T
);
3864 Apply_Static_Length_Check
(E
, T
);
3866 if Nkind
(Original_Node
(N
)) = N_Object_Declaration
3867 and then Comes_From_Source
(Original_Node
(N
))
3869 -- Only call test if needed
3871 and then Restriction_Check_Required
(SPARK_05
)
3872 and then not Is_SPARK_05_Initialization_Expr
(Original_Node
(E
))
3874 Check_SPARK_05_Restriction
3875 ("initialization expression is not appropriate", E
);
3878 -- A formal parameter of a specific tagged type whose related
3879 -- subprogram is subject to pragma Extensions_Visible with value
3880 -- "False" cannot be implicitly converted to a class-wide type by
3881 -- means of an initialization expression (SPARK RM 6.1.7(3)).
3883 if Is_Class_Wide_Type
(T
) and then Is_EVF_Expression
(E
) then
3885 ("formal parameter with Extensions_Visible False cannot be "
3886 & "implicitly converted to class-wide type", E
);
3890 -- If the No_Streams restriction is set, check that the type of the
3891 -- object is not, and does not contain, any subtype derived from
3892 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
3893 -- Has_Stream just for efficiency reasons. There is no point in
3894 -- spending time on a Has_Stream check if the restriction is not set.
3896 if Restriction_Check_Required
(No_Streams
) then
3897 if Has_Stream
(T
) then
3898 Check_Restriction
(No_Streams
, N
);
3902 -- Deal with predicate check before we start to do major rewriting. It
3903 -- is OK to initialize and then check the initialized value, since the
3904 -- object goes out of scope if we get a predicate failure. Note that we
3905 -- do this in the analyzer and not the expander because the analyzer
3906 -- does some substantial rewriting in some cases.
3908 -- We need a predicate check if the type has predicates, and if either
3909 -- there is an initializing expression, or for default initialization
3910 -- when we have at least one case of an explicit default initial value
3911 -- and then this is not an internal declaration whose initialization
3912 -- comes later (as for an aggregate expansion).
3914 if not Suppress_Assignment_Checks
(N
)
3915 and then Present
(Predicate_Function
(T
))
3916 and then not No_Initialization
(N
)
3920 Is_Partially_Initialized_Type
(T
, Include_Implicit
=> False))
3922 -- If the type has a static predicate and the expression is known at
3923 -- compile time, see if the expression satisfies the predicate.
3926 Check_Expression_Against_Static_Predicate
(E
, T
);
3930 Make_Predicate_Check
(T
, New_Occurrence_Of
(Id
, Loc
)));
3933 -- Case of unconstrained type
3935 if Is_Indefinite_Subtype
(T
) then
3937 -- In SPARK, a declaration of unconstrained type is allowed
3938 -- only for constants of type string.
3940 if Is_String_Type
(T
) and then not Constant_Present
(N
) then
3941 Check_SPARK_05_Restriction
3942 ("declaration of object of unconstrained type not allowed", N
);
3945 -- Nothing to do in deferred constant case
3947 if Constant_Present
(N
) and then No
(E
) then
3950 -- Case of no initialization present
3953 if No_Initialization
(N
) then
3956 elsif Is_Class_Wide_Type
(T
) then
3958 ("initialization required in class-wide declaration ", N
);
3962 ("unconstrained subtype not allowed (need initialization)",
3963 Object_Definition
(N
));
3965 if Is_Record_Type
(T
) and then Has_Discriminants
(T
) then
3967 ("\provide initial value or explicit discriminant values",
3968 Object_Definition
(N
));
3971 ("\or give default discriminant values for type&",
3972 Object_Definition
(N
), T
);
3974 elsif Is_Array_Type
(T
) then
3976 ("\provide initial value or explicit array bounds",
3977 Object_Definition
(N
));
3981 -- Case of initialization present but in error. Set initial
3982 -- expression as absent (but do not make above complaints)
3984 elsif E
= Error
then
3985 Set_Expression
(N
, Empty
);
3988 -- Case of initialization present
3991 -- Check restrictions in Ada 83
3993 if not Constant_Present
(N
) then
3995 -- Unconstrained variables not allowed in Ada 83 mode
3997 if Ada_Version
= Ada_83
3998 and then Comes_From_Source
(Object_Definition
(N
))
4001 ("(Ada 83) unconstrained variable not allowed",
4002 Object_Definition
(N
));
4006 -- Now we constrain the variable from the initializing expression
4008 -- If the expression is an aggregate, it has been expanded into
4009 -- individual assignments. Retrieve the actual type from the
4010 -- expanded construct.
4012 if Is_Array_Type
(T
)
4013 and then No_Initialization
(N
)
4014 and then Nkind
(Original_Node
(E
)) = N_Aggregate
4018 -- In case of class-wide interface object declarations we delay
4019 -- the generation of the equivalent record type declarations until
4020 -- its expansion because there are cases in they are not required.
4022 elsif Is_Interface
(T
) then
4025 -- In GNATprove mode, Expand_Subtype_From_Expr does nothing. Thus,
4026 -- we should prevent the generation of another Itype with the
4027 -- same name as the one already generated, or we end up with
4028 -- two identical types in GNATprove.
4030 elsif GNATprove_Mode
then
4033 -- If the type is an unchecked union, no subtype can be built from
4034 -- the expression. Rewrite declaration as a renaming, which the
4035 -- back-end can handle properly. This is a rather unusual case,
4036 -- because most unchecked_union declarations have default values
4037 -- for discriminants and are thus not indefinite.
4039 elsif Is_Unchecked_Union
(T
) then
4040 if Constant_Present
(N
) or else Nkind
(E
) = N_Function_Call
then
4041 Set_Ekind
(Id
, E_Constant
);
4043 Set_Ekind
(Id
, E_Variable
);
4046 -- An object declared within a Ghost region is automatically
4047 -- Ghost (SPARK RM 6.9(2)).
4049 if Comes_From_Source
(Id
) and then Ghost_Mode
> None
then
4050 Set_Is_Ghost_Entity
(Id
);
4052 -- The Ghost policy in effect at the point of declaration
4053 -- and at the point of completion must match
4054 -- (SPARK RM 6.9(15)).
4056 if Present
(Prev_Entity
)
4057 and then Is_Ghost_Entity
(Prev_Entity
)
4059 Check_Ghost_Completion
(Prev_Entity
, Id
);
4064 Make_Object_Renaming_Declaration
(Loc
,
4065 Defining_Identifier
=> Id
,
4066 Subtype_Mark
=> New_Occurrence_Of
(T
, Loc
),
4069 Set_Renamed_Object
(Id
, E
);
4070 Freeze_Before
(N
, T
);
4075 Expand_Subtype_From_Expr
(N
, T
, Object_Definition
(N
), E
);
4076 Act_T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
4079 Set_Is_Constr_Subt_For_U_Nominal
(Act_T
);
4081 if Aliased_Present
(N
) then
4082 Set_Is_Constr_Subt_For_UN_Aliased
(Act_T
);
4085 Freeze_Before
(N
, Act_T
);
4086 Freeze_Before
(N
, T
);
4089 elsif Is_Array_Type
(T
)
4090 and then No_Initialization
(N
)
4091 and then Nkind
(Original_Node
(E
)) = N_Aggregate
4093 if not Is_Entity_Name
(Object_Definition
(N
)) then
4095 Check_Compile_Time_Size
(Act_T
);
4097 if Aliased_Present
(N
) then
4098 Set_Is_Constr_Subt_For_UN_Aliased
(Act_T
);
4102 -- When the given object definition and the aggregate are specified
4103 -- independently, and their lengths might differ do a length check.
4104 -- This cannot happen if the aggregate is of the form (others =>...)
4106 if not Is_Constrained
(T
) then
4109 elsif Nkind
(E
) = N_Raise_Constraint_Error
then
4111 -- Aggregate is statically illegal. Place back in declaration
4113 Set_Expression
(N
, E
);
4114 Set_No_Initialization
(N
, False);
4116 elsif T
= Etype
(E
) then
4119 elsif Nkind
(E
) = N_Aggregate
4120 and then Present
(Component_Associations
(E
))
4121 and then Present
(Choices
(First
(Component_Associations
(E
))))
4122 and then Nkind
(First
4123 (Choices
(First
(Component_Associations
(E
))))) = N_Others_Choice
4128 Apply_Length_Check
(E
, T
);
4131 -- If the type is limited unconstrained with defaulted discriminants and
4132 -- there is no expression, then the object is constrained by the
4133 -- defaults, so it is worthwhile building the corresponding subtype.
4135 elsif (Is_Limited_Record
(T
) or else Is_Concurrent_Type
(T
))
4136 and then not Is_Constrained
(T
)
4137 and then Has_Discriminants
(T
)
4140 Act_T
:= Build_Default_Subtype
(T
, N
);
4142 -- Ada 2005: A limited object may be initialized by means of an
4143 -- aggregate. If the type has default discriminants it has an
4144 -- unconstrained nominal type, Its actual subtype will be obtained
4145 -- from the aggregate, and not from the default discriminants.
4150 Rewrite
(Object_Definition
(N
), New_Occurrence_Of
(Act_T
, Loc
));
4152 elsif Nkind
(E
) = N_Function_Call
4153 and then Constant_Present
(N
)
4154 and then Has_Unconstrained_Elements
(Etype
(E
))
4156 -- The back-end has problems with constants of a discriminated type
4157 -- with defaults, if the initial value is a function call. We
4158 -- generate an intermediate temporary that will receive a reference
4159 -- to the result of the call. The initialization expression then
4160 -- becomes a dereference of that temporary.
4162 Remove_Side_Effects
(E
);
4164 -- If this is a constant declaration of an unconstrained type and
4165 -- the initialization is an aggregate, we can use the subtype of the
4166 -- aggregate for the declared entity because it is immutable.
4168 elsif not Is_Constrained
(T
)
4169 and then Has_Discriminants
(T
)
4170 and then Constant_Present
(N
)
4171 and then not Has_Unchecked_Union
(T
)
4172 and then Nkind
(E
) = N_Aggregate
4177 -- Check No_Wide_Characters restriction
4179 Check_Wide_Character_Restriction
(T
, Object_Definition
(N
));
4181 -- Indicate this is not set in source. Certainly true for constants, and
4182 -- true for variables so far (will be reset for a variable if and when
4183 -- we encounter a modification in the source).
4185 Set_Never_Set_In_Source
(Id
);
4187 -- Now establish the proper kind and type of the object
4189 if Constant_Present
(N
) then
4190 Set_Ekind
(Id
, E_Constant
);
4191 Set_Is_True_Constant
(Id
);
4194 Set_Ekind
(Id
, E_Variable
);
4196 -- A variable is set as shared passive if it appears in a shared
4197 -- passive package, and is at the outer level. This is not done for
4198 -- entities generated during expansion, because those are always
4199 -- manipulated locally.
4201 if Is_Shared_Passive
(Current_Scope
)
4202 and then Is_Library_Level_Entity
(Id
)
4203 and then Comes_From_Source
(Id
)
4205 Set_Is_Shared_Passive
(Id
);
4206 Check_Shared_Var
(Id
, T
, N
);
4209 -- Set Has_Initial_Value if initializing expression present. Note
4210 -- that if there is no initializing expression, we leave the state
4211 -- of this flag unchanged (usually it will be False, but notably in
4212 -- the case of exception choice variables, it will already be true).
4215 Set_Has_Initial_Value
(Id
);
4219 -- Initialize alignment and size and capture alignment setting
4221 Init_Alignment
(Id
);
4223 Set_Optimize_Alignment_Flags
(Id
);
4225 -- An object declared within a Ghost region is automatically Ghost
4226 -- (SPARK RM 6.9(2)).
4228 if Comes_From_Source
(Id
)
4229 and then (Ghost_Mode
> None
4230 or else (Present
(Prev_Entity
)
4231 and then Is_Ghost_Entity
(Prev_Entity
)))
4233 Set_Is_Ghost_Entity
(Id
);
4235 -- The Ghost policy in effect at the point of declaration and at the
4236 -- point of completion must match (SPARK RM 6.9(16)).
4238 if Present
(Prev_Entity
) and then Is_Ghost_Entity
(Prev_Entity
) then
4239 Check_Ghost_Completion
(Prev_Entity
, Id
);
4243 -- Deal with aliased case
4245 if Aliased_Present
(N
) then
4246 Set_Is_Aliased
(Id
);
4248 -- If the object is aliased and the type is unconstrained with
4249 -- defaulted discriminants and there is no expression, then the
4250 -- object is constrained by the defaults, so it is worthwhile
4251 -- building the corresponding subtype.
4253 -- Ada 2005 (AI-363): If the aliased object is discriminated and
4254 -- unconstrained, then only establish an actual subtype if the
4255 -- nominal subtype is indefinite. In definite cases the object is
4256 -- unconstrained in Ada 2005.
4259 and then Is_Record_Type
(T
)
4260 and then not Is_Constrained
(T
)
4261 and then Has_Discriminants
(T
)
4262 and then (Ada_Version
< Ada_2005
or else Is_Indefinite_Subtype
(T
))
4264 Set_Actual_Subtype
(Id
, Build_Default_Subtype
(T
, N
));
4268 -- Now we can set the type of the object
4270 Set_Etype
(Id
, Act_T
);
4272 -- Non-constant object is marked to be treated as volatile if type is
4273 -- volatile and we clear the Current_Value setting that may have been
4274 -- set above. Doing so for constants isn't required and might interfere
4275 -- with possible uses of the object as a static expression in contexts
4276 -- incompatible with volatility (e.g. as a case-statement alternative).
4278 if Ekind
(Id
) /= E_Constant
and then Treat_As_Volatile
(Etype
(Id
)) then
4279 Set_Treat_As_Volatile
(Id
);
4280 Set_Current_Value
(Id
, Empty
);
4283 -- Deal with controlled types
4285 if Has_Controlled_Component
(Etype
(Id
))
4286 or else Is_Controlled
(Etype
(Id
))
4288 if not Is_Library_Level_Entity
(Id
) then
4289 Check_Restriction
(No_Nested_Finalization
, N
);
4291 Validate_Controlled_Object
(Id
);
4295 if Has_Task
(Etype
(Id
)) then
4296 Check_Restriction
(No_Tasking
, N
);
4298 -- Deal with counting max tasks
4300 -- Nothing to do if inside a generic
4302 if Inside_A_Generic
then
4305 -- If library level entity, then count tasks
4307 elsif Is_Library_Level_Entity
(Id
) then
4308 Check_Restriction
(Max_Tasks
, N
, Count_Tasks
(Etype
(Id
)));
4310 -- If not library level entity, then indicate we don't know max
4311 -- tasks and also check task hierarchy restriction and blocking
4312 -- operation (since starting a task is definitely blocking).
4315 Check_Restriction
(Max_Tasks
, N
);
4316 Check_Restriction
(No_Task_Hierarchy
, N
);
4317 Check_Potentially_Blocking_Operation
(N
);
4320 -- A rather specialized test. If we see two tasks being declared
4321 -- of the same type in the same object declaration, and the task
4322 -- has an entry with an address clause, we know that program error
4323 -- will be raised at run time since we can't have two tasks with
4324 -- entries at the same address.
4326 if Is_Task_Type
(Etype
(Id
)) and then More_Ids
(N
) then
4331 E
:= First_Entity
(Etype
(Id
));
4332 while Present
(E
) loop
4333 if Ekind
(E
) = E_Entry
4334 and then Present
(Get_Attribute_Definition_Clause
4335 (E
, Attribute_Address
))
4337 Error_Msg_Warn
:= SPARK_Mode
/= On
;
4339 ("more than one task with same entry address<<", N
);
4340 Error_Msg_N
("\Program_Error [<<", N
);
4342 Make_Raise_Program_Error
(Loc
,
4343 Reason
=> PE_Duplicated_Entry_Address
));
4353 -- Some simple constant-propagation: if the expression is a constant
4354 -- string initialized with a literal, share the literal. This avoids
4358 and then Is_Entity_Name
(E
)
4359 and then Ekind
(Entity
(E
)) = E_Constant
4360 and then Base_Type
(Etype
(E
)) = Standard_String
4363 Val
: constant Node_Id
:= Constant_Value
(Entity
(E
));
4365 if Present
(Val
) and then Nkind
(Val
) = N_String_Literal
then
4366 Rewrite
(E
, New_Copy
(Val
));
4371 -- Another optimization: if the nominal subtype is unconstrained and
4372 -- the expression is a function call that returns an unconstrained
4373 -- type, rewrite the declaration as a renaming of the result of the
4374 -- call. The exceptions below are cases where the copy is expected,
4375 -- either by the back end (Aliased case) or by the semantics, as for
4376 -- initializing controlled types or copying tags for classwide types.
4379 and then Nkind
(E
) = N_Explicit_Dereference
4380 and then Nkind
(Original_Node
(E
)) = N_Function_Call
4381 and then not Is_Library_Level_Entity
(Id
)
4382 and then not Is_Constrained
(Underlying_Type
(T
))
4383 and then not Is_Aliased
(Id
)
4384 and then not Is_Class_Wide_Type
(T
)
4385 and then not Is_Controlled
(T
)
4386 and then not Has_Controlled_Component
(Base_Type
(T
))
4387 and then Expander_Active
4390 Make_Object_Renaming_Declaration
(Loc
,
4391 Defining_Identifier
=> Id
,
4392 Access_Definition
=> Empty
,
4393 Subtype_Mark
=> New_Occurrence_Of
4394 (Base_Type
(Etype
(Id
)), Loc
),
4397 Set_Renamed_Object
(Id
, E
);
4399 -- Force generation of debugging information for the constant and for
4400 -- the renamed function call.
4402 Set_Debug_Info_Needed
(Id
);
4403 Set_Debug_Info_Needed
(Entity
(Prefix
(E
)));
4406 if Present
(Prev_Entity
)
4407 and then Is_Frozen
(Prev_Entity
)
4408 and then not Error_Posted
(Id
)
4410 Error_Msg_N
("full constant declaration appears too late", N
);
4413 Check_Eliminated
(Id
);
4415 -- Deal with setting In_Private_Part flag if in private part
4417 if Ekind
(Scope
(Id
)) = E_Package
and then In_Private_Part
(Scope
(Id
))
4419 Set_In_Private_Part
(Id
);
4422 -- Check for violation of No_Local_Timing_Events
4424 if Restriction_Check_Required
(No_Local_Timing_Events
)
4425 and then not Is_Library_Level_Entity
(Id
)
4426 and then Is_RTE
(Etype
(Id
), RE_Timing_Event
)
4428 Check_Restriction
(No_Local_Timing_Events
, N
);
4432 -- Initialize the refined state of a variable here because this is a
4433 -- common destination for legal and illegal object declarations.
4435 if Ekind
(Id
) = E_Variable
then
4436 Set_Encapsulating_State
(Id
, Empty
);
4439 if Has_Aspects
(N
) then
4440 Analyze_Aspect_Specifications
(N
, Id
);
4443 Analyze_Dimension
(N
);
4445 -- Verify whether the object declaration introduces an illegal hidden
4446 -- state within a package subject to a null abstract state.
4448 if Ekind
(Id
) = E_Variable
then
4449 Check_No_Hidden_State
(Id
);
4451 end Analyze_Object_Declaration
;
4453 ---------------------------
4454 -- Analyze_Others_Choice --
4455 ---------------------------
4457 -- Nothing to do for the others choice node itself, the semantic analysis
4458 -- of the others choice will occur as part of the processing of the parent
4460 procedure Analyze_Others_Choice
(N
: Node_Id
) is
4461 pragma Warnings
(Off
, N
);
4464 end Analyze_Others_Choice
;
4466 -------------------------------------------
4467 -- Analyze_Private_Extension_Declaration --
4468 -------------------------------------------
4470 procedure Analyze_Private_Extension_Declaration
(N
: Node_Id
) is
4471 T
: constant Entity_Id
:= Defining_Identifier
(N
);
4472 Indic
: constant Node_Id
:= Subtype_Indication
(N
);
4473 Parent_Type
: Entity_Id
;
4474 Parent_Base
: Entity_Id
;
4477 -- The private extension declaration may be subject to pragma Ghost with
4478 -- policy Ignore. Set the mode now to ensure that any nodes generated
4479 -- during analysis and expansion are properly flagged as ignored Ghost.
4483 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
4485 if Is_Non_Empty_List
(Interface_List
(N
)) then
4491 Intf
:= First
(Interface_List
(N
));
4492 while Present
(Intf
) loop
4493 T
:= Find_Type_Of_Subtype_Indic
(Intf
);
4495 Diagnose_Interface
(Intf
, T
);
4501 Generate_Definition
(T
);
4503 -- For other than Ada 2012, just enter the name in the current scope
4505 if Ada_Version
< Ada_2012
then
4508 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
4509 -- case of private type that completes an incomplete type.
4516 Prev
:= Find_Type_Name
(N
);
4518 pragma Assert
(Prev
= T
4519 or else (Ekind
(Prev
) = E_Incomplete_Type
4520 and then Present
(Full_View
(Prev
))
4521 and then Full_View
(Prev
) = T
));
4525 Parent_Type
:= Find_Type_Of_Subtype_Indic
(Indic
);
4526 Parent_Base
:= Base_Type
(Parent_Type
);
4528 if Parent_Type
= Any_Type
or else Etype
(Parent_Type
) = Any_Type
then
4529 Set_Ekind
(T
, Ekind
(Parent_Type
));
4530 Set_Etype
(T
, Any_Type
);
4533 elsif not Is_Tagged_Type
(Parent_Type
) then
4535 ("parent of type extension must be a tagged type ", Indic
);
4538 elsif Ekind_In
(Parent_Type
, E_Void
, E_Incomplete_Type
) then
4539 Error_Msg_N
("premature derivation of incomplete type", Indic
);
4542 elsif Is_Concurrent_Type
(Parent_Type
) then
4544 ("parent type of a private extension cannot be "
4545 & "a synchronized tagged type (RM 3.9.1 (3/1))", N
);
4547 Set_Etype
(T
, Any_Type
);
4548 Set_Ekind
(T
, E_Limited_Private_Type
);
4549 Set_Private_Dependents
(T
, New_Elmt_List
);
4550 Set_Error_Posted
(T
);
4554 -- Perhaps the parent type should be changed to the class-wide type's
4555 -- specific type in this case to prevent cascading errors ???
4557 if Is_Class_Wide_Type
(Parent_Type
) then
4559 ("parent of type extension must not be a class-wide type", Indic
);
4563 if (not Is_Package_Or_Generic_Package
(Current_Scope
)
4564 and then Nkind
(Parent
(N
)) /= N_Generic_Subprogram_Declaration
)
4565 or else In_Private_Part
(Current_Scope
)
4568 Error_Msg_N
("invalid context for private extension", N
);
4571 -- Set common attributes
4573 Set_Is_Pure
(T
, Is_Pure
(Current_Scope
));
4574 Set_Scope
(T
, Current_Scope
);
4575 Set_Ekind
(T
, E_Record_Type_With_Private
);
4576 Init_Size_Align
(T
);
4577 Set_Default_SSO
(T
);
4579 Set_Etype
(T
, Parent_Base
);
4580 Set_Has_Task
(T
, Has_Task
(Parent_Base
));
4581 Set_Has_Protected
(T
, Has_Task
(Parent_Base
));
4583 Set_Convention
(T
, Convention
(Parent_Type
));
4584 Set_First_Rep_Item
(T
, First_Rep_Item
(Parent_Type
));
4585 Set_Is_First_Subtype
(T
);
4586 Make_Class_Wide_Type
(T
);
4588 if Unknown_Discriminants_Present
(N
) then
4589 Set_Discriminant_Constraint
(T
, No_Elist
);
4592 Build_Derived_Record_Type
(N
, Parent_Type
, T
);
4594 -- Propagate inherited invariant information. The new type has
4595 -- invariants, if the parent type has inheritable invariants,
4596 -- and these invariants can in turn be inherited.
4598 if Has_Inheritable_Invariants
(Parent_Type
) then
4599 Set_Has_Inheritable_Invariants
(T
);
4600 Set_Has_Invariants
(T
);
4603 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
4604 -- synchronized formal derived type.
4606 if Ada_Version
>= Ada_2005
and then Synchronized_Present
(N
) then
4607 Set_Is_Limited_Record
(T
);
4609 -- Formal derived type case
4611 if Is_Generic_Type
(T
) then
4613 -- The parent must be a tagged limited type or a synchronized
4616 if (not Is_Tagged_Type
(Parent_Type
)
4617 or else not Is_Limited_Type
(Parent_Type
))
4619 (not Is_Interface
(Parent_Type
)
4620 or else not Is_Synchronized_Interface
(Parent_Type
))
4622 Error_Msg_NE
("parent type of & must be tagged limited " &
4623 "or synchronized", N
, T
);
4626 -- The progenitors (if any) must be limited or synchronized
4629 if Present
(Interfaces
(T
)) then
4632 Iface_Elmt
: Elmt_Id
;
4635 Iface_Elmt
:= First_Elmt
(Interfaces
(T
));
4636 while Present
(Iface_Elmt
) loop
4637 Iface
:= Node
(Iface_Elmt
);
4639 if not Is_Limited_Interface
(Iface
)
4640 and then not Is_Synchronized_Interface
(Iface
)
4642 Error_Msg_NE
("progenitor & must be limited " &
4643 "or synchronized", N
, Iface
);
4646 Next_Elmt
(Iface_Elmt
);
4651 -- Regular derived extension, the parent must be a limited or
4652 -- synchronized interface.
4655 if not Is_Interface
(Parent_Type
)
4656 or else (not Is_Limited_Interface
(Parent_Type
)
4657 and then not Is_Synchronized_Interface
(Parent_Type
))
4660 ("parent type of & must be limited interface", N
, T
);
4664 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
4665 -- extension with a synchronized parent must be explicitly declared
4666 -- synchronized, because the full view will be a synchronized type.
4667 -- This must be checked before the check for limited types below,
4668 -- to ensure that types declared limited are not allowed to extend
4669 -- synchronized interfaces.
4671 elsif Is_Interface
(Parent_Type
)
4672 and then Is_Synchronized_Interface
(Parent_Type
)
4673 and then not Synchronized_Present
(N
)
4676 ("private extension of& must be explicitly synchronized",
4679 elsif Limited_Present
(N
) then
4680 Set_Is_Limited_Record
(T
);
4682 if not Is_Limited_Type
(Parent_Type
)
4684 (not Is_Interface
(Parent_Type
)
4685 or else not Is_Limited_Interface
(Parent_Type
))
4687 Error_Msg_NE
("parent type& of limited extension must be limited",
4693 if Has_Aspects
(N
) then
4694 Analyze_Aspect_Specifications
(N
, T
);
4696 end Analyze_Private_Extension_Declaration
;
4698 ---------------------------------
4699 -- Analyze_Subtype_Declaration --
4700 ---------------------------------
4702 procedure Analyze_Subtype_Declaration
4704 Skip
: Boolean := False)
4706 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
4708 R_Checks
: Check_Result
;
4711 -- The subtype declaration may be subject to pragma Ghost with policy
4712 -- Ignore. Set the mode now to ensure that any nodes generated during
4713 -- analysis and expansion are properly flagged as ignored Ghost.
4717 Generate_Definition
(Id
);
4718 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
4719 Init_Size_Align
(Id
);
4721 -- The following guard condition on Enter_Name is to handle cases where
4722 -- the defining identifier has already been entered into the scope but
4723 -- the declaration as a whole needs to be analyzed.
4725 -- This case in particular happens for derived enumeration types. The
4726 -- derived enumeration type is processed as an inserted enumeration type
4727 -- declaration followed by a rewritten subtype declaration. The defining
4728 -- identifier, however, is entered into the name scope very early in the
4729 -- processing of the original type declaration and therefore needs to be
4730 -- avoided here, when the created subtype declaration is analyzed. (See
4731 -- Build_Derived_Types)
4733 -- This also happens when the full view of a private type is derived
4734 -- type with constraints. In this case the entity has been introduced
4735 -- in the private declaration.
4737 -- Finally this happens in some complex cases when validity checks are
4738 -- enabled, where the same subtype declaration may be analyzed twice.
4739 -- This can happen if the subtype is created by the pre-analysis of
4740 -- an attribute tht gives the range of a loop statement, and the loop
4741 -- itself appears within an if_statement that will be rewritten during
4745 or else (Present
(Etype
(Id
))
4746 and then (Is_Private_Type
(Etype
(Id
))
4747 or else Is_Task_Type
(Etype
(Id
))
4748 or else Is_Rewrite_Substitution
(N
)))
4752 elsif Current_Entity
(Id
) = Id
then
4759 T
:= Process_Subtype
(Subtype_Indication
(N
), N
, Id
, 'P');
4761 -- Class-wide equivalent types of records with unknown discriminants
4762 -- involve the generation of an itype which serves as the private view
4763 -- of a constrained record subtype. In such cases the base type of the
4764 -- current subtype we are processing is the private itype. Use the full
4765 -- of the private itype when decorating various attributes.
4768 and then Is_Private_Type
(T
)
4769 and then Present
(Full_View
(T
))
4774 -- Inherit common attributes
4776 Set_Is_Volatile
(Id
, Is_Volatile
(T
));
4777 Set_Treat_As_Volatile
(Id
, Treat_As_Volatile
(T
));
4778 Set_Is_Generic_Type
(Id
, Is_Generic_Type
(Base_Type
(T
)));
4779 Set_Convention
(Id
, Convention
(T
));
4781 -- If ancestor has predicates then so does the subtype, and in addition
4782 -- we must delay the freeze to properly arrange predicate inheritance.
4784 -- The Ancestor_Type test is really unpleasant, there seem to be cases
4785 -- in which T = ID, so the above tests and assignments do nothing???
4787 if Has_Predicates
(T
)
4788 or else (Present
(Ancestor_Subtype
(T
))
4789 and then Has_Predicates
(Ancestor_Subtype
(T
)))
4791 Set_Has_Predicates
(Id
);
4792 Set_Has_Delayed_Freeze
(Id
);
4795 -- Subtype of Boolean cannot have a constraint in SPARK
4797 if Is_Boolean_Type
(T
)
4798 and then Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
4800 Check_SPARK_05_Restriction
4801 ("subtype of Boolean cannot have constraint", N
);
4804 if Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
then
4806 Cstr
: constant Node_Id
:= Constraint
(Subtype_Indication
(N
));
4812 if Nkind
(Cstr
) = N_Index_Or_Discriminant_Constraint
then
4813 One_Cstr
:= First
(Constraints
(Cstr
));
4814 while Present
(One_Cstr
) loop
4816 -- Index or discriminant constraint in SPARK must be a
4820 Nkind_In
(One_Cstr
, N_Identifier
, N_Expanded_Name
)
4822 Check_SPARK_05_Restriction
4823 ("subtype mark required", One_Cstr
);
4825 -- String subtype must have a lower bound of 1 in SPARK.
4826 -- Note that we do not need to test for the non-static case
4827 -- here, since that was already taken care of in
4828 -- Process_Range_Expr_In_Decl.
4830 elsif Base_Type
(T
) = Standard_String
then
4831 Get_Index_Bounds
(One_Cstr
, Low
, High
);
4833 if Is_OK_Static_Expression
(Low
)
4834 and then Expr_Value
(Low
) /= 1
4836 Check_SPARK_05_Restriction
4837 ("String subtype must have lower bound of 1", N
);
4847 -- In the case where there is no constraint given in the subtype
4848 -- indication, Process_Subtype just returns the Subtype_Mark, so its
4849 -- semantic attributes must be established here.
4851 if Nkind
(Subtype_Indication
(N
)) /= N_Subtype_Indication
then
4852 Set_Etype
(Id
, Base_Type
(T
));
4854 -- Subtype of unconstrained array without constraint is not allowed
4857 if Is_Array_Type
(T
) and then not Is_Constrained
(T
) then
4858 Check_SPARK_05_Restriction
4859 ("subtype of unconstrained array must have constraint", N
);
4864 Set_Ekind
(Id
, E_Array_Subtype
);
4865 Copy_Array_Subtype_Attributes
(Id
, T
);
4867 when Decimal_Fixed_Point_Kind
=>
4868 Set_Ekind
(Id
, E_Decimal_Fixed_Point_Subtype
);
4869 Set_Digits_Value
(Id
, Digits_Value
(T
));
4870 Set_Delta_Value
(Id
, Delta_Value
(T
));
4871 Set_Scale_Value
(Id
, Scale_Value
(T
));
4872 Set_Small_Value
(Id
, Small_Value
(T
));
4873 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4874 Set_Machine_Radix_10
(Id
, Machine_Radix_10
(T
));
4875 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4876 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4877 Set_RM_Size
(Id
, RM_Size
(T
));
4879 when Enumeration_Kind
=>
4880 Set_Ekind
(Id
, E_Enumeration_Subtype
);
4881 Set_First_Literal
(Id
, First_Literal
(Base_Type
(T
)));
4882 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4883 Set_Is_Character_Type
(Id
, Is_Character_Type
(T
));
4884 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4885 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4886 Set_RM_Size
(Id
, RM_Size
(T
));
4887 Inherit_Predicate_Flags
(Id
, T
);
4889 when Ordinary_Fixed_Point_Kind
=>
4890 Set_Ekind
(Id
, E_Ordinary_Fixed_Point_Subtype
);
4891 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4892 Set_Small_Value
(Id
, Small_Value
(T
));
4893 Set_Delta_Value
(Id
, Delta_Value
(T
));
4894 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4895 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4896 Set_RM_Size
(Id
, RM_Size
(T
));
4899 Set_Ekind
(Id
, E_Floating_Point_Subtype
);
4900 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4901 Set_Digits_Value
(Id
, Digits_Value
(T
));
4902 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4904 when Signed_Integer_Kind
=>
4905 Set_Ekind
(Id
, E_Signed_Integer_Subtype
);
4906 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4907 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4908 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4909 Set_RM_Size
(Id
, RM_Size
(T
));
4910 Inherit_Predicate_Flags
(Id
, T
);
4912 when Modular_Integer_Kind
=>
4913 Set_Ekind
(Id
, E_Modular_Integer_Subtype
);
4914 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4915 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4916 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4917 Set_RM_Size
(Id
, RM_Size
(T
));
4918 Inherit_Predicate_Flags
(Id
, T
);
4920 when Class_Wide_Kind
=>
4921 Set_Ekind
(Id
, E_Class_Wide_Subtype
);
4922 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
4923 Set_Cloned_Subtype
(Id
, T
);
4924 Set_Is_Tagged_Type
(Id
, True);
4925 Set_Has_Unknown_Discriminants
4927 Set_No_Tagged_Streams_Pragma
4928 (Id
, No_Tagged_Streams_Pragma
(T
));
4930 if Ekind
(T
) = E_Class_Wide_Subtype
then
4931 Set_Equivalent_Type
(Id
, Equivalent_Type
(T
));
4934 when E_Record_Type | E_Record_Subtype
=>
4935 Set_Ekind
(Id
, E_Record_Subtype
);
4937 if Ekind
(T
) = E_Record_Subtype
4938 and then Present
(Cloned_Subtype
(T
))
4940 Set_Cloned_Subtype
(Id
, Cloned_Subtype
(T
));
4942 Set_Cloned_Subtype
(Id
, T
);
4945 Set_First_Entity
(Id
, First_Entity
(T
));
4946 Set_Last_Entity
(Id
, Last_Entity
(T
));
4947 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
4948 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4949 Set_Is_Limited_Record
(Id
, Is_Limited_Record
(T
));
4950 Set_Has_Implicit_Dereference
4951 (Id
, Has_Implicit_Dereference
(T
));
4952 Set_Has_Unknown_Discriminants
4953 (Id
, Has_Unknown_Discriminants
(T
));
4955 if Has_Discriminants
(T
) then
4956 Set_Discriminant_Constraint
4957 (Id
, Discriminant_Constraint
(T
));
4958 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
4960 elsif Has_Unknown_Discriminants
(Id
) then
4961 Set_Discriminant_Constraint
(Id
, No_Elist
);
4964 if Is_Tagged_Type
(T
) then
4965 Set_Is_Tagged_Type
(Id
, True);
4966 Set_No_Tagged_Streams_Pragma
4967 (Id
, No_Tagged_Streams_Pragma
(T
));
4968 Set_Is_Abstract_Type
(Id
, Is_Abstract_Type
(T
));
4969 Set_Direct_Primitive_Operations
4970 (Id
, Direct_Primitive_Operations
(T
));
4971 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
4973 if Is_Interface
(T
) then
4974 Set_Is_Interface
(Id
);
4975 Set_Is_Limited_Interface
(Id
, Is_Limited_Interface
(T
));
4979 when Private_Kind
=>
4980 Set_Ekind
(Id
, Subtype_Kind
(Ekind
(T
)));
4981 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
4982 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4983 Set_First_Entity
(Id
, First_Entity
(T
));
4984 Set_Last_Entity
(Id
, Last_Entity
(T
));
4985 Set_Private_Dependents
(Id
, New_Elmt_List
);
4986 Set_Is_Limited_Record
(Id
, Is_Limited_Record
(T
));
4987 Set_Has_Implicit_Dereference
4988 (Id
, Has_Implicit_Dereference
(T
));
4989 Set_Has_Unknown_Discriminants
4990 (Id
, Has_Unknown_Discriminants
(T
));
4991 Set_Known_To_Have_Preelab_Init
4992 (Id
, Known_To_Have_Preelab_Init
(T
));
4994 if Is_Tagged_Type
(T
) then
4995 Set_Is_Tagged_Type
(Id
);
4996 Set_No_Tagged_Streams_Pragma
(Id
,
4997 No_Tagged_Streams_Pragma
(T
));
4998 Set_Is_Abstract_Type
(Id
, Is_Abstract_Type
(T
));
4999 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
5000 Set_Direct_Primitive_Operations
(Id
,
5001 Direct_Primitive_Operations
(T
));
5004 -- In general the attributes of the subtype of a private type
5005 -- are the attributes of the partial view of parent. However,
5006 -- the full view may be a discriminated type, and the subtype
5007 -- must share the discriminant constraint to generate correct
5008 -- calls to initialization procedures.
5010 if Has_Discriminants
(T
) then
5011 Set_Discriminant_Constraint
5012 (Id
, Discriminant_Constraint
(T
));
5013 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
5015 elsif Present
(Full_View
(T
))
5016 and then Has_Discriminants
(Full_View
(T
))
5018 Set_Discriminant_Constraint
5019 (Id
, Discriminant_Constraint
(Full_View
(T
)));
5020 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
5022 -- This would seem semantically correct, but apparently
5023 -- generates spurious errors about missing components ???
5025 -- Set_Has_Discriminants (Id);
5028 Prepare_Private_Subtype_Completion
(Id
, N
);
5030 -- If this is the subtype of a constrained private type with
5031 -- discriminants that has got a full view and we also have
5032 -- built a completion just above, show that the completion
5033 -- is a clone of the full view to the back-end.
5035 if Has_Discriminants
(T
)
5036 and then not Has_Unknown_Discriminants
(T
)
5037 and then not Is_Empty_Elmt_List
(Discriminant_Constraint
(T
))
5038 and then Present
(Full_View
(T
))
5039 and then Present
(Full_View
(Id
))
5041 Set_Cloned_Subtype
(Full_View
(Id
), Full_View
(T
));
5045 Set_Ekind
(Id
, E_Access_Subtype
);
5046 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
5047 Set_Is_Access_Constant
5048 (Id
, Is_Access_Constant
(T
));
5049 Set_Directly_Designated_Type
5050 (Id
, Designated_Type
(T
));
5051 Set_Can_Never_Be_Null
(Id
, Can_Never_Be_Null
(T
));
5053 -- A Pure library_item must not contain the declaration of a
5054 -- named access type, except within a subprogram, generic
5055 -- subprogram, task unit, or protected unit, or if it has
5056 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
5058 if Comes_From_Source
(Id
)
5059 and then In_Pure_Unit
5060 and then not In_Subprogram_Task_Protected_Unit
5061 and then not No_Pool_Assigned
(Id
)
5064 ("named access types not allowed in pure unit", N
);
5067 when Concurrent_Kind
=>
5068 Set_Ekind
(Id
, Subtype_Kind
(Ekind
(T
)));
5069 Set_Corresponding_Record_Type
(Id
,
5070 Corresponding_Record_Type
(T
));
5071 Set_First_Entity
(Id
, First_Entity
(T
));
5072 Set_First_Private_Entity
(Id
, First_Private_Entity
(T
));
5073 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
5074 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
5075 Set_Is_Tagged_Type
(Id
, Is_Tagged_Type
(T
));
5076 Set_Last_Entity
(Id
, Last_Entity
(T
));
5078 if Is_Tagged_Type
(T
) then
5079 Set_No_Tagged_Streams_Pragma
5080 (Id
, No_Tagged_Streams_Pragma
(T
));
5083 if Has_Discriminants
(T
) then
5084 Set_Discriminant_Constraint
5085 (Id
, Discriminant_Constraint
(T
));
5086 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
5089 when Incomplete_Kind
=>
5090 if Ada_Version
>= Ada_2005
then
5092 -- In Ada 2005 an incomplete type can be explicitly tagged:
5093 -- propagate indication. Note that we also have to include
5094 -- subtypes for Ada 2012 extended use of incomplete types.
5096 Set_Ekind
(Id
, E_Incomplete_Subtype
);
5097 Set_Is_Tagged_Type
(Id
, Is_Tagged_Type
(T
));
5098 Set_Private_Dependents
(Id
, New_Elmt_List
);
5100 if Is_Tagged_Type
(Id
) then
5101 Set_No_Tagged_Streams_Pragma
5102 (Id
, No_Tagged_Streams_Pragma
(T
));
5103 Set_Direct_Primitive_Operations
(Id
, New_Elmt_List
);
5106 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
5107 -- incomplete type visible through a limited with clause.
5109 if From_Limited_With
(T
)
5110 and then Present
(Non_Limited_View
(T
))
5112 Set_From_Limited_With
(Id
);
5113 Set_Non_Limited_View
(Id
, Non_Limited_View
(T
));
5115 -- Ada 2005 (AI-412): Add the regular incomplete subtype
5116 -- to the private dependents of the original incomplete
5117 -- type for future transformation.
5120 Append_Elmt
(Id
, Private_Dependents
(T
));
5123 -- If the subtype name denotes an incomplete type an error
5124 -- was already reported by Process_Subtype.
5127 Set_Etype
(Id
, Any_Type
);
5131 raise Program_Error
;
5135 if Etype
(Id
) = Any_Type
then
5139 -- Some common processing on all types
5141 Set_Size_Info
(Id
, T
);
5142 Set_First_Rep_Item
(Id
, First_Rep_Item
(T
));
5144 -- If the parent type is a generic actual, so is the subtype. This may
5145 -- happen in a nested instance. Why Comes_From_Source test???
5147 if not Comes_From_Source
(N
) then
5148 Set_Is_Generic_Actual_Type
(Id
, Is_Generic_Actual_Type
(T
));
5153 Set_Is_Immediately_Visible
(Id
, True);
5154 Set_Depends_On_Private
(Id
, Has_Private_Component
(T
));
5155 Set_Is_Descendent_Of_Address
(Id
, Is_Descendent_Of_Address
(T
));
5157 if Is_Interface
(T
) then
5158 Set_Is_Interface
(Id
);
5161 if Present
(Generic_Parent_Type
(N
))
5163 (Nkind
(Parent
(Generic_Parent_Type
(N
))) /=
5164 N_Formal_Type_Declaration
5165 or else Nkind
(Formal_Type_Definition
5166 (Parent
(Generic_Parent_Type
(N
)))) /=
5167 N_Formal_Private_Type_Definition
)
5169 if Is_Tagged_Type
(Id
) then
5171 -- If this is a generic actual subtype for a synchronized type,
5172 -- the primitive operations are those of the corresponding record
5173 -- for which there is a separate subtype declaration.
5175 if Is_Concurrent_Type
(Id
) then
5177 elsif Is_Class_Wide_Type
(Id
) then
5178 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
, Etype
(T
));
5180 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
, T
);
5183 elsif Scope
(Etype
(Id
)) /= Standard_Standard
then
5184 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
);
5188 if Is_Private_Type
(T
) and then Present
(Full_View
(T
)) then
5189 Conditional_Delay
(Id
, Full_View
(T
));
5191 -- The subtypes of components or subcomponents of protected types
5192 -- do not need freeze nodes, which would otherwise appear in the
5193 -- wrong scope (before the freeze node for the protected type). The
5194 -- proper subtypes are those of the subcomponents of the corresponding
5197 elsif Ekind
(Scope
(Id
)) /= E_Protected_Type
5198 and then Present
(Scope
(Scope
(Id
))) -- error defense
5199 and then Ekind
(Scope
(Scope
(Id
))) /= E_Protected_Type
5201 Conditional_Delay
(Id
, T
);
5204 -- Check that Constraint_Error is raised for a scalar subtype indication
5205 -- when the lower or upper bound of a non-null range lies outside the
5206 -- range of the type mark.
5208 if Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
then
5209 if Is_Scalar_Type
(Etype
(Id
))
5210 and then Scalar_Range
(Id
) /=
5211 Scalar_Range
(Etype
(Subtype_Mark
5212 (Subtype_Indication
(N
))))
5216 Etype
(Subtype_Mark
(Subtype_Indication
(N
))));
5218 -- In the array case, check compatibility for each index
5220 elsif Is_Array_Type
(Etype
(Id
)) and then Present
(First_Index
(Id
))
5222 -- This really should be a subprogram that finds the indications
5226 Subt_Index
: Node_Id
:= First_Index
(Id
);
5227 Target_Index
: Node_Id
:=
5229 (Subtype_Mark
(Subtype_Indication
(N
))));
5230 Has_Dyn_Chk
: Boolean := Has_Dynamic_Range_Check
(N
);
5233 while Present
(Subt_Index
) loop
5234 if ((Nkind
(Subt_Index
) = N_Identifier
5235 and then Ekind
(Entity
(Subt_Index
)) in Scalar_Kind
)
5236 or else Nkind
(Subt_Index
) = N_Subtype_Indication
)
5238 Nkind
(Scalar_Range
(Etype
(Subt_Index
))) = N_Range
5241 Target_Typ
: constant Entity_Id
:=
5242 Etype
(Target_Index
);
5246 (Scalar_Range
(Etype
(Subt_Index
)),
5249 Defining_Identifier
(N
));
5251 -- Reset Has_Dynamic_Range_Check on the subtype to
5252 -- prevent elision of the index check due to a dynamic
5253 -- check generated for a preceding index (needed since
5254 -- Insert_Range_Checks tries to avoid generating
5255 -- redundant checks on a given declaration).
5257 Set_Has_Dynamic_Range_Check
(N
, False);
5263 Sloc
(Defining_Identifier
(N
)));
5265 -- Record whether this index involved a dynamic check
5268 Has_Dyn_Chk
or else Has_Dynamic_Range_Check
(N
);
5272 Next_Index
(Subt_Index
);
5273 Next_Index
(Target_Index
);
5276 -- Finally, mark whether the subtype involves dynamic checks
5278 Set_Has_Dynamic_Range_Check
(N
, Has_Dyn_Chk
);
5283 -- A type invariant applies to any subtype in its scope, in particular
5284 -- to a generic actual.
5286 if Has_Invariants
(T
) and then In_Open_Scopes
(Scope
(T
)) then
5287 Set_Has_Invariants
(Id
);
5288 Set_Invariant_Procedure
(Id
, Invariant_Procedure
(T
));
5291 -- Make sure that generic actual types are properly frozen. The subtype
5292 -- is marked as a generic actual type when the enclosing instance is
5293 -- analyzed, so here we identify the subtype from the tree structure.
5296 and then Is_Generic_Actual_Type
(Id
)
5297 and then In_Instance
5298 and then not Comes_From_Source
(N
)
5299 and then Nkind
(Subtype_Indication
(N
)) /= N_Subtype_Indication
5300 and then Is_Frozen
(T
)
5302 Freeze_Before
(N
, Id
);
5305 Set_Optimize_Alignment_Flags
(Id
);
5306 Check_Eliminated
(Id
);
5309 if Has_Aspects
(N
) then
5310 Analyze_Aspect_Specifications
(N
, Id
);
5313 Analyze_Dimension
(N
);
5314 end Analyze_Subtype_Declaration
;
5316 --------------------------------
5317 -- Analyze_Subtype_Indication --
5318 --------------------------------
5320 procedure Analyze_Subtype_Indication
(N
: Node_Id
) is
5321 T
: constant Entity_Id
:= Subtype_Mark
(N
);
5322 R
: constant Node_Id
:= Range_Expression
(Constraint
(N
));
5329 Set_Etype
(N
, Etype
(R
));
5330 Resolve
(R
, Entity
(T
));
5332 Set_Error_Posted
(R
);
5333 Set_Error_Posted
(T
);
5335 end Analyze_Subtype_Indication
;
5337 --------------------------
5338 -- Analyze_Variant_Part --
5339 --------------------------
5341 procedure Analyze_Variant_Part
(N
: Node_Id
) is
5342 Discr_Name
: Node_Id
;
5343 Discr_Type
: Entity_Id
;
5345 procedure Process_Variant
(A
: Node_Id
);
5346 -- Analyze declarations for a single variant
5348 package Analyze_Variant_Choices
is
5349 new Generic_Analyze_Choices
(Process_Variant
);
5350 use Analyze_Variant_Choices
;
5352 ---------------------
5353 -- Process_Variant --
5354 ---------------------
5356 procedure Process_Variant
(A
: Node_Id
) is
5357 CL
: constant Node_Id
:= Component_List
(A
);
5359 if not Null_Present
(CL
) then
5360 Analyze_Declarations
(Component_Items
(CL
));
5362 if Present
(Variant_Part
(CL
)) then
5363 Analyze
(Variant_Part
(CL
));
5366 end Process_Variant
;
5368 -- Start of processing for Analyze_Variant_Part
5371 Discr_Name
:= Name
(N
);
5372 Analyze
(Discr_Name
);
5374 -- If Discr_Name bad, get out (prevent cascaded errors)
5376 if Etype
(Discr_Name
) = Any_Type
then
5380 -- Check invalid discriminant in variant part
5382 if Ekind
(Entity
(Discr_Name
)) /= E_Discriminant
then
5383 Error_Msg_N
("invalid discriminant name in variant part", Discr_Name
);
5386 Discr_Type
:= Etype
(Entity
(Discr_Name
));
5388 if not Is_Discrete_Type
(Discr_Type
) then
5390 ("discriminant in a variant part must be of a discrete type",
5395 -- Now analyze the choices, which also analyzes the declarations that
5396 -- are associated with each choice.
5398 Analyze_Choices
(Variants
(N
), Discr_Type
);
5400 -- Note: we used to instantiate and call Check_Choices here to check
5401 -- that the choices covered the discriminant, but it's too early to do
5402 -- that because of statically predicated subtypes, whose analysis may
5403 -- be deferred to their freeze point which may be as late as the freeze
5404 -- point of the containing record. So this call is now to be found in
5405 -- Freeze_Record_Declaration.
5407 end Analyze_Variant_Part
;
5409 ----------------------------
5410 -- Array_Type_Declaration --
5411 ----------------------------
5413 procedure Array_Type_Declaration
(T
: in out Entity_Id
; Def
: Node_Id
) is
5414 Component_Def
: constant Node_Id
:= Component_Definition
(Def
);
5415 Component_Typ
: constant Node_Id
:= Subtype_Indication
(Component_Def
);
5416 Element_Type
: Entity_Id
;
5417 Implicit_Base
: Entity_Id
;
5419 Related_Id
: Entity_Id
:= Empty
;
5421 P
: constant Node_Id
:= Parent
(Def
);
5425 if Nkind
(Def
) = N_Constrained_Array_Definition
then
5426 Index
:= First
(Discrete_Subtype_Definitions
(Def
));
5428 Index
:= First
(Subtype_Marks
(Def
));
5431 -- Find proper names for the implicit types which may be public. In case
5432 -- of anonymous arrays we use the name of the first object of that type
5436 Related_Id
:= Defining_Identifier
(P
);
5442 while Present
(Index
) loop
5445 -- Test for odd case of trying to index a type by the type itself
5447 if Is_Entity_Name
(Index
) and then Entity
(Index
) = T
then
5448 Error_Msg_N
("type& cannot be indexed by itself", Index
);
5449 Set_Entity
(Index
, Standard_Boolean
);
5450 Set_Etype
(Index
, Standard_Boolean
);
5453 -- Check SPARK restriction requiring a subtype mark
5455 if not Nkind_In
(Index
, N_Identifier
, N_Expanded_Name
) then
5456 Check_SPARK_05_Restriction
("subtype mark required", Index
);
5459 -- Add a subtype declaration for each index of private array type
5460 -- declaration whose etype is also private. For example:
5463 -- type Index is private;
5465 -- type Table is array (Index) of ...
5468 -- This is currently required by the expander for the internally
5469 -- generated equality subprogram of records with variant parts in
5470 -- which the etype of some component is such private type.
5472 if Ekind
(Current_Scope
) = E_Package
5473 and then In_Private_Part
(Current_Scope
)
5474 and then Has_Private_Declaration
(Etype
(Index
))
5477 Loc
: constant Source_Ptr
:= Sloc
(Def
);
5482 New_E
:= Make_Temporary
(Loc
, 'T');
5483 Set_Is_Internal
(New_E
);
5486 Make_Subtype_Declaration
(Loc
,
5487 Defining_Identifier
=> New_E
,
5488 Subtype_Indication
=>
5489 New_Occurrence_Of
(Etype
(Index
), Loc
));
5491 Insert_Before
(Parent
(Def
), Decl
);
5493 Set_Etype
(Index
, New_E
);
5495 -- If the index is a range the Entity attribute is not
5496 -- available. Example:
5499 -- type T is private;
5501 -- type T is new Natural;
5502 -- Table : array (T(1) .. T(10)) of Boolean;
5505 if Nkind
(Index
) /= N_Range
then
5506 Set_Entity
(Index
, New_E
);
5511 Make_Index
(Index
, P
, Related_Id
, Nb_Index
);
5513 -- Check error of subtype with predicate for index type
5515 Bad_Predicated_Subtype_Use
5516 ("subtype& has predicate, not allowed as index subtype",
5517 Index
, Etype
(Index
));
5519 -- Move to next index
5522 Nb_Index
:= Nb_Index
+ 1;
5525 -- Process subtype indication if one is present
5527 if Present
(Component_Typ
) then
5528 Element_Type
:= Process_Subtype
(Component_Typ
, P
, Related_Id
, 'C');
5530 Set_Etype
(Component_Typ
, Element_Type
);
5532 if not Nkind_In
(Component_Typ
, N_Identifier
, N_Expanded_Name
) then
5533 Check_SPARK_05_Restriction
5534 ("subtype mark required", Component_Typ
);
5537 -- Ada 2005 (AI-230): Access Definition case
5539 else pragma Assert
(Present
(Access_Definition
(Component_Def
)));
5541 -- Indicate that the anonymous access type is created by the
5542 -- array type declaration.
5544 Element_Type
:= Access_Definition
5546 N
=> Access_Definition
(Component_Def
));
5547 Set_Is_Local_Anonymous_Access
(Element_Type
);
5549 -- Propagate the parent. This field is needed if we have to generate
5550 -- the master_id associated with an anonymous access to task type
5551 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
5553 Set_Parent
(Element_Type
, Parent
(T
));
5555 -- Ada 2005 (AI-230): In case of components that are anonymous access
5556 -- types the level of accessibility depends on the enclosing type
5559 Set_Scope
(Element_Type
, Current_Scope
); -- Ada 2005 (AI-230)
5561 -- Ada 2005 (AI-254)
5564 CD
: constant Node_Id
:=
5565 Access_To_Subprogram_Definition
5566 (Access_Definition
(Component_Def
));
5568 if Present
(CD
) and then Protected_Present
(CD
) then
5570 Replace_Anonymous_Access_To_Protected_Subprogram
(Def
);
5575 -- Constrained array case
5578 T
:= Create_Itype
(E_Void
, P
, Related_Id
, 'T');
5581 if Nkind
(Def
) = N_Constrained_Array_Definition
then
5583 -- Establish Implicit_Base as unconstrained base type
5585 Implicit_Base
:= Create_Itype
(E_Array_Type
, P
, Related_Id
, 'B');
5587 Set_Etype
(Implicit_Base
, Implicit_Base
);
5588 Set_Scope
(Implicit_Base
, Current_Scope
);
5589 Set_Has_Delayed_Freeze
(Implicit_Base
);
5590 Set_Default_SSO
(Implicit_Base
);
5592 -- The constrained array type is a subtype of the unconstrained one
5594 Set_Ekind
(T
, E_Array_Subtype
);
5595 Init_Size_Align
(T
);
5596 Set_Etype
(T
, Implicit_Base
);
5597 Set_Scope
(T
, Current_Scope
);
5598 Set_Is_Constrained
(T
);
5600 First
(Discrete_Subtype_Definitions
(Def
)));
5601 Set_Has_Delayed_Freeze
(T
);
5603 -- Complete setup of implicit base type
5605 Set_First_Index
(Implicit_Base
, First_Index
(T
));
5606 Set_Component_Type
(Implicit_Base
, Element_Type
);
5607 Set_Has_Task
(Implicit_Base
, Has_Task
(Element_Type
));
5608 Set_Has_Protected
(Implicit_Base
, Has_Protected
(Element_Type
));
5609 Set_Component_Size
(Implicit_Base
, Uint_0
);
5610 Set_Packed_Array_Impl_Type
(Implicit_Base
, Empty
);
5611 Set_Has_Controlled_Component
(Implicit_Base
,
5612 Has_Controlled_Component
(Element_Type
)
5613 or else Is_Controlled
(Element_Type
));
5614 Set_Finalize_Storage_Only
(Implicit_Base
,
5615 Finalize_Storage_Only
(Element_Type
));
5617 -- Inherit the "ghostness" from the constrained array type
5619 if Is_Ghost_Entity
(T
) or else Ghost_Mode
> None
then
5620 Set_Is_Ghost_Entity
(Implicit_Base
);
5623 -- Unconstrained array case
5626 Set_Ekind
(T
, E_Array_Type
);
5627 Init_Size_Align
(T
);
5629 Set_Scope
(T
, Current_Scope
);
5630 Set_Component_Size
(T
, Uint_0
);
5631 Set_Is_Constrained
(T
, False);
5632 Set_First_Index
(T
, First
(Subtype_Marks
(Def
)));
5633 Set_Has_Delayed_Freeze
(T
, True);
5634 Set_Has_Task
(T
, Has_Task
(Element_Type
));
5635 Set_Has_Protected
(T
, Has_Protected
(Element_Type
));
5636 Set_Has_Controlled_Component
(T
, Has_Controlled_Component
5639 Is_Controlled
(Element_Type
));
5640 Set_Finalize_Storage_Only
(T
, Finalize_Storage_Only
5642 Set_Default_SSO
(T
);
5645 -- Common attributes for both cases
5647 Set_Component_Type
(Base_Type
(T
), Element_Type
);
5648 Set_Packed_Array_Impl_Type
(T
, Empty
);
5650 if Aliased_Present
(Component_Definition
(Def
)) then
5651 Check_SPARK_05_Restriction
5652 ("aliased is not allowed", Component_Definition
(Def
));
5653 Set_Has_Aliased_Components
(Etype
(T
));
5656 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
5657 -- array type to ensure that objects of this type are initialized.
5659 if Ada_Version
>= Ada_2005
and then Can_Never_Be_Null
(Element_Type
) then
5660 Set_Can_Never_Be_Null
(T
);
5662 if Null_Exclusion_Present
(Component_Definition
(Def
))
5664 -- No need to check itypes because in their case this check was
5665 -- done at their point of creation
5667 and then not Is_Itype
(Element_Type
)
5670 ("`NOT NULL` not allowed (null already excluded)",
5671 Subtype_Indication
(Component_Definition
(Def
)));
5675 Priv
:= Private_Component
(Element_Type
);
5677 if Present
(Priv
) then
5679 -- Check for circular definitions
5681 if Priv
= Any_Type
then
5682 Set_Component_Type
(Etype
(T
), Any_Type
);
5684 -- There is a gap in the visibility of operations on the composite
5685 -- type only if the component type is defined in a different scope.
5687 elsif Scope
(Priv
) = Current_Scope
then
5690 elsif Is_Limited_Type
(Priv
) then
5691 Set_Is_Limited_Composite
(Etype
(T
));
5692 Set_Is_Limited_Composite
(T
);
5694 Set_Is_Private_Composite
(Etype
(T
));
5695 Set_Is_Private_Composite
(T
);
5699 -- A syntax error in the declaration itself may lead to an empty index
5700 -- list, in which case do a minimal patch.
5702 if No
(First_Index
(T
)) then
5703 Error_Msg_N
("missing index definition in array type declaration", T
);
5706 Indexes
: constant List_Id
:=
5707 New_List
(New_Occurrence_Of
(Any_Id
, Sloc
(T
)));
5709 Set_Discrete_Subtype_Definitions
(Def
, Indexes
);
5710 Set_First_Index
(T
, First
(Indexes
));
5715 -- Create a concatenation operator for the new type. Internal array
5716 -- types created for packed entities do not need such, they are
5717 -- compatible with the user-defined type.
5719 if Number_Dimensions
(T
) = 1
5720 and then not Is_Packed_Array_Impl_Type
(T
)
5722 New_Concatenation_Op
(T
);
5725 -- In the case of an unconstrained array the parser has already verified
5726 -- that all the indexes are unconstrained but we still need to make sure
5727 -- that the element type is constrained.
5729 if Is_Indefinite_Subtype
(Element_Type
) then
5731 ("unconstrained element type in array declaration",
5732 Subtype_Indication
(Component_Def
));
5734 elsif Is_Abstract_Type
(Element_Type
) then
5736 ("the type of a component cannot be abstract",
5737 Subtype_Indication
(Component_Def
));
5740 -- There may be an invariant declared for the component type, but
5741 -- the construction of the component invariant checking procedure
5742 -- takes place during expansion.
5743 end Array_Type_Declaration
;
5745 ------------------------------------------------------
5746 -- Replace_Anonymous_Access_To_Protected_Subprogram --
5747 ------------------------------------------------------
5749 function Replace_Anonymous_Access_To_Protected_Subprogram
5750 (N
: Node_Id
) return Entity_Id
5752 Loc
: constant Source_Ptr
:= Sloc
(N
);
5754 Curr_Scope
: constant Scope_Stack_Entry
:=
5755 Scope_Stack
.Table
(Scope_Stack
.Last
);
5757 Anon
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
5760 -- Access definition in declaration
5763 -- Object definition or formal definition with an access definition
5766 -- Declaration of anonymous access to subprogram type
5769 -- Original specification in access to subprogram
5774 Set_Is_Internal
(Anon
);
5777 when N_Component_Declaration |
5778 N_Unconstrained_Array_Definition |
5779 N_Constrained_Array_Definition
=>
5780 Comp
:= Component_Definition
(N
);
5781 Acc
:= Access_Definition
(Comp
);
5783 when N_Discriminant_Specification
=>
5784 Comp
:= Discriminant_Type
(N
);
5787 when N_Parameter_Specification
=>
5788 Comp
:= Parameter_Type
(N
);
5791 when N_Access_Function_Definition
=>
5792 Comp
:= Result_Definition
(N
);
5795 when N_Object_Declaration
=>
5796 Comp
:= Object_Definition
(N
);
5799 when N_Function_Specification
=>
5800 Comp
:= Result_Definition
(N
);
5804 raise Program_Error
;
5807 Spec
:= Access_To_Subprogram_Definition
(Acc
);
5810 Make_Full_Type_Declaration
(Loc
,
5811 Defining_Identifier
=> Anon
,
5812 Type_Definition
=> Copy_Separate_Tree
(Spec
));
5814 Mark_Rewrite_Insertion
(Decl
);
5816 -- In ASIS mode, analyze the profile on the original node, because
5817 -- the separate copy does not provide enough links to recover the
5818 -- original tree. Analysis is limited to type annotations, within
5819 -- a temporary scope that serves as an anonymous subprogram to collect
5820 -- otherwise useless temporaries and itypes.
5824 Typ
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
5827 if Nkind
(Spec
) = N_Access_Function_Definition
then
5828 Set_Ekind
(Typ
, E_Function
);
5830 Set_Ekind
(Typ
, E_Procedure
);
5833 Set_Parent
(Typ
, N
);
5834 Set_Scope
(Typ
, Current_Scope
);
5837 Process_Formals
(Parameter_Specifications
(Spec
), Spec
);
5839 if Nkind
(Spec
) = N_Access_Function_Definition
then
5841 Def
: constant Node_Id
:= Result_Definition
(Spec
);
5844 -- The result might itself be an anonymous access type, so
5847 if Nkind
(Def
) = N_Access_Definition
then
5848 if Present
(Access_To_Subprogram_Definition
(Def
)) then
5851 Replace_Anonymous_Access_To_Protected_Subprogram
5854 Find_Type
(Subtype_Mark
(Def
));
5867 -- Insert the new declaration in the nearest enclosing scope. If the
5868 -- node is a body and N is its return type, the declaration belongs in
5869 -- the enclosing scope.
5873 if Nkind
(P
) = N_Subprogram_Body
5874 and then Nkind
(N
) = N_Function_Specification
5879 while Present
(P
) and then not Has_Declarations
(P
) loop
5883 pragma Assert
(Present
(P
));
5885 if Nkind
(P
) = N_Package_Specification
then
5886 Prepend
(Decl
, Visible_Declarations
(P
));
5888 Prepend
(Decl
, Declarations
(P
));
5891 -- Replace the anonymous type with an occurrence of the new declaration.
5892 -- In all cases the rewritten node does not have the null-exclusion
5893 -- attribute because (if present) it was already inherited by the
5894 -- anonymous entity (Anon). Thus, in case of components we do not
5895 -- inherit this attribute.
5897 if Nkind
(N
) = N_Parameter_Specification
then
5898 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5899 Set_Etype
(Defining_Identifier
(N
), Anon
);
5900 Set_Null_Exclusion_Present
(N
, False);
5902 elsif Nkind
(N
) = N_Object_Declaration
then
5903 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5904 Set_Etype
(Defining_Identifier
(N
), Anon
);
5906 elsif Nkind
(N
) = N_Access_Function_Definition
then
5907 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5909 elsif Nkind
(N
) = N_Function_Specification
then
5910 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5911 Set_Etype
(Defining_Unit_Name
(N
), Anon
);
5915 Make_Component_Definition
(Loc
,
5916 Subtype_Indication
=> New_Occurrence_Of
(Anon
, Loc
)));
5919 Mark_Rewrite_Insertion
(Comp
);
5921 if Nkind_In
(N
, N_Object_Declaration
, N_Access_Function_Definition
) then
5925 -- Temporarily remove the current scope (record or subprogram) from
5926 -- the stack to add the new declarations to the enclosing scope.
5928 Scope_Stack
.Decrement_Last
;
5930 Set_Is_Itype
(Anon
);
5931 Scope_Stack
.Append
(Curr_Scope
);
5934 Set_Ekind
(Anon
, E_Anonymous_Access_Protected_Subprogram_Type
);
5935 Set_Can_Use_Internal_Rep
(Anon
, not Always_Compatible_Rep_On_Target
);
5937 end Replace_Anonymous_Access_To_Protected_Subprogram
;
5939 -------------------------------
5940 -- Build_Derived_Access_Type --
5941 -------------------------------
5943 procedure Build_Derived_Access_Type
5945 Parent_Type
: Entity_Id
;
5946 Derived_Type
: Entity_Id
)
5948 S
: constant Node_Id
:= Subtype_Indication
(Type_Definition
(N
));
5950 Desig_Type
: Entity_Id
;
5952 Discr_Con_Elist
: Elist_Id
;
5953 Discr_Con_El
: Elmt_Id
;
5957 -- Set the designated type so it is available in case this is an access
5958 -- to a self-referential type, e.g. a standard list type with a next
5959 -- pointer. Will be reset after subtype is built.
5961 Set_Directly_Designated_Type
5962 (Derived_Type
, Designated_Type
(Parent_Type
));
5964 Subt
:= Process_Subtype
(S
, N
);
5966 if Nkind
(S
) /= N_Subtype_Indication
5967 and then Subt
/= Base_Type
(Subt
)
5969 Set_Ekind
(Derived_Type
, E_Access_Subtype
);
5972 if Ekind
(Derived_Type
) = E_Access_Subtype
then
5974 Pbase
: constant Entity_Id
:= Base_Type
(Parent_Type
);
5975 Ibase
: constant Entity_Id
:=
5976 Create_Itype
(Ekind
(Pbase
), N
, Derived_Type
, 'B');
5977 Svg_Chars
: constant Name_Id
:= Chars
(Ibase
);
5978 Svg_Next_E
: constant Entity_Id
:= Next_Entity
(Ibase
);
5981 Copy_Node
(Pbase
, Ibase
);
5983 Set_Chars
(Ibase
, Svg_Chars
);
5984 Set_Next_Entity
(Ibase
, Svg_Next_E
);
5985 Set_Sloc
(Ibase
, Sloc
(Derived_Type
));
5986 Set_Scope
(Ibase
, Scope
(Derived_Type
));
5987 Set_Freeze_Node
(Ibase
, Empty
);
5988 Set_Is_Frozen
(Ibase
, False);
5989 Set_Comes_From_Source
(Ibase
, False);
5990 Set_Is_First_Subtype
(Ibase
, False);
5992 Set_Etype
(Ibase
, Pbase
);
5993 Set_Etype
(Derived_Type
, Ibase
);
5997 Set_Directly_Designated_Type
5998 (Derived_Type
, Designated_Type
(Subt
));
6000 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Subt
));
6001 Set_Is_Access_Constant
(Derived_Type
, Is_Access_Constant
(Parent_Type
));
6002 Set_Size_Info
(Derived_Type
, Parent_Type
);
6003 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
6004 Set_Depends_On_Private
(Derived_Type
,
6005 Has_Private_Component
(Derived_Type
));
6006 Conditional_Delay
(Derived_Type
, Subt
);
6008 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
6009 -- that it is not redundant.
6011 if Null_Exclusion_Present
(Type_Definition
(N
)) then
6012 Set_Can_Never_Be_Null
(Derived_Type
);
6014 -- What is with the "AND THEN FALSE" here ???
6016 if Can_Never_Be_Null
(Parent_Type
)
6020 ("`NOT NULL` not allowed (& already excludes null)",
6024 elsif Can_Never_Be_Null
(Parent_Type
) then
6025 Set_Can_Never_Be_Null
(Derived_Type
);
6028 -- Note: we do not copy the Storage_Size_Variable, since we always go to
6029 -- the root type for this information.
6031 -- Apply range checks to discriminants for derived record case
6032 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
6034 Desig_Type
:= Designated_Type
(Derived_Type
);
6035 if Is_Composite_Type
(Desig_Type
)
6036 and then (not Is_Array_Type
(Desig_Type
))
6037 and then Has_Discriminants
(Desig_Type
)
6038 and then Base_Type
(Desig_Type
) /= Desig_Type
6040 Discr_Con_Elist
:= Discriminant_Constraint
(Desig_Type
);
6041 Discr_Con_El
:= First_Elmt
(Discr_Con_Elist
);
6043 Discr
:= First_Discriminant
(Base_Type
(Desig_Type
));
6044 while Present
(Discr_Con_El
) loop
6045 Apply_Range_Check
(Node
(Discr_Con_El
), Etype
(Discr
));
6046 Next_Elmt
(Discr_Con_El
);
6047 Next_Discriminant
(Discr
);
6050 end Build_Derived_Access_Type
;
6052 ------------------------------
6053 -- Build_Derived_Array_Type --
6054 ------------------------------
6056 procedure Build_Derived_Array_Type
6058 Parent_Type
: Entity_Id
;
6059 Derived_Type
: Entity_Id
)
6061 Loc
: constant Source_Ptr
:= Sloc
(N
);
6062 Tdef
: constant Node_Id
:= Type_Definition
(N
);
6063 Indic
: constant Node_Id
:= Subtype_Indication
(Tdef
);
6064 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
6065 Implicit_Base
: Entity_Id
;
6066 New_Indic
: Node_Id
;
6068 procedure Make_Implicit_Base
;
6069 -- If the parent subtype is constrained, the derived type is a subtype
6070 -- of an implicit base type derived from the parent base.
6072 ------------------------
6073 -- Make_Implicit_Base --
6074 ------------------------
6076 procedure Make_Implicit_Base
is
6079 Create_Itype
(Ekind
(Parent_Base
), N
, Derived_Type
, 'B');
6081 Set_Ekind
(Implicit_Base
, Ekind
(Parent_Base
));
6082 Set_Etype
(Implicit_Base
, Parent_Base
);
6084 Copy_Array_Subtype_Attributes
(Implicit_Base
, Parent_Base
);
6085 Copy_Array_Base_Type_Attributes
(Implicit_Base
, Parent_Base
);
6087 Set_Has_Delayed_Freeze
(Implicit_Base
, True);
6089 -- Inherit the "ghostness" from the parent base type
6091 if Is_Ghost_Entity
(Parent_Base
) or else Ghost_Mode
> None
then
6092 Set_Is_Ghost_Entity
(Implicit_Base
);
6094 end Make_Implicit_Base
;
6096 -- Start of processing for Build_Derived_Array_Type
6099 if not Is_Constrained
(Parent_Type
) then
6100 if Nkind
(Indic
) /= N_Subtype_Indication
then
6101 Set_Ekind
(Derived_Type
, E_Array_Type
);
6103 Copy_Array_Subtype_Attributes
(Derived_Type
, Parent_Type
);
6104 Copy_Array_Base_Type_Attributes
(Derived_Type
, Parent_Type
);
6106 Set_Has_Delayed_Freeze
(Derived_Type
, True);
6110 Set_Etype
(Derived_Type
, Implicit_Base
);
6113 Make_Subtype_Declaration
(Loc
,
6114 Defining_Identifier
=> Derived_Type
,
6115 Subtype_Indication
=>
6116 Make_Subtype_Indication
(Loc
,
6117 Subtype_Mark
=> New_Occurrence_Of
(Implicit_Base
, Loc
),
6118 Constraint
=> Constraint
(Indic
)));
6120 Rewrite
(N
, New_Indic
);
6125 if Nkind
(Indic
) /= N_Subtype_Indication
then
6128 Set_Ekind
(Derived_Type
, Ekind
(Parent_Type
));
6129 Set_Etype
(Derived_Type
, Implicit_Base
);
6130 Copy_Array_Subtype_Attributes
(Derived_Type
, Parent_Type
);
6133 Error_Msg_N
("illegal constraint on constrained type", Indic
);
6137 -- If parent type is not a derived type itself, and is declared in
6138 -- closed scope (e.g. a subprogram), then we must explicitly introduce
6139 -- the new type's concatenation operator since Derive_Subprograms
6140 -- will not inherit the parent's operator. If the parent type is
6141 -- unconstrained, the operator is of the unconstrained base type.
6143 if Number_Dimensions
(Parent_Type
) = 1
6144 and then not Is_Limited_Type
(Parent_Type
)
6145 and then not Is_Derived_Type
(Parent_Type
)
6146 and then not Is_Package_Or_Generic_Package
6147 (Scope
(Base_Type
(Parent_Type
)))
6149 if not Is_Constrained
(Parent_Type
)
6150 and then Is_Constrained
(Derived_Type
)
6152 New_Concatenation_Op
(Implicit_Base
);
6154 New_Concatenation_Op
(Derived_Type
);
6157 end Build_Derived_Array_Type
;
6159 -----------------------------------
6160 -- Build_Derived_Concurrent_Type --
6161 -----------------------------------
6163 procedure Build_Derived_Concurrent_Type
6165 Parent_Type
: Entity_Id
;
6166 Derived_Type
: Entity_Id
)
6168 Loc
: constant Source_Ptr
:= Sloc
(N
);
6170 Corr_Record
: constant Entity_Id
:= Make_Temporary
(Loc
, 'C');
6171 Corr_Decl
: Node_Id
;
6172 Corr_Decl_Needed
: Boolean;
6173 -- If the derived type has fewer discriminants than its parent, the
6174 -- corresponding record is also a derived type, in order to account for
6175 -- the bound discriminants. We create a full type declaration for it in
6178 Constraint_Present
: constant Boolean :=
6179 Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
6180 N_Subtype_Indication
;
6182 D_Constraint
: Node_Id
;
6183 New_Constraint
: Elist_Id
;
6184 Old_Disc
: Entity_Id
;
6185 New_Disc
: Entity_Id
;
6189 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
6190 Corr_Decl_Needed
:= False;
6193 if Present
(Discriminant_Specifications
(N
))
6194 and then Constraint_Present
6196 Old_Disc
:= First_Discriminant
(Parent_Type
);
6197 New_Disc
:= First
(Discriminant_Specifications
(N
));
6198 while Present
(New_Disc
) and then Present
(Old_Disc
) loop
6199 Next_Discriminant
(Old_Disc
);
6204 if Present
(Old_Disc
) and then Expander_Active
then
6206 -- The new type has fewer discriminants, so we need to create a new
6207 -- corresponding record, which is derived from the corresponding
6208 -- record of the parent, and has a stored constraint that captures
6209 -- the values of the discriminant constraints. The corresponding
6210 -- record is needed only if expander is active and code generation is
6213 -- The type declaration for the derived corresponding record has the
6214 -- same discriminant part and constraints as the current declaration.
6215 -- Copy the unanalyzed tree to build declaration.
6217 Corr_Decl_Needed
:= True;
6218 New_N
:= Copy_Separate_Tree
(N
);
6221 Make_Full_Type_Declaration
(Loc
,
6222 Defining_Identifier
=> Corr_Record
,
6223 Discriminant_Specifications
=>
6224 Discriminant_Specifications
(New_N
),
6226 Make_Derived_Type_Definition
(Loc
,
6227 Subtype_Indication
=>
6228 Make_Subtype_Indication
(Loc
,
6231 (Corresponding_Record_Type
(Parent_Type
), Loc
),
6234 (Subtype_Indication
(Type_Definition
(New_N
))))));
6237 -- Copy Storage_Size and Relative_Deadline variables if task case
6239 if Is_Task_Type
(Parent_Type
) then
6240 Set_Storage_Size_Variable
(Derived_Type
,
6241 Storage_Size_Variable
(Parent_Type
));
6242 Set_Relative_Deadline_Variable
(Derived_Type
,
6243 Relative_Deadline_Variable
(Parent_Type
));
6246 if Present
(Discriminant_Specifications
(N
)) then
6247 Push_Scope
(Derived_Type
);
6248 Check_Or_Process_Discriminants
(N
, Derived_Type
);
6250 if Constraint_Present
then
6252 Expand_To_Stored_Constraint
6254 Build_Discriminant_Constraints
6256 Subtype_Indication
(Type_Definition
(N
)), True));
6261 elsif Constraint_Present
then
6263 -- Build constrained subtype, copying the constraint, and derive
6264 -- from it to create a derived constrained type.
6267 Loc
: constant Source_Ptr
:= Sloc
(N
);
6268 Anon
: constant Entity_Id
:=
6269 Make_Defining_Identifier
(Loc
,
6270 Chars
=> New_External_Name
(Chars
(Derived_Type
), 'T'));
6275 Make_Subtype_Declaration
(Loc
,
6276 Defining_Identifier
=> Anon
,
6277 Subtype_Indication
=>
6278 New_Copy_Tree
(Subtype_Indication
(Type_Definition
(N
))));
6279 Insert_Before
(N
, Decl
);
6282 Rewrite
(Subtype_Indication
(Type_Definition
(N
)),
6283 New_Occurrence_Of
(Anon
, Loc
));
6284 Set_Analyzed
(Derived_Type
, False);
6290 -- By default, operations and private data are inherited from parent.
6291 -- However, in the presence of bound discriminants, a new corresponding
6292 -- record will be created, see below.
6294 Set_Has_Discriminants
6295 (Derived_Type
, Has_Discriminants
(Parent_Type
));
6296 Set_Corresponding_Record_Type
6297 (Derived_Type
, Corresponding_Record_Type
(Parent_Type
));
6299 -- Is_Constrained is set according the parent subtype, but is set to
6300 -- False if the derived type is declared with new discriminants.
6304 (Is_Constrained
(Parent_Type
) or else Constraint_Present
)
6305 and then not Present
(Discriminant_Specifications
(N
)));
6307 if Constraint_Present
then
6308 if not Has_Discriminants
(Parent_Type
) then
6309 Error_Msg_N
("untagged parent must have discriminants", N
);
6311 elsif Present
(Discriminant_Specifications
(N
)) then
6313 -- Verify that new discriminants are used to constrain old ones
6318 (Constraint
(Subtype_Indication
(Type_Definition
(N
)))));
6320 Old_Disc
:= First_Discriminant
(Parent_Type
);
6322 while Present
(D_Constraint
) loop
6323 if Nkind
(D_Constraint
) /= N_Discriminant_Association
then
6325 -- Positional constraint. If it is a reference to a new
6326 -- discriminant, it constrains the corresponding old one.
6328 if Nkind
(D_Constraint
) = N_Identifier
then
6329 New_Disc
:= First_Discriminant
(Derived_Type
);
6330 while Present
(New_Disc
) loop
6331 exit when Chars
(New_Disc
) = Chars
(D_Constraint
);
6332 Next_Discriminant
(New_Disc
);
6335 if Present
(New_Disc
) then
6336 Set_Corresponding_Discriminant
(New_Disc
, Old_Disc
);
6340 Next_Discriminant
(Old_Disc
);
6342 -- if this is a named constraint, search by name for the old
6343 -- discriminants constrained by the new one.
6345 elsif Nkind
(Expression
(D_Constraint
)) = N_Identifier
then
6347 -- Find new discriminant with that name
6349 New_Disc
:= First_Discriminant
(Derived_Type
);
6350 while Present
(New_Disc
) loop
6352 Chars
(New_Disc
) = Chars
(Expression
(D_Constraint
));
6353 Next_Discriminant
(New_Disc
);
6356 if Present
(New_Disc
) then
6358 -- Verify that new discriminant renames some discriminant
6359 -- of the parent type, and associate the new discriminant
6360 -- with one or more old ones that it renames.
6366 Selector
:= First
(Selector_Names
(D_Constraint
));
6367 while Present
(Selector
) loop
6368 Old_Disc
:= First_Discriminant
(Parent_Type
);
6369 while Present
(Old_Disc
) loop
6370 exit when Chars
(Old_Disc
) = Chars
(Selector
);
6371 Next_Discriminant
(Old_Disc
);
6374 if Present
(Old_Disc
) then
6375 Set_Corresponding_Discriminant
6376 (New_Disc
, Old_Disc
);
6385 Next
(D_Constraint
);
6388 New_Disc
:= First_Discriminant
(Derived_Type
);
6389 while Present
(New_Disc
) loop
6390 if No
(Corresponding_Discriminant
(New_Disc
)) then
6392 ("new discriminant& must constrain old one", N
, New_Disc
);
6395 Subtypes_Statically_Compatible
6397 Etype
(Corresponding_Discriminant
(New_Disc
)))
6400 ("& not statically compatible with parent discriminant",
6404 Next_Discriminant
(New_Disc
);
6408 elsif Present
(Discriminant_Specifications
(N
)) then
6410 ("missing discriminant constraint in untagged derivation", N
);
6413 -- The entity chain of the derived type includes the new discriminants
6414 -- but shares operations with the parent.
6416 if Present
(Discriminant_Specifications
(N
)) then
6417 Old_Disc
:= First_Discriminant
(Parent_Type
);
6418 while Present
(Old_Disc
) loop
6419 if No
(Next_Entity
(Old_Disc
))
6420 or else Ekind
(Next_Entity
(Old_Disc
)) /= E_Discriminant
6423 (Last_Entity
(Derived_Type
), Next_Entity
(Old_Disc
));
6427 Next_Discriminant
(Old_Disc
);
6431 Set_First_Entity
(Derived_Type
, First_Entity
(Parent_Type
));
6432 if Has_Discriminants
(Parent_Type
) then
6433 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
6434 Set_Discriminant_Constraint
(
6435 Derived_Type
, Discriminant_Constraint
(Parent_Type
));
6439 Set_Last_Entity
(Derived_Type
, Last_Entity
(Parent_Type
));
6441 Set_Has_Completion
(Derived_Type
);
6443 if Corr_Decl_Needed
then
6444 Set_Stored_Constraint
(Derived_Type
, New_Constraint
);
6445 Insert_After
(N
, Corr_Decl
);
6446 Analyze
(Corr_Decl
);
6447 Set_Corresponding_Record_Type
(Derived_Type
, Corr_Record
);
6449 end Build_Derived_Concurrent_Type
;
6451 ------------------------------------
6452 -- Build_Derived_Enumeration_Type --
6453 ------------------------------------
6455 procedure Build_Derived_Enumeration_Type
6457 Parent_Type
: Entity_Id
;
6458 Derived_Type
: Entity_Id
)
6460 Loc
: constant Source_Ptr
:= Sloc
(N
);
6461 Def
: constant Node_Id
:= Type_Definition
(N
);
6462 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
6463 Implicit_Base
: Entity_Id
;
6464 Literal
: Entity_Id
;
6465 New_Lit
: Entity_Id
;
6466 Literals_List
: List_Id
;
6467 Type_Decl
: Node_Id
;
6469 Rang_Expr
: Node_Id
;
6472 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
6473 -- not have explicit literals lists we need to process types derived
6474 -- from them specially. This is handled by Derived_Standard_Character.
6475 -- If the parent type is a generic type, there are no literals either,
6476 -- and we construct the same skeletal representation as for the generic
6479 if Is_Standard_Character_Type
(Parent_Type
) then
6480 Derived_Standard_Character
(N
, Parent_Type
, Derived_Type
);
6482 elsif Is_Generic_Type
(Root_Type
(Parent_Type
)) then
6488 if Nkind
(Indic
) /= N_Subtype_Indication
then
6490 Make_Attribute_Reference
(Loc
,
6491 Attribute_Name
=> Name_First
,
6492 Prefix
=> New_Occurrence_Of
(Derived_Type
, Loc
));
6493 Set_Etype
(Lo
, Derived_Type
);
6496 Make_Attribute_Reference
(Loc
,
6497 Attribute_Name
=> Name_Last
,
6498 Prefix
=> New_Occurrence_Of
(Derived_Type
, Loc
));
6499 Set_Etype
(Hi
, Derived_Type
);
6501 Set_Scalar_Range
(Derived_Type
,
6507 -- Analyze subtype indication and verify compatibility
6508 -- with parent type.
6510 if Base_Type
(Process_Subtype
(Indic
, N
)) /=
6511 Base_Type
(Parent_Type
)
6514 ("illegal constraint for formal discrete type", N
);
6520 -- If a constraint is present, analyze the bounds to catch
6521 -- premature usage of the derived literals.
6523 if Nkind
(Indic
) = N_Subtype_Indication
6524 and then Nkind
(Range_Expression
(Constraint
(Indic
))) = N_Range
6526 Analyze
(Low_Bound
(Range_Expression
(Constraint
(Indic
))));
6527 Analyze
(High_Bound
(Range_Expression
(Constraint
(Indic
))));
6530 -- Introduce an implicit base type for the derived type even if there
6531 -- is no constraint attached to it, since this seems closer to the
6532 -- Ada semantics. Build a full type declaration tree for the derived
6533 -- type using the implicit base type as the defining identifier. The
6534 -- build a subtype declaration tree which applies the constraint (if
6535 -- any) have it replace the derived type declaration.
6537 Literal
:= First_Literal
(Parent_Type
);
6538 Literals_List
:= New_List
;
6539 while Present
(Literal
)
6540 and then Ekind
(Literal
) = E_Enumeration_Literal
6542 -- Literals of the derived type have the same representation as
6543 -- those of the parent type, but this representation can be
6544 -- overridden by an explicit representation clause. Indicate
6545 -- that there is no explicit representation given yet. These
6546 -- derived literals are implicit operations of the new type,
6547 -- and can be overridden by explicit ones.
6549 if Nkind
(Literal
) = N_Defining_Character_Literal
then
6551 Make_Defining_Character_Literal
(Loc
, Chars
(Literal
));
6553 New_Lit
:= Make_Defining_Identifier
(Loc
, Chars
(Literal
));
6556 Set_Ekind
(New_Lit
, E_Enumeration_Literal
);
6557 Set_Enumeration_Pos
(New_Lit
, Enumeration_Pos
(Literal
));
6558 Set_Enumeration_Rep
(New_Lit
, Enumeration_Rep
(Literal
));
6559 Set_Enumeration_Rep_Expr
(New_Lit
, Empty
);
6560 Set_Alias
(New_Lit
, Literal
);
6561 Set_Is_Known_Valid
(New_Lit
, True);
6563 Append
(New_Lit
, Literals_List
);
6564 Next_Literal
(Literal
);
6568 Make_Defining_Identifier
(Sloc
(Derived_Type
),
6569 Chars
=> New_External_Name
(Chars
(Derived_Type
), 'B'));
6571 -- Indicate the proper nature of the derived type. This must be done
6572 -- before analysis of the literals, to recognize cases when a literal
6573 -- may be hidden by a previous explicit function definition (cf.
6576 Set_Ekind
(Derived_Type
, E_Enumeration_Subtype
);
6577 Set_Etype
(Derived_Type
, Implicit_Base
);
6580 Make_Full_Type_Declaration
(Loc
,
6581 Defining_Identifier
=> Implicit_Base
,
6582 Discriminant_Specifications
=> No_List
,
6584 Make_Enumeration_Type_Definition
(Loc
, Literals_List
));
6586 Mark_Rewrite_Insertion
(Type_Decl
);
6587 Insert_Before
(N
, Type_Decl
);
6588 Analyze
(Type_Decl
);
6590 -- The anonymous base now has a full declaration, but this base
6591 -- is not a first subtype.
6593 Set_Is_First_Subtype
(Implicit_Base
, False);
6595 -- After the implicit base is analyzed its Etype needs to be changed
6596 -- to reflect the fact that it is derived from the parent type which
6597 -- was ignored during analysis. We also set the size at this point.
6599 Set_Etype
(Implicit_Base
, Parent_Type
);
6601 Set_Size_Info
(Implicit_Base
, Parent_Type
);
6602 Set_RM_Size
(Implicit_Base
, RM_Size
(Parent_Type
));
6603 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Parent_Type
));
6605 -- Copy other flags from parent type
6607 Set_Has_Non_Standard_Rep
6608 (Implicit_Base
, Has_Non_Standard_Rep
6610 Set_Has_Pragma_Ordered
6611 (Implicit_Base
, Has_Pragma_Ordered
6613 Set_Has_Delayed_Freeze
(Implicit_Base
);
6615 -- Process the subtype indication including a validation check on the
6616 -- constraint, if any. If a constraint is given, its bounds must be
6617 -- implicitly converted to the new type.
6619 if Nkind
(Indic
) = N_Subtype_Indication
then
6621 R
: constant Node_Id
:=
6622 Range_Expression
(Constraint
(Indic
));
6625 if Nkind
(R
) = N_Range
then
6626 Hi
:= Build_Scalar_Bound
6627 (High_Bound
(R
), Parent_Type
, Implicit_Base
);
6628 Lo
:= Build_Scalar_Bound
6629 (Low_Bound
(R
), Parent_Type
, Implicit_Base
);
6632 -- Constraint is a Range attribute. Replace with explicit
6633 -- mention of the bounds of the prefix, which must be a
6636 Analyze
(Prefix
(R
));
6638 Convert_To
(Implicit_Base
,
6639 Make_Attribute_Reference
(Loc
,
6640 Attribute_Name
=> Name_Last
,
6642 New_Occurrence_Of
(Entity
(Prefix
(R
)), Loc
)));
6645 Convert_To
(Implicit_Base
,
6646 Make_Attribute_Reference
(Loc
,
6647 Attribute_Name
=> Name_First
,
6649 New_Occurrence_Of
(Entity
(Prefix
(R
)), Loc
)));
6656 (Type_High_Bound
(Parent_Type
),
6657 Parent_Type
, Implicit_Base
);
6660 (Type_Low_Bound
(Parent_Type
),
6661 Parent_Type
, Implicit_Base
);
6669 -- If we constructed a default range for the case where no range
6670 -- was given, then the expressions in the range must not freeze
6671 -- since they do not correspond to expressions in the source.
6673 if Nkind
(Indic
) /= N_Subtype_Indication
then
6674 Set_Must_Not_Freeze
(Lo
);
6675 Set_Must_Not_Freeze
(Hi
);
6676 Set_Must_Not_Freeze
(Rang_Expr
);
6680 Make_Subtype_Declaration
(Loc
,
6681 Defining_Identifier
=> Derived_Type
,
6682 Subtype_Indication
=>
6683 Make_Subtype_Indication
(Loc
,
6684 Subtype_Mark
=> New_Occurrence_Of
(Implicit_Base
, Loc
),
6686 Make_Range_Constraint
(Loc
,
6687 Range_Expression
=> Rang_Expr
))));
6691 -- Propagate the aspects from the original type declaration to the
6692 -- declaration of the implicit base.
6694 Move_Aspects
(From
=> Original_Node
(N
), To
=> Type_Decl
);
6696 -- Apply a range check. Since this range expression doesn't have an
6697 -- Etype, we have to specifically pass the Source_Typ parameter. Is
6700 if Nkind
(Indic
) = N_Subtype_Indication
then
6702 (Range_Expression
(Constraint
(Indic
)), Parent_Type
,
6703 Source_Typ
=> Entity
(Subtype_Mark
(Indic
)));
6706 end Build_Derived_Enumeration_Type
;
6708 --------------------------------
6709 -- Build_Derived_Numeric_Type --
6710 --------------------------------
6712 procedure Build_Derived_Numeric_Type
6714 Parent_Type
: Entity_Id
;
6715 Derived_Type
: Entity_Id
)
6717 Loc
: constant Source_Ptr
:= Sloc
(N
);
6718 Tdef
: constant Node_Id
:= Type_Definition
(N
);
6719 Indic
: constant Node_Id
:= Subtype_Indication
(Tdef
);
6720 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
6721 No_Constraint
: constant Boolean := Nkind
(Indic
) /=
6722 N_Subtype_Indication
;
6723 Implicit_Base
: Entity_Id
;
6729 -- Process the subtype indication including a validation check on
6730 -- the constraint if any.
6732 Discard_Node
(Process_Subtype
(Indic
, N
));
6734 -- Introduce an implicit base type for the derived type even if there
6735 -- is no constraint attached to it, since this seems closer to the Ada
6739 Create_Itype
(Ekind
(Parent_Base
), N
, Derived_Type
, 'B');
6741 Set_Etype
(Implicit_Base
, Parent_Base
);
6742 Set_Ekind
(Implicit_Base
, Ekind
(Parent_Base
));
6743 Set_Size_Info
(Implicit_Base
, Parent_Base
);
6744 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Parent_Base
));
6745 Set_Parent
(Implicit_Base
, Parent
(Derived_Type
));
6746 Set_Is_Known_Valid
(Implicit_Base
, Is_Known_Valid
(Parent_Base
));
6748 -- Set RM Size for discrete type or decimal fixed-point type
6749 -- Ordinary fixed-point is excluded, why???
6751 if Is_Discrete_Type
(Parent_Base
)
6752 or else Is_Decimal_Fixed_Point_Type
(Parent_Base
)
6754 Set_RM_Size
(Implicit_Base
, RM_Size
(Parent_Base
));
6757 Set_Has_Delayed_Freeze
(Implicit_Base
);
6759 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Base
));
6760 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Base
));
6762 Set_Scalar_Range
(Implicit_Base
,
6767 if Has_Infinities
(Parent_Base
) then
6768 Set_Includes_Infinities
(Scalar_Range
(Implicit_Base
));
6771 -- The Derived_Type, which is the entity of the declaration, is a
6772 -- subtype of the implicit base. Its Ekind is a subtype, even in the
6773 -- absence of an explicit constraint.
6775 Set_Etype
(Derived_Type
, Implicit_Base
);
6777 -- If we did not have a constraint, then the Ekind is set from the
6778 -- parent type (otherwise Process_Subtype has set the bounds)
6780 if No_Constraint
then
6781 Set_Ekind
(Derived_Type
, Subtype_Kind
(Ekind
(Parent_Type
)));
6784 -- If we did not have a range constraint, then set the range from the
6785 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
6787 if No_Constraint
or else not Has_Range_Constraint
(Indic
) then
6788 Set_Scalar_Range
(Derived_Type
,
6790 Low_Bound
=> New_Copy_Tree
(Type_Low_Bound
(Parent_Type
)),
6791 High_Bound
=> New_Copy_Tree
(Type_High_Bound
(Parent_Type
))));
6792 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
6794 if Has_Infinities
(Parent_Type
) then
6795 Set_Includes_Infinities
(Scalar_Range
(Derived_Type
));
6798 Set_Is_Known_Valid
(Derived_Type
, Is_Known_Valid
(Parent_Type
));
6801 Set_Is_Descendent_Of_Address
(Derived_Type
,
6802 Is_Descendent_Of_Address
(Parent_Type
));
6803 Set_Is_Descendent_Of_Address
(Implicit_Base
,
6804 Is_Descendent_Of_Address
(Parent_Type
));
6806 -- Set remaining type-specific fields, depending on numeric type
6808 if Is_Modular_Integer_Type
(Parent_Type
) then
6809 Set_Modulus
(Implicit_Base
, Modulus
(Parent_Base
));
6811 Set_Non_Binary_Modulus
6812 (Implicit_Base
, Non_Binary_Modulus
(Parent_Base
));
6815 (Implicit_Base
, Is_Known_Valid
(Parent_Base
));
6817 elsif Is_Floating_Point_Type
(Parent_Type
) then
6819 -- Digits of base type is always copied from the digits value of
6820 -- the parent base type, but the digits of the derived type will
6821 -- already have been set if there was a constraint present.
6823 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Parent_Base
));
6824 Set_Float_Rep
(Implicit_Base
, Float_Rep
(Parent_Base
));
6826 if No_Constraint
then
6827 Set_Digits_Value
(Derived_Type
, Digits_Value
(Parent_Type
));
6830 elsif Is_Fixed_Point_Type
(Parent_Type
) then
6832 -- Small of base type and derived type are always copied from the
6833 -- parent base type, since smalls never change. The delta of the
6834 -- base type is also copied from the parent base type. However the
6835 -- delta of the derived type will have been set already if a
6836 -- constraint was present.
6838 Set_Small_Value
(Derived_Type
, Small_Value
(Parent_Base
));
6839 Set_Small_Value
(Implicit_Base
, Small_Value
(Parent_Base
));
6840 Set_Delta_Value
(Implicit_Base
, Delta_Value
(Parent_Base
));
6842 if No_Constraint
then
6843 Set_Delta_Value
(Derived_Type
, Delta_Value
(Parent_Type
));
6846 -- The scale and machine radix in the decimal case are always
6847 -- copied from the parent base type.
6849 if Is_Decimal_Fixed_Point_Type
(Parent_Type
) then
6850 Set_Scale_Value
(Derived_Type
, Scale_Value
(Parent_Base
));
6851 Set_Scale_Value
(Implicit_Base
, Scale_Value
(Parent_Base
));
6853 Set_Machine_Radix_10
6854 (Derived_Type
, Machine_Radix_10
(Parent_Base
));
6855 Set_Machine_Radix_10
6856 (Implicit_Base
, Machine_Radix_10
(Parent_Base
));
6858 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Parent_Base
));
6860 if No_Constraint
then
6861 Set_Digits_Value
(Derived_Type
, Digits_Value
(Parent_Base
));
6864 -- the analysis of the subtype_indication sets the
6865 -- digits value of the derived type.
6872 if Is_Integer_Type
(Parent_Type
) then
6873 Set_Has_Shift_Operator
6874 (Implicit_Base
, Has_Shift_Operator
(Parent_Type
));
6877 -- The type of the bounds is that of the parent type, and they
6878 -- must be converted to the derived type.
6880 Convert_Scalar_Bounds
(N
, Parent_Type
, Derived_Type
, Loc
);
6882 -- The implicit_base should be frozen when the derived type is frozen,
6883 -- but note that it is used in the conversions of the bounds. For fixed
6884 -- types we delay the determination of the bounds until the proper
6885 -- freezing point. For other numeric types this is rejected by GCC, for
6886 -- reasons that are currently unclear (???), so we choose to freeze the
6887 -- implicit base now. In the case of integers and floating point types
6888 -- this is harmless because subsequent representation clauses cannot
6889 -- affect anything, but it is still baffling that we cannot use the
6890 -- same mechanism for all derived numeric types.
6892 -- There is a further complication: actually some representation
6893 -- clauses can affect the implicit base type. For example, attribute
6894 -- definition clauses for stream-oriented attributes need to set the
6895 -- corresponding TSS entries on the base type, and this normally
6896 -- cannot be done after the base type is frozen, so the circuitry in
6897 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
6898 -- and not use Set_TSS in this case.
6900 -- There are also consequences for the case of delayed representation
6901 -- aspects for some cases. For example, a Size aspect is delayed and
6902 -- should not be evaluated to the freeze point. This early freezing
6903 -- means that the size attribute evaluation happens too early???
6905 if Is_Fixed_Point_Type
(Parent_Type
) then
6906 Conditional_Delay
(Implicit_Base
, Parent_Type
);
6908 Freeze_Before
(N
, Implicit_Base
);
6910 end Build_Derived_Numeric_Type
;
6912 --------------------------------
6913 -- Build_Derived_Private_Type --
6914 --------------------------------
6916 procedure Build_Derived_Private_Type
6918 Parent_Type
: Entity_Id
;
6919 Derived_Type
: Entity_Id
;
6920 Is_Completion
: Boolean;
6921 Derive_Subps
: Boolean := True)
6923 Loc
: constant Source_Ptr
:= Sloc
(N
);
6924 Par_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
6925 Par_Scope
: constant Entity_Id
:= Scope
(Par_Base
);
6926 Full_N
: constant Node_Id
:= New_Copy_Tree
(N
);
6927 Full_Der
: Entity_Id
:= New_Copy
(Derived_Type
);
6930 procedure Build_Full_Derivation
;
6931 -- Build full derivation, i.e. derive from the full view
6933 procedure Copy_And_Build
;
6934 -- Copy derived type declaration, replace parent with its full view,
6935 -- and build derivation
6937 ---------------------------
6938 -- Build_Full_Derivation --
6939 ---------------------------
6941 procedure Build_Full_Derivation
is
6943 -- If parent scope is not open, install the declarations
6945 if not In_Open_Scopes
(Par_Scope
) then
6946 Install_Private_Declarations
(Par_Scope
);
6947 Install_Visible_Declarations
(Par_Scope
);
6949 Uninstall_Declarations
(Par_Scope
);
6951 -- If parent scope is open and in another unit, and parent has a
6952 -- completion, then the derivation is taking place in the visible
6953 -- part of a child unit. In that case retrieve the full view of
6954 -- the parent momentarily.
6956 elsif not In_Same_Source_Unit
(N
, Parent_Type
) then
6957 Full_P
:= Full_View
(Parent_Type
);
6958 Exchange_Declarations
(Parent_Type
);
6960 Exchange_Declarations
(Full_P
);
6962 -- Otherwise it is a local derivation
6967 end Build_Full_Derivation
;
6969 --------------------
6970 -- Copy_And_Build --
6971 --------------------
6973 procedure Copy_And_Build
is
6974 Full_Parent
: Entity_Id
:= Parent_Type
;
6977 -- If the parent is itself derived from another private type,
6978 -- installing the private declarations has not affected its
6979 -- privacy status, so use its own full view explicitly.
6981 if Is_Private_Type
(Full_Parent
)
6982 and then Present
(Full_View
(Full_Parent
))
6984 Full_Parent
:= Full_View
(Full_Parent
);
6987 -- And its underlying full view if necessary
6989 if Is_Private_Type
(Full_Parent
)
6990 and then Present
(Underlying_Full_View
(Full_Parent
))
6992 Full_Parent
:= Underlying_Full_View
(Full_Parent
);
6995 -- For record, access and most enumeration types, derivation from
6996 -- the full view requires a fully-fledged declaration. In the other
6997 -- cases, just use an itype.
6999 if Ekind
(Full_Parent
) in Record_Kind
7000 or else Ekind
(Full_Parent
) in Access_Kind
7002 (Ekind
(Full_Parent
) in Enumeration_Kind
7003 and then not Is_Standard_Character_Type
(Full_Parent
)
7004 and then not Is_Generic_Type
(Root_Type
(Full_Parent
)))
7006 -- Copy and adjust declaration to provide a completion for what
7007 -- is originally a private declaration. Indicate that full view
7008 -- is internally generated.
7010 Set_Comes_From_Source
(Full_N
, False);
7011 Set_Comes_From_Source
(Full_Der
, False);
7012 Set_Parent
(Full_Der
, Full_N
);
7013 Set_Defining_Identifier
(Full_N
, Full_Der
);
7015 -- If there are no constraints, adjust the subtype mark
7017 if Nkind
(Subtype_Indication
(Type_Definition
(Full_N
))) /=
7018 N_Subtype_Indication
7020 Set_Subtype_Indication
7021 (Type_Definition
(Full_N
),
7022 New_Occurrence_Of
(Full_Parent
, Sloc
(Full_N
)));
7025 Insert_After
(N
, Full_N
);
7027 -- Build full view of derived type from full view of parent which
7028 -- is now installed. Subprograms have been derived on the partial
7029 -- view, the completion does not derive them anew.
7031 if Ekind
(Full_Parent
) in Record_Kind
then
7033 -- If parent type is tagged, the completion inherits the proper
7034 -- primitive operations.
7036 if Is_Tagged_Type
(Parent_Type
) then
7037 Build_Derived_Record_Type
7038 (Full_N
, Full_Parent
, Full_Der
, Derive_Subps
);
7040 Build_Derived_Record_Type
7041 (Full_N
, Full_Parent
, Full_Der
, Derive_Subps
=> False);
7046 (Full_N
, Full_Parent
, Full_Der
,
7047 Is_Completion
=> False, Derive_Subps
=> False);
7050 -- The full declaration has been introduced into the tree and
7051 -- processed in the step above. It should not be analyzed again
7052 -- (when encountered later in the current list of declarations)
7053 -- to prevent spurious name conflicts. The full entity remains
7056 Set_Analyzed
(Full_N
);
7060 Make_Defining_Identifier
(Sloc
(Derived_Type
),
7061 Chars
=> Chars
(Derived_Type
));
7062 Set_Is_Itype
(Full_Der
);
7063 Set_Associated_Node_For_Itype
(Full_Der
, N
);
7064 Set_Parent
(Full_Der
, N
);
7066 (N
, Full_Parent
, Full_Der
,
7067 Is_Completion
=> False, Derive_Subps
=> False);
7070 Set_Has_Private_Declaration
(Full_Der
);
7071 Set_Has_Private_Declaration
(Derived_Type
);
7073 Set_Scope
(Full_Der
, Scope
(Derived_Type
));
7074 Set_Is_First_Subtype
(Full_Der
, Is_First_Subtype
(Derived_Type
));
7075 Set_Has_Size_Clause
(Full_Der
, False);
7076 Set_Has_Alignment_Clause
(Full_Der
, False);
7077 Set_Has_Delayed_Freeze
(Full_Der
);
7078 Set_Is_Frozen
(Full_Der
, False);
7079 Set_Freeze_Node
(Full_Der
, Empty
);
7080 Set_Depends_On_Private
(Full_Der
, Has_Private_Component
(Full_Der
));
7081 Set_Is_Public
(Full_Der
, Is_Public
(Derived_Type
));
7083 -- The convention on the base type may be set in the private part
7084 -- and not propagated to the subtype until later, so we obtain the
7085 -- convention from the base type of the parent.
7087 Set_Convention
(Full_Der
, Convention
(Base_Type
(Full_Parent
)));
7090 -- Start of processing for Build_Derived_Private_Type
7093 if Is_Tagged_Type
(Parent_Type
) then
7094 Full_P
:= Full_View
(Parent_Type
);
7096 -- A type extension of a type with unknown discriminants is an
7097 -- indefinite type that the back-end cannot handle directly.
7098 -- We treat it as a private type, and build a completion that is
7099 -- derived from the full view of the parent, and hopefully has
7100 -- known discriminants.
7102 -- If the full view of the parent type has an underlying record view,
7103 -- use it to generate the underlying record view of this derived type
7104 -- (required for chains of derivations with unknown discriminants).
7106 -- Minor optimization: we avoid the generation of useless underlying
7107 -- record view entities if the private type declaration has unknown
7108 -- discriminants but its corresponding full view has no
7111 if Has_Unknown_Discriminants
(Parent_Type
)
7112 and then Present
(Full_P
)
7113 and then (Has_Discriminants
(Full_P
)
7114 or else Present
(Underlying_Record_View
(Full_P
)))
7115 and then not In_Open_Scopes
(Par_Scope
)
7116 and then Expander_Active
7119 Full_Der
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
7120 New_Ext
: constant Node_Id
:=
7122 (Record_Extension_Part
(Type_Definition
(N
)));
7126 Build_Derived_Record_Type
7127 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
7129 -- Build anonymous completion, as a derivation from the full
7130 -- view of the parent. This is not a completion in the usual
7131 -- sense, because the current type is not private.
7134 Make_Full_Type_Declaration
(Loc
,
7135 Defining_Identifier
=> Full_Der
,
7137 Make_Derived_Type_Definition
(Loc
,
7138 Subtype_Indication
=>
7140 (Subtype_Indication
(Type_Definition
(N
))),
7141 Record_Extension_Part
=> New_Ext
));
7143 -- If the parent type has an underlying record view, use it
7144 -- here to build the new underlying record view.
7146 if Present
(Underlying_Record_View
(Full_P
)) then
7148 (Nkind
(Subtype_Indication
(Type_Definition
(Decl
)))
7150 Set_Entity
(Subtype_Indication
(Type_Definition
(Decl
)),
7151 Underlying_Record_View
(Full_P
));
7154 Install_Private_Declarations
(Par_Scope
);
7155 Install_Visible_Declarations
(Par_Scope
);
7156 Insert_Before
(N
, Decl
);
7158 -- Mark entity as an underlying record view before analysis,
7159 -- to avoid generating the list of its primitive operations
7160 -- (which is not really required for this entity) and thus
7161 -- prevent spurious errors associated with missing overriding
7162 -- of abstract primitives (overridden only for Derived_Type).
7164 Set_Ekind
(Full_Der
, E_Record_Type
);
7165 Set_Is_Underlying_Record_View
(Full_Der
);
7166 Set_Default_SSO
(Full_Der
);
7170 pragma Assert
(Has_Discriminants
(Full_Der
)
7171 and then not Has_Unknown_Discriminants
(Full_Der
));
7173 Uninstall_Declarations
(Par_Scope
);
7175 -- Freeze the underlying record view, to prevent generation of
7176 -- useless dispatching information, which is simply shared with
7177 -- the real derived type.
7179 Set_Is_Frozen
(Full_Der
);
7181 -- If the derived type has access discriminants, create
7182 -- references to their anonymous types now, to prevent
7183 -- back-end problems when their first use is in generated
7184 -- bodies of primitives.
7190 E
:= First_Entity
(Full_Der
);
7192 while Present
(E
) loop
7193 if Ekind
(E
) = E_Discriminant
7194 and then Ekind
(Etype
(E
)) = E_Anonymous_Access_Type
7196 Build_Itype_Reference
(Etype
(E
), Decl
);
7203 -- Set up links between real entity and underlying record view
7205 Set_Underlying_Record_View
(Derived_Type
, Base_Type
(Full_Der
));
7206 Set_Underlying_Record_View
(Base_Type
(Full_Der
), Derived_Type
);
7209 -- If discriminants are known, build derived record
7212 Build_Derived_Record_Type
7213 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
7218 elsif Has_Discriminants
(Parent_Type
) then
7220 -- Build partial view of derived type from partial view of parent.
7221 -- This must be done before building the full derivation because the
7222 -- second derivation will modify the discriminants of the first and
7223 -- the discriminants are chained with the rest of the components in
7224 -- the full derivation.
7226 Build_Derived_Record_Type
7227 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
7229 -- Build the full derivation if this is not the anonymous derived
7230 -- base type created by Build_Derived_Record_Type in the constrained
7231 -- case (see point 5. of its head comment) since we build it for the
7232 -- derived subtype. And skip it for protected types altogether, as
7233 -- gigi does not use these types directly.
7235 if Present
(Full_View
(Parent_Type
))
7236 and then not Is_Itype
(Derived_Type
)
7237 and then not (Ekind
(Full_View
(Parent_Type
)) in Protected_Kind
)
7240 Der_Base
: constant Entity_Id
:= Base_Type
(Derived_Type
);
7242 Last_Discr
: Entity_Id
;
7245 -- If this is not a completion, construct the implicit full
7246 -- view by deriving from the full view of the parent type.
7247 -- But if this is a completion, the derived private type
7248 -- being built is a full view and the full derivation can
7249 -- only be its underlying full view.
7251 Build_Full_Derivation
;
7253 if not Is_Completion
then
7254 Set_Full_View
(Derived_Type
, Full_Der
);
7256 Set_Underlying_Full_View
(Derived_Type
, Full_Der
);
7259 if not Is_Base_Type
(Derived_Type
) then
7260 Set_Full_View
(Der_Base
, Base_Type
(Full_Der
));
7263 -- Copy the discriminant list from full view to the partial
7264 -- view (base type and its subtype). Gigi requires that the
7265 -- partial and full views have the same discriminants.
7267 -- Note that since the partial view points to discriminants
7268 -- in the full view, their scope will be that of the full
7269 -- view. This might cause some front end problems and need
7272 Discr
:= First_Discriminant
(Base_Type
(Full_Der
));
7273 Set_First_Entity
(Der_Base
, Discr
);
7276 Last_Discr
:= Discr
;
7277 Next_Discriminant
(Discr
);
7278 exit when No
(Discr
);
7281 Set_Last_Entity
(Der_Base
, Last_Discr
);
7282 Set_First_Entity
(Derived_Type
, First_Entity
(Der_Base
));
7283 Set_Last_Entity
(Derived_Type
, Last_Entity
(Der_Base
));
7285 Set_Stored_Constraint
7286 (Full_Der
, Stored_Constraint
(Derived_Type
));
7290 elsif Present
(Full_View
(Parent_Type
))
7291 and then Has_Discriminants
(Full_View
(Parent_Type
))
7293 if Has_Unknown_Discriminants
(Parent_Type
)
7294 and then Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
7295 N_Subtype_Indication
7298 ("cannot constrain type with unknown discriminants",
7299 Subtype_Indication
(Type_Definition
(N
)));
7303 -- If this is not a completion, construct the implicit full view by
7304 -- deriving from the full view of the parent type. But if this is a
7305 -- completion, the derived private type being built is a full view
7306 -- and the full derivation can only be its underlying full view.
7308 Build_Full_Derivation
;
7310 if not Is_Completion
then
7311 Set_Full_View
(Derived_Type
, Full_Der
);
7313 Set_Underlying_Full_View
(Derived_Type
, Full_Der
);
7316 -- In any case, the primitive operations are inherited from the
7317 -- parent type, not from the internal full view.
7319 Set_Etype
(Base_Type
(Derived_Type
), Base_Type
(Parent_Type
));
7321 if Derive_Subps
then
7322 Derive_Subprograms
(Parent_Type
, Derived_Type
);
7325 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
7327 (Derived_Type
, Is_Constrained
(Full_View
(Parent_Type
)));
7330 -- Untagged type, No discriminants on either view
7332 if Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
7333 N_Subtype_Indication
7336 ("illegal constraint on type without discriminants", N
);
7339 if Present
(Discriminant_Specifications
(N
))
7340 and then Present
(Full_View
(Parent_Type
))
7341 and then not Is_Tagged_Type
(Full_View
(Parent_Type
))
7343 Error_Msg_N
("cannot add discriminants to untagged type", N
);
7346 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
7347 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
7348 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Type
));
7349 Set_Has_Controlled_Component
7350 (Derived_Type
, Has_Controlled_Component
7353 -- Direct controlled types do not inherit Finalize_Storage_Only flag
7355 if not Is_Controlled
(Parent_Type
) then
7356 Set_Finalize_Storage_Only
7357 (Base_Type
(Derived_Type
), Finalize_Storage_Only
(Parent_Type
));
7360 -- If this is not a completion, construct the implicit full view by
7361 -- deriving from the full view of the parent type.
7363 -- ??? If the parent is untagged private and its completion is
7364 -- tagged, this mechanism will not work because we cannot derive from
7365 -- the tagged full view unless we have an extension.
7367 if Present
(Full_View
(Parent_Type
))
7368 and then not Is_Tagged_Type
(Full_View
(Parent_Type
))
7369 and then not Is_Completion
7371 Build_Full_Derivation
;
7372 Set_Full_View
(Derived_Type
, Full_Der
);
7376 Set_Has_Unknown_Discriminants
(Derived_Type
,
7377 Has_Unknown_Discriminants
(Parent_Type
));
7379 if Is_Private_Type
(Derived_Type
) then
7380 Set_Private_Dependents
(Derived_Type
, New_Elmt_List
);
7383 -- If the parent base type is in scope, add the derived type to its
7384 -- list of private dependents, because its full view may become
7385 -- visible subsequently (in a nested private part, a body, or in a
7386 -- further child unit).
7388 if Is_Private_Type
(Par_Base
) and then In_Open_Scopes
(Par_Scope
) then
7389 Append_Elmt
(Derived_Type
, Private_Dependents
(Parent_Type
));
7391 -- Check for unusual case where a type completed by a private
7392 -- derivation occurs within a package nested in a child unit, and
7393 -- the parent is declared in an ancestor.
7395 if Is_Child_Unit
(Scope
(Current_Scope
))
7396 and then Is_Completion
7397 and then In_Private_Part
(Current_Scope
)
7398 and then Scope
(Parent_Type
) /= Current_Scope
7400 -- Note that if the parent has a completion in the private part,
7401 -- (which is itself a derivation from some other private type)
7402 -- it is that completion that is visible, there is no full view
7403 -- available, and no special processing is needed.
7405 and then Present
(Full_View
(Parent_Type
))
7407 -- In this case, the full view of the parent type will become
7408 -- visible in the body of the enclosing child, and only then will
7409 -- the current type be possibly non-private. Build an underlying
7410 -- full view that will be installed when the enclosing child body
7413 if Present
(Underlying_Full_View
(Derived_Type
)) then
7414 Full_Der
:= Underlying_Full_View
(Derived_Type
);
7416 Build_Full_Derivation
;
7417 Set_Underlying_Full_View
(Derived_Type
, Full_Der
);
7420 -- The full view will be used to swap entities on entry/exit to
7421 -- the body, and must appear in the entity list for the package.
7423 Append_Entity
(Full_Der
, Scope
(Derived_Type
));
7426 end Build_Derived_Private_Type
;
7428 -------------------------------
7429 -- Build_Derived_Record_Type --
7430 -------------------------------
7434 -- Ideally we would like to use the same model of type derivation for
7435 -- tagged and untagged record types. Unfortunately this is not quite
7436 -- possible because the semantics of representation clauses is different
7437 -- for tagged and untagged records under inheritance. Consider the
7440 -- type R (...) is [tagged] record ... end record;
7441 -- type T (...) is new R (...) [with ...];
7443 -- The representation clauses for T can specify a completely different
7444 -- record layout from R's. Hence the same component can be placed in two
7445 -- very different positions in objects of type T and R. If R and T are
7446 -- tagged types, representation clauses for T can only specify the layout
7447 -- of non inherited components, thus components that are common in R and T
7448 -- have the same position in objects of type R and T.
7450 -- This has two implications. The first is that the entire tree for R's
7451 -- declaration needs to be copied for T in the untagged case, so that T
7452 -- can be viewed as a record type of its own with its own representation
7453 -- clauses. The second implication is the way we handle discriminants.
7454 -- Specifically, in the untagged case we need a way to communicate to Gigi
7455 -- what are the real discriminants in the record, while for the semantics
7456 -- we need to consider those introduced by the user to rename the
7457 -- discriminants in the parent type. This is handled by introducing the
7458 -- notion of stored discriminants. See below for more.
7460 -- Fortunately the way regular components are inherited can be handled in
7461 -- the same way in tagged and untagged types.
7463 -- To complicate things a bit more the private view of a private extension
7464 -- cannot be handled in the same way as the full view (for one thing the
7465 -- semantic rules are somewhat different). We will explain what differs
7468 -- 2. DISCRIMINANTS UNDER INHERITANCE
7470 -- The semantic rules governing the discriminants of derived types are
7473 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
7474 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
7476 -- If parent type has discriminants, then the discriminants that are
7477 -- declared in the derived type are [3.4 (11)]:
7479 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
7482 -- o Otherwise, each discriminant of the parent type (implicitly declared
7483 -- in the same order with the same specifications). In this case, the
7484 -- discriminants are said to be "inherited", or if unknown in the parent
7485 -- are also unknown in the derived type.
7487 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
7489 -- o The parent subtype must be constrained;
7491 -- o If the parent type is not a tagged type, then each discriminant of
7492 -- the derived type must be used in the constraint defining a parent
7493 -- subtype. [Implementation note: This ensures that the new discriminant
7494 -- can share storage with an existing discriminant.]
7496 -- For the derived type each discriminant of the parent type is either
7497 -- inherited, constrained to equal some new discriminant of the derived
7498 -- type, or constrained to the value of an expression.
7500 -- When inherited or constrained to equal some new discriminant, the
7501 -- parent discriminant and the discriminant of the derived type are said
7504 -- If a discriminant of the parent type is constrained to a specific value
7505 -- in the derived type definition, then the discriminant is said to be
7506 -- "specified" by that derived type definition.
7508 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
7510 -- We have spoken about stored discriminants in point 1 (introduction)
7511 -- above. There are two sort of stored discriminants: implicit and
7512 -- explicit. As long as the derived type inherits the same discriminants as
7513 -- the root record type, stored discriminants are the same as regular
7514 -- discriminants, and are said to be implicit. However, if any discriminant
7515 -- in the root type was renamed in the derived type, then the derived
7516 -- type will contain explicit stored discriminants. Explicit stored
7517 -- discriminants are discriminants in addition to the semantically visible
7518 -- discriminants defined for the derived type. Stored discriminants are
7519 -- used by Gigi to figure out what are the physical discriminants in
7520 -- objects of the derived type (see precise definition in einfo.ads).
7521 -- As an example, consider the following:
7523 -- type R (D1, D2, D3 : Int) is record ... end record;
7524 -- type T1 is new R;
7525 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
7526 -- type T3 is new T2;
7527 -- type T4 (Y : Int) is new T3 (Y, 99);
7529 -- The following table summarizes the discriminants and stored
7530 -- discriminants in R and T1 through T4.
7532 -- Type Discrim Stored Discrim Comment
7533 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
7534 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
7535 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
7536 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
7537 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
7539 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
7540 -- find the corresponding discriminant in the parent type, while
7541 -- Original_Record_Component (abbreviated ORC below), the actual physical
7542 -- component that is renamed. Finally the field Is_Completely_Hidden
7543 -- (abbreviated ICH below) is set for all explicit stored discriminants
7544 -- (see einfo.ads for more info). For the above example this gives:
7546 -- Discrim CD ORC ICH
7547 -- ^^^^^^^ ^^ ^^^ ^^^
7548 -- D1 in R empty itself no
7549 -- D2 in R empty itself no
7550 -- D3 in R empty itself no
7552 -- D1 in T1 D1 in R itself no
7553 -- D2 in T1 D2 in R itself no
7554 -- D3 in T1 D3 in R itself no
7556 -- X1 in T2 D3 in T1 D3 in T2 no
7557 -- X2 in T2 D1 in T1 D1 in T2 no
7558 -- D1 in T2 empty itself yes
7559 -- D2 in T2 empty itself yes
7560 -- D3 in T2 empty itself yes
7562 -- X1 in T3 X1 in T2 D3 in T3 no
7563 -- X2 in T3 X2 in T2 D1 in T3 no
7564 -- D1 in T3 empty itself yes
7565 -- D2 in T3 empty itself yes
7566 -- D3 in T3 empty itself yes
7568 -- Y in T4 X1 in T3 D3 in T3 no
7569 -- D1 in T3 empty itself yes
7570 -- D2 in T3 empty itself yes
7571 -- D3 in T3 empty itself yes
7573 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
7575 -- Type derivation for tagged types is fairly straightforward. If no
7576 -- discriminants are specified by the derived type, these are inherited
7577 -- from the parent. No explicit stored discriminants are ever necessary.
7578 -- The only manipulation that is done to the tree is that of adding a
7579 -- _parent field with parent type and constrained to the same constraint
7580 -- specified for the parent in the derived type definition. For instance:
7582 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
7583 -- type T1 is new R with null record;
7584 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
7586 -- are changed into:
7588 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
7589 -- _parent : R (D1, D2, D3);
7592 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
7593 -- _parent : T1 (X2, 88, X1);
7596 -- The discriminants actually present in R, T1 and T2 as well as their CD,
7597 -- ORC and ICH fields are:
7599 -- Discrim CD ORC ICH
7600 -- ^^^^^^^ ^^ ^^^ ^^^
7601 -- D1 in R empty itself no
7602 -- D2 in R empty itself no
7603 -- D3 in R empty itself no
7605 -- D1 in T1 D1 in R D1 in R no
7606 -- D2 in T1 D2 in R D2 in R no
7607 -- D3 in T1 D3 in R D3 in R no
7609 -- X1 in T2 D3 in T1 D3 in R no
7610 -- X2 in T2 D1 in T1 D1 in R no
7612 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
7614 -- Regardless of whether we dealing with a tagged or untagged type
7615 -- we will transform all derived type declarations of the form
7617 -- type T is new R (...) [with ...];
7619 -- subtype S is R (...);
7620 -- type T is new S [with ...];
7622 -- type BT is new R [with ...];
7623 -- subtype T is BT (...);
7625 -- That is, the base derived type is constrained only if it has no
7626 -- discriminants. The reason for doing this is that GNAT's semantic model
7627 -- assumes that a base type with discriminants is unconstrained.
7629 -- Note that, strictly speaking, the above transformation is not always
7630 -- correct. Consider for instance the following excerpt from ACVC b34011a:
7632 -- procedure B34011A is
7633 -- type REC (D : integer := 0) is record
7638 -- type T6 is new Rec;
7639 -- function F return T6;
7644 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
7647 -- The definition of Q6.U is illegal. However transforming Q6.U into
7649 -- type BaseU is new T6;
7650 -- subtype U is BaseU (Q6.F.I)
7652 -- turns U into a legal subtype, which is incorrect. To avoid this problem
7653 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
7654 -- the transformation described above.
7656 -- There is another instance where the above transformation is incorrect.
7660 -- type Base (D : Integer) is tagged null record;
7661 -- procedure P (X : Base);
7663 -- type Der is new Base (2) with null record;
7664 -- procedure P (X : Der);
7667 -- Then the above transformation turns this into
7669 -- type Der_Base is new Base with null record;
7670 -- -- procedure P (X : Base) is implicitly inherited here
7671 -- -- as procedure P (X : Der_Base).
7673 -- subtype Der is Der_Base (2);
7674 -- procedure P (X : Der);
7675 -- -- The overriding of P (X : Der_Base) is illegal since we
7676 -- -- have a parameter conformance problem.
7678 -- To get around this problem, after having semantically processed Der_Base
7679 -- and the rewritten subtype declaration for Der, we copy Der_Base field
7680 -- Discriminant_Constraint from Der so that when parameter conformance is
7681 -- checked when P is overridden, no semantic errors are flagged.
7683 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
7685 -- Regardless of whether we are dealing with a tagged or untagged type
7686 -- we will transform all derived type declarations of the form
7688 -- type R (D1, .., Dn : ...) is [tagged] record ...;
7689 -- type T is new R [with ...];
7691 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
7693 -- The reason for such transformation is that it allows us to implement a
7694 -- very clean form of component inheritance as explained below.
7696 -- Note that this transformation is not achieved by direct tree rewriting
7697 -- and manipulation, but rather by redoing the semantic actions that the
7698 -- above transformation will entail. This is done directly in routine
7699 -- Inherit_Components.
7701 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
7703 -- In both tagged and untagged derived types, regular non discriminant
7704 -- components are inherited in the derived type from the parent type. In
7705 -- the absence of discriminants component, inheritance is straightforward
7706 -- as components can simply be copied from the parent.
7708 -- If the parent has discriminants, inheriting components constrained with
7709 -- these discriminants requires caution. Consider the following example:
7711 -- type R (D1, D2 : Positive) is [tagged] record
7712 -- S : String (D1 .. D2);
7715 -- type T1 is new R [with null record];
7716 -- type T2 (X : positive) is new R (1, X) [with null record];
7718 -- As explained in 6. above, T1 is rewritten as
7719 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
7720 -- which makes the treatment for T1 and T2 identical.
7722 -- What we want when inheriting S, is that references to D1 and D2 in R are
7723 -- replaced with references to their correct constraints, i.e. D1 and D2 in
7724 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
7725 -- with either discriminant references in the derived type or expressions.
7726 -- This replacement is achieved as follows: before inheriting R's
7727 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
7728 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
7729 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
7730 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
7731 -- by String (1 .. X).
7733 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
7735 -- We explain here the rules governing private type extensions relevant to
7736 -- type derivation. These rules are explained on the following example:
7738 -- type D [(...)] is new A [(...)] with private; <-- partial view
7739 -- type D [(...)] is new P [(...)] with null record; <-- full view
7741 -- Type A is called the ancestor subtype of the private extension.
7742 -- Type P is the parent type of the full view of the private extension. It
7743 -- must be A or a type derived from A.
7745 -- The rules concerning the discriminants of private type extensions are
7748 -- o If a private extension inherits known discriminants from the ancestor
7749 -- subtype, then the full view must also inherit its discriminants from
7750 -- the ancestor subtype and the parent subtype of the full view must be
7751 -- constrained if and only if the ancestor subtype is constrained.
7753 -- o If a partial view has unknown discriminants, then the full view may
7754 -- define a definite or an indefinite subtype, with or without
7757 -- o If a partial view has neither known nor unknown discriminants, then
7758 -- the full view must define a definite subtype.
7760 -- o If the ancestor subtype of a private extension has constrained
7761 -- discriminants, then the parent subtype of the full view must impose a
7762 -- statically matching constraint on those discriminants.
7764 -- This means that only the following forms of private extensions are
7767 -- type D is new A with private; <-- partial view
7768 -- type D is new P with null record; <-- full view
7770 -- If A has no discriminants than P has no discriminants, otherwise P must
7771 -- inherit A's discriminants.
7773 -- type D is new A (...) with private; <-- partial view
7774 -- type D is new P (:::) with null record; <-- full view
7776 -- P must inherit A's discriminants and (...) and (:::) must statically
7779 -- subtype A is R (...);
7780 -- type D is new A with private; <-- partial view
7781 -- type D is new P with null record; <-- full view
7783 -- P must have inherited R's discriminants and must be derived from A or
7784 -- any of its subtypes.
7786 -- type D (..) is new A with private; <-- partial view
7787 -- type D (..) is new P [(:::)] with null record; <-- full view
7789 -- No specific constraints on P's discriminants or constraint (:::).
7790 -- Note that A can be unconstrained, but the parent subtype P must either
7791 -- be constrained or (:::) must be present.
7793 -- type D (..) is new A [(...)] with private; <-- partial view
7794 -- type D (..) is new P [(:::)] with null record; <-- full view
7796 -- P's constraints on A's discriminants must statically match those
7797 -- imposed by (...).
7799 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
7801 -- The full view of a private extension is handled exactly as described
7802 -- above. The model chose for the private view of a private extension is
7803 -- the same for what concerns discriminants (i.e. they receive the same
7804 -- treatment as in the tagged case). However, the private view of the
7805 -- private extension always inherits the components of the parent base,
7806 -- without replacing any discriminant reference. Strictly speaking this is
7807 -- incorrect. However, Gigi never uses this view to generate code so this
7808 -- is a purely semantic issue. In theory, a set of transformations similar
7809 -- to those given in 5. and 6. above could be applied to private views of
7810 -- private extensions to have the same model of component inheritance as
7811 -- for non private extensions. However, this is not done because it would
7812 -- further complicate private type processing. Semantically speaking, this
7813 -- leaves us in an uncomfortable situation. As an example consider:
7816 -- type R (D : integer) is tagged record
7817 -- S : String (1 .. D);
7819 -- procedure P (X : R);
7820 -- type T is new R (1) with private;
7822 -- type T is new R (1) with null record;
7825 -- This is transformed into:
7828 -- type R (D : integer) is tagged record
7829 -- S : String (1 .. D);
7831 -- procedure P (X : R);
7832 -- type T is new R (1) with private;
7834 -- type BaseT is new R with null record;
7835 -- subtype T is BaseT (1);
7838 -- (strictly speaking the above is incorrect Ada)
7840 -- From the semantic standpoint the private view of private extension T
7841 -- should be flagged as constrained since one can clearly have
7845 -- in a unit withing Pack. However, when deriving subprograms for the
7846 -- private view of private extension T, T must be seen as unconstrained
7847 -- since T has discriminants (this is a constraint of the current
7848 -- subprogram derivation model). Thus, when processing the private view of
7849 -- a private extension such as T, we first mark T as unconstrained, we
7850 -- process it, we perform program derivation and just before returning from
7851 -- Build_Derived_Record_Type we mark T as constrained.
7853 -- ??? Are there are other uncomfortable cases that we will have to
7856 -- 10. RECORD_TYPE_WITH_PRIVATE complications
7858 -- Types that are derived from a visible record type and have a private
7859 -- extension present other peculiarities. They behave mostly like private
7860 -- types, but if they have primitive operations defined, these will not
7861 -- have the proper signatures for further inheritance, because other
7862 -- primitive operations will use the implicit base that we define for
7863 -- private derivations below. This affect subprogram inheritance (see
7864 -- Derive_Subprograms for details). We also derive the implicit base from
7865 -- the base type of the full view, so that the implicit base is a record
7866 -- type and not another private type, This avoids infinite loops.
7868 procedure Build_Derived_Record_Type
7870 Parent_Type
: Entity_Id
;
7871 Derived_Type
: Entity_Id
;
7872 Derive_Subps
: Boolean := True)
7874 Discriminant_Specs
: constant Boolean :=
7875 Present
(Discriminant_Specifications
(N
));
7876 Is_Tagged
: constant Boolean := Is_Tagged_Type
(Parent_Type
);
7877 Loc
: constant Source_Ptr
:= Sloc
(N
);
7878 Private_Extension
: constant Boolean :=
7879 Nkind
(N
) = N_Private_Extension_Declaration
;
7880 Assoc_List
: Elist_Id
;
7881 Constraint_Present
: Boolean;
7883 Discrim
: Entity_Id
;
7885 Inherit_Discrims
: Boolean := False;
7886 Last_Discrim
: Entity_Id
;
7887 New_Base
: Entity_Id
;
7889 New_Discrs
: Elist_Id
;
7890 New_Indic
: Node_Id
;
7891 Parent_Base
: Entity_Id
;
7892 Save_Etype
: Entity_Id
;
7893 Save_Discr_Constr
: Elist_Id
;
7894 Save_Next_Entity
: Entity_Id
;
7897 Discs
: Elist_Id
:= New_Elmt_List
;
7898 -- An empty Discs list means that there were no constraints in the
7899 -- subtype indication or that there was an error processing it.
7902 if Ekind
(Parent_Type
) = E_Record_Type_With_Private
7903 and then Present
(Full_View
(Parent_Type
))
7904 and then Has_Discriminants
(Parent_Type
)
7906 Parent_Base
:= Base_Type
(Full_View
(Parent_Type
));
7908 Parent_Base
:= Base_Type
(Parent_Type
);
7911 -- AI05-0115 : if this is a derivation from a private type in some
7912 -- other scope that may lead to invisible components for the derived
7913 -- type, mark it accordingly.
7915 if Is_Private_Type
(Parent_Type
) then
7916 if Scope
(Parent_Type
) = Scope
(Derived_Type
) then
7919 elsif In_Open_Scopes
(Scope
(Parent_Type
))
7920 and then In_Private_Part
(Scope
(Parent_Type
))
7925 Set_Has_Private_Ancestor
(Derived_Type
);
7929 Set_Has_Private_Ancestor
7930 (Derived_Type
, Has_Private_Ancestor
(Parent_Type
));
7933 -- Before we start the previously documented transformations, here is
7934 -- little fix for size and alignment of tagged types. Normally when we
7935 -- derive type D from type P, we copy the size and alignment of P as the
7936 -- default for D, and in the absence of explicit representation clauses
7937 -- for D, the size and alignment are indeed the same as the parent.
7939 -- But this is wrong for tagged types, since fields may be added, and
7940 -- the default size may need to be larger, and the default alignment may
7941 -- need to be larger.
7943 -- We therefore reset the size and alignment fields in the tagged case.
7944 -- Note that the size and alignment will in any case be at least as
7945 -- large as the parent type (since the derived type has a copy of the
7946 -- parent type in the _parent field)
7948 -- The type is also marked as being tagged here, which is needed when
7949 -- processing components with a self-referential anonymous access type
7950 -- in the call to Check_Anonymous_Access_Components below. Note that
7951 -- this flag is also set later on for completeness.
7954 Set_Is_Tagged_Type
(Derived_Type
);
7955 Init_Size_Align
(Derived_Type
);
7958 -- STEP 0a: figure out what kind of derived type declaration we have
7960 if Private_Extension
then
7962 Set_Ekind
(Derived_Type
, E_Record_Type_With_Private
);
7963 Set_Default_SSO
(Derived_Type
);
7966 Type_Def
:= Type_Definition
(N
);
7968 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7969 -- Parent_Base can be a private type or private extension. However,
7970 -- for tagged types with an extension the newly added fields are
7971 -- visible and hence the Derived_Type is always an E_Record_Type.
7972 -- (except that the parent may have its own private fields).
7973 -- For untagged types we preserve the Ekind of the Parent_Base.
7975 if Present
(Record_Extension_Part
(Type_Def
)) then
7976 Set_Ekind
(Derived_Type
, E_Record_Type
);
7977 Set_Default_SSO
(Derived_Type
);
7979 -- Create internal access types for components with anonymous
7982 if Ada_Version
>= Ada_2005
then
7983 Check_Anonymous_Access_Components
7984 (N
, Derived_Type
, Derived_Type
,
7985 Component_List
(Record_Extension_Part
(Type_Def
)));
7989 Set_Ekind
(Derived_Type
, Ekind
(Parent_Base
));
7993 -- Indic can either be an N_Identifier if the subtype indication
7994 -- contains no constraint or an N_Subtype_Indication if the subtype
7995 -- indication has a constraint.
7997 Indic
:= Subtype_Indication
(Type_Def
);
7998 Constraint_Present
:= (Nkind
(Indic
) = N_Subtype_Indication
);
8000 -- Check that the type has visible discriminants. The type may be
8001 -- a private type with unknown discriminants whose full view has
8002 -- discriminants which are invisible.
8004 if Constraint_Present
then
8005 if not Has_Discriminants
(Parent_Base
)
8007 (Has_Unknown_Discriminants
(Parent_Base
)
8008 and then Is_Private_Type
(Parent_Base
))
8011 ("invalid constraint: type has no discriminant",
8012 Constraint
(Indic
));
8014 Constraint_Present
:= False;
8015 Rewrite
(Indic
, New_Copy_Tree
(Subtype_Mark
(Indic
)));
8017 elsif Is_Constrained
(Parent_Type
) then
8019 ("invalid constraint: parent type is already constrained",
8020 Constraint
(Indic
));
8022 Constraint_Present
:= False;
8023 Rewrite
(Indic
, New_Copy_Tree
(Subtype_Mark
(Indic
)));
8027 -- STEP 0b: If needed, apply transformation given in point 5. above
8029 if not Private_Extension
8030 and then Has_Discriminants
(Parent_Type
)
8031 and then not Discriminant_Specs
8032 and then (Is_Constrained
(Parent_Type
) or else Constraint_Present
)
8034 -- First, we must analyze the constraint (see comment in point 5.)
8035 -- The constraint may come from the subtype indication of the full
8038 if Constraint_Present
then
8039 New_Discrs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
);
8041 -- If there is no explicit constraint, there might be one that is
8042 -- inherited from a constrained parent type. In that case verify that
8043 -- it conforms to the constraint in the partial view. In perverse
8044 -- cases the parent subtypes of the partial and full view can have
8045 -- different constraints.
8047 elsif Present
(Stored_Constraint
(Parent_Type
)) then
8048 New_Discrs
:= Stored_Constraint
(Parent_Type
);
8051 New_Discrs
:= No_Elist
;
8054 if Has_Discriminants
(Derived_Type
)
8055 and then Has_Private_Declaration
(Derived_Type
)
8056 and then Present
(Discriminant_Constraint
(Derived_Type
))
8057 and then Present
(New_Discrs
)
8059 -- Verify that constraints of the full view statically match
8060 -- those given in the partial view.
8066 C1
:= First_Elmt
(New_Discrs
);
8067 C2
:= First_Elmt
(Discriminant_Constraint
(Derived_Type
));
8068 while Present
(C1
) and then Present
(C2
) loop
8069 if Fully_Conformant_Expressions
(Node
(C1
), Node
(C2
))
8071 (Is_OK_Static_Expression
(Node
(C1
))
8072 and then Is_OK_Static_Expression
(Node
(C2
))
8074 Expr_Value
(Node
(C1
)) = Expr_Value
(Node
(C2
)))
8079 if Constraint_Present
then
8081 ("constraint not conformant to previous declaration",
8085 ("constraint of full view is incompatible "
8086 & "with partial view", N
);
8096 -- Insert and analyze the declaration for the unconstrained base type
8098 New_Base
:= Create_Itype
(Ekind
(Derived_Type
), N
, Derived_Type
, 'B');
8101 Make_Full_Type_Declaration
(Loc
,
8102 Defining_Identifier
=> New_Base
,
8104 Make_Derived_Type_Definition
(Loc
,
8105 Abstract_Present
=> Abstract_Present
(Type_Def
),
8106 Limited_Present
=> Limited_Present
(Type_Def
),
8107 Subtype_Indication
=>
8108 New_Occurrence_Of
(Parent_Base
, Loc
),
8109 Record_Extension_Part
=>
8110 Relocate_Node
(Record_Extension_Part
(Type_Def
)),
8111 Interface_List
=> Interface_List
(Type_Def
)));
8113 Set_Parent
(New_Decl
, Parent
(N
));
8114 Mark_Rewrite_Insertion
(New_Decl
);
8115 Insert_Before
(N
, New_Decl
);
8117 -- In the extension case, make sure ancestor is frozen appropriately
8118 -- (see also non-discriminated case below).
8120 if Present
(Record_Extension_Part
(Type_Def
))
8121 or else Is_Interface
(Parent_Base
)
8123 Freeze_Before
(New_Decl
, Parent_Type
);
8126 -- Note that this call passes False for the Derive_Subps parameter
8127 -- because subprogram derivation is deferred until after creating
8128 -- the subtype (see below).
8131 (New_Decl
, Parent_Base
, New_Base
,
8132 Is_Completion
=> False, Derive_Subps
=> False);
8134 -- ??? This needs re-examination to determine whether the
8135 -- above call can simply be replaced by a call to Analyze.
8137 Set_Analyzed
(New_Decl
);
8139 -- Insert and analyze the declaration for the constrained subtype
8141 if Constraint_Present
then
8143 Make_Subtype_Indication
(Loc
,
8144 Subtype_Mark
=> New_Occurrence_Of
(New_Base
, Loc
),
8145 Constraint
=> Relocate_Node
(Constraint
(Indic
)));
8149 Constr_List
: constant List_Id
:= New_List
;
8154 C
:= First_Elmt
(Discriminant_Constraint
(Parent_Type
));
8155 while Present
(C
) loop
8158 -- It is safe here to call New_Copy_Tree since we called
8159 -- Force_Evaluation on each constraint previously
8160 -- in Build_Discriminant_Constraints.
8162 Append
(New_Copy_Tree
(Expr
), To
=> Constr_List
);
8168 Make_Subtype_Indication
(Loc
,
8169 Subtype_Mark
=> New_Occurrence_Of
(New_Base
, Loc
),
8171 Make_Index_Or_Discriminant_Constraint
(Loc
, Constr_List
));
8176 Make_Subtype_Declaration
(Loc
,
8177 Defining_Identifier
=> Derived_Type
,
8178 Subtype_Indication
=> New_Indic
));
8182 -- Derivation of subprograms must be delayed until the full subtype
8183 -- has been established, to ensure proper overriding of subprograms
8184 -- inherited by full types. If the derivations occurred as part of
8185 -- the call to Build_Derived_Type above, then the check for type
8186 -- conformance would fail because earlier primitive subprograms
8187 -- could still refer to the full type prior the change to the new
8188 -- subtype and hence would not match the new base type created here.
8189 -- Subprograms are not derived, however, when Derive_Subps is False
8190 -- (since otherwise there could be redundant derivations).
8192 if Derive_Subps
then
8193 Derive_Subprograms
(Parent_Type
, Derived_Type
);
8196 -- For tagged types the Discriminant_Constraint of the new base itype
8197 -- is inherited from the first subtype so that no subtype conformance
8198 -- problem arise when the first subtype overrides primitive
8199 -- operations inherited by the implicit base type.
8202 Set_Discriminant_Constraint
8203 (New_Base
, Discriminant_Constraint
(Derived_Type
));
8209 -- If we get here Derived_Type will have no discriminants or it will be
8210 -- a discriminated unconstrained base type.
8212 -- STEP 1a: perform preliminary actions/checks for derived tagged types
8216 -- The parent type is frozen for non-private extensions (RM 13.14(7))
8217 -- The declaration of a specific descendant of an interface type
8218 -- freezes the interface type (RM 13.14).
8220 if not Private_Extension
or else Is_Interface
(Parent_Base
) then
8221 Freeze_Before
(N
, Parent_Type
);
8224 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
8225 -- cannot be declared at a deeper level than its parent type is
8226 -- removed. The check on derivation within a generic body is also
8227 -- relaxed, but there's a restriction that a derived tagged type
8228 -- cannot be declared in a generic body if it's derived directly
8229 -- or indirectly from a formal type of that generic.
8231 if Ada_Version
>= Ada_2005
then
8232 if Present
(Enclosing_Generic_Body
(Derived_Type
)) then
8234 Ancestor_Type
: Entity_Id
;
8237 -- Check to see if any ancestor of the derived type is a
8240 Ancestor_Type
:= Parent_Type
;
8241 while not Is_Generic_Type
(Ancestor_Type
)
8242 and then Etype
(Ancestor_Type
) /= Ancestor_Type
8244 Ancestor_Type
:= Etype
(Ancestor_Type
);
8247 -- If the derived type does have a formal type as an
8248 -- ancestor, then it's an error if the derived type is
8249 -- declared within the body of the generic unit that
8250 -- declares the formal type in its generic formal part. It's
8251 -- sufficient to check whether the ancestor type is declared
8252 -- inside the same generic body as the derived type (such as
8253 -- within a nested generic spec), in which case the
8254 -- derivation is legal. If the formal type is declared
8255 -- outside of that generic body, then it's guaranteed that
8256 -- the derived type is declared within the generic body of
8257 -- the generic unit declaring the formal type.
8259 if Is_Generic_Type
(Ancestor_Type
)
8260 and then Enclosing_Generic_Body
(Ancestor_Type
) /=
8261 Enclosing_Generic_Body
(Derived_Type
)
8264 ("parent type of& must not be descendant of formal type"
8265 & " of an enclosing generic body",
8266 Indic
, Derived_Type
);
8271 elsif Type_Access_Level
(Derived_Type
) /=
8272 Type_Access_Level
(Parent_Type
)
8273 and then not Is_Generic_Type
(Derived_Type
)
8275 if Is_Controlled
(Parent_Type
) then
8277 ("controlled type must be declared at the library level",
8281 ("type extension at deeper accessibility level than parent",
8287 GB
: constant Node_Id
:= Enclosing_Generic_Body
(Derived_Type
);
8290 and then GB
/= Enclosing_Generic_Body
(Parent_Base
)
8293 ("parent type of& must not be outside generic body"
8295 Indic
, Derived_Type
);
8301 -- Ada 2005 (AI-251)
8303 if Ada_Version
>= Ada_2005
and then Is_Tagged
then
8305 -- "The declaration of a specific descendant of an interface type
8306 -- freezes the interface type" (RM 13.14).
8311 if Is_Non_Empty_List
(Interface_List
(Type_Def
)) then
8312 Iface
:= First
(Interface_List
(Type_Def
));
8313 while Present
(Iface
) loop
8314 Freeze_Before
(N
, Etype
(Iface
));
8321 -- STEP 1b : preliminary cleanup of the full view of private types
8323 -- If the type is already marked as having discriminants, then it's the
8324 -- completion of a private type or private extension and we need to
8325 -- retain the discriminants from the partial view if the current
8326 -- declaration has Discriminant_Specifications so that we can verify
8327 -- conformance. However, we must remove any existing components that
8328 -- were inherited from the parent (and attached in Copy_And_Swap)
8329 -- because the full type inherits all appropriate components anyway, and
8330 -- we do not want the partial view's components interfering.
8332 if Has_Discriminants
(Derived_Type
) and then Discriminant_Specs
then
8333 Discrim
:= First_Discriminant
(Derived_Type
);
8335 Last_Discrim
:= Discrim
;
8336 Next_Discriminant
(Discrim
);
8337 exit when No
(Discrim
);
8340 Set_Last_Entity
(Derived_Type
, Last_Discrim
);
8342 -- In all other cases wipe out the list of inherited components (even
8343 -- inherited discriminants), it will be properly rebuilt here.
8346 Set_First_Entity
(Derived_Type
, Empty
);
8347 Set_Last_Entity
(Derived_Type
, Empty
);
8350 -- STEP 1c: Initialize some flags for the Derived_Type
8352 -- The following flags must be initialized here so that
8353 -- Process_Discriminants can check that discriminants of tagged types do
8354 -- not have a default initial value and that access discriminants are
8355 -- only specified for limited records. For completeness, these flags are
8356 -- also initialized along with all the other flags below.
8358 -- AI-419: Limitedness is not inherited from an interface parent, so to
8359 -- be limited in that case the type must be explicitly declared as
8360 -- limited. However, task and protected interfaces are always limited.
8362 if Limited_Present
(Type_Def
) then
8363 Set_Is_Limited_Record
(Derived_Type
);
8365 elsif Is_Limited_Record
(Parent_Type
)
8366 or else (Present
(Full_View
(Parent_Type
))
8367 and then Is_Limited_Record
(Full_View
(Parent_Type
)))
8369 if not Is_Interface
(Parent_Type
)
8370 or else Is_Synchronized_Interface
(Parent_Type
)
8371 or else Is_Protected_Interface
(Parent_Type
)
8372 or else Is_Task_Interface
(Parent_Type
)
8374 Set_Is_Limited_Record
(Derived_Type
);
8378 -- STEP 2a: process discriminants of derived type if any
8380 Push_Scope
(Derived_Type
);
8382 if Discriminant_Specs
then
8383 Set_Has_Unknown_Discriminants
(Derived_Type
, False);
8385 -- The following call initializes fields Has_Discriminants and
8386 -- Discriminant_Constraint, unless we are processing the completion
8387 -- of a private type declaration.
8389 Check_Or_Process_Discriminants
(N
, Derived_Type
);
8391 -- For untagged types, the constraint on the Parent_Type must be
8392 -- present and is used to rename the discriminants.
8394 if not Is_Tagged
and then not Has_Discriminants
(Parent_Type
) then
8395 Error_Msg_N
("untagged parent must have discriminants", Indic
);
8397 elsif not Is_Tagged
and then not Constraint_Present
then
8399 ("discriminant constraint needed for derived untagged records",
8402 -- Otherwise the parent subtype must be constrained unless we have a
8403 -- private extension.
8405 elsif not Constraint_Present
8406 and then not Private_Extension
8407 and then not Is_Constrained
(Parent_Type
)
8410 ("unconstrained type not allowed in this context", Indic
);
8412 elsif Constraint_Present
then
8413 -- The following call sets the field Corresponding_Discriminant
8414 -- for the discriminants in the Derived_Type.
8416 Discs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
, True);
8418 -- For untagged types all new discriminants must rename
8419 -- discriminants in the parent. For private extensions new
8420 -- discriminants cannot rename old ones (implied by [7.3(13)]).
8422 Discrim
:= First_Discriminant
(Derived_Type
);
8423 while Present
(Discrim
) loop
8425 and then No
(Corresponding_Discriminant
(Discrim
))
8428 ("new discriminants must constrain old ones", Discrim
);
8430 elsif Private_Extension
8431 and then Present
(Corresponding_Discriminant
(Discrim
))
8434 ("only static constraints allowed for parent"
8435 & " discriminants in the partial view", Indic
);
8439 -- If a new discriminant is used in the constraint, then its
8440 -- subtype must be statically compatible with the parent
8441 -- discriminant's subtype (3.7(15)).
8443 -- However, if the record contains an array constrained by
8444 -- the discriminant but with some different bound, the compiler
8445 -- attemps to create a smaller range for the discriminant type.
8446 -- (See exp_ch3.Adjust_Discriminants). In this case, where
8447 -- the discriminant type is a scalar type, the check must use
8448 -- the original discriminant type in the parent declaration.
8451 Corr_Disc
: constant Entity_Id
:=
8452 Corresponding_Discriminant
(Discrim
);
8453 Disc_Type
: constant Entity_Id
:= Etype
(Discrim
);
8454 Corr_Type
: Entity_Id
;
8457 if Present
(Corr_Disc
) then
8458 if Is_Scalar_Type
(Disc_Type
) then
8460 Entity
(Discriminant_Type
(Parent
(Corr_Disc
)));
8462 Corr_Type
:= Etype
(Corr_Disc
);
8466 Subtypes_Statically_Compatible
(Disc_Type
, Corr_Type
)
8469 ("subtype must be compatible "
8470 & "with parent discriminant",
8476 Next_Discriminant
(Discrim
);
8479 -- Check whether the constraints of the full view statically
8480 -- match those imposed by the parent subtype [7.3(13)].
8482 if Present
(Stored_Constraint
(Derived_Type
)) then
8487 C1
:= First_Elmt
(Discs
);
8488 C2
:= First_Elmt
(Stored_Constraint
(Derived_Type
));
8489 while Present
(C1
) and then Present
(C2
) loop
8491 Fully_Conformant_Expressions
(Node
(C1
), Node
(C2
))
8494 ("not conformant with previous declaration",
8505 -- STEP 2b: No new discriminants, inherit discriminants if any
8508 if Private_Extension
then
8509 Set_Has_Unknown_Discriminants
8511 Has_Unknown_Discriminants
(Parent_Type
)
8512 or else Unknown_Discriminants_Present
(N
));
8514 -- The partial view of the parent may have unknown discriminants,
8515 -- but if the full view has discriminants and the parent type is
8516 -- in scope they must be inherited.
8518 elsif Has_Unknown_Discriminants
(Parent_Type
)
8520 (not Has_Discriminants
(Parent_Type
)
8521 or else not In_Open_Scopes
(Scope
(Parent_Type
)))
8523 Set_Has_Unknown_Discriminants
(Derived_Type
);
8526 if not Has_Unknown_Discriminants
(Derived_Type
)
8527 and then not Has_Unknown_Discriminants
(Parent_Base
)
8528 and then Has_Discriminants
(Parent_Type
)
8530 Inherit_Discrims
:= True;
8531 Set_Has_Discriminants
8532 (Derived_Type
, True);
8533 Set_Discriminant_Constraint
8534 (Derived_Type
, Discriminant_Constraint
(Parent_Base
));
8537 -- The following test is true for private types (remember
8538 -- transformation 5. is not applied to those) and in an error
8541 if Constraint_Present
then
8542 Discs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
);
8545 -- For now mark a new derived type as constrained only if it has no
8546 -- discriminants. At the end of Build_Derived_Record_Type we properly
8547 -- set this flag in the case of private extensions. See comments in
8548 -- point 9. just before body of Build_Derived_Record_Type.
8552 not (Inherit_Discrims
8553 or else Has_Unknown_Discriminants
(Derived_Type
)));
8556 -- STEP 3: initialize fields of derived type
8558 Set_Is_Tagged_Type
(Derived_Type
, Is_Tagged
);
8559 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
8561 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
8562 -- but cannot be interfaces
8564 if not Private_Extension
8565 and then Ekind
(Derived_Type
) /= E_Private_Type
8566 and then Ekind
(Derived_Type
) /= E_Limited_Private_Type
8568 if Interface_Present
(Type_Def
) then
8569 Analyze_Interface_Declaration
(Derived_Type
, Type_Def
);
8572 Set_Interfaces
(Derived_Type
, No_Elist
);
8575 -- Fields inherited from the Parent_Type
8577 Set_Has_Specified_Layout
8578 (Derived_Type
, Has_Specified_Layout
(Parent_Type
));
8579 Set_Is_Limited_Composite
8580 (Derived_Type
, Is_Limited_Composite
(Parent_Type
));
8581 Set_Is_Private_Composite
8582 (Derived_Type
, Is_Private_Composite
(Parent_Type
));
8584 if Is_Tagged_Type
(Parent_Type
) then
8585 Set_No_Tagged_Streams_Pragma
8586 (Derived_Type
, No_Tagged_Streams_Pragma
(Parent_Type
));
8589 -- Fields inherited from the Parent_Base
8591 Set_Has_Controlled_Component
8592 (Derived_Type
, Has_Controlled_Component
(Parent_Base
));
8593 Set_Has_Non_Standard_Rep
8594 (Derived_Type
, Has_Non_Standard_Rep
(Parent_Base
));
8595 Set_Has_Primitive_Operations
8596 (Derived_Type
, Has_Primitive_Operations
(Parent_Base
));
8598 -- Fields inherited from the Parent_Base in the non-private case
8600 if Ekind
(Derived_Type
) = E_Record_Type
then
8601 Set_Has_Complex_Representation
8602 (Derived_Type
, Has_Complex_Representation
(Parent_Base
));
8605 -- Fields inherited from the Parent_Base for record types
8607 if Is_Record_Type
(Derived_Type
) then
8609 Parent_Full
: Entity_Id
;
8612 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8613 -- Parent_Base can be a private type or private extension. Go
8614 -- to the full view here to get the E_Record_Type specific flags.
8616 if Present
(Full_View
(Parent_Base
)) then
8617 Parent_Full
:= Full_View
(Parent_Base
);
8619 Parent_Full
:= Parent_Base
;
8622 Set_OK_To_Reorder_Components
8623 (Derived_Type
, OK_To_Reorder_Components
(Parent_Full
));
8627 -- Set fields for private derived types
8629 if Is_Private_Type
(Derived_Type
) then
8630 Set_Depends_On_Private
(Derived_Type
, True);
8631 Set_Private_Dependents
(Derived_Type
, New_Elmt_List
);
8633 -- Inherit fields from non private record types. If this is the
8634 -- completion of a derivation from a private type, the parent itself
8635 -- is private, and the attributes come from its full view, which must
8639 if Is_Private_Type
(Parent_Base
)
8640 and then not Is_Record_Type
(Parent_Base
)
8642 Set_Component_Alignment
8643 (Derived_Type
, Component_Alignment
(Full_View
(Parent_Base
)));
8645 (Derived_Type
, C_Pass_By_Copy
(Full_View
(Parent_Base
)));
8647 Set_Component_Alignment
8648 (Derived_Type
, Component_Alignment
(Parent_Base
));
8650 (Derived_Type
, C_Pass_By_Copy
(Parent_Base
));
8654 -- Set fields for tagged types
8657 Set_Direct_Primitive_Operations
(Derived_Type
, New_Elmt_List
);
8659 -- All tagged types defined in Ada.Finalization are controlled
8661 if Chars
(Scope
(Derived_Type
)) = Name_Finalization
8662 and then Chars
(Scope
(Scope
(Derived_Type
))) = Name_Ada
8663 and then Scope
(Scope
(Scope
(Derived_Type
))) = Standard_Standard
8665 Set_Is_Controlled
(Derived_Type
);
8667 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Base
));
8670 -- Minor optimization: there is no need to generate the class-wide
8671 -- entity associated with an underlying record view.
8673 if not Is_Underlying_Record_View
(Derived_Type
) then
8674 Make_Class_Wide_Type
(Derived_Type
);
8677 Set_Is_Abstract_Type
(Derived_Type
, Abstract_Present
(Type_Def
));
8679 if Has_Discriminants
(Derived_Type
)
8680 and then Constraint_Present
8682 Set_Stored_Constraint
8683 (Derived_Type
, Expand_To_Stored_Constraint
(Parent_Base
, Discs
));
8686 if Ada_Version
>= Ada_2005
then
8688 Ifaces_List
: Elist_Id
;
8691 -- Checks rules 3.9.4 (13/2 and 14/2)
8693 if Comes_From_Source
(Derived_Type
)
8694 and then not Is_Private_Type
(Derived_Type
)
8695 and then Is_Interface
(Parent_Type
)
8696 and then not Is_Interface
(Derived_Type
)
8698 if Is_Task_Interface
(Parent_Type
) then
8700 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
8703 elsif Is_Protected_Interface
(Parent_Type
) then
8705 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
8710 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
8712 Check_Interfaces
(N
, Type_Def
);
8714 -- Ada 2005 (AI-251): Collect the list of progenitors that are
8715 -- not already in the parents.
8719 Ifaces_List
=> Ifaces_List
,
8720 Exclude_Parents
=> True);
8722 Set_Interfaces
(Derived_Type
, Ifaces_List
);
8724 -- If the derived type is the anonymous type created for
8725 -- a declaration whose parent has a constraint, propagate
8726 -- the interface list to the source type. This must be done
8727 -- prior to the completion of the analysis of the source type
8728 -- because the components in the extension may contain current
8729 -- instances whose legality depends on some ancestor.
8731 if Is_Itype
(Derived_Type
) then
8733 Def
: constant Node_Id
:=
8734 Associated_Node_For_Itype
(Derived_Type
);
8737 and then Nkind
(Def
) = N_Full_Type_Declaration
8740 (Defining_Identifier
(Def
), Ifaces_List
);
8745 -- Propagate inherited invariant information of parents
8748 if Ada_Version
>= Ada_2012
8749 and then not Is_Interface
(Derived_Type
)
8751 if Has_Inheritable_Invariants
(Parent_Type
) then
8752 Set_Has_Invariants
(Derived_Type
);
8753 Set_Has_Inheritable_Invariants
(Derived_Type
);
8755 elsif not Is_Empty_Elmt_List
(Ifaces_List
) then
8760 AI
:= First_Elmt
(Ifaces_List
);
8761 while Present
(AI
) loop
8762 if Has_Inheritable_Invariants
(Node
(AI
)) then
8763 Set_Has_Invariants
(Derived_Type
);
8764 Set_Has_Inheritable_Invariants
(Derived_Type
);
8775 -- A type extension is automatically Ghost when one of its
8776 -- progenitors is Ghost (SPARK RM 6.9(9)). This property is
8777 -- also inherited when the parent type is Ghost, but this is
8778 -- done in Build_Derived_Type as the mechanism also handles
8779 -- untagged derivations.
8781 if Implements_Ghost_Interface
(Derived_Type
) then
8782 Set_Is_Ghost_Entity
(Derived_Type
);
8788 Set_Is_Packed
(Derived_Type
, Is_Packed
(Parent_Base
));
8789 Set_Has_Non_Standard_Rep
8790 (Derived_Type
, Has_Non_Standard_Rep
(Parent_Base
));
8793 -- STEP 4: Inherit components from the parent base and constrain them.
8794 -- Apply the second transformation described in point 6. above.
8796 if (not Is_Empty_Elmt_List
(Discs
) or else Inherit_Discrims
)
8797 or else not Has_Discriminants
(Parent_Type
)
8798 or else not Is_Constrained
(Parent_Type
)
8802 Constrs
:= Discriminant_Constraint
(Parent_Type
);
8807 (N
, Parent_Base
, Derived_Type
, Is_Tagged
, Inherit_Discrims
, Constrs
);
8809 -- STEP 5a: Copy the parent record declaration for untagged types
8811 if not Is_Tagged
then
8813 -- Discriminant_Constraint (Derived_Type) has been properly
8814 -- constructed. Save it and temporarily set it to Empty because we
8815 -- do not want the call to New_Copy_Tree below to mess this list.
8817 if Has_Discriminants
(Derived_Type
) then
8818 Save_Discr_Constr
:= Discriminant_Constraint
(Derived_Type
);
8819 Set_Discriminant_Constraint
(Derived_Type
, No_Elist
);
8821 Save_Discr_Constr
:= No_Elist
;
8824 -- Save the Etype field of Derived_Type. It is correctly set now,
8825 -- but the call to New_Copy tree may remap it to point to itself,
8826 -- which is not what we want. Ditto for the Next_Entity field.
8828 Save_Etype
:= Etype
(Derived_Type
);
8829 Save_Next_Entity
:= Next_Entity
(Derived_Type
);
8831 -- Assoc_List maps all stored discriminants in the Parent_Base to
8832 -- stored discriminants in the Derived_Type. It is fundamental that
8833 -- no types or itypes with discriminants other than the stored
8834 -- discriminants appear in the entities declared inside
8835 -- Derived_Type, since the back end cannot deal with it.
8839 (Parent
(Parent_Base
), Map
=> Assoc_List
, New_Sloc
=> Loc
);
8841 -- Restore the fields saved prior to the New_Copy_Tree call
8842 -- and compute the stored constraint.
8844 Set_Etype
(Derived_Type
, Save_Etype
);
8845 Set_Next_Entity
(Derived_Type
, Save_Next_Entity
);
8847 if Has_Discriminants
(Derived_Type
) then
8848 Set_Discriminant_Constraint
8849 (Derived_Type
, Save_Discr_Constr
);
8850 Set_Stored_Constraint
8851 (Derived_Type
, Expand_To_Stored_Constraint
(Parent_Type
, Discs
));
8852 Replace_Components
(Derived_Type
, New_Decl
);
8853 Set_Has_Implicit_Dereference
8854 (Derived_Type
, Has_Implicit_Dereference
(Parent_Type
));
8857 -- Insert the new derived type declaration
8859 Rewrite
(N
, New_Decl
);
8861 -- STEP 5b: Complete the processing for record extensions in generics
8863 -- There is no completion for record extensions declared in the
8864 -- parameter part of a generic, so we need to complete processing for
8865 -- these generic record extensions here. The Record_Type_Definition call
8866 -- will change the Ekind of the components from E_Void to E_Component.
8868 elsif Private_Extension
and then Is_Generic_Type
(Derived_Type
) then
8869 Record_Type_Definition
(Empty
, Derived_Type
);
8871 -- STEP 5c: Process the record extension for non private tagged types
8873 elsif not Private_Extension
then
8874 Expand_Record_Extension
(Derived_Type
, Type_Def
);
8876 -- Note : previously in ASIS mode we set the Parent_Subtype of the
8877 -- derived type to propagate some semantic information. This led
8878 -- to other ASIS failures and has been removed.
8880 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
8881 -- implemented interfaces if we are in expansion mode
8884 and then Has_Interfaces
(Derived_Type
)
8886 Add_Interface_Tag_Components
(N
, Derived_Type
);
8889 -- Analyze the record extension
8891 Record_Type_Definition
8892 (Record_Extension_Part
(Type_Def
), Derived_Type
);
8897 -- Nothing else to do if there is an error in the derivation.
8898 -- An unusual case: the full view may be derived from a type in an
8899 -- instance, when the partial view was used illegally as an actual
8900 -- in that instance, leading to a circular definition.
8902 if Etype
(Derived_Type
) = Any_Type
8903 or else Etype
(Parent_Type
) = Derived_Type
8908 -- Set delayed freeze and then derive subprograms, we need to do
8909 -- this in this order so that derived subprograms inherit the
8910 -- derived freeze if necessary.
8912 Set_Has_Delayed_Freeze
(Derived_Type
);
8914 if Derive_Subps
then
8915 Derive_Subprograms
(Parent_Type
, Derived_Type
);
8918 -- If we have a private extension which defines a constrained derived
8919 -- type mark as constrained here after we have derived subprograms. See
8920 -- comment on point 9. just above the body of Build_Derived_Record_Type.
8922 if Private_Extension
and then Inherit_Discrims
then
8923 if Constraint_Present
and then not Is_Empty_Elmt_List
(Discs
) then
8924 Set_Is_Constrained
(Derived_Type
, True);
8925 Set_Discriminant_Constraint
(Derived_Type
, Discs
);
8927 elsif Is_Constrained
(Parent_Type
) then
8929 (Derived_Type
, True);
8930 Set_Discriminant_Constraint
8931 (Derived_Type
, Discriminant_Constraint
(Parent_Type
));
8935 -- Update the class-wide type, which shares the now-completed entity
8936 -- list with its specific type. In case of underlying record views,
8937 -- we do not generate the corresponding class wide entity.
8940 and then not Is_Underlying_Record_View
(Derived_Type
)
8943 (Class_Wide_Type
(Derived_Type
), First_Entity
(Derived_Type
));
8945 (Class_Wide_Type
(Derived_Type
), Last_Entity
(Derived_Type
));
8948 Check_Function_Writable_Actuals
(N
);
8949 end Build_Derived_Record_Type
;
8951 ------------------------
8952 -- Build_Derived_Type --
8953 ------------------------
8955 procedure Build_Derived_Type
8957 Parent_Type
: Entity_Id
;
8958 Derived_Type
: Entity_Id
;
8959 Is_Completion
: Boolean;
8960 Derive_Subps
: Boolean := True)
8962 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
8965 -- Set common attributes
8967 Set_Scope
(Derived_Type
, Current_Scope
);
8969 Set_Etype
(Derived_Type
, Parent_Base
);
8970 Set_Ekind
(Derived_Type
, Ekind
(Parent_Base
));
8971 Set_Has_Task
(Derived_Type
, Has_Task
(Parent_Base
));
8972 Set_Has_Protected
(Derived_Type
, Has_Protected
(Parent_Base
));
8974 Set_Size_Info
(Derived_Type
, Parent_Type
);
8975 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
8976 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Type
));
8977 Set_Is_Tagged_Type
(Derived_Type
, Is_Tagged_Type
(Parent_Type
));
8978 Set_Is_Volatile
(Derived_Type
, Is_Volatile
(Parent_Type
));
8980 if Is_Tagged_Type
(Derived_Type
) then
8981 Set_No_Tagged_Streams_Pragma
8982 (Derived_Type
, No_Tagged_Streams_Pragma
(Parent_Type
));
8985 -- If the parent has primitive routines, set the derived type link
8987 if Has_Primitive_Operations
(Parent_Type
) then
8988 Set_Derived_Type_Link
(Parent_Base
, Derived_Type
);
8991 -- If the parent type is a private subtype, the convention on the base
8992 -- type may be set in the private part, and not propagated to the
8993 -- subtype until later, so we obtain the convention from the base type.
8995 Set_Convention
(Derived_Type
, Convention
(Parent_Base
));
8997 -- Set SSO default for record or array type
8999 if (Is_Array_Type
(Derived_Type
) or else Is_Record_Type
(Derived_Type
))
9000 and then Is_Base_Type
(Derived_Type
)
9002 Set_Default_SSO
(Derived_Type
);
9005 -- Propagate invariant information. The new type has invariants if
9006 -- they are inherited from the parent type, and these invariants can
9007 -- be further inherited, so both flags are set.
9009 -- We similarly inherit predicates
9011 if Has_Predicates
(Parent_Type
) then
9012 Set_Has_Predicates
(Derived_Type
);
9015 -- The derived type inherits the representation clauses of the parent
9017 Inherit_Rep_Item_Chain
(Derived_Type
, Parent_Type
);
9019 -- Propagate the attributes related to pragma Default_Initial_Condition
9020 -- from the parent type to the private extension. A derived type always
9021 -- inherits the default initial condition flag from the parent type. If
9022 -- the derived type carries its own Default_Initial_Condition pragma,
9023 -- the flag is later reset in Analyze_Pragma. Note that both flags are
9024 -- mutually exclusive.
9026 Propagate_Default_Init_Cond_Attributes
9027 (From_Typ
=> Parent_Type
,
9028 To_Typ
=> Derived_Type
,
9029 Parent_To_Derivation
=> True);
9031 -- If the parent type has delayed rep aspects, then mark the derived
9032 -- type as possibly inheriting a delayed rep aspect.
9034 if Has_Delayed_Rep_Aspects
(Parent_Type
) then
9035 Set_May_Inherit_Delayed_Rep_Aspects
(Derived_Type
);
9038 -- Propagate the attributes related to pragma Ghost from the parent type
9039 -- to the derived type or type extension (SPARK RM 6.9(9)).
9041 if Is_Ghost_Entity
(Parent_Type
) then
9042 Set_Is_Ghost_Entity
(Derived_Type
);
9045 -- Type dependent processing
9047 case Ekind
(Parent_Type
) is
9048 when Numeric_Kind
=>
9049 Build_Derived_Numeric_Type
(N
, Parent_Type
, Derived_Type
);
9052 Build_Derived_Array_Type
(N
, Parent_Type
, Derived_Type
);
9056 | Class_Wide_Kind
=>
9057 Build_Derived_Record_Type
9058 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
9061 when Enumeration_Kind
=>
9062 Build_Derived_Enumeration_Type
(N
, Parent_Type
, Derived_Type
);
9065 Build_Derived_Access_Type
(N
, Parent_Type
, Derived_Type
);
9067 when Incomplete_Or_Private_Kind
=>
9068 Build_Derived_Private_Type
9069 (N
, Parent_Type
, Derived_Type
, Is_Completion
, Derive_Subps
);
9071 -- For discriminated types, the derivation includes deriving
9072 -- primitive operations. For others it is done below.
9074 if Is_Tagged_Type
(Parent_Type
)
9075 or else Has_Discriminants
(Parent_Type
)
9076 or else (Present
(Full_View
(Parent_Type
))
9077 and then Has_Discriminants
(Full_View
(Parent_Type
)))
9082 when Concurrent_Kind
=>
9083 Build_Derived_Concurrent_Type
(N
, Parent_Type
, Derived_Type
);
9086 raise Program_Error
;
9089 -- Nothing more to do if some error occurred
9091 if Etype
(Derived_Type
) = Any_Type
then
9095 -- Set delayed freeze and then derive subprograms, we need to do this
9096 -- in this order so that derived subprograms inherit the derived freeze
9099 Set_Has_Delayed_Freeze
(Derived_Type
);
9101 if Derive_Subps
then
9102 Derive_Subprograms
(Parent_Type
, Derived_Type
);
9105 Set_Has_Primitive_Operations
9106 (Base_Type
(Derived_Type
), Has_Primitive_Operations
(Parent_Type
));
9107 end Build_Derived_Type
;
9109 -----------------------
9110 -- Build_Discriminal --
9111 -----------------------
9113 procedure Build_Discriminal
(Discrim
: Entity_Id
) is
9114 D_Minal
: Entity_Id
;
9115 CR_Disc
: Entity_Id
;
9118 -- A discriminal has the same name as the discriminant
9120 D_Minal
:= Make_Defining_Identifier
(Sloc
(Discrim
), Chars
(Discrim
));
9122 Set_Ekind
(D_Minal
, E_In_Parameter
);
9123 Set_Mechanism
(D_Minal
, Default_Mechanism
);
9124 Set_Etype
(D_Minal
, Etype
(Discrim
));
9125 Set_Scope
(D_Minal
, Current_Scope
);
9127 Set_Discriminal
(Discrim
, D_Minal
);
9128 Set_Discriminal_Link
(D_Minal
, Discrim
);
9130 -- For task types, build at once the discriminants of the corresponding
9131 -- record, which are needed if discriminants are used in entry defaults
9132 -- and in family bounds.
9134 if Is_Concurrent_Type
(Current_Scope
)
9136 Is_Limited_Type
(Current_Scope
)
9138 CR_Disc
:= Make_Defining_Identifier
(Sloc
(Discrim
), Chars
(Discrim
));
9140 Set_Ekind
(CR_Disc
, E_In_Parameter
);
9141 Set_Mechanism
(CR_Disc
, Default_Mechanism
);
9142 Set_Etype
(CR_Disc
, Etype
(Discrim
));
9143 Set_Scope
(CR_Disc
, Current_Scope
);
9144 Set_Discriminal_Link
(CR_Disc
, Discrim
);
9145 Set_CR_Discriminant
(Discrim
, CR_Disc
);
9147 end Build_Discriminal
;
9149 ------------------------------------
9150 -- Build_Discriminant_Constraints --
9151 ------------------------------------
9153 function Build_Discriminant_Constraints
9156 Derived_Def
: Boolean := False) return Elist_Id
9158 C
: constant Node_Id
:= Constraint
(Def
);
9159 Nb_Discr
: constant Nat
:= Number_Discriminants
(T
);
9161 Discr_Expr
: array (1 .. Nb_Discr
) of Node_Id
:= (others => Empty
);
9162 -- Saves the expression corresponding to a given discriminant in T
9164 function Pos_Of_Discr
(T
: Entity_Id
; D
: Entity_Id
) return Nat
;
9165 -- Return the Position number within array Discr_Expr of a discriminant
9166 -- D within the discriminant list of the discriminated type T.
9168 procedure Process_Discriminant_Expression
9171 -- If this is a discriminant constraint on a partial view, do not
9172 -- generate an overflow check on the discriminant expression. The check
9173 -- will be generated when constraining the full view. Otherwise the
9174 -- backend creates duplicate symbols for the temporaries corresponding
9175 -- to the expressions to be checked, causing spurious assembler errors.
9181 function Pos_Of_Discr
(T
: Entity_Id
; D
: Entity_Id
) return Nat
is
9185 Disc
:= First_Discriminant
(T
);
9186 for J
in Discr_Expr
'Range loop
9191 Next_Discriminant
(Disc
);
9194 -- Note: Since this function is called on discriminants that are
9195 -- known to belong to the discriminated type, falling through the
9196 -- loop with no match signals an internal compiler error.
9198 raise Program_Error
;
9201 -------------------------------------
9202 -- Process_Discriminant_Expression --
9203 -------------------------------------
9205 procedure Process_Discriminant_Expression
9209 BDT
: constant Entity_Id
:= Base_Type
(Etype
(D
));
9212 -- If this is a discriminant constraint on a partial view, do
9213 -- not generate an overflow on the discriminant expression. The
9214 -- check will be generated when constraining the full view.
9216 if Is_Private_Type
(T
)
9217 and then Present
(Full_View
(T
))
9219 Analyze_And_Resolve
(Expr
, BDT
, Suppress
=> Overflow_Check
);
9221 Analyze_And_Resolve
(Expr
, BDT
);
9223 end Process_Discriminant_Expression
;
9225 -- Declarations local to Build_Discriminant_Constraints
9229 Elist
: constant Elist_Id
:= New_Elmt_List
;
9237 Discrim_Present
: Boolean := False;
9239 -- Start of processing for Build_Discriminant_Constraints
9242 -- The following loop will process positional associations only.
9243 -- For a positional association, the (single) discriminant is
9244 -- implicitly specified by position, in textual order (RM 3.7.2).
9246 Discr
:= First_Discriminant
(T
);
9247 Constr
:= First
(Constraints
(C
));
9248 for D
in Discr_Expr
'Range loop
9249 exit when Nkind
(Constr
) = N_Discriminant_Association
;
9252 Error_Msg_N
("too few discriminants given in constraint", C
);
9253 return New_Elmt_List
;
9255 elsif Nkind
(Constr
) = N_Range
9256 or else (Nkind
(Constr
) = N_Attribute_Reference
9257 and then Attribute_Name
(Constr
) = Name_Range
)
9260 ("a range is not a valid discriminant constraint", Constr
);
9261 Discr_Expr
(D
) := Error
;
9264 Process_Discriminant_Expression
(Constr
, Discr
);
9265 Discr_Expr
(D
) := Constr
;
9268 Next_Discriminant
(Discr
);
9272 if No
(Discr
) and then Present
(Constr
) then
9273 Error_Msg_N
("too many discriminants given in constraint", Constr
);
9274 return New_Elmt_List
;
9277 -- Named associations can be given in any order, but if both positional
9278 -- and named associations are used in the same discriminant constraint,
9279 -- then positional associations must occur first, at their normal
9280 -- position. Hence once a named association is used, the rest of the
9281 -- discriminant constraint must use only named associations.
9283 while Present
(Constr
) loop
9285 -- Positional association forbidden after a named association
9287 if Nkind
(Constr
) /= N_Discriminant_Association
then
9288 Error_Msg_N
("positional association follows named one", Constr
);
9289 return New_Elmt_List
;
9291 -- Otherwise it is a named association
9294 -- E records the type of the discriminants in the named
9295 -- association. All the discriminants specified in the same name
9296 -- association must have the same type.
9300 -- Search the list of discriminants in T to see if the simple name
9301 -- given in the constraint matches any of them.
9303 Id
:= First
(Selector_Names
(Constr
));
9304 while Present
(Id
) loop
9307 -- If Original_Discriminant is present, we are processing a
9308 -- generic instantiation and this is an instance node. We need
9309 -- to find the name of the corresponding discriminant in the
9310 -- actual record type T and not the name of the discriminant in
9311 -- the generic formal. Example:
9314 -- type G (D : int) is private;
9316 -- subtype W is G (D => 1);
9318 -- type Rec (X : int) is record ... end record;
9319 -- package Q is new P (G => Rec);
9321 -- At the point of the instantiation, formal type G is Rec
9322 -- and therefore when reanalyzing "subtype W is G (D => 1);"
9323 -- which really looks like "subtype W is Rec (D => 1);" at
9324 -- the point of instantiation, we want to find the discriminant
9325 -- that corresponds to D in Rec, i.e. X.
9327 if Present
(Original_Discriminant
(Id
))
9328 and then In_Instance
9330 Discr
:= Find_Corresponding_Discriminant
(Id
, T
);
9334 Discr
:= First_Discriminant
(T
);
9335 while Present
(Discr
) loop
9336 if Chars
(Discr
) = Chars
(Id
) then
9341 Next_Discriminant
(Discr
);
9345 Error_Msg_N
("& does not match any discriminant", Id
);
9346 return New_Elmt_List
;
9348 -- If the parent type is a generic formal, preserve the
9349 -- name of the discriminant for subsequent instances.
9350 -- see comment at the beginning of this if statement.
9352 elsif Is_Generic_Type
(Root_Type
(T
)) then
9353 Set_Original_Discriminant
(Id
, Discr
);
9357 Position
:= Pos_Of_Discr
(T
, Discr
);
9359 if Present
(Discr_Expr
(Position
)) then
9360 Error_Msg_N
("duplicate constraint for discriminant&", Id
);
9363 -- Each discriminant specified in the same named association
9364 -- must be associated with a separate copy of the
9365 -- corresponding expression.
9367 if Present
(Next
(Id
)) then
9368 Expr
:= New_Copy_Tree
(Expression
(Constr
));
9369 Set_Parent
(Expr
, Parent
(Expression
(Constr
)));
9371 Expr
:= Expression
(Constr
);
9374 Discr_Expr
(Position
) := Expr
;
9375 Process_Discriminant_Expression
(Expr
, Discr
);
9378 -- A discriminant association with more than one discriminant
9379 -- name is only allowed if the named discriminants are all of
9380 -- the same type (RM 3.7.1(8)).
9383 E
:= Base_Type
(Etype
(Discr
));
9385 elsif Base_Type
(Etype
(Discr
)) /= E
then
9387 ("all discriminants in an association " &
9388 "must have the same type", Id
);
9398 -- A discriminant constraint must provide exactly one value for each
9399 -- discriminant of the type (RM 3.7.1(8)).
9401 for J
in Discr_Expr
'Range loop
9402 if No
(Discr_Expr
(J
)) then
9403 Error_Msg_N
("too few discriminants given in constraint", C
);
9404 return New_Elmt_List
;
9408 -- Determine if there are discriminant expressions in the constraint
9410 for J
in Discr_Expr
'Range loop
9411 if Denotes_Discriminant
9412 (Discr_Expr
(J
), Check_Concurrent
=> True)
9414 Discrim_Present
:= True;
9418 -- Build an element list consisting of the expressions given in the
9419 -- discriminant constraint and apply the appropriate checks. The list
9420 -- is constructed after resolving any named discriminant associations
9421 -- and therefore the expressions appear in the textual order of the
9424 Discr
:= First_Discriminant
(T
);
9425 for J
in Discr_Expr
'Range loop
9426 if Discr_Expr
(J
) /= Error
then
9427 Append_Elmt
(Discr_Expr
(J
), Elist
);
9429 -- If any of the discriminant constraints is given by a
9430 -- discriminant and we are in a derived type declaration we
9431 -- have a discriminant renaming. Establish link between new
9432 -- and old discriminant.
9434 if Denotes_Discriminant
(Discr_Expr
(J
)) then
9436 Set_Corresponding_Discriminant
9437 (Entity
(Discr_Expr
(J
)), Discr
);
9440 -- Force the evaluation of non-discriminant expressions.
9441 -- If we have found a discriminant in the constraint 3.4(26)
9442 -- and 3.8(18) demand that no range checks are performed are
9443 -- after evaluation. If the constraint is for a component
9444 -- definition that has a per-object constraint, expressions are
9445 -- evaluated but not checked either. In all other cases perform
9449 if Discrim_Present
then
9452 elsif Nkind
(Parent
(Parent
(Def
))) = N_Component_Declaration
9454 Has_Per_Object_Constraint
9455 (Defining_Identifier
(Parent
(Parent
(Def
))))
9459 elsif Is_Access_Type
(Etype
(Discr
)) then
9460 Apply_Constraint_Check
(Discr_Expr
(J
), Etype
(Discr
));
9463 Apply_Range_Check
(Discr_Expr
(J
), Etype
(Discr
));
9466 Force_Evaluation
(Discr_Expr
(J
));
9469 -- Check that the designated type of an access discriminant's
9470 -- expression is not a class-wide type unless the discriminant's
9471 -- designated type is also class-wide.
9473 if Ekind
(Etype
(Discr
)) = E_Anonymous_Access_Type
9474 and then not Is_Class_Wide_Type
9475 (Designated_Type
(Etype
(Discr
)))
9476 and then Etype
(Discr_Expr
(J
)) /= Any_Type
9477 and then Is_Class_Wide_Type
9478 (Designated_Type
(Etype
(Discr_Expr
(J
))))
9480 Wrong_Type
(Discr_Expr
(J
), Etype
(Discr
));
9482 elsif Is_Access_Type
(Etype
(Discr
))
9483 and then not Is_Access_Constant
(Etype
(Discr
))
9484 and then Is_Access_Type
(Etype
(Discr_Expr
(J
)))
9485 and then Is_Access_Constant
(Etype
(Discr_Expr
(J
)))
9488 ("constraint for discriminant& must be access to variable",
9493 Next_Discriminant
(Discr
);
9497 end Build_Discriminant_Constraints
;
9499 ---------------------------------
9500 -- Build_Discriminated_Subtype --
9501 ---------------------------------
9503 procedure Build_Discriminated_Subtype
9507 Related_Nod
: Node_Id
;
9508 For_Access
: Boolean := False)
9510 Has_Discrs
: constant Boolean := Has_Discriminants
(T
);
9511 Constrained
: constant Boolean :=
9513 and then not Is_Empty_Elmt_List
(Elist
)
9514 and then not Is_Class_Wide_Type
(T
))
9515 or else Is_Constrained
(T
);
9518 if Ekind
(T
) = E_Record_Type
then
9520 Set_Ekind
(Def_Id
, E_Private_Subtype
);
9521 Set_Is_For_Access_Subtype
(Def_Id
, True);
9523 Set_Ekind
(Def_Id
, E_Record_Subtype
);
9526 -- Inherit preelaboration flag from base, for types for which it
9527 -- may have been set: records, private types, protected types.
9529 Set_Known_To_Have_Preelab_Init
9530 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
9532 elsif Ekind
(T
) = E_Task_Type
then
9533 Set_Ekind
(Def_Id
, E_Task_Subtype
);
9535 elsif Ekind
(T
) = E_Protected_Type
then
9536 Set_Ekind
(Def_Id
, E_Protected_Subtype
);
9537 Set_Known_To_Have_Preelab_Init
9538 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
9540 elsif Is_Private_Type
(T
) then
9541 Set_Ekind
(Def_Id
, Subtype_Kind
(Ekind
(T
)));
9542 Set_Known_To_Have_Preelab_Init
9543 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
9545 -- Private subtypes may have private dependents
9547 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
9549 elsif Is_Class_Wide_Type
(T
) then
9550 Set_Ekind
(Def_Id
, E_Class_Wide_Subtype
);
9553 -- Incomplete type. Attach subtype to list of dependents, to be
9554 -- completed with full view of parent type, unless is it the
9555 -- designated subtype of a record component within an init_proc.
9556 -- This last case arises for a component of an access type whose
9557 -- designated type is incomplete (e.g. a Taft Amendment type).
9558 -- The designated subtype is within an inner scope, and needs no
9559 -- elaboration, because only the access type is needed in the
9560 -- initialization procedure.
9562 Set_Ekind
(Def_Id
, Ekind
(T
));
9564 if For_Access
and then Within_Init_Proc
then
9567 Append_Elmt
(Def_Id
, Private_Dependents
(T
));
9571 Set_Etype
(Def_Id
, T
);
9572 Init_Size_Align
(Def_Id
);
9573 Set_Has_Discriminants
(Def_Id
, Has_Discrs
);
9574 Set_Is_Constrained
(Def_Id
, Constrained
);
9576 Set_First_Entity
(Def_Id
, First_Entity
(T
));
9577 Set_Last_Entity
(Def_Id
, Last_Entity
(T
));
9578 Set_Has_Implicit_Dereference
9579 (Def_Id
, Has_Implicit_Dereference
(T
));
9581 -- If the subtype is the completion of a private declaration, there may
9582 -- have been representation clauses for the partial view, and they must
9583 -- be preserved. Build_Derived_Type chains the inherited clauses with
9584 -- the ones appearing on the extension. If this comes from a subtype
9585 -- declaration, all clauses are inherited.
9587 if No
(First_Rep_Item
(Def_Id
)) then
9588 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
9591 if Is_Tagged_Type
(T
) then
9592 Set_Is_Tagged_Type
(Def_Id
);
9593 Set_No_Tagged_Streams_Pragma
(Def_Id
, No_Tagged_Streams_Pragma
(T
));
9594 Make_Class_Wide_Type
(Def_Id
);
9597 Set_Stored_Constraint
(Def_Id
, No_Elist
);
9600 Set_Discriminant_Constraint
(Def_Id
, Elist
);
9601 Set_Stored_Constraint_From_Discriminant_Constraint
(Def_Id
);
9604 if Is_Tagged_Type
(T
) then
9606 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
9607 -- concurrent record type (which has the list of primitive
9610 if Ada_Version
>= Ada_2005
9611 and then Is_Concurrent_Type
(T
)
9613 Set_Corresponding_Record_Type
(Def_Id
,
9614 Corresponding_Record_Type
(T
));
9616 Set_Direct_Primitive_Operations
(Def_Id
,
9617 Direct_Primitive_Operations
(T
));
9620 Set_Is_Abstract_Type
(Def_Id
, Is_Abstract_Type
(T
));
9623 -- Subtypes introduced by component declarations do not need to be
9624 -- marked as delayed, and do not get freeze nodes, because the semantics
9625 -- verifies that the parents of the subtypes are frozen before the
9626 -- enclosing record is frozen.
9628 if not Is_Type
(Scope
(Def_Id
)) then
9629 Set_Depends_On_Private
(Def_Id
, Depends_On_Private
(T
));
9631 if Is_Private_Type
(T
)
9632 and then Present
(Full_View
(T
))
9634 Conditional_Delay
(Def_Id
, Full_View
(T
));
9636 Conditional_Delay
(Def_Id
, T
);
9640 if Is_Record_Type
(T
) then
9641 Set_Is_Limited_Record
(Def_Id
, Is_Limited_Record
(T
));
9644 and then not Is_Empty_Elmt_List
(Elist
)
9645 and then not For_Access
9647 Create_Constrained_Components
(Def_Id
, Related_Nod
, T
, Elist
);
9648 elsif not For_Access
then
9649 Set_Cloned_Subtype
(Def_Id
, T
);
9652 end Build_Discriminated_Subtype
;
9654 ---------------------------
9655 -- Build_Itype_Reference --
9656 ---------------------------
9658 procedure Build_Itype_Reference
9662 IR
: constant Node_Id
:= Make_Itype_Reference
(Sloc
(Nod
));
9665 -- Itype references are only created for use by the back-end
9667 if Inside_A_Generic
then
9670 Set_Itype
(IR
, Ityp
);
9671 Insert_After
(Nod
, IR
);
9673 end Build_Itype_Reference
;
9675 ------------------------
9676 -- Build_Scalar_Bound --
9677 ------------------------
9679 function Build_Scalar_Bound
9682 Der_T
: Entity_Id
) return Node_Id
9684 New_Bound
: Entity_Id
;
9687 -- Note: not clear why this is needed, how can the original bound
9688 -- be unanalyzed at this point? and if it is, what business do we
9689 -- have messing around with it? and why is the base type of the
9690 -- parent type the right type for the resolution. It probably is
9691 -- not. It is OK for the new bound we are creating, but not for
9692 -- the old one??? Still if it never happens, no problem.
9694 Analyze_And_Resolve
(Bound
, Base_Type
(Par_T
));
9696 if Nkind_In
(Bound
, N_Integer_Literal
, N_Real_Literal
) then
9697 New_Bound
:= New_Copy
(Bound
);
9698 Set_Etype
(New_Bound
, Der_T
);
9699 Set_Analyzed
(New_Bound
);
9701 elsif Is_Entity_Name
(Bound
) then
9702 New_Bound
:= OK_Convert_To
(Der_T
, New_Copy
(Bound
));
9704 -- The following is almost certainly wrong. What business do we have
9705 -- relocating a node (Bound) that is presumably still attached to
9706 -- the tree elsewhere???
9709 New_Bound
:= OK_Convert_To
(Der_T
, Relocate_Node
(Bound
));
9712 Set_Etype
(New_Bound
, Der_T
);
9714 end Build_Scalar_Bound
;
9716 --------------------------------
9717 -- Build_Underlying_Full_View --
9718 --------------------------------
9720 procedure Build_Underlying_Full_View
9725 Loc
: constant Source_Ptr
:= Sloc
(N
);
9726 Subt
: constant Entity_Id
:=
9727 Make_Defining_Identifier
9728 (Loc
, New_External_Name
(Chars
(Typ
), 'S'));
9735 procedure Set_Discriminant_Name
(Id
: Node_Id
);
9736 -- If the derived type has discriminants, they may rename discriminants
9737 -- of the parent. When building the full view of the parent, we need to
9738 -- recover the names of the original discriminants if the constraint is
9739 -- given by named associations.
9741 ---------------------------
9742 -- Set_Discriminant_Name --
9743 ---------------------------
9745 procedure Set_Discriminant_Name
(Id
: Node_Id
) is
9749 Set_Original_Discriminant
(Id
, Empty
);
9751 if Has_Discriminants
(Typ
) then
9752 Disc
:= First_Discriminant
(Typ
);
9753 while Present
(Disc
) loop
9754 if Chars
(Disc
) = Chars
(Id
)
9755 and then Present
(Corresponding_Discriminant
(Disc
))
9757 Set_Chars
(Id
, Chars
(Corresponding_Discriminant
(Disc
)));
9759 Next_Discriminant
(Disc
);
9762 end Set_Discriminant_Name
;
9764 -- Start of processing for Build_Underlying_Full_View
9767 if Nkind
(N
) = N_Full_Type_Declaration
then
9768 Constr
:= Constraint
(Subtype_Indication
(Type_Definition
(N
)));
9770 elsif Nkind
(N
) = N_Subtype_Declaration
then
9771 Constr
:= New_Copy_Tree
(Constraint
(Subtype_Indication
(N
)));
9773 elsif Nkind
(N
) = N_Component_Declaration
then
9776 (Constraint
(Subtype_Indication
(Component_Definition
(N
))));
9779 raise Program_Error
;
9782 C
:= First
(Constraints
(Constr
));
9783 while Present
(C
) loop
9784 if Nkind
(C
) = N_Discriminant_Association
then
9785 Id
:= First
(Selector_Names
(C
));
9786 while Present
(Id
) loop
9787 Set_Discriminant_Name
(Id
);
9796 Make_Subtype_Declaration
(Loc
,
9797 Defining_Identifier
=> Subt
,
9798 Subtype_Indication
=>
9799 Make_Subtype_Indication
(Loc
,
9800 Subtype_Mark
=> New_Occurrence_Of
(Par
, Loc
),
9801 Constraint
=> New_Copy_Tree
(Constr
)));
9803 -- If this is a component subtype for an outer itype, it is not
9804 -- a list member, so simply set the parent link for analysis: if
9805 -- the enclosing type does not need to be in a declarative list,
9806 -- neither do the components.
9808 if Is_List_Member
(N
)
9809 and then Nkind
(N
) /= N_Component_Declaration
9811 Insert_Before
(N
, Indic
);
9813 Set_Parent
(Indic
, Parent
(N
));
9817 Set_Underlying_Full_View
(Typ
, Full_View
(Subt
));
9818 end Build_Underlying_Full_View
;
9820 -------------------------------
9821 -- Check_Abstract_Overriding --
9822 -------------------------------
9824 procedure Check_Abstract_Overriding
(T
: Entity_Id
) is
9825 Alias_Subp
: Entity_Id
;
9831 procedure Check_Pragma_Implemented
(Subp
: Entity_Id
);
9832 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
9833 -- which has pragma Implemented already set. Check whether Subp's entity
9834 -- kind conforms to the implementation kind of the overridden routine.
9836 procedure Check_Pragma_Implemented
9838 Iface_Subp
: Entity_Id
);
9839 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
9840 -- Iface_Subp and both entities have pragma Implemented already set on
9841 -- them. Check whether the two implementation kinds are conforming.
9843 procedure Inherit_Pragma_Implemented
9845 Iface_Subp
: Entity_Id
);
9846 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
9847 -- subprogram Iface_Subp which has been marked by pragma Implemented.
9848 -- Propagate the implementation kind of Iface_Subp to Subp.
9850 ------------------------------
9851 -- Check_Pragma_Implemented --
9852 ------------------------------
9854 procedure Check_Pragma_Implemented
(Subp
: Entity_Id
) is
9855 Iface_Alias
: constant Entity_Id
:= Interface_Alias
(Subp
);
9856 Impl_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Alias
);
9857 Subp_Alias
: constant Entity_Id
:= Alias
(Subp
);
9858 Contr_Typ
: Entity_Id
;
9859 Impl_Subp
: Entity_Id
;
9862 -- Subp must have an alias since it is a hidden entity used to link
9863 -- an interface subprogram to its overriding counterpart.
9865 pragma Assert
(Present
(Subp_Alias
));
9867 -- Handle aliases to synchronized wrappers
9869 Impl_Subp
:= Subp_Alias
;
9871 if Is_Primitive_Wrapper
(Impl_Subp
) then
9872 Impl_Subp
:= Wrapped_Entity
(Impl_Subp
);
9875 -- Extract the type of the controlling formal
9877 Contr_Typ
:= Etype
(First_Formal
(Subp_Alias
));
9879 if Is_Concurrent_Record_Type
(Contr_Typ
) then
9880 Contr_Typ
:= Corresponding_Concurrent_Type
(Contr_Typ
);
9883 -- An interface subprogram whose implementation kind is By_Entry must
9884 -- be implemented by an entry.
9886 if Impl_Kind
= Name_By_Entry
9887 and then Ekind
(Impl_Subp
) /= E_Entry
9889 Error_Msg_Node_2
:= Iface_Alias
;
9891 ("type & must implement abstract subprogram & with an entry",
9892 Subp_Alias
, Contr_Typ
);
9894 elsif Impl_Kind
= Name_By_Protected_Procedure
then
9896 -- An interface subprogram whose implementation kind is By_
9897 -- Protected_Procedure cannot be implemented by a primitive
9898 -- procedure of a task type.
9900 if Ekind
(Contr_Typ
) /= E_Protected_Type
then
9901 Error_Msg_Node_2
:= Contr_Typ
;
9903 ("interface subprogram & cannot be implemented by a " &
9904 "primitive procedure of task type &", Subp_Alias
,
9907 -- An interface subprogram whose implementation kind is By_
9908 -- Protected_Procedure must be implemented by a procedure.
9910 elsif Ekind
(Impl_Subp
) /= E_Procedure
then
9911 Error_Msg_Node_2
:= Iface_Alias
;
9913 ("type & must implement abstract subprogram & with a " &
9914 "procedure", Subp_Alias
, Contr_Typ
);
9916 elsif Present
(Get_Rep_Pragma
(Impl_Subp
, Name_Implemented
))
9917 and then Implementation_Kind
(Impl_Subp
) /= Impl_Kind
9919 Error_Msg_Name_1
:= Impl_Kind
;
9921 ("overriding operation& must have synchronization%",
9925 -- If primitive has Optional synchronization, overriding operation
9926 -- must match if it has an explicit synchronization..
9928 elsif Present
(Get_Rep_Pragma
(Impl_Subp
, Name_Implemented
))
9929 and then Implementation_Kind
(Impl_Subp
) /= Impl_Kind
9931 Error_Msg_Name_1
:= Impl_Kind
;
9933 ("overriding operation& must have syncrhonization%",
9936 end Check_Pragma_Implemented
;
9938 ------------------------------
9939 -- Check_Pragma_Implemented --
9940 ------------------------------
9942 procedure Check_Pragma_Implemented
9944 Iface_Subp
: Entity_Id
)
9946 Iface_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Subp
);
9947 Subp_Kind
: constant Name_Id
:= Implementation_Kind
(Subp
);
9950 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
9951 -- and overriding subprogram are different. In general this is an
9952 -- error except when the implementation kind of the overridden
9953 -- subprograms is By_Any or Optional.
9955 if Iface_Kind
/= Subp_Kind
9956 and then Iface_Kind
/= Name_By_Any
9957 and then Iface_Kind
/= Name_Optional
9959 if Iface_Kind
= Name_By_Entry
then
9961 ("incompatible implementation kind, overridden subprogram " &
9962 "is marked By_Entry", Subp
);
9965 ("incompatible implementation kind, overridden subprogram " &
9966 "is marked By_Protected_Procedure", Subp
);
9969 end Check_Pragma_Implemented
;
9971 --------------------------------
9972 -- Inherit_Pragma_Implemented --
9973 --------------------------------
9975 procedure Inherit_Pragma_Implemented
9977 Iface_Subp
: Entity_Id
)
9979 Iface_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Subp
);
9980 Loc
: constant Source_Ptr
:= Sloc
(Subp
);
9981 Impl_Prag
: Node_Id
;
9984 -- Since the implementation kind is stored as a representation item
9985 -- rather than a flag, create a pragma node.
9989 Chars
=> Name_Implemented
,
9990 Pragma_Argument_Associations
=> New_List
(
9991 Make_Pragma_Argument_Association
(Loc
,
9992 Expression
=> New_Occurrence_Of
(Subp
, Loc
)),
9994 Make_Pragma_Argument_Association
(Loc
,
9995 Expression
=> Make_Identifier
(Loc
, Iface_Kind
))));
9997 -- The pragma doesn't need to be analyzed because it is internally
9998 -- built. It is safe to directly register it as a rep item since we
9999 -- are only interested in the characters of the implementation kind.
10001 Record_Rep_Item
(Subp
, Impl_Prag
);
10002 end Inherit_Pragma_Implemented
;
10004 -- Start of processing for Check_Abstract_Overriding
10007 Op_List
:= Primitive_Operations
(T
);
10009 -- Loop to check primitive operations
10011 Elmt
:= First_Elmt
(Op_List
);
10012 while Present
(Elmt
) loop
10013 Subp
:= Node
(Elmt
);
10014 Alias_Subp
:= Alias
(Subp
);
10016 -- Inherited subprograms are identified by the fact that they do not
10017 -- come from source, and the associated source location is the
10018 -- location of the first subtype of the derived type.
10020 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
10021 -- subprograms that "require overriding".
10023 -- Special exception, do not complain about failure to override the
10024 -- stream routines _Input and _Output, as well as the primitive
10025 -- operations used in dispatching selects since we always provide
10026 -- automatic overridings for these subprograms.
10028 -- Also ignore this rule for convention CIL since .NET libraries
10029 -- do bizarre things with interfaces???
10031 -- The partial view of T may have been a private extension, for
10032 -- which inherited functions dispatching on result are abstract.
10033 -- If the full view is a null extension, there is no need for
10034 -- overriding in Ada 2005, but wrappers need to be built for them
10035 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
10037 if Is_Null_Extension
(T
)
10038 and then Has_Controlling_Result
(Subp
)
10039 and then Ada_Version
>= Ada_2005
10040 and then Present
(Alias_Subp
)
10041 and then not Comes_From_Source
(Subp
)
10042 and then not Is_Abstract_Subprogram
(Alias_Subp
)
10043 and then not Is_Access_Type
(Etype
(Subp
))
10047 -- Ada 2005 (AI-251): Internal entities of interfaces need no
10048 -- processing because this check is done with the aliased
10051 elsif Present
(Interface_Alias
(Subp
)) then
10054 elsif (Is_Abstract_Subprogram
(Subp
)
10055 or else Requires_Overriding
(Subp
)
10057 (Has_Controlling_Result
(Subp
)
10058 and then Present
(Alias_Subp
)
10059 and then not Comes_From_Source
(Subp
)
10060 and then Sloc
(Subp
) = Sloc
(First_Subtype
(T
))))
10061 and then not Is_TSS
(Subp
, TSS_Stream_Input
)
10062 and then not Is_TSS
(Subp
, TSS_Stream_Output
)
10063 and then not Is_Abstract_Type
(T
)
10064 and then Convention
(T
) /= Convention_CIL
10065 and then not Is_Predefined_Interface_Primitive
(Subp
)
10067 -- Ada 2005 (AI-251): Do not consider hidden entities associated
10068 -- with abstract interface types because the check will be done
10069 -- with the aliased entity (otherwise we generate a duplicated
10072 and then not Present
(Interface_Alias
(Subp
))
10074 if Present
(Alias_Subp
) then
10076 -- Only perform the check for a derived subprogram when the
10077 -- type has an explicit record extension. This avoids incorrect
10078 -- flagging of abstract subprograms for the case of a type
10079 -- without an extension that is derived from a formal type
10080 -- with a tagged actual (can occur within a private part).
10082 -- Ada 2005 (AI-391): In the case of an inherited function with
10083 -- a controlling result of the type, the rule does not apply if
10084 -- the type is a null extension (unless the parent function
10085 -- itself is abstract, in which case the function must still be
10086 -- be overridden). The expander will generate an overriding
10087 -- wrapper function calling the parent subprogram (see
10088 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
10090 Type_Def
:= Type_Definition
(Parent
(T
));
10092 if Nkind
(Type_Def
) = N_Derived_Type_Definition
10093 and then Present
(Record_Extension_Part
(Type_Def
))
10095 (Ada_Version
< Ada_2005
10096 or else not Is_Null_Extension
(T
)
10097 or else Ekind
(Subp
) = E_Procedure
10098 or else not Has_Controlling_Result
(Subp
)
10099 or else Is_Abstract_Subprogram
(Alias_Subp
)
10100 or else Requires_Overriding
(Subp
)
10101 or else Is_Access_Type
(Etype
(Subp
)))
10103 -- Avoid reporting error in case of abstract predefined
10104 -- primitive inherited from interface type because the
10105 -- body of internally generated predefined primitives
10106 -- of tagged types are generated later by Freeze_Type
10108 if Is_Interface
(Root_Type
(T
))
10109 and then Is_Abstract_Subprogram
(Subp
)
10110 and then Is_Predefined_Dispatching_Operation
(Subp
)
10111 and then not Comes_From_Source
(Ultimate_Alias
(Subp
))
10115 -- A null extension is not obliged to override an inherited
10116 -- procedure subject to pragma Extensions_Visible with value
10117 -- False and at least one controlling OUT parameter
10118 -- (SPARK RM 6.1.7(6)).
10120 elsif Is_Null_Extension
(T
)
10121 and then Is_EVF_Procedure
(Subp
)
10127 ("type must be declared abstract or & overridden",
10130 -- Traverse the whole chain of aliased subprograms to
10131 -- complete the error notification. This is especially
10132 -- useful for traceability of the chain of entities when
10133 -- the subprogram corresponds with an interface
10134 -- subprogram (which may be defined in another package).
10136 if Present
(Alias_Subp
) then
10142 while Present
(Alias
(E
)) loop
10144 -- Avoid reporting redundant errors on entities
10145 -- inherited from interfaces
10147 if Sloc
(E
) /= Sloc
(T
) then
10148 Error_Msg_Sloc
:= Sloc
(E
);
10150 ("\& has been inherited #", T
, Subp
);
10156 Error_Msg_Sloc
:= Sloc
(E
);
10158 -- AI05-0068: report if there is an overriding
10159 -- non-abstract subprogram that is invisible.
10162 and then not Is_Abstract_Subprogram
(E
)
10165 ("\& subprogram# is not visible",
10168 -- Clarify the case where a non-null extension must
10169 -- override inherited procedure subject to pragma
10170 -- Extensions_Visible with value False and at least
10171 -- one controlling OUT param.
10173 elsif Is_EVF_Procedure
(E
) then
10175 ("\& # is subject to Extensions_Visible False",
10180 ("\& has been inherited from subprogram #",
10187 -- Ada 2005 (AI-345): Protected or task type implementing
10188 -- abstract interfaces.
10190 elsif Is_Concurrent_Record_Type
(T
)
10191 and then Present
(Interfaces
(T
))
10193 -- There is no need to check here RM 9.4(11.9/3) since we
10194 -- are processing the corresponding record type and the
10195 -- mode of the overriding subprograms was verified by
10196 -- Check_Conformance when the corresponding concurrent
10197 -- type declaration was analyzed.
10200 ("interface subprogram & must be overridden", T
, Subp
);
10202 -- Examine primitive operations of synchronized type to find
10203 -- homonyms that have the wrong profile.
10209 Prim
:= First_Entity
(Corresponding_Concurrent_Type
(T
));
10210 while Present
(Prim
) loop
10211 if Chars
(Prim
) = Chars
(Subp
) then
10213 ("profile is not type conformant with prefixed "
10214 & "view profile of inherited operation&",
10218 Next_Entity
(Prim
);
10224 Error_Msg_Node_2
:= T
;
10226 ("abstract subprogram& not allowed for type&", Subp
);
10228 -- Also post unconditional warning on the type (unconditional
10229 -- so that if there are more than one of these cases, we get
10230 -- them all, and not just the first one).
10232 Error_Msg_Node_2
:= Subp
;
10233 Error_Msg_N
("nonabstract type& has abstract subprogram&!", T
);
10236 -- A subprogram subject to pragma Extensions_Visible with value
10237 -- "True" cannot override a subprogram subject to the same pragma
10238 -- with value "False" (SPARK RM 6.1.7(5)).
10240 elsif Extensions_Visible_Status
(Subp
) = Extensions_Visible_True
10241 and then Present
(Overridden_Operation
(Subp
))
10242 and then Extensions_Visible_Status
(Overridden_Operation
(Subp
)) =
10243 Extensions_Visible_False
10245 Error_Msg_Sloc
:= Sloc
(Overridden_Operation
(Subp
));
10247 ("subprogram & with Extensions_Visible True cannot override "
10248 & "subprogram # with Extensions_Visible False", Subp
);
10251 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
10253 -- Subp is an expander-generated procedure which maps an interface
10254 -- alias to a protected wrapper. The interface alias is flagged by
10255 -- pragma Implemented. Ensure that Subp is a procedure when the
10256 -- implementation kind is By_Protected_Procedure or an entry when
10259 if Ada_Version
>= Ada_2012
10260 and then Is_Hidden
(Subp
)
10261 and then Present
(Interface_Alias
(Subp
))
10262 and then Has_Rep_Pragma
(Interface_Alias
(Subp
), Name_Implemented
)
10264 Check_Pragma_Implemented
(Subp
);
10267 -- Subp is an interface primitive which overrides another interface
10268 -- primitive marked with pragma Implemented.
10270 if Ada_Version
>= Ada_2012
10271 and then Present
(Overridden_Operation
(Subp
))
10272 and then Has_Rep_Pragma
10273 (Overridden_Operation
(Subp
), Name_Implemented
)
10275 -- If the overriding routine is also marked by Implemented, check
10276 -- that the two implementation kinds are conforming.
10278 if Has_Rep_Pragma
(Subp
, Name_Implemented
) then
10279 Check_Pragma_Implemented
10281 Iface_Subp
=> Overridden_Operation
(Subp
));
10283 -- Otherwise the overriding routine inherits the implementation
10284 -- kind from the overridden subprogram.
10287 Inherit_Pragma_Implemented
10289 Iface_Subp
=> Overridden_Operation
(Subp
));
10293 -- If the operation is a wrapper for a synchronized primitive, it
10294 -- may be called indirectly through a dispatching select. We assume
10295 -- that it will be referenced elsewhere indirectly, and suppress
10296 -- warnings about an unused entity.
10298 if Is_Primitive_Wrapper
(Subp
)
10299 and then Present
(Wrapped_Entity
(Subp
))
10301 Set_Referenced
(Wrapped_Entity
(Subp
));
10306 end Check_Abstract_Overriding
;
10308 ------------------------------------------------
10309 -- Check_Access_Discriminant_Requires_Limited --
10310 ------------------------------------------------
10312 procedure Check_Access_Discriminant_Requires_Limited
10317 -- A discriminant_specification for an access discriminant shall appear
10318 -- only in the declaration for a task or protected type, or for a type
10319 -- with the reserved word 'limited' in its definition or in one of its
10320 -- ancestors (RM 3.7(10)).
10322 -- AI-0063: The proper condition is that type must be immutably limited,
10323 -- or else be a partial view.
10325 if Nkind
(Discriminant_Type
(D
)) = N_Access_Definition
then
10326 if Is_Limited_View
(Current_Scope
)
10328 (Nkind
(Parent
(Current_Scope
)) = N_Private_Type_Declaration
10329 and then Limited_Present
(Parent
(Current_Scope
)))
10335 ("access discriminants allowed only for limited types", Loc
);
10338 end Check_Access_Discriminant_Requires_Limited
;
10340 -----------------------------------
10341 -- Check_Aliased_Component_Types --
10342 -----------------------------------
10344 procedure Check_Aliased_Component_Types
(T
: Entity_Id
) is
10348 -- ??? Also need to check components of record extensions, but not
10349 -- components of protected types (which are always limited).
10351 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
10352 -- types to be unconstrained. This is safe because it is illegal to
10353 -- create access subtypes to such types with explicit discriminant
10356 if not Is_Limited_Type
(T
) then
10357 if Ekind
(T
) = E_Record_Type
then
10358 C
:= First_Component
(T
);
10359 while Present
(C
) loop
10361 and then Has_Discriminants
(Etype
(C
))
10362 and then not Is_Constrained
(Etype
(C
))
10363 and then not In_Instance_Body
10364 and then Ada_Version
< Ada_2005
10367 ("aliased component must be constrained (RM 3.6(11))",
10371 Next_Component
(C
);
10374 elsif Ekind
(T
) = E_Array_Type
then
10375 if Has_Aliased_Components
(T
)
10376 and then Has_Discriminants
(Component_Type
(T
))
10377 and then not Is_Constrained
(Component_Type
(T
))
10378 and then not In_Instance_Body
10379 and then Ada_Version
< Ada_2005
10382 ("aliased component type must be constrained (RM 3.6(11))",
10387 end Check_Aliased_Component_Types
;
10389 ---------------------------------------
10390 -- Check_Anonymous_Access_Components --
10391 ---------------------------------------
10393 procedure Check_Anonymous_Access_Components
10394 (Typ_Decl
: Node_Id
;
10397 Comp_List
: Node_Id
)
10399 Loc
: constant Source_Ptr
:= Sloc
(Typ_Decl
);
10400 Anon_Access
: Entity_Id
;
10403 Comp_Def
: Node_Id
;
10405 Type_Def
: Node_Id
;
10407 procedure Build_Incomplete_Type_Declaration
;
10408 -- If the record type contains components that include an access to the
10409 -- current record, then create an incomplete type declaration for the
10410 -- record, to be used as the designated type of the anonymous access.
10411 -- This is done only once, and only if there is no previous partial
10412 -- view of the type.
10414 function Designates_T
(Subt
: Node_Id
) return Boolean;
10415 -- Check whether a node designates the enclosing record type, or 'Class
10418 function Mentions_T
(Acc_Def
: Node_Id
) return Boolean;
10419 -- Check whether an access definition includes a reference to
10420 -- the enclosing record type. The reference can be a subtype mark
10421 -- in the access definition itself, a 'Class attribute reference, or
10422 -- recursively a reference appearing in a parameter specification
10423 -- or result definition of an access_to_subprogram definition.
10425 --------------------------------------
10426 -- Build_Incomplete_Type_Declaration --
10427 --------------------------------------
10429 procedure Build_Incomplete_Type_Declaration
is
10434 -- Is_Tagged indicates whether the type is tagged. It is tagged if
10435 -- it's "is new ... with record" or else "is tagged record ...".
10437 Is_Tagged
: constant Boolean :=
10438 (Nkind
(Type_Definition
(Typ_Decl
)) = N_Derived_Type_Definition
10440 Present
(Record_Extension_Part
(Type_Definition
(Typ_Decl
))))
10442 (Nkind
(Type_Definition
(Typ_Decl
)) = N_Record_Definition
10443 and then Tagged_Present
(Type_Definition
(Typ_Decl
)));
10446 -- If there is a previous partial view, no need to create a new one
10447 -- If the partial view, given by Prev, is incomplete, If Prev is
10448 -- a private declaration, full declaration is flagged accordingly.
10450 if Prev
/= Typ
then
10452 Make_Class_Wide_Type
(Prev
);
10453 Set_Class_Wide_Type
(Typ
, Class_Wide_Type
(Prev
));
10454 Set_Etype
(Class_Wide_Type
(Typ
), Typ
);
10459 elsif Has_Private_Declaration
(Typ
) then
10461 -- If we refer to T'Class inside T, and T is the completion of a
10462 -- private type, then make sure the class-wide type exists.
10465 Make_Class_Wide_Type
(Typ
);
10470 -- If there was a previous anonymous access type, the incomplete
10471 -- type declaration will have been created already.
10473 elsif Present
(Current_Entity
(Typ
))
10474 and then Ekind
(Current_Entity
(Typ
)) = E_Incomplete_Type
10475 and then Full_View
(Current_Entity
(Typ
)) = Typ
10478 and then Comes_From_Source
(Current_Entity
(Typ
))
10479 and then not Is_Tagged_Type
(Current_Entity
(Typ
))
10481 Make_Class_Wide_Type
(Typ
);
10483 ("incomplete view of tagged type should be declared tagged??",
10484 Parent
(Current_Entity
(Typ
)));
10489 Inc_T
:= Make_Defining_Identifier
(Loc
, Chars
(Typ
));
10490 Decl
:= Make_Incomplete_Type_Declaration
(Loc
, Inc_T
);
10492 -- Type has already been inserted into the current scope. Remove
10493 -- it, and add incomplete declaration for type, so that subsequent
10494 -- anonymous access types can use it. The entity is unchained from
10495 -- the homonym list and from immediate visibility. After analysis,
10496 -- the entity in the incomplete declaration becomes immediately
10497 -- visible in the record declaration that follows.
10499 H
:= Current_Entity
(Typ
);
10502 Set_Name_Entity_Id
(Chars
(Typ
), Homonym
(Typ
));
10505 and then Homonym
(H
) /= Typ
10507 H
:= Homonym
(Typ
);
10510 Set_Homonym
(H
, Homonym
(Typ
));
10513 Insert_Before
(Typ_Decl
, Decl
);
10515 Set_Full_View
(Inc_T
, Typ
);
10519 -- Create a common class-wide type for both views, and set the
10520 -- Etype of the class-wide type to the full view.
10522 Make_Class_Wide_Type
(Inc_T
);
10523 Set_Class_Wide_Type
(Typ
, Class_Wide_Type
(Inc_T
));
10524 Set_Etype
(Class_Wide_Type
(Typ
), Typ
);
10527 end Build_Incomplete_Type_Declaration
;
10533 function Designates_T
(Subt
: Node_Id
) return Boolean is
10534 Type_Id
: constant Name_Id
:= Chars
(Typ
);
10536 function Names_T
(Nam
: Node_Id
) return Boolean;
10537 -- The record type has not been introduced in the current scope
10538 -- yet, so we must examine the name of the type itself, either
10539 -- an identifier T, or an expanded name of the form P.T, where
10540 -- P denotes the current scope.
10546 function Names_T
(Nam
: Node_Id
) return Boolean is
10548 if Nkind
(Nam
) = N_Identifier
then
10549 return Chars
(Nam
) = Type_Id
;
10551 elsif Nkind
(Nam
) = N_Selected_Component
then
10552 if Chars
(Selector_Name
(Nam
)) = Type_Id
then
10553 if Nkind
(Prefix
(Nam
)) = N_Identifier
then
10554 return Chars
(Prefix
(Nam
)) = Chars
(Current_Scope
);
10556 elsif Nkind
(Prefix
(Nam
)) = N_Selected_Component
then
10557 return Chars
(Selector_Name
(Prefix
(Nam
))) =
10558 Chars
(Current_Scope
);
10572 -- Start of processing for Designates_T
10575 if Nkind
(Subt
) = N_Identifier
then
10576 return Chars
(Subt
) = Type_Id
;
10578 -- Reference can be through an expanded name which has not been
10579 -- analyzed yet, and which designates enclosing scopes.
10581 elsif Nkind
(Subt
) = N_Selected_Component
then
10582 if Names_T
(Subt
) then
10585 -- Otherwise it must denote an entity that is already visible.
10586 -- The access definition may name a subtype of the enclosing
10587 -- type, if there is a previous incomplete declaration for it.
10590 Find_Selected_Component
(Subt
);
10592 Is_Entity_Name
(Subt
)
10593 and then Scope
(Entity
(Subt
)) = Current_Scope
10595 (Chars
(Base_Type
(Entity
(Subt
))) = Type_Id
10597 (Is_Class_Wide_Type
(Entity
(Subt
))
10599 Chars
(Etype
(Base_Type
(Entity
(Subt
)))) =
10603 -- A reference to the current type may appear as the prefix of
10604 -- a 'Class attribute.
10606 elsif Nkind
(Subt
) = N_Attribute_Reference
10607 and then Attribute_Name
(Subt
) = Name_Class
10609 return Names_T
(Prefix
(Subt
));
10620 function Mentions_T
(Acc_Def
: Node_Id
) return Boolean is
10621 Param_Spec
: Node_Id
;
10623 Acc_Subprg
: constant Node_Id
:=
10624 Access_To_Subprogram_Definition
(Acc_Def
);
10627 if No
(Acc_Subprg
) then
10628 return Designates_T
(Subtype_Mark
(Acc_Def
));
10631 -- Component is an access_to_subprogram: examine its formals,
10632 -- and result definition in the case of an access_to_function.
10634 Param_Spec
:= First
(Parameter_Specifications
(Acc_Subprg
));
10635 while Present
(Param_Spec
) loop
10636 if Nkind
(Parameter_Type
(Param_Spec
)) = N_Access_Definition
10637 and then Mentions_T
(Parameter_Type
(Param_Spec
))
10641 elsif Designates_T
(Parameter_Type
(Param_Spec
)) then
10648 if Nkind
(Acc_Subprg
) = N_Access_Function_Definition
then
10649 if Nkind
(Result_Definition
(Acc_Subprg
)) =
10650 N_Access_Definition
10652 return Mentions_T
(Result_Definition
(Acc_Subprg
));
10654 return Designates_T
(Result_Definition
(Acc_Subprg
));
10661 -- Start of processing for Check_Anonymous_Access_Components
10664 if No
(Comp_List
) then
10668 Comp
:= First
(Component_Items
(Comp_List
));
10669 while Present
(Comp
) loop
10670 if Nkind
(Comp
) = N_Component_Declaration
10672 (Access_Definition
(Component_Definition
(Comp
)))
10674 Mentions_T
(Access_Definition
(Component_Definition
(Comp
)))
10676 Comp_Def
:= Component_Definition
(Comp
);
10678 Access_To_Subprogram_Definition
(Access_Definition
(Comp_Def
));
10680 Build_Incomplete_Type_Declaration
;
10681 Anon_Access
:= Make_Temporary
(Loc
, 'S');
10683 -- Create a declaration for the anonymous access type: either
10684 -- an access_to_object or an access_to_subprogram.
10686 if Present
(Acc_Def
) then
10687 if Nkind
(Acc_Def
) = N_Access_Function_Definition
then
10689 Make_Access_Function_Definition
(Loc
,
10690 Parameter_Specifications
=>
10691 Parameter_Specifications
(Acc_Def
),
10692 Result_Definition
=> Result_Definition
(Acc_Def
));
10695 Make_Access_Procedure_Definition
(Loc
,
10696 Parameter_Specifications
=>
10697 Parameter_Specifications
(Acc_Def
));
10702 Make_Access_To_Object_Definition
(Loc
,
10703 Subtype_Indication
=>
10705 (Subtype_Mark
(Access_Definition
(Comp_Def
))));
10707 Set_Constant_Present
10708 (Type_Def
, Constant_Present
(Access_Definition
(Comp_Def
)));
10710 (Type_Def
, All_Present
(Access_Definition
(Comp_Def
)));
10713 Set_Null_Exclusion_Present
10715 Null_Exclusion_Present
(Access_Definition
(Comp_Def
)));
10718 Make_Full_Type_Declaration
(Loc
,
10719 Defining_Identifier
=> Anon_Access
,
10720 Type_Definition
=> Type_Def
);
10722 Insert_Before
(Typ_Decl
, Decl
);
10725 -- If an access to subprogram, create the extra formals
10727 if Present
(Acc_Def
) then
10728 Create_Extra_Formals
(Designated_Type
(Anon_Access
));
10730 -- If an access to object, preserve entity of designated type,
10731 -- for ASIS use, before rewriting the component definition.
10738 Desig
:= Entity
(Subtype_Indication
(Type_Def
));
10740 -- If the access definition is to the current record,
10741 -- the visible entity at this point is an incomplete
10742 -- type. Retrieve the full view to simplify ASIS queries
10744 if Ekind
(Desig
) = E_Incomplete_Type
then
10745 Desig
:= Full_View
(Desig
);
10749 (Subtype_Mark
(Access_Definition
(Comp_Def
)), Desig
);
10754 Make_Component_Definition
(Loc
,
10755 Subtype_Indication
=>
10756 New_Occurrence_Of
(Anon_Access
, Loc
)));
10758 if Ekind
(Designated_Type
(Anon_Access
)) = E_Subprogram_Type
then
10759 Set_Ekind
(Anon_Access
, E_Anonymous_Access_Subprogram_Type
);
10761 Set_Ekind
(Anon_Access
, E_Anonymous_Access_Type
);
10764 Set_Is_Local_Anonymous_Access
(Anon_Access
);
10770 if Present
(Variant_Part
(Comp_List
)) then
10774 V
:= First_Non_Pragma
(Variants
(Variant_Part
(Comp_List
)));
10775 while Present
(V
) loop
10776 Check_Anonymous_Access_Components
10777 (Typ_Decl
, Typ
, Prev
, Component_List
(V
));
10778 Next_Non_Pragma
(V
);
10782 end Check_Anonymous_Access_Components
;
10784 ----------------------
10785 -- Check_Completion --
10786 ----------------------
10788 procedure Check_Completion
(Body_Id
: Node_Id
:= Empty
) is
10791 procedure Post_Error
;
10792 -- Post error message for lack of completion for entity E
10798 procedure Post_Error
is
10800 procedure Missing_Body
;
10801 -- Output missing body message
10807 procedure Missing_Body
is
10809 -- Spec is in same unit, so we can post on spec
10811 if In_Same_Source_Unit
(Body_Id
, E
) then
10812 Error_Msg_N
("missing body for &", E
);
10814 -- Spec is in a separate unit, so we have to post on the body
10817 Error_Msg_NE
("missing body for & declared#!", Body_Id
, E
);
10821 -- Start of processing for Post_Error
10824 if not Comes_From_Source
(E
) then
10826 if Ekind_In
(E
, E_Task_Type
, E_Protected_Type
) then
10828 -- It may be an anonymous protected type created for a
10829 -- single variable. Post error on variable, if present.
10835 Var
:= First_Entity
(Current_Scope
);
10836 while Present
(Var
) loop
10837 exit when Etype
(Var
) = E
10838 and then Comes_From_Source
(Var
);
10843 if Present
(Var
) then
10850 -- If a generated entity has no completion, then either previous
10851 -- semantic errors have disabled the expansion phase, or else we had
10852 -- missing subunits, or else we are compiling without expansion,
10853 -- or else something is very wrong.
10855 if not Comes_From_Source
(E
) then
10857 (Serious_Errors_Detected
> 0
10858 or else Configurable_Run_Time_Violations
> 0
10859 or else Subunits_Missing
10860 or else not Expander_Active
);
10863 -- Here for source entity
10866 -- Here if no body to post the error message, so we post the error
10867 -- on the declaration that has no completion. This is not really
10868 -- the right place to post it, think about this later ???
10870 if No
(Body_Id
) then
10871 if Is_Type
(E
) then
10873 ("missing full declaration for }", Parent
(E
), E
);
10875 Error_Msg_NE
("missing body for &", Parent
(E
), E
);
10878 -- Package body has no completion for a declaration that appears
10879 -- in the corresponding spec. Post error on the body, with a
10880 -- reference to the non-completed declaration.
10883 Error_Msg_Sloc
:= Sloc
(E
);
10885 if Is_Type
(E
) then
10886 Error_Msg_NE
("missing full declaration for }!", Body_Id
, E
);
10888 elsif Is_Overloadable
(E
)
10889 and then Current_Entity_In_Scope
(E
) /= E
10891 -- It may be that the completion is mistyped and appears as
10892 -- a distinct overloading of the entity.
10895 Candidate
: constant Entity_Id
:=
10896 Current_Entity_In_Scope
(E
);
10897 Decl
: constant Node_Id
:=
10898 Unit_Declaration_Node
(Candidate
);
10901 if Is_Overloadable
(Candidate
)
10902 and then Ekind
(Candidate
) = Ekind
(E
)
10903 and then Nkind
(Decl
) = N_Subprogram_Body
10904 and then Acts_As_Spec
(Decl
)
10906 Check_Type_Conformant
(Candidate
, E
);
10922 Pack_Id
: constant Entity_Id
:= Current_Scope
;
10924 -- Start of processing for Check_Completion
10927 E
:= First_Entity
(Pack_Id
);
10928 while Present
(E
) loop
10929 if Is_Intrinsic_Subprogram
(E
) then
10932 -- A Ghost entity declared in a non-Ghost package does not force the
10933 -- need for a body (SPARK RM 6.9(11)).
10935 elsif not Is_Ghost_Entity
(Pack_Id
) and then Is_Ghost_Entity
(E
) then
10938 -- The following situation requires special handling: a child unit
10939 -- that appears in the context clause of the body of its parent:
10941 -- procedure Parent.Child (...);
10943 -- with Parent.Child;
10944 -- package body Parent is
10946 -- Here Parent.Child appears as a local entity, but should not be
10947 -- flagged as requiring completion, because it is a compilation
10950 -- Ignore missing completion for a subprogram that does not come from
10951 -- source (including the _Call primitive operation of RAS types,
10952 -- which has to have the flag Comes_From_Source for other purposes):
10953 -- we assume that the expander will provide the missing completion.
10954 -- In case of previous errors, other expansion actions that provide
10955 -- bodies for null procedures with not be invoked, so inhibit message
10958 -- Note that E_Operator is not in the list that follows, because
10959 -- this kind is reserved for predefined operators, that are
10960 -- intrinsic and do not need completion.
10962 elsif Ekind_In
(E
, E_Function
,
10964 E_Generic_Function
,
10965 E_Generic_Procedure
)
10967 if Has_Completion
(E
) then
10970 elsif Is_Subprogram
(E
) and then Is_Abstract_Subprogram
(E
) then
10973 elsif Is_Subprogram
(E
)
10974 and then (not Comes_From_Source
(E
)
10975 or else Chars
(E
) = Name_uCall
)
10980 Nkind
(Parent
(Unit_Declaration_Node
(E
))) = N_Compilation_Unit
10984 elsif Nkind
(Parent
(E
)) = N_Procedure_Specification
10985 and then Null_Present
(Parent
(E
))
10986 and then Serious_Errors_Detected
> 0
10994 elsif Is_Entry
(E
) then
10995 if not Has_Completion
(E
) and then
10996 (Ekind
(Scope
(E
)) = E_Protected_Object
10997 or else Ekind
(Scope
(E
)) = E_Protected_Type
)
11002 elsif Is_Package_Or_Generic_Package
(E
) then
11003 if Unit_Requires_Body
(E
) then
11004 if not Has_Completion
(E
)
11005 and then Nkind
(Parent
(Unit_Declaration_Node
(E
))) /=
11011 elsif not Is_Child_Unit
(E
) then
11012 May_Need_Implicit_Body
(E
);
11015 -- A formal incomplete type (Ada 2012) does not require a completion;
11016 -- other incomplete type declarations do.
11018 elsif Ekind
(E
) = E_Incomplete_Type
11019 and then No
(Underlying_Type
(E
))
11020 and then not Is_Generic_Type
(E
)
11024 elsif Ekind_In
(E
, E_Task_Type
, E_Protected_Type
)
11025 and then not Has_Completion
(E
)
11029 -- A single task declared in the current scope is a constant, verify
11030 -- that the body of its anonymous type is in the same scope. If the
11031 -- task is defined elsewhere, this may be a renaming declaration for
11032 -- which no completion is needed.
11034 elsif Ekind
(E
) = E_Constant
11035 and then Ekind
(Etype
(E
)) = E_Task_Type
11036 and then not Has_Completion
(Etype
(E
))
11037 and then Scope
(Etype
(E
)) = Current_Scope
11041 elsif Ekind
(E
) = E_Protected_Object
11042 and then not Has_Completion
(Etype
(E
))
11046 elsif Ekind
(E
) = E_Record_Type
then
11047 if Is_Tagged_Type
(E
) then
11048 Check_Abstract_Overriding
(E
);
11049 Check_Conventions
(E
);
11052 Check_Aliased_Component_Types
(E
);
11054 elsif Ekind
(E
) = E_Array_Type
then
11055 Check_Aliased_Component_Types
(E
);
11061 end Check_Completion
;
11063 ------------------------------------
11064 -- Check_CPP_Type_Has_No_Defaults --
11065 ------------------------------------
11067 procedure Check_CPP_Type_Has_No_Defaults
(T
: Entity_Id
) is
11068 Tdef
: constant Node_Id
:= Type_Definition
(Declaration_Node
(T
));
11073 -- Obtain the component list
11075 if Nkind
(Tdef
) = N_Record_Definition
then
11076 Clist
:= Component_List
(Tdef
);
11077 else pragma Assert
(Nkind
(Tdef
) = N_Derived_Type_Definition
);
11078 Clist
:= Component_List
(Record_Extension_Part
(Tdef
));
11081 -- Check all components to ensure no default expressions
11083 if Present
(Clist
) then
11084 Comp
:= First
(Component_Items
(Clist
));
11085 while Present
(Comp
) loop
11086 if Present
(Expression
(Comp
)) then
11088 ("component of imported 'C'P'P type cannot have "
11089 & "default expression", Expression
(Comp
));
11095 end Check_CPP_Type_Has_No_Defaults
;
11097 ----------------------------
11098 -- Check_Delta_Expression --
11099 ----------------------------
11101 procedure Check_Delta_Expression
(E
: Node_Id
) is
11103 if not (Is_Real_Type
(Etype
(E
))) then
11104 Wrong_Type
(E
, Any_Real
);
11106 elsif not Is_OK_Static_Expression
(E
) then
11107 Flag_Non_Static_Expr
11108 ("non-static expression used for delta value!", E
);
11110 elsif not UR_Is_Positive
(Expr_Value_R
(E
)) then
11111 Error_Msg_N
("delta expression must be positive", E
);
11117 -- If any of above errors occurred, then replace the incorrect
11118 -- expression by the real 0.1, which should prevent further errors.
11121 Make_Real_Literal
(Sloc
(E
), Ureal_Tenth
));
11122 Analyze_And_Resolve
(E
, Standard_Float
);
11123 end Check_Delta_Expression
;
11125 -----------------------------
11126 -- Check_Digits_Expression --
11127 -----------------------------
11129 procedure Check_Digits_Expression
(E
: Node_Id
) is
11131 if not (Is_Integer_Type
(Etype
(E
))) then
11132 Wrong_Type
(E
, Any_Integer
);
11134 elsif not Is_OK_Static_Expression
(E
) then
11135 Flag_Non_Static_Expr
11136 ("non-static expression used for digits value!", E
);
11138 elsif Expr_Value
(E
) <= 0 then
11139 Error_Msg_N
("digits value must be greater than zero", E
);
11145 -- If any of above errors occurred, then replace the incorrect
11146 -- expression by the integer 1, which should prevent further errors.
11148 Rewrite
(E
, Make_Integer_Literal
(Sloc
(E
), 1));
11149 Analyze_And_Resolve
(E
, Standard_Integer
);
11151 end Check_Digits_Expression
;
11153 --------------------------
11154 -- Check_Initialization --
11155 --------------------------
11157 procedure Check_Initialization
(T
: Entity_Id
; Exp
: Node_Id
) is
11159 -- Special processing for limited types
11161 if Is_Limited_Type
(T
)
11162 and then not In_Instance
11163 and then not In_Inlined_Body
11165 if not OK_For_Limited_Init
(T
, Exp
) then
11167 -- In GNAT mode, this is just a warning, to allow it to be evilly
11168 -- turned off. Otherwise it is a real error.
11172 ("??cannot initialize entities of limited type!", Exp
);
11174 elsif Ada_Version
< Ada_2005
then
11176 -- The side effect removal machinery may generate illegal Ada
11177 -- code to avoid the usage of access types and 'reference in
11178 -- SPARK mode. Since this is legal code with respect to theorem
11179 -- proving, do not emit the error.
11182 and then Nkind
(Exp
) = N_Function_Call
11183 and then Nkind
(Parent
(Exp
)) = N_Object_Declaration
11184 and then not Comes_From_Source
11185 (Defining_Identifier
(Parent
(Exp
)))
11191 ("cannot initialize entities of limited type", Exp
);
11192 Explain_Limited_Type
(T
, Exp
);
11196 -- Specialize error message according to kind of illegal
11197 -- initial expression.
11199 if Nkind
(Exp
) = N_Type_Conversion
11200 and then Nkind
(Expression
(Exp
)) = N_Function_Call
11203 ("illegal context for call"
11204 & " to function with limited result", Exp
);
11208 ("initialization of limited object requires aggregate "
11209 & "or function call", Exp
);
11215 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
11216 -- set unless we can be sure that no range check is required.
11218 if (GNATprove_Mode
or not Expander_Active
)
11219 and then Is_Scalar_Type
(T
)
11220 and then not Is_In_Range
(Exp
, T
, Assume_Valid
=> True)
11222 Set_Do_Range_Check
(Exp
);
11224 end Check_Initialization
;
11226 ----------------------
11227 -- Check_Interfaces --
11228 ----------------------
11230 procedure Check_Interfaces
(N
: Node_Id
; Def
: Node_Id
) is
11231 Parent_Type
: constant Entity_Id
:= Etype
(Defining_Identifier
(N
));
11234 Iface_Def
: Node_Id
;
11235 Iface_Typ
: Entity_Id
;
11236 Parent_Node
: Node_Id
;
11238 Is_Task
: Boolean := False;
11239 -- Set True if parent type or any progenitor is a task interface
11241 Is_Protected
: Boolean := False;
11242 -- Set True if parent type or any progenitor is a protected interface
11244 procedure Check_Ifaces
(Iface_Def
: Node_Id
; Error_Node
: Node_Id
);
11245 -- Check that a progenitor is compatible with declaration. If an error
11246 -- message is output, it is posted on Error_Node.
11252 procedure Check_Ifaces
(Iface_Def
: Node_Id
; Error_Node
: Node_Id
) is
11253 Iface_Id
: constant Entity_Id
:=
11254 Defining_Identifier
(Parent
(Iface_Def
));
11255 Type_Def
: Node_Id
;
11258 if Nkind
(N
) = N_Private_Extension_Declaration
then
11261 Type_Def
:= Type_Definition
(N
);
11264 if Is_Task_Interface
(Iface_Id
) then
11267 elsif Is_Protected_Interface
(Iface_Id
) then
11268 Is_Protected
:= True;
11271 if Is_Synchronized_Interface
(Iface_Id
) then
11273 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
11274 -- extension derived from a synchronized interface must explicitly
11275 -- be declared synchronized, because the full view will be a
11276 -- synchronized type.
11278 if Nkind
(N
) = N_Private_Extension_Declaration
then
11279 if not Synchronized_Present
(N
) then
11281 ("private extension of& must be explicitly synchronized",
11285 -- However, by 3.9.4(16/2), a full type that is a record extension
11286 -- is never allowed to derive from a synchronized interface (note
11287 -- that interfaces must be excluded from this check, because those
11288 -- are represented by derived type definitions in some cases).
11290 elsif Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
11291 and then not Interface_Present
(Type_Definition
(N
))
11293 Error_Msg_N
("record extension cannot derive from synchronized "
11294 & "interface", Error_Node
);
11298 -- Check that the characteristics of the progenitor are compatible
11299 -- with the explicit qualifier in the declaration.
11300 -- The check only applies to qualifiers that come from source.
11301 -- Limited_Present also appears in the declaration of corresponding
11302 -- records, and the check does not apply to them.
11304 if Limited_Present
(Type_Def
)
11306 Is_Concurrent_Record_Type
(Defining_Identifier
(N
))
11308 if Is_Limited_Interface
(Parent_Type
)
11309 and then not Is_Limited_Interface
(Iface_Id
)
11312 ("progenitor & must be limited interface",
11313 Error_Node
, Iface_Id
);
11316 (Task_Present
(Iface_Def
)
11317 or else Protected_Present
(Iface_Def
)
11318 or else Synchronized_Present
(Iface_Def
))
11319 and then Nkind
(N
) /= N_Private_Extension_Declaration
11320 and then not Error_Posted
(N
)
11323 ("progenitor & must be limited interface",
11324 Error_Node
, Iface_Id
);
11327 -- Protected interfaces can only inherit from limited, synchronized
11328 -- or protected interfaces.
11330 elsif Nkind
(N
) = N_Full_Type_Declaration
11331 and then Protected_Present
(Type_Def
)
11333 if Limited_Present
(Iface_Def
)
11334 or else Synchronized_Present
(Iface_Def
)
11335 or else Protected_Present
(Iface_Def
)
11339 elsif Task_Present
(Iface_Def
) then
11340 Error_Msg_N
("(Ada 2005) protected interface cannot inherit "
11341 & "from task interface", Error_Node
);
11344 Error_Msg_N
("(Ada 2005) protected interface cannot inherit "
11345 & "from non-limited interface", Error_Node
);
11348 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
11349 -- limited and synchronized.
11351 elsif Synchronized_Present
(Type_Def
) then
11352 if Limited_Present
(Iface_Def
)
11353 or else Synchronized_Present
(Iface_Def
)
11357 elsif Protected_Present
(Iface_Def
)
11358 and then Nkind
(N
) /= N_Private_Extension_Declaration
11360 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit "
11361 & "from protected interface", Error_Node
);
11363 elsif Task_Present
(Iface_Def
)
11364 and then Nkind
(N
) /= N_Private_Extension_Declaration
11366 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit "
11367 & "from task interface", Error_Node
);
11369 elsif not Is_Limited_Interface
(Iface_Id
) then
11370 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit "
11371 & "from non-limited interface", Error_Node
);
11374 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
11375 -- synchronized or task interfaces.
11377 elsif Nkind
(N
) = N_Full_Type_Declaration
11378 and then Task_Present
(Type_Def
)
11380 if Limited_Present
(Iface_Def
)
11381 or else Synchronized_Present
(Iface_Def
)
11382 or else Task_Present
(Iface_Def
)
11386 elsif Protected_Present
(Iface_Def
) then
11387 Error_Msg_N
("(Ada 2005) task interface cannot inherit from "
11388 & "protected interface", Error_Node
);
11391 Error_Msg_N
("(Ada 2005) task interface cannot inherit from "
11392 & "non-limited interface", Error_Node
);
11397 -- Start of processing for Check_Interfaces
11400 if Is_Interface
(Parent_Type
) then
11401 if Is_Task_Interface
(Parent_Type
) then
11404 elsif Is_Protected_Interface
(Parent_Type
) then
11405 Is_Protected
:= True;
11409 if Nkind
(N
) = N_Private_Extension_Declaration
then
11411 -- Check that progenitors are compatible with declaration
11413 Iface
:= First
(Interface_List
(Def
));
11414 while Present
(Iface
) loop
11415 Iface_Typ
:= Find_Type_Of_Subtype_Indic
(Iface
);
11417 Parent_Node
:= Parent
(Base_Type
(Iface_Typ
));
11418 Iface_Def
:= Type_Definition
(Parent_Node
);
11420 if not Is_Interface
(Iface_Typ
) then
11421 Diagnose_Interface
(Iface
, Iface_Typ
);
11423 Check_Ifaces
(Iface_Def
, Iface
);
11429 if Is_Task
and Is_Protected
then
11431 ("type cannot derive from task and protected interface", N
);
11437 -- Full type declaration of derived type.
11438 -- Check compatibility with parent if it is interface type
11440 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
11441 and then Is_Interface
(Parent_Type
)
11443 Parent_Node
:= Parent
(Parent_Type
);
11445 -- More detailed checks for interface varieties
11448 (Iface_Def
=> Type_Definition
(Parent_Node
),
11449 Error_Node
=> Subtype_Indication
(Type_Definition
(N
)));
11452 Iface
:= First
(Interface_List
(Def
));
11453 while Present
(Iface
) loop
11454 Iface_Typ
:= Find_Type_Of_Subtype_Indic
(Iface
);
11456 Parent_Node
:= Parent
(Base_Type
(Iface_Typ
));
11457 Iface_Def
:= Type_Definition
(Parent_Node
);
11459 if not Is_Interface
(Iface_Typ
) then
11460 Diagnose_Interface
(Iface
, Iface_Typ
);
11463 -- "The declaration of a specific descendant of an interface
11464 -- type freezes the interface type" RM 13.14
11466 Freeze_Before
(N
, Iface_Typ
);
11467 Check_Ifaces
(Iface_Def
, Error_Node
=> Iface
);
11473 if Is_Task
and Is_Protected
then
11475 ("type cannot derive from task and protected interface", N
);
11477 end Check_Interfaces
;
11479 ------------------------------------
11480 -- Check_Or_Process_Discriminants --
11481 ------------------------------------
11483 -- If an incomplete or private type declaration was already given for the
11484 -- type, the discriminants may have already been processed if they were
11485 -- present on the incomplete declaration. In this case a full conformance
11486 -- check has been performed in Find_Type_Name, and we then recheck here
11487 -- some properties that can't be checked on the partial view alone.
11488 -- Otherwise we call Process_Discriminants.
11490 procedure Check_Or_Process_Discriminants
11493 Prev
: Entity_Id
:= Empty
)
11496 if Has_Discriminants
(T
) then
11498 -- Discriminants are already set on T if they were already present
11499 -- on the partial view. Make them visible to component declarations.
11503 -- Discriminant on T (full view) referencing expr on partial view
11505 Prev_D
: Entity_Id
;
11506 -- Entity of corresponding discriminant on partial view
11509 -- Discriminant specification for full view, expression is
11510 -- the syntactic copy on full view (which has been checked for
11511 -- conformance with partial view), only used here to post error
11515 D
:= First_Discriminant
(T
);
11516 New_D
:= First
(Discriminant_Specifications
(N
));
11517 while Present
(D
) loop
11518 Prev_D
:= Current_Entity
(D
);
11519 Set_Current_Entity
(D
);
11520 Set_Is_Immediately_Visible
(D
);
11521 Set_Homonym
(D
, Prev_D
);
11523 -- Handle the case where there is an untagged partial view and
11524 -- the full view is tagged: must disallow discriminants with
11525 -- defaults, unless compiling for Ada 2012, which allows a
11526 -- limited tagged type to have defaulted discriminants (see
11527 -- AI05-0214). However, suppress error here if it was already
11528 -- reported on the default expression of the partial view.
11530 if Is_Tagged_Type
(T
)
11531 and then Present
(Expression
(Parent
(D
)))
11532 and then (not Is_Limited_Type
(Current_Scope
)
11533 or else Ada_Version
< Ada_2012
)
11534 and then not Error_Posted
(Expression
(Parent
(D
)))
11536 if Ada_Version
>= Ada_2012
then
11538 ("discriminants of nonlimited tagged type cannot have "
11540 Expression
(New_D
));
11543 ("discriminants of tagged type cannot have defaults",
11544 Expression
(New_D
));
11548 -- Ada 2005 (AI-230): Access discriminant allowed in
11549 -- non-limited record types.
11551 if Ada_Version
< Ada_2005
then
11553 -- This restriction gets applied to the full type here. It
11554 -- has already been applied earlier to the partial view.
11556 Check_Access_Discriminant_Requires_Limited
(Parent
(D
), N
);
11559 Next_Discriminant
(D
);
11564 elsif Present
(Discriminant_Specifications
(N
)) then
11565 Process_Discriminants
(N
, Prev
);
11567 end Check_Or_Process_Discriminants
;
11569 ----------------------
11570 -- Check_Real_Bound --
11571 ----------------------
11573 procedure Check_Real_Bound
(Bound
: Node_Id
) is
11575 if not Is_Real_Type
(Etype
(Bound
)) then
11577 ("bound in real type definition must be of real type", Bound
);
11579 elsif not Is_OK_Static_Expression
(Bound
) then
11580 Flag_Non_Static_Expr
11581 ("non-static expression used for real type bound!", Bound
);
11588 (Bound
, Make_Real_Literal
(Sloc
(Bound
), Ureal_0
));
11590 Resolve
(Bound
, Standard_Float
);
11591 end Check_Real_Bound
;
11593 ------------------------------
11594 -- Complete_Private_Subtype --
11595 ------------------------------
11597 procedure Complete_Private_Subtype
11600 Full_Base
: Entity_Id
;
11601 Related_Nod
: Node_Id
)
11603 Save_Next_Entity
: Entity_Id
;
11604 Save_Homonym
: Entity_Id
;
11607 -- Set semantic attributes for (implicit) private subtype completion.
11608 -- If the full type has no discriminants, then it is a copy of the
11609 -- full view of the base. Otherwise, it is a subtype of the base with
11610 -- a possible discriminant constraint. Save and restore the original
11611 -- Next_Entity field of full to ensure that the calls to Copy_Node do
11612 -- not corrupt the entity chain.
11614 -- Note that the type of the full view is the same entity as the type
11615 -- of the partial view. In this fashion, the subtype has access to the
11616 -- correct view of the parent.
11618 Save_Next_Entity
:= Next_Entity
(Full
);
11619 Save_Homonym
:= Homonym
(Priv
);
11621 case Ekind
(Full_Base
) is
11622 when E_Record_Type |
11628 Copy_Node
(Priv
, Full
);
11630 Set_Has_Discriminants
11631 (Full
, Has_Discriminants
(Full_Base
));
11632 Set_Has_Unknown_Discriminants
11633 (Full
, Has_Unknown_Discriminants
(Full_Base
));
11634 Set_First_Entity
(Full
, First_Entity
(Full_Base
));
11635 Set_Last_Entity
(Full
, Last_Entity
(Full_Base
));
11637 -- If the underlying base type is constrained, we know that the
11638 -- full view of the subtype is constrained as well (the converse
11639 -- is not necessarily true).
11641 if Is_Constrained
(Full_Base
) then
11642 Set_Is_Constrained
(Full
);
11646 Copy_Node
(Full_Base
, Full
);
11648 Set_Chars
(Full
, Chars
(Priv
));
11649 Conditional_Delay
(Full
, Priv
);
11650 Set_Sloc
(Full
, Sloc
(Priv
));
11653 Set_Next_Entity
(Full
, Save_Next_Entity
);
11654 Set_Homonym
(Full
, Save_Homonym
);
11655 Set_Associated_Node_For_Itype
(Full
, Related_Nod
);
11657 -- Set common attributes for all subtypes: kind, convention, etc.
11659 Set_Ekind
(Full
, Subtype_Kind
(Ekind
(Full_Base
)));
11660 Set_Convention
(Full
, Convention
(Full_Base
));
11662 -- The Etype of the full view is inconsistent. Gigi needs to see the
11663 -- structural full view, which is what the current scheme gives: the
11664 -- Etype of the full view is the etype of the full base. However, if the
11665 -- full base is a derived type, the full view then looks like a subtype
11666 -- of the parent, not a subtype of the full base. If instead we write:
11668 -- Set_Etype (Full, Full_Base);
11670 -- then we get inconsistencies in the front-end (confusion between
11671 -- views). Several outstanding bugs are related to this ???
11673 Set_Is_First_Subtype
(Full
, False);
11674 Set_Scope
(Full
, Scope
(Priv
));
11675 Set_Size_Info
(Full
, Full_Base
);
11676 Set_RM_Size
(Full
, RM_Size
(Full_Base
));
11677 Set_Is_Itype
(Full
);
11679 -- A subtype of a private-type-without-discriminants, whose full-view
11680 -- has discriminants with default expressions, is not constrained.
11682 if not Has_Discriminants
(Priv
) then
11683 Set_Is_Constrained
(Full
, Is_Constrained
(Full_Base
));
11685 if Has_Discriminants
(Full_Base
) then
11686 Set_Discriminant_Constraint
11687 (Full
, Discriminant_Constraint
(Full_Base
));
11689 -- The partial view may have been indefinite, the full view
11692 Set_Has_Unknown_Discriminants
11693 (Full
, Has_Unknown_Discriminants
(Full_Base
));
11697 Set_First_Rep_Item
(Full
, First_Rep_Item
(Full_Base
));
11698 Set_Depends_On_Private
(Full
, Has_Private_Component
(Full
));
11700 -- Freeze the private subtype entity if its parent is delayed, and not
11701 -- already frozen. We skip this processing if the type is an anonymous
11702 -- subtype of a record component, or is the corresponding record of a
11703 -- protected type, since these are processed when the enclosing type
11706 if not Is_Type
(Scope
(Full
)) then
11707 Set_Has_Delayed_Freeze
(Full
,
11708 Has_Delayed_Freeze
(Full_Base
)
11709 and then (not Is_Frozen
(Full_Base
)));
11712 Set_Freeze_Node
(Full
, Empty
);
11713 Set_Is_Frozen
(Full
, False);
11714 Set_Full_View
(Priv
, Full
);
11716 if Has_Discriminants
(Full
) then
11717 Set_Stored_Constraint_From_Discriminant_Constraint
(Full
);
11718 Set_Stored_Constraint
(Priv
, Stored_Constraint
(Full
));
11720 if Has_Unknown_Discriminants
(Full
) then
11721 Set_Discriminant_Constraint
(Full
, No_Elist
);
11725 if Ekind
(Full_Base
) = E_Record_Type
11726 and then Has_Discriminants
(Full_Base
)
11727 and then Has_Discriminants
(Priv
) -- might not, if errors
11728 and then not Has_Unknown_Discriminants
(Priv
)
11729 and then not Is_Empty_Elmt_List
(Discriminant_Constraint
(Priv
))
11731 Create_Constrained_Components
11732 (Full
, Related_Nod
, Full_Base
, Discriminant_Constraint
(Priv
));
11734 -- If the full base is itself derived from private, build a congruent
11735 -- subtype of its underlying type, for use by the back end. For a
11736 -- constrained record component, the declaration cannot be placed on
11737 -- the component list, but it must nevertheless be built an analyzed, to
11738 -- supply enough information for Gigi to compute the size of component.
11740 elsif Ekind
(Full_Base
) in Private_Kind
11741 and then Is_Derived_Type
(Full_Base
)
11742 and then Has_Discriminants
(Full_Base
)
11743 and then (Ekind
(Current_Scope
) /= E_Record_Subtype
)
11745 if not Is_Itype
(Priv
)
11747 Nkind
(Subtype_Indication
(Parent
(Priv
))) = N_Subtype_Indication
11749 Build_Underlying_Full_View
11750 (Parent
(Priv
), Full
, Etype
(Full_Base
));
11752 elsif Nkind
(Related_Nod
) = N_Component_Declaration
then
11753 Build_Underlying_Full_View
(Related_Nod
, Full
, Etype
(Full_Base
));
11756 elsif Is_Record_Type
(Full_Base
) then
11758 -- Show Full is simply a renaming of Full_Base
11760 Set_Cloned_Subtype
(Full
, Full_Base
);
11763 -- It is unsafe to share the bounds of a scalar type, because the Itype
11764 -- is elaborated on demand, and if a bound is non-static then different
11765 -- orders of elaboration in different units will lead to different
11766 -- external symbols.
11768 if Is_Scalar_Type
(Full_Base
) then
11769 Set_Scalar_Range
(Full
,
11770 Make_Range
(Sloc
(Related_Nod
),
11772 Duplicate_Subexpr_No_Checks
(Type_Low_Bound
(Full_Base
)),
11774 Duplicate_Subexpr_No_Checks
(Type_High_Bound
(Full_Base
))));
11776 -- This completion inherits the bounds of the full parent, but if
11777 -- the parent is an unconstrained floating point type, so is the
11780 if Is_Floating_Point_Type
(Full_Base
) then
11781 Set_Includes_Infinities
11782 (Scalar_Range
(Full
), Has_Infinities
(Full_Base
));
11786 -- ??? It seems that a lot of fields are missing that should be copied
11787 -- from Full_Base to Full. Here are some that are introduced in a
11788 -- non-disruptive way but a cleanup is necessary.
11790 if Is_Tagged_Type
(Full_Base
) then
11791 Set_Is_Tagged_Type
(Full
);
11792 Set_Direct_Primitive_Operations
11793 (Full
, Direct_Primitive_Operations
(Full_Base
));
11794 Set_No_Tagged_Streams_Pragma
11795 (Full
, No_Tagged_Streams_Pragma
(Full_Base
));
11797 -- Inherit class_wide type of full_base in case the partial view was
11798 -- not tagged. Otherwise it has already been created when the private
11799 -- subtype was analyzed.
11801 if No
(Class_Wide_Type
(Full
)) then
11802 Set_Class_Wide_Type
(Full
, Class_Wide_Type
(Full_Base
));
11805 -- If this is a subtype of a protected or task type, constrain its
11806 -- corresponding record, unless this is a subtype without constraints,
11807 -- i.e. a simple renaming as with an actual subtype in an instance.
11809 elsif Is_Concurrent_Type
(Full_Base
) then
11810 if Has_Discriminants
(Full
)
11811 and then Present
(Corresponding_Record_Type
(Full_Base
))
11813 not Is_Empty_Elmt_List
(Discriminant_Constraint
(Full
))
11815 Set_Corresponding_Record_Type
(Full
,
11816 Constrain_Corresponding_Record
11817 (Full
, Corresponding_Record_Type
(Full_Base
), Related_Nod
));
11820 Set_Corresponding_Record_Type
(Full
,
11821 Corresponding_Record_Type
(Full_Base
));
11825 -- Link rep item chain, and also setting of Has_Predicates from private
11826 -- subtype to full subtype, since we will need these on the full subtype
11827 -- to create the predicate function. Note that the full subtype may
11828 -- already have rep items, inherited from the full view of the base
11829 -- type, so we must be sure not to overwrite these entries.
11834 Next_Item
: Node_Id
;
11837 Item
:= First_Rep_Item
(Full
);
11839 -- If no existing rep items on full type, we can just link directly
11840 -- to the list of items on the private type, if any exist.. Same if
11841 -- the rep items are only those inherited from the base
11844 or else Nkind
(Item
) /= N_Aspect_Specification
11845 or else Entity
(Item
) = Full_Base
)
11846 and then Present
(First_Rep_Item
(Priv
))
11848 Set_First_Rep_Item
(Full
, First_Rep_Item
(Priv
));
11850 -- Otherwise, search to the end of items currently linked to the full
11851 -- subtype and append the private items to the end. However, if Priv
11852 -- and Full already have the same list of rep items, then the append
11853 -- is not done, as that would create a circularity.
11855 elsif Item
/= First_Rep_Item
(Priv
) then
11858 Next_Item
:= Next_Rep_Item
(Item
);
11859 exit when No
(Next_Item
);
11862 -- If the private view has aspect specifications, the full view
11863 -- inherits them. Since these aspects may already have been
11864 -- attached to the full view during derivation, do not append
11865 -- them if already present.
11867 if Item
= First_Rep_Item
(Priv
) then
11873 -- And link the private type items at the end of the chain
11876 Set_Next_Rep_Item
(Item
, First_Rep_Item
(Priv
));
11881 -- Make sure Has_Predicates is set on full type if it is set on the
11882 -- private type. Note that it may already be set on the full type and
11883 -- if so, we don't want to unset it. Similarly, propagate information
11884 -- about delayed aspects, because the corresponding pragmas must be
11885 -- analyzed when one of the views is frozen. This last step is needed
11886 -- in particular when the full type is a scalar type for which an
11887 -- anonymous base type is constructed.
11889 if Has_Predicates
(Priv
) then
11890 Set_Has_Predicates
(Full
);
11893 if Has_Delayed_Aspects
(Priv
) then
11894 Set_Has_Delayed_Aspects
(Full
);
11896 end Complete_Private_Subtype
;
11898 ----------------------------
11899 -- Constant_Redeclaration --
11900 ----------------------------
11902 procedure Constant_Redeclaration
11907 Prev
: constant Entity_Id
:= Current_Entity_In_Scope
(Id
);
11908 Obj_Def
: constant Node_Id
:= Object_Definition
(N
);
11911 procedure Check_Possible_Deferred_Completion
11912 (Prev_Id
: Entity_Id
;
11913 Prev_Obj_Def
: Node_Id
;
11914 Curr_Obj_Def
: Node_Id
);
11915 -- Determine whether the two object definitions describe the partial
11916 -- and the full view of a constrained deferred constant. Generate
11917 -- a subtype for the full view and verify that it statically matches
11918 -- the subtype of the partial view.
11920 procedure Check_Recursive_Declaration
(Typ
: Entity_Id
);
11921 -- If deferred constant is an access type initialized with an allocator,
11922 -- check whether there is an illegal recursion in the definition,
11923 -- through a default value of some record subcomponent. This is normally
11924 -- detected when generating init procs, but requires this additional
11925 -- mechanism when expansion is disabled.
11927 ----------------------------------------
11928 -- Check_Possible_Deferred_Completion --
11929 ----------------------------------------
11931 procedure Check_Possible_Deferred_Completion
11932 (Prev_Id
: Entity_Id
;
11933 Prev_Obj_Def
: Node_Id
;
11934 Curr_Obj_Def
: Node_Id
)
11937 if Nkind
(Prev_Obj_Def
) = N_Subtype_Indication
11938 and then Present
(Constraint
(Prev_Obj_Def
))
11939 and then Nkind
(Curr_Obj_Def
) = N_Subtype_Indication
11940 and then Present
(Constraint
(Curr_Obj_Def
))
11943 Loc
: constant Source_Ptr
:= Sloc
(N
);
11944 Def_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
11945 Decl
: constant Node_Id
:=
11946 Make_Subtype_Declaration
(Loc
,
11947 Defining_Identifier
=> Def_Id
,
11948 Subtype_Indication
=>
11949 Relocate_Node
(Curr_Obj_Def
));
11952 Insert_Before_And_Analyze
(N
, Decl
);
11953 Set_Etype
(Id
, Def_Id
);
11955 if not Subtypes_Statically_Match
(Etype
(Prev_Id
), Def_Id
) then
11956 Error_Msg_Sloc
:= Sloc
(Prev_Id
);
11957 Error_Msg_N
("subtype does not statically match deferred "
11958 & "declaration #", N
);
11962 end Check_Possible_Deferred_Completion
;
11964 ---------------------------------
11965 -- Check_Recursive_Declaration --
11966 ---------------------------------
11968 procedure Check_Recursive_Declaration
(Typ
: Entity_Id
) is
11972 if Is_Record_Type
(Typ
) then
11973 Comp
:= First_Component
(Typ
);
11974 while Present
(Comp
) loop
11975 if Comes_From_Source
(Comp
) then
11976 if Present
(Expression
(Parent
(Comp
)))
11977 and then Is_Entity_Name
(Expression
(Parent
(Comp
)))
11978 and then Entity
(Expression
(Parent
(Comp
))) = Prev
11980 Error_Msg_Sloc
:= Sloc
(Parent
(Comp
));
11982 ("illegal circularity with declaration for & #",
11986 elsif Is_Record_Type
(Etype
(Comp
)) then
11987 Check_Recursive_Declaration
(Etype
(Comp
));
11991 Next_Component
(Comp
);
11994 end Check_Recursive_Declaration
;
11996 -- Start of processing for Constant_Redeclaration
11999 if Nkind
(Parent
(Prev
)) = N_Object_Declaration
then
12000 if Nkind
(Object_Definition
12001 (Parent
(Prev
))) = N_Subtype_Indication
12003 -- Find type of new declaration. The constraints of the two
12004 -- views must match statically, but there is no point in
12005 -- creating an itype for the full view.
12007 if Nkind
(Obj_Def
) = N_Subtype_Indication
then
12008 Find_Type
(Subtype_Mark
(Obj_Def
));
12009 New_T
:= Entity
(Subtype_Mark
(Obj_Def
));
12012 Find_Type
(Obj_Def
);
12013 New_T
:= Entity
(Obj_Def
);
12019 -- The full view may impose a constraint, even if the partial
12020 -- view does not, so construct the subtype.
12022 New_T
:= Find_Type_Of_Object
(Obj_Def
, N
);
12027 -- Current declaration is illegal, diagnosed below in Enter_Name
12033 -- If previous full declaration or a renaming declaration exists, or if
12034 -- a homograph is present, let Enter_Name handle it, either with an
12035 -- error or with the removal of an overridden implicit subprogram.
12036 -- The previous one is a full declaration if it has an expression
12037 -- (which in the case of an aggregate is indicated by the Init flag).
12039 if Ekind
(Prev
) /= E_Constant
12040 or else Nkind
(Parent
(Prev
)) = N_Object_Renaming_Declaration
12041 or else Present
(Expression
(Parent
(Prev
)))
12042 or else Has_Init_Expression
(Parent
(Prev
))
12043 or else Present
(Full_View
(Prev
))
12047 -- Verify that types of both declarations match, or else that both types
12048 -- are anonymous access types whose designated subtypes statically match
12049 -- (as allowed in Ada 2005 by AI-385).
12051 elsif Base_Type
(Etype
(Prev
)) /= Base_Type
(New_T
)
12053 (Ekind
(Etype
(Prev
)) /= E_Anonymous_Access_Type
12054 or else Ekind
(Etype
(New_T
)) /= E_Anonymous_Access_Type
12055 or else Is_Access_Constant
(Etype
(New_T
)) /=
12056 Is_Access_Constant
(Etype
(Prev
))
12057 or else Can_Never_Be_Null
(Etype
(New_T
)) /=
12058 Can_Never_Be_Null
(Etype
(Prev
))
12059 or else Null_Exclusion_Present
(Parent
(Prev
)) /=
12060 Null_Exclusion_Present
(Parent
(Id
))
12061 or else not Subtypes_Statically_Match
12062 (Designated_Type
(Etype
(Prev
)),
12063 Designated_Type
(Etype
(New_T
))))
12065 Error_Msg_Sloc
:= Sloc
(Prev
);
12066 Error_Msg_N
("type does not match declaration#", N
);
12067 Set_Full_View
(Prev
, Id
);
12068 Set_Etype
(Id
, Any_Type
);
12070 -- A deferred constant whose type is an anonymous array is always
12071 -- illegal (unless imported). A detailed error message might be
12072 -- helpful for Ada beginners.
12074 if Nkind
(Object_Definition
(Parent
(Prev
)))
12075 = N_Constrained_Array_Definition
12076 and then Nkind
(Object_Definition
(N
))
12077 = N_Constrained_Array_Definition
12079 Error_Msg_N
("\each anonymous array is a distinct type", N
);
12080 Error_Msg_N
("a deferred constant must have a named type",
12081 Object_Definition
(Parent
(Prev
)));
12085 Null_Exclusion_Present
(Parent
(Prev
))
12086 and then not Null_Exclusion_Present
(N
)
12088 Error_Msg_Sloc
:= Sloc
(Prev
);
12089 Error_Msg_N
("null-exclusion does not match declaration#", N
);
12090 Set_Full_View
(Prev
, Id
);
12091 Set_Etype
(Id
, Any_Type
);
12093 -- If so, process the full constant declaration
12096 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
12097 -- the deferred declaration is constrained, then the subtype defined
12098 -- by the subtype_indication in the full declaration shall match it
12101 Check_Possible_Deferred_Completion
12103 Prev_Obj_Def
=> Object_Definition
(Parent
(Prev
)),
12104 Curr_Obj_Def
=> Obj_Def
);
12106 Set_Full_View
(Prev
, Id
);
12107 Set_Is_Public
(Id
, Is_Public
(Prev
));
12108 Set_Is_Internal
(Id
);
12109 Append_Entity
(Id
, Current_Scope
);
12111 -- Check ALIASED present if present before (RM 7.4(7))
12113 if Is_Aliased
(Prev
)
12114 and then not Aliased_Present
(N
)
12116 Error_Msg_Sloc
:= Sloc
(Prev
);
12117 Error_Msg_N
("ALIASED required (see declaration #)", N
);
12120 -- Check that placement is in private part and that the incomplete
12121 -- declaration appeared in the visible part.
12123 if Ekind
(Current_Scope
) = E_Package
12124 and then not In_Private_Part
(Current_Scope
)
12126 Error_Msg_Sloc
:= Sloc
(Prev
);
12128 ("full constant for declaration # must be in private part", N
);
12130 elsif Ekind
(Current_Scope
) = E_Package
12132 List_Containing
(Parent
(Prev
)) /=
12133 Visible_Declarations
(Package_Specification
(Current_Scope
))
12136 ("deferred constant must be declared in visible part",
12140 if Is_Access_Type
(T
)
12141 and then Nkind
(Expression
(N
)) = N_Allocator
12143 Check_Recursive_Declaration
(Designated_Type
(T
));
12146 -- A deferred constant is a visible entity. If type has invariants,
12147 -- verify that the initial value satisfies them.
12149 if Has_Invariants
(T
) and then Present
(Invariant_Procedure
(T
)) then
12151 Make_Invariant_Call
(New_Occurrence_Of
(Prev
, Sloc
(N
))));
12154 end Constant_Redeclaration
;
12156 ----------------------
12157 -- Constrain_Access --
12158 ----------------------
12160 procedure Constrain_Access
12161 (Def_Id
: in out Entity_Id
;
12163 Related_Nod
: Node_Id
)
12165 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
12166 Desig_Type
: constant Entity_Id
:= Designated_Type
(T
);
12167 Desig_Subtype
: Entity_Id
:= Create_Itype
(E_Void
, Related_Nod
);
12168 Constraint_OK
: Boolean := True;
12171 if Is_Array_Type
(Desig_Type
) then
12172 Constrain_Array
(Desig_Subtype
, S
, Related_Nod
, Def_Id
, 'P');
12174 elsif (Is_Record_Type
(Desig_Type
)
12175 or else Is_Incomplete_Or_Private_Type
(Desig_Type
))
12176 and then not Is_Constrained
(Desig_Type
)
12178 -- ??? The following code is a temporary bypass to ignore a
12179 -- discriminant constraint on access type if it is constraining
12180 -- the current record. Avoid creating the implicit subtype of the
12181 -- record we are currently compiling since right now, we cannot
12182 -- handle these. For now, just return the access type itself.
12184 if Desig_Type
= Current_Scope
12185 and then No
(Def_Id
)
12187 Set_Ekind
(Desig_Subtype
, E_Record_Subtype
);
12188 Def_Id
:= Entity
(Subtype_Mark
(S
));
12190 -- This call added to ensure that the constraint is analyzed
12191 -- (needed for a B test). Note that we still return early from
12192 -- this procedure to avoid recursive processing. ???
12194 Constrain_Discriminated_Type
12195 (Desig_Subtype
, S
, Related_Nod
, For_Access
=> True);
12199 -- Enforce rule that the constraint is illegal if there is an
12200 -- unconstrained view of the designated type. This means that the
12201 -- partial view (either a private type declaration or a derivation
12202 -- from a private type) has no discriminants. (Defect Report
12203 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
12205 -- Rule updated for Ada 2005: The private type is said to have
12206 -- a constrained partial view, given that objects of the type
12207 -- can be declared. Furthermore, the rule applies to all access
12208 -- types, unlike the rule concerning default discriminants (see
12211 if (Ekind
(T
) = E_General_Access_Type
or else Ada_Version
>= Ada_2005
)
12212 and then Has_Private_Declaration
(Desig_Type
)
12213 and then In_Open_Scopes
(Scope
(Desig_Type
))
12214 and then Has_Discriminants
(Desig_Type
)
12217 Pack
: constant Node_Id
:=
12218 Unit_Declaration_Node
(Scope
(Desig_Type
));
12223 if Nkind
(Pack
) = N_Package_Declaration
then
12224 Decls
:= Visible_Declarations
(Specification
(Pack
));
12225 Decl
:= First
(Decls
);
12226 while Present
(Decl
) loop
12227 if (Nkind
(Decl
) = N_Private_Type_Declaration
12228 and then Chars
(Defining_Identifier
(Decl
)) =
12229 Chars
(Desig_Type
))
12232 (Nkind
(Decl
) = N_Full_Type_Declaration
12234 Chars
(Defining_Identifier
(Decl
)) =
12236 and then Is_Derived_Type
(Desig_Type
)
12238 Has_Private_Declaration
(Etype
(Desig_Type
)))
12240 if No
(Discriminant_Specifications
(Decl
)) then
12242 ("cannot constrain access type if designated "
12243 & "type has constrained partial view", S
);
12255 Constrain_Discriminated_Type
(Desig_Subtype
, S
, Related_Nod
,
12256 For_Access
=> True);
12258 elsif Is_Concurrent_Type
(Desig_Type
)
12259 and then not Is_Constrained
(Desig_Type
)
12261 Constrain_Concurrent
(Desig_Subtype
, S
, Related_Nod
, Desig_Type
, ' ');
12264 Error_Msg_N
("invalid constraint on access type", S
);
12266 -- We simply ignore an invalid constraint
12268 Desig_Subtype
:= Desig_Type
;
12269 Constraint_OK
:= False;
12272 if No
(Def_Id
) then
12273 Def_Id
:= Create_Itype
(E_Access_Subtype
, Related_Nod
);
12275 Set_Ekind
(Def_Id
, E_Access_Subtype
);
12278 if Constraint_OK
then
12279 Set_Etype
(Def_Id
, Base_Type
(T
));
12281 if Is_Private_Type
(Desig_Type
) then
12282 Prepare_Private_Subtype_Completion
(Desig_Subtype
, Related_Nod
);
12285 Set_Etype
(Def_Id
, Any_Type
);
12288 Set_Size_Info
(Def_Id
, T
);
12289 Set_Is_Constrained
(Def_Id
, Constraint_OK
);
12290 Set_Directly_Designated_Type
(Def_Id
, Desig_Subtype
);
12291 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
12292 Set_Is_Access_Constant
(Def_Id
, Is_Access_Constant
(T
));
12294 Conditional_Delay
(Def_Id
, T
);
12296 -- AI-363 : Subtypes of general access types whose designated types have
12297 -- default discriminants are disallowed. In instances, the rule has to
12298 -- be checked against the actual, of which T is the subtype. In a
12299 -- generic body, the rule is checked assuming that the actual type has
12300 -- defaulted discriminants.
12302 if Ada_Version
>= Ada_2005
or else Warn_On_Ada_2005_Compatibility
then
12303 if Ekind
(Base_Type
(T
)) = E_General_Access_Type
12304 and then Has_Defaulted_Discriminants
(Desig_Type
)
12306 if Ada_Version
< Ada_2005
then
12308 ("access subtype of general access type would not " &
12309 "be allowed in Ada 2005?y?", S
);
12312 ("access subtype of general access type not allowed", S
);
12315 Error_Msg_N
("\discriminants have defaults", S
);
12317 elsif Is_Access_Type
(T
)
12318 and then Is_Generic_Type
(Desig_Type
)
12319 and then Has_Discriminants
(Desig_Type
)
12320 and then In_Package_Body
(Current_Scope
)
12322 if Ada_Version
< Ada_2005
then
12324 ("access subtype would not be allowed in generic body "
12325 & "in Ada 2005?y?", S
);
12328 ("access subtype not allowed in generic body", S
);
12332 ("\designated type is a discriminated formal", S
);
12335 end Constrain_Access
;
12337 ---------------------
12338 -- Constrain_Array --
12339 ---------------------
12341 procedure Constrain_Array
12342 (Def_Id
: in out Entity_Id
;
12344 Related_Nod
: Node_Id
;
12345 Related_Id
: Entity_Id
;
12346 Suffix
: Character)
12348 C
: constant Node_Id
:= Constraint
(SI
);
12349 Number_Of_Constraints
: Nat
:= 0;
12352 Constraint_OK
: Boolean := True;
12355 T
:= Entity
(Subtype_Mark
(SI
));
12357 if Is_Access_Type
(T
) then
12358 T
:= Designated_Type
(T
);
12361 -- If an index constraint follows a subtype mark in a subtype indication
12362 -- then the type or subtype denoted by the subtype mark must not already
12363 -- impose an index constraint. The subtype mark must denote either an
12364 -- unconstrained array type or an access type whose designated type
12365 -- is such an array type... (RM 3.6.1)
12367 if Is_Constrained
(T
) then
12368 Error_Msg_N
("array type is already constrained", Subtype_Mark
(SI
));
12369 Constraint_OK
:= False;
12372 S
:= First
(Constraints
(C
));
12373 while Present
(S
) loop
12374 Number_Of_Constraints
:= Number_Of_Constraints
+ 1;
12378 -- In either case, the index constraint must provide a discrete
12379 -- range for each index of the array type and the type of each
12380 -- discrete range must be the same as that of the corresponding
12381 -- index. (RM 3.6.1)
12383 if Number_Of_Constraints
/= Number_Dimensions
(T
) then
12384 Error_Msg_NE
("incorrect number of index constraints for }", C
, T
);
12385 Constraint_OK
:= False;
12388 S
:= First
(Constraints
(C
));
12389 Index
:= First_Index
(T
);
12392 -- Apply constraints to each index type
12394 for J
in 1 .. Number_Of_Constraints
loop
12395 Constrain_Index
(Index
, S
, Related_Nod
, Related_Id
, Suffix
, J
);
12403 if No
(Def_Id
) then
12405 Create_Itype
(E_Array_Subtype
, Related_Nod
, Related_Id
, Suffix
);
12406 Set_Parent
(Def_Id
, Related_Nod
);
12409 Set_Ekind
(Def_Id
, E_Array_Subtype
);
12412 Set_Size_Info
(Def_Id
, (T
));
12413 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
12414 Set_Etype
(Def_Id
, Base_Type
(T
));
12416 if Constraint_OK
then
12417 Set_First_Index
(Def_Id
, First
(Constraints
(C
)));
12419 Set_First_Index
(Def_Id
, First_Index
(T
));
12422 Set_Is_Constrained
(Def_Id
, True);
12423 Set_Is_Aliased
(Def_Id
, Is_Aliased
(T
));
12424 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
12426 Set_Is_Private_Composite
(Def_Id
, Is_Private_Composite
(T
));
12427 Set_Is_Limited_Composite
(Def_Id
, Is_Limited_Composite
(T
));
12429 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
12430 -- We need to initialize the attribute because if Def_Id is previously
12431 -- analyzed through a limited_with clause, it will have the attributes
12432 -- of an incomplete type, one of which is an Elist that overlaps the
12433 -- Packed_Array_Impl_Type field.
12435 Set_Packed_Array_Impl_Type
(Def_Id
, Empty
);
12437 -- Build a freeze node if parent still needs one. Also make sure that
12438 -- the Depends_On_Private status is set because the subtype will need
12439 -- reprocessing at the time the base type does, and also we must set a
12440 -- conditional delay.
12442 Set_Depends_On_Private
(Def_Id
, Depends_On_Private
(T
));
12443 Conditional_Delay
(Def_Id
, T
);
12444 end Constrain_Array
;
12446 ------------------------------
12447 -- Constrain_Component_Type --
12448 ------------------------------
12450 function Constrain_Component_Type
12452 Constrained_Typ
: Entity_Id
;
12453 Related_Node
: Node_Id
;
12455 Constraints
: Elist_Id
) return Entity_Id
12457 Loc
: constant Source_Ptr
:= Sloc
(Constrained_Typ
);
12458 Compon_Type
: constant Entity_Id
:= Etype
(Comp
);
12460 function Build_Constrained_Array_Type
12461 (Old_Type
: Entity_Id
) return Entity_Id
;
12462 -- If Old_Type is an array type, one of whose indexes is constrained
12463 -- by a discriminant, build an Itype whose constraint replaces the
12464 -- discriminant with its value in the constraint.
12466 function Build_Constrained_Discriminated_Type
12467 (Old_Type
: Entity_Id
) return Entity_Id
;
12468 -- Ditto for record components
12470 function Build_Constrained_Access_Type
12471 (Old_Type
: Entity_Id
) return Entity_Id
;
12472 -- Ditto for access types. Makes use of previous two functions, to
12473 -- constrain designated type.
12475 function Build_Subtype
(T
: Entity_Id
; C
: List_Id
) return Entity_Id
;
12476 -- T is an array or discriminated type, C is a list of constraints
12477 -- that apply to T. This routine builds the constrained subtype.
12479 function Is_Discriminant
(Expr
: Node_Id
) return Boolean;
12480 -- Returns True if Expr is a discriminant
12482 function Get_Discr_Value
(Discrim
: Entity_Id
) return Node_Id
;
12483 -- Find the value of discriminant Discrim in Constraint
12485 -----------------------------------
12486 -- Build_Constrained_Access_Type --
12487 -----------------------------------
12489 function Build_Constrained_Access_Type
12490 (Old_Type
: Entity_Id
) return Entity_Id
12492 Desig_Type
: constant Entity_Id
:= Designated_Type
(Old_Type
);
12494 Desig_Subtype
: Entity_Id
;
12498 -- if the original access type was not embedded in the enclosing
12499 -- type definition, there is no need to produce a new access
12500 -- subtype. In fact every access type with an explicit constraint
12501 -- generates an itype whose scope is the enclosing record.
12503 if not Is_Type
(Scope
(Old_Type
)) then
12506 elsif Is_Array_Type
(Desig_Type
) then
12507 Desig_Subtype
:= Build_Constrained_Array_Type
(Desig_Type
);
12509 elsif Has_Discriminants
(Desig_Type
) then
12511 -- This may be an access type to an enclosing record type for
12512 -- which we are constructing the constrained components. Return
12513 -- the enclosing record subtype. This is not always correct,
12514 -- but avoids infinite recursion. ???
12516 Desig_Subtype
:= Any_Type
;
12518 for J
in reverse 0 .. Scope_Stack
.Last
loop
12519 Scop
:= Scope_Stack
.Table
(J
).Entity
;
12522 and then Base_Type
(Scop
) = Base_Type
(Desig_Type
)
12524 Desig_Subtype
:= Scop
;
12527 exit when not Is_Type
(Scop
);
12530 if Desig_Subtype
= Any_Type
then
12532 Build_Constrained_Discriminated_Type
(Desig_Type
);
12539 if Desig_Subtype
/= Desig_Type
then
12541 -- The Related_Node better be here or else we won't be able
12542 -- to attach new itypes to a node in the tree.
12544 pragma Assert
(Present
(Related_Node
));
12546 Itype
:= Create_Itype
(E_Access_Subtype
, Related_Node
);
12548 Set_Etype
(Itype
, Base_Type
(Old_Type
));
12549 Set_Size_Info
(Itype
, (Old_Type
));
12550 Set_Directly_Designated_Type
(Itype
, Desig_Subtype
);
12551 Set_Depends_On_Private
(Itype
, Has_Private_Component
12553 Set_Is_Access_Constant
(Itype
, Is_Access_Constant
12556 -- The new itype needs freezing when it depends on a not frozen
12557 -- type and the enclosing subtype needs freezing.
12559 if Has_Delayed_Freeze
(Constrained_Typ
)
12560 and then not Is_Frozen
(Constrained_Typ
)
12562 Conditional_Delay
(Itype
, Base_Type
(Old_Type
));
12570 end Build_Constrained_Access_Type
;
12572 ----------------------------------
12573 -- Build_Constrained_Array_Type --
12574 ----------------------------------
12576 function Build_Constrained_Array_Type
12577 (Old_Type
: Entity_Id
) return Entity_Id
12581 Old_Index
: Node_Id
;
12582 Range_Node
: Node_Id
;
12583 Constr_List
: List_Id
;
12585 Need_To_Create_Itype
: Boolean := False;
12588 Old_Index
:= First_Index
(Old_Type
);
12589 while Present
(Old_Index
) loop
12590 Get_Index_Bounds
(Old_Index
, Lo_Expr
, Hi_Expr
);
12592 if Is_Discriminant
(Lo_Expr
)
12594 Is_Discriminant
(Hi_Expr
)
12596 Need_To_Create_Itype
:= True;
12599 Next_Index
(Old_Index
);
12602 if Need_To_Create_Itype
then
12603 Constr_List
:= New_List
;
12605 Old_Index
:= First_Index
(Old_Type
);
12606 while Present
(Old_Index
) loop
12607 Get_Index_Bounds
(Old_Index
, Lo_Expr
, Hi_Expr
);
12609 if Is_Discriminant
(Lo_Expr
) then
12610 Lo_Expr
:= Get_Discr_Value
(Lo_Expr
);
12613 if Is_Discriminant
(Hi_Expr
) then
12614 Hi_Expr
:= Get_Discr_Value
(Hi_Expr
);
12619 (Loc
, New_Copy_Tree
(Lo_Expr
), New_Copy_Tree
(Hi_Expr
));
12621 Append
(Range_Node
, To
=> Constr_List
);
12623 Next_Index
(Old_Index
);
12626 return Build_Subtype
(Old_Type
, Constr_List
);
12631 end Build_Constrained_Array_Type
;
12633 ------------------------------------------
12634 -- Build_Constrained_Discriminated_Type --
12635 ------------------------------------------
12637 function Build_Constrained_Discriminated_Type
12638 (Old_Type
: Entity_Id
) return Entity_Id
12641 Constr_List
: List_Id
;
12642 Old_Constraint
: Elmt_Id
;
12644 Need_To_Create_Itype
: Boolean := False;
12647 Old_Constraint
:= First_Elmt
(Discriminant_Constraint
(Old_Type
));
12648 while Present
(Old_Constraint
) loop
12649 Expr
:= Node
(Old_Constraint
);
12651 if Is_Discriminant
(Expr
) then
12652 Need_To_Create_Itype
:= True;
12655 Next_Elmt
(Old_Constraint
);
12658 if Need_To_Create_Itype
then
12659 Constr_List
:= New_List
;
12661 Old_Constraint
:= First_Elmt
(Discriminant_Constraint
(Old_Type
));
12662 while Present
(Old_Constraint
) loop
12663 Expr
:= Node
(Old_Constraint
);
12665 if Is_Discriminant
(Expr
) then
12666 Expr
:= Get_Discr_Value
(Expr
);
12669 Append
(New_Copy_Tree
(Expr
), To
=> Constr_List
);
12671 Next_Elmt
(Old_Constraint
);
12674 return Build_Subtype
(Old_Type
, Constr_List
);
12679 end Build_Constrained_Discriminated_Type
;
12681 -------------------
12682 -- Build_Subtype --
12683 -------------------
12685 function Build_Subtype
(T
: Entity_Id
; C
: List_Id
) return Entity_Id
is
12687 Subtyp_Decl
: Node_Id
;
12688 Def_Id
: Entity_Id
;
12689 Btyp
: Entity_Id
:= Base_Type
(T
);
12692 -- The Related_Node better be here or else we won't be able to
12693 -- attach new itypes to a node in the tree.
12695 pragma Assert
(Present
(Related_Node
));
12697 -- If the view of the component's type is incomplete or private
12698 -- with unknown discriminants, then the constraint must be applied
12699 -- to the full type.
12701 if Has_Unknown_Discriminants
(Btyp
)
12702 and then Present
(Underlying_Type
(Btyp
))
12704 Btyp
:= Underlying_Type
(Btyp
);
12708 Make_Subtype_Indication
(Loc
,
12709 Subtype_Mark
=> New_Occurrence_Of
(Btyp
, Loc
),
12710 Constraint
=> Make_Index_Or_Discriminant_Constraint
(Loc
, C
));
12712 Def_Id
:= Create_Itype
(Ekind
(T
), Related_Node
);
12715 Make_Subtype_Declaration
(Loc
,
12716 Defining_Identifier
=> Def_Id
,
12717 Subtype_Indication
=> Indic
);
12719 Set_Parent
(Subtyp_Decl
, Parent
(Related_Node
));
12721 -- Itypes must be analyzed with checks off (see package Itypes)
12723 Analyze
(Subtyp_Decl
, Suppress
=> All_Checks
);
12728 ---------------------
12729 -- Get_Discr_Value --
12730 ---------------------
12732 function Get_Discr_Value
(Discrim
: Entity_Id
) return Node_Id
is
12737 -- The discriminant may be declared for the type, in which case we
12738 -- find it by iterating over the list of discriminants. If the
12739 -- discriminant is inherited from a parent type, it appears as the
12740 -- corresponding discriminant of the current type. This will be the
12741 -- case when constraining an inherited component whose constraint is
12742 -- given by a discriminant of the parent.
12744 D
:= First_Discriminant
(Typ
);
12745 E
:= First_Elmt
(Constraints
);
12747 while Present
(D
) loop
12748 if D
= Entity
(Discrim
)
12749 or else D
= CR_Discriminant
(Entity
(Discrim
))
12750 or else Corresponding_Discriminant
(D
) = Entity
(Discrim
)
12755 Next_Discriminant
(D
);
12759 -- The Corresponding_Discriminant mechanism is incomplete, because
12760 -- the correspondence between new and old discriminants is not one
12761 -- to one: one new discriminant can constrain several old ones. In
12762 -- that case, scan sequentially the stored_constraint, the list of
12763 -- discriminants of the parents, and the constraints.
12765 -- Previous code checked for the present of the Stored_Constraint
12766 -- list for the derived type, but did not use it at all. Should it
12767 -- be present when the component is a discriminated task type?
12769 if Is_Derived_Type
(Typ
)
12770 and then Scope
(Entity
(Discrim
)) = Etype
(Typ
)
12772 D
:= First_Discriminant
(Etype
(Typ
));
12773 E
:= First_Elmt
(Constraints
);
12774 while Present
(D
) loop
12775 if D
= Entity
(Discrim
) then
12779 Next_Discriminant
(D
);
12784 -- Something is wrong if we did not find the value
12786 raise Program_Error
;
12787 end Get_Discr_Value
;
12789 ---------------------
12790 -- Is_Discriminant --
12791 ---------------------
12793 function Is_Discriminant
(Expr
: Node_Id
) return Boolean is
12794 Discrim_Scope
: Entity_Id
;
12797 if Denotes_Discriminant
(Expr
) then
12798 Discrim_Scope
:= Scope
(Entity
(Expr
));
12800 -- Either we have a reference to one of Typ's discriminants,
12802 pragma Assert
(Discrim_Scope
= Typ
12804 -- or to the discriminants of the parent type, in the case
12805 -- of a derivation of a tagged type with variants.
12807 or else Discrim_Scope
= Etype
(Typ
)
12808 or else Full_View
(Discrim_Scope
) = Etype
(Typ
)
12810 -- or same as above for the case where the discriminants
12811 -- were declared in Typ's private view.
12813 or else (Is_Private_Type
(Discrim_Scope
)
12814 and then Chars
(Discrim_Scope
) = Chars
(Typ
))
12816 -- or else we are deriving from the full view and the
12817 -- discriminant is declared in the private entity.
12819 or else (Is_Private_Type
(Typ
)
12820 and then Chars
(Discrim_Scope
) = Chars
(Typ
))
12822 -- Or we are constrained the corresponding record of a
12823 -- synchronized type that completes a private declaration.
12825 or else (Is_Concurrent_Record_Type
(Typ
)
12827 Corresponding_Concurrent_Type
(Typ
) = Discrim_Scope
)
12829 -- or we have a class-wide type, in which case make sure the
12830 -- discriminant found belongs to the root type.
12832 or else (Is_Class_Wide_Type
(Typ
)
12833 and then Etype
(Typ
) = Discrim_Scope
));
12838 -- In all other cases we have something wrong
12841 end Is_Discriminant
;
12843 -- Start of processing for Constrain_Component_Type
12846 if Nkind
(Parent
(Comp
)) = N_Component_Declaration
12847 and then Comes_From_Source
(Parent
(Comp
))
12848 and then Comes_From_Source
12849 (Subtype_Indication
(Component_Definition
(Parent
(Comp
))))
12852 (Subtype_Indication
(Component_Definition
(Parent
(Comp
))))
12854 return Compon_Type
;
12856 elsif Is_Array_Type
(Compon_Type
) then
12857 return Build_Constrained_Array_Type
(Compon_Type
);
12859 elsif Has_Discriminants
(Compon_Type
) then
12860 return Build_Constrained_Discriminated_Type
(Compon_Type
);
12862 elsif Is_Access_Type
(Compon_Type
) then
12863 return Build_Constrained_Access_Type
(Compon_Type
);
12866 return Compon_Type
;
12868 end Constrain_Component_Type
;
12870 --------------------------
12871 -- Constrain_Concurrent --
12872 --------------------------
12874 -- For concurrent types, the associated record value type carries the same
12875 -- discriminants, so when we constrain a concurrent type, we must constrain
12876 -- the corresponding record type as well.
12878 procedure Constrain_Concurrent
12879 (Def_Id
: in out Entity_Id
;
12881 Related_Nod
: Node_Id
;
12882 Related_Id
: Entity_Id
;
12883 Suffix
: Character)
12885 -- Retrieve Base_Type to ensure getting to the concurrent type in the
12886 -- case of a private subtype (needed when only doing semantic analysis).
12888 T_Ent
: Entity_Id
:= Base_Type
(Entity
(Subtype_Mark
(SI
)));
12892 if Is_Access_Type
(T_Ent
) then
12893 T_Ent
:= Designated_Type
(T_Ent
);
12896 T_Val
:= Corresponding_Record_Type
(T_Ent
);
12898 if Present
(T_Val
) then
12900 if No
(Def_Id
) then
12901 Def_Id
:= Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
12904 Constrain_Discriminated_Type
(Def_Id
, SI
, Related_Nod
);
12906 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
12907 Set_Corresponding_Record_Type
(Def_Id
,
12908 Constrain_Corresponding_Record
(Def_Id
, T_Val
, Related_Nod
));
12911 -- If there is no associated record, expansion is disabled and this
12912 -- is a generic context. Create a subtype in any case, so that
12913 -- semantic analysis can proceed.
12915 if No
(Def_Id
) then
12916 Def_Id
:= Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
12919 Constrain_Discriminated_Type
(Def_Id
, SI
, Related_Nod
);
12921 end Constrain_Concurrent
;
12923 ------------------------------------
12924 -- Constrain_Corresponding_Record --
12925 ------------------------------------
12927 function Constrain_Corresponding_Record
12928 (Prot_Subt
: Entity_Id
;
12929 Corr_Rec
: Entity_Id
;
12930 Related_Nod
: Node_Id
) return Entity_Id
12932 T_Sub
: constant Entity_Id
:=
12933 Create_Itype
(E_Record_Subtype
, Related_Nod
, Corr_Rec
, 'C');
12936 Set_Etype
(T_Sub
, Corr_Rec
);
12937 Set_Has_Discriminants
(T_Sub
, Has_Discriminants
(Prot_Subt
));
12938 Set_Is_Constrained
(T_Sub
, True);
12939 Set_First_Entity
(T_Sub
, First_Entity
(Corr_Rec
));
12940 Set_Last_Entity
(T_Sub
, Last_Entity
(Corr_Rec
));
12942 if Has_Discriminants
(Prot_Subt
) then -- False only if errors.
12943 Set_Discriminant_Constraint
12944 (T_Sub
, Discriminant_Constraint
(Prot_Subt
));
12945 Set_Stored_Constraint_From_Discriminant_Constraint
(T_Sub
);
12946 Create_Constrained_Components
12947 (T_Sub
, Related_Nod
, Corr_Rec
, Discriminant_Constraint
(T_Sub
));
12950 Set_Depends_On_Private
(T_Sub
, Has_Private_Component
(T_Sub
));
12952 if Ekind
(Scope
(Prot_Subt
)) /= E_Record_Type
then
12953 Conditional_Delay
(T_Sub
, Corr_Rec
);
12956 -- This is a component subtype: it will be frozen in the context of
12957 -- the enclosing record's init_proc, so that discriminant references
12958 -- are resolved to discriminals. (Note: we used to skip freezing
12959 -- altogether in that case, which caused errors downstream for
12960 -- components of a bit packed array type).
12962 Set_Has_Delayed_Freeze
(T_Sub
);
12966 end Constrain_Corresponding_Record
;
12968 -----------------------
12969 -- Constrain_Decimal --
12970 -----------------------
12972 procedure Constrain_Decimal
(Def_Id
: Node_Id
; S
: Node_Id
) is
12973 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
12974 C
: constant Node_Id
:= Constraint
(S
);
12975 Loc
: constant Source_Ptr
:= Sloc
(C
);
12976 Range_Expr
: Node_Id
;
12977 Digits_Expr
: Node_Id
;
12982 Set_Ekind
(Def_Id
, E_Decimal_Fixed_Point_Subtype
);
12984 if Nkind
(C
) = N_Range_Constraint
then
12985 Range_Expr
:= Range_Expression
(C
);
12986 Digits_Val
:= Digits_Value
(T
);
12989 pragma Assert
(Nkind
(C
) = N_Digits_Constraint
);
12991 Check_SPARK_05_Restriction
("digits constraint is not allowed", S
);
12993 Digits_Expr
:= Digits_Expression
(C
);
12994 Analyze_And_Resolve
(Digits_Expr
, Any_Integer
);
12996 Check_Digits_Expression
(Digits_Expr
);
12997 Digits_Val
:= Expr_Value
(Digits_Expr
);
12999 if Digits_Val
> Digits_Value
(T
) then
13001 ("digits expression is incompatible with subtype", C
);
13002 Digits_Val
:= Digits_Value
(T
);
13005 if Present
(Range_Constraint
(C
)) then
13006 Range_Expr
:= Range_Expression
(Range_Constraint
(C
));
13008 Range_Expr
:= Empty
;
13012 Set_Etype
(Def_Id
, Base_Type
(T
));
13013 Set_Size_Info
(Def_Id
, (T
));
13014 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13015 Set_Delta_Value
(Def_Id
, Delta_Value
(T
));
13016 Set_Scale_Value
(Def_Id
, Scale_Value
(T
));
13017 Set_Small_Value
(Def_Id
, Small_Value
(T
));
13018 Set_Machine_Radix_10
(Def_Id
, Machine_Radix_10
(T
));
13019 Set_Digits_Value
(Def_Id
, Digits_Val
);
13021 -- Manufacture range from given digits value if no range present
13023 if No
(Range_Expr
) then
13024 Bound_Val
:= (Ureal_10
** Digits_Val
- Ureal_1
) * Small_Value
(T
);
13028 Convert_To
(T
, Make_Real_Literal
(Loc
, (-Bound_Val
))),
13030 Convert_To
(T
, Make_Real_Literal
(Loc
, Bound_Val
)));
13033 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expr
, T
);
13034 Set_Discrete_RM_Size
(Def_Id
);
13036 -- Unconditionally delay the freeze, since we cannot set size
13037 -- information in all cases correctly until the freeze point.
13039 Set_Has_Delayed_Freeze
(Def_Id
);
13040 end Constrain_Decimal
;
13042 ----------------------------------
13043 -- Constrain_Discriminated_Type --
13044 ----------------------------------
13046 procedure Constrain_Discriminated_Type
13047 (Def_Id
: Entity_Id
;
13049 Related_Nod
: Node_Id
;
13050 For_Access
: Boolean := False)
13052 E
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
13055 Elist
: Elist_Id
:= New_Elmt_List
;
13057 procedure Fixup_Bad_Constraint
;
13058 -- This is called after finding a bad constraint, and after having
13059 -- posted an appropriate error message. The mission is to leave the
13060 -- entity T in as reasonable state as possible.
13062 --------------------------
13063 -- Fixup_Bad_Constraint --
13064 --------------------------
13066 procedure Fixup_Bad_Constraint
is
13068 -- Set a reasonable Ekind for the entity. For an incomplete type,
13069 -- we can't do much, but for other types, we can set the proper
13070 -- corresponding subtype kind.
13072 if Ekind
(T
) = E_Incomplete_Type
then
13073 Set_Ekind
(Def_Id
, Ekind
(T
));
13075 Set_Ekind
(Def_Id
, Subtype_Kind
(Ekind
(T
)));
13078 -- Set Etype to the known type, to reduce chances of cascaded errors
13080 Set_Etype
(Def_Id
, E
);
13081 Set_Error_Posted
(Def_Id
);
13082 end Fixup_Bad_Constraint
;
13084 -- Start of processing for Constrain_Discriminated_Type
13087 C
:= Constraint
(S
);
13089 -- A discriminant constraint is only allowed in a subtype indication,
13090 -- after a subtype mark. This subtype mark must denote either a type
13091 -- with discriminants, or an access type whose designated type is a
13092 -- type with discriminants. A discriminant constraint specifies the
13093 -- values of these discriminants (RM 3.7.2(5)).
13095 T
:= Base_Type
(Entity
(Subtype_Mark
(S
)));
13097 if Is_Access_Type
(T
) then
13098 T
:= Designated_Type
(T
);
13101 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
13102 -- Avoid generating an error for access-to-incomplete subtypes.
13104 if Ada_Version
>= Ada_2005
13105 and then Ekind
(T
) = E_Incomplete_Type
13106 and then Nkind
(Parent
(S
)) = N_Subtype_Declaration
13107 and then not Is_Itype
(Def_Id
)
13109 -- A little sanity check, emit an error message if the type
13110 -- has discriminants to begin with. Type T may be a regular
13111 -- incomplete type or imported via a limited with clause.
13113 if Has_Discriminants
(T
)
13114 or else (From_Limited_With
(T
)
13115 and then Present
(Non_Limited_View
(T
))
13116 and then Nkind
(Parent
(Non_Limited_View
(T
))) =
13117 N_Full_Type_Declaration
13118 and then Present
(Discriminant_Specifications
13119 (Parent
(Non_Limited_View
(T
)))))
13122 ("(Ada 2005) incomplete subtype may not be constrained", C
);
13124 Error_Msg_N
("invalid constraint: type has no discriminant", C
);
13127 Fixup_Bad_Constraint
;
13130 -- Check that the type has visible discriminants. The type may be
13131 -- a private type with unknown discriminants whose full view has
13132 -- discriminants which are invisible.
13134 elsif not Has_Discriminants
(T
)
13136 (Has_Unknown_Discriminants
(T
)
13137 and then Is_Private_Type
(T
))
13139 Error_Msg_N
("invalid constraint: type has no discriminant", C
);
13140 Fixup_Bad_Constraint
;
13143 elsif Is_Constrained
(E
)
13144 or else (Ekind
(E
) = E_Class_Wide_Subtype
13145 and then Present
(Discriminant_Constraint
(E
)))
13147 Error_Msg_N
("type is already constrained", Subtype_Mark
(S
));
13148 Fixup_Bad_Constraint
;
13152 -- T may be an unconstrained subtype (e.g. a generic actual).
13153 -- Constraint applies to the base type.
13155 T
:= Base_Type
(T
);
13157 Elist
:= Build_Discriminant_Constraints
(T
, S
);
13159 -- If the list returned was empty we had an error in building the
13160 -- discriminant constraint. We have also already signalled an error
13161 -- in the incomplete type case
13163 if Is_Empty_Elmt_List
(Elist
) then
13164 Fixup_Bad_Constraint
;
13168 Build_Discriminated_Subtype
(T
, Def_Id
, Elist
, Related_Nod
, For_Access
);
13169 end Constrain_Discriminated_Type
;
13171 ---------------------------
13172 -- Constrain_Enumeration --
13173 ---------------------------
13175 procedure Constrain_Enumeration
(Def_Id
: Node_Id
; S
: Node_Id
) is
13176 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
13177 C
: constant Node_Id
:= Constraint
(S
);
13180 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
13182 Set_First_Literal
(Def_Id
, First_Literal
(Base_Type
(T
)));
13184 Set_Etype
(Def_Id
, Base_Type
(T
));
13185 Set_Size_Info
(Def_Id
, (T
));
13186 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13187 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
13189 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
13191 Set_Discrete_RM_Size
(Def_Id
);
13192 end Constrain_Enumeration
;
13194 ----------------------
13195 -- Constrain_Float --
13196 ----------------------
13198 procedure Constrain_Float
(Def_Id
: Node_Id
; S
: Node_Id
) is
13199 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
13205 Set_Ekind
(Def_Id
, E_Floating_Point_Subtype
);
13207 Set_Etype
(Def_Id
, Base_Type
(T
));
13208 Set_Size_Info
(Def_Id
, (T
));
13209 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13211 -- Process the constraint
13213 C
:= Constraint
(S
);
13215 -- Digits constraint present
13217 if Nkind
(C
) = N_Digits_Constraint
then
13219 Check_SPARK_05_Restriction
("digits constraint is not allowed", S
);
13220 Check_Restriction
(No_Obsolescent_Features
, C
);
13222 if Warn_On_Obsolescent_Feature
then
13224 ("subtype digits constraint is an " &
13225 "obsolescent feature (RM J.3(8))?j?", C
);
13228 D
:= Digits_Expression
(C
);
13229 Analyze_And_Resolve
(D
, Any_Integer
);
13230 Check_Digits_Expression
(D
);
13231 Set_Digits_Value
(Def_Id
, Expr_Value
(D
));
13233 -- Check that digits value is in range. Obviously we can do this
13234 -- at compile time, but it is strictly a runtime check, and of
13235 -- course there is an ACVC test that checks this.
13237 if Digits_Value
(Def_Id
) > Digits_Value
(T
) then
13238 Error_Msg_Uint_1
:= Digits_Value
(T
);
13239 Error_Msg_N
("??digits value is too large, maximum is ^", D
);
13241 Make_Raise_Constraint_Error
(Sloc
(D
),
13242 Reason
=> CE_Range_Check_Failed
);
13243 Insert_Action
(Declaration_Node
(Def_Id
), Rais
);
13246 C
:= Range_Constraint
(C
);
13248 -- No digits constraint present
13251 Set_Digits_Value
(Def_Id
, Digits_Value
(T
));
13254 -- Range constraint present
13256 if Nkind
(C
) = N_Range_Constraint
then
13257 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
13259 -- No range constraint present
13262 pragma Assert
(No
(C
));
13263 Set_Scalar_Range
(Def_Id
, Scalar_Range
(T
));
13266 Set_Is_Constrained
(Def_Id
);
13267 end Constrain_Float
;
13269 ---------------------
13270 -- Constrain_Index --
13271 ---------------------
13273 procedure Constrain_Index
13276 Related_Nod
: Node_Id
;
13277 Related_Id
: Entity_Id
;
13278 Suffix
: Character;
13279 Suffix_Index
: Nat
)
13281 Def_Id
: Entity_Id
;
13282 R
: Node_Id
:= Empty
;
13283 T
: constant Entity_Id
:= Etype
(Index
);
13287 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
, Suffix_Index
);
13288 Set_Etype
(Def_Id
, Base_Type
(T
));
13290 if Nkind
(S
) = N_Range
13292 (Nkind
(S
) = N_Attribute_Reference
13293 and then Attribute_Name
(S
) = Name_Range
)
13295 -- A Range attribute will be transformed into N_Range by Resolve
13301 Process_Range_Expr_In_Decl
(R
, T
);
13303 if not Error_Posted
(S
)
13305 (Nkind
(S
) /= N_Range
13306 or else not Covers
(T
, (Etype
(Low_Bound
(S
))))
13307 or else not Covers
(T
, (Etype
(High_Bound
(S
)))))
13309 if Base_Type
(T
) /= Any_Type
13310 and then Etype
(Low_Bound
(S
)) /= Any_Type
13311 and then Etype
(High_Bound
(S
)) /= Any_Type
13313 Error_Msg_N
("range expected", S
);
13317 elsif Nkind
(S
) = N_Subtype_Indication
then
13319 -- The parser has verified that this is a discrete indication
13321 Resolve_Discrete_Subtype_Indication
(S
, T
);
13322 Bad_Predicated_Subtype_Use
13323 ("subtype& has predicate, not allowed in index constraint",
13324 S
, Entity
(Subtype_Mark
(S
)));
13326 R
:= Range_Expression
(Constraint
(S
));
13328 -- Capture values of bounds and generate temporaries for them if
13329 -- needed, since checks may cause duplication of the expressions
13330 -- which must not be reevaluated.
13332 -- The forced evaluation removes side effects from expressions, which
13333 -- should occur also in GNATprove mode. Otherwise, we end up with
13334 -- unexpected insertions of actions at places where this is not
13335 -- supposed to occur, e.g. on default parameters of a call.
13337 if Expander_Active
or GNATprove_Mode
then
13339 (Low_Bound
(R
), Related_Id
=> Def_Id
, Is_Low_Bound
=> True);
13341 (High_Bound
(R
), Related_Id
=> Def_Id
, Is_High_Bound
=> True);
13344 elsif Nkind
(S
) = N_Discriminant_Association
then
13346 -- Syntactically valid in subtype indication
13348 Error_Msg_N
("invalid index constraint", S
);
13349 Rewrite
(S
, New_Occurrence_Of
(T
, Sloc
(S
)));
13352 -- Subtype_Mark case, no anonymous subtypes to construct
13357 if Is_Entity_Name
(S
) then
13358 if not Is_Type
(Entity
(S
)) then
13359 Error_Msg_N
("expect subtype mark for index constraint", S
);
13361 elsif Base_Type
(Entity
(S
)) /= Base_Type
(T
) then
13362 Wrong_Type
(S
, Base_Type
(T
));
13364 -- Check error of subtype with predicate in index constraint
13367 Bad_Predicated_Subtype_Use
13368 ("subtype& has predicate, not allowed in index constraint",
13375 Error_Msg_N
("invalid index constraint", S
);
13376 Rewrite
(S
, New_Occurrence_Of
(T
, Sloc
(S
)));
13381 -- Complete construction of the Itype
13383 if Is_Modular_Integer_Type
(T
) then
13384 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
13386 elsif Is_Integer_Type
(T
) then
13387 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
13390 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
13391 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
13392 Set_First_Literal
(Def_Id
, First_Literal
(T
));
13395 Set_Size_Info
(Def_Id
, (T
));
13396 Set_RM_Size
(Def_Id
, RM_Size
(T
));
13397 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13399 Set_Scalar_Range
(Def_Id
, R
);
13401 Set_Etype
(S
, Def_Id
);
13402 Set_Discrete_RM_Size
(Def_Id
);
13403 end Constrain_Index
;
13405 -----------------------
13406 -- Constrain_Integer --
13407 -----------------------
13409 procedure Constrain_Integer
(Def_Id
: Node_Id
; S
: Node_Id
) is
13410 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
13411 C
: constant Node_Id
:= Constraint
(S
);
13414 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
13416 if Is_Modular_Integer_Type
(T
) then
13417 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
13419 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
13422 Set_Etype
(Def_Id
, Base_Type
(T
));
13423 Set_Size_Info
(Def_Id
, (T
));
13424 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13425 Set_Discrete_RM_Size
(Def_Id
);
13426 end Constrain_Integer
;
13428 ------------------------------
13429 -- Constrain_Ordinary_Fixed --
13430 ------------------------------
13432 procedure Constrain_Ordinary_Fixed
(Def_Id
: Node_Id
; S
: Node_Id
) is
13433 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
13439 Set_Ekind
(Def_Id
, E_Ordinary_Fixed_Point_Subtype
);
13440 Set_Etype
(Def_Id
, Base_Type
(T
));
13441 Set_Size_Info
(Def_Id
, (T
));
13442 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13443 Set_Small_Value
(Def_Id
, Small_Value
(T
));
13445 -- Process the constraint
13447 C
:= Constraint
(S
);
13449 -- Delta constraint present
13451 if Nkind
(C
) = N_Delta_Constraint
then
13453 Check_SPARK_05_Restriction
("delta constraint is not allowed", S
);
13454 Check_Restriction
(No_Obsolescent_Features
, C
);
13456 if Warn_On_Obsolescent_Feature
then
13458 ("subtype delta constraint is an " &
13459 "obsolescent feature (RM J.3(7))?j?");
13462 D
:= Delta_Expression
(C
);
13463 Analyze_And_Resolve
(D
, Any_Real
);
13464 Check_Delta_Expression
(D
);
13465 Set_Delta_Value
(Def_Id
, Expr_Value_R
(D
));
13467 -- Check that delta value is in range. Obviously we can do this
13468 -- at compile time, but it is strictly a runtime check, and of
13469 -- course there is an ACVC test that checks this.
13471 if Delta_Value
(Def_Id
) < Delta_Value
(T
) then
13472 Error_Msg_N
("??delta value is too small", D
);
13474 Make_Raise_Constraint_Error
(Sloc
(D
),
13475 Reason
=> CE_Range_Check_Failed
);
13476 Insert_Action
(Declaration_Node
(Def_Id
), Rais
);
13479 C
:= Range_Constraint
(C
);
13481 -- No delta constraint present
13484 Set_Delta_Value
(Def_Id
, Delta_Value
(T
));
13487 -- Range constraint present
13489 if Nkind
(C
) = N_Range_Constraint
then
13490 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
13492 -- No range constraint present
13495 pragma Assert
(No
(C
));
13496 Set_Scalar_Range
(Def_Id
, Scalar_Range
(T
));
13499 Set_Discrete_RM_Size
(Def_Id
);
13501 -- Unconditionally delay the freeze, since we cannot set size
13502 -- information in all cases correctly until the freeze point.
13504 Set_Has_Delayed_Freeze
(Def_Id
);
13505 end Constrain_Ordinary_Fixed
;
13507 -----------------------
13508 -- Contain_Interface --
13509 -----------------------
13511 function Contain_Interface
13512 (Iface
: Entity_Id
;
13513 Ifaces
: Elist_Id
) return Boolean
13515 Iface_Elmt
: Elmt_Id
;
13518 if Present
(Ifaces
) then
13519 Iface_Elmt
:= First_Elmt
(Ifaces
);
13520 while Present
(Iface_Elmt
) loop
13521 if Node
(Iface_Elmt
) = Iface
then
13525 Next_Elmt
(Iface_Elmt
);
13530 end Contain_Interface
;
13532 ---------------------------
13533 -- Convert_Scalar_Bounds --
13534 ---------------------------
13536 procedure Convert_Scalar_Bounds
13538 Parent_Type
: Entity_Id
;
13539 Derived_Type
: Entity_Id
;
13542 Implicit_Base
: constant Entity_Id
:= Base_Type
(Derived_Type
);
13549 -- Defend against previous errors
13551 if No
(Scalar_Range
(Derived_Type
)) then
13552 Check_Error_Detected
;
13556 Lo
:= Build_Scalar_Bound
13557 (Type_Low_Bound
(Derived_Type
),
13558 Parent_Type
, Implicit_Base
);
13560 Hi
:= Build_Scalar_Bound
13561 (Type_High_Bound
(Derived_Type
),
13562 Parent_Type
, Implicit_Base
);
13569 Set_Includes_Infinities
(Rng
, Has_Infinities
(Derived_Type
));
13571 Set_Parent
(Rng
, N
);
13572 Set_Scalar_Range
(Derived_Type
, Rng
);
13574 -- Analyze the bounds
13576 Analyze_And_Resolve
(Lo
, Implicit_Base
);
13577 Analyze_And_Resolve
(Hi
, Implicit_Base
);
13579 -- Analyze the range itself, except that we do not analyze it if
13580 -- the bounds are real literals, and we have a fixed-point type.
13581 -- The reason for this is that we delay setting the bounds in this
13582 -- case till we know the final Small and Size values (see circuit
13583 -- in Freeze.Freeze_Fixed_Point_Type for further details).
13585 if Is_Fixed_Point_Type
(Parent_Type
)
13586 and then Nkind
(Lo
) = N_Real_Literal
13587 and then Nkind
(Hi
) = N_Real_Literal
13591 -- Here we do the analysis of the range
13593 -- Note: we do this manually, since if we do a normal Analyze and
13594 -- Resolve call, there are problems with the conversions used for
13595 -- the derived type range.
13598 Set_Etype
(Rng
, Implicit_Base
);
13599 Set_Analyzed
(Rng
, True);
13601 end Convert_Scalar_Bounds
;
13603 -------------------
13604 -- Copy_And_Swap --
13605 -------------------
13607 procedure Copy_And_Swap
(Priv
, Full
: Entity_Id
) is
13609 -- Initialize new full declaration entity by copying the pertinent
13610 -- fields of the corresponding private declaration entity.
13612 -- We temporarily set Ekind to a value appropriate for a type to
13613 -- avoid assert failures in Einfo from checking for setting type
13614 -- attributes on something that is not a type. Ekind (Priv) is an
13615 -- appropriate choice, since it allowed the attributes to be set
13616 -- in the first place. This Ekind value will be modified later.
13618 Set_Ekind
(Full
, Ekind
(Priv
));
13620 -- Also set Etype temporarily to Any_Type, again, in the absence
13621 -- of errors, it will be properly reset, and if there are errors,
13622 -- then we want a value of Any_Type to remain.
13624 Set_Etype
(Full
, Any_Type
);
13626 -- Now start copying attributes
13628 Set_Has_Discriminants
(Full
, Has_Discriminants
(Priv
));
13630 if Has_Discriminants
(Full
) then
13631 Set_Discriminant_Constraint
(Full
, Discriminant_Constraint
(Priv
));
13632 Set_Stored_Constraint
(Full
, Stored_Constraint
(Priv
));
13635 Set_First_Rep_Item
(Full
, First_Rep_Item
(Priv
));
13636 Set_Homonym
(Full
, Homonym
(Priv
));
13637 Set_Is_Immediately_Visible
(Full
, Is_Immediately_Visible
(Priv
));
13638 Set_Is_Public
(Full
, Is_Public
(Priv
));
13639 Set_Is_Pure
(Full
, Is_Pure
(Priv
));
13640 Set_Is_Tagged_Type
(Full
, Is_Tagged_Type
(Priv
));
13641 Set_Has_Pragma_Unmodified
(Full
, Has_Pragma_Unmodified
(Priv
));
13642 Set_Has_Pragma_Unreferenced
(Full
, Has_Pragma_Unreferenced
(Priv
));
13643 Set_Has_Pragma_Unreferenced_Objects
13644 (Full
, Has_Pragma_Unreferenced_Objects
13647 Conditional_Delay
(Full
, Priv
);
13649 if Is_Tagged_Type
(Full
) then
13650 Set_Direct_Primitive_Operations
13651 (Full
, Direct_Primitive_Operations
(Priv
));
13652 Set_No_Tagged_Streams_Pragma
13653 (Full
, No_Tagged_Streams_Pragma
(Priv
));
13655 if Is_Base_Type
(Priv
) then
13656 Set_Class_Wide_Type
(Full
, Class_Wide_Type
(Priv
));
13660 Set_Is_Volatile
(Full
, Is_Volatile
(Priv
));
13661 Set_Treat_As_Volatile
(Full
, Treat_As_Volatile
(Priv
));
13662 Set_Scope
(Full
, Scope
(Priv
));
13663 Set_Next_Entity
(Full
, Next_Entity
(Priv
));
13664 Set_First_Entity
(Full
, First_Entity
(Priv
));
13665 Set_Last_Entity
(Full
, Last_Entity
(Priv
));
13667 -- If access types have been recorded for later handling, keep them in
13668 -- the full view so that they get handled when the full view freeze
13669 -- node is expanded.
13671 if Present
(Freeze_Node
(Priv
))
13672 and then Present
(Access_Types_To_Process
(Freeze_Node
(Priv
)))
13674 Ensure_Freeze_Node
(Full
);
13675 Set_Access_Types_To_Process
13676 (Freeze_Node
(Full
),
13677 Access_Types_To_Process
(Freeze_Node
(Priv
)));
13680 -- Swap the two entities. Now Private is the full type entity and Full
13681 -- is the private one. They will be swapped back at the end of the
13682 -- private part. This swapping ensures that the entity that is visible
13683 -- in the private part is the full declaration.
13685 Exchange_Entities
(Priv
, Full
);
13686 Append_Entity
(Full
, Scope
(Full
));
13689 -------------------------------------
13690 -- Copy_Array_Base_Type_Attributes --
13691 -------------------------------------
13693 procedure Copy_Array_Base_Type_Attributes
(T1
, T2
: Entity_Id
) is
13695 Set_Component_Alignment
(T1
, Component_Alignment
(T2
));
13696 Set_Component_Type
(T1
, Component_Type
(T2
));
13697 Set_Component_Size
(T1
, Component_Size
(T2
));
13698 Set_Has_Controlled_Component
(T1
, Has_Controlled_Component
(T2
));
13699 Set_Has_Non_Standard_Rep
(T1
, Has_Non_Standard_Rep
(T2
));
13700 Set_Has_Protected
(T1
, Has_Protected
(T2
));
13701 Set_Has_Task
(T1
, Has_Task
(T2
));
13702 Set_Is_Packed
(T1
, Is_Packed
(T2
));
13703 Set_Has_Aliased_Components
(T1
, Has_Aliased_Components
(T2
));
13704 Set_Has_Atomic_Components
(T1
, Has_Atomic_Components
(T2
));
13705 Set_Has_Volatile_Components
(T1
, Has_Volatile_Components
(T2
));
13706 end Copy_Array_Base_Type_Attributes
;
13708 -----------------------------------
13709 -- Copy_Array_Subtype_Attributes --
13710 -----------------------------------
13712 procedure Copy_Array_Subtype_Attributes
(T1
, T2
: Entity_Id
) is
13714 Set_Size_Info
(T1
, T2
);
13716 Set_First_Index
(T1
, First_Index
(T2
));
13717 Set_Is_Aliased
(T1
, Is_Aliased
(T2
));
13718 Set_Is_Volatile
(T1
, Is_Volatile
(T2
));
13719 Set_Treat_As_Volatile
(T1
, Treat_As_Volatile
(T2
));
13720 Set_Is_Constrained
(T1
, Is_Constrained
(T2
));
13721 Set_Depends_On_Private
(T1
, Has_Private_Component
(T2
));
13722 Inherit_Rep_Item_Chain
(T1
, T2
);
13723 Set_Convention
(T1
, Convention
(T2
));
13724 Set_Is_Limited_Composite
(T1
, Is_Limited_Composite
(T2
));
13725 Set_Is_Private_Composite
(T1
, Is_Private_Composite
(T2
));
13726 Set_Packed_Array_Impl_Type
(T1
, Packed_Array_Impl_Type
(T2
));
13727 end Copy_Array_Subtype_Attributes
;
13729 -----------------------------------
13730 -- Create_Constrained_Components --
13731 -----------------------------------
13733 procedure Create_Constrained_Components
13735 Decl_Node
: Node_Id
;
13737 Constraints
: Elist_Id
)
13739 Loc
: constant Source_Ptr
:= Sloc
(Subt
);
13740 Comp_List
: constant Elist_Id
:= New_Elmt_List
;
13741 Parent_Type
: constant Entity_Id
:= Etype
(Typ
);
13742 Assoc_List
: constant List_Id
:= New_List
;
13743 Discr_Val
: Elmt_Id
;
13747 Is_Static
: Boolean := True;
13749 procedure Collect_Fixed_Components
(Typ
: Entity_Id
);
13750 -- Collect parent type components that do not appear in a variant part
13752 procedure Create_All_Components
;
13753 -- Iterate over Comp_List to create the components of the subtype
13755 function Create_Component
(Old_Compon
: Entity_Id
) return Entity_Id
;
13756 -- Creates a new component from Old_Compon, copying all the fields from
13757 -- it, including its Etype, inserts the new component in the Subt entity
13758 -- chain and returns the new component.
13760 function Is_Variant_Record
(T
: Entity_Id
) return Boolean;
13761 -- If true, and discriminants are static, collect only components from
13762 -- variants selected by discriminant values.
13764 ------------------------------
13765 -- Collect_Fixed_Components --
13766 ------------------------------
13768 procedure Collect_Fixed_Components
(Typ
: Entity_Id
) is
13770 -- Build association list for discriminants, and find components of the
13771 -- variant part selected by the values of the discriminants.
13773 Old_C
:= First_Discriminant
(Typ
);
13774 Discr_Val
:= First_Elmt
(Constraints
);
13775 while Present
(Old_C
) loop
13776 Append_To
(Assoc_List
,
13777 Make_Component_Association
(Loc
,
13778 Choices
=> New_List
(New_Occurrence_Of
(Old_C
, Loc
)),
13779 Expression
=> New_Copy
(Node
(Discr_Val
))));
13781 Next_Elmt
(Discr_Val
);
13782 Next_Discriminant
(Old_C
);
13785 -- The tag and the possible parent component are unconditionally in
13788 if Is_Tagged_Type
(Typ
) or else Has_Controlled_Component
(Typ
) then
13789 Old_C
:= First_Component
(Typ
);
13790 while Present
(Old_C
) loop
13791 if Nam_In
(Chars
(Old_C
), Name_uTag
, Name_uParent
) then
13792 Append_Elmt
(Old_C
, Comp_List
);
13795 Next_Component
(Old_C
);
13798 end Collect_Fixed_Components
;
13800 ---------------------------
13801 -- Create_All_Components --
13802 ---------------------------
13804 procedure Create_All_Components
is
13808 Comp
:= First_Elmt
(Comp_List
);
13809 while Present
(Comp
) loop
13810 Old_C
:= Node
(Comp
);
13811 New_C
:= Create_Component
(Old_C
);
13815 Constrain_Component_Type
13816 (Old_C
, Subt
, Decl_Node
, Typ
, Constraints
));
13817 Set_Is_Public
(New_C
, Is_Public
(Subt
));
13821 end Create_All_Components
;
13823 ----------------------
13824 -- Create_Component --
13825 ----------------------
13827 function Create_Component
(Old_Compon
: Entity_Id
) return Entity_Id
is
13828 New_Compon
: constant Entity_Id
:= New_Copy
(Old_Compon
);
13831 if Ekind
(Old_Compon
) = E_Discriminant
13832 and then Is_Completely_Hidden
(Old_Compon
)
13834 -- This is a shadow discriminant created for a discriminant of
13835 -- the parent type, which needs to be present in the subtype.
13836 -- Give the shadow discriminant an internal name that cannot
13837 -- conflict with that of visible components.
13839 Set_Chars
(New_Compon
, New_Internal_Name
('C'));
13842 -- Set the parent so we have a proper link for freezing etc. This is
13843 -- not a real parent pointer, since of course our parent does not own
13844 -- up to us and reference us, we are an illegitimate child of the
13845 -- original parent.
13847 Set_Parent
(New_Compon
, Parent
(Old_Compon
));
13849 -- If the old component's Esize was already determined and is a
13850 -- static value, then the new component simply inherits it. Otherwise
13851 -- the old component's size may require run-time determination, but
13852 -- the new component's size still might be statically determinable
13853 -- (if, for example it has a static constraint). In that case we want
13854 -- Layout_Type to recompute the component's size, so we reset its
13855 -- size and positional fields.
13857 if Frontend_Layout_On_Target
13858 and then not Known_Static_Esize
(Old_Compon
)
13860 Set_Esize
(New_Compon
, Uint_0
);
13861 Init_Normalized_First_Bit
(New_Compon
);
13862 Init_Normalized_Position
(New_Compon
);
13863 Init_Normalized_Position_Max
(New_Compon
);
13866 -- We do not want this node marked as Comes_From_Source, since
13867 -- otherwise it would get first class status and a separate cross-
13868 -- reference line would be generated. Illegitimate children do not
13869 -- rate such recognition.
13871 Set_Comes_From_Source
(New_Compon
, False);
13873 -- But it is a real entity, and a birth certificate must be properly
13874 -- registered by entering it into the entity list.
13876 Enter_Name
(New_Compon
);
13879 end Create_Component
;
13881 -----------------------
13882 -- Is_Variant_Record --
13883 -----------------------
13885 function Is_Variant_Record
(T
: Entity_Id
) return Boolean is
13887 return Nkind
(Parent
(T
)) = N_Full_Type_Declaration
13888 and then Nkind
(Type_Definition
(Parent
(T
))) = N_Record_Definition
13889 and then Present
(Component_List
(Type_Definition
(Parent
(T
))))
13892 (Variant_Part
(Component_List
(Type_Definition
(Parent
(T
)))));
13893 end Is_Variant_Record
;
13895 -- Start of processing for Create_Constrained_Components
13898 pragma Assert
(Subt
/= Base_Type
(Subt
));
13899 pragma Assert
(Typ
= Base_Type
(Typ
));
13901 Set_First_Entity
(Subt
, Empty
);
13902 Set_Last_Entity
(Subt
, Empty
);
13904 -- Check whether constraint is fully static, in which case we can
13905 -- optimize the list of components.
13907 Discr_Val
:= First_Elmt
(Constraints
);
13908 while Present
(Discr_Val
) loop
13909 if not Is_OK_Static_Expression
(Node
(Discr_Val
)) then
13910 Is_Static
:= False;
13914 Next_Elmt
(Discr_Val
);
13917 Set_Has_Static_Discriminants
(Subt
, Is_Static
);
13921 -- Inherit the discriminants of the parent type
13923 Add_Discriminants
: declare
13929 Old_C
:= First_Discriminant
(Typ
);
13931 while Present
(Old_C
) loop
13932 Num_Disc
:= Num_Disc
+ 1;
13933 New_C
:= Create_Component
(Old_C
);
13934 Set_Is_Public
(New_C
, Is_Public
(Subt
));
13935 Next_Discriminant
(Old_C
);
13938 -- For an untagged derived subtype, the number of discriminants may
13939 -- be smaller than the number of inherited discriminants, because
13940 -- several of them may be renamed by a single new discriminant or
13941 -- constrained. In this case, add the hidden discriminants back into
13942 -- the subtype, because they need to be present if the optimizer of
13943 -- the GCC 4.x back-end decides to break apart assignments between
13944 -- objects using the parent view into member-wise assignments.
13948 if Is_Derived_Type
(Typ
)
13949 and then not Is_Tagged_Type
(Typ
)
13951 Old_C
:= First_Stored_Discriminant
(Typ
);
13953 while Present
(Old_C
) loop
13954 Num_Gird
:= Num_Gird
+ 1;
13955 Next_Stored_Discriminant
(Old_C
);
13959 if Num_Gird
> Num_Disc
then
13961 -- Find out multiple uses of new discriminants, and add hidden
13962 -- components for the extra renamed discriminants. We recognize
13963 -- multiple uses through the Corresponding_Discriminant of a
13964 -- new discriminant: if it constrains several old discriminants,
13965 -- this field points to the last one in the parent type. The
13966 -- stored discriminants of the derived type have the same name
13967 -- as those of the parent.
13971 New_Discr
: Entity_Id
;
13972 Old_Discr
: Entity_Id
;
13975 Constr
:= First_Elmt
(Stored_Constraint
(Typ
));
13976 Old_Discr
:= First_Stored_Discriminant
(Typ
);
13977 while Present
(Constr
) loop
13978 if Is_Entity_Name
(Node
(Constr
))
13979 and then Ekind
(Entity
(Node
(Constr
))) = E_Discriminant
13981 New_Discr
:= Entity
(Node
(Constr
));
13983 if Chars
(Corresponding_Discriminant
(New_Discr
)) /=
13986 -- The new discriminant has been used to rename a
13987 -- subsequent old discriminant. Introduce a shadow
13988 -- component for the current old discriminant.
13990 New_C
:= Create_Component
(Old_Discr
);
13991 Set_Original_Record_Component
(New_C
, Old_Discr
);
13995 -- The constraint has eliminated the old discriminant.
13996 -- Introduce a shadow component.
13998 New_C
:= Create_Component
(Old_Discr
);
13999 Set_Original_Record_Component
(New_C
, Old_Discr
);
14002 Next_Elmt
(Constr
);
14003 Next_Stored_Discriminant
(Old_Discr
);
14007 end Add_Discriminants
;
14010 and then Is_Variant_Record
(Typ
)
14012 Collect_Fixed_Components
(Typ
);
14014 Gather_Components
(
14016 Component_List
(Type_Definition
(Parent
(Typ
))),
14017 Governed_By
=> Assoc_List
,
14019 Report_Errors
=> Errors
);
14020 pragma Assert
(not Errors
);
14022 Create_All_Components
;
14024 -- If the subtype declaration is created for a tagged type derivation
14025 -- with constraints, we retrieve the record definition of the parent
14026 -- type to select the components of the proper variant.
14029 and then Is_Tagged_Type
(Typ
)
14030 and then Nkind
(Parent
(Typ
)) = N_Full_Type_Declaration
14032 Nkind
(Type_Definition
(Parent
(Typ
))) = N_Derived_Type_Definition
14033 and then Is_Variant_Record
(Parent_Type
)
14035 Collect_Fixed_Components
(Typ
);
14039 Component_List
(Type_Definition
(Parent
(Parent_Type
))),
14040 Governed_By
=> Assoc_List
,
14042 Report_Errors
=> Errors
);
14044 -- Note: previously there was a check at this point that no errors
14045 -- were detected. As a consequence of AI05-220 there may be an error
14046 -- if an inherited discriminant that controls a variant has a non-
14047 -- static constraint.
14049 -- If the tagged derivation has a type extension, collect all the
14050 -- new components therein.
14052 if Present
(Record_Extension_Part
(Type_Definition
(Parent
(Typ
))))
14054 Old_C
:= First_Component
(Typ
);
14055 while Present
(Old_C
) loop
14056 if Original_Record_Component
(Old_C
) = Old_C
14057 and then Chars
(Old_C
) /= Name_uTag
14058 and then Chars
(Old_C
) /= Name_uParent
14060 Append_Elmt
(Old_C
, Comp_List
);
14063 Next_Component
(Old_C
);
14067 Create_All_Components
;
14070 -- If discriminants are not static, or if this is a multi-level type
14071 -- extension, we have to include all components of the parent type.
14073 Old_C
:= First_Component
(Typ
);
14074 while Present
(Old_C
) loop
14075 New_C
:= Create_Component
(Old_C
);
14079 Constrain_Component_Type
14080 (Old_C
, Subt
, Decl_Node
, Typ
, Constraints
));
14081 Set_Is_Public
(New_C
, Is_Public
(Subt
));
14083 Next_Component
(Old_C
);
14088 end Create_Constrained_Components
;
14090 ------------------------------------------
14091 -- Decimal_Fixed_Point_Type_Declaration --
14092 ------------------------------------------
14094 procedure Decimal_Fixed_Point_Type_Declaration
14098 Loc
: constant Source_Ptr
:= Sloc
(Def
);
14099 Digs_Expr
: constant Node_Id
:= Digits_Expression
(Def
);
14100 Delta_Expr
: constant Node_Id
:= Delta_Expression
(Def
);
14101 Implicit_Base
: Entity_Id
;
14108 Check_SPARK_05_Restriction
14109 ("decimal fixed point type is not allowed", Def
);
14110 Check_Restriction
(No_Fixed_Point
, Def
);
14112 -- Create implicit base type
14115 Create_Itype
(E_Decimal_Fixed_Point_Type
, Parent
(Def
), T
, 'B');
14116 Set_Etype
(Implicit_Base
, Implicit_Base
);
14118 -- Analyze and process delta expression
14120 Analyze_And_Resolve
(Delta_Expr
, Universal_Real
);
14122 Check_Delta_Expression
(Delta_Expr
);
14123 Delta_Val
:= Expr_Value_R
(Delta_Expr
);
14125 -- Check delta is power of 10, and determine scale value from it
14131 Scale_Val
:= Uint_0
;
14134 if Val
< Ureal_1
then
14135 while Val
< Ureal_1
loop
14136 Val
:= Val
* Ureal_10
;
14137 Scale_Val
:= Scale_Val
+ 1;
14140 if Scale_Val
> 18 then
14141 Error_Msg_N
("scale exceeds maximum value of 18", Def
);
14142 Scale_Val
:= UI_From_Int
(+18);
14146 while Val
> Ureal_1
loop
14147 Val
:= Val
/ Ureal_10
;
14148 Scale_Val
:= Scale_Val
- 1;
14151 if Scale_Val
< -18 then
14152 Error_Msg_N
("scale is less than minimum value of -18", Def
);
14153 Scale_Val
:= UI_From_Int
(-18);
14157 if Val
/= Ureal_1
then
14158 Error_Msg_N
("delta expression must be a power of 10", Def
);
14159 Delta_Val
:= Ureal_10
** (-Scale_Val
);
14163 -- Set delta, scale and small (small = delta for decimal type)
14165 Set_Delta_Value
(Implicit_Base
, Delta_Val
);
14166 Set_Scale_Value
(Implicit_Base
, Scale_Val
);
14167 Set_Small_Value
(Implicit_Base
, Delta_Val
);
14169 -- Analyze and process digits expression
14171 Analyze_And_Resolve
(Digs_Expr
, Any_Integer
);
14172 Check_Digits_Expression
(Digs_Expr
);
14173 Digs_Val
:= Expr_Value
(Digs_Expr
);
14175 if Digs_Val
> 18 then
14176 Digs_Val
:= UI_From_Int
(+18);
14177 Error_Msg_N
("digits value out of range, maximum is 18", Digs_Expr
);
14180 Set_Digits_Value
(Implicit_Base
, Digs_Val
);
14181 Bound_Val
:= UR_From_Uint
(10 ** Digs_Val
- 1) * Delta_Val
;
14183 -- Set range of base type from digits value for now. This will be
14184 -- expanded to represent the true underlying base range by Freeze.
14186 Set_Fixed_Range
(Implicit_Base
, Loc
, -Bound_Val
, Bound_Val
);
14188 -- Note: We leave size as zero for now, size will be set at freeze
14189 -- time. We have to do this for ordinary fixed-point, because the size
14190 -- depends on the specified small, and we might as well do the same for
14191 -- decimal fixed-point.
14193 pragma Assert
(Esize
(Implicit_Base
) = Uint_0
);
14195 -- If there are bounds given in the declaration use them as the
14196 -- bounds of the first named subtype.
14198 if Present
(Real_Range_Specification
(Def
)) then
14200 RRS
: constant Node_Id
:= Real_Range_Specification
(Def
);
14201 Low
: constant Node_Id
:= Low_Bound
(RRS
);
14202 High
: constant Node_Id
:= High_Bound
(RRS
);
14207 Analyze_And_Resolve
(Low
, Any_Real
);
14208 Analyze_And_Resolve
(High
, Any_Real
);
14209 Check_Real_Bound
(Low
);
14210 Check_Real_Bound
(High
);
14211 Low_Val
:= Expr_Value_R
(Low
);
14212 High_Val
:= Expr_Value_R
(High
);
14214 if Low_Val
< (-Bound_Val
) then
14216 ("range low bound too small for digits value", Low
);
14217 Low_Val
:= -Bound_Val
;
14220 if High_Val
> Bound_Val
then
14222 ("range high bound too large for digits value", High
);
14223 High_Val
:= Bound_Val
;
14226 Set_Fixed_Range
(T
, Loc
, Low_Val
, High_Val
);
14229 -- If no explicit range, use range that corresponds to given
14230 -- digits value. This will end up as the final range for the
14234 Set_Fixed_Range
(T
, Loc
, -Bound_Val
, Bound_Val
);
14237 -- Complete entity for first subtype. The inheritance of the rep item
14238 -- chain ensures that SPARK-related pragmas are not clobbered when the
14239 -- decimal fixed point type acts as a full view of a private type.
14241 Set_Ekind
(T
, E_Decimal_Fixed_Point_Subtype
);
14242 Set_Etype
(T
, Implicit_Base
);
14243 Set_Size_Info
(T
, Implicit_Base
);
14244 Inherit_Rep_Item_Chain
(T
, Implicit_Base
);
14245 Set_Digits_Value
(T
, Digs_Val
);
14246 Set_Delta_Value
(T
, Delta_Val
);
14247 Set_Small_Value
(T
, Delta_Val
);
14248 Set_Scale_Value
(T
, Scale_Val
);
14249 Set_Is_Constrained
(T
);
14250 end Decimal_Fixed_Point_Type_Declaration
;
14252 -----------------------------------
14253 -- Derive_Progenitor_Subprograms --
14254 -----------------------------------
14256 procedure Derive_Progenitor_Subprograms
14257 (Parent_Type
: Entity_Id
;
14258 Tagged_Type
: Entity_Id
)
14263 Iface_Elmt
: Elmt_Id
;
14264 Iface_Subp
: Entity_Id
;
14265 New_Subp
: Entity_Id
:= Empty
;
14266 Prim_Elmt
: Elmt_Id
;
14271 pragma Assert
(Ada_Version
>= Ada_2005
14272 and then Is_Record_Type
(Tagged_Type
)
14273 and then Is_Tagged_Type
(Tagged_Type
)
14274 and then Has_Interfaces
(Tagged_Type
));
14276 -- Step 1: Transfer to the full-view primitives associated with the
14277 -- partial-view that cover interface primitives. Conceptually this
14278 -- work should be done later by Process_Full_View; done here to
14279 -- simplify its implementation at later stages. It can be safely
14280 -- done here because interfaces must be visible in the partial and
14281 -- private view (RM 7.3(7.3/2)).
14283 -- Small optimization: This work is only required if the parent may
14284 -- have entities whose Alias attribute reference an interface primitive.
14285 -- Such a situation may occur if the parent is an abstract type and the
14286 -- primitive has not been yet overridden or if the parent is a generic
14287 -- formal type covering interfaces.
14289 -- If the tagged type is not abstract, it cannot have abstract
14290 -- primitives (the only entities in the list of primitives of
14291 -- non-abstract tagged types that can reference abstract primitives
14292 -- through its Alias attribute are the internal entities that have
14293 -- attribute Interface_Alias, and these entities are generated later
14294 -- by Add_Internal_Interface_Entities).
14296 if In_Private_Part
(Current_Scope
)
14297 and then (Is_Abstract_Type
(Parent_Type
)
14299 Is_Generic_Type
(Parent_Type
))
14301 Elmt
:= First_Elmt
(Primitive_Operations
(Tagged_Type
));
14302 while Present
(Elmt
) loop
14303 Subp
:= Node
(Elmt
);
14305 -- At this stage it is not possible to have entities in the list
14306 -- of primitives that have attribute Interface_Alias.
14308 pragma Assert
(No
(Interface_Alias
(Subp
)));
14310 Typ
:= Find_Dispatching_Type
(Ultimate_Alias
(Subp
));
14312 if Is_Interface
(Typ
) then
14313 E
:= Find_Primitive_Covering_Interface
14314 (Tagged_Type
=> Tagged_Type
,
14315 Iface_Prim
=> Subp
);
14318 and then Find_Dispatching_Type
(Ultimate_Alias
(E
)) /= Typ
14320 Replace_Elmt
(Elmt
, E
);
14321 Remove_Homonym
(Subp
);
14329 -- Step 2: Add primitives of progenitors that are not implemented by
14330 -- parents of Tagged_Type.
14332 if Present
(Interfaces
(Base_Type
(Tagged_Type
))) then
14333 Iface_Elmt
:= First_Elmt
(Interfaces
(Base_Type
(Tagged_Type
)));
14334 while Present
(Iface_Elmt
) loop
14335 Iface
:= Node
(Iface_Elmt
);
14337 Prim_Elmt
:= First_Elmt
(Primitive_Operations
(Iface
));
14338 while Present
(Prim_Elmt
) loop
14339 Iface_Subp
:= Node
(Prim_Elmt
);
14341 -- Exclude derivation of predefined primitives except those
14342 -- that come from source, or are inherited from one that comes
14343 -- from source. Required to catch declarations of equality
14344 -- operators of interfaces. For example:
14346 -- type Iface is interface;
14347 -- function "=" (Left, Right : Iface) return Boolean;
14349 if not Is_Predefined_Dispatching_Operation
(Iface_Subp
)
14350 or else Comes_From_Source
(Ultimate_Alias
(Iface_Subp
))
14352 E
:= Find_Primitive_Covering_Interface
14353 (Tagged_Type
=> Tagged_Type
,
14354 Iface_Prim
=> Iface_Subp
);
14356 -- If not found we derive a new primitive leaving its alias
14357 -- attribute referencing the interface primitive.
14361 (New_Subp
, Iface_Subp
, Tagged_Type
, Iface
);
14363 -- Ada 2012 (AI05-0197): If the covering primitive's name
14364 -- differs from the name of the interface primitive then it
14365 -- is a private primitive inherited from a parent type. In
14366 -- such case, given that Tagged_Type covers the interface,
14367 -- the inherited private primitive becomes visible. For such
14368 -- purpose we add a new entity that renames the inherited
14369 -- private primitive.
14371 elsif Chars
(E
) /= Chars
(Iface_Subp
) then
14372 pragma Assert
(Has_Suffix
(E
, 'P'));
14374 (New_Subp
, Iface_Subp
, Tagged_Type
, Iface
);
14375 Set_Alias
(New_Subp
, E
);
14376 Set_Is_Abstract_Subprogram
(New_Subp
,
14377 Is_Abstract_Subprogram
(E
));
14379 -- Propagate to the full view interface entities associated
14380 -- with the partial view.
14382 elsif In_Private_Part
(Current_Scope
)
14383 and then Present
(Alias
(E
))
14384 and then Alias
(E
) = Iface_Subp
14386 List_Containing
(Parent
(E
)) /=
14387 Private_Declarations
14389 (Unit_Declaration_Node
(Current_Scope
)))
14391 Append_Elmt
(E
, Primitive_Operations
(Tagged_Type
));
14395 Next_Elmt
(Prim_Elmt
);
14398 Next_Elmt
(Iface_Elmt
);
14401 end Derive_Progenitor_Subprograms
;
14403 -----------------------
14404 -- Derive_Subprogram --
14405 -----------------------
14407 procedure Derive_Subprogram
14408 (New_Subp
: in out Entity_Id
;
14409 Parent_Subp
: Entity_Id
;
14410 Derived_Type
: Entity_Id
;
14411 Parent_Type
: Entity_Id
;
14412 Actual_Subp
: Entity_Id
:= Empty
)
14414 Formal
: Entity_Id
;
14415 -- Formal parameter of parent primitive operation
14417 Formal_Of_Actual
: Entity_Id
;
14418 -- Formal parameter of actual operation, when the derivation is to
14419 -- create a renaming for a primitive operation of an actual in an
14422 New_Formal
: Entity_Id
;
14423 -- Formal of inherited operation
14425 Visible_Subp
: Entity_Id
:= Parent_Subp
;
14427 function Is_Private_Overriding
return Boolean;
14428 -- If Subp is a private overriding of a visible operation, the inherited
14429 -- operation derives from the overridden op (even though its body is the
14430 -- overriding one) and the inherited operation is visible now. See
14431 -- sem_disp to see the full details of the handling of the overridden
14432 -- subprogram, which is removed from the list of primitive operations of
14433 -- the type. The overridden subprogram is saved locally in Visible_Subp,
14434 -- and used to diagnose abstract operations that need overriding in the
14437 procedure Replace_Type
(Id
, New_Id
: Entity_Id
);
14438 -- When the type is an anonymous access type, create a new access type
14439 -- designating the derived type.
14441 procedure Set_Derived_Name
;
14442 -- This procedure sets the appropriate Chars name for New_Subp. This
14443 -- is normally just a copy of the parent name. An exception arises for
14444 -- type support subprograms, where the name is changed to reflect the
14445 -- name of the derived type, e.g. if type foo is derived from type bar,
14446 -- then a procedure barDA is derived with a name fooDA.
14448 ---------------------------
14449 -- Is_Private_Overriding --
14450 ---------------------------
14452 function Is_Private_Overriding
return Boolean is
14456 -- If the parent is not a dispatching operation there is no
14457 -- need to investigate overridings
14459 if not Is_Dispatching_Operation
(Parent_Subp
) then
14463 -- The visible operation that is overridden is a homonym of the
14464 -- parent subprogram. We scan the homonym chain to find the one
14465 -- whose alias is the subprogram we are deriving.
14467 Prev
:= Current_Entity
(Parent_Subp
);
14468 while Present
(Prev
) loop
14469 if Ekind
(Prev
) = Ekind
(Parent_Subp
)
14470 and then Alias
(Prev
) = Parent_Subp
14471 and then Scope
(Parent_Subp
) = Scope
(Prev
)
14472 and then not Is_Hidden
(Prev
)
14474 Visible_Subp
:= Prev
;
14478 Prev
:= Homonym
(Prev
);
14482 end Is_Private_Overriding
;
14488 procedure Replace_Type
(Id
, New_Id
: Entity_Id
) is
14489 Id_Type
: constant Entity_Id
:= Etype
(Id
);
14490 Acc_Type
: Entity_Id
;
14491 Par
: constant Node_Id
:= Parent
(Derived_Type
);
14494 -- When the type is an anonymous access type, create a new access
14495 -- type designating the derived type. This itype must be elaborated
14496 -- at the point of the derivation, not on subsequent calls that may
14497 -- be out of the proper scope for Gigi, so we insert a reference to
14498 -- it after the derivation.
14500 if Ekind
(Id_Type
) = E_Anonymous_Access_Type
then
14502 Desig_Typ
: Entity_Id
:= Designated_Type
(Id_Type
);
14505 if Ekind
(Desig_Typ
) = E_Record_Type_With_Private
14506 and then Present
(Full_View
(Desig_Typ
))
14507 and then not Is_Private_Type
(Parent_Type
)
14509 Desig_Typ
:= Full_View
(Desig_Typ
);
14512 if Base_Type
(Desig_Typ
) = Base_Type
(Parent_Type
)
14514 -- Ada 2005 (AI-251): Handle also derivations of abstract
14515 -- interface primitives.
14517 or else (Is_Interface
(Desig_Typ
)
14518 and then not Is_Class_Wide_Type
(Desig_Typ
))
14520 Acc_Type
:= New_Copy
(Id_Type
);
14521 Set_Etype
(Acc_Type
, Acc_Type
);
14522 Set_Scope
(Acc_Type
, New_Subp
);
14524 -- Set size of anonymous access type. If we have an access
14525 -- to an unconstrained array, this is a fat pointer, so it
14526 -- is sizes at twice addtress size.
14528 if Is_Array_Type
(Desig_Typ
)
14529 and then not Is_Constrained
(Desig_Typ
)
14531 Init_Size
(Acc_Type
, 2 * System_Address_Size
);
14533 -- Other cases use a thin pointer
14536 Init_Size
(Acc_Type
, System_Address_Size
);
14539 -- Set remaining characterstics of anonymous access type
14541 Init_Alignment
(Acc_Type
);
14542 Set_Directly_Designated_Type
(Acc_Type
, Derived_Type
);
14544 Set_Etype
(New_Id
, Acc_Type
);
14545 Set_Scope
(New_Id
, New_Subp
);
14547 -- Create a reference to it
14549 Build_Itype_Reference
(Acc_Type
, Parent
(Derived_Type
));
14552 Set_Etype
(New_Id
, Id_Type
);
14556 -- In Ada2012, a formal may have an incomplete type but the type
14557 -- derivation that inherits the primitive follows the full view.
14559 elsif Base_Type
(Id_Type
) = Base_Type
(Parent_Type
)
14561 (Ekind
(Id_Type
) = E_Record_Type_With_Private
14562 and then Present
(Full_View
(Id_Type
))
14564 Base_Type
(Full_View
(Id_Type
)) = Base_Type
(Parent_Type
))
14566 (Ada_Version
>= Ada_2012
14567 and then Ekind
(Id_Type
) = E_Incomplete_Type
14568 and then Full_View
(Id_Type
) = Parent_Type
)
14570 -- Constraint checks on formals are generated during expansion,
14571 -- based on the signature of the original subprogram. The bounds
14572 -- of the derived type are not relevant, and thus we can use
14573 -- the base type for the formals. However, the return type may be
14574 -- used in a context that requires that the proper static bounds
14575 -- be used (a case statement, for example) and for those cases
14576 -- we must use the derived type (first subtype), not its base.
14578 -- If the derived_type_definition has no constraints, we know that
14579 -- the derived type has the same constraints as the first subtype
14580 -- of the parent, and we can also use it rather than its base,
14581 -- which can lead to more efficient code.
14583 if Etype
(Id
) = Parent_Type
then
14584 if Is_Scalar_Type
(Parent_Type
)
14586 Subtypes_Statically_Compatible
(Parent_Type
, Derived_Type
)
14588 Set_Etype
(New_Id
, Derived_Type
);
14590 elsif Nkind
(Par
) = N_Full_Type_Declaration
14592 Nkind
(Type_Definition
(Par
)) = N_Derived_Type_Definition
14595 (Subtype_Indication
(Type_Definition
(Par
)))
14597 Set_Etype
(New_Id
, Derived_Type
);
14600 Set_Etype
(New_Id
, Base_Type
(Derived_Type
));
14604 Set_Etype
(New_Id
, Base_Type
(Derived_Type
));
14608 Set_Etype
(New_Id
, Etype
(Id
));
14612 ----------------------
14613 -- Set_Derived_Name --
14614 ----------------------
14616 procedure Set_Derived_Name
is
14617 Nm
: constant TSS_Name_Type
:= Get_TSS_Name
(Parent_Subp
);
14619 if Nm
= TSS_Null
then
14620 Set_Chars
(New_Subp
, Chars
(Parent_Subp
));
14622 Set_Chars
(New_Subp
, Make_TSS_Name
(Base_Type
(Derived_Type
), Nm
));
14624 end Set_Derived_Name
;
14626 -- Start of processing for Derive_Subprogram
14629 New_Subp
:= New_Entity
(Nkind
(Parent_Subp
), Sloc
(Derived_Type
));
14630 Set_Ekind
(New_Subp
, Ekind
(Parent_Subp
));
14632 -- Check whether the inherited subprogram is a private operation that
14633 -- should be inherited but not yet made visible. Such subprograms can
14634 -- become visible at a later point (e.g., the private part of a public
14635 -- child unit) via Declare_Inherited_Private_Subprograms. If the
14636 -- following predicate is true, then this is not such a private
14637 -- operation and the subprogram simply inherits the name of the parent
14638 -- subprogram. Note the special check for the names of controlled
14639 -- operations, which are currently exempted from being inherited with
14640 -- a hidden name because they must be findable for generation of
14641 -- implicit run-time calls.
14643 if not Is_Hidden
(Parent_Subp
)
14644 or else Is_Internal
(Parent_Subp
)
14645 or else Is_Private_Overriding
14646 or else Is_Internal_Name
(Chars
(Parent_Subp
))
14647 or else Nam_In
(Chars
(Parent_Subp
), Name_Initialize
,
14653 -- An inherited dispatching equality will be overridden by an internally
14654 -- generated one, or by an explicit one, so preserve its name and thus
14655 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
14656 -- private operation it may become invisible if the full view has
14657 -- progenitors, and the dispatch table will be malformed.
14658 -- We check that the type is limited to handle the anomalous declaration
14659 -- of Limited_Controlled, which is derived from a non-limited type, and
14660 -- which is handled specially elsewhere as well.
14662 elsif Chars
(Parent_Subp
) = Name_Op_Eq
14663 and then Is_Dispatching_Operation
(Parent_Subp
)
14664 and then Etype
(Parent_Subp
) = Standard_Boolean
14665 and then not Is_Limited_Type
(Etype
(First_Formal
(Parent_Subp
)))
14667 Etype
(First_Formal
(Parent_Subp
)) =
14668 Etype
(Next_Formal
(First_Formal
(Parent_Subp
)))
14672 -- If parent is hidden, this can be a regular derivation if the
14673 -- parent is immediately visible in a non-instantiating context,
14674 -- or if we are in the private part of an instance. This test
14675 -- should still be refined ???
14677 -- The test for In_Instance_Not_Visible avoids inheriting the derived
14678 -- operation as a non-visible operation in cases where the parent
14679 -- subprogram might not be visible now, but was visible within the
14680 -- original generic, so it would be wrong to make the inherited
14681 -- subprogram non-visible now. (Not clear if this test is fully
14682 -- correct; are there any cases where we should declare the inherited
14683 -- operation as not visible to avoid it being overridden, e.g., when
14684 -- the parent type is a generic actual with private primitives ???)
14686 -- (they should be treated the same as other private inherited
14687 -- subprograms, but it's not clear how to do this cleanly). ???
14689 elsif (In_Open_Scopes
(Scope
(Base_Type
(Parent_Type
)))
14690 and then Is_Immediately_Visible
(Parent_Subp
)
14691 and then not In_Instance
)
14692 or else In_Instance_Not_Visible
14696 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
14697 -- overrides an interface primitive because interface primitives
14698 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
14700 elsif Ada_Version
>= Ada_2005
14701 and then Is_Dispatching_Operation
(Parent_Subp
)
14702 and then Covers_Some_Interface
(Parent_Subp
)
14706 -- Otherwise, the type is inheriting a private operation, so enter
14707 -- it with a special name so it can't be overridden.
14710 Set_Chars
(New_Subp
, New_External_Name
(Chars
(Parent_Subp
), 'P'));
14713 Set_Parent
(New_Subp
, Parent
(Derived_Type
));
14715 if Present
(Actual_Subp
) then
14716 Replace_Type
(Actual_Subp
, New_Subp
);
14718 Replace_Type
(Parent_Subp
, New_Subp
);
14721 Conditional_Delay
(New_Subp
, Parent_Subp
);
14723 -- If we are creating a renaming for a primitive operation of an
14724 -- actual of a generic derived type, we must examine the signature
14725 -- of the actual primitive, not that of the generic formal, which for
14726 -- example may be an interface. However the name and initial value
14727 -- of the inherited operation are those of the formal primitive.
14729 Formal
:= First_Formal
(Parent_Subp
);
14731 if Present
(Actual_Subp
) then
14732 Formal_Of_Actual
:= First_Formal
(Actual_Subp
);
14734 Formal_Of_Actual
:= Empty
;
14737 while Present
(Formal
) loop
14738 New_Formal
:= New_Copy
(Formal
);
14740 -- Normally we do not go copying parents, but in the case of
14741 -- formals, we need to link up to the declaration (which is the
14742 -- parameter specification), and it is fine to link up to the
14743 -- original formal's parameter specification in this case.
14745 Set_Parent
(New_Formal
, Parent
(Formal
));
14746 Append_Entity
(New_Formal
, New_Subp
);
14748 if Present
(Formal_Of_Actual
) then
14749 Replace_Type
(Formal_Of_Actual
, New_Formal
);
14750 Next_Formal
(Formal_Of_Actual
);
14752 Replace_Type
(Formal
, New_Formal
);
14755 Next_Formal
(Formal
);
14758 -- If this derivation corresponds to a tagged generic actual, then
14759 -- primitive operations rename those of the actual. Otherwise the
14760 -- primitive operations rename those of the parent type, If the parent
14761 -- renames an intrinsic operator, so does the new subprogram. We except
14762 -- concatenation, which is always properly typed, and does not get
14763 -- expanded as other intrinsic operations.
14765 if No
(Actual_Subp
) then
14766 if Is_Intrinsic_Subprogram
(Parent_Subp
) then
14767 Set_Is_Intrinsic_Subprogram
(New_Subp
);
14769 if Present
(Alias
(Parent_Subp
))
14770 and then Chars
(Parent_Subp
) /= Name_Op_Concat
14772 Set_Alias
(New_Subp
, Alias
(Parent_Subp
));
14774 Set_Alias
(New_Subp
, Parent_Subp
);
14778 Set_Alias
(New_Subp
, Parent_Subp
);
14782 Set_Alias
(New_Subp
, Actual_Subp
);
14785 -- Inherit the "ghostness" from the parent subprogram
14787 if Is_Ghost_Entity
(Alias
(New_Subp
)) then
14788 Set_Is_Ghost_Entity
(New_Subp
);
14791 -- Derived subprograms of a tagged type must inherit the convention
14792 -- of the parent subprogram (a requirement of AI-117). Derived
14793 -- subprograms of untagged types simply get convention Ada by default.
14795 -- If the derived type is a tagged generic formal type with unknown
14796 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
14798 -- However, if the type is derived from a generic formal, the further
14799 -- inherited subprogram has the convention of the non-generic ancestor.
14800 -- Otherwise there would be no way to override the operation.
14801 -- (This is subject to forthcoming ARG discussions).
14803 if Is_Tagged_Type
(Derived_Type
) then
14804 if Is_Generic_Type
(Derived_Type
)
14805 and then Has_Unknown_Discriminants
(Derived_Type
)
14807 Set_Convention
(New_Subp
, Convention_Intrinsic
);
14810 if Is_Generic_Type
(Parent_Type
)
14811 and then Has_Unknown_Discriminants
(Parent_Type
)
14813 Set_Convention
(New_Subp
, Convention
(Alias
(Parent_Subp
)));
14815 Set_Convention
(New_Subp
, Convention
(Parent_Subp
));
14820 -- Predefined controlled operations retain their name even if the parent
14821 -- is hidden (see above), but they are not primitive operations if the
14822 -- ancestor is not visible, for example if the parent is a private
14823 -- extension completed with a controlled extension. Note that a full
14824 -- type that is controlled can break privacy: the flag Is_Controlled is
14825 -- set on both views of the type.
14827 if Is_Controlled
(Parent_Type
)
14828 and then Nam_In
(Chars
(Parent_Subp
), Name_Initialize
,
14831 and then Is_Hidden
(Parent_Subp
)
14832 and then not Is_Visibly_Controlled
(Parent_Type
)
14834 Set_Is_Hidden
(New_Subp
);
14837 Set_Is_Imported
(New_Subp
, Is_Imported
(Parent_Subp
));
14838 Set_Is_Exported
(New_Subp
, Is_Exported
(Parent_Subp
));
14840 if Ekind
(Parent_Subp
) = E_Procedure
then
14841 Set_Is_Valued_Procedure
14842 (New_Subp
, Is_Valued_Procedure
(Parent_Subp
));
14844 Set_Has_Controlling_Result
14845 (New_Subp
, Has_Controlling_Result
(Parent_Subp
));
14848 -- No_Return must be inherited properly. If this is overridden in the
14849 -- case of a dispatching operation, then a check is made in Sem_Disp
14850 -- that the overriding operation is also No_Return (no such check is
14851 -- required for the case of non-dispatching operation.
14853 Set_No_Return
(New_Subp
, No_Return
(Parent_Subp
));
14855 -- A derived function with a controlling result is abstract. If the
14856 -- Derived_Type is a nonabstract formal generic derived type, then
14857 -- inherited operations are not abstract: the required check is done at
14858 -- instantiation time. If the derivation is for a generic actual, the
14859 -- function is not abstract unless the actual is.
14861 if Is_Generic_Type
(Derived_Type
)
14862 and then not Is_Abstract_Type
(Derived_Type
)
14866 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
14867 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
14869 -- A subprogram subject to pragma Extensions_Visible with value False
14870 -- requires overriding if the subprogram has at least one controlling
14871 -- OUT parameter (SPARK RM 6.1.7(6)).
14873 elsif Ada_Version
>= Ada_2005
14874 and then (Is_Abstract_Subprogram
(Alias
(New_Subp
))
14875 or else (Is_Tagged_Type
(Derived_Type
)
14876 and then Etype
(New_Subp
) = Derived_Type
14877 and then not Is_Null_Extension
(Derived_Type
))
14878 or else (Is_Tagged_Type
(Derived_Type
)
14879 and then Ekind
(Etype
(New_Subp
)) =
14880 E_Anonymous_Access_Type
14881 and then Designated_Type
(Etype
(New_Subp
)) =
14883 and then not Is_Null_Extension
(Derived_Type
))
14884 or else (Comes_From_Source
(Alias
(New_Subp
))
14885 and then Is_EVF_Procedure
(Alias
(New_Subp
))))
14886 and then No
(Actual_Subp
)
14888 if not Is_Tagged_Type
(Derived_Type
)
14889 or else Is_Abstract_Type
(Derived_Type
)
14890 or else Is_Abstract_Subprogram
(Alias
(New_Subp
))
14892 Set_Is_Abstract_Subprogram
(New_Subp
);
14894 Set_Requires_Overriding
(New_Subp
);
14897 elsif Ada_Version
< Ada_2005
14898 and then (Is_Abstract_Subprogram
(Alias
(New_Subp
))
14899 or else (Is_Tagged_Type
(Derived_Type
)
14900 and then Etype
(New_Subp
) = Derived_Type
14901 and then No
(Actual_Subp
)))
14903 Set_Is_Abstract_Subprogram
(New_Subp
);
14905 -- AI05-0097 : an inherited operation that dispatches on result is
14906 -- abstract if the derived type is abstract, even if the parent type
14907 -- is concrete and the derived type is a null extension.
14909 elsif Has_Controlling_Result
(Alias
(New_Subp
))
14910 and then Is_Abstract_Type
(Etype
(New_Subp
))
14912 Set_Is_Abstract_Subprogram
(New_Subp
);
14914 -- Finally, if the parent type is abstract we must verify that all
14915 -- inherited operations are either non-abstract or overridden, or that
14916 -- the derived type itself is abstract (this check is performed at the
14917 -- end of a package declaration, in Check_Abstract_Overriding). A
14918 -- private overriding in the parent type will not be visible in the
14919 -- derivation if we are not in an inner package or in a child unit of
14920 -- the parent type, in which case the abstractness of the inherited
14921 -- operation is carried to the new subprogram.
14923 elsif Is_Abstract_Type
(Parent_Type
)
14924 and then not In_Open_Scopes
(Scope
(Parent_Type
))
14925 and then Is_Private_Overriding
14926 and then Is_Abstract_Subprogram
(Visible_Subp
)
14928 if No
(Actual_Subp
) then
14929 Set_Alias
(New_Subp
, Visible_Subp
);
14930 Set_Is_Abstract_Subprogram
(New_Subp
, True);
14933 -- If this is a derivation for an instance of a formal derived
14934 -- type, abstractness comes from the primitive operation of the
14935 -- actual, not from the operation inherited from the ancestor.
14937 Set_Is_Abstract_Subprogram
14938 (New_Subp
, Is_Abstract_Subprogram
(Actual_Subp
));
14942 New_Overloaded_Entity
(New_Subp
, Derived_Type
);
14944 -- Check for case of a derived subprogram for the instantiation of a
14945 -- formal derived tagged type, if so mark the subprogram as dispatching
14946 -- and inherit the dispatching attributes of the actual subprogram. The
14947 -- derived subprogram is effectively renaming of the actual subprogram,
14948 -- so it needs to have the same attributes as the actual.
14950 if Present
(Actual_Subp
)
14951 and then Is_Dispatching_Operation
(Actual_Subp
)
14953 Set_Is_Dispatching_Operation
(New_Subp
);
14955 if Present
(DTC_Entity
(Actual_Subp
)) then
14956 Set_DTC_Entity
(New_Subp
, DTC_Entity
(Actual_Subp
));
14957 Set_DT_Position_Value
(New_Subp
, DT_Position
(Actual_Subp
));
14961 -- Indicate that a derived subprogram does not require a body and that
14962 -- it does not require processing of default expressions.
14964 Set_Has_Completion
(New_Subp
);
14965 Set_Default_Expressions_Processed
(New_Subp
);
14967 if Ekind
(New_Subp
) = E_Function
then
14968 Set_Mechanism
(New_Subp
, Mechanism
(Parent_Subp
));
14970 end Derive_Subprogram
;
14972 ------------------------
14973 -- Derive_Subprograms --
14974 ------------------------
14976 procedure Derive_Subprograms
14977 (Parent_Type
: Entity_Id
;
14978 Derived_Type
: Entity_Id
;
14979 Generic_Actual
: Entity_Id
:= Empty
)
14981 Op_List
: constant Elist_Id
:=
14982 Collect_Primitive_Operations
(Parent_Type
);
14984 function Check_Derived_Type
return Boolean;
14985 -- Check that all the entities derived from Parent_Type are found in
14986 -- the list of primitives of Derived_Type exactly in the same order.
14988 procedure Derive_Interface_Subprogram
14989 (New_Subp
: in out Entity_Id
;
14991 Actual_Subp
: Entity_Id
);
14992 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
14993 -- (which is an interface primitive). If Generic_Actual is present then
14994 -- Actual_Subp is the actual subprogram corresponding with the generic
14995 -- subprogram Subp.
14997 function Check_Derived_Type
return Boolean is
15001 New_Subp
: Entity_Id
;
15006 -- Traverse list of entities in the current scope searching for
15007 -- an incomplete type whose full-view is derived type
15009 E
:= First_Entity
(Scope
(Derived_Type
));
15010 while Present
(E
) and then E
/= Derived_Type
loop
15011 if Ekind
(E
) = E_Incomplete_Type
15012 and then Present
(Full_View
(E
))
15013 and then Full_View
(E
) = Derived_Type
15015 -- Disable this test if Derived_Type completes an incomplete
15016 -- type because in such case more primitives can be added
15017 -- later to the list of primitives of Derived_Type by routine
15018 -- Process_Incomplete_Dependents
15023 E
:= Next_Entity
(E
);
15026 List
:= Collect_Primitive_Operations
(Derived_Type
);
15027 Elmt
:= First_Elmt
(List
);
15029 Op_Elmt
:= First_Elmt
(Op_List
);
15030 while Present
(Op_Elmt
) loop
15031 Subp
:= Node
(Op_Elmt
);
15032 New_Subp
:= Node
(Elmt
);
15034 -- At this early stage Derived_Type has no entities with attribute
15035 -- Interface_Alias. In addition, such primitives are always
15036 -- located at the end of the list of primitives of Parent_Type.
15037 -- Therefore, if found we can safely stop processing pending
15040 exit when Present
(Interface_Alias
(Subp
));
15042 -- Handle hidden entities
15044 if not Is_Predefined_Dispatching_Operation
(Subp
)
15045 and then Is_Hidden
(Subp
)
15047 if Present
(New_Subp
)
15048 and then Primitive_Names_Match
(Subp
, New_Subp
)
15054 if not Present
(New_Subp
)
15055 or else Ekind
(Subp
) /= Ekind
(New_Subp
)
15056 or else not Primitive_Names_Match
(Subp
, New_Subp
)
15064 Next_Elmt
(Op_Elmt
);
15068 end Check_Derived_Type
;
15070 ---------------------------------
15071 -- Derive_Interface_Subprogram --
15072 ---------------------------------
15074 procedure Derive_Interface_Subprogram
15075 (New_Subp
: in out Entity_Id
;
15077 Actual_Subp
: Entity_Id
)
15079 Iface_Subp
: constant Entity_Id
:= Ultimate_Alias
(Subp
);
15080 Iface_Type
: constant Entity_Id
:= Find_Dispatching_Type
(Iface_Subp
);
15083 pragma Assert
(Is_Interface
(Iface_Type
));
15086 (New_Subp
=> New_Subp
,
15087 Parent_Subp
=> Iface_Subp
,
15088 Derived_Type
=> Derived_Type
,
15089 Parent_Type
=> Iface_Type
,
15090 Actual_Subp
=> Actual_Subp
);
15092 -- Given that this new interface entity corresponds with a primitive
15093 -- of the parent that was not overridden we must leave it associated
15094 -- with its parent primitive to ensure that it will share the same
15095 -- dispatch table slot when overridden.
15097 if No
(Actual_Subp
) then
15098 Set_Alias
(New_Subp
, Subp
);
15100 -- For instantiations this is not needed since the previous call to
15101 -- Derive_Subprogram leaves the entity well decorated.
15104 pragma Assert
(Alias
(New_Subp
) = Actual_Subp
);
15107 end Derive_Interface_Subprogram
;
15111 Alias_Subp
: Entity_Id
;
15112 Act_List
: Elist_Id
;
15113 Act_Elmt
: Elmt_Id
;
15114 Act_Subp
: Entity_Id
:= Empty
;
15116 Need_Search
: Boolean := False;
15117 New_Subp
: Entity_Id
:= Empty
;
15118 Parent_Base
: Entity_Id
;
15121 -- Start of processing for Derive_Subprograms
15124 if Ekind
(Parent_Type
) = E_Record_Type_With_Private
15125 and then Has_Discriminants
(Parent_Type
)
15126 and then Present
(Full_View
(Parent_Type
))
15128 Parent_Base
:= Full_View
(Parent_Type
);
15130 Parent_Base
:= Parent_Type
;
15133 if Present
(Generic_Actual
) then
15134 Act_List
:= Collect_Primitive_Operations
(Generic_Actual
);
15135 Act_Elmt
:= First_Elmt
(Act_List
);
15137 Act_List
:= No_Elist
;
15138 Act_Elmt
:= No_Elmt
;
15141 -- Derive primitives inherited from the parent. Note that if the generic
15142 -- actual is present, this is not really a type derivation, it is a
15143 -- completion within an instance.
15145 -- Case 1: Derived_Type does not implement interfaces
15147 if not Is_Tagged_Type
(Derived_Type
)
15148 or else (not Has_Interfaces
(Derived_Type
)
15149 and then not (Present
(Generic_Actual
)
15150 and then Has_Interfaces
(Generic_Actual
)))
15152 Elmt
:= First_Elmt
(Op_List
);
15153 while Present
(Elmt
) loop
15154 Subp
:= Node
(Elmt
);
15156 -- Literals are derived earlier in the process of building the
15157 -- derived type, and are skipped here.
15159 if Ekind
(Subp
) = E_Enumeration_Literal
then
15162 -- The actual is a direct descendant and the common primitive
15163 -- operations appear in the same order.
15165 -- If the generic parent type is present, the derived type is an
15166 -- instance of a formal derived type, and within the instance its
15167 -- operations are those of the actual. We derive from the formal
15168 -- type but make the inherited operations aliases of the
15169 -- corresponding operations of the actual.
15172 pragma Assert
(No
(Node
(Act_Elmt
))
15173 or else (Primitive_Names_Match
(Subp
, Node
(Act_Elmt
))
15176 (Subp
, Node
(Act_Elmt
),
15177 Skip_Controlling_Formals
=> True)));
15180 (New_Subp
, Subp
, Derived_Type
, Parent_Base
, Node
(Act_Elmt
));
15182 if Present
(Act_Elmt
) then
15183 Next_Elmt
(Act_Elmt
);
15190 -- Case 2: Derived_Type implements interfaces
15193 -- If the parent type has no predefined primitives we remove
15194 -- predefined primitives from the list of primitives of generic
15195 -- actual to simplify the complexity of this algorithm.
15197 if Present
(Generic_Actual
) then
15199 Has_Predefined_Primitives
: Boolean := False;
15202 -- Check if the parent type has predefined primitives
15204 Elmt
:= First_Elmt
(Op_List
);
15205 while Present
(Elmt
) loop
15206 Subp
:= Node
(Elmt
);
15208 if Is_Predefined_Dispatching_Operation
(Subp
)
15209 and then not Comes_From_Source
(Ultimate_Alias
(Subp
))
15211 Has_Predefined_Primitives
:= True;
15218 -- Remove predefined primitives of Generic_Actual. We must use
15219 -- an auxiliary list because in case of tagged types the value
15220 -- returned by Collect_Primitive_Operations is the value stored
15221 -- in its Primitive_Operations attribute (and we don't want to
15222 -- modify its current contents).
15224 if not Has_Predefined_Primitives
then
15226 Aux_List
: constant Elist_Id
:= New_Elmt_List
;
15229 Elmt
:= First_Elmt
(Act_List
);
15230 while Present
(Elmt
) loop
15231 Subp
:= Node
(Elmt
);
15233 if not Is_Predefined_Dispatching_Operation
(Subp
)
15234 or else Comes_From_Source
(Subp
)
15236 Append_Elmt
(Subp
, Aux_List
);
15242 Act_List
:= Aux_List
;
15246 Act_Elmt
:= First_Elmt
(Act_List
);
15247 Act_Subp
:= Node
(Act_Elmt
);
15251 -- Stage 1: If the generic actual is not present we derive the
15252 -- primitives inherited from the parent type. If the generic parent
15253 -- type is present, the derived type is an instance of a formal
15254 -- derived type, and within the instance its operations are those of
15255 -- the actual. We derive from the formal type but make the inherited
15256 -- operations aliases of the corresponding operations of the actual.
15258 Elmt
:= First_Elmt
(Op_List
);
15259 while Present
(Elmt
) loop
15260 Subp
:= Node
(Elmt
);
15261 Alias_Subp
:= Ultimate_Alias
(Subp
);
15263 -- Do not derive internal entities of the parent that link
15264 -- interface primitives with their covering primitive. These
15265 -- entities will be added to this type when frozen.
15267 if Present
(Interface_Alias
(Subp
)) then
15271 -- If the generic actual is present find the corresponding
15272 -- operation in the generic actual. If the parent type is a
15273 -- direct ancestor of the derived type then, even if it is an
15274 -- interface, the operations are inherited from the primary
15275 -- dispatch table and are in the proper order. If we detect here
15276 -- that primitives are not in the same order we traverse the list
15277 -- of primitive operations of the actual to find the one that
15278 -- implements the interface primitive.
15282 (Present
(Generic_Actual
)
15283 and then Present
(Act_Subp
)
15285 (Primitive_Names_Match
(Subp
, Act_Subp
)
15287 Type_Conformant
(Subp
, Act_Subp
,
15288 Skip_Controlling_Formals
=> True)))
15290 pragma Assert
(not Is_Ancestor
(Parent_Base
, Generic_Actual
,
15291 Use_Full_View
=> True));
15293 -- Remember that we need searching for all pending primitives
15295 Need_Search
:= True;
15297 -- Handle entities associated with interface primitives
15299 if Present
(Alias_Subp
)
15300 and then Is_Interface
(Find_Dispatching_Type
(Alias_Subp
))
15301 and then not Is_Predefined_Dispatching_Operation
(Subp
)
15303 -- Search for the primitive in the homonym chain
15306 Find_Primitive_Covering_Interface
15307 (Tagged_Type
=> Generic_Actual
,
15308 Iface_Prim
=> Alias_Subp
);
15310 -- Previous search may not locate primitives covering
15311 -- interfaces defined in generics units or instantiations.
15312 -- (it fails if the covering primitive has formals whose
15313 -- type is also defined in generics or instantiations).
15314 -- In such case we search in the list of primitives of the
15315 -- generic actual for the internal entity that links the
15316 -- interface primitive and the covering primitive.
15319 and then Is_Generic_Type
(Parent_Type
)
15321 -- This code has been designed to handle only generic
15322 -- formals that implement interfaces that are defined
15323 -- in a generic unit or instantiation. If this code is
15324 -- needed for other cases we must review it because
15325 -- (given that it relies on Original_Location to locate
15326 -- the primitive of Generic_Actual that covers the
15327 -- interface) it could leave linked through attribute
15328 -- Alias entities of unrelated instantiations).
15332 (Scope
(Find_Dispatching_Type
(Alias_Subp
)))
15334 Instantiation_Depth
15335 (Sloc
(Find_Dispatching_Type
(Alias_Subp
))) > 0);
15338 Iface_Prim_Loc
: constant Source_Ptr
:=
15339 Original_Location
(Sloc
(Alias_Subp
));
15346 First_Elmt
(Primitive_Operations
(Generic_Actual
));
15348 Search
: while Present
(Elmt
) loop
15349 Prim
:= Node
(Elmt
);
15351 if Present
(Interface_Alias
(Prim
))
15352 and then Original_Location
15353 (Sloc
(Interface_Alias
(Prim
))) =
15356 Act_Subp
:= Alias
(Prim
);
15365 pragma Assert
(Present
(Act_Subp
)
15366 or else Is_Abstract_Type
(Generic_Actual
)
15367 or else Serious_Errors_Detected
> 0);
15369 -- Handle predefined primitives plus the rest of user-defined
15373 Act_Elmt
:= First_Elmt
(Act_List
);
15374 while Present
(Act_Elmt
) loop
15375 Act_Subp
:= Node
(Act_Elmt
);
15377 exit when Primitive_Names_Match
(Subp
, Act_Subp
)
15378 and then Type_Conformant
15380 Skip_Controlling_Formals
=> True)
15381 and then No
(Interface_Alias
(Act_Subp
));
15383 Next_Elmt
(Act_Elmt
);
15386 if No
(Act_Elmt
) then
15392 -- Case 1: If the parent is a limited interface then it has the
15393 -- predefined primitives of synchronized interfaces. However, the
15394 -- actual type may be a non-limited type and hence it does not
15395 -- have such primitives.
15397 if Present
(Generic_Actual
)
15398 and then not Present
(Act_Subp
)
15399 and then Is_Limited_Interface
(Parent_Base
)
15400 and then Is_Predefined_Interface_Primitive
(Subp
)
15404 -- Case 2: Inherit entities associated with interfaces that were
15405 -- not covered by the parent type. We exclude here null interface
15406 -- primitives because they do not need special management.
15408 -- We also exclude interface operations that are renamings. If the
15409 -- subprogram is an explicit renaming of an interface primitive,
15410 -- it is a regular primitive operation, and the presence of its
15411 -- alias is not relevant: it has to be derived like any other
15414 elsif Present
(Alias
(Subp
))
15415 and then Nkind
(Unit_Declaration_Node
(Subp
)) /=
15416 N_Subprogram_Renaming_Declaration
15417 and then Is_Interface
(Find_Dispatching_Type
(Alias_Subp
))
15419 (Nkind
(Parent
(Alias_Subp
)) = N_Procedure_Specification
15420 and then Null_Present
(Parent
(Alias_Subp
)))
15422 -- If this is an abstract private type then we transfer the
15423 -- derivation of the interface primitive from the partial view
15424 -- to the full view. This is safe because all the interfaces
15425 -- must be visible in the partial view. Done to avoid adding
15426 -- a new interface derivation to the private part of the
15427 -- enclosing package; otherwise this new derivation would be
15428 -- decorated as hidden when the analysis of the enclosing
15429 -- package completes.
15431 if Is_Abstract_Type
(Derived_Type
)
15432 and then In_Private_Part
(Current_Scope
)
15433 and then Has_Private_Declaration
(Derived_Type
)
15436 Partial_View
: Entity_Id
;
15441 Partial_View
:= First_Entity
(Current_Scope
);
15443 exit when No
(Partial_View
)
15444 or else (Has_Private_Declaration
(Partial_View
)
15446 Full_View
(Partial_View
) = Derived_Type
);
15448 Next_Entity
(Partial_View
);
15451 -- If the partial view was not found then the source code
15452 -- has errors and the derivation is not needed.
15454 if Present
(Partial_View
) then
15456 First_Elmt
(Primitive_Operations
(Partial_View
));
15457 while Present
(Elmt
) loop
15458 Ent
:= Node
(Elmt
);
15460 if Present
(Alias
(Ent
))
15461 and then Ultimate_Alias
(Ent
) = Alias
(Subp
)
15464 (Ent
, Primitive_Operations
(Derived_Type
));
15471 -- If the interface primitive was not found in the
15472 -- partial view then this interface primitive was
15473 -- overridden. We add a derivation to activate in
15474 -- Derive_Progenitor_Subprograms the machinery to
15478 Derive_Interface_Subprogram
15479 (New_Subp
=> New_Subp
,
15481 Actual_Subp
=> Act_Subp
);
15486 Derive_Interface_Subprogram
15487 (New_Subp
=> New_Subp
,
15489 Actual_Subp
=> Act_Subp
);
15492 -- Case 3: Common derivation
15496 (New_Subp
=> New_Subp
,
15497 Parent_Subp
=> Subp
,
15498 Derived_Type
=> Derived_Type
,
15499 Parent_Type
=> Parent_Base
,
15500 Actual_Subp
=> Act_Subp
);
15503 -- No need to update Act_Elm if we must search for the
15504 -- corresponding operation in the generic actual
15507 and then Present
(Act_Elmt
)
15509 Next_Elmt
(Act_Elmt
);
15510 Act_Subp
:= Node
(Act_Elmt
);
15517 -- Inherit additional operations from progenitors. If the derived
15518 -- type is a generic actual, there are not new primitive operations
15519 -- for the type because it has those of the actual, and therefore
15520 -- nothing needs to be done. The renamings generated above are not
15521 -- primitive operations, and their purpose is simply to make the
15522 -- proper operations visible within an instantiation.
15524 if No
(Generic_Actual
) then
15525 Derive_Progenitor_Subprograms
(Parent_Base
, Derived_Type
);
15529 -- Final check: Direct descendants must have their primitives in the
15530 -- same order. We exclude from this test untagged types and instances
15531 -- of formal derived types. We skip this test if we have already
15532 -- reported serious errors in the sources.
15534 pragma Assert
(not Is_Tagged_Type
(Derived_Type
)
15535 or else Present
(Generic_Actual
)
15536 or else Serious_Errors_Detected
> 0
15537 or else Check_Derived_Type
);
15538 end Derive_Subprograms
;
15540 --------------------------------
15541 -- Derived_Standard_Character --
15542 --------------------------------
15544 procedure Derived_Standard_Character
15546 Parent_Type
: Entity_Id
;
15547 Derived_Type
: Entity_Id
)
15549 Loc
: constant Source_Ptr
:= Sloc
(N
);
15550 Def
: constant Node_Id
:= Type_Definition
(N
);
15551 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
15552 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
15553 Implicit_Base
: constant Entity_Id
:=
15555 (E_Enumeration_Type
, N
, Derived_Type
, 'B');
15561 Discard_Node
(Process_Subtype
(Indic
, N
));
15563 Set_Etype
(Implicit_Base
, Parent_Base
);
15564 Set_Size_Info
(Implicit_Base
, Root_Type
(Parent_Type
));
15565 Set_RM_Size
(Implicit_Base
, RM_Size
(Root_Type
(Parent_Type
)));
15567 Set_Is_Character_Type
(Implicit_Base
, True);
15568 Set_Has_Delayed_Freeze
(Implicit_Base
);
15570 -- The bounds of the implicit base are the bounds of the parent base.
15571 -- Note that their type is the parent base.
15573 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Base
));
15574 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Base
));
15576 Set_Scalar_Range
(Implicit_Base
,
15579 High_Bound
=> Hi
));
15581 Conditional_Delay
(Derived_Type
, Parent_Type
);
15583 Set_Ekind
(Derived_Type
, E_Enumeration_Subtype
);
15584 Set_Etype
(Derived_Type
, Implicit_Base
);
15585 Set_Size_Info
(Derived_Type
, Parent_Type
);
15587 if Unknown_RM_Size
(Derived_Type
) then
15588 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
15591 Set_Is_Character_Type
(Derived_Type
, True);
15593 if Nkind
(Indic
) /= N_Subtype_Indication
then
15595 -- If no explicit constraint, the bounds are those
15596 -- of the parent type.
15598 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Type
));
15599 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Type
));
15600 Set_Scalar_Range
(Derived_Type
, Make_Range
(Loc
, Lo
, Hi
));
15603 Convert_Scalar_Bounds
(N
, Parent_Type
, Derived_Type
, Loc
);
15605 -- Because the implicit base is used in the conversion of the bounds, we
15606 -- have to freeze it now. This is similar to what is done for numeric
15607 -- types, and it equally suspicious, but otherwise a non-static bound
15608 -- will have a reference to an unfrozen type, which is rejected by Gigi
15609 -- (???). This requires specific care for definition of stream
15610 -- attributes. For details, see comments at the end of
15611 -- Build_Derived_Numeric_Type.
15613 Freeze_Before
(N
, Implicit_Base
);
15614 end Derived_Standard_Character
;
15616 ------------------------------
15617 -- Derived_Type_Declaration --
15618 ------------------------------
15620 procedure Derived_Type_Declaration
15623 Is_Completion
: Boolean)
15625 Parent_Type
: Entity_Id
;
15627 function Comes_From_Generic
(Typ
: Entity_Id
) return Boolean;
15628 -- Check whether the parent type is a generic formal, or derives
15629 -- directly or indirectly from one.
15631 ------------------------
15632 -- Comes_From_Generic --
15633 ------------------------
15635 function Comes_From_Generic
(Typ
: Entity_Id
) return Boolean is
15637 if Is_Generic_Type
(Typ
) then
15640 elsif Is_Generic_Type
(Root_Type
(Parent_Type
)) then
15643 elsif Is_Private_Type
(Typ
)
15644 and then Present
(Full_View
(Typ
))
15645 and then Is_Generic_Type
(Root_Type
(Full_View
(Typ
)))
15649 elsif Is_Generic_Actual_Type
(Typ
) then
15655 end Comes_From_Generic
;
15659 Def
: constant Node_Id
:= Type_Definition
(N
);
15660 Iface_Def
: Node_Id
;
15661 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
15662 Extension
: constant Node_Id
:= Record_Extension_Part
(Def
);
15663 Parent_Node
: Node_Id
;
15666 -- Start of processing for Derived_Type_Declaration
15669 Parent_Type
:= Find_Type_Of_Subtype_Indic
(Indic
);
15671 -- Ada 2005 (AI-251): In case of interface derivation check that the
15672 -- parent is also an interface.
15674 if Interface_Present
(Def
) then
15675 Check_SPARK_05_Restriction
("interface is not allowed", Def
);
15677 if not Is_Interface
(Parent_Type
) then
15678 Diagnose_Interface
(Indic
, Parent_Type
);
15681 Parent_Node
:= Parent
(Base_Type
(Parent_Type
));
15682 Iface_Def
:= Type_Definition
(Parent_Node
);
15684 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
15685 -- other limited interfaces.
15687 if Limited_Present
(Def
) then
15688 if Limited_Present
(Iface_Def
) then
15691 elsif Protected_Present
(Iface_Def
) then
15693 ("descendant of& must be declared"
15694 & " as a protected interface",
15697 elsif Synchronized_Present
(Iface_Def
) then
15699 ("descendant of& must be declared"
15700 & " as a synchronized interface",
15703 elsif Task_Present
(Iface_Def
) then
15705 ("descendant of& must be declared as a task interface",
15710 ("(Ada 2005) limited interface cannot "
15711 & "inherit from non-limited interface", Indic
);
15714 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
15715 -- from non-limited or limited interfaces.
15717 elsif not Protected_Present
(Def
)
15718 and then not Synchronized_Present
(Def
)
15719 and then not Task_Present
(Def
)
15721 if Limited_Present
(Iface_Def
) then
15724 elsif Protected_Present
(Iface_Def
) then
15726 ("descendant of& must be declared"
15727 & " as a protected interface",
15730 elsif Synchronized_Present
(Iface_Def
) then
15732 ("descendant of& must be declared"
15733 & " as a synchronized interface",
15736 elsif Task_Present
(Iface_Def
) then
15738 ("descendant of& must be declared as a task interface",
15747 if Is_Tagged_Type
(Parent_Type
)
15748 and then Is_Concurrent_Type
(Parent_Type
)
15749 and then not Is_Interface
(Parent_Type
)
15752 ("parent type of a record extension cannot be "
15753 & "a synchronized tagged type (RM 3.9.1 (3/1))", N
);
15754 Set_Etype
(T
, Any_Type
);
15758 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
15761 if Is_Tagged_Type
(Parent_Type
)
15762 and then Is_Non_Empty_List
(Interface_List
(Def
))
15769 Intf
:= First
(Interface_List
(Def
));
15770 while Present
(Intf
) loop
15771 T
:= Find_Type_Of_Subtype_Indic
(Intf
);
15773 if not Is_Interface
(T
) then
15774 Diagnose_Interface
(Intf
, T
);
15776 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
15777 -- a limited type from having a nonlimited progenitor.
15779 elsif (Limited_Present
(Def
)
15780 or else (not Is_Interface
(Parent_Type
)
15781 and then Is_Limited_Type
(Parent_Type
)))
15782 and then not Is_Limited_Interface
(T
)
15785 ("progenitor interface& of limited type must be limited",
15794 if Parent_Type
= Any_Type
15795 or else Etype
(Parent_Type
) = Any_Type
15796 or else (Is_Class_Wide_Type
(Parent_Type
)
15797 and then Etype
(Parent_Type
) = T
)
15799 -- If Parent_Type is undefined or illegal, make new type into a
15800 -- subtype of Any_Type, and set a few attributes to prevent cascaded
15801 -- errors. If this is a self-definition, emit error now.
15803 if T
= Parent_Type
or else T
= Etype
(Parent_Type
) then
15804 Error_Msg_N
("type cannot be used in its own definition", Indic
);
15807 Set_Ekind
(T
, Ekind
(Parent_Type
));
15808 Set_Etype
(T
, Any_Type
);
15809 Set_Scalar_Range
(T
, Scalar_Range
(Any_Type
));
15811 if Is_Tagged_Type
(T
)
15812 and then Is_Record_Type
(T
)
15814 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
15820 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
15821 -- an interface is special because the list of interfaces in the full
15822 -- view can be given in any order. For example:
15824 -- type A is interface;
15825 -- type B is interface and A;
15826 -- type D is new B with private;
15828 -- type D is new A and B with null record; -- 1 --
15830 -- In this case we perform the following transformation of -1-:
15832 -- type D is new B and A with null record;
15834 -- If the parent of the full-view covers the parent of the partial-view
15835 -- we have two possible cases:
15837 -- 1) They have the same parent
15838 -- 2) The parent of the full-view implements some further interfaces
15840 -- In both cases we do not need to perform the transformation. In the
15841 -- first case the source program is correct and the transformation is
15842 -- not needed; in the second case the source program does not fulfill
15843 -- the no-hidden interfaces rule (AI-396) and the error will be reported
15846 -- This transformation not only simplifies the rest of the analysis of
15847 -- this type declaration but also simplifies the correct generation of
15848 -- the object layout to the expander.
15850 if In_Private_Part
(Current_Scope
)
15851 and then Is_Interface
(Parent_Type
)
15855 Partial_View
: Entity_Id
;
15856 Partial_View_Parent
: Entity_Id
;
15857 New_Iface
: Node_Id
;
15860 -- Look for the associated private type declaration
15862 Partial_View
:= First_Entity
(Current_Scope
);
15864 exit when No
(Partial_View
)
15865 or else (Has_Private_Declaration
(Partial_View
)
15866 and then Full_View
(Partial_View
) = T
);
15868 Next_Entity
(Partial_View
);
15871 -- If the partial view was not found then the source code has
15872 -- errors and the transformation is not needed.
15874 if Present
(Partial_View
) then
15875 Partial_View_Parent
:= Etype
(Partial_View
);
15877 -- If the parent of the full-view covers the parent of the
15878 -- partial-view we have nothing else to do.
15880 if Interface_Present_In_Ancestor
15881 (Parent_Type
, Partial_View_Parent
)
15885 -- Traverse the list of interfaces of the full-view to look
15886 -- for the parent of the partial-view and perform the tree
15890 Iface
:= First
(Interface_List
(Def
));
15891 while Present
(Iface
) loop
15892 if Etype
(Iface
) = Etype
(Partial_View
) then
15893 Rewrite
(Subtype_Indication
(Def
),
15894 New_Copy
(Subtype_Indication
15895 (Parent
(Partial_View
))));
15898 Make_Identifier
(Sloc
(N
), Chars
(Parent_Type
));
15899 Append
(New_Iface
, Interface_List
(Def
));
15901 -- Analyze the transformed code
15903 Derived_Type_Declaration
(T
, N
, Is_Completion
);
15914 -- Only composite types other than array types are allowed to have
15917 if Present
(Discriminant_Specifications
(N
)) then
15918 if (Is_Elementary_Type
(Parent_Type
)
15920 Is_Array_Type
(Parent_Type
))
15921 and then not Error_Posted
(N
)
15924 ("elementary or array type cannot have discriminants",
15925 Defining_Identifier
(First
(Discriminant_Specifications
(N
))));
15926 Set_Has_Discriminants
(T
, False);
15928 -- The type is allowed to have discriminants
15931 Check_SPARK_05_Restriction
("discriminant type is not allowed", N
);
15935 -- In Ada 83, a derived type defined in a package specification cannot
15936 -- be used for further derivation until the end of its visible part.
15937 -- Note that derivation in the private part of the package is allowed.
15939 if Ada_Version
= Ada_83
15940 and then Is_Derived_Type
(Parent_Type
)
15941 and then In_Visible_Part
(Scope
(Parent_Type
))
15943 if Ada_Version
= Ada_83
and then Comes_From_Source
(Indic
) then
15945 ("(Ada 83): premature use of type for derivation", Indic
);
15949 -- Check for early use of incomplete or private type
15951 if Ekind_In
(Parent_Type
, E_Void
, E_Incomplete_Type
) then
15952 Error_Msg_N
("premature derivation of incomplete type", Indic
);
15955 elsif (Is_Incomplete_Or_Private_Type
(Parent_Type
)
15956 and then not Comes_From_Generic
(Parent_Type
))
15957 or else Has_Private_Component
(Parent_Type
)
15959 -- The ancestor type of a formal type can be incomplete, in which
15960 -- case only the operations of the partial view are available in the
15961 -- generic. Subsequent checks may be required when the full view is
15962 -- analyzed to verify that a derivation from a tagged type has an
15965 if Nkind
(Original_Node
(N
)) = N_Formal_Type_Declaration
then
15968 elsif No
(Underlying_Type
(Parent_Type
))
15969 or else Has_Private_Component
(Parent_Type
)
15972 ("premature derivation of derived or private type", Indic
);
15974 -- Flag the type itself as being in error, this prevents some
15975 -- nasty problems with subsequent uses of the malformed type.
15977 Set_Error_Posted
(T
);
15979 -- Check that within the immediate scope of an untagged partial
15980 -- view it's illegal to derive from the partial view if the
15981 -- full view is tagged. (7.3(7))
15983 -- We verify that the Parent_Type is a partial view by checking
15984 -- that it is not a Full_Type_Declaration (i.e. a private type or
15985 -- private extension declaration), to distinguish a partial view
15986 -- from a derivation from a private type which also appears as
15987 -- E_Private_Type. If the parent base type is not declared in an
15988 -- enclosing scope there is no need to check.
15990 elsif Present
(Full_View
(Parent_Type
))
15991 and then Nkind
(Parent
(Parent_Type
)) /= N_Full_Type_Declaration
15992 and then not Is_Tagged_Type
(Parent_Type
)
15993 and then Is_Tagged_Type
(Full_View
(Parent_Type
))
15994 and then In_Open_Scopes
(Scope
(Base_Type
(Parent_Type
)))
15997 ("premature derivation from type with tagged full view",
16002 -- Check that form of derivation is appropriate
16004 Taggd
:= Is_Tagged_Type
(Parent_Type
);
16006 -- Set the parent type to the class-wide type's specific type in this
16007 -- case to prevent cascading errors
16009 if Present
(Extension
) and then Is_Class_Wide_Type
(Parent_Type
) then
16010 Error_Msg_N
("parent type must not be a class-wide type", Indic
);
16011 Set_Etype
(T
, Etype
(Parent_Type
));
16015 if Present
(Extension
) and then not Taggd
then
16017 ("type derived from untagged type cannot have extension", Indic
);
16019 elsif No
(Extension
) and then Taggd
then
16021 -- If this declaration is within a private part (or body) of a
16022 -- generic instantiation then the derivation is allowed (the parent
16023 -- type can only appear tagged in this case if it's a generic actual
16024 -- type, since it would otherwise have been rejected in the analysis
16025 -- of the generic template).
16027 if not Is_Generic_Actual_Type
(Parent_Type
)
16028 or else In_Visible_Part
(Scope
(Parent_Type
))
16030 if Is_Class_Wide_Type
(Parent_Type
) then
16032 ("parent type must not be a class-wide type", Indic
);
16034 -- Use specific type to prevent cascaded errors.
16036 Parent_Type
:= Etype
(Parent_Type
);
16040 ("type derived from tagged type must have extension", Indic
);
16045 -- AI-443: Synchronized formal derived types require a private
16046 -- extension. There is no point in checking the ancestor type or
16047 -- the progenitors since the construct is wrong to begin with.
16049 if Ada_Version
>= Ada_2005
16050 and then Is_Generic_Type
(T
)
16051 and then Present
(Original_Node
(N
))
16054 Decl
: constant Node_Id
:= Original_Node
(N
);
16057 if Nkind
(Decl
) = N_Formal_Type_Declaration
16058 and then Nkind
(Formal_Type_Definition
(Decl
)) =
16059 N_Formal_Derived_Type_Definition
16060 and then Synchronized_Present
(Formal_Type_Definition
(Decl
))
16061 and then No
(Extension
)
16063 -- Avoid emitting a duplicate error message
16065 and then not Error_Posted
(Indic
)
16068 ("synchronized derived type must have extension", N
);
16073 if Null_Exclusion_Present
(Def
)
16074 and then not Is_Access_Type
(Parent_Type
)
16076 Error_Msg_N
("null exclusion can only apply to an access type", N
);
16079 -- Avoid deriving parent primitives of underlying record views
16081 Build_Derived_Type
(N
, Parent_Type
, T
, Is_Completion
,
16082 Derive_Subps
=> not Is_Underlying_Record_View
(T
));
16084 -- AI-419: The parent type of an explicitly limited derived type must
16085 -- be a limited type or a limited interface.
16087 if Limited_Present
(Def
) then
16088 Set_Is_Limited_Record
(T
);
16090 if Is_Interface
(T
) then
16091 Set_Is_Limited_Interface
(T
);
16094 if not Is_Limited_Type
(Parent_Type
)
16096 (not Is_Interface
(Parent_Type
)
16097 or else not Is_Limited_Interface
(Parent_Type
))
16099 -- AI05-0096: a derivation in the private part of an instance is
16100 -- legal if the generic formal is untagged limited, and the actual
16103 if Is_Generic_Actual_Type
(Parent_Type
)
16104 and then In_Private_Part
(Current_Scope
)
16107 (Generic_Parent_Type
(Parent
(Parent_Type
)))
16113 ("parent type& of limited type must be limited",
16119 -- In SPARK, there are no derived type definitions other than type
16120 -- extensions of tagged record types.
16122 if No
(Extension
) then
16123 Check_SPARK_05_Restriction
16124 ("derived type is not allowed", Original_Node
(N
));
16126 end Derived_Type_Declaration
;
16128 ------------------------
16129 -- Diagnose_Interface --
16130 ------------------------
16132 procedure Diagnose_Interface
(N
: Node_Id
; E
: Entity_Id
) is
16134 if not Is_Interface
(E
) and then E
/= Any_Type
then
16135 Error_Msg_NE
("(Ada 2005) & must be an interface", N
, E
);
16137 end Diagnose_Interface
;
16139 ----------------------------------
16140 -- Enumeration_Type_Declaration --
16141 ----------------------------------
16143 procedure Enumeration_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
16150 -- Create identifier node representing lower bound
16152 B_Node
:= New_Node
(N_Identifier
, Sloc
(Def
));
16153 L
:= First
(Literals
(Def
));
16154 Set_Chars
(B_Node
, Chars
(L
));
16155 Set_Entity
(B_Node
, L
);
16156 Set_Etype
(B_Node
, T
);
16157 Set_Is_Static_Expression
(B_Node
, True);
16159 R_Node
:= New_Node
(N_Range
, Sloc
(Def
));
16160 Set_Low_Bound
(R_Node
, B_Node
);
16162 Set_Ekind
(T
, E_Enumeration_Type
);
16163 Set_First_Literal
(T
, L
);
16165 Set_Is_Constrained
(T
);
16169 -- Loop through literals of enumeration type setting pos and rep values
16170 -- except that if the Ekind is already set, then it means the literal
16171 -- was already constructed (case of a derived type declaration and we
16172 -- should not disturb the Pos and Rep values.
16174 while Present
(L
) loop
16175 if Ekind
(L
) /= E_Enumeration_Literal
then
16176 Set_Ekind
(L
, E_Enumeration_Literal
);
16177 Set_Enumeration_Pos
(L
, Ev
);
16178 Set_Enumeration_Rep
(L
, Ev
);
16179 Set_Is_Known_Valid
(L
, True);
16183 New_Overloaded_Entity
(L
);
16184 Generate_Definition
(L
);
16185 Set_Convention
(L
, Convention_Intrinsic
);
16187 -- Case of character literal
16189 if Nkind
(L
) = N_Defining_Character_Literal
then
16190 Set_Is_Character_Type
(T
, True);
16192 -- Check violation of No_Wide_Characters
16194 if Restriction_Check_Required
(No_Wide_Characters
) then
16195 Get_Name_String
(Chars
(L
));
16197 if Name_Len
>= 3 and then Name_Buffer
(1 .. 2) = "QW" then
16198 Check_Restriction
(No_Wide_Characters
, L
);
16207 -- Now create a node representing upper bound
16209 B_Node
:= New_Node
(N_Identifier
, Sloc
(Def
));
16210 Set_Chars
(B_Node
, Chars
(Last
(Literals
(Def
))));
16211 Set_Entity
(B_Node
, Last
(Literals
(Def
)));
16212 Set_Etype
(B_Node
, T
);
16213 Set_Is_Static_Expression
(B_Node
, True);
16215 Set_High_Bound
(R_Node
, B_Node
);
16217 -- Initialize various fields of the type. Some of this information
16218 -- may be overwritten later through rep.clauses.
16220 Set_Scalar_Range
(T
, R_Node
);
16221 Set_RM_Size
(T
, UI_From_Int
(Minimum_Size
(T
)));
16222 Set_Enum_Esize
(T
);
16223 Set_Enum_Pos_To_Rep
(T
, Empty
);
16225 -- Set Discard_Names if configuration pragma set, or if there is
16226 -- a parameterless pragma in the current declarative region
16228 if Global_Discard_Names
or else Discard_Names
(Scope
(T
)) then
16229 Set_Discard_Names
(T
);
16232 -- Process end label if there is one
16234 if Present
(Def
) then
16235 Process_End_Label
(Def
, 'e', T
);
16237 end Enumeration_Type_Declaration
;
16239 ---------------------------------
16240 -- Expand_To_Stored_Constraint --
16241 ---------------------------------
16243 function Expand_To_Stored_Constraint
16245 Constraint
: Elist_Id
) return Elist_Id
16247 Explicitly_Discriminated_Type
: Entity_Id
;
16248 Expansion
: Elist_Id
;
16249 Discriminant
: Entity_Id
;
16251 function Type_With_Explicit_Discrims
(Id
: Entity_Id
) return Entity_Id
;
16252 -- Find the nearest type that actually specifies discriminants
16254 ---------------------------------
16255 -- Type_With_Explicit_Discrims --
16256 ---------------------------------
16258 function Type_With_Explicit_Discrims
(Id
: Entity_Id
) return Entity_Id
is
16259 Typ
: constant E
:= Base_Type
(Id
);
16262 if Ekind
(Typ
) in Incomplete_Or_Private_Kind
then
16263 if Present
(Full_View
(Typ
)) then
16264 return Type_With_Explicit_Discrims
(Full_View
(Typ
));
16268 if Has_Discriminants
(Typ
) then
16273 if Etype
(Typ
) = Typ
then
16275 elsif Has_Discriminants
(Typ
) then
16278 return Type_With_Explicit_Discrims
(Etype
(Typ
));
16281 end Type_With_Explicit_Discrims
;
16283 -- Start of processing for Expand_To_Stored_Constraint
16286 if No
(Constraint
) or else Is_Empty_Elmt_List
(Constraint
) then
16290 Explicitly_Discriminated_Type
:= Type_With_Explicit_Discrims
(Typ
);
16292 if No
(Explicitly_Discriminated_Type
) then
16296 Expansion
:= New_Elmt_List
;
16299 First_Stored_Discriminant
(Explicitly_Discriminated_Type
);
16300 while Present
(Discriminant
) loop
16302 (Get_Discriminant_Value
16303 (Discriminant
, Explicitly_Discriminated_Type
, Constraint
),
16305 Next_Stored_Discriminant
(Discriminant
);
16309 end Expand_To_Stored_Constraint
;
16311 ---------------------------
16312 -- Find_Hidden_Interface --
16313 ---------------------------
16315 function Find_Hidden_Interface
16317 Dest
: Elist_Id
) return Entity_Id
16320 Iface_Elmt
: Elmt_Id
;
16323 if Present
(Src
) and then Present
(Dest
) then
16324 Iface_Elmt
:= First_Elmt
(Src
);
16325 while Present
(Iface_Elmt
) loop
16326 Iface
:= Node
(Iface_Elmt
);
16328 if Is_Interface
(Iface
)
16329 and then not Contain_Interface
(Iface
, Dest
)
16334 Next_Elmt
(Iface_Elmt
);
16339 end Find_Hidden_Interface
;
16341 --------------------
16342 -- Find_Type_Name --
16343 --------------------
16345 function Find_Type_Name
(N
: Node_Id
) return Entity_Id
is
16346 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
16348 New_Id
: Entity_Id
;
16349 Prev_Par
: Node_Id
;
16351 procedure Check_Duplicate_Aspects
;
16352 -- Check that aspects specified in a completion have not been specified
16353 -- already in the partial view. Type_Invariant and others can be
16354 -- specified on either view but never on both.
16356 procedure Tag_Mismatch
;
16357 -- Diagnose a tagged partial view whose full view is untagged.
16358 -- We post the message on the full view, with a reference to
16359 -- the previous partial view. The partial view can be private
16360 -- or incomplete, and these are handled in a different manner,
16361 -- so we determine the position of the error message from the
16362 -- respective slocs of both.
16364 -----------------------------
16365 -- Check_Duplicate_Aspects --
16366 -----------------------------
16367 procedure Check_Duplicate_Aspects
is
16368 Prev_Aspects
: constant List_Id
:= Aspect_Specifications
(Prev_Par
);
16369 Full_Aspects
: constant List_Id
:= Aspect_Specifications
(N
);
16370 F_Spec
, P_Spec
: Node_Id
;
16373 if Present
(Prev_Aspects
) and then Present
(Full_Aspects
) then
16374 F_Spec
:= First
(Full_Aspects
);
16375 while Present
(F_Spec
) loop
16376 P_Spec
:= First
(Prev_Aspects
);
16377 while Present
(P_Spec
) loop
16378 if Chars
(Identifier
(P_Spec
)) = Chars
(Identifier
(F_Spec
))
16381 ("aspect already specified in private declaration",
16393 end Check_Duplicate_Aspects
;
16399 procedure Tag_Mismatch
is
16401 if Sloc
(Prev
) < Sloc
(Id
) then
16402 if Ada_Version
>= Ada_2012
16403 and then Nkind
(N
) = N_Private_Type_Declaration
16406 ("declaration of private } must be a tagged type ", Id
, Prev
);
16409 ("full declaration of } must be a tagged type ", Id
, Prev
);
16413 if Ada_Version
>= Ada_2012
16414 and then Nkind
(N
) = N_Private_Type_Declaration
16417 ("declaration of private } must be a tagged type ", Prev
, Id
);
16420 ("full declaration of } must be a tagged type ", Prev
, Id
);
16425 -- Start of processing for Find_Type_Name
16428 -- Find incomplete declaration, if one was given
16430 Prev
:= Current_Entity_In_Scope
(Id
);
16432 -- New type declaration
16438 -- Previous declaration exists
16441 Prev_Par
:= Parent
(Prev
);
16443 -- Error if not incomplete/private case except if previous
16444 -- declaration is implicit, etc. Enter_Name will emit error if
16447 if not Is_Incomplete_Or_Private_Type
(Prev
) then
16451 -- Check invalid completion of private or incomplete type
16453 elsif not Nkind_In
(N
, N_Full_Type_Declaration
,
16454 N_Task_Type_Declaration
,
16455 N_Protected_Type_Declaration
)
16457 (Ada_Version
< Ada_2012
16458 or else not Is_Incomplete_Type
(Prev
)
16459 or else not Nkind_In
(N
, N_Private_Type_Declaration
,
16460 N_Private_Extension_Declaration
))
16462 -- Completion must be a full type declarations (RM 7.3(4))
16464 Error_Msg_Sloc
:= Sloc
(Prev
);
16465 Error_Msg_NE
("invalid completion of }", Id
, Prev
);
16467 -- Set scope of Id to avoid cascaded errors. Entity is never
16468 -- examined again, except when saving globals in generics.
16470 Set_Scope
(Id
, Current_Scope
);
16473 -- If this is a repeated incomplete declaration, no further
16474 -- checks are possible.
16476 if Nkind
(N
) = N_Incomplete_Type_Declaration
then
16480 -- Case of full declaration of incomplete type
16482 elsif Ekind
(Prev
) = E_Incomplete_Type
16483 and then (Ada_Version
< Ada_2012
16484 or else No
(Full_View
(Prev
))
16485 or else not Is_Private_Type
(Full_View
(Prev
)))
16487 -- Indicate that the incomplete declaration has a matching full
16488 -- declaration. The defining occurrence of the incomplete
16489 -- declaration remains the visible one, and the procedure
16490 -- Get_Full_View dereferences it whenever the type is used.
16492 if Present
(Full_View
(Prev
)) then
16493 Error_Msg_NE
("invalid redeclaration of }", Id
, Prev
);
16496 Set_Full_View
(Prev
, Id
);
16497 Append_Entity
(Id
, Current_Scope
);
16498 Set_Is_Public
(Id
, Is_Public
(Prev
));
16499 Set_Is_Internal
(Id
);
16502 -- If the incomplete view is tagged, a class_wide type has been
16503 -- created already. Use it for the private type as well, in order
16504 -- to prevent multiple incompatible class-wide types that may be
16505 -- created for self-referential anonymous access components.
16507 if Is_Tagged_Type
(Prev
)
16508 and then Present
(Class_Wide_Type
(Prev
))
16510 Set_Ekind
(Id
, Ekind
(Prev
)); -- will be reset later
16511 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(Prev
));
16513 -- The type of the classwide type is the current Id. Previously
16514 -- this was not done for private declarations because of order-
16515 -- of elaboration issues in the back-end, but gigi now handles
16518 Set_Etype
(Class_Wide_Type
(Id
), Id
);
16521 -- Case of full declaration of private type
16524 -- If the private type was a completion of an incomplete type then
16525 -- update Prev to reference the private type
16527 if Ada_Version
>= Ada_2012
16528 and then Ekind
(Prev
) = E_Incomplete_Type
16529 and then Present
(Full_View
(Prev
))
16530 and then Is_Private_Type
(Full_View
(Prev
))
16532 Prev
:= Full_View
(Prev
);
16533 Prev_Par
:= Parent
(Prev
);
16536 if Nkind
(N
) = N_Full_Type_Declaration
16538 (Type_Definition
(N
), N_Record_Definition
,
16539 N_Derived_Type_Definition
)
16540 and then Interface_Present
(Type_Definition
(N
))
16543 ("completion of private type cannot be an interface", N
);
16546 if Nkind
(Parent
(Prev
)) /= N_Private_Extension_Declaration
then
16547 if Etype
(Prev
) /= Prev
then
16549 -- Prev is a private subtype or a derived type, and needs
16552 Error_Msg_NE
("invalid redeclaration of }", Id
, Prev
);
16555 elsif Ekind
(Prev
) = E_Private_Type
16556 and then Nkind_In
(N
, N_Task_Type_Declaration
,
16557 N_Protected_Type_Declaration
)
16560 ("completion of nonlimited type cannot be limited", N
);
16562 elsif Ekind
(Prev
) = E_Record_Type_With_Private
16563 and then Nkind_In
(N
, N_Task_Type_Declaration
,
16564 N_Protected_Type_Declaration
)
16566 if not Is_Limited_Record
(Prev
) then
16568 ("completion of nonlimited type cannot be limited", N
);
16570 elsif No
(Interface_List
(N
)) then
16572 ("completion of tagged private type must be tagged",
16577 -- Ada 2005 (AI-251): Private extension declaration of a task
16578 -- type or a protected type. This case arises when covering
16579 -- interface types.
16581 elsif Nkind_In
(N
, N_Task_Type_Declaration
,
16582 N_Protected_Type_Declaration
)
16586 elsif Nkind
(N
) /= N_Full_Type_Declaration
16587 or else Nkind
(Type_Definition
(N
)) /= N_Derived_Type_Definition
16590 ("full view of private extension must be an extension", N
);
16592 elsif not (Abstract_Present
(Parent
(Prev
)))
16593 and then Abstract_Present
(Type_Definition
(N
))
16596 ("full view of non-abstract extension cannot be abstract", N
);
16599 if not In_Private_Part
(Current_Scope
) then
16601 ("declaration of full view must appear in private part", N
);
16604 if Ada_Version
>= Ada_2012
then
16605 Check_Duplicate_Aspects
;
16608 Copy_And_Swap
(Prev
, Id
);
16609 Set_Has_Private_Declaration
(Prev
);
16610 Set_Has_Private_Declaration
(Id
);
16612 -- AI12-0133: Indicate whether we have a partial view with
16613 -- unknown discriminants, in which case initialization of objects
16614 -- of the type do not receive an invariant check.
16616 Set_Partial_View_Has_Unknown_Discr
16617 (Prev
, Has_Unknown_Discriminants
(Id
));
16619 -- Preserve aspect and iterator flags that may have been set on
16620 -- the partial view.
16622 Set_Has_Delayed_Aspects
(Prev
, Has_Delayed_Aspects
(Id
));
16623 Set_Has_Implicit_Dereference
(Prev
, Has_Implicit_Dereference
(Id
));
16625 -- If no error, propagate freeze_node from private to full view.
16626 -- It may have been generated for an early operational item.
16628 if Present
(Freeze_Node
(Id
))
16629 and then Serious_Errors_Detected
= 0
16630 and then No
(Full_View
(Id
))
16632 Set_Freeze_Node
(Prev
, Freeze_Node
(Id
));
16633 Set_Freeze_Node
(Id
, Empty
);
16634 Set_First_Rep_Item
(Prev
, First_Rep_Item
(Id
));
16637 Set_Full_View
(Id
, Prev
);
16641 -- Verify that full declaration conforms to partial one
16643 if Is_Incomplete_Or_Private_Type
(Prev
)
16644 and then Present
(Discriminant_Specifications
(Prev_Par
))
16646 if Present
(Discriminant_Specifications
(N
)) then
16647 if Ekind
(Prev
) = E_Incomplete_Type
then
16648 Check_Discriminant_Conformance
(N
, Prev
, Prev
);
16650 Check_Discriminant_Conformance
(N
, Prev
, Id
);
16655 ("missing discriminants in full type declaration", N
);
16657 -- To avoid cascaded errors on subsequent use, share the
16658 -- discriminants of the partial view.
16660 Set_Discriminant_Specifications
(N
,
16661 Discriminant_Specifications
(Prev_Par
));
16665 -- A prior untagged partial view can have an associated class-wide
16666 -- type due to use of the class attribute, and in this case the full
16667 -- type must also be tagged. This Ada 95 usage is deprecated in favor
16668 -- of incomplete tagged declarations, but we check for it.
16671 and then (Is_Tagged_Type
(Prev
)
16672 or else Present
(Class_Wide_Type
(Prev
)))
16674 -- Ada 2012 (AI05-0162): A private type may be the completion of
16675 -- an incomplete type.
16677 if Ada_Version
>= Ada_2012
16678 and then Is_Incomplete_Type
(Prev
)
16679 and then Nkind_In
(N
, N_Private_Type_Declaration
,
16680 N_Private_Extension_Declaration
)
16682 -- No need to check private extensions since they are tagged
16684 if Nkind
(N
) = N_Private_Type_Declaration
16685 and then not Tagged_Present
(N
)
16690 -- The full declaration is either a tagged type (including
16691 -- a synchronized type that implements interfaces) or a
16692 -- type extension, otherwise this is an error.
16694 elsif Nkind_In
(N
, N_Task_Type_Declaration
,
16695 N_Protected_Type_Declaration
)
16697 if No
(Interface_List
(N
)) and then not Error_Posted
(N
) then
16701 elsif Nkind
(Type_Definition
(N
)) = N_Record_Definition
then
16703 -- Indicate that the previous declaration (tagged incomplete
16704 -- or private declaration) requires the same on the full one.
16706 if not Tagged_Present
(Type_Definition
(N
)) then
16708 Set_Is_Tagged_Type
(Id
);
16711 elsif Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
16712 if No
(Record_Extension_Part
(Type_Definition
(N
))) then
16714 ("full declaration of } must be a record extension",
16717 -- Set some attributes to produce a usable full view
16719 Set_Is_Tagged_Type
(Id
);
16728 and then Nkind
(Parent
(Prev
)) = N_Incomplete_Type_Declaration
16729 and then Present
(Premature_Use
(Parent
(Prev
)))
16731 Error_Msg_Sloc
:= Sloc
(N
);
16733 ("\full declaration #", Premature_Use
(Parent
(Prev
)));
16738 end Find_Type_Name
;
16740 -------------------------
16741 -- Find_Type_Of_Object --
16742 -------------------------
16744 function Find_Type_Of_Object
16745 (Obj_Def
: Node_Id
;
16746 Related_Nod
: Node_Id
) return Entity_Id
16748 Def_Kind
: constant Node_Kind
:= Nkind
(Obj_Def
);
16749 P
: Node_Id
:= Parent
(Obj_Def
);
16754 -- If the parent is a component_definition node we climb to the
16755 -- component_declaration node
16757 if Nkind
(P
) = N_Component_Definition
then
16761 -- Case of an anonymous array subtype
16763 if Nkind_In
(Def_Kind
, N_Constrained_Array_Definition
,
16764 N_Unconstrained_Array_Definition
)
16767 Array_Type_Declaration
(T
, Obj_Def
);
16769 -- Create an explicit subtype whenever possible
16771 elsif Nkind
(P
) /= N_Component_Declaration
16772 and then Def_Kind
= N_Subtype_Indication
16774 -- Base name of subtype on object name, which will be unique in
16775 -- the current scope.
16777 -- If this is a duplicate declaration, return base type, to avoid
16778 -- generating duplicate anonymous types.
16780 if Error_Posted
(P
) then
16781 Analyze
(Subtype_Mark
(Obj_Def
));
16782 return Entity
(Subtype_Mark
(Obj_Def
));
16787 (Chars
(Defining_Identifier
(Related_Nod
)), 'S', 0, 'T');
16789 T
:= Make_Defining_Identifier
(Sloc
(P
), Nam
);
16791 Insert_Action
(Obj_Def
,
16792 Make_Subtype_Declaration
(Sloc
(P
),
16793 Defining_Identifier
=> T
,
16794 Subtype_Indication
=> Relocate_Node
(Obj_Def
)));
16796 -- This subtype may need freezing, and this will not be done
16797 -- automatically if the object declaration is not in declarative
16798 -- part. Since this is an object declaration, the type cannot always
16799 -- be frozen here. Deferred constants do not freeze their type
16800 -- (which often enough will be private).
16802 if Nkind
(P
) = N_Object_Declaration
16803 and then Constant_Present
(P
)
16804 and then No
(Expression
(P
))
16808 -- Here we freeze the base type of object type to catch premature use
16809 -- of discriminated private type without a full view.
16812 Insert_Actions
(Obj_Def
, Freeze_Entity
(Base_Type
(T
), P
));
16815 -- Ada 2005 AI-406: the object definition in an object declaration
16816 -- can be an access definition.
16818 elsif Def_Kind
= N_Access_Definition
then
16819 T
:= Access_Definition
(Related_Nod
, Obj_Def
);
16821 Set_Is_Local_Anonymous_Access
16823 V
=> (Ada_Version
< Ada_2012
)
16824 or else (Nkind
(P
) /= N_Object_Declaration
)
16825 or else Is_Library_Level_Entity
(Defining_Identifier
(P
)));
16827 -- Otherwise, the object definition is just a subtype_mark
16830 T
:= Process_Subtype
(Obj_Def
, Related_Nod
);
16832 -- If expansion is disabled an object definition that is an aggregate
16833 -- will not get expanded and may lead to scoping problems in the back
16834 -- end, if the object is referenced in an inner scope. In that case
16835 -- create an itype reference for the object definition now. This
16836 -- may be redundant in some cases, but harmless.
16839 and then Nkind
(Related_Nod
) = N_Object_Declaration
16842 Build_Itype_Reference
(T
, Related_Nod
);
16847 end Find_Type_Of_Object
;
16849 --------------------------------
16850 -- Find_Type_Of_Subtype_Indic --
16851 --------------------------------
16853 function Find_Type_Of_Subtype_Indic
(S
: Node_Id
) return Entity_Id
is
16857 -- Case of subtype mark with a constraint
16859 if Nkind
(S
) = N_Subtype_Indication
then
16860 Find_Type
(Subtype_Mark
(S
));
16861 Typ
:= Entity
(Subtype_Mark
(S
));
16864 Is_Valid_Constraint_Kind
(Ekind
(Typ
), Nkind
(Constraint
(S
)))
16867 ("incorrect constraint for this kind of type", Constraint
(S
));
16868 Rewrite
(S
, New_Copy_Tree
(Subtype_Mark
(S
)));
16871 -- Otherwise we have a subtype mark without a constraint
16873 elsif Error_Posted
(S
) then
16874 Rewrite
(S
, New_Occurrence_Of
(Any_Id
, Sloc
(S
)));
16882 -- Check No_Wide_Characters restriction
16884 Check_Wide_Character_Restriction
(Typ
, S
);
16887 end Find_Type_Of_Subtype_Indic
;
16889 -------------------------------------
16890 -- Floating_Point_Type_Declaration --
16891 -------------------------------------
16893 procedure Floating_Point_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
16894 Digs
: constant Node_Id
:= Digits_Expression
(Def
);
16895 Max_Digs_Val
: constant Uint
:= Digits_Value
(Standard_Long_Long_Float
);
16897 Base_Typ
: Entity_Id
;
16898 Implicit_Base
: Entity_Id
;
16901 function Can_Derive_From
(E
: Entity_Id
) return Boolean;
16902 -- Find if given digits value, and possibly a specified range, allows
16903 -- derivation from specified type
16905 function Find_Base_Type
return Entity_Id
;
16906 -- Find a predefined base type that Def can derive from, or generate
16907 -- an error and substitute Long_Long_Float if none exists.
16909 ---------------------
16910 -- Can_Derive_From --
16911 ---------------------
16913 function Can_Derive_From
(E
: Entity_Id
) return Boolean is
16914 Spec
: constant Entity_Id
:= Real_Range_Specification
(Def
);
16917 -- Check specified "digits" constraint
16919 if Digs_Val
> Digits_Value
(E
) then
16923 -- Check for matching range, if specified
16925 if Present
(Spec
) then
16926 if Expr_Value_R
(Type_Low_Bound
(E
)) >
16927 Expr_Value_R
(Low_Bound
(Spec
))
16932 if Expr_Value_R
(Type_High_Bound
(E
)) <
16933 Expr_Value_R
(High_Bound
(Spec
))
16940 end Can_Derive_From
;
16942 --------------------
16943 -- Find_Base_Type --
16944 --------------------
16946 function Find_Base_Type
return Entity_Id
is
16947 Choice
: Elmt_Id
:= First_Elmt
(Predefined_Float_Types
);
16950 -- Iterate over the predefined types in order, returning the first
16951 -- one that Def can derive from.
16953 while Present
(Choice
) loop
16954 if Can_Derive_From
(Node
(Choice
)) then
16955 return Node
(Choice
);
16958 Next_Elmt
(Choice
);
16961 -- If we can't derive from any existing type, use Long_Long_Float
16962 -- and give appropriate message explaining the problem.
16964 if Digs_Val
> Max_Digs_Val
then
16965 -- It might be the case that there is a type with the requested
16966 -- range, just not the combination of digits and range.
16969 ("no predefined type has requested range and precision",
16970 Real_Range_Specification
(Def
));
16974 ("range too large for any predefined type",
16975 Real_Range_Specification
(Def
));
16978 return Standard_Long_Long_Float
;
16979 end Find_Base_Type
;
16981 -- Start of processing for Floating_Point_Type_Declaration
16984 Check_Restriction
(No_Floating_Point
, Def
);
16986 -- Create an implicit base type
16989 Create_Itype
(E_Floating_Point_Type
, Parent
(Def
), T
, 'B');
16991 -- Analyze and verify digits value
16993 Analyze_And_Resolve
(Digs
, Any_Integer
);
16994 Check_Digits_Expression
(Digs
);
16995 Digs_Val
:= Expr_Value
(Digs
);
16997 -- Process possible range spec and find correct type to derive from
16999 Process_Real_Range_Specification
(Def
);
17001 -- Check that requested number of digits is not too high.
17003 if Digs_Val
> Max_Digs_Val
then
17005 -- The check for Max_Base_Digits may be somewhat expensive, as it
17006 -- requires reading System, so only do it when necessary.
17009 Max_Base_Digits
: constant Uint
:=
17012 (Parent
(RTE
(RE_Max_Base_Digits
))));
17015 if Digs_Val
> Max_Base_Digits
then
17016 Error_Msg_Uint_1
:= Max_Base_Digits
;
17017 Error_Msg_N
("digits value out of range, maximum is ^", Digs
);
17019 elsif No
(Real_Range_Specification
(Def
)) then
17020 Error_Msg_Uint_1
:= Max_Digs_Val
;
17021 Error_Msg_N
("types with more than ^ digits need range spec "
17022 & "(RM 3.5.7(6))", Digs
);
17027 -- Find a suitable type to derive from or complain and use a substitute
17029 Base_Typ
:= Find_Base_Type
;
17031 -- If there are bounds given in the declaration use them as the bounds
17032 -- of the type, otherwise use the bounds of the predefined base type
17033 -- that was chosen based on the Digits value.
17035 if Present
(Real_Range_Specification
(Def
)) then
17036 Set_Scalar_Range
(T
, Real_Range_Specification
(Def
));
17037 Set_Is_Constrained
(T
);
17039 -- The bounds of this range must be converted to machine numbers
17040 -- in accordance with RM 4.9(38).
17042 Bound
:= Type_Low_Bound
(T
);
17044 if Nkind
(Bound
) = N_Real_Literal
then
17046 (Bound
, Machine
(Base_Typ
, Realval
(Bound
), Round
, Bound
));
17047 Set_Is_Machine_Number
(Bound
);
17050 Bound
:= Type_High_Bound
(T
);
17052 if Nkind
(Bound
) = N_Real_Literal
then
17054 (Bound
, Machine
(Base_Typ
, Realval
(Bound
), Round
, Bound
));
17055 Set_Is_Machine_Number
(Bound
);
17059 Set_Scalar_Range
(T
, Scalar_Range
(Base_Typ
));
17062 -- Complete definition of implicit base and declared first subtype. The
17063 -- inheritance of the rep item chain ensures that SPARK-related pragmas
17064 -- are not clobbered when the floating point type acts as a full view of
17067 Set_Etype
(Implicit_Base
, Base_Typ
);
17068 Set_Scalar_Range
(Implicit_Base
, Scalar_Range
(Base_Typ
));
17069 Set_Size_Info
(Implicit_Base
, Base_Typ
);
17070 Set_RM_Size
(Implicit_Base
, RM_Size
(Base_Typ
));
17071 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Base_Typ
));
17072 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Base_Typ
));
17073 Set_Float_Rep
(Implicit_Base
, Float_Rep
(Base_Typ
));
17075 Set_Ekind
(T
, E_Floating_Point_Subtype
);
17076 Set_Etype
(T
, Implicit_Base
);
17077 Set_Size_Info
(T
, Implicit_Base
);
17078 Set_RM_Size
(T
, RM_Size
(Implicit_Base
));
17079 Inherit_Rep_Item_Chain
(T
, Implicit_Base
);
17080 Set_Digits_Value
(T
, Digs_Val
);
17081 end Floating_Point_Type_Declaration
;
17083 ----------------------------
17084 -- Get_Discriminant_Value --
17085 ----------------------------
17087 -- This is the situation:
17089 -- There is a non-derived type
17091 -- type T0 (Dx, Dy, Dz...)
17093 -- There are zero or more levels of derivation, with each derivation
17094 -- either purely inheriting the discriminants, or defining its own.
17096 -- type Ti is new Ti-1
17098 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
17100 -- subtype Ti is ...
17102 -- The subtype issue is avoided by the use of Original_Record_Component,
17103 -- and the fact that derived subtypes also derive the constraints.
17105 -- This chain leads back from
17107 -- Typ_For_Constraint
17109 -- Typ_For_Constraint has discriminants, and the value for each
17110 -- discriminant is given by its corresponding Elmt of Constraints.
17112 -- Discriminant is some discriminant in this hierarchy
17114 -- We need to return its value
17116 -- We do this by recursively searching each level, and looking for
17117 -- Discriminant. Once we get to the bottom, we start backing up
17118 -- returning the value for it which may in turn be a discriminant
17119 -- further up, so on the backup we continue the substitution.
17121 function Get_Discriminant_Value
17122 (Discriminant
: Entity_Id
;
17123 Typ_For_Constraint
: Entity_Id
;
17124 Constraint
: Elist_Id
) return Node_Id
17126 function Root_Corresponding_Discriminant
17127 (Discr
: Entity_Id
) return Entity_Id
;
17128 -- Given a discriminant, traverse the chain of inherited discriminants
17129 -- and return the topmost discriminant.
17131 function Search_Derivation_Levels
17133 Discrim_Values
: Elist_Id
;
17134 Stored_Discrim_Values
: Boolean) return Node_Or_Entity_Id
;
17135 -- This is the routine that performs the recursive search of levels
17136 -- as described above.
17138 -------------------------------------
17139 -- Root_Corresponding_Discriminant --
17140 -------------------------------------
17142 function Root_Corresponding_Discriminant
17143 (Discr
: Entity_Id
) return Entity_Id
17149 while Present
(Corresponding_Discriminant
(D
)) loop
17150 D
:= Corresponding_Discriminant
(D
);
17154 end Root_Corresponding_Discriminant
;
17156 ------------------------------
17157 -- Search_Derivation_Levels --
17158 ------------------------------
17160 function Search_Derivation_Levels
17162 Discrim_Values
: Elist_Id
;
17163 Stored_Discrim_Values
: Boolean) return Node_Or_Entity_Id
17167 Result
: Node_Or_Entity_Id
;
17168 Result_Entity
: Node_Id
;
17171 -- If inappropriate type, return Error, this happens only in
17172 -- cascaded error situations, and we want to avoid a blow up.
17174 if not Is_Composite_Type
(Ti
) or else Is_Array_Type
(Ti
) then
17178 -- Look deeper if possible. Use Stored_Constraints only for
17179 -- untagged types. For tagged types use the given constraint.
17180 -- This asymmetry needs explanation???
17182 if not Stored_Discrim_Values
17183 and then Present
(Stored_Constraint
(Ti
))
17184 and then not Is_Tagged_Type
(Ti
)
17187 Search_Derivation_Levels
(Ti
, Stored_Constraint
(Ti
), True);
17190 Td
: constant Entity_Id
:= Etype
(Ti
);
17194 Result
:= Discriminant
;
17197 if Present
(Stored_Constraint
(Ti
)) then
17199 Search_Derivation_Levels
17200 (Td
, Stored_Constraint
(Ti
), True);
17203 Search_Derivation_Levels
17204 (Td
, Discrim_Values
, Stored_Discrim_Values
);
17210 -- Extra underlying places to search, if not found above. For
17211 -- concurrent types, the relevant discriminant appears in the
17212 -- corresponding record. For a type derived from a private type
17213 -- without discriminant, the full view inherits the discriminants
17214 -- of the full view of the parent.
17216 if Result
= Discriminant
then
17217 if Is_Concurrent_Type
(Ti
)
17218 and then Present
(Corresponding_Record_Type
(Ti
))
17221 Search_Derivation_Levels
(
17222 Corresponding_Record_Type
(Ti
),
17224 Stored_Discrim_Values
);
17226 elsif Is_Private_Type
(Ti
)
17227 and then not Has_Discriminants
(Ti
)
17228 and then Present
(Full_View
(Ti
))
17229 and then Etype
(Full_View
(Ti
)) /= Ti
17232 Search_Derivation_Levels
(
17235 Stored_Discrim_Values
);
17239 -- If Result is not a (reference to a) discriminant, return it,
17240 -- otherwise set Result_Entity to the discriminant.
17242 if Nkind
(Result
) = N_Defining_Identifier
then
17243 pragma Assert
(Result
= Discriminant
);
17244 Result_Entity
:= Result
;
17247 if not Denotes_Discriminant
(Result
) then
17251 Result_Entity
:= Entity
(Result
);
17254 -- See if this level of derivation actually has discriminants because
17255 -- tagged derivations can add them, hence the lower levels need not
17258 if not Has_Discriminants
(Ti
) then
17262 -- Scan Ti's discriminants for Result_Entity, and return its
17263 -- corresponding value, if any.
17265 Result_Entity
:= Original_Record_Component
(Result_Entity
);
17267 Assoc
:= First_Elmt
(Discrim_Values
);
17269 if Stored_Discrim_Values
then
17270 Disc
:= First_Stored_Discriminant
(Ti
);
17272 Disc
:= First_Discriminant
(Ti
);
17275 while Present
(Disc
) loop
17276 pragma Assert
(Present
(Assoc
));
17278 if Original_Record_Component
(Disc
) = Result_Entity
then
17279 return Node
(Assoc
);
17284 if Stored_Discrim_Values
then
17285 Next_Stored_Discriminant
(Disc
);
17287 Next_Discriminant
(Disc
);
17291 -- Could not find it
17294 end Search_Derivation_Levels
;
17298 Result
: Node_Or_Entity_Id
;
17300 -- Start of processing for Get_Discriminant_Value
17303 -- ??? This routine is a gigantic mess and will be deleted. For the
17304 -- time being just test for the trivial case before calling recurse.
17306 if Base_Type
(Scope
(Discriminant
)) = Base_Type
(Typ_For_Constraint
) then
17312 D
:= First_Discriminant
(Typ_For_Constraint
);
17313 E
:= First_Elmt
(Constraint
);
17314 while Present
(D
) loop
17315 if Chars
(D
) = Chars
(Discriminant
) then
17319 Next_Discriminant
(D
);
17325 Result
:= Search_Derivation_Levels
17326 (Typ_For_Constraint
, Constraint
, False);
17328 -- ??? hack to disappear when this routine is gone
17330 if Nkind
(Result
) = N_Defining_Identifier
then
17336 D
:= First_Discriminant
(Typ_For_Constraint
);
17337 E
:= First_Elmt
(Constraint
);
17338 while Present
(D
) loop
17339 if Root_Corresponding_Discriminant
(D
) = Discriminant
then
17343 Next_Discriminant
(D
);
17349 pragma Assert
(Nkind
(Result
) /= N_Defining_Identifier
);
17351 end Get_Discriminant_Value
;
17353 --------------------------
17354 -- Has_Range_Constraint --
17355 --------------------------
17357 function Has_Range_Constraint
(N
: Node_Id
) return Boolean is
17358 C
: constant Node_Id
:= Constraint
(N
);
17361 if Nkind
(C
) = N_Range_Constraint
then
17364 elsif Nkind
(C
) = N_Digits_Constraint
then
17366 Is_Decimal_Fixed_Point_Type
(Entity
(Subtype_Mark
(N
)))
17367 or else Present
(Range_Constraint
(C
));
17369 elsif Nkind
(C
) = N_Delta_Constraint
then
17370 return Present
(Range_Constraint
(C
));
17375 end Has_Range_Constraint
;
17377 ------------------------
17378 -- Inherit_Components --
17379 ------------------------
17381 function Inherit_Components
17383 Parent_Base
: Entity_Id
;
17384 Derived_Base
: Entity_Id
;
17385 Is_Tagged
: Boolean;
17386 Inherit_Discr
: Boolean;
17387 Discs
: Elist_Id
) return Elist_Id
17389 Assoc_List
: constant Elist_Id
:= New_Elmt_List
;
17391 procedure Inherit_Component
17392 (Old_C
: Entity_Id
;
17393 Plain_Discrim
: Boolean := False;
17394 Stored_Discrim
: Boolean := False);
17395 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
17396 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
17397 -- True, Old_C is a stored discriminant. If they are both false then
17398 -- Old_C is a regular component.
17400 -----------------------
17401 -- Inherit_Component --
17402 -----------------------
17404 procedure Inherit_Component
17405 (Old_C
: Entity_Id
;
17406 Plain_Discrim
: Boolean := False;
17407 Stored_Discrim
: Boolean := False)
17409 procedure Set_Anonymous_Type
(Id
: Entity_Id
);
17410 -- Id denotes the entity of an access discriminant or anonymous
17411 -- access component. Set the type of Id to either the same type of
17412 -- Old_C or create a new one depending on whether the parent and
17413 -- the child types are in the same scope.
17415 ------------------------
17416 -- Set_Anonymous_Type --
17417 ------------------------
17419 procedure Set_Anonymous_Type
(Id
: Entity_Id
) is
17420 Old_Typ
: constant Entity_Id
:= Etype
(Old_C
);
17423 if Scope
(Parent_Base
) = Scope
(Derived_Base
) then
17424 Set_Etype
(Id
, Old_Typ
);
17426 -- The parent and the derived type are in two different scopes.
17427 -- Reuse the type of the original discriminant / component by
17428 -- copying it in order to preserve all attributes.
17432 Typ
: constant Entity_Id
:= New_Copy
(Old_Typ
);
17435 Set_Etype
(Id
, Typ
);
17437 -- Since we do not generate component declarations for
17438 -- inherited components, associate the itype with the
17441 Set_Associated_Node_For_Itype
(Typ
, Parent
(Derived_Base
));
17442 Set_Scope
(Typ
, Derived_Base
);
17445 end Set_Anonymous_Type
;
17447 -- Local variables and constants
17449 New_C
: constant Entity_Id
:= New_Copy
(Old_C
);
17451 Corr_Discrim
: Entity_Id
;
17452 Discrim
: Entity_Id
;
17454 -- Start of processing for Inherit_Component
17457 pragma Assert
(not Is_Tagged
or not Stored_Discrim
);
17459 Set_Parent
(New_C
, Parent
(Old_C
));
17461 -- Regular discriminants and components must be inserted in the scope
17462 -- of the Derived_Base. Do it here.
17464 if not Stored_Discrim
then
17465 Enter_Name
(New_C
);
17468 -- For tagged types the Original_Record_Component must point to
17469 -- whatever this field was pointing to in the parent type. This has
17470 -- already been achieved by the call to New_Copy above.
17472 if not Is_Tagged
then
17473 Set_Original_Record_Component
(New_C
, New_C
);
17476 -- Set the proper type of an access discriminant
17478 if Ekind
(New_C
) = E_Discriminant
17479 and then Ekind
(Etype
(New_C
)) = E_Anonymous_Access_Type
17481 Set_Anonymous_Type
(New_C
);
17484 -- If we have inherited a component then see if its Etype contains
17485 -- references to Parent_Base discriminants. In this case, replace
17486 -- these references with the constraints given in Discs. We do not
17487 -- do this for the partial view of private types because this is
17488 -- not needed (only the components of the full view will be used
17489 -- for code generation) and cause problem. We also avoid this
17490 -- transformation in some error situations.
17492 if Ekind
(New_C
) = E_Component
then
17494 -- Set the proper type of an anonymous access component
17496 if Ekind
(Etype
(New_C
)) = E_Anonymous_Access_Type
then
17497 Set_Anonymous_Type
(New_C
);
17499 elsif (Is_Private_Type
(Derived_Base
)
17500 and then not Is_Generic_Type
(Derived_Base
))
17501 or else (Is_Empty_Elmt_List
(Discs
)
17502 and then not Expander_Active
)
17504 Set_Etype
(New_C
, Etype
(Old_C
));
17507 -- The current component introduces a circularity of the
17510 -- limited with Pack_2;
17511 -- package Pack_1 is
17512 -- type T_1 is tagged record
17513 -- Comp : access Pack_2.T_2;
17519 -- package Pack_2 is
17520 -- type T_2 is new Pack_1.T_1 with ...;
17525 Constrain_Component_Type
17526 (Old_C
, Derived_Base
, N
, Parent_Base
, Discs
));
17530 -- In derived tagged types it is illegal to reference a non
17531 -- discriminant component in the parent type. To catch this, mark
17532 -- these components with an Ekind of E_Void. This will be reset in
17533 -- Record_Type_Definition after processing the record extension of
17534 -- the derived type.
17536 -- If the declaration is a private extension, there is no further
17537 -- record extension to process, and the components retain their
17538 -- current kind, because they are visible at this point.
17540 if Is_Tagged
and then Ekind
(New_C
) = E_Component
17541 and then Nkind
(N
) /= N_Private_Extension_Declaration
17543 Set_Ekind
(New_C
, E_Void
);
17546 if Plain_Discrim
then
17547 Set_Corresponding_Discriminant
(New_C
, Old_C
);
17548 Build_Discriminal
(New_C
);
17550 -- If we are explicitly inheriting a stored discriminant it will be
17551 -- completely hidden.
17553 elsif Stored_Discrim
then
17554 Set_Corresponding_Discriminant
(New_C
, Empty
);
17555 Set_Discriminal
(New_C
, Empty
);
17556 Set_Is_Completely_Hidden
(New_C
);
17558 -- Set the Original_Record_Component of each discriminant in the
17559 -- derived base to point to the corresponding stored that we just
17562 Discrim
:= First_Discriminant
(Derived_Base
);
17563 while Present
(Discrim
) loop
17564 Corr_Discrim
:= Corresponding_Discriminant
(Discrim
);
17566 -- Corr_Discrim could be missing in an error situation
17568 if Present
(Corr_Discrim
)
17569 and then Original_Record_Component
(Corr_Discrim
) = Old_C
17571 Set_Original_Record_Component
(Discrim
, New_C
);
17574 Next_Discriminant
(Discrim
);
17577 Append_Entity
(New_C
, Derived_Base
);
17580 if not Is_Tagged
then
17581 Append_Elmt
(Old_C
, Assoc_List
);
17582 Append_Elmt
(New_C
, Assoc_List
);
17584 end Inherit_Component
;
17586 -- Variables local to Inherit_Component
17588 Loc
: constant Source_Ptr
:= Sloc
(N
);
17590 Parent_Discrim
: Entity_Id
;
17591 Stored_Discrim
: Entity_Id
;
17593 Component
: Entity_Id
;
17595 -- Start of processing for Inherit_Components
17598 if not Is_Tagged
then
17599 Append_Elmt
(Parent_Base
, Assoc_List
);
17600 Append_Elmt
(Derived_Base
, Assoc_List
);
17603 -- Inherit parent discriminants if needed
17605 if Inherit_Discr
then
17606 Parent_Discrim
:= First_Discriminant
(Parent_Base
);
17607 while Present
(Parent_Discrim
) loop
17608 Inherit_Component
(Parent_Discrim
, Plain_Discrim
=> True);
17609 Next_Discriminant
(Parent_Discrim
);
17613 -- Create explicit stored discrims for untagged types when necessary
17615 if not Has_Unknown_Discriminants
(Derived_Base
)
17616 and then Has_Discriminants
(Parent_Base
)
17617 and then not Is_Tagged
17620 or else First_Discriminant
(Parent_Base
) /=
17621 First_Stored_Discriminant
(Parent_Base
))
17623 Stored_Discrim
:= First_Stored_Discriminant
(Parent_Base
);
17624 while Present
(Stored_Discrim
) loop
17625 Inherit_Component
(Stored_Discrim
, Stored_Discrim
=> True);
17626 Next_Stored_Discriminant
(Stored_Discrim
);
17630 -- See if we can apply the second transformation for derived types, as
17631 -- explained in point 6. in the comments above Build_Derived_Record_Type
17632 -- This is achieved by appending Derived_Base discriminants into Discs,
17633 -- which has the side effect of returning a non empty Discs list to the
17634 -- caller of Inherit_Components, which is what we want. This must be
17635 -- done for private derived types if there are explicit stored
17636 -- discriminants, to ensure that we can retrieve the values of the
17637 -- constraints provided in the ancestors.
17640 and then Is_Empty_Elmt_List
(Discs
)
17641 and then Present
(First_Discriminant
(Derived_Base
))
17643 (not Is_Private_Type
(Derived_Base
)
17644 or else Is_Completely_Hidden
17645 (First_Stored_Discriminant
(Derived_Base
))
17646 or else Is_Generic_Type
(Derived_Base
))
17648 D
:= First_Discriminant
(Derived_Base
);
17649 while Present
(D
) loop
17650 Append_Elmt
(New_Occurrence_Of
(D
, Loc
), Discs
);
17651 Next_Discriminant
(D
);
17655 -- Finally, inherit non-discriminant components unless they are not
17656 -- visible because defined or inherited from the full view of the
17657 -- parent. Don't inherit the _parent field of the parent type.
17659 Component
:= First_Entity
(Parent_Base
);
17660 while Present
(Component
) loop
17662 -- Ada 2005 (AI-251): Do not inherit components associated with
17663 -- secondary tags of the parent.
17665 if Ekind
(Component
) = E_Component
17666 and then Present
(Related_Type
(Component
))
17670 elsif Ekind
(Component
) /= E_Component
17671 or else Chars
(Component
) = Name_uParent
17675 -- If the derived type is within the parent type's declarative
17676 -- region, then the components can still be inherited even though
17677 -- they aren't visible at this point. This can occur for cases
17678 -- such as within public child units where the components must
17679 -- become visible upon entering the child unit's private part.
17681 elsif not Is_Visible_Component
(Component
)
17682 and then not In_Open_Scopes
(Scope
(Parent_Base
))
17686 elsif Ekind_In
(Derived_Base
, E_Private_Type
,
17687 E_Limited_Private_Type
)
17692 Inherit_Component
(Component
);
17695 Next_Entity
(Component
);
17698 -- For tagged derived types, inherited discriminants cannot be used in
17699 -- component declarations of the record extension part. To achieve this
17700 -- we mark the inherited discriminants as not visible.
17702 if Is_Tagged
and then Inherit_Discr
then
17703 D
:= First_Discriminant
(Derived_Base
);
17704 while Present
(D
) loop
17705 Set_Is_Immediately_Visible
(D
, False);
17706 Next_Discriminant
(D
);
17711 end Inherit_Components
;
17713 -----------------------------
17714 -- Inherit_Predicate_Flags --
17715 -----------------------------
17717 procedure Inherit_Predicate_Flags
(Subt
, Par
: Entity_Id
) is
17719 Set_Has_Predicates
(Subt
, Has_Predicates
(Par
));
17720 Set_Has_Static_Predicate_Aspect
17721 (Subt
, Has_Static_Predicate_Aspect
(Par
));
17722 Set_Has_Dynamic_Predicate_Aspect
17723 (Subt
, Has_Dynamic_Predicate_Aspect
(Par
));
17724 end Inherit_Predicate_Flags
;
17726 ----------------------
17727 -- Is_EVF_Procedure --
17728 ----------------------
17730 function Is_EVF_Procedure
(Subp
: Entity_Id
) return Boolean is
17731 Formal
: Entity_Id
;
17734 -- Examine the formals of an Extensions_Visible False procedure looking
17735 -- for a controlling OUT parameter.
17737 if Ekind
(Subp
) = E_Procedure
17738 and then Extensions_Visible_Status
(Subp
) = Extensions_Visible_False
17740 Formal
:= First_Formal
(Subp
);
17741 while Present
(Formal
) loop
17742 if Ekind
(Formal
) = E_Out_Parameter
17743 and then Is_Controlling_Formal
(Formal
)
17748 Next_Formal
(Formal
);
17753 end Is_EVF_Procedure
;
17755 -----------------------
17756 -- Is_Null_Extension --
17757 -----------------------
17759 function Is_Null_Extension
(T
: Entity_Id
) return Boolean is
17760 Type_Decl
: constant Node_Id
:= Parent
(Base_Type
(T
));
17761 Comp_List
: Node_Id
;
17765 if Nkind
(Type_Decl
) /= N_Full_Type_Declaration
17766 or else not Is_Tagged_Type
(T
)
17767 or else Nkind
(Type_Definition
(Type_Decl
)) /=
17768 N_Derived_Type_Definition
17769 or else No
(Record_Extension_Part
(Type_Definition
(Type_Decl
)))
17775 Component_List
(Record_Extension_Part
(Type_Definition
(Type_Decl
)));
17777 if Present
(Discriminant_Specifications
(Type_Decl
)) then
17780 elsif Present
(Comp_List
)
17781 and then Is_Non_Empty_List
(Component_Items
(Comp_List
))
17783 Comp
:= First
(Component_Items
(Comp_List
));
17785 -- Only user-defined components are relevant. The component list
17786 -- may also contain a parent component and internal components
17787 -- corresponding to secondary tags, but these do not determine
17788 -- whether this is a null extension.
17790 while Present
(Comp
) loop
17791 if Comes_From_Source
(Comp
) then
17803 end Is_Null_Extension
;
17805 ------------------------------
17806 -- Is_Valid_Constraint_Kind --
17807 ------------------------------
17809 function Is_Valid_Constraint_Kind
17810 (T_Kind
: Type_Kind
;
17811 Constraint_Kind
: Node_Kind
) return Boolean
17815 when Enumeration_Kind |
17817 return Constraint_Kind
= N_Range_Constraint
;
17819 when Decimal_Fixed_Point_Kind
=>
17820 return Nkind_In
(Constraint_Kind
, N_Digits_Constraint
,
17821 N_Range_Constraint
);
17823 when Ordinary_Fixed_Point_Kind
=>
17824 return Nkind_In
(Constraint_Kind
, N_Delta_Constraint
,
17825 N_Range_Constraint
);
17828 return Nkind_In
(Constraint_Kind
, N_Digits_Constraint
,
17829 N_Range_Constraint
);
17836 E_Incomplete_Type |
17839 return Constraint_Kind
= N_Index_Or_Discriminant_Constraint
;
17842 return True; -- Error will be detected later
17844 end Is_Valid_Constraint_Kind
;
17846 --------------------------
17847 -- Is_Visible_Component --
17848 --------------------------
17850 function Is_Visible_Component
17852 N
: Node_Id
:= Empty
) return Boolean
17854 Original_Comp
: Entity_Id
:= Empty
;
17855 Original_Scope
: Entity_Id
;
17856 Type_Scope
: Entity_Id
;
17858 function Is_Local_Type
(Typ
: Entity_Id
) return Boolean;
17859 -- Check whether parent type of inherited component is declared locally,
17860 -- possibly within a nested package or instance. The current scope is
17861 -- the derived record itself.
17863 -------------------
17864 -- Is_Local_Type --
17865 -------------------
17867 function Is_Local_Type
(Typ
: Entity_Id
) return Boolean is
17871 Scop
:= Scope
(Typ
);
17872 while Present
(Scop
)
17873 and then Scop
/= Standard_Standard
17875 if Scop
= Scope
(Current_Scope
) then
17879 Scop
:= Scope
(Scop
);
17885 -- Start of processing for Is_Visible_Component
17888 if Ekind_In
(C
, E_Component
, E_Discriminant
) then
17889 Original_Comp
:= Original_Record_Component
(C
);
17892 if No
(Original_Comp
) then
17894 -- Premature usage, or previous error
17899 Original_Scope
:= Scope
(Original_Comp
);
17900 Type_Scope
:= Scope
(Base_Type
(Scope
(C
)));
17903 -- This test only concerns tagged types
17905 if not Is_Tagged_Type
(Original_Scope
) then
17908 -- If it is _Parent or _Tag, there is no visibility issue
17910 elsif not Comes_From_Source
(Original_Comp
) then
17913 -- Discriminants are visible unless the (private) type has unknown
17914 -- discriminants. If the discriminant reference is inserted for a
17915 -- discriminant check on a full view it is also visible.
17917 elsif Ekind
(Original_Comp
) = E_Discriminant
17919 (not Has_Unknown_Discriminants
(Original_Scope
)
17920 or else (Present
(N
)
17921 and then Nkind
(N
) = N_Selected_Component
17922 and then Nkind
(Prefix
(N
)) = N_Type_Conversion
17923 and then not Comes_From_Source
(Prefix
(N
))))
17927 -- In the body of an instantiation, no need to check for the visibility
17930 elsif In_Instance_Body
then
17933 -- If the component has been declared in an ancestor which is currently
17934 -- a private type, then it is not visible. The same applies if the
17935 -- component's containing type is not in an open scope and the original
17936 -- component's enclosing type is a visible full view of a private type
17937 -- (which can occur in cases where an attempt is being made to reference
17938 -- a component in a sibling package that is inherited from a visible
17939 -- component of a type in an ancestor package; the component in the
17940 -- sibling package should not be visible even though the component it
17941 -- inherited from is visible). This does not apply however in the case
17942 -- where the scope of the type is a private child unit, or when the
17943 -- parent comes from a local package in which the ancestor is currently
17944 -- visible. The latter suppression of visibility is needed for cases
17945 -- that are tested in B730006.
17947 elsif Is_Private_Type
(Original_Scope
)
17949 (not Is_Private_Descendant
(Type_Scope
)
17950 and then not In_Open_Scopes
(Type_Scope
)
17951 and then Has_Private_Declaration
(Original_Scope
))
17953 -- If the type derives from an entity in a formal package, there
17954 -- are no additional visible components.
17956 if Nkind
(Original_Node
(Unit_Declaration_Node
(Type_Scope
))) =
17957 N_Formal_Package_Declaration
17961 -- if we are not in the private part of the current package, there
17962 -- are no additional visible components.
17964 elsif Ekind
(Scope
(Current_Scope
)) = E_Package
17965 and then not In_Private_Part
(Scope
(Current_Scope
))
17970 Is_Child_Unit
(Cunit_Entity
(Current_Sem_Unit
))
17971 and then In_Open_Scopes
(Scope
(Original_Scope
))
17972 and then Is_Local_Type
(Type_Scope
);
17975 -- There is another weird way in which a component may be invisible when
17976 -- the private and the full view are not derived from the same ancestor.
17977 -- Here is an example :
17979 -- type A1 is tagged record F1 : integer; end record;
17980 -- type A2 is new A1 with record F2 : integer; end record;
17981 -- type T is new A1 with private;
17983 -- type T is new A2 with null record;
17985 -- In this case, the full view of T inherits F1 and F2 but the private
17986 -- view inherits only F1
17990 Ancestor
: Entity_Id
:= Scope
(C
);
17994 if Ancestor
= Original_Scope
then
17996 elsif Ancestor
= Etype
(Ancestor
) then
18000 Ancestor
:= Etype
(Ancestor
);
18004 end Is_Visible_Component
;
18006 --------------------------
18007 -- Make_Class_Wide_Type --
18008 --------------------------
18010 procedure Make_Class_Wide_Type
(T
: Entity_Id
) is
18011 CW_Type
: Entity_Id
;
18013 Next_E
: Entity_Id
;
18016 if Present
(Class_Wide_Type
(T
)) then
18018 -- The class-wide type is a partially decorated entity created for a
18019 -- unanalyzed tagged type referenced through a limited with clause.
18020 -- When the tagged type is analyzed, its class-wide type needs to be
18021 -- redecorated. Note that we reuse the entity created by Decorate_
18022 -- Tagged_Type in order to preserve all links.
18024 if Materialize_Entity
(Class_Wide_Type
(T
)) then
18025 CW_Type
:= Class_Wide_Type
(T
);
18026 Set_Materialize_Entity
(CW_Type
, False);
18028 -- The class wide type can have been defined by the partial view, in
18029 -- which case everything is already done.
18035 -- Default case, we need to create a new class-wide type
18039 New_External_Entity
(E_Void
, Scope
(T
), Sloc
(T
), T
, 'C', 0, 'T');
18042 -- Inherit root type characteristics
18044 CW_Name
:= Chars
(CW_Type
);
18045 Next_E
:= Next_Entity
(CW_Type
);
18046 Copy_Node
(T
, CW_Type
);
18047 Set_Comes_From_Source
(CW_Type
, False);
18048 Set_Chars
(CW_Type
, CW_Name
);
18049 Set_Parent
(CW_Type
, Parent
(T
));
18050 Set_Next_Entity
(CW_Type
, Next_E
);
18052 -- Ensure we have a new freeze node for the class-wide type. The partial
18053 -- view may have freeze action of its own, requiring a proper freeze
18054 -- node, and the same freeze node cannot be shared between the two
18057 Set_Has_Delayed_Freeze
(CW_Type
);
18058 Set_Freeze_Node
(CW_Type
, Empty
);
18060 -- Customize the class-wide type: It has no prim. op., it cannot be
18061 -- abstract and its Etype points back to the specific root type.
18063 Set_Ekind
(CW_Type
, E_Class_Wide_Type
);
18064 Set_Is_Tagged_Type
(CW_Type
, True);
18065 Set_Direct_Primitive_Operations
(CW_Type
, New_Elmt_List
);
18066 Set_Is_Abstract_Type
(CW_Type
, False);
18067 Set_Is_Constrained
(CW_Type
, False);
18068 Set_Is_First_Subtype
(CW_Type
, Is_First_Subtype
(T
));
18069 Set_Default_SSO
(CW_Type
);
18071 if Ekind
(T
) = E_Class_Wide_Subtype
then
18072 Set_Etype
(CW_Type
, Etype
(Base_Type
(T
)));
18074 Set_Etype
(CW_Type
, T
);
18077 Set_No_Tagged_Streams_Pragma
(CW_Type
, No_Tagged_Streams
);
18079 -- If this is the class_wide type of a constrained subtype, it does
18080 -- not have discriminants.
18082 Set_Has_Discriminants
(CW_Type
,
18083 Has_Discriminants
(T
) and then not Is_Constrained
(T
));
18085 Set_Has_Unknown_Discriminants
(CW_Type
, True);
18086 Set_Class_Wide_Type
(T
, CW_Type
);
18087 Set_Equivalent_Type
(CW_Type
, Empty
);
18089 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
18091 Set_Class_Wide_Type
(CW_Type
, CW_Type
);
18092 end Make_Class_Wide_Type
;
18098 procedure Make_Index
18100 Related_Nod
: Node_Id
;
18101 Related_Id
: Entity_Id
:= Empty
;
18102 Suffix_Index
: Nat
:= 1;
18103 In_Iter_Schm
: Boolean := False)
18107 Def_Id
: Entity_Id
:= Empty
;
18108 Found
: Boolean := False;
18111 -- For a discrete range used in a constrained array definition and
18112 -- defined by a range, an implicit conversion to the predefined type
18113 -- INTEGER is assumed if each bound is either a numeric literal, a named
18114 -- number, or an attribute, and the type of both bounds (prior to the
18115 -- implicit conversion) is the type universal_integer. Otherwise, both
18116 -- bounds must be of the same discrete type, other than universal
18117 -- integer; this type must be determinable independently of the
18118 -- context, but using the fact that the type must be discrete and that
18119 -- both bounds must have the same type.
18121 -- Character literals also have a universal type in the absence of
18122 -- of additional context, and are resolved to Standard_Character.
18124 if Nkind
(N
) = N_Range
then
18126 -- The index is given by a range constraint. The bounds are known
18127 -- to be of a consistent type.
18129 if not Is_Overloaded
(N
) then
18132 -- For universal bounds, choose the specific predefined type
18134 if T
= Universal_Integer
then
18135 T
:= Standard_Integer
;
18137 elsif T
= Any_Character
then
18138 Ambiguous_Character
(Low_Bound
(N
));
18140 T
:= Standard_Character
;
18143 -- The node may be overloaded because some user-defined operators
18144 -- are available, but if a universal interpretation exists it is
18145 -- also the selected one.
18147 elsif Universal_Interpretation
(N
) = Universal_Integer
then
18148 T
:= Standard_Integer
;
18154 Ind
: Interp_Index
;
18158 Get_First_Interp
(N
, Ind
, It
);
18159 while Present
(It
.Typ
) loop
18160 if Is_Discrete_Type
(It
.Typ
) then
18163 and then not Covers
(It
.Typ
, T
)
18164 and then not Covers
(T
, It
.Typ
)
18166 Error_Msg_N
("ambiguous bounds in discrete range", N
);
18174 Get_Next_Interp
(Ind
, It
);
18177 if T
= Any_Type
then
18178 Error_Msg_N
("discrete type required for range", N
);
18179 Set_Etype
(N
, Any_Type
);
18182 elsif T
= Universal_Integer
then
18183 T
:= Standard_Integer
;
18188 if not Is_Discrete_Type
(T
) then
18189 Error_Msg_N
("discrete type required for range", N
);
18190 Set_Etype
(N
, Any_Type
);
18194 if Nkind
(Low_Bound
(N
)) = N_Attribute_Reference
18195 and then Attribute_Name
(Low_Bound
(N
)) = Name_First
18196 and then Is_Entity_Name
(Prefix
(Low_Bound
(N
)))
18197 and then Is_Type
(Entity
(Prefix
(Low_Bound
(N
))))
18198 and then Is_Discrete_Type
(Entity
(Prefix
(Low_Bound
(N
))))
18200 -- The type of the index will be the type of the prefix, as long
18201 -- as the upper bound is 'Last of the same type.
18203 Def_Id
:= Entity
(Prefix
(Low_Bound
(N
)));
18205 if Nkind
(High_Bound
(N
)) /= N_Attribute_Reference
18206 or else Attribute_Name
(High_Bound
(N
)) /= Name_Last
18207 or else not Is_Entity_Name
(Prefix
(High_Bound
(N
)))
18208 or else Entity
(Prefix
(High_Bound
(N
))) /= Def_Id
18215 Process_Range_Expr_In_Decl
(R
, T
, In_Iter_Schm
=> In_Iter_Schm
);
18217 elsif Nkind
(N
) = N_Subtype_Indication
then
18219 -- The index is given by a subtype with a range constraint
18221 T
:= Base_Type
(Entity
(Subtype_Mark
(N
)));
18223 if not Is_Discrete_Type
(T
) then
18224 Error_Msg_N
("discrete type required for range", N
);
18225 Set_Etype
(N
, Any_Type
);
18229 R
:= Range_Expression
(Constraint
(N
));
18232 Process_Range_Expr_In_Decl
18233 (R
, Entity
(Subtype_Mark
(N
)), In_Iter_Schm
=> In_Iter_Schm
);
18235 elsif Nkind
(N
) = N_Attribute_Reference
then
18237 -- Catch beginner's error (use of attribute other than 'Range)
18239 if Attribute_Name
(N
) /= Name_Range
then
18240 Error_Msg_N
("expect attribute ''Range", N
);
18241 Set_Etype
(N
, Any_Type
);
18245 -- If the node denotes the range of a type mark, that is also the
18246 -- resulting type, and we do not need to create an Itype for it.
18248 if Is_Entity_Name
(Prefix
(N
))
18249 and then Comes_From_Source
(N
)
18250 and then Is_Type
(Entity
(Prefix
(N
)))
18251 and then Is_Discrete_Type
(Entity
(Prefix
(N
)))
18253 Def_Id
:= Entity
(Prefix
(N
));
18256 Analyze_And_Resolve
(N
);
18260 -- If none of the above, must be a subtype. We convert this to a
18261 -- range attribute reference because in the case of declared first
18262 -- named subtypes, the types in the range reference can be different
18263 -- from the type of the entity. A range attribute normalizes the
18264 -- reference and obtains the correct types for the bounds.
18266 -- This transformation is in the nature of an expansion, is only
18267 -- done if expansion is active. In particular, it is not done on
18268 -- formal generic types, because we need to retain the name of the
18269 -- original index for instantiation purposes.
18272 if not Is_Entity_Name
(N
) or else not Is_Type
(Entity
(N
)) then
18273 Error_Msg_N
("invalid subtype mark in discrete range ", N
);
18274 Set_Etype
(N
, Any_Integer
);
18278 -- The type mark may be that of an incomplete type. It is only
18279 -- now that we can get the full view, previous analysis does
18280 -- not look specifically for a type mark.
18282 Set_Entity
(N
, Get_Full_View
(Entity
(N
)));
18283 Set_Etype
(N
, Entity
(N
));
18284 Def_Id
:= Entity
(N
);
18286 if not Is_Discrete_Type
(Def_Id
) then
18287 Error_Msg_N
("discrete type required for index", N
);
18288 Set_Etype
(N
, Any_Type
);
18293 if Expander_Active
then
18295 Make_Attribute_Reference
(Sloc
(N
),
18296 Attribute_Name
=> Name_Range
,
18297 Prefix
=> Relocate_Node
(N
)));
18299 -- The original was a subtype mark that does not freeze. This
18300 -- means that the rewritten version must not freeze either.
18302 Set_Must_Not_Freeze
(N
);
18303 Set_Must_Not_Freeze
(Prefix
(N
));
18304 Analyze_And_Resolve
(N
);
18308 -- If expander is inactive, type is legal, nothing else to construct
18315 if not Is_Discrete_Type
(T
) then
18316 Error_Msg_N
("discrete type required for range", N
);
18317 Set_Etype
(N
, Any_Type
);
18320 elsif T
= Any_Type
then
18321 Set_Etype
(N
, Any_Type
);
18325 -- We will now create the appropriate Itype to describe the range, but
18326 -- first a check. If we originally had a subtype, then we just label
18327 -- the range with this subtype. Not only is there no need to construct
18328 -- a new subtype, but it is wrong to do so for two reasons:
18330 -- 1. A legality concern, if we have a subtype, it must not freeze,
18331 -- and the Itype would cause freezing incorrectly
18333 -- 2. An efficiency concern, if we created an Itype, it would not be
18334 -- recognized as the same type for the purposes of eliminating
18335 -- checks in some circumstances.
18337 -- We signal this case by setting the subtype entity in Def_Id
18339 if No
(Def_Id
) then
18341 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, 'D', Suffix_Index
);
18342 Set_Etype
(Def_Id
, Base_Type
(T
));
18344 if Is_Signed_Integer_Type
(T
) then
18345 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
18347 elsif Is_Modular_Integer_Type
(T
) then
18348 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
18351 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
18352 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
18353 Set_First_Literal
(Def_Id
, First_Literal
(T
));
18356 Set_Size_Info
(Def_Id
, (T
));
18357 Set_RM_Size
(Def_Id
, RM_Size
(T
));
18358 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
18360 Set_Scalar_Range
(Def_Id
, R
);
18361 Conditional_Delay
(Def_Id
, T
);
18363 if Nkind
(N
) = N_Subtype_Indication
then
18364 Inherit_Predicate_Flags
(Def_Id
, Entity
(Subtype_Mark
(N
)));
18367 -- In the subtype indication case, if the immediate parent of the
18368 -- new subtype is non-static, then the subtype we create is non-
18369 -- static, even if its bounds are static.
18371 if Nkind
(N
) = N_Subtype_Indication
18372 and then not Is_OK_Static_Subtype
(Entity
(Subtype_Mark
(N
)))
18374 Set_Is_Non_Static_Subtype
(Def_Id
);
18378 -- Final step is to label the index with this constructed type
18380 Set_Etype
(N
, Def_Id
);
18383 ------------------------------
18384 -- Modular_Type_Declaration --
18385 ------------------------------
18387 procedure Modular_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
18388 Mod_Expr
: constant Node_Id
:= Expression
(Def
);
18391 procedure Set_Modular_Size
(Bits
: Int
);
18392 -- Sets RM_Size to Bits, and Esize to normal word size above this
18394 ----------------------
18395 -- Set_Modular_Size --
18396 ----------------------
18398 procedure Set_Modular_Size
(Bits
: Int
) is
18400 Set_RM_Size
(T
, UI_From_Int
(Bits
));
18405 elsif Bits
<= 16 then
18406 Init_Esize
(T
, 16);
18408 elsif Bits
<= 32 then
18409 Init_Esize
(T
, 32);
18412 Init_Esize
(T
, System_Max_Binary_Modulus_Power
);
18415 if not Non_Binary_Modulus
(T
) and then Esize
(T
) = RM_Size
(T
) then
18416 Set_Is_Known_Valid
(T
);
18418 end Set_Modular_Size
;
18420 -- Start of processing for Modular_Type_Declaration
18423 -- If the mod expression is (exactly) 2 * literal, where literal is
18424 -- 64 or less,then almost certainly the * was meant to be **. Warn.
18426 if Warn_On_Suspicious_Modulus_Value
18427 and then Nkind
(Mod_Expr
) = N_Op_Multiply
18428 and then Nkind
(Left_Opnd
(Mod_Expr
)) = N_Integer_Literal
18429 and then Intval
(Left_Opnd
(Mod_Expr
)) = Uint_2
18430 and then Nkind
(Right_Opnd
(Mod_Expr
)) = N_Integer_Literal
18431 and then Intval
(Right_Opnd
(Mod_Expr
)) <= Uint_64
18434 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr
);
18437 -- Proceed with analysis of mod expression
18439 Analyze_And_Resolve
(Mod_Expr
, Any_Integer
);
18441 Set_Ekind
(T
, E_Modular_Integer_Type
);
18442 Init_Alignment
(T
);
18443 Set_Is_Constrained
(T
);
18445 if not Is_OK_Static_Expression
(Mod_Expr
) then
18446 Flag_Non_Static_Expr
18447 ("non-static expression used for modular type bound!", Mod_Expr
);
18448 M_Val
:= 2 ** System_Max_Binary_Modulus_Power
;
18450 M_Val
:= Expr_Value
(Mod_Expr
);
18454 Error_Msg_N
("modulus value must be positive", Mod_Expr
);
18455 M_Val
:= 2 ** System_Max_Binary_Modulus_Power
;
18458 if M_Val
> 2 ** Standard_Long_Integer_Size
then
18459 Check_Restriction
(No_Long_Long_Integers
, Mod_Expr
);
18462 Set_Modulus
(T
, M_Val
);
18464 -- Create bounds for the modular type based on the modulus given in
18465 -- the type declaration and then analyze and resolve those bounds.
18467 Set_Scalar_Range
(T
,
18468 Make_Range
(Sloc
(Mod_Expr
),
18469 Low_Bound
=> Make_Integer_Literal
(Sloc
(Mod_Expr
), 0),
18470 High_Bound
=> Make_Integer_Literal
(Sloc
(Mod_Expr
), M_Val
- 1)));
18472 -- Properly analyze the literals for the range. We do this manually
18473 -- because we can't go calling Resolve, since we are resolving these
18474 -- bounds with the type, and this type is certainly not complete yet.
18476 Set_Etype
(Low_Bound
(Scalar_Range
(T
)), T
);
18477 Set_Etype
(High_Bound
(Scalar_Range
(T
)), T
);
18478 Set_Is_Static_Expression
(Low_Bound
(Scalar_Range
(T
)));
18479 Set_Is_Static_Expression
(High_Bound
(Scalar_Range
(T
)));
18481 -- Loop through powers of two to find number of bits required
18483 for Bits
in Int
range 0 .. System_Max_Binary_Modulus_Power
loop
18487 if M_Val
= 2 ** Bits
then
18488 Set_Modular_Size
(Bits
);
18493 elsif M_Val
< 2 ** Bits
then
18494 Check_SPARK_05_Restriction
("modulus should be a power of 2", T
);
18495 Set_Non_Binary_Modulus
(T
);
18497 if Bits
> System_Max_Nonbinary_Modulus_Power
then
18498 Error_Msg_Uint_1
:=
18499 UI_From_Int
(System_Max_Nonbinary_Modulus_Power
);
18501 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr
);
18502 Set_Modular_Size
(System_Max_Binary_Modulus_Power
);
18506 -- In the non-binary case, set size as per RM 13.3(55)
18508 Set_Modular_Size
(Bits
);
18515 -- If we fall through, then the size exceed System.Max_Binary_Modulus
18516 -- so we just signal an error and set the maximum size.
18518 Error_Msg_Uint_1
:= UI_From_Int
(System_Max_Binary_Modulus_Power
);
18519 Error_Msg_F
("modulus exceeds limit (2 '*'*^)", Mod_Expr
);
18521 Set_Modular_Size
(System_Max_Binary_Modulus_Power
);
18522 Init_Alignment
(T
);
18524 end Modular_Type_Declaration
;
18526 --------------------------
18527 -- New_Concatenation_Op --
18528 --------------------------
18530 procedure New_Concatenation_Op
(Typ
: Entity_Id
) is
18531 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
18534 function Make_Op_Formal
(Typ
, Op
: Entity_Id
) return Entity_Id
;
18535 -- Create abbreviated declaration for the formal of a predefined
18536 -- Operator 'Op' of type 'Typ'
18538 --------------------
18539 -- Make_Op_Formal --
18540 --------------------
18542 function Make_Op_Formal
(Typ
, Op
: Entity_Id
) return Entity_Id
is
18543 Formal
: Entity_Id
;
18545 Formal
:= New_Internal_Entity
(E_In_Parameter
, Op
, Loc
, 'P');
18546 Set_Etype
(Formal
, Typ
);
18547 Set_Mechanism
(Formal
, Default_Mechanism
);
18549 end Make_Op_Formal
;
18551 -- Start of processing for New_Concatenation_Op
18554 Op
:= Make_Defining_Operator_Symbol
(Loc
, Name_Op_Concat
);
18556 Set_Ekind
(Op
, E_Operator
);
18557 Set_Scope
(Op
, Current_Scope
);
18558 Set_Etype
(Op
, Typ
);
18559 Set_Homonym
(Op
, Get_Name_Entity_Id
(Name_Op_Concat
));
18560 Set_Is_Immediately_Visible
(Op
);
18561 Set_Is_Intrinsic_Subprogram
(Op
);
18562 Set_Has_Completion
(Op
);
18563 Append_Entity
(Op
, Current_Scope
);
18565 Set_Name_Entity_Id
(Name_Op_Concat
, Op
);
18567 Append_Entity
(Make_Op_Formal
(Typ
, Op
), Op
);
18568 Append_Entity
(Make_Op_Formal
(Typ
, Op
), Op
);
18569 end New_Concatenation_Op
;
18571 -------------------------
18572 -- OK_For_Limited_Init --
18573 -------------------------
18575 -- ???Check all calls of this, and compare the conditions under which it's
18578 function OK_For_Limited_Init
18580 Exp
: Node_Id
) return Boolean
18583 return Is_CPP_Constructor_Call
(Exp
)
18584 or else (Ada_Version
>= Ada_2005
18585 and then not Debug_Flag_Dot_L
18586 and then OK_For_Limited_Init_In_05
(Typ
, Exp
));
18587 end OK_For_Limited_Init
;
18589 -------------------------------
18590 -- OK_For_Limited_Init_In_05 --
18591 -------------------------------
18593 function OK_For_Limited_Init_In_05
18595 Exp
: Node_Id
) return Boolean
18598 -- An object of a limited interface type can be initialized with any
18599 -- expression of a nonlimited descendant type.
18601 if Is_Class_Wide_Type
(Typ
)
18602 and then Is_Limited_Interface
(Typ
)
18603 and then not Is_Limited_Type
(Etype
(Exp
))
18608 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
18609 -- case of limited aggregates (including extension aggregates), and
18610 -- function calls. The function call may have been given in prefixed
18611 -- notation, in which case the original node is an indexed component.
18612 -- If the function is parameterless, the original node was an explicit
18613 -- dereference. The function may also be parameterless, in which case
18614 -- the source node is just an identifier.
18616 case Nkind
(Original_Node
(Exp
)) is
18617 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op
=>
18620 when N_Identifier
=>
18621 return Present
(Entity
(Original_Node
(Exp
)))
18622 and then Ekind
(Entity
(Original_Node
(Exp
))) = E_Function
;
18624 when N_Qualified_Expression
=>
18626 OK_For_Limited_Init_In_05
18627 (Typ
, Expression
(Original_Node
(Exp
)));
18629 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
18630 -- with a function call, the expander has rewritten the call into an
18631 -- N_Type_Conversion node to force displacement of the pointer to
18632 -- reference the component containing the secondary dispatch table.
18633 -- Otherwise a type conversion is not a legal context.
18634 -- A return statement for a build-in-place function returning a
18635 -- synchronized type also introduces an unchecked conversion.
18637 when N_Type_Conversion |
18638 N_Unchecked_Type_Conversion
=>
18639 return not Comes_From_Source
(Exp
)
18641 OK_For_Limited_Init_In_05
18642 (Typ
, Expression
(Original_Node
(Exp
)));
18644 when N_Indexed_Component |
18645 N_Selected_Component |
18646 N_Explicit_Dereference
=>
18647 return Nkind
(Exp
) = N_Function_Call
;
18649 -- A use of 'Input is a function call, hence allowed. Normally the
18650 -- attribute will be changed to a call, but the attribute by itself
18651 -- can occur with -gnatc.
18653 when N_Attribute_Reference
=>
18654 return Attribute_Name
(Original_Node
(Exp
)) = Name_Input
;
18656 -- For a case expression, all dependent expressions must be legal
18658 when N_Case_Expression
=>
18663 Alt
:= First
(Alternatives
(Original_Node
(Exp
)));
18664 while Present
(Alt
) loop
18665 if not OK_For_Limited_Init_In_05
(Typ
, Expression
(Alt
)) then
18675 -- For an if expression, all dependent expressions must be legal
18677 when N_If_Expression
=>
18679 Then_Expr
: constant Node_Id
:=
18680 Next
(First
(Expressions
(Original_Node
(Exp
))));
18681 Else_Expr
: constant Node_Id
:= Next
(Then_Expr
);
18683 return OK_For_Limited_Init_In_05
(Typ
, Then_Expr
)
18685 OK_For_Limited_Init_In_05
(Typ
, Else_Expr
);
18691 end OK_For_Limited_Init_In_05
;
18693 -------------------------------------------
18694 -- Ordinary_Fixed_Point_Type_Declaration --
18695 -------------------------------------------
18697 procedure Ordinary_Fixed_Point_Type_Declaration
18701 Loc
: constant Source_Ptr
:= Sloc
(Def
);
18702 Delta_Expr
: constant Node_Id
:= Delta_Expression
(Def
);
18703 RRS
: constant Node_Id
:= Real_Range_Specification
(Def
);
18704 Implicit_Base
: Entity_Id
;
18711 Check_Restriction
(No_Fixed_Point
, Def
);
18713 -- Create implicit base type
18716 Create_Itype
(E_Ordinary_Fixed_Point_Type
, Parent
(Def
), T
, 'B');
18717 Set_Etype
(Implicit_Base
, Implicit_Base
);
18719 -- Analyze and process delta expression
18721 Analyze_And_Resolve
(Delta_Expr
, Any_Real
);
18723 Check_Delta_Expression
(Delta_Expr
);
18724 Delta_Val
:= Expr_Value_R
(Delta_Expr
);
18726 Set_Delta_Value
(Implicit_Base
, Delta_Val
);
18728 -- Compute default small from given delta, which is the largest power
18729 -- of two that does not exceed the given delta value.
18739 if Delta_Val
< Ureal_1
then
18740 while Delta_Val
< Tmp
loop
18741 Tmp
:= Tmp
/ Ureal_2
;
18742 Scale
:= Scale
+ 1;
18747 Tmp
:= Tmp
* Ureal_2
;
18748 exit when Tmp
> Delta_Val
;
18749 Scale
:= Scale
- 1;
18753 Small_Val
:= UR_From_Components
(Uint_1
, UI_From_Int
(Scale
), 2);
18756 Set_Small_Value
(Implicit_Base
, Small_Val
);
18758 -- If no range was given, set a dummy range
18760 if RRS
<= Empty_Or_Error
then
18761 Low_Val
:= -Small_Val
;
18762 High_Val
:= Small_Val
;
18764 -- Otherwise analyze and process given range
18768 Low
: constant Node_Id
:= Low_Bound
(RRS
);
18769 High
: constant Node_Id
:= High_Bound
(RRS
);
18772 Analyze_And_Resolve
(Low
, Any_Real
);
18773 Analyze_And_Resolve
(High
, Any_Real
);
18774 Check_Real_Bound
(Low
);
18775 Check_Real_Bound
(High
);
18777 -- Obtain and set the range
18779 Low_Val
:= Expr_Value_R
(Low
);
18780 High_Val
:= Expr_Value_R
(High
);
18782 if Low_Val
> High_Val
then
18783 Error_Msg_NE
("??fixed point type& has null range", Def
, T
);
18788 -- The range for both the implicit base and the declared first subtype
18789 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
18790 -- set a temporary range in place. Note that the bounds of the base
18791 -- type will be widened to be symmetrical and to fill the available
18792 -- bits when the type is frozen.
18794 -- We could do this with all discrete types, and probably should, but
18795 -- we absolutely have to do it for fixed-point, since the end-points
18796 -- of the range and the size are determined by the small value, which
18797 -- could be reset before the freeze point.
18799 Set_Fixed_Range
(Implicit_Base
, Loc
, Low_Val
, High_Val
);
18800 Set_Fixed_Range
(T
, Loc
, Low_Val
, High_Val
);
18802 -- Complete definition of first subtype. The inheritance of the rep item
18803 -- chain ensures that SPARK-related pragmas are not clobbered when the
18804 -- ordinary fixed point type acts as a full view of a private type.
18806 Set_Ekind
(T
, E_Ordinary_Fixed_Point_Subtype
);
18807 Set_Etype
(T
, Implicit_Base
);
18808 Init_Size_Align
(T
);
18809 Inherit_Rep_Item_Chain
(T
, Implicit_Base
);
18810 Set_Small_Value
(T
, Small_Val
);
18811 Set_Delta_Value
(T
, Delta_Val
);
18812 Set_Is_Constrained
(T
);
18813 end Ordinary_Fixed_Point_Type_Declaration
;
18815 ----------------------------------
18816 -- Preanalyze_Assert_Expression --
18817 ----------------------------------
18819 procedure Preanalyze_Assert_Expression
(N
: Node_Id
; T
: Entity_Id
) is
18821 In_Assertion_Expr
:= In_Assertion_Expr
+ 1;
18822 Preanalyze_Spec_Expression
(N
, T
);
18823 In_Assertion_Expr
:= In_Assertion_Expr
- 1;
18824 end Preanalyze_Assert_Expression
;
18826 -----------------------------------
18827 -- Preanalyze_Default_Expression --
18828 -----------------------------------
18830 procedure Preanalyze_Default_Expression
(N
: Node_Id
; T
: Entity_Id
) is
18831 Save_In_Default_Expr
: constant Boolean := In_Default_Expr
;
18833 In_Default_Expr
:= True;
18834 Preanalyze_Spec_Expression
(N
, T
);
18835 In_Default_Expr
:= Save_In_Default_Expr
;
18836 end Preanalyze_Default_Expression
;
18838 --------------------------------
18839 -- Preanalyze_Spec_Expression --
18840 --------------------------------
18842 procedure Preanalyze_Spec_Expression
(N
: Node_Id
; T
: Entity_Id
) is
18843 Save_In_Spec_Expression
: constant Boolean := In_Spec_Expression
;
18845 In_Spec_Expression
:= True;
18846 Preanalyze_And_Resolve
(N
, T
);
18847 In_Spec_Expression
:= Save_In_Spec_Expression
;
18848 end Preanalyze_Spec_Expression
;
18850 ----------------------------------------
18851 -- Prepare_Private_Subtype_Completion --
18852 ----------------------------------------
18854 procedure Prepare_Private_Subtype_Completion
18856 Related_Nod
: Node_Id
)
18858 Id_B
: constant Entity_Id
:= Base_Type
(Id
);
18859 Full_B
: Entity_Id
:= Full_View
(Id_B
);
18863 if Present
(Full_B
) then
18865 -- Get to the underlying full view if necessary
18867 if Is_Private_Type
(Full_B
)
18868 and then Present
(Underlying_Full_View
(Full_B
))
18870 Full_B
:= Underlying_Full_View
(Full_B
);
18873 -- The Base_Type is already completed, we can complete the subtype
18874 -- now. We have to create a new entity with the same name, Thus we
18875 -- can't use Create_Itype.
18877 Full
:= Make_Defining_Identifier
(Sloc
(Id
), Chars
(Id
));
18878 Set_Is_Itype
(Full
);
18879 Set_Associated_Node_For_Itype
(Full
, Related_Nod
);
18880 Complete_Private_Subtype
(Id
, Full
, Full_B
, Related_Nod
);
18883 -- The parent subtype may be private, but the base might not, in some
18884 -- nested instances. In that case, the subtype does not need to be
18885 -- exchanged. It would still be nice to make private subtypes and their
18886 -- bases consistent at all times ???
18888 if Is_Private_Type
(Id_B
) then
18889 Append_Elmt
(Id
, Private_Dependents
(Id_B
));
18891 end Prepare_Private_Subtype_Completion
;
18893 ---------------------------
18894 -- Process_Discriminants --
18895 ---------------------------
18897 procedure Process_Discriminants
18899 Prev
: Entity_Id
:= Empty
)
18901 Elist
: constant Elist_Id
:= New_Elmt_List
;
18904 Discr_Number
: Uint
;
18905 Discr_Type
: Entity_Id
;
18906 Default_Present
: Boolean := False;
18907 Default_Not_Present
: Boolean := False;
18910 -- A composite type other than an array type can have discriminants.
18911 -- On entry, the current scope is the composite type.
18913 -- The discriminants are initially entered into the scope of the type
18914 -- via Enter_Name with the default Ekind of E_Void to prevent premature
18915 -- use, as explained at the end of this procedure.
18917 Discr
:= First
(Discriminant_Specifications
(N
));
18918 while Present
(Discr
) loop
18919 Enter_Name
(Defining_Identifier
(Discr
));
18921 -- For navigation purposes we add a reference to the discriminant
18922 -- in the entity for the type. If the current declaration is a
18923 -- completion, place references on the partial view. Otherwise the
18924 -- type is the current scope.
18926 if Present
(Prev
) then
18928 -- The references go on the partial view, if present. If the
18929 -- partial view has discriminants, the references have been
18930 -- generated already.
18932 if not Has_Discriminants
(Prev
) then
18933 Generate_Reference
(Prev
, Defining_Identifier
(Discr
), 'd');
18937 (Current_Scope
, Defining_Identifier
(Discr
), 'd');
18940 if Nkind
(Discriminant_Type
(Discr
)) = N_Access_Definition
then
18941 Discr_Type
:= Access_Definition
(Discr
, Discriminant_Type
(Discr
));
18943 -- Ada 2005 (AI-254)
18945 if Present
(Access_To_Subprogram_Definition
18946 (Discriminant_Type
(Discr
)))
18947 and then Protected_Present
(Access_To_Subprogram_Definition
18948 (Discriminant_Type
(Discr
)))
18951 Replace_Anonymous_Access_To_Protected_Subprogram
(Discr
);
18955 Find_Type
(Discriminant_Type
(Discr
));
18956 Discr_Type
:= Etype
(Discriminant_Type
(Discr
));
18958 if Error_Posted
(Discriminant_Type
(Discr
)) then
18959 Discr_Type
:= Any_Type
;
18963 -- Handling of discriminants that are access types
18965 if Is_Access_Type
(Discr_Type
) then
18967 -- Ada 2005 (AI-230): Access discriminant allowed in non-
18968 -- limited record types
18970 if Ada_Version
< Ada_2005
then
18971 Check_Access_Discriminant_Requires_Limited
18972 (Discr
, Discriminant_Type
(Discr
));
18975 if Ada_Version
= Ada_83
and then Comes_From_Source
(Discr
) then
18977 ("(Ada 83) access discriminant not allowed", Discr
);
18980 -- If not access type, must be a discrete type
18982 elsif not Is_Discrete_Type
(Discr_Type
) then
18984 ("discriminants must have a discrete or access type",
18985 Discriminant_Type
(Discr
));
18988 Set_Etype
(Defining_Identifier
(Discr
), Discr_Type
);
18990 -- If a discriminant specification includes the assignment compound
18991 -- delimiter followed by an expression, the expression is the default
18992 -- expression of the discriminant; the default expression must be of
18993 -- the type of the discriminant. (RM 3.7.1) Since this expression is
18994 -- a default expression, we do the special preanalysis, since this
18995 -- expression does not freeze (see section "Handling of Default and
18996 -- Per-Object Expressions" in spec of package Sem).
18998 if Present
(Expression
(Discr
)) then
18999 Preanalyze_Spec_Expression
(Expression
(Discr
), Discr_Type
);
19003 if Nkind
(N
) = N_Formal_Type_Declaration
then
19005 ("discriminant defaults not allowed for formal type",
19006 Expression
(Discr
));
19008 -- Flag an error for a tagged type with defaulted discriminants,
19009 -- excluding limited tagged types when compiling for Ada 2012
19010 -- (see AI05-0214).
19012 elsif Is_Tagged_Type
(Current_Scope
)
19013 and then (not Is_Limited_Type
(Current_Scope
)
19014 or else Ada_Version
< Ada_2012
)
19015 and then Comes_From_Source
(N
)
19017 -- Note: see similar test in Check_Or_Process_Discriminants, to
19018 -- handle the (illegal) case of the completion of an untagged
19019 -- view with discriminants with defaults by a tagged full view.
19020 -- We skip the check if Discr does not come from source, to
19021 -- account for the case of an untagged derived type providing
19022 -- defaults for a renamed discriminant from a private untagged
19023 -- ancestor with a tagged full view (ACATS B460006).
19025 if Ada_Version
>= Ada_2012
then
19027 ("discriminants of nonlimited tagged type cannot have"
19029 Expression
(Discr
));
19032 ("discriminants of tagged type cannot have defaults",
19033 Expression
(Discr
));
19037 Default_Present
:= True;
19038 Append_Elmt
(Expression
(Discr
), Elist
);
19040 -- Tag the defining identifiers for the discriminants with
19041 -- their corresponding default expressions from the tree.
19043 Set_Discriminant_Default_Value
19044 (Defining_Identifier
(Discr
), Expression
(Discr
));
19047 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag
19048 -- gets set unless we can be sure that no range check is required.
19050 if (GNATprove_Mode
or not Expander_Active
)
19053 (Expression
(Discr
), Discr_Type
, Assume_Valid
=> True)
19055 Set_Do_Range_Check
(Expression
(Discr
));
19058 -- No default discriminant value given
19061 Default_Not_Present
:= True;
19064 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
19065 -- Discr_Type but with the null-exclusion attribute
19067 if Ada_Version
>= Ada_2005
then
19069 -- Ada 2005 (AI-231): Static checks
19071 if Can_Never_Be_Null
(Discr_Type
) then
19072 Null_Exclusion_Static_Checks
(Discr
);
19074 elsif Is_Access_Type
(Discr_Type
)
19075 and then Null_Exclusion_Present
(Discr
)
19077 -- No need to check itypes because in their case this check
19078 -- was done at their point of creation
19080 and then not Is_Itype
(Discr_Type
)
19082 if Can_Never_Be_Null
(Discr_Type
) then
19084 ("`NOT NULL` not allowed (& already excludes null)",
19089 Set_Etype
(Defining_Identifier
(Discr
),
19090 Create_Null_Excluding_Itype
19092 Related_Nod
=> Discr
));
19094 -- Check for improper null exclusion if the type is otherwise
19095 -- legal for a discriminant.
19097 elsif Null_Exclusion_Present
(Discr
)
19098 and then Is_Discrete_Type
(Discr_Type
)
19101 ("null exclusion can only apply to an access type", Discr
);
19104 -- Ada 2005 (AI-402): access discriminants of nonlimited types
19105 -- can't have defaults. Synchronized types, or types that are
19106 -- explicitly limited are fine, but special tests apply to derived
19107 -- types in generics: in a generic body we have to assume the
19108 -- worst, and therefore defaults are not allowed if the parent is
19109 -- a generic formal private type (see ACATS B370001).
19111 if Is_Access_Type
(Discr_Type
) and then Default_Present
then
19112 if Ekind
(Discr_Type
) /= E_Anonymous_Access_Type
19113 or else Is_Limited_Record
(Current_Scope
)
19114 or else Is_Concurrent_Type
(Current_Scope
)
19115 or else Is_Concurrent_Record_Type
(Current_Scope
)
19116 or else Ekind
(Current_Scope
) = E_Limited_Private_Type
19118 if not Is_Derived_Type
(Current_Scope
)
19119 or else not Is_Generic_Type
(Etype
(Current_Scope
))
19120 or else not In_Package_Body
(Scope
(Etype
(Current_Scope
)))
19121 or else Limited_Present
19122 (Type_Definition
(Parent
(Current_Scope
)))
19128 ("access discriminants of nonlimited types cannot "
19129 & "have defaults", Expression
(Discr
));
19132 elsif Present
(Expression
(Discr
)) then
19134 ("(Ada 2005) access discriminants of nonlimited types "
19135 & "cannot have defaults", Expression
(Discr
));
19140 -- A discriminant cannot be effectively volatile. This check is only
19141 -- relevant when SPARK_Mode is on as it is not standard Ada legality
19142 -- rule (SPARK RM 7.1.3(6)).
19145 and then Is_Effectively_Volatile
(Defining_Identifier
(Discr
))
19147 Error_Msg_N
("discriminant cannot be volatile", Discr
);
19153 -- An element list consisting of the default expressions of the
19154 -- discriminants is constructed in the above loop and used to set
19155 -- the Discriminant_Constraint attribute for the type. If an object
19156 -- is declared of this (record or task) type without any explicit
19157 -- discriminant constraint given, this element list will form the
19158 -- actual parameters for the corresponding initialization procedure
19161 Set_Discriminant_Constraint
(Current_Scope
, Elist
);
19162 Set_Stored_Constraint
(Current_Scope
, No_Elist
);
19164 -- Default expressions must be provided either for all or for none
19165 -- of the discriminants of a discriminant part. (RM 3.7.1)
19167 if Default_Present
and then Default_Not_Present
then
19169 ("incomplete specification of defaults for discriminants", N
);
19172 -- The use of the name of a discriminant is not allowed in default
19173 -- expressions of a discriminant part if the specification of the
19174 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
19176 -- To detect this, the discriminant names are entered initially with an
19177 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
19178 -- attempt to use a void entity (for example in an expression that is
19179 -- type-checked) produces the error message: premature usage. Now after
19180 -- completing the semantic analysis of the discriminant part, we can set
19181 -- the Ekind of all the discriminants appropriately.
19183 Discr
:= First
(Discriminant_Specifications
(N
));
19184 Discr_Number
:= Uint_1
;
19185 while Present
(Discr
) loop
19186 Id
:= Defining_Identifier
(Discr
);
19187 Set_Ekind
(Id
, E_Discriminant
);
19188 Init_Component_Location
(Id
);
19190 Set_Discriminant_Number
(Id
, Discr_Number
);
19192 -- Make sure this is always set, even in illegal programs
19194 Set_Corresponding_Discriminant
(Id
, Empty
);
19196 -- Initialize the Original_Record_Component to the entity itself.
19197 -- Inherit_Components will propagate the right value to
19198 -- discriminants in derived record types.
19200 Set_Original_Record_Component
(Id
, Id
);
19202 -- Create the discriminal for the discriminant
19204 Build_Discriminal
(Id
);
19207 Discr_Number
:= Discr_Number
+ 1;
19210 Set_Has_Discriminants
(Current_Scope
);
19211 end Process_Discriminants
;
19213 -----------------------
19214 -- Process_Full_View --
19215 -----------------------
19217 procedure Process_Full_View
(N
: Node_Id
; Full_T
, Priv_T
: Entity_Id
) is
19218 procedure Collect_Implemented_Interfaces
19220 Ifaces
: Elist_Id
);
19221 -- Ada 2005: Gather all the interfaces that Typ directly or
19222 -- inherently implements. Duplicate entries are not added to
19223 -- the list Ifaces.
19225 ------------------------------------
19226 -- Collect_Implemented_Interfaces --
19227 ------------------------------------
19229 procedure Collect_Implemented_Interfaces
19234 Iface_Elmt
: Elmt_Id
;
19237 -- Abstract interfaces are only associated with tagged record types
19239 if not Is_Tagged_Type
(Typ
) or else not Is_Record_Type
(Typ
) then
19243 -- Recursively climb to the ancestors
19245 if Etype
(Typ
) /= Typ
19247 -- Protect the frontend against wrong cyclic declarations like:
19249 -- type B is new A with private;
19250 -- type C is new A with private;
19252 -- type B is new C with null record;
19253 -- type C is new B with null record;
19255 and then Etype
(Typ
) /= Priv_T
19256 and then Etype
(Typ
) /= Full_T
19258 -- Keep separate the management of private type declarations
19260 if Ekind
(Typ
) = E_Record_Type_With_Private
then
19262 -- Handle the following illegal usage:
19263 -- type Private_Type is tagged private;
19265 -- type Private_Type is new Type_Implementing_Iface;
19267 if Present
(Full_View
(Typ
))
19268 and then Etype
(Typ
) /= Full_View
(Typ
)
19270 if Is_Interface
(Etype
(Typ
)) then
19271 Append_Unique_Elmt
(Etype
(Typ
), Ifaces
);
19274 Collect_Implemented_Interfaces
(Etype
(Typ
), Ifaces
);
19277 -- Non-private types
19280 if Is_Interface
(Etype
(Typ
)) then
19281 Append_Unique_Elmt
(Etype
(Typ
), Ifaces
);
19284 Collect_Implemented_Interfaces
(Etype
(Typ
), Ifaces
);
19288 -- Handle entities in the list of abstract interfaces
19290 if Present
(Interfaces
(Typ
)) then
19291 Iface_Elmt
:= First_Elmt
(Interfaces
(Typ
));
19292 while Present
(Iface_Elmt
) loop
19293 Iface
:= Node
(Iface_Elmt
);
19295 pragma Assert
(Is_Interface
(Iface
));
19297 if not Contain_Interface
(Iface
, Ifaces
) then
19298 Append_Elmt
(Iface
, Ifaces
);
19299 Collect_Implemented_Interfaces
(Iface
, Ifaces
);
19302 Next_Elmt
(Iface_Elmt
);
19305 end Collect_Implemented_Interfaces
;
19309 Full_Indic
: Node_Id
;
19310 Full_Parent
: Entity_Id
;
19311 Priv_Parent
: Entity_Id
;
19313 -- Start of processing for Process_Full_View
19316 -- First some sanity checks that must be done after semantic
19317 -- decoration of the full view and thus cannot be placed with other
19318 -- similar checks in Find_Type_Name
19320 if not Is_Limited_Type
(Priv_T
)
19321 and then (Is_Limited_Type
(Full_T
)
19322 or else Is_Limited_Composite
(Full_T
))
19324 if In_Instance
then
19328 ("completion of nonlimited type cannot be limited", Full_T
);
19329 Explain_Limited_Type
(Full_T
, Full_T
);
19332 elsif Is_Abstract_Type
(Full_T
)
19333 and then not Is_Abstract_Type
(Priv_T
)
19336 ("completion of nonabstract type cannot be abstract", Full_T
);
19338 elsif Is_Tagged_Type
(Priv_T
)
19339 and then Is_Limited_Type
(Priv_T
)
19340 and then not Is_Limited_Type
(Full_T
)
19342 -- If pragma CPP_Class was applied to the private declaration
19343 -- propagate the limitedness to the full-view
19345 if Is_CPP_Class
(Priv_T
) then
19346 Set_Is_Limited_Record
(Full_T
);
19348 -- GNAT allow its own definition of Limited_Controlled to disobey
19349 -- this rule in order in ease the implementation. This test is safe
19350 -- because Root_Controlled is defined in a child of System that
19351 -- normal programs are not supposed to use.
19353 elsif Is_RTE
(Etype
(Full_T
), RE_Root_Controlled
) then
19354 Set_Is_Limited_Composite
(Full_T
);
19357 ("completion of limited tagged type must be limited", Full_T
);
19360 elsif Is_Generic_Type
(Priv_T
) then
19361 Error_Msg_N
("generic type cannot have a completion", Full_T
);
19364 -- Check that ancestor interfaces of private and full views are
19365 -- consistent. We omit this check for synchronized types because
19366 -- they are performed on the corresponding record type when frozen.
19368 if Ada_Version
>= Ada_2005
19369 and then Is_Tagged_Type
(Priv_T
)
19370 and then Is_Tagged_Type
(Full_T
)
19371 and then not Is_Concurrent_Type
(Full_T
)
19375 Priv_T_Ifaces
: constant Elist_Id
:= New_Elmt_List
;
19376 Full_T_Ifaces
: constant Elist_Id
:= New_Elmt_List
;
19379 Collect_Implemented_Interfaces
(Priv_T
, Priv_T_Ifaces
);
19380 Collect_Implemented_Interfaces
(Full_T
, Full_T_Ifaces
);
19382 -- Ada 2005 (AI-251): The partial view shall be a descendant of
19383 -- an interface type if and only if the full type is descendant
19384 -- of the interface type (AARM 7.3 (7.3/2)).
19386 Iface
:= Find_Hidden_Interface
(Priv_T_Ifaces
, Full_T_Ifaces
);
19388 if Present
(Iface
) then
19390 ("interface in partial view& not implemented by full type "
19391 & "(RM-2005 7.3 (7.3/2))", Full_T
, Iface
);
19394 Iface
:= Find_Hidden_Interface
(Full_T_Ifaces
, Priv_T_Ifaces
);
19396 if Present
(Iface
) then
19398 ("interface & not implemented by partial view "
19399 & "(RM-2005 7.3 (7.3/2))", Full_T
, Iface
);
19404 if Is_Tagged_Type
(Priv_T
)
19405 and then Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
19406 and then Is_Derived_Type
(Full_T
)
19408 Priv_Parent
:= Etype
(Priv_T
);
19410 -- The full view of a private extension may have been transformed
19411 -- into an unconstrained derived type declaration and a subtype
19412 -- declaration (see build_derived_record_type for details).
19414 if Nkind
(N
) = N_Subtype_Declaration
then
19415 Full_Indic
:= Subtype_Indication
(N
);
19416 Full_Parent
:= Etype
(Base_Type
(Full_T
));
19418 Full_Indic
:= Subtype_Indication
(Type_Definition
(N
));
19419 Full_Parent
:= Etype
(Full_T
);
19422 -- Check that the parent type of the full type is a descendant of
19423 -- the ancestor subtype given in the private extension. If either
19424 -- entity has an Etype equal to Any_Type then we had some previous
19425 -- error situation [7.3(8)].
19427 if Priv_Parent
= Any_Type
or else Full_Parent
= Any_Type
then
19430 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
19431 -- any order. Therefore we don't have to check that its parent must
19432 -- be a descendant of the parent of the private type declaration.
19434 elsif Is_Interface
(Priv_Parent
)
19435 and then Is_Interface
(Full_Parent
)
19439 -- Ada 2005 (AI-251): If the parent of the private type declaration
19440 -- is an interface there is no need to check that it is an ancestor
19441 -- of the associated full type declaration. The required tests for
19442 -- this case are performed by Build_Derived_Record_Type.
19444 elsif not Is_Interface
(Base_Type
(Priv_Parent
))
19445 and then not Is_Ancestor
(Base_Type
(Priv_Parent
), Full_Parent
)
19448 ("parent of full type must descend from parent"
19449 & " of private extension", Full_Indic
);
19451 -- First check a formal restriction, and then proceed with checking
19452 -- Ada rules. Since the formal restriction is not a serious error, we
19453 -- don't prevent further error detection for this check, hence the
19457 -- In formal mode, when completing a private extension the type
19458 -- named in the private part must be exactly the same as that
19459 -- named in the visible part.
19461 if Priv_Parent
/= Full_Parent
then
19462 Error_Msg_Name_1
:= Chars
(Priv_Parent
);
19463 Check_SPARK_05_Restriction
("% expected", Full_Indic
);
19466 -- Check the rules of 7.3(10): if the private extension inherits
19467 -- known discriminants, then the full type must also inherit those
19468 -- discriminants from the same (ancestor) type, and the parent
19469 -- subtype of the full type must be constrained if and only if
19470 -- the ancestor subtype of the private extension is constrained.
19472 if No
(Discriminant_Specifications
(Parent
(Priv_T
)))
19473 and then not Has_Unknown_Discriminants
(Priv_T
)
19474 and then Has_Discriminants
(Base_Type
(Priv_Parent
))
19477 Priv_Indic
: constant Node_Id
:=
19478 Subtype_Indication
(Parent
(Priv_T
));
19480 Priv_Constr
: constant Boolean :=
19481 Is_Constrained
(Priv_Parent
)
19483 Nkind
(Priv_Indic
) = N_Subtype_Indication
19485 Is_Constrained
(Entity
(Priv_Indic
));
19487 Full_Constr
: constant Boolean :=
19488 Is_Constrained
(Full_Parent
)
19490 Nkind
(Full_Indic
) = N_Subtype_Indication
19492 Is_Constrained
(Entity
(Full_Indic
));
19494 Priv_Discr
: Entity_Id
;
19495 Full_Discr
: Entity_Id
;
19498 Priv_Discr
:= First_Discriminant
(Priv_Parent
);
19499 Full_Discr
:= First_Discriminant
(Full_Parent
);
19500 while Present
(Priv_Discr
) and then Present
(Full_Discr
) loop
19501 if Original_Record_Component
(Priv_Discr
) =
19502 Original_Record_Component
(Full_Discr
)
19504 Corresponding_Discriminant
(Priv_Discr
) =
19505 Corresponding_Discriminant
(Full_Discr
)
19512 Next_Discriminant
(Priv_Discr
);
19513 Next_Discriminant
(Full_Discr
);
19516 if Present
(Priv_Discr
) or else Present
(Full_Discr
) then
19518 ("full view must inherit discriminants of the parent"
19519 & " type used in the private extension", Full_Indic
);
19521 elsif Priv_Constr
and then not Full_Constr
then
19523 ("parent subtype of full type must be constrained",
19526 elsif Full_Constr
and then not Priv_Constr
then
19528 ("parent subtype of full type must be unconstrained",
19533 -- Check the rules of 7.3(12): if a partial view has neither
19534 -- known or unknown discriminants, then the full type
19535 -- declaration shall define a definite subtype.
19537 elsif not Has_Unknown_Discriminants
(Priv_T
)
19538 and then not Has_Discriminants
(Priv_T
)
19539 and then not Is_Constrained
(Full_T
)
19542 ("full view must define a constrained type if partial view"
19543 & " has no discriminants", Full_T
);
19546 -- ??????? Do we implement the following properly ?????
19547 -- If the ancestor subtype of a private extension has constrained
19548 -- discriminants, then the parent subtype of the full view shall
19549 -- impose a statically matching constraint on those discriminants
19554 -- For untagged types, verify that a type without discriminants is
19555 -- not completed with an unconstrained type. A separate error message
19556 -- is produced if the full type has defaulted discriminants.
19558 if not Is_Indefinite_Subtype
(Priv_T
)
19559 and then Is_Indefinite_Subtype
(Full_T
)
19561 Error_Msg_Sloc
:= Sloc
(Parent
(Priv_T
));
19563 ("full view of& not compatible with declaration#",
19566 if not Is_Tagged_Type
(Full_T
) then
19568 ("\one is constrained, the other unconstrained", Full_T
);
19573 -- AI-419: verify that the use of "limited" is consistent
19576 Orig_Decl
: constant Node_Id
:= Original_Node
(N
);
19579 if Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
19580 and then Nkind
(Orig_Decl
) = N_Full_Type_Declaration
19582 (Type_Definition
(Orig_Decl
)) = N_Derived_Type_Definition
19584 if not Limited_Present
(Parent
(Priv_T
))
19585 and then not Synchronized_Present
(Parent
(Priv_T
))
19586 and then Limited_Present
(Type_Definition
(Orig_Decl
))
19589 ("full view of non-limited extension cannot be limited", N
);
19591 -- Conversely, if the partial view carries the limited keyword,
19592 -- the full view must as well, even if it may be redundant.
19594 elsif Limited_Present
(Parent
(Priv_T
))
19595 and then not Limited_Present
(Type_Definition
(Orig_Decl
))
19598 ("full view of limited extension must be explicitly limited",
19604 -- Ada 2005 (AI-443): A synchronized private extension must be
19605 -- completed by a task or protected type.
19607 if Ada_Version
>= Ada_2005
19608 and then Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
19609 and then Synchronized_Present
(Parent
(Priv_T
))
19610 and then not Is_Concurrent_Type
(Full_T
)
19612 Error_Msg_N
("full view of synchronized extension must " &
19613 "be synchronized type", N
);
19616 -- Ada 2005 AI-363: if the full view has discriminants with
19617 -- defaults, it is illegal to declare constrained access subtypes
19618 -- whose designated type is the current type. This allows objects
19619 -- of the type that are declared in the heap to be unconstrained.
19621 if not Has_Unknown_Discriminants
(Priv_T
)
19622 and then not Has_Discriminants
(Priv_T
)
19623 and then Has_Discriminants
(Full_T
)
19625 Present
(Discriminant_Default_Value
(First_Discriminant
(Full_T
)))
19627 Set_Has_Constrained_Partial_View
(Full_T
);
19628 Set_Has_Constrained_Partial_View
(Priv_T
);
19631 -- Create a full declaration for all its subtypes recorded in
19632 -- Private_Dependents and swap them similarly to the base type. These
19633 -- are subtypes that have been define before the full declaration of
19634 -- the private type. We also swap the entry in Private_Dependents list
19635 -- so we can properly restore the private view on exit from the scope.
19638 Priv_Elmt
: Elmt_Id
;
19639 Priv_Scop
: Entity_Id
;
19644 Priv_Elmt
:= First_Elmt
(Private_Dependents
(Priv_T
));
19645 while Present
(Priv_Elmt
) loop
19646 Priv
:= Node
(Priv_Elmt
);
19647 Priv_Scop
:= Scope
(Priv
);
19649 if Ekind_In
(Priv
, E_Private_Subtype
,
19650 E_Limited_Private_Subtype
,
19651 E_Record_Subtype_With_Private
)
19653 Full
:= Make_Defining_Identifier
(Sloc
(Priv
), Chars
(Priv
));
19654 Set_Is_Itype
(Full
);
19655 Set_Parent
(Full
, Parent
(Priv
));
19656 Set_Associated_Node_For_Itype
(Full
, N
);
19658 -- Now we need to complete the private subtype, but since the
19659 -- base type has already been swapped, we must also swap the
19660 -- subtypes (and thus, reverse the arguments in the call to
19661 -- Complete_Private_Subtype). Also note that we may need to
19662 -- re-establish the scope of the private subtype.
19664 Copy_And_Swap
(Priv
, Full
);
19666 if not In_Open_Scopes
(Priv_Scop
) then
19667 Push_Scope
(Priv_Scop
);
19670 -- Reset Priv_Scop to Empty to indicate no scope was pushed
19672 Priv_Scop
:= Empty
;
19675 Complete_Private_Subtype
(Full
, Priv
, Full_T
, N
);
19677 if Present
(Priv_Scop
) then
19681 Replace_Elmt
(Priv_Elmt
, Full
);
19684 Next_Elmt
(Priv_Elmt
);
19688 -- If the private view was tagged, copy the new primitive operations
19689 -- from the private view to the full view.
19691 if Is_Tagged_Type
(Full_T
) then
19693 Disp_Typ
: Entity_Id
;
19694 Full_List
: Elist_Id
;
19696 Prim_Elmt
: Elmt_Id
;
19697 Priv_List
: Elist_Id
;
19701 L
: Elist_Id
) return Boolean;
19702 -- Determine whether list L contains element E
19710 L
: Elist_Id
) return Boolean
19712 List_Elmt
: Elmt_Id
;
19715 List_Elmt
:= First_Elmt
(L
);
19716 while Present
(List_Elmt
) loop
19717 if Node
(List_Elmt
) = E
then
19721 Next_Elmt
(List_Elmt
);
19727 -- Start of processing
19730 if Is_Tagged_Type
(Priv_T
) then
19731 Priv_List
:= Primitive_Operations
(Priv_T
);
19732 Prim_Elmt
:= First_Elmt
(Priv_List
);
19734 -- In the case of a concurrent type completing a private tagged
19735 -- type, primitives may have been declared in between the two
19736 -- views. These subprograms need to be wrapped the same way
19737 -- entries and protected procedures are handled because they
19738 -- cannot be directly shared by the two views.
19740 if Is_Concurrent_Type
(Full_T
) then
19742 Conc_Typ
: constant Entity_Id
:=
19743 Corresponding_Record_Type
(Full_T
);
19744 Curr_Nod
: Node_Id
:= Parent
(Conc_Typ
);
19745 Wrap_Spec
: Node_Id
;
19748 while Present
(Prim_Elmt
) loop
19749 Prim
:= Node
(Prim_Elmt
);
19751 if Comes_From_Source
(Prim
)
19752 and then not Is_Abstract_Subprogram
(Prim
)
19755 Make_Subprogram_Declaration
(Sloc
(Prim
),
19759 Obj_Typ
=> Conc_Typ
,
19761 Parameter_Specifications
(
19764 Insert_After
(Curr_Nod
, Wrap_Spec
);
19765 Curr_Nod
:= Wrap_Spec
;
19767 Analyze
(Wrap_Spec
);
19770 Next_Elmt
(Prim_Elmt
);
19776 -- For non-concurrent types, transfer explicit primitives, but
19777 -- omit those inherited from the parent of the private view
19778 -- since they will be re-inherited later on.
19781 Full_List
:= Primitive_Operations
(Full_T
);
19783 while Present
(Prim_Elmt
) loop
19784 Prim
:= Node
(Prim_Elmt
);
19786 if Comes_From_Source
(Prim
)
19787 and then not Contains
(Prim
, Full_List
)
19789 Append_Elmt
(Prim
, Full_List
);
19792 Next_Elmt
(Prim_Elmt
);
19796 -- Untagged private view
19799 Full_List
:= Primitive_Operations
(Full_T
);
19801 -- In this case the partial view is untagged, so here we locate
19802 -- all of the earlier primitives that need to be treated as
19803 -- dispatching (those that appear between the two views). Note
19804 -- that these additional operations must all be new operations
19805 -- (any earlier operations that override inherited operations
19806 -- of the full view will already have been inserted in the
19807 -- primitives list, marked by Check_Operation_From_Private_View
19808 -- as dispatching. Note that implicit "/=" operators are
19809 -- excluded from being added to the primitives list since they
19810 -- shouldn't be treated as dispatching (tagged "/=" is handled
19813 Prim
:= Next_Entity
(Full_T
);
19814 while Present
(Prim
) and then Prim
/= Priv_T
loop
19815 if Ekind_In
(Prim
, E_Procedure
, E_Function
) then
19816 Disp_Typ
:= Find_Dispatching_Type
(Prim
);
19818 if Disp_Typ
= Full_T
19819 and then (Chars
(Prim
) /= Name_Op_Ne
19820 or else Comes_From_Source
(Prim
))
19822 Check_Controlling_Formals
(Full_T
, Prim
);
19824 if not Is_Dispatching_Operation
(Prim
) then
19825 Append_Elmt
(Prim
, Full_List
);
19826 Set_Is_Dispatching_Operation
(Prim
, True);
19827 Set_DT_Position_Value
(Prim
, No_Uint
);
19830 elsif Is_Dispatching_Operation
(Prim
)
19831 and then Disp_Typ
/= Full_T
19834 -- Verify that it is not otherwise controlled by a
19835 -- formal or a return value of type T.
19837 Check_Controlling_Formals
(Disp_Typ
, Prim
);
19841 Next_Entity
(Prim
);
19845 -- For the tagged case, the two views can share the same primitive
19846 -- operations list and the same class-wide type. Update attributes
19847 -- of the class-wide type which depend on the full declaration.
19849 if Is_Tagged_Type
(Priv_T
) then
19850 Set_Direct_Primitive_Operations
(Priv_T
, Full_List
);
19851 Set_Class_Wide_Type
19852 (Base_Type
(Full_T
), Class_Wide_Type
(Priv_T
));
19854 Set_Has_Task
(Class_Wide_Type
(Priv_T
), Has_Task
(Full_T
));
19856 (Class_Wide_Type
(Priv_T
), Has_Protected
(Full_T
));
19861 -- Ada 2005 AI 161: Check preelaborable initialization consistency
19863 if Known_To_Have_Preelab_Init
(Priv_T
) then
19865 -- Case where there is a pragma Preelaborable_Initialization. We
19866 -- always allow this in predefined units, which is cheating a bit,
19867 -- but it means we don't have to struggle to meet the requirements in
19868 -- the RM for having Preelaborable Initialization. Otherwise we
19869 -- require that the type meets the RM rules. But we can't check that
19870 -- yet, because of the rule about overriding Initialize, so we simply
19871 -- set a flag that will be checked at freeze time.
19873 if not In_Predefined_Unit
(Full_T
) then
19874 Set_Must_Have_Preelab_Init
(Full_T
);
19878 -- If pragma CPP_Class was applied to the private type declaration,
19879 -- propagate it now to the full type declaration.
19881 if Is_CPP_Class
(Priv_T
) then
19882 Set_Is_CPP_Class
(Full_T
);
19883 Set_Convention
(Full_T
, Convention_CPP
);
19885 -- Check that components of imported CPP types do not have default
19888 Check_CPP_Type_Has_No_Defaults
(Full_T
);
19891 -- If the private view has user specified stream attributes, then so has
19894 -- Why the test, how could these flags be already set in Full_T ???
19896 if Has_Specified_Stream_Read
(Priv_T
) then
19897 Set_Has_Specified_Stream_Read
(Full_T
);
19900 if Has_Specified_Stream_Write
(Priv_T
) then
19901 Set_Has_Specified_Stream_Write
(Full_T
);
19904 if Has_Specified_Stream_Input
(Priv_T
) then
19905 Set_Has_Specified_Stream_Input
(Full_T
);
19908 if Has_Specified_Stream_Output
(Priv_T
) then
19909 Set_Has_Specified_Stream_Output
(Full_T
);
19912 -- Propagate the attributes related to pragma Default_Initial_Condition
19913 -- from the private to the full view. Note that both flags are mutually
19916 if Has_Default_Init_Cond
(Priv_T
)
19917 or else Has_Inherited_Default_Init_Cond
(Priv_T
)
19919 Propagate_Default_Init_Cond_Attributes
19920 (From_Typ
=> Priv_T
,
19922 Private_To_Full_View
=> True);
19924 -- In the case where the full view is derived from another private type,
19925 -- the attributes related to pragma Default_Initial_Condition must be
19926 -- propagated from the full to the private view to maintain consistency
19930 -- type Parent_Typ is private
19931 -- with Default_Initial_Condition ...;
19933 -- type Parent_Typ is ...;
19936 -- with Pack; use Pack;
19937 -- package Pack_2 is
19938 -- type Deriv_Typ is private; -- must inherit
19940 -- type Deriv_Typ is new Parent_Typ; -- must inherit
19943 elsif Has_Default_Init_Cond
(Full_T
)
19944 or else Has_Inherited_Default_Init_Cond
(Full_T
)
19946 Propagate_Default_Init_Cond_Attributes
19947 (From_Typ
=> Full_T
,
19949 Private_To_Full_View
=> True);
19952 -- Propagate the attributes related to pragma Ghost from the private to
19955 if Is_Ghost_Entity
(Priv_T
) then
19956 Set_Is_Ghost_Entity
(Full_T
);
19958 -- The Ghost policy in effect at the point of declaration and at the
19959 -- point of completion must match (SPARK RM 6.9(15)).
19961 Check_Ghost_Completion
(Priv_T
, Full_T
);
19963 -- In the case where the private view of a tagged type lacks a parent
19964 -- type and is subject to pragma Ghost, ensure that the parent type
19965 -- specified by the full view is also Ghost (SPARK RM 6.9(9)).
19967 if Is_Derived_Type
(Full_T
) then
19968 Check_Ghost_Derivation
(Full_T
);
19972 -- Propagate invariants to full type
19974 if Has_Invariants
(Priv_T
) then
19975 Set_Has_Invariants
(Full_T
);
19976 Set_Invariant_Procedure
(Full_T
, Invariant_Procedure
(Priv_T
));
19979 if Has_Inheritable_Invariants
(Priv_T
) then
19980 Set_Has_Inheritable_Invariants
(Full_T
);
19983 -- Check hidden inheritance of class-wide type invariants
19985 if Ada_Version
>= Ada_2012
19986 and then not Has_Inheritable_Invariants
(Full_T
)
19987 and then In_Private_Part
(Current_Scope
)
19988 and then Has_Interfaces
(Full_T
)
19995 Collect_Interfaces
(Full_T
, Ifaces
, Exclude_Parents
=> True);
19997 AI
:= First_Elmt
(Ifaces
);
19998 while Present
(AI
) loop
19999 if Has_Inheritable_Invariants
(Node
(AI
)) then
20001 ("hidden inheritance of class-wide type invariants " &
20011 -- Propagate predicates to full type, and predicate function if already
20012 -- defined. It is not clear that this can actually happen? the partial
20013 -- view cannot be frozen yet, and the predicate function has not been
20014 -- built. Still it is a cheap check and seems safer to make it.
20016 if Has_Predicates
(Priv_T
) then
20017 if Present
(Predicate_Function
(Priv_T
)) then
20018 Set_Predicate_Function
(Full_T
, Predicate_Function
(Priv_T
));
20021 Set_Has_Predicates
(Full_T
);
20023 end Process_Full_View
;
20025 -----------------------------------
20026 -- Process_Incomplete_Dependents --
20027 -----------------------------------
20029 procedure Process_Incomplete_Dependents
20031 Full_T
: Entity_Id
;
20034 Inc_Elmt
: Elmt_Id
;
20035 Priv_Dep
: Entity_Id
;
20036 New_Subt
: Entity_Id
;
20038 Disc_Constraint
: Elist_Id
;
20041 if No
(Private_Dependents
(Inc_T
)) then
20045 -- Itypes that may be generated by the completion of an incomplete
20046 -- subtype are not used by the back-end and not attached to the tree.
20047 -- They are created only for constraint-checking purposes.
20049 Inc_Elmt
:= First_Elmt
(Private_Dependents
(Inc_T
));
20050 while Present
(Inc_Elmt
) loop
20051 Priv_Dep
:= Node
(Inc_Elmt
);
20053 if Ekind
(Priv_Dep
) = E_Subprogram_Type
then
20055 -- An Access_To_Subprogram type may have a return type or a
20056 -- parameter type that is incomplete. Replace with the full view.
20058 if Etype
(Priv_Dep
) = Inc_T
then
20059 Set_Etype
(Priv_Dep
, Full_T
);
20063 Formal
: Entity_Id
;
20066 Formal
:= First_Formal
(Priv_Dep
);
20067 while Present
(Formal
) loop
20068 if Etype
(Formal
) = Inc_T
then
20069 Set_Etype
(Formal
, Full_T
);
20072 Next_Formal
(Formal
);
20076 elsif Is_Overloadable
(Priv_Dep
) then
20078 -- If a subprogram in the incomplete dependents list is primitive
20079 -- for a tagged full type then mark it as a dispatching operation,
20080 -- check whether it overrides an inherited subprogram, and check
20081 -- restrictions on its controlling formals. Note that a protected
20082 -- operation is never dispatching: only its wrapper operation
20083 -- (which has convention Ada) is.
20085 if Is_Tagged_Type
(Full_T
)
20086 and then Is_Primitive
(Priv_Dep
)
20087 and then Convention
(Priv_Dep
) /= Convention_Protected
20089 Check_Operation_From_Incomplete_Type
(Priv_Dep
, Inc_T
);
20090 Set_Is_Dispatching_Operation
(Priv_Dep
);
20091 Check_Controlling_Formals
(Full_T
, Priv_Dep
);
20094 elsif Ekind
(Priv_Dep
) = E_Subprogram_Body
then
20096 -- Can happen during processing of a body before the completion
20097 -- of a TA type. Ignore, because spec is also on dependent list.
20101 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
20102 -- corresponding subtype of the full view.
20104 elsif Ekind
(Priv_Dep
) = E_Incomplete_Subtype
then
20105 Set_Subtype_Indication
20106 (Parent
(Priv_Dep
), New_Occurrence_Of
(Full_T
, Sloc
(Priv_Dep
)));
20107 Set_Etype
(Priv_Dep
, Full_T
);
20108 Set_Ekind
(Priv_Dep
, Subtype_Kind
(Ekind
(Full_T
)));
20109 Set_Analyzed
(Parent
(Priv_Dep
), False);
20111 -- Reanalyze the declaration, suppressing the call to
20112 -- Enter_Name to avoid duplicate names.
20114 Analyze_Subtype_Declaration
20115 (N
=> Parent
(Priv_Dep
),
20118 -- Dependent is a subtype
20121 -- We build a new subtype indication using the full view of the
20122 -- incomplete parent. The discriminant constraints have been
20123 -- elaborated already at the point of the subtype declaration.
20125 New_Subt
:= Create_Itype
(E_Void
, N
);
20127 if Has_Discriminants
(Full_T
) then
20128 Disc_Constraint
:= Discriminant_Constraint
(Priv_Dep
);
20130 Disc_Constraint
:= No_Elist
;
20133 Build_Discriminated_Subtype
(Full_T
, New_Subt
, Disc_Constraint
, N
);
20134 Set_Full_View
(Priv_Dep
, New_Subt
);
20137 Next_Elmt
(Inc_Elmt
);
20139 end Process_Incomplete_Dependents
;
20141 --------------------------------
20142 -- Process_Range_Expr_In_Decl --
20143 --------------------------------
20145 procedure Process_Range_Expr_In_Decl
20148 Subtyp
: Entity_Id
:= Empty
;
20149 Check_List
: List_Id
:= Empty_List
;
20150 R_Check_Off
: Boolean := False;
20151 In_Iter_Schm
: Boolean := False)
20154 R_Checks
: Check_Result
;
20155 Insert_Node
: Node_Id
;
20156 Def_Id
: Entity_Id
;
20159 Analyze_And_Resolve
(R
, Base_Type
(T
));
20161 if Nkind
(R
) = N_Range
then
20163 -- In SPARK, all ranges should be static, with the exception of the
20164 -- discrete type definition of a loop parameter specification.
20166 if not In_Iter_Schm
20167 and then not Is_OK_Static_Range
(R
)
20169 Check_SPARK_05_Restriction
("range should be static", R
);
20172 Lo
:= Low_Bound
(R
);
20173 Hi
:= High_Bound
(R
);
20175 -- Validity checks on the range of a quantified expression are
20176 -- delayed until the construct is transformed into a loop.
20178 if Nkind
(Parent
(R
)) = N_Loop_Parameter_Specification
20179 and then Nkind
(Parent
(Parent
(R
))) = N_Quantified_Expression
20183 -- We need to ensure validity of the bounds here, because if we
20184 -- go ahead and do the expansion, then the expanded code will get
20185 -- analyzed with range checks suppressed and we miss the check.
20187 -- WARNING: The capture of the range bounds with xxx_FIRST/_LAST and
20188 -- the temporaries generated by routine Remove_Side_Effects by means
20189 -- of validity checks must use the same names. When a range appears
20190 -- in the parent of a generic, the range is processed with checks
20191 -- disabled as part of the generic context and with checks enabled
20192 -- for code generation purposes. This leads to link issues as the
20193 -- generic contains references to xxx_FIRST/_LAST, but the inlined
20194 -- template sees the temporaries generated by Remove_Side_Effects.
20197 Validity_Check_Range
(R
, Subtyp
);
20200 -- If there were errors in the declaration, try and patch up some
20201 -- common mistakes in the bounds. The cases handled are literals
20202 -- which are Integer where the expected type is Real and vice versa.
20203 -- These corrections allow the compilation process to proceed further
20204 -- along since some basic assumptions of the format of the bounds
20207 if Etype
(R
) = Any_Type
then
20208 if Nkind
(Lo
) = N_Integer_Literal
and then Is_Real_Type
(T
) then
20210 Make_Real_Literal
(Sloc
(Lo
), UR_From_Uint
(Intval
(Lo
))));
20212 elsif Nkind
(Hi
) = N_Integer_Literal
and then Is_Real_Type
(T
) then
20214 Make_Real_Literal
(Sloc
(Hi
), UR_From_Uint
(Intval
(Hi
))));
20216 elsif Nkind
(Lo
) = N_Real_Literal
and then Is_Integer_Type
(T
) then
20218 Make_Integer_Literal
(Sloc
(Lo
), UR_To_Uint
(Realval
(Lo
))));
20220 elsif Nkind
(Hi
) = N_Real_Literal
and then Is_Integer_Type
(T
) then
20222 Make_Integer_Literal
(Sloc
(Hi
), UR_To_Uint
(Realval
(Hi
))));
20229 -- If the bounds of the range have been mistakenly given as string
20230 -- literals (perhaps in place of character literals), then an error
20231 -- has already been reported, but we rewrite the string literal as a
20232 -- bound of the range's type to avoid blowups in later processing
20233 -- that looks at static values.
20235 if Nkind
(Lo
) = N_String_Literal
then
20237 Make_Attribute_Reference
(Sloc
(Lo
),
20238 Prefix
=> New_Occurrence_Of
(T
, Sloc
(Lo
)),
20239 Attribute_Name
=> Name_First
));
20240 Analyze_And_Resolve
(Lo
);
20243 if Nkind
(Hi
) = N_String_Literal
then
20245 Make_Attribute_Reference
(Sloc
(Hi
),
20246 Prefix
=> New_Occurrence_Of
(T
, Sloc
(Hi
)),
20247 Attribute_Name
=> Name_First
));
20248 Analyze_And_Resolve
(Hi
);
20251 -- If bounds aren't scalar at this point then exit, avoiding
20252 -- problems with further processing of the range in this procedure.
20254 if not Is_Scalar_Type
(Etype
(Lo
)) then
20258 -- Resolve (actually Sem_Eval) has checked that the bounds are in
20259 -- then range of the base type. Here we check whether the bounds
20260 -- are in the range of the subtype itself. Note that if the bounds
20261 -- represent the null range the Constraint_Error exception should
20264 -- ??? The following code should be cleaned up as follows
20266 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
20267 -- is done in the call to Range_Check (R, T); below
20269 -- 2. The use of R_Check_Off should be investigated and possibly
20270 -- removed, this would clean up things a bit.
20272 if Is_Null_Range
(Lo
, Hi
) then
20276 -- Capture values of bounds and generate temporaries for them
20277 -- if needed, before applying checks, since checks may cause
20278 -- duplication of the expression without forcing evaluation.
20280 -- The forced evaluation removes side effects from expressions,
20281 -- which should occur also in GNATprove mode. Otherwise, we end up
20282 -- with unexpected insertions of actions at places where this is
20283 -- not supposed to occur, e.g. on default parameters of a call.
20285 if Expander_Active
or GNATprove_Mode
then
20287 -- Call Force_Evaluation to create declarations as needed to
20288 -- deal with side effects, and also create typ_FIRST/LAST
20289 -- entities for bounds if we have a subtype name.
20291 -- Note: we do this transformation even if expansion is not
20292 -- active if we are in GNATprove_Mode since the transformation
20293 -- is in general required to ensure that the resulting tree has
20294 -- proper Ada semantics.
20297 (Lo
, Related_Id
=> Subtyp
, Is_Low_Bound
=> True);
20299 (Hi
, Related_Id
=> Subtyp
, Is_High_Bound
=> True);
20302 -- We use a flag here instead of suppressing checks on the type
20303 -- because the type we check against isn't necessarily the place
20304 -- where we put the check.
20306 if not R_Check_Off
then
20307 R_Checks
:= Get_Range_Checks
(R
, T
);
20309 -- Look up tree to find an appropriate insertion point. We
20310 -- can't just use insert_actions because later processing
20311 -- depends on the insertion node. Prior to Ada 2012 the
20312 -- insertion point could only be a declaration or a loop, but
20313 -- quantified expressions can appear within any context in an
20314 -- expression, and the insertion point can be any statement,
20315 -- pragma, or declaration.
20317 Insert_Node
:= Parent
(R
);
20318 while Present
(Insert_Node
) loop
20320 Nkind
(Insert_Node
) in N_Declaration
20323 (Insert_Node
, N_Component_Declaration
,
20324 N_Loop_Parameter_Specification
,
20325 N_Function_Specification
,
20326 N_Procedure_Specification
);
20328 exit when Nkind
(Insert_Node
) in N_Later_Decl_Item
20329 or else Nkind
(Insert_Node
) in
20330 N_Statement_Other_Than_Procedure_Call
20331 or else Nkind_In
(Insert_Node
, N_Procedure_Call_Statement
,
20334 Insert_Node
:= Parent
(Insert_Node
);
20337 -- Why would Type_Decl not be present??? Without this test,
20338 -- short regression tests fail.
20340 if Present
(Insert_Node
) then
20342 -- Case of loop statement. Verify that the range is part
20343 -- of the subtype indication of the iteration scheme.
20345 if Nkind
(Insert_Node
) = N_Loop_Statement
then
20350 Indic
:= Parent
(R
);
20351 while Present
(Indic
)
20352 and then Nkind
(Indic
) /= N_Subtype_Indication
20354 Indic
:= Parent
(Indic
);
20357 if Present
(Indic
) then
20358 Def_Id
:= Etype
(Subtype_Mark
(Indic
));
20360 Insert_Range_Checks
20364 Sloc
(Insert_Node
),
20366 Do_Before
=> True);
20370 -- Insertion before a declaration. If the declaration
20371 -- includes discriminants, the list of applicable checks
20372 -- is given by the caller.
20374 elsif Nkind
(Insert_Node
) in N_Declaration
then
20375 Def_Id
:= Defining_Identifier
(Insert_Node
);
20377 if (Ekind
(Def_Id
) = E_Record_Type
20378 and then Depends_On_Discriminant
(R
))
20380 (Ekind
(Def_Id
) = E_Protected_Type
20381 and then Has_Discriminants
(Def_Id
))
20383 Append_Range_Checks
20385 Check_List
, Def_Id
, Sloc
(Insert_Node
), R
);
20388 Insert_Range_Checks
20390 Insert_Node
, Def_Id
, Sloc
(Insert_Node
), R
);
20394 -- Insertion before a statement. Range appears in the
20395 -- context of a quantified expression. Insertion will
20396 -- take place when expression is expanded.
20405 -- Case of other than an explicit N_Range node
20407 -- The forced evaluation removes side effects from expressions, which
20408 -- should occur also in GNATprove mode. Otherwise, we end up with
20409 -- unexpected insertions of actions at places where this is not
20410 -- supposed to occur, e.g. on default parameters of a call.
20412 elsif Expander_Active
or GNATprove_Mode
then
20413 Get_Index_Bounds
(R
, Lo
, Hi
);
20414 Force_Evaluation
(Lo
);
20415 Force_Evaluation
(Hi
);
20417 end Process_Range_Expr_In_Decl
;
20419 --------------------------------------
20420 -- Process_Real_Range_Specification --
20421 --------------------------------------
20423 procedure Process_Real_Range_Specification
(Def
: Node_Id
) is
20424 Spec
: constant Node_Id
:= Real_Range_Specification
(Def
);
20427 Err
: Boolean := False;
20429 procedure Analyze_Bound
(N
: Node_Id
);
20430 -- Analyze and check one bound
20432 -------------------
20433 -- Analyze_Bound --
20434 -------------------
20436 procedure Analyze_Bound
(N
: Node_Id
) is
20438 Analyze_And_Resolve
(N
, Any_Real
);
20440 if not Is_OK_Static_Expression
(N
) then
20441 Flag_Non_Static_Expr
20442 ("bound in real type definition is not static!", N
);
20447 -- Start of processing for Process_Real_Range_Specification
20450 if Present
(Spec
) then
20451 Lo
:= Low_Bound
(Spec
);
20452 Hi
:= High_Bound
(Spec
);
20453 Analyze_Bound
(Lo
);
20454 Analyze_Bound
(Hi
);
20456 -- If error, clear away junk range specification
20459 Set_Real_Range_Specification
(Def
, Empty
);
20462 end Process_Real_Range_Specification
;
20464 ---------------------
20465 -- Process_Subtype --
20466 ---------------------
20468 function Process_Subtype
20470 Related_Nod
: Node_Id
;
20471 Related_Id
: Entity_Id
:= Empty
;
20472 Suffix
: Character := ' ') return Entity_Id
20475 Def_Id
: Entity_Id
;
20476 Error_Node
: Node_Id
;
20477 Full_View_Id
: Entity_Id
;
20478 Subtype_Mark_Id
: Entity_Id
;
20480 May_Have_Null_Exclusion
: Boolean;
20482 procedure Check_Incomplete
(T
: Entity_Id
);
20483 -- Called to verify that an incomplete type is not used prematurely
20485 ----------------------
20486 -- Check_Incomplete --
20487 ----------------------
20489 procedure Check_Incomplete
(T
: Entity_Id
) is
20491 -- Ada 2005 (AI-412): Incomplete subtypes are legal
20493 if Ekind
(Root_Type
(Entity
(T
))) = E_Incomplete_Type
20495 not (Ada_Version
>= Ada_2005
20497 (Nkind
(Parent
(T
)) = N_Subtype_Declaration
20498 or else (Nkind
(Parent
(T
)) = N_Subtype_Indication
20499 and then Nkind
(Parent
(Parent
(T
))) =
20500 N_Subtype_Declaration
)))
20502 Error_Msg_N
("invalid use of type before its full declaration", T
);
20504 end Check_Incomplete
;
20506 -- Start of processing for Process_Subtype
20509 -- Case of no constraints present
20511 if Nkind
(S
) /= N_Subtype_Indication
then
20513 Check_Incomplete
(S
);
20516 -- Ada 2005 (AI-231): Static check
20518 if Ada_Version
>= Ada_2005
20519 and then Present
(P
)
20520 and then Null_Exclusion_Present
(P
)
20521 and then Nkind
(P
) /= N_Access_To_Object_Definition
20522 and then not Is_Access_Type
(Entity
(S
))
20524 Error_Msg_N
("`NOT NULL` only allowed for an access type", S
);
20527 -- The following is ugly, can't we have a range or even a flag???
20529 May_Have_Null_Exclusion
:=
20530 Nkind_In
(P
, N_Access_Definition
,
20531 N_Access_Function_Definition
,
20532 N_Access_Procedure_Definition
,
20533 N_Access_To_Object_Definition
,
20535 N_Component_Definition
)
20537 Nkind_In
(P
, N_Derived_Type_Definition
,
20538 N_Discriminant_Specification
,
20539 N_Formal_Object_Declaration
,
20540 N_Object_Declaration
,
20541 N_Object_Renaming_Declaration
,
20542 N_Parameter_Specification
,
20543 N_Subtype_Declaration
);
20545 -- Create an Itype that is a duplicate of Entity (S) but with the
20546 -- null-exclusion attribute.
20548 if May_Have_Null_Exclusion
20549 and then Is_Access_Type
(Entity
(S
))
20550 and then Null_Exclusion_Present
(P
)
20552 -- No need to check the case of an access to object definition.
20553 -- It is correct to define double not-null pointers.
20556 -- type Not_Null_Int_Ptr is not null access Integer;
20557 -- type Acc is not null access Not_Null_Int_Ptr;
20559 and then Nkind
(P
) /= N_Access_To_Object_Definition
20561 if Can_Never_Be_Null
(Entity
(S
)) then
20562 case Nkind
(Related_Nod
) is
20563 when N_Full_Type_Declaration
=>
20564 if Nkind
(Type_Definition
(Related_Nod
))
20565 in N_Array_Type_Definition
20569 (Component_Definition
20570 (Type_Definition
(Related_Nod
)));
20573 Subtype_Indication
(Type_Definition
(Related_Nod
));
20576 when N_Subtype_Declaration
=>
20577 Error_Node
:= Subtype_Indication
(Related_Nod
);
20579 when N_Object_Declaration
=>
20580 Error_Node
:= Object_Definition
(Related_Nod
);
20582 when N_Component_Declaration
=>
20584 Subtype_Indication
(Component_Definition
(Related_Nod
));
20586 when N_Allocator
=>
20587 Error_Node
:= Expression
(Related_Nod
);
20590 pragma Assert
(False);
20591 Error_Node
:= Related_Nod
;
20595 ("`NOT NULL` not allowed (& already excludes null)",
20601 Create_Null_Excluding_Itype
20603 Related_Nod
=> P
));
20604 Set_Entity
(S
, Etype
(S
));
20609 -- Case of constraint present, so that we have an N_Subtype_Indication
20610 -- node (this node is created only if constraints are present).
20613 Find_Type
(Subtype_Mark
(S
));
20615 if Nkind
(Parent
(S
)) /= N_Access_To_Object_Definition
20617 (Nkind
(Parent
(S
)) = N_Subtype_Declaration
20618 and then Is_Itype
(Defining_Identifier
(Parent
(S
))))
20620 Check_Incomplete
(Subtype_Mark
(S
));
20624 Subtype_Mark_Id
:= Entity
(Subtype_Mark
(S
));
20626 -- Explicit subtype declaration case
20628 if Nkind
(P
) = N_Subtype_Declaration
then
20629 Def_Id
:= Defining_Identifier
(P
);
20631 -- Explicit derived type definition case
20633 elsif Nkind
(P
) = N_Derived_Type_Definition
then
20634 Def_Id
:= Defining_Identifier
(Parent
(P
));
20636 -- Implicit case, the Def_Id must be created as an implicit type.
20637 -- The one exception arises in the case of concurrent types, array
20638 -- and access types, where other subsidiary implicit types may be
20639 -- created and must appear before the main implicit type. In these
20640 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
20641 -- has not yet been called to create Def_Id.
20644 if Is_Array_Type
(Subtype_Mark_Id
)
20645 or else Is_Concurrent_Type
(Subtype_Mark_Id
)
20646 or else Is_Access_Type
(Subtype_Mark_Id
)
20650 -- For the other cases, we create a new unattached Itype,
20651 -- and set the indication to ensure it gets attached later.
20655 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
20659 -- If the kind of constraint is invalid for this kind of type,
20660 -- then give an error, and then pretend no constraint was given.
20662 if not Is_Valid_Constraint_Kind
20663 (Ekind
(Subtype_Mark_Id
), Nkind
(Constraint
(S
)))
20666 ("incorrect constraint for this kind of type", Constraint
(S
));
20668 Rewrite
(S
, New_Copy_Tree
(Subtype_Mark
(S
)));
20670 -- Set Ekind of orphan itype, to prevent cascaded errors
20672 if Present
(Def_Id
) then
20673 Set_Ekind
(Def_Id
, Ekind
(Any_Type
));
20676 -- Make recursive call, having got rid of the bogus constraint
20678 return Process_Subtype
(S
, Related_Nod
, Related_Id
, Suffix
);
20681 -- Remaining processing depends on type. Select on Base_Type kind to
20682 -- ensure getting to the concrete type kind in the case of a private
20683 -- subtype (needed when only doing semantic analysis).
20685 case Ekind
(Base_Type
(Subtype_Mark_Id
)) is
20686 when Access_Kind
=>
20688 -- If this is a constraint on a class-wide type, discard it.
20689 -- There is currently no way to express a partial discriminant
20690 -- constraint on a type with unknown discriminants. This is
20691 -- a pathology that the ACATS wisely decides not to test.
20693 if Is_Class_Wide_Type
(Designated_Type
(Subtype_Mark_Id
)) then
20694 if Comes_From_Source
(S
) then
20696 ("constraint on class-wide type ignored??",
20700 if Nkind
(P
) = N_Subtype_Declaration
then
20701 Set_Subtype_Indication
(P
,
20702 New_Occurrence_Of
(Subtype_Mark_Id
, Sloc
(S
)));
20705 return Subtype_Mark_Id
;
20708 Constrain_Access
(Def_Id
, S
, Related_Nod
);
20711 and then Is_Itype
(Designated_Type
(Def_Id
))
20712 and then Nkind
(Related_Nod
) = N_Subtype_Declaration
20713 and then not Is_Incomplete_Type
(Designated_Type
(Def_Id
))
20715 Build_Itype_Reference
20716 (Designated_Type
(Def_Id
), Related_Nod
);
20720 Constrain_Array
(Def_Id
, S
, Related_Nod
, Related_Id
, Suffix
);
20722 when Decimal_Fixed_Point_Kind
=>
20723 Constrain_Decimal
(Def_Id
, S
);
20725 when Enumeration_Kind
=>
20726 Constrain_Enumeration
(Def_Id
, S
);
20727 Inherit_Predicate_Flags
(Def_Id
, Subtype_Mark_Id
);
20729 when Ordinary_Fixed_Point_Kind
=>
20730 Constrain_Ordinary_Fixed
(Def_Id
, S
);
20733 Constrain_Float
(Def_Id
, S
);
20735 when Integer_Kind
=>
20736 Constrain_Integer
(Def_Id
, S
);
20737 Inherit_Predicate_Flags
(Def_Id
, Subtype_Mark_Id
);
20739 when E_Record_Type |
20742 E_Incomplete_Type
=>
20743 Constrain_Discriminated_Type
(Def_Id
, S
, Related_Nod
);
20745 if Ekind
(Def_Id
) = E_Incomplete_Type
then
20746 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
20749 when Private_Kind
=>
20750 Constrain_Discriminated_Type
(Def_Id
, S
, Related_Nod
);
20751 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
20753 -- In case of an invalid constraint prevent further processing
20754 -- since the type constructed is missing expected fields.
20756 if Etype
(Def_Id
) = Any_Type
then
20760 -- If the full view is that of a task with discriminants,
20761 -- we must constrain both the concurrent type and its
20762 -- corresponding record type. Otherwise we will just propagate
20763 -- the constraint to the full view, if available.
20765 if Present
(Full_View
(Subtype_Mark_Id
))
20766 and then Has_Discriminants
(Subtype_Mark_Id
)
20767 and then Is_Concurrent_Type
(Full_View
(Subtype_Mark_Id
))
20770 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
20772 Set_Entity
(Subtype_Mark
(S
), Full_View
(Subtype_Mark_Id
));
20773 Constrain_Concurrent
(Full_View_Id
, S
,
20774 Related_Nod
, Related_Id
, Suffix
);
20775 Set_Entity
(Subtype_Mark
(S
), Subtype_Mark_Id
);
20776 Set_Full_View
(Def_Id
, Full_View_Id
);
20778 -- Introduce an explicit reference to the private subtype,
20779 -- to prevent scope anomalies in gigi if first use appears
20780 -- in a nested context, e.g. a later function body.
20781 -- Should this be generated in other contexts than a full
20782 -- type declaration?
20784 if Is_Itype
(Def_Id
)
20786 Nkind
(Parent
(P
)) = N_Full_Type_Declaration
20788 Build_Itype_Reference
(Def_Id
, Parent
(P
));
20792 Prepare_Private_Subtype_Completion
(Def_Id
, Related_Nod
);
20795 when Concurrent_Kind
=>
20796 Constrain_Concurrent
(Def_Id
, S
,
20797 Related_Nod
, Related_Id
, Suffix
);
20800 Error_Msg_N
("invalid subtype mark in subtype indication", S
);
20803 -- Size and Convention are always inherited from the base type
20805 Set_Size_Info
(Def_Id
, (Subtype_Mark_Id
));
20806 Set_Convention
(Def_Id
, Convention
(Subtype_Mark_Id
));
20810 end Process_Subtype
;
20812 --------------------------------------------
20813 -- Propagate_Default_Init_Cond_Attributes --
20814 --------------------------------------------
20816 procedure Propagate_Default_Init_Cond_Attributes
20817 (From_Typ
: Entity_Id
;
20818 To_Typ
: Entity_Id
;
20819 Parent_To_Derivation
: Boolean := False;
20820 Private_To_Full_View
: Boolean := False)
20822 procedure Remove_Default_Init_Cond_Procedure
(Typ
: Entity_Id
);
20823 -- Remove the default initial procedure (if any) from the rep chain of
20826 ----------------------------------------
20827 -- Remove_Default_Init_Cond_Procedure --
20828 ----------------------------------------
20830 procedure Remove_Default_Init_Cond_Procedure
(Typ
: Entity_Id
) is
20831 Found
: Boolean := False;
20837 Subp
:= Subprograms_For_Type
(Typ
);
20838 while Present
(Subp
) loop
20839 if Is_Default_Init_Cond_Procedure
(Subp
) then
20845 Subp
:= Subprograms_For_Type
(Subp
);
20849 Set_Subprograms_For_Type
(Prev
, Subprograms_For_Type
(Subp
));
20850 Set_Subprograms_For_Type
(Subp
, Empty
);
20852 end Remove_Default_Init_Cond_Procedure
;
20856 Inherit_Procedure
: Boolean := False;
20858 -- Start of processing for Propagate_Default_Init_Cond_Attributes
20861 if Has_Default_Init_Cond
(From_Typ
) then
20863 -- A derived type inherits the attributes from its parent type
20865 if Parent_To_Derivation
then
20866 Set_Has_Inherited_Default_Init_Cond
(To_Typ
);
20868 -- A full view shares the attributes with its private view
20871 Set_Has_Default_Init_Cond
(To_Typ
);
20874 Inherit_Procedure
:= True;
20876 -- Due to the order of expansion, a derived private type is processed
20877 -- by two routines which both attempt to set the attributes related
20878 -- to pragma Default_Initial_Condition - Build_Derived_Type and then
20879 -- Process_Full_View.
20882 -- type Parent_Typ is private
20883 -- with Default_Initial_Condition ...;
20885 -- type Parent_Typ is ...;
20888 -- with Pack; use Pack;
20889 -- package Pack_2 is
20890 -- type Deriv_Typ is private
20891 -- with Default_Initial_Condition ...;
20893 -- type Deriv_Typ is new Parent_Typ;
20896 -- When Build_Derived_Type operates, it sets the attributes on the
20897 -- full view without taking into account that the private view may
20898 -- define its own default initial condition procedure. This becomes
20899 -- apparent in Process_Full_View which must undo some of the work by
20900 -- Build_Derived_Type and propagate the attributes from the private
20901 -- to the full view.
20903 if Private_To_Full_View
then
20904 Set_Has_Inherited_Default_Init_Cond
(To_Typ
, False);
20905 Remove_Default_Init_Cond_Procedure
(To_Typ
);
20908 -- A type must inherit the default initial condition procedure from a
20909 -- parent type when the parent itself is inheriting the procedure or
20910 -- when it is defining one. This circuitry is also used when dealing
20911 -- with the private / full view of a type.
20913 elsif Has_Inherited_Default_Init_Cond
(From_Typ
)
20914 or (Parent_To_Derivation
20915 and Present
(Get_Pragma
20916 (From_Typ
, Pragma_Default_Initial_Condition
)))
20918 Set_Has_Inherited_Default_Init_Cond
(To_Typ
);
20919 Inherit_Procedure
:= True;
20922 if Inherit_Procedure
20923 and then No
(Default_Init_Cond_Procedure
(To_Typ
))
20925 Set_Default_Init_Cond_Procedure
20926 (To_Typ
, Default_Init_Cond_Procedure
(From_Typ
));
20928 end Propagate_Default_Init_Cond_Attributes
;
20930 -----------------------------
20931 -- Record_Type_Declaration --
20932 -----------------------------
20934 procedure Record_Type_Declaration
20939 Def
: constant Node_Id
:= Type_Definition
(N
);
20940 Is_Tagged
: Boolean;
20941 Tag_Comp
: Entity_Id
;
20944 -- These flags must be initialized before calling Process_Discriminants
20945 -- because this routine makes use of them.
20947 Set_Ekind
(T
, E_Record_Type
);
20949 Init_Size_Align
(T
);
20950 Set_Interfaces
(T
, No_Elist
);
20951 Set_Stored_Constraint
(T
, No_Elist
);
20952 Set_Default_SSO
(T
);
20956 if Ada_Version
< Ada_2005
or else not Interface_Present
(Def
) then
20957 if Limited_Present
(Def
) then
20958 Check_SPARK_05_Restriction
("limited is not allowed", N
);
20961 if Abstract_Present
(Def
) then
20962 Check_SPARK_05_Restriction
("abstract is not allowed", N
);
20965 -- The flag Is_Tagged_Type might have already been set by
20966 -- Find_Type_Name if it detected an error for declaration T. This
20967 -- arises in the case of private tagged types where the full view
20968 -- omits the word tagged.
20971 Tagged_Present
(Def
)
20972 or else (Serious_Errors_Detected
> 0 and then Is_Tagged_Type
(T
));
20974 Set_Is_Limited_Record
(T
, Limited_Present
(Def
));
20977 Set_Is_Tagged_Type
(T
, True);
20978 Set_No_Tagged_Streams_Pragma
(T
, No_Tagged_Streams
);
20981 -- Type is abstract if full declaration carries keyword, or if
20982 -- previous partial view did.
20984 Set_Is_Abstract_Type
(T
, Is_Abstract_Type
(T
)
20985 or else Abstract_Present
(Def
));
20988 Check_SPARK_05_Restriction
("interface is not allowed", N
);
20991 Analyze_Interface_Declaration
(T
, Def
);
20993 if Present
(Discriminant_Specifications
(N
)) then
20995 ("interface types cannot have discriminants",
20996 Defining_Identifier
20997 (First
(Discriminant_Specifications
(N
))));
21001 -- First pass: if there are self-referential access components,
21002 -- create the required anonymous access type declarations, and if
21003 -- need be an incomplete type declaration for T itself.
21005 Check_Anonymous_Access_Components
(N
, T
, Prev
, Component_List
(Def
));
21007 if Ada_Version
>= Ada_2005
21008 and then Present
(Interface_List
(Def
))
21010 Check_Interfaces
(N
, Def
);
21013 Ifaces_List
: Elist_Id
;
21016 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
21017 -- already in the parents.
21021 Ifaces_List
=> Ifaces_List
,
21022 Exclude_Parents
=> True);
21024 Set_Interfaces
(T
, Ifaces_List
);
21028 -- Records constitute a scope for the component declarations within.
21029 -- The scope is created prior to the processing of these declarations.
21030 -- Discriminants are processed first, so that they are visible when
21031 -- processing the other components. The Ekind of the record type itself
21032 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
21034 -- Enter record scope
21038 -- If an incomplete or private type declaration was already given for
21039 -- the type, then this scope already exists, and the discriminants have
21040 -- been declared within. We must verify that the full declaration
21041 -- matches the incomplete one.
21043 Check_Or_Process_Discriminants
(N
, T
, Prev
);
21045 Set_Is_Constrained
(T
, not Has_Discriminants
(T
));
21046 Set_Has_Delayed_Freeze
(T
, True);
21048 -- For tagged types add a manually analyzed component corresponding
21049 -- to the component _tag, the corresponding piece of tree will be
21050 -- expanded as part of the freezing actions if it is not a CPP_Class.
21054 -- Do not add the tag unless we are in expansion mode
21056 if Expander_Active
then
21057 Tag_Comp
:= Make_Defining_Identifier
(Sloc
(Def
), Name_uTag
);
21058 Enter_Name
(Tag_Comp
);
21060 Set_Ekind
(Tag_Comp
, E_Component
);
21061 Set_Is_Tag
(Tag_Comp
);
21062 Set_Is_Aliased
(Tag_Comp
);
21063 Set_Etype
(Tag_Comp
, RTE
(RE_Tag
));
21064 Set_DT_Entry_Count
(Tag_Comp
, No_Uint
);
21065 Set_Original_Record_Component
(Tag_Comp
, Tag_Comp
);
21066 Init_Component_Location
(Tag_Comp
);
21068 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
21069 -- implemented interfaces.
21071 if Has_Interfaces
(T
) then
21072 Add_Interface_Tag_Components
(N
, T
);
21076 Make_Class_Wide_Type
(T
);
21077 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
21080 -- We must suppress range checks when processing record components in
21081 -- the presence of discriminants, since we don't want spurious checks to
21082 -- be generated during their analysis, but Suppress_Range_Checks flags
21083 -- must be reset the after processing the record definition.
21085 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
21086 -- couldn't we just use the normal range check suppression method here.
21087 -- That would seem cleaner ???
21089 if Has_Discriminants
(T
) and then not Range_Checks_Suppressed
(T
) then
21090 Set_Kill_Range_Checks
(T
, True);
21091 Record_Type_Definition
(Def
, Prev
);
21092 Set_Kill_Range_Checks
(T
, False);
21094 Record_Type_Definition
(Def
, Prev
);
21097 -- Exit from record scope
21101 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
21102 -- the implemented interfaces and associate them an aliased entity.
21105 and then not Is_Empty_List
(Interface_List
(Def
))
21107 Derive_Progenitor_Subprograms
(T
, T
);
21110 Check_Function_Writable_Actuals
(N
);
21111 end Record_Type_Declaration
;
21113 ----------------------------
21114 -- Record_Type_Definition --
21115 ----------------------------
21117 procedure Record_Type_Definition
(Def
: Node_Id
; Prev_T
: Entity_Id
) is
21118 Component
: Entity_Id
;
21119 Ctrl_Components
: Boolean := False;
21120 Final_Storage_Only
: Boolean;
21124 if Ekind
(Prev_T
) = E_Incomplete_Type
then
21125 T
:= Full_View
(Prev_T
);
21130 -- In SPARK, tagged types and type extensions may only be declared in
21131 -- the specification of library unit packages.
21133 if Present
(Def
) and then Is_Tagged_Type
(T
) then
21139 if Nkind
(Parent
(Def
)) = N_Full_Type_Declaration
then
21140 Typ
:= Parent
(Def
);
21143 (Nkind
(Parent
(Def
)) = N_Derived_Type_Definition
);
21144 Typ
:= Parent
(Parent
(Def
));
21147 Ctxt
:= Parent
(Typ
);
21149 if Nkind
(Ctxt
) = N_Package_Body
21150 and then Nkind
(Parent
(Ctxt
)) = N_Compilation_Unit
21152 Check_SPARK_05_Restriction
21153 ("type should be defined in package specification", Typ
);
21155 elsif Nkind
(Ctxt
) /= N_Package_Specification
21156 or else Nkind
(Parent
(Parent
(Ctxt
))) /= N_Compilation_Unit
21158 Check_SPARK_05_Restriction
21159 ("type should be defined in library unit package", Typ
);
21164 Final_Storage_Only
:= not Is_Controlled
(T
);
21166 -- Ada 2005: Check whether an explicit Limited is present in a derived
21167 -- type declaration.
21169 if Nkind
(Parent
(Def
)) = N_Derived_Type_Definition
21170 and then Limited_Present
(Parent
(Def
))
21172 Set_Is_Limited_Record
(T
);
21175 -- If the component list of a record type is defined by the reserved
21176 -- word null and there is no discriminant part, then the record type has
21177 -- no components and all records of the type are null records (RM 3.7)
21178 -- This procedure is also called to process the extension part of a
21179 -- record extension, in which case the current scope may have inherited
21183 or else No
(Component_List
(Def
))
21184 or else Null_Present
(Component_List
(Def
))
21186 if not Is_Tagged_Type
(T
) then
21187 Check_SPARK_05_Restriction
("untagged record cannot be null", Def
);
21191 Analyze_Declarations
(Component_Items
(Component_List
(Def
)));
21193 if Present
(Variant_Part
(Component_List
(Def
))) then
21194 Check_SPARK_05_Restriction
("variant part is not allowed", Def
);
21195 Analyze
(Variant_Part
(Component_List
(Def
)));
21199 -- After completing the semantic analysis of the record definition,
21200 -- record components, both new and inherited, are accessible. Set their
21201 -- kind accordingly. Exclude malformed itypes from illegal declarations,
21202 -- whose Ekind may be void.
21204 Component
:= First_Entity
(Current_Scope
);
21205 while Present
(Component
) loop
21206 if Ekind
(Component
) = E_Void
21207 and then not Is_Itype
(Component
)
21209 Set_Ekind
(Component
, E_Component
);
21210 Init_Component_Location
(Component
);
21213 if Has_Task
(Etype
(Component
)) then
21217 if Has_Protected
(Etype
(Component
)) then
21218 Set_Has_Protected
(T
);
21221 if Ekind
(Component
) /= E_Component
then
21224 -- Do not set Has_Controlled_Component on a class-wide equivalent
21225 -- type. See Make_CW_Equivalent_Type.
21227 elsif not Is_Class_Wide_Equivalent_Type
(T
)
21228 and then (Has_Controlled_Component
(Etype
(Component
))
21229 or else (Chars
(Component
) /= Name_uParent
21230 and then Is_Controlled
(Etype
(Component
))))
21232 Set_Has_Controlled_Component
(T
, True);
21233 Final_Storage_Only
:=
21235 and then Finalize_Storage_Only
(Etype
(Component
));
21236 Ctrl_Components
:= True;
21239 Next_Entity
(Component
);
21242 -- A Type is Finalize_Storage_Only only if all its controlled components
21245 if Ctrl_Components
then
21246 Set_Finalize_Storage_Only
(T
, Final_Storage_Only
);
21249 -- Place reference to end record on the proper entity, which may
21250 -- be a partial view.
21252 if Present
(Def
) then
21253 Process_End_Label
(Def
, 'e', Prev_T
);
21255 end Record_Type_Definition
;
21257 ------------------------
21258 -- Replace_Components --
21259 ------------------------
21261 procedure Replace_Components
(Typ
: Entity_Id
; Decl
: Node_Id
) is
21262 function Process
(N
: Node_Id
) return Traverse_Result
;
21268 function Process
(N
: Node_Id
) return Traverse_Result
is
21272 if Nkind
(N
) = N_Discriminant_Specification
then
21273 Comp
:= First_Discriminant
(Typ
);
21274 while Present
(Comp
) loop
21275 if Chars
(Comp
) = Chars
(Defining_Identifier
(N
)) then
21276 Set_Defining_Identifier
(N
, Comp
);
21280 Next_Discriminant
(Comp
);
21283 elsif Nkind
(N
) = N_Component_Declaration
then
21284 Comp
:= First_Component
(Typ
);
21285 while Present
(Comp
) loop
21286 if Chars
(Comp
) = Chars
(Defining_Identifier
(N
)) then
21287 Set_Defining_Identifier
(N
, Comp
);
21291 Next_Component
(Comp
);
21298 procedure Replace
is new Traverse_Proc
(Process
);
21300 -- Start of processing for Replace_Components
21304 end Replace_Components
;
21306 -------------------------------
21307 -- Set_Completion_Referenced --
21308 -------------------------------
21310 procedure Set_Completion_Referenced
(E
: Entity_Id
) is
21312 -- If in main unit, mark entity that is a completion as referenced,
21313 -- warnings go on the partial view when needed.
21315 if In_Extended_Main_Source_Unit
(E
) then
21316 Set_Referenced
(E
);
21318 end Set_Completion_Referenced
;
21320 ---------------------
21321 -- Set_Default_SSO --
21322 ---------------------
21324 procedure Set_Default_SSO
(T
: Entity_Id
) is
21326 case Opt
.Default_SSO
is
21330 Set_SSO_Set_Low_By_Default
(T
, True);
21332 Set_SSO_Set_High_By_Default
(T
, True);
21334 raise Program_Error
;
21336 end Set_Default_SSO
;
21338 ---------------------
21339 -- Set_Fixed_Range --
21340 ---------------------
21342 -- The range for fixed-point types is complicated by the fact that we
21343 -- do not know the exact end points at the time of the declaration. This
21344 -- is true for three reasons:
21346 -- A size clause may affect the fudging of the end-points.
21347 -- A small clause may affect the values of the end-points.
21348 -- We try to include the end-points if it does not affect the size.
21350 -- This means that the actual end-points must be established at the
21351 -- point when the type is frozen. Meanwhile, we first narrow the range
21352 -- as permitted (so that it will fit if necessary in a small specified
21353 -- size), and then build a range subtree with these narrowed bounds.
21354 -- Set_Fixed_Range constructs the range from real literal values, and
21355 -- sets the range as the Scalar_Range of the given fixed-point type entity.
21357 -- The parent of this range is set to point to the entity so that it is
21358 -- properly hooked into the tree (unlike normal Scalar_Range entries for
21359 -- other scalar types, which are just pointers to the range in the
21360 -- original tree, this would otherwise be an orphan).
21362 -- The tree is left unanalyzed. When the type is frozen, the processing
21363 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
21364 -- analyzed, and uses this as an indication that it should complete
21365 -- work on the range (it will know the final small and size values).
21367 procedure Set_Fixed_Range
21373 S
: constant Node_Id
:=
21375 Low_Bound
=> Make_Real_Literal
(Loc
, Lo
),
21376 High_Bound
=> Make_Real_Literal
(Loc
, Hi
));
21378 Set_Scalar_Range
(E
, S
);
21381 -- Before the freeze point, the bounds of a fixed point are universal
21382 -- and carry the corresponding type.
21384 Set_Etype
(Low_Bound
(S
), Universal_Real
);
21385 Set_Etype
(High_Bound
(S
), Universal_Real
);
21386 end Set_Fixed_Range
;
21388 ----------------------------------
21389 -- Set_Scalar_Range_For_Subtype --
21390 ----------------------------------
21392 procedure Set_Scalar_Range_For_Subtype
21393 (Def_Id
: Entity_Id
;
21397 Kind
: constant Entity_Kind
:= Ekind
(Def_Id
);
21400 -- Defend against previous error
21402 if Nkind
(R
) = N_Error
then
21406 Set_Scalar_Range
(Def_Id
, R
);
21408 -- We need to link the range into the tree before resolving it so
21409 -- that types that are referenced, including importantly the subtype
21410 -- itself, are properly frozen (Freeze_Expression requires that the
21411 -- expression be properly linked into the tree). Of course if it is
21412 -- already linked in, then we do not disturb the current link.
21414 if No
(Parent
(R
)) then
21415 Set_Parent
(R
, Def_Id
);
21418 -- Reset the kind of the subtype during analysis of the range, to
21419 -- catch possible premature use in the bounds themselves.
21421 Set_Ekind
(Def_Id
, E_Void
);
21422 Process_Range_Expr_In_Decl
(R
, Subt
, Subtyp
=> Def_Id
);
21423 Set_Ekind
(Def_Id
, Kind
);
21424 end Set_Scalar_Range_For_Subtype
;
21426 --------------------------------------------------------
21427 -- Set_Stored_Constraint_From_Discriminant_Constraint --
21428 --------------------------------------------------------
21430 procedure Set_Stored_Constraint_From_Discriminant_Constraint
21434 -- Make sure set if encountered during Expand_To_Stored_Constraint
21436 Set_Stored_Constraint
(E
, No_Elist
);
21438 -- Give it the right value
21440 if Is_Constrained
(E
) and then Has_Discriminants
(E
) then
21441 Set_Stored_Constraint
(E
,
21442 Expand_To_Stored_Constraint
(E
, Discriminant_Constraint
(E
)));
21444 end Set_Stored_Constraint_From_Discriminant_Constraint
;
21446 -------------------------------------
21447 -- Signed_Integer_Type_Declaration --
21448 -------------------------------------
21450 procedure Signed_Integer_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
21451 Implicit_Base
: Entity_Id
;
21452 Base_Typ
: Entity_Id
;
21455 Errs
: Boolean := False;
21459 function Can_Derive_From
(E
: Entity_Id
) return Boolean;
21460 -- Determine whether given bounds allow derivation from specified type
21462 procedure Check_Bound
(Expr
: Node_Id
);
21463 -- Check bound to make sure it is integral and static. If not, post
21464 -- appropriate error message and set Errs flag
21466 ---------------------
21467 -- Can_Derive_From --
21468 ---------------------
21470 -- Note we check both bounds against both end values, to deal with
21471 -- strange types like ones with a range of 0 .. -12341234.
21473 function Can_Derive_From
(E
: Entity_Id
) return Boolean is
21474 Lo
: constant Uint
:= Expr_Value
(Type_Low_Bound
(E
));
21475 Hi
: constant Uint
:= Expr_Value
(Type_High_Bound
(E
));
21477 return Lo
<= Lo_Val
and then Lo_Val
<= Hi
21479 Lo
<= Hi_Val
and then Hi_Val
<= Hi
;
21480 end Can_Derive_From
;
21486 procedure Check_Bound
(Expr
: Node_Id
) is
21488 -- If a range constraint is used as an integer type definition, each
21489 -- bound of the range must be defined by a static expression of some
21490 -- integer type, but the two bounds need not have the same integer
21491 -- type (Negative bounds are allowed.) (RM 3.5.4)
21493 if not Is_Integer_Type
(Etype
(Expr
)) then
21495 ("integer type definition bounds must be of integer type", Expr
);
21498 elsif not Is_OK_Static_Expression
(Expr
) then
21499 Flag_Non_Static_Expr
21500 ("non-static expression used for integer type bound!", Expr
);
21503 -- The bounds are folded into literals, and we set their type to be
21504 -- universal, to avoid typing difficulties: we cannot set the type
21505 -- of the literal to the new type, because this would be a forward
21506 -- reference for the back end, and if the original type is user-
21507 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
21510 if Is_Entity_Name
(Expr
) then
21511 Fold_Uint
(Expr
, Expr_Value
(Expr
), True);
21514 Set_Etype
(Expr
, Universal_Integer
);
21518 -- Start of processing for Signed_Integer_Type_Declaration
21521 -- Create an anonymous base type
21524 Create_Itype
(E_Signed_Integer_Type
, Parent
(Def
), T
, 'B');
21526 -- Analyze and check the bounds, they can be of any integer type
21528 Lo
:= Low_Bound
(Def
);
21529 Hi
:= High_Bound
(Def
);
21531 -- Arbitrarily use Integer as the type if either bound had an error
21533 if Hi
= Error
or else Lo
= Error
then
21534 Base_Typ
:= Any_Integer
;
21535 Set_Error_Posted
(T
, True);
21537 -- Here both bounds are OK expressions
21540 Analyze_And_Resolve
(Lo
, Any_Integer
);
21541 Analyze_And_Resolve
(Hi
, Any_Integer
);
21547 Hi
:= Type_High_Bound
(Standard_Long_Long_Integer
);
21548 Lo
:= Type_Low_Bound
(Standard_Long_Long_Integer
);
21551 -- Find type to derive from
21553 Lo_Val
:= Expr_Value
(Lo
);
21554 Hi_Val
:= Expr_Value
(Hi
);
21556 if Can_Derive_From
(Standard_Short_Short_Integer
) then
21557 Base_Typ
:= Base_Type
(Standard_Short_Short_Integer
);
21559 elsif Can_Derive_From
(Standard_Short_Integer
) then
21560 Base_Typ
:= Base_Type
(Standard_Short_Integer
);
21562 elsif Can_Derive_From
(Standard_Integer
) then
21563 Base_Typ
:= Base_Type
(Standard_Integer
);
21565 elsif Can_Derive_From
(Standard_Long_Integer
) then
21566 Base_Typ
:= Base_Type
(Standard_Long_Integer
);
21568 elsif Can_Derive_From
(Standard_Long_Long_Integer
) then
21569 Check_Restriction
(No_Long_Long_Integers
, Def
);
21570 Base_Typ
:= Base_Type
(Standard_Long_Long_Integer
);
21573 Base_Typ
:= Base_Type
(Standard_Long_Long_Integer
);
21574 Error_Msg_N
("integer type definition bounds out of range", Def
);
21575 Hi
:= Type_High_Bound
(Standard_Long_Long_Integer
);
21576 Lo
:= Type_Low_Bound
(Standard_Long_Long_Integer
);
21580 -- Complete both implicit base and declared first subtype entities. The
21581 -- inheritance of the rep item chain ensures that SPARK-related pragmas
21582 -- are not clobbered when the signed integer type acts as a full view of
21585 Set_Etype
(Implicit_Base
, Base_Typ
);
21586 Set_Size_Info
(Implicit_Base
, Base_Typ
);
21587 Set_RM_Size
(Implicit_Base
, RM_Size
(Base_Typ
));
21588 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Base_Typ
));
21589 Set_Scalar_Range
(Implicit_Base
, Scalar_Range
(Base_Typ
));
21591 Set_Ekind
(T
, E_Signed_Integer_Subtype
);
21592 Set_Etype
(T
, Implicit_Base
);
21593 Set_Size_Info
(T
, Implicit_Base
);
21594 Inherit_Rep_Item_Chain
(T
, Implicit_Base
);
21595 Set_Scalar_Range
(T
, Def
);
21596 Set_RM_Size
(T
, UI_From_Int
(Minimum_Size
(T
)));
21597 Set_Is_Constrained
(T
);
21598 end Signed_Integer_Type_Declaration
;